max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
backend-tests/tests/test_account_suspension.py
drewmoseley/integration
0
11100
<filename>backend-tests/tests/test_account_suspension.py<gh_stars>0 # Copyright 2020 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import random import time from testutils.api.client import ApiClient import testutils.api.useradm as useradm import testutils.api.deviceauth as deviceauth import testutils.api.tenantadm as tenantadm import testutils.api.deployments as deployments from testutils.infra.cli import CliTenantadm, CliUseradm import testutils.util.crypto from testutils.common import ( User, Device, Tenant, mongo, clean_mongo, create_org, create_random_authset, get_device_by_id_data, change_authset_status, ) @pytest.yield_fixture(scope="function") def tenants(clean_mongo): tenants = [] for n in ["tenant1", "tenant2"]: username = "user@" + n + ".com" password = "<PASSWORD>" tenants.append(create_org(n, username, password)) yield tenants @pytest.fixture(scope="function") def tenants_users_devices(tenants, mongo): uc = ApiClient(useradm.URL_MGMT) devauthm = ApiClient(deviceauth.URL_MGMT) devauthd = ApiClient(deviceauth.URL_DEVICES) for t in tenants: user = t.users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text for _ in range(2): aset = create_random_authset(devauthd, devauthm, utoken, t.tenant_token) dev = Device(aset.did, aset.id_data, aset.pubkey, t.tenant_token) dev.authsets.append(aset) t.devices.append(dev) yield tenants class TestAccountSuspensionEnterprise: def test_user_cannot_log_in(self, tenants): tc = ApiClient(tenantadm.URL_INTERNAL) uc = ApiClient(useradm.URL_MGMT) for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 # tenant's users can log in for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 assert r.status_code == 200 # suspend tenant r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants[0].id}, ) assert r.status_code == 200 time.sleep(10) # none of tenant's users can log in for u in tenants[0].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 401 # but other users still can for u in tenants[1].users: r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 def test_authenticated_user_is_rejected(self, tenants): tc = ApiClient(tenantadm.URL_INTERNAL) uc = ApiClient(useradm.URL_MGMT) dc = ApiClient(deviceauth.URL_MGMT) u = tenants[0].users[0] # log in r = uc.call("POST", useradm.URL_LOGIN, auth=(u.name, u.pwd)) assert r.status_code == 200 token = r.text # check can access an api r = dc.with_auth(token).call("GET", deviceauth.URL_MGMT_DEVICES) assert r.status_code == 200 # suspend tenant r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants[0].id}, ) assert r.status_code == 200 time.sleep(10) # check token is rejected r = dc.with_auth(token).call("GET", deviceauth.URL_MGMT_DEVICES) assert r.status_code == 401 def test_accepted_dev_cant_authenticate(self, tenants_users_devices): dacd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) uc = ApiClient(useradm.URL_MGMT) tc = ApiClient(tenantadm.URL_INTERNAL) # accept a dev device = tenants_users_devices[0].devices[0] user = tenants_users_devices[0].users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text aset = device.authsets[0] change_authset_status(devauthm, aset.did, aset.id, "accepted", utoken) # suspend r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants_users_devices[0].id}, ) assert r.status_code == 200 time.sleep(10) # try requesting auth body, sighdr = deviceauth.auth_req( aset.id_data, aset.pubkey, aset.privkey, tenants_users_devices[0].tenant_token, ) r = dacd.call("POST", deviceauth.URL_AUTH_REQS, body, headers=sighdr) assert r.status_code == 401 assert r.json()["error"] == "Account suspended" def test_authenticated_dev_is_rejected(self, tenants_users_devices): dacd = ApiClient(deviceauth.URL_DEVICES) devauthm = ApiClient(deviceauth.URL_MGMT) uc = ApiClient(useradm.URL_MGMT) tc = ApiClient(tenantadm.URL_INTERNAL) dc = ApiClient(deployments.URL_DEVICES) # accept a dev user = tenants_users_devices[0].users[0] r = uc.call("POST", useradm.URL_LOGIN, auth=(user.name, user.pwd)) assert r.status_code == 200 utoken = r.text aset = tenants_users_devices[0].devices[0].authsets[0] change_authset_status(devauthm, aset.did, aset.id, "accepted", utoken) # request auth body, sighdr = deviceauth.auth_req( aset.id_data, aset.pubkey, aset.privkey, tenants_users_devices[0].tenant_token, ) r = dacd.call("POST", deviceauth.URL_AUTH_REQS, body, headers=sighdr) assert r.status_code == 200 dtoken = r.text # check device can access APIs r = dc.with_auth(dtoken).call( "GET", deployments.URL_NEXT, qs_params={"device_type": "foo", "artifact_name": "bar"}, ) assert r.status_code == 204 # suspend r = tc.call( "PUT", tenantadm.URL_INTERNAL_SUSPEND, tenantadm.req_status("suspended"), path_params={"tid": tenants_users_devices[0].id}, ) assert r.status_code == 200 time.sleep(10) # check device is rejected r = dc.with_auth(dtoken).call( "GET", deployments.URL_NEXT, qs_params={"device_type": "foo", "artifact_name": "bar"}, ) assert r.status_code == 401
1.796875
2
src/RepairManager/rules/ecc_reboot_node_rule.py
RichardZhaoW/DLWorkspace
2
11101
import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) import json import logging import yaml import requests import time from actions.migrate_job_action import MigrateJobAction from actions.send_alert_action import SendAlertAction from actions.reboot_node_action import RebootNodeAction from actions.uncordon_action import UncordonAction from datetime import datetime, timedelta, timezone from rules_abc import Rule from utils import prometheus_util, k8s_util from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText activity_log = logging.getLogger('activity') def _extract_node_boot_time_info(response): node_boot_times = {} if response is not None and "data" in response: if "result" in response["data"]: for m in response["data"]["result"]: instance = m["metric"]["instance"].split(":")[0] boot_datetime = datetime.utcfromtimestamp(float(m["value"][1])) node_boot_times[instance] = boot_datetime return node_boot_times def _create_email_for_pause_resume_job(job_id, node_names, job_link, job_owner_email): message = MIMEMultipart() message['Subject'] = f'Repair Manager Alert [{job_id} paused/resumed]' message['To'] = job_owner_email body = f'''<p>As previously notified, the following node(s) require reboot due to uncorrectable ECC error:</p> <table border="1">''' for node in node_names: body += f'''<tr><td>{node}</td></tr>''' body += f'''</table><p> <p> Job <a href="{job_link}">{job_id}</a> has been paused/resumed so node(s) can be repaired.</p>''' message.attach(MIMEText(body, 'html')) return message class EccRebootNodeRule(Rule): def __init__(self, alert, config): self.rule = 'ecc_rule' self.alert = alert self.config = config self.ecc_config = self.load_ecc_config() self.etcd_config = self.load_etcd_config() self.all_jobs_indexed_by_node = {} self.nodes_ready_for_action = set() self.jobs_ready_for_migration = {} def load_ecc_config(self): with open('/etc/RepairManager/config/ecc-config.yaml', 'r') as file: return yaml.safe_load(file) def load_etcd_config(self): with open('/etc/RepairManager/config/etcd.conf.yaml', 'r') as file: return yaml.safe_load(file) def check_for_rebooted_nodes_and_uncordon(self, dry_run): # if node has been rebooted since ecc error initially detected, # uncordon, remove from rule_cache, and mark as resolved url = f"http://{self.config['prometheus']['ip']}:{self.config['prometheus']['port']}" query = self.config['prometheus']['node_boot_time_query'] reboot_times_url = prometheus_util.format_url_query(url, query) uncordon_action = UncordonAction() try: response = requests.get(reboot_times_url, timeout=10) if response: reboot_data = response.json() reboot_times = _extract_node_boot_time_info(reboot_data) bad_nodes = self.alert.get_rule_cache_keys(self.rule) for node in bad_nodes: instance = self.alert.get_rule_cache(self.rule, node)["instance"] time_found_string = self.alert.get_rule_cache(self.rule, node)["time_found"] time_found_datetime = datetime.strptime(time_found_string, self.config['date_time_format']) last_reboot_time = reboot_times[instance] if last_reboot_time > time_found_datetime: uncordon_action.execute(node, dry_run) self.alert.remove_from_rule_cache(self.rule, node) activity_log.info({"action":"marked as resolved from incorrectable ecc error","node":node}) except: logging.exception(f'Error checking if nodes have rebooted') def check_for_nodes_with_no_jobs(self): # if no jobs are running on node, take action on node bad_nodes = self.alert.get_rule_cache_keys(self.rule) self.all_jobs_indexed_by_node = k8s_util.get_job_info_indexed_by_node( nodes=bad_nodes, portal_url=self.config['portal_url'], cluster_name=self.config['cluster_name']) for node in bad_nodes: node_has_no_jobs = node not in self.all_jobs_indexed_by_node node_reboot_pending = 'reboot_requested' in self.alert.get_rule_cache(self.rule, node) if node_has_no_jobs and not node_reboot_pending: logging.debug(f'node {node} has no running jobs') self.nodes_ready_for_action.add(node) def check_if_nodes_are_due_for_reboot(self): # if configured time has elapsed since initial detection, take action on node bad_nodes = self.alert.get_rule_cache_keys(self.rule) for node in bad_nodes: time_found_string = self.alert.rule_cache[self.rule][node]["time_found"] time_found_datetime = datetime.strptime(time_found_string, self.config['date_time_format']) delta = timedelta(days=self.ecc_config.get("days_until_node_reboot", 5)) now = datetime.utcnow() node_reboot_pending = 'reboot_requested' in self.alert.get_rule_cache(self.rule, node) if now - time_found_datetime > delta and not node_reboot_pending: logging.debug(f'Configured time has passed for node {node}') self.nodes_ready_for_action.add(node) self.determine_jobs_to_be_migrated(node) def determine_jobs_to_be_migrated(self, node): if node in self.all_jobs_indexed_by_node: jobs_on_node = self.all_jobs_indexed_by_node[node] for job in jobs_on_node: job_id = job["job_id"] if job_id not in self.jobs_ready_for_migration: self.jobs_ready_for_migration[job_id] = { "user_name": job["user_name"], "vc_name": job["vc_name"], "node_names": [node], "job_link": job["job_link"] } else: self.jobs_ready_for_migration[job_id]["node_names"].append(node) def migrate_jobs_and_alert_job_owners(self, dry_run): alert_action = SendAlertAction(self.alert) max_attempts = self.ecc_config.get("attempts_for_pause_resume_jobs", 5) wait_time = self.ecc_config.get("time_sleep_after_pausing", 30) for job_id in self.jobs_ready_for_migration: job = self.jobs_ready_for_migration[job_id] job_owner = job['user_name'] job_owner_email = f"{job_owner}@{self.config['job_owner_email_domain']}" node_names = job["node_names"] job_link = job['job_link'] rest_url = self.config["rest_url"] # migrate all jobs migrate_job = MigrateJobAction(rest_url, max_attempts) success = migrate_job.execute( job_id=job_id, job_owner_email=job_owner_email, wait_time=wait_time, dry_run=dry_run) # alert job owners if success: message = _create_email_for_pause_resume_job(job_id, node_names, job_link, job_owner_email) alert_dry_run = dry_run or not self.ecc_config['enable_alert_job_owners'] alert_action.execute( message=message, dry_run=alert_dry_run, additional_log={"job_id":job_id,"job_owner":job_owner}) else: logging.warning(f"Could not pause/resume the following job: {job_id}") # skip rebooting the node this iteration # and try again later for node in node_names: self.nodes_ready_for_action.remove(node) def reboot_bad_nodes(self, dry_run): reboot_action = RebootNodeAction() for node in self.nodes_ready_for_action: success = reboot_action.execute(node, self.etcd_config, dry_run) if success: # update reboot status so action is not taken again cache_value = self.alert.get_rule_cache(self.rule, node) cache_value['reboot_requested'] = datetime.utcnow().strftime(self.config['date_time_format']) self.alert.update_rule_cache(self.rule, node, cache_value) def check_status(self): dry_run = not self.ecc_config["enable_reboot"] self.check_for_rebooted_nodes_and_uncordon(dry_run) self.check_for_nodes_with_no_jobs() self.check_if_nodes_are_due_for_reboot() return len(self.nodes_ready_for_action) > 0 def take_action(self): dry_run = not self.ecc_config["enable_reboot"] self.migrate_jobs_and_alert_job_owners(dry_run) self.reboot_bad_nodes(dry_run)
1.875
2
work/dib-ipa-element/virtmedia-netconf/ironic-bmc-hardware-manager/src/ironic_bmc_hardware_manager/bmc.py
alexandruavadanii/ipa-deployer
0
11102
<gh_stars>0 # Copyright 2019 Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from ironic_python_agent import hardware from ironic_python_agent import utils from oslo_log import log from oslo_concurrency import processutils LOG = log.getLogger() class BMCHardwareManager(hardware.GenericHardwareManager): HARDWARE_MANAGER_NAME = 'BMCHardwareManager' HARDWARE_MANAGER_VERSION = '1' def evaluate_hardware_support(self): """Declare level of hardware support provided.""" LOG.info('Running in BMC environment') return hardware.HardwareSupport.SERVICE_PROVIDER def list_network_interfaces(self): network_interfaces_list = [] bmc_mac = self.get_ipmi_info().get('MAC Address', False) if bmc_mac: LOG.info("Adding MAC address net interfaces %s", bmc_mac) bmc_address = self.get_bmc_address() network_interfaces_list.append(hardware.NetworkInterface( name="BMC_INTERFACE", mac_addr=bmc_mac, ipv4_address=bmc_address, has_carrier=True, vendor="BMC", product="Akraino")) else: network_interfaces_list = super(BMCHardwareManager, self).list_network_interfaces() return network_interfaces_list def get_ipmi_info(self): # These modules are rarely loaded automatically utils.try_execute('modprobe', 'ipmi_msghandler') utils.try_execute('modprobe', 'ipmi_devintf') utils.try_execute('modprobe', 'ipmi_si') try: out, _e = utils.execute( "ipmitool lan print", shell=True, attempts=2) except (processutils.ProcessExecutionError, OSError) as e: # Not error, because it's normal in virtual environment LOG.warning("Cannot get BMC info: %s", e) return {} info = {} for line in out.split('\n'): spl = line.find(':') if spl == -1: continue else: key = line[0:spl].strip() if key == '': continue info[line[0:spl].strip()] = line[spl+1:].strip() return info
1.875
2
museum_site/context_processors.py
DrDos0016/z2
3
11103
<reponame>DrDos0016/z2 from django.core.cache import cache from datetime import datetime from museum_site.models.detail import Detail from museum_site.models.file import File from museum_site.constants import TERMS_DATE from museum_site.common import ( DEBUG, EMAIL_ADDRESS, BOOT_TS, CSS_INCLUDES, UPLOAD_CAP, env_from_host, qs_sans ) from museum_site.core.detail_identifiers import * def museum_global(request): data = {} # Debug mode if DEBUG or request.GET.get("DEBUG") or request.session.get("DEBUG"): data["debug"] = True else: data["debug"] = False # Server info data["HOST"] = request.get_host() data["ENV"] = env_from_host(data["HOST"]) data["PROTOCOL"] = "https" if request.is_secure() else "http" data["DOMAIN"] = data["PROTOCOL"] + "://" + data["HOST"] # Server date/time data["datetime"] = datetime.utcnow() if data["datetime"].day == 27: # Drupe Day data["drupe"] = True if data["datetime"].day == 1 and data["datetime"].month == 4: # April 1st data["april"] = True # Common query string modifications data["qs_sans_page"] = qs_sans(request.GET, "page") data["qs_sans_view"] = qs_sans(request.GET, "view") data["qs_sans_both"] = qs_sans(request.GET, ["page", "view"]) # E-mail data["EMAIL_ADDRESS"] = EMAIL_ADDRESS data["BOOT_TS"] = BOOT_TS # CSS Files data["CSS_INCLUDES"] = CSS_INCLUDES # Featured Worlds data["fg"] = File.objects.featured_worlds().order_by("?").first() if request.GET.get("fgid"): data["fg"] = File.objects.reach(pk=int(request.GET["fgid"])) if data["fg"]: data["fg"].extra_context = {"nozoom": True} data["fg"] = data["fg"] # Upload Cap data["UPLOAD_CAP"] = UPLOAD_CAP # Queue size data["UPLOAD_QUEUE_SIZE"] = cache.get("UPLOAD_QUEUE_SIZE", "-") # User TOS Date checks if request.user.is_authenticated: if ( TERMS_DATE > request.user.profile.accepted_tos and request.method == "GET" and request.path != "/user/update-tos/" ): # Force a new login for key in [ "_auth_user_id", "_auth_user_backend", "_auth_user_hash" ]: if request.session.get(key): del request.session[key] return data
2.078125
2
misago/users/views/avatarserver.py
HenryChenV/iJiangNan
1
11104
<reponame>HenryChenV/iJiangNan from django.contrib.auth import get_user_model from django.contrib.staticfiles.templatetags.staticfiles import static from django.shortcuts import redirect from misago.conf import settings UserModel = get_user_model() def user_avatar(request, pk, size): size = int(size) try: user = UserModel.objects.get(pk=pk) except UserModel.DoesNotExist: return blank_avatar(request) found_avatar = user.avatars[0] for avatar in user.avatars: if avatar['size'] >= size: found_avatar = avatar return redirect(found_avatar['url']) def blank_avatar(request): return redirect(static(settings.MISAGO_BLANK_AVATAR))
2.25
2
csbdeep/internals/nets.py
papkov/CSBDeep
2
11105
from __future__ import print_function, unicode_literals, absolute_import, division from six.moves import range, zip, map, reduce, filter from keras.layers import Input, Conv2D, Conv3D, Activation, Lambda from keras.models import Model from keras.layers.merge import Add, Concatenate import tensorflow as tf from keras import backend as K from .blocks import unet_block, unet_blocks, gaussian_2d import re from ..utils import _raise, backend_channels_last import numpy as np def custom_unet(input_shape, last_activation, n_depth=2, n_filter_base=16, kernel_size=(3,3,3), n_conv_per_depth=2, activation="relu", batch_norm=False, dropout=0.0, pool_size=(2,2,2), n_channel_out=1, residual=False, prob_out=False, long_skip=True, eps_scale=1e-3): """ TODO """ if last_activation is None: raise ValueError("last activation has to be given (e.g. 'sigmoid', 'relu')!") all((s % 2 == 1 for s in kernel_size)) or _raise(ValueError('kernel size should be odd in all dimensions.')) channel_axis = -1 if backend_channels_last() else 1 n_dim = len(kernel_size) # TODO: rewrite with conv_block conv = Conv2D if n_dim == 2 else Conv3D input = Input(input_shape, name="input") unet = unet_block(n_depth, n_filter_base, kernel_size, input_planes=input_shape[-1], activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size, long_skip=long_skip)(input) final = conv(n_channel_out, (1,)*n_dim, activation='linear')(unet) if residual: if not (n_channel_out == input_shape[-1] if backend_channels_last() else n_channel_out == input_shape[0]): raise ValueError("number of input and output channels must be the same for a residual net.") final = Add()([final, input]) final = Activation(activation=last_activation)(final) if prob_out: scale = conv(n_channel_out, (1,)*n_dim, activation='softplus')(unet) scale = Lambda(lambda x: x+np.float32(eps_scale))(scale) final = Concatenate(axis=channel_axis)([final, scale]) return Model(inputs=input, outputs=final) def uxnet(input_shape, n_depth=2, n_filter_base=16, kernel_size=(3, 3), n_conv_per_depth=2, activation="relu", last_activation='linear', batch_norm=False, dropout=0.0, pool_size=(2, 2), residual=True, odd_to_even=False, shortcut=None, shared_idx=[], prob_out=False, eps_scale=1e-3): """ Multi-body U-Net which learns identity by leaving one plane out in each branch :param input_shape: :param n_depth: :param n_filter_base: :param kernel_size: :param n_conv_per_depth: :param activation: :param last_activation: :param batch_norm: :param dropout: :param pool_size: :param prob_out: :param eps_scale: :return: Model """ # TODO: fill params # TODO: add odd-to-even mode # Define vars channel_axis = -1 if backend_channels_last() else 1 n_planes = input_shape[channel_axis] if n_planes % 2 != 0 and odd_to_even: raise ValueError('Odd-to-even mode does not support uneven number of planes') n_dim = len(kernel_size) conv = Conv2D if n_dim == 2 else Conv3D # Define functional model input = Input(shape=input_shape, name='input_main') # TODO test new implementation and remove old # Split planes (preserve channel) input_x = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1))(input) for i in range(n_planes)] # We can train either in odd-to-even mode or in LOO mode if odd_to_even: # In this mode we stack together odd and even planes, train the net to predict even from odd and vice versa # input_x_out = [Concatenate(axis=-1)(input_x[j::2]) for j in range(2)] input_x_out = [Concatenate(axis=-1)(input_x[j::2]) for j in range(1, -1, -1)] else: # Concatenate planes back in leave-one-out way input_x_out = [Concatenate(axis=-1)([plane for i, plane in enumerate(input_x) if i != j]) for j in range(n_planes)] # if odd_to_even: # input_x_out = [Lambda(lambda x: x[..., j::2], # output_shape=(None, None, n_planes // 2), # name='{}_planes'.format('even' if j == 0 else 'odd'))(input) # for j in range(1, -1, -1)] # else: # # input_x_out = [Lambda(lambda x: x[..., tf.convert_to_tensor([i for i in range(n_planes) if i != j], dtype=tf.int32)], # # output_shape=(None, None, n_planes-1), # # name='leave_{}_plane_out'.format(j))(input) # # for j in range(n_planes)] # # input_x_out = [Lambda(lambda x: K.concatenate([x[..., :j], x[..., (j+1):]], axis=-1), # output_shape=(None, None, n_planes - 1), # name='leave_{}_plane_out'.format(j))(input) # for j in range(n_planes)] # U-Net parameters depend on mode (odd-to-even or LOO) n_blocks = 2 if odd_to_even else n_planes input_planes = n_planes // 2 if odd_to_even else n_planes-1 output_planes = n_planes // 2 if odd_to_even else 1 # Create U-Net blocks (by number of planes) unet_x = unet_blocks(n_blocks=n_blocks, input_planes=input_planes, output_planes=output_planes, n_depth=n_depth, n_filter_base=n_filter_base, kernel_size=kernel_size, activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size, shared_idx=shared_idx) unet_x = [unet(inp_out) for unet, inp_out in zip(unet_x, input_x_out)] # Version without weight sharing: # unet_x = [unet_block(n_depth, n_filter_base, kernel_size, # activation=activation, dropout=dropout, batch_norm=batch_norm, # n_conv_per_depth=n_conv_per_depth, pool=pool_size, # prefix='out_{}_'.format(i))(inp_out) for i, inp_out in enumerate(input_x_out)] # TODO: rewritten for sharing -- remove commented below # Convolve n_filter_base to 1 as each U-Net predicts a single plane # unet_x = [conv(1, (1,) * n_dim, activation=activation)(unet) for unet in unet_x] if residual: if odd_to_even: # For residual U-Net sum up output for odd planes with even planes and vice versa unet_x = [Add()([unet, inp]) for unet, inp in zip(unet_x, input_x[::-1])] else: # For residual U-Net sum up output with its neighbor (next for the first plane, previous for the rest unet_x = [Add()([unet, inp]) for unet, inp in zip(unet_x, [input_x[1]]+input_x[:-1])] # Concatenate outputs of blocks, should receive (None, None, None, n_planes) # TODO assert to check shape? if odd_to_even: # Split even and odd, assemble them together in the correct order # TODO tests unet_even = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1), name='even_{}'.format(i))(unet_x[0]) for i in range(n_planes // 2)] unet_odd = [Lambda(lambda x: x[..., i:i+1], output_shape=(None, None, 1), name='odd_{}'.format(i))(unet_x[1]) for i in range(n_planes // 2)] unet_x = list(np.array(list(zip(unet_even, unet_odd))).flatten()) unet = Concatenate(axis=-1)(unet_x) if shortcut is not None: # We can create a shortcut without long skip connection to prevent noise memorization if shortcut == 'unet': shortcut_block = unet_block(long_skip=False, input_planes=n_planes, n_depth=n_depth, n_filter_base=n_filter_base, kernel_size=kernel_size, activation=activation, dropout=dropout, batch_norm=batch_norm, n_conv_per_depth=n_conv_per_depth, pool=pool_size)(input) shortcut_block = conv(n_planes, (1,) * n_dim, activation='linear', name='shortcut_final_conv')(shortcut_block) # Or a simple gaussian blur block elif shortcut == 'gaussian': shortcut_block = gaussian_2d(n_planes, k=13, s=7)(input) else: raise ValueError('Shortcut should be either unet or gaussian') # TODO add or concatenate? unet = Add()([unet, shortcut_block]) # unet = Concatenate(axis=-1)([unet, shortcut_unet]) # Final activation layer final = Activation(activation=last_activation)(unet) if prob_out: scale = conv(n_planes, (1,)*n_dim, activation='softplus')(unet) scale = Lambda(lambda x: x+np.float32(eps_scale))(scale) final = Concatenate(axis=channel_axis)([final, scale]) return Model(inputs=input, outputs=final) def common_unet(n_dim=2, n_depth=1, kern_size=3, n_first=16, n_channel_out=1, residual=True, prob_out=False, long_skip=True, last_activation='linear'): """ Construct a common CARE neural net based on U-Net [1]_ and residual learning [2]_ to be used for image restoration/enhancement. Parameters ---------- n_dim : int number of image dimensions (2 or 3) n_depth : int number of resolution levels of U-Net architecture kern_size : int size of convolution filter in all image dimensions n_first : int number of convolution filters for first U-Net resolution level (value is doubled after each downsampling operation) n_channel_out : int number of channels of the predicted output image residual : bool if True, model will internally predict the residual w.r.t. the input (typically better) requires number of input and output image channels to be equal prob_out : bool standard regression (False) or probabilistic prediction (True) if True, model will predict two values for each input pixel (mean and positive scale value) last_activation : str name of activation function for the final output layer Returns ------- function Function to construct the network, which takes as argument the shape of the input image Example ------- >>> model = common_unet(2, 1,3,16, 1, True, False)(input_shape) References ---------- .. [1] <NAME>, <NAME>, <NAME>x, *U-Net: Convolutional Networks for Biomedical Image Segmentation*, MICCAI 2015 .. [2] <NAME>, <NAME>, <NAME>, <NAME>. *Deep Residual Learning for Image Recognition*, CVPR 2016 """ def _build_this(input_shape): return custom_unet(input_shape, last_activation, n_depth, n_first, (kern_size,)*n_dim, pool_size=(2,)*n_dim, n_channel_out=n_channel_out, residual=residual, prob_out=prob_out, long_skip=long_skip) return _build_this def common_uxnet(n_dim=2, n_depth=1, kern_size=3, n_first=16, residual=True, prob_out=False, last_activation='linear', shared_idx=[], odd_to_even=False, shortcut=None): def _build_this(input_shape): return uxnet(input_shape=input_shape, last_activation=last_activation, n_depth=n_depth, n_filter_base=n_first, kernel_size=(kern_size,)*n_dim, pool_size=(2,)*n_dim, residual=residual, prob_out=prob_out, shared_idx=shared_idx, odd_to_even=odd_to_even, shortcut=shortcut) return _build_this modelname = re.compile("^(?P<model>resunet|unet)(?P<n_dim>\d)(?P<prob_out>p)?_(?P<n_depth>\d+)_(?P<kern_size>\d+)_(?P<n_first>\d+)(_(?P<n_channel_out>\d+)out)?(_(?P<last_activation>.+)-last)?$") def common_unet_by_name(model): r"""Shorthand notation for equivalent use of :func:`common_unet`. Parameters ---------- model : str define model to be created via string, which is parsed as a regular expression: `^(?P<model>resunet|unet)(?P<n_dim>\d)(?P<prob_out>p)?_(?P<n_depth>\d+)_(?P<kern_size>\d+)_(?P<n_first>\d+)(_(?P<n_channel_out>\d+)out)?(_(?P<last_activation>.+)-last)?$` Returns ------- function Calls :func:`common_unet` with the respective parameters. Raises ------ ValueError If argument `model` is not a valid string according to the regular expression. Example ------- >>> model = common_unet_by_name('resunet2_1_3_16_1out')(input_shape) >>> # equivalent to: model = common_unet(2, 1,3,16, 1, True, False)(input_shape) Todo ---- Backslashes in docstring for regexp not rendered correctly. """ m = modelname.fullmatch(model) if m is None: raise ValueError("model name '%s' unknown, must follow pattern '%s'" % (model, modelname.pattern)) # from pprint import pprint # pprint(m.groupdict()) options = {k:int(m.group(k)) for k in ['n_depth','n_first','kern_size']} options['prob_out'] = m.group('prob_out') is not None options['residual'] = {'unet': False, 'resunet': True}[m.group('model')] options['n_dim'] = int(m.group('n_dim')) options['n_channel_out'] = 1 if m.group('n_channel_out') is None else int(m.group('n_channel_out')) if m.group('last_activation') is not None: options['last_activation'] = m.group('last_activation') return common_unet(**options) def receptive_field_unet(n_depth, kern_size, pool_size=2, n_dim=2, img_size=1024): """Receptive field for U-Net model (pre/post for each dimension).""" x = np.zeros((1,)+(img_size,)*n_dim+(1,)) mid = tuple([s//2 for s in x.shape[1:-1]]) x[(slice(None),) + mid + (slice(None),)] = 1 model = custom_unet ( x.shape[1:], n_depth=n_depth, kernel_size=[kern_size]*n_dim, pool_size=[pool_size]*n_dim, n_filter_base=8, activation='linear', last_activation='linear', ) y = model.predict(x)[0,...,0] y0 = model.predict(0*x)[0,...,0] ind = np.where(np.abs(y-y0)>0) return [(m-np.min(i), np.max(i)-m) for (m, i) in zip(mid, ind)]
2.171875
2
src/inf/runtime_data.py
feagi/feagi-core
11
11106
<filename>src/inf/runtime_data.py parameters = {} genome = {} genome_stats = {} genome_test_stats = [] brain = {} cortical_list = [] cortical_map = {} intercortical_mapping = [] block_dic = {} upstream_neurons = {} memory_list = {} activity_stats = {} temp_neuron_list = [] original_genome_id = [] fire_list = [] termination_flag = False variation_counter_actual = 0 exposure_counter_actual = 0 mnist_training = {} mnist_testing = {} top_10_utf_memory_neurons = {} top_10_utf_neurons = {} v1_members = [] prunning_candidates = set() genome_id = "" event_id = '_' blueprint = "" comprehension_queue = '' working_directory = '' connectome_path = '' paths = {} watchdog_queue = '' exit_condition = False fcl_queue = '' proximity_queue = '' last_ipu_activity = '' last_alertness_trigger = '' influxdb = '' mongodb = '' running_in_container = False hardware = '' gazebo = False stimulation_data = {} hw_controller_path = '' hw_controller = None opu_pub = None router_address = None burst_timer = 1 # rules = "" brain_is_running = False # live_mode_status can have modes of idle, learning, testing, tbd live_mode_status = 'idle' fcl_history = {} brain_run_id = "" burst_detection_list = {} burst_count = 0 fire_candidate_list = {} previous_fcl = {} future_fcl = {} labeled_image = [] training_neuron_list_utf = {} training_neuron_list_img = {} empty_fcl_counter = 0 neuron_mp_list = [] pain_flag = False cumulative_neighbor_count = 0 time_neuron_update = '' time_apply_plasticity_ext = '' plasticity_time_total = None plasticity_time_total_p1 = None plasticity_dict = {} tester_test_stats = {} # Flags flag_ready_to_inject_image = False
1.765625
2
scripts/topo_countries.py
taufikhe/Censof-Mini-Project
0
11107
<reponame>taufikhe/Censof-Mini-Project #!/usr/bin/env python # -*- coding: utf-8 -*- import subprocess from geonamescache import GeonamesCache gc = GeonamesCache() toposrc = '../data/states-provinces.json' for iso2, country in gc.get_countries().items(): iso3 = country['iso3'] topojson = 'mapshaper -i {0} -filter \'"{1}" == adm0_a3\' -filter-fields fips,name -o format=topojson {1}.json' subprocess.call(topojson.format(toposrc, iso3), shell=True) subprocess.call('mv *.json ../src/topojson/countries/', shell=True)
2.234375
2
nordb/database/nordic2sql.py
MrCubanfrog/NorDB
1
11108
<reponame>MrCubanfrog/NorDB """ This module contains all information for pushing a NordicEvent object into the database. Functions and Classes --------------------- """ import psycopg2 import os import re import datetime from nordb.core import usernameUtilities from nordb.database import creationInfo INSERT_COMMANDS = { 1: ( "INSERT INTO " "nordic_header_main " "(origin_time, origin_date, location_model, " "distance_indicator, event_desc_id, epicenter_latitude, " "epicenter_longitude, depth, depth_control, " "locating_indicator, epicenter_reporting_agency, " "stations_used, rms_time_residuals, magnitude_1, " "type_of_magnitude_1, magnitude_reporting_agency_1, " "magnitude_2, type_of_magnitude_2, magnitude_reporting_agency_2, " "magnitude_3, type_of_magnitude_3, magnitude_reporting_agency_3, " "event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " "%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) " "RETURNING " "id;" ), 2: ( "INSERT INTO " "nordic_header_macroseismic " "(description, diastrophism_code, tsunami_code, seiche_code, " "cultural_effects, unusual_effects, maximum_observed_intensity, " "maximum_intensity_qualifier, intensity_scale, macroseismic_latitude, " "macroseismic_longitude, macroseismic_magnitude, type_of_magnitude, " "logarithm_of_radius, logarithm_of_area_1, bordering_intensity_1, " "logarithm_of_area_2, bordering_intensity_2, quality_rank, " "reporting_agency, event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " " %s, %s, %s, %s, %s, %s) " "RETURNING " "id" ), 3: ( "INSERT INTO " "nordic_header_comment " "(h_comment, event_id) " "VALUES " "(%s, %s) " "RETURNING " "id " ), 5: ( "INSERT INTO " "nordic_header_error " "(gap, second_error, epicenter_latitude_error, " "epicenter_longitude_error, depth_error, " "magnitude_error, header_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s)" "RETURNING " "id" ), 6: ( "INSERT INTO " "nordic_header_waveform " "(waveform_info, event_id) " "VALUES " "(%s, %s) " "RETURNING " "id " ), 7: ( "INSERT INTO " "nordic_phase_data " "(station_code, sp_instrument_type, sp_component, quality_indicator, " "phase_type, weight, first_motion, observation_time, " "signal_duration, max_amplitude, max_amplitude_period, back_azimuth, " "apparent_velocity, signal_to_noise, azimuth_residual, " "travel_time_residual, location_weight, epicenter_distance, " "epicenter_to_station_azimuth, event_id) " "VALUES " "(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, " "%s, %s, %s, %s, %s, %s, %s, %s, %s) " "RETURNING " "id " ), } def event2Database(nordic_event, solution_type = "O", nordic_filename = None, f_creation_id = None, e_id = -1, privacy_level='public', db_conn = None): """ Function that pushes a NordicEvent object to the database :param NordicEvent nordic_event: Event that will be pushed to the database :param int solution_type: event type id :param str nordic_filename: name of the file from which the nordic is read from :param int f_creation_id: id of the creation_info entry in the database :param int e_id: id of the event to which this event will be attached to by event_root. If -1 then this event will not be attached to aything. :param string privacy_level: privacy level of the event in the database """ if db_conn is None: conn = usernameUtilities.log2nordb() else: conn = db_conn if f_creation_id is None: creation_id = creationInfo.createCreationInfo(privacy_level, conn) else: creation_id = f_creation_id author_id = None for header in nordic_event.comment_h: search = re.search(r'\((\w{3})\)', header.h_comment) if search is not None: author_id = search.group(0)[1:-1] if author_id is None: author_id = '---' cur = conn.cursor() try: cur.execute("SELECT allow_multiple FROM solution_type WHERE type_id = %s", (solution_type,)) ans = cur.fetchone() if ans is None: raise Exception("{0} is not a valid solution_type! Either add the event type to the database or use another solution_type".format(solution_type)) allow_multiple = ans[0] filename_id = -1 cur.execute("SELECT id FROM nordic_file WHERE file_location = %s", (nordic_filename,)) filenameids = cur.fetchone() if filenameids is not None: filename_id = filenameids[0] root_id = -1 if nordic_event.root_id != -1: root_id = nordic_event.root_id if e_id >= 0: cur.execute("SELECT root_id, solution_type FROM nordic_event WHERE id = %s", (e_id,)) try: root_id, old_solution_type = cur.fetchone() except: raise Exception("Given linking even_id does not exist in the database!") if e_id == -1 and nordic_event.root_id == -1: cur.execute("INSERT INTO nordic_event_root DEFAULT VALUES RETURNING id;") root_id = cur.fetchone()[0] if filename_id == -1: cur.execute("INSERT INTO nordic_file (file_location) VALUES (%s) RETURNING id", (nordic_filename,)) filename_id = cur.fetchone()[0] cur.execute("INSERT INTO " + "nordic_event " + "(solution_type, root_id, nordic_file_id, author_id, creation_id) " + "VALUES " + "(%s, %s, %s, %s, %s) " + "RETURNING " + "id", (solution_type, root_id, filename_id, author_id, creation_id) ) event_id = cur.fetchone()[0] nordic_event.event_id = event_id if e_id != -1 and solution_type == old_solution_type and not allow_multiple: cur.execute("UPDATE nordic_event SET solution_type = 'O' WHERE id = %s", (e_id,)) main_header_id = -1 for main in nordic_event.main_h: main.event_id = event_id main.h_id = executeCommand( cur, INSERT_COMMANDS[1], main.getAsList(), True)[0][0] if main.error_h is not None: main.error_h.header_id = main.h_id main.error_h.h_id = executeCommand( cur, INSERT_COMMANDS[5], main.error_h.getAsList(), True)[0][0] for macro in nordic_event.macro_h: macro.event_id = event_id macro.h_id = executeCommand(cur, INSERT_COMMANDS[2], macro.getAsList(), True)[0][0] for comment in nordic_event.comment_h: comment.event_id = event_id comment.h_id = executeCommand( cur, INSERT_COMMANDS[3], comment.getAsList(), True)[0][0] for waveform in nordic_event.waveform_h: waveform.event_id = event_id waveform.h_id = executeCommand( cur, INSERT_COMMANDS[6], waveform.getAsList(), True)[0][0] for phase_data in nordic_event.data: phase_data.event_id = event_id d_id = executeCommand( cur, INSERT_COMMANDS[7], phase_data.getAsList(), True)[0][0] phase_data.d_id = d_id conn.commit() except Exception as e: raise e finally: if f_creation_id is None: creationInfo.deleteCreationInfoIfUnnecessary(creation_id, db_conn=conn) if db_conn is None: conn.close() def executeCommand(cur, command, vals, returnValue): """ Function for for executing a command with values and handling exceptions :param Psycopg.Cursor cur: cursor object from psycopg2 library :param str command: the sql command string :param list vals: list of values for the command :param bool returnValue: boolean values for if the command returns a value :returns: Values returned by the query or None if returnValue is False """ cur.execute(command, vals) if returnValue: return cur.fetchall() else: return None
2.15625
2
movie_trailer_website/media.py
mradenovic/movie-trailer-website
0
11109
"""This module contains class definitions for storing media files""" import webbrowser class Movie(): """Movie class defines movies. Attributes: movie_title (str): Title of the movie movie_storyline (str): Sort description of the movie poster_image (str): Url of the poster image trailer_youtube (str): URL of the Youtube trailer """ def __init__(self, movie_title, movie_storyline, poster_image, trailer_youtube): # type: (object, object, object, object) -> object """ Arguments: movie_title (str): Title of the movie movie_storyline (str): Sort description of the movie poster_image (str): Url of the poster image trailer_youtube (str): URL of the Youtube trailer """ self.title = movie_title self.storyline = movie_storyline self.poster_image_url = poster_image self.trailer_youtube_url = trailer_youtube
3.703125
4
201-vmss-bottle-autoscale/workserver.py
kollexy/azure-quickstart-templates
10
11110
<gh_stars>1-10 # workserver.py - simple HTTP server with a do_work / stop_work API # GET /do_work activates a worker thread which uses CPU # GET /stop_work signals worker thread to stop import math import socket import threading import time from bottle import route, run hostname = socket.gethostname() hostport = 9000 keepworking = False # boolean to switch worker thread on or off # thread which maximizes CPU usage while the keepWorking global is True def workerthread(): # outer loop to run while waiting while (True): # main loop to thrash the CPI while (keepworking == True): for x in range(1, 69): math.factorial(x) time.sleep(3) # start the worker thread worker_thread = threading.Thread(target=workerthread, args=()) worker_thread.start() def writebody(): body = '<html><head><title>Work interface - build</title></head>' body += '<body><h2>Worker interface on ' + hostname + '</h2><ul><h3>' if keepworking == False: body += '<br/>Worker thread is not running. <a href="./do_work">Start work</a><br/>' else: body += '<br/>Worker thread is running. <a href="./stop_work">Stop work</a><br/>' body += '<br/>Usage:<br/><br/>/do_work = start worker thread<br/>/stop_work = stop worker thread<br/>' body += '</h3></ul></body></html>' return body @route('/') def root(): return writebody() @route('/do_work') def do_work(): global keepworking # start worker thread keepworking = True return writebody() @route('/stop_work') def stop_work(): global keepworking # stop worker thread keepworking = False return writebody() run(host=hostname, port=hostport)
3.328125
3
year_3/databases_sem1/lab1/cli.py
honchardev/KPI
0
11111
from maxdb import DB def runtime_on_any_exception(func): def decorate(*args, **kwargs): try: func(*args, **kwargs) except: raise RuntimeError return decorate class CLIUtils(object): DEFAULT_PATH = 'storage.json' def __init__(self): self._db = None self._path = self.DEFAULT_PATH def run(self, rawcmd): cmd, *args = rawcmd.split(' ') if cmd: try: self._cmds_cache[cmd](args) except KeyError: print('Lab1 does not have command <{0}>'.format(cmd)) except RuntimeError: print('Incorrect arguments for DB.{0}: <{1}>'.format(cmd, args)) @property def _cmds_cache(self): return { 'tables': self._tables, 'all': self._all, 'insert': self._insert, 'get': self._get, 'update': self._update, 'delete': self._delete, 'help': lambda _: print(self._help_msg), 'path': lambda _: print(self._path), 'exit': self._close, } @property def _help_msg(self): return """LAB1 HELP: | tables | print list of tables from current storage. | all <table> (<table> ...) | display _all values from specific table. | all labcondition | display _all products with price more than 100UAH. | insert <table> <cnt> | insert N items to the table. | is followed by >>>column_name <value> | get <table> <id> | get single row specified by id from table. | update <table> <id> | udpate table with a new single value. | is followed by | >>>with <column> <value> (<column> <value> (...)) | delete <table> <id> | delete row specified by id from table. | save <filepath> | save database using current storage type to specified filepath. | load <filepath> | load specific database from file using current storage type. | help | display current message. | path | display storage file path. | exit | exit the program. """ def _tables(self, _): print(self._db.tables()) @runtime_on_any_exception def _all(self, args): if 'labcondition' == args[0]: found_rows = self._db.get( 'Products', column='price', cond=lambda p: int(p.value) > 100 ) print('Rows from DB.Products with price>100:') print('\n'.join(map(str, found_rows))) else: for table_name in args: table_rows = self._db.table(table_name).all_ids() table_pretty_rows = '\n'.join(map(lambda i: 'ID {0} {1}'.format(*i), table_rows)) print('DB.{0}:\n{1}'.format(table_name, table_pretty_rows)) @runtime_on_any_exception def _insert(self, args): table_name, cnt = args table_to_insert = self._db.table(table_name) for cur_cnt in range(int(cnt)): print('Please, enter values for DB.{0} row:'.format(table_name)) row_to_insert = {} for column_name, column_type in table_to_insert.columns.items(): if column_type == 'fk': print('Enter Table for FK: fktable=', end='') fktable = input() print('Enter Id for FK: fkid=', end='') fkid = input() row_to_insert[column_name] = ( {'table': fktable, 'fkid': fkid}, column_type ) else: print('Enter {0}, type={1}: {0}='.format(column_name, column_type), end='') column_value = input() row_to_insert[column_name] = (column_value, column_type) table_to_insert.insert(row_to_insert) @runtime_on_any_exception def _get(self, args): table_name, row_idx = args print('DB.{0} id={1}:'.format(*args)) print(self._db.get(table_name, doc_id=int(row_idx)) or 'Not Found DB.{0}.{1}'.format(*args)) @runtime_on_any_exception def _update(self, args): table_name, row_idx = args table_to_update = self._db.table(table_name) row_to_update = table_to_update.get(row_id=int(row_idx)) colval_to_update = {} print('Updating DB.{0}.{1}: {2}'.format(table_name, row_idx, row_to_update)) for column_name, column_type in table_to_update.columns.items(): if column_type == 'fk': current_fktable = row_to_update[column_name].table print('Change FKTable from <{0}> to value='.format(current_fktable), end='') after_fktable = input() current_fkid = row_to_update[column_name].fk_id print('Change FKId from <{0}> to value='.format(current_fkid), end='') after_fkid = input() colval_to_update[column_name] = { 'table': after_fktable, 'fkid': after_fkid } else: print('Enter value for column {0}, type={1}: {0}='.format(column_name, column_type), end='') column_value = input() colval_to_update[column_name] = column_value table_to_update.update(colval_to_update, [int(row_idx)]) @runtime_on_any_exception def _delete(self, args): table_name, row_id = args print('Deleted item DB.{0}.{1}'.format(*args)) print(self._db.delete(table_name, row_ids=[int(row_id)]) or 'Not Found DB.{0}.{1}'.format(*args)) def _open(self): """Create DB instance and preload default models.""" self._db = DB(self._path) products = self._db.table( 'Products', columns={'name': 'str', 'price': 'int'} ) orders = self._db.table( 'Orders', columns={'product': 'fk', 'client': 'str', 'destination': 'addr'} ) try: products.insert_multiple([ {"name": ("product1", "str"), "price": ("50", "int")}, {"name": ("product2", "str"), "price": ("100", "int")}, {"name": ("product3", "str"), "price": ("200", "int")}, ]) except: pass try: orders.insert_multiple([ { "product": ({'table': 'Products', 'fkid': '1'}, 'fk'), "client": ("honchar", "str"), "destination": ("Kyiv", "addr") }, { "product": ({'table': 'Products', 'fkid': '2'}, 'fk'), "client": ("honchar2", "str"), "destination": ("Kyiv2", "addr") }, { "product": ({'table': 'Products', 'fkid': '3'}, 'fk'), "client": ("honchar3", "str"), "destination": ("Kyiv3", "addr") }, ]) except: pass self.run('help', *()) def _close(self, _): """Close DB instance routine.""" self._db.close() def __enter__(self): self._open() return self def __exit__(self, exc_type, exc_val, exc_tb): self._close(None)
2.515625
3
Ar_Script/past/eg_用户信息用户界面.py
archerckk/PyTest
0
11112
