code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( UpperCAmelCase__ : list[int] ) -> Optional[int]: lowercase_ : List[str] = len(UpperCAmelCase__ ) // 2 # choose the middle 3 elements lowercase_ : Optional[Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( _a, unittest.TestCase): UpperCamelCase__ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple=0 ): lowercase_ : Any = floats_tensor((1, 3, 128, 128) , rng=random.Random(snake_case_ ) ) lowercase_ : List[str] = np.random.RandomState(snake_case_ ) lowercase_ : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Union[str, Any] = pipe(**snake_case_ ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowercase_ : int = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : int = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Tuple = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) # warmup pass to apply optimizations lowercase_ : List[Any] = pipe(**self.get_dummy_inputs() ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : Optional[int] = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Union[str, Any] = self.get_dummy_inputs() lowercase_ : List[Any] = pipe(**snake_case_ ).images lowercase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Optional[Any] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Tuple = self.get_dummy_inputs() lowercase_ : Tuple = pipe(**snake_case_ ).images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : int = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : List[str] = pipe(**snake_case_ ).images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = ort.SessionOptions() lowercase_ : Optional[Any] = False return options def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowercase_ : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Dict = """A fantasy landscape, trending on artstation""" lowercase_ : str = np.random.RandomState(0 ) lowercase_ : Union[str, Any] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case_ , output_type="""np""" , ) lowercase_ : str = output.images lowercase_ : Optional[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : Optional[Any] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : List[Any] = init_image.resize((768, 512) ) lowercase_ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=snake_case_ , safety_checker=snake_case_ , feature_extractor=snake_case_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case_ ) lowercase_ : Union[str, Any] = """A fantasy landscape, trending on artstation""" lowercase_ : Optional[int] = np.random.RandomState(0 ) lowercase_ : Optional[int] = pipe( prompt=snake_case_ , image=snake_case_ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=snake_case_ , output_type="""np""" , ) lowercase_ : Any = output.images lowercase_ : Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : Tuple = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
from __future__ import annotations class __magic_name__ : def __init__( self : Optional[int] , lowercase_ : int ): lowercase_ : str = data lowercase_ : Node | None = None lowercase_ : Node | None = None def lowerCamelCase ( UpperCAmelCase__ : int ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowerCamelCase ( ) -> None: # Main function for testing. lowercase_ : Dict = Node(1 ) lowercase_ : Dict = Node(2 ) lowercase_ : List[Any] = Node(3 ) lowercase_ : List[str] = Node(4 ) lowercase_ : Optional[int] = Node(5 ) lowercase_ : Optional[Any] = Node(6 ) lowercase_ : Union[str, Any] = Node(7 ) lowercase_ : Optional[int] = Node(8 ) lowercase_ : str = Node(9 ) print(is_full_binary_tree(__lowerCAmelCase ) ) print(depth_of_tree(__lowerCAmelCase ) ) print("""Tree is: """ ) display(__lowerCAmelCase ) if __name__ == "__main__": main()
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( __UpperCamelCase, unittest.TestCase): UpperCamelCase__ = FunnelTokenizer UpperCamelCase__ = FunnelTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : Any ): super().setUp() lowercase_ : Tuple = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **lowercase_ : Any ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **lowercase_ : Tuple ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int ): lowercase_ : Optional[Any] = 'UNwant\u00E9d,running' lowercase_ : str = 'unwanted, running' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowercase_ : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowercase_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , [7, 4, 5, 10, 8, 9] ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.get_tokenizers(do_lower_case=lowercase_ ) for tokenizer in tokenizers: lowercase_ : Optional[int] = tokenizer("""UNwant\u00E9d,running""" ) lowercase_ : List[str] = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) lowercase_ : Tuple = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename _lowercase : List[Any] = """http://www.mocksite.com/file1.txt""" _lowercase : Any = """\"text\": [\"foo\", \"foo\"]""" _lowercase : int = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __magic_name__ : UpperCamelCase__ = 200 UpperCamelCase__ = {"""Content-Length""": """100"""} UpperCamelCase__ = {} def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **lowercase_ : Any ): return [bytes(__SCREAMING_SNAKE_CASE , """utf-8""" )] def lowerCamelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Dict ) -> Dict: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[str]: import requests monkeypatch.setattr(UpperCAmelCase__ , """request""" , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = URL if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Optional[int] = url elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Tuple = [url] elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Tuple = {"""train""": url} lowercase_ : Tuple = """dummy""" lowercase_ : Dict = """downloads""" lowercase_ : Union[str, Any] = tmp_path lowercase_ : Any = DownloadConfig( cache_dir=os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , use_etag=UpperCAmelCase__ , ) lowercase_ : str = DownloadManager(dataset_name=UpperCAmelCase__ , download_config=UpperCAmelCase__ ) lowercase_ : Any = dl_manager.download(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Dict = [downloaded_paths] lowercase_ : Optional[Any] = [urls] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): assert "train" in downloaded_paths.keys() lowercase_ : List[str] = downloaded_paths.values() lowercase_ : int = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase_ : str = Path(UpperCAmelCase__ ) lowercase_ : Tuple = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase_ : List[str] = downloaded_path.read_text() assert content == CONTENT lowercase_ : List[str] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowercase_ : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: lowercase_ : Dict = str(UpperCAmelCase__ ) if issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : str = filename elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : str = [filename] elif issubclass(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Optional[int] = {"""train""": filename} lowercase_ : Dict = """dummy""" lowercase_ : Optional[Any] = xz_file.parent lowercase_ : Any = """extracted""" lowercase_ : int = DownloadConfig( cache_dir=UpperCAmelCase__ , use_etag=UpperCAmelCase__ , ) lowercase_ : List[str] = DownloadManager(dataset_name=UpperCAmelCase__ , download_config=UpperCAmelCase__ ) lowercase_ : Optional[int] = dl_manager.extract(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = paths for extracted_paths in [extracted_paths]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[str] = [extracted_paths] lowercase_ : Optional[Any] = [paths] elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): assert "train" in extracted_paths.keys() lowercase_ : Optional[Any] = extracted_paths.values() lowercase_ : str = paths.values() assert extracted_paths for extracted_path, input_path in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase_ : int = Path(UpperCAmelCase__ ) lowercase_ : Optional[int] = extracted_path.parts assert parts[-1] == hash_url_to_filename(UpperCAmelCase__ , etag=UpperCAmelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase_ : List[str] = extracted_path.read_text() lowercase_ : Union[str, Any] = text_file.read_text() assert extracted_file_content == expected_file_content def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] ) -> Tuple: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(UpperCAmelCase__ , start=1 ): lowercase_ : List[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> List[str]: lowercase_ : int = request.getfixturevalue(UpperCAmelCase__ ) lowercase_ : Any = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): _test_jsonl(UpperCAmelCase__ , UpperCAmelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] ) -> List[Any]: lowercase_ : Optional[int] = request.getfixturevalue(UpperCAmelCase__ ) lowercase_ : Optional[Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(UpperCAmelCase__ ) , start=1 ): _test_jsonl(UpperCAmelCase__ , UpperCAmelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[Any]: lowercase_ : Optional[int] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(UpperCAmelCase__ ) , start=1 ): assert os.path.basename(UpperCAmelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] = 0 ) -> Dict: lowercase_ : str = length or len(lowerCamelCase__ ) lowercase_ : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowercase_ , lowercase_ : List[str] = list_data[i + 1], list_data[i] lowercase_ : str = True return list_data if not swapped else bubble_sort(lowerCamelCase__ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' _lowercase : Union[str, Any] = {str(digit): digit**5 for digit in range(10)} def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> Optional[int]: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCAmelCase ) ) def lowerCamelCase ( ) -> Tuple: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(_lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : str=13 , lowercase_ : List[Any]=7 , lowercase_ : List[Any]=True , lowercase_ : Optional[int]=True , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : List[str]=5 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=37 , lowercase_ : Dict="gelu" , lowercase_ : str=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[Any]=128 , lowercase_ : Optional[Any]=32 , lowercase_ : Optional[int]=16 , lowercase_ : List[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=4 , lowercase_ : Any=None , ): lowercase_ : Tuple = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = seq_length lowercase_ : int = is_training lowercase_ : str = use_input_mask lowercase_ : str = use_token_type_ids lowercase_ : Tuple = use_labels lowercase_ : Dict = vocab_size lowercase_ : str = hidden_size lowercase_ : str = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Optional[Any] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : Any = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : str = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Any = num_labels lowercase_ : Optional[int] = num_choices lowercase_ : Dict = scope def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = None if self.use_input_mask: lowercase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Union[str, Any] = None lowercase_ : Any = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = self.prepare_config_and_inputs() lowercase_ : Any = True lowercase_ : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Any , lowercase_ : int , lowercase_ : str ): lowercase_ : List[Any] = NezhaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) lowercase_ : int = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , ): lowercase_ : int = True lowercase_ : Any = NezhaModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Dict = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) lowercase_ : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Union[str, Any] ): lowercase_ : int = NezhaForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] ): lowercase_ : str = NezhaForNextSentencePrediction(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : List[str] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] ): lowercase_ : int = NezhaForPreTraining(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Optional[Any] = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , next_sentence_label=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : str ): lowercase_ : List[str] = NezhaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Any = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Optional[Any] ): lowercase_ : Optional[Any] = self.num_labels lowercase_ : Tuple = NezhaForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[str] , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[int] ): lowercase_ : Dict = self.num_labels lowercase_ : Optional[int] = NezhaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Optional[int] ): lowercase_ : Union[str, Any] = self.num_choices lowercase_ : Optional[Any] = NezhaForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowercase_ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Tuple = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = config_and_inputs lowercase_ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase): UpperCamelCase__ = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Tuple=False ): lowercase_ : Dict = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): lowercase_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_SCREAMING_SNAKE_CASE ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[int] = NezhaModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): # This regression test was failing with PyTorch < 1.3 ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : str = self.model_tester.prepare_config_and_inputs_for_decoder() lowercase_ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Any = NezhaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowercase_ : List[str] = True lowercase_ : List[str] = model_class(config=_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = torch.jit.trace( _SCREAMING_SNAKE_CASE , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) ) lowercase_ : Dict = torch.jit.load(os.path.join(_SCREAMING_SNAKE_CASE , """bert.pt""" ) , map_location=_SCREAMING_SNAKE_CASE ) loaded(inputs_dict["""input_ids"""].to(_SCREAMING_SNAKE_CASE ) , inputs_dict["""attention_mask"""].to(_SCREAMING_SNAKE_CASE ) ) @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ : Tuple = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Optional[int] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowercase_ : List[str] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) lowercase_ : Optional[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowercase_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] lowercase_ : Union[str, Any] = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class __magic_name__ ( snake_case_): UpperCamelCase__ = '''M-CLIP''' def __init__( self : Optional[Any] , lowercase_ : int=1024 , lowercase_ : Any=768 , **lowercase_ : List[Any] ): lowercase_ : Tuple = transformerDimSize lowercase_ : Optional[Any] = imageDimSize super().__init__(**lowercase_ ) class __magic_name__ ( snake_case_): UpperCamelCase__ = MCLIPConfig def __init__( self : Union[str, Any] , lowercase_ : int , *lowercase_ : Union[str, Any] , **lowercase_ : int ): super().__init__(lowercase_ , *lowercase_ , **lowercase_ ) lowercase_ : Optional[int] = XLMRobertaModel(lowercase_ ) lowercase_ : List[str] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] ): lowercase_ : List[Any] = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0] lowercase_ : Optional[Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowercase_ ), embs
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __magic_name__ ( __lowerCAmelCase): def __init__( self : Dict , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Tuple , ): super().__init__( lowerCamelCase__ , split=lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , streaming=lowerCamelCase__ , num_proc=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase_ : Optional[Any] = path_or_paths if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else {self.split: path_or_paths} lowercase_ : Optional[Any] = Text( cache_dir=lowerCamelCase__ , data_files=lowerCamelCase__ , features=lowerCamelCase__ , **lowerCamelCase__ , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Union[str, Any] = None lowercase_ : List[str] = None lowercase_ : Optional[int] = None lowercase_ : Tuple = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , num_proc=self.num_proc , ) lowercase_ : Tuple = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase : List[str] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' _lowercase : Optional[int] = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _lowercase : Optional[Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def lowerCamelCase ( ) -> None: lowercase_ : Optional[int] = 'Morse code here!' print(_UpperCAmelCase ) lowercase_ : Optional[Any] = encrypt(_UpperCAmelCase ) print(_UpperCAmelCase ) lowercase_ : Union[str, Any] = decrypt(_UpperCAmelCase ) print(_UpperCAmelCase ) if __name__ == "__main__": main()
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import datasets from .evaluate import evaluate _lowercase : Optional[Any] = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" _lowercase : int = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" _lowercase : List[Any] = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the CUAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\n 'aupr': Area Under the Precision-Recall curve\n 'prec_at_80_recall': Precision at 80% recall\n 'prec_at_90_recall': Precision at 90% recall\nExamples:\n >>> predictions = [{'prediction_text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.'], 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> references = [{'answers': {'answer_start': [143, 49], 'text': ['The seller:', 'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.']}, 'id': 'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0, 'aupr': 0.0, 'prec_at_80_recall': 1.0, 'prec_at_90_recall': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class __magic_name__ ( datasets.Metric): def SCREAMING_SNAKE_CASE_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": { """id""": datasets.Value("""string""" ), """prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ), }, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : int , lowercase_ : Optional[Any] ): lowercase_ : List[str] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase_ : Dict = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase_ : Optional[int] = evaluate(dataset=__UpperCamelCase , predictions=__UpperCamelCase ) return score
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Optional[int]: if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : List[str] = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase_ : Optional[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase_ : List[str] = np.concatenate(UpperCAmelCase__ , axis=0 ) lowercase_ : List[str] = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 255.0 lowercase_ : Any = image.transpose(0 , 3 , 1 , 2 ) lowercase_ : Tuple = 2.0 * image - 1.0 lowercase_ : Dict = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowercase_ : List[str] = torch.cat(UpperCAmelCase__ , dim=0 ) return image def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=0.9995 ) -> List[str]: if not isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : int = True lowercase_ : List[str] = va.device lowercase_ : List[Any] = va.cpu().numpy() lowercase_ : Optional[Any] = va.cpu().numpy() lowercase_ : Tuple = np.sum(va * va / (np.linalg.norm(UpperCAmelCase__ ) * np.linalg.norm(UpperCAmelCase__ )) ) if np.abs(UpperCAmelCase__ ) > DOT_THRESHOLD: lowercase_ : Any = (1 - t) * va + t * va else: lowercase_ : str = np.arccos(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.sin(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = theta_a * t lowercase_ : str = np.sin(UpperCAmelCase__ ) lowercase_ : Dict = np.sin(theta_a - theta_t ) / sin_theta_a lowercase_ : List[Any] = sin_theta_t / sin_theta_a lowercase_ : Dict = sa * va + sa * va if inputs_are_torch: lowercase_ : Dict = torch.from_numpy(UpperCAmelCase__ ).to(UpperCAmelCase__ ) return va def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : Union[str, Any] = F.normalize(UpperCAmelCase__ , dim=-1 ) lowercase_ : str = F.normalize(UpperCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ) -> Dict: for param in model.parameters(): lowercase_ : str = value class __magic_name__ ( __lowercase): def __init__( self : Optional[int] , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowercase_ : CLIPFeatureExtractor , lowercase_ : Union[str, Any]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Any=None , ): super().__init__() self.register_modules( vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , clip_model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , coca_model=UpperCAmelCase__ , coca_tokenizer=UpperCAmelCase__ , coca_transform=UpperCAmelCase__ , ) lowercase_ : Dict = ( feature_extractor.size if isinstance(feature_extractor.size , UpperCAmelCase__ ) else feature_extractor.size["""shortest_edge"""] ) lowercase_ : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , UpperCAmelCase__ ) set_requires_grad(self.clip_model , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.enable_attention_slicing(UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str ): set_requires_grad(self.vae , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): set_requires_grad(self.vae , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str ): set_requires_grad(self.unet , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): set_requires_grad(self.unet , UpperCAmelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): # get the original timestep using init_timestep lowercase_ : Optional[Any] = min(int(num_inference_steps * strength ) , UpperCAmelCase__ ) lowercase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase_ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Any=None ): if not isinstance(UpperCAmelCase__ , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}''' ) lowercase_ : Tuple = image.to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Dict = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] lowercase_ : List[str] = torch.cat(UpperCAmelCase__ , dim=0 ) else: lowercase_ : Any = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : List[str] = 0.1_82_15 * init_latents lowercase_ : Optional[int] = init_latents.repeat_interleave(UpperCAmelCase__ , dim=0 ) lowercase_ : List[Any] = randn_tensor(init_latents.shape , generator=UpperCAmelCase__ , device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) # get latents lowercase_ : Tuple = self.scheduler.add_noise(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = init_latents return latents def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Dict ): lowercase_ : Dict = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase_ : List[str] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase_ : List[str] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str ): lowercase_ : Optional[Any] = self.feature_extractor.preprocess(UpperCAmelCase__ ) lowercase_ : Dict = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowercase_ : Dict = self.clip_model.get_image_features(UpperCAmelCase__ ) lowercase_ : Any = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase__ ) lowercase_ : Optional[Any] = image_embeddings_clip.repeat_interleave(UpperCAmelCase__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : Union[str, Any] , ): lowercase_ : Tuple = latents.detach().requires_grad_() lowercase_ : Optional[int] = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual lowercase_ : Dict = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase_ : Tuple = self.scheduler.alphas_cumprod[timestep] lowercase_ : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Union[str, Any] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase_ : str = torch.sqrt(UpperCAmelCase__ ) lowercase_ : int = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , UpperCAmelCase__ ): lowercase_ : str = self.scheduler.sigmas[index] lowercase_ : str = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : Optional[Any] = 1 / 0.1_82_15 * sample lowercase_ : str = self.vae.decode(UpperCAmelCase__ ).sample lowercase_ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : List[str] = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) lowercase_ : Tuple = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) lowercase_ : Dict = self.clip_model.get_image_features(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=UpperCAmelCase__ ) lowercase_ : str = spherical_dist_loss(UpperCAmelCase__ , UpperCAmelCase__ ).mean() * clip_guidance_scale lowercase_ : str = -torch.autograd.grad(UpperCAmelCase__ , UpperCAmelCase__ )[0] if isinstance(self.scheduler , UpperCAmelCase__ ): lowercase_ : Optional[int] = latents.detach() + grads * (sigma**2) lowercase_ : Tuple = noise_pred_original else: lowercase_ : List[str] = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Any , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[int] = 512 , lowercase_ : Optional[int] = 512 , lowercase_ : float = 0.6 , lowercase_ : Optional[int] = 50 , lowercase_ : Optional[float] = 7.5 , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[float] = 100 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : float = 0.8 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , ): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(UpperCAmelCase__ , torch.Generator ) and batch_size > 1: lowercase_ : Optional[Any] = [generator] + [None] * (batch_size - 1) lowercase_ : Any = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowercase_ : Any = [x[0] for x in coca_is_none if x[1]] lowercase_ : Union[str, Any] = """, """.join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowercase_ : Optional[Any] = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowercase_ : Optional[Any] = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style lowercase_ : str = self.tokenizer( UpperCAmelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors="""pt""" , ) lowercase_ : Dict = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase_ : int = self.tokenizer( UpperCAmelCase__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=UpperCAmelCase__ , return_tensors="""pt""" , ) lowercase_ : Dict = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase_ : Tuple = slerp(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt lowercase_ : List[str] = text_embeddings.repeat_interleave(UpperCAmelCase__ , dim=0 ) # set timesteps lowercase_ : Union[str, Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase_ : List[str] = {} if accepts_offset: lowercase_ : Dict = 1 self.scheduler.set_timesteps(UpperCAmelCase__ , **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase_ , lowercase_ : Optional[int] = self.get_timesteps(UpperCAmelCase__ , UpperCAmelCase__ , self.device ) lowercase_ : List[str] = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image lowercase_ : int = preprocess(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Tuple = self.prepare_latents( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , text_embeddings.dtype , self.device , UpperCAmelCase__ ) lowercase_ : Dict = preprocess(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = self.prepare_latents( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , text_embeddings.dtype , self.device , UpperCAmelCase__ ) lowercase_ : Dict = slerp(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if clip_guidance_scale > 0: lowercase_ : List[str] = self.get_clip_image_embeddings(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Tuple = self.get_clip_image_embeddings(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Dict = slerp( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase_ : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase_ : Dict = content_text_input.input_ids.shape[-1] lowercase_ : int = self.tokenizer([""""""] , padding="""max_length""" , max_length=UpperCAmelCase__ , return_tensors="""pt""" ) lowercase_ : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase_ : List[str] = uncond_embeddings.repeat_interleave(UpperCAmelCase__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase_ : Optional[Any] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase_ : Dict = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase_ : Optional[Any] = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="""cpu""" , dtype=UpperCAmelCase__ ).to( self.device ) else: lowercase_ : str = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase_ : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase_ : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase_ : List[str] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase_ : int = {} if accepts_eta: lowercase_ : Union[str, Any] = eta # check if the scheduler accepts generator lowercase_ : List[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase_ : Any = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance lowercase_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual lowercase_ : str = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase_ , lowercase_ : Optional[int] = noise_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase_ : Optional[Any] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase_ , lowercase_ : Optional[int] = self.cond_fn( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Optional[Any] = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : Dict = 1 / 0.1_82_15 * latents lowercase_ : List[str] = self.vae.decode(UpperCAmelCase__ ).sample lowercase_ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ : Optional[int] = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : Optional[int]=2 , lowercase_ : int=True , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=10 , lowercase_ : Union[str, Any]=3 , lowercase_ : List[Any]=32 * 4 , lowercase_ : int=32 * 6 , lowercase_ : str=4 , lowercase_ : List[Any]=32 , ): lowercase_ : List[str] = parent lowercase_ : List[str] = batch_size lowercase_ : Optional[int] = is_training lowercase_ : Optional[int] = use_auxiliary_loss lowercase_ : List[str] = num_queries lowercase_ : Union[str, Any] = num_channels lowercase_ : int = min_size lowercase_ : List[Any] = max_size lowercase_ : Optional[Any] = num_labels lowercase_ : List[Any] = mask_feature_size def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) lowercase_ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) lowercase_ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() lowercase_ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() lowercase_ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.prepare_config_and_inputs() lowercase_ : Optional[int] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Dict = output.encoder_hidden_states lowercase_ : str = output.pixel_decoder_hidden_states lowercase_ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : str=False ): with torch.no_grad(): lowercase_ : Dict = MaskFormerModel(config=_a ) model.to(_a ) model.eval() lowercase_ : Union[str, Any] = model(pixel_values=_a , pixel_mask=_a ) lowercase_ : int = model(_a , output_hidden_states=_a ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[str] ): lowercase_ : Optional[int] = MaskFormerForInstanceSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(lowercase_ : str ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Optional[Any] = model(pixel_values=_a , pixel_mask=_a ) lowercase_ : str = model(_a ) comm_check_on_output(_a ) lowercase_ : List[Any] = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ ( UpperCamelCase_, UpperCamelCase_, unittest.TestCase): UpperCamelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCamelCase__ = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = MaskFormerModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=_a , has_text_modality=_a ) def SCREAMING_SNAKE_CASE_ ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="""MaskFormer does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): pass @unittest.skip(reason="""MaskFormer is not a generative model""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @unittest.skip(reason="""MaskFormer does not use token embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @require_torch_multi_gpu @unittest.skip( reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(_a ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase_ : Optional[int] = MaskFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = (self.model_tester.min_size,) * 2 lowercase_ : List[str] = { """pixel_values""": torch.randn((2, 3, *size) , device=_a ), """mask_labels""": torch.randn((2, 10, *size) , device=_a ), """class_labels""": torch.zeros(2 , 10 , device=_a ).long(), } lowercase_ : Dict = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_a ) lowercase_ : Optional[int] = model(**_a ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_a , **_a , output_hidden_states=_a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(_a ).to(_a ) lowercase_ : Dict = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase_ : List[str] = self.all_model_classes[1] lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = model_class(_a ) model.to(_a ) model.train() lowercase_ : List[str] = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = self.all_model_classes[1] lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() lowercase_ : Optional[int] = True lowercase_ : Any = True lowercase_ : List[str] = model_class(_a ) model.to(_a ) model.train() lowercase_ : Dict = model(_a , mask_labels=_a , class_labels=_a ) lowercase_ : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : str = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase_ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _lowercase : Union[str, Any] = 1e-4 def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return ( MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Union[str, Any] = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(_a ) lowercase_ : int = self.default_image_processor lowercase_ : List[str] = prepare_img() lowercase_ : Union[str, Any] = image_processor(_a , return_tensors="""pt""" ).to(_a ) lowercase_ : Dict = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : str = model(**_a ) lowercase_ : Any = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowercase_ : Any = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowercase_ : Union[str, Any] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_a ) .eval() ) lowercase_ : List[str] = self.default_image_processor lowercase_ : Optional[int] = prepare_img() lowercase_ : List[Any] = image_processor(_a , return_tensors="""pt""" ).to(_a ) lowercase_ : Tuple = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : str = model(**_a ) # masks_queries_logits lowercase_ : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : str = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] lowercase_ : Optional[int] = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits lowercase_ : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : List[str] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" ) .to(_a ) .eval() ) lowercase_ : Any = self.default_image_processor lowercase_ : Tuple = prepare_img() lowercase_ : int = image_processor(_a , return_tensors="""pt""" ).to(_a ) lowercase_ : Any = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 800, 1088) ) with torch.no_grad(): lowercase_ : str = model(**_a ) # masks_queries_logits lowercase_ : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : str = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] lowercase_ : Tuple = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits lowercase_ : Optional[int] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Dict = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" ) .to(_a ) .eval() ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Optional[Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowercase_ : Union[str, Any] = inputs["""pixel_values"""].to(_a ) lowercase_ : Tuple = [el.to(_a ) for el in inputs["""mask_labels"""]] lowercase_ : Tuple = [el.to(_a ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase_ : Optional[int] = model(**_a ) self.assertTrue(outputs.loss is not None )
