max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
configs/efficientnet/retinanet_effb3_fpn_crop896_8x4_1x_coco.py
chenxinfeng4/mmdetection
6
11300
<filename>configs/efficientnet/retinanet_effb3_fpn_crop896_8x4_1x_coco.py _base_ = [ '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/coco_detection.py', '../_base_/default_runtime.py' ] cudnn_benchmark = True norm_cfg = dict(type='BN', requires_grad=True) checkpoint = 'https://download.openmmlab.com/mmclassification/v0/efficientnet/efficientnet-b3_3rdparty_8xb32-aa_in1k_20220119-5b4887a0.pth' # noqa model = dict( backbone=dict( _delete_=True, type='EfficientNet', arch='b3', drop_path_rate=0.2, out_indices=(3, 4, 5), frozen_stages=0, norm_cfg=dict( type='SyncBN', requires_grad=True, eps=1e-3, momentum=0.01), norm_eval=False, init_cfg=dict( type='Pretrained', prefix='backbone', checkpoint=checkpoint)), neck=dict( in_channels=[48, 136, 384], start_level=0, out_channels=256, relu_before_extra_convs=True, no_norm_on_lateral=True, norm_cfg=norm_cfg), bbox_head=dict(type='RetinaSepBNHead', num_ins=5, norm_cfg=norm_cfg), # training and testing settings train_cfg=dict(assigner=dict(neg_iou_thr=0.5))) # dataset settings img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_size = (896, 896) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=img_size, ratio_range=(0.8, 1.2), keep_ratio=True), dict(type='RandomCrop', crop_size=img_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=img_size, flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=img_size), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) # optimizer optimizer_config = dict(grad_clip=None) optimizer = dict( type='SGD', lr=0.04, momentum=0.9, weight_decay=0.0001, paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True)) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=1000, warmup_ratio=0.1, step=[8, 11]) # runtime settings runner = dict(type='EpochBasedRunner', max_epochs=12) # NOTE: This variable is for automatically scaling LR, # USER SHOULD NOT CHANGE THIS VALUE. default_batch_size = 32 # (8 GPUs) x (4 samples per GPU)
1.382813
1
tests/test_model.py
Sebastiencreoff/mongo_tool
0
11301
<gh_stars>0 #!/usr/bin/env python import datetime import mock import mom class ExampleClass(mom.Model): JSON_SCHEMA = { '$schema': 'http://json-schema.org/schema#', 'title': 'Test class for JSON', 'type': 'object', 'properties': { 'value_datetime': {'type': ['datetime', 'null']}, 'value_int': {'type': ['number', 'null']}, 'value_str': {'type': ['string', 'null']}} } EXCLUDED_KEYS = set('to_dict') def __init__(self, data=None, value_int=None): self.value_datetime = None self.value_int = value_int self.value_str = None super().__init__(data=data) def to_dict(self): result = super().to_dict() result.update({ 'value_datetime': self.value_datetime, 'value_int': self.value_int, 'value_str': self.value_str}) return result @mom.Model.with_update def updates(self, value_datetime, value_str): print('save_buy function') self.value_datetime = value_datetime self.value_str = value_str def test_init(): mom.Model.session = mock.MagicMock() # Test without data obj = ExampleClass() assert mom.Model.session.add.call_count == 1 assert mom.Model.session.update.call_count == 0 assert not obj.read_only assert obj.id() # Test with data mom.Model.session.reset_mock() obj2 = ExampleClass(data=obj.to_dict()) assert mom.Model.session.add.call_count == 0 assert mom.Model.session.update.call_count == 0 assert obj2.read_only assert obj2.id() == obj.id() def test_single_attr(): mom.Model.session = mock.MagicMock() obj = ExampleClass() mom.Model.session.reset_mock() # Update one parameter. obj.value_datetime = datetime.datetime.now() assert mom.Model.session.add.call_count == 0 assert mom.Model.session.update.call_count == 1 def test_method(): mom.Model.session = mock.MagicMock() obj = ExampleClass() mom.Model.session.reset_mock() # Update parameters with function. obj.updates(value_datetime=datetime.datetime.now(), value_str='value') assert mom.Model.session.add.call_count == 0 assert mom.Model.session.update.call_count == 1
2.5
2
src/koeda/utils/stopwords.py
toriving/KoEDA
48
11302
import os import json STOPWORDS_JSON_PATH = os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir, "corpora/stopwords.json" ) with open(STOPWORDS_JSON_PATH, "r", encoding="utf-8") as f: STOPWORD = json.load(f)["stopwords"]
2.3125
2
glue/core/tests/test_message.py
ejeschke/glue
3
11303
<reponame>ejeschke/glue from __future__ import absolute_import, division, print_function import pytest from .. import message as msg def test_invalid_subset_msg(): with pytest.raises(TypeError) as exc: msg.SubsetMessage(None) assert exc.value.args[0].startswith('Sender must be a subset') def test_invalid_data_msg(): with pytest.raises(TypeError) as exc: msg.DataMessage(None) assert exc.value.args[0].startswith('Sender must be a data') def test_invalid_data_collection_msg(): with pytest.raises(TypeError) as exc: msg.DataCollectionMessage(None) assert exc.value.args[0].startswith('Sender must be a DataCollection')
2.109375
2
fabfile/config.py
kurochan/config-collector
1
11304
<gh_stars>1-10 # -*- coding: utf-8 -*- import os import util from fabric.api import * from fabric.state import output from fabric.colors import * from base import BaseTask from helper.print_helper import task_puts class CollectConfig(BaseTask): """ collect configuration """ name = "collect" def run_task(self, *args, **kwargs): host_config = env.inventory.get_variables(env.host) hostname = host_config['ssh_host'] if not util.tcping(hostname, 22, 1): task_puts("host {0} does not exist. skip...".format(hostname)) return config = self.get_config(hostname, host_config['ssh_user'], host_config['ssh_pass'], host_config['exec_pass'], host_config['type']) self.write_config(env.host, config) # print config def get_config(self, hostname, ssh_user, ssh_pass, exec_pass, os_type): script_name = "dump-config-cisco-{0}.sh".format(os_type) config = local(os.path.dirname(os.path.abspath(__file__)) + "/../bin/{0} {1} {2} {3}".format(script_name, ssh_user, hostname, ssh_pass), capture = True) return config def write_config(self, hostname, config): output_dir = os.path.dirname(os.path.abspath(__file__)) + "/../tmp/config" local("mkdir -p {0}".format(output_dir)) file = open("{0}/{1}.txt".format(output_dir, hostname), 'w') file.write(str(config)) file.close() collect = CollectConfig()
2.203125
2
python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py
LWhite027/PaddleBox
10
11305
<filename>python/paddle/fluid/tests/unittests/ir/inference/test_trt_transpose_flatten_concat_fuse_pass.py # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.core import AnalysisConfig class TransposeFlattenConcatFusePassTRTTest(InferencePassTest): def setUp(self): with fluid.program_guard(self.main_program, self.startup_program): data1 = fluid.data( name="data1", shape=[8, 32, 128], dtype="float32") data2 = fluid.data( name="data2", shape=[8, 32, 128], dtype="float32") trans1 = fluid.layers.transpose(data1, perm=[2, 1, 0]) trans2 = fluid.layers.transpose(data2, perm=[2, 1, 0]) flatt1 = fluid.layers.flatten(trans1) flatt2 = fluid.layers.flatten(trans2) concat_out = fluid.layers.concat([flatt1, flatt2]) # There is no parameters for above structure. # Hence, append a batch_norm to avoid failure caused by load_combined. out = fluid.layers.batch_norm(concat_out, is_test=True) self.feeds = { "data1": np.random.random([8, 32, 128]).astype("float32"), "data2": np.random.random([8, 32, 128]).astype("float32") } self.enable_trt = True self.trt_parameters = TransposeFlattenConcatFusePassTRTTest.TensorRTParam( 1 << 20, 8, 3, AnalysisConfig.Precision.Float32, False, False) self.fetch_list = [out] def test_check_output(self): # There is no cpu pass for transpose_flatten_concat_fuse if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) if __name__ == "__main__": unittest.main()
2.265625
2
src/stage_02_base_model_creation.py
TUCchkul/Dog-Cat-Classification-with-MLflow
0
11306
import argparse import os import shutil from tqdm import tqdm import logging from src.utils.common import read_yaml, create_directories import random from src.utils.model import log_model_summary import tensorflow as tf STAGE= "Base Model Creation" logging.basicConfig( filename=os.path.join("logs",'running_logs.log'), level=logging.INFO, format="[%(asctime)s: %(levelname)s: %(module)s]: %(message)s", filemode="a") def main(config_path): config=read_yaml(config_path) params=config["params"] logging.info("Layer Defined") LAYERS=[ tf.keras.layers.Input(shape=tuple(params["img_shape"])), tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation="relu"), tf.keras.layers.MaxPool2D(pool_size=(2,2)), tf.keras.layers.Conv2D(32,(3,3), activation="relu"), tf.keras.layers.MaxPool2D(pool_size=(2,2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(8, activation="relu"), tf.keras.layers.Dense(2, activation="softmax") ] classifier=tf.keras.Sequential(LAYERS) logging.info(f"Base Model Summary:\n{log_model_summary(classifier)}") classifier.compile(optimizer=tf.keras.optimizers.Adam(params["lr"]), loss=params["loss"], metrics=params["metrics"] ) path_to_model_dir=os.path.join(config["data"]["local_dir"], config["data"]["model_dir"] ) create_directories([path_to_model_dir]) path_to_model=os.path.join(path_to_model_dir, config["data"]["init_model_file"]) classifier.save(path_to_model) logging.info(f"model is save at : {path_to_model}") if __name__=="__main__": args=argparse.ArgumentParser() args.add_argument("--config", "-c", default="configs/config.yaml") parsed_args=args.parse_args() try: logging.info("\n*********************") logging.info(f">>>>>>>stage {STAGE} started <<<<<<<") main(config_path=parsed_args.config) logging.info(f">>>>>>>> stage {STAGE} completed! <<<<<<<<\n") except Exception as e: logging.exception(e) raise e
2.140625
2
test_calculator.py
Kidatoy/Advanced-Calculator
0
11307
<reponame>Kidatoy/Advanced-Calculator import unittest # https://docs.python.org/3/library/unittest.html from modules.calculator import Calculator as Calc class TestCalculator(unittest.TestCase): """ Test Driven Development Unittest File Module: Calculator Updated: 12/16/2019 Author: <NAME> """ def test_addition(self): """ Evaluate addition corner cases """ self.assertEqual(2, Calc().eval('1+1')) self.assertEqual(2, Calc().eval('1.0+1.0')) self.assertEqual(0, Calc().eval('-1+1')) self.assertEqual(-2, Calc().eval('-1+-1')) def test_subtraction(self): """ Evaluate subtraction corner cases """ self.assertEqual(0, Calc().eval('1-1')) self.assertEqual(-2, Calc().eval('-1-1')) self.assertEqual(0, Calc().eval('-1--1')) def test_multiplication(self): """ Evaluate multiplication corner cases """ self.assertEqual(0, Calc().eval('1*0')) self.assertEqual(0, Calc().eval('0*-1')) self.assertEqual(1, Calc().eval('1*1')) self.assertEqual(-1, Calc().eval('-1*1')) self.assertEqual(1, Calc().eval('-1*-1')) self.assertEqual(1, Calc().eval('.25*4')) def test_division(self): """ Test division corner cases Note: division by zero is handled in test_exceptions """ self.assertEqual(1, Calc().eval('1/1')) self.assertEqual(.25, Calc().eval('1/4')) self.assertEqual(-1, Calc().eval('-1/1')) self.assertEqual(1, Calc().eval('-1/-1')) self.assertEqual(0, Calc().eval('0/-1')) def test_exponents(self): """ Test exponent corner cases """ self.assertEqual(1, Calc().eval('2^0')) self.assertEqual(2, Calc().eval('2^1')) self.assertEqual(4, Calc().eval('2^2')) self.assertEqual(.5, Calc().eval('2^-1')) self.assertEqual(4, Calc().eval('-2^2')) def test_parentheses(self): """ Test parentheses corner cases """ self.assertEqual(5.0, Calc().eval('(4.0)+1')) self.assertEqual(3.0, Calc().eval('(4+1)-2')) self.assertEqual(5.0, Calc().eval('(5+-5)+5')) self.assertEqual(-5.0, Calc().eval('(-10+3)+2')) self.assertEqual(-26.0, Calc().eval('10-(3*2)^2')) def test_pi(self): """ Test pi corner cases """ self.assertEqual(4.1415926535, Calc().eval('(pi)+1')) self.assertEqual(1.1415926535, Calc().eval('(pi)-2')) self.assertEqual(3.1415926535, Calc().eval('(pi+-5)+5')) self.assertEqual(1.8584073465, Calc().eval('(-pi+3)+2')) self.assertEqual(-29.478417602100684, Calc().eval('10-(pi*2)^2')) self.assertEqual(1.57079632675, Calc().eval('pi/2')) def test_e(self): """ Test e corner cases """ self.assertEqual(3.7182818284, Calc().eval('(e)+1')) self.assertEqual(0.7182818283999999, Calc().eval('(e)-2')) self.assertEqual(2.7182818284, Calc().eval('(e+-5)+5')) self.assertEqual(2.2817181716, Calc().eval('(-e+3)+2')) self.assertEqual(-19.556224394438587, Calc().eval('10-(e*2)^2')) self.assertEqual(1.3591409142, Calc().eval('e/2')) def test_phi(self): """ Test phi corner cases """ self.assertEqual(2.6180339886999997, Calc().eval('(phi)+1')) self.assertEqual(-0.3819660113000001, Calc().eval('(phi)-2')) self.assertEqual(1.6180339886999997, Calc().eval('(phi+-5)+5')) self.assertEqual(3.3819660113000003, Calc().eval('(-phi+3)+2')) self.assertEqual(-0.47213595435372646, Calc().eval('10-(phi*2)^2')) self.assertEqual(0.80901699435, Calc().eval('phi/2'))
3.859375
4
pddf_psuutil/main.py
deran1980/sonic-utilities
0
11308
<reponame>deran1980/sonic-utilities #!/usr/bin/env python3 # # main.py # # Command-line utility for interacting with PSU Controller in PDDF mode in SONiC # try: import sys import os import click from tabulate import tabulate from utilities_common.util_base import UtilHelper except ImportError as e: raise ImportError("%s - required module not found" % str(e)) VERSION = '2.0' SYSLOG_IDENTIFIER = "psuutil" PLATFORM_SPECIFIC_MODULE_NAME = "psuutil" PLATFORM_SPECIFIC_CLASS_NAME = "PsuUtil" # Global platform-specific psuutil class instance platform_psuutil = None platform_chassis = None # Wrapper APIs so that this util is suited to both 1.0 and 2.0 platform APIs def _wrapper_get_num_psus(): if platform_chassis is not None: try: return platform_chassis.get_num_psus() except NotImplementedError: pass return platform_psuutil.get_num_psus() def _wrapper_get_psu_name(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_name() except NotImplementedError: pass return "PSU {}".format(idx) def _wrapper_get_psu_presence(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_presence() except NotImplementedError: pass return platform_psuutil.get_psu_presence(idx) def _wrapper_get_psu_status(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_status() except NotImplementedError: pass return platform_psuutil.get_psu_status(idx) def _wrapper_get_psu_model(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_model() except NotImplementedError: pass return platform_psuutil.get_model(idx) def _wrapper_get_psu_mfr_id(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_mfr_id() except NotImplementedError: pass return platform_psuutil.get_mfr_id(idx) def _wrapper_get_psu_serial(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_serial() except NotImplementedError: pass return platform_psuutil.get_serial(idx) def _wrapper_get_psu_direction(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1)._fan_list[0].get_direction() except NotImplementedError: pass return platform_psuutil.get_direction(idx) def _wrapper_get_output_voltage(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_voltage() except NotImplementedError: pass return platform_psuutil.get_output_voltage(idx) def _wrapper_get_output_current(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_current() except NotImplementedError: pass return platform_psuutil.get_output_current(idx) def _wrapper_get_output_power(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1).get_power() except NotImplementedError: pass return platform_psuutil.get_output_power(idx) def _wrapper_get_fan_rpm(idx, fan_idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx-1)._fan_list[fan_idx-1].get_speed_rpm() except NotImplementedError: pass return platform_psuutil.get_fan_rpm(idx, fan_idx) def _wrapper_dump_sysfs(idx): if platform_chassis is not None: try: return platform_chassis.get_psu(idx).dump_sysfs() except NotImplementedError: pass return platform_psuutil.dump_sysfs() # ==================== CLI commands and groups ==================== # This is our main entrypoint - the main 'psuutil' command @click.group() def cli(): """psuutil - Command line utility for providing PSU status""" global platform_psuutil global platform_chassis if os.geteuid() != 0: click.echo("Root privileges are required for this operation") sys.exit(1) # Load the helper class helper = UtilHelper() if not helper.check_pddf_mode(): click.echo("PDDF mode should be supported and enabled for this platform for this operation") sys.exit(1) # Load new platform api class try: import sonic_platform.platform platform_chassis = sonic_platform.platform.Platform().get_chassis() except Exception as e: click.echo("Failed to load chassis due to {}".format(str(e))) # Load platform-specific psuutil class if 2.0 implementation is not present if platform_chassis is None: try: platform_psuutil = helper.load_platform_util(PLATFORM_SPECIFIC_MODULE_NAME, PLATFORM_SPECIFIC_CLASS_NAME) except Exception as e: click.echo("Failed to load {}: {}".format(PLATFORM_SPECIFIC_MODULE_NAME, str(e))) sys.exit(2) # 'version' subcommand @cli.command() def version(): """Display version info""" click.echo("PDDF psuutil version {0}".format(VERSION)) # 'numpsus' subcommand @cli.command() def numpsus(): """Display number of supported PSUs on device""" click.echo(_wrapper_get_num_psus()) # 'status' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="the index of PSU") def status(index): """Display PSU status""" supported_psu = list(range(1, _wrapper_get_num_psus() + 1)) psu_ids = [] if (index < 0): psu_ids = supported_psu else: psu_ids = [index] header = ['PSU', 'Status'] status_table = [] for psu in psu_ids: msg = "" psu_name = _wrapper_get_psu_name(psu) if psu not in supported_psu: click.echo("Error! The {} is not available on the platform.\n" \ "Number of supported PSU - {}.".format(psu_name, len(supported_psu))) continue presence = _wrapper_get_psu_presence(psu) if presence: oper_status = _wrapper_get_psu_status(psu) msg = 'OK' if oper_status else "NOT OK" else: msg = 'NOT PRESENT' status_table.append([psu_name, msg]) if status_table: click.echo(tabulate(status_table, header, tablefmt="simple")) # 'mfrinfo' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="the index of PSU") def mfrinfo(index): """Display PSU manufacturer info""" supported_psu = list(range(1, _wrapper_get_num_psus() + 1)) psu_ids = [] if (index < 0): psu_ids = supported_psu else: psu_ids = [index] for psu in psu_ids: psu_name = _wrapper_get_psu_name(psu) if psu not in supported_psu: click.echo("Error! The {} is not available on the platform.\n" \ "Number of supported PSU - {}.".format(psu_name, len(supported_psu))) continue status = _wrapper_get_psu_status(psu) if not status: click.echo("{} is Not OK\n".format(psu_name)) continue model_name = _wrapper_get_psu_model(psu) mfr_id = _wrapper_get_psu_mfr_id(psu) serial_num = _wrapper_get_psu_serial(psu) airflow_dir = _wrapper_get_psu_direction(psu) click.echo("{} is OK\nManufacture Id: {}\n" \ "Model: {}\nSerial Number: {}\n" \ "Fan Direction: {}\n".format(psu_name, mfr_id, model_name, serial_num, airflow_dir.capitalize())) # 'seninfo' subcommand @cli.command() @click.option('-i', '--index', default=-1, type=int, help="the index of PSU") def seninfo(index): """Display PSU sensor info""" supported_psu = list(range(1, _wrapper_get_num_psus() + 1)) psu_ids = [] if (index < 0): psu_ids = supported_psu else: psu_ids = [index] for psu in psu_ids: psu_name = _wrapper_get_psu_name(psu) if psu not in supported_psu: click.echo("Error! The {} is not available on the platform.\n" \ "Number of supported PSU - {}.".format(psu_name, len(supported_psu))) continue oper_status = _wrapper_get_psu_status(psu) if not oper_status: click.echo("{} is Not OK\n".format(psu_name)) continue v_out = _wrapper_get_output_voltage(psu) * 1000 i_out = _wrapper_get_output_current(psu) * 1000 p_out = _wrapper_get_output_power(psu) * 1000 fan1_rpm = _wrapper_get_fan_rpm(psu, 1) click.echo("{} is OK\nOutput Voltage: {} mv\n" \ "Output Current: {} ma\nOutput Power: {} mw\n" \ "Fan1 Speed: {} rpm\n".format(psu_name, v_out, i_out, p_out, fan1_rpm)) @cli.group() def debug(): """pddf_psuutil debug commands""" pass @debug.command() def dump_sysfs(): """Dump all PSU related SysFS paths""" for psu in range(_wrapper_get_num_psus()): status = _wrapper_dump_sysfs(psu) if status: for i in status: click.echo(i) if __name__ == '__main__': cli()
2.296875
2
gifbox/core/serializers.py
timmygee/gifbox
0
11309
<gh_stars>0 from rest_framework import serializers from versatileimagefield.serializers import VersatileImageFieldSerializer from .models import Image, AnimatedGif class ImageSerializer(serializers.ModelSerializer): class Meta: model = Image fields = ('image',) image = VersatileImageFieldSerializer( sizes=[ ('full_size', 'url'), ('thumbnail', 'thumbnail__200x200'), ] ) class AnimatedGifSerializer(serializers.ModelSerializer): class Meta: model = AnimatedGif fields = ('id', 'image', 'created', 'period') image = VersatileImageFieldSerializer( sizes=[ ('full_size_url', 'url'), ('thumbnail_url', 'thumbnail__200x200'), ] )
2.125
2
ginga/canvas/coordmap.py
saimn/ginga
0
11310
<filename>ginga/canvas/coordmap.py # # coordmap.py -- coordinate mappings. # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # from ginga import trcalc from ginga.util import wcs from ginga.util.six.moves import map __all__ = ['CanvasMapper', 'DataMapper', 'OffsetMapper', 'WCSMapper'] class CanvasMapper(object): """A coordinate mapper that maps to the viewer's canvas in canvas coordinates. """ def __init__(self, viewer): # record the viewer just in case self.viewer = viewer def to_canvas(self, canvas_x, canvas_y): return (canvas_x, canvas_y) def to_data(self, canvas_x, canvas_y): return self.viewer.get_data_xy(canvas_x, canvas_y) def data_to(self, data_x, data_y): return self.viewer.get_canvas_xy(data_x, data_y) def offset_pt(self, pt, xoff, yoff): x, y = pt return x + xoff, y + yoff def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO? Not sure if it is needed with this mapper type return x, y class CartesianMapper(object): """A coordinate mapper that maps to the viewer's canvas in Cartesian coordinates that do not scale (unlike DataMapper). """ def __init__(self, viewer): self.viewer = viewer def to_canvas(self, crt_x, crt_y): return self.viewer.offset_to_window(crt_x, crt_y) def to_data(self, crt_x, crt_y): return self.viewer.offset_to_data(crt_x, crt_y) def data_to(self, data_x, data_y): return self.viewer.data_to_offset(data_x, data_y) def offset_pt(self, pt, xoff, yoff): x, y = pt return x + xoff, y + yoff def rotate_pt(self, x, y, theta, xoff=0, yoff=0): return trcalc.rotate_pt(x, y, theta, xoff=xoff, yoff=yoff) class DataMapper(object): """A coordinate mapper that maps to the viewer's canvas in data coordinates. """ def __init__(self, viewer): self.viewer = viewer def to_canvas(self, data_x, data_y): return self.viewer.canvascoords(data_x, data_y) def to_data(self, data_x, data_y): return data_x, data_y def data_to(self, data_x, data_y): return data_x, data_y def offset_pt(self, pt, xoff, yoff): x, y = pt return x + xoff, y + yoff def rotate_pt(self, x, y, theta, xoff=0, yoff=0): return trcalc.rotate_pt(x, y, theta, xoff=xoff, yoff=yoff) class OffsetMapper(object): """A coordinate mapper that maps to the viewer's canvas in data coordinates that are offsets relative to some other reference object. """ def __init__(self, viewer, refobj): # TODO: provide a keyword arg to specify which point in the obj self.viewer = viewer self.refobj = refobj def calc_offsets(self, points): ref_x, ref_y = self.refobj.get_reference_pt() #return map(lambda x, y: x - ref_x, y - ref_y, points) def _cvt(pt): x, y = pt return x - ref_x, y - ref_y return map(_cvt, points) def to_canvas(self, delta_x, delta_y): data_x, data_y = self.to_data(delta_x, delta_y) return self.viewer.canvascoords(data_x, data_y) def to_data(self, delta_x, delta_y): ref_x, ref_y = self.refobj.get_reference_pt() data_x, data_y = self.refobj.crdmap.to_data(ref_x, ref_y) return data_x + delta_x, data_y + delta_y ## def data_to(self, data_x, data_y): ## ref_x, ref_y = self.refobj.get_reference_pt() ## return data_x - ref_data_x, data_y - ref_data_y def offset_pt(self, pt, xoff, yoff): # A no-op because this object's points are always considered # relative to the reference object return pt def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO? Not sure if it is needed with this mapper type return x, y class WCSMapper(DataMapper): """A coordinate mapper that maps to the viewer's canvas in WCS coordinates. """ def to_canvas(self, lon, lat): data_x, data_y = self.to_data(lon, lat) return super(WCSMapper, self).to_canvas(data_x, data_y) def to_data(self, lon, lat): image = self.viewer.get_image() data_x, data_y = image.radectopix(lon, lat) return data_x, data_y def data_to(self, data_x, data_y): image = self.viewer.get_image() lon, lat = image.pixtoradec(data_x, data_y) return lon, lat def offset_pt(self, pt, xoff, yoff): x, y = pt return wcs.add_offset_radec(x, y, xoff, yoff) def rotate_pt(self, x, y, theta, xoff=0, yoff=0): # TODO: optomize by rotating in WCS space xoff, yoff = self.to_data(xoff, yoff) x, y = super(WCSMapper, self).rotate_pt(x, y, theta, xoff=xoff, yoff=yoff) x, y = self.data_to(x, y) return x, y #END
2.671875
3
train.py
zpc-666/Paddle-Stochastic-Depth-ResNet110
0
11311
# coding: utf-8 # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import paddle.nn as nn import importlib from visualdl import LogWriter import numpy as np import pickle from models import utils from config import parser_args def train_model(args): if args.dataset=='cifar10': root = os.path.join(args.data_dir, args.dataset, 'cifar-10-python.tar.gz') print(args) model = importlib.import_module('models.__init__').__dict__[args.net]( None, drop_path_rate=args.drop_path_rate, use_drop_path=args.use_drop_path, use_official_implement=args.use_official_implement) train_loader, val_loader, test_loader = importlib.import_module( 'dataset.' + args.dataset).__dict__['load_data'](root, args.train_batch_size, args.test_batch_size, has_val_dataset=args.has_val_dataset) writer = LogWriter(logdir=args.save_dir) criterion = nn.CrossEntropyLoss() if args.optimizer == 'sgd': lr_scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=args.learning_rate, milestones=args.milestones, gamma=args.gamma) optimizer = paddle.optimizer.Momentum(parameters=model.parameters(), learning_rate=lr_scheduler, momentum=args.momentum, weight_decay=args.weight_decay, use_nesterov=args.nesterov) elif args.optimizer == 'adam': optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=args.learning_rate, weight_decay=args.weight_decay) else: raise ValueError("optimizer must be sgd or adam.") best_acc = 0 for i in range(args.epochs): utils.train_per_epoch(train_loader, model, criterion, optimizer, i, writer) top1_acc, top5_acc = utils.validate(val_loader, model, criterion) if args.optimizer == 'sgd': lr_scheduler.step() if best_acc < top1_acc: paddle.save(model.state_dict(), args.save_dir + '/model_best.pdparams') best_acc = top1_acc if not args.save_best: if (i + 1) % args.save_interval == 0 and i != 0: paddle.save(model.state_dict(), args.save_dir + '/model.pdparams') writer.add_scalar('val-acc', top1_acc, i) writer.add_scalar('val-top5-acc', top5_acc, i) writer.add_scalar('lr', optimizer.get_lr(), i) print('best acc: {:.2f}'.format(best_acc)) model.set_state_dict(paddle.load(args.save_dir + '/model_best.pdparams')) top1_acc, top5_acc = utils.validate(test_loader, model, criterion) with open(os.path.join(args.save_dir, 'test_acc.txt'), 'w') as f: f.write('test_acc:'+str(top1_acc)) def train_hl_api(args): if args.dataset=='cifar10': root = os.path.join(args.data_dir, args.dataset, 'cifar-10-python.tar.gz') print(args) model = importlib.import_module('models.__init__').__dict__[args.net]( None, drop_path_rate=args.drop_path_rate, use_drop_path=args.use_drop_path, use_official_implement=args.use_official_implement) train_loader, val_loader, test_loader = importlib.import_module( 'dataset.' + args.dataset).__dict__['load_data'](root, args.train_batch_size, args.test_batch_size, has_val_dataset=args.has_val_dataset) criterion = nn.CrossEntropyLoss() if args.optimizer == 'sgd': # 因为高层API是每个iter就执行lr_scheduler.step(),故这里把间隔调成m*len(train_loader)才合适 lr_scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=args.learning_rate, milestones=[m*len(train_loader) for m in args.milestones], gamma=args.gamma) optimizer = paddle.optimizer.Momentum(parameters=model.parameters(), learning_rate=lr_scheduler, momentum=args.momentum, weight_decay=args.weight_decay, use_nesterov=args.nesterov) elif args.optimizer == 'adam': optimizer = paddle.optimizer.AdamW(parameters=model.parameters(), learning_rate=args.learning_rate, weight_decay=args.weight_decay) else: raise ValueError("optimizer must be sgd or adam.") model = paddle.Model(model) model.prepare(optimizer=optimizer, #指定优化器 loss=criterion, #指定损失函数 metrics=paddle.metric.Accuracy()) #指定评估方法 #用于visualdl可视化 visualdl = paddle.callbacks.VisualDL(log_dir=args.save_dir) #早停机制,这里使用只是为了在训练过程中保存验证集上的最佳模型,最后用于测试集验证 early_stop = paddle.callbacks.EarlyStopping('acc', mode='max', patience=args.epochs, verbose=1, min_delta=0, baseline=None, save_best_model=True) model.fit(train_data=train_loader, #训练数据集 eval_data=val_loader, #验证数据集 epochs=args.epochs, #迭代轮次 save_dir=args.save_dir, #把模型参数、优化器参数保存至自定义的文件夹 save_freq=args.save_interval, #设定每隔多少个epoch保存模型参数及优化器参数 verbose=1, log_freq=20, eval_freq=args.eval_freq, callbacks=[visualdl, early_stop]) #用验证集上最好模型在测试集上验证精度 model.load(os.path.join(args.save_dir, 'best_model.pdparams')) result = model.evaluate(eval_data=test_loader, verbose=1) print('test acc:', result['acc'], 'test error:', 1-result['acc']) if __name__ == '__main__': args = parser_args() utils.seed_paddle(args.seed) if not args.high_level_api: train_model(args) else: train_hl_api(args)
2
2
dataloader/EDSR/video.py
pidan1231239/SR-Stereo2
1
11312
import os from . import common import cv2 import numpy as np import imageio import torch import torch.utils.data as data class Video(data.Dataset): def __init__(self, args, name='Video', train=False, benchmark=False): self.args = args self.name = name self.scale = args.scale self.idx_scale = 0 self.train = False self.do_eval = False self.benchmark = benchmark self.filename, _ = os.path.splitext(os.path.basename(args.dir_demo)) self.vidcap = cv2.VideoCapture(args.dir_demo) self.n_frames = 0 self.total_frames = int(self.vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) def __getitem__(self, idx): success, lr = self.vidcap.read() if success: self.n_frames += 1 lr, = common.set_channel(lr, n_channels=self.args.n_colors) lr_t, = common.np2Tensor(lr, rgb_range=self.args.rgb_range) return lr_t, -1, '{}_{:0>5}'.format(self.filename, self.n_frames) else: vidcap.release() return None def __len__(self): return self.total_frames def set_scale(self, idx_scale): self.idx_scale = idx_scale
2.46875
2
backend/views/__init__.py
chriamue/flask-unchained-react-spa
5
11313
<filename>backend/views/__init__.py from .contact_submission_resource import ContactSubmissionResource
1.085938
1
blink_handler.py
oyiptong/chromium-dashboard
0
11314
<filename>blink_handler.py # -*- coding: utf-8 -*- # Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = '<EMAIL> (<NAME>)' import collections import json import logging import os import webapp2 import yaml # Appengine imports. from google.appengine.api import memcache import common import models import settings import util from schedule import construct_chrome_channels_details class PopulateSubscribersHandler(common.ContentHandler): def __populate_subscribers(self): """Seeds the database with the team in devrel_team.yaml and adds the team member to the specified blink components in that file. Should only be ran if the FeatureOwner database entries have been cleared""" f = file('%s/data/devrel_team.yaml' % settings.ROOT_DIR, 'r') for profile in yaml.load_all(f): blink_components = profile.get('blink_components', []) blink_components = [models.BlinkComponent.get_by_name(name).key() for name in blink_components] blink_components = filter(None, blink_components) # Filter out None values user = models.FeatureOwner( name=unicode(profile['name']), email=unicode(profile['email']), twitter=profile.get('twitter', None), blink_components=blink_components, primary_blink_components=blink_components, watching_all_features=False, ) user.put() f.close() @common.require_edit_permission def get(self): if settings.PROD: return self.response.out.write('Handler not allowed in production.') models.BlinkComponent.update_db() self.__populate_subscribers() return self.redirect('/admin/blink') class BlinkHandler(common.ContentHandler): def __update_subscribers_list(self, add=True, user_id=None, blink_component=None, primary=False): if not user_id or not blink_component: return False user = models.FeatureOwner.get_by_id(long(user_id)) if not user: return True if primary: if add: user.add_as_component_owner(blink_component) else: user.remove_as_component_owner(blink_component) else: if add: user.add_to_component_subscribers(blink_component) else: user.remove_from_component_subscribers(blink_component) return True @common.require_edit_permission @common.strip_trailing_slash def get(self, path): # key = '%s|blinkcomponentowners' % (settings.MEMCACHE_KEY_PREFIX) # data = memcache.get(key) # if data is None: components = models.BlinkComponent.all().order('name').fetch(None) subscribers = models.FeatureOwner.all().order('name').fetch(None) # Format for django template subscribers = [x.format_for_template() for x in subscribers] for c in components: c.primaries = [o.name for o in c.owners] # wf_component_content = models.BlinkComponent.fetch_wf_content_for_components() # for c in components: # c.wf_urls = wf_component_content.get(c.name) or [] data = { 'subscribers': subscribers, 'components': components[1:] # ditch generic "Blink" component } # memcache.set(key, data) self.render(data, template_path=os.path.join('admin/blink.html')) # Remove user from component subscribers. def put(self, path): params = json.loads(self.request.body) self.__update_subscribers_list(False, user_id=params.get('userId'), blink_component=params.get('componentName'), primary=params.get('primary')) self.response.set_status(200, message='User removed from subscribers') return self.response.write(json.dumps({'done': True})) # Add user to component subscribers. def post(self, path): params = json.loads(self.request.body) self.__update_subscribers_list(True, user_id=params.get('userId'), blink_component=params.get('componentName'), primary=params.get('primary')) # memcache.flush_all() # memcache.delete('%s|blinkcomponentowners' % (settings.MEMCACHE_KEY_PREFIX)) self.response.set_status(200, message='User added to subscribers') return self.response.write(json.dumps(params)) class SubscribersHandler(common.ContentHandler): @common.require_edit_permission # @common.strip_trailing_slash def get(self, path): users = models.FeatureOwner.all().order('name').fetch(None) feature_list = models.Feature.get_chronological() milestone = self.request.get('milestone') or None if milestone: milestone = int(milestone) feature_list = filter(lambda f: (f['shipped_milestone'] or f['shipped_android_milestone']) == milestone, feature_list) list_features_per_owner = 'showFeatures' in self.request.GET for user in users: # user.subscribed_components = [models.BlinkComponent.get(key) for key in user.blink_components] user.owned_components = [models.BlinkComponent.get(key) for key in user.primary_blink_components] for component in user.owned_components: component.features = [] if list_features_per_owner: component.features = filter(lambda f: component.name in f['blink_components'], feature_list) details = construct_chrome_channels_details() data = { 'subscribers': users, 'channels': collections.OrderedDict([ ('stable', details['stable']), ('beta', details['beta']), ('dev', details['dev']), ('canary', details['canary']), ]), 'selected_milestone': int(milestone) if milestone else None } self.render(data, template_path=os.path.join('admin/subscribers.html')) app = webapp2.WSGIApplication([ ('/admin/blink/populate_subscribers', PopulateSubscribersHandler), ('/admin/subscribers(.*)', SubscribersHandler), ('(.*)', BlinkHandler), ], debug=settings.DEBUG)