<gh_stars>0 import easygui as g # judge=1 # def judge_null(tmp): # if tmp.isspace()or len(tmp)==0: # return judge==0 # # while 1: # user_info=g.multenterbox(title='账号中心', # msg='【*用户名】为必填项\t【*真实姓名】为必填项\t【*手机号码】为必填项\t【*E-mail】为必填项', # fields=['*用户名','*真实姓名','固定电话','*手机号码','QQ','*E-mail'] # ) # # if judge_null(user_info[0])==0: # g.msgbox(title='提示信息',msg='你输入的用户名为空') # elif judge_null(user_info[1])==0: # g.msgbox(title='提示信息',msg='你输入的真实姓名为空') # elif judge_null(user_info[3])==0: # g.msgbox(title='提示信息',msg='你输入的手机号码为空') # elif judge_null(user_info[5])==0: # g.msgbox(title='提示信息',msg='你输入的E-mail为空') # else: # g.msgbox(title='提示信息',msg='恭喜你注册成功') # break #参考2 title='用户信息填写' msg='请真实填写用户信息' field_list=['*用户名','*真实姓名','固定电话','*手机号码','QQ','*E-mail'] field_value=[] field_value = g.multenterbox(msg,title,field_list) while 1: if field_value==None: break err_msg='' for i in range(len(field_list)): option=field_list[i].strip() if field_value[i].strip()==''and option[0]=='*': err_msg+='【%s】为必填项\n\n'%(field_list[i]) if err_msg=='': break field_value = g.multenterbox(err_msg, title, field_list,field_value) print('用户的资料如下:'+str(field_value))
2.453125
2
examples/pspm_pupil/model_defs.py
fmelinscak/cognibench
3
11113
from cognibench.models import CNBModel from cognibench.capabilities import ContinuousAction, ContinuousObservation from cognibench.continuous import ContinuousSpace from cognibench.models.wrappers import MatlabWrapperMixin class PsPMModel(MatlabWrapperMixin, CNBModel, ContinuousAction, ContinuousObservation): name = "PsPM model" def __init__( self, *args, lib_paths, import_base_path, predict_fn, model_spec, **kwargs ): self.set_action_space(ContinuousSpace()) self.set_observation_space(ContinuousSpace()) def pred(matlab_sess, stimuli): stimuli_copy = dict(stimuli) stimuli_copy.update(model_spec) return matlab_sess.feval(predict_fn, stimuli_copy) MatlabWrapperMixin.__init__( self, lib_paths=lib_paths, import_base_path=import_base_path, predict_fn=pred, ) CNBModel.__init__(self, *args, **kwargs)
1.898438
2
core/layouts/pixel_list.py
TheGentlemanOctopus/oracle
0
11114
from layout import Layout class PixelList(Layout): """ A simple generic layout, just a list of pixels """ def __init__(self, pixels): """ pixels is a list of pixel objects """ self.pixels = pixels
3.28125
3
test/programytest/clients/restful/test_config.py
minhdc/documented-programy
0
11115
import unittest from programy.config.file.yaml_file import YamlConfigurationFile from programy.clients.restful.config import RestConfiguration from programy.clients.events.console.config import ConsoleConfiguration class RestConfigurationTests(unittest.TestCase): def test_init(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" rest: host: 127.0.0.1 port: 5000 debug: false workers: 4 use_api_keys: false api_key_file: apikeys.txt """, ConsoleConfiguration(), ".") rest_config = RestConfiguration("rest") rest_config.load_configuration(yaml, ".") self.assertEqual("127.0.0.1", rest_config.host) self.assertEqual(5000, rest_config.port) self.assertEqual(False, rest_config.debug) self.assertEqual(False, rest_config.use_api_keys) self.assertEqual("apikeys.txt", rest_config.api_key_file) def test_init_no_values(self): yaml = YamlConfigurationFile() self.assertIsNotNone(yaml) yaml.load_from_text(""" rest: """, ConsoleConfiguration(), ".") rest_config = RestConfiguration("rest") rest_config.load_configuration(yaml, ".") self.assertEqual("0.0.0.0", rest_config.host) self.assertEqual(80, rest_config.port) self.assertEqual(False, rest_config.debug) self.assertEqual(False, rest_config.use_api_keys) def test_to_yaml_with_defaults(self): config = RestConfiguration("rest") data = {} config.to_yaml(data, True) self.assertEquals(data['host'], "0.0.0.0") self.assertEquals(data['port'], 80) self.assertEquals(data['debug'], False) self.assertEquals(data['use_api_keys'], False) self.assertEquals(data['api_key_file'], './api.keys') self.assertEquals(data['ssl_cert_file'], './rsa.cert') self.assertEquals(data['ssl_key_file'], './rsa.keys') self.assertEquals(data['bot'], 'bot') self.assertEquals(data['license_keys'], "./config/license.keys") self.assertEquals(data['bot_selector'], "programy.clients.client.DefaultBotSelector") self.assertEquals(data['renderer'], "programy.clients.render.text.TextRenderer")
2.46875
2
Assignments/06.py
zexhan17/Data-Structures-and-Algorithms-using-Python
0
11116
# Write a recursive function to count the number of nodes in a Tree. (first do your self then see code) def count_nodes(self): count = 1 left_count = 0 right_count = 0 if self.left: left_count = self.left.count_nodes() if self.right: right_count = self.right.count_nodes() return count + left_count + right_count Q # 2: '''The height of a tree is the maximum number of levels in the tree. So, a tree with just one node has a height of 1. If the root has children which are leaves, the height of the tree is 2. The height of a TreeNode can be computed recursively using a simple algorithm: The height Of a TreeNode With no children is 1. If it has children the height is: max of height of its two sub-trees + 1. Write a clean, recursive function for the TreeNode class that calculates the height based on the above statement(first do your self then see code) ''' def get_height(self): height = 1 left_height = 0 right_height = 0 if self.left: left_height = self.left.get_height() if self.right: right_height = self.right.get_height() return count + max(left_height, right_height) print(self.val) if self.left.val > self.val or self.right.val < self.val return False
4.3125
4
flask_app.py
mdaeron/clumpycrunch
0
11117
<filename>flask_app.py #! /usr/bin/env python3 # from datetime import datetime # from random import choices # from string import ascii_lowercase from flask import Flask, request, render_template, Response, send_file from flaskext.markdown import Markdown from D47crunch import D47data, pretty_table, make_csv, smart_type from D47crunch import __version__ as vD47crunch import zipfile, io, time from pylab import * from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import base64 from werkzeug.wsgi import FileWrapper from matplotlib import rcParams # rcParams['backend'] = 'Agg' # rcParams['interactive'] = False rcParams['font.family'] = 'Helvetica' rcParams['font.sans-serif'] = 'Helvetica' rcParams['font.size'] = 10 rcParams['mathtext.fontset'] = 'custom' rcParams['mathtext.rm'] = 'sans' rcParams['mathtext.bf'] = 'sans:bold' rcParams['mathtext.it'] = 'sans:italic' rcParams['mathtext.cal'] = 'sans:italic' rcParams['mathtext.default'] = 'rm' rcParams['xtick.major.size'] = 4 rcParams['xtick.major.width'] = 1 rcParams['ytick.major.size'] = 4 rcParams['ytick.major.width'] = 1 rcParams['axes.grid'] = False rcParams['axes.linewidth'] = 1 rcParams['grid.linewidth'] = .75 rcParams['grid.linestyle'] = '-' rcParams['grid.alpha'] = .15 rcParams['savefig.dpi'] = 150 __author__ = '<NAME>' __contact__ = '<EMAIL>' __copyright__ = 'Copyright (c) 2020 <NAME>' __license__ = 'Modified BSD License - https://opensource.org/licenses/BSD-3-Clause' __date__ = '2020-04-22' __version__ = '2.1.dev2' rawdata_input_str = '''UID\tSession\tSample\td45\td46\td47\tNominal_d13C_VPDB\tNominal_d18O_VPDB A01\tSession01\tETH-1\t5.795017\t11.627668\t16.893512\t2.02\t-2.19 A02\tSession01\tIAEA-C1\t6.219070\t11.491072\t17.277490 A03\tSession01\tETH-2\t-6.058681\t-4.817179\t-11.635064\t-10.17\t-18.69 A04\tSession01\tIAEA-C2\t-3.861839\t4.941839\t0.606117 A05\tSession01\tETH-3\t5.543654\t12.052277\t17.405548\t1.71\t-1.78 A06\tSession01\tMERCK\t-35.929352\t-2.087501\t-39.548484 A07\tSession01\tETH-4\t-6.222218\t-5.194170\t-11.944111 A08\tSession01\tETH-2\t-6.067055\t-4.877104\t-11.699265\t-10.17\t-18.69 A09\tSession01\tMERCK\t-35.930739\t-2.080798\t-39.545632 A10\tSession01\tETH-1\t5.788207\t11.559104\t16.801908\t2.02\t-2.19 A11\tSession01\tETH-4\t-6.217508\t-5.221407\t-11.987503 A12\tSession01\tIAEA-C2\t-3.876921\t4.868892\t0.521845 A13\tSession01\tETH-3\t5.539840\t12.013444\t17.368631\t1.71\t-1.78 A14\tSession01\tIAEA-C1\t6.219046\t11.447846\t17.234280 A15\tSession01\tMERCK\t-35.932060\t-2.088659\t-39.531627 A16\tSession01\tETH-3\t5.516658\t11.978320\t17.295740\t1.71\t-1.78 A17\tSession01\tETH-4\t-6.223370\t-5.253980\t-12.025298 A18\tSession01\tETH-2\t-6.069734\t-4.868368\t-11.688559\t-10.17\t-18.69 A19\tSession01\tIAEA-C1\t6.213642\t11.465109\t17.244547 A20\tSession01\tETH-1\t5.789982\t11.535603\t16.789811\t2.02\t-2.19 A21\tSession01\tETH-4\t-6.205703\t-5.144529\t-11.909160 A22\tSession01\tIAEA-C1\t6.212646\t11.406548\t17.187214 A23\tSession01\tETH-3\t5.531413\t11.976697\t17.332700\t1.71\t-1.78 A24\tSession01\tMERCK\t-35.926347\t-2.124579\t-39.582201 A25\tSession01\tETH-1\t5.786979\t11.527864\t16.775547\t2.02\t-2.19 A26\tSession01\tIAEA-C2\t-3.866505\t4.874630\t0.525332 A27\tSession01\tETH-2\t-6.076302\t-4.922424\t-11.753283\t-10.17\t-18.69 A28\tSession01\tIAEA-C2\t-3.878438\t4.818588\t0.467595 A29\tSession01\tETH-3\t5.546458\t12.133931\t17.501646\t1.71\t-1.78 A30\tSession01\tETH-1\t5.802916\t11.642685\t16.904286\t2.02\t-2.19 A31\tSession01\tETH-2\t-6.069274\t-4.847919\t-11.677722\t-10.17\t-18.69 A32\tSession01\tETH-3\t5.523018\t12.007363\t17.362080\t1.71\t-1.78 A33\tSession01\tETH-1\t5.802333\t11.616032\t16.884255\t2.02\t-2.19 A34\tSession01\tETH-3\t5.537375\t12.000263\t17.350856\t1.71\t-1.78 A35\tSession01\tETH-2\t-6.060713\t-4.893088\t-11.728465\t-10.17\t-18.69 A36\tSession01\tETH-3\t5.532342\t11.990022\t17.342273\t1.71\t-1.78 A37\tSession01\tETH-3\t5.533622\t11.980853\t17.342245\t1.71\t-1.78 A38\tSession01\tIAEA-C2\t-3.867587\t4.893554\t0.540404 A39\tSession01\tIAEA-C1\t6.201760\t11.406628\t17.189625 A40\tSession01\tETH-1\t5.802150\t11.563414\t16.836189\t2.02\t-2.19 A41\tSession01\tETH-2\t-6.068598\t-4.897545\t-11.722343\t-10.17\t-18.69 A42\tSession01\tMERCK\t-35.928359\t-2.098440\t-39.577150 A43\tSession01\tETH-4\t-6.219175\t-5.168031\t-11.936923 A44\tSession01\tIAEA-C2\t-3.871671\t4.871517\t0.518290 B01\tSession02\tETH-1\t5.800180\t11.640916\t16.939044\t2.02\t-2.19 B02\tSession02\tETH-1\t5.799584\t11.631297\t16.917656\t2.02\t-2.19 B03\tSession02\tIAEA-C1\t6.225135\t11.512637\t17.335876 B04\tSession02\tETH-2\t-6.030415\t-4.746444\t-11.525506\t-10.17\t-18.69 B05\tSession02\tIAEA-C2\t-3.837017\t4.992780\t0.675292 B06\tSession02\tETH-3\t5.536997\t12.048918\t17.420228\t1.71\t-1.78 B07\tSession02\tMERCK\t-35.928379\t-2.105615\t-39.594573 B08\tSession02\tETH-4\t-6.218801\t-5.185168\t-11.964407 B09\tSession02\tETH-2\t-6.068197\t-4.840037\t-11.686296\t-10.17\t-18.69 B10\tSession02\tMERCK\t-35.926951\t-2.071047\t-39.546767 B11\tSession02\tETH-1\t5.782634\t11.571818\t16.835185\t2.02\t-2.19 B12\tSession02\tETH-2\t-6.070168\t-4.877700\t-11.703876\t-10.17\t-18.69 B13\tSession02\tETH-4\t-6.214873\t-5.190550\t-11.967040 B14\tSession02\tIAEA-C2\t-3.853550\t4.919425\t0.584634 B15\tSession02\tETH-3\t5.522265\t12.011737\t17.368407\t1.71\t-1.78 B16\tSession02\tIAEA-C1\t6.219374\t11.447014\t17.264258 B17\tSession02\tMERCK\t-35.927733\t-2.103033\t-39.603494 B18\tSession02\tETH-3\t5.527002\t11.984062\t17.332660\t1.71\t-1.78 B19\tSession02\tIAEA-C2\t-3.850358\t4.889230\t0.562794 B20\tSession02\tETH-4\t-6.222398\t-5.263817\t-12.033650 B21\tSession02\tETH-3\t5.525478\t11.970096\t17.340498\t1.71\t-1.78 B22\tSession02\tETH-2\t-6.070129\t-4.941487\t-11.773824\t-10.17\t-18.69 B23\tSession02\tIAEA-C1\t6.217001\t11.434152\t17.232308 B24\tSession02\tETH-1\t5.793421\t11.533191\t16.810838\t2.02\t-2.19 B25\tSession02\tETH-4\t-6.217740\t-5.198048\t-11.977179 B26\tSession02\tIAEA-C1\t6.216912\t11.425200\t17.234224 B27\tSession02\tETH-3\t5.522238\t11.932174\t17.286903\t1.71\t-1.78 B28\tSession02\tMERCK\t-35.914404\t-2.133955\t-39.614612 B29\tSession02\tETH-1\t5.784156\t11.517244\t16.786548\t2.02\t-2.19 B30\tSession02\tIAEA-C2\t-3.852750\t4.884339\t0.551587 B31\tSession02\tETH-2\t-6.068631\t-4.924103\t-11.764507\t-10.17\t-18.69 B32\tSession02\tETH-4\t-6.220238\t-5.231375\t-12.009300 B33\tSession02\tIAEA-C2\t-3.855245\t4.866571\t0.534914 B34\tSession02\tETH-1\t5.788790\t11.544306\t16.809117\t2.02\t-2.19 B35\tSession02\tMERCK\t-35.935017\t-2.173682\t-39.664046 B36\tSession02\tETH-3\t5.518320\t11.955048\t17.300668\t1.71\t-1.78 B37\tSession02\tETH-1\t5.790564\t11.521174\t16.781304\t2.02\t-2.19 B38\tSession02\tETH-4\t-6.218809\t-5.205256\t-11.979998 B39\tSession02\tIAEA-C1\t6.204774\t11.391335\t17.181310 B40\tSession02\tETH-2\t-6.076424\t-4.967973\t-11.815466\t-10.17\t-18.69 C01\tSession03\tETH-3\t5.541868\t12.129615\t17.503738\t1.71\t-1.78 C02\tSession03\tETH-3\t5.534395\t12.034601\t17.391274\t1.71\t-1.78 C03\tSession03\tETH-1\t5.797568\t11.563575\t16.857871\t2.02\t-2.19 C04\tSession03\tETH-3\t5.529415\t11.969512\t17.342673\t1.71\t-1.78 C05\tSession03\tETH-1\t5.794026\t11.526540\t16.806934\t2.02\t-2.19 C06\tSession03\tETH-3\t5.527210\t11.937462\t17.294015\t1.71\t-1.78 C07\tSession03\tIAEA-C1\t6.220521\t11.430197\t17.242458 C08\tSession03\tETH-2\t-6.064061\t-4.900852\t-11.732976\t-10.17\t-18.69 C09\tSession03\tIAEA-C2\t-3.846482\t4.889242\t0.558395 C10\tSession03\tETH-1\t5.789644\t11.520663\t16.795837\t2.02\t-2.19 C11\tSession03\tETH-4\t-6.219385\t-5.258604\t-12.036476 C12\tSession03\tMERCK\t-35.936631\t-2.161769\t-39.693775 C13\tSession03\tETH-2\t-6.076357\t-4.939912\t-11.803553\t-10.17\t-18.69 C14\tSession03\tIAEA-C2\t-3.862518\t4.850015\t0.499777 C15\tSession03\tETH-3\t5.515822\t11.928316\t17.287739\t1.71\t-1.78 C16\tSession03\tETH-4\t-6.216625\t-5.252914\t-12.033781 C17\tSession03\tETH-1\t5.792540\t11.537788\t16.801906\t2.02\t-2.19 C18\tSession03\tIAEA-C1\t6.218853\t11.447394\t17.270859 C19\tSession03\tETH-2\t-6.070107\t-4.944520\t-11.806885\t-10.17\t-18.69 C20\tSession03\tMERCK\t-35.935001\t-2.155577\t-39.675070 C21\tSession03\tETH-3\t5.542309\t12.082338\t17.471951\t1.71\t-1.78 C22\tSession03\tETH-4\t-6.209017\t-5.137393\t-11.920935 C23\tSession03\tETH-1\t5.796781\t11.621197\t16.905496\t2.02\t-2.19 C24\tSession03\tMERCK\t-35.926449\t-2.053921\t-39.576918 C25\tSession03\tETH-2\t-6.057158\t-4.797641\t-11.644824\t-10.17\t-18.69 C26\tSession03\tIAEA-C1\t6.221982\t11.501725\t17.321709 C27\tSession03\tETH-3\t5.535162\t12.023486\t17.396560\t1.71\t-1.78 C28\tSession03\tIAEA-C2\t-3.836934\t4.984196\t0.665651 C29\tSession03\tETH-3\t5.531331\t11.991300\t17.353622\t1.71\t-1.78 C30\tSession03\tIAEA-C2\t-3.844008\t4.926554\t0.601156 C31\tSession03\tETH-2\t-6.063163\t-4.907454\t-11.765065\t-10.17\t-18.69 C32\tSession03\tMERCK\t-35.941566\t-2.163022\t-39.704731 C33\tSession03\tETH-3\t5.523894\t11.992718\t17.363902\t1.71\t-1.78 C34\tSession03\tIAEA-C1\t6.220801\t11.462090\t17.282153 C35\tSession03\tETH-1\t5.794369\t11.563017\t16.845673\t2.02\t-2.19 C36\tSession03\tETH-4\t-6.221257\t-5.272969\t-12.055444 C37\tSession03\tETH-3\t5.517832\t11.957180\t17.312487\t1.71\t-1.78 C38\tSession03\tETH-2\t-6.053330\t-4.909476\t-11.740852\t-10.17\t-18.69 C39\tSession03\tIAEA-C1\t6.217139\t11.440085\t17.244787 C40\tSession03\tETH-1\t5.794091\t11.541948\t16.826158\t2.02\t-2.19 C41\tSession03\tIAEA-C2\t-3.803466\t4.894953\t0.624184 C42\tSession03\tETH-3\t5.513788\t11.933062\t17.286883\t1.71\t-1.78 C43\tSession03\tETH-1\t5.793334\t11.569668\t16.844535\t2.02\t-2.19 C44\tSession03\tETH-2\t-6.064928\t-4.935031\t-11.786336\t-10.17\t-18.69 C45\tSession03\tETH-4\t-6.216796\t-5.300373\t-12.075033 C46\tSession03\tETH-3\t5.521772\t11.933713\t17.283775\t1.71\t-1.78 C47\tSession03\tMERCK\t-35.937762\t-2.181553\t-39.739636 D01\tSession04\tETH-4\t-6.218867\t-5.242334\t-12.032129 D02\tSession04\tIAEA-C1\t6.218458\t11.435622\t17.238776 D03\tSession04\tETH-3\t5.522006\t11.946540\t17.300601\t1.71\t-1.78 D04\tSession04\tMERCK\t-35.931765\t-2.175265\t-39.716152 D05\tSession04\tETH-1\t5.786884\t11.560397\t16.823187\t2.02\t-2.19 D06\tSession04\tIAEA-C2\t-3.846071\t4.861980\t0.534465 D07\tSession04\tETH-2\t-6.072653\t-4.917987\t-11.786215\t-10.17\t-18.69 D08\tSession04\tETH-3\t5.516592\t11.923729\t17.275641\t1.71\t-1.78 D09\tSession04\tETH-1\t5.789889\t11.531354\t16.804221\t2.02\t-2.19 D10\tSession04\tIAEA-C2\t-3.845074\t4.865635\t0.546284 D11\tSession04\tETH-1\t5.795006\t11.507829\t16.772751\t2.02\t-2.19 D12\tSession04\tETH-1\t5.791371\t11.540606\t16.822704\t2.02\t-2.19 D13\tSession04\tETH-2\t-6.074029\t-4.937379\t-11.786614\t-10.17\t-18.69 D14\tSession04\tETH-4\t-6.216977\t-5.273352\t-12.057294 D15\tSession04\tIAEA-C1\t6.214304\t11.412869\t17.227005 D16\tSession04\tETH-2\t-6.071021\t-4.966406\t-11.812116\t-10.17\t-18.69 D17\tSession04\tETH-3\t5.543181\t12.065648\t17.455042\t1.71\t-1.78 D18\tSession04\tETH-1\t5.805793\t11.632212\t16.937561\t2.02\t-2.19 D19\tSession04\tIAEA-C1\t6.230425\t11.518038\t17.342943 D20\tSession04\tETH-2\t-6.049292\t-4.811109\t-11.639895\t-10.17\t-18.69 D21\tSession04\tIAEA-C2\t-3.829436\t4.967992\t0.665451 D22\tSession04\tETH-3\t5.538827\t12.064780\t17.438156\t1.71\t-1.78 D23\tSession04\tMERCK\t-35.935604\t-2.092229\t-39.632228 D24\tSession04\tETH-4\t-6.215430\t-5.166894\t-11.939419 D25\tSession04\tETH-2\t-6.068214\t-4.868420\t-11.716099\t-10.17\t-18.69 D26\tSession04\tMERCK\t-35.918898\t-2.041585\t-39.566777 D27\tSession04\tETH-1\t5.786924\t11.584138\t16.861248\t2.02\t-2.19 D28\tSession04\tETH-2\t-6.062115\t-4.820423\t-11.664703\t-10.17\t-18.69 D29\tSession04\tETH-4\t-6.210819\t-5.160997\t-11.943417 D30\tSession04\tIAEA-C2\t-3.842542\t4.937635\t0.603831 D31\tSession04\tETH-3\t5.527648\t11.985083\t17.353603\t1.71\t-1.78 D32\tSession04\tIAEA-C1\t6.221429\t11.481788\t17.284825 D33\tSession04\tMERCK\t-35.922066\t-2.113682\t-39.642962 D34\tSession04\tETH-3\t5.521955\t11.989323\t17.345179\t1.71\t-1.78 D35\tSession04\tIAEA-C2\t-3.838229\t4.937180\t0.617586 D36\tSession04\tETH-4\t-6.215638\t-5.221584\t-11.999819 D37\tSession04\tETH-2\t-6.067508\t-4.893477\t-11.754488\t-10.17\t-18.69 D38\tSession04\tIAEA-C1\t6.214580\t11.440629\t17.254051''' app = Flask(__name__) Markdown(app, extensions = [ 'markdown.extensions.tables', # 'pymdownx.magiclink', # 'pymdownx.betterem', 'pymdownx.highlight', 'pymdownx.tilde', 'pymdownx.caret', # 'pymdownx.emoji', # 'pymdownx.tasklist', 'pymdownx.superfences' ]) default_payload = { 'display_results': False, 'error_msg': '', 'rawdata_input_str': rawdata_input_str, 'o17_R13_VPDB': 0.01118, 'o17_R18_VSMOW': 0.0020052, 'o17_R17_VSMOW': 0.00038475, 'o17_lambda': 0.528, 'd13C_stdz_setting': 'd13C_stdz_setting_2pt', 'd18O_stdz_setting': 'd18O_stdz_setting_2pt', 'wg_setting': 'wg_setting_fromsamples', # 'wg_setting_fromsample_samplename': 'ETH-3', # 'wg_setting_fromsample_d13C': 1.71, # 'wg_setting_fromsample_d18O': -1.78, 'acidfrac_setting': 1.008129, 'rf_input_str': '0.258\tETH-1\n0.256\tETH-2\n0.691\tETH-3', 'stdz_method_setting': 'stdz_method_setting_pooled', } @app.route('/faq/') def faq(): with open(f'{app.root_path}/faq.md') as fid: md = fid.read() return render_template('faq.html', md = md, vD47crunch = vD47crunch) @app.route('/readme/') def readme(): with open(f'{app.root_path}/README.md') as fid: md = fid.read() headless_md = md[md.find('\n'):] return render_template('readme.html', md = headless_md, vD47crunch = vD47crunch) @app.route('/', methods = ['GET', 'POST']) def main(): if request.method == 'GET': return start() else: if request.form['action'] == 'Process': return proceed() elif request.form['action'] == 'Download zipped results': return zipresults() def start(): payload = default_payload.copy() # payload['token'] = datetime.now().strftime('%y%m%d') + ''.join(choices(ascii_lowercase, k=5)) return render_template('main.html', payload = payload, vD47crunch = vD47crunch) def proceed(): payload = dict(request.form) data = D47data() if payload['d13C_stdz_setting'] == 'd13C_stdz_setting_2pt': data.d13C_STANDARDIZATION_METHOD = '2pt' elif payload['d13C_stdz_setting'] == 'd13C_stdz_setting_1pt': data.d13C_STANDARDIZATION_METHOD = '1pt' elif payload['d13C_stdz_setting'] == 'd13C_stdz_setting_none': data.d13C_STANDARDIZATION_METHOD = 'none' if payload['d18O_stdz_setting'] == 'd18O_stdz_setting_2pt': data.d18O_STANDARDIZATION_METHOD = '2pt' elif payload['d18O_stdz_setting'] == 'd18O_stdz_setting_1pt': data.d18O_STANDARDIZATION_METHOD = '1pt' elif payload['d18O_stdz_setting'] == 'd18O_stdz_setting_none': data.d18O_STANDARDIZATION_METHOD = 'none' anchors = [l.split('\t') for l in payload['rf_input_str'].splitlines() if '\t' in l] data.Nominal_D47 = {l[1]: float(l[0]) for l in anchors} try: data.R13_VPDB = float(payload['o17_R13_VPDB']) except: payload['error_msg'] = 'Check the value of R13_VPDB in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.R18_VSMOW = float(payload['o17_R18_VSMOW']) except: payload['error_msg'] = 'Check the value of R18_VSMOW in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.R17_VSMOW = float(payload['o17_R17_VSMOW']) except: payload['error_msg'] = 'Check the value of R17_VSMOW in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.lambda_17 = float(payload['o17_lambda']) except: payload['error_msg'] = 'Check the value of λ in oxygen-17 correction settings.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) data.input(payload['rawdata_input_str']) # try: # data.input(payload['rawdata_input_str'], '\t') # except: # payload['error_msg'] = 'Raw data input failed for some reason.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) for r in data: for k in ['UID', 'Sample', 'Session', 'd45', 'd46', 'd47']: if k not in r or r[k] == '': payload['error_msg'] = f'Analysis "{r["UID"]}" is missing field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) for k in ['d45', 'd46', 'd47']: if not isinstance(r[k], (int, float)): payload['error_msg'] = f'Analysis "{r["UID"]}" should have a valid number for field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_fromsamples': # if payload['wg_setting_fromsample_samplename'] == '': # payload['error_msg'] = 'Empty sample name in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # wg_setting_fromsample_samplename = payload['wg_setting_fromsample_samplename'] # # for s in data.sessions: # if wg_setting_fromsample_samplename not in [r['Sample'] for r in data.sessions[s]['data']]: # payload['error_msg'] = f'Sample name from WG settings ("{wg_setting_fromsample_samplename}") not found in session "{s}".' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # try: # wg_setting_fromsample_d13C = float(payload['wg_setting_fromsample_d13C']) # except: # payload['error_msg'] = 'Check the δ13C value in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) # # try: # wg_setting_fromsample_d18O = float(payload['wg_setting_fromsample_d18O']) # except: # payload['error_msg'] = 'Check the δ18O value in WG settings.' # return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: acidfrac = float(payload['acidfrac_setting']) except: payload['error_msg'] = 'Check the acid fractionation value.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if acidfrac == 0: payload['error_msg'] = 'Acid fractionation value should be greater than zero.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_fromsamples': data.Nominal_d13C_VPDB = {} data.Nominal_d18O_VPDB = {} for r in data: if 'Nominal_d13C_VPDB' in r: if r['Sample'] in data.Nominal_d13C_VPDB: if data.Nominal_d13C_VPDB[r['Sample']] != r['Nominal_d13C_VPDB']: payload['error_msg'] = f"Inconsistent <span class='field'>Nominal_d13C_VPDB</span> value for {r['Sample']} (analysis: {r['UID']})." return render_template('main.html', payload = payload, vD47crunch = vD47crunch) else: data.Nominal_d13C_VPDB[r['Sample']] = r['Nominal_d13C_VPDB'] if 'Nominal_d18O_VPDB' in r: if r['Sample'] in data.Nominal_d18O_VPDB: if data.Nominal_d18O_VPDB[r['Sample']] != r['Nominal_d18O_VPDB']: payload['error_msg'] = f"Inconsistent <span class='field'>Nominal_d18O_VPDB</span> value for {r['Sample']} (analysis {r['UID']})." return render_template('main.html', payload = payload, vD47crunch = vD47crunch) else: data.Nominal_d18O_VPDB[r['Sample']] = r['Nominal_d18O_VPDB'] try: data.wg(a18_acid = acidfrac) except: payload['error_msg'] = 'WG computation failed for some reason.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) if payload['wg_setting'] == 'wg_setting_explicit': for r in data: for k in ['d13Cwg_VPDB', 'd18Owg_VSMOW']: if k not in r: payload['error_msg'] = f'Analysis "{r["UID"]}" is missing field "{k}".' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) try: data.crunch() except: payload['error_msg'] = 'Crunching step failed for some reason.' return render_template('main.html', payload = payload, vD47crunch = vD47crunch) method = { 'stdz_method_setting_pooled': 'pooled', 'stdz_method_setting_indep_sessions': 'indep_sessions', }[payload['stdz_method_setting']] data.standardize( consolidate_tables = False, consolidate_plots = False, method = method) csv = 'Session,a,b,c,va,vb,vc,covab,covac,covbc,Xa,Ya,Xu,Yu' for session in data.sessions: s = data.sessions[session] Ga = [r for r in s['data'] if r['Sample'] in data.anchors] Gu = [r for r in s['data'] if r['Sample'] in data.unknowns] csv += f"\n{session},{s['a']},{s['b']},{s['c']},{s['CM'][0,0]},{s['CM'][1,1]},{s['CM'][2,2]},{s['CM'][0,1]},{s['CM'][0,2]},{s['CM'][1,2]},{';'.join([str(r['d47']) for r in Ga])},{';'.join([str(r['D47']) for r in Ga])},{';'.join([str(r['d47']) for r in Gu])},{';'.join([str(r['D47']) for r in Gu])}" # payload['error_msg'] = 'Foo bar.' # return str(payload).replace(', ','\n') payload['display_results'] = True payload['csv_of_sessions'] = csv summary = data.summary(save_to_file = False, print_out = False) tosessions = data.table_of_sessions(save_to_file = False, print_out = False) payload['summary'] = pretty_table(summary, header = 0) payload['summary_rows'] = len(payload['summary'].splitlines())+2 payload['summary_cols'] = len(payload['summary'].splitlines()[0]) payload['table_of_sessions'] = pretty_table(tosessions) payload['table_of_sessions_rows'] = len(payload['table_of_sessions'].splitlines())+1 payload['table_of_sessions_cols'] = len(payload['table_of_sessions'].splitlines()[0]) payload['table_of_sessions_csv'] = make_csv(tosessions) tosamples = data.table_of_samples(save_to_file = False, print_out = False) payload['table_of_samples'] = pretty_table(tosamples) payload['table_of_samples'] = payload['table_of_samples'][:] + 'NB: d18O_VSMOW is the composition of the analyzed CO2.' payload['table_of_samples_rows'] = len(payload['table_of_samples'].splitlines()) payload['table_of_samples_cols'] = len(payload['table_of_samples'].splitlines()[0])+1 payload['table_of_samples_csv'] = make_csv(tosamples) toanalyses = data.table_of_analyses(save_to_file = False, print_out = False) payload['table_of_analyses'] = pretty_table(toanalyses) payload['table_of_analyses_rows'] = len(payload['table_of_analyses'].splitlines())+1 payload['table_of_analyses_cols'] = len(payload['table_of_analyses'].splitlines()[0]) payload['table_of_analyses_csv'] = make_csv(toanalyses) covars = "\n\nCOVARIANCE BETWEEN SAMPLE Δ47 VALUES:\n\n" txt = [['Sample #1', 'Sample #2', 'Covariance', 'Correlation']] unknowns = [k for k in data.unknowns] for k, s1 in enumerate(unknowns): for s2 in unknowns[k+1:]: txt += [[ s1, s2, f"{data.sample_D47_covar(s1,s2):.4e}", f"{data.sample_D47_covar(s1,s2)/data.samples[s1]['SE_D47']/data.samples[s2]['SE_D47']:.6f}", ]] covars += pretty_table(txt, align = '<<>>') payload['report'] = f"Report generated on {time.asctime()}\nClumpyCrunch v{__version__} using D47crunch v{vD47crunch}" payload['report'] += "\n\nOXYGEN-17 CORRECTION PARAMETERS:\n" + pretty_table([['R13_VPDB', 'R18_VSMOW', 'R17_VSMOW', 'lambda_17'], [payload['o17_R13_VPDB'], payload['o17_R18_VSMOW'], payload['o17_R17_VSMOW'], payload['o17_lambda']]], align = '<<<<') if payload['wg_setting'] == 'wg_setting_fromsample': payload['report'] += f"\n\nWG compositions constrained by sample {wg_setting_fromsample_samplename} with:" payload['report'] += f"\n δ13C_VPDB = {wg_setting_fromsample_d13C}" payload['report'] += f"\n δ18O_VPDB = {wg_setting_fromsample_d18O}" payload['report'] += f"\n(18O/16O) AFF = {wg_setting_fromsample_acidfrac}\n" elif payload['wg_setting'] == 'wg_setting_explicit': payload['report'] += f"\n\nWG compositions specified by user.\n" payload['report'] += f"\n\nSUMMARY:\n{payload['summary']}" payload['report'] += f"\n\nSAMPLES:\n{payload['table_of_samples']}\n" payload['report'] += f"\n\nSESSIONS:\n{payload['table_of_sessions']}" payload['report'] += f"\n\nANALYSES:\n{payload['table_of_analyses']}" payload['report'] += covars txt = payload['csv_of_sessions'] txt = [[x.strip() for x in l.split(',')] for l in txt.splitlines() if l.strip()] sessions = [{k: smart_type(v) for k,v in zip(txt[0], l)} for l in txt[1:]] payload['plots'] = [] for s in sessions: s['Xa'] = [float(x) for x in s['Xa'].split(';')] s['Ya'] = [float(x) for x in s['Ya'].split(';')] s['Xu'] = [float(x) for x in s['Xu'].split(';')] s['Yu'] = [float(x) for x in s['Yu'].split(';')] for s in sessions: fig = figure(figsize = (3,3)) subplots_adjust(.2,.15,.95,.9) plot_session(s) pngImage = io.BytesIO() FigureCanvas(fig).print_png(pngImage) pngImageB64String = "data:image/png;base64," pngImageB64String += base64.b64encode(pngImage.getvalue()).decode('utf8') payload['plots'] += [pngImageB64String] close(fig) return(render_template('main.html', payload = payload, vD47crunch = vD47crunch)) # @app.route("/csv/<foo>/<filename>", methods = ['POST']) # def get_file(foo, filename): # payload = dict(request.form) # return Response( # payload[foo], # mimetype='text/plain', # headers={'Content-Disposition': f'attachment;filename="{filename}"'} # ) def normalization_error(a, b, c, CM, d47, D47): V = array([-D47, -d47, -1]) /a return float((V @ CM @ V.T) ** .5) def zipresults(): payload = dict(request.form) # return str(payload).replace(', ','\n') mem = io.BytesIO() with zipfile.ZipFile(mem, 'w') as zf: for k, filename in [ ('report', 'report.txt'), ('table_of_sessions_csv', 'csv/sessions.csv'), ('table_of_samples_csv', 'csv/samples.csv'), ('table_of_analyses_csv', 'csv/analyses.csv'), ]: data = zipfile.ZipInfo(f'/{filename}') data.date_time = time.localtime(time.time())[:6] data.compress_type = zipfile.ZIP_DEFLATED zf.writestr(data, payload[k]) txt = payload['csv_of_sessions'] txt = [[x.strip() for x in l.split(',')] for l in txt.splitlines() if l.strip()] sessions = [{k: smart_type(v) for k,v in zip(txt[0], l)} for l in txt[1:]] for s in sessions: s['Xa'] = [float(x) for x in s['Xa'].split(';')] s['Ya'] = [float(x) for x in s['Ya'].split(';')] s['Xu'] = [float(x) for x in s['Xu'].split(';')] s['Yu'] = [float(x) for x in s['Yu'].split(';')] X = [x for s in sessions for k in ['Xa', 'Xu'] for x in s[k]] Y = [y for s in sessions for k in ['Ya', 'Yu'] for y in s[k]] xmin, xmax, ymin, ymax = [min(X), max(X), min(Y), max(Y)] dx = xmax - xmin dy = ymax - ymin xmin -= dx/20 xmax += dx/20 ymin -= dy/20 ymax += dy/20 for s in sessions: fig = figure(figsize = (5,5)) subplots_adjust(.15,.15,.9,.9) plot_session(s, [xmin, xmax, ymin, ymax]) buf = io.BytesIO() savefig(buf, format = 'pdf') close(fig) zf.writestr(f"/sessions/{s['Session']}.pdf", buf.getvalue()) mem.seek(0) response = Response(FileWrapper(mem), mimetype="application/zip", direct_passthrough=True) response.headers['Content-Disposition'] = 'attachment; filename=ClumpyCrunch.zip' return response def plot_session(s, axislimits = []): kw = dict(mfc = 'None', mec = (.9,0,0), mew = .75, ms = 4) plot(s['Xa'], s['Ya'], 'x', **kw) kw['mec'] = 'k' plot(s['Xu'], s['Yu'], 'x', **kw) if axislimits: xmin, xmax, ymin, ymax = axislimits else: xmin, xmax, ymin, ymax = axis() XI,YI = meshgrid(linspace(xmin, xmax), linspace(ymin, ymax)) CM = array([[s['va'], s['covab'], s['covac']], [s['covab'], s['vb'], s['covbc']], [s['covac'], s['covbc'], s['vc']]]) a, b, c = s['a'], s['b'], s['c'] SI = array([[normalization_error(a, b, c, CM, xi, yi) for xi in XI[0,:]] for yi in YI[:,0]]) rng = SI.max() - SI.min() if rng <= 0.01: cinterval = 0.001 elif rng <= 0.03: cinterval = 0.004 elif rng <= 0.1: cinterval = 0.01 elif rng <= 0.3: cinterval = 0.03 else: cinterval = 0.1 cval = [ceil(SI.min() / .001) * .001 + k * cinterval for k in range(int(ceil((SI.max() - SI.min()) / cinterval)))] cs = contour(XI, YI, SI, cval, colors = 'r', alpha = .5, linewidths = .75) clabel(cs) axis([xmin, xmax, ymin, ymax]) xlabel('δ$_{47}$ (‰ WG)') ylabel('Δ$_{47}$ (‰)') title(s['Session']) grid(alpha = .15)
2.15625
2
rubric_sampling/experiments/train_rnn.py
YangAzure/rubric-sampling-public
20
11118
r"""Train a neural network to predict feedback for a program string.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import sys import random import numpy as np from tqdm import tqdm import torch import torch.optim as optim import torch.utils.data as data import torch.nn.functional as F from .models import ProgramRNN from .utils import AverageMeter, save_checkpoint, merge_args_with_dict from .datasets import load_dataset from .config import default_hyperparams from .rubric_utils.load_params import get_label_params, get_max_seq_len if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('dataset', type=str, help='annotated|synthetic') parser.add_argument('problem_id', type=int, help='1|2|3|4|5|6|7|8') parser.add_argument('out_dir', type=str, help='where to save outputs') parser.add_argument('--cuda', action='store_true', default=False, help='enables CUDA training [default: False]') args = parser.parse_args() args.cuda = args.cuda and torch.cuda.is_available() merge_args_with_dict(args, default_hyperparams) device = torch.device('cuda' if args.cuda else 'cpu') args.max_seq_len = get_max_seq_len(args.problem_id) label_dim, _, _, _, _ = get_label_params(args.problem_id) # reproducibility torch.manual_seed(args.seed) np.random.seed(args.seed) if not os.path.isdir(args.out_dir): os.makedirs(args.out_dir) train_dataset = load_dataset( args.dataset, args.problem_id, 'train', vocab=None, max_seq_len=args.max_seq_len, min_occ=args.min_occ) val_dataset = load_dataset( args.dataset, args.problem_id, 'val', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) test_dataset = load_dataset(args.dataset, args.problem_id, 'test', vocab=train_dataset.vocab, max_seq_len=args.max_seq_len, min_occ=args.min_occ) train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) val_loader = data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False) test_loader = data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False) model = ProgramRNN( args.z_dim, label_dim, train_dataset.vocab_size, embedding_dim=args.embedding_dim, hidden_dim=args.hidden_dim, num_layers=args.num_layers) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) def train(epoch): model.train() loss_meter = AverageMeter() acc_meter = AverageMeter() for batch_idx, (seq, length, label, _) in enumerate(train_loader): assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) optimizer.zero_grad() label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss.backward() loss_meter.update(loss.item(), batch_size) optimizer.step() acc = np.mean(torch.round(label_out).detach().numpy() == label.detach().numpy()) acc_meter.update(acc, batch_size) if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.4f}'.format( epoch, batch_idx * batch_size, len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss_meter.avg, acc_meter.avg)) print('====> Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg def test(epoch, loader, name='Test'): model.eval() loss_meter = AverageMeter() acc_meter = AverageMeter() with torch.no_grad(): with tqdm(total=len(loader)) as pbar: for (seq, length, label, _) in loader: assert label is not None batch_size = len(seq) seq = seq.to(device) length = length.to(device) label = label.to(device) label_out = model(seq, length) loss = F.binary_cross_entropy(label_out, label) loss_meter.update(loss.item(), batch_size) acc = np.mean(torch.round(label_out.cpu()).numpy() == label.cpu().numpy()) acc_meter.update(acc, batch_size) pbar.update() print('====> {} Epoch: {}\tLoss: {:.4f}\tAccuracy: {:.4f}'.format( name, epoch, loss_meter.avg, acc_meter.avg)) return loss_meter.avg, acc_meter.avg best_loss = sys.maxint track_train_loss = np.zeros(args.epochs) track_val_loss = np.zeros(args.epochs) track_test_loss = np.zeros(args.epochs) track_train_acc = np.zeros(args.epochs) track_val_acc = np.zeros(args.epochs) track_test_acc = np.zeros(args.epochs) for epoch in xrange(1, args.epochs + 1): train_loss, train_acc = train(epoch) val_loss, val_acc = test(epoch, val_loader, name='Val') test_loss, test_acc = test(epoch, test_loader, name='Test') track_train_loss[epoch - 1] = train_loss track_val_loss[epoch - 1] = val_loss track_test_loss[epoch - 1] = test_loss track_train_acc[epoch - 1] = train_acc track_val_acc[epoch - 1] = val_acc track_test_acc[epoch - 1] = test_acc is_best = val_loss < best_loss best_loss = min(val_loss, best_loss) save_checkpoint({ 'state_dict': model.state_dict(), 'cmd_line_args': args, 'vocab': train_dataset.vocab, }, is_best, folder=args.out_dir) np.save(os.path.join(args.out_dir, 'train_loss.npy'), track_train_loss) np.save(os.path.join(args.out_dir, 'val_loss.npy'), track_val_loss) np.save(os.path.join(args.out_dir, 'test_loss.npy'), track_test_loss) np.save(os.path.join(args.out_dir, 'train_acc.npy'), track_train_acc) np.save(os.path.join(args.out_dir, 'val_acc.npy'), track_val_acc) np.save(os.path.join(args.out_dir, 'test_acc.npy'), track_test_acc)
2.34375
2
python/code.py
Warabhi/ga-learner-dsmp-repo
0
11119
<filename>python/code.py # -------------- # Code starts here class_1 = ['<NAME>' , '<NAME>' , '<NAME>' , '<NAME>'] class_2 = ['<NAME>' , '<NAME>' , '<NAME>'] new_class = class_1 + class_2 print(new_class) new_class.append('<NAME>') print(new_class) del new_class[5] print(new_class) # Code ends here # -------------- # Code starts here courses = {'Math': 65 , 'English': 70 , 'History': 80 , 'French': 70 , 'Science': 60} total = sum(courses.values()) print(total) percentage = total/500*100 print(percentage) # Code ends here # -------------- # Code starts here mathematics = { '<NAME>' : 78, '<NAME>' : 95, '<NAME>' : 65 , '<NAME>' : 50 , '<NAME>' : 70 , '<NAME>' : 66 , '<NAME>' : 75} max_marks_scored = max(mathematics, key=mathematics.get) print(max_marks_scored) topper = max_marks_scored print(topper) # Code ends here # -------------- # Given string topper = ' andrew ng' # Code starts here first_name = topper.split()[0] print(first_name) last_name = topper.split()[1] print(last_name) full_name = last_name +' '+ first_name print(full_name) certificate_name = full_name.upper() print(certificate_name) # Code ends here
3.9375
4
checklog.py
mtibbett67/pymodules
0
11120
<reponame>mtibbett67/pymodules<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- ''' NAME: checklog.py DESCRIPTION: This script checks the tail of the log file and lists the disk space CREATED: Sun Mar 15 22:53:54 2015 VERSION: 1.0 AUTHOR: <NAME> AUTHOR_EMAIL: <EMAIL> URL: N/A DOWNLOAD_URL: N/A INSTALL_REQUIRES: [] PACKAGES: [] SCRIPTS: [] ''' # Standard library imports import os import sys import subprocess # Related third party imports # Local application/library specific imports # Console colors W = '\033[0m' # white (normal) R = '\033[31m' # red G = '\033[32m' # green O = '\033[33m' # orange B = '\033[34m' # blue P = '\033[35m' # purple C = '\033[36m' # cyan GR = '\033[37m' # gray # Section formats SEPARATOR = B + '=' * 80 + W NL = '\n' # Clear the terminal os.system('clear') # Check for root or sudo. Remove if not needed. UID = os.getuid() if UID != 0: print R + ' [!]' + O + ' ERROR:' + G + ' sysupdate' + O + \ ' must be run as ' + R + 'root' + W # print R + ' [!]' + O + ' login as root (' + W + 'su root' + O + ') \ # or try ' + W + 'sudo ./wifite.py' + W os.execvp('sudo', ['sudo'] + sys.argv) else: print NL print G + 'You are running this script as ' + R + 'root' + W print NL + SEPARATOR + NL LOG = ['tail', '/var/log/messages'] DISK = ['df', '-h'] def check(arg1, arg2): '''Call subprocess to check logs''' print G + arg1 + W + NL item = subprocess.check_output(arg2) #subprocess.call(arg2) print item + NL + SEPARATOR + NL check('Runing tail on messages', LOG) check('Disk usage', DISK)
2.765625
3
algorithms/implementation/minimum_distances.py
avenet/hackerrank
0
11121
<filename>algorithms/implementation/minimum_distances.py n = int(input().strip()) items = [ int(A_temp) for A_temp in input().strip().split(' ') ] items_map = {} result = None for i, item in enumerate(items): if item not in items_map: items_map[item] = [i] else: items_map[item].append(i) for _, item_indexes in items_map.items(): items_indexes_length = len(item_indexes) if items_indexes_length > 1: for i in range(items_indexes_length): for j in range(i + 1, items_indexes_length): diff = item_indexes[j] - item_indexes[i] if result is None: result = diff elif diff < result: result = diff print(result if result else -1)
3.5625
4
spore/spore.py
pavankkota/SPoRe
1
11122
""" Sparse Poisson Recovery (SPoRe) module for solving Multiple Measurement Vector problem with Poisson signals (MMVP) by batch stochastic gradient ascent and Monte Carlo integration Authors: <NAME>, <NAME> Reference: [1] <NAME>, <NAME>, <NAME>, and <NAME>, "Extreme Compressed Sensing of Poisson Rates from Multiple Measurements," Mar. 2021. arXiv ID: """ from abc import ABC, abstractmethod import numpy as np import time import pdb from .mmv_models import FwdModelGroup, SPoReFwdModelGroup class SPoRe(object): def __init__(self, N, fwdmodel, sampler, batch_size=100, step_size=1e-1, min_lambda=1e-3, pyx_min=0, grad_scale=5e-2, conv_rel=1e-2, conv_window=500, patience = 3000, step_cut = 0.1, max_cut = 5, max_iter=int(1e4)): """ Parameters ---------- N: int Dimension of signals fwdmodel : object instance of a mmv_models.FwdModel class. Object should contain any necessary model-specific parameters as attributes sampler : object instance of a spore.Sampler class that has a .sample method returning S samples of signals X from a probability distribution (N, S, :) batch_size: int Number of columns of Y to randomly draw and evaluate for each iteration step_size: float initial learning rate for stochastic gradient ascent min_lambda: float Lower bound on individual entries of lambda. \epsilon in [1] pyx_min: float (default 0, i.e. no effect) A batch element y_b is only included in analysis if max(p(y_b|x_s)) among sampled x's (x_s) is greater than this value. Prevents steps in the direction of junk measurements (e.g. a corrupted siganl) OR if samples are not good for the y_b [1] used 0 for all experiments grad_scale: float Maximum l2-norm of gradient step that can be taken. Any step larger is rescaled to have this l2-norm conv_rel: float (0,1) Fractional change in the average of lambda estimate in two conv_windows, below which iteration stops conv_window: int Number of iterations over which to evaluate moving averages. Nonoverlapping windows are compared. E.g. if conv_window = 500, then 999-500 iterations ago is averaged and compared to 499-current average. patience: int Number of iterations to wait for improvement in log likelihood before cutting step size step_cut: float (0, 1) Fraction to cut step size by if patience exceeded max_cut: int Maximum number of times step size can be cut by step_cut before quitting max_iter: int Maximum iteration budget. SPoRe terminates regardless of convergence status """ self.N = N if isinstance(fwdmodel, FwdModelGroup): self.fwdmodel_group = fwdmodel else: self.fwdmodel_group = FwdModelGroup([fwdmodel]) self.sampler = sampler self.batch_size = batch_size self.step_size = step_size self.min_lambda = min_lambda self.pyx_min = pyx_min self.grad_scale = grad_scale self.conv_rel = conv_rel self.conv_window = conv_window self.patience = patience self.step_cut = step_cut self.max_cut = max_cut self.max_iter = max_iter def recover(self, Y, S, lam0=None, randinit_offset=1e-1, seed=None, verbose=True): """Recover poisson rate parameters given Parameters ---------- Y : array_like Observations. Shape ``(M, D)``. S : int Number of samples to draw for each Y. lam0: array_like Initial value for estimated lambda. If None, lam0 = randinit_offset Shape: ``(N,) randinit_offset: float Random initializations (if lam0 not provided) are drawn. Offset sets a minimum value for any particular entry of lambda0 seed: int or None Initial seed for before iterations begin verbose: boolean If True, prints some information every <self.conv_window> iterations Returns ------- lam_S : numpy array Recovered estimate of lambda Shape ``(N,)`` includeCheck: numpy array Indices of observations that never influenced a gradient step. These observations can be considered 'unexplained' by the recovered lambda. Can be indicative of a corrupted measurement. Not used in [1] lamHistory: numpy array History of lambda estimates at each iteration Shape ``(N, iters)`` (for iters evaluated until convergence) llHistory: numpy array History of median log-likelihood estimates at each iteration Shape ``(iters,)`` """ if isinstance(self.fwdmodel_group, SPoReFwdModelGroup): fwdmodel = self.fwdmodel_group else: _, D = Y.shape group_indices = None fwdmodel = SPoReFwdModelGroup(self.fwdmodel_group, group_indices) M, D = np.shape(Y) np.random.seed(seed) lamHistory = np.zeros((self.N, self.max_iter)) llHistory = np.zeros((self.max_iter)) if lam0 is None: lam0 = np.ones(self.N)*randinit_offset lamHat = lam0 # Remaining false elements at convergence => unexplained measurements. Not used in [1] includeCheck = np.zeros(D) > np.ones(D) refIter = 0 bestIter = 0 stepTemp = self.step_size numCut = 0 t0 = time.time() stepIter = [] # Batch gradient ascent for i in range(self.max_iter): # Get batch elements and sample for each batchInds = np.random.choice(D, self.batch_size) Y_batch = Y[:,batchInds] self.sampler._lam = lamHat X_sample = self.sampler.sample(Y_batch, S) pyx = fwdmodel.py_x_batch(Y_batch[:, None, :], X_sample, batchInds) # (S, B) array # Don't eval batch elements whose p(y|x) is too low for all samples. In [1] (self.pyx_min=0) batchInclude = np.max(pyx, axis=0) > self.pyx_min includeCheck[batchInds[batchInclude]] = True pyx = pyx[:, batchInclude] if np.shape(X_sample)[2] > 1: X_sample = X_sample[:,:,batchInclude] pqRatio = self.sampler.pq_ratio(X_sample) probsAgg = pyx * pqRatio # (S, B) array, aggregate value of pdf computations # Evaluate loss and gradient llHistory[i] = self.log_likelihood(probsAgg) grad = self.gradient(X_sample, lamHat, probsAgg) step = stepTemp * grad # Necessary to make more robust against numerical issue described in [1] if not np.all(grad==np.zeros(self.N)): # at least some sampled X informs a gradient step stepIter.append(i) # track when steps are taken if np.any( (lamHat+step) >self.min_lambda): #if at least one index is stepped meaningfully # Rescale according to the indices still in question normCheck = np.linalg.norm(step[ (lamHat+step) >self.min_lambda]) if normCheck > self.grad_scale : step = (self.grad_scale / normCheck) * step else: # step is likely too big, period. if np.linalg.norm(step) > self.grad_scale : # Rescale based on whole step vector step = (self.grad_scale / np.linalg.norm(step)) * step #if steps have been taken at least 1/2 the time, recent conv_window worth of iterations likely to have been taken # hypothesize that steps may not be taken occasionally at first as lamHat is a bad estimate, but will be taken with increasing regularity enoughSteps = np.sum(np.array(stepIter) > (i - self.conv_window*2)) > self.conv_window lamHat += step lamHat[lamHat < self.min_lambda] = self.min_lambda lamHistory[:, i] = lamHat # Check convergence if (i+1) >= (self.conv_window*2): lam1 = np.mean(lamHistory[:, (i-2*self.conv_window+1):(i-self.conv_window+1)], axis=1) # e.g [:, 0:500] if conv_window is 500 lam2 = np.mean(lamHistory[:, (i-self.conv_window+1):(i+1)], axis=1) # e.g. [:, 500:] if i is 999, conv_window is 500 pctChange = np.linalg.norm(lam2 - lam1, ord=1) / np.linalg.norm(lam1, ord=1) if pctChange < self.conv_rel and enoughSteps: break # Cut learning rate (if necessary) if llHistory[i] >= llHistory[bestIter] or np.isnan(llHistory[bestIter]): bestIter = i refIter = i if i - refIter >= self.patience and enoughSteps: stepTemp = self.step_cut * stepTemp refIter = i numCut += 1 if verbose is True: print('Step size cut ' + str(numCut) + ' times') if numCut >= self.max_cut: break # Report: if verbose is True and (i+1)>=(self.conv_window*2) and (i+1) % self.conv_window == 0: print('Iteration #: ' + str(i+1) + '; l1-norm change: ' + str(pctChange) + \ '; recovery time: ' + str(round(time.time()-t0, 2)) + ' seconds') # average over last conv_window iterations' values lamHat = np.mean(lamHistory[:, (i-self.conv_window+1):(i+1)], axis=1) return lamHat, includeCheck, lamHistory, llHistory def log_likelihood(self, p_agg): r"""Compute log-likelihood and return the ~average (median/B). Median used because of high variability of individual batch draws. Outlier resistance important if using log-likelihood to inform convergence Parameters ---------- p_agg: array_like element-wise product of p(y|x) (an (S,B,) array) and pqRatio (an (S,B) array or an (S,) array if sample_same=True) Explicitly: p_agg for any element is p(y_b|x_s) * p(x_s|\lamHat) / Q(x_s) where Q is the sampling function Shape: (S, B,) Returns ------- ll: average log likelihood of p(y_b|\lambda) """ S, B = np.shape(p_agg) likelihood = (1/S) * np.sum(p_agg, axis=0) # of all batch elements ll = np.median(np.log(likelihood)) / B return ll def gradient(self, X_s, lamHat, p_agg): """ Compute MC gradients based on pre-computed measurement/sampling likelihoods p(y|x), Q(x_s) (p_agg) and Poisson likelihoods (samples X_s, current estimate lamHat) Parameters ---------- X_s : array_like Sampled X's Shape (N, S, B) or (N, S, 1) lamHat : array_like current estimate of lambda. Shape (N,) p_agg : see log_likelihood() Returns ------- grad: array_like batch gradient Shape: (N,) """ _, _, sameSamples = np.shape(X_s) #same samples over each iteration S, B = np.shape(p_agg) grad = np.zeros((self.N,)) #Note - it's ok if grad = 0 if all sumChecks fail - equates to waiting #until next iter sums = np.sum(p_agg, axis=0) sumCheck = sums !=0 if np.size(sumCheck) != 0: #else just return zero vector if sameSamples == 1: xOverL = X_s[:,:,0] / lamHat[:, None] #(N, S) grad = np.sum((xOverL @ p_agg[:, sumCheck]) / sums[sumCheck] - 1 , axis=1) else: xOverL = X_s / lamHat[:, None, None] #(N, S, B) numer = np.einsum('ij...,j...->i...', xOverL[:,:,sumCheck], p_agg[:,sumCheck]) grad = np.sum((numer / sums) - 1, axis=1) grad = grad/B return grad class Sampler(ABC): @abstractmethod def sample(self, Y, S, seed=None): """Generate samples of X for each column of Y Parameters ---------- Y : array_like Observations to sample according to. This array must have shape ``(M, B)``. S : int Number of samples to draw for each Y. seed: Random seed for drawing Returns ------- X : (N, S, B) or (N, S, 1) ndarray S Samples of X for each of B columns of Y. Last dimension is 1 if same samples apply to all batch elements """ pass @abstractmethod def pq_ratio(self, X): """ Get the ratio of probability densities of input X P(X|self._lam)/Q(X) element-wise Where P(X|self._lam) is the Poisson probability of each entry in X Q(X) is the sampler's probability of drawing that X Parameters ---------- X : array_like N-dimensional Vectors within range of Sampler.sample(), stacked in columns of array Shape: ``(N, S, B)`` or ``(N, S, 1)`` Returns ------- ratio : array_like Probability densities Q(x) for all X Shape: ``(S, B)`` """ pass class PoissonSampler(Sampler): def __init__(self, lam, sample_same=True, seed=None): """ As used in [1]: Q(x) = P(x|lamHat) Parameters ---------- lam : array_like (float) Poisson rates from which to draw Shape: ``(N,)`` sample_same : bool Whether to use the same X samples for each column of Y. """ self._lam = lam self._sample_same = sample_same self._generator = np.random.default_rng(seed) def sample(self, Y, S): N, = self._lam.shape _, B = Y.shape if self._sample_same: X = self._generator.poisson(self._lam[:, None, None], (N, S, 1)) else: X = self._generator.poisson(self._lam[:, None, None], (N, S, B)) return X def pq_ratio(self, X): _, S, B = np.shape(X) #With Poisson sampler - always sampling according to the current lambda value in the sampler ratio = np.ones((S,B)) return ratio