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _lowercase : Any = get_tests_dir("fixtures") _lowercase : Tuple = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowercase : List[str] = get_tests_dir("fixtures/dummy-config.json") class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = 0 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Tuple = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally lowercase_ : str = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop("""feature_extractor_type""" ) lowercase_ : Tuple = WavaVecaFeatureExtractor(**__SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(__SCREAMING_SNAKE_CASE ) config.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved lowercase_ : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , """bert-base is not a local folder and is not a valid model identifier""" ): lowercase_ : Tuple = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowercase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): with self.assertRaisesRegex( __SCREAMING_SNAKE_CASE , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowercase_ : List[Any] = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__SCREAMING_SNAKE_CASE ): lowercase_ : str = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : str = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): try: AutoConfig.register("""custom""" , __SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__SCREAMING_SNAKE_CASE ): AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase_ : Dict = CustomFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = AutoFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self : Any ): class __magic_name__ ( _A ): UpperCamelCase__ = True try: AutoConfig.register("""custom""" , __SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local lowercase_ : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. lowercase_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub lowercase_ : Any = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=__SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(__SCREAMING_SNAKE_CASE , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _lowercase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ ( __SCREAMING_SNAKE_CASE): UpperCamelCase__ = ['''pixel_values'''] def __init__( self : Optional[int] , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : Optional[Any] , ): super().__init__(**_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = size if size is not None else {"shortest_edge": 224} lowercase_ : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ : Union[str, Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowercase_ : str = do_resize lowercase_ : List[Any] = size lowercase_ : Tuple = resample lowercase_ : List[Any] = do_center_crop lowercase_ : int = crop_size lowercase_ : Any = do_rescale lowercase_ : str = rescale_factor lowercase_ : List[str] = do_normalize lowercase_ : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : Any = do_convert_rgb def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : str , ): lowercase_ : List[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase_ : List[Any] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): lowercase_ : int = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[Any] , ): return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : List[str] , ): return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Any , ): lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Any = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""size""" , default_to_square=_SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = resample if resample is not None else self.resample lowercase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : int = crop_size if crop_size is not None else self.crop_size lowercase_ : str = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" , default_to_square=_SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : List[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : str = image_std if image_std is not None else self.image_std lowercase_ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : Optional[Any] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : str = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. lowercase_ : Any = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowercase_ : Tuple = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowercase_ : Tuple = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowercase_ : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : int = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowercase_ : Optional[Any] = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCamelCase ( UpperCAmelCase__ : str = "" ) -> Optional[int]: lowercase_ : Optional[Any] = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" lowercase_ : int = BeautifulSoup(requests.get(_a ).text , """html.parser""" ) lowercase_ : str = soup.find_all("""td""" , attrs="""titleColumn""" ) lowercase_ : Optional[int] = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_a , _a ) } def lowerCamelCase ( UpperCAmelCase__ : str = "IMDb_Top_250_Movies.csv" ) -> Optional[Any]: lowercase_ : str = get_imdb_top_aaa_movies() with open(_a , """w""" , newline="""""" ) as out_file: lowercase_ : List[str] = csv.writer(_a ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowercase : Union[str, Any] = logging.getLogger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ) -> int: """simple docstring""" if os.path.exists(SCREAMING_SNAKE_CASE_ ): if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE_ , """config.json""" ) ) if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE_ , """pytorch_model.bin""" ) ) else: os.makedirs(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=False ) -> List[str]: """simple docstring""" lowercase_ : Any = 2 if unlogit: lowercase_ : Optional[int] = torch.pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ : str = p * torch.log(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> int: """simple docstring""" logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) for row in range(len(SCREAMING_SNAKE_CASE_ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[str]=False ) -> int: """simple docstring""" lowercase_ , lowercase_ : str = model.config.num_hidden_layers, model.config.num_attention_heads lowercase_ : int = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) lowercase_ : List[str] = torch.zeros(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) if head_mask is None: lowercase_ : Union[str, Any] = torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).to(args.device ) head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: lowercase_ : Any = None lowercase_ : Union[str, Any] = 0.0 lowercase_ : Any = 0.0 for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE_ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): lowercase_ : str = tuple(t.to(args.device ) for t in inputs ) ((lowercase_ ) , ) : Optional[int] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) lowercase_ : Optional[int] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) lowercase_ , lowercase_ , lowercase_ : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(SCREAMING_SNAKE_CASE_ ): lowercase_ : Union[str, Any] = entropy(attn.detach() , SCREAMING_SNAKE_CASE_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: lowercase_ : Optional[int] = 2 lowercase_ : Any = torch.pow(torch.pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: lowercase_ : Dict = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) logger.info("""Head ranked by importance scores""" ) lowercase_ : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) lowercase_ : Dict = torch.arange( head_importance.numel() , device=args.device ) lowercase_ : str = head_ranks.view_as(SCREAMING_SNAKE_CASE_ ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) return attn_entropy, head_importance, total_loss def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" lowercase_ , lowercase_ , lowercase_ : Optional[int] = compute_heads_importance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , SCREAMING_SNAKE_CASE_ , original_score * args.masking_threshold ) lowercase_ : int = torch.ones_like(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) lowercase_ : Optional[int] = original_score while current_score >= original_score * args.masking_threshold: lowercase_ : Optional[int] = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads lowercase_ : Optional[Any] = float("""Inf""" ) lowercase_ : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(SCREAMING_SNAKE_CASE_ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads lowercase_ : Any = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) lowercase_ : Union[str, Any] = new_head_mask.view(-1 ) lowercase_ : List[str] = 0.0 lowercase_ : Dict = new_head_mask.view_as(SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = new_head_mask.clone().detach() print_ad_tensor(SCREAMING_SNAKE_CASE_ ) # Compute metric and head importance again lowercase_ , lowercase_ , lowercase_ : Any = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , SCREAMING_SNAKE_CASE_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(SCREAMING_SNAKE_CASE_ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" lowercase_ : Optional[int] = datetime.now() lowercase_ , lowercase_ , lowercase_ : int = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , compute_importance=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ ) lowercase_ : int = 1 / loss lowercase_ : Any = datetime.now() - before_time lowercase_ : Dict = sum(p.numel() for p in model.parameters() ) lowercase_ : int = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE_ ) ) } for k, v in heads_to_prune.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : Optional[int] = [ v, ] assert sum(len(SCREAMING_SNAKE_CASE_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = sum(p.numel() for p in model.parameters() ) lowercase_ : int = datetime.now() lowercase_ , lowercase_ , lowercase_ : Any = compute_heads_importance( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compute_entropy=SCREAMING_SNAKE_CASE_ , compute_importance=SCREAMING_SNAKE_CASE_ , head_mask=SCREAMING_SNAKE_CASE_ , actually_pruned=SCREAMING_SNAKE_CASE_ , ) lowercase_ : Union[str, Any] = 1 / loss lowercase_ : Tuple = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(SCREAMING_SNAKE_CASE_ , args.output_dir ) def lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=SCREAMING_SNAKE_CASE_ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=SCREAMING_SNAKE_CASE_ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don't normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don't normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=SCREAMING_SNAKE_CASE_ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=SCREAMING_SNAKE_CASE_ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=SCREAMING_SNAKE_CASE_ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=SCREAMING_SNAKE_CASE_ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=SCREAMING_SNAKE_CASE_ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=SCREAMING_SNAKE_CASE_ , default=42 ) parser.add_argument("""--local_rank""" , type=SCREAMING_SNAKE_CASE_ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=SCREAMING_SNAKE_CASE_ , default="""""" , help="""Can be used for distant debugging.""" ) lowercase_ : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: lowercase_ : List[Any] = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) lowercase_ : str = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) lowercase_ : Any = torch.device("""cuda""" , args.local_rank ) lowercase_ : List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) lowercase_ : Union[str, Any] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: lowercase_ : Optional[int] = nn.parallel.DistributedDataParallel( SCREAMING_SNAKE_CASE_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE_ ) elif args.n_gpu > 1: lowercase_ : Optional[Any] = nn.DataParallel(SCREAMING_SNAKE_CASE_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE_ ) torch.save(SCREAMING_SNAKE_CASE_ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE_ ) # Prepare dataset lowercase_ : List[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) lowercase_ : str = (torch.from_numpy(SCREAMING_SNAKE_CASE_ ),) lowercase_ : int = TensorDataset(*SCREAMING_SNAKE_CASE_ ) lowercase_ : str = RandomSampler(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: lowercase_ : int = mask_heads(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) prune_heads(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( lowerCamelCase_, lowerCamelCase_, unittest.TestCase): UpperCamelCase__ = StableDiffusionDiffEditPipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} UpperCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} UpperCamelCase__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([]) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): torch.manual_seed(0 ) lowercase_ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) lowercase_ : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) lowercase_ : Dict = DDIMInverseScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=_UpperCAmelCase , set_alpha_to_zero=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase_ : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) lowercase_ : Dict = CLIPTextModel(_UpperCAmelCase ) lowercase_ : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : int=0 ): lowercase_ : List[Any] = floats_tensor((1, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase_ : Any = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase_ : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: lowercase_ : Dict = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase_ : Tuple = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=0 ): lowercase_ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : int = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase_ : Dict = torch.manual_seed(_UpperCAmelCase ) else: lowercase_ : List[str] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase_ : List[str] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : List[str] , lowercase_ : List[Any]=0 ): lowercase_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : Union[str, Any] = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("""RGB""" ) if str(_UpperCAmelCase ).startswith("""mps""" ): lowercase_ : str = torch.manual_seed(_UpperCAmelCase ) else: lowercase_ : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase_ : Any = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): if not hasattr(self.pipeline_class , """_optional_components""" ): return lowercase_ : Optional[int] = self.get_dummy_components() lowercase_ : str = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase_ : Tuple = self.get_dummy_inputs(_UpperCAmelCase ) lowercase_ : str = pipe(**_UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_UpperCAmelCase ) lowercase_ : Optional[Any] = self.pipeline_class.from_pretrained(_UpperCAmelCase ) pipe_loaded.to(_UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=_UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_UpperCAmelCase , _UpperCAmelCase ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase_ : Optional[Any] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase_ : List[Any] = pipe_loaded(**_UpperCAmelCase )[0] lowercase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(_UpperCAmelCase , 1E-4 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[str] = """cpu""" lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : List[str] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase_ : Union[str, Any] = self.get_dummy_mask_inputs(_UpperCAmelCase ) lowercase_ : Optional[int] = pipe.generate_mask(**_UpperCAmelCase ) lowercase_ : Tuple = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase_ : List[Any] = np.array([0] * 9 ) lowercase_ : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Union[str, Any] = """cpu""" lowercase_ : Dict = self.get_dummy_components() lowercase_ : List[str] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase_ : Dict = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase_ : List[Any] = pipe.invert(**_UpperCAmelCase ).images lowercase_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ : Optional[Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowercase_ : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = """cpu""" lowercase_ : List[str] = self.get_dummy_components() lowercase_ : Optional[Any] = {"""beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """beta_schedule""": """scaled_linear"""} lowercase_ : Dict = DPMSolverMultistepScheduler(**_UpperCAmelCase ) lowercase_ : Optional[int] = DPMSolverMultistepInverseScheduler(**_UpperCAmelCase ) lowercase_ : List[str] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase_ : Optional[int] = self.get_dummy_inversion_inputs(_UpperCAmelCase ) lowercase_ : Optional[int] = pipe.invert(**_UpperCAmelCase ).images lowercase_ : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase_ : Union[str, Any] = np.array( [0.51_50, 0.51_34, 0.50_43, 0.53_76, 0.46_94, 0.5_10_50, 0.50_15, 0.44_07, 0.47_99] , ) lowercase_ : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_UpperCAmelCase , 1E-3 ) @require_torch_gpu @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def SCREAMING_SNAKE_CASE_ ( cls : str ): lowercase_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowercase_ : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) ) lowercase_ : Optional[int] = raw_image def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = torch.manual_seed(0 ) lowercase_ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase_ : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase_ : Dict = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase_ : Tuple = """a bowl of fruit""" lowercase_ : Union[str, Any] = """a bowl of pears""" lowercase_ : Optional[Any] = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase_ : int = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase ).latents lowercase_ : Any = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowercase_ : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowercase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase_ : Optional[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase_ : Dict = """a bowl of fruit""" lowercase_ : Dict = """a bowl of pears""" lowercase_ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=_UpperCAmelCase , target_prompt=_UpperCAmelCase , generator=_UpperCAmelCase , ) lowercase_ : Optional[Any] = pipe.invert( prompt=_UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=_UpperCAmelCase , num_inference_steps=25 , ).latents lowercase_ : Optional[int] = pipe( prompt=_UpperCAmelCase , mask_image=_UpperCAmelCase , image_latents=_UpperCAmelCase , generator=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowercase_ : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' from __future__ import annotations import queue class __magic_name__ : def __init__( self : Any , lowercase_ : Dict ): lowercase_ : Dict = data lowercase_ : Optional[int] = None lowercase_ : str = None def lowerCamelCase ( ) -> TreeNode: print("""\n********Press N to stop entering at any point of time********\n""" ) lowercase_ : str = input("""Enter the value of the root node: """ ).strip().lower() lowercase_ : queue.Queue = queue.Queue() lowercase_ : str = TreeNode(int(UpperCAmelCase__ ) ) q.put(UpperCAmelCase__ ) while not q.empty(): lowercase_ : Any = q.get() lowercase_ : List[Any] = F'''Enter the left node of {node_found.data}: ''' lowercase_ : Any = input(UpperCAmelCase__ ).strip().lower() or """n""" if check == "n": return tree_node lowercase_ : Optional[Any] = TreeNode(int(UpperCAmelCase__ ) ) lowercase_ : int = left_node q.put(UpperCAmelCase__ ) lowercase_ : Tuple = F'''Enter the right node of {node_found.data}: ''' lowercase_ : List[str] = input(UpperCAmelCase__ ).strip().lower() or """n""" if check == "n": return tree_node lowercase_ : int = TreeNode(int(UpperCAmelCase__ ) ) lowercase_ : str = right_node q.put(UpperCAmelCase__ ) raise def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(UpperCAmelCase__ ) while not q.empty(): lowercase_ : Union[str, Any] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return lowercase_ : queue.Queue = queue.Queue() q.put(UpperCAmelCase__ ) while not q.empty(): lowercase_ : Optional[Any] = [] while not q.empty(): lowercase_ : Any = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : Optional[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(UpperCAmelCase__ ) lowercase_ : Any = n.left # end of while means current node doesn't have left child lowercase_ : Any = stack.pop() # start to traverse its right child lowercase_ : Tuple = n.right def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return lowercase_ : list[TreeNode] = [] lowercase_ : str = node while n or stack: while n: stack.append(UpperCAmelCase__ ) lowercase_ : Optional[int] = n.left lowercase_ : Optional[int] = stack.pop() print(n.data , end=""",""" ) lowercase_ : int = n.right def lowerCamelCase ( UpperCAmelCase__ : TreeNode ) -> None: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not node: return lowercase_ : Tuple = [], [] lowercase_ : Dict = node stacka.append(UpperCAmelCase__ ) while stacka: # to find the reversed order of post order, store it in stack2 lowercase_ : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowerCamelCase ( UpperCAmelCase__ : str = "" , UpperCAmelCase__ : Optional[Any]=50 , UpperCAmelCase__ : List[str]="*" ) -> str: if not s: return "\n" + width * char lowercase_ : Union[str, Any] = divmod(width - len(UpperCAmelCase__ ) - 2 , 2 ) return F'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowercase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) _lowercase : int = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys _lowercase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : list ) -> list: if len(_lowerCamelCase ) <= 1: return [tuple(_lowerCamelCase )] lowercase_ : Union[str, Any] = [] def generate(UpperCAmelCase__ : int , UpperCAmelCase__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _lowerCamelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even lowercase_ : Optional[int] = arr[k - 1], arr[i] else: # k is odd lowercase_ : Optional[int] = arr[k - 1], arr[0] generate(k - 1 , _lowerCamelCase ) generate(len(_lowerCamelCase ) , _lowerCamelCase ) return res if __name__ == "__main__": _lowercase : List[str] = input("Enter numbers separated by a comma:\n").strip() _lowercase : Union[str, Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowercase : Optional[int] = ["text", "image", "audio"] def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Dict: lowercase_ : Any = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): inputs.append(create_inputs(UpperCAmelCase__ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def lowerCamelCase ( UpperCAmelCase__ : str ) -> Any: lowercase_ : Optional[int] = [] for output in outputs: if isinstance(UpperCAmelCase__ , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(UpperCAmelCase__ , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(UpperCAmelCase__ , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : List[str] ): self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) lowercase_ : Union[str, Any] = self.tool.inputs for _input in inputs: if isinstance(_input , _SCREAMING_SNAKE_CASE ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[int] = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = self.tool(*_SCREAMING_SNAKE_CASE ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Tuple = [outputs] self.assertListEqual(output_types(_SCREAMING_SNAKE_CASE ) , self.tool.outputs ) def SCREAMING_SNAKE_CASE_ ( self : str ): self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Dict = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase_ : Any = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) ) for output, output_type in zip(_SCREAMING_SNAKE_CASE , self.tool.outputs ): lowercase_ : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Dict = [] for _input, input_type in zip(_SCREAMING_SNAKE_CASE , self.tool.inputs ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Union[str, Any] = self.tool(*_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(self.tool.outputs ) )
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Any ) -> Union[str, Any]: lowercase_ : Tuple = torch.load(lowerCamelCase__ , map_location="""cpu""" ) if "model" in sd.keys(): lowercase_ : List[Any] = torch.load(lowerCamelCase__ , map_location="""cpu""" )["""model"""] # pop unnecessary weights lowercase_ : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(lowerCamelCase__ ) lowercase_ : List[str] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: lowercase_ : Tuple = sd.pop(lowerCamelCase__ ) lowercase_ : Union[str, Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: lowercase_ : str = sd[key] # We split QKV in separate Q,K,V lowercase_ : List[str] = key.replace(""".qkv_proj.""" , """.q_proj.""" ) lowercase_ : List[str] = key.replace(""".qkv_proj.""" , """.k_proj.""" ) lowercase_ : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) lowercase_ : Tuple = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = torch.split(lowerCamelCase__ , depth // 3 , dim=0 ) lowercase_ : Union[str, Any] = q lowercase_ : Tuple = k lowercase_ : Dict = v del sd[key] return sd @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=None ) -> int: lowercase_ : Optional[int] = load_checkpoint(lowerCamelCase__ ) if config is not None: lowercase_ : str = OPTConfig.from_pretrained(lowerCamelCase__ ) else: lowercase_ : List[str] = OPTConfig() lowercase_ : Union[str, Any] = OPTModel(lowerCamelCase__ ).half().eval() model.load_state_dict(lowerCamelCase__ ) # Check results Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") _lowercase : Tuple = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Optional[Any] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class __magic_name__ ( __SCREAMING_SNAKE_CASE): UpperCamelCase__ = "transfo-xl" UpperCamelCase__ = ["mems"] UpperCamelCase__ = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , lowercase_ : Optional[int]=267735 , lowercase_ : int=[20000, 40000, 200000] , lowercase_ : List[Any]=1024 , lowercase_ : Any=1024 , lowercase_ : List[Any]=16 , lowercase_ : Any=64 , lowercase_ : List[Any]=4096 , lowercase_ : List[str]=4 , lowercase_ : Optional[Any]=False , lowercase_ : str=18 , lowercase_ : Dict=1600 , lowercase_ : str=1000 , lowercase_ : int=True , lowercase_ : List[str]=True , lowercase_ : Union[str, Any]=0 , lowercase_ : Tuple=-1 , lowercase_ : List[str]=True , lowercase_ : int=0.1 , lowercase_ : List[Any]=0.0 , lowercase_ : List[Any]=True , lowercase_ : str="normal" , lowercase_ : List[Any]=0.01 , lowercase_ : List[str]=0.01 , lowercase_ : Optional[int]=0.02 , lowercase_ : Any=1E-5 , lowercase_ : List[Any]=0 , **lowercase_ : Union[str, Any] , ): lowercase_ : Dict = vocab_size lowercase_ : Tuple = [] self.cutoffs.extend(_snake_case ) if proj_share_all_but_first: lowercase_ : Dict = [False] + [True] * len(self.cutoffs ) else: lowercase_ : Union[str, Any] = [False] + [False] * len(self.cutoffs ) lowercase_ : Optional[Any] = d_model lowercase_ : Dict = d_embed lowercase_ : Any = d_head lowercase_ : str = d_inner lowercase_ : List[str] = div_val lowercase_ : Tuple = pre_lnorm lowercase_ : Any = n_layer lowercase_ : Dict = n_head lowercase_ : List[str] = mem_len lowercase_ : Any = same_length lowercase_ : List[Any] = attn_type lowercase_ : Tuple = clamp_len lowercase_ : Optional[Any] = sample_softmax lowercase_ : List[Any] = adaptive lowercase_ : Tuple = dropout lowercase_ : Optional[Any] = dropatt lowercase_ : Any = untie_r lowercase_ : List[str] = init lowercase_ : List[str] = init_range lowercase_ : Optional[int] = proj_init_std lowercase_ : Union[str, Any] = init_std lowercase_ : List[Any] = layer_norm_epsilon super().__init__(eos_token_id=_snake_case , **_snake_case ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder _lowercase : int = '__DUMMY_TRANSFORMERS_USER__' _lowercase : List[Any] = 'Dummy User' _lowercase : List[str] = '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' _lowercase : Dict = 'https://hub-ci.huggingface.co' _lowercase : Union[str, Any] = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' _lowercase : List[str] = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' _lowercase : Optional[Any] = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , UpperCamelCase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> Tuple: monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , UpperCamelCase__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , UpperCamelCase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> List[str]: monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , UpperCamelCase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ) -> int: HfFolder.save_token(UpperCamelCase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def lowerCamelCase ( ) -> Optional[Any]: return HfApi(endpoint=UpperCamelCase__ ) @pytest.fixture(scope="""session""" ) def lowerCamelCase ( UpperCAmelCase__ : HfApi ) -> Any: lowercase_ : Tuple = HfFolder.get_token() HfFolder.save_token(UpperCamelCase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCamelCase__ ) @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: def _cleanup_repo(UpperCAmelCase__ : List[Any] ): hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def lowerCamelCase ( UpperCAmelCase__ : List[str] ) -> Optional[int]: @contextmanager def _temporary_repo(UpperCAmelCase__ : Optional[int] ): try: yield repo_id finally: cleanup_repo(UpperCamelCase__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def lowerCamelCase ( UpperCAmelCase__ : HfApi , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> Dict: lowercase_ : Union[str, Any] = F'''repo_txt_data-{int(time.time() * 10e3 )}''' lowercase_ : Any = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo="""data/text_data.txt""" , repo_id=UpperCamelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ) -> Optional[int]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def lowerCamelCase ( UpperCAmelCase__ : HfApi , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: lowercase_ : List[Any] = F'''repo_zipped_txt_data-{int(time.time() * 10e3 )}''' lowercase_ : Optional[int] = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo="""data.zip""" , repo_id=UpperCamelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple ) -> int: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def lowerCamelCase ( UpperCAmelCase__ : HfApi , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) -> Any: lowercase_ : Optional[int] = F'''repo_zipped_img_data-{int(time.time() * 10e3 )}''' lowercase_ : Any = F'''{CI_HUB_USER}/{repo_name}''' hf_api.create_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" , private=UpperCamelCase__ ) hf_api.upload_file( token=UpperCamelCase__ , path_or_fileobj=str(UpperCamelCase__ ) , path_in_repo="""data.zip""" , repo_id=UpperCamelCase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(UpperCamelCase__ , token=UpperCamelCase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> List[str]: return hf_private_dataset_repo_zipped_img_data_