2.234375
2
OBlog/blueprint/pages/main.py
OhYee/OBlog
23
11315
<gh_stars>10-100 from OBlog import database as db from flask import g, current_app import re def getPages(): if not hasattr(g, "getPages"): res = db.query_db('select * from pages;') res.sort(key=lambda x: int(x["idx"])) g.getPages = res return g.getPages def getPagesDict(): if not hasattr(g, "getPagesDict"): pages = getPages() res = dict((page['url'], page) for page in pages) g.getPagesDict = res return g.getPagesDict def addPages(postRequest): current_app.logger.debug(postRequest) if db.exist_db('pages', {'url': postRequest['url']}): # 已经存在 return 1 if not (re.match(r'^[0-9]+$', postRequest["idx"])): return 2 keyList = ['url', 'title', 'idx'] postRequest = dict((key, postRequest[key] if key in postRequest else "")for key in keyList) postRequest['show'] = 'true' db.insert_db('pages', postRequest) return 0 def updatePage(postRequest): current_app.logger.debug(postRequest) oldurl = postRequest['oldurl'] url = postRequest['url'] if url != oldurl and db.exist_db('pages', {'url': url}): # 重复url return 1 if not (re.match(r'^[0-9]+$', postRequest["idx"])): return 2 keyList = ['url', 'title', 'idx', 'show'] postRequest = dict((key, postRequest[key] if key in postRequest else "")for key in keyList) db.update_db("pages", postRequest, {'url': oldurl}) return 0 def deletePage(postRequest): current_app.logger.debug(postRequest) url = postRequest['url'] if not db.exist_db('pages', {'url': url}): # 不存在 return 1 db.delete_db("pages", {'url': url}) return 0 import os def absPath(path): from OBlog import app path = os.path.join(app.config['ROOTPATH'], "OBlog/templates/pages", path) return path def fileExist(path): return os.path.exists(path) == True def getPageTemplate(path): path = absPath(path) if not fileExist(path): return (1, "") content = "" with open(path, 'r', encoding='utf-8') as f: content = f.read() return (0, content) def getPageTemplateList(): return listFiles(absPath('.')) def listFiles(path): return [file for file in os.listdir(path) if os.path.isfile(os.path.join(path, file))] def setPageTemplate(path, content): path = absPath(path) with open(path, 'w', encoding='utf-8') as f: f.write(content) return 0 def delPageTemplate(path): path = absPath(path) if not fileExist(path): return 1 os.remove(path) return 0
2.546875
3
lib/rabbitmq-dotnet-client-rabbitmq_v3_4_4/docs/pyle2-fcfcf7e/Cheetah/Compiler.py
CymaticLabs/Unity3d.Amqp
83
11316
#!/usr/bin/env python # $Id: Compiler.py,v 1.148 2006/06/22 00:18:22 tavis_rudd Exp $ """Compiler classes for Cheetah: ModuleCompiler aka 'Compiler' ClassCompiler MethodCompiler If you are trying to grok this code start with ModuleCompiler.__init__, ModuleCompiler.compile, and ModuleCompiler.__getattr__. Meta-Data ================================================================================ Author: <NAME> <<EMAIL>> Version: $Revision: 1.148 $ Start Date: 2001/09/19 Last Revision Date: $Date: 2006/06/22 00:18:22 $ """ __author__ = "<NAME> <<EMAIL>>" __revision__ = "$Revision: 1.148 $"[11:-2] import sys import os import os.path from os.path import getmtime, exists import re import types import time import random import warnings import __builtin__ import copy from Cheetah.Version import Version, VersionTuple from Cheetah.SettingsManager import SettingsManager from Cheetah.Parser import Parser, ParseError, specialVarRE, \ STATIC_CACHE, REFRESH_CACHE, SET_LOCAL, SET_GLOBAL,SET_MODULE from Cheetah.Utils.Indenter import indentize # an undocumented preprocessor from Cheetah import ErrorCatchers from Cheetah import NameMapper from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList VFFSL=valueFromFrameOrSearchList VFSL=valueFromSearchList VFN=valueForName currentTime=time.time class Error(Exception): pass DEFAULT_COMPILER_SETTINGS = { ## controlling the handling of Cheetah $placeholders 'useNameMapper': True, # Unified dotted notation and the searchList 'useSearchList': True, # if false, assume the first # portion of the $variable (before the first dot) is a global, # builtin, or local var that doesn't need # looking up in the searchlist BUT use # namemapper on the rest of the lookup 'allowSearchListAsMethArg': True, 'useAutocalling': True, # detect and call callable()'s, requires NameMapper 'useStackFrames': True, # use NameMapper.valueFromFrameOrSearchList # rather than NameMapper.valueFromSearchList 'useErrorCatcher':False, 'alwaysFilterNone':True, # filter out None, before the filter is called 'useFilters':True, # use str instead if =False 'includeRawExprInFilterArgs':True, #'lookForTransactionAttr':False, 'autoAssignDummyTransactionToSelf':False, 'useKWsDictArgForPassingTrans':True, ## controlling the aesthetic appearance / behaviour of generated code 'commentOffset': 1, # should shorter str constant chunks be printed using repr rather than ''' quotes 'reprShortStrConstants': True, 'reprNewlineThreshold':3, 'outputRowColComments':True, # should #block's be wrapped in a comment in the template's output 'includeBlockMarkers': False, 'blockMarkerStart':('\n<!-- START BLOCK: ',' -->\n'), 'blockMarkerEnd':('\n<!-- END BLOCK: ',' -->\n'), 'defDocStrMsg':'Autogenerated by CHEETAH: The Python-Powered Template Engine', 'setup__str__method': False, 'mainMethodName':'respond', 'mainMethodNameForSubclasses':'writeBody', 'indentationStep': ' '*4, 'initialMethIndentLevel': 2, 'monitorSrcFile':False, 'outputMethodsBeforeAttributes': True, ## customizing the #extends directive 'autoImportForExtendsDirective':True, 'handlerForExtendsDirective':None, # baseClassName = handler(compiler, baseClassName) # a callback hook for customizing the # #extends directive. It can manipulate # the compiler's state if needed. # also see allowExpressionsInExtendsDirective # input filtering/restriction # use lower case keys here!! 'disabledDirectives':[], # list of directive keys, without the start token 'enabledDirectives':[], # list of directive keys, without the start token 'disabledDirectiveHooks':[], # callable(parser, directiveKey) 'preparseDirectiveHooks':[], # callable(parser, directiveKey) 'postparseDirectiveHooks':[], # callable(parser, directiveKey) 'preparsePlaceholderHooks':[], # callable(parser) 'postparsePlaceholderHooks':[], # callable(parser) # the above hooks don't need to return anything 'expressionFilterHooks':[], # callable(parser, expr, exprType, rawExpr=None, startPos=None) # exprType is the name of the directive, 'psp', or 'placeholder'. all # lowercase. The filters *must* return the expr or raise an exception. # They can modify the expr if needed. 'templateMetaclass':None, # strictly optional. Only works with new-style baseclasses 'i18NFunctionName':'self.i18n', ## These are used in the parser, but I've put them here for the time being to ## facilitate separating the parser and compiler: 'cheetahVarStartToken':'$', 'commentStartToken':'##', 'multiLineCommentStartToken':'#*', 'multiLineCommentEndToken':'*#', 'gobbleWhitespaceAroundMultiLineComments':True, 'directiveStartToken':'#', 'directiveEndToken':'#', 'allowWhitespaceAfterDirectiveStartToken':False, 'PSPStartToken':'<%', 'PSPEndToken':'%>', 'EOLSlurpToken':'#', 'gettextTokens': ["_", "N_", "ngettext"], 'allowExpressionsInExtendsDirective': False, # the default restricts it to # accepting dotted names 'allowEmptySingleLineMethods': False, 'allowNestedDefScopes': True, 'allowPlaceholderFilterArgs': True, ## See Parser.initDirectives() for the use of the next 3 #'directiveNamesAndParsers':{} #'endDirectiveNamesAndHandlers':{} #'macroDirectives':{} } class GenUtils: """An abstract baseclass for the Compiler classes that provides methods that perform generic utility functions or generate pieces of output code from information passed in by the Parser baseclass. These methods don't do any parsing themselves. """ def genTimeInterval(self, timeString): ##@@ TR: need to add some error handling here if timeString[-1] == 's': interval = float(timeString[:-1]) elif timeString[-1] == 'm': interval = float(timeString[:-1])*60 elif timeString[-1] == 'h': interval = float(timeString[:-1])*60*60 elif timeString[-1] == 'd': interval = float(timeString[:-1])*60*60*24 elif timeString[-1] == 'w': interval = float(timeString[:-1])*60*60*24*7 else: # default to minutes interval = float(timeString)*60 return interval def genCacheInfo(self, cacheTokenParts): """Decipher a placeholder cachetoken """ cacheInfo = {} if cacheTokenParts['REFRESH_CACHE']: cacheInfo['type'] = REFRESH_CACHE cacheInfo['interval'] = self.genTimeInterval(cacheTokenParts['interval']) elif cacheTokenParts['STATIC_CACHE']: cacheInfo['type'] = STATIC_CACHE return cacheInfo # is empty if no cache def genCacheInfoFromArgList(self, argList): cacheInfo = {'type':REFRESH_CACHE} for key, val in argList: if val[0] in '"\'': val = val[1:-1] if key == 'timer': key = 'interval' val = self.genTimeInterval(val) cacheInfo[key] = val return cacheInfo def genCheetahVar(self, nameChunks, plain=False): if nameChunks[0][0] in self.setting('gettextTokens'): self.addGetTextVar(nameChunks) if self.setting('useNameMapper') and not plain: return self.genNameMapperVar(nameChunks) else: return self.genPlainVar(nameChunks) def addGetTextVar(self, nameChunks): """Output something that gettext can recognize. This is a harmless side effect necessary to make gettext work when it is scanning compiled templates for strings marked for translation. @@TR: another marginally more efficient approach would be to put the output in a dummy method that is never called. """ # @@TR: this should be in the compiler not here self.addChunk("if False:") self.indent() self.addChunk(self.genPlainVar(nameChunks[:])) self.dedent() def genPlainVar(self, nameChunks): """Generate Python code for a Cheetah $var without using NameMapper (Unified Dotted Notation with the SearchList). """ nameChunks.reverse() chunk = nameChunks.pop() pythonCode = chunk[0] + chunk[2] while nameChunks: chunk = nameChunks.pop() pythonCode = (pythonCode + '.' + chunk[0] + chunk[2]) return pythonCode def genNameMapperVar(self, nameChunks): """Generate valid Python code for a Cheetah $var, using NameMapper (Unified Dotted Notation with the SearchList). nameChunks = list of var subcomponents represented as tuples [ (name,useAC,remainderOfExpr), ] where: name = the dotted name base useAC = where NameMapper should use autocalling on namemapperPart remainderOfExpr = any arglist, index, or slice If remainderOfExpr contains a call arglist (e.g. '(1234)') then useAC is False, otherwise it defaults to True. It is overridden by the global setting 'useAutocalling' if this setting is False. EXAMPLE ------------------------------------------------------------------------ if the raw Cheetah Var is $a.b.c[1].d().x.y.z nameChunks is the list [ ('a.b.c',True,'[1]'), # A ('d',False,'()'), # B ('x.y.z',True,''), # C ] When this method is fed the list above it returns VFN(VFN(VFFSL(SL, 'a.b.c',True)[1], 'd',False)(), 'x.y.z',True) which can be represented as VFN(B`, name=C[0], executeCallables=(useAC and C[1]))C[2] where: VFN = NameMapper.valueForName VFFSL = NameMapper.valueFromFrameOrSearchList VFSL = NameMapper.valueFromSearchList # optionally used instead of VFFSL SL = self.searchList() useAC = self.setting('useAutocalling') # True in this example A = ('a.b.c',True,'[1]') B = ('d',False,'()') C = ('x.y.z',True,'') C` = VFN( VFN( VFFSL(SL, 'a.b.c',True)[1], 'd',False)(), 'x.y.z',True) = VFN(B`, name='x.y.z', executeCallables=True) B` = VFN(A`, name=B[0], executeCallables=(useAC and B[1]))B[2] A` = VFFSL(SL, name=A[0], executeCallables=(useAC and A[1]))A[2] Note, if the compiler setting useStackFrames=False (default is true) then A` = VFSL([locals()]+SL+[globals(), __builtin__], name=A[0], executeCallables=(useAC and A[1]))A[2] This option allows Cheetah to be used with Psyco, which doesn't support stack frame introspection. """ defaultUseAC = self.setting('useAutocalling') useSearchList = self.setting('useSearchList') nameChunks.reverse() name, useAC, remainder = nameChunks.pop() if not useSearchList: firstDotIdx = name.find('.') if firstDotIdx != -1 and firstDotIdx < len(name): beforeFirstDot, afterDot = name[:firstDotIdx], name[firstDotIdx+1:] pythonCode = ('VFN(' + beforeFirstDot + ',"' + afterDot + '",' + repr(defaultUseAC and useAC) + ')' + remainder) else: pythonCode = name+remainder elif self.setting('useStackFrames'): pythonCode = ('VFFSL(SL,' '"'+ name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) else: pythonCode = ('VFSL([locals()]+SL+[globals(), __builtin__],' '"'+ name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) ## while nameChunks: name, useAC, remainder = nameChunks.pop() pythonCode = ('VFN(' + pythonCode + ',"' + name + '",' + repr(defaultUseAC and useAC) + ')' + remainder) return pythonCode ################################################## ## METHOD COMPILERS class MethodCompiler(GenUtils): def __init__(self, methodName, classCompiler, initialMethodComment=None, decorator=None): self._settingsManager = classCompiler self._classCompiler = classCompiler self._moduleCompiler = classCompiler._moduleCompiler self._methodName = methodName self._initialMethodComment = initialMethodComment self._setupState() self._decorator = decorator def setting(self, key): return self._settingsManager.setting(key) def _setupState(self): self._indent = self.setting('indentationStep') self._indentLev = self.setting('initialMethIndentLevel') self._pendingStrConstChunks = [] self._methodSignature = None self._methodDef = None self._docStringLines = [] self._methodBodyChunks = [] self._cacheRegionsStack = [] self._callRegionsStack = [] self._captureRegionsStack = [] self._filterRegionsStack = [] self._isErrorCatcherOn = False self._hasReturnStatement = False self._isGenerator = False def cleanupState(self): """Called by the containing class compiler instance """ pass def methodName(self): return self._methodName def setMethodName(self, name): self._methodName = name ## methods for managing indentation def indentation(self): return self._indent * self._indentLev def indent(self): self._indentLev +=1 def dedent(self): if self._indentLev: self._indentLev -=1 else: raise Error('Attempt to dedent when the indentLev is 0') ## methods for final code wrapping def methodDef(self): if self._methodDef: return self._methodDef else: return self.wrapCode() __str__ = methodDef def wrapCode(self): self.commitStrConst() methodDefChunks = ( self.methodSignature(), '\n', self.docString(), self.methodBody() ) methodDef = ''.join(methodDefChunks) self._methodDef = methodDef return methodDef def methodSignature(self): return self._indent + self._methodSignature + ':' def setMethodSignature(self, signature): self._methodSignature = signature def methodBody(self): return ''.join( self._methodBodyChunks ) def docString(self): if not self._docStringLines: return '' ind = self._indent*2 docStr = (ind + '"""\n' + ind + ('\n' + ind).join([ln.replace('"""',"'''") for ln in self._docStringLines]) + '\n' + ind + '"""\n') return docStr ## methods for adding code def addMethDocString(self, line): self._docStringLines.append(line.replace('%','%%')) def addChunk(self, chunk): self.commitStrConst() chunk = "\n" + self.indentation() + chunk self._methodBodyChunks.append(chunk) def appendToPrevChunk(self, appendage): self._methodBodyChunks[-1] = self._methodBodyChunks[-1] + appendage def addWriteChunk(self, chunk): self.addChunk('write(' + chunk + ')') def addFilteredChunk(self, chunk, filterArgs=None, rawExpr=None, lineCol=None): if filterArgs is None: filterArgs = '' if self.setting('includeRawExprInFilterArgs') and rawExpr: filterArgs += ', rawExpr=%s'%repr(rawExpr) if self.setting('alwaysFilterNone'): if rawExpr and rawExpr.find('\n')==-1 and rawExpr.find('\r')==-1: self.addChunk("_v = %s # %r"%(chunk, rawExpr)) if lineCol: self.appendToPrevChunk(' on line %s, col %s'%lineCol) else: self.addChunk("_v = %s"%chunk) if self.setting('useFilters'): self.addChunk("if _v is not None: write(_filter(_v%s))"%filterArgs) else: self.addChunk("if _v is not None: write(str(_v))") else: if self.setting('useFilters'): self.addChunk("write(_filter(%s%s))"%(chunk,filterArgs)) else: self.addChunk("write(str(%s))"%chunk) def _appendToPrevStrConst(self, strConst): if self._pendingStrConstChunks: self._pendingStrConstChunks.append(strConst) else: self._pendingStrConstChunks = [strConst] def _unescapeCheetahVars(self, theString): """Unescape any escaped Cheetah \$vars in the string. """ token = self.setting('cheetahVarStartToken') return theString.replace('\\' + token, token) def _unescapeDirectives(self, theString): """Unescape any escaped Cheetah \$vars in the string. """ token = self.setting('directiveStartToken') return theString.replace('\\' + token, token) def commitStrConst(self): """Add the code for outputting the pending strConst without chopping off any whitespace from it. """ if self._pendingStrConstChunks: strConst = self._unescapeCheetahVars(''.join(self._pendingStrConstChunks)) strConst = self._unescapeDirectives(strConst) self._pendingStrConstChunks = [] if not strConst: return if self.setting('reprShortStrConstants') and \ strConst.count('\n') < self.setting('reprNewlineThreshold'): self.addWriteChunk( repr(strConst).replace('\\012','\\n')) else: strConst = strConst.replace('\\','\\\\').replace("'''","'\'\'\'") if strConst[0] == "'": strConst = '\\' + strConst if strConst[-1] == "'": strConst = strConst[:-1] + '\\' + strConst[-1] self.addWriteChunk("'''" + strConst + "'''" ) def handleWSBeforeDirective(self): """Truncate the pending strCont to the beginning of the current line. """ if self._pendingStrConstChunks: src = self._pendingStrConstChunks[-1] BOL = max(src.rfind('\n')+1, src.rfind('\r')+1, 0) if BOL < len(src): self._pendingStrConstChunks[-1] = src[:BOL] def isErrorCatcherOn(self): return self._isErrorCatcherOn def turnErrorCatcherOn(self): self._isErrorCatcherOn = True def turnErrorCatcherOff(self): self._isErrorCatcherOn = False # @@TR: consider merging the next two methods into one def addStrConst(self, strConst): self._appendToPrevStrConst(strConst) def addRawText(self, text): self.addStrConst(text) def addMethComment(self, comm): offSet = self.setting('commentOffset') self.addChunk('#' + ' '*offSet + comm) def addPlaceholder(self, expr, filterArgs, rawPlaceholder, cacheTokenParts, lineCol, silentMode=False): cacheInfo = self.genCacheInfo(cacheTokenParts) if cacheInfo: cacheInfo['ID'] = repr(rawPlaceholder)[1:-1] self.startCacheRegion(cacheInfo, lineCol, rawPlaceholder=rawPlaceholder) if self.isErrorCatcherOn(): methodName = self._classCompiler.addErrorCatcherCall( expr, rawCode=rawPlaceholder, lineCol=lineCol) expr = 'self.' + methodName + '(localsDict=locals())' if silentMode: self.addChunk('try:') self.indent() self.addFilteredChunk(expr, filterArgs, rawPlaceholder, lineCol=lineCol) self.dedent() self.addChunk('except NotFound: pass') else: self.addFilteredChunk(expr, filterArgs, rawPlaceholder, lineCol=lineCol) if self.setting('outputRowColComments'): self.appendToPrevChunk(' # from line %s, col %s' % lineCol + '.') if cacheInfo: self.endCacheRegion() def addSilent(self, expr): self.addChunk( expr ) def addEcho(self, expr, rawExpr=None): self.addFilteredChunk(expr, rawExpr=rawExpr) def addSet(self, expr, exprComponents, setStyle): if setStyle is SET_GLOBAL: (LVALUE, OP, RVALUE) = (exprComponents.LVALUE, exprComponents.OP, exprComponents.RVALUE) # we need to split the LVALUE to deal with globalSetVars splitPos1 = LVALUE.find('.') splitPos2 = LVALUE.find('[') if splitPos1 > 0 and splitPos2==-1: splitPos = splitPos1 elif splitPos1 > 0 and splitPos1 < max(splitPos2,0): splitPos = splitPos1 else: splitPos = splitPos2 if splitPos >0: primary = LVALUE[:splitPos] secondary = LVALUE[splitPos:] else: primary = LVALUE secondary = '' LVALUE = 'self._CHEETAH__globalSetVars["' + primary + '"]' + secondary expr = LVALUE + ' ' + OP + ' ' + RVALUE.strip() if setStyle is SET_MODULE: self._moduleCompiler.addModuleGlobal(expr) else: self.addChunk(expr) def addInclude(self, sourceExpr, includeFrom, isRaw): self.addChunk('self._handleCheetahInclude(' + sourceExpr + ', trans=trans, ' + 'includeFrom="' + includeFrom + '", raw=' + repr(isRaw) + ')') def addWhile(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addFor(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addRepeat(self, expr, lineCol=None): #the _repeatCount stuff here allows nesting of #repeat directives self._repeatCount = getattr(self, "_repeatCount", -1) + 1 self.addFor('for __i%s in range(%s)' % (self._repeatCount,expr), lineCol=lineCol) def addIndentingDirective(self, expr, lineCol=None): if expr and not expr[-1] == ':': expr = expr + ':' self.addChunk( expr ) if lineCol: self.appendToPrevChunk(' # generated from line %s, col %s'%lineCol ) self.indent() def addReIndentingDirective(self, expr, dedent=True, lineCol=None): self.commitStrConst() if dedent: self.dedent() if not expr[-1] == ':': expr = expr + ':' self.addChunk( expr ) if lineCol: self.appendToPrevChunk(' # generated from line %s, col %s'%lineCol ) self.indent() def addIf(self, expr, lineCol=None): """For a full #if ... #end if directive """ self.addIndentingDirective(expr, lineCol=lineCol) def addOneLineIf(self, expr, lineCol=None): """For a full #if ... #end if directive """ self.addIndentingDirective(expr, lineCol=lineCol) def addTernaryExpr(self, conditionExpr, trueExpr, falseExpr, lineCol=None): """For a single-lie #if ... then .... else ... directive <condition> then <trueExpr> else <falseExpr> """ self.addIndentingDirective(conditionExpr, lineCol=lineCol) self.addFilteredChunk(trueExpr) self.dedent() self.addIndentingDirective('else') self.addFilteredChunk(falseExpr) self.dedent() def addElse(self, expr, dedent=True, lineCol=None): expr = re.sub(r'else[ \f\t]+if','elif', expr) self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addElif(self, expr, dedent=True, lineCol=None): self.addElse(expr, dedent=dedent, lineCol=lineCol) def addUnless(self, expr, lineCol=None): self.addIf('if not (' + expr + ')') def addClosure(self, functionName, argsList, parserComment): argStringChunks = [] for arg in argsList: chunk = arg[0] if not arg[1] == None: chunk += '=' + arg[1] argStringChunks.append(chunk) signature = "def " + functionName + "(" + ','.join(argStringChunks) + "):" self.addIndentingDirective(signature) self.addChunk('#'+parserComment) def addTry(self, expr, lineCol=None): self.addIndentingDirective(expr, lineCol=lineCol) def addExcept(self, expr, dedent=True, lineCol=None): self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addFinally(self, expr, dedent=True, lineCol=None): self.addReIndentingDirective(expr, dedent=dedent, lineCol=lineCol) def addReturn(self, expr): assert not self._isGenerator self.addChunk(expr) self._hasReturnStatement = True def addYield(self, expr): assert not self._hasReturnStatement self._isGenerator = True if expr.replace('yield','').strip(): self.addChunk(expr) else: self.addChunk('if _dummyTrans:') self.indent() self.addChunk('yield trans.response().getvalue()') self.addChunk('trans = DummyTransaction()') self.addChunk('write = trans.response().write') self.dedent() self.addChunk('else:') self.indent() self.addChunk( 'raise TypeError("This method cannot be called with a trans arg")') self.dedent() def addPass(self, expr): self.addChunk(expr) def addDel(self, expr): self.addChunk(expr) def addAssert(self, expr): self.addChunk(expr) def addRaise(self, expr): self.addChunk(expr) def addBreak(self, expr): self.addChunk(expr) def addContinue(self, expr): self.addChunk(expr) def addPSP(self, PSP): self.commitStrConst() autoIndent = False if PSP[0] == '=': PSP = PSP[1:] if PSP: self.addWriteChunk('_filter(' + PSP + ')') return elif PSP.lower() == 'end': self.dedent() return elif PSP[-1] == '$': autoIndent = True PSP = PSP[:-1] elif PSP[-1] == ':': autoIndent = True for line in PSP.splitlines(): self.addChunk(line) if autoIndent: self.indent() def nextCacheID(self): return ('_'+str(random.randrange(100, 999)) + str(random.randrange(10000, 99999))) def startCacheRegion(self, cacheInfo, lineCol, rawPlaceholder=None): # @@TR: we should add some runtime logging to this ID = self.nextCacheID() interval = cacheInfo.get('interval',None) test = cacheInfo.get('test',None) customID = cacheInfo.get('id',None) if customID: ID = customID varyBy = cacheInfo.get('varyBy', repr(ID)) self._cacheRegionsStack.append(ID) # attrib of current methodCompiler # @@TR: add this to a special class var as well self.addChunk('') self.addChunk('## START CACHE REGION: ID='+ID+ '. line %s, col %s'%lineCol + ' in the source.') self.addChunk('_RECACHE_%(ID)s = False'%locals()) self.addChunk('_cacheRegion_%(ID)s = self.getCacheRegion(regionID='%locals() + repr(ID) + ', cacheInfo=%r'%cacheInfo + ')') self.addChunk('if _cacheRegion_%(ID)s.isNew():'%locals()) self.indent() self.addChunk('_RECACHE_%(ID)s = True'%locals()) self.dedent() self.addChunk('_cacheItem_%(ID)s = _cacheRegion_%(ID)s.getCacheItem('%locals() +varyBy+')') self.addChunk('if _cacheItem_%(ID)s.hasExpired():'%locals()) self.indent() self.addChunk('_RECACHE_%(ID)s = True'%locals()) self.dedent() if test: self.addChunk('if ' + test + ':') self.indent() self.addChunk('_RECACHE_%(ID)s = True'%locals()) self.dedent() self.addChunk('if (not _RECACHE_%(ID)s) and _cacheItem_%(ID)s.getRefreshTime():'%locals()) self.indent() #self.addChunk('print "DEBUG"+"-"*50') self.addChunk('try:') self.indent() self.addChunk('_output = _cacheItem_%(ID)s.renderOutput()'%locals()) self.dedent() self.addChunk('except KeyError:') self.indent() self.addChunk('_RECACHE_%(ID)s = True'%locals()) #self.addChunk('print "DEBUG"+"*"*50') self.dedent() self.addChunk('else:') self.indent() self.addWriteChunk('_output') self.addChunk('del _output') self.dedent() self.dedent() self.addChunk('if _RECACHE_%(ID)s or not _cacheItem_%(ID)s.getRefreshTime():'%locals()) self.indent() self.addChunk('_orig_trans%(ID)s = trans'%locals()) self.addChunk('trans = _cacheCollector_%(ID)s = DummyTransaction()'%locals()) self.addChunk('write = _cacheCollector_%(ID)s.response().write'%locals()) if interval: self.addChunk(("_cacheItem_%(ID)s.setExpiryTime(currentTime() +"%locals()) + str(interval) + ")") def endCacheRegion(self): ID = self._cacheRegionsStack.pop() self.addChunk('trans = _orig_trans%(ID)s'%locals()) self.addChunk('write = trans.response().write') self.addChunk('_cacheData = _cacheCollector_%(ID)s.response().getvalue()'%locals()) self.addChunk('_cacheItem_%(ID)s.setData(_cacheData)'%locals()) self.addWriteChunk('_cacheData') self.addChunk('del _cacheData') self.addChunk('del _cacheCollector_%(ID)s'%locals()) self.addChunk('del _orig_trans%(ID)s'%locals()) self.dedent() self.addChunk('## END CACHE REGION: '+ID) self.addChunk('') def nextCallRegionID(self): return self.nextCacheID() def startCallRegion(self, functionName, args, lineCol, regionTitle='CALL'): class CallDetails: pass callDetails = CallDetails() callDetails.ID = ID = self.nextCallRegionID() callDetails.functionName = functionName callDetails.args = args callDetails.lineCol = lineCol callDetails.usesKeywordArgs = False self._callRegionsStack.append((ID, callDetails)) # attrib of current methodCompiler self.addChunk('## START %(regionTitle)s REGION: '%locals() +ID +' of '+functionName +' at line %s, col %s'%lineCol + ' in the source.') self.addChunk('_orig_trans%(ID)s = trans'%locals()) self.addChunk('_wasBuffering%(ID)s = self._CHEETAH__isBuffering'%locals()) self.addChunk('self._CHEETAH__isBuffering = True') self.addChunk('trans = _callCollector%(ID)s = DummyTransaction()'%locals()) self.addChunk('write = _callCollector%(ID)s.response().write'%locals()) def setCallArg(self, argName, lineCol): ID, callDetails = self._callRegionsStack[-1] if callDetails.usesKeywordArgs: self._endCallArg() else: callDetails.usesKeywordArgs = True self.addChunk('_callKws%(ID)s = {}'%locals()) self.addChunk('_currentCallArgname%(ID)s = %(argName)r'%locals()) callDetails.currentArgname = argName def _endCallArg(self): ID, callDetails = self._callRegionsStack[-1] currCallArg = callDetails.currentArgname self.addChunk(('_callKws%(ID)s[%(currCallArg)r] =' ' _callCollector%(ID)s.response().getvalue()')%locals()) self.addChunk('del _callCollector%(ID)s'%locals()) self.addChunk('trans = _callCollector%(ID)s = DummyTransaction()'%locals()) self.addChunk('write = _callCollector%(ID)s.response().write'%locals()) def endCallRegion(self, regionTitle='CALL'): ID, callDetails = self._callRegionsStack[-1] functionName, initialKwArgs, lineCol = ( callDetails.functionName, callDetails.args, callDetails.lineCol) def reset(ID=ID): self.addChunk('trans = _orig_trans%(ID)s'%locals()) self.addChunk('write = trans.response().write') self.addChunk('self._CHEETAH__isBuffering = _wasBuffering%(ID)s '%locals()) self.addChunk('del _wasBuffering%(ID)s'%locals()) self.addChunk('del _orig_trans%(ID)s'%locals()) if not callDetails.usesKeywordArgs: reset() self.addChunk('_callArgVal%(ID)s = _callCollector%(ID)s.response().getvalue()'%locals()) self.addChunk('del _callCollector%(ID)s'%locals()) if initialKwArgs: initialKwArgs = ', '+initialKwArgs self.addFilteredChunk('%(functionName)s(_callArgVal%(ID)s%(initialKwArgs)s)'%locals()) self.addChunk('del _callArgVal%(ID)s'%locals()) else: if initialKwArgs: initialKwArgs = initialKwArgs+', ' self._endCallArg() reset() self.addFilteredChunk('%(functionName)s(%(initialKwArgs)s**_callKws%(ID)s)'%locals()) self.addChunk('del _callKws%(ID)s'%locals()) self.addChunk('## END %(regionTitle)s REGION: '%locals() +ID +' of '+functionName +' at line %s, col %s'%lineCol + ' in the source.') self.addChunk('') self._callRegionsStack.pop() # attrib of current methodCompiler def nextCaptureRegionID(self): return self.nextCacheID() def startCaptureRegion(self, assignTo, lineCol): class CaptureDetails: pass captureDetails = CaptureDetails() captureDetails.ID = ID = self.nextCaptureRegionID() captureDetails.assignTo = assignTo captureDetails.lineCol = lineCol self._captureRegionsStack.append((ID,captureDetails)) # attrib of current methodCompiler self.addChunk('## START CAPTURE REGION: '+ID +' '+assignTo +' at line %s, col %s'%lineCol + ' in the source.') self.addChunk('_orig_trans%(ID)s = trans'%locals()) self.addChunk('_wasBuffering%(ID)s = self._CHEETAH__isBuffering'%locals()) self.addChunk('self._CHEETAH__isBuffering = True') self.addChunk('trans = _captureCollector%(ID)s = DummyTransaction()'%locals()) self.addChunk('write = _captureCollector%(ID)s.response().write'%locals()) def endCaptureRegion(self): ID, captureDetails = self._captureRegionsStack.pop() assignTo, lineCol = (captureDetails.assignTo, captureDetails.lineCol) self.addChunk('trans = _orig_trans%(ID)s'%locals()) self.addChunk('write = trans.response().write') self.addChunk('self._CHEETAH__isBuffering = _wasBuffering%(ID)s '%locals()) self.addChunk('%(assignTo)s = _captureCollector%(ID)s.response().getvalue()'%locals()) self.addChunk('del _orig_trans%(ID)s'%locals()) self.addChunk('del _captureCollector%(ID)s'%locals()) self.addChunk('del _wasBuffering%(ID)s'%locals()) def setErrorCatcher(self, errorCatcherName): self.turnErrorCatcherOn() self.addChunk('if self._CHEETAH__errorCatchers.has_key("' + errorCatcherName + '"):') self.indent() self.addChunk('self._CHEETAH__errorCatcher = self._CHEETAH__errorCatchers["' + errorCatcherName + '"]') self.dedent() self.addChunk('else:') self.indent() self.addChunk('self._CHEETAH__errorCatcher = self._CHEETAH__errorCatchers["' + errorCatcherName + '"] = ErrorCatchers.' + errorCatcherName + '(self)' ) self.dedent() def nextFilterRegionID(self): return self.nextCacheID() def setFilter(self, theFilter, isKlass): class FilterDetails: pass filterDetails = FilterDetails() filterDetails.ID = ID = self.nextFilterRegionID() filterDetails.theFilter = theFilter filterDetails.isKlass = isKlass self._filterRegionsStack.append((ID, filterDetails)) # attrib of current methodCompiler self.addChunk('_orig_filter%(ID)s = _filter'%locals()) if isKlass: self.addChunk('_filter = self._CHEETAH__currentFilter = ' + theFilter.strip() + '(self).filter') else: if theFilter.lower() == 'none': self.addChunk('_filter = self._CHEETAH__initialFilter') else: # is string representing the name of a builtin filter self.addChunk('filterName = ' + repr(theFilter)) self.addChunk('if self._CHEETAH__filters.has_key("' + theFilter + '"):') self.indent() self.addChunk('_filter = self._CHEETAH__currentFilter = self._CHEETAH__filters[filterName]') self.dedent() self.addChunk('else:') self.indent() self.addChunk('_filter = self._CHEETAH__currentFilter' +' = \\\n\t\t\tself._CHEETAH__filters[filterName] = ' + 'getattr(self._CHEETAH__filtersLib, filterName)(self).filter') self.dedent() def closeFilterBlock(self): ID, filterDetails = self._filterRegionsStack.pop() #self.addChunk('_filter = self._CHEETAH__initialFilter') self.addChunk('_filter = _orig_filter%(ID)s'%locals()) class AutoMethodCompiler(MethodCompiler): def _setupState(self): MethodCompiler._setupState(self) self._argStringList = [ ("self",None) ] self._streamingEnabled = True def _useKWsDictArgForPassingTrans(self): alreadyHasTransArg = [argname for argname,defval in self._argStringList if argname=='trans'] return (self.methodName()!='respond' and not alreadyHasTransArg and self.setting('useKWsDictArgForPassingTrans')) def cleanupState(self): MethodCompiler.cleanupState(self) self.commitStrConst() if self._cacheRegionsStack: self.endCacheRegion() if self._callRegionsStack: self.endCallRegion() if self._streamingEnabled: kwargsName = None positionalArgsListName = None for argname,defval in self._argStringList: if argname.strip().startswith('**'): kwargsName = argname.strip().replace('**','') break elif argname.strip().startswith('*'): positionalArgsListName = argname.strip().replace('*','') if not kwargsName and self._useKWsDictArgForPassingTrans(): kwargsName = 'KWS' self.addMethArg('**KWS', None) self._kwargsName = kwargsName if not self._useKWsDictArgForPassingTrans(): if not kwargsName and not positionalArgsListName: self.addMethArg('trans', 'None') else: self._streamingEnabled = False self._indentLev = self.setting('initialMethIndentLevel') mainBodyChunks = self._methodBodyChunks self._methodBodyChunks = [] self._addAutoSetupCode() self._methodBodyChunks.extend(mainBodyChunks) self._addAutoCleanupCode() def _addAutoSetupCode(self): if self._initialMethodComment: self.addChunk(self._initialMethodComment) if self._streamingEnabled: if self._useKWsDictArgForPassingTrans() and self._kwargsName: self.addChunk('trans = %s.get("trans")'%self._kwargsName) self.addChunk('if (not trans and not self._CHEETAH__isBuffering' ' and not callable(self.transaction)):') self.indent() self.addChunk('trans = self.transaction' ' # is None unless self.awake() was called') self.dedent() self.addChunk('if not trans:') self.indent() self.addChunk('trans = DummyTransaction()') if self.setting('autoAssignDummyTransactionToSelf'): self.addChunk('self.transaction = trans') self.addChunk('_dummyTrans = True') self.dedent() self.addChunk('else: _dummyTrans = False') else: self.addChunk('trans = DummyTransaction()') self.addChunk('_dummyTrans = True') self.addChunk('write = trans.response().write') if self.setting('useNameMapper'): argNames = [arg[0] for arg in self._argStringList] allowSearchListAsMethArg = self.setting('allowSearchListAsMethArg') if allowSearchListAsMethArg and 'SL' in argNames: pass elif allowSearchListAsMethArg and 'searchList' in argNames: self.addChunk('SL = searchList') else: self.addChunk('SL = self._CHEETAH__searchList') if self.setting('useFilters'): self.addChunk('_filter = self._CHEETAH__currentFilter') self.addChunk('') self.addChunk("#" *40) self.addChunk('## START - generated method body') self.addChunk('') def _addAutoCleanupCode(self): self.addChunk('') self.addChunk("#" *40) self.addChunk('## END - generated method body') self.addChunk('') if not self._isGenerator: self.addStop() self.addChunk('') def addStop(self, expr=None): self.addChunk('return _dummyTrans and trans.response().getvalue() or ""') def addMethArg(self, name, defVal=None): self._argStringList.append( (name,defVal) ) def methodSignature(self): argStringChunks = [] for arg in self._argStringList: chunk = arg[0] if not arg[1] == None: chunk += '=' + arg[1] argStringChunks.append(chunk) argString = (', ').join(argStringChunks) output = [] if self._decorator: output.append(self._indent + self._decorator+'\n') output.append(self._indent + "def " + self.methodName() + "(" + argString + "):\n\n") return ''.join(output) ################################################## ## CLASS COMPILERS _initMethod_initCheetah = """\ if not self._CHEETAH__instanceInitialized: cheetahKWArgs = {} allowedKWs = 'searchList namespaces filter filtersLib errorCatcher'.split() for k,v in KWs.items(): if k in allowedKWs: cheetahKWArgs[k] = v self._initCheetahInstance(**cheetahKWArgs) """.replace('\n','\n'+' '*8) class ClassCompiler(GenUtils): methodCompilerClass = AutoMethodCompiler methodCompilerClassForInit = MethodCompiler def __init__(self, className, mainMethodName='respond', moduleCompiler=None, fileName=None, settingsManager=None): self._settingsManager = settingsManager self._fileName = fileName self._className = className self._moduleCompiler = moduleCompiler self._mainMethodName = mainMethodName self._setupState() methodCompiler = self._spawnMethodCompiler( mainMethodName, initialMethodComment='## CHEETAH: main method generated for this template') self._setActiveMethodCompiler(methodCompiler) if fileName and self.setting('monitorSrcFile'): self._addSourceFileMonitoring(fileName) def setting(self, key): return self._settingsManager.setting(key) def __getattr__(self, name): """Provide access to the methods and attributes of the MethodCompiler at the top of the activeMethods stack: one-way namespace sharing WARNING: Use .setMethods to assign the attributes of the MethodCompiler from the methods of this class!!! or you will be assigning to attributes of this object instead.""" if self.