2.34375
2
306/translate_cds.py
jsh/pybites
0
11123
"""Use translation table to translate coding sequence to protein.""" from Bio.Data import CodonTable # type: ignore from Bio.Seq import Seq # type: ignore def translate_cds(cds: str, translation_table: str) -> str: """Translate coding sequence to protein. :param cds: str: DNA coding sequence (CDS) :param translation_table: str: translation table as defined in Bio.Seq.Seq.CodonTable.ambiguous_generic_by_name :return: str: Protein sequence """ table = CodonTable.ambiguous_dna_by_name[translation_table] cds = "".join(cds.split()) # clean out whitespace coding_dna = Seq(cds) protein = coding_dna.translate(table, cds=True, to_stop=True) return str(protein)
3.203125
3
example.py
n0emis/pycodimd
1
11124
<gh_stars>1-10 from pycodimd import CodiMD cmd = CodiMD('https://md.noemis.me') #cmd.login('<EMAIL>','CorrectHorseBatteryStaple') cmd.load_cookies() print(cmd.history()[-1]['text']) # Print Name of latest Note
1.890625
2
PP4E-Examples-1.4/Examples/PP4E/System/Environment/echoenv.py
AngelLiang/PP4E
0
11125
<filename>PP4E-Examples-1.4/Examples/PP4E/System/Environment/echoenv.py import os print('echoenv...', end=' ') print('Hello,', os.environ['USER'])
1.78125
2
plix/displays.py
freelan-developers/plix
1
11126
<reponame>freelan-developers/plix """ Display command results. """ from __future__ import unicode_literals from contextlib import contextmanager from argparse import Namespace from io import BytesIO from colorama import AnsiToWin32 from chromalog.stream import stream_has_color_support from chromalog.colorizer import Colorizer from chromalog.mark.helpers.simple import ( warning, important, success, error, ) class BaseDisplay(object): """ Provides general display logic to its subclasses. """ @contextmanager def command(self, index, command): """ Contextmanager that wraps calls to :func:`start_command` and :func:`stop_command`. :param index: The index of the command. :param command: The command that is about to be executed, as an unicode string. """ self.start_command( index=index, command=command, ) result = Namespace(returncode=None) try: yield result finally: self.stop_command( index=index, command=command, returncode=result.returncode, ) class StreamDisplay(BaseDisplay): """ Displays commands output to an output stream. """ def __init__(self, stream, colorizer=Colorizer()): """ Initialize the :class:`StreamDisplay`. :param stream: The stream to be attached too. """ super(StreamDisplay, self).__init__() self.colorizer = colorizer self.output_map = {} if stream_has_color_support(stream): self.stream = AnsiToWin32(stream).stream else: self.stream = stream # Python 3 differentiates binary streams. if hasattr(stream, 'buffer'): self.binary_stream = stream.buffer else: self.binary_stream = stream def format_output(self, message, *args, **kwargs): """ Format some output in regards to the output stream color-capability. :param message: A message. :returns: The formatted message. """ if stream_has_color_support(self.stream): return self.colorizer.colorize_message(message, *args, **kwargs) else: return message.format(*args, **kwargs) def set_context(self, commands): """ Set the context for display. :param commands: The list of commands to be executed. """ self.longest_len = max(map(len, commands)) def start_command(self, index, command): """ Indicate that a command stopped. :param index: The index of the command. :param command: The command that is about to be executed, as an unicode string. """ self.stream.write(self.format_output( "{}) {}", warning(important(index + 1)), command, )) self.stream.flush() self.output_map[index] = BytesIO() def stop_command(self, index, command, returncode): """ Indicate that a command stopped. :param index: The index of the command. :param command: The command that was executed, as an unicode string. :param returncode: The exit status. """ self.stream.write(self.format_output( "{}\t[{}]\n", " " * (self.longest_len - len(command)), success("success") if returncode == 0 else error("failed"), )) if returncode != 0: self.binary_stream.write(self.output_map[index].getvalue()) self.stream.write(self.format_output( "{}) {} {}\n", warning(important(index + 1)), error("Command exited with"), important(error(returncode)), )) del self.output_map[index] def command_output(self, index, data): """ Add some output for a command. :param index: The index of the command. :param data: The output data (as bytes). """ self.output_map[index].write(data)
2.5625
3
plugins/Autocomplete/plugin.py
mogad0n/Limnoria
476
11127
<reponame>mogad0n/Limnoria ### # Copyright (c) 2020-2021, The Limnoria Contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions, and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author of this software nor the name of # contributors to this software may be used to endorse or promote products # derived from this software without specific prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. ### from supybot import conf, ircutils, ircmsgs, callbacks from supybot.i18n import PluginInternationalization _ = PluginInternationalization("Autocomplete") REQUEST_TAG = "+draft/autocomplete-request" RESPONSE_TAG = "+draft/autocomplete-response" def _commonPrefix(L): """Takes a list of lists, and returns their longest common prefix.""" assert L if len(L) == 1: return L[0] for n in range(1, max(map(len, L)) + 1): prefix = L[0][:n] for item in L[1:]: if prefix != item[:n]: return prefix[0:-1] assert False def _getAutocompleteResponse(irc, msg, payload): """Returns the value of the +draft/autocomplete-response tag for the given +draft/autocomplete-request payload.""" tokens = callbacks.tokenize( payload, channel=msg.channel, network=irc.network ) normalized_payload = " ".join(tokens) candidate_commands = _getCandidates(irc, normalized_payload) if len(candidate_commands) == 0: # No result return None elif len(candidate_commands) == 1: # One result, return it directly commands = candidate_commands else: # Multiple results, return only the longest common prefix + one word tokenized_candidates = [ callbacks.tokenize(c, channel=msg.channel, network=irc.network) for c in candidate_commands ] common_prefix = _commonPrefix(tokenized_candidates) words_after_prefix = { candidate[len(common_prefix)] for candidate in tokenized_candidates } commands = [ " ".join(common_prefix + [word]) for word in words_after_prefix ] # strip what the user already typed assert all(command.startswith(normalized_payload) for command in commands) normalized_payload_length = len(normalized_payload) response_items = [ command[normalized_payload_length:] for command in commands ] return "\t".join(sorted(response_items)) def _getCandidates(irc, normalized_payload): """Returns a list of commands starting with the normalized_payload.""" candidates = set() for cb in irc.callbacks: cb_commands = cb.listCommands() # copy them with the plugin name (optional when calling a command) # at the beginning plugin_name = cb.canonicalName() cb_commands += [plugin_name + " " + command for command in cb_commands] candidates |= { command for command in cb_commands if command.startswith(normalized_payload) } return candidates class Autocomplete(callbacks.Plugin): """Provides command completion for IRC clients that support it.""" def _enabled(self, irc, msg): return ( conf.supybot.protocols.irc.experimentalExtensions() and self.registryValue("enabled", msg.channel, irc.network) ) def doTagmsg(self, irc, msg): if REQUEST_TAG not in msg.server_tags: return if "msgid" not in msg.server_tags: return if not self._enabled(irc, msg): return msgid = msg.server_tags["msgid"] text = msg.server_tags[REQUEST_TAG] # using callbacks._addressed instead of callbacks.addressed, as # callbacks.addressed would tag the m payload = callbacks._addressed(irc, msg, payload=text) if not payload: # not addressed return # marks used by '_addressed' are usually prefixes (char, string, # nick), but may also be suffixes (with # supybot.reply.whenAddressedBy.nick.atEnd); but there is no way to # have it in the middle of the message AFAIK. assert payload in text if not text.endswith(payload): # If there is a suffix, it means the end of the text is used to # address the bot, so it can't be a method to be completed. return autocomplete_response = _getAutocompleteResponse(irc, msg, payload) if not autocomplete_response: return target = msg.channel or ircutils.nickFromHostmask(msg.prefix) irc.queueMsg( ircmsgs.IrcMsg( server_tags={ "+draft/reply": msgid, RESPONSE_TAG: autocomplete_response, }, command="TAGMSG", args=[target], ) ) Class = Autocomplete # vim:set shiftwidth=4 softtabstop=4 expandtab textwidth=79:
1.382813
1
utils/preprocess_twitter.py
arnavk/tumblr-emotions
0
11128
""" preprocess-twitter.py python preprocess-twitter.py "Some random text with #hashtags, @mentions and http://t.co/kdjfkdjf (links). :)" Script for preprocessing tweets by <NAME> with small modifications by <NAME> with translation to Python by <NAME> Translation of Ruby script to create features for GloVe vectors for Twitter data. http://nlp.stanford.edu/projects/glove/preprocess-twitter.rb """ import sys import regex as re FLAGS = re.MULTILINE | re.DOTALL def hashtag(text): text = text.group() hashtag_body = text[1:] if hashtag_body.isupper(): result = " {} ".format(hashtag_body.lower()) else: result = " ".join(["<hashtag>"] + re.split(r"(?=[A-Z])", hashtag_body, flags=FLAGS)) return result def allcaps(text): text = text.group() return text.lower() + " <allcaps>" def tokenize(text): # Different regex parts for smiley faces eyes = r"[8:=;]" nose = r"['`\-]?" # function so code less repetitive def re_sub(pattern, repl): return re.sub(pattern, repl, text, flags=FLAGS) text = re_sub(r"https?:\/\/\S+\b|www\.(\w+\.)+\S*", "<url>") text = re_sub(r"@\w+", "<user>") text = re_sub(r"{}{}[)dD]+|[)dD]+{}{}".format(eyes, nose, nose, eyes), "<smile>") text = re_sub(r"{}{}p+".format(eyes, nose), "<lolface>") text = re_sub(r"{}{}\(+|\)+{}{}".format(eyes, nose, nose, eyes), "<sadface>") text = re_sub(r"{}{}[\/|l*]".format(eyes, nose), "<neutralface>") text = re_sub(r"/"," / ") text = re_sub(r"<3","<heart>") text = re_sub(r"[-+]?[.\d]*[\d]+[:,.\d]*", "<number>") text = re_sub(r"#\S+", hashtag) text = re_sub(r"([!?.]){2,}", r"\1 <repeat>") text = re_sub(r"\b(\S*?)(.)\2{2,}\b", r"\1\2 <elong>") ## -- I just don't understand why the Ruby script adds <allcaps> to everything so I limited the selection. # text = re_sub(r"([^a-z0-9()<>'`\-]){2,}", allcaps) text = re_sub(r"([A-Z]){2,}", allcaps) return text.lower() if __name__ == '__main__': _, text = sys.argv if text == "test": text = "I TEST alllll kinds of #hashtags and #HASHTAGS, @mentions and 3000 (http://t.co/dkfjkdf). w/ <3 :) haha!!!!!" tokens = tokenize(text) print(tokens)
3.234375
3
pyPLANES/pw/pw_classes.py
matael/pyPLANES
0
11129
#! /usr/bin/env python # -*- coding:utf8 -*- # # pw_classes.py # # This file is part of pyplanes, a software distributed under the MIT license. # For any question, please contact one of the authors cited below. # # Copyright (c) 2020 # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # import numpy as np import numpy.linalg as LA import matplotlib.pyplot as plt from mediapack import from_yaml from mediapack import Air, PEM, EqFluidJCA from pyPLANES.utils.io import initialisation_out_files_plain from pyPLANES.core.calculus import PwCalculus from pyPLANES.core.multilayer import MultiLayer from pyPLANES.pw.pw_layers import FluidLayer from pyPLANES.pw.pw_interfaces import FluidFluidInterface, RigidBacking Air = Air() # def initialise_PW_solver(L, b): # nb_PW = 0 # dofs = [] # for _layer in L: # if _layer.medium.MODEL == "fluid": # dofs.append(nb_PW+np.arange(2)) # nb_PW += 2 # elif _layer.medium.MODEL == "pem": # dofs.append(nb_PW+np.arange(6)) # nb_PW += 6 # elif _layer.medium.MODEL == "elastic": # dofs.append(nb_PW+np.arange(4)) # nb_PW += 4 # interface = [] # for i_l, _layer in enumerate(L[:-1]): # interface.append((L[i_l].medium.MODEL, L[i_l+1].medium.MODEL)) # return nb_PW, interface, dofs class PwProblem(PwCalculus, MultiLayer): """ Plane Wave Problem """ def __init__(self, **kwargs): PwCalculus.__init__(self, **kwargs) termination = kwargs.get("termination","rigid") self.method = kwargs.get("termination","global") MultiLayer.__init__(self, **kwargs) self.kx, self.ky, self.k = None, None, None self.shift_plot = kwargs.get("shift_pw", 0.) self.plot = kwargs.get("plot_results", [False]*6) self.result = {} self.outfiles_directory = False if self.method == "global": self.layers.insert(0,FluidLayer(Air,1.e-2)) if self.layers[1].medium.MEDIUM_TYPE == "fluid": self.interfaces.append(FluidFluidInterface(self.layers[0],self.layers[1])) self.nb_PW = 0 for _layer in self.layers: if _layer.medium.MODEL == "fluid": _layer.dofs = self.nb_PW+np.arange(2) self.nb_PW += 2 elif _layer.medium.MODEL == "pem": _layer.dofs = self.nb_PW+np.arange(6) self.nb_PW += 6 elif _layer.medium.MODEL == "elastic": _layer.dofs = self.nb_PW+np.arange(4) self.nb_PW += 4 def update_frequency(self, f): PwCalculus.update_frequency(self, f) MultiLayer.update_frequency(self, f, self.k, self.kx) def create_linear_system(self, f): self.A = np.zeros((self.nb_PW-1, self.nb_PW), dtype=complex) i_eq = 0 # Loop on the interfaces for _int in self.interfaces: if self.method == "global": i_eq = _int.update_M_global(self.A, i_eq) # for i_inter, _inter in enumerate(self.interfaces): # if _inter[0] == "fluid": # if _inter[1] == "fluid": # i_eq = self.interface_fluid_fluid(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "pem": # i_eq = self.interface_fluid_pem(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "elastic": # i_eq = self.interface_fluid_elastic(i_eq, i_inter, Layers, dofs, M) # elif _inter[0] == "pem": # if _inter[1] == "fluid": # i_eq = self.interface_pem_fluid(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "pem": # i_eq = self.interface_pem_pem(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "elastic": # i_eq = self.interface_pem_elastic(i_eq, i_inter, Layers, dofs, M) # elif _inter[0] == "elastic": # if _inter[1] == "fluid": # i_eq = self.interface_elastic_fluid(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "pem": # i_eq = self.interface_elastic_pem(i_eq, i_inter, Layers, dofs, M) # if _inter[1] == "elastic": # i_eq = self.interface_elastic_elastic(i_eq, i_inter, Layers, dofs, M) # if self.backing == backing.rigid: # if Layers[-1].medium.MODEL == "fluid": # i_eq = self.interface_fluid_rigid(M, i_eq, Layers[-1], dofs[-1] ) # elif Layers[-1].medium.MODEL == "pem": # i_eq = self.interface_pem_rigid(M, i_eq, Layers[-1], dofs[-1]) # elif Layers[-1].medium.MODEL == "elastic": # i_eq = self.interface_elastic_rigid(M, i_eq, Layers[-1], dofs[-1]) # elif self.backing == "transmission": # i_eq = self.semi_infinite_medium(M, i_eq, Layers[-1], dofs[-1] ) self.F = -self.A[:, 0]*np.exp(1j*self.ky*self.layers[0].d) # - is for transposition, exponential term is for the phase shift self.A = np.delete(self.A, 0, axis=1) # print(self.A) X = LA.solve(self.A, self.F) # print(X) # R_pyPLANES_PW = X[0] # if self.backing == "transmission": # T_pyPLANES_PW = X[-2] # else: # T_pyPLANES_PW = 0. # X = np.delete(X, 0) # del(dofs[0]) # for i, _ld in enumerate(dofs): # dofs[i] -= 2 # if self.plot: # self.plot_sol_PW(X, dofs) # out["R"] = R_pyPLANES_PW # out["T"] = T_pyPLANES_PW # return out # class Solver_PW(PwCalculus): # def __init__(self, **kwargs): # PwCalculus.__init__(self, **kwargs) # ml = kwargs.get("ml") # termination = kwargs.get("termination") # self.layers = [] # for _l in ml: # if _l[0] == "Air": # mat = Air # else: # mat = from_yaml(_l[0]+".yaml") # d = _l[1] # self.layers.append(Layer(mat,d)) # if termination in ["trans", "transmission","Transmission"]: # self.backing = "Transmission" # else: # self.backing = backing.rigid # self.kx, self.ky, self.k = None, None, None # self.shift_plot = kwargs.get("shift_pw", 0.) # self.plot = kwargs.get("plot_results", [False]*6) # self.result = {} # self.outfiles_directory = False # initialisation_out_files_plain(self) # def write_out_files(self, out): # self.out_file.write("{:.12e}\t".format(self.current_frequency)) # abs = 1-np.abs(out["R"])**2 # self.out_file.write("{:.12e}\t".format(abs)) # self.out_file.write("\n") # def interface_fluid_fluid(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = fluid_SV(self.kx, self.k, L[iinter].medium.K) # SV_2, k_y_2 = fluid_SV(self.kx, self.k, L[iinter+1].medium.K) # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1] # M[ieq, d[iinter+1][0]] = -SV_2[0, 0] # M[ieq, d[iinter+1][1]] = -SV_2[0, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[1, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[1, 1] # M[ieq, d[iinter+1][0]] = -SV_2[1, 0] # M[ieq, d[iinter+1][1]] = -SV_2[1, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_fluid_rigid(self, M, ieq, L, d): # SV, k_y = fluid_SV(self.kx, self.k, L.medium.K) # M[ieq, d[0]] = SV[0, 0]*np.exp(-1j*k_y*L.thickness) # M[ieq, d[1]] = SV[0, 1] # ieq += 1 # return ieq # def semi_infinite_medium(self, M, ieq, L, d): # M[ieq, d[1]] = 1. # ieq += 1 # return ieq # def interface_pem_pem(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = PEM_SV(L[iinter].medium, self.kx) # SV_2, k_y_2 = PEM_SV(L[iinter+1].medium, self.kx) # for _i in range(6): # M[ieq, d[iinter+0][0]] = SV_1[_i, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[_i, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[_i, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[_i, 3] # M[ieq, d[iinter+0][4]] = SV_1[_i, 4] # M[ieq, d[iinter+0][5]] = SV_1[_i, 5] # M[ieq, d[iinter+1][0]] = -SV_2[_i, 0] # M[ieq, d[iinter+1][1]] = -SV_2[_i, 1] # M[ieq, d[iinter+1][2]] = -SV_2[_i, 2] # M[ieq, d[iinter+1][3]] = -SV_2[_i, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = -SV_2[_i, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = -SV_2[_i, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_fluid_pem(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = fluid_SV(self.kx, self.k, L[iinter].medium.K) # SV_2, k_y_2 = PEM_SV(L[iinter+1].medium,self.kx) # # print(k_y_2) # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1] # M[ieq, d[iinter+1][0]] = -SV_2[2, 0] # M[ieq, d[iinter+1][1]] = -SV_2[2, 1] # M[ieq, d[iinter+1][2]] = -SV_2[2, 2] # M[ieq, d[iinter+1][3]] = -SV_2[2, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = -SV_2[2, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = -SV_2[2, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[1, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[1, 1] # M[ieq, d[iinter+1][0]] = -SV_2[4, 0] # M[ieq, d[iinter+1][1]] = -SV_2[4, 1] # M[ieq, d[iinter+1][2]] = -SV_2[4, 2] # M[ieq, d[iinter+1][3]] = -SV_2[4, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = -SV_2[4, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = -SV_2[4, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+1][0]] = SV_2[0, 0] # M[ieq, d[iinter+1][1]] = SV_2[0, 1] # M[ieq, d[iinter+1][2]] = SV_2[0, 2] # M[ieq, d[iinter+1][3]] = SV_2[0, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[0, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[0, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+1][0]] = SV_2[3, 0] # M[ieq, d[iinter+1][1]] = SV_2[3, 1] # M[ieq, d[iinter+1][2]] = SV_2[3, 2] # M[ieq, d[iinter+1][3]] = SV_2[3, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[3, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[3, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_elastic_pem(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = elastic_SV(L[iinter].medium,self.kx, self.omega) # SV_2, k_y_2 = PEM_SV(L[iinter+1].medium,self.kx) # # print(k_y_2) # M[ieq, d[iinter+0][0]] = -SV_1[0, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[0, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[0, 2] # M[ieq, d[iinter+0][3]] = -SV_1[0, 3] # M[ieq, d[iinter+1][0]] = SV_2[0, 0] # M[ieq, d[iinter+1][1]] = SV_2[0, 1] # M[ieq, d[iinter+1][2]] = SV_2[0, 2] # M[ieq, d[iinter+1][3]] = SV_2[0, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[0, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[0, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = -SV_1[1, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[1, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[1, 2] # M[ieq, d[iinter+0][3]] = -SV_1[1, 3] # M[ieq, d[iinter+1][0]] = SV_2[1, 0] # M[ieq, d[iinter+1][1]] = SV_2[1, 1] # M[ieq, d[iinter+1][2]] = SV_2[1, 2] # M[ieq, d[iinter+1][3]] = SV_2[1, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[1, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[1, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = -SV_1[1, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[1, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[1, 2] # M[ieq, d[iinter+0][3]] = -SV_1[1, 3] # M[ieq, d[iinter+1][0]] = SV_2[2, 0] # M[ieq, d[iinter+1][1]] = SV_2[2, 1] # M[ieq, d[iinter+1][2]] = SV_2[2, 2] # M[ieq, d[iinter+1][3]] = SV_2[2, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[2, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[2, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = -SV_1[2, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[2, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[2, 2] # M[ieq, d[iinter+0][3]] = -SV_1[2, 3] # M[ieq, d[iinter+1][0]] = (SV_2[3, 0]-SV_2[4, 0]) # M[ieq, d[iinter+1][1]] = (SV_2[3, 1]-SV_2[4, 1]) # M[ieq, d[iinter+1][2]] = (SV_2[3, 2]-SV_2[4, 2]) # M[ieq, d[iinter+1][3]] = (SV_2[3, 3]-SV_2[4, 3])*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = (SV_2[3, 4]-SV_2[4, 4])*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = (SV_2[3, 5]-SV_2[4, 5])*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = -SV_1[3, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[3, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[3, 2] # M[ieq, d[iinter+0][3]] = -SV_1[3, 3] # M[ieq, d[iinter+1][0]] = SV_2[5, 0] # M[ieq, d[iinter+1][1]] = SV_2[5, 1] # M[ieq, d[iinter+1][2]] = SV_2[5, 2] # M[ieq, d[iinter+1][3]] = SV_2[5, 3]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][4]] = SV_2[5, 4]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # M[ieq, d[iinter+1][5]] = SV_2[5, 5]*np.exp(-1j*k_y_2[2]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_pem_elastic(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = PEM_SV(L[iinter].medium,self.kx) # SV_2, k_y_2 = elastic_SV(L[iinter+1].medium,self.kx, self.omega) # # print(k_y_2) # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[0, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[0, 3] # M[ieq, d[iinter+0][4]] = SV_1[0, 4] # M[ieq, d[iinter+0][5]] = SV_1[0, 5] # M[ieq, d[iinter+1][0]] = -SV_2[0, 0] # M[ieq, d[iinter+1][1]] = -SV_2[0, 1] # M[ieq, d[iinter+1][2]] = -SV_2[0, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[0, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[1, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[1, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[1, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[1, 3] # M[ieq, d[iinter+0][4]] = SV_1[1, 4] # M[ieq, d[iinter+0][5]] = SV_1[1, 5] # M[ieq, d[iinter+1][0]] = -SV_2[1, 0] # M[ieq, d[iinter+1][1]] = -SV_2[1, 1] # M[ieq, d[iinter+1][2]] = -SV_2[1, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[1, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[2, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[2, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[2, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[2, 3] # M[ieq, d[iinter+0][4]] = SV_1[2, 4] # M[ieq, d[iinter+0][5]] = SV_1[2, 5] # M[ieq, d[iinter+1][0]] = -SV_2[1, 0] # M[ieq, d[iinter+1][1]] = -SV_2[1, 1] # M[ieq, d[iinter+1][2]] = -SV_2[1, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[1, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = (SV_1[3, 0]-SV_1[4, 0])*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = (SV_1[3, 1]-SV_1[4, 1])*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = (SV_1[3, 2]-SV_1[4, 2])*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = (SV_1[3, 3]-SV_1[4, 3]) # M[ieq, d[iinter+0][4]] = (SV_1[3, 4]-SV_1[4, 4]) # M[ieq, d[iinter+0][5]] = (SV_1[3, 5]-SV_1[4, 5]) # M[ieq, d[iinter+1][0]] = -SV_2[2, 0] # M[ieq, d[iinter+1][1]] = -SV_2[2, 1] # M[ieq, d[iinter+1][2]] = -SV_2[2, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[2, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[5, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[5, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[5, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[5, 3] # M[ieq, d[iinter+0][4]] = SV_1[5, 4] # M[ieq, d[iinter+0][5]] = SV_1[5, 5] # M[ieq, d[iinter+1][0]] = -SV_2[3, 0] # M[ieq, d[iinter+1][1]] = -SV_2[3, 1] # M[ieq, d[iinter+1][2]] = -SV_2[3, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[3, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_elastic_elastic(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = elastic_SV(L[iinter].medium,self.kx, self.omega) # SV_2, k_y_2 = elastic_SV(L[iinter+1].medium,self.kx, self.omega) # for _i in range(4): # M[ieq, d[iinter+0][0]] = SV_1[_i, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[_i, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[_i, 2] # M[ieq, d[iinter+0][3]] = SV_1[_i, 3] # M[ieq, d[iinter+1][0]] = -SV_2[_i, 0] # M[ieq, d[iinter+1][1]] = -SV_2[_i, 1] # M[ieq, d[iinter+1][2]] = -SV_2[_i, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[_i, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_fluid_elastic(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = fluid_SV(self.kx, self.k, L[iinter].medium.K) # SV_2, k_y_2 = elastic_SV(L[iinter+1].medium, self.kx, self.omega) # # Continuity of u_y # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1] # M[ieq, d[iinter+1][0]] = -SV_2[1, 0] # M[ieq, d[iinter+1][1]] = -SV_2[1, 1] # M[ieq, d[iinter+1][2]] = -SV_2[1, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = -SV_2[1, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # # sigma_yy = -p # M[ieq, d[iinter+0][0]] = SV_1[1, 0]*np.exp(-1j*k_y_1*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[1, 1] # M[ieq, d[iinter+1][0]] = SV_2[2, 0] # M[ieq, d[iinter+1][1]] = SV_2[2, 1] # M[ieq, d[iinter+1][2]] = SV_2[2, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = SV_2[2, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # # sigma_xy = 0 # M[ieq, d[iinter+1][0]] = SV_2[0, 0] # M[ieq, d[iinter+1][1]] = SV_2[0, 1] # M[ieq, d[iinter+1][2]] = SV_2[0, 2]*np.exp(-1j*k_y_2[0]*L[iinter+1].thickness) # M[ieq, d[iinter+1][3]] = SV_2[0, 3]*np.exp(-1j*k_y_2[1]*L[iinter+1].thickness) # ieq += 1 # return ieq # def interface_pem_fluid(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = PEM_SV(L[iinter].medium, self.kx) # SV_2, k_y_2 = fluid_SV(self.kx, self.k, L[iinter+1].medium.K) # # print(k_y_2) # M[ieq, d[iinter+0][0]] = -SV_1[2, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[2, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[2, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = -SV_1[2, 3] # M[ieq, d[iinter+0][4]] = -SV_1[2, 4] # M[ieq, d[iinter+0][5]] = -SV_1[2, 5] # M[ieq, d[iinter+1][0]] = SV_2[0, 0] # M[ieq, d[iinter+1][1]] = SV_2[0, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = -SV_1[4, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[4, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[4, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = -SV_1[4, 3] # M[ieq, d[iinter+0][4]] = -SV_1[4, 4] # M[ieq, d[iinter+0][5]] = -SV_1[4, 5] # M[ieq, d[iinter+1][0]] = SV_2[1, 0] # M[ieq, d[iinter+1][1]] = SV_2[1, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[0, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[0, 3] # M[ieq, d[iinter+0][4]] = SV_1[0, 4] # M[ieq, d[iinter+0][5]] = SV_1[0, 5] # ieq += 1 # M[ieq, d[iinter+0][0]] = SV_1[3, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[3, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[3, 2]*np.exp(-1j*k_y_1[2]*L[iinter].thickness) # M[ieq, d[iinter+0][3]] = SV_1[3, 3] # M[ieq, d[iinter+0][4]] = SV_1[3, 4] # M[ieq, d[iinter+0][5]] = SV_1[3, 5] # ieq += 1 # return ieq # def interface_elastic_fluid(self, ieq, iinter, L, d, M): # SV_1, k_y_1 = elastic_SV(L[iinter].medium, self.kx, self.omega) # SV_2, k_y_2 = fluid_SV(self.kx, self.k, L[iinter+1].medium.K) # # Continuity of u_y # M[ieq, d[iinter+0][0]] = -SV_1[1, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = -SV_1[1, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = -SV_1[1, 2] # M[ieq, d[iinter+0][3]] = -SV_1[1, 3] # M[ieq, d[iinter+1][0]] = SV_2[0, 0] # M[ieq, d[iinter+1][1]] = SV_2[0, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # # sigma_yy = -p # M[ieq, d[iinter+0][0]] = SV_1[2, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[2, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[2, 2] # M[ieq, d[iinter+0][3]] = SV_1[2, 3] # M[ieq, d[iinter+1][0]] = SV_2[1, 0] # M[ieq, d[iinter+1][1]] = SV_2[1, 1]*np.exp(-1j*k_y_2*L[iinter+1].thickness) # ieq += 1 # # sigma_xy = 0 # M[ieq, d[iinter+0][0]] = SV_1[0, 0]*np.exp(-1j*k_y_1[0]*L[iinter].thickness) # M[ieq, d[iinter+0][1]] = SV_1[0, 1]*np.exp(-1j*k_y_1[1]*L[iinter].thickness) # M[ieq, d[iinter+0][2]] = SV_1[0, 2] # M[ieq, d[iinter+0][3]] = SV_1[0, 3] # ieq += 1 # return ieq # def interface_elastic_rigid(self, M, ieq, L, d): # SV, k_y = elastic_SV(L.medium,self.kx, self.omega) # M[ieq, d[0]] = SV[1, 0]*np.exp(-1j*k_y[0]*L.thickness) # M[ieq, d[1]] = SV[1, 1]*np.exp(-1j*k_y[1]*L.thickness) # M[ieq, d[2]] = SV[1, 2] # M[ieq, d[3]] = SV[1, 3] # ieq += 1 # M[ieq, d[0]] = SV[3, 0]*np.exp(-1j*k_y[0]*L.thickness) # M[ieq, d[1]] = SV[3, 1]*np.exp(-1j*k_y[1]*L.thickness) # M[ieq, d[2]] = SV[3, 2] # M[ieq, d[3]] = SV[3, 3] # ieq += 1 # return ieq # def interface_pem_rigid(self, M, ieq, L, d): # SV, k_y = PEM_SV(L.medium, self.kx) # M[ieq, d[0]] = SV[1, 0]*np.exp(-1j*k_y[0]*L.thickness) # M[ieq, d[1]] = SV[1, 1]*np.exp(-1j*k_y[1]*L.thickness) # M[ieq, d[2]] = SV[1, 2]*np.exp(-1j*k_y[2]*L.thickness) # M[ieq, d[3]] = SV[1, 3] # M[ieq, d[4]] = SV[1, 4] # M[ieq, d[5]] = SV[1, 5] # ieq += 1 # M[ieq, d[0]] = SV[2, 0]*np.exp(-1j*k_y[0]*L.thickness) # M[ieq, d[1]] = SV[2, 1]*np.exp(-1j*k_y[1]*L.thickness) # M[ieq, d[2]] = SV[2, 2]*np.exp(-1j*k_y[2]*L.thickness) # M[ieq, d[3]] = SV[2, 3] # M[ieq, d[4]] = SV[2, 4] # M[ieq, d[5]] = SV[2, 5] # ieq += 1 # M[ieq, d[0]] = SV[5, 0]*np.exp(-1j*k_y[0]*L.thickness) # M[ieq, d[1]] = SV[5, 1]*np.exp(-1j*k_y[1]*L.thickness) # M[ieq, d[2]] = SV[5, 2]*np.exp(-1j*k_y[2]*L.thickness) # M[ieq, d[3]] = SV[5, 3] # M[ieq, d[4]] = SV[5, 4] # M[ieq, d[5]] = SV[5, 5] # ieq += 1 # return ieq # def plot_sol_PW(self, X, dofs): # x_start = self.shift_plot # for _l, _layer in enumerate(self.layers): # x_f = np.linspace(0, _layer.thickness,200) # x_b = x_f-_layer.thickness # if _layer.medium.MODEL == "fluid": # SV, k_y = fluid_SV(self.kx, self.k, _layer.medium.K) # pr = SV[1, 0]*np.exp(-1j*k_y*x_f)*X[dofs[_l][0]] # pr += SV[1, 1]*np.exp( 1j*k_y*x_b)*X[dofs[_l][1]] # ut = SV[0, 0]*np.exp(-1j*k_y*x_f)*X[dofs[_l][0]] # ut += SV[0, 1]*np.exp( 1j*k_y*x_b)*X[dofs[_l][1]] # if self.plot[2]: # plt.figure(2) # plt.plot(x_start+x_f, np.abs(pr), 'r') # plt.plot(x_start+x_f, np.imag(pr), 'm') # plt.title("Pressure") # # plt.figure(5) # # plt.plot(x_start+x_f,np.abs(ut),'b') # # plt.plot(x_start+x_f,np.imag(ut),'k') # if _layer.medium.MODEL == "pem": # SV, k_y = PEM_SV(_layer.medium, self.kx) # ux, uy, pr, ut = 0*1j*x_f, 0*1j*x_f, 0*1j*x_f, 0*1j*x_f # for i_dim in range(3): # ux += SV[1, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # ux += SV[1, i_dim+3]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+3]] # uy += SV[5, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # uy += SV[5, i_dim+3]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+3]] # pr += SV[4, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # pr += SV[4, i_dim+3]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+3]] # ut += SV[2, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # ut += SV[2, i_dim+3]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+3]] # if self.plot[0]: # plt.figure(0) # plt.plot(x_start+x_f, np.abs(uy), 'r') # plt.plot(x_start+x_f, np.imag(uy), 'm') # plt.title("Solid displacement along x") # if self.plot[1]: # plt.figure(1) # plt.plot(x_start+x_f, np.abs(ux), 'r') # plt.plot(x_start+x_f, np.imag(ux), 'm') # plt.title("Solid displacement along y") # if self.plot[2]: # plt.figure(2) # plt.plot(x_start+x_f, np.abs(pr), 'r') # plt.plot(x_start+x_f, np.imag(pr), 'm') # plt.title("Pressure") # if _layer.medium.MODEL == "elastic": # SV, k_y = elastic_SV(_layer.medium, self.kx, self.omega) # ux, uy, pr, sig = 0*1j*x_f, 0*1j*x_f, 0*1j*x_f, 0*1j*x_f # for i_dim in range(2): # ux += SV[1, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # ux += SV[1, i_dim+2]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+2]] # uy += SV[3, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # uy += SV[3, i_dim+2]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+2]] # pr -= SV[2, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # pr -= SV[2, i_dim+2]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+2]] # sig -= SV[0, i_dim ]*np.exp(-1j*k_y[i_dim]*x_f)*X[dofs[_l][i_dim]] # sig -= SV[0, i_dim+2]*np.exp( 1j*k_y[i_dim]*x_b)*X[dofs[_l][i_dim+2]] # if self.plot[0]: # plt.figure(0) # plt.plot(x_start+x_f, np.abs(uy), 'r') # plt.plot(x_start+x_f, np.imag(uy), 'm') # plt.title("Solid displacement along x") # if self.plot[1]: # plt.figure(1) # plt.plot(x_start+x_f, np.abs(ux), 'r') # plt.plot(x_start+x_f, np.imag(ux), 'm') # plt.title("Solid displacement along y") # # if self.plot[2]: # # plt.figure(2) # # plt.plot(x_start+x_f, np.abs(pr), 'r') # # plt.plot(x_start+x_f, np.imag(pr), 'm') # # plt.title("Sigma_yy") # # if self.plot[2]: # # plt.figure(3) # # plt.plot(x_start+x_f, np.abs(sig), 'r') # # plt.plot(x_start+x_f, np.imag(sig), 'm') # # plt.title("Sigma_xy") # x_start += _layer.thickness # def PEM_SV(mat,ky): # ''' S={0:\hat{\sigma}_{xy}, 1:u_y^s, 2:u_y^t, 3:\hat{\sigma}_{yy}, 4:p, 5:u_x^s}''' # kx_1 = np.sqrt(mat.delta_1**2-ky**2) # kx_2 = np.sqrt(mat.delta_2**2-ky**2) # kx_3 = np.sqrt(mat.delta_3**2-ky**2) # kx = np.array([kx_1, kx_2, kx_3]) # delta = np.array([mat.delta_1, mat.delta_2, mat.delta_3]) # alpha_1 = -1j*mat.A_hat*mat.delta_1**2-1j*2*mat.N*kx[0]**2 # alpha_2 = -1j*mat.A_hat*mat.delta_2**2-1j*2*mat.N*kx[1]**2 # alpha_3 = -2*1j*mat.N*kx[2]*ky # SV = np.zeros((6,6), dtype=complex) # SV[0:6, 0] = np.array([-2*1j*mat.N*kx[0]*ky, kx[0], mat.mu_1*kx[0], alpha_1, 1j*delta[0]**2*mat.K_eq_til*mat.mu_1, ky]) # SV[0:6, 3] = np.array([ 2*1j*mat.N*kx[0]*ky,-kx[0],-mat.mu_1*kx[0], alpha_1, 1j*delta[0]**2*mat.K_eq_til*mat.mu_1, ky]) # SV[0:6, 1] = np.array([-2*1j*mat.N*kx[1]*ky, kx[1], mat.mu_2*kx[1],alpha_2, 1j*delta[1]**2*mat.K_eq_til*mat.mu_2, ky]) # SV[0:6, 4] = np.array([ 2*1j*mat.N*kx[1]*ky,-kx[1],-mat.mu_2*kx[1],alpha_2, 1j*delta[1]**2*mat.K_eq_til*mat.mu_2, ky]) # SV[0:6, 2] = np.array([1j*mat.N*(kx[2]**2-ky**2), ky, mat.mu_3*ky, alpha_3, 0., -kx[2]]) # SV[0:6, 5] = np.array([1j*mat.N*(kx[2]**2-ky**2), ky, mat.mu_3*ky, -alpha_3, 0., kx[2]]) # return SV, kx # def elastic_SV(mat,ky, omega): # ''' S={0:\sigma_{xy}, 1: u_y, 2 \sigma_{yy}, 3 u_x}''' # P_mat = mat.lambda_ + 2.*mat.mu # delta_p = omega*np.sqrt(mat.rho/P_mat) # delta_s = omega*np.sqrt(mat.rho/mat.mu) # kx_p = np.sqrt(delta_p**2-ky**2) # kx_s = np.sqrt(delta_s**2-ky**2) # kx = np.array([kx_p, kx_s]) # alpha_p = -1j*mat.lambda_*delta_p**2 - 2j*mat.mu*kx[0]**2 # alpha_s = 2j*mat.mu*kx[1]*ky # SV = np.zeros((4, 4), dtype=np.complex) # SV[0:4, 0] = np.array([-2.*1j*mat.mu*kx[0]*ky, kx[0], alpha_p, ky]) # SV[0:4, 2] = np.array([ 2.*1j*mat.mu*kx[0]*ky, -kx[0], alpha_p, ky]) # SV[0:4, 1] = np.array([1j*mat.mu*(kx[1]**2-ky**2), ky,-alpha_s, -kx[1]]) # SV[0:4, 3] = np.array([1j*mat.mu*(kx[1]**2-ky**2), ky, alpha_s, kx[1]]) # return SV, kx # def fluid_SV(kx, k, K): # ''' S={0:u_y , 1:p}''' # ky = np.sqrt(k**2-kx**2) # SV = np.zeros((2, 2), dtype=complex) # SV[0, 0:2] = np.array([ky/(1j*K*k**2), -ky/(1j*K*k**2)]) # SV[1, 0:2] = np.array([1, 1]) # return SV, ky # def resolution_PW_imposed_displacement(S, p): # # print("k={}".format(p.k)) # Layers = S.layers.copy() # n, interfaces, dofs = initialise_PW_solver(Layers, S.backing) # M = np.zeros((n, n), dtype=complex) # i_eq = 0 # # Loop on the layers # for i_inter, _inter in enumerate(interfaces): # if _inter[0] == "fluid": # if _inter[1] == "fluid": # i_eq = interface_fluid_fluid(i_eq, i_inter, Layers, dofs, M, p) # if _inter[1] == "pem": # i_eq = interface_fluid_pem(i_eq, i_inter, Layers, dofs, M, p) # elif _inter[0] == "pem": # if _inter[1] == "fluid": # i_eq = interface_pem_fluid(i_eq, i_inter, Layers, dofs, M, p) # if _inter[1] == "pem": # i_eq = interface_pem_pem(i_eq, i_inter, Layers, dofs, M, p) # if S.backing == backing.rigid: # if Layers[-1].medium.MODEL == "fluid": # i_eq = interface_fluid_rigid(M, i_eq, Layers[-1], dofs[-1], p) # elif Layers[-1].medium.MODEL == "pem": # i_eq = interface_pem_rigid(M, i_eq, Layers[-1], dofs[-1], p) # if Layers[0].medium.MODEL == "fluid": # F = np.zeros(n, dtype=complex) # SV, k_y = fluid_SV(p.kx, p.k, Layers[0].medium.K) # M[i_eq, dofs[0][0]] = SV[0, 0] # M[i_eq, dofs[0][1]] = SV[0, 1]*np.exp(-1j*k_y*Layers[0].thickness) # F[i_eq] = 1. # elif Layers[0].medium.MODEL == "pem": # SV, k_y = PEM_SV(Layers[0].medium, p.kx) # M[i_eq, dofs[0][0]] = SV[2, 0] # M[i_eq, dofs[0][1]] = SV[2, 1] # M[i_eq, dofs[0][2]] = SV[2, 2] # M[i_eq, dofs[0][3]] = SV[2, 3]*np.exp(-1j*k_y[0]*Layers[0].thickness) # M[i_eq, dofs[0][4]] = SV[2, 4]*np.exp(-1j*k_y[1]*Layers[0].thickness) # M[i_eq, dofs[0][5]] = SV[2, 5]*np.exp(-1j*k_y[2]*Layers[0].thickness) # F = np.zeros(n, dtype=complex) # F[i_eq] = 1. # i_eq +=1 # M[i_eq, dofs[0][0]] = SV[0, 0] # M[i_eq, dofs[0][1]] = SV[0, 1] # M[i_eq, dofs[0][2]] = SV[0, 2] # M[i_eq, dofs[0][3]] = SV[0, 3]*np.exp(-1j*k_y[0]*Layers[0].thickness) # M[i_eq, dofs[0][4]] = SV[0, 4]*np.exp(-1j*k_y[1]*Layers[0].thickness) # M[i_eq, dofs[0][5]] = SV[0, 5]*np.exp(-1j*k_y[2]*Layers[0].thickness) # i_eq += 1 # M[i_eq, dofs[0][0]] = SV[3, 0] # M[i_eq, dofs[0][1]] = SV[3, 1] # M[i_eq, dofs[0][2]] = SV[3, 2] # M[i_eq, dofs[0][3]] = SV[3, 3]*np.exp(-1j*k_y[0]*Layers[0].thickness) # M[i_eq, dofs[0][4]] = SV[3, 4]*np.exp(-1j*k_y[1]*Layers[0].thickness) # M[i_eq, dofs[0][5]] = SV[3, 5]*np.exp(-1j*k_y[2]*Layers[0].thickness) # X = LA.solve(M, F) # # print("|R pyPLANES_PW| = {}".format(np.abs(X[0]))) # print("R pyPLANES_PW = {}".format(X[0])) # plot_sol_PW(S, X, dofs, p)
1.976563
2
mmtbx/conformation_dependent_library/mcl.py
pcxod/cctbx_project
0
11130