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' _lowercase : Union[str, Any] = range(2, 20 + 1) _lowercase : Dict = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ) -> str: lowercase_ : Any = sum(a_i[j] for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ) lowercase_ : Any = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) ) lowercase_ , lowercase_ : Tuple = 0, 0 lowercase_ : List[Any] = n - i lowercase_ : Union[str, Any] = memo.get(UpperCAmelCase_ ) if sub_memo is not None: lowercase_ : Dict = sub_memo.get(UpperCAmelCase_ ) if jumps is not None and len(UpperCAmelCase_ ) > 0: # find and make the largest jump without going over lowercase_ : str = -1 for _k in range(len(UpperCAmelCase_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ : Optional[Any] = _k break if max_jump >= 0: lowercase_ , lowercase_ , lowercase_ : str = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ : Dict = diff + c for j in range(min(UpperCAmelCase_ , len(UpperCAmelCase_ ) ) ): lowercase_ , lowercase_ : str = divmod(UpperCAmelCase_ , 10 ) if new_c > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: lowercase_ : List[Any] = [] else: lowercase_ : Union[str, Any] = {c: []} lowercase_ : Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ , lowercase_ : Tuple = next_term(UpperCAmelCase_ , k - 1 , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ , lowercase_ : Tuple = compute(UpperCAmelCase_ , UpperCAmelCase_ , i + dn , UpperCAmelCase_ ) diff += _diff dn += terms_jumped lowercase_ : List[Any] = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ : Optional[Any] = 0 while j < len(UpperCAmelCase_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase_ , (diff, dn, k) ) return (diff, dn) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str ) -> Optional[Any]: if i >= n: return 0, i if k > len(UpperCAmelCase_ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ : Any = i lowercase_ , lowercase_ , lowercase_ : Optional[int] = 0, 0, 0 for j in range(len(UpperCAmelCase_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ : List[Any] = ds_c + ds_b diff += addend lowercase_ : Dict = 0 for j in range(UpperCAmelCase_ ): lowercase_ : int = a_i[j] + addend lowercase_ , lowercase_ : Union[str, Any] = divmod(UpperCAmelCase_ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return diff, i - start_i def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: for j in range(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): lowercase_ : Optional[int] = digits[j] + addend if s >= 10: lowercase_ , lowercase_ : Tuple = divmod(UpperCAmelCase_ , 10 ) lowercase_ : Optional[int] = addend // 10 + quotient else: lowercase_ : List[str] = s lowercase_ : List[str] = addend // 10 if addend == 0: break while addend > 0: lowercase_ , lowercase_ : List[Any] = divmod(UpperCAmelCase_ , 10 ) digits.append(UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase__ : int = 10**15 ) -> Dict: lowercase_ : List[str] = [1] lowercase_ : Any = 1 lowercase_ : Union[str, Any] = 0 while True: lowercase_ , lowercase_ : Union[str, Any] = next_term(UpperCAmelCase_ , 20 , i + dn , UpperCAmelCase_ ) dn += terms_jumped if dn == n - i: break lowercase_ : Optional[int] = 0 for j in range(len(UpperCAmelCase_ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __magic_name__ : @staticmethod def SCREAMING_SNAKE_CASE_ ( *lowercase_ : List[str] , **lowercase_ : List[Any] ): pass @is_pipeline_test @require_vision class __magic_name__ ( unittest.TestCase): @require_torch def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowercase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : List[Any] = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowercase_ ) , [ [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}], [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """c"""}, {"""score""": 0.3_33, """label""": """b"""}], ] , ) lowercase_ : str = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowercase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Dict = image_classifier(lowercase_ , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.3_33, """label""": """a"""}, {"""score""": 0.3_33, """label""": """b"""}, {"""score""": 0.3_33, """label""": """c"""}] , ) lowercase_ : int = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], [ {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, {"""score""": 0.3_33, """label""": ANY(lowercase_ )}, ], ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowercase_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Union[str, Any] = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) lowercase_ : int = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : List[Any] = image_classifier(lowercase_ , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ] , ) lowercase_ : Tuple = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.5_11, """label""": """remote"""}, {"""score""": 0.4_85, """label""": """cat"""}, {"""score""": 0.0_04, """label""": """plane"""}, ], ] * 5 , )
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' import fire from utils import calculate_rouge, save_json def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple=None , **UpperCAmelCase__ : Union[str, Any] ) -> Any: lowercase_ : Tuple = [x.strip() for x in open(UpperCAmelCase__ ).readlines()] lowercase_ : Dict = [x.strip() for x in open(UpperCAmelCase__ ).readlines()][: len(UpperCAmelCase__ )] lowercase_ : Union[str, Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) if save_path is not None: save_json(UpperCAmelCase__ , UpperCAmelCase__ , indent=UpperCAmelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> list[list]: lowercase_ : Any = current_set.copy() for row_index, row in enumerate(__UpperCAmelCase ): lowercase_ : int = row[0] for column_index, column in enumerate(__UpperCAmelCase ): if magnitude == 0: lowercase_ : str = column continue lowercase_ : Tuple = column / magnitude # Subtract to cancel term lowercase_ : Union[str, Any] = current_set[0] lowercase_ : int = [first_row] lowercase_ : Tuple = current_set[1::] for row in current_set: lowercase_ : Optional[int] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__UpperCAmelCase ) continue for column_index in range(len(__UpperCAmelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__UpperCAmelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase_ : List[Any] = final_set[0] lowercase_ : Tuple = [] lowercase_ : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase_ : Any = simplify(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __UpperCAmelCase ) lowercase_ : List[str] = resultant return final_set def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> list: if len(__UpperCAmelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase_ : List[str] = len(__UpperCAmelCase ) + 1 if any(len(__UpperCAmelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(__UpperCAmelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(__UpperCAmelCase ) == 1: return [equations[0][-1] / equations[0][0]] lowercase_ : Union[str, Any] = equations.copy() if any(0 in row for row in data_set ): lowercase_ : List[Any] = data_set.copy() lowercase_ : Tuple = [] for row_index, row in enumerate(__UpperCAmelCase ): if 0 not in row: lowercase_ : List[Any] = data_set.pop(__UpperCAmelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , __UpperCAmelCase ) lowercase_ : Optional[int] = data_set.copy() lowercase_ : str = simplify(__UpperCAmelCase ) lowercase_ : str = simplified[::-1] lowercase_ : List[Any] = [] for row in simplified: lowercase_ : Dict = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase_ : Optional[Any] = row.copy()[: len(__UpperCAmelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__UpperCAmelCase ) == 0: solutions.append(0 ) continue lowercase_ : Union[str, Any] = temp_row[1::] lowercase_ : Optional[int] = temp_row[::-1] for column_index, column in enumerate(__UpperCAmelCase ): current_solution -= column * solutions[column_index] solutions.append(__UpperCAmelCase ) lowercase_ : Optional[int] = [] for item in solutions: final.append(float(round(__UpperCAmelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowercase : str = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _lowercase : Any = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) _lowercase : Optional[int] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowercase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Any = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Union[str, Any] = { '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _lowercase : Optional[Any] = '''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Tuple = ( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) _lowercase : Optional[int] = '''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : List[Any] = ( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) _lowercase : int = '''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Tuple = '''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' _lowercase : str = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' _lowercase : List[str] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' _lowercase : Dict = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' _lowercase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' _lowercase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' _lowercase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' _lowercase : List[str] = '''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' _lowercase : str = '''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Union[str, Any] = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' _lowercase : int = '''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' _lowercase : int = '''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' _lowercase : Optional[int] = '''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : List[Any] = '''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' _lowercase : Dict = '''''' _lowercase : Any = '''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' _lowercase : Dict = '''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _lowercase : Any = '''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: assert ReadMe.from_string(lowercase_ , lowercase_ ).to_dict() == expected_dict @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> Tuple: with pytest.raises(lowercase_ , match=re.escape(expected_error.format(path="""root""" ) ) ): lowercase_ : List[Any] = ReadMe.from_string(lowercase_ , lowercase_ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Tuple: with pytest.raises(lowercase_ , match=re.escape(expected_error.format(path="""root""" ) ) ): ReadMe.from_string(lowercase_ , lowercase_ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> Any: ReadMe.from_string(lowercase_ , lowercase_ , suppress_parsing_errors=lowercase_ ) @pytest.mark.parametrize( """readme_md, expected_dict""" , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : int = Path(lowercase_ ) / """README.md""" with open(lowercase_ , """w+""" ) as readme_file: readme_file.write(lowercase_ ) lowercase_ : List[Any] = ReadMe.from_readme(lowercase_ , lowercase_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Union[str, Any] = Path(lowercase_ ) / """README.md""" with open(lowercase_ , """w+""" ) as readme_file: readme_file.write(lowercase_ ) lowercase_ : Tuple = expected_error.format(path=lowercase_ ) with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): lowercase_ : int = ReadMe.from_readme(lowercase_ , lowercase_ ) readme.validate() @pytest.mark.parametrize( """readme_md, expected_error""" , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : List[Any] = Path(lowercase_ ) / """README.md""" with open(lowercase_ , """w+""" ) as readme_file: readme_file.write(lowercase_ ) lowercase_ : List[str] = expected_error.format(path=lowercase_ ) with pytest.raises(lowercase_ , match=re.escape(lowercase_ ) ): ReadMe.from_readme(lowercase_ , lowercase_ ) @pytest.mark.parametrize( """readme_md,""" , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[Any] = Path(lowercase_ ) / """README.md""" with open(lowercase_ , """w+""" ) as readme_file: readme_file.write(lowercase_ ) ReadMe.from_readme(lowercase_ , lowercase_ , suppress_parsing_errors=lowercase_ )
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> List[Any]: return number | (1 << position) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: return number & ~(1 << position) def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> List[str]: return number ^ (1 << position) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> int: return ((number >> position) & 1) == 1 def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> Any: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import os def lowerCamelCase ( ) -> List[Any]: lowercase_ : Dict = os.path.join(os.path.dirname(_lowercase ) , """num.txt""" ) with open(_lowercase ) as file_hand: return str(sum(int(_lowercase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __magic_name__ : def __init__( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : Any=sys.maxsize ): lowercase_ : List[Any] = """bilinear""" lowercase_ : Tuple = max_size lowercase_ : Optional[Any] = short_edge_length def __call__( self : str , lowercase_ : Optional[int] ): lowercase_ : List[str] = [] for img in imgs: lowercase_ : List[Any] = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ : Dict = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ : List[str] = size * 1.0 / min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if h < w: lowercase_ : Dict = size, scale * w else: lowercase_ : Optional[int] = scale * h, size if max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > self.max_size: lowercase_ : List[str] = self.max_size * 1.0 / max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = newh * scale lowercase_ : int = neww * scale lowercase_ : Tuple = int(neww + 0.5 ) lowercase_ : Optional[int] = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ : str = Image.fromarray(_SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE ) else: lowercase_ : Any = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ : Union[str, Any] = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=_SCREAMING_SNAKE_CASE ).squeeze(0 ) img_augs.append(_SCREAMING_SNAKE_CASE ) return img_augs class __magic_name__ : def __init__( self : List[str] , lowercase_ : int ): lowercase_ : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ : List[Any] = cfg.INPUT.FORMAT lowercase_ : Dict = cfg.SIZE_DIVISIBILITY lowercase_ : Dict = cfg.PAD_VALUE lowercase_ : Tuple = cfg.INPUT.MAX_SIZE_TEST lowercase_ : Any = cfg.MODEL.DEVICE lowercase_ : List[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : List[str] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ : Optional[Any] = lambda lowercase_ : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple ): lowercase_ : List[Any] = tuple(max(_SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) ) lowercase_ : List[Any] = [im.shape[-2:] for im in images] lowercase_ : Any = [ nn.functional.pad( _SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return torch.stack(_SCREAMING_SNAKE_CASE ), torch.tensor(_SCREAMING_SNAKE_CASE ) def __call__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple=False ): with torch.no_grad(): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase_ : int = [images] if single_image: assert len(_SCREAMING_SNAKE_CASE ) == 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_SCREAMING_SNAKE_CASE , images.pop(_SCREAMING_SNAKE_CASE ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(_SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ : str = torch.tensor([im.shape[:2] for im in images] ) lowercase_ : int = self.aug(_SCREAMING_SNAKE_CASE ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ : Any = [self.normalizer(_SCREAMING_SNAKE_CASE ) for x in images] # now pad them to do the following operations lowercase_ : Optional[Any] = self.pad(_SCREAMING_SNAKE_CASE ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ : int = torch.true_divide(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple[int, int] ): assert torch.isfinite(UpperCAmelCase__ ).all(), "Box tensor contains infinite or NaN!" lowercase_ : str = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase__ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase__ )
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
import logging import os from .state import PartialState class __magic_name__ ( logging.LoggerAdapter): @staticmethod def SCREAMING_SNAKE_CASE_ ( lowercase_ : int ): lowercase_ : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : int , lowercase_ : Dict , *lowercase_ : Any , **lowercase_ : str ): if PartialState._shared_state == {}: raise RuntimeError( """You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.""" ) lowercase_ : Union[str, Any] = kwargs.pop("""main_process_only""" , lowerCamelCase_ ) lowercase_ : Tuple = kwargs.pop("""in_order""" , lowerCamelCase_ ) if self.isEnabledFor(lowerCamelCase_ ): if self._should_log(lowerCamelCase_ ): lowercase_ , lowercase_ : str = self.process(lowerCamelCase_ , lowerCamelCase_ ) self.logger.log(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) elif in_order: lowercase_ : int = PartialState() for i in range(state.num_processes ): if i == state.process_index: lowercase_ , lowercase_ : Tuple = self.process(lowerCamelCase_ , lowerCamelCase_ ) self.logger.log(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) state.wait_for_everyone() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str = None ) -> Any: if log_level is None: lowercase_ : Union[str, Any] = os.environ.get("""ACCELERATE_LOG_LEVEL""" , _a ) lowercase_ : Optional[int] = logging.getLogger(_a ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_a , {} )
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _lowercase : Any = "base_with_context" def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ) -> List[Any]: lowercase_ : Any = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) lowercase_ : Union[str, Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase_ : Any = weights[F'''layers_{lyr_num}'''] lowercase_ : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowercase_ : List[str] = ly_weight['''attention'''] lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase_ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase_ : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) lowercase_ : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): lowercase_ : Optional[int] = weights[F'''layers_{lyr_num}'''] lowercase_ : Tuple = ly_weight['''attention'''] lowercase_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase_ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase_ : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase_ : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase_ : str = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase_ : Tuple = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] ) -> Optional[int]: lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) lowercase_ : str = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) lowercase_ : List[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__lowerCAmelCase ) lowercase_ : Any = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowercase_ : Dict = weights[F'''layers_{lyr_num}'''] lowercase_ : Tuple = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) lowercase_ : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = ly_weight['''self_attention'''] lowercase_ : str = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = ly_weight['''MultiHeadDotProductAttention_0'''] lowercase_ : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) lowercase_ : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) lowercase_ : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) lowercase_ : int = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) lowercase_ : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) lowercase_ : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) lowercase_ : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) lowercase_ : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) lowercase_ : int = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCamelCase ( UpperCAmelCase__ : str ) -> Union[str, Any]: lowercase_ : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowercase_ : str = jnp.tree_util.tree_map(onp.array , __lowerCAmelCase ) lowercase_ : int = [ '''from __gin__ import dynamic_registration''', '''from music_spectrogram_diffusion.models.diffusion import diffusion_utils''', '''diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0''', '''diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()''', ] lowercase_ : List[str] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) lowercase_ : Union[str, Any] = inference.parse_training_gin_file(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ : Tuple = inference.InferenceModel(args.checkpoint_path , __lowerCAmelCase ) lowercase_ : Union[str, Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) lowercase_ : Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowercase_ : str = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) lowercase_ : Tuple = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowercase_ : Optional[Any] = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __lowerCAmelCase ) lowercase_ : List[str] = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __lowerCAmelCase ) lowercase_ : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __lowerCAmelCase ) lowercase_ : str = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) lowercase_ : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=__lowerCAmelCase , continuous_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase , scheduler=__lowerCAmelCase , melgan=__lowerCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) _lowercase : List[Any] = parser.parse_args() main(args)
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[int] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str]=False ) -> Optional[Any]: lowercase_ : List[str] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("""head""" ): lowercase_ : int = "segformer.encoder." + key if key.startswith("""backbone""" ): lowercase_ : Any = key.replace("""backbone""" , """segformer.encoder""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase_ : Union[str, Any] = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowercase_ : List[str] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(_lowercase )-1}''' ) if "norm" in key: lowercase_ : str = key.replace("""norm""" , """layer_norm""" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase_ : str = key[key.find("""segformer.encoder.layer_norm""" ) + len("""segformer.encoder.layer_norm""" )] lowercase_ : List[str] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(_lowercase )-1}''' ) if "layer_norm1" in key: lowercase_ : Tuple = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowercase_ : Dict = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowercase_ : Tuple = key[key.find("""block""" ) + len("""block""" )] lowercase_ : Optional[int] = key.replace(F'''block{idx}''' , F'''block.{int(_lowercase )-1}''' ) if "attn.q" in key: lowercase_ : Union[str, Any] = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowercase_ : Optional[int] = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowercase_ : Any = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowercase_ : Dict = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowercase_ : Dict = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowercase_ : Optional[int] = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowercase_ : int = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowercase_ : Any = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase_ : Tuple = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowercase_ : int = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(_lowercase )-1}''' ) if key.startswith("""head""" ): lowercase_ : Optional[int] = key.replace("""head""" , """classifier""" ) lowercase_ : List[Any] = value return new_state_dict def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ) -> Optional[int]: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase_ : Any = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) lowercase_ : List[str] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict lowercase_ : Optional[Any] = kv_weight[ : config.hidden_sizes[i], : ] lowercase_ : str = kv_bias[: config.hidden_sizes[i]] lowercase_ : str = kv_weight[ config.hidden_sizes[i] :, : ] lowercase_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> int: lowercase_ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : Dict = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return image @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: lowercase_ : Union[str, Any] = SegformerConfig() lowercase_ : List[str] = False # set attributes based on model_name lowercase_ : Any = "huggingface/label-files" if "segformer" in model_name: lowercase_ : str = model_name[len("""segformer.""" ) : len("""segformer.""" ) + 2] if "ade" in model_name: lowercase_ : str = 150 lowercase_ : Optional[int] = "ade20k-id2label.json" lowercase_ : str = (1, 150, 128, 128) elif "city" in model_name: lowercase_ : int = 19 lowercase_ : Any = "cityscapes-id2label.json" lowercase_ : Tuple = (1, 19, 128, 128) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: lowercase_ : Tuple = True lowercase_ : Union[str, Any] = model_name[4:6] lowercase_ : Optional[int] = 1000 lowercase_ : Dict = "imagenet-1k-id2label.json" lowercase_ : Optional[Any] = (1, 1000) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes lowercase_ : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type="""dataset""" ) , """r""" ) ) lowercase_ : int = {int(_lowercase ): v for k, v in idalabel.items()} lowercase_ : List[Any] = idalabel lowercase_ : List[str] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowercase_ : Optional[Any] = [64, 128, 320, 512] lowercase_ : str = 256 elif size == "b2": lowercase_ : str = [64, 128, 320, 512] lowercase_ : int = 768 lowercase_ : List[Any] = [3, 4, 6, 3] elif size == "b3": lowercase_ : Tuple = [64, 128, 320, 512] lowercase_ : Any = 768 lowercase_ : List[Any] = [3, 4, 18, 3] elif size == "b4": lowercase_ : str = [64, 128, 320, 512] lowercase_ : Union[str, Any] = 768 lowercase_ : str = [3, 8, 27, 3] elif size == "b5": lowercase_ : Tuple = [64, 128, 320, 512] lowercase_ : Optional[int] = 768 lowercase_ : Any = [3, 6, 40, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) lowercase_ : Union[str, Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase ) # prepare image lowercase_ : List[str] = prepare_img() lowercase_ : Dict = image_processor(images=_lowercase , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: lowercase_ : Optional[int] = torch.load(_lowercase , map_location=torch.device("""cpu""" ) ) else: lowercase_ : Any = torch.load(_lowercase , map_location=torch.device("""cpu""" ) )["state_dict"] # rename keys lowercase_ : List[Any] = rename_keys(_lowercase , encoder_only=_lowercase ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_lowercase , _lowercase ) # create HuggingFace model and load state dict if encoder_only: lowercase_ : List[Any] = False lowercase_ : Optional[int] = SegformerForImageClassification(_lowercase ) else: lowercase_ : List[str] = SegformerForSemanticSegmentation(_lowercase ) model.load_state_dict(_lowercase ) model.eval() # forward pass lowercase_ : Optional[int] = model(_lowercase ) lowercase_ : List[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowercase_ : List[Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowercase_ : Any = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowercase_ : List[str] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowercase_ : Tuple = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowercase_ : Dict = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowercase_ : Tuple = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowercase_ : Optional[int] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowercase_ : List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowercase_ : Optional[Any] = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowercase_ : Dict = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowercase_ : Optional[Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowercase_ : List[Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowercase_ : Dict = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowercase_ : Optional[int] = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you\'d like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowercase : List[str] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> Any: # Load configuration defined in the metadata file with open(UpperCAmelCase__ ) as metadata_file: lowercase_ : List[Any] = json.load(UpperCAmelCase__ ) lowercase_ : Optional[int] = LukeConfig(use_entity_aware_attention=UpperCAmelCase__ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase_ : Any = torch.load(UpperCAmelCase__ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase_ : List[str] = load_original_entity_vocab(UpperCAmelCase__ ) # add an entry for [MASK2] lowercase_ : str = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase_ : int = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase_ : Optional[Any] = AddedToken("""<ent>""" , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) lowercase_ : Tuple = AddedToken("""<ent2>""" , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' ) tokenizer.save_pretrained(UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase_ : Dict = json.load(UpperCAmelCase__ ) lowercase_ : List[Any] = """MLukeTokenizer""" with open(os.path.join(UpperCAmelCase__ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) with open(os.path.join(UpperCAmelCase__ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) # Initialize the embeddings of the special tokens lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase_ : List[str] = state_dict["""embeddings.word_embeddings.weight"""] lowercase_ : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase_ : Optional[int] = word_emb[enta_init_index].unsqueeze(0 ) lowercase_ : str = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase_ : List[Any] = state_dict[bias_name] lowercase_ : List[Any] = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase_ : Optional[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase_ : Dict = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase_ : List[Any] = F'''encoder.layer.{layer_index}.attention.self.''' lowercase_ : Dict = state_dict[prefix + matrix_name] lowercase_ : int = state_dict[prefix + matrix_name] lowercase_ : Optional[int] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase_ : Optional[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase_ : Any = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase_ : Tuple = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase_ : Optional[Any] = state_dict["""entity_predictions.bias"""] lowercase_ : List[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase_ : int = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase_ : Tuple = LukeForMaskedLM(config=UpperCAmelCase__ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase_ : Any = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase_ : Any = state_dict[key] else: lowercase_ : List[Any] = state_dict[key] lowercase_ , lowercase_ : Optional[int] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) if set(UpperCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' ) if set(UpperCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase_ : str = MLukeTokenizer.from_pretrained(UpperCAmelCase__ , task="""entity_classification""" ) lowercase_ : Any = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase_ : List[Any] = (0, 9) lowercase_ : List[str] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase_ : Any = model(**UpperCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase_ : str = torch.Size((1, 33, 768) ) lowercase_ : Tuple = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase_ : Dict = torch.Size((1, 1, 768) ) lowercase_ : Dict = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' F''' {expected_shape}''' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction lowercase_ : Optional[int] = MLukeTokenizer.from_pretrained(UpperCAmelCase__ ) lowercase_ : Optional[Any] = """Tokyo is the capital of <mask>.""" lowercase_ : Tuple = (24, 30) lowercase_ : Optional[int] = tokenizer(UpperCAmelCase__ , entity_spans=[span] , return_tensors="""pt""" ) lowercase_ : Tuple = model(**UpperCAmelCase__ ) lowercase_ : str = encoding["""input_ids"""][0].tolist() lowercase_ : Tuple = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase_ : str = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCAmelCase__ ) lowercase_ : Dict = outputs.entity_logits[0][0].argmax().item() lowercase_ : Any = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCAmelCase__ ) ) model.save_pretrained(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Tuple: lowercase_ : Any = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase_ : Tuple = [json.loads(UpperCAmelCase__ ) for line in open(UpperCAmelCase__ )] lowercase_ : Tuple = {} for entry in data: lowercase_ : Union[str, Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase_ : Tuple = entity_id break lowercase_ : Tuple = F'''{language}:{entity_name}''' lowercase_ : Tuple = entity_id return new_mapping if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowercase : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ) -> Any: lowercase_ : Dict = multiprocessing.Manager() lowercase_ : Any = manager.list() lowercase_ : List[str] = multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[Any]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowercase_ : Any = shutil.rmtree lowercase_ : int = os.rmdir lowercase_ : int = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowercase_ : int = {} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. lowercase_ : Any = rmtree lowercase_ : Union[str, Any] = rmdir lowercase_ : Tuple = chdir @contextlib.contextmanager def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: def signal_handler(UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCamelCase ( ) -> Any: lowercase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def lowerCamelCase ( ) -> str: with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class __magic_name__ ( __lowerCAmelCase): pass class __magic_name__ ( io.StringIO): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , *lowercase_ : Any , **lowercase_ : Optional[int] ): raise OSError def SCREAMING_SNAKE_CASE_ ( self : str , *lowercase_ : Any , **lowercase_ : Dict ): raise OSError def SCREAMING_SNAKE_CASE_ ( self : List[str] , *lowercase_ : Any , **lowercase_ : List[Any] ): raise OSError def SCREAMING_SNAKE_CASE_ ( self : Tuple , *lowercase_ : List[str] , **lowercase_ : int ): return False class __magic_name__ ( contextlib._RedirectStream): # type: ignore UpperCamelCase__ = '''stdin''' @contextlib.contextmanager def lowerCamelCase ( UpperCAmelCase__ : str ) -> int: if root == ".": yield return lowercase_ : Tuple = os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str]=None ) -> Tuple: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowercase_ : Dict = None lowercase_ : List[str] = None import os lowercase_ : Optional[Any] = """1""" lowercase_ : List[Any] = None lowercase_ : int = None lowercase_ : Optional[int] = None lowercase_ : List[str] = None lowercase_ : List[Any] = None lowercase_ : Optional[Any] = None lowercase_ : int = None lowercase_ : Any = None lowercase_ : Union[str, Any] = None lowercase_ : str = None lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Tuple = None lowercase_ : Union[str, Any] = None lowercase_ : List[str] = None lowercase_ : Any = None lowercase_ : List[Any] = None lowercase_ : Tuple = None lowercase_ : List[str] = None lowercase_ : str = None lowercase_ : Optional[int] = None lowercase_ : Any = None lowercase_ : List[Any] = None lowercase_ : Any = None lowercase_ : Union[str, Any] = None lowercase_ : str = None lowercase_ : int = None import shutil lowercase_ : Tuple = None lowercase_ : Dict = None lowercase_ : Tuple = None import subprocess lowercase_ : Optional[int] = None # type: ignore lowercase_ : int = None import sys lowercase_ : int = None lowercase_ : List[Any] = None lowercase_ : Union[str, Any] = None lowercase_ : Dict = None lowercase_ : List[Any] = None