__dict__.has_key(name): return self.__dict__[name] elif hasattr(self.__class__, name): return getattr(self.__class__, name) elif self._activeMethodsList and hasattr(self._activeMethodsList[-1], name): return getattr(self._activeMethodsList[-1], name) else: raise AttributeError, name def _setupState(self): self._classDef = None self._decoratorForNextMethod = None self._activeMethodsList = [] # stack while parsing/generating self._finishedMethodsList = [] # store by order self._methodsIndex = {} # store by name self._baseClass = 'Template' self._classDocStringLines = [] # printed after methods in the gen class def: self._generatedAttribs = ['_CHEETAH__instanceInitialized = False'] self._generatedAttribs.append('_CHEETAH_version = __CHEETAH_version__') self._generatedAttribs.append( '_CHEETAH_versionTuple = __CHEETAH_versionTuple__') self._generatedAttribs.append('_CHEETAH_genTime = __CHEETAH_genTime__') self._generatedAttribs.append('_CHEETAH_genTimestamp = __CHEETAH_genTimestamp__') self._generatedAttribs.append('_CHEETAH_src = __CHEETAH_src__') self._generatedAttribs.append( '_CHEETAH_srcLastModified = __CHEETAH_srcLastModified__') if self.setting('templateMetaclass'): self._generatedAttribs.append('__metaclass__ = '+self.setting('templateMetaclass')) self._initMethChunks = [] self._blockMetaData = {} self._errorCatcherCount = 0 self._placeholderToErrorCatcherMap = {} def cleanupState(self): while self._activeMethodsList: methCompiler = self._popActiveMethodCompiler() self._swallowMethodCompiler(methCompiler) self._setupInitMethod() if self._mainMethodName == 'respond': if self.setting('setup__str__method'): self._generatedAttribs.append('def __str__(self): return self.respond()') self.addAttribute('_mainCheetahMethod_for_' + self._className + '= ' + repr(self._mainMethodName) ) def _setupInitMethod(self): __init__ = self._spawnMethodCompiler('__init__', klass=self.methodCompilerClassForInit) __init__.setMethodSignature("def __init__(self, *args, **KWs)") __init__.addChunk("%s.__init__(self, *args, **KWs)" % self._baseClass) __init__.addChunk(_initMethod_initCheetah%{'className':self._className}) for chunk in self._initMethChunks: __init__.addChunk(chunk) __init__.cleanupState() self._swallowMethodCompiler(__init__, pos=0) def _addSourceFileMonitoring(self, fileName): # @@TR: this stuff needs auditing for Cheetah 2.0 # the first bit is added to init self.addChunkToInit('self._filePath = ' + repr(fileName)) self.addChunkToInit('self._fileMtime = ' + str(getmtime(fileName)) ) # the rest is added to the main output method of the class ('mainMethod') self.addChunk('if exists(self._filePath) and ' + 'getmtime(self._filePath) > self._fileMtime:') self.indent() self.addChunk('self._compile(file=self._filePath, moduleName='+className + ')') self.addChunk( 'write(getattr(self, self._mainCheetahMethod_for_' + self._className + ')(trans=trans))') self.addStop() self.dedent() def setClassName(self, name): self._className = name def className(self): return self._className def setBaseClass(self, baseClassName): self._baseClass = baseClassName def setMainMethodName(self, methodName): if methodName == self._mainMethodName: return ## change the name in the methodCompiler and add new reference mainMethod = self._methodsIndex[self._mainMethodName] mainMethod.setMethodName(methodName) self._methodsIndex[methodName] = mainMethod ## make sure that fileUpdate code still works properly: chunkToChange = ('write(self.' + self._mainMethodName + '(trans=trans))') chunks = mainMethod._methodBodyChunks if chunkToChange in chunks: for i in range(len(chunks)): if chunks[i] == chunkToChange: chunks[i] = ('write(self.' + methodName + '(trans=trans))') ## get rid of the old reference and update self._mainMethodName del self._methodsIndex[self._mainMethodName] self._mainMethodName = methodName def setMainMethodArgs(self, argsList): mainMethodCompiler = self._methodsIndex[self._mainMethodName] for argName, defVal in argsList: mainMethodCompiler.addMethArg(argName, defVal) def _spawnMethodCompiler(self, methodName, klass=None, initialMethodComment=None): if klass is None: klass = self.methodCompilerClass decorator = None if self._decoratorForNextMethod: decorator = self._decoratorForNextMethod self._decoratorForNextMethod = None methodCompiler = klass(methodName, classCompiler=self, decorator=decorator, initialMethodComment=initialMethodComment) self._methodsIndex[methodName] = methodCompiler return methodCompiler def _setActiveMethodCompiler(self, methodCompiler): self._activeMethodsList.append(methodCompiler) def _getActiveMethodCompiler(self): return self._activeMethodsList[-1] def _popActiveMethodCompiler(self): return self._activeMethodsList.pop() def _swallowMethodCompiler(self, methodCompiler, pos=None): methodCompiler.cleanupState() if pos==None: self._finishedMethodsList.append( methodCompiler ) else: self._finishedMethodsList.insert(pos, methodCompiler) return methodCompiler def startMethodDef(self, methodName, argsList, parserComment): methodCompiler = self._spawnMethodCompiler( methodName, initialMethodComment=parserComment) self._setActiveMethodCompiler(methodCompiler) for argName, defVal in argsList: methodCompiler.addMethArg(argName, defVal) def _finishedMethods(self): return self._finishedMethodsList def addDecorator(self, decoratorExpr): """Set the decorator to be used with the next method in the source. See _spawnMethodCompiler() and MethodCompiler for the details of how this is used. """ self._decoratorForNextMethod = decoratorExpr def addClassDocString(self, line): self._classDocStringLines.append( line.replace('%','%%')) def addChunkToInit(self,chunk): self._initMethChunks.append(chunk) def addAttribute(self, attribExpr): ## first test to make sure that the user hasn't used any fancy Cheetah syntax # (placeholders, directives, etc.) inside the expression if attribExpr.find('VFN(') != -1 or attribExpr.find('VFFSL(') != -1: raise ParseError(self, 'Invalid #attr directive.' + ' It should only contain simple Python literals.') ## now add the attribute self._generatedAttribs.append(attribExpr) def addErrorCatcherCall(self, codeChunk, rawCode='', lineCol=''): if self._placeholderToErrorCatcherMap.has_key(rawCode): methodName = self._placeholderToErrorCatcherMap[rawCode] if not self.setting('outputRowColComments'): self._methodsIndex[methodName].addMethDocString( 'plus at line %s, col %s'%lineCol) return methodName self._errorCatcherCount += 1 methodName = '__errorCatcher' + str(self._errorCatcherCount) self._placeholderToErrorCatcherMap[rawCode] = methodName catcherMeth = self._spawnMethodCompiler( methodName, klass=MethodCompiler, initialMethodComment=('## CHEETAH: Generated from ' + rawCode + ' at line %s, col %s'%lineCol + '.') ) catcherMeth.setMethodSignature('def ' + methodName + '(self, localsDict={})') # is this use of localsDict right? catcherMeth.addChunk('try:') catcherMeth.indent() catcherMeth.addChunk("return eval('''" + codeChunk + "''', globals(), localsDict)") catcherMeth.dedent() catcherMeth.addChunk('except self._CHEETAH__errorCatcher.exceptions(), e:') catcherMeth.indent() catcherMeth.addChunk("return self._CHEETAH__errorCatcher.warn(exc_val=e, code= " + repr(codeChunk) + " , rawCode= " + repr(rawCode) + " , lineCol=" + str(lineCol) +")") catcherMeth.cleanupState() self._swallowMethodCompiler(catcherMeth) return methodName def closeDef(self): self.commitStrConst() methCompiler = self._popActiveMethodCompiler() self._swallowMethodCompiler(methCompiler) def closeBlock(self): self.commitStrConst() methCompiler = self._popActiveMethodCompiler() methodName = methCompiler.methodName() if self.setting('includeBlockMarkers'): endMarker = self.setting('blockMarkerEnd') methCompiler.addStrConst(endMarker[0] + methodName + endMarker[1]) self._swallowMethodCompiler(methCompiler) #metaData = self._blockMetaData[methodName] #rawDirective = metaData['raw'] #lineCol = metaData['lineCol'] ## insert the code to call the block, caching if #cache directive is on codeChunk = 'self.' + methodName + '(trans=trans)' self.addChunk(codeChunk) #self.appendToPrevChunk(' # generated from ' + repr(rawDirective) ) #if self.setting('outputRowColComments'): # self.appendToPrevChunk(' at line %s, col %s' % lineCol + '.') ## code wrapping methods def classDef(self): if self._classDef: return self._classDef else: return self.wrapClassDef() __str__ = classDef def wrapClassDef(self): ind = self.setting('indentationStep') classDefChunks = [self.classSignature(), self.classDocstring(), ] def addMethods(): classDefChunks.extend([ ind + '#'*50, ind + '## CHEETAH GENERATED METHODS', '\n', self.methodDefs(), ]) def addAttributes(): classDefChunks.extend([ ind + '#'*50, ind + '## CHEETAH GENERATED ATTRIBUTES', '\n', self.attributes(), ]) if self.setting('outputMethodsBeforeAttributes'): addMethods() addAttributes() else: addAttributes() addMethods() classDef = '\n'.join(classDefChunks) self._classDef = classDef return classDef def classSignature(self): return "class %s(%s):" % (self.className(), self._baseClass) def classDocstring(self): if not self._classDocStringLines: return '' ind = self.setting('indentationStep') docStr = ('%(ind)s"""\n%(ind)s' + '\n%(ind)s'.join(self._classDocStringLines) + '\n%(ind)s"""\n' ) % {'ind':ind} return docStr def methodDefs(self): methodDefs = [str(methGen) for methGen in self._finishedMethods() ] return '\n\n'.join(methodDefs) def attributes(self): attribs = [self.setting('indentationStep') + str(attrib) for attrib in self._generatedAttribs ] return '\n\n'.join(attribs) class AutoClassCompiler(ClassCompiler): pass ################################################## ## MODULE COMPILERS class ModuleCompiler(SettingsManager, GenUtils): parserClass = Parser classCompilerClass = AutoClassCompiler def __init__(self, source=None, file=None, moduleName='DynamicallyCompiledCheetahTemplate', mainClassName=None, # string mainMethodName=None, # string baseclassName=None, # string extraImportStatements=None, # list of strings settings=None # dict ): SettingsManager.__init__(self) if settings: self.updateSettings(settings) # disable useStackFrames if the C version of NameMapper isn't compiled # it's painfully slow in the Python version and bites Windows users all # the time: if not NameMapper.C_VERSION: if not sys.platform.startswith('java'): warnings.warn( "\nYou don't have the C version of NameMapper installed! " "I'm disabling Cheetah's useStackFrames option as it is " "painfully slow with the Python version of NameMapper. " "You should get a copy of Cheetah with the compiled C version of NameMapper." ) self.setSetting('useStackFrames', False) self._compiled = False self._moduleName = moduleName if not mainClassName: self._mainClassName = moduleName else: self._mainClassName = mainClassName self._mainMethodNameArg = mainMethodName if mainMethodName: self.setSetting('mainMethodName', mainMethodName) self._baseclassName = baseclassName self._filePath = None self._fileMtime = None if source and file: raise TypeError("Cannot compile from a source string AND file.") elif isinstance(file, types.StringType) or isinstance(file, types.UnicodeType): # it's a filename. f = open(file) # Raises IOError. source = f.read() f.close() self._filePath = file self._fileMtime = os.path.getmtime(file) elif hasattr(file, 'read'): source = file.read() # Can't set filename or mtime--they're not accessible. elif file: raise TypeError("'file' argument must be a filename string or file-like object") if self._filePath: self._fileDirName, self._fileBaseName = os.path.split(self._filePath) self._fileBaseNameRoot, self._fileBaseNameExt = \ os.path.splitext(self._fileBaseName) if not (isinstance(source, str) or isinstance(source, unicode)): source = str( source ) # by converting to string here we allow objects such as other Templates # to be passed in # Handle the #indent directive by converting it to other directives. # (Over the long term we'll make it a real directive.) if source == "": warnings.warn("You supplied an empty string for the source!", ) if source.find('#indent') != -1: #@@TR: undocumented hack source = indentize(source) self._parser = self.parserClass(source, filename=self._filePath, compiler=self) self._setupCompilerState() def __getattr__(self, name): """Provide one-way access to the methods and attributes of the ClassCompiler, and thereby the MethodCompilers as well. WARNING: Use .setMethods to assign the attributes of the ClassCompiler from the methods of this class!!! or you will be assigning to attributes of this object instead. """ if self.__dict__.has_key(name): return self.__dict__[name] elif hasattr(self.__class__, name): return getattr(self.__class__, name) elif self._activeClassesList and hasattr(self._activeClassesList[-1], name): return getattr(self._activeClassesList[-1], name) else: raise AttributeError, name def _initializeSettings(self): self.updateSettings(copy.deepcopy(DEFAULT_COMPILER_SETTINGS)) def _setupCompilerState(self): self._activeClassesList = [] self._finishedClassesList = [] # listed by ordered self._finishedClassIndex = {} # listed by name self._moduleDef = None self._moduleShBang = '#!/usr/bin/env python' self._moduleEncoding = 'ascii' self._moduleEncodingStr = '' self._moduleHeaderLines = [] self._moduleDocStringLines = [] self._specialVars = {} self._importStatements = [ "import sys", "import os", "import os.path", "from os.path import getmtime, exists", "import time", "import types", "import __builtin__", "from Cheetah.Version import MinCompatibleVersion as RequiredCheetahVersion", "from Cheetah.Version import MinCompatibleVersionTuple as RequiredCheetahVersionTuple", "from Cheetah.Template import Template", "from Cheetah.DummyTransaction import DummyTransaction", "from Cheetah.NameMapper import NotFound, valueForName, valueFromSearchList, valueFromFrameOrSearchList", "from Cheetah.CacheRegion import CacheRegion", "import Cheetah.Filters as Filters", "import Cheetah.ErrorCatchers as ErrorCatchers", ] self._importedVarNames = ['sys', 'os', 'os.path', 'time', 'types', 'Template', 'DummyTransaction', 'NotFound', 'Filters', 'ErrorCatchers', 'CacheRegion', ] self._moduleConstants = [ "try:", " True, False", "except NameError:", " True, False = (1==1), (1==0)", "VFFSL=valueFromFrameOrSearchList", "VFSL=valueFromSearchList", "VFN=valueForName", "currentTime=time.time", ] def compile(self): classCompiler = self._spawnClassCompiler(self._mainClassName) if self._baseclassName: classCompiler.setBaseClass(self._baseclassName) self._addActiveClassCompiler(classCompiler) self._parser.parse() self._swallowClassCompiler(self._popActiveClassCompiler()) self._compiled = True self._parser.cleanup() def _spawnClassCompiler(self, className, klass=None): if klass is None: klass = self.classCompilerClass classCompiler = klass(className, moduleCompiler=self, mainMethodName=self.setting('mainMethodName'), fileName=self._filePath, settingsManager=self, ) return classCompiler def _addActiveClassCompiler(self, classCompiler): self._activeClassesList.append(classCompiler) def _getActiveClassCompiler(self): return self._activeClassesList[-1] def _popActiveClassCompiler(self): return self._activeClassesList.pop() def _swallowClassCompiler(self, classCompiler): classCompiler.cleanupState() self._finishedClassesList.append( classCompiler ) self._finishedClassIndex[classCompiler.className()] = classCompiler return classCompiler def _finishedClasses(self): return self._finishedClassesList def importedVarNames(self): return self._importedVarNames def addImportedVarNames(self, varNames): self._importedVarNames.extend(varNames) ## methods for adding stuff to the module and class definitions def setBaseClass(self, baseClassName): if self._mainMethodNameArg: self.setMainMethodName(self._mainMethodNameArg) else: self.setMainMethodName(self.setting('mainMethodNameForSubclasses')) if self.setting('handlerForExtendsDirective'): handler = self.setting('handlerForExtendsDirective') baseClassName = handler(compiler=self, baseClassName=baseClassName) self._getActiveClassCompiler().setBaseClass(baseClassName) elif (not self.setting('autoImportForExtendsDirective') or baseClassName=='object' or baseClassName in self.importedVarNames()): self._getActiveClassCompiler().setBaseClass(baseClassName) # no need to import else: ################################################## ## If the #extends directive contains a classname or modulename that isn't # in self.importedVarNames() already, we assume that we need to add # an implied 'from ModName import ClassName' where ModName == ClassName. # - This is the case in WebKit servlet modules. # - We also assume that the final . separates the classname from the # module name. This might break if people do something really fancy # with their dots and namespaces. chunks = baseClassName.split('.') if len(chunks)==1: self._getActiveClassCompiler().setBaseClass(baseClassName) if baseClassName not in self.importedVarNames(): modName = baseClassName # we assume the class name to be the module name # and that it's not a builtin: importStatement = "from %s import %s" % (modName, baseClassName) self.addImportStatement(importStatement) self.addImportedVarNames( [baseClassName,] ) else: needToAddImport = True modName = chunks[0] #print chunks, ':', self.importedVarNames() for chunk in chunks[1:-1]: if modName in self.importedVarNames(): needToAddImport = False finalBaseClassName = baseClassName.replace(modName+'.', '') self._getActiveClassCompiler().setBaseClass(finalBaseClassName) break else: modName += '.'+chunk if needToAddImport: modName, finalClassName = '.'.join(chunks[:-1]), chunks[-1] #if finalClassName != chunks[:-1][-1]: if finalClassName != chunks[-2]: # we assume the class name to be the module name modName = '.'.join(chunks) self._getActiveClassCompiler().setBaseClass(finalClassName) importStatement = "from %s import %s" % (modName, finalClassName) self.addImportStatement(importStatement) self.addImportedVarNames( [finalClassName,] ) def setCompilerSetting(self, key, valueExpr): self.setSetting(key, eval(valueExpr) ) self._parser.configureParser() def setCompilerSettings(self, keywords, settingsStr): KWs = keywords merge = True if 'nomerge' in KWs: merge = False if 'reset' in KWs: # @@TR: this is actually caught by the parser at the moment. # subject to change in the future self._initializeSettings() self._parser.configureParser() return elif 'python' in KWs: settingsReader = self.updateSettingsFromPySrcStr # this comes from SettingsManager else: # this comes from SettingsManager settingsReader = self.updateSettingsFromConfigStr settingsReader(settingsStr) self._parser.configureParser() def setShBang(self, shBang): self._moduleShBang = shBang def setModuleEncoding(self, encoding): self._moduleEncoding = encoding self._moduleEncodingStr = '# -*- coding: %s -*-' %encoding def getModuleEncoding(self): return self._moduleEncoding def addModuleHeader(self, line): """Adds a header comment to the top of the generated module. """ self._moduleHeaderLines.append(line) def addModuleDocString(self, line): """Adds a line to the generated module docstring. """ self._moduleDocStringLines.append(line) def addModuleGlobal(self, line): """Adds a line of global module code. It is inserted after the import statements and Cheetah default module constants. """ self._moduleConstants.append(line) def addSpecialVar(self, basename, contents, includeUnderscores=True): """Adds module __specialConstant__ to the module globals. """ name = includeUnderscores and '__'+basename+'__' or basename self._specialVars[name] = contents.strip() def addImportStatement(self, impStatement): self._importStatements.append(impStatement) #@@TR 2005-01-01: there's almost certainly a cleaner way to do this! importVarNames = impStatement[impStatement.find('import') + len('import'):].split(',') importVarNames = [var.split()[-1] for var in importVarNames] # handles aliases importVarNames = [var for var in importVarNames if var!='*'] self.addImportedVarNames(importVarNames) #used by #extend for auto-imports def addAttribute(self, attribName, expr): self._getActiveClassCompiler().addAttribute(attribName + ' =' + expr) def addComment(self, comm): if re.match(r'#+$',comm): # skip bar comments return specialVarMatch = specialVarRE.match(comm) if specialVarMatch: # @@TR: this is a bit hackish and is being replaced with # #set module varName = ... return self.addSpecialVar(specialVarMatch.group(1), comm[specialVarMatch.end():]) elif comm.startswith('doc:'): addLine = self.addMethDocString comm = comm[len('doc:'):].strip() elif comm.startswith('doc-method:'): addLine = self.addMethDocString comm = comm[len('doc-method:'):].strip() elif comm.startswith('doc-module:'): addLine = self.addModuleDocString comm = comm[len('doc-module:'):].strip() elif comm.startswith('doc-class:'): addLine = self.addClassDocString comm = comm[len('doc-class:'):].strip() elif comm.startswith('header:'): addLine = self.addModuleHeader comm = comm[len('header:'):].strip() else: addLine = self.addMethComment for line in comm.splitlines(): addLine(line) ## methods for module code wrapping def getModuleCode(self): if not self._compiled: self.compile() if self._moduleDef: return self._moduleDef else: return self.wrapModuleDef() __str__ = getModuleCode def wrapModuleDef(self): self.addSpecialVar('CHEETAH_docstring', self.setting('defDocStrMsg')) self.addModuleGlobal('__CHEETAH_version__ = %r'%Version) self.addModuleGlobal('__CHEETAH_versionTuple__ = %r'%(VersionTuple,)) self.addModuleGlobal('__CHEETAH_genTime__ = %r'%time.time()) self.addModuleGlobal('__CHEETAH_genTimestamp__ = %r'%self.timestamp()) if self._filePath: timestamp = self.timestamp(self._fileMtime) self.addModuleGlobal('__CHEETAH_src__ = %r'%self._filePath) self.addModuleGlobal('__CHEETAH_srcLastModified__ = %r'%timestamp) else: self.addModuleGlobal('__CHEETAH_src__ = None') self.addModuleGlobal('__CHEETAH_srcLastModified__ = None') moduleDef = """%(header)s %(docstring)s ################################################## ## DEPENDENCIES %(imports)s ################################################## ## MODULE CONSTANTS %(constants)s %(specialVars)s if __CHEETAH_versionTuple__ < RequiredCheetahVersionTuple: raise AssertionError( 'This template was compiled with Cheetah version' ' %%s. Templates compiled before version %%s must be recompiled.'%%( __CHEETAH_version__, RequiredCheetahVersion)) ################################################## ## CLASSES %(classes)s ## END CLASS DEFINITION if not hasattr(%(mainClassName)s, '_initCheetahAttributes'): templateAPIClass = getattr(%(mainClassName)s, '_CHEETAH_templateClass', Template) templateAPIClass._addCheetahPlumbingCodeToClass(%(mainClassName)s) %(footer)s """ % {'header':self.moduleHeader(), 'docstring':self.moduleDocstring(), 'specialVars':self.specialVars(), 'imports':self.importStatements(), 'constants':self.moduleConstants(), 'classes':self.classDefs(), 'footer':self.moduleFooter(), 'mainClassName':self._mainClassName, } self._moduleDef = moduleDef return moduleDef def timestamp(self, theTime=None): if not theTime: theTime = time.time() return time.asctime(time.localtime(theTime)) def moduleHeader(self): header = self._moduleShBang + '\n' header += self._moduleEncodingStr + '\n' if self._moduleHeaderLines: offSet = self.setting('commentOffset') header += ( '#' + ' '*offSet + ('\n#'+ ' '*offSet).join(self._moduleHeaderLines) + '\n') return header def moduleDocstring(self): if not self._moduleDocStringLines: return '' return ('"""' + '\n'.join(self._moduleDocStringLines) + '\n"""\n') def specialVars(self): chunks = [] theVars = self._specialVars keys = theVars.keys() keys.sort() for key in keys: chunks.append(key + ' = ' + repr(theVars[key]) ) return '\n'.join(chunks) def importStatements(self): return '\n'.join(self._importStatements) def moduleConstants(self): return '\n'.join(self._moduleConstants) def classDefs(self): classDefs = [str(klass) for klass in self._finishedClasses() ] return '\n\n'.join(classDefs) def moduleFooter(self): return """ # CHEETAH was developed by <NAME> and <NAME> # with code, advice and input from many other volunteers. # For more information visit http://www.CheetahTemplate.org/ ################################################## ## if run from command line: if __name__ == '__main__': from Cheetah.TemplateCmdLineIface import CmdLineIface CmdLineIface(templateObj=%(className)s()).run() """ % {'className':self._mainClassName} ################################################## ## Make Compiler an alias for ModuleCompiler Compiler = ModuleCompiler
2.453125
2
tests/simple_cmd_checks.py
Rhoynar/plmn-regression
11
11317
<filename>tests/simple_cmd_checks.py # -*- coding: utf-8 -*- import compat import unittest import sys from plmn.utils import * from plmn.results import * from plmn.modem_cmds import * from plmn.simple_cmds import * class SimpleCmdChecks(unittest.TestCase): def test_simple_status_cmd(self): SimpleCmds.simple_status_cmd() assert Results.get_state('Simple Status') is not None def test_simple_status_get_reg_status(self): SimpleCmds.simple_status_get_reg_status() def test_simple_status_is_registered(self): assert SimpleCmds.simple_status_is_registered() is True def test_simple_status_is_home(self): assert SimpleCmds.simple_status_is_home() is True assert SimpleCmds.simple_status_is_roaming() is False @unittest.skip('Skipping this test since this is only applicable in connected state') def test_simple_status_is_connected(self): assert SimpleCmds.simple_status_is_connected() is True @unittest.skip('Skipping this as this is only applicable for Roaming scenario') def test_simple_status_is_roaming(self): assert SimpleCmds.simple_status_is_roaming() is True if __name__ == '__main__': nargs = process_args() unittest.main(argv=sys.argv[nargs:], exit=False) Results.print_results()
2.578125
3
mogan/tests/unit/notifications/test_notification.py
GURUIFENG9139/rocky-mogan
0
11318
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections import mock from oslo_versionedobjects import fixture as object_fixture from mogan.notifications import base as notification_base from mogan.notifications.objects import base as notification from mogan.objects import base from mogan.objects import fields from mogan.objects import server as server_obj from mogan.tests import base as test_base from mogan.tests.unit.db import utils as db_utils class TestNotificationBase(test_base.TestCase): @base.MoganObjectRegistry.register_if(False) class TestObject(base.MoganObject): VERSION = '1.0' fields = { 'field_1': fields.StringField(), 'field_2': fields.IntegerField(), 'not_important_field': fields.IntegerField(), } @base.MoganObjectRegistry.register_if(False) class TestNotificationPayload(notification.NotificationPayloadBase): VERSION = '1.0' SCHEMA = { 'field_1': ('source_field', 'field_1'), 'field_2': ('source_field', 'field_2'), } fields = { 'extra_field': fields.StringField(), # filled by ctor 'field_1': fields.StringField(), # filled by the schema 'field_2': fields.IntegerField(), # filled by the schema } def populate_schema(self, source_field): super(TestNotificationBase.TestNotificationPayload, self).populate_schema(source_field=source_field) @base.MoganObjectRegistry.register_if(False) class TestNotificationPayloadEmptySchema( notification.NotificationPayloadBase): VERSION = '1.0' fields = { 'extra_field': fields.StringField(), # filled by ctor } @notification.notification_sample('test-update-1.json') @notification.notification_sample('test-update-2.json') @base.MoganObjectRegistry.register_if(False) class TestNotification(notification.NotificationBase): VERSION = '1.0' fields = { 'payload': fields.ObjectField('TestNotificationPayload') } @base.MoganObjectRegistry.register_if(False) class TestNotificationEmptySchema(notification.NotificationBase): VERSION = '1.0' fields = { 'payload': fields.ObjectField('TestNotificationPayloadEmptySchema') } expected_payload = { 'mogan_object.name': 'TestNotificationPayload', 'mogan_object.data': { 'extra_field': 'test string', 'field_1': 'test1', 'field_2': 42}, 'mogan_object.version': '1.0', 'mogan_object.namespace': 'mogan'} def setUp(self): super(TestNotificationBase, self).setUp() self.my_obj = self.TestObject(field_1='test1', field_2=42, not_important_field=13) self.payload = self.TestNotificationPayload( extra_field='test string') self.payload.populate_schema(source_field=self.my_obj) self.notification = self.TestNotification( event_type=notification.EventType( object='test_object', action=fields.NotificationAction.UPDATE, phase=fields.NotificationPhase.START), publisher=notification.NotificationPublisher( host='fake-host', binary='mogan-fake'), priority=fields.NotificationPriority.INFO, payload=self.payload) def _verify_notification(self, mock_notifier, mock_context, expected_event_type, expected_payload): mock_notifier.prepare.assert_called_once_with( publisher_id='mogan-fake:fake-host') mock_notify = mock_notifier.prepare.return_value.info self.assertTrue(mock_notify.called) self.assertEqual(mock_notify.call_args[0][0], mock_context) self.assertEqual(mock_notify.call_args[1]['event_type'], expected_event_type) actual_payload = mock_notify.call_args[1]['payload'] self.assertJsonEqual(expected_payload, actual_payload) @mock.patch('mogan.common.rpc.NOTIFIER') def test_emit_notification(self, mock_notifier): mock_context = mock.Mock() mock_context.to_dict.return_value = {} self.notification.emit(mock_context) self._verify_notification( mock_notifier, mock_context, expected_event_type='test_object.update.start', expected_payload=self.expected_payload) @mock.patch('mogan.common.rpc.NOTIFIER') def test_emit_with_host_and_binary_as_publisher(self, mock_notifier): noti = self.TestNotification( event_type=notification.EventType( object='test_object', action=fields.NotificationAction.UPDATE), publisher=notification.NotificationPublisher( host='fake-host', binary='mogan-fake'), priority=fields.NotificationPriority.INFO, payload=self.payload) mock_context = mock.Mock() mock_context.to_dict.return_value = {} noti.emit(mock_context) self._verify_notification( mock_notifier, mock_context, expected_event_type='test_object.update', expected_payload=self.expected_payload) @mock.patch('mogan.common.rpc.NOTIFIER') def test_emit_event_type_without_phase(self, mock_notifier): noti = self.TestNotification( event_type=notification.EventType( object='test_object', action=fields.NotificationAction.UPDATE), publisher=notification.NotificationPublisher( host='fake-host', binary='mogan-fake'), priority=fields.NotificationPriority.INFO, payload=self.payload) mock_context = mock.Mock() mock_context.to_dict.return_value = {} noti.emit(mock_context) self._verify_notification( mock_notifier, mock_context, expected_event_type='test_object.update', expected_payload=self.expected_payload) @mock.patch('mogan.common.rpc.NOTIFIER') def test_not_possible_to_emit_if_not_populated(self, mock_notifier): non_populated_payload = self.TestNotificationPayload( extra_field='test string') noti = self.TestNotification( event_type=notification.EventType( object='test_object', action=fields.NotificationAction.UPDATE), publisher=notification.NotificationPublisher( host='fake-host', binary='mogan-fake'), priority=fields.NotificationPriority.INFO, payload=non_populated_payload) mock_context = mock.Mock() self.assertRaises(AssertionError, noti.emit, mock_context) mock_notifier.assert_not_called() @mock.patch('mogan.common.rpc.NOTIFIER') def test_empty_schema(self, mock_notifier): non_populated_payload = self.TestNotificationPayloadEmptySchema( extra_field='test string') noti = self.TestNotificationEmptySchema( event_type=notification.EventType( object='test_object', action=fields.NotificationAction.UPDATE), publisher=notification.NotificationPublisher( host='fake-host', binary='mogan-fake'), priority=fields.NotificationPriority.INFO, payload=non_populated_payload) mock_context = mock.Mock() mock_context.to_dict.return_value = {} noti.emit(mock_context) self._verify_notification( mock_notifier, mock_context, expected_event_type='test_object.update', expected_payload={ 'mogan_object.name': 'TestNotificationPayloadEmptySchema', 'mogan_object.data': {'extra_field': u'test string'}, 'mogan_object.version': '1.0', 'mogan_object.namespace': 'mogan'}) def test_sample_decorator(self): self.assertEqual(2, len(self.TestNotification.samples)) self.assertIn('test-update-1.json', self.TestNotification.samples) self.assertIn('test-update-2.json', self.TestNotification.samples) notification_object_data = { 'ServerPayload': '1.0-30fefa8478f1b9b35c66868377fb6dfd', 'ServerAddressesPayload': '1.0-69caf4c36f36756bb1f6970d093ee1f6', 'ServerActionPayload': '1.0-8dc4429afa34d86ab92c9387e3ccd0c3', 'ServerActionNotification': '1.0-20087e599436bd9db62ae1fb5e2dfef2', 'ExceptionPayload': '1.0-7c31986d8d78bed910c324965c431e18', 'EventType': '1.0-589894aac7c98fb640eca394f67ad621', 'NotificationPublisher': '1.0-4b0b0d662b21eeed0b23617f3f11794b' } class TestNotificationObjectVersions(test_base.TestCase): def setUp(self): super(test_base.TestCase, self).setUp() base.MoganObjectRegistry.register_notification_objects() def test_versions(self): noti_class = base.MoganObjectRegistry.notification_classes classes = {cls.__name__: [cls] for cls in noti_class} checker = object_fixture.ObjectVersionChecker(obj_classes=classes) # Compute the difference between actual fingerprints and # expect fingerprints. expect = actual = {} if there is no change. expect, actual = checker.test_hashes(notification_object_data) self.assertEqual(expect, actual, "Some objects fields or remotable methods have been " "modified. Please make sure the version of those " "objects have been bumped and then update " "expected_object_fingerprints with the new hashes. ") def test_notification_payload_version_depends_on_the_schema(self): @base.MoganObjectRegistry.register_if(False) class TestNotificationPayload(notification.NotificationPayloadBase): VERSION = '1.0' SCHEMA = { 'field_1': ('source_field', 'field_1'), 'field_2': ('source_field', 'field_2'), } fields = { 'extra_field': fields.StringField(), # filled by ctor 'field_1': fields.StringField(), # filled by the schema 'field_2': fields.IntegerField(), # filled by the schema } checker = object_fixture.ObjectVersionChecker( {'TestNotificationPayload': (TestNotificationPayload,)}) old_hash = checker.get_hashes(extra_data_func=get_extra_data) TestNotificationPayload.SCHEMA['field_3'] = ('source_field', 'field_3') new_hash = checker.get_hashes(extra_data_func=get_extra_data) self.assertNotEqual(old_hash, new_hash) def get_extra_data(obj_class): extra_data = tuple() # Get the SCHEMA items to add to the fingerprint # if we are looking at a notification if issubclass(obj_class, notification.NotificationPayloadBase): schema_data = collections.OrderedDict( sorted(obj_class.SCHEMA.items())) extra_data += (schema_data,) return extra_data class TestServerActionNotification(test_base.TestCase): @mock.patch('mogan.notifications.objects.server.' 'ServerActionNotification._emit') def test_send_version_server_action(self, mock_emit): # Make sure that the notification payload chooses the values in # server.flavor.$value instead of server.$value fake_server_values = db_utils.get_test_server() server = server_obj.Server(**fake_server_values) notification_base.notify_about_server_action( mock.MagicMock(), server, 'test-host', fields.NotificationAction.CREATE, fields.NotificationPhase.START, 'mogan-compute') self.assertEqual('server.create.start', mock_emit.call_args_list[0][1]['event_type']) self.assertEqual('mogan-compute:test-host', mock_emit.call_args_list[0][1]['publisher_id']) payload = mock_emit.call_args_list[0][1]['payload'][ 'mogan_object.data'] self.assertEqual(fake_server_values['uuid'], payload['uuid']) self.assertEqual(fake_server_values['flavor_uuid'], payload['flavor_uuid']) self.assertEqual(fake_server_values['status'], payload['status']) self.assertEqual(fake_server_values['user_id'], payload['user_id']) self.assertEqual(fake_server_values['availability_zone'], payload['availability_zone']) self.assertEqual(fake_server_values['name'], payload['name']) self.assertEqual(fake_server_values['image_uuid'], payload['image_uuid']) self.assertEqual(fake_server_values['project_id'], payload['project_id']) self.assertEqual(fake_server_values['description'], payload['description']) self.assertEqual(fake_server_values['power_state'], payload['power_state'])