<reponame>pcxod/cctbx_project<filename>mmtbx/conformation_dependent_library/mcl.py from __future__ import absolute_import, division, print_function import sys import time from cctbx.array_family import flex from scitbx.math import superpose from mmtbx.conformation_dependent_library import mcl_sf4_coordination from six.moves import range from mmtbx.conformation_dependent_library import metal_coordination_library def get_pdb_hierarchy_from_restraints(code): from mmtbx.monomer_library import server from iotbx import pdb mon_lib_server = server.server() path = mon_lib_server.get_comp_comp_id_direct(code, return_filename=True) cif_obj = server.read_cif(path) ligand_inp=pdb.pdb_input(source_info="Model from %s" % path, lines=flex.split_lines("")) ligand_hierarchy = ligand_inp.construct_hierarchy() model=pdb.hierarchy.model() chain=pdb.hierarchy.chain() chain.id='Z' rg=pdb.hierarchy.residue_group() ag=pdb.hierarchy.atom_group() for block, loops in cif_obj.blocks.items(): if block=='comp_list': continue for loop in loops.iterloops(): for row in loop.iterrows(): if '_chem_comp_atom.comp_id' not in row: break ag.resname = row['_chem_comp_atom.comp_id'] atom = pdb.hierarchy.atom() atom.name = row['_chem_comp_atom.atom_id'] atom.element = '%2s' % row['_chem_comp_atom.type_symbol'] atom.xyz = ( float(row['_chem_comp_atom.x']), float(row['_chem_comp_atom.y']), float(row['_chem_comp_atom.z']), ) ag.append_atom(atom) rg.append_atom_group(ag) chain.append_residue_group(rg) model.append_chain(chain) ligand_hierarchy.append_model(model) ligand_hierarchy.atoms().reset_i_seq() return ligand_hierarchy def update(grm, pdb_hierarchy, link_records=None, log=sys.stdout, verbose=False, ): def _atom_id(a, show_i_seq=False): if show_i_seq: return '%s (%5d)' % (a.id_str(), a.i_seq) else: return '%s' % (a.id_str()) if link_records is None: link_records={} link_records.setdefault('LINK', []) hooks = [ ["Iron sulfur cluster coordination", mcl_sf4_coordination.get_sulfur_iron_cluster_coordination, mcl_sf4_coordination.get_all_proxies, ], ['Zn2+ tetrahedral coordination', metal_coordination_library.get_metal_coordination_proxies, metal_coordination_library.get_proxies, ], ] outl = '' outl_debug = '' for label, get_coordination, get_all_proxies in hooks: rc = get_coordination( pdb_hierarchy=pdb_hierarchy, nonbonded_proxies=grm.pair_proxies( sites_cart=pdb_hierarchy.atoms().extract_xyz()).nonbonded_proxies, verbose=verbose, ) bproxies, aproxies = get_all_proxies(rc) if bproxies is None: continue if len(bproxies): outl += ' %s\n' % label outl += ' %s\n' % label atoms = pdb_hierarchy.atoms() sf4_coordination = {} for bp in bproxies: sf4_ag = atoms[bp.i_seqs[0]].parent() sf4_coordination.setdefault(sf4_ag.id_str(), []) sf4_coordination[sf4_ag.id_str()].append((atoms[bp.i_seqs[0]], atoms[bp.i_seqs[1]])) link = (atoms[bp.i_seqs[0]], atoms[bp.i_seqs[1]], 'x,y,z') if link not in link_records: link_records['LINK'].append(link) for sf4, aas in sorted(sf4_coordination.items()): outl += '%spdb="%s"\n' % (' '*6, sf4) outl_debug += '%spdb="%s"\n' % (' '*6, sf4) for aa in sorted(aas): outl += '%s%s - %s\n' % (' '*8, _atom_id(aa[0]), _atom_id(aa[1])) outl_debug += '%s%s - %s\n' % (' '*8, _atom_id(aa[0], True), _atom_id(aa[1], True)) if bproxies: try: grm.add_new_bond_restraints_in_place( proxies=bproxies, sites_cart=pdb_hierarchy.atoms().extract_xyz(), ) except RuntimeError as e: print('\n\n%s' % outl_debug) raise e # done = [] remove = [] for i, angle in enumerate(aproxies): i_seqs = list(angle.i_seqs) i_seqs.sort() if i_seqs in done: remove.append(i) else: done.append(i_seqs) if remove: remove.reverse() for r in remove: del aproxies[r] # if aproxies: outl += '%s%s' % (' '*6, 'Number of angles added : %d\n' % len(aproxies)) grm.add_angles_in_place(aproxies) if outl: print(' Dynamic metal coordination', file=log) print(outl, file=log) def _extract_sites_cart(ag, element=None): selection = [] for atom in ag.atoms(): if element and atom.element.upper().strip()!=element.upper().strip(): continue selection.append(atom.xyz) return flex.vec3_double(selection) def generate_sites_fixed(pdb_hierarchy, resname, element=None): for ag in pdb_hierarchy.atom_groups(): if ag.resname.strip().upper()==resname.upper(): yield _extract_sites_cart(ag, element), ag def superpose_ideal_residue_coordinates(pdb_hierarchy, resname, superpose_element=None, ): element_lookup = {'SF4' : 'Fe', 'F3S' : 'S', #'F4S' : 'S', # not done yet #'CLF' : 'Fe', # too flexible 'DVT' : 'V', } from mmtbx.monomer_library import pdb_interpretation t0=time.time() rmsd_list = {} if superpose_element is None: superpose_element = element_lookup.get(resname, None) if resname in pdb_interpretation.ideal_ligands: ideal_hierarchy = get_pdb_hierarchy_from_restraints(resname) else: assert 0 sites_moving = _extract_sites_cart(ideal_hierarchy, superpose_element) assert len(sites_moving), 'No atoms %s found' % superpose_element for ideal_ag in ideal_hierarchy.atom_groups(): break for sites_fixed, ag in generate_sites_fixed(pdb_hierarchy, resname, superpose_element, ): assert sites_fixed.size() == sites_moving.size(), '%(resname)s residue is missing atoms' % locals() import random min_rmsd = 1e9 min_sites_cart = None for i in range(100): random.shuffle(sites_moving) lsq_fit = superpose.least_squares_fit( reference_sites = sites_fixed, other_sites = sites_moving) new_atoms = ideal_ag.detached_copy().atoms() sites_new = new_atoms.extract_xyz() sites_new = lsq_fit.r.elems * sites_new + lsq_fit.t.elems rmsd = sites_fixed.rms_difference(lsq_fit.other_sites_best_fit()) if rmsd<min_rmsd: min_rmsd=rmsd min_sites_cart = sites_new rmsd_list[ag.id_str()] = min_rmsd sites_new = min_sites_cart new_atoms.set_xyz(sites_new) for atom1 in ag.atoms(): for atom2 in new_atoms: if atom1.name.strip()==atom2.name.strip(): atom1.xyz=atom2.xyz break else: assert 0, 'not all atoms updated - missing %s' % atom1.quote() outl = '' if rmsd_list: outl = '\n %(resname)s Regularisation' % locals() outl+= '\n residue rmsd' for id_str, rmsd in sorted(rmsd_list.items()): outl += '\n "%s" %0.1f' % (id_str, rmsd) outl += '\n Time to superpose : %0.2fs\n' % (time.time()-t0) return outl def superpose_ideal_ligand_on_poor_ligand(ideal_hierarchy, poor_hierarchy, ): """Function superpose an ideal ligand onto the mangled ligand from a ligand fitting procedure Args: ideal_hierarchy (pdb_hierarchy): Ideal ligand poor_hierarchy (pdb_hierarchy): Poor ligand with correct c.o.m. and same atom names in order. Could become more sophisticated. """ sites_moving = flex.vec3_double() sites_fixed = flex.vec3_double() for atom1, atom2 in zip(ideal_hierarchy.atoms(), poor_hierarchy.atoms()): assert atom1.name==atom2.name, '%s!=%s' % (atom1.quote(),atom2.quote()) sites_moving.append(atom1.xyz) sites_fixed.append(atom2.xyz) lsq_fit = superpose.least_squares_fit( reference_sites = sites_fixed, other_sites = sites_moving) sites_new = ideal_hierarchy.atoms().extract_xyz() sites_new = lsq_fit.r.elems * sites_new + lsq_fit.t.elems # rmsd = sites_fixed.rms_difference(lsq_fit.other_sites_best_fit()) ideal_hierarchy.atoms().set_xyz(sites_new) return ideal_hierarchy if __name__=="__main__": from iotbx import pdb ideal_inp=pdb.pdb_input(sys.argv[1]) ideal_hierarchy = ideal_inp.construct_hierarchy() poor_inp=pdb.pdb_input(sys.argv[2]) poor_hierarchy = poor_inp.construct_hierarchy() ideal_hierarchy = superpose_ideal_ligand_on_poor_ligand(ideal_hierarchy, poor_hierarchy) ideal_hierarchy.write_pdb_file('new.pdb')
1.9375
2
tests/test_install.py
dfroger/conda
0
11131
<gh_stars>0 from contextlib import contextmanager import random import shutil import stat import tempfile import unittest from os.path import join from conda import install from conda.install import (PaddingError, binary_replace, update_prefix, warn_failed_remove, duplicates_to_remove) from .decorators import skip_if_no_mock from .helpers import mock patch = mock.patch if mock else None def generate_random_path(): return '/some/path/to/file%s' % random.randint(100, 200) class TestBinaryReplace(unittest.TestCase): def test_simple(self): self.assertEqual( binary_replace(b'xxxaaaaaxyz\x00zz', b'aaaaa', b'bbbbb'), b'xxxbbbbbxyz\x00zz') def test_shorter(self): self.assertEqual( binary_replace(b'xxxaaaaaxyz\x00zz', b'aaaaa', b'bbbb'), b'xxxbbbbxyz\x00\x00zz') def test_too_long(self): self.assertRaises(PaddingError, binary_replace, b'xxxaaaaaxyz\x00zz', b'aaaaa', b'bbbbbbbb') def test_no_extra(self): self.assertEqual(binary_replace(b'aaaaa\x00', b'aaaaa', b'bbbbb'), b'bbbbb\x00') def test_two(self): self.assertEqual( binary_replace(b'aaaaa\x001234aaaaacc\x00\x00', b'aaaaa', b'bbbbb'), b'bbbbb\x001234bbbbbcc\x00\x00') def test_spaces(self): self.assertEqual( binary_replace(b' aaaa \x00', b'aaaa', b'bbbb'), b' bbbb \x00') def test_multiple(self): self.assertEqual( binary_replace(b'aaaacaaaa\x00', b'aaaa', b'bbbb'), b'bbbbcbbbb\x00') self.assertEqual( binary_replace(b'aaaacaaaa\x00', b'aaaa', b'bbb'), b'bbbcbbb\x00\x00\x00') self.assertRaises(PaddingError, binary_replace, b'aaaacaaaa\x00', b'aaaa', b'bbbbb') class FileTests(unittest.TestCase): def setUp(self): self.tmpdir = tempfile.mkdtemp() self.tmpfname = join(self.tmpdir, 'testfile') def tearDown(self): shutil.rmtree(self.tmpdir) def test_default_text(self): with open(self.tmpfname, 'w') as fo: fo.write('#!/opt/anaconda1anaconda2anaconda3/bin/python\n' 'echo "Hello"\n') update_prefix(self.tmpfname, '/usr/local') with open(self.tmpfname, 'r') as fi: data = fi.read() self.assertEqual(data, '#!/usr/local/bin/python\n' 'echo "Hello"\n') def test_binary(self): with open(self.tmpfname, 'wb') as fo: fo.write(b'\x7fELF.../some-placeholder/lib/libfoo.so\0') update_prefix(self.tmpfname, '/usr/local', placeholder='/some-placeholder', mode='binary') with open(self.tmpfname, 'rb') as fi: data = fi.read() self.assertEqual( data, b'\x7fELF.../usr/local/lib/libfoo.so\0\0\0\0\0\0\0\0' ) class remove_readonly_TestCase(unittest.TestCase): def test_takes_three_args(self): with self.assertRaises(TypeError): install._remove_readonly() with self.assertRaises(TypeError): install._remove_readonly(True) with self.assertRaises(TypeError): install._remove_readonly(True, True) with self.assertRaises(TypeError): install._remove_readonly(True, True, True, True) @skip_if_no_mock def test_calls_os_chmod(self): some_path = generate_random_path() with patch.object(install.os, 'chmod') as chmod: install._remove_readonly(mock.Mock(), some_path, {}) chmod.assert_called_with(some_path, stat.S_IWRITE) @skip_if_no_mock def test_calls_func(self): some_path = generate_random_path() func = mock.Mock() with patch.object(install.os, 'chmod'): install._remove_readonly(func, some_path, {}) func.assert_called_with(some_path) class rm_rf_file_and_link_TestCase(unittest.TestCase): @contextmanager def generate_mock_islink(self, value): with patch.object(install, 'islink', return_value=value) as islink: yield islink @contextmanager def generate_mock_isdir(self, value): with patch.object(install, 'isdir', return_value=value) as isdir: yield isdir @contextmanager def generate_mock_isfile(self, value): with patch.object(install, 'isfile', return_value=value) as isfile: yield isfile @contextmanager def generate_mock_os_access(self, value): with patch.object(install.os, 'access', return_value=value) as os_access: yield os_access @contextmanager def generate_mock_unlink(self): with patch.object(install.os, 'unlink') as unlink: yield unlink @contextmanager def generate_mock_rmtree(self): with patch.object(install.shutil, 'rmtree') as rmtree: yield rmtree @contextmanager def generate_mock_sleep(self): with patch.object(install.time, 'sleep') as sleep: yield sleep @contextmanager def generate_mock_log(self): with patch.object(install, 'log') as log: yield log @contextmanager def generate_mock_on_win(self, value): original = install.on_win install.on_win = value yield install.on_win = original @contextmanager def generate_mock_check_call(self): with patch.object(install.subprocess, 'check_call') as check_call: yield check_call @contextmanager def generate_mocks(self, islink=True, isfile=True, isdir=True, on_win=False, os_access=True): with self.generate_mock_islink(islink) as mock_islink: with self.generate_mock_isfile(isfile) as mock_isfile: with self.generate_mock_os_access(os_access) as mock_os_access: with self.generate_mock_isdir(isdir) as mock_isdir: with self.generate_mock_unlink() as mock_unlink: with self.generate_mock_rmtree() as mock_rmtree: with self.generate_mock_sleep() as mock_sleep: with self.generate_mock_log() as mock_log: with self.generate_mock_on_win(on_win): with self.generate_mock_check_call() as check_call: yield { 'islink': mock_islink, 'isfile': mock_isfile, 'isdir': mock_isdir, 'os_access': mock_os_access, 'unlink': mock_unlink, 'rmtree': mock_rmtree, 'sleep': mock_sleep, 'log': mock_log, 'check_call': check_call, } def generate_directory_mocks(self, on_win=False): return self.generate_mocks(islink=False, isfile=False, isdir=True, on_win=on_win) def generate_all_false_mocks(self): return self.generate_mocks(False, False, False) @property def generate_random_path(self): return generate_random_path() @skip_if_no_mock def test_calls_islink(self): with self.generate_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['islink'].assert_called_with(some_path) @skip_if_no_mock def test_calls_unlink_on_true_islink(self): with self.generate_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['unlink'].assert_called_with(some_path) @skip_if_no_mock def test_calls_unlink_on_os_access_false(self): with self.generate_mocks(os_access=False) as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['unlink'].assert_called_with(some_path) @skip_if_no_mock def test_does_not_call_isfile_if_islink_is_true(self): with self.generate_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) self.assertFalse(mocks['isfile'].called) @skip_if_no_mock def test_calls_isfile_with_path(self): with self.generate_mocks(islink=False, isfile=True) as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['isfile'].assert_called_with(some_path) @skip_if_no_mock def test_calls_unlink_on_false_islink_and_true_isfile(self): with self.generate_mocks(islink=False, isfile=True) as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['unlink'].assert_called_with(some_path) @skip_if_no_mock def test_does_not_call_unlink_on_false_values(self): with self.generate_mocks(islink=False, isfile=False) as mocks: some_path = self.generate_random_path install.rm_rf(some_path) self.assertFalse(mocks['unlink'].called) @skip_if_no_mock def test_does_not_call_shutil_on_false_isdir(self): with self.generate_all_false_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) self.assertFalse(mocks['rmtree'].called) @skip_if_no_mock def test_calls_rmtree_at_least_once_on_isdir_true(self): with self.generate_directory_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) mocks['rmtree'].assert_called_with( some_path, onerror=warn_failed_remove, ignore_errors=False) @skip_if_no_mock def test_calls_rmtree_only_once_on_success(self): with self.generate_directory_mocks() as mocks: some_path = self.generate_random_path install.rm_rf(some_path) self.assertEqual(1, mocks['rmtree'].call_count) @skip_if_no_mock def test_raises_final_exception_if_it_cant_remove(self): with self.generate_directory_mocks() as mocks: mocks['rmtree'].side_effect = OSError some_path = self.generate_random_path with self.assertRaises(OSError): install.rm_rf(some_path) @skip_if_no_mock def test_retries_six_times_to_ensure_it_cant_really_remove(self): with self.generate_directory_mocks() as mocks: mocks['rmtree'].side_effect = OSError some_path = self.generate_random_path with self.assertRaises(OSError): install.rm_rf(some_path) self.assertEqual(6, mocks['rmtree'].call_count) @skip_if_no_mock def test_retries_as_many_as_max_retries_plus_one(self): max_retries = random.randint(7, 10) with self.generate_directory_mocks() as mocks: mocks['rmtree'].side_effect = OSError some_path = self.generate_random_path with self.assertRaises(OSError): install.rm_rf(some_path, max_retries=max_retries) self.assertEqual(max_retries + 1, mocks['rmtree'].call_count) @skip_if_no_mock def test_stops_retrying_after_success(self): with self.generate_directory_mocks() as mocks: mocks['rmtree'].side_effect = [OSError, OSError, None] some_path = self.generate_random_path install.rm_rf(some_path) self.assertEqual(3, mocks['rmtree'].call_count) @skip_if_no_mock def test_pauses_for_same_number_of_seconds_as_max_retries(self): with self.generate_directory_mocks() as mocks: mocks['rmtree'].side_effect = OSError max_retries = random.randint(1, 10) with self.assertRaises(OSError): install.rm_rf(self.generate_random_path, max_retries=max_retries) expected = [mock.call(i) for i in range(max_retries)] mocks['sleep'].assert_has_calls(expected) @skip_if_no_mock def test_logs_messages_generated_for_each_retry(self): with self.generate_directory_mocks() as mocks: random_path = self.generate_random_path mocks['rmtree'].side_effect = OSError(random_path) max_retries = random.randint(1, 10) with self.assertRaises(OSError): install.rm_rf(random_path, max_retries=max_retries) log_template = "\n".join([ "Unable to delete %s" % random_path, "%s" % OSError(random_path), "Retrying after %d seconds...", ]) expected_call_list = [mock.call(log_template % i) for i in range(max_retries)] mocks['log'].debug.assert_has_calls(expected_call_list) @skip_if_no_mock def test_tries_extra_kwarg_on_windows(self): with self.generate_directory_mocks(on_win=True) as mocks: random_path = self.generate_random_path mocks['rmtree'].side_effect = [OSError, None] install.rm_rf(random_path) expected_call_list = [ mock.call(random_path, ignore_errors=False, onerror=warn_failed_remove), mock.call(random_path, onerror=install._remove_readonly) ] mocks['rmtree'].assert_has_calls(expected_call_list) self.assertEqual(2, mocks['rmtree'].call_count) class duplicates_to_remove_TestCase(unittest.TestCase): def test_1(self): linked = ['conda-3.18.8-py27_0', 'conda-3.19.0', 'python-2.7.10-2', 'python-2.7.11-0', 'zlib-1.2.8-0'] keep = ['conda-3.19.0', 'python-2.7.11-0'] self.assertEqual(duplicates_to_remove(linked, keep), ['conda-3.18.8-py27_0', 'python-2.7.10-2']) def test_2(self): linked = ['conda-3.19.0', 'python-2.7.10-2', 'python-2.7.11-0', 'zlib-1.2.7-1', 'zlib-1.2.8-0', 'zlib-1.2.8-4'] keep = ['conda-3.19.0', 'python-2.7.11-0'] self.assertEqual(duplicates_to_remove(linked, keep), ['python-2.7.10-2', 'zlib-1.2.7-1', 'zlib-1.2.8-0']) def test_3(self): linked = ['python-2.7.10-2', 'python-2.7.11-0', 'python-3.4.3-1'] keep = ['conda-3.19.0', 'python-2.7.11-0'] self.assertEqual(duplicates_to_remove(linked, keep), ['python-2.7.10-2', 'python-3.4.3-1']) def test_nokeep(self): linked = ['python-2.7.10-2', 'python-2.7.11-0', 'python-3.4.3-1'] self.assertEqual(duplicates_to_remove(linked, []), ['python-2.7.10-2', 'python-2.7.11-0']) def test_misc(self): d1 = 'a-1.3-0' self.assertEqual(duplicates_to_remove([], []), []) self.assertEqual(duplicates_to_remove([], [d1]), []) self.assertEqual(duplicates_to_remove([d1], [d1]), []) self.assertEqual(duplicates_to_remove([d1], []), []) d2 = 'a-1.4-0' li = set([d1, d2]) self.assertEqual(duplicates_to_remove(li, [d2]), [d1]) self.assertEqual(duplicates_to_remove(li, [d1]), [d2]) self.assertEqual(duplicates_to_remove(li, []), [d1]) self.assertEqual(duplicates_to_remove(li, [d1, d2]), []) if __name__ == '__main__': unittest.main()
2.296875
2
django_elastic_appsearch/slicer.py
CorrosiveKid/django_elastic_appsearch
11
11132
<filename>django_elastic_appsearch/slicer.py<gh_stars>10-100 """A Queryset slicer for Django.""" def slice_queryset(queryset, chunk_size): """Slice a queryset into chunks.""" start_pk = 0 queryset = queryset.order_by('pk') while True: # No entry left if not queryset.filter(pk__gt=start_pk).exists(): break try: # Fetch chunk_size entries if possible end_pk = queryset.filter(pk__gt=start_pk).values_list( 'pk', flat=True)[chunk_size - 1] # Fetch rest entries if less than chunk_size left except IndexError: end_pk = queryset.values_list('pk', flat=True).last() yield queryset.filter(pk__gt=start_pk).filter(pk__lte=end_pk) start_pk = end_pk
2.734375
3
newsite/news/urls.py
JasperStfun/Django_C
0
11133
<filename>newsite/news/urls.py<gh_stars>0 from django.urls import path from . import views urlpatterns = [ path('', views.news_home, name='news_home'), path('create', views.create, name='create'), path('<int:pk>', views.NewsDetailView.as_view(), name='news-detail'), path('<int:pk>/update', views.NewsUpdateView.as_view(), name='news-update'), path('<int:pk>/delete', views.NewsDeleteView.as_view(), name='news-delete'), ]
1.835938
2
module/phase_one/headers.py
cqr-cryeye-forks/Florid
7
11134
<reponame>cqr-cryeye-forks/Florid<filename>module/phase_one/headers.py import requests import lib.common MODULE_NAME = 'headers' def run(): r = requests.get(lib.common.SOURCE_URL) # X-Forwarded-By: if 'X-Powered-By' in r.headers: lib.common.RESULT_ONE_DICT['X-Powered-By'] = r.headers['X-Powered-By'] # Server: if 'Server' in r.headers: lib.common.RESULT_ONE_DICT['Server'] = r.headers['Server'] lib.common.ALIVE_LINE[MODULE_NAME] += 1
2.125
2
ekorpkit/io/fetch/edgar/edgar.py
entelecheia/ekorpkit
4
11135
import os import requests from bs4 import BeautifulSoup from ekorpkit import eKonf from ekorpkit.io.download.web import web_download, web_download_unzip class EDGAR: def __init__(self, **args): self.args = eKonf.to_config(args) self.base_url = self.args.base_url self.url = self.args.url self.output_dir = self.args.output_dir os.makedirs(self.output_dir, exist_ok=True) self.force_download = self.args.force_download self.name = self.args.name self.build() def build(self): if self.force_download or not os.listdir(self.output_dir): self.download_edgar() else: print(f"{self.name} is already downloaded") def download_edgar(self): user_agent = "Mozilla/5.0" headers = {"User-Agent": user_agent} page = requests.get(self.url, headers=headers) soup = BeautifulSoup(page.content, "html.parser") filelist = soup.find_all("a", class_="filename") for file in filelist: link = self.base_url + file.get("href") file_path = self.output_dir + "/" + file.get_text().strip() web_download(link, file_path, self.name, self.force_download)
2.875
3
HARK/ConsumptionSaving/tests/test_PerfForesightConsumerType.py
michiboo/HARK
0
11136
from HARK.ConsumptionSaving.ConsIndShockModel import PerfForesightConsumerType import numpy as np import unittest class testPerfForesightConsumerType(unittest.TestCase): def setUp(self): self.agent = PerfForesightConsumerType() self.agent_infinite = PerfForesightConsumerType(cycles=0) PF_dictionary = { 'CRRA' : 2.5, 'DiscFac' : 0.96, 'Rfree' : 1.03, 'LivPrb' : [0.98], 'PermGroFac' : [1.01], 'T_cycle' : 1, 'cycles' : 0, 'AgentCount' : 10000 } self.agent_alt = PerfForesightConsumerType( **PF_dictionary) def test_default_solution(self): self.agent.solve() c = self.agent.solution[0].cFunc self.assertEqual(c.x_list[0], -0.9805825242718447) self.assertEqual(c.x_list[1], 0.01941747572815533) self.assertEqual(c.y_list[0], 0) self.assertEqual(c.y_list[1], 0.511321002804608) self.assertEqual(c.decay_extrap, False) def test_another_solution(self): self.agent_alt.DiscFac = 0.90 self.agent_alt.solve() self.assertAlmostEqual( self.agent_alt.solution[0].cFunc(10).tolist(), 3.9750093524820787) def test_checkConditions(self): self.agent_infinite.checkConditions() self.assertTrue(self.agent_infinite.AIC) self.assertTrue(self.agent_infinite.GICPF) self.assertTrue(self.agent_infinite.RIC) self.assertTrue(self.agent_infinite.FHWC) def test_simulation(self): self.agent_infinite.solve() # Create parameter values necessary for simulation SimulationParams = { "AgentCount" : 10000, # Number of agents of this type "T_sim" : 120, # Number of periods to simulate "aNrmInitMean" : -6.0, # Mean of log initial assets "aNrmInitStd" : 1.0, # Standard deviation of log initial assets "pLvlInitMean" : 0.0, # Mean of log initial permanent income "pLvlInitStd" : 0.0, # Standard deviation of log initial permanent income "PermGroFacAgg" : 1.0, # Aggregate permanent income growth factor "T_age" : None, # Age after which simulated agents are automatically killed } self.agent_infinite(**SimulationParams) # This implicitly uses the assignParameters method of AgentType # Create PFexample object self.agent_infinite.track_vars = ['mNrmNow'] self.agent_infinite.initializeSim() self.agent_infinite.simulate() self.assertAlmostEqual( np.mean(self.agent_infinite.mNrmNow_hist,axis=1)[40], -23.008063500363942 ) self.assertAlmostEqual( np.mean(self.agent_infinite.mNrmNow_hist,axis=1)[100], -27.164608851546927 ) ## Try now with the manipulation at time step 80 self.agent_infinite.initializeSim() self.agent_infinite.simulate(80) self.agent_infinite.aNrmNow += -5. # Adjust all simulated consumers' assets downward by 5 self.agent_infinite.simulate(40) self.assertAlmostEqual( np.mean(self.agent_infinite.mNrmNow_hist,axis=1)[40], -23.008063500363942 ) self.assertAlmostEqual( np.mean(self.agent_infinite.mNrmNow_hist,axis=1)[100], -29.140261331951606 )
2.296875
2
src-gen/openapi_server/models/config.py
etherisc/bima-bolt-api
0
11137
<filename>src-gen/openapi_server/models/config.py # coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from openapi_server.models.base_model_ import Model from openapi_server.models.component import Component from openapi_server import util from openapi_server.models.component import Component # noqa: E501 class Config(Model): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. """ def __init__(self, mongo=None, s3=None, arc2=None, created_at=None): # noqa: E501 """Config - a model defined in OpenAPI :param mongo: The mongo of this Config. # noqa: E501 :type mongo: Component :param s3: The s3 of this Config. # noqa: E501 :type s3: Component :param arc2: The arc2 of this Config. # noqa: E501 :type arc2: Component :param created_at: The created_at of this Config. # noqa: E501 :type created_at: datetime """ self.openapi_types = { 'mongo': Component, 's3': Component, 'arc2': Component, 'created_at': datetime } self.attribute_map = { 'mongo': 'mongo', 's3': 's3', 'arc2': 'arc2', 'created_at': 'created_at' } self._mongo = mongo self._s3 = s3 self._arc2 = arc2 self._created_at = created_at @classmethod def from_dict(cls, dikt) -> 'Config': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The Config of this Config. # noqa: E501 :rtype: Config """ return util.deserialize_model(dikt, cls) @property def mongo(self): """Gets the mongo of this Config. :return: The mongo of this Config. :rtype: Component """ return self._mongo @mongo.setter def mongo(self, mongo): """Sets the mongo of this Config. :param mongo: The mongo of this Config. :type mongo: Component """ if mongo is None: raise ValueError("Invalid value for `mongo`, must not be `None`") # noqa: E501 self._mongo = mongo @property def s3(self): """Gets the s3 of this Config. :return: The s3 of this Config. :rtype: Component """ return self._s3 @s3.setter def s3(self, s3): """Sets the s3 of this Config. :param s3: The s3 of this Config. :type s3: Component """ if s3 is None: raise ValueError("Invalid value for `s3`, must not be `None`") # noqa: E501 self._s3 = s3 @property def arc2(self): """Gets the arc2 of this Config. :return: The arc2 of this Config. :rtype: Component """ return self._arc2 @arc2.setter def arc2(self, arc2): """Sets the arc2 of this Config. :param arc2: The arc2 of this Config. :type arc2: Component """ if arc2 is None: raise ValueError("Invalid value for `arc2`, must not be `None`") # noqa: E501 self._arc2 = arc2 @property def created_at(self): """Gets the created_at of this Config. Creation timestamp, omit this property for post requests # noqa: E501 :return: The created_at of this Config. :rtype: datetime """ return self._created_at @created_at.setter def created_at(self, created_at): """Sets the created_at of this Config. Creation timestamp, omit this property for post requests # noqa: E501 :param created_at: The created_at of this Config. :type created_at: datetime """ self._created_at = created_at
2.234375
2
txt_annotation.py
bubbliiiing/classification-keras
30
11138
import os from os import getcwd #---------------------------------------------# # 训练前一定要注意修改classes # 种类顺序需要和model_data下的txt一样 #---------------------------------------------# classes = ["cat", "dog"] sets = ["train", "test"] wd = getcwd() for se in sets: list_file = open('cls_' + se + '.txt', 'w') datasets_path = "datasets/" + se types_name = os.listdir(datasets_path) for type_name in types_name: if type_name not in classes: continue cls_id = classes.index(type_name) photos_path = os.path.join(datasets_path, type_name) photos_name = os.listdir(photos_path) for photo_name in photos_name: _, postfix = os.path.splitext(photo_name) if postfix not in ['.jpg', '.png', '.jpeg']: continue list_file.write(str(cls_id) + ";" + '%s/%s'%(wd, os.path.join(photos_path, photo_name))) list_file.write('\n') list_file.close()
2.6875
3
S4/S4 Library/simulation/relationships/sim_knowledge.py
NeonOcean/Environment
1
11139
<filename>S4/S4 Library/simulation/relationships/sim_knowledge.py from protocolbuffers import SimObjectAttributes_pb2 as protocols from careers.career_unemployment import CareerUnemployment import services import sims4 logger = sims4.log.Logger('Relationship', default_owner='jjacobson') class SimKnowledge: __slots__ = ('_rel_data', '_known_traits', '_knows_career', '_known_stats', '_knows_major') def __init__(self, rel_data): self._rel_data = rel_data self._known_traits = None self._knows_career = False self._known_stats = None self._knows_major = False def add_known_trait(self, trait, notify_client=True): if trait.is_personality_trait: if self._known_traits is None: self._known_traits = set() self._known_traits.add(trait) if notify_client: self._rel_data.relationship.send_relationship_info() else: logger.error("Try to add non personality trait {} to Sim {}'s knowledge about to Sim {}", trait, self._rel_data.sim_id, self._rel_data.target_sim_id) @property def known_traits(self): if self._known_traits is None: return () return self._known_traits @property def knows_career(self): return self._knows_career def add_knows_career(self, notify_client=True): self._knows_career = True if notify_client: self._rel_data.relationship.send_relationship_info() def remove_knows_career(self, notify_client=True): self._knows_career = False if notify_client: self._rel_data.relationship.send_relationship_info() def get_known_careers(self): if self._knows_career: target_sim_info = self._rel_data.find_target_sim_info() if target_sim_info is not None: if target_sim_info.career_tracker.has_career: careers = tuple(career for career in target_sim_info.careers.values() if career.is_visible_career if not career.is_course_slot) if careers: return careers if target_sim_info.career_tracker.retirement is not None: return (target_sim_info.career_tracker.retirement,) else: return (CareerUnemployment(target_sim_info),) return () def get_known_careertrack_ids(self): return (career_track.current_track_tuning.guid64 for career_track in self.get_known_careers()) def add_known_stat(self, stat, notify_client=True): if self._known_stats is None: self._known_stats = set() self._known_stats.add(stat) if notify_client: self._rel_data.relationship.send_relationship_info() def get_known_stats(self): return self._known_stats @property def knows_major(self): return self._knows_major def add_knows_major(self, notify_client=True): self._knows_major = True if notify_client: self._rel_data.relationship.send_relationship_info() def remove_knows_major(self, notify_client=True): self._knows_major = False if notify_client: self._rel_data.relationship.send_relationship_info() def get_known_major(self): if self._knows_major: target_sim_info = self._rel_data.find_target_sim_info() if target_sim_info is not None and target_sim_info.degree_tracker: return target_sim_info.degree_tracker.get_major() def get_known_major_career(self): if self._knows_major: target_sim_info = self._rel_data.find_target_sim_info() if target_sim_info is not None and target_sim_info.career_tracker.has_career: careers = tuple(career for career in target_sim_info.careers.values() if career.is_visible_career if career.is_course_slot) if careers: return careers return () def get_save_data(self): save_data = protocols.SimKnowledge() for trait in self.known_traits: save_data.trait_ids.append(trait.guid64) save_data.knows_career = self._knows_career if self._known_stats is not None: for stat in self._known_stats: save_data.stats.append(stat.guid64) save_data.knows_major = self._knows_major return save_data def load_knowledge(self, save_data): trait_manager = services.get_instance_manager(sims4.resources.Types.TRAIT) stat_manager = services.get_instance_manager(sims4.resources.Types.STATISTIC) for trait_inst_id in save_data.trait_ids: trait = trait_manager.get(trait_inst_id) if trait is not None: if self._known_traits is None: self._known_traits = set() self._known_traits.add(trait) for stat_id in save_data.stats: if self._known_stats is None: self._known_stats = set() stat = stat_manager.get(stat_id) if stat is not None: self._known_stats.add(stat) self._knows_career = save_data.knows_career if hasattr(save_data, 'knows_major'): self._knows_major = save_data.knows_major
2.390625
2
233_number_of_digt_one.py
gengwg/leetcode
2
11140
<gh_stars>1-10 # Given an integer n, count the total number of digit 1 appearing # in all non-negative integers less than or equal to n. # # For example: # Given n = 13, # Return 6, because digit 1 occurred in the following numbers: # 1, 10, 11, 12, 13. # class Solution: def countDigitOne(self, n): """ :type n: int :rtype: int """ # sum all the '1's inside the n numbers count = 0 for i in range(1, n+1): # count including n count += self.numberOfDigitOne(i) return count def numberOfDigitOne(self, n): """ function to count number of digit ones in a number n. mod by 10 to test if 1st digit is 1; then divide by 10 to get next digit; next test if next digit is 1. """ result = 0 while n: if n % 10 == 1: result += 1 n = n / 10 return result if __name__ == "__main__": print Solution().countDigitOne(13)
3.828125
4
Search Algorithms.py
fzehracetin/A-Star-and-Best-First-Search
1
11141
from PIL import Image from math import sqrt import numpy as np import time import matplotlib.backends.backend_tkagg import matplotlib.pyplot as plt class Point: x: float y: float f: float h: float g: float def __init__(self, x, y, f): self.x = x self.y = y self.f = f self.g = 0 self.h = 0 self.parent = None def equal(self, other): if self.x == other.x and self.y == other.y: return True class Output: result_image: Image total_time: float n_elements: int max_elements: int def __init__(self, result_image, total_time, n_elements, max_elements): self.result_image = result_image self.total_time = total_time self.n_elements = n_elements self.max_elements = max_elements self.name = None def plot_times(self, other1, other2, other3): fig, ax = plt.subplots() ax.bar([self.name, other1.name, other2.name, other3.name], [self.total_time, other1.total_time, other2.total_time, other3.total_time]) fig.suptitle("Toplam Zamanlar") fname = image_name.split('.') plt.savefig(fname[0] + "times.png") plt.show() def plot_n_elements(self, other1, other2, other3): fig, ax = plt.subplots() ax.bar([self.name, other1.name, other2.name, other3.name], [self.n_elements, other1.n_elements, other2.n_elements, other3.n_elements]) fig.suptitle("Stack'ten Çekilen Toplam Eleman Sayısı") fname = image_name.split('.') plt.savefig(fname[0] + "n_elements.png") plt.show() def plot_max_elements(self, other1, other2, other3): fig, ax = plt.subplots() ax.bar([self.name, other1.name, other2.name, other3.name], [self.max_elements, other1.max_elements, other2.max_elements, other3.max_elements]) fig.suptitle("Stack'te Bulunan Maksimum Eleman Sayısı") fname = image_name.split('.') plt.savefig(fname[0] + "max_elements.png") plt.show() def distance(point, x, y): return sqrt((point.x - x)**2 + (point.y - y)**2) def insert_in_heap(heap, top, point): heap.append(point) i = top parent = (i - 1)/2 while i >= 1 and heap[int(i)].f < heap[int(parent)].f: heap[int(i)], heap[int(parent)] = heap[int(parent)], heap[int(i)] # swap i = parent parent = (i - 1) / 2 return def calculate_weight(x, y, liste, top, point, visited, index1, index2): if visited[int(x)][int(y)] == 0: r, g, b = image.getpixel((x, y)) if x == end.x and y == end.y: print("Path found.") if r is 0: r = 1 new_point = Point(x, y, 0) new_point.parent = point new_point.h = distance(end, x, y) * (256 - r) new_point.g = 0 if index1 == 1: # a_star new_point.g = new_point.parent.g + 256 - r new_point.f = new_point.h + new_point.g # bfs'de g = 0 if index2 == 0: # stack liste.append(new_point) else: # heap insert_in_heap(liste, top, new_point) top += 1 visited[int(x)][int(y)] = 1 return top def add_neighbours(point, liste, top, visited, index1, index2): # print(point.x, point.y) if (point.x == width - 1 and point.y == height - 1) or (point.x == 0 and point.y == 0) or \ (point.x == 0 and point.y == height - 1) or (point.x == width - 1 and point.y == 0): # print("first if") if point.x == width - 1 and point.y == height - 1: constx = -1 consty = -1 elif point.x == 0 and point.y == 0: constx = 1 consty = 1 elif point.x == width - 1 and point.y == 0: constx = 1 consty = -1 else: constx = -1 consty = 1 top = calculate_weight(point.x + constx, point.y, liste, top, point, visited, index1, index2) top = calculate_weight(point.x, point.y + consty, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + constx, point.y + consty, liste, top, point, visited, index1, index2) elif point.x == 0 or point.x == width - 1: # print("nd if") top = calculate_weight(point.x, point.y - 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x, point.y + 1, liste, top, point, visited, index1, index2) if point.x == 0: const = 1 else: const = -1 top = calculate_weight(point.x + const, point.y - 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + const, point.y + 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + const, point.y, liste, top, point, visited, index1, index2) elif point.y == 0 or point.y == height - 1: # print("3rd if") top = calculate_weight(point.x - 1, point.y, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + 1, point.y, liste, top, point, visited, index1, index2) if point.y == 0: const = 1 else: const = -1 top = calculate_weight(point.x - 1, point.y + const, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + 1, point.y + const, liste, top, point, visited, index1, index2) top = calculate_weight(point.x, point.y + const, liste, top, point, visited, index1, index2) else: # print("4th if") top = calculate_weight(point.x - 1, point.y, liste, top, point, visited, index1, index2) top = calculate_weight(point.x - 1, point.y - 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x - 1, point.y + 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + 1, point.y - 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + 1, point.y, liste, top, point, visited, index1, index2) top = calculate_weight(point.x + 1, point.y + 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x, point.y + 1, liste, top, point, visited, index1, index2) top = calculate_weight(point.x, point.y - 1, liste, top, point, visited, index1, index2) return top def paint(point): yol = [] while not point.equal(start): yol.append(point) image.putpixel((int(point.x), int(point.y)), (60, 255, 0)) point = point.parent end_time = time.time() # image.show() '''print("--------------YOL------------------") for i in range(len(yol)): print("x: {}, y:{}, distance:{}".format(yol[i].x, yol[i].y, yol[i].f)) print("------------------------------------")''' return image, (end_time - start_time) def bfs_and_a_star_with_stack(index): stack = [] top = 0 found = False point = None stack.append(start) visited = np.zeros((width, height)) visited[int(start.x)][int(start.y)] = 1 j = 0 max_element = 0 while stack and not found: point = stack.pop(top) # print("x: {}, y:{}, f:{}".format(point.x, point.y, point.f)) top -= 1 if point.equal(end): found = True else: top = add_neighbours(point, stack, top, visited, index, 0) stack.sort(key=lambda point: point.f, reverse=True) if len(stack) > max_element: max_element = len(stack) j += 1 if found: result_image, total_time = paint(point) # print("Stackten çekilen eleman sayısı: ", j) # print("Stackteki maksimum eleman sayısı: ", max_element) return result_image, total_time, j, max_element def find_smallest_child(heap, i, top): if 2 * i + 2 < top: # has two child if heap[2*i + 1].f < heap[2*i + 2].f: return 2*i + 1 else: return 2*i + 2 elif 2*i + 1 < top: # has one child return 2*i + 1 else: # has no child return 0 def remove_min(heap, top): if top == 0: return None min_point = heap[0] top -= 1 heap[0] = heap[top] del heap[top] i = 0 index = find_smallest_child(heap, i, top) while index != 0 and heap[i].f > heap[index].f: heap[i], heap[index] = heap[index], heap[i] i = index index = find_smallest_child(heap, i, top) return min_point, top def bfs_and_a_star_with_heap(index): heap = [] found = False yol = [] point = None heap.append(start) visited = np.zeros((width, height)) visited[int(start.x)][int(start.y)] = 1 j = 0 top = 1 max_element = 0 while heap and not found: point, top = remove_min(heap, top) # print("x: {}, y:{}, f:{}".format(point.x, point.y, point.f)) if point.equal(end): found = True else: top = add_neighbours(point, heap, top, visited, index, 1) if len(heap) > max_element: max_element = len(heap) j += 1 if found: result_image, total_time = paint(point) else: return return result_image, total_time, j, max_element if __name__ == "__main__": print("UYARI: Seçilecek görüntü exe dosyası ile aynı klasörde olmalıdır.") image_name = input("Algoritmanın üzerinde çalışacağı görüntünün ismini giriniz (Örnek input: image.png): ") print(image_name) print("-------------------Algoritmalar------------------") print("1- Best First Search with Stack") print("2- Best First Search with Heap") print("3- A* with Stack") print("4- A* with Heap") print("5- Analiz (tüm algoritmaların çalışmalarını ve kıyaslamalarını gör)") alg = input("Algoritmayı ve veri yapısının numarasını seçiniz (Örnek input: 1): ") image = Image.open(image_name) width, height = image.size image = image.convert('RGB') print("Görüntünün genişliği: {}, yüksekliği: {}".format(width, height)) print("NOT: Başlangıç ve bitiş noktasının koordinatları genişlik ve uzunluktan küçük olmalıdır.") sx, sy = input("Başlangıç noktasının x ve y piksel koordinatlarını sırasıyla giriniz (Örnek input: 350 100): ").split() ex, ey = input("Bitiş noktasının x ve y piksel koordinatlarını sırasıyla giriniz (Örnek input: 200 700): ").split() start = Point(int(sx), int(sy), -1) start.parent = -1 end = Point(int(ex), int(ey), -1) start_time = time.time() if int(alg) == 1: result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_stack(0) elif int(alg) == 2: result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_heap(0) elif int(alg) == 3: result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_stack(1) elif int(alg) == 4: result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_heap(1) elif int(alg) == 5: result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_stack(0) output1 = Output(result_image, total_time, n_elements, max_elements) print(n_elements, total_time, max_elements) output1.name = "BFS with Stack" print("1/4") image = Image.open(image_name) width, height = image.size image = image.convert('RGB') start_time = time.time() result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_heap(0) output2 = Output(result_image, total_time, n_elements, max_elements) print(n_elements, total_time, max_elements) output2.name = "BFS with Heap" print("2/4") image = Image.open(image_name) width, height = image.size image = image.convert('RGB') start_time = time.time() result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_stack(1) output3 = Output(result_image, total_time, n_elements, max_elements) output3.name = "A* with Stack" print(n_elements, total_time, max_elements) print("3/4") image = Image.open(image_name) width, height = image.size image = image.convert('RGB') start_time = time.time() result_image, total_time, n_elements, max_elements = bfs_and_a_star_with_heap(1) output4 = Output(result_image, total_time, n_elements, max_elements) output4.name = "A* with Heap" print("4/4") output1.plot_times(output2, output3, output4) output1.plot_max_elements(output2, output3, output4) output1.plot_n_elements(output2, output3, output4) print("Bastırılan görüntüler sırasıyla BFS stack, BFS heap, A* stack ve A* heap şeklindedir.") fname = image_name.split('.') output1.result_image.show() output1.result_image.save(fname[0] + "BFS_stack.png") output2.result_image.show() output2.result_image.save(fname[0] + "BFS_heap.png") output3.result_image.show() output3.result_image.save(fname[0] + "A_star_stack.png") output4.result_image.show() output4.result_image.save(fname[0] + "A_star_heap.png") exit(0) else: print("Algoritma numarası hatalı girildi, tekrar deneyin.") exit(0) print("Stackten çekilen eleman sayısı: ", n_elements) print("Stackteki maksimum eleman sayısı: ", max_elements) print("Toplam süre: ", total_time) result_image.show()
3.1875
3
time_test.py
Shb742/rnnoise_python
32
11142
#Author <NAME> import time import rnnoise import numpy as np def time_rnnoise(rounds=1000): a = rnnoise.RNNoise() timer = 0.0 st = time.time() for i in range(rounds): inp = np.random.bytes(960) timer = (time.time() - st) print(timer) st = time.time() for i in range(rounds): inp = np.random.bytes(960) va,out = a.process_frame(inp) time_taken_per_frame = ((time.time()-st)-timer) /rounds print("time taken for one frame - " + str(time_taken_per_frame )) print("time in a frame - " +str(480.0/48000.0)) print(str((480.0/48000.0)/time_taken_per_frame )+"X faster than real") a.destroy() time_rnnoise()
2.875
3
tests/test_shell.py
jakubtyniecki/pact
2
11143
""" shell sort tests module """ import unittest import random from sort import shell from tests import helper class ShellSortTests(unittest.TestCase): """ shell sort unit tests class """ max = 100 arr = [] def setUp(self): """ setting up for the test """ self.arr = random.sample(range(self.max), self.max) def test_null_input(self): """ should raise when input array is None """ # arrange inp = None # act with self.assertRaises(TypeError) as ex: shell.sort(inp) # assert self.assertEqual("'NoneType' object is not iterable", str(ex.exception)) def test_empty_input(self): """ should return [] when input array is empty """ # arrange inp = [] # act res = shell.sort(inp) # assert self.assertEqual(len(inp), len(res)) def test_sort_a_given_array(self): """ should sort a given array """ # act res = shell.sort(self.arr[:]) # assert self.assertTrue(helper.is_sorted(res))
3.625
4
k8s_apps/admin/dump_inventory_file.py
AkadioInc/firefly
0
11144
<filename>k8s_apps/admin/dump_inventory_file.py<gh_stars>0 import h5pyd from datetime import datetime import tzlocal BUCKET="firefly-hsds" inventory_domain = "/FIREfly/inventory.h5" def formatTime(timestamp): local_timezone = tzlocal.get_localzone() # get pytz timezone local_time = datetime.fromtimestamp(timestamp, local_timezone) return local_time f = h5pyd.File(inventory_domain, "r", bucket=BUCKET) table = f["inventory"] for row in table: filename = row[0].decode('utf-8') if row[1]: start = formatTime(row[1]) else: start = 0 if row[2]: stop = formatTime(row[2]) else: stop = 0 print(f"{filename}\t{start}\t{stop}") print(f"{table.nrows} rows")
2.484375
2
enaml/qt/qt_timer.py
xtuzy/enaml
1,080
11145
<reponame>xtuzy/enaml #------------------------------------------------------------------------------ # Copyright (c) 2013-2017, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. #------------------------------------------------------------------------------ from atom.api import Typed from enaml.widgets.timer import ProxyTimer from .QtCore import QTimer from .qt_toolkit_object import QtToolkitObject class QtTimer(QtToolkitObject, ProxyTimer): """ A Qt implementation of an Enaml ProxyTimer. """ #: A reference to the widget created by the proxy. widget = Typed(QTimer) #-------------------------------------------------------------------------- # Initialization #-------------------------------------------------------------------------- def create_widget(self): """ Create the underlying timer object. """ self.widget = QTimer() def init_widget(self): """ Initialize the widget. """ super(QtTimer, self).init_widget() d = self.declaration self.set_interval(d.interval) self.set_single_shot(d.single_shot) self.widget.timeout.connect(self.on_timeout) def destroy(self): """ A reimplemented destructor. This stops the timer before invoking the superclass destructor. """ self.widget.stop() super(QtTimer, self).destroy() #-------------------------------------------------------------------------- # Signal Handlers #-------------------------------------------------------------------------- def on_timeout(self): """ Handle the timeout signal for the timer. """ d = self.declaration if d is not None: d.timeout() #-------------------------------------------------------------------------- # ProxyTimer API #-------------------------------------------------------------------------- def set_interval(self, interval): """ Set the interval on the timer. """ self.widget.setInterval(interval) def set_single_shot(self, single_shot): """ Set the single shot flag on the timer. """ self.widget.setSingleShot(single_shot) def start(self): """ Start or restart the timer. """ self.widget.start() def stop(self): """ Stop the timer. """ self.widget.stop() def is_running(self): """ Get whether or not the timer is running. """ return self.widget.isActive()
1.882813
2
mindhome_alpha/erpnext/erpnext_integrations/doctype/mpesa_settings/test_mpesa_settings.py
Mindhome/field_service
1
11146