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" lowercase_ : str = len(lowerCAmelCase__ ) lowercase_ : Any = sum(lowerCAmelCase__ ) lowercase_ : Tuple = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowercase_ : str = True for i in range(1 , s + 1 ): lowercase_ : Optional[int] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowercase_ : Optional[Any] = dp[i][j - 1] if arr[i - 1] <= j: lowercase_ : Union[str, Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowercase_ : List[str] = s - 2 * j break return diff
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ): lowercase_ : Any = current_set.copy() for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[int] = row[0] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): if magnitude == 0: lowercase_ : Any = column continue lowercase_ : str = column / magnitude # Subtract to cancel term lowercase_ : Any = current_set[0] lowercase_ : List[Any] = [first_row] lowercase_ : str = current_set[1::] for row in current_set: lowercase_ : Tuple = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(SCREAMING_SNAKE_CASE__ ) continue for column_index in range(len(SCREAMING_SNAKE_CASE__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(SCREAMING_SNAKE_CASE__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: lowercase_ : str = final_set[0] lowercase_ : Optional[Any] = [] lowercase_ : Union[str, Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) lowercase_ : List[Any] = simplify(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , SCREAMING_SNAKE_CASE__ ) lowercase_ : str = resultant return final_set def lowerCamelCase ( UpperCAmelCase__ : str ): if len(SCREAMING_SNAKE_CASE__ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) lowercase_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) + 1 if any(len(SCREAMING_SNAKE_CASE__ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: return [equations[0][-1] / equations[0][0]] lowercase_ : int = equations.copy() if any(0 in row for row in data_set ): lowercase_ : Optional[int] = data_set.copy() lowercase_ : Dict = [] for row_index, row in enumerate(SCREAMING_SNAKE_CASE__ ): if 0 not in row: lowercase_ : Union[str, Any] = data_set.pop(SCREAMING_SNAKE_CASE__ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , SCREAMING_SNAKE_CASE__ ) lowercase_ : Optional[int] = data_set.copy() lowercase_ : List[Any] = simplify(SCREAMING_SNAKE_CASE__ ) lowercase_ : Optional[Any] = simplified[::-1] lowercase_ : list = [] for row in simplified: lowercase_ : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue lowercase_ : str = row.copy()[: len(SCREAMING_SNAKE_CASE__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(SCREAMING_SNAKE_CASE__ ) == 0: solutions.append(0 ) continue lowercase_ : int = temp_row[1::] lowercase_ : Dict = temp_row[::-1] for column_index, column in enumerate(SCREAMING_SNAKE_CASE__ ): current_solution -= column * solutions[column_index] solutions.append(SCREAMING_SNAKE_CASE__ ) lowercase_ : Optional[Any] = [] for item in solutions: final.append(float(round(SCREAMING_SNAKE_CASE__ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class __magic_name__ ( unittest.TestCase): @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = pipeline( task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" ) lowercase_ : Tuple = load_dataset("""ashraq/esc50""" ) lowercase_ : Union[str, Any] = dataset['train']['audio'][-1]['array'] lowercase_ : List[str] = audio_classifier(lowercase_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"""score""": 0.5_01, """label""": """Sound of a dog"""}, {"""score""": 0.4_99, """label""": """Sound of vaccum cleaner"""}] , ) @unittest.skip("""No models are available in TF""" ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): pass @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = pipeline( task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , ) # This is an audio of a dog lowercase_ : List[Any] = load_dataset("""ashraq/esc50""" ) lowercase_ : str = dataset['train']['audio'][-1]['array'] lowercase_ : Optional[Any] = audio_classifier(lowercase_ , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ] , ) lowercase_ : str = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) lowercase_ : List[Any] = audio_classifier( [audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"""score""": 0.9_99, """label""": """Sound of a dog"""}, {"""score""": 0.0_01, """label""": """Sound of vaccum cleaner"""}, ], ] * 5 , ) @unittest.skip("""No models are available in TF""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 _lowercase : Optional[int] = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.0_1), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] ): lowercase_ : Dict = TOKEN HfFolder.save_token(UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] ): try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowercase_ : str = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCamelCase__ , repo_id="""test-config""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) lowercase_ : Optional[Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCamelCase__ , repo_id="""valid_org/test-config-org""" , push_to_hub=UpperCamelCase__ , use_auth_token=self._token ) lowercase_ : Dict = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self : str ): CustomConfig.register_for_auto_class() lowercase_ : Optional[int] = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowercase_ : int = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=UpperCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase_ : List[str] = c.n_embd + 1 # int lowercase_ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowercase_ : List[str] = not c.scale_attn_weights # bool lowercase_ : Optional[int] = c.summary_type + """foo""" # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(UpperCamelCase__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(UpperCamelCase__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(UpperCamelCase__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(UpperCamelCase__ , c.summary_type , """mismatch for key: summary_type""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = PretrainedConfig() lowercase_ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCamelCase__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowercase_ : Optional[int] = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCamelCase__ , UpperCamelCase__ )] if len(UpperCamelCase__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" f''' {', '.join(UpperCamelCase__ )}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): with self.assertRaises(UpperCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase_ : Optional[int] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowercase_ : Tuple = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = mock.Mock() lowercase_ : Optional[Any] = 500 lowercase_ : Optional[int] = {} lowercase_ : List[str] = HTTPError lowercase_ : str = {} # Download this model to make sure it's in the cache. lowercase_ : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=UpperCamelCase__ ) as mock_head: lowercase_ : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = AutoConfig.from_pretrained("""bert-base-cased""" ) lowercase_ : Tuple = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCamelCase__ ) lowercase_ : Tuple = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCamelCase__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase_ : int = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase_ : Optional[int] = ["""config.42.0.0.json"""] lowercase_ : str = 768 configuration.save_pretrained(UpperCamelCase__ ) shutil.move(os.path.join(UpperCamelCase__ , """config.4.0.0.json""" ) , os.path.join(UpperCamelCase__ , """config.42.0.0.json""" ) ) lowercase_ : Any = AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowercase_ : List[Any] = """v4.0.0""" lowercase_ , lowercase_ : Optional[int] = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCamelCase__ , return_unused_kwargs=UpperCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase_ : Dict = """v3.0.0""" lowercase_ : List[Any] = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase ( UpperCAmelCase__ : int ) -> Optional[Any]: if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(snake_case_ , """_dynamo""" ): return False return isinstance(snake_case_ , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : bool = True ) -> List[str]: lowercase_ : int = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase_ : str = is_compiled_module(snake_case_ ) if is_compiled: lowercase_ : Optional[Any] = model lowercase_ : str = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case_ , snake_case_ ): lowercase_ : Dict = model.module if not keep_fpaa_wrapper: lowercase_ : Tuple = getattr(snake_case_ , """forward""" ) lowercase_ : Tuple = model.__dict__.pop("""_original_forward""" , snake_case_ ) if original_forward is not None: while hasattr(snake_case_ , """__wrapped__""" ): lowercase_ : Any = forward.__wrapped__ if forward == original_forward: break lowercase_ : Tuple = forward if getattr(snake_case_ , """_converted_to_transformer_engine""" , snake_case_ ): convert_model(snake_case_ , to_transformer_engine=snake_case_ ) if is_compiled: lowercase_ : List[str] = model lowercase_ : Any = compiled_model return model def lowerCamelCase ( ) -> Union[str, Any]: PartialState().wait_for_everyone() def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ) -> Tuple: if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case_ , snake_case_ ) elif PartialState().local_process_index == 0: torch.save(snake_case_ , snake_case_ ) @contextmanager def lowerCamelCase ( **UpperCAmelCase__ : Any ) -> str: for key, value in kwargs.items(): lowercase_ : Tuple = str(snake_case_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase ( UpperCAmelCase__ : str ) -> Tuple: if not hasattr(snake_case_ , """__qualname__""" ) and not hasattr(snake_case_ , """__name__""" ): lowercase_ : Dict = getattr(snake_case_ , """__class__""" , snake_case_ ) if hasattr(snake_case_ , """__qualname__""" ): return obj.__qualname__ if hasattr(snake_case_ , """__name__""" ): return obj.__name__ return str(snake_case_ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> List[Any]: for key, value in source.items(): if isinstance(snake_case_ , snake_case_ ): lowercase_ : List[str] = destination.setdefault(snake_case_ , {} ) merge_dicts(snake_case_ , snake_case_ ) else: lowercase_ : Optional[int] = value return destination def lowerCamelCase ( UpperCAmelCase__ : int = None ) -> Dict: if port is None: lowercase_ : Any = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> List[Any]: while second != 0: lowercase_ : str = first & second first ^= second lowercase_ : Optional[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Union[str, Any] = int(input("Enter the first number: ").strip()) _lowercase : Dict = int(input("Enter the second number: ").strip()) print(f"""{add(first, second) = }""")
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: if not isinstance(__a , __a ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__a ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(__a ) == 1: return True lowercase_ : Union[str, Any] = series[1] - series[0] for index in range(len(__a ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> List[Any]: if not isinstance(__a , __a ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(__a ) == 0: raise ValueError("""Input list must be a non empty list""" ) lowercase_ : List[str] = 0 for val in series: answer += val return answer / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _lowercase : Optional[int] = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = ["BeitFeatureExtractor"] _lowercase : Dict = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000 ) -> List[Any]: lowercase_ : int = -1 lowercase_ : Any = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowercase_ : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowercase_ : Union[str, Any] = n - a - b if c * c == (a * a + b * b): lowercase_ : Union[str, Any] = a * b * c if candidate >= product: lowercase_ : List[Any] = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ShapEPipeline UpperCamelCase__ = ["prompt"] UpperCamelCase__ = ["prompt"] UpperCamelCase__ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCamelCase__ = False @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return 8 @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): torch.manual_seed(0 ) lowercase_ : Union[str, Any] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowercase_ : Dict = PriorTransformer(**lowercase_ ) return model @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): torch.manual_seed(0 ) lowercase_ : Any = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowercase_ : Optional[Any] = ShapERenderer(**lowercase_ ) return model def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = self.dummy_prior lowercase_ : Optional[int] = self.dummy_text_encoder lowercase_ : Optional[Any] = self.dummy_tokenizer lowercase_ : Optional[int] = self.dummy_renderer lowercase_ : int = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowercase_ , clip_sample=lowercase_ , clip_sample_range=1.0 , ) lowercase_ : Optional[int] = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=0 ): if str(lowercase_ ).startswith("""mps""" ): lowercase_ : List[Any] = torch.manual_seed(lowercase_ ) else: lowercase_ : int = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : int = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = """cpu""" lowercase_ : Union[str, Any] = self.get_dummy_components() lowercase_ : List[Any] = self.pipeline_class(**lowercase_ ) lowercase_ : List[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Dict = pipe(**self.get_dummy_inputs(lowercase_ ) ) lowercase_ : Optional[Any] = output.images[0] lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowercase_ : Tuple = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = torch_device == """cpu""" lowercase_ : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase_ , relax_max_difference=lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.get_dummy_components() lowercase_ : str = self.pipeline_class(**lowercase_ ) lowercase_ : Optional[Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : List[Any] = 1 lowercase_ : Tuple = 2 lowercase_ : Optional[Any] = self.get_dummy_inputs(lowercase_ ) for key in inputs.keys(): if key in self.batch_params: lowercase_ : Dict = batch_size * [inputs[key]] lowercase_ : Optional[Any] = pipe(**lowercase_ , num_images_per_prompt=lowercase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) lowercase_ : int = ShapEPipeline.from_pretrained("""openai/shap-e""" ) lowercase_ : Union[str, Any] = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Tuple = torch.Generator(device=lowercase_ ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe( """a shark""" , generator=lowercase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase_ , lowercase_ )
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : Tuple = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _lowercase : List[Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } _lowercase : Any = "▁" class __magic_name__ ( lowercase_): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Dict , lowercase_ : List[str] , lowercase_ : int="<s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : str="</s>" , lowercase_ : int="<s>" , lowercase_ : str="<unk>" , lowercase_ : List[Any]="<pad>" , lowercase_ : Optional[Any]="<mask>" , lowercase_ : List[Any] = None , **lowercase_ : str , ): lowercase_ : List[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) lowercase_ : int = vocab_file lowercase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a__ ) ) lowercase_ : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} lowercase_ : Tuple = len(self.sp_model ) - 1 lowercase_ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Union[str, Any] = [self.cls_token_id] lowercase_ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : Optional[Any] = None , lowercase_ : Union[str, Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] = None ): lowercase_ : Dict = [self.sep_token_id] lowercase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int ): return self.sp_model.encode(a__ , out_type=a__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[str, Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Optional[int] = self.sp_model.PieceToId(a__ ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Tuple ): lowercase_ : Optional[int] = [] lowercase_ : int = """""" lowercase_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token lowercase_ : List[str] = True lowercase_ : List[str] = [] else: current_sub_tokens.append(a__ ) lowercase_ : Union[str, Any] = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def __getstate__( self : Dict ): lowercase_ : Tuple = self.__dict__.copy() lowercase_ : str = None return state def __setstate__( self : Optional[int] , lowercase_ : int ): lowercase_ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase_ : str = {} lowercase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : List[Any] = None ): if not os.path.isdir(a__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[int] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , """wb""" ) as fi: lowercase_ : Any = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,)
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' from math import isqrt, loga def lowerCamelCase ( UpperCAmelCase__ : List[Any] ) -> Union[str, Any]: lowercase_ : Optional[int] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : Union[str, Any] = False return [i for i in range(2 , UpperCAmelCase__ ) if is_prime[i]] def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] = 800800 , UpperCAmelCase__ : Optional[int] = 800800 ) -> List[Any]: lowercase_ : Union[str, Any] = degree * loga(UpperCAmelCase__ ) lowercase_ : Any = int(UpperCAmelCase__ ) lowercase_ : int = calculate_prime_numbers(UpperCAmelCase__ ) lowercase_ : Optional[Any] = 0 lowercase_ : List[str] = 0 lowercase_ : str = len(UpperCAmelCase__ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f"""{solution() = }""")
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = True UpperCamelCase__ = None UpperCamelCase__ = 1 UpperCamelCase__ = None UpperCamelCase__ = False UpperCamelCase__ = None UpperCamelCase__ = None def SCREAMING_SNAKE_CASE_ ( self : int ): return self.__class__(**{k: copy.deepcopy(__lowerCamelCase ) for k, v in self.__dict__.items()} )
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase : List[str] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> Optional[int]: lowercase_ : int = original_name.split(""".""" )[0] lowercase_ : int = key.split(""".""" ) lowercase_ : Optional[Any] = int(key_list[key_list.index(UpperCAmelCase_ ) - 2] ) lowercase_ : Tuple = int(key_list[key_list.index(UpperCAmelCase_ ) - 1] ) lowercase_ : Dict = orig_block_num - offset lowercase_ : Optional[Any] = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: lowercase_ : List[Any] = OrderedDict() lowercase_ : Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): lowercase_ : List[str] = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase_ : int = key[: key.find("""proj""" )] lowercase_ : List[Any] = key.replace(UpperCAmelCase_ , F'''patch_embeddings.{total_embed_found}.''' ) lowercase_ : List[str] = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: lowercase_ : List[Any] = 'poolformer.encoder.' + key if "mlp.fc1" in key: lowercase_ : Any = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: lowercase_ : str = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: lowercase_ : Dict = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """norm1""" , """before_norm""" ) if "norm2" in key: lowercase_ : List[str] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: lowercase_ : Optional[int] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: lowercase_ : Optional[int] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: lowercase_ : Optional[int] = key.replace("""head""" , """classifier""" ) lowercase_ : List[str] = value return new_state_dict def lowerCamelCase ( ) -> List[str]: lowercase_ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase_ : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return image @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] ) -> str: lowercase_ : Any = PoolFormerConfig() # set attributes based on model_name lowercase_ : Union[str, Any] = 'huggingface/label-files' lowercase_ : Dict = model_name[-3:] lowercase_ : Optional[int] = 1000 lowercase_ : str = 'imagenet-1k-id2label.json' lowercase_ : str = (1, 1000) # set config attributes lowercase_ : Optional[int] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} lowercase_ : int = idalabel lowercase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "s12": lowercase_ : int = [2, 2, 6, 2] lowercase_ : List[Any] = [64, 128, 320, 512] lowercase_ : Optional[int] = 4.0 lowercase_ : int = 0.9 elif size == "s24": lowercase_ : Tuple = [4, 4, 12, 4] lowercase_ : str = [64, 128, 320, 512] lowercase_ : Dict = 4.0 lowercase_ : Union[str, Any] = 0.9 elif size == "s36": lowercase_ : Dict = [6, 6, 18, 6] lowercase_ : Optional[Any] = [64, 128, 320, 512] lowercase_ : str = 4.0 lowercase_ : int = 1e-6 lowercase_ : Union[str, Any] = 0.9 elif size == "m36": lowercase_ : Union[str, Any] = [6, 6, 18, 6] lowercase_ : Dict = [96, 192, 384, 768] lowercase_ : List[str] = 4.0 lowercase_ : str = 1e-6 lowercase_ : List[Any] = 0.95 elif size == "m48": lowercase_ : Tuple = [8, 8, 24, 8] lowercase_ : str = [96, 192, 384, 768] lowercase_ : Optional[Any] = 4.0 lowercase_ : List[Any] = 1e-6 lowercase_ : Dict = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor lowercase_ : int = PoolFormerImageProcessor(crop_pct=UpperCAmelCase_ ) # Prepare image lowercase_ : List[str] = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors="""pt""" ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict lowercase_ : Tuple = torch.load(UpperCAmelCase_ , map_location=torch.device("""cpu""" ) ) # rename keys lowercase_ : str = rename_keys(UpperCAmelCase_ ) # create HuggingFace model and load state dict lowercase_ : str = PoolFormerForImageClassification(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Define image processor lowercase_ : int = PoolFormerImageProcessor(crop_pct=UpperCAmelCase_ ) lowercase_ : int = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass lowercase_ : Any = model(UpperCAmelCase_ ) lowercase_ : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": lowercase_ : Optional[Any] = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": lowercase_ : List[Any] = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": lowercase_ : Optional[Any] = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": lowercase_ : List[Any] = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": lowercase_ : Optional[int] = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowercase : str = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class __magic_name__ : def __init__( self : Tuple , lowercase_ : Dict , lowercase_ : List[Any]=13 , lowercase_ : List[Any]=7 , lowercase_ : Tuple=True , lowercase_ : Optional[Any]=True , lowercase_ : int=True , lowercase_ : Union[str, Any]=True , lowercase_ : str=99 , lowercase_ : Optional[int]=64 , lowercase_ : Any=32 , lowercase_ : Optional[int]=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[str]=37 , lowercase_ : Optional[int]="gelu" , lowercase_ : Optional[Any]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=512 , lowercase_ : Dict=16 , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : int=3 , lowercase_ : int=4 , lowercase_ : Optional[Any]=None , ): lowercase_ : Dict = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : Dict = is_training lowercase_ : Any = use_input_mask lowercase_ : Any = use_token_type_ids lowercase_ : Tuple = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : Tuple = hidden_size lowercase_ : str = embedding_size lowercase_ : Any = num_hidden_layers lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : List[str] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : List[str] = max_position_embeddings lowercase_ : Tuple = type_vocab_size lowercase_ : List[str] = type_sequence_label_size lowercase_ : List[Any] = initializer_range lowercase_ : Optional[int] = num_labels lowercase_ : Optional[Any] = num_choices lowercase_ : Optional[Any] = scope def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Tuple = None if self.use_input_mask: lowercase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : Tuple = None if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : str ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : int ): lowercase_ : List[Any] = MobileBertModel(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) lowercase_ : List[str] = model(__snake_case , token_type_ids=__snake_case ) lowercase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): lowercase_ : List[str] = MobileBertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Optional[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any] ): lowercase_ : List[Any] = MobileBertForNextSentencePrediction(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ): lowercase_ : Optional[int] = MobileBertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Tuple ): lowercase_ : List[str] = MobileBertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : str ): lowercase_ : Optional[Any] = self.num_labels lowercase_ : str = MobileBertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : int = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase_ : Any = self.num_labels lowercase_ : Dict = MobileBertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : Optional[Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[str] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): lowercase_ : Union[str, Any] = self.num_choices lowercase_ : Dict = MobileBertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() lowercase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Any = self.prepare_config_and_inputs() ( lowercase_ ) : Optional[int] = config_and_inputs lowercase_ : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__, lowerCamelCase__, unittest.TestCase): UpperCamelCase__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = True def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Dict=False ): lowercase_ : Union[str, Any] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): lowercase_ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) lowercase_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = MobileBertModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__snake_case ) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: return torch.tensor( _A , dtype=torch.long , device=_A , ) _lowercase : Tuple = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(__snake_case ) lowercase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): lowercase_ : str = model(__snake_case )[0] lowercase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __snake_case ) lowercase_ : Tuple = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=__snake_case , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase_ : str = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase_ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase : Tuple = pd.read_csv("sample_data.csv", header=None) _lowercase : List[Any] = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase : List[str] = df.iloc[:, 1:2] _lowercase : Optional[int] = actual_data.values.reshape(len_data, 1) _lowercase : Any = MinMaxScaler().fit_transform(actual_data) _lowercase : Any = 10 _lowercase : List[Any] = 5 _lowercase : str = 20 _lowercase : List[str] = len_data - periods * look_back _lowercase : List[str] = actual_data[:division] _lowercase : int = actual_data[division - look_back :] _lowercase : Optional[int] = [], [] _lowercase : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase : Union[str, Any] = np.array(train_x) _lowercase : Tuple = np.array(test_x) _lowercase : Optional[int] = np.array([list(i.ravel()) for i in train_y]) _lowercase : Dict = np.array([list(i.ravel()) for i in test_y]) _lowercase : Dict = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") _lowercase : Optional[Any] = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _lowercase : List[Any] = model.predict(x_test)
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowercase : List[Any] = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