1.890625
2
plash/macros/packagemanagers.py
0xflotus/plash
0
11319
from plash.eval import eval, register_macro, shell_escape_args @register_macro() def defpm(name, *lines): 'define a new package manager' @register_macro(name, group='package managers') @shell_escape_args def package_manager(*packages): if not packages: return sh_packages = ' '.join(pkg for pkg in packages) expanded_lines = [line.format(sh_packages) for line in lines] return eval([['run'] + expanded_lines]) package_manager.__doc__ = "install packages with {}".format(name) eval([[ 'defpm', 'apt', 'apt-get update', 'apt-get install -y {}', ], [ 'defpm', 'add-apt-repository', 'apt-get install software-properties-common', 'run add-apt-repository -y {}', ], [ 'defpm', 'apk', 'apk update', 'apk add {}', ], [ 'defpm', 'yum', 'yum install -y {}', ], [ 'defpm', 'dnf', 'dnf install -y {}', ], [ 'defpm', 'pip', 'pip install {}', ], [ 'defpm', 'pip3', 'pip3 install {}', ], [ 'defpm', 'npm', 'npm install -g {}', ], [ 'defpm', 'pacman', 'pacman -Sy --noconfirm {}', ], [ 'defpm', 'emerge', 'emerge {}', ]])
1.84375
2
app/schemas/email.py
waynesun09/notify-service
5
11320
<reponame>waynesun09/notify-service from typing import Optional, List from pydantic import BaseModel, EmailStr from . import result class EmailBase(BaseModel): email: Optional[EmailStr] = None class EmailSend(EmailBase): msg: str class EmailResult(BaseModel): pre_header: Optional[str] = None begin: Optional[str] = None content: List[result.Result] end: Optional[str] = None
2.328125
2
example.py
ErikPel/rankedchoicevoting
1
11321
<filename>example.py from rankedchoicevoting import Poll candidatesA = {"Bob": 0, "Sue": 0, "Bill": 0} #votes in array sorted by first choice to last choice votersA = { "a": ['Bob', 'Bill', 'Sue'], "b": ['Sue', 'Bob', 'Bill'], "c": ['Bill', 'Sue', 'Bob'], "d": ['Bob', 'Bill', 'Sue'], "f": ['Sue', 'Bob', 'Bill'] } election = Poll(candidatesA,votersA) election.addCandidate("Joe", 0) election.addVoter("g",['Joe','Bob']) print("Winner: " + election.getPollResults())
3.5625
4
DeployScript.py
junoteam/TelegramBot
3
11322
<reponame>junoteam/TelegramBot<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- # -*- author: Alex -*- from Centos6_Bit64 import * from SystemUtils import * # Checking version of OS should happened before menu appears # Check version of CentOS SystemUtils.check_centos_version() # Clear screen before to show menu os.system('clear') answer = True while answer: print (""" LAMP Deploy Script V: 0.1 for CentOS 6.5/6.6 64Bit: --------------------------------------------------- 1. Check version of your CentOS 2. Check Internet connection 3. Show me my local IP address 4. Open port 80 to Web 5. Show me my localhost name ------- LAMP for CentOS 6.x ----------- 6. Install EPEL & IUS repository 7. Install Web Server - Apache 8. Install Database - MySQL 9. Install Language - PHP 10. Install LAMP in "One Click" - CentOS 6.x 11. Exit/Quit """) answer = input("Please make your choice: ") if answer == 1: os.system('clear') print ('\nChecking version of the system: ') SystemUtils.check_centos_version() elif answer == 2: os.system('clear') print ('\nChecking if you connected to the Internet') SystemUtils.check_internet_connection() elif answer == 3: os.system('clear') print ('\nYour local IP address is: ' + SystemUtils.check_local_ip()) elif answer == 4: os.system('clear') print('\nChecking firewall') Centos6Deploy.iptables_port() elif answer == 5: print "Checking local hostname..." SystemUtils.check_host_name() elif answer == 6: print ('\nInstalling EPEL and IUS repository to the system...') Centos6Deploy.add_repository() elif answer == 7: print ('\nInstalling Web Server Apache...') Centos6Deploy.install_apache() elif answer == 8: print ('\nInstalling database MySQL...') Centos6Deploy.install_mysql() elif answer == 9: print('\nInstalling PHP...') Centos6Deploy.install_php() elif answer == 10: print ('Install LAMP in "One Click" - CentOS 6.x') Centos6Deploy.iptables_port() Centos6Deploy.add_repository() Centos6Deploy.install_mysql() Centos6Deploy.install_php() elif answer == 11: print("\nGoodbye...\n") answer = None else: print ('\nNot valid Choice, Try Again') answer = True
2.28125
2
distributed/register/application.py
ADKosm/concurrency
0
11323
<reponame>ADKosm/concurrency<filename>distributed/register/application.py import asyncio import os import time from dataclasses import dataclass import requests_unixsocket from aiohttp import ClientSession, web @dataclass(frozen=True) class Replica: replica_id: str ip: str is_self: bool def replicas_discovery(): session = requests_unixsocket.Session() number_of_replicas = int(os.environ['REPLICAS']) app_codename = os.environ['APP_CODENAME'] self_hostname = os.environ['HOSTNAME'] registered_replicas = set() while len(registered_replicas) < number_of_replicas: cluster_config = session.get('http+unix://%2Fvar%2Frun%2Fdocker.sock/v1.24/containers/json').json() replicas = { Replica( replica_id=x['Id'], ip=x['NetworkSettings']['Networks']['register_default']['IPAddress'], is_self=x['Id'].startswith(self_hostname) ) for x in cluster_config if app_codename in x['Labels'] } registered_replicas.update(replicas) if len(registered_replicas) < number_of_replicas: time.sleep(2) return registered_replicas replicas = replicas_discovery() self_id = next(filter(lambda x: x.is_self, replicas)).replica_id async def index(request): for replica in replicas: async with ClientSession() as session: async with session.get("http://{}:8080/hello".format(replica.ip), headers={'ReplicaId': self_id}) as r: await r.text() return web.Response(text='ok') # print(r.headers['ReplicaId'], flush=True) async def hello(request): requested_id = request.headers['ReplicaId'] print("Hello from {}".format(requested_id), flush=True) return web.Response(text='ok') print(replicas, flush=True) app = web.Application() app.add_routes([web.get('/', index), web.get('/hello', hello)]) web.run_app(app, host='0.0.0.0', port=8080)
2.546875
3
setup.py
greenaddress/txjsonrpc
0
11324
<gh_stars>0 from __future__ import absolute_import from setuptools import setup from txjsonrpc import meta from txjsonrpc.util import dist setup( name=meta.display_name, version=meta.version, description=meta.description, author=meta.author, author_email=meta.author_email, url=meta.url, license=meta.license, packages=dist.findPackages(meta.library_name), long_description=dist.catReST( "docs/PRELUDE.txt", "README", "docs/DEPENDENCIES.txt", "docs/INSTALL.txt", "docs/USAGE.txt", "TODO", "docs/HISTORY.txt", stop_on_errors=True, out=True), classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Programming Language :: Python", ], )
1.265625
1
gsflow/gsflow.py
pygsflow/pygsflow
17
11325
<reponame>pygsflow/pygsflow<gh_stars>10-100 # -*- coding: utf-8 -*- import os from .control import ControlFile from .prms import PrmsModel from .utils import gsflow_io, GsConstant from .prms import Helper from .modflow import Modflow from .modsim import Modsim import flopy import subprocess as sp import platform import warnings warnings.simplefilter("always", PendingDeprecationWarning) warnings.simplefilter("always", UserWarning) class GsflowModel(object): """ GsflowModel is the GSFLOW model object. This class can be used to build a GSFLOW model, to load a GSFLOW model from it's control file, to write input files for GSFLOW and to run GSFLOW. Parameters ---------- control_file : str control file path and name prms : PrmsModel object gsflow.prms.PrmsModel mf : Modflow object gsflow.modflow.Modflow modflow_only : bool flag that indicates only Modflow model prms_only : bool flag that indicates only PRMS model gsflow_exe : str GSFLOW executable path and name modsim : bool boolean flag to indicate that modsim is active this creates a gsflow.modsim.Modsim object model_ws : str, None override method to set the base model directory when the GSFLOW control file is not located in the same directory as the script to run GSFLOW Examples -------- load from control file >>> import gsflow >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") create new, empty gsflow object >>> control = gsflow.ControlFile(records_list=[]) >>> gsf = gsflow.GsflowModel(control=control) """ def __init__( self, control=None, prms=None, mf=None, modflow_only=False, prms_only=False, gsflow_exe=None, modsim=False, model_ws=None, ): if not isinstance(control, ControlFile): raise ValueError("control must be a ControlFile object") self.control = control self.control_file = os.path.abspath(control.control_file) self.ws = None self._modflow_only = modflow_only self._prms_only = prms_only self.prms = None self.mf = None self.modsim = None self.gsflow_exe = gsflow_exe if gsflow_exe is None: self.gsflow_exe = os.path.join( os.path.dirname(__file__), r"bin\gsflow.exe" ) # set prms object if not modflow_only: if prms and isinstance(prms, PrmsModel): self.prms = prms else: err = "prms is not a PrmsModel object, skipping..." warnings.warn(err, UserWarning) # set flopy modflow object if not prms_only: if mf and isinstance(mf, flopy.modflow.Modflow): self.mf = mf namefile = os.path.basename( control.get_values("modflow_name")[0] ) if namefile is not None: self.mf.namefile = namefile else: err = "modflow is not a gsflow.modflow.Modflow object, skipping..." warnings.warn(err, UserWarning) if modsim: self.modsim = Modsim(self) self.help = Helper() @property def modflow_only(self): """ Returns ------- bool """ return self._modflow_only @property def prms_only(self): """ Returns ------- bool """ return self._prms_only def export_nc(self, f, **kwargs): """ Method to export the GSFLOW model as a netcdf file. This method only works if nhru is equivalent to nrow * ncol in modflow. Parameters ---------- f : str netcdf file name kwargs : keyword arguments for netcdf """ if not f.endswith(".nc"): raise AssertionError("f must end with .nc extension") if self.mf is None: err = "Modflow object must be loaded to export netcdf file" raise AssertionError(err) f = self.mf.export(f, **kwargs) if self.prms is not None: f = self.prms.export_nc(f, self.mf, **kwargs) return f @staticmethod def load_from_file( control_file, gsflow_exe="gsflow.exe", modflow_only=False, prms_only=False, mf_load_only=None, forgive=False, model_ws=None, ): """ Method to load a gsflow model from it's control file Parameters ---------- control_file : str control file path & name, GSFLOW gsflow_exe : str gsflow executable path & name modflow_only : bool flag to load only modflow from the control file prms_only : bool flag to load only prms from the control file mf_load_only : list list of packages to load from modflow ex. [DIS, BAS, LPF] forgive : bool forgive file loading errors in flopy model_ws : str, None override method to set the base model directory when the GSFLOW control file is not located in the same directory as the script to run GSFLOW Returns ------- GsflowModel object Examples -------- >>> import gsflow >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") """ prms = None modflow = None modsim = False if not (os.path.isfile(control_file)): raise ValueError("Cannot find control file") if model_ws is not None: control = ControlFile.load_from_file(control_file, abs_path=False) else: control = ControlFile.load_from_file(control_file) print("Control file is loaded") mode = control.get_values("model_mode")[0].upper() if mode == "MODFLOW": modflow_only = True elif mode == "PRMS": prms_only = True elif "MODSIM" in mode: modsim = True else: pass # load prms if not modflow_only: print("Working on loading PRMS model ...") prms = PrmsModel.load_from_file(control_file, model_ws=model_ws) if not prms_only: # get model mode if "GSFLOW" in mode.upper() or "MODFLOW" in mode.upper(): print("Working on loading MODFLOW files ....") modflow = GsflowModel._load_modflow( control, mf_load_only, model_ws, forgive ) print("MODFLOW files are loaded ... ") else: prms_only = True modflow_only = False print("Mode is set to PRMS only, loading PRMS model only") return GsflowModel( control=control, prms=prms, mf=modflow, modflow_only=modflow_only, prms_only=prms_only, gsflow_exe=gsflow_exe, modsim=modsim, ) @staticmethod def _load_modflow(control, mf_load_only, model_ws=None, forgive=False): """ The package files in the .nam file are relative to the execuatble gsflow. Here we set the model_ws to the location of the gsflow exe, via the control file or a user supplied model_ws parameter Parameters ---------- control : ControlFile object control file object mf_load_only : list list of packages to restrict modflow loading to model_ws : str optional parameter that allows the use to set the model_ws forgive : bool forgive file load errors in modflow Returns ------- Modflow object """ name = control.get_values("modflow_name") control_file = control.control_file if model_ws is None: name = gsflow_io.get_file_abs( control_file=control_file, fn=name[0] ) model_ws, name = os.path.split(name) else: model_ws = gsflow_io.get_file_abs(model_ws=model_ws) name = name[0] control_file = None return Modflow.load( name, model_ws=model_ws, control_file=control_file, load_only=mf_load_only, forgive=forgive, ) def write_input(self, basename=None, workspace=None, write_only=None): """ Write input files for gsflow. Four cases are possible: (1) if basename and workspace are None,then the exisiting files will be overwritten (2) if basename is specified, only file names will be changes (3) if only workspace is specified, only folder will be changed (4) when both basename and workspace are specifed both files are changed Parameters ---------- basename : str project basename workspace : str model output directory write_only: a list ['control', 'parameters', 'prms_data', 'mf', 'modsim'] Examples -------- >>> gsf = gsflow.GsflowModel.load_from_file('gsflow.control') >>> gsf.write_input(basename="new", workspace="../new_model") """ print("Writing the project files .....") if workspace is not None: workspace = os.path.abspath(workspace) if (basename, workspace) == (None, None): print("Warning: input files will be overwritten....") self._write_all(write_only) # only change the directory elif basename is None and workspace is not None: if not (os.path.isdir(workspace)): os.mkdir(workspace) fnn = os.path.basename(self.control.control_file) self.control.model_dir = workspace self.control.control_file = os.path.join(workspace, fnn) self.control_file = os.path.join(workspace, fnn) if self.prms is not None: self.prms.control_file = self.control_file # change parameters new_param_file_list = [] for par_record in self.prms.parameters.parameters_list: curr_file = os.path.basename(par_record.file_name) curr_file = os.path.join(workspace, curr_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile curr_file = os.path.relpath( os.path.join(workspace, self.prms.data.name), self.control.model_dir, ) self.prms.data.model_dir = workspace self.control.set_values("data_file", [curr_file]) # change mf if self.mf is not None: self.mf.change_model_ws(workspace, reset_external=True) mfnm = self.mf.name + ".nam" self.control.set_values("modflow_name", [mfnm]) # update file names in control object self._update_control_fnames(workspace, basename) # write if self.prms is not None: self.prms.control = self.control self._write_all(write_only) # only change the basename elif basename is not None and workspace is None: cnt_file = basename + "_cont.control" ws_ = os.path.dirname(self.control.control_file) self.control.control_file = os.path.join(ws_, cnt_file) self.control_file = os.path.join(ws_, cnt_file) self.prms.control_file = self.control_file # change parameters flist = self.prms.parameters.parameter_files new_param_file_list = [] for ifile, par_record in enumerate( self.prms.parameters.parameters_list ): file_index = flist.index(par_record.file_name) par_file = basename + "_par_{}.params".format(file_index) curr_dir = self.control.model_dir curr_file = os.path.join(curr_dir, par_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile dfile = basename + "_dat.data" curr_file = os.path.relpath( os.path.join(self.prms.data.model_dir, dfile), self.control.model_dir, ) self.prms.data.name = dfile self.control.set_values("data_file", [curr_file]) # change mf if self.mf is not None: curr_dir = self.mf.model_ws self.mf._set_name(basename) self._update_mf_basename(basename) mfnm = self.mf.name + ".nam" self.control.set_values("modflow_name", [mfnm]) # update file names in control object self._update_control_fnames(workspace, basename) self.prms.control = self.control self._write_all(write_only) # change both directory & basename elif basename is not None and workspace is not None: if not (os.path.isdir(workspace)): os.mkdir(workspace) cnt_file = basename + "_cont.control" self.control.model_dir = workspace self.control.control_file = os.path.join(workspace, cnt_file) self.prms.control_file = self.control.control_file self.control_file = self.control.control_file # change parameters # get param files list flist = self.prms.parameters.parameter_files new_param_file_list = [] for ifile, par_record in enumerate( self.prms.parameters.parameters_list ): file_index = flist.index(par_record.file_name) par_file = basename + "_par_{}.params".format(file_index) curr_file = os.path.join(workspace, par_file) par_record.file_name = curr_file if not (curr_file in new_param_file_list): new_param_file_list.append(curr_file) self.control.set_values("param_file", new_param_file_list) # change datafile dfile = basename + "_dat.data" curr_file = os.path.relpath( os.path.join(workspace, dfile), self.control.model_dir ) self.prms.data.model_dir = workspace self.prms.data.name = dfile self.control.set_values("data_file", [curr_file]) # flatten mf if self.mf is not None: self.mf.change_model_ws(workspace) self.mf._set_name(os.path.join(workspace, basename)) self._update_mf_basename(basename) mfnm = basename + ".nam" self.control.set_values( "modflow_name", [ os.path.relpath( os.path.join(workspace, mfnm), self.control.model_dir ) ], ) # update file names in control object self._update_control_fnames(workspace, basename) self.prms.control = self.control self._write_all(write_only) else: raise NotImplementedError() def _update_control_fnames(self, workspace, basename): """ Method to update control file names and paths Parameters ---------- workspace : str model output directory basename : str project basename """ if workspace is not None and basename is None: self.control.model_dir = workspace for rec_name in GsConstant.GSFLOW_FILES: if rec_name in self.control.record_names: file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: va = os.path.join(workspace, os.path.basename(fil)) va = os.path.relpath(va, self.control.model_dir) file_value.append(va) self.control.set_values(rec_name, file_value) else: for rec_name in GsConstant.GSFLOW_FILES: if rec_name in self.control.record_names: if rec_name in ("modflow_name",): continue elif rec_name in ( "modflow_name", "param_file", "data_file", ): file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: ws, filvalue = os.path.split(fil) if not ws: pass else: filvalue = os.path.relpath( fil, self.control.model_dir ) file_value.append(filvalue) self.control.set_values(rec_name, file_value) else: file_values = self.control.get_values(rec_name) file_value = [] for fil in file_values: if workspace is None: workspace = self.control.model_dir vvfile = rec_name.split("_") del vvfile[-1] vvfile = "_".join(vvfile) if "." in fil: ext = fil.split(".")[-1] else: ext = "dat" vvfile = basename + "_" + vvfile + "." + ext filvalue = os.path.join(workspace, vvfile) filvalue = os.path.relpath( filvalue, self.control.model_dir ) file_value.append(filvalue) self.control.set_values(rec_name, file_value) def _update_mf_basename(self, basename): """ Convience method to update modflow Basename Parameters ---------- basename : str basename of the Modflow object """ out_files_list = [] for ix, out_file in enumerate(self.mf.output_fnames): if out_file.count(".") > 1: ext = out_file.split(".") del ext[0] ext = ".".join(ext) else: ext = out_file.split(".")[-1] new_outfn = "{}.{}".format(basename, ext) out_files_list.append(new_outfn) self.mf.output_fnames = out_files_list def _write_all(self, write_only): """ Method to write input files Parameters ---------- write_only : list list of files to write accepts, control, parameters, prms_data, mf, and modsim """ write_only_options = ( "control", "parameters", "prms_data", "mf", "modsim", ) if write_only is not None: if not isinstance(write_only, list): raise ValueError("write_only agrgument must be a list") # make write options case insensitive write_only = [i.lower() for i in write_only] for write_option in write_only: if not (write_option in write_only_options): raise ValueError( "The option '{}' is not recognized...".format( write_option ) ) else: write_only = () # write control if len(write_only) == 0 or "control" in write_only: print("Writing Control file ...") self.control.write() if self.prms is not None: # self write parameters if len(write_only) == 0 or "parameters" in write_only: print("Writing Parameters files ...") self.prms.parameters.write() # write data if len(write_only) == 0 or "prms_data" in write_only: print("Writing Data file ...") self.prms.data.write() # write mf if self.mf is not None: if len(write_only) == 0 or "mf" in write_only: print("Writing Modflow files...") self.mf.write_input() if self.modsim is not None: if len(write_only) == 0 or "modsim" in write_only: print("Writing MODSIM shapefile") self.modsim.write_modsim_shapefile() def run_model(self, model_ws=".", forgive=False, gsflow_exe=None): """ Method to run a gsflow model Parameters ---------- model_ws : str parameter to specify the model directory forgive : bool forgives convergence issues gslfow_exe : str or None path to gsflow_exe, if gsflow_exe is None it will use the previously defined gsflow_exe variable or the default gsflow.exe. Returns ------- None or (success, buffer) Examples -------- >>> gsf = gsflow.GsflowModel.load_from_file("gsflow.control") >>> gsf.run_model() """ fn = self.control_file if gsflow_exe is None: gsflow_exe = self.gsflow_exe if not os.path.isfile(gsflow_exe): print( "Warning : The executable of the model could not be found. " "Use the gsflow_exe= parameter to define its path... " ) return None normal_msg = [ "normal termination", ] # , "simulation successful"] if forgive: normal_msg.append("failed to meet solver convergence criteria") return self.__run( exe_name=gsflow_exe, namefile=fn, normal_msg=normal_msg, model_ws=model_ws, ) def _generate_batch_file(self): fn = os.path.dirname(self.control_file) fn = os.path.join(fn, "__run_gsflow.bat") self.__bat_file = fn fidw = open(fn, "w") exe = os.path.normpath(os.path.join(os.getcwd(), self.gsflow_exe)) cmd = exe + " " + self.control_file fidw.write(cmd) fidw.close() def __run( self, exe_name, namefile, model_ws=".", silent=False, report=False, normal_msg="normal termination", cargs=None, ): """ This function will run the model using subprocess.Popen. Parameters ---------- exe_name : str Executable name (with path, if necessary) to run. namefile : str Namefile of model to run. The namefile must be the filename of the namefile without the path. model_ws : str Path to the location of the namefile. (default is the current working directory - './') silent : boolean Echo run information to screen (default is True). report : boolean, optional Save stdout lines to a list (buff) which is returned by the method . (default is False). normal_msg : str Normal termination message used to determine if the run terminated normally. (default is 'normal termination') cargs : str or list of strings additional command line arguments to pass to the executable. Default is None Returns ------- (success, buff) success : boolean buff : list of lines of stdout """ def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) def which(program): fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: # test for exe in current working directory if is_exe(program): return program # test for exe in path statement for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None success = False buff = [] # convert normal_msg to lower case for comparison if isinstance(normal_msg, str): normal_msg = [normal_msg.lower()] elif isinstance(normal_msg, list): for idx, s in enumerate(normal_msg): normal_msg[idx] = s.lower() # Check to make sure that program and namefile exist exe = which(exe_name) if exe is None: if platform.system() in "Windows": if not exe_name.lower().endswith(".exe"): exe = which(exe_name + ".exe") if exe is None: s = "The program {} does not exist or is not executable.".format( exe_name ) raise Exception(s) else: if not silent: s = "pyGSFLOW is using the following executable to run the model: {}".format( exe ) print(s) exe = os.path.normpath(os.path.join(os.getcwd(), exe)) if not os.path.isfile(os.path.join(model_ws, namefile)): s = "The namefile for this model does not exists: {}".format( namefile ) raise Exception(s) # simple little function for the thread to target # def q_output(output, q): # for line in iter(output.readline, b''): # q.put(line) # time.sleep(1) # output.close() # create a list of arguments to pass to Popen argv = [exe, namefile] # add additional arguments to Popen arguments if cargs is not None: if isinstance(cargs, str): cargs = [cargs] for t in cargs: argv.append(t) # run the model with Popen # if platform.system().lower() == "windows": # self._generate_batch_file() # cargv = self.__bat_file # else: # pass model_ws = os.path.dirname(self.control_file) proc = sp.Popen(argv, stdout=sp.PIPE, stderr=sp.STDOUT, cwd=model_ws) while True: line = proc.stdout.readline() c = line.decode("utf-8") if c != "": for msg in normal_msg: if msg in c.lower(): success = True break c = c.rstrip("\r\n") if not silent: print("{}".format(c)) if report: buff.append(c) else: break return success, buff
2.484375
2
tests/integration/storage_memory/test_storage_memory_write.py
Sam-Martin/cloud-wanderer
1
11326
<filename>tests/integration/storage_memory/test_storage_memory_write.py import logging import pytest from moto import mock_ec2, mock_iam, mock_sts from cloudwanderer.cloud_wanderer_resource import CloudWandererResource from cloudwanderer.storage_connectors import MemoryStorageConnector from cloudwanderer.urn import URN from tests.pytest_helpers import create_ec2_instances logger = logging.getLogger(__name__) @pytest.fixture(scope="function") def memory_connector(request): connector = MemoryStorageConnector() connector.init() return connector def get_inferred_ec2_instances(cloudwanderer_boto3_session): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="eu-west-2", service="ec2", resource_type="instance", resource_id_parts=[instance.instance_id], ), resource_data=instance.meta.data, ) for instance in cloudwanderer_boto3_session.resource("ec2").instances.all() ] def inferred_ec2_vpcs(cloudwanderer_boto3_session): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="eu-west-2", service="ec2", resource_type="vpc", resource_id_parts=[vpc.vpc_id], ), resource_data=vpc.meta.data, ) for vpc in cloudwanderer_boto3_session.resource("ec2").vpcs.all() ] @pytest.fixture def iam_role(): return CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), resource_data={"RoleName": "test-role", "InlinePolicyAttachments": [{"PolicyNames": ["test-role"]}]}, dependent_resource_urns=[ URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy"], ) ], ) @pytest.fixture def iam_role_policies(): return [ CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy-1"], ), resource_data={}, parent_urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), ), CloudWandererResource( urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy-2"], ), resource_data={}, parent_urn=URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role", resource_id_parts=["test-role"], ), ), ] @mock_sts @mock_iam def test_write_resource_and_attribute(memory_connector, iam_role): memory_connector.write_resource(resource=iam_role) result = memory_connector.read_resource(urn=iam_role.urn) assert result.urn == iam_role.urn assert result.role_name == "test-role" logger.info(result.cloudwanderer_metadata.resource_data) assert result.inline_policy_attachments == [{"PolicyNames": ["test-role"]}] assert result.dependent_resource_urns == [ URN( account_id="111111111111", region="us-east-1", service="iam", resource_type="role_policy", resource_id_parts=["test-role", "test-role-policy"], ) ] @mock_sts @mock_ec2 def test_write_and_delete_instances(memory_connector, cloudwanderer_boto3_session): create_ec2_instances() inferred_ec2_instances = get_inferred_ec2_instances(cloudwanderer_boto3_session) memory_connector.write_resource(resource=inferred_ec2_instances[0]) result_before_delete = memory_connector.read_resource(urn=inferred_ec2_instances[0].urn) memory_connector.delete_resource(urn=inferred_ec2_instances[0].urn) result_after_delete = memory_connector.read_resource(urn=inferred_ec2_instances[0].urn) assert result_before_delete.urn == inferred_ec2_instances[0].urn assert result_after_delete is None @mock_sts @mock_ec2 def test_write_and_delete_resource_of_type_in_account_region(memory_connector, cloudwanderer_boto3_session): create_ec2_instances(count=5) inferred_ec2_instances = get_inferred_ec2_instances(cloudwanderer_boto3_session) for i in range(5): memory_connector.write_resource(resource=inferred_ec2_instances[i]) memory_connector.delete_resource_of_type_in_account_region( cloud_name="aws", service="ec2", resource_type="instance", account_id="111111111111", region="eu-west-2", cutoff=None, ) remaining_urns = [ resource.urn for resource in memory_connector.read_resources(service="ec2", resource_type="instance") ] assert remaining_urns == [] def test_delete_subresources_from_resource(memory_connector, iam_role, iam_role_policies): """If we are deleting a parent resource we should delete all its subresources.""" memory_connector.write_resource(resource=iam_role) memory_connector.write_resource(resource=iam_role_policies[0]) memory_connector.write_resource(resource=iam_role_policies[1]) role_before_delete = memory_connector.read_resource(urn=iam_role.urn) role_policy_1_before_delete = memory_connector.read_resource(urn=iam_role_policies[0].urn) role_policy_2_before_delete = memory_connector.read_resource(urn=iam_role_policies[1].urn) # Delete the parent and ensure the subresources are also deleted memory_connector.delete_resource(urn=iam_role.urn) role_after_delete = memory_connector.read_resource(urn=iam_role.urn) role_policy_1_after_delete = memory_connector.read_resource(urn=iam_role_policies[0].urn) role_policy_2_after_delete = memory_connector.read_resource(urn=iam_role_policies[1].urn) assert role_before_delete.urn == iam_role.urn assert role_policy_1_before_delete.urn == iam_role_policies[0].urn assert role_policy_2_before_delete.urn == iam_role_policies[1].urn assert role_after_delete is None assert role_policy_1_after_delete is None assert role_policy_2_after_delete is None
1.875
2
tt/satisfiability/picosat.py
fkromer/tt
233
11327
<reponame>fkromer/tt """Python wrapper around the _clibs PicoSAT extension.""" import os from tt.errors.arguments import ( InvalidArgumentTypeError, InvalidArgumentValueError) if os.environ.get('READTHEDOCS') != 'True': from tt._clibs import picosat as _c_picosat VERSION = _c_picosat.VERSION def sat_one(clauses, assumptions=None): """Find a solution that satisfies the specified clauses and assumptions. This provides a light Python wrapper around the same method in the PicoSAT C-extension. While completely tested and usable, this method is probably not as useful as the interface provided through the :func:`sat_one <tt.expressions.bexpr.BooleanExpression.sat_one>` method in the :class:`BooleanExpression <tt.expressions.bexpr.BooleanExpression>` class. :param clauses: CNF (AND of ORs) clauses; positive integers represent non-negated terms and negative integers represent negated terms. :type clauses: List[List[:class:`int <python:int>`]] :param assumptions: Assumed terms; same negation logic from ``clauses`` applies here. Note that assumptions *cannot* be an empty list; leave it as ``None`` if there are no assumptions to include. :type assumptions: List[:class:`int <python:int>`] :returns: If solution is found, a list of ints representing the terms of the solution; otherwise, if no solution found, ``None``. :rtype: List[:class:`int <python:int>`] or ``None`` :raises InvalidArgumentTypeError: If ``clauses`` is not a list of lists of ints or ``assumptions`` is not a list of ints. :raises InvalidArgumentValueError: If any literal ints are equal to zero. Let's look at a simple example with no satisfiable solution:: >>> from tt import picosat >>> picosat.sat_one([[1], [-1]]) is None True Here's an example where a solution exists:: >>> picosat.sat_one([[1, 2, 3], [-2, -3], [1, -2], [2, -3], [-2]]) [1, -2, -3] Finally, here's an example using assumptions:: >>> picosat.sat_one([[1, 2, 3], [2, 3]], assumptions=[-1, -3]) [-1, 2, -3] """ try: return _c_picosat.sat_one(clauses, assumptions=assumptions) except TypeError as e: raise InvalidArgumentTypeError(str(e)) except ValueError as e: raise InvalidArgumentValueError(str(e)) def sat_all(clauses, assumptions=None): """Find all solutions that satisfy the specified clauses and assumptions. This provides a light Python wrapper around the same method in the PicoSAT C-extension. While completely tested and usable, this method is probably not as useful as the interface provided through the :func:`sat_all <tt.expressions.bexpr.BooleanExpression.sat_all>` method in the :class:`BooleanExpression <tt.expressions.bexpr.BooleanExpression>` class. :param clauses: CNF (AND of ORs) clauses; positive integers represent non-negated terms and negative integers represent negated terms. :type clauses: List[List[:class:`int <python:int>`]] :param assumptions: Assumed terms; same negation logic from ``clauses`` applies here. Note that assumptions *cannot* be an empty list; leave it as ``None`` if there are no assumptions to include. :type assumptions: List[:class:`int <python:int>`] :returns: An iterator of solutions; if no satisfiable solutions exist, the iterator will be empty. :rtype: Iterator[List[:class:`int <python:int>`]] :raises InvalidArgumentTypeError: If ``clauses`` is not a list of lists of ints or ``assumptions`` is not a list of ints. :raises InvalidArgumentValueError: If any literal ints are equal to zero. Here's an example showing the basic usage:: >>> from tt import picosat >>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]]): ... print(solution) ... [1, 2, 3, 4] [1, 2, 3, -4] [1, 2, -3, 4] [1, 2, -3, -4] [1, -2, 3, 4] [1, -2, 3, -4] We can cut down on some of the above solutions by including an assumption:: >>> for solution in picosat.sat_all([[1], [2, 3, 4], [2, 3]], ... assumptions=[-3]): ... print(solution) ... [1, 2, -3, 4] [1, 2, -3, -4] """ try: return _c_picosat.sat_all(clauses, assumptions=assumptions) except TypeError as e: raise InvalidArgumentTypeError(str(e)) except ValueError as e: raise InvalidArgumentValueError(str(e))