<filename>mindhome_alpha/erpnext/erpnext_integrations/doctype/mpesa_settings/test_mpesa_settings.py # -*- coding: utf-8 -*- # Copyright (c) 2020, Frappe Technologies Pvt. Ltd. and Contributors # See license.txt from __future__ import unicode_literals from json import dumps import frappe import unittest from erpnext.erpnext_integrations.doctype.mpesa_settings.mpesa_settings import process_balance_info, verify_transaction from erpnext.accounts.doctype.pos_invoice.test_pos_invoice import create_pos_invoice class TestMpesaSettings(unittest.TestCase): def tearDown(self): frappe.db.sql('delete from `tabMpesa Settings`') frappe.db.sql('delete from `tabIntegration Request` where integration_request_service = "Mpesa"') def test_creation_of_payment_gateway(self): create_mpesa_settings(payment_gateway_name="_Test") mode_of_payment = frappe.get_doc("Mode of Payment", "Mpesa-_Test") self.assertTrue(frappe.db.exists("Payment Gateway Account", {'payment_gateway': "Mpesa-_Test"})) self.assertTrue(mode_of_payment.name) self.assertEquals(mode_of_payment.type, "Phone") def test_processing_of_account_balance(self): mpesa_doc = create_mpesa_settings(payment_gateway_name="_Account Balance") mpesa_doc.get_account_balance_info() callback_response = get_account_balance_callback_payload() process_balance_info(**callback_response) integration_request = frappe.get_doc("Integration Request", "AG_20200927_00007cdb1f9fb6494315") # test integration request creation and successful update of the status on receiving callback response self.assertTrue(integration_request) self.assertEquals(integration_request.status, "Completed") # test formatting of account balance received as string to json with appropriate currency symbol mpesa_doc.reload() self.assertEquals(mpesa_doc.account_balance, dumps({ "Working Account": { "current_balance": "Sh 481,000.00", "available_balance": "Sh 481,000.00", "reserved_balance": "Sh 0.00", "uncleared_balance": "Sh 0.00" } })) integration_request.delete() def test_processing_of_callback_payload(self): create_mpesa_settings(payment_gateway_name="Payment") mpesa_account = frappe.db.get_value("Payment Gateway Account", {"payment_gateway": 'Mpesa-Payment'}, "payment_account") frappe.db.set_value("Account", mpesa_account, "account_currency", "KES") frappe.db.set_value("Customer", "_Test Customer", "default_currency", "KES") pos_invoice = create_pos_invoice(do_not_submit=1) pos_invoice.append("payments", {'mode_of_payment': 'Mpesa-Payment', 'account': mpesa_account, 'amount': 500}) pos_invoice.contact_mobile = "093456543894" pos_invoice.currency = "KES" pos_invoice.save() pr = pos_invoice.create_payment_request() # test payment request creation self.assertEquals(pr.payment_gateway, "Mpesa-Payment") # submitting payment request creates integration requests with random id integration_req_ids = frappe.get_all("Integration Request", filters={ 'reference_doctype': pr.doctype, 'reference_docname': pr.name, }, pluck="name") callback_response = get_payment_callback_payload(Amount=500, CheckoutRequestID=integration_req_ids[0]) verify_transaction(**callback_response) # test creation of integration request integration_request = frappe.get_doc("Integration Request", integration_req_ids[0]) # test integration request creation and successful update of the status on receiving callback response self.assertTrue(integration_request) self.assertEquals(integration_request.status, "Completed") pos_invoice.reload() integration_request.reload() self.assertEquals(pos_invoice.mpesa_receipt_number, "LGR7OWQX0R") self.assertEquals(integration_request.status, "Completed") frappe.db.set_value("Customer", "_Test Customer", "default_currency", "") integration_request.delete() pr.reload() pr.cancel() pr.delete() pos_invoice.delete() def test_processing_of_multiple_callback_payload(self): create_mpesa_settings(payment_gateway_name="Payment") mpesa_account = frappe.db.get_value("Payment Gateway Account", {"payment_gateway": 'Mpesa-Payment'}, "payment_account") frappe.db.set_value("Account", mpesa_account, "account_currency", "KES") frappe.db.set_value("Mpesa Settings", "Payment", "transaction_limit", "500") frappe.db.set_value("Customer", "_Test Customer", "default_currency", "KES") pos_invoice = create_pos_invoice(do_not_submit=1) pos_invoice.append("payments", {'mode_of_payment': 'Mpesa-Payment', 'account': mpesa_account, 'amount': 1000}) pos_invoice.contact_mobile = "093456543894" pos_invoice.currency = "KES" pos_invoice.save() pr = pos_invoice.create_payment_request() # test payment request creation self.assertEquals(pr.payment_gateway, "Mpesa-Payment") # submitting payment request creates integration requests with random id integration_req_ids = frappe.get_all("Integration Request", filters={ 'reference_doctype': pr.doctype, 'reference_docname': pr.name, }, pluck="name") # create random receipt nos and send it as response to callback handler mpesa_receipt_numbers = [frappe.utils.random_string(5) for d in integration_req_ids] integration_requests = [] for i in range(len(integration_req_ids)): callback_response = get_payment_callback_payload( Amount=500, CheckoutRequestID=integration_req_ids[i], MpesaReceiptNumber=mpesa_receipt_numbers[i] ) # handle response manually verify_transaction(**callback_response) # test completion of integration request integration_request = frappe.get_doc("Integration Request", integration_req_ids[i]) self.assertEquals(integration_request.status, "Completed") integration_requests.append(integration_request) # check receipt number once all the integration requests are completed pos_invoice.reload() self.assertEquals(pos_invoice.mpesa_receipt_number, ', '.join(mpesa_receipt_numbers)) frappe.db.set_value("Customer", "_Test Customer", "default_currency", "") [d.delete() for d in integration_requests] pr.reload() pr.cancel() pr.delete() pos_invoice.delete() def test_processing_of_only_one_succes_callback_payload(self): create_mpesa_settings(payment_gateway_name="Payment") mpesa_account = frappe.db.get_value("Payment Gateway Account", {"payment_gateway": 'Mpesa-Payment'}, "payment_account") frappe.db.set_value("Account", mpesa_account, "account_currency", "KES") frappe.db.set_value("Mpesa Settings", "Payment", "transaction_limit", "500") frappe.db.set_value("Customer", "_Test Customer", "default_currency", "KES") pos_invoice = create_pos_invoice(do_not_submit=1) pos_invoice.append("payments", {'mode_of_payment': 'Mpesa-Payment', 'account': mpesa_account, 'amount': 1000}) pos_invoice.contact_mobile = "093456543894" pos_invoice.currency = "KES" pos_invoice.save() pr = pos_invoice.create_payment_request() # test payment request creation self.assertEquals(pr.payment_gateway, "Mpesa-Payment") # submitting payment request creates integration requests with random id integration_req_ids = frappe.get_all("Integration Request", filters={ 'reference_doctype': pr.doctype, 'reference_docname': pr.name, }, pluck="name") # create random receipt nos and send it as response to callback handler mpesa_receipt_numbers = [frappe.utils.random_string(5) for d in integration_req_ids] callback_response = get_payment_callback_payload( Amount=500, CheckoutRequestID=integration_req_ids[0], MpesaReceiptNumber=mpesa_receipt_numbers[0] ) # handle response manually verify_transaction(**callback_response) # test completion of integration request integration_request = frappe.get_doc("Integration Request", integration_req_ids[0]) self.assertEquals(integration_request.status, "Completed") # now one request is completed # second integration request fails # now retrying payment request should make only one integration request again pr = pos_invoice.create_payment_request() new_integration_req_ids = frappe.get_all("Integration Request", filters={ 'reference_doctype': pr.doctype, 'reference_docname': pr.name, 'name': ['not in', integration_req_ids] }, pluck="name") self.assertEquals(len(new_integration_req_ids), 1) frappe.db.set_value("Customer", "_Test Customer", "default_currency", "") frappe.db.sql("delete from `tabIntegration Request` where integration_request_service = 'Mpesa'") pr.reload() pr.cancel() pr.delete() pos_invoice.delete() def create_mpesa_settings(payment_gateway_name="Express"): if frappe.db.exists("Mpesa Settings", payment_gateway_name): return frappe.get_doc("Mpesa Settings", payment_gateway_name) doc = frappe.get_doc(dict( #nosec doctype="Mpesa Settings", payment_gateway_name=payment_gateway_name, consumer_key="<KEY>", consumer_secret="<KEY>", online_passkey="L<KEY>", till_number="174379" )) doc.insert(ignore_permissions=True) return doc def get_test_account_balance_response(): """Response received after calling the account balance API.""" return { "ResultType":0, "ResultCode":0, "ResultDesc":"The service request has been accepted successfully.", "OriginatorConversationID":"10816-694520-2", "ConversationID":"AG_20200927_00007cdb1f9fb6494315", "TransactionID":"LGR0000000", "ResultParameters":{ "ResultParameter":[ { "Key":"ReceiptNo", "Value":"LGR919G2AV" }, { "Key":"Conversation ID", "Value":"AG_20170727_00004492b1b6d0078fbe" }, { "Key":"FinalisedTime", "Value":20170727101415 }, { "Key":"Amount", "Value":10 }, { "Key":"TransactionStatus", "Value":"Completed" }, { "Key":"ReasonType", "Value":"Salary Payment via API" }, { "Key":"TransactionReason" }, { "Key":"DebitPartyCharges", "Value":"Fee For B2C Payment|KES|33.00" }, { "Key":"DebitAccountType", "Value":"Utility Account" }, { "Key":"InitiatedTime", "Value":20170727101415 }, { "Key":"Originator Conversation ID", "Value":"19455-773836-1" }, { "Key":"CreditPartyName", "Value":"254708374149 - <NAME>" }, { "Key":"DebitPartyName", "Value":"600134 - Safaricom157" } ] }, "ReferenceData":{ "ReferenceItem":{ "Key":"Occasion", "Value":"aaaa" } } } def get_payment_request_response_payload(Amount=500): """Response received after successfully calling the stk push process request API.""" CheckoutRequestID = frappe.utils.random_string(10) return { "MerchantRequestID": "8071-27184008-1", "CheckoutRequestID": CheckoutRequestID, "ResultCode": 0, "ResultDesc": "The service request is processed successfully.", "CallbackMetadata": { "Item": [ { "Name": "Amount", "Value": Amount }, { "Name": "MpesaReceiptNumber", "Value": "LGR7OWQX0R" }, { "Name": "TransactionDate", "Value": 20201006113336 }, { "Name": "PhoneNumber", "Value": 254723575670 } ] } } def get_payment_callback_payload(Amount=500, CheckoutRequestID="ws_CO_061020201133231972", MpesaReceiptNumber="LGR7OWQX0R"): """Response received from the server as callback after calling the stkpush process request API.""" return { "Body":{ "stkCallback":{ "MerchantRequestID":"19465-780693-1", "CheckoutRequestID":CheckoutRequestID, "ResultCode":0, "ResultDesc":"The service request is processed successfully.", "CallbackMetadata":{ "Item":[ { "Name":"Amount", "Value":Amount }, { "Name":"MpesaReceiptNumber", "Value":MpesaReceiptNumber }, { "Name":"Balance" }, { "Name":"TransactionDate", "Value":20170727154800 }, { "Name":"PhoneNumber", "Value":254721566839 } ] } } } } def get_account_balance_callback_payload(): """Response received from the server as callback after calling the account balance API.""" return { "Result":{ "ResultType": 0, "ResultCode": 0, "ResultDesc": "The service request is processed successfully.", "OriginatorConversationID": "16470-170099139-1", "ConversationID": "AG_20200927_00007cdb1f9fb6494315", "TransactionID": "OIR0000000", "ResultParameters": { "ResultParameter": [ { "Key": "AccountBalance", "Value": "Working Account|KES|481000.00|481000.00|0.00|0.00" }, { "Key": "BOCompletedTime", "Value": 20200927234123 } ] }, "ReferenceData": { "ReferenceItem": { "Key": "QueueTimeoutURL", "Value": "https://internalsandbox.safaricom.co.ke/mpesa/abresults/v1/submit" } } } }
1.71875
2
b2accessdeprovisioning/configparser.py
EUDAT-B2ACCESS/b2access-deprovisioning-report
0
11147
<reponame>EUDAT-B2ACCESS/b2access-deprovisioning-report<filename>b2accessdeprovisioning/configparser.py from __future__ import absolute_import import yaml with open("config.yml", "r") as f: config = yaml.load(f)
1.679688
2
res_mods/mods/packages/xvm_main/python/vehinfo_tiers.py
peterbartha/ImmunoMod
0
11148
<reponame>peterbartha/ImmunoMod<filename>res_mods/mods/packages/xvm_main/python/vehinfo_tiers.py """ XVM (c) www.modxvm.com 2013-2017 """ # PUBLIC def getTiers(level, cls, key): return _getTiers(level, cls, key) # PRIVATE from logger import * from gui.shared.utils.requesters import REQ_CRITERIA from helpers import dependency from skeletons.gui.shared import IItemsCache _special = { # Data from http://forum.worldoftanks.ru/index.php?/topic/41221- # Last update: 23.05.2017 # level 2 'germany:G53_PzI': [ 2, 2 ], 'uk:GB76_Mk_VIC': [ 2, 2 ], 'usa:A19_T2_lt': [ 2, 4 ], 'usa:A93_T7_Combat_Car': [ 2, 2 ], # level 3 'germany:G36_PzII_J': [ 3, 4 ], 'japan:J05_Ke_Ni_B': [ 3, 4 ], 'ussr:R34_BT-SV': [ 3, 4 ], 'ussr:R50_SU76I': [ 3, 4 ], 'ussr:R56_T-127': [ 3, 4 ], 'ussr:R67_M3_LL': [ 3, 4 ], 'ussr:R86_LTP': [ 3, 4 ], # level 4 'france:F14_AMX40': [ 4, 6 ], 'germany:G35_B-1bis_captured': [ 4, 4 ], 'japan:J06_Ke_Ho': [ 4, 6 ], 'uk:GB04_Valentine': [ 4, 6 ], 'uk:GB60_Covenanter': [ 4, 6 ], 'ussr:R12_A-20': [ 4, 6 ], 'ussr:R31_Valentine_LL': [ 4, 4 ], 'ussr:R44_T80': [ 4, 6 ], 'ussr:R68_A-32': [ 4, 5 ], # level 5 'germany:G104_Stug_IV': [ 5, 6 ], 'germany:G32_PzV_PzIV': [ 5, 6 ], 'germany:G32_PzV_PzIV_ausf_Alfa': [ 5, 6 ], 'germany:G70_PzIV_Hydro': [ 5, 6 ], 'uk:GB20_Crusader': [ 5, 7 ], 'uk:GB51_Excelsior': [ 5, 6 ], 'uk:GB68_Matilda_Black_Prince': [ 5, 6 ], 'usa:A21_T14': [ 5, 6 ], 'usa:A44_M4A2E4': [ 5, 6 ], 'ussr:R32_Matilda_II_LL': [ 5, 6 ], 'ussr:R33_Churchill_LL': [ 5, 6 ], 'ussr:R38_KV-220': [ 5, 6 ], 'ussr:R38_KV-220_beta': [ 5, 6 ], 'ussr:R78_SU_85I': [ 5, 6 ], # level 6 'germany:G32_PzV_PzIV_CN': [ 6, 7 ], 'germany:G32_PzV_PzIV_ausf_Alfa_CN': [ 6, 7 ], 'uk:GB63_TOG_II': [ 6, 7 ], # level 7 'germany:G48_E-25': [ 7, 8 ], 'germany:G78_Panther_M10': [ 7, 8 ], 'uk:GB71_AT_15A': [ 7, 8 ], 'usa:A86_T23E3': [ 7, 8 ], 'ussr:R98_T44_85': [ 7, 8 ], 'ussr:R99_T44_122': [ 7, 8 ], # level 8 'china:Ch01_Type59': [ 8, 9 ], 'china:Ch03_WZ-111': [ 8, 9 ], 'china:Ch14_T34_3': [ 8, 9 ], 'china:Ch23_112': [ 8, 9 ], 'france:F65_FCM_50t': [ 8, 9 ], 'germany:G65_JagdTiger_SdKfz_185': [ 8, 9 ], 'usa:A45_M6A2E1': [ 8, 9 ], 'usa:A80_T26_E4_SuperPershing': [ 8, 9 ], 'ussr:R54_KV-5': [ 8, 9 ], 'ussr:R61_Object252': [ 8, 9 ], 'ussr:R61_Object252_BF': [ 8, 9 ], } def _getTiers(level, cls, key): if key in _special: return _special[key] # HT: (=T4 max+1) if level == 4 and cls == 'heavyTank': return (4, 5) # default: (<T3 max+1) & (>=T3 max+2) & (>T9 max=11) return (level, level + 1 if level < 3 else 11 if level > 9 else level + 2) def _test_specials(): for veh_name in _special.keys(): itemsCache = dependency.instance(IItemsCache) if not itemsCache.items.getVehicles(REQ_CRITERIA.VEHICLE.SPECIFIC_BY_NAME(veh_name)): warn('vehinfo_tiers: vehicle %s declared in _special does not exist!' % veh_name)
2.015625
2
pypy/module/cpyext/test/test_pystrtod.py
m4sterchain/mesapy
381
11149
<filename>pypy/module/cpyext/test/test_pystrtod.py import math from pypy.module.cpyext import pystrtod from pypy.module.cpyext.test.test_api import BaseApiTest, raises_w from rpython.rtyper.lltypesystem import rffi from rpython.rtyper.lltypesystem import lltype from pypy.module.cpyext.pystrtod import PyOS_string_to_double class TestPyOS_string_to_double(BaseApiTest): def test_simple_float(self, space): s = rffi.str2charp('0.4') null = lltype.nullptr(rffi.CCHARPP.TO) r = PyOS_string_to_double(space, s, null, None) assert r == 0.4 rffi.free_charp(s) def test_empty_string(self, space): s = rffi.str2charp('') null = lltype.nullptr(rffi.CCHARPP.TO) with raises_w(space, ValueError): PyOS_string_to_double(space, s, null, None) rffi.free_charp(s) def test_bad_string(self, space): s = rffi.str2charp(' 0.4') null = lltype.nullptr(rffi.CCHARPP.TO) with raises_w(space, ValueError): PyOS_string_to_double(space, s, null, None) rffi.free_charp(s) def test_overflow_pos(self, space): s = rffi.str2charp('1e500') null = lltype.nullptr(rffi.CCHARPP.TO) r = PyOS_string_to_double(space, s, null, None) assert math.isinf(r) assert r > 0 rffi.free_charp(s) def test_overflow_neg(self, space): s = rffi.str2charp('-1e500') null = lltype.nullptr(rffi.CCHARPP.TO) r = PyOS_string_to_double(space, s, null, None) assert math.isinf(r) assert r < 0 rffi.free_charp(s) def test_overflow_exc(self, space): s = rffi.str2charp('1e500') null = lltype.nullptr(rffi.CCHARPP.TO) with raises_w(space, ValueError): PyOS_string_to_double(space, s, null, space.w_ValueError) rffi.free_charp(s) def test_endptr_number(self, space): s = rffi.str2charp('0.4') endp = lltype.malloc(rffi.CCHARPP.TO, 1, flavor='raw') r = PyOS_string_to_double(space, s, endp, None) assert r == 0.4 endp_addr = rffi.cast(rffi.LONG, endp[0]) s_addr = rffi.cast(rffi.LONG, s) assert endp_addr == s_addr + 3 rffi.free_charp(s) lltype.free(endp, flavor='raw') def test_endptr_tail(self, space): s = rffi.str2charp('0.4 foo') endp = lltype.malloc(rffi.CCHARPP.TO, 1, flavor='raw') r = PyOS_string_to_double(space, s, endp, None) assert r == 0.4 endp_addr = rffi.cast(rffi.LONG, endp[0]) s_addr = rffi.cast(rffi.LONG, s) assert endp_addr == s_addr + 3 rffi.free_charp(s) lltype.free(endp, flavor='raw') def test_endptr_no_conversion(self, space): s = rffi.str2charp('foo') endp = lltype.malloc(rffi.CCHARPP.TO, 1, flavor='raw') with raises_w(space, ValueError): PyOS_string_to_double(space, s, endp, None) endp_addr = rffi.cast(rffi.LONG, endp[0]) s_addr = rffi.cast(rffi.LONG, s) assert endp_addr == s_addr rffi.free_charp(s) lltype.free(endp, flavor='raw') class TestPyOS_double_to_string(BaseApiTest): def test_format_code(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(150.0, 'e', 1, 0, ptype) assert '1.5e+02' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_FINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_precision(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(3.14159269397, 'g', 5, 0, ptype) assert '3.1416' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_FINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_flags_sign(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(-3.14, 'g', 3, 1, ptype) assert '-3.14' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_FINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_flags_add_dot_0(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(3, 'g', 5, 2, ptype) assert '3.0' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_FINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_flags_alt(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(314., 'g', 3, 4, ptype) assert '314.' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_FINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_ptype_nan(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(float('nan'), 'g', 3, 4, ptype) assert 'nan' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_NAN == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_ptype_infinity(self, api): ptype = lltype.malloc(rffi.INTP.TO, 1, flavor='raw') r = api.PyOS_double_to_string(1e200 * 1e200, 'g', 0, 0, ptype) assert 'inf' == rffi.charp2str(r) type_value = rffi.cast(lltype.Signed, ptype[0]) assert pystrtod.Py_DTST_INFINITE == type_value rffi.free_charp(r) lltype.free(ptype, flavor='raw') def test_ptype_null(self, api): ptype = lltype.nullptr(rffi.INTP.TO) r = api.PyOS_double_to_string(3.14, 'g', 3, 0, ptype) assert '3.14' == rffi.charp2str(r) assert ptype == lltype.nullptr(rffi.INTP.TO) rffi.free_charp(r)
2.203125
2
mathics/core/systemsymbols.py
Mathics3/mathics-core
90
11150
<gh_stars>10-100 # -*- coding: utf-8 -*- from mathics.core.symbols import Symbol # Some other common Symbols. This list is sorted in alphabetic order. SymbolAssumptions = Symbol("$Assumptions") SymbolAborted = Symbol("$Aborted") SymbolAll = Symbol("All") SymbolAlternatives = Symbol("Alternatives") SymbolAnd = Symbol("And") SymbolAppend = Symbol("Append") SymbolApply = Symbol("Apply") SymbolAssociation = Symbol("Association") SymbolAutomatic = Symbol("Automatic") SymbolBlank = Symbol("Blank") SymbolBlend = Symbol("Blend") SymbolByteArray = Symbol("ByteArray") SymbolCatalan = Symbol("Catalan") SymbolColorData = Symbol("ColorData") SymbolComplex = Symbol("Complex") SymbolComplexInfinity = Symbol("ComplexInfinity") SymbolCondition = Symbol("Condition") SymbolConditionalExpression = Symbol("ConditionalExpression") Symbol_Context = Symbol("$Context") Symbol_ContextPath = Symbol("$ContextPath") SymbolCos = Symbol("Cos") SymbolD = Symbol("D") SymbolDerivative = Symbol("Derivative") SymbolDirectedInfinity = Symbol("DirectedInfinity") SymbolDispatch = Symbol("Dispatch") SymbolE = Symbol("E") SymbolEdgeForm = Symbol("EdgeForm") SymbolEqual = Symbol("Equal") SymbolExpandAll = Symbol("ExpandAll") SymbolEulerGamma = Symbol("EulerGamma") SymbolFailed = Symbol("$Failed") SymbolFunction = Symbol("Function") SymbolGamma = Symbol("Gamma") SymbolGet = Symbol("Get") SymbolGoldenRatio = Symbol("GoldenRatio") SymbolGraphics = Symbol("Graphics") SymbolGreater = Symbol("Greater") SymbolGreaterEqual = Symbol("GreaterEqual") SymbolGrid = Symbol("Grid") SymbolHoldForm = Symbol("HoldForm") SymbolIndeterminate = Symbol("Indeterminate") SymbolImplies = Symbol("Implies") SymbolInfinity = Symbol("Infinity") SymbolInfix = Symbol("Infix") SymbolInteger = Symbol("Integer") SymbolIntegrate = Symbol("Integrate") SymbolLeft = Symbol("Left") SymbolLess = Symbol("Less") SymbolLessEqual = Symbol("LessEqual") SymbolLog = Symbol("Log") SymbolMachinePrecision = Symbol("MachinePrecision") SymbolMakeBoxes = Symbol("MakeBoxes") SymbolMessageName = Symbol("MessageName") SymbolMinus = Symbol("Minus") SymbolMap = Symbol("Map") SymbolMatrixPower = Symbol("MatrixPower") SymbolMaxPrecision = Symbol("$MaxPrecision") SymbolMemberQ = Symbol("MemberQ") SymbolMinus = Symbol("Minus") SymbolN = Symbol("N") SymbolNeeds = Symbol("Needs") SymbolNIntegrate = Symbol("NIntegrate") SymbolNone = Symbol("None") SymbolNot = Symbol("Not") SymbolNull = Symbol("Null") SymbolNumberQ = Symbol("NumberQ") SymbolNumericQ = Symbol("NumericQ") SymbolOptionValue = Symbol("OptionValue") SymbolOr = Symbol("Or") SymbolOverflow = Symbol("Overflow") SymbolPackages = Symbol("$Packages") SymbolPattern = Symbol("Pattern") SymbolPi = Symbol("Pi") SymbolPiecewise = Symbol("Piecewise") SymbolPoint = Symbol("Point") SymbolPossibleZeroQ = Symbol("PossibleZeroQ") SymbolQuiet = Symbol("Quiet") SymbolRational = Symbol("Rational") SymbolReal = Symbol("Real") SymbolRow = Symbol("Row") SymbolRowBox = Symbol("RowBox") SymbolRGBColor = Symbol("RGBColor") SymbolSuperscriptBox = Symbol("SuperscriptBox") SymbolRule = Symbol("Rule") SymbolRuleDelayed = Symbol("RuleDelayed") SymbolSequence = Symbol("Sequence") SymbolSeries = Symbol("Series") SymbolSeriesData = Symbol("SeriesData") SymbolSet = Symbol("Set") SymbolSimplify = Symbol("Simplify") SymbolSin = Symbol("Sin") SymbolSlot = Symbol("Slot") SymbolStringQ = Symbol("StringQ") SymbolStyle = Symbol("Style") SymbolTable = Symbol("Table") SymbolToString = Symbol("ToString") SymbolUndefined = Symbol("Undefined") SymbolXor = Symbol("Xor")
2.296875
2
exercises/ali/cartpole-MCTS/cartpole.py
alik604/ra
0
11151
# from https://github.com/kvwoerden/mcts-cartpole # ---------------------------------------------------------------------------- # # Imports # # ---------------------------------------------------------------------------- # import os import time import random import argparse <<<<<<< HEAD ======= from types import SimpleNamespace >>>>>>> MCTS import gym from gym import logger from gym.wrappers.monitoring.video_recorder import VideoRecorder from Simple_mcts import MCTSAgent <<<<<<< HEAD # ---------------------------------------------------------------------------- # # Constants # # ---------------------------------------------------------------------------- # SEED = 28 EPISODES = 1 ENVIRONMENT = 'CartPole-v0' LOGGER_LEVEL = logger.WARN ITERATION_BUDGET = 80 LOOKAHEAD_TARGET = 100 MAX_EPISODE_STEPS = 1500 VIDEO_BASEPATH = '.\\video' # './video' START_CP = 20 ======= from Agent import dqn_agent # ---------------------------------------------------------------------------- # # Constants # # ---------------------------------------------------------------------------- # LOGGER_LEVEL = logger.WARN args = dict() args['env_name'] = 'CartPole-v0' args['episodes'] = 10 args['seed'] = 28 args['iteration_budget'] = 8000 # The number of iterations for each search step. Increasing this should lead to better performance.') args['lookahead_target'] = 10000 # The target number of steps the agent aims to look forward.' args['max_episode_steps'] = 1500 # The maximum number of steps to play. args['video_basepath'] = '.\\video' # './video' args['start_cp'] = 20 # The start value of C_p, the value that the agent changes to try to achieve the lookahead target. Decreasing this makes the search tree deeper, increasing this makes the search tree wider. args = SimpleNamespace(**args) >>>>>>> MCTS # ---------------------------------------------------------------------------- # # Main loop # # ---------------------------------------------------------------------------- # if __name__ == '__main__': <<<<<<< HEAD random.seed(SEED) parser = argparse.ArgumentParser( description='Run a Monte Carlo Tree Search agent on the Cartpole environment', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--env_id', nargs='?', default=ENVIRONMENT, help='The environment to run (only CartPole-v0 is supperted)') parser.add_argument('--episodes', nargs='?', default=EPISODES, type=int, help='The number of episodes to run.') parser.add_argument('--iteration_budget', nargs='?', default=ITERATION_BUDGET, type=int, help='The number of iterations for each search step. Increasing this should lead to better performance.') parser.add_argument('--lookahead_target', nargs='?', default=LOOKAHEAD_TARGET, type=int, help='The target number of steps the agent aims to look forward.') parser.add_argument('--max_episode_steps', nargs='?', default=MAX_EPISODE_STEPS, type=int, help='The maximum number of steps to play.') parser.add_argument('--video_basepath', nargs='?', default=VIDEO_BASEPATH, help='The basepath where the videos will be stored.') parser.add_argument('--start_cp', nargs='?', default=START_CP, type=int, help='The start value of C_p, the value that the agent changes to try to achieve the lookahead target. Decreasing this makes the search tree deeper, increasing this makes the search tree wider.') parser.add_argument('--seed', nargs='?', default=SEED, type=int, help='The random seed.') args = parser.parse_args() logger.set_level(LOGGER_LEVEL) env = gym.make(args.env_id) env.seed(args.seed) agent = MCTSAgent(args.iteration_budget, args.env_id) ======= logger.set_level(LOGGER_LEVEL) random.seed(args.seed) env = gym.make(args.env_name) env.seed(args.seed) Q_net = dqn_agent() agent = MCTSAgent(args.iteration_budget, env, Q_net) >>>>>>> MCTS timestr = time.strftime("%Y%m%d-%H%M%S") reward = 0 done = False for i in range(args.episodes): ob = env.reset() env._max_episode_steps = args.max_episode_steps video_path = os.path.join( args.video_basepath, f"output_{timestr}_{i}.mp4") <<<<<<< HEAD rec = VideoRecorder(env, path=video_path) ======= # rec = VideoRecorder(env, path=video_path) >>>>>>> MCTS try: sum_reward = 0 node = None all_nodes = [] C_p = args.start_cp while True: print("################") env.render() <<<<<<< HEAD rec.capture_frame() ======= # rec.capture_frame() >>>>>>> MCTS action, node, C_p = agent.act(env.state, n_actions=env.action_space.n, node=node, C_p=C_p, lookahead_target=args.lookahead_target) ob, reward, done, _ = env.step(action) print("### observed state: ", ob) sum_reward += reward print("### sum_reward: ", sum_reward) if done: <<<<<<< HEAD rec.close() break except KeyboardInterrupt as e: rec.close() ======= # rec.close() break except KeyboardInterrupt as e: # rec.close() >>>>>>> MCTS env.close() raise e env.close()
1.984375
2
wildlifecompliance/components/applications/cron.py
preranaandure/wildlifecompliance
1
11152
from django_cron import CronJobBase, Schedule class VerifyLicenceSpeciesJob(CronJobBase): """ Verifies LicenceSpecies against TSC server. """ RUN_AT_TIMES = ['00:00'] schedule = Schedule(run_at_times=RUN_AT_TIMES) code = 'applications.verify_licence_species' def do(self): pass
2.046875
2
optional-plugins/CSVPlugin/CSVContext.py
owlfish/pubtal
0
11153
import ASV from simpletal import simpleTAL, simpleTALES try: import logging except: import InfoLogging as logging import codecs class ColumnSorter: def __init__ (self, columnList): self.columnList = columnList self.log = logging.getLogger ('ColumnSorter') def setup (self, fieldNames): mapList = [] for columnName, translationMap in self.columnList: try: colNum = fieldNames.index (columnName) mapList.append ((colNum, translationMap)) except ValueError, e: self.log.error ("No such column name as %s" % name) raise e self.mapList = mapList def sort (self, row1, row2): result = 0 for colNum, map in self.mapList: result = self.doSort (row1, row2, colNum, map) if (result != 0): return result return result def doSort (self, row1, row2, colNum, map): if (map is None): col1 = row1[colNum] col2 = row2[colNum] else: try: col1 = map [row1[colNum]] except KeyError, e: self.log.warn ("No key found for key %s - assuming low value" % row1[colNum]) return -1 try: col2 = map [row2[colNum]] except KeyError, e: self.log.warn ("No key found for key %s - assuming low value" % row1[colNum]) return 1 if (col1 < col2): return -1 if (col1 == col2): return 0 if (col1 > col2): return 1 class CsvContextCreator: def __init__ (self, fileName, fileCodec): self.log = logging.getLogger ("CSVTemplate.CsvContextCreator") self.csvData = ASV.ASV() self.csvData.input_from_file(fileName, ASV.CSV(), has_field_names = 1) self.fieldNames = self.csvData.get_field_names() self.conv = fileCodec def getContextMap (self, sorter=None): orderList = [] for row in self.csvData: orderList.append (row) if (sorter is not None): sorter.setup (self.fieldNames) try: orderList.sort (sorter.sort) except Exception, e: self.log.error ("Exception occured executing sorter: " + str (e)) raise e contextList = [] for row in orderList: rowMap = {} colCount = 0 for col in row: if (col != ""): rowMap[self.fieldNames[colCount]] = self.conv(col)[0] colCount += 1 contextList.append (rowMap) return contextList def getRawData (self): return unicode (self.csvData) class CSVTemplateExpander: def __init__ (self, sourceFile, name="csvList"): self.contextFactory = CsvContextCreator (sourceFile) self.name = name self.template=None def expandTemplate (self, templateName, outputName, additionalContext = None, sorter=None): context = simpleTALES.Context() context.addGlobal (self.name, self.contextFactory.getContextMap (sorter)) if (additionalContext is not None): context.addGlobal (additionalContext[0], additionalContext[1]) if (self.template is None): templateFile = open (templateName, 'r') self.template = simpleTAL.compileHTMLTemplate (templateFile) templateFile.close() outputFile = open (outputName, 'w') self.template.expand (context, outputFile) outputFile.close()
2.828125
3
wagtail/admin/forms/comments.py
stephiescastle/wagtail
0
11154
<reponame>stephiescastle/wagtail<gh_stars>0 from django.forms import BooleanField, ValidationError from django.utils.timezone import now from django.utils.translation import gettext as _ from .models import WagtailAdminModelForm class CommentReplyForm(WagtailAdminModelForm): class Meta: fields = ("text",) def clean(self): cleaned_data = super().clean() user = self.for_user if not self.instance.pk: self.instance.user = user elif self.instance.user != user: # trying to edit someone else's comment reply if any(field for field in self.changed_data): # includes DELETION_FIELD_NAME, as users cannot delete each other's individual comment replies # if deleting a whole thread, this should be done by deleting the parent Comment instead self.add_error( None, ValidationError(_("You cannot edit another user's comment.")) ) return cleaned_data class CommentForm(WagtailAdminModelForm): """ This is designed to be subclassed and have the user overridden to enable user-based validation within the edit handler system """ resolved = BooleanField(required=False) class Meta: formsets = { "replies": { "form": CommentReplyForm, "inherit_kwargs": ["for_user"], } } def clean(self): cleaned_data = super().clean() user = self.for_user if not self.instance.pk: self.instance.user = user elif self.instance.user != user: # trying to edit someone else's comment if any( field for field in self.changed_data if field not in ["resolved", "position"] ): # users can resolve each other's base comments and change their positions within a field self.add_error( None, ValidationError(_("You cannot edit another user's comment.")) ) return cleaned_data def save(self, *args, **kwargs): if self.cleaned_data.get("resolved", False): if not getattr(self.instance, "resolved_at"): self.instance.resolved_at = now() self.instance.resolved_by = self.for_user else: self.instance.resolved_by = None self.instance.resolved_at = None return super().save(*args, **kwargs)
2.21875
2
run_db_data.py
MahirMahbub/email-client
0
11155
<filename>run_db_data.py import os from sqlalchemy.orm import Session from db.database import SessionLocal class DbData: def __init__(self): self.root_directory: str = "db_merge_scripts" self.scripts = [ "loader.sql" ] def sync(self, db: Session): for script in self.scripts: try: directory = os.path.join(self.root_directory, script) print(directory) sql = open(directory, "r").read() db.execute(sql) db.commit() print(greed("Data file processed: " + directory)) except Exception as e: print(red("Error to process data file: " + directory)) print(e) def colored(text, r, g, b): return "\033[38;2;{};{};{}m{} \033[38;2;255;255;255m".format(r, g, b, text) def red(text): return colored(text, 255, 0, 0) def greed(text): return colored(text, 0, 255, 0) def add_master_data(): db = SessionLocal() DbData().sync(db) db.close()
2.65625
3
scobra/analysis/compare_elements.py
nihalzp/scobra
7
11156
def compareMetaboliteDicts(d1, d2): sorted_d1_keys = sorted(d1.keys()) sorted_d2_keys = sorted(d2.keys()) for i in range(len(sorted_d1_keys)): if not compareMetabolites(sorted_d1_keys[i], sorted_d2_keys[i], naive=True): return False elif not d1[sorted_d1_keys[i]] == d2[sorted_d2_keys[i]]: return False else: return True def compareMetabolites(met1, met2, naive=False): if isinstance(met1, set): return compareReactions(list(met1), list(met2), naive) if isinstance(met1, list): if not isinstance(met2, list): return False elif len(met1) != len(met2): return False else: for i in range(len(met1)): if not compareMetabolites(met1[i], met2[i], naive): return False else: return True else: if not True: #can never be entered pass elif not met1._bound == met2._bound: return False elif not met1._constraint_sense == met2._constraint_sense: return False #elif not met1.annotation == met2.annotation: # return False elif not met1.charge == met2.charge: return False elif not met1.compartment == met2.compartment: return False elif not met1.name == met2.name: return False elif not met1.compartment == met2.compartment: return False #elif not met1.notes == met2.notes: # return False elif not naive: if not compareReactions(met1._reaction, met2._reaction, naive=True): return False elif not compareModels(met1._model, met2._model, naive=True): return False else: return True else: return True def compareReactions(r1, r2, naive=False): if isinstance(r1, set): return compareReactions(list(r1), list(r2), naive) if isinstance(r1, list): if not isinstance(r2, list): return False elif len(r1) != len(r2): return False else: for i in range(len(r1)): if not compareReactions(r1[i], r2[i],naive): return False else: return True else: if not True: #can never be entered pass #elif not r1._compartments == r2._compartments: # return False #elif not r1._forward_variable == r2._forward_variable: # return False elif not r1._gene_reaction_rule == r2._gene_reaction_rule: return False elif not r1._id == r2._id: return False elif not r1._lower_bound == r2._lower_bound: return False #elif not r1._model == r2._model: # return False #elif not r1._reverse_variable == r2._reverse_variable: # return False elif not r1._upper_bound == r2._upper_bound: return False #elif not r1.annotation == r2.annotation: # return False elif not r1.name== r2.name: return False #elif not r1.notes == r2.notes: # return False elif not r1.subsystem == r2.subsystem: return False elif not r1.variable_kind == r2.variable_kind: return False elif not naive: if not compareMetaboliteDicts(r1._metabolites, r2._metabolites): return False elif not compareGenes(r1._genes,r2._genes, naive=True): return False else: return True else: return True def compareGenes(g1, g2, naive=False): if isinstance(g1, set): return compareGenes(list(g1), list(g2), naive) if isinstance(g1, list): if not isinstance(g2, list): return False elif len(g1) != len(g2): return False else: for i in range(len(g1)): if not compareGenes(g1[i], g2[i], naive): return False else: return True else: if not True: #can never be entered pass elif not g1._functional == g2._functional: return False elif not g1._id == g2._id: return False #elif not g1._model == g2._model: # return False elif not g1.annotation == g2.annotation: return False elif not g1.name == g2.name: return False #elif not g1.notes == g2.notes: # return False elif not naive: if not compareReactions(g1._reaction,g2._reaction, naive=True): return False else: return True else: return True def compareModels(m1, m2, naive=False): if not True: #can never be entered pass #elif not m1._compartments == m2._compartments: # return False #elif not m1._contexts == m2._contexts: # return False #elif not m1._solver == m2._solver: # return False elif not m1._id == m2._id: return False #elif not m1._trimmed == m2.trimmed: # return False #elif not m1._trimmed_genes == m2._trimmed_genes: # return False #elif not m1._trimmed_reactions == m2._trimmed_reactions: # return False #elif not m1.annotation == m2.annotation: # return False elif not m1.bounds == m2.bounds: return False elif not m1.name == m2.name: return False #elif not m1.notes == m2.notes: # return False #elif not m1.quadratic_component == m2.quadratic_component: # return False elif not naive: if not compareGenes(m1.genes, m2.genes): return False elif not compareMetabolites(m1.metabolites, m2.metabolites): return False elif not compareReactions(m1.reactions,m2.reactions): return False else: return True else: return True
2.609375
3
five/five_copy.py
ngd-b/python-demo
1
11157
<filename>five/five_copy.py<gh_stars>1-10 #!/usr/bin/python # -*- coding:utf-8 -*- print("hello world") f = None try: f = open("./hello.txt","r",encoding="utf8") print(f.read(5),end='') print(f.read(5),end='') print(f.read(5)) except IOError as e: print(e) finally: if f: f.close() # with auto call the methods' close with open("./hello.txt","r",encoding="utf8") as f: print(f.read()) # readlines() 按行读取文件 with open("./hello.txt","r",encoding="utf8") as f: for line in f.readlines(): print(line.strip()) # 写入数据 with open("./hello_1.txt","w",encoding="utf8") as f: f.write("北京欢迎你!") with open("./hello.txt","a",encoding="utf8") as f: f.write("祖国 70!") # StringIO / BytesIO from io import StringIO # 创建 str = StringIO('init') # 读取初始化进去的值 while True: s = str.readline() if s == '': break print(s.strip()) # 写入 str.write("你好!") str.write(" 南京") # 获取 print(str.getvalue()) ''' while True: s = str.readline() if s == '': break print(s.strip()) ''' # 写入二进制数据 from io import BytesIO bi = BytesIO() bi.write("你好".encode("utf-8")) print(bi.getvalue()) by = BytesIO(b'\xe4\xbd\xa0\xe5\xa5\xbd') print(by.read()) # 操作系统文件目录 OS import os # 当前环境 nt print(os.name) # python 执行文件 <module 'ntpath' from 'G:\\python-3.7\\lib\\ntpath.py'> print(os.path) # 系统环境配置目录 包括系统环境变量、用户变量、 print(os.environ) # 获取当前控制台的管理用户名 'bobol' print(os.getlogin()) # 创建一个文件、目录 os.mkdir("./foo/") # 删除一个目录 os.rmdir("./foo/") ''' os.path 可以处理部分路径问题 ''' # 获取指定路径的绝对路径 'G:\\pythonDemo\\python-demo\\five' print(os.path.abspath("./")) # 返回指定路径是否存在系统文件路径中 False print(os.path.exists("./foo")) # 获取指定路径下文件的大小 4096 print(os.path.getsize("../")) # 返回指定路径是否为绝对路径 False print(os.path.isabs("../"))
3.546875
4
prepare_sets.py
mechtal/Vaccination_UK
0
11158
def prepare_sets(dataset, feature_columns, y_column): train_X, val_X, train_y, val_y = train_test_split(dataset[feature_columns], dataset[y_column], random_state=1) return train_X, val_X, train_y, val_y
2.421875
2
examples/batch_ts_insert.py
bureau14/qdb-api-python
9
11159
# Copyright (c) 2009-2020, quasardb SAS. All rights reserved. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of quasardb nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY QUASARDB AND CONTRIBUTORS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # from __future__ import print_function from builtins import range as xrange, int import os from socket import gethostname import sys import inspect import traceback import random import time import datetime import locale import numpy as np import quasardb STOCK_COLUMN = "stock_id" OPEN_COLUMN = "open" CLOSE_COLUMN = "close" HIGH_COLUMN = "high" LOW_COLUMN = "low" VOLUME_COLUMN = "volume" def time_execution(str, f, *args): print(" - ", str, end='') start_time = time.time() res = f(*args) end_time = time.time() print(" [duration: {}s]".format(end_time - start_time)) return res def gen_ts_name(): return "test.{}.{}.{}".format(gethostname(), os.getpid(), random.randint(0, 100000)) def create_ts(q, name): ts = q.ts(name) ts.create([quasardb.ColumnInfo(quasardb.ColumnType.Int64, STOCK_COLUMN), quasardb.ColumnInfo(quasardb.ColumnType.Double, OPEN_COLUMN), quasardb.ColumnInfo(quasardb.ColumnType.Double, CLOSE_COLUMN), quasardb.ColumnInfo(quasardb.ColumnType.Double, HIGH_COLUMN), quasardb.ColumnInfo(quasardb.ColumnType.Double, LOW_COLUMN), quasardb.ColumnInfo(quasardb.ColumnType.Int64, VOLUME_COLUMN)]) return ts def create_many_ts(q, names): return [create_ts(q, x) for x in names] def generate_prices(price_count): return np.random.uniform(-100.0, 100.0, price_count) def generate_points(points_count): start_time = np.datetime64('2017-01-01', 'ns') dates = np.array([(start_time + np.timedelta64(i, 'm')) for i in range(points_count)]).astype('datetime64[ns]') stock_ids = np.random.randint(1, 25, size=points_count) prices = np.array([generate_prices(60) for i in range(points_count)]).astype('double') volumes = np.random.randint(0, 10000, points_count) return (dates, stock_ids, prices, volumes) def batch_ts_columns(ts_name, prealloc_size): return (quasardb.BatchColumnInfo(ts_name, STOCK_COLUMN, prealloc_size), quasardb.BatchColumnInfo(ts_name, OPEN_COLUMN, prealloc_size), quasardb.BatchColumnInfo(ts_name, CLOSE_COLUMN, prealloc_size), quasardb.BatchColumnInfo(ts_name, HIGH_COLUMN, prealloc_size), quasardb.BatchColumnInfo(ts_name, LOW_COLUMN, prealloc_size), quasardb.BatchColumnInfo(ts_name, VOLUME_COLUMN, prealloc_size)) def calculate_minute_bar(prices): # Takes all prices for a single minute, and calculate OHLC return (prices[0], prices[-1], np.amax(prices), np.amin(prices)) def bulk_insert(q, ts_names, dates, stock_ids, prices, volumes): # We generate a flattened list of columns for each timeseries; for example, # for 2 columns for 4 timeseries each, we have 8 columns. columns = [column for nested in (batch_ts_columns(ts_name, len(dates)) for ts_name in ts_names) for column in nested] batch_inserter = q.ts_batch(columns) for i in range(len(stock_ids)): # We use the known layout of column (2 for each timeseries, alternating with # STOCK_COLUMN and PRICE_COLUMN) to set the values. for j in range(0, len(ts_names) * 6, 6): (o, c, h, l) = calculate_minute_bar(prices[i]) batch_inserter.start_row(dates[i]) batch_inserter.set_int64(j, stock_ids[i]) # set stock_id batch_inserter.set_double(j + 1, o) # open batch_inserter.set_double(j + 2, c) # close batch_inserter.set_double(j + 3, h) # high batch_inserter.set_double(j + 4, l) # low batch_inserter.set_int64(j + 5, volumes[i]) # low batch_inserter.push() def make_it_so(q, points_count): ts_names = [gen_ts_name(), gen_ts_name()] ts = time_execution("Creating a time series with names {}".format(ts_names), create_many_ts, q, ts_names) (dates, stock_ids, prices, volumes) = time_execution("Generating {:,} points".format(points_count), generate_points, points_count) time_execution("Inserting {:,} points into timeseries with names {}".format(points_count, ts_names), bulk_insert, q, ts_names, dates, stock_ids, prices, volumes) return (ts_names, dates, np.unique(stock_ids)) def main(quasardb_uri, points_count): print("Connecting to: ", quasardb_uri) q = quasardb.Cluster(uri=quasardb_uri) print(" *** Inserting {:,} into {}".format(points_count, quasardb_uri)) make_it_so(q, points_count) if __name__ == "__main__": try: if len(sys.argv) != 3: print("usage: ", sys.argv[0], " quasardb_uri points_count") sys.exit(1) main(sys.argv[1], int(sys.argv[2])) except Exception as ex: # pylint: disable=W0703 print("An error ocurred:", str(ex)) traceback.print_exc()
1.539063
2
tests/backends/test_flashtext_backend.py
openredact/pii-identifier
14
11160
from nerwhal.backends.flashtext_backend import FlashtextBackend from nerwhal.recognizer_bases import FlashtextRecognizer def test_single_recognizer(embed): class TestRecognizer(FlashtextRecognizer): TAG = "XX" SCORE = 1.0 @property def keywords(self): return ["abc", "cde"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizer) text = "Das ist abc und cde." ents = backend.run(text) assert embed(text, ents) == "Das ist XX und XX." assert ents[0].start_char == 8 assert ents[0].end_char == 11 assert ents[0].tag == "XX" assert ents[0].text == "abc" assert ents[0].score == 1.0 assert ents[0].recognizer == "TestRecognizer" def test_multiple_recognizers(embed): class TestRecognizerA(FlashtextRecognizer): TAG = "A" SCORE = 1.0 @property def keywords(self): return ["abc"] class TestRecognizerB(FlashtextRecognizer): TAG = "B" SCORE = 0.5 @property def keywords(self): return ["cde"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizerA) backend.register_recognizer(TestRecognizerB) text = "Das ist abc und cde." ents = backend.run(text) assert embed(text, ents) == "Das ist A und B." assert ents[0].tag == "A" assert ents[0].score == 1.0 assert ents[1].tag == "B" assert ents[1].score == 0.5 def test_overlapping_recognizers(embed): class TestRecognizerA(FlashtextRecognizer): TAG = "A" SCORE = 1.0 @property def keywords(self): return ["abc", "cde"] class TestRecognizerB(FlashtextRecognizer): TAG = "B" SCORE = 0.5 @property def keywords(self): return ["cde", "fgh"] backend = FlashtextBackend() backend.register_recognizer(TestRecognizerA) backend.register_recognizer(TestRecognizerB) text = "Das ist cde." ents = backend.run(text) # Recognizer B overwrites the keyword "cde" assert embed(text, ents) == "Das ist B."