def lowerCamelCase ( UpperCAmelCase__ : int = 10**12 ) -> int: lowercase_ : List[Any] = 1 lowercase_ : Optional[Any] = 0 lowercase_ : int = 1 lowercase_ : str = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> Image: def brightness(UpperCAmelCase__ : Tuple ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 _lowercase : Optional[Any] = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __magic_name__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = tempfile.mkdtemp() lowercase_ : Dict = BlipImageProcessor() lowercase_ : List[Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowercase_ : Tuple = BlipProcessor(UpperCamelCase__ , UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , **lowercase_ : List[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).tokenizer def SCREAMING_SNAKE_CASE_ ( self : List[str] , **lowercase_ : Optional[int] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ).image_processor def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase_ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowercase_ : Any = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) lowercase_ : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[int] = self.get_image_processor() lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[Any] = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowercase_ : Any = self.prepare_image_inputs() lowercase_ : int = image_processor(UpperCamelCase__ , return_tensors="""np""" ) lowercase_ : Optional[Any] = processor(images=UpperCamelCase__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Union[str, Any] = self.get_image_processor() lowercase_ : List[Any] = self.get_tokenizer() lowercase_ : int = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowercase_ : str = """lower newer""" lowercase_ : Union[str, Any] = processor(text=UpperCamelCase__ ) lowercase_ : Optional[Any] = tokenizer(UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : str = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowercase_ : str = """lower newer""" lowercase_ : Tuple = self.prepare_image_inputs() lowercase_ : Optional[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = self.get_image_processor() lowercase_ : Tuple = self.get_tokenizer() lowercase_ : Optional[int] = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowercase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase_ : str = processor.batch_decode(UpperCamelCase__ ) lowercase_ : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = self.get_image_processor() lowercase_ : Dict = self.get_tokenizer() lowercase_ : Optional[Any] = BlipProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) lowercase_ : Union[str, Any] = """lower newer""" lowercase_ : List[Any] = self.prepare_image_inputs() lowercase_ : Union[str, Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ ( snake_case__, unittest.TestCase): UpperCamelCase__ = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Dict=0 ): lowercase_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(_A ) ) lowercase_ : Optional[int] = np.random.RandomState(_A ) lowercase_ : str = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : List[Any] = self.get_dummy_inputs() lowercase_ : List[Any] = pipe(**_A ).images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) lowercase_ : str = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_A ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : Optional[int] = self.get_dummy_inputs() lowercase_ : Dict = pipe(**_A ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[str] = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) # warmup pass to apply optimizations lowercase_ : Optional[int] = pipe(**self.get_dummy_inputs() ) lowercase_ : str = self.get_dummy_inputs() lowercase_ : Dict = pipe(**_A ).images lowercase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : int = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : Dict = self.get_dummy_inputs() lowercase_ : Tuple = pipe(**_A ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Any = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : List[str] = self.get_dummy_inputs() lowercase_ : int = pipe(**_A ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : Optional[int] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowercase_ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : str = self.get_dummy_inputs() lowercase_ : Any = pipe(**_A ).images lowercase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowercase_ : List[Any] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ ( unittest.TestCase): @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = ort.SessionOptions() lowercase_ : List[str] = False return options def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : List[Any] = init_image.resize((768, 512) ) # using the PNDM scheduler by default lowercase_ : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : Union[str, Any] = """A fantasy landscape, trending on artstation""" lowercase_ : Any = np.random.RandomState(0 ) lowercase_ : List[str] = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_A , output_type="""np""" , ) lowercase_ : List[str] = output.images lowercase_ : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : Optional[int] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowercase_ : List[str] = init_image.resize((768, 512) ) lowercase_ : List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowercase_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_A , safety_checker=_A , feature_extractor=_A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_A ) lowercase_ : int = """A fantasy landscape, trending on artstation""" lowercase_ : Dict = np.random.RandomState(0 ) lowercase_ : Union[str, Any] = pipe( prompt=_A , image=_A , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_A , output_type="""np""" , ) lowercase_ : Tuple = output.images lowercase_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) lowercase_ : List[str] = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
from bisect import bisect from itertools import accumulate def lowerCamelCase ( UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Any: lowercase_ : Tuple = sorted(zip(snake_case__ , snake_case__ ) , key=lambda UpperCAmelCase__ : x[0] / x[1] , reverse=snake_case__ ) lowercase_ : str = [i[0] for i in r], [i[1] for i in r] lowercase_ : Optional[Any] = list(accumulate(snake_case__ ) ) lowercase_ : Dict = bisect(snake_case__ , snake_case__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' import math def lowerCamelCase ( UpperCAmelCase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase ( UpperCAmelCase__ : float = 0.1 ) -> int: """simple docstring""" lowercase_ : Any = 3 lowercase_ : Union[str, Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' from __future__ import annotations import math import random from typing import Any class __magic_name__ : def __init__( self : Union[str, Any] ): lowercase_ : list[Any] = [] lowercase_ : int = 0 lowercase_ : int = 0 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return self.head == self.tail def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] ): self.data.append(__lowercase ) lowercase_ : Tuple = self.tail + 1 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : int = self.data[self.head] lowercase_ : List[Any] = self.head + 1 return ret def SCREAMING_SNAKE_CASE_ ( self : List[str] ): return self.tail - self.head def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __magic_name__ : def __init__( self : str , lowercase_ : str ): lowercase_ : List[Any] = data lowercase_ : MyNode | None = None lowercase_ : MyNode | None = None lowercase_ : int = 1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return self.data def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.left def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return self.right def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.height def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : List[Any] ): lowercase_ : str = data def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[Any] ): lowercase_ : str = node def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : int ): lowercase_ : Any = node def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str ): lowercase_ : int = height def lowerCamelCase ( UpperCAmelCase__ : Any ): if node is None: return 0 return node.get_height() def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ): if a > b: return a return b def lowerCamelCase ( UpperCAmelCase__ : List[str] ): print("""left rotation node:""" , node.get_data() ) lowercase_ : Union[str, Any] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(UpperCAmelCase__ ) lowercase_ : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) lowercase_ : Any = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : Any ): print("""right rotation node:""" , node.get_data() ) lowercase_ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(UpperCAmelCase__ ) lowercase_ : Dict = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) lowercase_ : List[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(UpperCAmelCase__ ) return ret def lowerCamelCase ( UpperCAmelCase__ : Dict ): lowercase_ : List[Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(UpperCAmelCase__ ) ) return right_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ): lowercase_ : List[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(UpperCAmelCase__ ) ) return left_rotation(UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] ): if node is None: return MyNode(UpperCAmelCase__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , UpperCAmelCase__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected lowercase_ : Any = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child lowercase_ : str = right_rotation(UpperCAmelCase__ ) else: lowercase_ : List[str] = lr_rotation(UpperCAmelCase__ ) else: node.set_right(insert_node(node.get_right() , UpperCAmelCase__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: lowercase_ : Union[str, Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): lowercase_ : Optional[Any] = rl_rotation(UpperCAmelCase__ ) else: lowercase_ : str = left_rotation(UpperCAmelCase__ ) lowercase_ : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(UpperCAmelCase__ ) return node def lowerCamelCase ( UpperCAmelCase__ : Tuple ): while True: lowercase_ : List[str] = root.get_right() if right_child is None: break lowercase_ : Optional[int] = right_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : Any ): while True: lowercase_ : Dict = root.get_left() if left_child is None: break lowercase_ : Dict = left_child return root.get_data() def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict ): lowercase_ : Union[str, Any] = root.get_left() lowercase_ : Any = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: lowercase_ : Tuple = get_left_most(UpperCAmelCase__ ) root.set_data(UpperCAmelCase__ ) root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) elif left_child is not None: lowercase_ : Optional[Any] = left_child elif right_child is not None: lowercase_ : List[Any] = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(UpperCAmelCase__ , UpperCAmelCase__ ) ) if get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): lowercase_ : Union[str, Any] = left_rotation(UpperCAmelCase__ ) else: lowercase_ : Optional[Any] = rl_rotation(UpperCAmelCase__ ) elif get_height(UpperCAmelCase__ ) - get_height(UpperCAmelCase__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): lowercase_ : List[str] = right_rotation(UpperCAmelCase__ ) else: lowercase_ : List[Any] = lr_rotation(UpperCAmelCase__ ) lowercase_ : Optional[Any] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(UpperCAmelCase__ ) return root class __magic_name__ : def __init__( self : Union[str, Any] ): lowercase_ : MyNode | None = None def SCREAMING_SNAKE_CASE_ ( self : Dict ): return get_height(self.root ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str ): print("""insert:""" + str(__lowercase ) ) lowercase_ : Union[str, Any] = insert_node(self.root , __lowercase ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[str] ): print("""delete:""" + str(__lowercase ) ) if self.root is None: print("""Tree is empty!""" ) return lowercase_ : List[str] = del_node(self.root , __lowercase ) def __str__( self : Optional[Any] , ): # a level traversale, gives a more intuitive look on the tree lowercase_ : Optional[int] = '''''' lowercase_ : int = MyQueue() q.push(self.root ) lowercase_ : List[Any] = self.get_height() if layer == 0: return output lowercase_ : Tuple = 0 while not q.is_empty(): lowercase_ : int = q.pop() lowercase_ : List[Any] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowercase ) q.push(__lowercase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space lowercase_ : Union[str, Any] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowercase ) - 1: lowercase_ : int = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() _lowercase : Optional[int] = AVLtree() _lowercase : int = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=3 , lowercase_ : List[str]=32 , lowercase_ : Optional[int]=3 , lowercase_ : Union[str, Any]=10 , lowercase_ : int=[10, 20, 30, 40] , lowercase_ : Union[str, Any]=[1, 1, 2, 1] , lowercase_ : Tuple=True , lowercase_ : List[Any]=True , lowercase_ : Optional[int]="relu" , lowercase_ : Union[str, Any]=3 , lowercase_ : Optional[int]=None , ): lowercase_ : Any = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : str = image_size lowercase_ : str = num_channels lowercase_ : int = embeddings_size lowercase_ : Any = hidden_sizes lowercase_ : List[str] = depths lowercase_ : int = is_training lowercase_ : Optional[int] = use_labels lowercase_ : Optional[Any] = hidden_act lowercase_ : Tuple = num_labels lowercase_ : int = scope lowercase_ : str = len(__a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : Optional[Any] = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): lowercase_ : List[str] = FlaxRegNetModel(config=__a ) lowercase_ : Union[str, Any] = model(__a ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : int , lowercase_ : Any ): lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[Any] = FlaxRegNetForImageClassification(config=__a ) lowercase_ : Optional[int] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Dict = self.prepare_config_and_inputs() lowercase_ , lowercase_ : int = config_and_inputs lowercase_ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __magic_name__ ( UpperCamelCase__, unittest.TestCase): UpperCamelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = FlaxRegNetModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self , config_class=__a , has_text_modality=__a ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): return def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Any = model_class(__a ) lowercase_ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): def check_hidden_states_output(lowercase_ : Dict , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Optional[int] = model_class(__a ) lowercase_ : str = model(**self._prepare_for_class(__a , __a ) ) lowercase_ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__a ) , expected_num_stages + 1 ) lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = True check_hidden_states_output(__a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Tuple = True check_hidden_states_output(__a , __a , __a ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase_ : Optional[Any] = self._prepare_for_class(__a , __a ) lowercase_ : str = model_class(__a ) @jax.jit def model_jitted(lowercase_ : str , **lowercase_ : Optional[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("""JIT Enabled""" ): lowercase_ : Union[str, Any] = model_jitted(**__a ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowercase_ : str = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase ( ) -> List[str]: lowercase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_flax class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[Any] = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : List[str] = image_processor(images=__a , return_tensors="""np""" ) lowercase_ : Any = model(**__a ) # verify the logits lowercase_ : str = (1, 1000) self.assertEqual(outputs.logits.shape , __a ) lowercase_ : str = jnp.array([-0.41_80, -1.50_51, -3.48_36] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import baseaa def lowerCamelCase ( UpperCAmelCase__ : str ) -> bytes: return baseaa.aaaencode(string.encode("""utf-8""" ) ) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> str: return baseaa.aaadecode(lowerCAmelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowercase : str = logging.get_logger(__name__) _lowercase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase : Union[str, Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : str = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : Optional[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _lowercase : List[str] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _lowercase : Tuple = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _lowercase : Optional[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _lowercase : int = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _lowercase : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __magic_name__ ( __snake_case): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = DPRContextEncoderTokenizer class __magic_name__ ( __snake_case): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = DPRQuestionEncoderTokenizer _lowercase : List[str] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _lowercase : List[str] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _lowercase : Optional[Any] = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__snake_case) class __magic_name__ : def __call__( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Union[bool, str] = False , lowercase_ : Union[bool, str] = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[bool] = None , **lowercase_ : Dict , ): if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: lowercase_ : Tuple = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ : Dict = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [titles] lowercase_ : Optional[Any] = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [texts] lowercase_ : Union[str, Any] = len(UpperCamelCase__ ) lowercase_ : List[str] = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [questions] * n_passages assert len(UpperCamelCase__ ) == len( UpperCamelCase__ ), f'''There should be as many titles than texts but got {len(UpperCamelCase__ )} titles and {len(UpperCamelCase__ )} texts.''' lowercase_ : Tuple = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["input_ids"] lowercase_ : Union[str, Any] = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )["input_ids"] lowercase_ : Optional[int] = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__ ) ] } if return_attention_mask is not False: lowercase_ : Tuple = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase_ : List[Any] = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : BatchEncoding , lowercase_ : DPRReaderOutput , lowercase_ : int = 16 , lowercase_ : int = 64 , lowercase_ : int = 4 , ): lowercase_ : List[Any] = reader_input["input_ids"] lowercase_ : List[Any] = reader_output[:3] lowercase_ : Optional[int] = len(UpperCamelCase__ ) lowercase_ : Union[str, Any] = sorted(range(UpperCamelCase__ ) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__ ) lowercase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase_ : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase_ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ : str = sequence_ids.index(self.pad_token_id ) else: lowercase_ : Union[str, Any] = len(UpperCamelCase__ ) lowercase_ : Tuple = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[int] , lowercase_ : List[int] , lowercase_ : int , lowercase_ : int , ): lowercase_ : Tuple = [] for start_index, start_score in enumerate(UpperCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase_ : Tuple = sorted(UpperCamelCase__ , key=lambda lowercase_ : x[1] , reverse=UpperCamelCase__ ) lowercase_ : Tuple = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase_ : Any = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case) class __magic_name__ ( __snake_case, __snake_case): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = ["""input_ids""", """attention_mask"""] UpperCamelCase__ = DPRReaderTokenizer
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : str = { '''nvidia/segformer-b0-finetuned-ade-512-512''': ( '''https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json''' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __magic_name__ ( lowerCamelCase_): UpperCamelCase__ = '''segformer''' def __init__( self : Optional[int] , lowercase_ : Optional[int]=3 , lowercase_ : Dict=4 , lowercase_ : Tuple=[2, 2, 2, 2] , lowercase_ : List[str]=[8, 4, 2, 1] , lowercase_ : Any=[32, 64, 160, 256] , lowercase_ : Tuple=[7, 3, 3, 3] , lowercase_ : List[Any]=[4, 2, 2, 2] , lowercase_ : Any=[1, 2, 5, 8] , lowercase_ : Optional[int]=[4, 4, 4, 4] , lowercase_ : List[str]="gelu" , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.0 , lowercase_ : Dict=0.1 , lowercase_ : Any=0.02 , lowercase_ : str=0.1 , lowercase_ : Tuple=1E-6 , lowercase_ : Dict=256 , lowercase_ : List[str]=255 , **lowercase_ : Any , ): super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) lowercase_ : Union[str, Any] = num_channels lowercase_ : str = num_encoder_blocks lowercase_ : List[str] = depths lowercase_ : Optional[Any] = sr_ratios lowercase_ : List[Any] = hidden_sizes lowercase_ : Optional[Any] = patch_sizes lowercase_ : List[str] = strides lowercase_ : Dict = mlp_ratios lowercase_ : Optional[int] = num_attention_heads lowercase_ : Union[str, Any] = hidden_act lowercase_ : List[str] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : List[str] = classifier_dropout_prob lowercase_ : Union[str, Any] = initializer_range lowercase_ : Optional[Any] = drop_path_rate lowercase_ : Optional[int] = layer_norm_eps lowercase_ : int = decoder_hidden_size lowercase_ : Dict = kwargs.get("""reshape_last_stage""" , __snake_case ) lowercase_ : List[str] = semantic_loss_ignore_index class __magic_name__ ( lowerCamelCase_): UpperCamelCase__ = version.parse('''1.11''') @property def SCREAMING_SNAKE_CASE_ ( self : Any ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return 1E-4 @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return 12
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _lowercase : int = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: try: with open(UpperCAmelCase__ , """rb""" ) as flax_state_f: lowercase_ : Union[str, Any] = from_bytes(UpperCAmelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(UpperCAmelCase__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights lowercase_ : str = flatten_dict(jax.tree_util.tree_map(lambda UpperCAmelCase__ : x.dtype == jnp.bfloataa , UpperCAmelCase__ ) ).values() if any(UpperCAmelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) lowercase_ : List[str] = jax.tree_util.tree_map( lambda UpperCAmelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCAmelCase__ ) lowercase_ : str = """""" lowercase_ : Dict = flatten_dict(UpperCAmelCase__ , sep=""".""" ) lowercase_ : Tuple = pt_model.state_dict() # keep track of unexpected & missing keys lowercase_ : Tuple = [] lowercase_ : str = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase_ : Dict = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase_ : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] lowercase_ : Tuple = jnp.transpose(UpperCAmelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase_ : List[Any] = flax_key_tuple_array[:-1] + ["""weight"""] lowercase_ : List[str] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase_ : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(UpperCAmelCase__ ): lowercase_ : Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) lowercase_ : Tuple = """.""".join(UpperCAmelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowercase_ : Any = np.asarray(UpperCAmelCase__ ) if not isinstance(UpperCAmelCase__ , np.ndarray ) else flax_tensor lowercase_ : Optional[Any] = torch.from_numpy(UpperCAmelCase__ ) # remove from missing keys missing_keys.remove(UpperCAmelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCAmelCase__ ) pt_model.load_state_dict(UpperCAmelCase__ ) # re-transform missing_keys to list lowercase_ : str = list(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(UpperCAmelCase__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , *lowercase_ : Optional[Any] , lowercase_ : Optional[Any]=None , lowercase_ : Any=None , **lowercase_ : int ): super().__init__(*lowercase_ , **lowercase_ ) lowercase_ : Dict = eval_examples lowercase_ : List[Any] = post_process_function def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , lowercase_ : int=None , lowercase_ : str = "eval" ): lowercase_ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowercase_ : str = self.get_eval_dataloader(lowercase_ ) lowercase_ : Tuple = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase_ : Optional[Any] = self.compute_metrics lowercase_ : List[Any] = None lowercase_ : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase_ : Dict = time.time() try: lowercase_ : Any = eval_loop( lowercase_ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase_ : int = compute_metrics lowercase_ : List[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default lowercase_ : Optional[int] = self.post_process_function(lowercase_ , lowercase_ , output.predictions ) lowercase_ : Union[str, Any] = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase_ : str = metrics.pop(lowercase_ ) metrics.update(output.metrics ) else: lowercase_ : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowercase_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase_ : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ ) return metrics def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : str = "test" ): lowercase_ : Tuple = self.get_test_dataloader(lowercase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase_ : str = self.compute_metrics lowercase_ : Union[str, Any] = None lowercase_ : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop lowercase_ : Any = time.time() try: lowercase_ : Optional[int] = eval_loop( lowercase_ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , metric_key_prefix=lowercase_ , ) finally: lowercase_ : Optional[int] = compute_metrics lowercase_ : int = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowercase_ , lowercase_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output lowercase_ : Any = self.post_process_function(lowercase_ , lowercase_ , output.predictions , """predict""" ) lowercase_ : Dict = self.compute_metrics(lowercase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): lowercase_ : int = metrics.pop(lowercase_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCamelCase ( UpperCAmelCase__ : ndarray ) -> float: return np.dot(UpperCAmelCase__ , UpperCAmelCase__ ) class __magic_name__ : def __init__( self : int , *, lowercase_ : float = np.inf , lowercase_ : str = "linear" , lowercase_ : float = 0.0 , ): lowercase_ : Any = regularization lowercase_ : List[str] = gamma if kernel == "linear": lowercase_ : Any = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) lowercase_ : Optional[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: lowercase_ : Any = f'''Unknown kernel: {kernel}''' raise ValueError(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : ndarray , lowercase_ : ndarray ): return np.dot(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : ndarray , lowercase_ : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : list[ndarray] , lowercase_ : ndarray ): lowercase_ : Union[str, Any] = observations lowercase_ : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations (lowercase_ ) : List[str] = np.shape(lowercase_ ) def to_minimize(lowercase_ : ndarray ) -> float: lowercase_ : List[str] = 0 (lowercase_ ) : Tuple = np.shape(lowercase_ ) for i in range(lowercase_ ): for j in range(lowercase_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(lowercase_ ) lowercase_ : Optional[Any] = LinearConstraint(lowercase_ , 0 , 0 ) lowercase_ : Dict = Bounds(0 , self.regularization ) lowercase_ : Tuple = minimize( lowercase_ , np.ones(lowercase_ ) , bounds=lowercase_ , constraints=[ly_contraint] ).x lowercase_ : int = l_star # calculating mean offset of separation plane to points lowercase_ : List[str] = 0 for i in range(lowercase_ ): for j in range(lowercase_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) lowercase_ : Tuple = s / n def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : ndarray ): lowercase_ : List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , lowercase_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Any = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''efficientformer''' def __init__( self : Optional[int] , lowercase_ : List[int] = [3, 2, 6, 4] , lowercase_ : List[int] = [48, 96, 224, 448] , lowercase_ : List[bool] = [True, True, True, True] , lowercase_ : int = 448 , lowercase_ : int = 32 , lowercase_ : int = 4 , lowercase_ : int = 7 , lowercase_ : int = 5 , lowercase_ : int = 8 , lowercase_ : int = 4 , lowercase_ : float = 0.0 , lowercase_ : int = 16 , lowercase_ : int = 3 , lowercase_ : int = 3 , lowercase_ : int = 3 , lowercase_ : int = 2 , lowercase_ : int = 1 , lowercase_ : float = 0.0 , lowercase_ : int = 1 , lowercase_ : bool = True , lowercase_ : bool = True , lowercase_ : float = 1E-5 , lowercase_ : str = "gelu" , lowercase_ : float = 0.02 , lowercase_ : float = 1E-12 , lowercase_ : int = 224 , lowercase_ : float = 1E-05 , **lowercase_ : Tuple , ): super().__init__(**lowercase_ ) lowercase_ : int = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : str = hidden_sizes lowercase_ : int = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : int = patch_size lowercase_ : str = num_channels lowercase_ : Optional[int] = depths lowercase_ : Union[str, Any] = mlp_expansion_ratio lowercase_ : Any = downsamples lowercase_ : Union[str, Any] = dim lowercase_ : List[str] = key_dim lowercase_ : Optional[int] = attention_ratio lowercase_ : Optional[int] = resolution lowercase_ : Tuple = pool_size lowercase_ : Optional[Any] = downsample_patch_size lowercase_ : str = downsample_stride lowercase_ : Any = downsample_pad lowercase_ : List[Any] = drop_path_rate lowercase_ : Union[str, Any] = num_metaad_blocks lowercase_ : Tuple = distillation lowercase_ : Dict = use_layer_scale lowercase_ : List[str] = layer_scale_init_value lowercase_ : Optional[Any] = image_size lowercase_ : List[str] = batch_norm_eps
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : Any = logging.get_logger(__name__) _lowercase : List[Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''deformable_detr''' UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Any , lowercase_ : Tuple=True , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=3 , lowercase_ : Any=300 , lowercase_ : Tuple=1024 , lowercase_ : Optional[int]=6 , lowercase_ : List[str]=1024 , lowercase_ : Dict=8 , lowercase_ : Dict=6 , lowercase_ : Tuple=1024 , lowercase_ : Optional[int]=8 , lowercase_ : Dict=0.0 , lowercase_ : str=True , lowercase_ : Union[str, Any]="relu" , lowercase_ : List[str]=256 , lowercase_ : List[str]=0.1 , lowercase_ : Any=0.0 , lowercase_ : Any=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Tuple=1.0 , lowercase_ : Dict=True , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple="sine" , lowercase_ : Dict="resnet50" , lowercase_ : Union[str, Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : List[str]=4 , lowercase_ : List[Any]=4 , lowercase_ : Union[str, Any]=4 , lowercase_ : Union[str, Any]=False , lowercase_ : List[Any]=300 , lowercase_ : Any=False , lowercase_ : Any=1 , lowercase_ : Union[str, Any]=5 , lowercase_ : List[Any]=2 , lowercase_ : List[str]=1 , lowercase_ : List[Any]=1 , lowercase_ : Optional[int]=5 , lowercase_ : List[str]=2 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[Any]=0.25 , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase_ : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowercase_ , lowercase_ ): lowercase_ : str = backbone_config.get("""model_type""" ) lowercase_ : List[Any] = CONFIG_MAPPING[backbone_model_type] lowercase_ : Union[str, Any] = config_class.from_dict(lowercase_ ) lowercase_ : Tuple = use_timm_backbone lowercase_ : Dict = backbone_config lowercase_ : str = num_channels lowercase_ : List[Any] = num_queries lowercase_ : str = max_position_embeddings lowercase_ : Union[str, Any] = d_model lowercase_ : List[Any] = encoder_ffn_dim lowercase_ : Dict = encoder_layers lowercase_ : Tuple = encoder_attention_heads lowercase_ : Any = decoder_ffn_dim lowercase_ : int = decoder_layers lowercase_ : Optional[Any] = decoder_attention_heads lowercase_ : List[Any] = dropout lowercase_ : Dict = attention_dropout lowercase_ : Optional[int] = activation_dropout lowercase_ : int = activation_function lowercase_ : Union[str, Any] = init_std lowercase_ : Optional[Any] = init_xavier_std lowercase_ : Union[str, Any] = encoder_layerdrop lowercase_ : Optional[int] = auxiliary_loss lowercase_ : Optional[Any] = position_embedding_type lowercase_ : str = backbone lowercase_ : Any = use_pretrained_backbone lowercase_ : Optional[int] = dilation # deformable attributes lowercase_ : List[Any] = num_feature_levels lowercase_ : Tuple = encoder_n_points lowercase_ : Optional[Any] = decoder_n_points lowercase_ : Optional[int] = two_stage lowercase_ : Union[str, Any] = two_stage_num_proposals lowercase_ : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase_ : str = class_cost lowercase_ : Optional[Any] = bbox_cost lowercase_ : str = giou_cost # Loss coefficients lowercase_ : str = mask_loss_coefficient lowercase_ : Union[str, Any] = dice_loss_coefficient lowercase_ : Optional[Any] = bbox_loss_coefficient lowercase_ : Union[str, Any] = giou_loss_coefficient lowercase_ : str = eos_coefficient lowercase_ : List[Any] = focal_alpha lowercase_ : Union[str, Any] = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase_ , **lowercase_ ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self : Any ): return self.d_model def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase_ : str = self.backbone_config.to_dict() lowercase_ : Dict = self.__class__.model_type return output