2.6875
3
tests/test_text_visualization.py
dianna-ai/dianna
9
11328
import os import re import shutil import unittest from pathlib import Path from dianna.visualization.text import highlight_text class Example1: original_text = 'Doloremque aliquam totam ut. Aspernatur repellendus autem quia deleniti. Natus accusamus ' \ 'doloribus et in quam officiis veniam et. ' explanation = [('ut', 25, -0.06405025896517044), ('in', 102, -0.05127647027074053), ('et', 99, 0.02254588506724936), ('quia', 58, -0.0008216335740370412), ('aliquam', 11, -0.0006268298968242725), ('Natus', 73, -0.0005556223616156406), ('totam', 19, -0.0005126140261410219), ('veniam', 119, -0.0005058379023790869), ('quam', 105, -0.0004573258796550468), ('repellendus', 40, -0.0003253862469633824)] class Example2: expected_html = '<html><body><span style="background:rgba(255, 0, 0, 0.08)">such</span> ' \ '<span style="background:rgba(255, 0, 0, 0.01)">a</span> <span style="background:rgba(0, 0, 255, 0.800000)">' \ 'bad</span> <span style="background:rgba(0, 0, 255, 0.059287)">movie</span>.</body></html>\n' original_text = 'Such a bad movie.' explanation = [('bad', 7, -0.4922624307995777), ('such', 0, 0.04637815000309109), ('movie', 11, -0.03648111256069627), ('a', 5, 0.008377155657765745)] class MyTestCase(unittest.TestCase): temp_folder = 'temp_text_visualization_test' html_file_path = str(Path(temp_folder) / 'output.html') def test_text_visualization_no_output(self): highlight_text(Example1.explanation, original_text=Example1.original_text) assert not Path(self.html_file_path).exists() def test_text_visualization_html_output_exists(self): highlight_text(Example1.explanation, original_text=Example1.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() def test_text_visualization_html_output_contains_text(self): highlight_text(Example1.explanation, original_text=Example1.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() with open(self.html_file_path, encoding='utf-8') as result_file: result = result_file.read() for word in _split_text_into_words(Example1.original_text): assert word in result def test_text_visualization_html_output_is_correct(self): highlight_text(Example2.explanation, original_text=Example2.original_text, output_html_filename=self.html_file_path) assert Path(self.html_file_path).exists() with open(self.html_file_path, encoding='utf-8') as result_file: result = result_file.read() assert result == Example2.expected_html def test_text_visualization_show_plot(self): highlight_text(Example1.explanation, original_text=Example1.original_text, show_plot=True) def setUp(self) -> None: os.mkdir(self.temp_folder) def tearDown(self) -> None: shutil.rmtree(self.temp_folder, ignore_errors=True) def _split_text_into_words(text): # regex taken from # https://stackoverflow.com/questions/12683201/python-re-split-to-split-by-spaces-commas-and-periods-but-not-in-cases-like # explanation: split by \s (whitespace), and only split by commas and # periods if they are not followed (?!\d) or preceded (?<!\d) by a digit. regex = r'\s|(?<!\d)[,.](?!\d)' return re.split(regex, text)
2.953125
3
setup.py
guilhermeleobas/rbc
0
11329
import os import sys import builtins import versioneer if sys.version_info[:2] < (3, 7): raise RuntimeError("Python version >= 3.7 required.") builtins.__RBC_SETUP__ = True if os.path.exists('MANIFEST'): os.remove('MANIFEST') CONDA_BUILD = int(os.environ.get('CONDA_BUILD', '0')) CONDA_ENV = os.environ.get('CONDA_PREFIX', '') != '' from setuptools import setup, find_packages # noqa: E402 DESCRIPTION = "RBC - Remote Backend Compiler Project" LONG_DESCRIPTION = """ The aim of the Remote Backend Compiler project is to distribute the tasks of a program JIT compilation process to separate computer systems using the client-server model. The frontend of the compiler runs on the client computer and the backend runs on the server computer. The compiler frontend will send the program code to compiler backend in IR form where it will be compiled to machine code. """ def setup_package(): src_path = os.path.dirname(os.path.abspath(sys.argv[0])) old_path = os.getcwd() os.chdir(src_path) sys.path.insert(0, src_path) if CONDA_BUILD or CONDA_ENV: # conda dependencies are specified in meta.yaml or conda # enviroment should provide the correct requirements - using # PyPI is unreliable, see below. install_requires = [] setup_requires = [] tests_require = [] else: # Get requirements via PyPI. Use at your own risk as more than # once the numba and llvmlite have not matched. install_requires = open('requirements.txt', 'r').read().splitlines() setup_requires = ['pytest-runner', 'cffi'] tests_require = ['pytest'] metadata = dict( name='rbc-project', description=DESCRIPTION, long_description=LONG_DESCRIPTION, license='BSD', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), author='<NAME>', maintainer='<NAME>', author_email='<EMAIL>', url='https://github.com/xnd-project/rbc', platforms='Cross Platform', classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', "Operating System :: OS Independent", "Topic :: Software Development", ], packages=find_packages(), package_data={'': ['*.thrift']}, cffi_modules=['rbc/rbclib//_rbclib_build.py:ffibuilder'], install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, ) try: setup(**metadata) finally: del sys.path[0] os.chdir(old_path) return if __name__ == '__main__': setup_package() del builtins.__RBC_SETUP__
1.882813
2
src/prefect/schedules/adjustments.py
concreted/prefect
8,633
11330
""" Schedule adjustments are functions that accept a `datetime` and modify it in some way. Adjustments have the signature `Callable[[datetime], datetime]`. """ from datetime import datetime, timedelta from typing import Callable import pendulum import prefect.schedules.filters def add(interval: timedelta) -> Callable[[datetime], datetime]: """ Adjustment that adds a specified interval to the date. Args: - interval (timedelta): the amount of time to add Returns: - Callable[[datetime], bool]: the adjustment function """ def _adjustment_fn(dt: datetime) -> datetime: return pendulum.instance(dt) + interval return _adjustment_fn def next_weekday(dt: datetime) -> datetime: """ Adjustment that advances a date to the next weekday. If the date is already a weekday, it is returned unadjusted. Args: - dt (datetime): the datetime to adjust Returns: - datetime: the adjusted datetime """ pdt = pendulum.instance(dt) while not prefect.schedules.filters.is_weekday(pdt): pdt = pdt.add(days=1) return pdt
3.484375
3
src/pyfmodex/sound.py
Loodoor/UnamedPy
1
11331
from .fmodobject import * from .fmodobject import _dll from .structures import TAG, VECTOR from .globalvars import get_class class ConeSettings(object): def __init__(self, sptr): self._sptr = sptr self._in = c_float() self._out = c_float() self._outvol = c_float() ckresult(_dll.FMOD_Sound_Get3DConeSettings(self._sptr, byref(self._in), byref(self._out), byref(self._outvol))) @property def inside_angle(self): return self._in.value @inside_angle.setter def inside_angle(self, angle): self._in = c_float(angle) self._commit() @property def outside_angle(self): return self._out.value @outside_angle.setter def outside_angle(self, angle): self._out = c_float(angle) self._commit() @property def outside_volume(self): return self._outvol.value @outside_volume.setter def outside_volume(self, vol): self._outvol = c_float(vol) self._commit() def _commit(self): ckresult(_dll.FMOD_Sound_Set3DConeSettings(self._sptr, self._in, self._out, self._outvol)) class Sound(FmodObject): def add_sync_point(self, offset, offset_type, name): s_ptr = c_void_p() ckresult(_dll.FMOD_Sound_AddSyncPoint(self._ptr, offset, offset_type, name, byref(s_ptr))) return s_ptr def delete_sync_point(self, point): ckresult(_dll.FMOD_Sound_DeleteSyncPoint(self._ptr, point)) @property def threed_cone_settings(self): return ConeSettings(self._ptr) @property def custom_rolloff(self): """Returns the custom rolloff curve. :rtype: List of [x, y, z] lists. """ num = c_int() self._call_fmod("FMOD_Sound_Get3DCustomRolloff", None, byref(num)) curve = (VECTOR * num.value)() self._call_fmod("FMOD_Sound_Get3DCustomRolloff", byref(curve), 0) return [p.to_list() for p in curve] @custom_rolloff.setter def custom_rolloff(self, curve): """Sets the custom rolloff curve. :param curve: The curve to set. :type curve: A list of something that can be treated as a list of [x, y, z] values e.g. implements indexing in some way. """ native_curve = (VECTOR * len(curve))(*[VECTOR.from_list(lst) for lst in curve]) self._call_fmod("FMOD_Sound_Set3DCustomRolloff", native_curve, len(native_curve)) @property def _min_max_distance(self): min = c_float() max = c_float() ckresult(_dll.FMOD_Sound_Get3DMinMaxDistance(self._ptr, byref(min), byref(max))) return (min.value, max.value) @_min_max_distance.setter def _min_max_distance(self, dists): ckresult(_dll.FMOD_Sound_Set3DMinMaxDistance(self._ptr, c_float(dists[0]), c_float(dists[1]))) @property def min_distance(self): return self._min_max_distance[0] @min_distance.setter def min_distance(self, dist): self._min_max_distance = (dist, self._min_max_distance[1]) @property def max_distance(self): return self._min_max_distance[1] @max_distance.setter def max_distance(self, dist): self._min_max_distance = (self._min_max_distance[0], dist) @property def _defaults(self): freq = c_float() vol = c_float() pan = c_float() pri = c_int() ckresult(_dll.FMOD_Sound_GetDefaults(self._ptr, byref(freq), byref(vol), byref(pan), byref(pri))) return [freq.value, vol.value, pan.value, pri.value] @_defaults.setter def _defaults(self, vals): ckresult(_dll.FMOD_Sound_SetDefaults(self._ptr, c_float(vals[0]), c_float(vals[1]), c_float(vals[2]), vals[3])) @property def default_frequency(self): return self._defaults[0] @default_frequency.setter def default_frequency(self, freq): d = self._defaults d[0] = freq self._defaults = d @property def default_volume(self): return self._defaults[1] @default_volume.setter def default_volume(self, vol): d = self._defaults d[1] = vol self._defaults = d @property def default_pan(self): return self._defaults[2] @default_pan.setter def default_pan(self, pan): d = self._defaults d[2] = pan self._defaults = d @property def default_priority(self): return self._defaults[3] @default_priority.setter def default_priority(self, pri): d = self._defaults d[3] = pri self._defaults = d @property def format(self): type = c_int() format = c_int() bits = c_int() ckresult(_dll.FMOD_Sound_GetFormat(self._ptr, byref(type), byref(format), byref(bits))) return so(type=type.value, format=format.value, bits=bits.value) def get_length(self, ltype): len = c_uint() ckresult(_dll.FMOD_Sound_GetLength(self._ptr, byref(len), ltype)) return len.value @property def loop_count(self): c = c_int() ckresult(_dll.FMOD_Sound_GetLoopCount(self._ptr, byref(c))) return c.value @loop_count.setter def loop_count(self, count): ckresult(_dll.FMOD_Sound_SetLoopCount(self._ptr, count)) @property def loop_points(self): """Returns tuple of two tuples ((start, startunit),(end, endunit))""" start = c_uint() startunit = c_int() end = c_uint() endunit = c_int() ckresult(_dll.FMOD_Sound_GetLoopPoints(self._ptr, byref(start), byref(startunit), byref(end), byref(endunit))) return ((start.value, startunit.value), (end.value, endunit.value)) @loop_points.setter def loop_points(self, p): """Same format as returned from this property is required to successfully call this setter.""" ckresult(_dll.FMOD_Sound_SetLoopPoints(self._ptr, p[0][0], p[0][1], p[1][0], p[1][1])) @property def mode(self): mode = c_int() ckresult(_dll.FMOD_Sound_GetMode(self._ptr, byref(mode))) return mode.value @mode.setter def mode(self, m): ckresult(_dll.FMOD_Sound_SetMode(self._ptr, m)) def get_music_channel_volume(self, channel): v = c_float() ckresult(_dll.FMOD_Sound_GetMusicChannelVolume(self._ptr, channel, byref(v))) return v.value def set_music_channel_volume(self, id, vol): ckresult(_dll.FMOD_Sound_SetMusicChannelVolume(self._ptr, id, c_float(vol))) @property def num_music_channels(self): num = c_int() ckresult(_dll.FMOD_Sound_GetMusicNumChannels(self._ptr, byref(num))) return num.value @property def name(self): name = create_string_buffer(256) ckresult(_dll.FMOD_Sound_GetName(self._ptr, byref(name), 256)) return name.value @property def num_subsounds(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumSubSounds(self._ptr, byref(num))) return num.value @property def num_sync_points(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumSyncPoints(self._ptr, byref(num))) return num.value @property def num_tags(self): num = c_int() ckresult(_dll.FMOD_Sound_GetNumTags(self._ptr, byref(num))) return num.value @property def open_state(self): state = c_int() percentbuffered = c_uint() starving = c_bool() diskbusy = c_bool() ckresult(_dll.FMOD_Sound_GetOpenState(self._ptr, byref(state), byref(percentbuffered), byref(starving), byref(diskbusy))) return so(state=state.value, percent_buffered=percentbuffered.value, starving=starving.value, disk_busy=diskbusy.value) @property def sound_group(self): grp_ptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSoundGroup(self._ptr, byref(grp_ptr))) return get_class("SoundGroup")(grp_ptr) @sound_group.setter def sound_group(self, group): check_type(group, get_class("SoundGroup")) ckresult(_dll.FMOD_Sound_SetSoundGroup(self._ptr, group._ptr)) def get_subsound(self, index): sh_ptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSubSound(self._ptr, index, byref(sh_ptr))) return Sound(sh_ptr) def get_sync_point(self, index): sp = c_int() ckresult(_dll.FMOD_Sound_GetSyncPoint(self._ptr, index, byref(sp))) return sp.value def get_sync_point_info(self, point): name = c_char_p() offset = c_uint() offsettype = c_int() ckresult(_dll.FMOD_Sound_GetSyncPointInfo(self._ptr, point, byref(name), 256, byref(offset), byref(offsettype))) return so(name=name.value, offset=offset.value, offset_type=offsettype.value) @property def system_object(self): sptr = c_void_p() ckresult(_dll.FMOD_Sound_GetSystemObject(self._ptr, byref(sptr))) return get_class("System")(sptr, False) def play(self, paused=False): return self.system_object.play_sound(self, paused) def get_tag(self, index, name=None): tag = TAG() ckresult(_dll.FMOD_Sound_GetTag(self._ptr, name, index, byref(tag))) return tag @property def _variations(self): freq = c_float() vol = c_float() pan = c_float() ckresult(_dll.FMOD_Sound_GetVariations(self._ptr, byref(freq), byref(vol), byref(pan))) return [freq.value, vol.value, pan.value] @_variations.setter def _variations(self, vars): ckresult(_dll.FMOD_Sound_SetVariations(self._ptr, c_float(vars[0]), c_float(vars[1]), c_float(vars[2]))) @property def frequency_variation(self): return self._variations[0] @frequency_variation.setter def frequency_variation(self, var): v = self._variations v[0] = var self._variations = var @property def volume_variation(self): return self._variations[1] @volume_variation.setter def volume_variation(self, var): v = self._variations v[1] = var self._variations = var @property def pan_variation(self): return self._variations[2] @pan_variation.setter def pan_variation(self, var): v = self._variations v[2] = var self._variations = var def lock(self, offset, length): ptr1 = c_void_p() len1 = c_uint() ptr2 = c_void_p() len2 = c_uint() ckresult(_dll.FMOD_Sound_Lock(self._ptr, offset, length, byref(ptr1), byref(ptr2), byref(len1), byref(len2))) return ((ptr1, len1), (ptr2, len2)) def release(self): ckresult(_dll.FMOD_Sound_Release(self._ptr)) def set_subsound(self, index, snd): check_type(snd, Sound) ckresult(_dll.FMOD_Sound_SetSubSound(self._ptr, index, snd._ptr)) def set_subsound_sentence(self, sounds): a = c_int * len(sounds) ptrs = [o._ptr for o in sounds] ai = a(*ptrs) ckresult(_dll.FMOD_Sound_SetSubSoundSentence(self._ptr, ai, len(ai))) def unlock(self, i1, i2): """I1 and I2 are tuples of form (ptr, len).""" ckresult(_dll.FMOD_Sound_Unlock(self._ptr, i1[0], i2[0], i1[1], i2[1])) @property def music_speed(self): speed = c_float() self._call_fmod("FMOD_Sound_GetMusicSpeed", byref(speed)) return speed.value @music_speed.setter def music_speed(self, speed): self._call_fmod("FMOD_Sound_SetMusicSpeed", c_float(speed)) def read_data(self, length): """Read a fragment of the sound's decoded data. :param length: The requested length. :returns: The data and the actual length. :rtype: Tuple of the form (data, actual).""" buf = create_string_buffer(length) actual = c_uint() self._call_fmod("FMOD_Sound_ReadData", buf, length, byref(actual)) return buf.value, actual.value def seek_data(self, offset): """Seeks for data reading purposes. :param offset: The offset to seek to in PCM samples. :type offset: Int or long, but must be in range of an unsigned long, not python's arbitrary long.""" self._call_fmod("FMOD_Sound_SeekData", offset)
2.0625
2
src/pynwb/retinotopy.py
weiglszonja/pynwb
132
11332
<reponame>weiglszonja/pynwb from collections.abc import Iterable import warnings from hdmf.utils import docval, popargs, call_docval_func, get_docval from . import register_class, CORE_NAMESPACE from .core import NWBDataInterface, NWBData class RetinotopyImage(NWBData): """Gray-scale anatomical image of cortical surface. Array structure: [rows][columns] """ __nwbfields__ = ('bits_per_pixel', 'dimension', 'format', 'field_of_view') @docval({'name': 'name', 'type': str, 'doc': 'Name of this retinotopy image'}, {'name': 'data', 'type': Iterable, 'doc': 'Data field.'}, {'name': 'bits_per_pixel', 'type': int, 'doc': 'Number of bits used to represent each value. This is necessary to determine maximum ' '(white) pixel value.'}, {'name': 'dimension', 'type': Iterable, 'shape': (2, ), 'doc': 'Number of rows and columns in the image.'}, {'name': 'format', 'type': Iterable, 'doc': 'Format of image. Right now only "raw" supported.'}, {'name': 'field_of_view', 'type': Iterable, 'shape': (2, ), 'doc': 'Size of viewing area, in meters.'}) def __init__(self, **kwargs): bits_per_pixel, dimension, format, field_of_view = popargs( 'bits_per_pixel', 'dimension', 'format', 'field_of_view', kwargs) call_docval_func(super().__init__, kwargs) self.bits_per_pixel = bits_per_pixel self.dimension = dimension self.format = format self.field_of_view = field_of_view class FocalDepthImage(RetinotopyImage): """Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) as data collection. Array format: [rows][columns]. """ __nwbfields__ = ('focal_depth', ) @docval(*get_docval(RetinotopyImage.__init__), {'name': 'focal_depth', 'type': 'float', 'doc': 'Focal depth offset, in meters.'}) def __init__(self, **kwargs): focal_depth = popargs('focal_depth', kwargs) call_docval_func(super().__init__, kwargs) self.focal_depth = focal_depth class RetinotopyMap(NWBData): """Abstract two-dimensional map of responses to stimuli along a single response axis (e.g., altitude) """ __nwbfields__ = ('field_of_view', 'dimension') @docval({'name': 'name', 'type': str, 'doc': 'the name of this axis map'}, {'name': 'data', 'type': Iterable, 'shape': (None, None), 'doc': 'data field.'}, {'name': 'field_of_view', 'type': Iterable, 'shape': (2, ), 'doc': 'Size of viewing area, in meters.'}, {'name': 'dimension', 'type': Iterable, 'shape': (2, ), 'doc': 'Number of rows and columns in the image'}) def __init__(self, **kwargs): field_of_view, dimension = popargs('field_of_view', 'dimension', kwargs) call_docval_func(super().__init__, kwargs) self.field_of_view = field_of_view self.dimension = dimension class AxisMap(RetinotopyMap): """Abstract two-dimensional map of responses to stimuli along a single response axis (e.g., altitude) with unit """ __nwbfields__ = ('unit', ) @docval(*get_docval(RetinotopyMap.__init__, 'name', 'data', 'field_of_view'), {'name': 'unit', 'type': str, 'doc': 'Unit that axis data is stored in (e.g., degrees)'}, *get_docval(RetinotopyMap.__init__, 'dimension')) def __init__(self, **kwargs): unit = popargs('unit', kwargs) call_docval_func(super().__init__, kwargs) self.unit = unit @register_class('ImagingRetinotopy', CORE_NAMESPACE) class ImagingRetinotopy(NWBDataInterface): """ Intrinsic signal optical imaging or widefield imaging for measuring retinotopy. Stores orthogonal maps (e.g., altitude/azimuth; radius/theta) of responses to specific stimuli and a combined polarity map from which to identify visual areas. This group does not store the raw responses imaged during retinotopic mapping or the stimuli presented, but rather the resulting phase and power maps after applying a Fourier transform on the averaged responses. Note: for data consistency, all images and arrays are stored in the format [row][column] and [row, col], which equates to [y][x]. Field of view and dimension arrays may appear backward (i.e., y before x). """ __nwbfields__ = ({'name': 'sign_map', 'child': True}, {'name': 'axis_1_phase_map', 'child': True}, {'name': 'axis_1_power_map', 'child': True}, {'name': 'axis_2_phase_map', 'child': True}, {'name': 'axis_2_power_map', 'child': True}, {'name': 'focal_depth_image', 'child': True}, {'name': 'vasculature_image', 'child': True}, 'axis_descriptions') @docval({'name': 'sign_map', 'type': RetinotopyMap, 'doc': 'Sine of the angle between the direction of the gradient in axis_1 and axis_2.'}, {'name': 'axis_1_phase_map', 'type': AxisMap, 'doc': 'Phase response to stimulus on the first measured axis.'}, {'name': 'axis_1_power_map', 'type': AxisMap, 'doc': 'Power response on the first measured axis. Response is scaled so 0.0 is no power in ' 'the response and 1.0 is maximum relative power.'}, {'name': 'axis_2_phase_map', 'type': AxisMap, 'doc': 'Phase response to stimulus on the second measured axis.'}, {'name': 'axis_2_power_map', 'type': AxisMap, 'doc': 'Power response on the second measured axis. Response is scaled so 0.0 is no ' 'power in the response and 1.0 is maximum relative power.'}, {'name': 'axis_descriptions', 'type': Iterable, 'shape': (2, ), 'doc': 'Two-element array describing the contents of the two response axis fields. ' 'Description should be something like ["altitude", "azimuth"] or ["radius", "theta"].'}, {'name': 'focal_depth_image', 'type': FocalDepthImage, 'doc': 'Gray-scale image taken with same settings/parameters (e.g., focal depth, wavelength) ' 'as data collection. Array format: [rows][columns].'}, {'name': 'vasculature_image', 'type': RetinotopyImage, 'doc': 'Gray-scale anatomical image of cortical surface. Array structure: [rows][columns].'}, {'name': 'name', 'type': str, 'doc': 'the name of this container', 'default': 'ImagingRetinotopy'}) def __init__(self, **kwargs): axis_1_phase_map, axis_1_power_map, axis_2_phase_map, axis_2_power_map, axis_descriptions, \ focal_depth_image, sign_map, vasculature_image = popargs( 'axis_1_phase_map', 'axis_1_power_map', 'axis_2_phase_map', 'axis_2_power_map', 'axis_descriptions', 'focal_depth_image', 'sign_map', 'vasculature_image', kwargs) call_docval_func(super().__init__, kwargs) warnings.warn("The ImagingRetinotopy class currently cannot be written to or read from a file. " "This is a known bug and will be fixed in a future release of PyNWB.") self.axis_1_phase_map = axis_1_phase_map self.axis_1_power_map = axis_1_power_map self.axis_2_phase_map = axis_2_phase_map self.axis_2_power_map = axis_2_power_map self.axis_descriptions = axis_descriptions self.focal_depth_image = focal_depth_image self.sign_map = sign_map self.vasculature_image = vasculature_image
2.1875
2
GreenMoon/forms.py
ma010/green-moon
0
11333
<reponame>ma010/green-moon """ Implement a class function for user to put in a zip-code and search relevant information about business entities in that zip-code area. """ from flask.ext.wtf import Form from wtforms import StringField, BooleanField from wtforms.validators import DataRequired class inputZipForm(Form): inputZip = StringField('inputZip', validators=[DataRequired()])
2.96875
3
Phase-2/Linked List/Day-70.py
CodedLadiesInnovateTech/python-challenges
11
11334
<reponame>CodedLadiesInnovateTech/python-challenges<gh_stars>10-100 ''' 1. Write a Python program to access a specific item in a singly linked list using index value. 2. Write a Python program to set a new value of an item in a singly linked list using index value. 3. Write a Python program to delete the first item from a singly linked list. '''
3.9375
4
ngboost/version.py
dsharpc/ngboost
0
11335
<reponame>dsharpc/ngboost __version__ = "0.3.4dev"
0.839844
1
premailer/tests/test_utils.py
p12tic/premailer
0
11336
<gh_stars>0 import unittest from premailer.premailer import capitalize_float_margin class UtilsTestCase(unittest.TestCase): def testcapitalize_float_margin(self): self.assertEqual( capitalize_float_margin('margin:1em'), 'Margin:1em') self.assertEqual( capitalize_float_margin('margin-left:1em'), 'Margin-left:1em') self.assertEqual( capitalize_float_margin('float:right;'), 'Float:right;') self.assertEqual( capitalize_float_margin('float:right;color:red;margin:0'), 'Float:right;color:red;Margin:0')
3.0625
3
home/vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_cython_wrapper.py
qwertzy-antonio-godinho/dots
6
11337
<reponame>qwertzy-antonio-godinho/dots<filename>home/vscode/extensions/ms-python.python-2021.12.1559732655/pythonFiles/lib/python/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_cython_wrapper.py import sys try: try: from _pydevd_bundle_ext import pydevd_cython as mod except ImportError: from _pydevd_bundle import pydevd_cython as mod except ImportError: import struct try: is_python_64bit = (struct.calcsize('P') == 8) except: # In Jython this call fails, but this is Ok, we don't support Jython for speedups anyways. raise ImportError plat = '32' if is_python_64bit: plat = '64' # We also accept things as: # # _pydevd_bundle.pydevd_cython_win32_27_32 # _pydevd_bundle.pydevd_cython_win32_34_64 # # to have multiple pre-compiled pyds distributed along the IDE # (generated by build_tools/build_binaries_windows.py). mod_name = 'pydevd_cython_%s_%s%s_%s' % (sys.platform, sys.version_info[0], sys.version_info[1], plat) check_name = '_pydevd_bundle.%s' % (mod_name,) mod = getattr(__import__(check_name), mod_name) # Regardless of how it was found, make sure it's later available as the # initial name so that the expected types from cython in frame eval # are valid. sys.modules['_pydevd_bundle.pydevd_cython'] = mod trace_dispatch = mod.trace_dispatch PyDBAdditionalThreadInfo = mod.PyDBAdditionalThreadInfo set_additional_thread_info = mod.set_additional_thread_info global_cache_skips = mod.global_cache_skips global_cache_frame_skips = mod.global_cache_frame_skips _set_additional_thread_info_lock = mod._set_additional_thread_info_lock fix_top_level_trace_and_get_trace_func = mod.fix_top_level_trace_and_get_trace_func version = getattr(mod, 'version', 0)
1.71875
2
tests/test_thumbnails.py
pypeclub/openpype4-tests
0
11338
<reponame>pypeclub/openpype4-tests from tests.fixtures import api, PROJECT_NAME assert api THUMB_DATA1 = b"thisisaveryrandomthumbnailcontent" THUMB_DATA2 = b"thisihbhihjhuuyiooanothbnlcontent" def test_folder_thumbnail(api): response = api.post( f"projects/{PROJECT_NAME}/folders", name="testicek", folderType="Asset", ) assert response folder_id = response.data["id"] # Ensure we cannot create an empty thumbnail assert not api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=b"", ) # Create a thumbnail for the folder response = api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=THUMB_DATA1, ) assert response # Ensure the thumbnail is there response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA1 # Get the id of the thumbnail (we can re-use it later) thumb1_id = api.get( f"projects/{PROJECT_NAME}/folders/{folder_id}", ).data["thumbnailId"] # Update thumbnail response = api.raw_post( f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail", mime="image/png", data=THUMB_DATA2, ) assert response # Ensure the thumbnail changed response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA2 # Let the folder use the old thumbnail response = api.patch( f"projects/{PROJECT_NAME}/folders/{folder_id}", thumbnail_id=thumb1_id, ) assert response # Ensure the thumbnail is switched to the old one response = api.raw_get(f"projects/{PROJECT_NAME}/folders/{folder_id}/thumbnail") assert response == THUMB_DATA1 def test_version_thumbnail(api): # Create folder/subset/version response = api.post( f"projects/{PROJECT_NAME}/folders", name="test2", folderType="Asset", ) assert response folder_id = response.data["id"] response = api.post( f"projects/{PROJECT_NAME}/subsets", name="test2s", family="theSopranos", folderId=folder_id, ) assert response subset_id = response.data["id"] response = api.post( f"projects/{PROJECT_NAME}/versions", version=1, subsetId=subset_id, ) version_id = response.data["id"] # Create thumbnail for the version response = api.raw_post( f"projects/{PROJECT_NAME}/versions/{version_id}/thumbnail", mime="image/png", data=THUMB_DATA1, ) assert response # Verify that the thumbnail is there response = api.raw_get(f"projects/{PROJECT_NAME}/versions/{version_id}/thumbnail") assert response == THUMB_DATA1
2.46875
2
POO/Heranca/aula107_classes.py
pinheirogus/Curso-Python-Udemy
1
11339
# Generalizando para não repetir o código! class Pessoa: def __init__(self, nome, idade): self.nome = nome self.idade = idade self.nomeclasse = self.__class__.__name__ def falar(self): print(f'{self.nomeclasse} está falando.') class Cliente(Pessoa): def comprar(self): print(f'{self.nomeclasse} está comprando...') class Aluno(Pessoa): def estudar(self): print(f'{self.nomeclasse} está estudando...') class ClienteVIP(Cliente): def __init__(self, nome, idade, sobrenome): super().__init__(nome, idade) print(f'{self.nome}, {self.idade} anos, criado com sucesso.') self.sobrenome = sobrenome def falar(self): Pessoa.falar(self) # Como a classe Cliente não possui o método falar(), o Python busca na superclasse o método. Cliente.falar(self) print(f'{self.nome} {self.sobrenome}')
4.0625
4
nncf/experimental/onnx/algorithms/quantization/default_quantization.py
vuiseng9/nncf_pytorch
136
11340
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from nncf.common.quantization.quantizer_propagation.structs import QuantizationTrait from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXConvolutionMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXLinearMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXSigmoidMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXHardSigmoidMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXAveragePoolMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXGlobalAveragePoolMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXAddLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXMulLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXConcatLayerMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXBatchNormMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXResizeMetatype from nncf.experimental.onnx.graph.metatypes.onnx_ops import ONNXSoftmaxMetatype from nncf.common.graph.operator_metatypes import UnknownMetatype DEFAULT_ONNX_QUANT_TRAIT_TO_OP_DICT = { QuantizationTrait.INPUTS_QUANTIZABLE: [ ONNXConvolutionMetatype, ONNXLinearMetatype, ONNXAveragePoolMetatype, ONNXGlobalAveragePoolMetatype, ONNXAddLayerMetatype, ONNXMulLayerMetatype, ONNXBatchNormMetatype, ONNXHardSigmoidMetatype, ONNXResizeMetatype, ], QuantizationTrait.NON_QUANTIZABLE: [ONNXSigmoidMetatype, ONNXSoftmaxMetatype, UnknownMetatype], QuantizationTrait.CONCAT: [ONNXConcatLayerMetatype], QuantizationTrait.OUTPUT_QUANTIZATION_AS_WEIGHTS: [] }
1.085938
1
Package/CONFIG.py
YuanYuLin/samba
0
11341