2.515625
3
new_rdsmysql.py
AdminTurnedDevOps/AWS_Solutions_Architect_Python
30
11161
import boto3 import sys import time import logging import getpass def new_rdsmysql(dbname, instanceID, storage, dbInstancetype, dbusername): masterPass = getpass.getpass('DBMasterPassword: ') if len(masterPass) < 10: logging.warning('Password is not at least 10 characters. Please try again') time.sleep(5) exit else: None try: rds_instance = boto3.client('rds') create_instance = rds_instance.create_db_instance( DBName = dbname, DBInstanceIdentifier = instanceID, AllocatedStorage = int(storage), DBInstanceClass = dbInstancetype, Engine = 'mysql', MasterUsername = dbusername, MasterUserPassword = str(<PASSWORD>), MultiAZ = True, EngineVersion = '5.7.23', AutoMinorVersionUpgrade = False, LicenseModel = 'general-public-license', PubliclyAccessible = False, Tags = [ { 'Key': 'Name', 'Value' : dbname } ] ) print(create_instance) except Exception as e: logging.warning('An error has occured') print(e) dbname = sys.argv[1] instanceID = sys.argv[2] storage = sys.argv[3] dbInstancetype = sys.argv[4] dbusername = sys.argv[5] new_rdsmysql(dbname, instanceID, storage, dbInstancetype, dbusername)
2.578125
3
src/tzscan/tzscan_block_api.py
Twente-Mining/tezos-reward-distributor
0
11162
<gh_stars>0 import random import requests from api.block_api import BlockApi from exception.tzscan import TzScanException from log_config import main_logger logger = main_logger HEAD_API = {'MAINNET': {'HEAD_API_URL': 'https://api%MIRROR%.tzscan.io/v2/head'}, 'ALPHANET': {'HEAD_API_URL': 'http://api.alphanet.tzscan.io/v2/head'}, 'ZERONET': {'HEAD_API_URL': 'http://api.zeronet.tzscan.io/v2/head'} } REVELATION_API = {'MAINNET': {'HEAD_API_URL': 'https://api%MIRROR%.tzscan.io/v1/operations/%PKH%?type=Reveal'}, 'ALPHANET': {'HEAD_API_URL': 'https://api.alphanet.tzscan.io/v1/operations/%PKH%?type=Reveal'}, 'ZERONET': {'HEAD_API_URL': 'https://api.zeronet.tzscan.io/v1/operations/%PKH%?type=Reveal'} } class TzScanBlockApiImpl(BlockApi): def __init__(self, nw): super(TzScanBlockApiImpl, self).__init__(nw) self.head_api = HEAD_API[nw['NAME']] if self.head_api is None: raise Exception("Unknown network {}".format(nw)) self.revelation_api = REVELATION_API[nw['NAME']] def get_current_level(self, verbose=False): uri = self.head_api['HEAD_API_URL'].replace("%MIRROR%", str(self.rand_mirror())) if verbose: logger.debug("Requesting {}".format(uri)) resp = requests.get(uri) if resp.status_code != 200: # This means something went wrong. raise TzScanException('GET {} {}'.format(uri, resp.status_code)) root = resp.json() if verbose: logger.debug("Response from tzscan is: {}".format(root)) current_level = int(root["level"]) return current_level def get_revelation(self, pkh, verbose=False): uri = self.revelation_api['HEAD_API_URL'].replace("%MIRROR%", str(self.rand_mirror())).replace("%PKH%", pkh) if verbose: logger.debug("Requesting {}".format(uri)) resp = requests.get(uri) if resp.status_code != 200: # This means something went wrong. raise TzScanException('GET {} {}'.format(uri, resp.status_code)) root = resp.json() if verbose: logger.debug("Response from tzscan is: {}".format(root)) return len(root) > 0 def rand_mirror(self): mirror = random.randint(1, 6) if mirror == 4: # has problem lately mirror = 3 return mirror def test_get_revelation(): address_api = TzScanBlockApiImpl({"NAME":"ALPHANET"}) address_api.get_revelation("tz3WXYtyDUNL91qfiCJtVUX746QpNv5i5ve5") if __name__ == '__main__': test_get_revelation()
2.3125
2
python/cuxfilter/tests/charts/core/test_core_non_aggregate.py
Anhmike/cuxfilter
201
11163
import pytest import cudf import mock from cuxfilter.charts.core.non_aggregate.core_non_aggregate import ( BaseNonAggregate, ) from cuxfilter.dashboard import DashBoard from cuxfilter import DataFrame from cuxfilter.layouts import chart_view class TestCoreNonAggregateChart: def test_variables(self): bnac = BaseNonAggregate() # BaseChart variables assert bnac.chart_type is None assert bnac.x is None assert bnac.y is None assert bnac.aggregate_fn == "count" assert bnac.color is None assert bnac.height == 0 assert bnac.width == 0 assert bnac.add_interaction is True assert bnac.chart is None assert bnac.source is None assert bnac.source_backup is None assert bnac.data_points == 0 assert bnac._library_specific_params == {} assert bnac.stride is None assert bnac.stride_type == int assert bnac.min_value == 0.0 assert bnac.max_value == 0.0 assert bnac.x_label_map == {} assert bnac.y_label_map == {} assert bnac.title == "" # test chart name setter bnac.x = "x" bnac.y = "y" bnac.chart_type = "test_chart_type" assert bnac.name == "x_y_count_test_chart_type_" # BaseNonAggregateChart variables assert bnac.use_data_tiles is False assert bnac.reset_event is None assert bnac.x_range is None assert bnac.y_range is None assert bnac.aggregate_col is None def test_label_mappers(self): bnac = BaseNonAggregate() library_specific_params = { "x_label_map": {"a": 1, "b": 2}, "y_label_map": {"a": 1, "b": 2}, } bnac.library_specific_params = library_specific_params assert bnac.x_label_map == {"a": 1, "b": 2} assert bnac.y_label_map == {"a": 1, "b": 2} @pytest.mark.parametrize("chart, _chart", [(None, None), (1, 1)]) def test_view(self, chart, _chart): bnac = BaseNonAggregate() bnac.chart = chart bnac.width = 400 bnac.title = "test_title" assert str(bnac.view()) == str( chart_view(_chart, width=bnac.width, title=bnac.title) ) def test_get_selection_geometry_callback(self): bnac = BaseNonAggregate() df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) assert ( bnac.get_selection_geometry_callback(dashboard).__name__ == "selection_callback" ) assert callable(type(bnac.get_selection_geometry_callback(dashboard))) def test_box_selection_callback(self): bnac = BaseNonAggregate() bnac.x = "a" bnac.y = "b" bnac.chart_type = "temp" self.result = None def t_function(data, patch_update=False): self.result = data bnac.reload_chart = t_function df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) dashboard._active_view = bnac class evt: geometry = dict(x0=1, x1=2, y0=3, y1=4, type="rect") t = bnac.get_selection_geometry_callback(dashboard) t(evt) assert self.result.equals(df.query("1<=a<=2 and 3<=b<=4")) def test_lasso_election_callback(self): bnac = BaseNonAggregate() bnac.x = "a" bnac.y = "b" bnac.chart_type = "temp" def t_function(data, patch_update=False): self.result = data bnac.reload_chart = t_function df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) class evt: geometry = dict(x=[1, 1, 2], y=[1, 2, 1], type="poly") final = True t = bnac.get_selection_geometry_callback(dashboard) with mock.patch("cuspatial.point_in_polygon") as pip: pip.return_value = cudf.DataFrame( {"selection": [True, False, True]} ) t(evt) assert pip.called @pytest.mark.parametrize( "data, _data", [ (cudf.DataFrame(), cudf.DataFrame()), ( cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}), cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}), ), ], ) def test_calculate_source(self, data, _data): """ Calculate source just calls to the format_source_data function which is implemented by chart types inheriting this class. """ bnac = BaseNonAggregate() self.result = None def t_function(data, patch_update=False): self.result = data bnac.format_source_data = t_function bnac.calculate_source(data) assert self.result.equals(_data) @pytest.mark.parametrize( "x_range, y_range, query, local_dict", [ ( (1, 2), (3, 4), "@x_min<=x<=@x_max and @y_min<=y<=@y_max", {"x_min": 1, "x_max": 2, "y_min": 3, "y_max": 4}, ), ( (0, 2), (3, 5), "@x_min<=x<=@x_max and @y_min<=y<=@y_max", {"x_min": 0, "x_max": 2, "y_min": 3, "y_max": 5}, ), ], ) def test_compute_query_dict(self, x_range, y_range, query, local_dict): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "x" bnac.y = "y" bnac.x_range = x_range bnac.y_range = y_range df = cudf.DataFrame({"x": [1, 2, 2], "y": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) bnac.compute_query_dict( dashboard._query_str_dict, dashboard._query_local_variables_dict ) bnac_key = ( f"{bnac.x}_{bnac.y}" f"{'_' + bnac.aggregate_col if bnac.aggregate_col else ''}" f"_{bnac.aggregate_fn}_{bnac.chart_type}_{bnac.title}" ) assert dashboard._query_str_dict[bnac_key] == query for key in local_dict: assert ( dashboard._query_local_variables_dict[key] == local_dict[key] ) @pytest.mark.parametrize( "add_interaction, reset_event, event_1, event_2", [ (True, None, "selection_callback", None), (True, "test_event", "selection_callback", "reset_callback"), (False, "test_event", None, "reset_callback"), ], ) def test_add_events(self, add_interaction, reset_event, event_1, event_2): bnac = BaseNonAggregate() bnac.add_interaction = add_interaction bnac.reset_event = reset_event df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) self.event_1 = None self.event_2 = None def t_func(fn): self.event_1 = fn.__name__ def t_func1(event, fn): self.event_2 = fn.__name__ bnac.add_selection_geometry_event = t_func bnac.add_event = t_func1 bnac.add_events(dashboard) assert self.event_1 == event_1 assert self.event_2 == event_2 def test_add_reset_event(self): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac.x_range = (0, 2) bnac.y_range = (3, 5) df = cudf.DataFrame({"a": [1, 2, 2], "b": [3, 4, 5]}) dashboard = DashBoard(dataframe=DataFrame.from_dataframe(df)) dashboard._active_view = bnac def t_func1(event, fn): fn("event") bnac.add_event = t_func1 bnac.add_reset_event(dashboard) assert bnac.x_range is None assert bnac.y_range is None def test_query_chart_by_range(self): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac_1 = BaseNonAggregate() bnac_1.chart_type = "test" bnac_1.x = "b" query_tuple = (4, 5) df = cudf.DataFrame({"a": [1, 2, 3, 4], "b": [3, 4, 5, 6]}) bnac.source = df self.result = None self.patch_update = None def t_func(data, patch_update): self.result = data self.patch_update = patch_update # creating a dummy reload chart fn as its not implemented in core # non aggregate chart class bnac.reload_chart = t_func bnac.query_chart_by_range( active_chart=bnac_1, query_tuple=query_tuple, datatile=None ) assert self.result.to_string() == " a b\n1 2 4\n2 3 5" assert self.patch_update is False @pytest.mark.parametrize( "new_indices, result", [ ([4, 5], " a b\n1 2 4\n2 3 5"), ([], " a b\n0 1 3\n1 2 4\n2 3 5\n3 4 6"), ([3], " a b\n0 1 3"), ], ) def test_query_chart_by_indices(self, new_indices, result): bnac = BaseNonAggregate() bnac.chart_type = "test" bnac.x = "a" bnac_1 = BaseNonAggregate() bnac_1.chart_type = "test" bnac_1.x = "b" new_indices = new_indices df = cudf.DataFrame({"a": [1, 2, 3, 4], "b": [3, 4, 5, 6]}) bnac.source = df self.result = None self.patch_update = None def t_func(data, patch_update): self.result = data self.patch_update = patch_update # creating a dummy reload chart fn as its not implemented in core # non aggregate chart class bnac.reload_chart = t_func bnac.query_chart_by_indices( active_chart=bnac_1, old_indices=[], new_indices=new_indices, datatile=None, ) assert self.result.to_string() == result assert self.patch_update is False
2.078125
2
tunobase/tagging/migrations/0001_initial.py
unomena/tunobase-core
0
11164
<gh_stars>0 # -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Tag' db.create_table(u'tagging_tag', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('title', self.gf('django.db.models.fields.CharField')(max_length=32, db_index=True)), ('description', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('site', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['sites.Site'], null=True, blank=True)), )) db.send_create_signal(u'tagging', ['Tag']) # Adding unique constraint on 'Tag', fields ['title', 'site'] db.create_unique(u'tagging_tag', ['title', 'site_id']) # Adding model 'ContentObjectTag' db.create_table(u'tagging_contentobjecttag', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(related_name='content_type_set_for_contentobjecttag', to=orm['contenttypes.ContentType'])), ('object_pk', self.gf('django.db.models.fields.PositiveIntegerField')()), ('site', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['sites.Site'])), ('tag', self.gf('django.db.models.fields.related.ForeignKey')(related_name='content_object_tags', to=orm['tagging.Tag'])), )) db.send_create_signal(u'tagging', ['ContentObjectTag']) def backwards(self, orm): # Removing unique constraint on 'Tag', fields ['title', 'site'] db.delete_unique(u'tagging_tag', ['title', 'site_id']) # Deleting model 'Tag' db.delete_table(u'tagging_tag') # Deleting model 'ContentObjectTag' db.delete_table(u'tagging_contentobjecttag') models = { u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'tagging.contentobjecttag': { 'Meta': {'object_name': 'ContentObjectTag'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'content_type_set_for_contentobjecttag'", 'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_pk': ('django.db.models.fields.PositiveIntegerField', [], {}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['sites.Site']"}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'content_object_tags'", 'to': u"orm['tagging.Tag']"}) }, u'tagging.tag': { 'Meta': {'unique_together': "[('title', 'site')]", 'object_name': 'Tag'}, 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['sites.Site']", 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}) } } complete_apps = ['tagging']
2.171875
2
recogym/envs/session.py
philomenec/reco-gym
413
11165
<reponame>philomenec/reco-gym class Session(list): """Abstract Session class""" def to_strings(self, user_id, session_id): """represent session as list of strings (one per event)""" user_id, session_id = str(user_id), str(session_id) session_type = self.get_type() strings = [] for event, product in self: columns = [user_id, session_type, session_id, event, str(product)] strings.append(','.join(columns)) return strings def get_type(self): raise NotImplemented class OrganicSessions(Session): def __init__(self): super(OrganicSessions, self).__init__() def next(self, context, product): self.append( { 't': context.time(), 'u': context.user(), 'z': 'pageview', 'v': product } ) def get_type(self): return 'organic' def get_views(self): return [p for _, _, e, p in self if e == 'pageview']
2.71875
3
message_handlers/location_handler.py
pratyushmore/lunch-tag-bot
0
11166
def location(messaging_adaptor, user, channel, location): message = "Your location has been set to `{}`. You are ready to be matched for Lunch Tag :)".format(location) messaging_adaptor.send_message(channel, message)
2.390625
2
b.py
lbarchive/b.py
0
11167
<gh_stars>0 #!/usr/bin/env python # Copyright (C) 2013-2016 by <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ ============ b.py command ============ Commands ======== ============= ======================= command supported services ============= ======================= ``blogs`` ``b`` ``post`` ``b``, ``wp`` ``generate`` ``base``, ``b``, ``wp`` ``checklink`` ``base``, ``b``, ``wp`` ``search`` ``b`` ============= ======================= Descriptions: ``blogs`` list blogs. This can be used for blog IDs lookup. ``post`` post or update a blog post. ``generate`` generate HTML file at ``<TEMP>/draft.html``, where ``<TEMP>`` is the system's temporary directory. The generation can output a preview html at ``<TEMP>/preview.html`` if there is ``tmpl.html``. It will replace ``%%Title%%`` with post title and ``%%Content%%`` with generated HTML. ``checklink`` check links in generated HTML using lnkckr_. ``search`` search blog .. _lnkckr: https://pypi.python.org/pypi/lnkckr """ from __future__ import print_function import argparse as ap import codecs import imp import logging import os import sys import traceback from bpy.handlers import handlers from bpy.services import find_service, services __program__ = 'b.py' __description__ = 'Post to Blogger or WordPress in markup language seamlessly' __copyright__ = 'Copyright 2013-2016, <NAME>' __license__ = 'MIT License' __version__ = '0.11.0' __website__ = 'http://bitbucket.org/livibetter/b.py' __author__ = '<NAME>' __author_email__ = '<EMAIL>' # b.py stuff ############ # filename of local configuration without '.py' suffix. BRC = 'brc' def parse_args(): p = ap.ArgumentParser() p.add_argument('--version', action='version', version='%(prog)s ' + __version__) p.add_argument('-d', '--debug', action='store_true', help='turn on debugging messages') p.add_argument('-s', '--service', default='base', help='what service to use. (Default: %(default)s)') sp = p.add_subparsers(help='commands') pblogs = sp.add_parser('blogs', help='list blogs') pblogs.set_defaults(subparser=pblogs, command='blogs') psearch = sp.add_parser('search', help='search for posts') psearch.add_argument('-b', '--blog', help='Blog ID') psearch.add_argument('q', nargs='+', help='query text') psearch.set_defaults(subparser=psearch, command='search') pgen = sp.add_parser('generate', help='generate html') pgen.add_argument('filename') pgen.set_defaults(subparser=pgen, command='generate') pchk = sp.add_parser('checklink', help='check links in chkerateed html') pchk.add_argument('filename') pchk.set_defaults(subparser=pchk, command='checklink') ppost = sp.add_parser('post', help='post or update a blog post') ppost.add_argument('filename') ppost.set_defaults(subparser=ppost, command='post') args = p.parse_args() return args def load_config(): rc = None try: search_path = [os.getcwd()] _mod_data = imp.find_module(BRC, search_path) print('Loading local configuration...') try: rc = imp.load_module(BRC, *_mod_data) finally: if _mod_data[0]: _mod_data[0].close() except ImportError: pass except Exception: traceback.print_exc() print('Error in %s, aborted.' % _mod_data[1]) sys.exit(1) return rc def main(): args = parse_args() logging.basicConfig( format=( '%(asctime)s ' '%(levelname).4s ' '%(module)5.5s:%(funcName)-10.10s:%(lineno)04d ' '%(message)s' ), datefmt='%H:%M:%S', ) if args.debug: logging.getLogger().setLevel(logging.DEBUG) encoding = sys.stdout.encoding if not encoding.startswith('UTF'): msg = ( 'standard output encoding is %s, ' 'try to set with UTF-8 if there is output issues.' ) logging.warning(msg % encoding) if sys.version_info.major == 2: sys.stdout = codecs.getwriter(encoding)(sys.stdout, 'replace') sys.stderr = codecs.getwriter(encoding)(sys.stderr, 'replace') elif sys.version_info.major == 3: sys.stdout = codecs.getwriter(encoding)(sys.stdout.buffer, 'replace') sys.stderr = codecs.getwriter(encoding)(sys.stderr.buffer, 'replace') rc = load_config() service_options = {'blog': None} if rc: if hasattr(rc, 'handlers'): for name, handler in rc.handlers.items(): if name in handlers: handlers[name].update(handler) else: handlers[name] = handler.copy() if hasattr(rc, 'services'): for name, service in rc.services.items(): if name in services: services[name].update(service) else: services[name] = service.copy() if hasattr(rc, 'service'): args.service = rc.service if hasattr(rc, 'service_options'): service_options.update(rc.service_options) if hasattr(args, 'blog') and args.blog is not None: service_options['blog'] = args.blog filename = args.filename if hasattr(args, 'filename') else None service = find_service(args.service, service_options, filename) if args.command == 'blogs': service.list_blogs() elif args.command == 'search': service.search(' '.join(args.q)) elif args.command == 'generate': service.generate() elif args.command == 'checklink': service.checklink() elif args.command == 'post': service.post() if __name__ == '__main__': main()
1.359375
1
spyder/plugins/outlineexplorer/api.py
suokunlong/spyder
1
11168
# -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """Outline explorer API. You need to declare a OutlineExplorerProxy, and a function for handle the edit_goto Signal. class OutlineExplorerProxyCustom(OutlineExplorerProxy): ... def handle_go_to(name, line, text): ... outlineexplorer = OutlineExplorerWidget(None) oe_proxy = OutlineExplorerProxyCustom(name) outlineexplorer.set_current_editor(oe_proxy, update=True, clear=False) outlineexplorer.edit_goto.connect(handle_go_to) """ import re from qtpy.QtCore import Signal, QObject from qtpy.QtGui import QTextBlock from spyder.config.base import _ from spyder.config.base import running_under_pytest def document_cells(block, forward=True): """ Get cells oedata before or after block in the document. Parameters ---------- forward : bool, optional Whether to iterate forward or backward from the current block. """ if not block.isValid(): # Not a valid block return if forward: block = block.next() else: block = block.previous() while block.isValid(): data = block.userData() if (data and data.oedata and data.oedata.def_type == OutlineExplorerData.CELL): yield data.oedata if forward: block = block.next() else: block = block.previous() def is_cell_header(block): """Check if the given block is a cell header.""" if not block.isValid(): return False data = block.userData() return (data and data.oedata and data.oedata.def_type == OutlineExplorerData.CELL) def cell_index(block): """Get the cell index of the given block.""" index = len(list(document_cells(block, forward=False))) if is_cell_header(block): return index + 1 return index def cell_name(block): """ Get the cell name the block is in. If the cell is unnamed, return the cell index instead. """ if is_cell_header(block): header = block.userData().oedata else: try: header = next(document_cells(block, forward=False)) except StopIteration: # This cell has no header, so it is the first cell. return 0 if header.has_name(): return header.def_name else: # No name, return the index return cell_index(block) class OutlineExplorerProxy(QObject): """ Proxy class between editors and OutlineExplorerWidget. """ sig_cursor_position_changed = Signal(int, int) sig_outline_explorer_data_changed = Signal() def __init__(self): super(OutlineExplorerProxy, self).__init__() self.fname = None def is_python(self): """Return whether the editor is a python file or not.""" raise NotImplementedError def get_id(self): """Return an unique id, used for identify objects in a dict""" raise NotImplementedError def give_focus(self): """Give focus to the editor, called when toogling visibility of OutlineExplorerWidget.""" raise NotImplementedError def get_line_count(self): """Return the number of lines of the editor (int).""" raise NotImplementedError def parent(self): """This is used for diferenciate editors in multi-window mode.""" return None def get_cursor_line_number(self): """Return the cursor line number.""" raise NotImplementedError def outlineexplorer_data_list(self): """Returns a list of outline explorer data.""" raise NotImplementedError class OutlineExplorerData(QObject): CLASS, FUNCTION, STATEMENT, COMMENT, CELL = list(range(5)) FUNCTION_TOKEN = 'def' CLASS_TOKEN = 'class' # Emitted if the OutlineExplorerData was changed sig_update = Signal() def __init__(self, block, text=None, fold_level=None, def_type=None, def_name=None, color=None): """ Args: text (str) fold_level (int) def_type (int): [CLASS, FUNCTION, STATEMENT, COMMENT, CELL] def_name (str) color (PyQt.QtGui.QTextCharFormat) """ super(OutlineExplorerData, self).__init__() self.text = text self.fold_level = fold_level self.def_type = def_type self.def_name = def_name self.color = color if running_under_pytest(): # block might be a dummy self.block = block else: # Copy the text block to make sure it is not deleted self.block = QTextBlock(block) def is_not_class_nor_function(self): return self.def_type not in (self.CLASS, self.FUNCTION) def is_class_or_function(self): return self.def_type in (self.CLASS, self.FUNCTION) def is_comment(self): return self.def_type in (self.COMMENT, self.CELL) def get_class_name(self): if self.def_type == self.CLASS: return self.def_name def get_function_name(self): if self.def_type == self.FUNCTION: return self.def_name def get_token(self): if self.def_type == self.FUNCTION: token = self.FUNCTION_TOKEN elif self.def_type == self.CLASS: token = self.CLASS_TOKEN return token @property def def_name(self): """Get the cell name.""" # Non cell don't need unique names. if self.def_type != self.CELL: return self._def_name def get_name(oedata): name = oedata._def_name if not name: name = _('Unnamed Cell') return name self_name = get_name(self) existing_numbers = [] def check_match(oedata): # Look for "string" other_name = get_name(oedata) pattern = '^' + re.escape(self_name) + r'(?:, #(\d+))?$' match = re.match(pattern, other_name) if match: # Check if already has a number number = match.groups()[0] if number: existing_numbers.append(int(number)) return True return False # Count cells N_prev = 0 for oedata in document_cells(self.block, forward=False): if check_match(oedata): N_prev += 1 N_fix_previous = len(existing_numbers) N_next = 0 for oedata in document_cells(self.block, forward=True): if check_match(oedata): N_next += 1 # Get the remaining indexeswe can use free_indexes = [idx for idx in range(N_prev + N_next + 1) if idx + 1 not in existing_numbers] idx = free_indexes[N_prev - N_fix_previous] if N_prev + N_next > 0: return self_name + ', #{}'.format(idx + 1) return self_name @def_name.setter def def_name(self, value): """Set name.""" self._def_name = value def update(self, other): """Try to update to avoid reloading everything.""" if (self.def_type == other.def_type and self.fold_level == other.fold_level): self.text = other.text old_def_name = self._def_name self._def_name = other._def_name self.color = other.color self.sig_update.emit() if self.def_type == self.CELL: if self.cell_level != other.cell_level: return False # Must update all other cells whose name has changed. for oedata in document_cells(self.block, forward=True): if oedata._def_name in [self._def_name, old_def_name]: oedata.sig_update.emit() return True return False def is_valid(self): """Check if the oedata has a valid block attached.""" block = self.block return (block and block.isValid() and block.userData() and hasattr(block.userData(), 'oedata') and block.userData().oedata == self ) def has_name(self): """Check if cell has a name.""" if self._def_name: return True else: return False def get_block_number(self): """Get the block number.""" if not self.is_valid(): # Avoid calling blockNumber if not a valid block return None return self.block.blockNumber()
2.515625
3
seamless/core/__init__.py
sjdv1982/seamless
15
11169
<filename>seamless/core/__init__.py import weakref class IpyString(str): def _repr_pretty_(self, p, cycle): return p.text(str(self)) class SeamlessBase: _destroyed = False _context = None _cached_path = None name = None def _get_macro(self): return self._context()._macro @property def path(self): if self._cached_path is not None: return self._cached_path if self._context is None: return () elif self._context() is None: return ("<None>", self.name) elif self._context().path is None: return ("<None>", self.name) else: return self._context().path + (self.name,) def _validate_path(self, required_path=None): if required_path is None: required_path = self.path else: assert self.path == required_path, (self.path, required_path) return required_path def _set_context(self, context, name): from .context import Context, UnboundContext assert isinstance(context, (Context, UnboundContext)) if self._context is not None and self._context() is context: assert self.name in context._auto context._children.pop(self.name) context._auto.discard(self.name) self.name = name return if isinstance(context, UnboundContext): assert self._context is None else: assert self._context is None or isinstance(self._context(), UnboundContext), self._context ctx = weakref.ref(context) self._context = ctx self.name = name return self def _get_manager(self): assert self._context is not None, self.name #worker/cell must have a context assert self._context() is not None, self.name #worker/cell must have a context return self._context()._get_manager() def _root(self): if self._context is None: return None if self._context() is None: return None return self._context()._root() def _format_path(self): path = self.path if path is None: ret = "<None>" else: path = [str(p) for p in path] ret = "." + ".".join(path) return ret def __str__(self): ret = "Seamless object: " + self._format_path() return ret def __repr__(self): return self.__str__() def _set_macro_object(self, macro_object): self._macro_object = macro_object @property def self(self): return self def destroy(self, **kwargs): self._destroyed = True from .mount import mountmanager from .macro_mode import get_macro_mode, macro_mode_on from . import cell as cell_module from .cell import Cell, cell from . import context as context_module from .context import Context, context from .worker import Worker from .transformer import Transformer, transformer from .structured_cell import StructuredCell, Inchannel, Outchannel from .macro import Macro, macro, path from .reactor import Reactor, reactor from .unilink import unilink
2.203125
2
oguilem/configuration/config.py
dewberryants/oGUIlem
2
11170
import os import re import sys from oguilem.configuration.fitness import OGUILEMFitnessFunctionConfiguration from oguilem.configuration.ga import OGUILEMGlobOptConfig from oguilem.configuration.geometry import OGUILEMGeometryConfig from oguilem.configuration.utils import ConnectedValue, ConfigFileManager from oguilem.resources import options class OGUILEMConfig: def __init__(self): self.ui = OGUILEMUIConfig() self.globopt = OGUILEMGlobOptConfig() self.options = OGUILEMGeneralConfig() self.geometry = OGUILEMGeometryConfig() self.fitness = OGUILEMFitnessFunctionConfiguration() self.file_manager = ConfigFileManager() def save_to_file(self, path: str): content = "###OGOLEM###\n" content += self.globopt.get_finished_config() content += self.geometry.get_finished_config(path) content += self.fitness.get_finished_config() content += self.options.get_finished_config() with open(path, "w") as conf_file: conf_file.write(content) self.file_manager.signal_saved(path) def load_from_file(self, path: str, preset=False): self.options.set_to_default() with open(path, "r") as conf_file: content = conf_file.readlines() # Find geometry block and split off iter_content = iter(content) geo_block = list() backend_defs = list() charge_block = list() spin_block = list() offset = 0 # Separate off blocks for n, line in enumerate(iter_content): # Charge and Spin Blocks if line.strip().startswith("<CHARGES>"): start = n + offset try: charge_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Config ends after <CHARGES> tag!?") while not charge_line.startswith("</CHARGES>"): charge_block.append(charge_line) try: charge_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Dangling <GEOMETRY> tag in configuration!") end = start + len(charge_block) + 2 content = content[:start] + content[end:] offset -= 1 if line.strip().startswith("<SPINS>"): start = n + offset try: spin_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Config ends after <SPINS> tag!?") while not spin_line.startswith("</SPINS>"): spin_block.append(spin_line) try: spin_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Dangling <SPINS> tag in configuration!") end = start + len(spin_block) + 2 content = content[:start] + content[end:] offset -= 1 # Geometry Block if line.strip().startswith("<GEOMETRY>"): start = n + offset try: geo_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Config ends after <GEOMETRY> tag!?") while not geo_line.startswith("</GEOMETRY>"): geo_block.append(geo_line) try: geo_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Dangling <GEOMETRY> tag in configuration!") end = start + len(geo_block) + 2 content = content[:start] + content[end:] offset -= 1 # Any Backend Definitions if line.strip().startswith("<CLUSTERBACKEND>"): back_block = list() start = n + offset try: back_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Config ends after <CLUSTERBACKEND> tag!?") while not back_line.startswith("</CLUSTERBACKEND>"): back_block.append(back_line) try: back_line = next(iter_content).strip() except StopIteration: raise RuntimeError("Dangling <CLUSTERBACKEND> tag in configuration!") end = start + len(back_block) + 2 backend_defs.append(back_block) content = content[:start] + content[end:] offset -= 1 # Parse them self.geometry.parse_from_block(geo_block) self.geometry.parse_charge_block(charge_block) self.geometry.parse_spin_block(spin_block) self.fitness.parse_backend_tags(backend_defs) # Deal with the rest for line in content: if line.strip().startswith("LocOptAlgo="): self.fitness.parse_locopt_algo(line.strip()[11:]) elif line.strip().startswith("GlobOptAlgo="): self.globopt.parse_globopt_string(line.strip()[12:]) else: for key in self.options.values: type = self.options.values[key].type if re.match(key + "=", line.strip()): value, index = parse_value(line.strip()[len(key) + 1:], type) if value is not None: print("Option {:>30} set to: {:>30}".format(key, str(value))) self.options.values[key].set(value, index) else: print("ERROR: Could not set Option %s. Set to default instead!" % key) self.options.values[key].set(self.options.defaults[key]) if not preset: self.file_manager.signal_saved(path) else: self.file_manager.signal_modification() def parse_value(line, type): value = None index = -1 work = line.strip() if type is str: value = work elif type is int: value = int(work) elif type is float: value = float(work) elif type is bool: value = work.lower() == "true" elif type is list: tmp = work.split(";") value = [float(tmp[0]), float(tmp[1]), float(tmp[2])] return value, index class OGUILEMGeneralConfig: def __init__(self): self.defaults = dict() self.values = dict() for key in options: type, default = options[key] if type == "str": self.defaults[key] = default elif type == "int": self.defaults[key] = int(default) elif type == "float": self.defaults[key] = float(default) elif type == "bool": self.defaults[key] = (default.lower() == "true") elif type == "3;float": default = default.strip().split(";") self.defaults[key] = [float(default[0]), float(default[1]), float(default[2])] else: raise IOError("Could not parse xml key %s in general configs!" % key) self.values[key] = ConnectedValue(self.defaults[key]) def set_to_default(self): for key in options: self.values[key].set(self.defaults[key]) def get_finished_config(self) -> str: content = "" for key in self.values: self.values[key].request_update() value = self.values[key].value if value != self.defaults[key]: content += "\n" + key + "=" + str(self.values[key]) return content def find_config_folder(): if sys.platform == 'Windows': path = os.path.join(os.environ['APPDATA'], 'oguilem') else: path = os.path.join(os.environ['HOME'], '.config', 'oguilem') if not os.path.isdir(path): os.mkdir(path) return path class OGUILEMUIConfig: def __init__(self): self.window_size = None self.window_position = None self.java_path = None self.java_vm_variables = None self.ogo_path = None self.ogo_args = None self.environmental_variables = None self.recover_from_file() def get_run_command(self, custom_run_command=""): run_cmd = custom_run_command if custom_run_command else self.ogo_args if not all([self.java_path, self.ogo_path, self.ogo_args]): raise RuntimeError("Cannot run ogolem without knowing java and ogolem paths as well as ogolem arguments!") if self.java_vm_variables: return "%s %s -jar %s %s" % (self.java_path, self.java_vm_variables, self.ogo_path, run_cmd) return "%s -jar %s %s" % (self.java_path, self.ogo_path, run_cmd) def recover_from_file(self): path = os.path.join(find_config_folder(), "oguilem.cfg") try: with open(path, "r") as config: lines = config.readlines() for line in lines: work = line.strip() if work.startswith("WINDOWSIZE"): self.window_size = (int(work.split()[1]), int(work.split()[2])) elif work.startswith("WINDOWPOS"): self.window_position = (int(work.split()[1]), int(work.split()[2])) elif work.startswith("JAVAPATH"): self.java_path = work[8:].strip() elif work.startswith("JAVAVM"): self.java_vm_variables = work[6:].strip() elif work.startswith("OGOPATH"): self.ogo_path = work[7:].strip() elif work.startswith("OGOARGS"): self.ogo_args = work[7:].strip() elif work.startswith("ENV"): self.environmental_variables = work[3:].strip() except ValueError: print("There are format errors in the UI config file in '%s'. Using defaults." % find_config_folder()) except IOError: print("Config file not found. A new one will generate once the program exits.") def save_to_file(self): path = os.path.join(find_config_folder(), "oguilem.cfg") with open(path, "w") as config: if self.window_size: config.write("WINDOWSIZE %d %d\n" % (self.window_size[0], self.window_size[1])) if self.window_position: config.write("WINDOWPOS %d %d\n" % (self.window_position[0], self.window_position[1])) if self.java_path: config.write("JAVAPATH %s\n" % self.java_path) if self.java_vm_variables: config.write("JAVAVM %s\n" % self.java_vm_variables) if self.ogo_path: config.write("OGOPATH %s\n" % self.ogo_path) if self.ogo_args: config.write("OGOARGS %s\n" % self.ogo_args) if self.java_path: config.write("ENV %s\n" % self.environmental_variables)
2.09375
2
xpd_workflow/temp_graph.py
CJ-Wright/xpd_workflow
0
11171
<filename>xpd_workflow/temp_graph.py from __future__ import (division, print_function) import matplotlib.cm as cmx import matplotlib.colors as colors from matplotlib import gridspec from metadatastore.api import db_connect as mds_db_connect from filestore.api import db_connect as fs_db_connect fs_db_connect( **{'database': 'data-processing-dev', 'host': 'localhost', 'port': 27017}) mds_db_connect( **{'database': 'data-processing-dev', 'host': 'localhost', 'port': 27017}) from databroker import db, get_events from datamuxer import DataMuxer from sidewinder_spec.utils.handlers import * import logging from xpd_workflow.parsers import parse_xrd_standard logger = logging.getLogger(__name__) if __name__ == '__main__': import os import numpy as np import matplotlib.pyplot as plt save = True lam = 1.54059 # Standard reflections for sample components niox_hkl = ['111', '200', '220', '311', '222', '400', '331', '420', '422', '511'] niox_tth = np.asarray( [37.44, 43.47, 63.20, 75.37, 79.87, 95.58, 106.72, 111.84, 129.98, 148.68]) pr3_hkl = ['100', '001', '110', '101', '111', '200', '002', '210', '211', '112', '202'] pr3_tth = np.asarray( [22.96, 24.33, 32.70, 33.70, 41.18, 46.92, 49.86, 52.86, 59.00, 60.91, 70.87] ) pr4_hkl = ['111', '113', '008', '117', '200', '119', '028', '0014', '220', '131', '1115', '0214', '317', '31Na', '2214', '040', '400'] pr4_tth = np.asarray( [23.43, 25.16, 25.86, 32.62, 33.36, 37.67, 42.19, 46.11, 47.44, 53.18, 55.55, 57.72, 59.10, 59.27, 68.25, 68.71, 70.00] ) pr2_tth, pr2int, pr2_hkl = parse_xrd_standard( '/mnt/bulk-data/research_data/Pr2NiO4orthorhombicPDF#97-008-1577.txt') pr2_tth = pr2_tth[pr2int > 5.] prox_hkl = ['111', '200', '220', '311', '222', '400', '331', '420', '422', '511', '440', '531', '600'] prox_tth = np.asarray( [28.25, 32.74, 46.99, 55.71, 58.43, 68.59, 75.73, 78.08, 87.27, 94.12, 105.63, 112.90, 115.42] ) standard_names = [ # 'NiO', 'Pr3Ni2O7', 'Pr2NiO4', # 'Pr4' 'Pr6O11' ] master_hkl = [ # niox_hkl, pr3_hkl, pr2_hkl, # pr4_hkl prox_hkl ] master_tth = [ # niox_tth, pr3_tth, pr2_tth, # pr4_tth prox_tth ] color_map = [ # 'red', 'blue', 'black', 'red' ] line_style = ['--', '-.', ':', ] ns = [1, 2, 3, 4, 5, # 18, 20, 22, 16, 28, 29, 27, 26 ] # ns = [26] ns.sort() # for i in ns: legended_hkl = [] print(i) folder = '/mnt/bulk-data/research_data/USC_beamtime/APS_March_2016/S' + str( i) + '/temp_exp' hdr = db(run_folder=folder)[0] dm = DataMuxer() dm.append_events(get_events(hdr)) df = dm.to_sparse_dataframe() print(df.keys()) binned = dm.bin_on('img', interpolation={'T': 'linear'}) # key_list = [f for f in os.listdir(folder) if # f.endswith('.gr') and not f.startswith('d')] key_list = [f for f in os.listdir(folder) if f.endswith('.chi') and not f.startswith('d') and f.strip( '0.chi') != '' and int( f.lstrip('0').strip('.chi')) % 2 == 1] key_list.sort() key_list = key_list[:-1] # key_list2.sort() idxs = [int(os.path.splitext(f)[0]) for f in key_list] Ts = binned['T'].values[idxs] output = os.path.splitext(key_list[0])[-1][1:] if key_list[0].endswith('.gr'): offset = .1 skr = 0 else: skr = 8 offset = .001 data_list = [(np.loadtxt(os.path.join(folder, f), skiprows=skr )[:, 0], np.loadtxt(os.path.join(folder, f), skiprows=skr )[:, 1]) for f in key_list] ylim_min = None for xmax, length in zip( [len(data_list[0][0]) - 1, len(data_list[0][0]) - 1], ['short', 'full']): fig = plt.figure(figsize=(26, 12)) gs = gridspec.GridSpec(1, 2, width_ratios=[5, 1]) ax1 = plt.subplot(gs[0]) if length == 'short': ax1.set_xlim(1.5, 4.5) ax2 = plt.subplot(gs[1], sharey=ax1) plt.setp(ax2.get_yticklabels(), visible=False) cm = plt.get_cmap('viridis') cNorm = colors.Normalize(vmin=0, vmax=len(key_list)) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) for idx in range(len(key_list)): xnm, y = data_list[idx] colorVal = scalarMap.to_rgba(idx) if output == 'chi': x = xnm / 10. ax1.plot(x[:xmax], y[:xmax] + idx * offset, color=colorVal) ax2.plot(Ts[idx], y[-1] + idx * offset, marker='o', color=colorVal) if ylim_min is None or ylim_min > np.min( y[:xmax + idx * offset]): ylim_min = np.min(y[:xmax + idx * offset]) ax2.set_xticklabels([str(f) for f in ax2.get_xticks()], rotation=90) if output == 'gr': bnds = ['O-Pr', 'O-Ni', 'Ni-Ni', 'Pr-Pr', 'Ni-Pr', 'O-Pr', 'O-Ni', 'Ni-Ni-Ni', 'Pr-Ni', 'Pr-Pr', 'Pr-Ni-O', 'Ni-Pr-Ni', 'Pr-Pr', 'Rs:Pr-Pr', 'Rs:Pr_Pr'] bnd_lens = [2.320, 1.955, 3.883, 3.765, 3.186, 2.771, 2.231, 7.767, 4.426, 6.649, 4.989, 5.404, 3.374, 3.910, 8.801] # ax1.grid(True) # ax2.grid(True) for bnd, bnd_len in zip(bnds, bnd_lens): ax1.axvline(bnd_len, color='grey', linestyle='--') ax3 = ax1.twiny() ax3.set_xticks(np.asarray(bnd_lens) / x[xmax]) ax3.set_xticklabels(bnds, rotation=90) else: std_axis = [] for n, hkls, tths, color, ls in zip(standard_names, master_hkl, master_tth, color_map, line_style): std_axis.append(ax1.twiny()) ax3 = std_axis[-1] hkl_q = np.pi * 4 * np.sin(np.deg2rad(tths / 2)) / lam for k, (hkl, q) in enumerate(zip(hkls, hkl_q)): if n not in legended_hkl: ax1.axvline(q, color=color, linestyle=ls, lw=2, label=n ) legended_hkl.append(n) else: ax1.axvline(q, color=color, linestyle=ls, lw=2, ) a = hkl_q > ax1.get_xlim()[0] b = hkl_q < ax1.get_xlim()[1] c = a & b ax3.set_xticks(list((hkl_q[c] - ax1.get_xlim()[0]) / ( ax1.get_xlim()[1] - ax1.get_xlim()[0]) )) ax3.set_xticklabels(hkls, rotation=90, color=color) ax2.set_xlabel('Temperature C') if output == 'gr': fig.suptitle('S{} PDF'.format(i)) ax1.set_xlabel(r"$r (\AA)$") ax1.set_ylabel(r"$G (\AA^{-2})$") elif output == 'chi': fig.suptitle('S{} I(Q)'.format(i)) ax1.set_xlabel(r"$Q (\AA^{-1})$") ax1.set_ylabel(r"$I (Q) $") ax1.set_ylim(ylim_min) ax1.legend() gs.tight_layout(fig, rect=[0, 0, 1, .98], w_pad=1e-6) if save: fig.savefig(os.path.join('/mnt/bulk-data/Dropbox/', 'S{}_{}_output_{}.png'.format( i, length, output))) fig.savefig(os.path.join('/mnt/bulk-data/Dropbox/', 'S{}_{}_output_{}.eps'.format( i, length, output))) else: plt.show()