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = (UniPCMultistepScheduler,) UpperCamelCase__ = (('''num_inference_steps''', 25),) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **lowercase_ : Union[str, Any] ): lowercase_ : Any = { """num_train_timesteps""": 1000, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**lowercase_ ) return config def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any]=0 , **lowercase_ : List[Any] ): lowercase_ : Dict = dict(self.forward_default_kwargs ) lowercase_ : str = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowercase_ : List[str] = self.dummy_sample lowercase_ : List[Any] = 0.1 * sample lowercase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : Optional[Any] = self.get_scheduler_config(**lowercase_ ) lowercase_ : str = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowercase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowercase_ : str = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals lowercase_ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ : str = sample, sample for t in range(lowercase_ , time_step + scheduler.config.solver_order + 1 ): lowercase_ : Any = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase_ : List[str] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[int]=0 , **lowercase_ : int ): lowercase_ : Optional[int] = dict(self.forward_default_kwargs ) lowercase_ : Optional[int] = kwargs.pop("""num_inference_steps""" , lowercase_ ) lowercase_ : List[str] = self.dummy_sample lowercase_ : Tuple = 0.1 * sample lowercase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : int = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) lowercase_ : Tuple = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) lowercase_ : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ : Optional[int] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase_ : Optional[Any] = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any]=None , **lowercase_ : Any ): if scheduler is None: lowercase_ : str = self.scheduler_classes[0] lowercase_ : str = self.get_scheduler_config(**lowercase_ ) lowercase_ : List[Any] = scheduler_class(**lowercase_ ) lowercase_ : Tuple = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config(**lowercase_ ) lowercase_ : Optional[int] = scheduler_class(**lowercase_ ) lowercase_ : Tuple = 10 lowercase_ : Any = self.dummy_model() lowercase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : str = model(lowercase_ , lowercase_ ) lowercase_ : Any = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Dict = dict(self.forward_default_kwargs ) lowercase_ : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowercase_ ) for scheduler_class in self.scheduler_classes: lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**lowercase_ ) lowercase_ : Union[str, Any] = self.dummy_sample lowercase_ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , """set_timesteps""" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , """set_timesteps""" ): lowercase_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase_ : Any = dummy_past_residuals[: scheduler.config.solver_order] lowercase_ : Dict = scheduler.timesteps[5] lowercase_ : Dict = scheduler.timesteps[6] lowercase_ : int = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample lowercase_ : List[Any] = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self : int ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase_ : Optional[Any] = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowercase_ : Tuple = self.full_loop(scheduler=lowercase_ ) lowercase_ : List[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 lowercase_ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase_ : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowercase_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase_ : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase_ : Dict = self.full_loop(scheduler=lowercase_ ) lowercase_ : Optional[int] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Any ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_ , prediction_type=lowercase_ , sample_max_value=lowercase_ , solver_order=lowercase_ , solver_type=lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) lowercase_ : List[Any] = self.full_loop( solver_order=lowercase_ , solver_type=lowercase_ , prediction_type=lowercase_ , ) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=lowercase_ , time_step=0 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = self.full_loop() lowercase_ : Optional[Any] = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) lowercase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config(thresholding=lowercase_ , dynamic_thresholding_ratio=0 ) lowercase_ : Any = scheduler_class(**lowercase_ ) lowercase_ : str = 10 lowercase_ : Dict = self.dummy_model() lowercase_ : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ : Optional[int] = model(lowercase_ , lowercase_ ) lowercase_ : Tuple = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample assert sample.dtype == torch.floataa def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **lowercase_ : Tuple ): for scheduler_class in self.scheduler_classes: lowercase_ : Dict = self.get_scheduler_config(**lowercase_ ) lowercase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : list ) -> list: def merge(UpperCAmelCase__ : list , UpperCAmelCase__ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase__ ) <= 1: return collection lowercase_ : str = len(UpperCAmelCase__ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Any = input("Enter numbers separated by a comma:\n").strip() _lowercase : List[Any] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from __future__ import annotations import requests def lowerCamelCase ( UpperCAmelCase__ : str ) -> dict: lowercase_ : Any = F'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(UpperCAmelCase__ ).json() def lowerCamelCase ( UpperCAmelCase__ : int = 10 ) -> list[dict]: lowercase_ : Optional[int] = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" lowercase_ : str = requests.get(UpperCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCAmelCase__ ) for story_id in story_ids] def lowerCamelCase ( UpperCAmelCase__ : int = 10 ) -> str: lowercase_ : List[Any] = hackernews_top_stories(UpperCAmelCase__ ) return "\n".join("""* [{title}]({url})""".format(**UpperCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _lowercase : Tuple = False, False, False @dataclass class __magic_name__ : UpperCamelCase__ = None UpperCamelCase__ = True UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = '''dict''' UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Audio''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : List[Any] ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowercase_ , lowercase_ ): return {"bytes": None, "path": value} elif isinstance(lowercase_ , lowercase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase_ : List[str] = BytesIO() sf.write(lowercase_ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase_ : int = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: lowercase_ : Tuple = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 lowercase_ : Tuple = BytesIO(bytes() ) sf.write(lowercase_ , lowercase_ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : dict , lowercase_ : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowercase_ : str = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowercase_ : str = xsplitext(lowercase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowercase_ : Union[str, Any] = token_per_repo_id or {} lowercase_ : Optional[Any] = path.split("""::""" )[-1] try: lowercase_ : Optional[int] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase_ : int = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Optional[int] = sf.read(lowercase_ ) else: lowercase_ : List[str] = sf.read(lowercase_ ) lowercase_ : int = array.T if self.mono: lowercase_ : List[Any] = librosa.to_mono(lowercase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase_ : Any = librosa.resample(lowercase_ , orig_sr=lowercase_ , target_sr=self.sampling_rate ) lowercase_ : List[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowercase_ : Optional[Any] = pa.array([Audio().encode_example(lowercase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Any = storage.field("""path""" ) else: lowercase_ : List[str] = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : str ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : Optional[Any] = f.read() return bytes_ lowercase_ : Any = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = RobertaTokenizer UpperCamelCase__ = RobertaTokenizerFast UpperCamelCase__ = True UpperCamelCase__ = {'''cls_token''': '''<s>'''} def SCREAMING_SNAKE_CASE_ ( self : List[str] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] lowercase_ : Tuple = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) lowercase_ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] lowercase_ : Dict = {"""unk_token""": """<unk>"""} lowercase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : str , **lowercase_ : int ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , **lowercase_ : int ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Optional[Any] ): lowercase_ : Dict = """lower newer""" lowercase_ : int = """lower newer""" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ : Tuple = """lower newer""" lowercase_ : Dict = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] lowercase_ : List[str] = tokenizer.tokenize(lowercase_ ) # , add_prefix_space=True) self.assertListEqual(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = tokens + [tokenizer.unk_token] lowercase_ : int = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ) , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowercase_ ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowercase_ ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[Any] = self.tokenizer_class.from_pretrained("""roberta-base""" ) lowercase_ : Any = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Tuple = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase_ : Optional[Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase_ : List[str] = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[str] = self.get_tokenizer() lowercase_ : Tuple = """Encode this sequence.""" lowercase_ : str = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments lowercase_ : str = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) lowercase_ : List[str] = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ , add_prefix_space=lowercase_ ) lowercase_ : Dict = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase_ , lowercase_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) lowercase_ : Dict = tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) lowercase_ : Tuple = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) # Testing spaces after special tokens lowercase_ : Dict = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ )} ) # mask token has a left space lowercase_ : Dict = tokenizer.convert_tokens_to_ids(lowercase_ ) lowercase_ : Dict = """Encode <mask> sequence""" lowercase_ : int = """Encode <mask>sequence""" lowercase_ : Optional[Any] = tokenizer.encode(lowercase_ ) lowercase_ : List[str] = encoded.index(lowercase_ ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase_ , lowercase_ ) lowercase_ : List[Any] = tokenizer.encode(lowercase_ ) lowercase_ : Optional[Any] = encoded.index(lowercase_ ) lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) lowercase_ : Tuple = """A, <mask> AllenNLP sentence.""" lowercase_ : str = tokenizer_r.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) lowercase_ : Union[str, Any] = tokenizer_p.encode_plus(lowercase_ , add_special_tokens=lowercase_ , return_token_type_ids=lowercase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) lowercase_ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) lowercase_ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ : Dict = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowercase_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , lowercase_ ) self.assertEqual(post_processor_state["""trim_offsets"""] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ : List[str] = f'''{text_of_1_token} {text_of_1_token}''' lowercase_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : List[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : Optional[Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ) + 1, len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : int = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : int = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : Union[str, Any] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase_ ), len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : Union[str, Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : List[str] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ) + 1, 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : List[str] = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , ) lowercase_ : Any = self.rust_tokenizer_class.from_pretrained( lowercase_ , use_fast=lowercase_ , add_prefix_space=lowercase_ , trim_offsets=lowercase_ ) lowercase_ : Any = tokenizer_r(lowercase_ , return_offsets_mapping=lowercase_ , add_special_tokens=lowercase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase_ ), 1 + len(lowercase_ ) + 1 + len(lowercase_ )) , )
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_vision_model''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=1408 , lowercase_ : List[str]=6144 , lowercase_ : Union[str, Any]=39 , lowercase_ : List[str]=16 , lowercase_ : Optional[Any]=224 , lowercase_ : int=14 , lowercase_ : str="gelu" , lowercase_ : int=0.0_00_01 , lowercase_ : List[Any]=0.0 , lowercase_ : int=1E-10 , lowercase_ : int=True , **lowercase_ : Tuple , ): super().__init__(**lowercase_ ) lowercase_ : Any = hidden_size lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Dict = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Optional[Any] = patch_size lowercase_ : Tuple = image_size lowercase_ : List[Any] = initializer_range lowercase_ : Any = attention_dropout lowercase_ : str = layer_norm_eps lowercase_ : List[Any] = hidden_act lowercase_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_qformer''' def __init__( self : Optional[Any] , lowercase_ : Any=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : Any=12 , lowercase_ : str=12 , lowercase_ : List[str]=3072 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : int=0.1 , lowercase_ : List[str]=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int=2 , lowercase_ : Any=1408 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase_ : Dict = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : Tuple = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : int = position_embedding_type lowercase_ : List[str] = cross_attention_frequency lowercase_ : int = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Union[str, Any] ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ : Dict = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : Union[str, Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip-2''' UpperCamelCase__ = True def __init__( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Any=32 , **lowercase_ : Any ): super().__init__(**lowercase_ ) if vision_config is None: lowercase_ : Any = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowercase_ : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowercase_ : int = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase_ : List[Any] = BlipaVisionConfig(**lowercase_ ) lowercase_ : List[str] = BlipaQFormerConfig(**lowercase_ ) lowercase_ : int = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase_ : Tuple = CONFIG_MAPPING[text_model_type](**lowercase_ ) lowercase_ : Dict = self.text_config.tie_word_embeddings lowercase_ : Tuple = self.text_config.is_encoder_decoder lowercase_ : Any = num_query_tokens lowercase_ : Tuple = self.vision_config.hidden_size lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase_ : Optional[int] = 1.0 lowercase_ : Dict = 0.02 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[str] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : List[str] = self.vision_config.to_dict() lowercase_ : Optional[Any] = self.qformer_config.to_dict() lowercase_ : List[Any] = self.text_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowerCamelCase ( UpperCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, torch.Tensor]: lowercase_ : Tuple = [] lowercase_ : Any = [] lowercase_ : str = [] for rt in rc.restypes: lowercase_ : str = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowercase_ : int = {name: i for i, name in enumerate(UpperCAmelCase__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowercase_ : int = torch.tensor( UpperCAmelCase__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase_ : Any = torch.tensor( UpperCAmelCase__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowercase_ : Union[str, Any] = torch.tensor( UpperCAmelCase__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowercase_ : str = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowercase_ : Any = restype_atomaa_to_atomaa[protein_aatype] lowercase_ : List[Any] = restype_atomaa_mask[protein_aatype] lowercase_ : List[Any] = residx_atomaa_mask lowercase_ : List[Any] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowercase_ : List[str] = restype_atomaa_to_atomaa[protein_aatype] lowercase_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask lowercase_ : str = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowercase_ : int = rc.restype_atoa[restype_letter] lowercase_ : Optional[int] = rc.residue_atoms[restype_name] for atom_name in atom_names: lowercase_ : Union[str, Any] = rc.atom_order[atom_name] lowercase_ : List[Any] = 1 lowercase_ : str = restype_atomaa_mask[protein_aatype] lowercase_ : Tuple = residx_atomaa_mask return protein def lowerCamelCase ( UpperCAmelCase__ : Dict[str, torch.Tensor] ) -> Dict[str, np.ndarray]: lowercase_ : Dict = tree_map(lambda UpperCAmelCase__ : torch.tensor(UpperCAmelCase__ , device=batch["""aatype"""].device ) , UpperCAmelCase__ , np.ndarray ) lowercase_ : Dict = tensor_tree_map(lambda UpperCAmelCase__ : np.array(UpperCAmelCase__ ) , make_atomaa_masks(UpperCAmelCase__ ) ) return out
360
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> List[str]: if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class __magic_name__ : def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : Any , lowercase_ : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : np.ndarray , lowercase_ : np.ndarray , lowercase_ : float ): lowercase_ : Optional[Any] = np.abs((a - b) ).max() self.assertLessEqual(lowercase_ , lowercase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Tuple=None , **lowercase_ : Optional[int] ): lowercase_ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : Any = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : List[Any]=None , **lowercase_ : Tuple ): lowercase_ , lowercase_ : Any = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[int] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : List[Any] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any]=None , **lowercase_ : int ): lowercase_ , lowercase_ : Union[str, Any] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Optional[Any] = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Tuple = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : List[str] = model(input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ ) lowercase_ : Union[str, Any] = after_output[0] lowercase_ : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-3 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Dict=None , **lowercase_ : Optional[Any] ): lowercase_ , lowercase_ : Optional[int] = self.get_vision_text_model(lowercase_ , lowercase_ ) lowercase_ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowercase_ ) lowercase_ : Optional[int] = model( input_ids=lowercase_ , pixel_values=lowercase_ , attention_mask=lowercase_ , output_attentions=lowercase_ ) lowercase_ : Tuple = output.vision_model_output.attentions self.assertEqual(len(lowercase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[str] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(lowercase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : int ): pt_model.to(lowercase_ ) pt_model.eval() # prepare inputs lowercase_ : int = inputs_dict lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowercase_ : str = pt_model(**lowercase_ ).to_tuple() lowercase_ : Optional[Any] = fx_model(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_ ) lowercase_ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ , from_pt=lowercase_ ) lowercase_ : Dict = fx_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowercase_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_ ) lowercase_ : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(lowercase_ , from_flax=lowercase_ ) pt_model_loaded.to(lowercase_ ) pt_model_loaded.eval() with torch.no_grad(): lowercase_ : List[Any] = pt_model_loaded(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowercase_ , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : List[Any] = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Union[str, Any] = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_ ) lowercase_ : Tuple = fx_state self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : List[Any] ): lowercase_ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(lowercase_ , lowercase_ ) lowercase_ : int = VisionTextDualEncoderModel(lowercase_ ) lowercase_ : Dict = FlaxVisionTextDualEncoderModel(lowercase_ ) lowercase_ : Optional[Any] = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params ) self.check_pt_flax_equivalence(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Tuple = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = self.prepare_config_and_inputs() self.check_save_load(**lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowercase_ ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : List[Any] = config_inputs_dict.pop("""vision_config""" ) lowercase_ : int = config_inputs_dict.pop("""text_config""" ) lowercase_ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(lowercase_ , lowercase_ , lowercase_ ) self.check_equivalence_flax_to_pt(lowercase_ , lowercase_ , lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ , lowercase_ : str = self.get_pretrained_model_and_inputs() lowercase_ : Dict = model_a(**lowercase_ ) lowercase_ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(lowercase_ ) lowercase_ : str = model_a(**lowercase_ ) lowercase_ : Union[str, Any] = after_outputs[0] lowercase_ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowercase_ , 1E-5 ) @require_flax class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : str = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = FlaxViTModel(lowercase_ ) lowercase_ : Dict = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Any = FlaxViTModelTester(self ) lowercase_ : Optional[Any] = FlaxBertModelTester(self ) lowercase_ : Dict = vit_model_tester.prepare_config_and_inputs() lowercase_ : Optional[Any] = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : List[str] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=lowercase_ , text_from_pt=lowercase_ , ) lowercase_ : List[str] = 13 lowercase_ : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) lowercase_ : Tuple = random_attention_mask([batch_size, 4] ) lowercase_ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase_ : Tuple = FlaxCLIPVisionModel(lowercase_ ) lowercase_ : Any = FlaxBertModel(lowercase_ ) return vision_model, text_model def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Union[str, Any] = FlaxCLIPVisionModelTester(self ) lowercase_ : Tuple = FlaxBertModelTester(self ) lowercase_ : Union[str, Any] = clip_model_tester.prepare_config_and_inputs() lowercase_ : Any = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs lowercase_ , lowercase_ , lowercase_ , lowercase_ : str = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) lowercase_ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) lowercase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowercase_ : Optional[int] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=lowercase_ , padding=lowercase_ , return_tensors="""np""" ) lowercase_ : List[str] = model(**lowercase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowercase_ , atol=1E-3 ) )
21
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _lowercase : Any = logging.getLogger(__name__) @dataclass class __magic_name__ : UpperCamelCase__ = field( default='''tab_fact''', metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''}) UpperCamelCase__ = field( default='''tab_fact''', metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''}, ) UpperCamelCase__ = field( default=1024, metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) }, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''A csv or a json file containing the training data.'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''A csv or a json file containing the validation data.'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''A csv or a json file containing the test data.'''}) def SCREAMING_SNAKE_CASE_ ( self : Dict ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" ) else: lowercase_ : List[str] = self.train_file.split(""".""" )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase_ : Optional[int] = self.validation_file.split(""".""" )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __magic_name__ : UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''}) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''}, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''}, ) UpperCamelCase__ = field( default='''main''', metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''}, ) UpperCamelCase__ = field( default=_UpperCAmelCase, metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) }, ) def lowerCamelCase ( ) -> Optional[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ : Any = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ : Tuple = training_args.get_process_log_level() logger.setLevel(UpperCAmelCase__ ) datasets.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.set_verbosity(UpperCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowercase_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : Tuple = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase_ : List[str] = {"""train""": data_args.train_file, """validation""": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase_ : int = data_args.train_file.split(""".""" )[-1] lowercase_ : Any = data_args.test_file.split(""".""" )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase_ : List[str] = data_args.test_file else: raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(""".csv""" ): # Loading a dataset from local csv files lowercase_ : List[str] = load_dataset("""csv""" , data_files=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase_ : Optional[Any] = load_dataset("""json""" , data_files=UpperCAmelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase_ : List[Any] = raw_datasets["""train"""].features["""label"""].names lowercase_ : Dict = len(UpperCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase_ : str = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=UpperCAmelCase__ , ) lowercase_ : List[str] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase_ : Any = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase_ : int = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase_ : Dict = {"""Refused""": 0, """Entailed""": 1} lowercase_ : Optional[int] = {0: """Refused""", 1: """Entailed"""} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowercase_ : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCAmelCase__ : List[str] ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCAmelCase__ : Dict ): lowercase_ : Optional[int] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )] lowercase_ : str = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase_ : List[Any] = examples["""statement"""] lowercase_ : Dict = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) ) lowercase_ : Optional[int] = tokenizer(UpperCAmelCase__ , UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ ) lowercase_ : Union[str, Any] = examples["""label"""] return result with training_args.main_process_first(desc="""dataset map pre-processing""" ): lowercase_ : Optional[Any] = raw_datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) lowercase_ : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: lowercase_ : Union[str, Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) lowercase_ : Union[str, Any] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: lowercase_ : str = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("""--do_predict requires a test dataset""" ) lowercase_ : Optional[Any] = raw_datasets["""test"""] if data_args.max_predict_samples is not None: lowercase_ : Any = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(UpperCAmelCase__ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase__ : EvalPrediction ): lowercase_ : Optional[Any] = p.predictions[0] if isinstance(p.predictions , UpperCAmelCase__ ) else p.predictions lowercase_ : Optional[int] = np.argmax(UpperCAmelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase_ : Tuple = default_data_collator elif training_args.fpaa: lowercase_ : int = DataCollatorWithPadding(UpperCAmelCase__ , pad_to_multiple_of=8 ) else: lowercase_ : Union[str, Any] = None # Initialize our Trainer lowercase_ : Any = Trainer( model=UpperCAmelCase__ , args=UpperCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , data_collator=UpperCAmelCase__ , ) # Training if training_args.do_train: lowercase_ : int = None if training_args.resume_from_checkpoint is not None: lowercase_ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ : Tuple = last_checkpoint lowercase_ : Tuple = trainer.train(resume_from_checkpoint=UpperCAmelCase__ ) lowercase_ : Optional[Any] = train_result.metrics lowercase_ : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCAmelCase__ ) ) lowercase_ : int = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , UpperCAmelCase__ ) trainer.save_metrics("""train""" , UpperCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase_ : Union[str, Any] = trainer.evaluate(eval_dataset=UpperCAmelCase__ ) lowercase_ : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = min(UpperCAmelCase__ , len(UpperCAmelCase__ ) ) trainer.log_metrics("""eval""" , UpperCAmelCase__ ) trainer.save_metrics("""eval""" , UpperCAmelCase__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase_ : Optional[Any] = predict_dataset.remove_columns("""label""" ) lowercase_ : Any = trainer.predict(UpperCAmelCase__ , metric_key_prefix="""predict""" ).predictions lowercase_ : str = np.argmax(UpperCAmelCase__ , axis=1 ) lowercase_ : Union[str, Any] = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" ) if trainer.is_world_process_zero(): with open(UpperCAmelCase__ , """w""" ) as writer: logger.info("""***** Predict Results *****""" ) writer.write("""index\tprediction\n""" ) for index, item in enumerate(UpperCAmelCase__ ): lowercase_ : List[Any] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) lowercase_ : Optional[int] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""} if training_args.push_to_hub: trainer.push_to_hub(**UpperCAmelCase__ ) else: trainer.create_model_card(**UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
361
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
21
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase : Optional[Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : Any = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : Optional[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase : Optional[int] = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _lowercase : Optional[int] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _lowercase : Tuple = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _lowercase : List[Any] = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _lowercase : Dict = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _lowercase : List[str] = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __magic_name__ ( _UpperCAmelCase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __magic_name__ ( _UpperCAmelCase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase : Optional[int] = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _lowercase : Union[str, Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _lowercase : int = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(_UpperCAmelCase ) class __magic_name__ : def __call__( self : int , lowercase_ : int , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Union[bool, str] = False , lowercase_ : Union[bool, str] = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[bool] = None , **lowercase_ : int , ): if titles is None and texts is None: return super().__call__( lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) elif titles is None or texts is None: lowercase_ : Tuple = titles if texts is None else texts return super().__call__( lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) lowercase_ : List[Any] = titles if not isinstance(lowercase_ , lowercase_ ) else [titles] lowercase_ : Dict = texts if not isinstance(lowercase_ , lowercase_ ) else [texts] lowercase_ : List[Any] = len(lowercase_ ) lowercase_ : Optional[Any] = questions if not isinstance(lowercase_ , lowercase_ ) else [questions] * n_passages if len(lowercase_ ) != len(lowercase_ ): raise ValueError( f'''There should be as many titles than texts but got {len(lowercase_ )} titles and {len(lowercase_ )} texts.''' ) lowercase_ : Any = super().__call__(lowercase_ , lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowercase_ : str = super().__call__(lowercase_ , add_special_tokens=lowercase_ , padding=lowercase_ , truncation=lowercase_ )["""input_ids"""] lowercase_ : List[Any] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase_ , lowercase_ ) ] } if return_attention_mask is not False: lowercase_ : int = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase_ : int = attention_mask return self.pad(lowercase_ , padding=lowercase_ , max_length=lowercase_ , return_tensors=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : BatchEncoding , lowercase_ : DPRReaderOutput , lowercase_ : int = 16 , lowercase_ : int = 64 , lowercase_ : int = 4 , ): lowercase_ : Optional[int] = reader_input["""input_ids"""] lowercase_ : Optional[int] = reader_output[:3] lowercase_ : Union[str, Any] = len(lowercase_ ) lowercase_ : List[Any] = sorted(range(lowercase_ ) , reverse=lowercase_ , key=relevance_logits.__getitem__ ) lowercase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowercase_ : Optional[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase_ : Any = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase_ : Any = sequence_ids.index(self.pad_token_id ) else: lowercase_ : Dict = len(lowercase_ ) lowercase_ : Any = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase_ , top_spans=lowercase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase_ , start_index=lowercase_ , end_index=lowercase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowercase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[int] , lowercase_ : List[int] , lowercase_ : int , lowercase_ : int , ): lowercase_ : Tuple = [] for start_index, start_score in enumerate(lowercase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase_ : str = sorted(lowercase_ , key=lambda lowercase_ : x[1] , reverse=lowercase_ ) lowercase_ : Dict = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) lowercase_ : Optional[int] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowercase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCAmelCase ) class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