<filename>Package/CONFIG.py import ops import iopc TARBALL_FILE="samba-4.8.4.tar.gz" TARBALL_DIR="samba-4.8.4" INSTALL_DIR="samba-bin" pkg_path = "" output_dir = "" tarball_pkg = "" tarball_dir = "" install_dir = "" install_tmp_dir = "" cc_host = "" tmp_include_dir = "" dst_include_dir = "" dst_lib_dir = "" dst_usr_local_lib_dir = "" def set_global(args): global pkg_path global output_dir global tarball_pkg global install_dir global install_tmp_dir global tarball_dir global cc_host global tmp_include_dir global dst_include_dir global dst_lib_dir global dst_usr_local_lib_dir global dst_usr_local_libexec_dir global dst_usr_local_share_dir global dst_usr_local_dir global src_pkgconfig_dir global dst_pkgconfig_dir global dst_bin_dir global dst_etc_dir global install_test_utils pkg_path = args["pkg_path"] output_dir = args["output_path"] tarball_pkg = ops.path_join(pkg_path, TARBALL_FILE) install_dir = ops.path_join(output_dir, INSTALL_DIR) install_tmp_dir = ops.path_join(output_dir, INSTALL_DIR + "-tmp") tarball_dir = ops.path_join(output_dir, TARBALL_DIR) cc_host_str = ops.getEnv("CROSS_COMPILE") cc_host = cc_host_str[:len(cc_host_str) - 1] tmp_include_dir = ops.path_join(output_dir, ops.path_join("include",args["pkg_name"])) dst_include_dir = ops.path_join("include",args["pkg_name"]) dst_lib_dir = ops.path_join(install_dir, "lib") dst_bin_dir = ops.path_join(install_dir, "bin") dst_etc_dir = ops.path_join(install_dir, "etc") dst_usr_local_lib_dir = ops.path_join(install_dir, "usr/local/lib") dst_usr_local_dir = ops.path_join(install_dir, "usr/local") dst_usr_local_libexec_dir = ops.path_join(install_dir, "usr/local/libexec") dst_usr_local_share_dir = ops.path_join(install_dir, "usr/local/share") src_pkgconfig_dir = ops.path_join(pkg_path, "pkgconfig") dst_pkgconfig_dir = ops.path_join(install_dir, "pkgconfig") if ops.getEnv("INSTALL_TEST_UTILS") == 'y': install_test_utils = True else: install_test_utils = False def MAIN_ENV(args): set_global(args) ops.exportEnv(ops.setEnv("CC", ops.getEnv("CROSS_COMPILE") + "gcc")) ''' ops.exportEnv(ops.setEnv("CXX", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("CPP", ops.getEnv("CROSS_COMPILE") + "g++")) ops.exportEnv(ops.setEnv("AR", ops.getEnv("CROSS_COMPILE") + "ar")) ops.exportEnv(ops.setEnv("RANLIB", ops.getEnv("CROSS_COMPILE") + "ranlib")) ops.exportEnv(ops.setEnv("CROSS", ops.getEnv("CROSS_COMPILE"))) ''' ops.exportEnv(ops.setEnv("DESTDIR", install_tmp_dir)) return False def MAIN_EXTRACT(args): set_global(args) ops.unTarGz(tarball_pkg, output_dir) return True def MAIN_PATCH(args, patch_group_name): set_global(args) for patch in iopc.get_patch_list(pkg_path, patch_group_name): if iopc.apply_patch(tarball_dir, patch): continue else: sys.exit(1) return True def MAIN_CONFIGURE(args): set_global(args) job_count = ops.getEnv("BUILD_JOBS_COUNT") extra_conf = [] ''' #extra_conf.append("--cross-compile") #extra_conf.append("-C -V") #extra_conf.append("--cross-answers=cc.txt") #extra_conf.append("--hostcc=" + cc_host) extra_conf.append("--abi-check-disable") extra_conf.append("--disable-rpath") extra_conf.append("--bundled-libraries=NONE") #extra_conf.append("--cross-execute='qemu-arm-static -L /usr/arm-linux-gnu'") extra_conf.append("--jobs=" + job_count) extra_conf.append("--disable-gnutls") #extra_conf.append("--private-libraries=NONE") extra_conf.append("--without-gettext") extra_conf.append("--without-systemd") extra_conf.append("--without-ad-dc") extra_conf.append("--without-ads") extra_conf.append("--without-winbind") extra_conf.append("--without-ldap") extra_conf.append("--without-pam") extra_conf.append("--without-pie") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-automount") extra_conf.append("--without-utmp") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-acl-support") extra_conf.append("--without-quotas") extra_conf.append("--without-cluster-support") extra_conf.append("--disable-glusterfs") extra_conf.append("--without-profiling-data") extra_conf.append("--without-libarchive") extra_conf.append("--without-regedit") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--disable-python") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") ''' extra_conf.append("--disable-python") extra_conf.append("--without-ad-dc") extra_conf.append("--without-acl-support") extra_conf.append("--without-ldap") extra_conf.append("--without-ads") extra_conf.append("--without-pam") extra_conf.append("--without-gettext") extra_conf.append("--jobs=" + job_count) extra_conf.append("--without-systemd") extra_conf.append("--without-regedit") extra_conf.append("--without-cluster-support") extra_conf.append("--without-ntvfs-fileserver") extra_conf.append("--without-winbind") extra_conf.append("--disable-glusterfs") extra_conf.append("--disable-cups") extra_conf.append("--disable-iprint") extra_conf.append("--disable-avahi") extra_conf.append("--without-automount") extra_conf.append("--without-dnsupdate") extra_conf.append("--without-fam") extra_conf.append("--without-dmapi") extra_conf.append("--without-quotas") extra_conf.append("--without-profiling-data") extra_conf.append("--without-utmp") extra_conf.append("--without-libarchive") #extra_conf.append("--enable-developer") print extra_conf #iopc.waf(tarball_dir, extra_conf) iopc.configure(tarball_dir, extra_conf) return True def MAIN_BUILD(args): set_global(args) ops.mkdir(install_dir) ops.mkdir(install_tmp_dir) iopc.make(tarball_dir) iopc.make_install(tarball_dir) ops.mkdir(install_dir) ops.mkdir(dst_lib_dir) ops.mkdir(dst_bin_dir) ops.mkdir(dst_usr_local_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/nmbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/sbin/smbd"), dst_bin_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-binding.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so.0") ops.ln(dst_lib_dir, "libdcerpc-binding.so.0.0.1", "libdcerpc-binding.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc-samr.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so.0") ops.ln(dst_lib_dir, "libdcerpc-samr.so.0.0.1", "libdcerpc-samr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libdcerpc.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so.0") ops.ln(dst_lib_dir, "libdcerpc.so.0.0.1", "libdcerpc.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-krb5pac.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so.0") ops.ln(dst_lib_dir, "libndr-krb5pac.so.0.0.1", "libndr-krb5pac.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-nbt.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so.0") ops.ln(dst_lib_dir, "libndr-nbt.so.0.0.1", "libndr-nbt.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr.so.0.1.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0.1") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so.0") ops.ln(dst_lib_dir, "libndr.so.0.1.0", "libndr.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libndr-standard.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so.0") ops.ln(dst_lib_dir, "libndr-standard.so.0.0.1", "libndr-standard.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnetapi.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libnetapi.so.0", "libnetapi.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_winbind.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_winbind.so.2", "libnss_winbind.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libnss_wins.so.2"), dst_lib_dir) ops.ln(dst_lib_dir, "libnss_wins.so.2", "libnss_wins.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-credentials.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so.0") ops.ln(dst_lib_dir, "libsamba-credentials.so.0.0.1", "libsamba-credentials.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-errors.so.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-errors.so.1", "libsamba-errors.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-hostconfig.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so.0") ops.ln(dst_lib_dir, "libsamba-hostconfig.so.0.0.1", "libsamba-hostconfig.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-passdb.so.0.27.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0.27") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so.0") ops.ln(dst_lib_dir, "libsamba-passdb.so.0.27.0", "libsamba-passdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamba-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so.0") ops.ln(dst_lib_dir, "libsamba-util.so.0.0.1", "libsamba-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsamdb.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so.0") ops.ln(dst_lib_dir, "libsamdb.so.0.0.1", "libsamdb.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbclient.so.0.3.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0.3") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so.0") ops.ln(dst_lib_dir, "libsmbclient.so.0.3.1", "libsmbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libsmbconf.so.0"), dst_lib_dir) ops.ln(dst_lib_dir, "libsmbconf.so.0", "libsmbconf.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libtevent-util.so.0.0.1"), dst_lib_dir) ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so.0") ops.ln(dst_lib_dir, "libtevent-util.so.0.0.1", "libtevent-util.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/libwbclient.so.0.14"), dst_lib_dir) ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so.0") ops.ln(dst_lib_dir, "libwbclient.so.0.14", "libwbclient.so") ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/winbind_krb5_locator.so"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/private/."), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/auth"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/idmap"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/ldb"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/nss_info"), dst_lib_dir) ops.copyto(ops.path_join(install_tmp_dir, "usr/local/samba/lib/vfs"), dst_lib_dir) ops.ln(dst_usr_local_dir, "/tmp/samba", "samba") return True def MAIN_INSTALL(args): set_global(args) iopc.installBin(args["pkg_name"], ops.path_join(dst_lib_dir, "."), "lib") iopc.installBin(args["pkg_name"], ops.path_join(dst_bin_dir, "."), "usr/sbin") iopc.installBin(args["pkg_name"], ops.path_join(dst_usr_local_dir, "."), "usr/local") #iopc.installBin(args["pkg_name"], ops.path_join(tmp_include_dir, "."), dst_include_dir) #iopc.installBin(args["pkg_name"], ops.path_join(dst_pkgconfig_dir, '.'), "pkgconfig") return False def MAIN_SDKENV(args): set_global(args) return False def MAIN_CLEAN_BUILD(args): set_global(args) return False def MAIN(args): set_global(args)
2.140625
2
packages/pyre/tracking/Chain.py
lijun99/pyre
3
11342
<reponame>lijun99/pyre # -*- coding: utf-8 -*- # # <NAME>. aïvázis # orthologue # (c) 1998-2019 all rights reserved # # declaration class Chain: """ A locator that ties together two others in order to express that something in {next} caused {this} to be recorded """ # meta methods def __init__(self, this, next): self.this = this self.next = next return def __str__(self): # if {next} is non-trivial, show the chain if self.next: return "{0.this}, {0.next}".format(self) # otherwise don't return "{0.this}".format(self) # implementation details __slots__ = "this", "next" # end of file
2.859375
3
tests/resources/accepted/res_0_minpyversion_3_0.py
matteogabburo/python-ast-utils
3
11343
import os x = 7 print(x + 1)
1.914063
2
Mod 03/03 Prova.py
SauloCav/CN
0
11344
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import math def f(x): return math.exp(x)/x**3 def int(a,b): h = (b-a)/104 x_par = a+h x_impar = a+2*h soma_par = 0 soma_impar = 0 for i in range(52): soma_par += f(x_par) x_par += 2*h for i in range(51): soma_impar += f(x_impar) x_impar += 2*h return (f(a)+f(b) + 4 * soma_par + 2*soma_impar) *h/3 print(int(1.9,9.7))
3.59375
4
almetro/al.py
arnour/almetro
0
11345
<gh_stars>0 from almetro.instance import growing from almetro.metro import Metro import timeit class ExecutionSettings: def __init__(self, trials=1, runs=1): if not trials or trials < 1: raise TypeError('#trials must be provided') if not runs or runs < 1: raise TypeError('#runs must be provided') self.trials = trials self.runs = runs @staticmethod def new(): return ExecutionSettings() class InstanceSettings: def __init__(self, instances=1, provider=growing()): if not instances: raise TypeError('#instances must be provided') if not provider: raise TypeError('provider must be provided') self.instances = instances self.provider = provider @staticmethod def new(): return InstanceSettings() class Al: def __init__(self, instance_settings=InstanceSettings.new(), execution_settings=ExecutionSettings.new()): if not instance_settings: raise TypeError('instance settings must be provided') if not execution_settings: raise TypeError('execution settings must be provided') self.__instance_settings = instance_settings self.__execution_settings = execution_settings def with_instances(self, instances, provider): return Al(instance_settings=InstanceSettings(instances, provider), execution_settings=self.__execution_settings) def with_execution(self, trials, runs=1): return Al(instance_settings=self.__instance_settings, execution_settings=ExecutionSettings(trials, runs)) def metro(self, algorithm, complexity): metro = Metro.new(complexity) for _ in range(self.__instance_settings.instances): instance = self.__instance_settings.provider.new_instance() def runner(): algorithm(**instance.value) metro.register(instance, timeit.repeat(runner, number=self.__execution_settings.runs, repeat=self.__execution_settings.trials)) return metro
2.4375
2
yt_dlp/extractor/archiveorg.py
mrBliss/yt-dlp
80
11346
<filename>yt_dlp/extractor/archiveorg.py # coding: utf-8 from __future__ import unicode_literals import re import json from .common import InfoExtractor from .youtube import YoutubeIE, YoutubeBaseInfoExtractor from ..compat import ( compat_urllib_parse_unquote, compat_urllib_parse_unquote_plus, compat_HTTPError ) from ..utils import ( bug_reports_message, clean_html, dict_get, extract_attributes, ExtractorError, get_element_by_id, HEADRequest, int_or_none, KNOWN_EXTENSIONS, merge_dicts, mimetype2ext, orderedSet, parse_duration, parse_qs, str_to_int, str_or_none, traverse_obj, try_get, unified_strdate, unified_timestamp, urlhandle_detect_ext, url_or_none ) class ArchiveOrgIE(InfoExtractor): IE_NAME = 'archive.org' IE_DESC = 'archive.org video and audio' _VALID_URL = r'https?://(?:www\.)?archive\.org/(?:details|embed)/(?P<id>[^?#]+)(?:[?].*)?$' _TESTS = [{ 'url': 'http://archive.org/details/XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'md5': '8af1d4cf447933ed3c7f4871162602db', 'info_dict': { 'id': 'XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'ext': 'ogv', 'title': '1968 Demo - FJCC Conference Presentation Reel #1', 'description': 'md5:da45c349df039f1cc8075268eb1b5c25', 'release_date': '19681210', 'timestamp': 1268695290, 'upload_date': '20100315', 'creator': 'SRI International', 'uploader': '<EMAIL>', }, }, { 'url': 'https://archive.org/details/Cops1922', 'md5': '0869000b4ce265e8ca62738b336b268a', 'info_dict': { 'id': 'Cops1922', 'ext': 'mp4', 'title': 'Buster Keaton\'s "Cops" (1922)', 'description': 'md5:43a603fd6c5b4b90d12a96b921212b9c', 'uploader': '<EMAIL>', 'timestamp': 1387699629, 'upload_date': "20131222", }, }, { 'url': 'http://archive.org/embed/XD300-23_68HighlightsAResearchCntAugHumanIntellect', 'only_matching': True, }, { 'url': 'https://archive.org/details/Election_Ads', 'md5': '284180e857160cf866358700bab668a3', 'info_dict': { 'id': 'Election_Ads/Commercial-JFK1960ElectionAdCampaignJingle.mpg', 'title': 'Commercial-JFK1960ElectionAdCampaignJingle.mpg', 'ext': 'mp4', }, }, { 'url': 'https://archive.org/details/Election_Ads/Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'md5': '7915213ef02559b5501fe630e1a53f59', 'info_dict': { 'id': 'Election_Ads/Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'title': 'Commercial-Nixon1960ElectionAdToughonDefense.mpg', 'ext': 'mp4', 'timestamp': 1205588045, 'uploader': '<EMAIL>', 'description': '1960 Presidential Campaign Election Commercials <NAME>, <NAME>', 'upload_date': '20080315', }, }, { 'url': 'https://archive.org/details/gd1977-05-08.shure57.stevenson.29303.flac16', 'md5': '7d07ffb42aba6537c28e053efa4b54c9', 'info_dict': { 'id': 'gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t01.flac', 'title': 'Turning', 'ext': 'flac', }, }, { 'url': 'https://archive.org/details/gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t07.flac', 'md5': 'a07cd8c6ab4ee1560f8a0021717130f3', 'info_dict': { 'id': 'gd1977-05-08.shure57.stevenson.29303.flac16/gd1977-05-08d01t07.flac', 'title': 'Deal', 'ext': 'flac', 'timestamp': 1205895624, 'uploader': '<EMAIL>', 'description': 'md5:6a31f1996db0aa0fc9da6d6e708a1bb0', 'upload_date': '20080319', 'location': 'Barton Hall - Cornell University', }, }, { 'url': 'https://archive.org/details/lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik', 'md5': '7cb019baa9b332e82ea7c10403acd180', 'info_dict': { 'id': 'lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/01.01. Bells Of Rostov.mp3', 'title': 'Bells Of Rostov', 'ext': 'mp3', }, }, { 'url': 'https://archive.org/details/lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/02.02.+Song+And+Chorus+In+The+Polovetsian+Camp+From+%22Prince+Igor%22+(Act+2%2C+Scene+1).mp3', 'md5': '1d0aabe03edca83ca58d9ed3b493a3c3', 'info_dict': { 'id': 'lp_the-music-of-russia_various-artists-a-askaryan-alexander-melik/disc1/02.02. Song And Chorus In The Polovetsian Camp From "Prince Igor" (Act 2, Scene 1).mp3', 'title': 'Song And Chorus In The Polovetsian Camp From "Prince Igor" (Act 2, Scene 1)', 'ext': 'mp3', 'timestamp': 1569662587, 'uploader': '<EMAIL>', 'description': 'md5:012b2d668ae753be36896f343d12a236', 'upload_date': '20190928', }, }] @staticmethod def _playlist_data(webpage): element = re.findall(r'''(?xs) <input (?:\s+[a-zA-Z0-9:._-]+(?:=[a-zA-Z0-9:._-]*|="[^"]*"|='[^']*'|))*? \s+class=['"]?js-play8-playlist['"]? (?:\s+[a-zA-Z0-9:._-]+(?:=[a-zA-Z0-9:._-]*|="[^"]*"|='[^']*'|))*? \s*/> ''', webpage)[0] return json.loads(extract_attributes(element)['value']) def _real_extract(self, url): video_id = compat_urllib_parse_unquote_plus(self._match_id(url)) identifier, entry_id = (video_id.split('/', 1) + [None])[:2] # Archive.org metadata API doesn't clearly demarcate playlist entries # or subtitle tracks, so we get them from the embeddable player. embed_page = self._download_webpage( 'https://archive.org/embed/' + identifier, identifier) playlist = self._playlist_data(embed_page) entries = {} for p in playlist: # If the user specified a playlist entry in the URL, ignore the # rest of the playlist. if entry_id and p['orig'] != entry_id: continue entries[p['orig']] = { 'formats': [], 'thumbnails': [], 'artist': p.get('artist'), 'track': p.get('title'), 'subtitles': {}} for track in p.get('tracks', []): if track['kind'] != 'subtitles': continue entries[p['orig']][track['label']] = { 'url': 'https://archive.org/' + track['file'].lstrip('/')} metadata = self._download_json( 'http://archive.org/metadata/' + identifier, identifier) m = metadata['metadata'] identifier = m['identifier'] info = { 'id': identifier, 'title': m['title'], 'description': clean_html(m.get('description')), 'uploader': dict_get(m, ['uploader', 'adder']), 'creator': m.get('creator'), 'license': m.get('licenseurl'), 'release_date': unified_strdate(m.get('date')), 'timestamp': unified_timestamp(dict_get(m, ['publicdate', 'addeddate'])), 'webpage_url': 'https://archive.org/details/' + identifier, 'location': m.get('venue'), 'release_year': int_or_none(m.get('year'))} for f in metadata['files']: if f['name'] in entries: entries[f['name']] = merge_dicts(entries[f['name']], { 'id': identifier + '/' + f['name'], 'title': f.get('title') or f['name'], 'display_id': f['name'], 'description': clean_html(f.get('description')), 'creator': f.get('creator'), 'duration': parse_duration(f.get('length')), 'track_number': int_or_none(f.get('track')), 'album': f.get('album'), 'discnumber': int_or_none(f.get('disc')), 'release_year': int_or_none(f.get('year'))}) entry = entries[f['name']] elif f.get('original') in entries: entry = entries[f['original']] else: continue if f.get('format') == 'Thumbnail': entry['thumbnails'].append({ 'id': f['name'], 'url': 'https://archive.org/download/' + identifier + '/' + f['name'], 'width': int_or_none(f.get('width')), 'height': int_or_none(f.get('width')), 'filesize': int_or_none(f.get('size'))}) extension = (f['name'].rsplit('.', 1) + [None])[1] if extension in KNOWN_EXTENSIONS: entry['formats'].append({ 'url': 'https://archive.org/download/' + identifier + '/' + f['name'], 'format': f.get('format'), 'width': int_or_none(f.get('width')), 'height': int_or_none(f.get('height')), 'filesize': int_or_none(f.get('size')), 'protocol': 'https'}) # Sort available formats by filesize for entry in entries.values(): entry['formats'] = list(sorted(entry['formats'], key=lambda x: x.get('filesize', -1))) if len(entries) == 1: # If there's only one item, use it as the main info dict only_video = entries[list(entries.keys())[0]] if entry_id: info = merge_dicts(only_video, info) else: info = merge_dicts(info, only_video) else: # Otherwise, we have a playlist. info['_type'] = 'playlist' info['entries'] = list(entries.values()) if metadata.get('reviews'): info['comments'] = [] for review in metadata['reviews']: info['comments'].append({ 'id': review.get('review_id'), 'author': review.get('reviewer'), 'text': str_or_none(review.get('reviewtitle'), '') + '\n\n' + review.get('reviewbody'), 'timestamp': unified_timestamp(review.get('createdate')), 'parent': 'root'}) return info class YoutubeWebArchiveIE(InfoExtractor): IE_NAME = 'web.archive:youtube' IE_DESC = 'web.archive.org saved youtube videos' _VALID_URL = r"""(?x)^ (?:https?://)?web\.archive\.org/ (?:web/)? (?:(?P<date>[0-9]{14})?[0-9A-Za-z_*]*/)? # /web and the version index is optional (?:https?(?::|%3[Aa])//)? (?: (?:\w+\.)?youtube\.com(?::(?:80|443))?/watch(?:\.php)?(?:\?|%3[fF])(?:[^\#]+(?:&|%26))?v(?:=|%3[dD]) # Youtube URL |(?:wayback-fakeurl\.archive\.org/yt/) # Or the internal fake url ) (?P<id>[0-9A-Za-z_-]{11})(?:%26|\#|&|$) """ _TESTS = [ { 'url': 'https://web.archive.org/web/20150415002341/https://www.youtube.com/watch?v=aYAGB11YrSs', 'info_dict': { 'id': 'aYAGB11YrSs', 'ext': 'webm', 'title': 'Team Fortress 2 - Sandviches!', 'description': 'md5:4984c0f9a07f349fc5d8e82ab7af4eaf', 'upload_date': '20110926', 'uploader': 'Zeurel', 'channel_id': 'UCukCyHaD-bK3in_pKpfH9Eg', 'duration': 32, 'uploader_id': 'Zeurel', 'uploader_url': 'http://www.youtube.com/user/Zeurel' } }, { # Internal link 'url': 'https://web.archive.org/web/2oe/http://wayback-fakeurl.archive.org/yt/97t7Xj_iBv0', 'info_dict': { 'id': '97t7Xj_iBv0', 'ext': 'mp4', 'title': 'Why Machines That Bend Are Better', 'description': 'md5:00404df2c632d16a674ff8df1ecfbb6c', 'upload_date': '20190312', 'uploader': 'Veritasium', 'channel_id': 'UCHnyfMqiRRG1u-2MsSQLbXA', 'duration': 771, 'uploader_id': '1veritasium', 'uploader_url': 'http://www.youtube.com/user/1veritasium' } }, { # Video from 2012, webm format itag 45. Newest capture is deleted video, with an invalid description. # Should use the date in the link. Title ends with '- Youtube'. Capture has description in eow-description 'url': 'https://web.archive.org/web/20120712231619/http://www.youtube.com/watch?v=AkhihxRKcrs&gl=US&hl=en', 'info_dict': { 'id': 'AkhihxRKcrs', 'ext': 'webm', 'title': 'Limited Run: Mondo\'s Modern Classic 1 of 3 (SDCC 2012)', 'upload_date': '20120712', 'duration': 398, 'description': 'md5:ff4de6a7980cb65d951c2f6966a4f2f3', 'uploader_id': 'machinima', 'uploader_url': 'http://www.youtube.com/user/machinima' } }, { # FLV video. Video file URL does not provide itag information 'url': 'https://web.archive.org/web/20081211103536/http://www.youtube.com/watch?v=jNQXAC9IVRw', 'info_dict': { 'id': 'jNQXAC9IVRw', 'ext': 'flv', 'title': 'Me at the zoo', 'upload_date': '20050423', 'channel_id': 'UC4QobU6STFB0P71PMvOGN5A', 'duration': 19, 'description': 'md5:10436b12e07ac43ff8df65287a56efb4', 'uploader_id': 'jawed', 'uploader_url': 'http://www.youtube.com/user/jawed' } }, { 'url': 'https://web.archive.org/web/20110712231407/http://www.youtube.com/watch?v=lTx3G6h2xyA', 'info_dict': { 'id': 'lTx3G6h2xyA', 'ext': 'flv', 'title': 'Madeon - Pop Culture (live mashup)', 'upload_date': '20110711', 'uploader': 'Madeon', 'channel_id': 'UCqMDNf3Pn5L7pcNkuSEeO3w', 'duration': 204, 'description': 'md5:f7535343b6eda34a314eff8b85444680', 'uploader_id': 'itsmadeon', 'uploader_url': 'http://www.youtube.com/user/itsmadeon' } }, { # First capture is of dead video, second is the oldest from CDX response. 'url': 'https://web.archive.org/https://www.youtube.com/watch?v=1JYutPM8O6E', 'info_dict': { 'id': '1JYutPM8O6E', 'ext': 'mp4', 'title': 'Fake Teen Doctor Strikes AGAIN! - Weekly Weird News', 'upload_date': '20160218', 'channel_id': 'UCdIaNUarhzLSXGoItz7BHVA', 'duration': 1236, 'description': 'md5:21032bae736421e89c2edf36d1936947', 'uploader_id': 'MachinimaETC', 'uploader_url': 'http://www.youtube.com/user/MachinimaETC' } }, { # First capture of dead video, capture date in link links to dead capture. 'url': 'https://web.archive.org/web/20180803221945/https://www.youtube.com/watch?v=6FPhZJGvf4E', 'info_dict': { 'id': '6FPhZJGvf4E', 'ext': 'mp4', 'title': 'WTF: Video Games Still Launch BROKEN?! - T.U.G.S.', 'upload_date': '20160219', 'channel_id': 'UCdIaNUarhzLSXGoItz7BHVA', 'duration': 798, 'description': 'md5:a1dbf12d9a3bd7cb4c5e33b27d77ffe7', 'uploader_id': 'MachinimaETC', 'uploader_url': 'http://www.youtube.com/user/MachinimaETC' }, 'expected_warnings': [ r'unable to download capture webpage \(it may not be archived\)' ] }, { # Very old YouTube page, has - YouTube in title. 'url': 'http://web.archive.org/web/20070302011044/http://youtube.com/watch?v=-06-KB9XTzg', 'info_dict': { 'id': '-06-KB9XTzg', 'ext': 'flv', 'title': 'New Coin Hack!! 100% Safe!!' } }, { 'url': 'web.archive.org/https://www.youtube.com/watch?v=dWW7qP423y8', 'info_dict': { 'id': 'dWW7qP423y8', 'ext': 'mp4', 'title': 'It\'s Bootleg AirPods Time.', 'upload_date': '20211021', 'channel_id': 'UC7Jwj9fkrf1adN4fMmTkpug', 'channel_url': 'http://www.youtube.com/channel/UC7Jwj9fkrf1adN4fMmTkpug', 'duration': 810, 'description': 'md5:7b567f898d8237b256f36c1a07d6d7bc', 'uploader': 'DankPods', 'uploader_id': 'UC7Jwj9fkrf1adN4fMmTkpug', 'uploader_url': 'http://www.youtube.com/channel/UC7Jwj9fkrf1adN4fMmTkpug' } }, { # player response contains '};' See: https://github.com/ytdl-org/youtube-dl/issues/27093 'url': 'https://web.archive.org/web/20200827003909if_/http://www.youtube.com/watch?v=6Dh-RL__uN4', 'info_dict': { 'id': '6Dh-RL__uN4', 'ext': 'mp4', 'title': 'bitch lasagna', 'upload_date': '20181005', 'channel_id': 'UC-lHJZR3Gqxm24_Vd_AJ5Yw', 'channel_url': 'http://www.youtube.com/channel/UC-lHJZR3Gqxm24_Vd_AJ5Yw', 'duration': 135, 'description': 'md5:2dbe4051feeff2dab5f41f82bb6d11d0', 'uploader': 'PewDiePie', 'uploader_id': 'PewDiePie', 'uploader_url': 'http://www.youtube.com/user/PewDiePie' } }, { 'url': 'https://web.archive.org/web/http://www.youtube.com/watch?v=kH-G_aIBlFw', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20050214000000_if/http://www.youtube.com/watch?v=0altSZ96U4M', 'only_matching': True }, { # Video not archived, only capture is unavailable video page 'url': 'https://web.archive.org/web/20210530071008/https://www.youtube.com/watch?v=lHJTf93HL1s&spfreload=10', 'only_matching': True }, { # Encoded url 'url': 'https://web.archive.org/web/20120712231619/http%3A//www.youtube.com/watch%3Fgl%3DUS%26v%3DAkhihxRKcrs%26hl%3Den', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20120712231619/http%3A//www.youtube.com/watch%3Fv%3DAkhihxRKcrs%26gl%3DUS%26hl%3Den', 'only_matching': True }, { 'url': 'https://web.archive.org/web/20060527081937/http://www.youtube.com:80/watch.php?v=ELTFsLT73fA&amp;search=soccer', 'only_matching': True }, { 'url': 'https://web.archive.org/http://www.youtube.com:80/watch?v=-05VVye-ffg', 'only_matching': True } ] _YT_INITIAL_DATA_RE = r'(?:(?:(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_DATA_RE _YT_INITIAL_PLAYER_RESPONSE_RE = r'(?:(?:(?:window\s*\[\s*["\']ytInitialPlayerResponse["\']\s*\]|ytInitialPlayerResponse)\s*=[(\s]*({.+?})[)\s]*;)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_PLAYER_RESPONSE_RE _YT_INITIAL_BOUNDARY_RE = r'(?:(?:var\s+meta|</script|\n)|%s)' % YoutubeBaseInfoExtractor._YT_INITIAL_BOUNDARY_RE _YT_DEFAULT_THUMB_SERVERS = ['i.ytimg.com'] # thumbnails most likely archived on these servers _YT_ALL_THUMB_SERVERS = orderedSet( _YT_DEFAULT_THUMB_SERVERS + ['img.youtube.com', *[f'{c}{n or ""}.ytimg.com' for c in ('i', 's') for n in (*range(0, 5), 9)]]) _WAYBACK_BASE_URL = 'https://web.archive.org/web/%sif_/' _OLDEST_CAPTURE_DATE = 20050214000000 _NEWEST_CAPTURE_DATE = 20500101000000 def _call_cdx_api(self, item_id, url, filters: list = None, collapse: list = None, query: dict = None, note='Downloading CDX API JSON'): # CDX docs: https://github.com/internetarchive/wayback/blob/master/wayback-cdx-server/README.md query = { 'url': url, 'output': 'json', 'fl': 'original,mimetype,length,timestamp', 'limit': 500, 'filter': ['statuscode:200'] + (filters or []), 'collapse': collapse or [], **(query or {}) } res = self._download_json('https://web.archive.org/cdx/search/cdx', item_id, note, query=query) if isinstance(res, list) and len(res) >= 2: # format response to make it easier to use return list(dict(zip(res[0], v)) for v in res[1:]) elif not isinstance(res, list) or len(res) != 0: self.report_warning('Error while parsing CDX API response' + bug_reports_message()) def _extract_yt_initial_variable(self, webpage, regex, video_id, name): return self._parse_json(self._search_regex( (r'%s\s*%s' % (regex, self._YT_INITIAL_BOUNDARY_RE), regex), webpage, name, default='{}'), video_id, fatal=False) def _extract_webpage_title(self, webpage): page_title = self._html_search_regex( r'<title>([^<]*)</title>', webpage, 'title', default='') # YouTube video pages appear to always have either 'YouTube -' as prefix or '- YouTube' as suffix. return self._html_search_regex( r'(?:YouTube\s*-\s*(.*)$)|(?:(.*)\s*-\s*YouTube$)', page_title, 'title', default='') def _extract_metadata(self, video_id, webpage): search_meta = ((lambda x: self._html_search_meta(x, webpage, default=None)) if webpage else (lambda x: None)) player_response = self._extract_yt_initial_variable( webpage, self._YT_INITIAL_PLAYER_RESPONSE_RE, video_id, 'initial player response') or {} initial_data = self._extract_yt_initial_variable( webpage, self._YT_INITIAL_DATA_RE, video_id, 'initial player response') or {} initial_data_video = traverse_obj( initial_data, ('contents', 'twoColumnWatchNextResults', 'results', 'results', 'contents', ..., 'videoPrimaryInfoRenderer'), expected_type=dict, get_all=False, default={}) video_details = traverse_obj( player_response, 'videoDetails', expected_type=dict, get_all=False, default={}) microformats = traverse_obj( player_response, ('microformat', 'playerMicroformatRenderer'), expected_type=dict, get_all=False, default={}) video_title = ( video_details.get('title') or YoutubeBaseInfoExtractor._get_text(microformats, 'title') or YoutubeBaseInfoExtractor._get_text(initial_data_video, 'title') or self._extract_webpage_title(webpage) or search_meta(['og:title', 'twitter:title', 'title'])) channel_id = str_or_none( video_details.get('channelId') or microformats.get('externalChannelId') or search_meta('channelId') or self._search_regex( r'data-channel-external-id=(["\'])(?P<id>(?:(?!\1).)+)\1', # @b45a9e6 webpage, 'channel id', default=None, group='id')) channel_url = f'http://www.youtube.com/channel/{channel_id}' if channel_id else None duration = int_or_none( video_details.get('lengthSeconds') or microformats.get('lengthSeconds') or parse_duration(search_meta('duration'))) description = ( video_details.get('shortDescription') or YoutubeBaseInfoExtractor._get_text(microformats, 'description') or clean_html(get_element_by_id('eow-description', webpage)) # @9e6dd23 or search_meta(['description', 'og:description', 'twitter:description'])) uploader = video_details.get('author') # Uploader ID and URL uploader_mobj = re.search( r'<link itemprop="url" href="(?P<uploader_url>https?://www\.youtube\.com/(?:user|channel)/(?P<uploader_id>[^"]+))">', # @fd05024 webpage) if uploader_mobj is not None: uploader_id, uploader_url = uploader_mobj.group('uploader_id'), uploader_mobj.group('uploader_url') else: # @a6211d2 uploader_url = url_or_none(microformats.get('ownerProfileUrl')) uploader_id = self._search_regex( r'(?:user|channel)/([^/]+)', uploader_url or '', 'uploader id', default=None) upload_date = unified_strdate( dict_get(microformats, ('uploadDate', 'publishDate')) or search_meta(['uploadDate', 'datePublished']) or self._search_regex( [r'(?s)id="eow-date.*?>(.*?)</span>', r'(?:id="watch-uploader-info".*?>.*?|["\']simpleText["\']\s*:\s*["\'])(?:Published|Uploaded|Streamed live|Started) on (.+?)[<"\']'], # @7998520 webpage, 'upload date', default=None)) return { 'title': video_title, 'description': description, 'upload_date': upload_date, 'uploader': uploader, 'channel_id': channel_id, 'channel_url': channel_url, 'duration': duration, 'uploader_url': uploader_url, 'uploader_id': uploader_id, } def _extract_thumbnails(self, video_id): try_all = 'thumbnails' in self._configuration_arg('check_all') thumbnail_base_urls = ['http://{server}/vi{webp}/{video_id}'.format( webp='_webp' if ext == 'webp' else '', video_id=video_id, server=server) for server in (self._YT_ALL_THUMB_SERVERS if try_all else self._YT_DEFAULT_THUMB_SERVERS) for ext in (('jpg', 'webp') if try_all else ('jpg',))] thumbnails = [] for url in thumbnail_base_urls: response = self._call_cdx_api( video_id, url, filters=['mimetype:image/(?:webp|jpeg)'], collapse=['urlkey'], query={'matchType': 'prefix'}) if not response: continue thumbnails.extend( { 'url': (self._WAYBACK_BASE_URL % (int_or_none(thumbnail_dict.get('timestamp')) or self._OLDEST_CAPTURE_DATE)) + thumbnail_dict.get('original'), 'filesize': int_or_none(thumbnail_dict.get('length')), 'preference': int_or_none(thumbnail_dict.get('length')) } for thumbnail_dict in response) if not try_all: break self._remove_duplicate_formats(thumbnails) return thumbnails def _get_capture_dates(self, video_id, url_date): capture_dates = [] # Note: CDX API will not find watch pages with extra params in the url. response = self._call_cdx_api( video_id, f'https://www.youtube.com/watch?v={video_id}', filters=['mimetype:text/html'], collapse=['timestamp:6', 'digest'], query={'matchType': 'prefix'}) or [] all_captures = sorted([int_or_none(r['timestamp']) for r in response if int_or_none(r['timestamp']) is not None]) # Prefer the new polymer UI captures as we support extracting more metadata from them # WBM captures seem to all switch to this layout ~July 2020 modern_captures = list(filter(lambda x: x >= 20200701000000, all_captures)) if modern_captures: capture_dates.append(modern_captures[0]) capture_dates.append(url_date) if all_captures: capture_dates.append(all_captures[0]) if 'captures' in self._configuration_arg('check_all'): capture_dates.extend(modern_captures + all_captures) # Fallbacks if any of the above fail capture_dates.extend([self._OLDEST_CAPTURE_DATE, self._NEWEST_CAPTURE_DATE]) return orderedSet(capture_dates) def _real_extract(self, url): url_date, video_id = self._match_valid_url(url).groups() urlh = None try: urlh = self._request_webpage( HEADRequest('https://web.archive.org/web/2oe_/http://wayback-fakeurl.archive.org/yt/%s' % video_id), video_id, note='Fetching archived video file url', expected_status=True) except ExtractorError as e: # HTTP Error 404 is expected if the video is not saved. if isinstance(e.cause, compat_HTTPError) and e.cause.code == 404: self.raise_no_formats( 'The requested video is not archived, indexed, or there is an issue with web.archive.org', expected=True) else: raise capture_dates = self._get_capture_dates(video_id, int_or_none(url_date)) self.write_debug('Captures to try: ' + ', '.join(str(i) for i in capture_dates if i is not None)) info = {'id': video_id} for capture in capture_dates: if not capture: continue webpage = self._download_webpage( (self._WAYBACK_BASE_URL + 'http://www.youtube.com/watch?v=%s') % (capture, video_id), video_id=video_id, fatal=False, errnote='unable to download capture webpage (it may not be archived)', note='Downloading capture webpage') current_info = self._extract_metadata(video_id, webpage or '') # Try avoid getting deleted video metadata if current_info.get('title'): info = merge_dicts(info, current_info) if 'captures' not in self._configuration_arg('check_all'): break info['thumbnails'] = self._extract_thumbnails(video_id) if urlh: url = compat_urllib_parse_unquote(urlh.url) video_file_url_qs = parse_qs(url) # Attempt to recover any ext & format info from playback url & response headers format = {'url': url, 'filesize': int_or_none(urlh.headers.get('x-archive-orig-content-length'))} itag = try_get(video_file_url_qs, lambda x: x['itag'][0]) if itag and itag in YoutubeIE._formats: format.update(YoutubeIE._formats[itag]) format.update({'format_id': itag}) else: mime = try_get(video_file_url_qs, lambda x: x['mime'][0]) ext = (mimetype2ext(mime) or urlhandle_detect_ext(urlh) or mimetype2ext(urlh.headers.get('x-archive-guessed-content-type'))) format.update({'ext': ext}) info['formats'] = [format] if not info.get('duration'): info['duration'] = str_to_int(try_get(video_file_url_qs, lambda x: x['dur'][0])) if not info.get('title'): info['title'] = video_id return info
2.046875
2
Interfas Grafica XI (GUI)/InterfasGraficaXI.py
BrianMarquez3/Python-Course
20
11347
<filename>Interfas Grafica XI (GUI)/InterfasGraficaXI.py # Interfas Grafica XI # Menu from tkinter import * root=Tk() barraMenu=Menu(root) root.config(menu=barraMenu, width=600, height=400) archivoMenu=Menu(barraMenu, tearoff=0) archivoMenu.add_command(label="Nuevo") archivoMenu.add_command(label="Guardar") archivoMenu.add_command(label="Guardar Como") archivoMenu.add_separator() archivoMenu.add_command(label="Cerrar") archivoMenu.add_command(label="Salir") archivoEdicion=Menu(barraMenu, tearoff=0) archivoHerramientas=Menu(barraMenu) archivoEdicion.add_command(label="Copiar") archivoEdicion.add_command(label="Cortar") archivoEdicion.add_command(label="Pegar") archivoAyuda=Menu(barraMenu, tearoff=0) barraMenu.add_cascade(label="Archivo", menu=archivoMenu) barraMenu.add_cascade(label="Edicion", menu=archivoEdicion) barraMenu.add_cascade(label="Herramienta", menu=archivoHerramientas) barraMenu.add_cascade(label="Ayuda", menu=archivoAyuda) archivoAyuda.add_command(label="Licencia") archivoAyuda.add_command(label="Acerca de...") root.mainloop()