2
2
winnow/core.py
bgschiller/winnow
3
11172
from __future__ import unicode_literals import copy import json from six import string_types from . import default_operators from . import sql_prepare from . import values from .error import WinnowError from .templating import SqlFragment from .templating import WinnowSql class Winnow(object): """ Winnow is a SQL query builder specifically designed for powerful filtering on a table. It is designed to be efficient and low-magic. """ # Take care here -- In order to avoid mucking up the parent's copy of this # static value we have to deep copy it to every subclass. _special_cases = {} sql_class = WinnowSql def __init__(self, table, sources): self.table = table self.sources = sources self.sql = self.sql_class() def prepare_query(self, *args, **kwargs): """ Proxy to self.sql """ return self.sql.prepare_query(*args, **kwargs) def resolve(self, filt): """ Given a filter, resolve (expand) all it's clauses. A resolved clause includes information about the value type of the data source, and how to perform queries against that data source. return the modified filter. """ filt['logical_op'] = filt.get('logical_op', '&') if filt['logical_op'] not in '&|': raise WinnowError("Logical op must be one of &, |. Given: {}".format( filt['logical_op'])) for ix in range(len(filt['filter_clauses'])): filt['filter_clauses'][ix] = self.resolve_clause( filt['filter_clauses'][ix]) return filt def validate(self, filt): """ Make sure a filter is valid (resolves properly), but avoid bulking up the json object (probably because it's about to go into the db, or across the network) """ self.resolve(copy.deepcopy(filt)) return filt def resolve_clause(self, filter_clause): """ Given a filter_clause, check that it's valid. Return a dict-style filter_clause with a vivified value field. """ if 'logical_op' in filter_clause: # nested filter return self.resolve(filter_clause) ds, op = self.resolve_components(filter_clause) value = self.vivify(op['value_type'], filter_clause['value']) filter_clause['data_source_resolved'] = ds filter_clause['operator_resolved'] = op filter_clause['value_vivified'] = value filter_clause['summary'] = self.summarize(filter_clause) return filter_clause def summarize(self, filter_clause): ds = filter_clause['data_source_resolved'] op = filter_clause['operator_resolved'] value = filter_clause['value_vivified'] cvt = self.coalesce_value_type(op['value_type']) value_string = value operator_string = op.get('summary_template') or '{{data_source}} {} {{value}}'.format(op['name']) if cvt == 'collection': operator_string, value_string = self.summarize_collection(filter_clause) elif cvt == 'relative_date': value_string = value.replace('_', ' ') elif cvt == 'numeric': value_string = '{:,}'.format(value) return operator_string.format(data_source=ds['display_name'], value=value_string) @classmethod def coalesce_value_type(cls, value_type): for op in cls.operators: if op['value_type'] == value_type: return op.get('coalesced_value_type', value_type) return value_type @classmethod def summarize_collection(cls, filter_clause): value = filter_clause['value'] if isinstance(filter_clause['value'], list) else json.loads(filter_clause['value']) operator_string = '{data_source} any of {value}' if len(value) != 1 else '{data_source} is {value}' if not value: value_string = '(none)' else: value_string = ', '.join(value) return operator_string, value_string @staticmethod def empty_filter(): return dict(logial_op='&', filter_clauses=[]) @classmethod def vivify(cls, value_type, value): """De-stringify <value> into <value_type> Raises WinnowError if <value> is not well formatted for that type.""" cvt = cls.coalesce_value_type(value_type) if cvt == 'string': return values.vivify_string(value) elif cvt == 'collection': return values.vivify_collection(value) elif cvt in ('numeric', 'string_length'): return values.vivify_numeric(value) elif cvt == 'relative_date': return values.vivify_relative_date(value) elif cvt == 'absolute_date': return values.vivify_absolute_date(value) elif cvt in ('bool', 'nullable'): return values.vivify_bool(value) elif cvt == 'single_choice': return values.vivify_single_choice(value) else: raise WinnowError("Unknown value_type, '{}'".format(value_type)) @classmethod def stringify(cls, value_type, value): cvt = cls.coalesce_value_type(value_type) if isinstance(value, string_types): value = cls.vivify(value_type, value) if cvt == 'string': return values.stringify_string(value) elif cvt == 'collection': return values.stringify_collection(value) elif cvt in ('numeric', 'string_length'): return values.stringify_numeric(value) elif cvt == 'relative_date': return values.stringify_relative_date(value) elif cvt == 'absolute_date': return values.stringify_absolute_date(value) elif cvt in ('bool', 'nullable'): return values.stringify_bool(value) elif cvt == 'single_choice': return values.stringify_single_choice(value) raise WinnowError("Unknown value_type, '{}'".format(value_type)) operators = default_operators.OPERATORS def resolve_operator(self, op_name, value_types): '''Given an operator name, return an Op object. Raise an error if the operator is not found''' if not isinstance(op_name, string_types): raise WinnowError("Bad operator type, '{}'. expected string".format(type(op_name))) op_name = op_name.lower() matches = [op for op in self.operators if op['name'].lower() == op_name and op['value_type'] in value_types] if len(matches) == 0: raise WinnowError("Unknown operator '{}'".format(op_name)) return matches.pop() def resolve_source(self, source_name): """ Given a source name, return a resolved data source. Raise an error if the source name is not allowable """ matches = [source for source in self.sources if source['display_name'] == source_name] if len(matches) == 0: raise WinnowError("Unknown data source '{}'".format(source_name)) elif len(matches) > 1: raise WinnowError("Ambiguous data source '{}'".format(source_name)) return matches.pop() def resolve_components(self, clause): source = self.resolve_source(clause['data_source']) operator = self.resolve_operator(clause['operator'], source['value_types']) return source, operator def query(self, filt): return self.prepare_query( "SELECT * FROM {{ table | sqlsafe }} WHERE {{ condition }}", table=self.table, condition=self.where_clauses(filt)) def strip(self, filt): """ Perform the opposite of resolving a filter. """ for k in ('data_source_resolved', 'operator_resolved', 'value_vivified'): filt.pop(k, None) if 'filter_clauses' in filt: filt['filter_clauses'] = [self.strip(f) for f in filt['filter_clauses']] return filt def where_clauses(self, filt): ''' Apply a user filter. Returns a paren-wrapped WHERE clause suitable for using in a SELECT statement on the opportunity table. ''' if not filt['filter_clauses']: return True filt = self.resolve(filt) where_clauses = [] for clause in filt['filter_clauses']: if 'logical_op' in clause: # nested filter where_clauses.append(self.where_clauses(clause)) elif 'data_source_resolved' in clause: where_clauses.append(self._dispatch_clause(clause)) else: # I don't expect to ever get here, because we should hit this # issue when we call `filt = self.resolve(filt)` raise WinnowError("Somehow, this is neither a nested filter, nor a resolved clause") if not where_clauses: return True sep = '\nAND \n ' if filt['logical_op'] == '&' else '\nOR \n ' self.strip(filt) sql_frag = SqlFragment.join(sep, where_clauses) sql_frag.query = '(' + sql_frag.query + ')' return sql_frag def _dispatch_clause(self, clause): """ Evaluates whether a clause is standard, special, or custom and calls the appropriate specialization function. Each specialization returns a paren-wrapped WHERE clause, to be AND'd or OR'd together to produce a final clause.""" for k in ('data_source_resolved', 'operator_resolved', 'value_vivified'): if k not in clause: raise WinnowError('failed to resolve component: {}'.format(k)) op = clause['operator_resolved'] special_handler = self.special_case_handler( source_name=clause['data_source'], value_type=op['value_type']) if special_handler is not None: return special_handler(self, clause) return self._default_clause(clause) def where_clause(self, data_source, operator, value): return sql_prepare.where_clause(data_source['column'], operator, value) def _default_clause(self, clause): """ Given a filter_clause, convert it to a WHERE clause """ ds = clause['data_source_resolved'] op = clause['operator_resolved'] value = clause['value_vivified'] return self.where_clause(ds, op, value) @classmethod def special_case(cls, source_name, *value_types): """ Register a special case handler. A special case handler is a function s: s(Winnow(), clause) -> WHERE clause string """ if cls._special_cases is getattr(super(cls, cls), '_special_cases', None): raise RuntimeError('Please define your own _special_cases dict, so as to avoid modifying your parent. ' 'Note to self: come up with a more durable way to handle this.') # ideas: # proxy the _special_cases as the union of own and parent's version. def decorator(func): """ Register a function in the handler table. """ for value_type in value_types: if (source_name, value_type) in cls._special_cases: raise WinnowError("Conflicting handlers registered for ({},{}): {} and {}".format( value_type, source_name, cls._special_cases[(source_name, value_type)].__name__, func.__name__)) cls._special_cases[(source_name, value_type)] = func return func return decorator def special_case_handler(self, source_name, value_type): """ Check if a given value_type, source_name pair has a special case handler. :return: A function handler for that case accepting the winnow instance and the clause. """ return self._special_cases.get((source_name, value_type))
2.359375
2
ibis/bigquery/client.py
tswast/ibis
0
11173
import regex as re import time import collections import datetime import six import pandas as pd import google.cloud.bigquery as bq from multipledispatch import Dispatcher import ibis import ibis.common as com import ibis.expr.operations as ops import ibis.expr.types as ir import ibis.expr.schema as sch import ibis.expr.datatypes as dt import ibis.expr.lineage as lin from ibis.compat import parse_version from ibis.client import Database, Query, SQLClient from ibis.bigquery import compiler as comp from google.api.core.exceptions import BadRequest NATIVE_PARTITION_COL = '_PARTITIONTIME' def _ensure_split(table_id, dataset_id): split = table_id.split('.') if len(split) > 1: assert len(split) == 2 if dataset_id: raise ValueError( "Can't pass a fully qualified table name *AND* a dataset_id" ) (dataset_id, table_id) = split return (table_id, dataset_id) _IBIS_TYPE_TO_DTYPE = { 'string': 'STRING', 'int64': 'INT64', 'double': 'FLOAT64', 'boolean': 'BOOL', 'timestamp': 'TIMESTAMP', 'date': 'DATE', } _DTYPE_TO_IBIS_TYPE = { 'INT64': dt.int64, 'FLOAT64': dt.double, 'BOOL': dt.boolean, 'STRING': dt.string, 'DATE': dt.date, # FIXME: enforce no tz info 'DATETIME': dt.timestamp, 'TIME': dt.time, 'TIMESTAMP': dt.timestamp, 'BYTES': dt.binary, } _LEGACY_TO_STANDARD = { 'INTEGER': 'INT64', 'FLOAT': 'FLOAT64', 'BOOLEAN': 'BOOL', } @dt.dtype.register(bq.schema.SchemaField) def bigquery_field_to_ibis_dtype(field): typ = field.field_type if typ == 'RECORD': fields = field.fields assert fields names = [el.name for el in fields] ibis_types = list(map(dt.dtype, fields)) ibis_type = dt.Struct(names, ibis_types) else: ibis_type = _LEGACY_TO_STANDARD.get(typ, typ) ibis_type = _DTYPE_TO_IBIS_TYPE.get(ibis_type, ibis_type) if field.mode == 'REPEATED': ibis_type = dt.Array(ibis_type) return ibis_type @sch.infer.register(bq.table.Table) def bigquery_schema(table): pairs = [(el.name, dt.dtype(el)) for el in table.schema] try: if table.list_partitions(): pairs.append((NATIVE_PARTITION_COL, dt.timestamp)) except BadRequest: pass return sch.schema(pairs) class BigQueryCursor(object): """Cursor to allow the BigQuery client to reuse machinery in ibis/client.py """ def __init__(self, query): self.query = query def fetchall(self): return list(self.query.fetch_data()) @property def columns(self): return [field.name for field in self.query.schema] def __enter__(self): # For compatibility when constructed from Query.execute() return self def __exit__(self, exc_type, exc_value, traceback): pass def _find_scalar_parameter(expr): """:func:`~ibis.expr.lineage.traverse` function to find all :class:`~ibis.expr.types.ScalarParameter` instances and yield the operation and the parent expresssion's resolved name. Parameters ---------- expr : ibis.expr.types.Expr Returns ------- Tuple[bool, object] """ op = expr.op() if isinstance(op, ops.ScalarParameter): result = op, expr.get_name() else: result = None return lin.proceed, result class BigQueryQuery(Query): def __init__(self, client, ddl, query_parameters=None): super(BigQueryQuery, self).__init__(client, ddl) # self.expr comes from the parent class query_parameter_names = dict( lin.traverse(_find_scalar_parameter, self.expr)) self.query_parameters = [ bigquery_param( param.to_expr().name(query_parameter_names[param]), value ) for param, value in (query_parameters or {}).items() ] def _fetch(self, cursor): df = pd.DataFrame(cursor.fetchall(), columns=cursor.columns) return self.schema().apply_to(df) def execute(self): # synchronous by default with self.client._execute( self.compiled_sql, results=True, query_parameters=self.query_parameters ) as cur: result = self._fetch(cur) return self._wrap_result(result) class BigQueryAPIProxy(object): def __init__(self, project_id): self._client = bq.Client(project_id) @property def client(self): return self._client @property def project_id(self): return self.client.project def get_datasets(self): return list(self.client.list_datasets()) def get_dataset(self, dataset_id): return self.client.dataset(dataset_id) def get_table(self, table_id, dataset_id, reload=True): (table_id, dataset_id) = _ensure_split(table_id, dataset_id) table = self.client.dataset(dataset_id).table(table_id) if reload: table.reload() return table def get_schema(self, table_id, dataset_id): return self.get_table(table_id, dataset_id).schema def run_sync_query(self, stmt): query = self.client.run_sync_query(stmt) query.use_legacy_sql = False query.run() # run_sync_query is not really synchronous: there's a timeout while not query.job.done(): query.job.reload() time.sleep(0.1) return query class BigQueryDatabase(Database): pass bigquery_param = Dispatcher('bigquery_param') @bigquery_param.register(ir.StructScalar, collections.OrderedDict) def bq_param_struct(param, value): field_params = [bigquery_param(param[k], v) for k, v in value.items()] return bq.StructQueryParameter(param.get_name(), *field_params) @bigquery_param.register(ir.ArrayValue, list) def bq_param_array(param, value): param_type = param.type() assert isinstance(param_type, dt.Array), str(param_type) try: bigquery_type = _IBIS_TYPE_TO_DTYPE[str(param_type.value_type)] except KeyError: raise com.UnsupportedBackendType(param_type) else: return bq.ArrayQueryParameter(param.get_name(), bigquery_type, value) @bigquery_param.register( ir.TimestampScalar, six.string_types + (datetime.datetime, datetime.date) ) def bq_param_timestamp(param, value): assert isinstance(param.type(), dt.Timestamp) # TODO(phillipc): Not sure if this is the correct way to do this. timestamp_value = pd.Timestamp(value, tz='UTC').to_pydatetime() return bq.ScalarQueryParameter( param.get_name(), 'TIMESTAMP', timestamp_value) @bigquery_param.register(ir.StringScalar, six.string_types) def bq_param_string(param, value): return bq.ScalarQueryParameter(param.get_name(), 'STRING', value) @bigquery_param.register(ir.IntegerScalar, six.integer_types) def bq_param_integer(param, value): return bq.ScalarQueryParameter(param.get_name(), 'INT64', value) @bigquery_param.register(ir.FloatingScalar, float) def bq_param_double(param, value): return bq.ScalarQueryParameter(param.get_name(), 'FLOAT64', value) @bigquery_param.register(ir.BooleanScalar, bool) def bq_param_boolean(param, value): return bq.ScalarQueryParameter(param.get_name(), 'BOOL', value) @bigquery_param.register(ir.DateScalar, six.string_types) def bq_param_date_string(param, value): return bigquery_param(param, pd.Timestamp(value).to_pydatetime().date()) @bigquery_param.register(ir.DateScalar, datetime.datetime) def bq_param_date_datetime(param, value): return bigquery_param(param, value.date()) @bigquery_param.register(ir.DateScalar, datetime.date) def bq_param_date(param, value): return bq.ScalarQueryParameter(param.get_name(), 'DATE', value) class BigQueryClient(SQLClient): sync_query = BigQueryQuery database_class = BigQueryDatabase proxy_class = BigQueryAPIProxy dialect = comp.BigQueryDialect def __init__(self, project_id, dataset_id): self._proxy = type(self).proxy_class(project_id) self._dataset_id = dataset_id @property def project_id(self): return self._proxy.project_id @property def dataset_id(self): return self._dataset_id @property def _table_expr_klass(self): return ir.TableExpr def table(self, *args, **kwargs): t = super(BigQueryClient, self).table(*args, **kwargs) if NATIVE_PARTITION_COL in t.columns: col = ibis.options.bigquery.partition_col assert col not in t return (t .mutate(**{col: t[NATIVE_PARTITION_COL]}) .drop([NATIVE_PARTITION_COL])) return t def _build_ast(self, expr, context): result = comp.build_ast(expr, context) return result def _execute_query(self, dml, async=False): klass = self.async_query if async else self.sync_query inst = klass(self, dml, query_parameters=dml.context.params) df = inst.execute() return df def _fully_qualified_name(self, name, database): dataset_id = database or self.dataset_id return dataset_id + '.' + name def _get_table_schema(self, qualified_name): return self.get_schema(qualified_name) def _execute(self, stmt, results=True, query_parameters=None): # TODO(phillipc): Allow **kwargs in calls to execute query = self._proxy.client.run_sync_query(stmt) query.use_legacy_sql = False query.query_parameters = query_parameters or [] query.run() # run_sync_query is not really synchronous: there's a timeout while not query.job.done(): query.job.reload() time.sleep(0.1) return BigQueryCursor(query) def database(self, name=None): if name is None: name = self.dataset_id return self.database_class(name, self) @property def current_database(self): return self.database(self.dataset_id) def set_database(self, name): self._dataset_id = name def exists_database(self, name): return self._proxy.get_dataset(name).exists() def list_databases(self, like=None): results = [dataset.name for dataset in self._proxy.get_datasets()] if like: results = [ dataset_name for dataset_name in results if re.match(like, dataset_name) ] return results def exists_table(self, name, database=None): (table_id, dataset_id) = _ensure_split(name, database) return self._proxy.get_table(table_id, dataset_id).exists() def list_tables(self, like=None, database=None): dataset = self._proxy.get_dataset(database or self.dataset_id) result = [table.name for table in dataset.list_tables()] if like: result = [ table_name for table_name in result if re.match(like, table_name) ] return result def get_schema(self, name, database=None): (table_id, dataset_id) = _ensure_split(name, database) bq_table = self._proxy.get_table(table_id, dataset_id) return sch.infer(bq_table) @property def version(self): return parse_version(bq.__version__) _DTYPE_TO_IBIS_TYPE = { 'INT64': dt.int64, 'FLOAT64': dt.double, 'BOOL': dt.boolean, 'STRING': dt.string, 'DATE': dt.date, # FIXME: enforce no tz info 'DATETIME': dt.timestamp, 'TIME': dt.time, 'TIMESTAMP': dt.timestamp, 'BYTES': dt.binary, } _LEGACY_TO_STANDARD = { 'INTEGER': 'INT64', 'FLOAT': 'FLOAT64', 'BOOLEAN': 'BOOL', } def _discover_type(field): typ = field.field_type if typ == 'RECORD': fields = field.fields assert fields names = [el.name for el in fields] ibis_types = [_discover_type(el) for el in fields] ibis_type = dt.Struct(names, ibis_types) else: ibis_type = _LEGACY_TO_STANDARD.get(typ, typ) ibis_type = _DTYPE_TO_IBIS_TYPE.get(ibis_type, ibis_type) if field.mode == 'REPEATED': ibis_type = dt.Array(ibis_type) return ibis_type def bigquery_table_to_ibis_schema(table): pairs = [(el.name, _discover_type(el)) for el in table.schema] try: if table.list_partitions(): pairs.append((NATIVE_PARTITION_COL, dt.timestamp)) except BadRequest: pass return ibis.schema(pairs)
1.992188
2
5 kyu/Family Tree Ancestors.py
mwk0408/codewars_solutions
6
11174
<filename>5 kyu/Family Tree Ancestors.py<gh_stars>1-10 from math import log, ceil def chart(person): res=helper(tuple(sorted(person.parents(), key=lambda x: x.sex, reverse=True)), 2, [], 16, 16) res.append((person.name, 16)) dict={j:i for i,j in res} dict2=helper2(16) chart=[] for i in range(1, 32): temp=((4-depth(i))*11-1)*" "+("|" if 4-depth(i)!=0 else "") name=dict.get(i, "_______") number=str(dict2[i]).rjust(2, "0") temp+=f"{number} {name}" chart.append(list(temp)) for index,i in enumerate(chart): digits=int("".join(j for j in "".join(i) if j.isdigit())) num=5-ceil(log(digits+1, 2)) if digits==1 or num==0: continue for k in range(1, 2**num): chart[index+(-k if digits%2 else k)][44-num*11-1]="|" chart[16][32]=" " chart[14][32]=" " return "\n".join("".join(i) for i in chart)+"\n" def helper(person, index, arr, row, rate): if person==None or index>31: return rate//=2 for i,j in enumerate(person): if (index+i)<=31: arr.append((j.name, row-rate if j.sex=="M" else row+rate)) helper(tuple(sorted(j.parents(), key=lambda x: x.sex, reverse=True)), (index+i)*2, arr, row-rate if j.sex=="M" else row+rate, rate) return arr def depth(num): total=0 while num%2==0: num//=2 total+=1 return total def helper2(num): start=0 dict={} while num>0: increment=2**(start+1) for i in range(num): dict[2**start+i*increment]=num+i start+=1 num//=2 return dict
3.03125
3
tests/make_expected_lookup.py
bfis/coffea
77
11175
import numpy as np import ROOT from dummy_distributions import dummy_pt_eta counts, test_in1, test_in2 = dummy_pt_eta() f = ROOT.TFile.Open("samples/testSF2d.root") sf = f.Get("scalefactors_Tight_Electron") xmin, xmax = sf.GetXaxis().GetXmin(), sf.GetXaxis().GetXmax() ymin, ymax = sf.GetYaxis().GetXmin(), sf.GetYaxis().GetXmax() test_out = np.empty_like(test_in1) for i, (eta, pt) in enumerate(zip(test_in1, test_in2)): if xmax <= eta: eta = xmax - 1.0e-5 elif eta < xmin: eta = xmin if ymax <= pt: pt = ymax - 1.0e-5 elif pt < ymin: pt = ymin ib = sf.FindBin(eta, pt) test_out[i] = sf.GetBinContent(ib) print(repr(test_out))
1.851563
2
engine/sentiment_analysis.py
zgeorg03/nesase
2
11176
<filename>engine/sentiment_analysis.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 14 17:42:27 2018 @author: zgeorg03 """ import re import json # Used for converting json to dictionary import datetime # Used for date conversions import matplotlib.pyplot as plt import numpy as np from sentiment import Sentiment import json class NewsArticle: def __init__(self,hash,title,author,url,content,date,topics, feed): self.hash = hash self.title = title self.author = author self.url = url self.content = content self.date = datetime.datetime.fromtimestamp(date/1000.0) self.topics = topics self.feed = feed self.sep = re.compile("[.!?]") def __repr__(self): return "hash={},title={},author={},date={},topics={}".format( self.hash, self.title, self.author, self.date, self.topics, self.feed) def __str__(self): return self.__repr__() def produce_title_scores(self, sentiment): lines = self.sep.split(self.title) sentiment.score(lines) neg,neu,pos,com,count = sentiment.get_avg_scores() return (float("{0:.2f}".format(neg*100)), float("{0:.2f}".format(neu*100)) , float("{0:.2f}".format(pos*100)), float("{0:.2f}".format(com*100)),count ) def produce_content_scores(self, sentiment): lines = self.sep.split(self.content) sentiment.score(lines) neg,neu,pos,com,count = sentiment.get_avg_scores() return (float("{0:.2f}".format(neg*100)), float("{0:.2f}".format(neu*100)) , float("{0:.2f}".format(pos*100)), float("{0:.2f}".format(com*100)),count ) class Parser: def __init__(self,file_in,max_articles=None,file_out=None): self.file_name = file_name self.max_articles = max_articles self.articles = [] self.sentiment = Sentiment() self.results = [] self.file_out = file_out def parse(self): count = 0 with open(self.file_name,"r",encoding="UTF-8") as file: for line in file: if line.startswith(','): continue self.articles.append(self.parse_news_article(line)) count += 1 if self.max_articles: if count >= self.max_articles: break def write(self): for i,article in enumerate(self.articles): if i % 100 == 0: print('Finished: {} docs'.format(i)) self.write_article(article) if self.file_out: with open(self.file_out, 'w') as outfile: json.dump(self.results, outfile,sort_keys=True,indent=4) else: print(json.dumps(self.results,sort_keys=True,indent=4)) def write_article(self,article): res = {} res['neg_title'],res['neu_title'],res['pos_title'],res['score_title'], _ = article.produce_title_scores(self.sentiment) res['neg_content'],res['neu_content'],res['pos_content'],res['score_content'], _ = article.produce_content_scores(self.sentiment) res['id'] = article.hash res['title'] = article.title res['date'] = int(article.date.timestamp()) res['content'] = article.content res['topics'] = article.topics res['feed'] = article.feed res['url'] = article.url res['author'] = article.author res['overall_score']= float(res['score_title'])*0.75 + float(res['score_content'])*0.25 overall_score = res['overall_score'] if overall_score <= -50: res['class']= 'Very Negative' res['class_code'] = 4 elif overall_score <= 0: res['class']= 'Negative' res['class_code'] = 3 elif overall_score <= 50: res['class']= 'Positive' res['class_code'] = 2 elif overall_score <= 100: res['class']= 'Very Positive' res['class_code'] = 1 self.results.append(res) def parse_news_article(self, line): data = json.loads(line) hash = data['hash'] title = data['title'] author = data['author'] content = data['content'] date = data['date'] topics = list(set(data['topics'])) feed = data['feed'] url = data['link'] return NewsArticle(hash,title,author,url,content,date,topics,feed) if __name__ == '__main__': file_name = "./log" #max_articles = 1000 p = Parser(file_name,file_out='data-26-04.json') p.parse() p.write() print('Finished') def test(): plt.figure(figsize=(12,9)) plt.title('Articles: {}'.format(max_articles)) plt.plot(x[:,0],'x',label="Negative {0:.2f}".format(np.average(x[:,0]))) plt.plot(x[:,2],'+',label="Positive {0:.2f}".format(np.average(x[:,2]))) plt.plot(x[:,1],'.',label="Neutral {0:.2f}".format(np.average(x[:,1]))) plt.plot(x[:,3],'.',label="Compound {0:.2f}".format(np.average(x[:,3]))) plt.legend() x = [] for i in range(0,max_articles): x.append(articles[i].produce_content_scores(sentiment)) x = np.array(x) print(x[:,0]) plt.figure(figsize=(12,9)) plt.title('Articles: {}'.format(max_articles)) plt.plot(x[:,0],'x',label="Negative {0:.2f}".format(np.average(x[:,0]))) plt.plot(x[:,2],'+',label="Positive {0:.2f}".format(np.average(x[:,2]))) plt.plot(x[:,1],'.',label="Neutral {0:.2f}".format(np.average(x[:,1]))) plt.plot(x[:,3],'.',label="Compound {0:.2f}".format(np.average(x[:,3]))) plt.legend()
2.75
3
ch05/recursion.py
laszlokiraly/LearningAlgorithms
74
11177
"""Recursive implementations.""" def find_max(A): """invoke recursive function to find maximum value in A.""" def rmax(lo, hi): """Use recursion to find maximum value in A[lo:hi+1].""" if lo == hi: return A[lo] mid = (lo+hi) // 2 L = rmax(lo, mid) R = rmax(mid+1, hi) return max(L, R) return rmax(0, len(A)-1) def find_max_with_count(A): """Count number of comparisons.""" def frmax(lo, hi): """Use recursion to find maximum value in A[lo:hi+1] incl. count""" if lo == hi: return (0, A[lo]) mid = (lo+hi)//2 ctleft,left = frmax(lo, mid) ctright,right = frmax(mid+1, hi) return (1+ctleft+ctright, max(left, right)) return frmax(0, len(A)-1) def count(A,target): """invoke recursive function to return number of times target appears in A.""" def rcount(lo, hi, target): """Use recursion to find maximum value in A[lo:hi+1].""" if lo == hi: return 1 if A[lo] == target else 0 mid = (lo+hi)//2 left = rcount(lo, mid, target) right = rcount(mid+1, hi, target) return left + right return rcount(0, len(A)-1, target)
4.03125
4
setup.py
koonimaru/DeepGMAP
11
11178
#from distutils.core import setup from setuptools import setup, find_packages from distutils.extension import Extension import re import os import codecs here = os.path.abspath(os.path.dirname(__file__)) def read(*parts): # intentionally *not* adding an encoding option to open, See: # https://github.com/pypa/virtualenv/issues/201#issuecomment-3145690 with codecs.open(os.path.join(here, *parts), 'r') as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M, ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") try: from Cython.Distutils import build_ext except ImportError: use_cython = False else: use_cython = True cmdclass = { } ext_modules = [ ] if use_cython: ext_modules += [ Extension("deepgmap.data_preprocessing_tools.seq_to_binary2", [ "deepgmap/data_preprocessing_tools/seq_to_binary2.pyx" ]), #Extension("data_preprocessing_tools.queue", [ "deepgmap/data_preprocessing_tools/queue.pyx" ],libraries=["calg"]), Extension("deepgmap.post_train_tools.cython_util", [ "deepgmap/post_train_tools/cython_util.pyx" ]), ] cmdclass.update({ 'build_ext': build_ext }) else: ext_modules += [ Extension("deepgmap.data_preprocessing_tools.seq_to_binary2", [ "deepgmap/data_preprocessing_tools/seq_to_binary2.c" ]), Extension("deepgmap.post_train_tools.cython_util", [ "deepgmap/post_train_tools/cython_util.c" ]), ] #print(find_version("deepgmap", "__init__.py")) setup( name='DeepGMAP', #version=VERSION, version=find_version("deepgmap", "__init__.py"), description='Learning and predicting gene regulatory sequences in genomes', author='<NAME>', author_email='<EMAIL>', url='', packages=['deepgmap','deepgmap.train','deepgmap.network_constructors','deepgmap.post_train_tools','deepgmap.data_preprocessing_tools','deepgmap.misc'], #packages=find_packages('deepgmap'), #packages=['deepgmap.'], package_dir={'DeepGMAP':'deepgmap'}, #package_data = { # '': ['enhancer_prediction/*', '*.pyx', '*.pxd', '*.c', '*.h'], #}, scripts=['bin/deepgmap', ], #packages=find_packages(), cmdclass = cmdclass, ext_modules=ext_modules, classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3.6', 'License :: OSI Approved :: Apache Software License ', 'Operating System :: POSIX :: Linux', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], install_requires=['tensorflow>=1.15', 'numpy', 'matplotlib', 'sklearn', 'tornado', 'natsort', 'psutil', 'pyBigWig'], long_description=open('README.rst').read(), )
1.96875
2
{{cookiecutter.project_slug}}/api/__init__.py
Steamboat/cookiecutter-devops
0
11179
import logging from flask import Flask from flask_sqlalchemy import SQLAlchemy as _BaseSQLAlchemy from flask_migrate import Migrate from flask_cors import CORS from flask_talisman import Talisman from flask_ipban import IpBan from config import Config, get_logger_handler # database class SQLAlchemy(_BaseSQLAlchemy): def apply_pool_defaults(self, app, options): super(SQLAlchemy, self).apply_pool_defaults(app, options) options["pool_pre_ping"] = True db = SQLAlchemy() migrate = Migrate() cors = CORS() talisman = Talisman() global_config = Config() ip_ban = IpBan(ban_seconds=200, ban_count=global_config.IP_BAN_LIST_COUNT) # logging logger = logging.getLogger('frontend') def create_app(config_class=None): app = Flask(__name__) if config_class is None: config_class = Config() app.config.from_object(config_class) db.init_app(app) migrate.init_app(app, db) # TODO - Refine and update when build pipeline is stable. Get from global_config cors.init_app(app, origins=["http://localhost:5000", "http://localhost:3000", '*']) if app.config["ENV"] in ("staging", "production"): # Secure the application and implement best practice https redirects and a content security policy talisman.init_app(app, content_security_policy=None) # ip_ban.init_app(app) # ip_ban.load_nuisances(global_config.IP_BAN_REGEX_FILE) from api.routes import bp as api_bp app.register_blueprint(api_bp) if not app.debug and not app.testing: app.logger.addHandler(get_logger_handler()) @app.teardown_appcontext def shutdown_session(exception=None): db.session.remove() return app from api import models
2.125
2
weibospider/pipelines.py
czyczyyzc/WeiboSpider
2
11180
<filename>weibospider/pipelines.py # -*- coding: utf-8 -*- import os import csv import pymongo from pymongo.errors import DuplicateKeyError from settings import MONGO_HOST, MONGO_PORT, SAVE_ROOT class MongoDBPipeline(object): def __init__(self): client = pymongo.MongoClient(MONGO_HOST, MONGO_PORT) db = client['weibo'] self.Users = db["Users"] self.Tweets = db["Tweets"] self.Comments = db["Comments"] self.Relationships = db["Relationships"] self.Reposts = db["Reposts"] def process_item(self, item, spider): if spider.name == 'comment_spider': self.insert_item(self.Comments, item) elif spider.name == 'fan_spider': self.insert_item(self.Relationships, item) elif spider.name == 'follower_spider': self.insert_item(self.Relationships, item) elif spider.name == 'user_spider': self.insert_item(self.Users, item) elif spider.name == 'tweet_spider': self.insert_item(self.Tweets, item) elif spider.name == 'repost_spider': self.insert_item(self.Reposts, item) return item @staticmethod def insert_item(collection, item): try: collection.insert(dict(item)) except DuplicateKeyError: pass class CSVPipeline(object): def __init__(self): if not os.path.exists(SAVE_ROOT): os.makedirs(SAVE_ROOT) users_file = open(os.path.join(SAVE_ROOT, 'users.csv'), 'w', encoding='utf-8-sig', newline='') tweets_file = open(os.path.join(SAVE_ROOT, 'tweets.csv'), 'w', encoding='utf-8-sig', newline='') comments_file = open(os.path.join(SAVE_ROOT, 'comments.csv'), 'w', encoding='utf-8-sig', newline='') relationships_file = open(os.path.join(SAVE_ROOT, 'relationships.csv'), 'w', encoding='utf-8-sig', newline='') reposts_file = open(os.path.join(SAVE_ROOT, 'reposts.csv'), 'w', encoding='utf-8-sig', newline='') self.users_writer = csv.writer(users_file, dialect='excel') self.tweets_writer = csv.writer(tweets_file, dialect='excel') self.comments_writer = csv.writer(comments_file, dialect='excel') self.relationships_writer = csv.writer(relationships_file, dialect='excel') self.reposts_writer = csv.writer(reposts_file, dialect='excel') self.users_head = False self.tweets_head = False self.comments_head = False self.relationships_head = False self.reposts_head = False self.users_ids = [] self.tweets_ids = [] self.comments_ids = [] self.relationships_ids = [] self.reposts_ids = [] def process_item(self, item, spider): item = dict(item) if spider.name == 'comment_spider': if not self.comments_head: self.comments_writer.writerow(list(item.keys())) self.comments_head = True # if item['_id'] not in self.comments_ids: self.comments_writer.writerow(list(item.values())) self.comments_ids.append(item['_id']) elif spider.name == 'fan_spider': if not self.relationships_head: self.relationships_writer.writerow(list(item.keys())) self.relationships_head = True # if item['_id'] not in self.relationships_ids: self.relationships_writer.writerow(list(item.values())) self.relationships_ids.append(item['_id']) elif spider.name == 'follower_spider': if not self.relationships_head: self.relationships_writer.writerow(list(item.keys())) self.relationships_head = True # if item['_id'] not in self.relationships_ids: self.relationships_writer.writerow(list(item.values())) self.relationships_ids.append(item['_id']) elif spider.name == 'user_spider': if not self.users_head: self.users_writer.writerow(list(item.keys())) self.users_head = True # if item['_id'] not in self.users_ids: self.users_writer.writerow(list(item.values())) self.users_ids.append(item['_id']) elif spider.name == 'tweet_spider': if not self.tweets_head: self.tweets_writer.writerow(list(item.keys())) self.tweets_head = True # if item['_id'] not in self.tweets_ids: self.tweets_writer.writerow(list(item.values())) self.tweets_ids.append(item['_id']) elif spider.name == 'repost_spider': if not self.reposts_head: self.reposts_writer.writerow(list(item.keys())) self.reposts_head = True # if item['_id'] not in self.reposts_ids: self.reposts_writer.writerow(list(item.values())) self.reposts_ids.append(item['_id']) return item
2.6875
3
tests/test_gc3_config.py
ericmharris/gc3-query
0
11181
from pathlib import Path from requests.auth import _basic_auth_str import pytest from bravado_core.formatter import SwaggerFormat, NO_OP from gc3_query.lib.gc3_config import GC3Config, IDMCredential TEST_BASE_DIR: Path = Path(__file__).parent.joinpath("GC3Config") config_dir = TEST_BASE_DIR.joinpath("config") def test_setup(): assert TEST_BASE_DIR.exists() assert config_dir.exists() def test_init(): gc3_config = GC3Config() assert 'gc30003' in gc3_config['idm']['domains'] assert gc3_config.user.cloud_username == '<EMAIL>' def test_set_credential(): gc3_config = GC3Config() assert 'gc3test' in gc3_config['idm']['domains'] assert gc3_config.user.cloud_username == '<EMAIL>' credential = gc3_config.set_credential(idm_domain_name='gc3test', password='<PASSWORD>' ) assert credential assert credential.password == '<PASSWORD>' assert credential.idm_domain_name == 'gc3test' def test_set_gc3pilot_credential(): gc3_config = GC3Config() assert 'gc3pilot' in gc3_config['idm']['domains'] assert gc3_config.user.cloud_username == '<EMAIL>' credential = gc3_config.set_credential(idm_domain_name='gc3pilot', password='<PASSWORD>!' ) assert credential assert credential.password == '<PASSWORD>!' assert credential.idm_domain_name == 'gc3pilot' @pytest.fixture() def get_credential_setup() -> IDMCredential: gc3_config = GC3Config() assert 'gc3test' in gc3_config['idm']['domains'] assert gc3_config.user.cloud_username == '<EMAIL>' credential = gc3_config.set_credential(idm_domain_name='gc3test', password='<PASSWORD>' ) yield (credential) def test_load_atoml_files_individually(get_credential_setup): credential = get_credential_setup gc3_config = GC3Config() assert 'gc3test' in gc3_config['idm']['domains'] assert gc3_config.user.cloud_username == '<EMAIL>' check_credential = gc3_config.get_credential(idm_domain_name='gc3test') assert check_credential==credential def test_credential_basic_auth(get_credential_setup): credential = get_credential_setup credential_expected_basic_auth =_basic_auth_str('<EMAIL>', '<PASSWORD>') gc3_config = GC3Config() check_credential = gc3_config.get_credential(idm_domain_name='gc30003') assert gc3_config.user.cloud_username == '<EMAIL>' assert check_credential.idm_domain_name=='gc30003' assert check_credential.basic_auth_str.startswith('Basic') assert check_credential.basic_auth_str != credential.basic_auth_str def test_get_main_credential(): gc3_config = GC3Config() check_credential = gc3_config.get_credential(idm_domain_name='gc30003') assert gc3_config.user.cloud_username == '<EMAIL>' assert check_credential.idm_domain_name=='gc30003' # @pytest.fixture() # def get_bravado_config_setup(): # gc3_config = GC3Config() # assert 'iaas_classic' in gc3_config # yield (gc3_config) # # def test_bravado_client_config(get_bravado_config_setup): # gc3_config = get_bravado_config_setup # assert 'iaas_classic' in gc3_config # bravado_client_config = gc3_config.bravado_client_config # assert bravado_client_config # assert 'formats' not in bravado_client_config # assert not 'include_missing_properties' in bravado_client_config # assert 'also_return_response' in bravado_client_config # bravado_client_config_2 = gc3_config.bravado_client_config # assert bravado_client_config==bravado_client_config_2 # assert bravado_client_config is not bravado_client_config_2 # assert isinstance(bravado_client_config, dict) # # def test_bravado_core_config(get_bravado_config_setup): # gc3_config = get_bravado_config_setup # assert 'iaas_classic' in gc3_config # bravado_core_config = gc3_config.bravado_core_config # assert bravado_core_config # assert 'formats' in bravado_core_config # assert 'include_missing_properties' in bravado_core_config # assert not 'also_return_response' in bravado_core_config # bravado_core_config_2 = gc3_config.bravado_core_config # assert bravado_core_config==bravado_core_config_2 # assert bravado_core_config is not bravado_core_config_2 # assert isinstance(bravado_core_config, dict) # assert isinstance(bravado_core_config['formats'], list) # # # # def test_bravado_config(get_bravado_config_setup): # gc3_config = get_bravado_config_setup # assert 'iaas_classic' in gc3_config # bravado_config = gc3_config.bravado_config # assert bravado_config # assert 'formats' in bravado_config # assert 'include_missing_properties' in bravado_config # assert 'also_return_response' in bravado_config # bravado_config_2 = gc3_config.bravado_config # assert bravado_config==bravado_config_2 # assert bravado_config is not bravado_config_2 # assert isinstance(bravado_config, dict) # assert isinstance(bravado_config['formats'], list) # @pytest.fixture() def get_constants_setup(): gc3_config = GC3Config() assert 'iaas_classic' in gc3_config yield (gc3_config) def test_open_api_catalog_dir(get_constants_setup): gc3_config = get_constants_setup open_api_catalog_dir = gc3_config.OPEN_API_CATALOG_DIR assert open_api_catalog_dir # def test_BRAVADO_CONFIG(get_constants_setup): # gc3_config = get_constants_setup # bravado_config = gc3_config.BRAVADO_CONFIG # assert bravado_config # assert 'formats' in bravado_config # assert 'include_missing_properties' in bravado_config # assert 'also_return_response' in bravado_config # assert isinstance(bravado_config, dict) # assert isinstance(bravado_config['formats'], list) # assert bravado_config['formats'] # formats = [f.format for f in bravado_config['formats']] # assert 'json-bool' in formats # assert all([isinstance(i , SwaggerFormat) for i in bravado_config['formats']])
1.914063
2
lab6/server/datapredict.py
zhiji95/iot
2
11182