362
'''simple docstring''' def lowerCamelCase ( ) -> Dict: lowercase_ : Union[str, Any] = [] lowercase_ : Tuple = 1 while len(UpperCAmelCase__ ) < 1e6: constant.append(str(UpperCAmelCase__ ) ) i += 1 lowercase_ : int = """""".join(UpperCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
21
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Path , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : str = None , ) -> int: if config_name_or_path is None: lowercase_ : int = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: lowercase_ : Optional[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase_ : str = question_encoder_name_or_path lowercase_ : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. lowercase_ : List[Any] = RagConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : str = AutoConfig.from_pretrained(UpperCAmelCase__ ) lowercase_ : str = gen_config lowercase_ : Union[str, Any] = question_encoder_config lowercase_ : Any = model_class.from_pretrained_question_encoder_generator( UpperCAmelCase__ , UpperCAmelCase__ , config=UpperCAmelCase__ ) rag_model.save_pretrained(UpperCAmelCase__ ) # Sanity check. model_class.from_pretrained(UpperCAmelCase__ ) # Save tokenizers. lowercase_ : int = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) _lowercase : Any = parser.parse_args() _lowercase : Optional[Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
363
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline _lowercase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : str ): super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ ) @torch.no_grad() def __call__( self : List[str] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): if audio_length_in_s is None: lowercase_ : List[Any] = self.unet.config.sample_size / self.unet.config.sample_rate lowercase_ : Dict = audio_length_in_s * self.unet.config.sample_rate lowercase_ : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowercase_ : List[Any] = int(lowercase_ ) if sample_size % down_scale_factor != 0: lowercase_ : int = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' """ process.""" ) lowercase_ : Any = int(lowercase_ ) lowercase_ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowercase_ : List[str] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowercase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowercase_ : Any = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device ) lowercase_ : Optional[Any] = self.scheduler.timesteps.to(lowercase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase_ : Dict = self.unet(lowercase_ , lowercase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample lowercase_ : str = audio.clamp(-1 , 1 ).float().cpu().numpy() lowercase_ : Union[str, Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_ )
21
0
import os from collections.abc import Iterator def lowerCamelCase ( UpperCAmelCase__ : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(UpperCAmelCase__ ): lowercase_ : Dict = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCAmelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ).lstrip("""./""" ) def lowerCamelCase ( UpperCAmelCase__ : str ) -> List[str]: return F'''{i * ' '}*''' if i else "\n##" def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> str: lowercase_ : List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCAmelCase__ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(UpperCAmelCase__ )} {new_part.replace('_' , ' ' ).title()}''' ) return new_path def lowerCamelCase ( UpperCAmelCase__ : str = "." ) -> None: lowercase_ : List[str] = """""" for filepath in sorted(good_file_paths(UpperCAmelCase__ ) ): lowercase_ : Optional[Any] = os.path.split(UpperCAmelCase__ ) if filepath != old_path: lowercase_ : Tuple = print_path(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 lowercase_ : int = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) lowercase_ : List[Any] = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(UpperCAmelCase__ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
364
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
21
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __magic_name__ ( unittest.TestCase): def __init__( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : int=7 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=18 , lowercase_ : List[Any]=30 , lowercase_ : int=400 , lowercase_ : Dict=True , lowercase_ : List[Any]=None , lowercase_ : Dict=True , ): lowercase_ : Tuple = size if size is not None else {"""height""": 18, """width""": 18} lowercase_ : List[str] = parent lowercase_ : Any = batch_size lowercase_ : Optional[Any] = num_channels lowercase_ : Tuple = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : Dict = max_resolution lowercase_ : Optional[int] = do_resize lowercase_ : Optional[Any] = size lowercase_ : Union[str, Any] = do_normalize def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ImageGPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = ImageGPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """clusters""" ) ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size""" ) ) self.assertTrue(hasattr(lowercase_ , """do_normalize""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Union[str, Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , obj[key] ) ) else: self.assertEqual(obj[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = os.path.join(lowercase_ , """image_processor.json""" ) image_processor_first.to_json_file(lowercase_ ) lowercase_ : Optional[Any] = self.image_processing_class.from_json_file(lowercase_ ).to_dict() lowercase_ : Any = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowercase_ ) lowercase_ : Any = self.image_processing_class.from_pretrained(lowercase_ ).to_dict() lowercase_ : List[str] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowercase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowercase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass def lowerCamelCase ( ) -> Any: """simple docstring""" lowercase_ : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase_ : Any = Image.open(dataset[4]["""file"""] ) lowercase_ : Dict = Image.open(dataset[5]["""file"""] ) lowercase_ : int = [imagea, imagea] return images @require_vision @require_torch class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Optional[Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase_ : Optional[int] = prepare_images() # test non-batched lowercase_ : str = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) lowercase_ : Tuple = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowercase_ ) # test batched lowercase_ : List[str] = image_processing(lowercase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) lowercase_ : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowercase_ )
365
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __magic_name__ ( ctypes.Structure): # _fields is a specific attr expected by ctypes UpperCamelCase__ = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowerCamelCase ( ) -> List[Any]: if os.name == "nt": lowercase_ : List[Any] = CursorInfo() lowercase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> str: if os.name == "nt": lowercase_ : int = CursorInfo() lowercase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) lowercase_ : Optional[int] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase__ , ctypes.byref(UpperCAmelCase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> Any: try: hide_cursor() yield finally: show_cursor()
21
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[Any] = 16 _lowercase : Any = 32 def lowerCamelCase ( UpperCAmelCase__ : Accelerator , UpperCAmelCase__ : int = 16 ): lowercase_ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase_ : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase__ : str ): # max_length=None => use the model max length (it's actually the default) lowercase_ : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : List[str] = datasets.map( UpperCAmelCase__ , batched=UpperCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase__ : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowercase_ : List[str] = 8 else: lowercase_ : Optional[Any] = None return tokenizer.pad( UpperCAmelCase__ , padding="""longest""" , max_length=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase_ : Tuple = DataLoader( tokenized_datasets["""train"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=UpperCAmelCase__ ) lowercase_ : str = DataLoader( tokenized_datasets["""validation"""] , shuffle=UpperCAmelCase__ , collate_fn=UpperCAmelCase__ , batch_size=UpperCAmelCase__ , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ): # Initialize accelerator lowercase_ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : Tuple = config["""lr"""] lowercase_ : Optional[Any] = int(config["""num_epochs"""] ) lowercase_ : List[Any] = int(config["""seed"""] ) lowercase_ : int = int(config["""batch_size"""] ) lowercase_ : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase_ : int = batch_size // MAX_GPU_BATCH_SIZE lowercase_ : Optional[int] = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase__ ) lowercase_ : str = get_dataloaders(UpperCAmelCase__ , UpperCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=UpperCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : Optional[int] = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : Union[str, Any] = AdamW(params=model.parameters() , lr=UpperCAmelCase__ ) # Instantiate scheduler lowercase_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ : str = accelerator.prepare( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Now we train the model for epoch in range(UpperCAmelCase__ ): model.train() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : Union[str, Any] = model(**UpperCAmelCase__ ) lowercase_ : int = outputs.loss lowercase_ : Any = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : str = model(**UpperCAmelCase__ ) lowercase_ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) lowercase_ : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=UpperCAmelCase__ , references=UpperCAmelCase__ , ) lowercase_ : Dict = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase__ ) def lowerCamelCase ( ): lowercase_ : str = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=UpperCAmelCase__ , default=UpperCAmelCase__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowercase_ : int = parser.parse_args() lowercase_ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: return x + 2 class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[str] = """x = 3""" lowercase_ : str = {} lowercase_ : List[str] = evaluate(lowercase_ , {} , state=lowercase_ ) assert result == 3 self.assertDictEqual(lowercase_ , {"""x""": 3} ) lowercase_ : Tuple = """x = y""" lowercase_ : str = {"""y""": 5} lowercase_ : Dict = evaluate(lowercase_ , {} , state=lowercase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 5, """y""": 5} ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : List[Any] = """y = add_two(x)""" lowercase_ : int = {"""x""": 3} lowercase_ : Optional[Any] = evaluate(lowercase_ , {"""add_two""": add_two} , state=lowercase_ ) assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 3, """y""": 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase_ : Optional[Any] = evaluate(lowercase_ , {} , state=lowercase_ ) assert result is None assert "tried to execute add_two" in out.out def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Any = """x = 3""" lowercase_ : List[Any] = {} lowercase_ : Any = evaluate(lowercase_ , {} , state=lowercase_ ) assert result == 3 self.assertDictEqual(lowercase_ , {"""x""": 3} ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = """test_dict = {'x': x, 'y': add_two(x)}""" lowercase_ : Optional[int] = {"""x""": 3} lowercase_ : str = evaluate(lowercase_ , {"""add_two""": add_two} , state=lowercase_ ) self.assertDictEqual(lowercase_ , {"""x""": 3, """y""": 5} ) self.assertDictEqual(lowercase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = """x = 3\ny = 5""" lowercase_ : int = {} lowercase_ : List[str] = evaluate(lowercase_ , {} , state=lowercase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 3, """y""": 5} ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Optional[int] = """text = f'This is x: {x}.'""" lowercase_ : Optional[Any] = {"""x""": 3} lowercase_ : Optional[Any] = evaluate(lowercase_ , {} , state=lowercase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowercase_ , {"""x""": 3, """text""": """This is x: 3."""} ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : str = """if x <= 3:\n y = 2\nelse:\n y = 5""" lowercase_ : List[Any] = {"""x""": 3} lowercase_ : Tuple = evaluate(lowercase_ , {} , state=lowercase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowercase_ , {"""x""": 3, """y""": 2} ) lowercase_ : Tuple = {"""x""": 8} lowercase_ : Tuple = evaluate(lowercase_ , {} , state=lowercase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 8, """y""": 5} ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[int] = """test_list = [x, add_two(x)]""" lowercase_ : Dict = {"""x""": 3} lowercase_ : Any = evaluate(lowercase_ , {"""add_two""": add_two} , state=lowercase_ ) self.assertListEqual(lowercase_ , [3, 5] ) self.assertDictEqual(lowercase_ , {"""x""": 3, """test_list""": [3, 5]} ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : str = """y = x""" lowercase_ : str = {"""x""": 3} lowercase_ : Dict = evaluate(lowercase_ , {} , state=lowercase_ ) assert result == 3 self.assertDictEqual(lowercase_ , {"""x""": 3, """y""": 3} ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Tuple = """test_list = [x, add_two(x)]\ntest_list[1]""" lowercase_ : Union[str, Any] = {"""x""": 3} lowercase_ : Any = evaluate(lowercase_ , {"""add_two""": add_two} , state=lowercase_ ) assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 3, """test_list""": [3, 5]} ) lowercase_ : Dict = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" lowercase_ : Optional[int] = {"""x""": 3} lowercase_ : Any = evaluate(lowercase_ , {"""add_two""": add_two} , state=lowercase_ ) assert result == 5 self.assertDictEqual(lowercase_ , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = """x = 0\nfor i in range(3):\n x = i""" lowercase_ : Optional[int] = {} lowercase_ : List[Any] = evaluate(lowercase_ , {"""range""": range} , state=lowercase_ ) assert result == 2 self.assertDictEqual(lowercase_ , {"""x""": 2, """i""": 2} )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """width_multiplier""" ) ) class __magic_name__ : def __init__( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : List[str]=13 , lowercase_ : Optional[int]=64 , lowercase_ : int=2 , lowercase_ : Optional[int]=3 , lowercase_ : Dict="swish" , lowercase_ : Union[str, Any]=3 , lowercase_ : int=32 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : str=0.02 , lowercase_ : List[str]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=10 , lowercase_ : str=None , lowercase_ : Union[str, Any]=0.25 , lowercase_ : str=0.0 , lowercase_ : int=0.0 , ): lowercase_ : Optional[int] = parent lowercase_ : List[str] = batch_size lowercase_ : str = image_size lowercase_ : Dict = patch_size lowercase_ : int = num_channels lowercase_ : str = make_divisible(512 * width_multiplier , divisor=8 ) lowercase_ : Tuple = hidden_act lowercase_ : Union[str, Any] = conv_kernel_size lowercase_ : Optional[int] = output_stride lowercase_ : List[str] = classifier_dropout_prob lowercase_ : Optional[Any] = use_labels lowercase_ : List[Any] = is_training lowercase_ : List[Any] = num_labels lowercase_ : int = initializer_range lowercase_ : List[Any] = scope lowercase_ : List[str] = width_multiplier lowercase_ : Dict = ffn_dropout lowercase_ : Any = attn_dropout def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : List[str] = None lowercase_ : int = None if self.use_labels: lowercase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase_ : Optional[int] = MobileViTVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[Any] ): lowercase_ : Dict = self.num_labels lowercase_ : Dict = MobileViTVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Any = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : str , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Any ): lowercase_ : Any = self.num_labels lowercase_ : Dict = MobileViTVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ : Optional[Any] = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() lowercase_ : Optional[int] = config_and_inputs lowercase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = MobileViTVaModelTester(self ) lowercase_ : List[str] = MobileViTVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def SCREAMING_SNAKE_CASE_ ( self : Any ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE_ ( self : str ): pass def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Tuple = model_class(lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Union[str, Any] = [*signature.parameters.keys()] lowercase_ : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Any ): lowercase_ : int = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ : List[str] = outputs.hidden_states lowercase_ : List[Any] = 5 self.assertEqual(len(lowercase_ ) , lowercase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase_ : Optional[int] = 2 for i in range(len(lowercase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : int = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = MobileViTVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Dict = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( lowercase_ ) lowercase_ : List[Any] = self.default_image_processor lowercase_ : Any = prepare_img() lowercase_ : Tuple = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Optional[Any] = model(**lowercase_ ) # verify the logits lowercase_ : int = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Dict = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Dict = model.to(lowercase_ ) lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Dict = prepare_img() lowercase_ : Union[str, Any] = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**lowercase_ ) lowercase_ : Optional[int] = outputs.logits # verify the logits lowercase_ : List[str] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ : Any = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : Optional[Any] = model.to(lowercase_ ) lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowercase_ : str = prepare_img() lowercase_ : str = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ : Any = model(**lowercase_ ) lowercase_ : str = outputs.logits.detach().cpu() lowercase_ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowercase_ , target_sizes=[(50, 60)] ) lowercase_ : Union[str, Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowercase_ ) lowercase_ : str = image_processor.post_process_semantic_segmentation(outputs=lowercase_ ) lowercase_ : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowercase_ )
368
'''simple docstring''' from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _lowercase : List[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[tf.Tensor, np.ndarray] ) -> List[int]: if isinstance(UpperCAmelCase__ , np.ndarray ): return list(tensor.shape ) lowercase_ : Tuple = tf.shape(UpperCAmelCase__ ) if tensor.shape == tf.TensorShape(UpperCAmelCase__ ): return dynamic lowercase_ : Dict = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCAmelCase__ )] def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[str] = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1e-9 , axis=UpperCAmelCase__ , name=UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=1e-5 , UpperCAmelCase__ : List[str]=-1 ) -> List[str]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized lowercase_ , lowercase_ : List[str] = tf.nn.moments(UpperCAmelCase__ , axes=[axis] , keepdims=UpperCAmelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase_ : List[Any] = [1] * inputs.shape.rank lowercase_ : List[str] = shape_list(UpperCAmelCase__ )[axis] lowercase_ : List[str] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : List[Any] = tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) # Compute layer normalization using the batch_normalization # function. lowercase_ : str = tf.nn.batch_normalization( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , offset=UpperCAmelCase__ , scale=UpperCAmelCase__ , variance_epsilon=UpperCAmelCase__ , ) return outputs def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Any=-1 ) -> Dict: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase_ : List[Any] = tf.shape(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase_ : Dict = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor ) -> tf.Tensor: if not isinstance(UpperCAmelCase__ , tf.Tensor ): lowercase_ : List[Any] = tf.convert_to_tensor(UpperCAmelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase_ : Any = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase_ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase_ : Optional[Any] = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCamelCase ( UpperCAmelCase__ : tf.Tensor , UpperCAmelCase__ : int , UpperCAmelCase__ : str = "input_ids" ) -> None: tf.debugging.assert_less( UpperCAmelCase__ , tf.cast(UpperCAmelCase__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCAmelCase__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] ) -> Any: lowercase_ : int = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase_ : Optional[Any] = [x for x in data if len(UpperCAmelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase_ : Any = np.asarray(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase_ : Optional[Any] = np.array_split(UpperCAmelCase__ , UpperCAmelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = chunk_data else: lowercase_ : Any = data def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] ) -> str: if name in group.attrs: lowercase_ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs[name]] else: lowercase_ : int = [] lowercase_ : Optional[int] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(UpperCAmelCase__ , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Any: def _expand_single_ad_tensor(UpperCAmelCase__ : Optional[Any] ): if isinstance(UpperCAmelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCAmelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCAmelCase__ )
21
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: lowercase_ : List[str] = [] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator lowercase_ : int = len(UpperCAmelCase__ ) if (len(UpperCAmelCase__ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(UpperCAmelCase__ ) , """Postfix""".center(UpperCAmelCase__ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase__ ) == 0: stack.append(UpperCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase__ ) # push x to stack print( x.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format while len(UpperCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("""""".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=""" | """ , ) # Output in tabular format return "".join(UpperCAmelCase__ ) # return Postfix as str def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: lowercase_ : str = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase__ ) ): if infix[i] == "(": lowercase_ : List[str] = """)""" # change "(" to ")" elif infix[i] == ")": lowercase_ : int = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(UpperCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase : Tuple = input("\nEnter an Infix Equation = ") # Input an Infix equation _lowercase : Any = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
370
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : int = 1000000 ) -> int: lowercase_ : List[Any] = limit + 1 lowercase_ : Optional[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase__ ): for n in range(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowercase_ : List[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
21
0
from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ ( unittest.TestCase): @parameterized.expand([(None,), ("""foo.json""",)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): lowercase_ : Union[str, Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : int = AutoConfig.from_pretrained("""gpt2""" ) lowercase_ : List[Any] = GenerationConfig.from_model_config(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = GenerationConfig() lowercase_ : int = { """max_new_tokens""": 1024, """foo""": """bar""", } lowercase_ : List[str] = copy.deepcopy(lowercase_ ) lowercase_ : Tuple = generation_config.update(**lowercase_ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {"""foo""": """bar"""} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : Dict = GenerationConfig() lowercase_ : int = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowercase_ ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(lowercase_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) lowercase_ : List[str] = GenerationConfig.from_model_config(lowercase_ ) assert not hasattr(lowercase_ , """foo""" ) # no new kwargs should be initialized if from config def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowercase_ ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowercase_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ ) lowercase_ : Tuple = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowercase_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ ( unittest.TestCase): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""test-generation-config""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : List[Any] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) lowercase_ : Optional[Any] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) )
21
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = JukeboxTokenizer UpperCamelCase__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ): import torch lowercase_ : Any = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) lowercase_ : Any = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowercase_ : str = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): import torch lowercase_ : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) lowercase_ : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off lowercase_ : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
350
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
0
'''simple docstring''' import random def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : float , UpperCAmelCase__ : bool = False ) -> dict: lowercase_ : dict = {i: [] for i in range(UpperCAmelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(UpperCAmelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(UpperCAmelCase__ ): for j in range(i + 1 , UpperCAmelCase__ ): if random.random() < probability: graph[i].append(UpperCAmelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(UpperCAmelCase__ ) return graph def lowerCamelCase ( UpperCAmelCase__ : int ) -> dict: return { i: [j for j in range(UpperCAmelCase__ ) if i != j] for i in range(UpperCAmelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
351
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _lowercase : Optional[List[str]] = None _lowercase : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _lowercase : Optional[int] = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __magic_name__ : UpperCamelCase__ = True UpperCamelCase__ = None # Automatically constructed UpperCamelCase__ = "PIL.Image.Image" UpperCamelCase__ = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) UpperCamelCase__ = field(default='''Image''', init=_UpperCAmelCase, repr=_UpperCAmelCase) def __call__( self : Tuple ): return self.pa_type def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : int = np.array(lowercase_ ) if isinstance(lowercase_ , lowercase_ ): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_ ): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_ ) elif isinstance(lowercase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_ ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : dict , lowercase_ : List[str]=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: lowercase_ : Union[str, Any] = {} lowercase_ , lowercase_ : List[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowercase_ ): lowercase_ : int = PIL.Image.open(lowercase_ ) else: lowercase_ : str = path.split("""::""" )[-1] try: lowercase_ : Any = string_to_dict(lowercase_ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase_ : Optional[Any] = token_per_repo_id.get(lowercase_ ) except ValueError: lowercase_ : str = None with xopen(lowercase_ , """rb""" , use_auth_token=lowercase_ ) as f: lowercase_ : Dict = BytesIO(f.read() ) lowercase_ : Optional[Any] = PIL.Image.open(bytes_ ) else: lowercase_ : Any = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE_ ( self : int ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) lowercase_ : Any = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase_ : str = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase_ : Optional[int] = storage.field("""bytes""" ) else: lowercase_ : Optional[Any] = pa.array([None] * len(lowercase_ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase_ : Dict = storage.field("""path""" ) else: lowercase_ : int = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowercase_ : Optional[int] = pa.array( [encode_np_array(np.array(lowercase_ ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowercase_ : Tuple = pa.array([None] * len(lowercase_ ) , type=pa.string() ) lowercase_ : Tuple = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(lowercase_ : Optional[Any] ): with xopen(lowercase_ , """rb""" ) as f: lowercase_ : int = f.read() return bytes_ lowercase_ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ : Any = pa.array( [os.path.basename(lowercase_ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase_ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowercase_ , self.pa_type ) def lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowercase_ : int = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> bytes: lowercase_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): lowercase_ : int = image.format else: lowercase_ : int = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__ ) return buffer.getvalue() def lowerCamelCase ( UpperCAmelCase__ : "PIL.Image.Image" ) -> dict: if hasattr(UpperCAmelCase__ , """filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) lowercase_ : List[Any] = array.dtype lowercase_ : int = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER lowercase_ : Dict = dtype.kind lowercase_ : List[Any] = dtype.itemsize lowercase_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowercase_ : int = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowercase_ : str = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowercase_ : str = dtype_byteorder + dtype_kind + str(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.dtype(UpperCAmelCase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) lowercase_ : Optional[int] = PIL.Image.fromarray(array.astype(UpperCAmelCase__ ) ) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__ )} def lowerCamelCase ( UpperCAmelCase__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: lowercase_ , lowercase_ : Dict = first_non_null_value(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : int = no_op_if_value_is_null(UpperCAmelCase__ ) return [obj_to_image_dict_func(UpperCAmelCase__ ) for obj in objs] else: return objs else: return objs
21