2.5625
3
virtual/lib/python3.6/site-packages/macaroonbakery/tests/__init__.py
marknesh/pitches
0
11348
# Copyright 2017 Canonical Ltd. # Licensed under the LGPLv3, see LICENCE file for details.
0.703125
1
08/postgresql_demo.py
catcherwong-archive/2019
27
11349
<reponame>catcherwong-archive/2019<gh_stars>10-100 # -*- coding: UTF-8 -*- import psycopg2 #postgresql import time import datetime class PgDemo: def __init__(self, host, port, db, user, pwd): self.host = host self.port = port self.db = db self.user = user self.pwd = <PASSWORD> def getConnection(self): conn = None try: conn = psycopg2.connect( host=self.host, port=self.port, database=self.db, user=self.user, password=self.pwd, ) except Exception as err: print("can not connect to the database,%s" % err) return conn def query_all(self): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1" try: cur = conn.cursor() cur.execute(sql) res = cur.fetchall() # print(res) print("id\tname\tgender\ttime") for d in res: print("%d\t%s\t%s\t%s" % (d[0], d[1], "male" if d[2] == 1 else "female", self.timestamp2datetime(d[3], False))) except Exception as err: print("query all fail, %s" % err) finally: cur.close() def query_lastone(self): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1 order by create_time desc limit 1" try: cur = conn.cursor() cur.execute(sql) res = cur.fetchone() # print(res) print("id\tname\tgender\ttime") print("%d\t%s\t%s\t%s" % (res[0], res[1], "male" if res[2] == 1 else "female", self.timestamp2datetime(res[3], False))) except Exception as err: print("query lastone fail, %s" % err) finally: cur.close() def query_byname(self, name): with self.getConnection() as conn: sql = "select id, name, gender, create_time from t1 where name = %s" try: cur = conn.cursor() cur.execute(sql, (name, )) res = cur.fetchone() # print(res) print("id\tname\tgender\ttime") print("%d\t%s\t%s\t%s" % (res[0], res[1], "male" if res[2] == 1 else "female", self.timestamp2datetime(res[3], False))) except Exception as err: print("query by name fail, %s" % err) finally: cur.close() def insert_one(self, name, gender): with self.getConnection() as conn: sql = " insert into t1(name, gender, create_time) values(%s, %s, %s) " try: cur = conn.cursor() cur.execute(sql, (name, gender, self.getCurrentTimestamp())) print("insert ok") except Exception as err: print("insert one fail, %s" % err) finally: cur.close() def update_genderbyid(self, id, gender): with self.getConnection() as conn: sql = " update t1 set gender = %s where id = %s " try: cur = conn.cursor() cur.execute(sql, (gender, id)) print("update ok") except Exception as err: print("update gender by id fail, %s" % err) finally: cur.close() def delete_byname(self, name): with self.getConnection() as conn: sql = " delete from t1 where name = %s " try: cur = conn.cursor() cur.execute(sql, (name, )) print("delete ok") except Exception as err: print("delete by name fail, %s" % err) finally: cur.close() def getCurrentTimestamp(self): ts = int ( round ( time.time() * 1000 ) ) print(ts) return ts def timestamp2datetime(self, timestamp, issecond): if(issecond == True): t = datetime.datetime.fromtimestamp(timestamp) return t.strftime("%Y-%m-%d %H:%M:%S") else: t = datetime.datetime.fromtimestamp(timestamp / 1000) return t.strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] if __name__ == "__main__": pg = PgDemo("127.0.0.1", 5432, "demo", "postgres", "123456") print("===========insert_one==============") pg.insert_one("wong", 1) print("===========query_all==============") pg.query_all() print("===========query_lastone==============") pg.query_lastone() print("===========query_byname==============") pg.query_byname("catcher") print("===========update_genderbyid==============") pg.update_genderbyid(4, 2) print("===========delete_byname==============") pg.delete_byname("wong") print("===========query_all==============") pg.query_all()
2.9375
3
examples/convert/pipe2sparky_2d.py
thegooglecodearchive/nmrglue
1
11350
#! /usr/bin/env python import nmrglue as ng # read in the varian data dic,data = ng.pipe.read("../common_data/2d_pipe/test.ft2") # Set the parameters u = ng.pipe.guess_udic(dic,data) # create the converter object and initilize with varian data C = ng.convert.converter() C.from_pipe(dic,data,u) # create pipe data and then write it out ng.sparky.write("2d_sparky.ucsf",*C.to_sparky(),overwrite=True) # check the conversion against NMRPipe print "Conversion complete, listing differences between files:" sdic,sdata = ng.sparky.read("2d_sparky.ucsf") sdic2,sdata2 = ng.sparky.read("../common_data/2d_sparky/data.ucsf") print ng.misc.pair_similar(sdic,sdata,sdic2,sdata2,verb=True)
2.4375
2
jaqs/trade/analyze/analyze.py
WayneWan413/JAQS
0
11351
# encoding: utf-8 from __future__ import print_function import os import json from collections import OrderedDict import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import Formatter from jaqs.trade.analyze.report import Report from jaqs.data import RemoteDataService from jaqs.data.basic.instrument import InstManager from jaqs.trade import common import jaqs.util as jutil STATIC_FOLDER = jutil.join_relative_path("trade/analyze/static") TO_PCT = 100.0 MPL_RCPARAMS = {'figure.facecolor': '#F6F6F6', 'axes.facecolor': '#F6F6F6', 'axes.edgecolor': '#D3D3D3', 'text.color': '#555555', 'grid.color': '#B1B1B1', 'grid.alpha': 0.3, # scale 'axes.linewidth': 2.0, 'axes.titlepad': 12, 'grid.linewidth': 1.0, 'grid.linestyle': '-', # font size 'font.size': 13, 'axes.titlesize': 18, 'axes.labelsize': 14, 'legend.fontsize': 'small', 'lines.linewidth': 2.5, } class TradeRecordEmptyError(Exception): def __init__(self, *args): super(TradeRecordEmptyError, self).__init__(*args) class MyFormatter(Formatter): def __init__(self, dates, fmt='%Y%m'): self.dates = dates self.fmt = fmt def __call__(self, x, pos=0): """Return the label for time x at position pos""" ind = int(np.round(x)) if ind >= len(self.dates) or ind < 0: return '' # return self.dates[ind].strftime(self.fmt) return pd.to_datetime(self.dates[ind], format="%Y%m%d").strftime(self.fmt) class BaseAnalyzer(object): """ Attributes ---------- _trades : pd.DataFrame _configs : dict data_api : BaseDataServer _universe : set All securities that have been traded. """ def __init__(self): self.file_folder = "" self._trades = None self._configs = None self.data_api = None self.dataview = None self._universe = [] self._closes = None self._closes_adj = None self.daily_position = None self.adjust_mode = None self.inst_map = dict() self.performance_metrics = dict() self.risk_metrics = dict() self.report_dic = dict() @property def trades(self): """Read-only attribute""" return self._trades @property def universe(self): """Read-only attribute""" return self._universe @property def configs(self): """Read-only attribute""" return self._configs @property def closes(self): """Read-only attribute, close prices of securities in the universe""" return self._closes @property def closes_adj(self): """Read-only attribute, close prices of securities in the universe""" return self._closes_adj def initialize(self, data_api=None, dataview=None, file_folder='.'): """ Read trades from csv file to DataFrame of given data type. Parameters ---------- data_api : RemoteDataService dataview : DataView file_folder : str Directory path where trades and configs are stored. """ self.data_api = data_api self.dataview = dataview type_map = {'task_id': str, 'entrust_no': str, 'entrust_action': str, 'symbol': str, 'fill_price': float, 'fill_size': float, 'fill_date': np.integer, 'fill_time': np.integer, 'fill_no': str, 'commission': float} abs_path = os.path.abspath(file_folder) self.file_folder = abs_path trades = pd.read_csv(os.path.join(self.file_folder, 'trades.csv'), ',', dtype=type_map) if trades.empty: raise TradeRecordEmptyError("No trade records found in your 'trades.csv' file. Analysis stopped.") self._init_universe(trades.loc[:, 'symbol'].values) self._init_configs(self.file_folder) self._init_trades(trades) self._init_symbol_price() self._init_inst_data() def _init_inst_data(self): symbol_str = ','.join(self.universe) if self.dataview is not None: data_inst = self.dataview.data_inst self.inst_map = data_inst.to_dict(orient='index') elif self.data_api is not None: inst_mgr = InstManager(data_api=self.data_api, symbol=symbol_str) self.inst_map = {k: v.__dict__ for k, v in inst_mgr.inst_map.items()} del inst_mgr else: raise ValueError("no dataview or dataapi provided.") def _init_trades(self, df): """Add datetime column. """ df.loc[:, 'fill_dt'] = jutil.combine_date_time(df.loc[:, 'fill_date'], df.loc[:, 'fill_time']) df = df.set_index(['symbol', 'fill_dt']).sort_index(axis=0) # self._trades = jutil.group_df_to_dict(df, by='symbol') self._trades = df def _init_symbol_price(self): """Get close price of securities in the universe from data server.""" if self.dataview is not None: df_close = self.dataview.get_ts('close', start_date=self.start_date, end_date=self.end_date) df_close_adj = self.dataview.get_ts('close_adj', start_date=self.start_date, end_date=self.end_date) else: df, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close = df.pivot(index='trade_date', columns='symbol', values='close') df_adj, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close_adj = df_adj.pivot(index='trade_date', columns='symbol', values='close') self._closes = df_close self._closes_adj = df_close_adj def _init_universe(self, securities): """Return a set of securities.""" self._universe = set(securities) def _init_configs(self, folder): import codecs with codecs.open(os.path.join(folder, 'configs.json'), 'r', encoding='utf-8') as f: configs = json.load(f) self._configs = configs self.init_balance = self.configs['init_balance'] self.start_date = self.configs['start_date'] self.end_date = self.configs['end_date'] @staticmethod def _process_trades(df): """Add various statistics to trades DataFrame.""" from jaqs.trade import common # df = df.set_index('fill_date') # pre-process cols_to_drop = ['task_id', 'entrust_no', 'fill_no'] df = df.drop(cols_to_drop, axis=1) def _apply(gp_df): # calculation of non-cumulative fields direction = gp_df['entrust_action'].apply(lambda s: 1 if common.ORDER_ACTION.is_positive(s) else -1) fill_size, fill_price = gp_df['fill_size'], gp_df['fill_price'] turnover = fill_size * fill_price gp_df.loc[:, 'BuyVolume'] = (direction + 1) / 2 * fill_size gp_df.loc[:, 'SellVolume'] = (direction - 1) / -2 * fill_size # Calculation of cumulative fields gp_df.loc[:, 'CumVolume'] = fill_size.cumsum() gp_df.loc[:, 'CumTurnOver'] = turnover.cumsum() gp_df.loc[:, 'CumNetTurnOver'] = (turnover * -direction).cumsum() gp_df.loc[:, 'position'] = (fill_size * direction).cumsum() gp_df.loc[:, 'AvgPosPrice'] = calc_avg_pos_price(gp_df.loc[:, 'position'].values, fill_price.values) gp_df.loc[:, 'CumProfit'] = (gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * fill_price) return gp_df gp = df.groupby(by='symbol') res = gp.apply(_apply) return res def process_trades(self): # self._trades = {k: self._process_trades(v) for k, v in self.trades.items()} self._trades = self._process_trades(self._trades) def get_pos_change_info(self): trades = pd.concat(self.trades.values(), axis=0) gp = trades.groupby(by=['fill_date'], as_index=False) res = OrderedDict() account = OrderedDict() for date, df in gp: df_mod = df.loc[:, ['symbol', 'entrust_action', 'fill_size', 'fill_price', 'position', 'AvgPosPrice']] df_mod.columns = ['symbol', 'action', 'size', 'price', 'position', 'cost price'] res[str(date)] = df_mod mv = sum(df_mod.loc[:, 'price'] * df.loc[:, 'position']) current_profit = sum(df.loc[:, 'CumProfit']) cash = self.configs['init_balance'] + current_profit - mv account[str(date)] = {'market_value': mv, 'cash': cash} self.position_change = res self.account = account def get_daily(self): close = self.closes trade = self.trades # pro-process trade_cols = ['fill_date', 'BuyVolume', 'SellVolume', 'commission', 'position', 'AvgPosPrice', 'CumNetTurnOver'] trade = trade.loc[:, trade_cols] gp = trade.groupby(by=['symbol', 'fill_date']) func_last = lambda ser: ser.iat[-1] trade = gp.agg({'BuyVolume': np.sum, 'SellVolume': np.sum, 'commission': np.sum, 'position': func_last, 'AvgPosPrice': func_last, 'CumNetTurnOver': func_last}) trade.index.names = ['symbol', 'trade_date'] # get daily position df_position = trade['position'].unstack('symbol').fillna(method='ffill').fillna(0.0) daily_position = df_position.reindex(close.index) daily_position = daily_position.fillna(method='ffill').fillna(0) self.daily_position = daily_position # calculate statistics close = pd.DataFrame(close.T.stack()) close.columns = ['close'] close.index.names = ['symbol', 'trade_date'] merge = pd.concat([close, trade], axis=1, join='outer') def _apply(gp_df): cols_nan_to_zero = ['BuyVolume', 'SellVolume', 'commission'] cols_nan_fill = ['close', 'position', 'AvgPosPrice', 'CumNetTurnOver'] # merge: pd.DataFrame gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(method='ffill') gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(0) gp_df.loc[:, cols_nan_to_zero] = gp_df.loc[:, cols_nan_to_zero].fillna(0) mask = gp_df.loc[:, 'AvgPosPrice'] < 1e-5 gp_df.loc[mask, 'AvgPosPrice'] = gp_df.loc[mask, 'close'] gp_df.loc[:, 'CumProfit'] = gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * gp_df.loc[:, 'close'] gp_df.loc[:, 'CumProfitComm'] = gp_df['CumProfit'] - gp_df['commission'].cumsum() daily_net_turnover = gp_df['CumNetTurnOver'].diff(1).fillna(gp_df['CumNetTurnOver'].iat[0]) daily_position_change = gp_df['position'].diff(1).fillna(gp_df['position'].iat[0]) gp_df['trading_pnl'] = (daily_net_turnover + gp_df['close'] * daily_position_change) gp_df['holding_pnl'] = (gp_df['close'].diff(1) * gp_df['position'].shift(1)).fillna(0.0) gp_df.loc[:, 'total_pnl'] = gp_df['trading_pnl'] + gp_df['holding_pnl'] return gp_df gp = merge.groupby(by='symbol') res = gp.apply(_apply) self.daily = res ''' def get_daily(self): """Add various statistics to daily DataFrame.""" self.daily = self._get_daily(self.closes, self.trades) daily_dic = dict() for sec, df_trade in self.trades.items(): df_close = self.closes[sec].rename('close') res = self._get_daily(df_close, df_trade) daily_dic[sec] = res self.daily = daily_dic ''' def get_returns(self, compound_return=True, consider_commission=True): cols = ['trading_pnl', 'holding_pnl', 'total_pnl', 'commission', 'CumProfitComm', 'CumProfit'] ''' dic_symbol = {sec: self.inst_map[sec]['multiplier'] * df_daily.loc[:, cols] for sec, df_daily in self.daily.items()} df_profit = pd.concat(dic_symbol, axis=1) # this is cumulative profit df_profit = df_profit.fillna(method='ffill').fillna(0.0) df_pnl = df_profit.stack(level=1) df_pnl = df_pnl.sum(axis=1) df_pnl = df_pnl.unstack(level=1) ''' daily = self.daily.loc[:, cols] daily = daily.stack().unstack('symbol') df_pnl = daily.sum(axis=1) df_pnl = df_pnl.unstack(level=1) self.df_pnl = df_pnl # TODO temperary solution if consider_commission: strategy_value = (df_pnl['total_pnl'] - df_pnl['commission']).cumsum() + self.init_balance else: strategy_value = df_pnl['total_pnl'].cumsum() + self.init_balance market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.performance_metrics['Annual Return (%)'] =\ 100 * (np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1) self.performance_metrics['Annual Volatility (%)'] =\ 100 * (df_returns.loc[:, 'active'].std() * np.sqrt(common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR)) self.performance_metrics['Sharpe Ratio'] = (self.performance_metrics['Annual Return (%)'] / self.performance_metrics['Annual Volatility (%)']) self.risk_metrics['Beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns def plot_pnl(self, save_folder=None): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) if save_folder is None: save_folder = self.file_folder fig1 = plot_portfolio_bench_pnl(self.returns.loc[:, 'strat_cum'], self.returns.loc[:, 'bench_cum'], self.returns.loc[:, 'active_cum']) fig1.savefig(os.path.join(save_folder,'pnl_img.png'), facecolor=fig1.get_facecolor(), dpi=fig1.get_dpi()) fig2 = plot_daily_trading_holding_pnl(self.df_pnl['trading_pnl'], self.df_pnl['holding_pnl'], self.df_pnl['total_pnl'], self.df_pnl['total_pnl'].cumsum()) fig2.savefig(os.path.join(save_folder,'pnl_img_trading_holding.png'), facecolor=fig2.get_facecolor(), dpi=fig2.get_dpi()) mpl.rcParams.update(old_mpl_rcparams) def plot_pnl_OLD(self, save_folder=None): if save_folder is None: save_folder = self.file_folder fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(21, 8), dpi=300, sharex=True) idx0 = self.returns.index idx = np.arange(len(idx0)) bar_width = 0.3 ax0.bar(idx-bar_width/2, self.df_pnl['trading_pnl'], width=bar_width, color='indianred', label='Trading PnL',) ax0.bar(idx+bar_width/2, self.df_pnl['holding_pnl'], width=bar_width, color='royalblue', label='Holding PnL') ax0.axhline(0.0, color='k', lw=1, ls='--') # ax0.plot(idx, self.pnl['total_pnl'], lw=1.5, color='violet', label='Total PnL') ax0.legend(loc='upper left') ax1.plot(idx, self.returns.loc[:, 'bench_cum'], label='Benchmark') ax1.plot(idx, self.returns.loc[:, 'strat_cum'], label='Strategy') ax1.legend(loc='upper left') ax2.plot(idx, self.returns.loc[:, 'active_cum'], label='Extra Return') ax2.legend(loc='upper left') ax2.set_xlabel("Date") ax2.set_ylabel("Net Value") ax1.set_ylabel("Net Value") ax2.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'pnl_img.png')) plt.close() def gen_report(self, source_dir, template_fn, out_folder='.', selected=None): """ Generate HTML (and PDF) report of the trade analysis. Parameters ---------- source_dir : str path of directory where HTML template and css files are stored. template_fn : str File name of HTML template. out_folder : str Output folder of report. selected : list of str or None List of symbols whose detailed PnL curve and position will be plotted. # TODO: this parameter should not belong to function """ dic = dict() dic['html_title'] = "Alpha Strategy Backtest Result" dic['selected_securities'] = selected # we do not want to show username / password in report dic['props'] = {k: v for k, v in self.configs.items() if ('username' not in k and 'password' not in k)} dic['performance_metrics'] = self.performance_metrics dic['risk_metrics'] = self.risk_metrics dic['position_change'] = self.position_change dic['account'] = self.account dic['df_daily'] = jutil.group_df_to_dict(self.daily, by='symbol') dic['daily_position'] = self.daily_position self.report_dic.update(dic) self.returns.to_csv(os.path.join(out_folder, 'returns.csv')) r = Report(self.report_dic, source_dir=source_dir, template_fn=template_fn, out_folder=out_folder) r.generate_html() r.output_html('report.html') def do_analyze(self, result_dir, selected_sec=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=selected_sec) class EventAnalyzer(BaseAnalyzer): def __init__(self): super(EventAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.data_benchmark = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict def initialize(self, data_server_=None, dataview=None, file_folder='.'): super(EventAnalyzer, self).initialize(data_api=data_server_, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] else: benchmark = self.configs.get('benchmark', "") if benchmark and data_server_: df, msg = data_server_.daily(benchmark, start_date=self.closes.index[0], end_date=self.closes.index[-1]) self.data_benchmark = df.set_index('trade_date').loc[:, ['close']] self.data_benchmark.columns = ['bench'] else: self.data_benchmark = pd.DataFrame(index=self.closes.index, columns=['bench'], data=np.ones(len(self.closes), dtype=float)) class AlphaAnalyzer(BaseAnalyzer): def __init__(self): super(AlphaAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict self.df_brinson = None self.data_benchmark = None def initialize(self, data_api=None, dataview=None, file_folder='.'): super(AlphaAnalyzer, self).initialize(data_api=data_api, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] @staticmethod def _to_pct_return(arr, cumulative=False): """Convert portfolio value to portfolio (linear) return.""" r = np.empty_like(arr) r[0] = 0.0 if cumulative: r[1:] = arr[1:] / arr[0] - 1 else: r[1:] = arr[1:] / arr[:-1] - 1 return r ''' def get_returns_OLD(self, compound_return=True, consider_commission=True): profit_col_name = 'CumProfitComm' if consider_commission else 'CumProfit' vp_list = {sec: df_profit.loc[:, profit_col_name] for sec, df_profit in self.daily.items()} df_profit = pd.concat(vp_list, axis=1) # this is cumulative profit # TODO temperary solution df_profit = df_profit.fillna(method='ffill').fillna(0.0) strategy_value = df_profit.sum(axis=1) + self.configs['init_balance'] market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.metrics['yearly_return'] = np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1 self.metrics['yearly_vol'] = df_returns.loc[:, 'active'].std() * np.sqrt(225.) self.metrics['beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] self.metrics['sharpe'] = self.metrics['yearly_return'] / self.metrics['yearly_vol'] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns ''' def _get_index_weight(self): if self.dataview is not None: res = self.dataview.get_ts('index_weight', start_date=self.start_date, end_date=self.end_date) else: res = self.data_api.get_index_weights_daily(self.universe, self.start_date, self.end_date) return res def _brinson(self, close, pos, index_weight, group): """ Brinson Attribution. Parameters ---------- close : pd.DataFrame Index is date, columns are symbols. pos : pd.DataFrame Index is date, columns are symbols. index_weight : pd.DataFrame Index is date, columns are symbols. group : pd.DataFrame Index is date, columns are symbols. Returns ------- dict """ def group_sum(df, group_daily): groups = np.unique(group_daily.values.flatten()) mask = np.isnan(groups.astype(float)) groups = groups[np.logical_not(mask)] res = pd.DataFrame(index=df.index, columns=groups, data=np.nan) for g in groups: mask = group_daily == g tmp = df[mask] res.loc[:, g] = tmp.sum(axis=1) return res ret = close.pct_change(1) pos_sum = pos.sum(axis=1) pf_weight = pos.div(pos_sum, axis=0) pf_weight.loc[pos_sum == 0, :] = 0.0 assert pf_weight.isnull().sum().sum() == 0 pf_weight = pf_weight.reindex(index=ret.index, columns=ret.columns) pf_weight = pf_weight.fillna(0.0) weighted_ret_pf = ret.mul(pf_weight) weighted_ret_index = ret.mul(index_weight) index_group_weight = group_sum(index_weight, group) pf_group_weight = group_sum(pf_weight, group) pf_group_ret = group_sum(weighted_ret_pf, group).div(pf_group_weight) index_group_ret = group_sum(weighted_ret_index, group).div(index_group_weight) allo_ret_group = (pf_group_weight - index_group_weight).mul(index_group_ret) allo_ret = allo_ret_group.sum(axis=1) selection_ret_group = (pf_group_ret - index_group_ret).mul(index_group_weight) selection_ret = selection_ret_group.sum(axis=1) active_ret = (weighted_ret_pf.sum(axis=1) - weighted_ret_index.sum(axis=1)) inter_ret = active_ret - selection_ret - allo_ret df_brinson = pd.DataFrame(index=allo_ret.index, data={'allocation': allo_ret, 'selection': selection_ret, 'interaction': inter_ret, 'total_active': active_ret}) return {'df_brinson': df_brinson, 'allocation': allo_ret_group, 'selection': selection_ret_group} def brinson(self, group): """ Parameters ---------- group : str or pd.DataFrame If group is string, this function will try to fetch the corresponding DataFrame from DataView. If group is pd.DataFrame, it will be used as-is. Returns ------- """ if isinstance(group, str): group = self.dataview.get_ts(group, start_date=self.start_date, end_date=self.end_date) elif isinstance(group, pd.DataFrame): pass else: raise ValueError("Group must be string or DataFrame. But {} is provided.".format(group)) if group is None or group.empty: raise ValueError("group is None or group is empty") close = self.closes_adj pos = self.daily_position index_weight = self._get_index_weight() res_dic = self._brinson(close, pos, index_weight, group) df_brinson = res_dic['df_brinson'] self.df_brinson = df_brinson self.report_dic['df_brinson'] = df_brinson plot_brinson(df_brinson, save_folder=self.file_folder) def do_analyze(self, result_dir, selected_sec=None, brinson_group=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) not_none_sec = [] if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: not_none_sec.append(symbol) plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) if brinson_group is not None: print("Do brinson attribution.") group = self.dataview.get_ts(brinson_group) if group is None: raise ValueError("group data is None.") self.brinson(group) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=not_none_sec) def plot_daily_trading_holding_pnl(trading, holding, total, total_cum): """ Parameters ---------- Series """ idx0 = total.index n = len(idx0) idx = np.arange(n) fig, (ax0, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 13.5), sharex=True) ax1 = ax0.twinx() bar_width = 0.4 profit_color, lose_color = '#D63434', '#2DB635' curve_color = '#174F67' y_label = 'Profit / Loss ($)' color_arr_raw = np.array([profit_color] * n) color_arr = color_arr_raw.copy() color_arr[total < 0] = lose_color ax0.bar(idx, total, width=bar_width, color=color_arr) ax0.set(title='Daily PnL', ylabel=y_label, xlim=[-2, n+2],) ax0.xaxis.set_major_formatter(MyFormatter(idx0, '%y-%m-%d')) ax1.plot(idx, total_cum, lw=1.5, color=curve_color) ax1.set(ylabel='Cum. ' + y_label) ax1.yaxis.label.set_color(curve_color) color_arr = color_arr_raw.copy() color_arr[trading < 0] = lose_color ax2.bar(idx-bar_width/2, trading, width=bar_width, color=color_arr) ax2.set(title='Daily Trading PnL', ylabel=y_label) color_arr = color_arr_raw.copy() color_arr[holding < 0] = lose_color ax3.bar(idx+bar_width/2, holding, width=bar_width, color=color_arr) ax3.set(title='Daily Holding PnL', ylabel=y_label, xticks=idx[: : n//10]) return fig def plot_portfolio_bench_pnl(portfolio_cum_ret, benchmark_cum_ret, excess_cum_ret): """ Parameters ---------- Series """ fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 9), sharex=True) idx_dt = portfolio_cum_ret.index idx = np.arange(len(idx_dt)) y_label_ret = "Cumulative Return (%)" ax1.plot(idx, (benchmark_cum_ret-1) * TO_PCT, label='Benchmark', color='#174F67') ax1.plot(idx, (portfolio_cum_ret-1) * TO_PCT, label='Strategy', color='#198DD6') ax1.legend(loc='upper left') ax1.set(title="Absolute Return of Portfolio and Benchmark", #xlabel="Date", ylabel=y_label_ret) ax1.grid(axis='y') ax2.plot(idx, (excess_cum_ret-1) * TO_PCT, label='Extra Return', color='#C37051') ax2.set(title="Excess Return Compared to Benchmark", ylabel=y_label_ret #xlabel="Date", ) ax2.grid(axis='y') ax2.xaxis.set_major_formatter(MyFormatter(idx_dt, '%y-%m-%d')) # 17-09-31 fig.tight_layout() return fig def plot_brinson(df, save_folder): """ Parameters ---------- df : pd.DataFrame """ allo, selec, inter, total = df['allocation'], df['selection'], df['interaction'], df['total_active'] fig, ax1 = plt.subplots(1, 1, figsize=(21, 8)) idx0 = df.index idx = range(len(idx0)) ax1.plot(idx, selec, lw=1.5, color='indianred', label='Selection Return') ax1.plot(idx, allo, lw=1.5, color='royalblue', label='Allocation Return') ax1.plot(idx, inter, lw=1.5, color='purple', label='Interaction Return') # ax1.plot(idx, total, lw=1.5, ls='--', color='k', label='Total Active Return') ax1.axhline(0.0, color='k', lw=0.5, ls='--') ax1.legend(loc='upper left') ax1.set_xlabel("Date") ax1.set_ylabel("Return") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'brinson_attribution.png')) plt.close() def calc_avg_pos_price(pos_arr, price_arr): """ Calculate average cost price using position and fill price. When position = 0, cost price = symbol price. """ assert len(pos_arr) == len(price_arr) avg_price = np.zeros_like(pos_arr, dtype=float) avg_price[0] = price_arr[0] for i in range(pos_arr.shape[0] - 1): if pos_arr[i+1] == 0: avg_price[i+1] = 0.0 else: pos_diff = pos_arr[i+1] - pos_arr[i] if pos_arr[i] == 0 or pos_diff * pos_arr[i] > 0: count = True else: count = False if count: avg_price[i+1] = (avg_price[i] * pos_arr[i] + pos_diff * price_arr[i+1]) * 1. / pos_arr[i+1] else: avg_price[i+1] = avg_price[i] return avg_price def plot_trades(df, symbol="", save_folder='.', marker_size_adjust_ratio=0.1): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) idx0 = df.index idx = range(len(idx0)) price = df.loc[:, 'close'] bv, sv = df.loc[:, 'BuyVolume'].values, df.loc[:, 'SellVolume'].values profit = df.loc[:, 'CumProfit'].values avgpx = df.loc[:, 'AvgPosPrice'] bv_m = np.max(bv) sv_m = np.max(sv) if bv_m > 0: bv = bv / bv_m * 100 if sv_m > 0: sv = sv / sv_m * 100 fig = plt.figure(figsize=(14, 10)) ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3) ax3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1, sharex=ax1) ax2 = ax1.twinx() ax1.plot(idx, price, label='Price', linestyle='-', lw=1, marker='', color='yellow') ax1.scatter(idx, price, label='buy', marker='o', s=bv, color='indianred') ax1.scatter(idx, price, label='sell', marker='o', s=sv, color='forestgreen') ax1.plot(idx, avgpx, lw=1, marker='', color='green') ax1.legend(loc='upper left') ax1.set(title="Price, Trades and PnL for {:s}".format(symbol), ylabel="Price ($)") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m')) ax2.plot(idx, profit, label='PnL', color='k', lw=1, ls='--', alpha=.4) ax2.legend(loc='upper right') ax2.set(ylabel="Profit / Loss ($)") # ax1.xaxis.set_major_formatter(MyFormatter(df.index))#, '%H:%M')) ax3.plot(idx, df.loc[:, 'position'], marker='D', markersize=3, lw=2) ax3.axhline(0, color='k', lw=1, ls='--', alpha=0.8) ax3.set(title="Position of {:s}".format(symbol)) fig.tight_layout() fig.savefig(save_folder + '/' + "{}.png".format(symbol), facecolor=fig.get_facecolor(), dpi=fig.get_dpi()) mpl.rcParams.update(old_mpl_rcparams)
2.171875
2
lightnet/data/transform/__init__.py
eavise-kul/lightnet
6
11352
# # Lightnet data transforms # Copyright EAVISE # from .pre import * from .post import * from .util import *
0.863281
1
ufdl-core-app/src/ufdl/core_app/exceptions/_BadSource.py
waikato-ufdl/ufdl-backend
0
11353
from rest_framework import status from rest_framework.exceptions import APIException class BadSource(APIException): """ Exception for when a lazily-loaded data source can't be accessed for some reason """ status_code = status.HTTP_417_EXPECTATION_FAILED default_code = 'bad_source' def __init__(self, source: str, reason: str): super().__init__(f"Bad source '{source}': {reason}")
2.53125
3
build_tools/docker/manage_images.py
BernhardRiemann/iree
1
11354