<reponame>zhiji95/iot<filename>lab6/server/datapredict.py import machine from machine import * import ssd1306 import time import socket import urequests as requests import json word = {'body':8} labels = ['c', 'o', 'l', 'u', 'm', 'b', 'i', 'a','null'] HOST = '192.168.127.12' PORT = 8080 flag = 0 stop = False data = {} xdata = [] ydata = [] n = 0 def dp(d): if (d > 128): return d - 255 return d def do_connect(): import network wlan = network.WLAN(network.STA_IF) wlan.active(True) if not wlan.isconnected(): print('connecting to network...') wlan.connect(b'Columbia University') while not wlan.isconnected(): pass print('network config:', wlan.ifconfig()) do_connect() def http_post(url, d): r = requests.post(url, data=json.dumps(d)) return r.json() def sendData(): global label global xdata global ydata s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) l = { "label": 'a', "n": 0, "number": len(xdata), "content": { "data": { "x": xdata, "y": ydata } } } l = json.dumps(l).encode() s.sendall(l) data = s.recv(1024) data = json.loads(data.decode()) xdata, ydata = [], [] return data def switchAcallback(p): global flag time.sleep(0.1) if p.value() == 1: flag = 1 def switchCcallback(p): global stop if p.value() == 1: stop = True switchA = machine.Pin(0, machine.Pin.IN, machine.Pin.PULL_UP) switchA.irq(trigger=machine.Pin.IRQ_RISING, handler=switchAcallback) switchC = machine.Pin(2, machine.Pin.IN, machine.Pin.PULL_UP) switchC.irq(trigger=machine.Pin.IRQ_RISING, handler=switchCcallback) spi = machine.SPI(1, baudrate=2000000, polarity=1, phase=1) cs = machine.Pin(15, machine.Pin.OUT) cs.value(0) spi.write(b'\x2d') spi.write(b'\x2b') cs.value(1) cs.value(0) spi.write(b'\x31') spi.write(b'\x0f') cs.value(1) i2c = machine.I2C(-1, machine.Pin(5), machine.Pin(4)) oled = ssd1306.SSD1306_I2C(128, 32, i2c) while True: x = 0 y = 0 sendstatus = "null" if (flag): cs.value(0) test1 = spi.read(5, 0xf2) cs.value(1) cs.value(0) test2 = spi.read(5, 0xf3) cs.value(1) cs.value(0) test3 = spi.read(5, 0xf4) cs.value(1) cs.value(0) test4 = spi.read(5, 0xf5) cs.value(1) x = dp(test2[1]) y = dp(test4[1]) xdata.append(x) ydata.append(y) sendstatus = "collect" + str(len(xdata)) + ' '+ ' ' + str(x) + ' ' + str(y) if send: word = sendData() sendstatus = "send success" flag = 0 send = False oled.fill(0) oled.text(labels[word['body']], 0, 0) oled.text(sendstatus, 0,10) oled.show()
2.796875
3
Geometry/VeryForwardGeometry/python/dd4hep/geometryRPFromDD_2021_cfi.py
PKUfudawei/cmssw
2
11183
<gh_stars>1-10 from Geometry.VeryForwardGeometry.dd4hep.v5.geometryRPFromDD_2021_cfi import *
1.007813
1
examples/plots/warmup_schedule.py
shuoyangd/pytorch_warmup
170
11184
import argparse import matplotlib.pyplot as plt import torch from pytorch_warmup import * def get_rates(warmup_cls, beta2, max_step): rates = [] p = torch.nn.Parameter(torch.arange(10, dtype=torch.float32)) optimizer = torch.optim.Adam([{'params': p}], lr=1.0, betas=(0.9, beta2)) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 1.0) warmup_scheduler = warmup_cls(optimizer) for step in range(1, max_step+1): rates.append(optimizer.param_groups[0]['lr']) optimizer.zero_grad() optimizer.step() lr_scheduler.step() warmup_scheduler.dampen() return rates parser = argparse.ArgumentParser(description='Warmup schedule') parser.add_argument('--output', type=str, default='none', choices=['none', 'png', 'pdf'], help='Output file type (default: none)') args = parser.parse_args() beta2 = 0.999 max_step = 3000 plt.plot(range(1, max_step+1), get_rates(RAdamWarmup, beta2, max_step), label='RAdam') plt.plot(range(1, max_step+1), get_rates(UntunedExponentialWarmup, beta2, max_step), label='Untuned Exponential') plt.plot(range(1, max_step+1), get_rates(UntunedLinearWarmup, beta2, max_step), label='Untuned Linear') plt.legend() plt.title('Warmup Schedule') plt.xlabel('Iteration') plt.ylabel(r'Warmup factor $(\omega_t)$') if args.output == 'none': plt.show() else: plt.savefig(f'warmup_schedule.{args.output}')
2.53125
3
plugins/httpev.py
wohali/gizzy
3
11185
<reponame>wohali/gizzy """\ This plugin merely enables other plugins to accept data over HTTP. If a plugin defines a module level function named "httpev" it will be invoked for POST requests to the url http://$hostname/event/$pluginname. The function is invoked from the thread in the web.py request context and as such has access to the full web.py API. """ import base64 import json import web web.config.debug = False class Event(object): def POST(self, plugin): self.check_authorized() func = self.find_handler(plugin) try: func() except web.webapi.HTTPError: raise except: log.exception("Plugin '%s' broke handling HTTP event" % plugin) raise web.webapi.internalerror() def check_authorized(self): auth = web.ctx.env.get('HTTP_AUTHORIZATION') if auth is None: raise web.webapi.unauthorized() if not auth.startswith("Basic "): raise web.webapi.unauthorized() try: auth = auth.split(None, 1)[1] raw = base64.decodestring(auth) if tuple(raw.split(":", 1)) == config.httpev["auth"]: return except: raise web.webapi.badrequest("Invalid Authorization header") raise web.webapi.unauthorized() def find_handler(self, name): for p in plugin_manager.plugins: if p.name == name: func = p.data.get("httpev") if callable(func): return func raise web.webapi.notfound() class Server(threading.Thread): def __init__(self): super(Server, self).__init__() self.setDaemon(True) self.urls = ("/event/(.+)", "Event") self.app = web.application(self.urls, {"Event": Event}) self.addr = ('0.0.0.0', config.httpev["port"]) self.srv = web.httpserver.WSGIServer(self.addr, self.app.wsgifunc()) def stop(self): self.srv.stop() def run(self): self.srv.start() def load(): s = Server() s.start() return s def unload(s): s.stop()
2.421875
2
ex056.py
danilodelucio/Exercicios_Curso_em_Video
0
11186
somaIdade = 0 maiorIdade = 0 nomeVelho = '' totmulher20 = 0 for p in range(1, 3): print('---- {}ª PESSOA ----'.format(p)) nome = str(input('Nome: ')).strip() idade = int(input('Idade: ')) sexo = str(input('Sexo [M/F]: ')) somaIdade += idade if p == 1 and sexo in 'Mm': maiorIdade = idade nomeVelho = nome if sexo in 'Mm' and idade > maiorIdade: maiorIdade = idade nomeVelho = nome if sexo in 'Ff' and idade < 20: totmulher20 += 1 mediaIdade = int(somaIdade / 4) print('A média de idade do grupo de pessoas é de {} anos.'.format(mediaIdade)) print('O homem mais velho tem {} anos e se chama {}.'.format(maiorIdade, nomeVelho)) print('Ao todo são {} mulher com menos de 20 anos.'.format(totmulher20))
3.6875
4
python/promort.py
simleo/promort_pipeline
0
11187
"""\ PROMORT example. """ import argparse import random import sys import pyecvl.ecvl as ecvl import pyeddl.eddl as eddl from pyeddl.tensor import Tensor import models def VGG16(in_layer, num_classes): x = in_layer x = eddl.ReLu(eddl.Conv(x, 64, [3, 3])) x = eddl.MaxPool(eddl.ReLu(eddl.Conv(x, 64, [3, 3])), [2, 2], [2, 2]) x = eddl.ReLu(eddl.Conv(x, 128, [3, 3])) x = eddl.MaxPool(eddl.ReLu(eddl.Conv(x, 128, [3, 3])), [2, 2], [2, 2]) x = eddl.ReLu(eddl.Conv(x, 256, [3, 3])) x = eddl.ReLu(eddl.Conv(x, 256, [3, 3])) x = eddl.MaxPool(eddl.ReLu(eddl.Conv(x, 256, [3, 3])), [2, 2], [2, 2]) x = eddl.ReLu(eddl.Conv(x, 512, [3, 3])) x = eddl.ReLu(eddl.Conv(x, 512, [3, 3])) x = eddl.MaxPool(eddl.ReLu(eddl.Conv(x, 512, [3, 3])), [2, 2], [2, 2]) x = eddl.ReLu(eddl.Conv(x, 512, [3, 3])) x = eddl.ReLu(eddl.Conv(x, 512, [3, 3])) x = eddl.MaxPool(eddl.ReLu(eddl.Conv(x, 512, [3, 3])), [2, 2], [2, 2]) x = eddl.Reshape(x, [-1]) x = eddl.ReLu(eddl.Dense(x, 256)) x = eddl.Softmax(eddl.Dense(x, num_classes)) return x def main(args): num_classes = 2 size = [256, 256] # size of images in_ = eddl.Input([3, size[0], size[1]]) out = models.VGG16_promort(in_, num_classes) net = eddl.Model([in_], [out]) eddl.build( net, eddl.rmsprop(1e-6), #eddl.sgd(0.001, 0.9), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU([1], mem="low_mem") if args.gpu else eddl.CS_CPU() ) eddl.summary(net) eddl.setlogfile(net, "promort_VGG16_classification") training_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size) #ecvl.AugMirror(.5), #ecvl.AugFlip(.5), #ecvl.AugRotate([-180, 180]), #ecvl.AugAdditivePoissonNoise([0, 10]), #ecvl.AugGammaContrast([0.5, 1.5]), #ecvl.AugGaussianBlur([0, 0.8]), #ecvl.AugCoarseDropout([0, 0.3], [0.02, 0.05], 0.5) ]) validation_augs = ecvl.SequentialAugmentationContainer([ ecvl.AugResizeDim(size), ]) dataset_augs = ecvl.DatasetAugmentations( [training_augs, validation_augs, None] ) print("Reading dataset") #d = ecvl.DLDataset(args.in_ds, args.batch_size) d = ecvl.DLDataset(args.in_ds, args.batch_size, dataset_augs) x = Tensor([args.batch_size, d.n_channels_, size[0], size[1]]) y = Tensor([args.batch_size, len(d.classes_)]) num_samples_train = len(d.GetSplit()) num_batches_train = num_samples_train // args.batch_size d.SetSplit(ecvl.SplitType.validation) num_samples_val = len(d.GetSplit()) num_batches_val = num_samples_val // args.batch_size indices = list(range(args.batch_size)) metric = eddl.getMetric("categorical_accuracy") print("Starting training") ### Main loop across epochs for e in range(args.epochs): print("Epoch {:d}/{:d} - Training".format(e + 1, args.epochs), flush=True) if args.out_dir: current_path = os.path.join(args.out_dir, "Epoch_%d" % e) for c in d.classes_: c_dir = os.path.join(current_path, c) os.makedirs(c_dir, exist_ok=True) d.SetSplit(ecvl.SplitType.training) eddl.reset_loss(net) total_metric = [] s = d.GetSplit() random.shuffle(s) d.split_.training_ = s d.ResetAllBatches() ### Looping across batches of training data for b in range(num_batches_train): print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_train ), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) tx, ty = [x], [y] #print (tx[0].info()) eddl.train_batch(net, tx, ty, indices) #eddl.print_loss(net, b) instances = (b+1) * args.batch_size print ("loss = %.3f, acc = %.3f" % (net.fiterr[0]/instances, net.fiterr[1]/instances)) #print() print("Saving weights") eddl.save(net, "promort_checkpoint_%s.bin" % e, "bin") ### Evaluation on validation set print("Epoch %d/%d - Evaluation" % (e + 1, args.epochs), flush=True) d.SetSplit(ecvl.SplitType.validation) for b in range(num_batches_val): n = 0 print("Epoch {:d}/{:d} (batch {:d}/{:d}) - ".format( e + 1, args.epochs, b + 1, num_batches_val ), end="", flush=True) d.LoadBatch(x, y) x.div_(255.0) eddl.forward(net, [x]) output = eddl.getOutput(out) sum_ = 0.0 for k in range(args.batch_size): result = output.select([str(k)]) target = y.select([str(k)]) ca = metric.value(target, result) total_metric.append(ca) sum_ += ca if args.out_dir: result_a = np.array(result, copy=False) target_a = np.array(target, copy=False) classe = np.argmax(result_a).item() gt_class = np.argmax(target_a).item() single_image = x.select([str(k)]) img_t = ecvl.TensorToView(single_image) img_t.colortype_ = ecvl.ColorType.BGR single_image.mult_(255.) filename = d.samples_[d.GetSplit()[n]].location_[0] head, tail = os.path.splitext(os.path.basename(filename)) bname = "%s_gt_class_%s.png" % (head, gt_class) cur_path = os.path.join( current_path, d.classes_[classe], bname ) ecvl.ImWrite(cur_path, img_t) n += 1 print("categorical_accuracy:", sum_ / args.batch_size) total_avg = sum(total_metric) / len(total_metric) print("Total categorical accuracy:", total_avg) if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("in_ds", metavar="INPUT_DATASET") parser.add_argument("--epochs", type=int, metavar="INT", default=50) parser.add_argument("--batch-size", type=int, metavar="INT", default=32) parser.add_argument("--gpu", action="store_true") parser.add_argument("--out-dir", metavar="DIR", help="if set, save images in this directory") main(parser.parse_args())
2.4375
2
src/view/services_update_page.py
nbilbo/services_manager
0
11188
from src.view.services_page import ServicesPage from src.view.services_add_page import ServicesAddPage class ServicesUpdatePage(ServicesAddPage): def __init__(self, parent, *args, **kwargs): super().__init__(parent, *args, **kwargs) self.set_title("Update service") self.set_confirm_button_text("Update")
1.984375
2
Lib/site-packages/wagtail/utils/l18n/translation.py
SyahmiAmin/belikilo
0
11189
<filename>Lib/site-packages/wagtail/utils/l18n/translation.py<gh_stars>0 import os import gettext import bisect from locale import getdefaultlocale from collections.abc import MutableMapping from copy import copy, deepcopy import six class Trans: def __init__(self): self.registry = {} self.current = None self.set(getdefaultlocale()[0]) def __getitem__(self, language): if language: try: return self.registry[language] except KeyError: self.registry[language] = gettext.translation( 'l18n', os.path.join(os.path.dirname(__file__), 'locale'), languages=[language], fallback=True ) return self.registry[language] else: return None def set(self, language): self.current = self[language] def gettext(self, s): try: return self.current.gettext(s) except AttributeError: return s if six.PY2: def ugettext(self, s): try: return self.current.ugettext(s) except AttributeError: return s _trans = Trans() def set_language(language=None): _trans.set(language) if six.PY2: def translate(s, utf8=True, trans=_trans): if trans: if utf8: return trans.ugettext(s) return trans.gettext(s) else: return s else: def translate(s, utf8=True, trans=_trans): if trans: t = trans.gettext(s) if utf8: return t return t.encode() else: return s class L18NLazyObject: def _value(self, utf8=True): raise NotImplementedError def __str__(self): return self._value(utf8=six.PY3) def __bytes__(self): return self._value(utf8=False) def __unicode__(self): return self._value(utf8=True) class L18NLazyString(L18NLazyObject): def __init__(self, s): self._str = s def __copy__(self): return self.__class__(self._str) def __deepcopy__(self, memo): result = self.__copy__() memo[id(self)] = result return result def _value(self, utf8=True): return translate(self._str, utf8) def __repr__(self): return 'L18NLazyString <%s>' % repr(self._str) def __getattr__(self, name): # fallback to call the value's attribute in case it's not found in # L18NLazyString return getattr(self._value(), name) class L18NLazyStringsList(L18NLazyObject): def __init__(self, sep='/', *s): # we assume that the separator and the strings have the same encoding # (text_type) self._sep = sep self._strings = s def __copy__(self): return self.__class__(self._sep, *self._strings) def __deepcopy__(self, memo): result = self.__copy__() memo[id(self)] = result return result def _value(self, utf8=True): sep = self._sep if utf8 and isinstance(sep, six.binary_type): sep = sep.decode(encoding='utf-8') elif not utf8 and isinstance(sep, six.text_type): sep = sep.encode(encoding='utf-8') return sep.join([translate(s, utf8) for s in self._strings]) def __repr__(self): return 'L18NLazyStringsList <%s>' % self._sep.join([ repr(s) for s in self._strings ]) def __getattr__(self, name): # fallback to call the value's attribute in case it's not found in # L18NLazyStringsList return getattr(self._value(), name) class L18NBaseMap(MutableMapping): """ Generic dictionary that returns lazy string or lazy string lists """ def __init__(self, *args, **kwargs): self.store = dict(*args, **kwargs) self.sorted = {} def __copy__(self): result = self.__class__() result.store = self.store result.sorted = self.sorted return result def __deepcopy__(self, memo): result = self.__class__() memo[id(self)] = result result.store = deepcopy(self.store, memo) result.sorted = deepcopy(self.sorted, memo) return result def __getitem__(self, key): raise NotImplementedError def __setitem__(self, key, value): self.store[key] = value for locale, (keys, values) in six.iteritems(self.sorted): tr = translate(value, trans=_trans[locale]) i = bisect.bisect_left(values, tr) keys.insert(i, key) values.insert(i, tr) def __delitem__(self, key): del self.store[key] for keys, values in self.sorted.values(): i = keys.index(key) del keys[i] del values[i] def __iter__(self): loc = _trans.current._info['language'] if _trans.current else None try: return iter(self.sorted[loc][0]) except KeyError: keys = [] values = [] # we can't use iteritems here, as we need to call __getitem__ # via self[key] for key in iter(self.store): value = six.text_type(self[key]) i = bisect.bisect_left(values, value) keys.insert(i, key) values.insert(i, value) self.sorted[loc] = (keys, values) return iter(keys) def __len__(self): return len(self.store) def subset(self, keys): """ Generates a subset of the current map (e.g. to retrieve only tzs in common_timezones from the tz_cities or tz_fullnames maps) """ sub = self.__class__() self_keys = set(self.store.keys()) subset_keys = self_keys.intersection(keys) removed_keys = self_keys.difference(subset_keys) sub.store = {k: self.store[k] for k in subset_keys} for loc, sorted_items in six.iteritems(self.sorted): loc_keys = copy(self.sorted[loc][0]) loc_values = copy(self.sorted[loc][1]) for k in removed_keys: i = loc_keys.index(k) del loc_keys[i] del loc_values[i] sub.sorted[loc] = (loc_keys, loc_values) return sub class L18NMap(L18NBaseMap): def __getitem__(self, key): return L18NLazyString(self.store[key]) class L18NListMap(L18NBaseMap): def __init__(self, sep='/', aux=None, *args, **kwargs): self._sep = sep self._aux = aux super(L18NListMap, self).__init__(*args, **kwargs) def __copy__(self): result = super(L18NListMap, self).__copy__() result._sep = self._sep result._aux = self._aux return result def __deepcopy__(self, memo): result = super(L18NListMap, self).__deepcopy__(memo) result._sep = self._sep result._aux = None if self._aux is None else deepcopy(self._aux, memo) return result def __getitem__(self, key): strs = key.split(self._sep) strs[-1] = key lst = [] for s in strs: try: lst.append(self.store[s]) except KeyError: lst.append(self._aux[s]) return L18NLazyStringsList(self._sep, *lst) def subset(self, keys): sub = super(L18NListMap, self).subset(keys) sub._sep = self._sep sub._aux = deepcopy(self._aux) return sub
2.15625
2
playground/sockets/server.py
tunki/lang-training
0
11190
import socket s = socket.socket() s.bind(("localhost", 9999)) s.listen(1) sc, addr = s.accept() while True: recibido = sc.recv(1024) if recibido == "quit": break print "Recibido:", recibido sc.send(recibido) print "adios" sc.close() s.close()
2.890625
3
examples/example_contour.py
moghimis/geojsoncontour
63
11191
<filename>examples/example_contour.py import numpy import matplotlib.pyplot as plt import geojsoncontour # Create lat and lon vectors and grid data grid_size = 1.0 latrange = numpy.arange(-90.0, 90.0, grid_size) lonrange = numpy.arange(-180.0, 180.0, grid_size) X, Y = numpy.meshgrid(lonrange, latrange) Z = numpy.sqrt(X * X + Y * Y) n_contours = 10 levels = numpy.linspace(start=0, stop=100, num=n_contours) # Create a contour plot plot from grid (lat, lon) data figure = plt.figure() ax = figure.add_subplot(111) contour = ax.contour(lonrange, latrange, Z, levels=levels, cmap=plt.cm.jet) # Convert matplotlib contour to geojson geojsoncontour.contour_to_geojson( contour=contour, geojson_filepath='out.geojson', min_angle_deg=10.0, ndigits=3, unit='m' )
3.40625
3
Graphs/ConnectedComponents.py
PK-100/Competitive_Programming
70
11192
#!/bin/python3 import math import os import random import re import sys # # Complete the 'countGroups' function below. # # The function is expected to return an INTEGER. # The function accepts STRING_ARRAY related as parameter. # class Graph: def __init__(self, V): self.V = V self.adj = [[] for i in range(V)] def addEdge(self, a,b): self.adj[a].append(b) self.adj[b].append(a) def dfs_util(self, temp, node, visited): visited[node] = True temp.append(node) for i in self.adj[node]: if not visited[i]: temp = self.dfs_util(temp, i, visited) return temp def countGroups(self): """ This is the classical concept of connected components in a Graph """ visited = [False] * self.V groups = [] for node in range(self.V): if not visited[node]: temp = [] groups.append(self.dfs_util(temp, node, visited)) return groups def convertMatrixToGraph(mat): """ Accept the input which is an adjacency matrix and return a Graph, which is an adjacency list """ n = len(mat) g = Graph(n) for i in range(n): for j in range(n): if j > i and mat[i][j] == '1': g.addEdge(i,j) return g def countGroups(related): # Write your code here graph = convertMatrixToGraph(related) groups = graph.countGroups() # print(groups) return len(groups) if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') related_count = int(input().strip()) related = [] for _ in range(related_count): related_item = input() related.append(related_item) result = countGroups(related) fptr.write(str(result) + '\n') fptr.close()
4.03125
4
recognition/ml_model.py
hurschler/pig-face-recognition
1
11193
<reponame>hurschler/pig-face-recognition import logging.config import util.logger_init import numpy as np import tensorflow as tf from sklearn.metrics import confusion_matrix from util.tensorboard_util import plot_confusion_matrix, plot_to_image from tensorflow.python.keras.callbacks_v1 import TensorBoard from keras import backend as K class MlModel: def get_model(self): return self.model def summary_print(self): self.model.summary() # Define your scheduling function def scheduler(self, epoch): return 0.001 * 0.95 ** epoch def log_confusion_matrix(self, epoch, logs): # Use the model to predict the values from the test_images. test_pred_raw = self.model.predict(self.ml_data.x_test) test_pred = np.argmax(test_pred_raw, axis=1) # Calculate the confusion matrix using sklearn.metrics cm = confusion_matrix(self.ml_data.y_test, test_pred) figure = plot_confusion_matrix(cm, class_names=self.ml_data.pig_dict.values()) cm_image = plot_to_image(figure) # Log the confusion matrix as an image summary. with self.file_writer_cm.as_default(): tf.summary.image("Confusion Matrix", cm_image, step=epoch) # Define TensorBoard callback child class class LRTensorBoard(TensorBoard): def __init__(self, log_dir, **kwargs): # add other arguments to __init__ if you need super().__init__(log_dir=log_dir, **kwargs) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs.update({'lr': K.eval(self.model.optimizer.lr)}) super().on_epoch_end(epoch, logs)
2.734375
3
requests/UpdateSubscriptionRequest.py
divinorum-webb/python-tableau-api
1
11194
<gh_stars>1-10 from .BaseRequest import BaseRequest class UpdateSubscriptionRequest(BaseRequest): """ Update subscription request for generating API request URLs to Tableau Server. :param ts_connection: The Tableau Server connection object. :type ts_connection: class :param new_subscription_subject: (Optional) A new subject for the subscription. :type new_subscription_subject: string :param new_schedule_id: (Optional) The ID of a schedule to associate this subscription with. :type new_schedule_id: string """ def __init__(self, ts_connection, new_subscription_subject=None, new_schedule_id=None): super().__init__(ts_connection) self._new_subscription_subject = new_subscription_subject self._new_schedule_id = new_schedule_id @property def base_update_subscription_request(self): if self._new_subscription_subject and self._new_schedule_id: self._request_body.update({ 'subscription': { 'subject': self._new_subscription_subject, 'schedule': {'id': self._new_schedule_id} } }) elif self._new_subscription_subject and not self._new_schedule_id: self._request_body.update({ 'subscription': { 'subject': self._new_subscription_subject } }) else: self._request_body.update({ 'subscription': { 'schedule': {'id': self._new_schedule_id} } }) return self._request_body def get_request(self): return self.base_update_subscription_request
2.640625
3
doc/examples/cython/cython_main.py
hershg/ray
2
11195
<filename>doc/examples/cython/cython_main.py from __future__ import absolute_import from __future__ import division from __future__ import print_function import ray import click import inspect import numpy as np import cython_examples as cyth def run_func(func, *args, **kwargs): """Helper function for running examples""" ray.init() func = ray.remote(func) # NOTE: kwargs not allowed for now result = ray.get(func.remote(*args)) # Inspect the stack to get calling example caller = inspect.stack()[1][3] print("%s: %s" % (caller, str(result))) return result @click.group(context_settings={"help_option_names": ["-h", "--help"]}) def cli(): """Working with Cython actors and functions in Ray""" @cli.command() def example1(): """Cython def function""" run_func(cyth.simple_func, 1, 2, 3) @cli.command() def example2(): """Cython def function, recursive""" run_func(cyth.fib, 10) @cli.command() def example3(): """Cython def function, built-in typed parameter""" # NOTE: Cython will attempt to cast argument to correct type # NOTE: Floats will be cast to int, but string, for example will error run_func(cyth.fib_int, 10) @cli.command() def example4(): """Cython cpdef function""" run_func(cyth.fib_cpdef, 10) @cli.command() def example5(): """Cython wrapped cdef function""" # NOTE: cdef functions are not exposed to Python run_func(cyth.fib_cdef, 10) @cli.command() def example6(): """Cython simple class""" ray.init() cls = ray.remote(cyth.simple_class) a1 = cls.remote() a2 = cls.remote() result1 = ray.get(a1.increment.remote()) result2 = ray.get(a2.increment.remote()) print(result1, result2) @cli.command() def example7(): """Cython with function from BrainIAK (masked log)""" run_func(cyth.masked_log, np.array([-1.0, 0.0, 1.0, 2.0])) @cli.command() def example8(): """Cython with blas. NOTE: requires scipy""" # See cython_blas.pyx for argument documentation mat = np.array( [[[2.0, 2.0], [2.0, 2.0]], [[2.0, 2.0], [2.0, 2.0]]], dtype=np.float32) result = np.zeros((2, 2), np.float32, order="C") run_func(cyth.compute_kernel_matrix, "L", "T", 2, 2, 1.0, mat, 0, 2, 1.0, result, 2) if __name__ == "__main__": cli()
2.75
3
Simon/dev/main_age_classification.py
uncharted-distil/simon
0
11196
<gh_stars>0 from DataGenerator import * from Encoder import * import pandas as pd from keras.models import Model from keras.layers import Dense, Activation, Flatten, Input, Dropout, MaxPooling1D, Convolution1D from keras.layers import LSTM, Lambda, merge, Masking from keras.layers import Embedding, TimeDistributed from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD from keras.utils import np_utils import numpy as np import tensorflow as tf import re from keras import backend as K import keras.callbacks import sys import os import time import matplotlib.pyplot as plt import pickle def binarize(x, sz=71): return tf.to_float(tf.one_hot(x, sz, on_value=1, off_value=0, axis=-1)) def custom_multi_label_accuracy(y_true, y_pred): # need some threshold-specific rounding code here, presently only for 0.5 thresh. return K.mean(K.round(np.multiply(y_true,y_pred)),axis=0) def eval_binary_accuracy(y_test, y_pred): correct_indices = y_test==y_pred all_correct_predictions = np.zeros(y_test.shape) all_correct_predictions[correct_indices] = 1 #print("DEBUG::binary accuracy matrix") #print(all_correct_predictions) return np.mean(all_correct_predictions),np.mean(all_correct_predictions, axis=0),all_correct_predictions def eval_confusion(y_test, y_pred): wrong_indices = y_test!=y_pred all_wrong_predictions = np.zeros(y_test.shape) all_wrong_predictions[wrong_indices] = 1 #print("DEBUG::confusion matrix") #print(all_wrong_predictions) return np.mean(all_wrong_predictions),np.mean(all_wrong_predictions, axis=0),all_wrong_predictions def eval_false_positives(y_test, y_pred): false_positive_matrix = np.zeros((y_test.shape[1],y_test.shape[1])) false_positives = np.multiply(y_pred,1-y_test) # print(precision_matrix) for i in np.arange(y_test.shape[0]): for j in np.arange(y_test.shape[1]) : if(false_positives[i,j]==1): #positive label for ith sample and jth predicted category for k in np.arange(y_test.shape[1]): if(y_test[i,k]==1): #positive label for ith sample and kth true category # print("DEBUG::i,j,k") # print("%d,%d,%d"%(i,j,k)) false_positive_matrix[j,k] +=1 # print("DEBUG::precision matrix") # print(precision_matrix) return np.sum(false_positive_matrix),np.sum(false_positive_matrix, axis=0),false_positive_matrix def binarize_outshape(in_shape): return in_shape[0], in_shape[1], 71 def max_1d(x): return K.max(x, axis=1) def striphtml(html): p = re.compile(r'<.*?>') return p.sub('', html) def clean(s): return re.sub(r'[^\x00-\x7f]', r'', s) def setup_test_sets(X, y): ids = np.arange(len(X)) np.random.shuffle(ids) # shuffle X = X[ids] y = y[ids] train_end = int(X.shape[0] * .6) cross_validation_end = int(X.shape[0] * .3 + train_end) test_end = int(X.shape[0] * .1 + cross_validation_end) X_train = X[:train_end] X_cv_test = X[train_end:cross_validation_end] X_test = X[cross_validation_end:test_end] y_train = y[:train_end] y_cv_test = y[train_end:cross_validation_end] y_test = y[cross_validation_end:test_end] data = type('data_type', (object,), {'X_train' : X_train, 'X_cv_test': X_cv_test, 'X_test': X_test, 'y_train': y_train, 'y_cv_test': y_cv_test, 'y_test':y_test}) return data def generate_model(max_len, max_cells, category_count): filter_length = [1, 3, 3] nb_filter = [40, 200, 1000] pool_length = 2 # document input document = Input(shape=(max_cells, max_len), dtype='int64') # sentence input in_sentence = Input(shape=(max_len,), dtype='int64') # char indices to one hot matrix, 1D sequence to 2D embedded = Lambda(binarize, output_shape=binarize_outshape)(in_sentence) # embedded: encodes sentence for i in range(len(nb_filter)): embedded = Convolution1D(nb_filter=nb_filter[i], filter_length=filter_length[i], border_mode='valid', activation='relu', init='glorot_normal', subsample_length=1)(embedded) embedded = Dropout(0.1)(embedded) embedded = MaxPooling1D(pool_length=pool_length)(embedded) forward_sent = LSTM(256, return_sequences=False, dropout_W=0.2, dropout_U=0.2, consume_less='gpu')(embedded) backward_sent = LSTM(256, return_sequences=False, dropout_W=0.2, dropout_U=0.2, consume_less='gpu', go_backwards=True)(embedded) sent_encode = merge([forward_sent, backward_sent], mode='concat', concat_axis=-1) sent_encode = Dropout(0.3)(sent_encode) # sentence encoder encoder = Model(input=in_sentence, output=sent_encode) print(encoder.summary()) encoded = TimeDistributed(encoder)(document) # encoded: sentences to bi-lstm for document encoding forwards = LSTM(128, return_sequences=False, dropout_W=0.2, dropout_U=0.2, consume_less='gpu')(encoded) backwards = LSTM(128, return_sequences=False, dropout_W=0.2, dropout_U=0.2, consume_less='gpu', go_backwards=True)(encoded) merged = merge([forwards, backwards], mode='concat', concat_axis=-1) output = Dropout(0.3)(merged) output = Dense(128, activation='relu')(output) output = Dropout(0.3)(output) output = Dense(category_count, activation='softmax')(output) # output = Activation('softmax')(output) model = Model(input=document, output=output) return model # record history of training class LossHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.losses = [] self.accuracies = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) self.accuracies.append(logs.get('binary_accuracy')) def plot_loss(history): # summarize history for accuracy plt.subplot('121') plt.plot(history.history['binary_accuracy']) plt.plot(history.history['val_binary_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') # summarize history for loss plt.subplot('122') plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() def train_model(batch_size, checkpoint_dir, model, nb_epoch, data): print("starting learning") check_cb = keras.callbacks.ModelCheckpoint(checkpoint_dir + "text-class" + '.{epoch:02d}-{val_loss:.2f}.hdf5', monitor='val_loss', verbose=0, save_best_only=True, mode='min') earlystop_cb = keras.callbacks.EarlyStopping(monitor='val_loss', patience=7, verbose=1, mode='auto') tbCallBack = keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None) loss_history = LossHistory() history = model.fit(data.X_train, data.y_train, validation_data=(data.X_cv_test, data.y_cv_test), batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, callbacks=[earlystop_cb, check_cb, loss_history, tbCallBack]) print('losses: ') print(history.history['loss']) print('accuracies: ') # print(history.history['acc']) print(history.history['val_binary_accuracy']) plot_loss(history) def evaluate_model(max_cells, model, data, encoder, p_threshold): print("Starting predictions:") start = time.time() scores = model.evaluate(data.X_test, data.y_test, verbose=0) end = time.time() print("Accuracy: %.2f%% \n Time: {0}s \n Time/example : {1}s/ex".format( end - start, (end - start) / data.X_test.shape[0]) % (scores[1] * 100)) # return all predictions above a certain threshold # first, the maximum probability/class probabilities = model.predict(data.X_test, verbose=1) # print("The prediction probabilities are:") # print(probabilities) m = np.amax(probabilities, axis=1) max_index = np.argmax(probabilities, axis=1) # print("Associated fixed category indices:") # print(max_index) with open('Categories.txt','r') as f: Categories = f.read().splitlines() print("Remember that the fixed categories are:") print(Categories) print("Most Likely Predicted Category/Labels are: ") print((np.array(Categories))[max_index]) print("Associated max probabilities/confidences:") print(m) # next, all probabilities above a certain threshold print("DEBUG::y_test:") print(data.y_test) prediction_indices = probabilities > p_threshold y_pred = np.zeros(data.y_test.shape) y_pred[prediction_indices] = 1 print("DEBUG::y_pred:") print(y_pred) print("'Binary' accuracy (true positives + true negatives) is:") print(eval_binary_accuracy(data.y_test,y_pred)) print("'Binary' confusion (false positives + false negatives) is:") print(eval_confusion(data.y_test,y_pred)) print("False positive matrix is:") print(eval_false_positives(data.y_test,y_pred)) def main(checkpoint, data_count, data_cols, should_train, nb_epoch, null_pct, try_reuse_data, batch_size, execution_config): maxlen = 280 max_cells = 1 p_threshold = 0.5 checkpoint_dir = "checkpoints/age_classification/" if not os.path.isdir(checkpoint_dir): os.makedirs(checkpoint_dir) # read test data dataset_name = "training_age" print("Beginning Age Classifier Training...") raw_data = pd.read_csv('data/age_classification/'+dataset_name+'.csv', dtype='str', header=0, skip_blank_lines=True) #print(raw_data) print(raw_data.shape) raw_data_low = raw_data.ix[raw_data['label']=='14_17',0] raw_data_medium = raw_data.ix[raw_data['label']=='18_23',0] raw_data_high = raw_data.ix[raw_data['label']=='24_plus',0] print(raw_data_low.shape) print(raw_data_medium.shape) print(raw_data_high.shape) raw_data = np.asarray(raw_data_low)[np.newaxis] print(raw_data) print(raw_data.shape) header = [['14_17'],]*raw_data_low.shape[0] raw_data = np.column_stack((raw_data,np.asarray(raw_data_medium)[np.newaxis])) header.extend([['18_23'],]*raw_data_medium.shape[0]) raw_data = np.column_stack((raw_data,np.asarray(raw_data_high)[np.newaxis])) header.extend([['24_plus'],]*raw_data_high.shape[0]) print("Final raw_data size is:") print(raw_data.shape) print("Corresponding header length is:") print(len(header)) #print(header) # transpose the data raw_data = np.char.lower(np.transpose(raw_data).astype('U')) # do other processing and encode the data config = {} if not should_train: if execution_config is None: raise TypeError config = load_config(execution_config, checkpoint_dir) encoder = config['encoder'] if checkpoint is None: checkpoint = config['checkpoint'] else: encoder = Encoder() encoder.process(raw_data, max_cells) # encode the data X, y = encoder.encode_data(raw_data, header, maxlen) max_cells = encoder.cur_max_cells data = None if should_train: data = setup_test_sets(X, y) else: data = type('data_type', (object,), {'X_test': X, 'y_test':y}) print('Sample chars in X:{}'.format(X[2, 0:10])) print('y:{}'.format(y[2])) # need to know number of fixed categories to create model category_count = y.shape[1] print('Number of fixed categories is :') print(category_count) model = generate_model(maxlen, max_cells, category_count) load_weights(checkpoint, config, model, checkpoint_dir) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['binary_accuracy']) if(should_train): start = time.time() train_model(batch_size, checkpoint_dir, model, nb_epoch, data) end = time.time() print("Time for training is %f sec"%(end-start)) config = { 'encoder' : encoder, 'checkpoint' : get_best_checkpoint(checkpoint_dir) } save_config(config, checkpoint_dir) #print("DEBUG::The actual headers are:") #print(header) evaluate_model(max_cells, model, data, encoder, p_threshold) # Now, label unlabeled tweets dataset_name = "jordans_collection2" print("Beginning Age Classifier Labeling...") raw_data = pd.read_csv('data/age_classification/'+dataset_name+'.csv', dtype='str', header=0, skip_blank_lines=True,lineterminator='\n') raw_data = raw_data.ix[:,2] raw_data = np.asarray(raw_data)[np.newaxis] print(raw_data.shape) raw_data = np.char.lower(np.transpose(raw_data).astype('U')) X, y = encoder.encode_data(raw_data, [['14_17'],]*raw_data.shape[0], maxlen) data = type('data_type', (object,), {'X_test': X, 'y_test':y}) probabilities = model.predict(data.X_test, verbose=1) print(encoder.reverse_label_encode(probabilities,p_threshold)) def resolve_file_path(filename, dir): if os.path.isfile(str(filename)): return str(filename) elif os.path.isfile(str(dir + str(filename))): return dir + str(filename) def load_weights(checkpoint_name, config, model, checkpoint_dir): if config and not checkpoint_name: checkpoint_name = config['checkpoint'] if checkpoint_name: checkpoint_path = resolve_file_path(checkpoint_name, checkpoint_dir) print("Checkpoint : %s" % str(checkpoint_path)) model.load_weights(checkpoint_path) def save_config(execution_config, checkpoint_dir): filename = "" if not execution_config["checkpoint"] is None: filename = execution_config["checkpoint"].rsplit( ".", 1 )[ 0 ] + ".pkl" else: filename = time.strftime("%Y%m%d-%H%M%S") + ".pkl" with open(checkpoint_dir + filename, 'wb') as output: pickle.dump(execution_config, output, pickle.HIGHEST_PROTOCOL) def load_config(execution_config_path, dir): execution_config_path = resolve_file_path(execution_config_path, dir) return pickle.load( open( execution_config_path, "rb" ) ) def get_best_checkpoint(checkpoint_dir): max_mtime = 0 max_file = '' for dirname,subdirs,files in os.walk(checkpoint_dir): for fname in files: full_path = os.path.join(dirname, fname) mtime = os.stat(full_path).st_mtime if mtime > max_mtime: max_mtime = mtime max_dir = dirname max_file = fname return max_file if __name__ == '__main__': import argparse parser = argparse.ArgumentParser( description='attempts to discern data types looking at columns holistically.') parser.add_argument('--cp', dest='checkpoint', help='checkpoint to load') parser.add_argument('--config', dest='execution_config', help='execution configuration to load. contains max_cells, and encoder config.') parser.add_argument('--train', dest='should_train', action="store_true", default="True", help='run training') parser.add_argument('--no_train', dest='should_train', action="store_false", default="True", help='do not run training') parser.set_defaults(should_train=True) parser.add_argument('--data_count', dest='data_count', action="store", type=int, default=100, help='number of data rows to create') parser.add_argument('--data_cols', dest='data_cols', action="store", type=int, default=10, help='number of data cols to create') parser.add_argument('--nullpct', dest='null_pct', action="store", type=float, default=0, help='percent of Nulls to put in each column') parser.add_argument('--nb_epoch', dest='nb_epoch', action="store", type=int, default=5, help='number of epochs') parser.add_argument('--try_reuse_data', dest='try_reuse_data', action="store_true", default="True", help='loads existing data if the dimensions have been stored') parser.add_argument('--force_new_data', dest='try_reuse_data', action="store_false", default="True", help='forces the creation of new data, even if the dimensions have been stored') parser.add_argument('--batch_size', dest='batch_size', action="store", type=int, default=64, help='batch size for training') args = parser.parse_args() main(args.checkpoint, args.data_count, args.data_cols, args.should_train, args.nb_epoch, args.null_pct, args.try_reuse_data, args.batch_size, args.execution_config)
2.46875
2
desdeo_tools/solver/__init__.py
phoopies/desdeo-tools
1
11197
"""This module implements methods for solving scalar valued functions. """ __all__ = ["DiscreteMinimizer", "ScalarMethod", "ScalarMinimizer", "ScalarSolverException"] from desdeo_tools.solver.ScalarSolver import DiscreteMinimizer, ScalarMethod, ScalarMinimizer, ScalarSolverException
1.570313
2
tests/test_root_to_hdf.py
lundeenj/hawc_hal
0
11198
from hawc_hal.maptree.map_tree import map_tree_factory from hawc_hal.response import hawc_response_factory import os from conftest import check_map_trees, check_responses def test_root_to_hdf_response(response): r = hawc_response_factory(response) test_filename = "response.hd5" # Make sure it doesn't exist yet, if it does,remove it if os.path.exists(test_filename): os.remove(test_filename) r.write(test_filename) # Try to open and use it r2 = hawc_response_factory(test_filename) check_responses(r, r2) os.remove(test_filename) def do_one_test_maptree(geminga_roi, geminga_maptree, fullsky=False): # Test both with a defined ROI and full sky (ROI is None) if fullsky: roi_ = None else: roi_ = geminga_roi m = map_tree_factory(geminga_maptree, roi_) test_filename = "maptree.hd5" # Make sure it doesn't exist yet, if it does,remove it if os.path.exists(test_filename): os.remove(test_filename) m.write(test_filename) # Try to open and use it m2 = map_tree_factory(test_filename, roi_) check_map_trees(m, m2) os.remove(test_filename) def test_root_to_hdf_maptree_roi(geminga_roi, geminga_maptree): do_one_test_maptree(geminga_roi, geminga_maptree, fullsky=False) def test_root_to_hdf_maptree_full_sky(geminga_roi, geminga_maptree): do_one_test_maptree(geminga_roi, geminga_maptree, fullsky=True)
2.3125
2
clickhouse_driver/compression/zstd.py
risicle/clickhouse-driver
17
11199
from __future__ import absolute_import from io import BytesIO import zstd from .base import BaseCompressor, BaseDecompressor from ..protocol import CompressionMethod, CompressionMethodByte from ..reader import read_binary_uint32 from ..writer import write_binary_uint32, write_binary_uint8 class Compressor(BaseCompressor): method = CompressionMethod.ZSTD method_byte = CompressionMethodByte.ZSTD def get_compressed_data(self, extra_header_size): rv = BytesIO() data = self.get_value() compressed = zstd.compress(data) header_size = extra_header_size + 4 + 4 # sizes write_binary_uint32(header_size + len(compressed), rv) write_binary_uint32(len(data), rv) rv.write(compressed) return rv.getvalue() class Decompressor(BaseDecompressor): method = CompressionMethod.ZSTD method_byte = CompressionMethodByte.ZSTD def get_decompressed_data(self, method_byte, compressed_hash, extra_header_size): size_with_header = read_binary_uint32(self.stream) compressed_size = size_with_header - extra_header_size - 4 compressed = BytesIO(self.stream.read(compressed_size)) block_check = BytesIO() write_binary_uint8(method_byte, block_check) write_binary_uint32(size_with_header, block_check) block_check.write(compressed.getvalue()) self.check_hash(block_check.getvalue(), compressed_hash) compressed = compressed.read(compressed_size - 4) return zstd.decompress(compressed)
2.484375
2