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowercase : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Tuple: # initialize config if "resnet-50" in model_name: lowercase_ : Tuple = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: lowercase_ : str = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) lowercase_ : Optional[int] = DetrConfig(use_timm_backbone=UpperCAmelCase__ , backbone_config=UpperCAmelCase__ ) # set label attributes lowercase_ : Dict = """panoptic""" in model_name if is_panoptic: lowercase_ : Optional[int] = 250 else: lowercase_ : Optional[Any] = 91 lowercase_ : Dict = """huggingface/label-files""" lowercase_ : Tuple = """coco-detection-id2label.json""" lowercase_ : str = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase_ : List[str] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} lowercase_ : List[str] = idalabel lowercase_ : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCamelCase ( UpperCAmelCase__ : int ) -> Dict: # here we list all keys to be renamed (original name on the left, our name on the right) lowercase_ : List[Any] = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ) -> str: lowercase_ : Dict = state_dict.pop(UpperCAmelCase__ ) lowercase_ : List[Any] = val def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=False ) -> Dict: lowercase_ : Union[str, Any] = """""" if is_panoptic: lowercase_ : Any = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase_ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase_ : Tuple = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Any = in_proj_weight[:256, :] lowercase_ : Union[str, Any] = in_proj_bias[:256] lowercase_ : str = in_proj_weight[256:512, :] lowercase_ : str = in_proj_bias[256:512] lowercase_ : Any = in_proj_weight[-256:, :] lowercase_ : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase_ : str = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase_ : Tuple = in_proj_weight[:256, :] lowercase_ : List[Any] = in_proj_bias[:256] lowercase_ : str = in_proj_weight[256:512, :] lowercase_ : str = in_proj_bias[256:512] lowercase_ : List[Any] = in_proj_weight[-256:, :] lowercase_ : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase_ : Union[str, Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase_ : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase_ : int = in_proj_weight_cross_attn[:256, :] lowercase_ : Union[str, Any] = in_proj_bias_cross_attn[:256] lowercase_ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] lowercase_ : Optional[Any] = in_proj_bias_cross_attn[256:512] lowercase_ : str = in_proj_weight_cross_attn[-256:, :] lowercase_ : Union[str, Any] = in_proj_bias_cross_attn[-256:] def lowerCamelCase ( ) -> List[str]: lowercase_ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ : Dict = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str=False ) -> Dict: lowercase_ : str = get_detr_config(UpperCAmelCase__ ) # load original model from torch hub lowercase_ : Optional[int] = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) lowercase_ : Dict = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase__ ).eval() lowercase_ : List[str] = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase__ ): if is_panoptic: lowercase_ : Optional[int] = """detr.""" + src rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase__ , is_panoptic=UpperCAmelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase_ : List[str] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): lowercase_ : List[Any] = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowercase_ : Tuple = state_dict.pop(UpperCAmelCase__ ) lowercase_ : List[str] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: lowercase_ : int = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Any = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): lowercase_ : List[Any] = state_dict.pop(UpperCAmelCase__ ) lowercase_ : Dict = val # finally, create HuggingFace model and load state dict lowercase_ : Optional[int] = DetrForSegmentation(UpperCAmelCase__ ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # verify our conversion on an image lowercase_ : Tuple = """coco_panoptic""" if is_panoptic else """coco_detection""" lowercase_ : Optional[int] = DetrImageProcessor(format=UpperCAmelCase__ ) lowercase_ : Dict = processor(images=prepare_img() , return_tensors="""pt""" ) lowercase_ : str = encoding["""pixel_values"""] lowercase_ : Optional[int] = detr(UpperCAmelCase__ ) lowercase_ : List[str] = model(UpperCAmelCase__ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="detr-resnet-50", type=str, choices=["detr-resnet-50", "detr-resnet-101"], help="Name of the DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.") _lowercase : List[Any] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
352
'''simple docstring''' import colorsys from PIL import Image # type: ignore def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : int ) -> float: lowercase_ : List[Any] = x lowercase_ : Any = y for step in range(UpperCAmelCase__ ): # noqa: B007 lowercase_ : Dict = a * a - b * b + x lowercase_ : str = 2 * a * b + y lowercase_ : Optional[Any] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCamelCase ( UpperCAmelCase__ : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(UpperCAmelCase__ , 1 , 1 ) ) def lowerCamelCase ( UpperCAmelCase__ : int = 800 , UpperCAmelCase__ : int = 600 , UpperCAmelCase__ : float = -0.6 , UpperCAmelCase__ : float = 0 , UpperCAmelCase__ : float = 3.2 , UpperCAmelCase__ : int = 50 , UpperCAmelCase__ : bool = True , ) -> Image.Image: lowercase_ : Union[str, Any] = Image.new("""RGB""" , (image_width, image_height) ) lowercase_ : Tuple = img.load() # loop through the image-coordinates for image_x in range(UpperCAmelCase__ ): for image_y in range(UpperCAmelCase__ ): # determine the figure-coordinates based on the image-coordinates lowercase_ : Any = figure_width / image_width * image_height lowercase_ : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width lowercase_ : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height lowercase_ : str = get_distance(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowercase_ : List[Any] = get_color_coded_rgb(UpperCAmelCase__ ) else: lowercase_ : Dict = get_black_and_white_rgb(UpperCAmelCase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
21
0
'''simple docstring''' from manim import * class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase_ : Dict = [mem.copy() for i in range(6 )] lowercase_ : Dict = [mem.copy() for i in range(6 )] lowercase_ : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : int = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : Optional[int] = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : str = Text("""CPU""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) lowercase_ : Union[str, Any] = [mem.copy() for i in range(4 )] lowercase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : List[Any] = Text("""GPU""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) lowercase_ : Tuple = [mem.copy() for i in range(6 )] lowercase_ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : Any = Text("""Model""" , font_size=24 ) lowercase_ : int = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) lowercase_ : Tuple = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowercase_ : Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) lowercase_ : Tuple = [mem.copy() for i in range(6 )] lowercase_ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) lowercase_ : int = Text("""Loaded Checkpoint""" , font_size=24 ) lowercase_ : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowercase_ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase_ : Optional[int] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) lowercase_ : List[str] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowercase_ : str = MarkupText( f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) lowercase_ : Optional[Any] = [] lowercase_ : Any = [] for i, rect in enumerate(lowercase_ ): lowercase_ : Tuple = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) lowercase_ : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
353
'''simple docstring''' from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = DistilBertTokenizer UpperCamelCase__ = DistilBertTokenizerFast UpperCamelCase__ = True @slow def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : int = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) lowercase_ : str = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase_ ) lowercase_ : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase_ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase_ ) lowercase_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowercase_ , lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int = logging.get_logger(__name__) _lowercase : int = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''ctrl''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , lowercase_ : Optional[Any]=246534 , lowercase_ : Dict=256 , lowercase_ : int=1280 , lowercase_ : str=8192 , lowercase_ : Any=48 , lowercase_ : List[Any]=16 , lowercase_ : int=0.1 , lowercase_ : int=0.1 , lowercase_ : Optional[int]=1E-6 , lowercase_ : str=0.02 , lowercase_ : Optional[int]=True , **lowercase_ : Optional[int] , ): lowercase_ : str = vocab_size lowercase_ : Any = n_positions lowercase_ : int = n_embd lowercase_ : List[Any] = n_layer lowercase_ : List[Any] = n_head lowercase_ : Any = dff lowercase_ : Optional[Any] = resid_pdrop lowercase_ : int = embd_pdrop lowercase_ : str = layer_norm_epsilon lowercase_ : Any = initializer_range lowercase_ : Union[str, Any] = use_cache super().__init__(**lowercase_ )
354
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : Union[str, Any] = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = StableDiffusionSAGPipeline UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ): torch.manual_seed(0 ) lowercase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowercase_ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase_ : Dict = CLIPTextModel(lowercase_ ) lowercase_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str]=0 ): if str(lowercase_ ).startswith("""mps""" ): lowercase_ : Tuple = torch.manual_seed(lowercase_ ) else: lowercase_ : str = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ : Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : str = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowercase_ : Optional[int] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : str = """.""" lowercase_ : List[Any] = torch.manual_seed(0 ) lowercase_ : int = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ : Dict = output.images lowercase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : List[str] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ : Tuple = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : str = """.""" lowercase_ : Any = torch.manual_seed(0 ) lowercase_ : Optional[int] = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) lowercase_ : str = output.images lowercase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Any = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : List[str] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowercase_ : Union[str, Any] = sag_pipe.to(lowercase_ ) sag_pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ : Optional[Any] = """.""" lowercase_ : List[str] = torch.manual_seed(0 ) lowercase_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) lowercase_ : int = output.images assert image.shape == (1, 512, 768, 3)
355
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowercase : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
21
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __magic_name__ : def __init__( self : str , lowercase_ : List[str] , ): lowercase_ : Dict = parent lowercase_ : Any = 13 lowercase_ : Dict = 7 lowercase_ : List[str] = True lowercase_ : Union[str, Any] = True lowercase_ : Any = True lowercase_ : Tuple = 99 lowercase_ : Union[str, Any] = 32 lowercase_ : Dict = 2 lowercase_ : Any = 4 lowercase_ : Union[str, Any] = 37 lowercase_ : int = """gelu""" lowercase_ : List[Any] = 0.1 lowercase_ : Optional[Any] = 0.1 lowercase_ : List[Any] = 512 lowercase_ : Optional[int] = 16 lowercase_ : List[Any] = 2 lowercase_ : str = 0.02 lowercase_ : Optional[int] = 3 lowercase_ : Optional[int] = 4 lowercase_ : Optional[int] = None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Dict = None lowercase_ : int = None lowercase_ : Optional[int] = None if self.use_labels: lowercase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Any = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): ( lowercase_ ) : Any = self.prepare_config_and_inputs() lowercase_ : Optional[Any] = True lowercase_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Any , lowercase_ : int ): lowercase_ : Optional[int] = TFEsmModel(config=lowercase_ ) lowercase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase_ : List[Any] = model(lowercase_ ) lowercase_ : Tuple = [input_ids, input_mask] lowercase_ : Union[str, Any] = model(lowercase_ ) lowercase_ : Optional[int] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : str , lowercase_ : Any , lowercase_ : str , lowercase_ : Dict , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , ): lowercase_ : Tuple = True lowercase_ : int = TFEsmModel(config=lowercase_ ) lowercase_ : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowercase_ : str = model(lowercase_ ) lowercase_ : Union[str, Any] = [input_ids, input_mask] lowercase_ : Optional[Any] = model(lowercase_ , encoder_hidden_states=lowercase_ ) # Also check the case where encoder outputs are not passed lowercase_ : str = model(lowercase_ , attention_mask=lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : str , lowercase_ : Any , lowercase_ : Tuple ): lowercase_ : Union[str, Any] = TFEsmForMaskedLM(config=lowercase_ ) lowercase_ : Optional[int] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): lowercase_ : Optional[Any] = self.num_labels lowercase_ : Union[str, Any] = TFEsmForTokenClassification(config=lowercase_ ) lowercase_ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase_ : List[str] = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Optional[Any] = self.prepare_config_and_inputs() ( lowercase_ ) : Dict = config_and_inputs lowercase_ : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Dict = TFEsmModelTester(self ) lowercase_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Optional[Any] = TFEsmModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def SCREAMING_SNAKE_CASE_ ( self : int ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(lowercase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase_ : Dict = model.get_bias() assert isinstance(lowercase_ , lowercase_ ) for k, v in name.items(): assert isinstance(lowercase_ , tf.Variable ) else: lowercase_ : Any = model.get_output_embeddings() assert x is None lowercase_ : Optional[int] = model.get_bias() assert name is None @require_tf class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Dict = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase_ : Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : List[Any] = model(lowercase_ )[0] lowercase_ : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowercase_ ) # compare the actual values for a slice. lowercase_ : Optional[int] = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): lowercase_ : List[str] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase_ : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase_ : List[Any] = model(lowercase_ )[0] # compare the actual values for a slice. lowercase_ : List[Any] = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
356
'''simple docstring''' import os import numpy import onnx def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str ) -> Tuple: lowercase_ : Tuple = a.name lowercase_ : Tuple = b.name lowercase_ : Any = """""" lowercase_ : List[Any] = """""" lowercase_ : List[Any] = a == b lowercase_ : Union[str, Any] = name_a lowercase_ : Optional[Any] = name_b return res def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(UpperCAmelCase__ , UpperCAmelCase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) _graph_replace_input_with(node_proto.attribute[1].g , UpperCAmelCase__ , UpperCAmelCase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> int: for n in graph_proto.node: _node_replace_input_with(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ) -> List[str]: lowercase_ : int = list(model.graph.initializer ) lowercase_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowercase_ : Optional[Any] = inits[i].name lowercase_ : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase ( UpperCAmelCase__ : int ) -> List[str]: lowercase_ : Dict = os.path.dirname(UpperCAmelCase__ ) lowercase_ : Optional[Any] = os.path.basename(UpperCAmelCase__ ) lowercase_ : str = onnx.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowercase_ : List[Any] = list(model.graph.initializer ) lowercase_ : int = set() lowercase_ : int = {} lowercase_ : str = [] lowercase_ : int = 0 for i in range(len(UpperCAmelCase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(UpperCAmelCase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(UpperCAmelCase__ ) dup_set.add(UpperCAmelCase__ ) lowercase_ : Dict = inits[j].data_type lowercase_ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , UpperCAmelCase__ ) total_reduced_size += mem_size lowercase_ : int = inits[i].name lowercase_ : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(UpperCAmelCase__ ) else: lowercase_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) lowercase_ : Tuple = sorted(UpperCAmelCase__ ) _remove_dup_initializers_from_model(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = """optimized_""" + model_file_name lowercase_ : Optional[int] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) onnx.save(UpperCAmelCase__ , UpperCAmelCase__ ) return new_model
21
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> str: if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowercase_ : str = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase_ : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase_ : Tuple = np.concatenate(UpperCAmelCase__ , axis=0 ) lowercase_ : str = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 255.0 lowercase_ : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) lowercase_ : Union[str, Any] = 2.0 * image - 1.0 lowercase_ : Tuple = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowercase_ : int = torch.cat(UpperCAmelCase__ , dim=0 ) return image def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple=0.9995 ) -> List[str]: if not isinstance(UpperCAmelCase__ , np.ndarray ): lowercase_ : Optional[Any] = True lowercase_ : Tuple = va.device lowercase_ : Any = va.cpu().numpy() lowercase_ : List[Any] = va.cpu().numpy() lowercase_ : List[Any] = np.sum(va * va / (np.linalg.norm(UpperCAmelCase__ ) * np.linalg.norm(UpperCAmelCase__ )) ) if np.abs(UpperCAmelCase__ ) > DOT_THRESHOLD: lowercase_ : Optional[Any] = (1 - t) * va + t * va else: lowercase_ : Dict = np.arccos(UpperCAmelCase__ ) lowercase_ : Union[str, Any] = np.sin(UpperCAmelCase__ ) lowercase_ : Optional[Any] = theta_a * t lowercase_ : Optional[Any] = np.sin(UpperCAmelCase__ ) lowercase_ : Optional[Any] = np.sin(theta_a - theta_t ) / sin_theta_a lowercase_ : Dict = sin_theta_t / sin_theta_a lowercase_ : Tuple = sa * va + sa * va if inputs_are_torch: lowercase_ : Tuple = torch.from_numpy(UpperCAmelCase__ ).to(UpperCAmelCase__ ) return va def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] ) -> Dict: lowercase_ : Any = F.normalize(UpperCAmelCase__ , dim=-1 ) lowercase_ : Any = F.normalize(UpperCAmelCase__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase ( UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> str: for param in model.parameters(): lowercase_ : Optional[int] = value class __magic_name__ ( _UpperCAmelCase): def __init__( self : Dict , lowercase_ : AutoencoderKL , lowercase_ : CLIPTextModel , lowercase_ : CLIPModel , lowercase_ : CLIPTokenizer , lowercase_ : UNetaDConditionModel , lowercase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowercase_ : CLIPFeatureExtractor , lowercase_ : Dict=None , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=None , ): super().__init__() self.register_modules( vae=lowercase_ , text_encoder=lowercase_ , clip_model=lowercase_ , tokenizer=lowercase_ , unet=lowercase_ , scheduler=lowercase_ , feature_extractor=lowercase_ , coca_model=lowercase_ , coca_tokenizer=lowercase_ , coca_transform=lowercase_ , ) lowercase_ : Dict = ( feature_extractor.size if isinstance(feature_extractor.size , lowercase_ ) else feature_extractor.size["""shortest_edge"""] ) lowercase_ : str = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , lowercase_ ) set_requires_grad(self.clip_model , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): self.enable_attention_slicing(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): set_requires_grad(self.vae , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): set_requires_grad(self.vae , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): set_requires_grad(self.unet , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): set_requires_grad(self.unet , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): # get the original timestep using init_timestep lowercase_ : Any = min(int(num_inference_steps * strength ) , lowercase_ ) lowercase_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase_ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def SCREAMING_SNAKE_CASE_ ( self : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=None ): if not isinstance(lowercase_ , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(lowercase_ )}''' ) lowercase_ : Union[str, Any] = image.to(device=lowercase_ , dtype=lowercase_ ) if isinstance(lowercase_ , lowercase_ ): lowercase_ : Tuple = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase_ ) ] lowercase_ : Dict = torch.cat(lowercase_ , dim=0 ) else: lowercase_ : List[str] = self.vae.encode(lowercase_ ).latent_dist.sample(lowercase_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : List[str] = 0.1_82_15 * init_latents lowercase_ : int = init_latents.repeat_interleave(lowercase_ , dim=0 ) lowercase_ : Dict = randn_tensor(init_latents.shape , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) # get latents lowercase_ : List[Any] = self.scheduler.add_noise(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : List[str] = init_latents return latents def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Optional[Any] ): lowercase_ : Optional[int] = self.coca_transform(lowercase_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase_ : str = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase_ : Any = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : Any ): lowercase_ : List[Any] = self.feature_extractor.preprocess(lowercase_ ) lowercase_ : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowercase_ : Optional[Any] = self.clip_model.get_image_features(lowercase_ ) lowercase_ : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase_ ) lowercase_ : List[Any] = image_embeddings_clip.repeat_interleave(lowercase_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , ): lowercase_ : Union[str, Any] = latents.detach().requires_grad_() lowercase_ : Any = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase_ : List[str] = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase_ : List[str] = self.scheduler.alphas_cumprod[timestep] lowercase_ : int = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase_ : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase_ : List[Any] = torch.sqrt(lowercase_ ) lowercase_ : Optional[int] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , lowercase_ ): lowercase_ : Optional[int] = self.scheduler.sigmas[index] lowercase_ : Tuple = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : Union[str, Any] = 1 / 0.1_82_15 * sample lowercase_ : Tuple = self.vae.decode(lowercase_ ).sample lowercase_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : Dict = transforms.Resize(self.feature_extractor_size )(lowercase_ ) lowercase_ : List[str] = self.normalize(lowercase_ ).to(latents.dtype ) lowercase_ : str = self.clip_model.get_image_features(lowercase_ ) lowercase_ : Any = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=lowercase_ ) lowercase_ : Dict = spherical_dist_loss(lowercase_ , lowercase_ ).mean() * clip_guidance_scale lowercase_ : List[Any] = -torch.autograd.grad(lowercase_ , lowercase_ )[0] if isinstance(self.scheduler , lowercase_ ): lowercase_ : Union[str, Any] = latents.detach() + grads * (sigma**2) lowercase_ : Tuple = noise_pred_original else: lowercase_ : Dict = noise_pred_original - torch.sqrt(lowercase_ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[str] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = None , lowercase_ : Optional[int] = 512 , lowercase_ : Optional[int] = 512 , lowercase_ : float = 0.6 , lowercase_ : Optional[int] = 50 , lowercase_ : Optional[float] = 7.5 , lowercase_ : Optional[int] = 1 , lowercase_ : float = 0.0 , lowercase_ : Optional[float] = 100 , lowercase_ : Optional[torch.Generator] = None , lowercase_ : Optional[str] = "pil" , lowercase_ : bool = True , lowercase_ : float = 0.8 , lowercase_ : float = 0.1 , lowercase_ : float = 0.1 , ): if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(lowercase_ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(lowercase_ , torch.Generator ) and batch_size > 1: lowercase_ : List[Any] = [generator] + [None] * (batch_size - 1) lowercase_ : Optional[int] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowercase_ : Dict = [x[0] for x in coca_is_none if x[1]] lowercase_ : Tuple = """, """.join(lowercase_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(lowercase_ ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowercase_ : int = self.get_image_description(lowercase_ ) if style_prompt is None: if len(lowercase_ ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) lowercase_ : int = self.get_image_description(lowercase_ ) # get prompt text embeddings for content and style lowercase_ : List[Any] = self.tokenizer( lowercase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowercase_ , return_tensors="""pt""" , ) lowercase_ : Union[str, Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase_ : List[str] = self.tokenizer( lowercase_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=lowercase_ , return_tensors="""pt""" , ) lowercase_ : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase_ : Dict = slerp(lowercase_ , lowercase_ , lowercase_ ) # duplicate text embeddings for each generation per prompt lowercase_ : str = text_embeddings.repeat_interleave(lowercase_ , dim=0 ) # set timesteps lowercase_ : Optional[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase_ : List[Any] = {} if accepts_offset: lowercase_ : Optional[Any] = 1 self.scheduler.set_timesteps(lowercase_ , **lowercase_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase_ : Optional[Any] = self.get_timesteps(lowercase_ , lowercase_ , self.device ) lowercase_ : Tuple = timesteps[:1].repeat(lowercase_ ) # Preprocess image lowercase_ : Union[str, Any] = preprocess(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Dict = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , text_embeddings.dtype , self.device , lowercase_ ) lowercase_ : Union[str, Any] = preprocess(lowercase_ , lowercase_ , lowercase_ ) lowercase_ : Union[str, Any] = self.prepare_latents( lowercase_ , lowercase_ , lowercase_ , text_embeddings.dtype , self.device , lowercase_ ) lowercase_ : str = slerp(lowercase_ , lowercase_ , lowercase_ ) if clip_guidance_scale > 0: lowercase_ : List[str] = self.get_clip_image_embeddings(lowercase_ , lowercase_ ) lowercase_ : int = self.get_clip_image_embeddings(lowercase_ , lowercase_ ) lowercase_ : List[Any] = slerp( lowercase_ , lowercase_ , lowercase_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase_ : int = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase_ : Optional[Any] = content_text_input.input_ids.shape[-1] lowercase_ : List[Any] = self.tokenizer([""""""] , padding="""max_length""" , max_length=lowercase_ , return_tensors="""pt""" ) lowercase_ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase_ : Union[str, Any] = uncond_embeddings.repeat_interleave(lowercase_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase_ : Optional[int] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase_ : Union[str, Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase_ : Dict = torch.randn(lowercase_ , generator=lowercase_ , device="""cpu""" , dtype=lowercase_ ).to( self.device ) else: lowercase_ : List[Any] = torch.randn(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowercase_ : List[str] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase_ : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase_ : Any = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase_ : Optional[Any] = {} if accepts_eta: lowercase_ : Union[str, Any] = eta # check if the scheduler accepts generator lowercase_ : Optional[int] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase_ : Any = generator with self.progress_bar(total=lowercase_ ): for i, t in enumerate(lowercase_ ): # expand the latents if we are doing classifier free guidance lowercase_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : List[str] = self.scheduler.scale_model_input(lowercase_ , lowercase_ ) # predict the noise residual lowercase_ : Tuple = self.unet(lowercase_ , lowercase_ , encoder_hidden_states=lowercase_ ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase_ : Union[str, Any] = noise_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase_ : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase_ : List[Any] = self.cond_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase_ : Any = 1 / 0.1_82_15 * latents lowercase_ : List[str] = self.vae.decode(lowercase_ ).sample lowercase_ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=lowercase_ , nsfw_content_detected=lowercase_ )
357
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : Dict , **lowercase_ : List[Any] ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None ): lowercase_ : Optional[Any] = {} lowercase_ : Tuple = {} if prompt is not None: lowercase_ : Tuple = prompt if generate_kwargs is not None: lowercase_ : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowercase_ : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) lowercase_ : str = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : List[Any] , lowercase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowercase_ : Optional[int] ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : List[Any] , lowercase_ : Tuple=None ): lowercase_ : List[Any] = load_image(lowercase_ ) if prompt is not None: if not isinstance(lowercase_ , lowercase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowercase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) lowercase_ : List[Any] = self.model.config.model_type if model_type == "git": lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : Union[str, Any] = self.tokenizer(text=lowercase_ , add_special_tokens=lowercase_ ).input_ids lowercase_ : int = [self.tokenizer.cls_token_id] + input_ids lowercase_ : List[Any] = torch.tensor(lowercase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": lowercase_ : Union[str, Any] = self.image_processor(images=lowercase_ , header_text=lowercase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowercase_ : Dict = self.image_processor(images=lowercase_ , return_tensors=self.framework ) lowercase_ : List[str] = self.tokenizer(lowercase_ , return_tensors=self.framework ) model_inputs.update(lowercase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: lowercase_ : List[str] = self.image_processor(images=lowercase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowercase_ : str = None return model_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any]=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowercase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): lowercase_ : Any = None if generate_kwargs is None: lowercase_ : Optional[Any] = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowercase_ : Dict = model_inputs.pop(self.model.main_input_name ) lowercase_ : Any = self.model.generate(lowercase_ , **lowercase_ , **lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : List[Any] ): lowercase_ : List[str] = [] for output_ids in model_outputs: lowercase_ : Union[str, Any] = { """generated_text""": self.tokenizer.decode( lowercase_ , skip_special_tokens=lowercase_ , ) } records.append(lowercase_ ) return records
21
0
'''simple docstring''' import re def lowerCamelCase ( UpperCAmelCase__ : str ) -> bool: lowercase_ : Any = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(UpperCAmelCase__ , UpperCAmelCase__ ) ) if __name__ == "__main__": _lowercase : Optional[int] = "0094702343221" print(is_sri_lankan_phone_number(phone))
358
'''simple docstring''' class __magic_name__ : def __init__( self : int , lowercase_ : list ): lowercase_ : Dict = set_counts lowercase_ : List[Any] = max(lowercase_ ) lowercase_ : str = len(lowercase_ ) lowercase_ : str = [1] * num_sets lowercase_ : Dict = list(range(lowercase_ ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : int , lowercase_ : int ): lowercase_ : List[Any] = self.get_parent(lowercase_ ) lowercase_ : Union[str, Any] = self.get_parent(lowercase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowercase_ : List[str] = 0 lowercase_ : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowercase_ : int = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowercase_ : int = 0 lowercase_ : List[Any] = src_parent lowercase_ : List[Any] = self.set_counts[src_parent] lowercase_ : Tuple = max(self.max_set , lowercase_ ) return True def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : int ): if self.parents[disj_set] == disj_set: return disj_set lowercase_ : int = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
21
0