<filename>build_tools/docker/manage_images.py #!/usr/bin/env python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Manages IREE Docker image definitions. Includes information on their dependency graph and GCR URL. Example usage: Rebuild the cmake image and all images that transitiviely on depend on it, tagging them with `latest`: python3 build_tools/docker/manage_images.py --build --image cmake Print out output for rebuilding the cmake image and all images that transitiviely on depend on it, but don't take side-effecting actions: python3 build_tools/docker/manage_images.py --build --image cmake --dry-run Push all `prod` images to GCR: python3 build_tools/docker/manage_images.py --push --tag prod --images all Rebuild and push all images and update references to them in the repository: python3 build_tools/docker/manage_images.py --push --images all --update-references """ import argparse import fileinput import os import posixpath import re import subprocess import sys IREE_GCR_URL = 'gcr.io/iree-oss/' DOCKER_DIR = 'build_tools/docker/' # Map from image names to images that they depend on. IMAGES_TO_DEPENDENCIES = { 'base': [], 'bazel': ['base', 'util'], 'bazel-python': ['bazel'], 'bazel-tensorflow': ['bazel-python'], 'bazel-tensorflow-nvidia': ['bazel-tensorflow-vulkan'], 'bazel-tensorflow-swiftshader': ['bazel-tensorflow-vulkan', 'swiftshader'], 'bazel-tensorflow-vulkan': ['bazel-tensorflow'], 'cmake': ['base', 'util'], 'cmake-android': ['cmake', 'util'], 'cmake-python': ['cmake'], 'cmake-python-nvidia': ['cmake-python-vulkan'], 'cmake-python-swiftshader': ['cmake-python-vulkan', 'swiftshader'], 'cmake-python-vulkan': ['cmake-python'], 'rbe-toolchain': [], 'swiftshader': ['cmake'], 'util': [], } IMAGES_TO_DEPENDENT_IMAGES = {k: [] for k in IMAGES_TO_DEPENDENCIES} for image, dependencies in IMAGES_TO_DEPENDENCIES.items(): for dependency in dependencies: IMAGES_TO_DEPENDENT_IMAGES[dependency].append(image) IMAGES_HELP = [f'`{name}`' for name in IMAGES_TO_DEPENDENCIES] IMAGES_HELP = f'{", ".join(IMAGES_HELP)} or `all`' def parse_arguments(): """Parses command-line options.""" parser = argparse.ArgumentParser( description="Build IREE's Docker images and optionally push them to GCR.") parser.add_argument( '--images', '--image', type=str, required=True, action='append', help=f'Name of the image to build: {IMAGES_HELP}.') parser.add_argument( '--tag', type=str, default='latest', help='Tag for the images to build. Defaults to `latest` (which is good ' 'for testing changes in a PR). Use `prod` to update the images that the ' 'CI caches.') parser.add_argument( '--pull', action='store_true', help='Pull the specified image before building.') parser.add_argument( '--build', action='store_true', help='Build new images from the current Dockerfiles.') parser.add_argument( '--push', action='store_true', help='Push the built images to GCR. Requires gcloud authorization.') parser.add_argument( '--update_references', '--update-references', action='store_true', help='Update all references to the specified images to point at the new' ' digest.') parser.add_argument( '--dry_run', '--dry-run', '-n', action='store_true', help='Print output without building or pushing any images.') args = parser.parse_args() for image in args.images: if image == 'all': # Sort for a determinstic order args.images = sorted(IMAGES_TO_DEPENDENCIES.keys()) elif image not in IMAGES_TO_DEPENDENCIES: raise parser.error('Expected --image to be one of:\n' f' {IMAGES_HELP}\n' f'but got `{image}`.') return args def get_ordered_images_to_process(images): unmarked_images = list(images) # Python doesn't have a builtin OrderedSet marked_images = set() order = [] def visit(image): if image in marked_images: return for dependent_images in IMAGES_TO_DEPENDENT_IMAGES[image]: visit(dependent_images) marked_images.add(image) order.append(image) while unmarked_images: visit(unmarked_images.pop()) order.reverse() return order def stream_command(command, dry_run=False): print(f'Running: `{" ".join(command)}`') if dry_run: return 0 process = subprocess.Popen( command, bufsize=1, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, universal_newlines=True) for line in process.stdout: print(line, end='') if process.poll() is None: raise RuntimeError('Unexpected end of output while process is not finished') return process.poll() def check_stream_command(command, dry_run=False): exit_code = stream_command(command, dry_run=dry_run) if exit_code != 0: print(f'Command failed with exit code {exit_code}: `{" ".join(command)}`') sys.exit(exit_code) def get_repo_digest(image): inspect_command = [ 'docker', 'image', 'inspect', f'{image}', '-f', '{{index .RepoDigests 0}}', ] inspect_process = subprocess.run( inspect_command, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=10) if inspect_process.returncode != 0: print(f'Computing the repository digest for {image} failed.' ' Has it been pushed to GCR?') print(f'Output from `{" ".join(inspect_command)}`:') print(inspect_process.stdout, end='') print(inspect_process.stderr, end='') sys.exit(inspect_process.returncode) _, repo_digest = inspect_process.stdout.strip().split('@') return repo_digest def update_rbe_reference(digest, dry_run=False): print('Updating WORKSPACE file for rbe-toolchain') for line in fileinput.input(files=['WORKSPACE'], inplace=(not dry_run)): if line.strip().startswith('digest ='): print(re.sub('sha256:[a-zA-Z0-9]+', digest, line), end='') else: print(line, end='') def update_references(image_name, digest, dry_run=False): print(f'Updating references to {image_name}') grep_command = ['git', 'grep', '-l', f'{image_name}@sha256'] grep_process = subprocess.run( grep_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=5, universal_newlines=True) if grep_process.returncode > 1: print(f'{" ".join(grep_command)} ' f'failed with exit code {grep_process.returncode}') sys.exit(grep_process.returncode) if grep_process.returncode == 1: print(f'Found no references to {image_name}') return files = grep_process.stdout.split() print(f'Updating references in {len(files)} files: {files}') for line in fileinput.input(files=files, inplace=(not dry_run)): print( re.sub(f'{image_name}@sha256:[a-zA-Z0-9]+', f'{image_name}@{digest}', line), end='') if __name__ == '__main__': args = parse_arguments() # Ensure the user has the correct authorization if they try to push to GCR. if args.push: if stream_command(['which', 'gcloud']) != 0: print('gcloud not found.' ' See https://cloud.google.com/sdk/install for installation.') sys.exit(1) check_stream_command(['gcloud', 'auth', 'configure-docker'], dry_run=args.dry_run) images_to_process = get_ordered_images_to_process(args.images) print(f'Also processing dependent images. Will process: {images_to_process}') for image in images_to_process: print(f'Processing image {image}') image_name = posixpath.join(IREE_GCR_URL, image) image_tag = f'{image_name}:{args.tag}' image_path = os.path.join(DOCKER_DIR, image) if args.pull: check_stream_command(['docker', 'pull', image_tag], dry_run=args.dry_run) if args.build: check_stream_command(['docker', 'build', '--tag', image_tag, image_path], dry_run=args.dry_run) if args.push: check_stream_command(['docker', 'push', image_tag], dry_run=args.dry_run) if args.update_references: digest = get_repo_digest(image_tag) # Just hardcode this oddity if image == 'rbe-toolchain': update_rbe_reference(digest, dry_run=args.dry_run) update_references(image_name, digest, dry_run=args.dry_run)
1.898438
2
suncasa/pygsfit/gsutils.py
wyq24/suncasa
0
11355
<reponame>wyq24/suncasa<filename>suncasa/pygsfit/gsutils.py import numpy as np # import sys import math import os, sys, platform import astropy.units as u from sunpy import map as smap from astropy.coordinates import SkyCoord from suncasa.io import ndfits import lmfit from astropy.time import Time import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.colorbar as colorbar from suncasa.utils import mstools from suncasa.utils import qlookplot as ql from mpl_toolkits.axes_grid1 import make_axes_locatable from tqdm import tqdm from astropy.io import fits import numpy.ma as ma sys.path.append(os.path.dirname(os.path.realpath(__file__))) import gstools # name of the fast gyrosynchrotron codes shared library if platform.system() == 'Linux' or platform.system() == 'Darwin': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr.so') if platform.system() == 'Windows': libname = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'binaries/MWTransferArr64.dll') def kev2k(eng): return 11604525.00617 * eng def ff_emission(em, T=1.e7, Z=1., mu=1.e10): from astropy import constants as const import astropy.units as u T = T * u.k mu = mu * u.Hz esu = const.e.esu k_B = const.k_B.cgs m_e = const.m_e.cgs c = const.c.cgs bmax = (3 * k_B * T * u.k / m_e) ** 0.5 / 2.0 / np.pi / (mu * u.Hz) bmin = Z * esu ** 2 / 3. / k_B / T lnbb = np.log((bmax / bmin).value) ka_mu = 1. / mu ** 2 / T ** 1.5 * ( Z ** 2 * esu ** 6 / c / np.sqrt(2. * np.pi * (m_e * k_B) ** 3)) * np.pi ** 2 / 4.0 * lnbb # print(ka_mu, em) opc = ka_mu * em return T.value * (1 - np.exp(-opc.value)) def sfu2tb(freq, flux, area): # frequency in Hz # flux in sfu # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 Tb = flux * sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr) return Tb def tb2sfu(freq, tb, area): # frequency in Hz # brightness temperature in K # area: area of the radio source in arcsec^2 sfu2cgs = 1e-19 vc = 2.998e10 kb = 1.38065e-16 # sr = np.pi * (size[0] / 206265. / 2.) * (size[1] / 206265. / 2.) sr = area / 206265. ** 2 flux = tb / (sfu2cgs * vc ** 2. / (2. * kb * freq ** 2. * sr)) return flux def initspecplot(axes, cplts): errobjs = [] for cpltidx, cplt in enumerate(cplts): errobjs.append(axes.errorbar([], [], yerr=[], linestyle='', marker='o', mfc='none', mec=cplt, alpha=1.0)) axes.set_yscale("log") axes.set_xscale("log") axes.set_xlim([1, 20]) axes.set_ylim([0.1, 1000]) axes.set_xticks([1, 5, 10, 20]) axes.set_xticklabels([1, 5, 10, 20]) axes.set_xticks([1, 5, 10, 20]) axes.set_yticks([]) axes.set_yticks([0.01, 0.1, 1, 10, 100, 1000]) axes.set_ylabel('T$_b$ [MK]') axes.set_xlabel('Frequency [GHz]') x = np.linspace(1, 20, 10) for ll in [-1, 0, 1, 2, 3, 4]: y = 10. ** (-2 * np.log10(x) + ll) axes.plot(x, y, 'k--', alpha=0.1) # y2 = 10. ** (-4 * np.log10(x) + ll) # y3 = 10. ** (-8 * np.log10(x) + ll) # ax_eospec.plot(x, y, 'k--', x, y2, 'k:', x, y3, 'k-.', alpha=0.1) return errobjs def set_errorobj(xout, yout, errobj, yerr=None): eospec, dummy, (errbar_eospec,) = errobj eospec.set_data(xout, yout) if yerr is not None: yerr_top = yout + yerr yerr_bot = yout - yerr new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] errbar_eospec.set_segments(new_segments_y) def mwspec2min_1src(params, freqghz, tb=None, tb_err=None, arcsec2cm=0.725e8, showplt=False): # params are defined by lmfit.Paramters() ''' params: parameters defined by lmfit.Paramters() freqghz: frequencies in GHz ssz: pixel size in arcsec tb: reference brightness temperature in K tb_err: uncertainties of reference brightness temperature in K ''' from scipy import interpolate GET_MW = gstools.initGET_MW(libname) # load the library ssz = float(params['ssz'].value) # # source area in arcsec^2 depth = float(params['depth'].value) # total source depth in arcsec Bmag = float(params['Bmag'].value) # magnetic field strength in G Tth = float(params['Tth'].value) # thermal temperature in MK nth = float(params['nth'].value) # thermal density in 1e10 cm^{-3} nrlh = 10. ** float(params['lognrlh'].value) # total nonthermal density above 0.1 MeV delta = float(params['delta'].value) # powerlaw index theta = float(params['theta'].value) # viewing angle in degrees Emin = float(params['Emin'].value) # low energy cutoff of nonthermal electrons in MeV Emax = float(params['Emax'].value) # high energy cutoff of nonthermal electrons in MeV E_hi = 0.1 nrl = nrlh * (Emin ** (1. - delta) - Emax * (1. - delta)) / (E_hi ** (1. - delta) - Emax ** (1. - delta)) Nf = 100 # number of frequencies NSteps = 1 # number of nodes along the line-of-sight N_E = 15 # number of energy nodes N_mu = 15 # number of pitch-angle nodes Lparms = np.zeros(11, dtype='int32') # array of dimensions etc. Lparms[0] = NSteps Lparms[1] = Nf Lparms[2] = N_E Lparms[3] = N_mu Rparms = np.zeros(5, dtype='double') # array of global floating-point parameters Rparms[0] = ssz * arcsec2cm ** 2 # Area, cm^2 # Rparms[0] = 1e20 # area, cm^2 Rparms[1] = 1e9 # starting frequency to calculate spectrum, Hz Rparms[2] = 0.02 # logarithmic step in frequency Rparms[3] = 12 # f^C Rparms[4] = 12 # f^WH ParmLocal = np.zeros(24, dtype='double') # array of voxel parameters - for a single voxel ParmLocal[0] = depth * arcsec2cm / NSteps # voxel depth, cm ParmLocal[1] = Tth * 1e6 # T_0, K ParmLocal[2] = nth * 1e10 # n_0 - thermal electron density, cm^{-3} ParmLocal[3] = Bmag # B - magnetic field, G Parms = np.zeros((24, NSteps), dtype='double', order='F') # 2D array of input parameters - for multiple voxels for i in range(NSteps): Parms[:, i] = ParmLocal # most of the parameters are the same in all voxels # if NSteps > 1: # Parms[4, i] = 50.0 + 30.0 * i / (NSteps - 1) # the viewing angle varies from 50 to 80 degrees along the LOS # else: # Parms[4, i] = 50.0 # the viewing angle varies from 50 to 80 degrees along the LOS Parms[4, i] = theta # parameters of the electron distribution function n_b = nrl # n_b - nonthermal electron density, cm^{-3} mu_c = np.cos(np.pi * 70 / 180) # loss-cone boundary dmu_c = 0.2 # Delta_mu E_arr = np.logspace(np.log10(Emin), np.log10(Emax), N_E, dtype='double') # energy grid (logarithmically spaced) mu_arr = np.linspace(-1.0, 1.0, N_mu, dtype='double') # pitch-angle grid f0 = np.zeros((N_E, N_mu), dtype='double') # 2D distribution function array - for a single voxel # computing the distribution function (equivalent to PLW & GLC) A = n_b / (2.0 * np.pi) * (delta - 1.0) / (Emin ** (1.0 - delta) - Emax ** (1.0 - delta)) B = 0.5 / (mu_c + dmu_c * np.sqrt(np.pi) / 2 * math.erf((1.0 - mu_c) / dmu_c)) for i in range(N_E): for j in range(N_mu): amu = abs(mu_arr[j]) f0[i, j] = A * B * E_arr[i] ** (-delta) * (1.0 if amu < mu_c else np.exp(-((amu - mu_c) / dmu_c) ** 2)) f_arr = np.zeros((N_E, N_mu, NSteps), dtype='double', order='F') # 3D distribution function array - for multiple voxels for k in range(NSteps): f_arr[:, :, k] = f0 # electron distribution function is the same in all voxels RL = np.zeros((7, Nf), dtype='double', order='F') # input/output array # calculating the emission for array distribution (array -> on) res = GET_MW(Lparms, Rparms, Parms, E_arr, mu_arr, f_arr, RL) if res: # retrieving the results f = RL[0] I_L = RL[5] I_R = RL[6] if showplt: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) ax.plot(f, I_L + I_R) ax.set_xscale('log') ax.set_yscale('log') ax.set_title('Total intensity (array)') ax.set_xlabel('Frequency, GHz') ax.set_ylabel('Intensity, sfu') flx_model = I_L + I_R flx_model = np.nan_to_num(flx_model) + 1e-11 logf = np.log10(f) logflx_model = np.log10(flx_model) logfreqghz = np.log10(freqghz) interpfunc = interpolate.interp1d(logf, logflx_model, kind='linear') logmflx = interpfunc(logfreqghz) mflx = 10. ** logmflx mtb = sfu2tb(np.array(freqghz) * 1.e9, mflx, ssz) else: print("Calculation error!") if tb is None: return mtb if tb_err is None: # return mTb - Tb return mtb - tb # wt = 1./flx_err # wt = 1./(Tb_err/Tb/np.log(10.)) # residual = np.abs((logmTb - np.log10(Tb))) * wt # residual = np.abs((mflx - flx)) * wt residual = (mtb - tb) / tb_err return residual class RegionSelector: # def set_errorobj(self, xout, yout, errobj, yerr): # eospec, dummy, (errbar_eospec,) = errobj # eospec.set_data(xout, yout) # if yerr is not None: # yerr_top = yout + yerr # yerr_bot = yout - yerr # new_segments_y = [np.array([[x, yt], [x, yb]]) for x, yt, yb in zip(xout, yerr_top, yerr_bot)] # errbar_eospec.set_segments(new_segments_y) # return 1 def subdata(self, xs, ys, rfile): rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(rfile) ny, nx = rmap.data.shape tr_coord = rmap.top_right_coord bl_coord = rmap.bottom_left_coord x0 = bl_coord.Tx.to(u.arcsec).value y0 = bl_coord.Ty.to(u.arcsec).value x1 = tr_coord.Tx.to(u.arcsec).value y1 = tr_coord.Ty.to(u.arcsec).value dx = rmap.scale.axis1.to(u.arcsec / u.pix).value dy = rmap.scale.axis2.to(u.arcsec / u.pix).value mapx, mapy = np.linspace(x0, x1, nx) - dx / 2.0, np.linspace(y0, y1, ny) - dy / 2.0 xsmin = np.nanmin(xs) xsmax = np.nanmax(xs) ysmin = np.nanmin(ys) ysmax = np.nanmax(ys) if np.abs(xsmax - xsmin) < dx: xsmax = xsmin + dx if np.abs(ysmax - ysmin) < dy: ysmax = ysmin + dy xmask = np.logical_and(mapx >= xsmin, mapx <= xsmax) nxnew = np.count_nonzero(xmask) ymask = np.logical_and(mapy >= ysmin, mapy <= ysmax) nynew = np.count_nonzero(ymask) xmask = np.tile(xmask, ny).reshape(ny, nx) ymask = np.tile(ymask, nx).reshape(nx, ny).transpose() mask = xmask & ymask # print(np.count_nonzero(mask)) self.npix = np.count_nonzero(mask) self.area = self.npix * dx * dy data = rdata[:, mask] # print(rdata[:, :, mask]) # print(mask.shape, rdata.shape, data.shape) data = np.squeeze(data) # print(data.shape) return data def __init__(self, clkpnts, boxlines, eofiles, errobjs, cfreqs=None, rms=None, eofile_ref=None, errobj_ref=None, wTmap=None, outspec_ff=None, scatter_gsfit=None, get_peak=False, get_sum=False): self.boxline = [] self.clkpnt = [] self.xs = list(clkpnts[0].get_xdata()) self.ys = list(clkpnts[0].get_ydata()) self.npix = None self.area = None self.xout = [] self.yout = [] self.xouterr = [] self.youterr = [] for errobj in errobjs: eospec, dummy, (errbar_eospec,) = errobj self.xout.append(eospec.get_xdata()) self.yout.append(eospec.get_ydata()) self.errobjs = errobjs self.errobj_ref = errobj_ref self.outspec_ff = outspec_ff self.scatter_gsfit = scatter_gsfit self.cfreqs = cfreqs self.rms = rms self.eofiles = eofiles self.eofile_ref = eofile_ref self.wTmap = wTmap self.wT = None self.em = None self.get_peak = get_peak self.get_sum = get_sum self.tps = [] self.params = None for idx, s in enumerate(clkpnts): self.boxline.append(boxlines[idx]) self.clkpnt.append(s) self.cid = s.figure.canvas.mpl_connect('button_press_event', self) def __call__(self, event): axes = [clkpnt.axes for clkpnt in self.clkpnt] if self.clkpnt[0].figure.canvas.toolbar.mode == '': if event.inaxes not in axes: return nxs = len(self.xs) if event.button == 1: if nxs < 2: self.xs.append(event.xdata) self.ys.append(event.ydata) else: self.xs = [event.xdata] self.ys = [event.ydata] elif event.button == 3: if len(self.xs) > 0: self.xs.pop() self.ys.pop() self.get_flux() def get_flux(self): if len(self.xs) > 0: xs = np.array(self.xs, dtype=np.float64) ys = np.array(self.ys, dtype=np.float64) for clkpnt in self.clkpnt: clkpnt.set_data(xs, ys) else: for clkpnt in self.clkpnt: clkpnt.set_data([], []) nxs = len(self.xs) if nxs <= 1: for line in self.boxline: line.set_data([], []) elif nxs == 2: datas = [] # eofile = self.eofiles[0] # rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofile) # data = self.subdata(xs, ys, eofile) # datas.append(data) for tidx, eofile in enumerate(self.eofiles): data = self.subdata(xs, ys, eofile) datas.append(data) if self.eofile_ref is not None: data_ref = self.subdata(xs, ys, self.eofile_ref) if self.wTmap is not None: datawT = self.subdata(xs, ys, self.wTmap) if self.get_peak: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmax(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: youts_outspec_ref = np.nanmax(data_ref[0, dd, :, :]) / 1e6 else: youts_outspec = [] for data in datas: if data.ndim > 1: youts_outspec.append(np.nanmean(data, axis=-1) / 1e6) else: youts_outspec.append(data / 1e6) if self.eofile_ref is not None: if data.ndim > 1: youts_outspec_ref = np.nanmean(data_ref, axis=-1) / 1e6 else: youts_outspec_ref = data_ref / 1e6 self.tps = [] for data in datas: if data.ndim > 1: self.tps.append(np.nansum(data, axis=-1) / 1e6) else: self.tps.append(data / 1e6) xout = self.cfreqs for tidx, errobj in enumerate(self.errobjs): set_errorobj(xout, youts_outspec[tidx], errobj, self.rms) if self.eofile_ref is not None: set_errorobj(xout, youts_outspec_ref, self.errobj_ref, self.rms) if self.wTmap is not None: print(datawT.shape) wT = np.nanmean(datawT[..., 1]) * 1e6 em = np.nanmean(datawT[..., 0]) arcsec2cm = (self.wTmap[0].rsun_meters / self.wTmap[0].rsun_obs).to(u.cm / u.arcsec).value # nele = 4.0e10 # depth = em / nele ** 2 / arcsec2cm # print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, depth: {:.1f} arcsec if nele is {:.2e} cm-3'.format(wT / 1e6, em, depth, nele)) depth = 20. ## arcsec nele = np.sqrt(em / (depth * arcsec2cm)) print('Temperature: {:.1f} MK, EM: {:.2e} cm-5, nele: {:.2e} cm-3 if depth is {:.1f} arcsec'.format( wT / 1e6, em, nele, depth)) self.wT = wT self.em = em yout_ff = np.array([ff_emission(em, T=wT, Z=1., mu=ll) for ll in xout * 1e9]) / 1.e6 self.outspec_ff.set_data(xout, yout_ff) self.errobjs[0][0].figure.canvas.draw_idle() for line in self.boxline: line.set_data([xs[0], xs[1], xs[1], xs[0], xs[0]], [ys[0], ys[0], ys[1], ys[1], ys[0]]) clkpnt.figure.canvas.draw_idle() class GStool: # def get_showaia(self): # return self._showaia # # def set_showaia(self, value): # self._showaia = value # # showaia = property(fget=get_showaia, fset=set_showaia, doc="`Boolean`-like: Display AIA image or not") def __init__(self, eofiles, aiafile=None, xycen=None, fov=None, freqghz_bound=[-1, 100], calpha=0.5, clevels=np.array([0.3, 1.0]), opencontour=None): self.aiafile = aiafile self.eofiles = eofiles self.xycen = xycen self.fov = fov self.calpha = calpha self.clevels = clevels self.freqghz_bound = freqghz_bound self.opencontour = opencontour self._showaia = False rmap, rdata, rheader, ndim, npol_fits, stokaxis, rfreqs, rdelts = ndfits.read(eofiles[0]) self.bdinfo = bdinfo = ndfits.get_bdinfo(rfreqs, rdelts) self.cfreqs = cfreqs = bdinfo['cfreqs'] self.cfreqs_all = cfreqs_all = bdinfo['cfreqs_all'] self.freq_dist = lambda fq: (fq - cfreqs_all[0]) / (cfreqs_all[-1] - cfreqs_all[0]) self.ntim = ntim = len(eofiles) self.xlim = xlim = xycen[0] + np.array([-1, 1]) * 0.5 * fov[0] self.ylim = ylim = xycen[1] + np.array([-1, 1]) * 0.5 * fov[1] nspw = len(rfreqs) eodate = Time(rmap.date.mjd + rmap.exposure_time.value / 2. / 24 / 3600, format='mjd') ny, nx = rmap.data.shape x0, x1 = (np.array([1, rmap.meta['NAXIS1']]) - rmap.meta['CRPIX1']) * rmap.meta['CDELT1'] + \ rmap.meta['CRVAL1'] y0, y1 = (np.array([1, rmap.meta['NAXIS2']]) - rmap.meta['CRPIX2']) * rmap.meta['CDELT2'] + \ rmap.meta['CRVAL2'] dx = rmap.meta['CDELT1'] dy = rmap.meta['CDELT2'] mapx, mapy = np.linspace(x0, x1, nx), np.linspace(y0, y1, ny) fig = plt.figure(figsize=(15, 6)) self.fig = fig grids = fig.add_gridspec(ncols=3, nrows=1, width_ratios=[1, 1, 0.6]) self.grids = grids axs = [] axs.append(fig.add_subplot(grids[0, 0])) axs.append(fig.add_subplot(grids[0, 1], sharex=axs[-1], sharey=axs[-1])) axs.append(fig.add_subplot(grids[0, 2])) if aiafile: if os.path.exists(aiafile): try: aiacmap = plt.get_cmap('gray_r') aiamap = smap.Map(aiafile) ax = axs[0] aiamap.plot(axes=ax, cmap=aiacmap) ax = axs[1] aiamap.plot(axes=ax, cmap=aiacmap) self._showaia = True except: self._showaia = False if self._showaia: if self.opencontour is None: self.opencontour = False else: if self.opencontour is None: self.opencontour = True ## Plot EOVSA images as filled contour on top of the AIA image icmap = plt.get_cmap('RdYlBu') cts = [] ## color map for spectra from the image series tcmap = plt.get_cmap('turbo') for s, sp in enumerate(rfreqs): data = rdata[s, ...] clvls = clevels * np.nanmax(data) rcmap = [icmap(self.freq_dist(self.cfreqs[s]))] * len(clvls) if self.opencontour: cts.append(ax.contour(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) else: cts.append(ax.contourf(mapx, mapy, data, levels=clvls, colors=rcmap, alpha=calpha)) ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) for ax in axs[:2]: ax.set_xlabel('Solar-X [arcsec]') ax.set_ylabel('Solar-y [arcsec]') ax.set_title('') ax.text(0.02, 0.01, ' '.join(['AIA {:.0f} Å'.format(aiamap.wavelength.value), aiamap.date.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) ax.text(0.02, 0.05, ' '.join(['EOVSA ', eodate.datetime.strftime('%Y-%m-%dT%H:%M:%S')]), ha='left', va='bottom', color='k', transform=ax.transAxes) divider = make_axes_locatable(axs[0]) cax = divider.append_axes("right", size="8%", pad=0.08) cax.set_visible(False) divider = make_axes_locatable(axs[1]) cax = divider.append_axes("right", size="8%", pad=0.08) ticks, bounds, vmax, vmin, freqmask = ql.get_colorbar_params(bdinfo) cb = colorbar.ColorbarBase(cax, norm=colors.Normalize(vmin=vmin, vmax=vmax), cmap=icmap, orientation='vertical', boundaries=bounds, spacing='proportional', ticks=ticks, format='%4.1f', alpha=calpha) for fbd_lo, fbd_hi in freqmask: if fbd_hi is not None: cax.axhspan(fbd_lo, fbd_hi, hatch='//', edgecolor='k', facecolor='#BBBBBB') plt.text(0.5, 1.05, 'MW', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') plt.text(0.5, 1.01, '[GHz]', ha='center', va='bottom', transform=cax.transAxes, color='k', fontweight='normal') cax.xaxis.set_visible(False) cax.tick_params(axis="y", pad=-20., length=0, colors='k', labelsize=7) cax.axhline(vmin, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.axhline(vmax, xmin=1.0, xmax=1.2, color='k', clip_on=False) cax.text(1.25, 0.0, '{:.1f}'.format(vmin), fontsize=9, transform=cax.transAxes, va='center', ha='left') cax.text(1.25, 1.0, '{:.1f}'.format(vmax), fontsize=9, transform=cax.transAxes, va='center', ha='left') boxlines = [] clkpnts = [] for idx, ax in enumerate(axs[:2]): if idx == 0: c = 'g' elif idx == 1: c = 'b' else: c = 'k' line, = ax.plot([], [], '-', c=c, alpha=1.0) # empty line boxlines.append(line) clkpnt, = ax.plot([], [], '+', c='white', alpha=0.7) # empty line clkpnts.append(clkpnt) if ntim < 2: cplts = ['k'] else: cplts = tcmap(np.linspace(0, 1, ntim)) self.cplts = cplts self.ax_eospec = axs[-1] errobjs = initspecplot(self.ax_eospec, cplts) grids.tight_layout(fig) self.region = RegionSelector(clkpnts, boxlines, eofiles, errobjs, cfreqs=cfreqs, rms=None, wTmap=None) self.scatter_eospecs_fit = [] self.scatter_eospecs = [] def set_params(self, params): ssz = self.region.area # source area in arcsec^2 params.add('ssz', value=ssz, vary=False) # pixel size in arcsec^2 self.params = params def plot_components(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.0 tb_err[:] = 1.e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) def fit(self): ti = 0 tb = self.region.errobjs[ti][0].get_ydata() * 1e6 tb_ma = ma.masked_less_equal(tb, 0) freqghz = self.region.errobjs[0][0].get_xdata() # freqghz_ma = ma.masked_outside(freqghz, 1.0, 15.0) freqghz_ma = ma.masked_outside(freqghz, self.freqghz_bound[0], self.freqghz_bound[1]) mask_fit = np.logical_or(freqghz_ma.mask, tb_ma.mask) freqghz_ma = ma.masked_array(freqghz, mask_fit) tb_ma = ma.masked_array(tb, mask_fit) # scatter_eospecs_fit.append( # ax_spec.plot(freqghz_ma, tb_ma / 1.e6, marker='o', linestyle='', c=cplts[ti])) # flx_rms = rms tb_err = tb * 0.1 # tb_err[:] = 0.2e6 tb_err_ma = ma.masked_array(tb_err, tb_ma.mask) if len(self.scatter_eospecs_fit) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs_fit.append( self.ax_eospec.errorbar(freqghz_ma, tb_ma / 1.e6, yerr=tb_err_ma / 1.e6, marker='.', ms=1, linestyle='', c=cplt)) else: for ti, cplt in enumerate(self.cplts): set_errorobj(freqghz_ma, tb_ma / 1.e6, self.scatter_eospecs_fit[ti], yerr=tb_err_ma / 1.e6) mini = lmfit.Minimizer(mwspec2min_1src, self.params, fcn_args=(freqghz_ma.compressed(),), fcn_kws={'tb': tb_ma.compressed(), 'tb_err': tb_err_ma.compressed()}, nan_policy='omit') method = 'nelder' # # method = 'differential_evolution' mi = mini.minimize(method=method) print(method + ' minimization results') print(lmfit.fit_report(mi.params)) tb_fit = mwspec2min_1src(mi.params, freqghz) if len(self.scatter_eospecs) == 0: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs.append(self.ax_eospec.plot(freqghz, tb_fit / 1.e6, linestyle='-', c=cplt)) else: for ti, cplt in enumerate(self.cplts): self.scatter_eospecs[ti][0].set_data(freqghz, tb_fit / 1.e6)
1.671875
2
msgvis/apps/questions/migrations/0001_initial.py
hds-lab/textvis-drg
10
11356
<gh_stars>1-10 # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('dimensions', '0001_initial'), ] operations = [ migrations.CreateModel( name='Article', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('year', models.PositiveIntegerField(default=None, null=True, blank=True)), ('authors', models.CharField(default=None, max_length=250, blank=True)), ('link', models.CharField(default=None, max_length=250, blank=True)), ('title', models.CharField(default=None, max_length=250, blank=True)), ('venue', models.CharField(default=None, max_length=250, blank=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('text', models.TextField()), ('dimensions', models.ManyToManyField(to='dimensions.Dimension')), ('source', models.ForeignKey(default=None, to='questions.Article', null=True)), ], options={ }, bases=(models.Model,), ), ]
1.820313
2
test/test_check_alert.py
russ-lewis/cs120-queuebot
0
11357
import io import sys import unittest import asyncio import random from contextlib import redirect_stdout from .utils import * from queuebot import QueueBot, QueueConfig, DiscordUser config = { "SECRET_TOKEN": "<PASSWORD>", "TA_ROLES": ["UGTA"], "LISTEN_CHANNELS": ["join-queue"], "CHECK_VOICE_WAITING": "False", "VOICE_WAITING": "waiting-room", "ALERT_ON_FIRST_JOIN": "True", "VOICE_OFFICES": ["Office Hours Room 1", "Office Hours Room 2", "Office Hours Room 3"], "ALERTS_CHANNEL": "queue-alerts", } config = QueueConfig(config, test_mode=True) # TODO Comment each test case class QueueTest(unittest.TestCase): def setUp(self): random.seed(SEED) self.config = config.copy() self.bot = QueueBot(self.config, None, testing=True) # self.bot.waiting_room = MockVoice(config.VOICE_WAITING) self.bot.logger = MockLogger() self.bot.office_rooms = [MockVoice(name) for name in config.VOICE_OFFICES] def reset_vc_queue(self): # Reset queue russ = get_rand_element(ALL_TAS) message = MockMessage("!q clear", russ) with io.StringIO() as buf, redirect_stdout(buf): run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # Empty voice channels for v in self.bot.office_rooms: v.members = [] def test_no_tas(self): # No TAs in rooms student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: ✅ {student.get_mention()} you have been added at position #1")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def test_one_ta(self): ta = get_rand_element(ALL_TAS) office_room = get_rand_element(self.bot.office_rooms) office_room.members.append(ta) student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: {ta.get_mention()} The queue is no longer empty")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def get_mentions_from_send(self, buf): send_str = buf.getvalue().strip().split("\n", 1)[0] assert send_str.startswith("SEND:") assert "<@" in send_str assert "The queue is no longer empty" in send_str return send_str.lstrip("SEND: ") \ .rstrip(" The queue is no longer empty") \ .split(" ") def test_many_tas_one_room(self): tas = get_n_rand(ALL_TAS, 3) office_room = get_rand_element(self.bot.office_rooms) office_room.members.extend(tas) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_many_tas_all_rooms(self): tas = get_n_rand(ALL_TAS, 5) tas_copy = tas.copy() while len(tas) > 0: for office_room in self.bot.office_rooms: # If we run out of TAs while going through all the rooms if len(tas) == 0: break office_room.add_member(tas.pop()) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas_copy: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_ta_with_student(self): busy_room, open_room = get_n_rand(self.bot.office_rooms, 2) busy_ta, open_ta = get_n_rand(ALL_TAS, 2) busy_student, open_student = get_n_rand(ALL_STUDENTS, 2) busy_room.add_many_members(busy_ta, busy_student) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", busy_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_ta_with_student2(self): rooms = get_n_rand(self.bot.office_rooms, 3) busy_rooms = rooms[:-1] open_room = rooms[-1] busy_ta, open_ta = get_n_rand(ALL_TAS, 2) students = [ None ] open_student = None while open_student in students: students = get_n_rand(ALL_STUDENTS, 5) open_student = get_rand_element(ALL_STUDENTS) busy_rooms[0].add_many_members(busy_ta, *students[:-2]) busy_rooms[1].add_many_members(busy_ta, *students[-2:]) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", open_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_two_tas(self): tas = get_n_rand(ALL_TAS, 2) rooms = get_n_rand(self.bot.office_rooms, 2) rooms[0].add_member(tas[0]) rooms[1].add_member(tas[1]) students = get_n_rand(ALL_STUDENTS, 2) # Check for both alerted with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[0]) run(self.bot.queue_command(message)) ta_list = set(self.get_mentions_from_send(buf)) for ta in tas: ta_list.remove(ta.get_mention()) self.assertEqual(len(ta_list), 0) # Remove first student from queue with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q next", tas[0]) run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # First ta helps first student rooms[0].add_member(students[0]) # Another student joins with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[1]) run(self.bot.queue_command(message)) ta_list = self.get_mentions_from_send(buf) self.assertEqual(ta_list, [tas[1].get_mention()]) if __name__ == '__main__': unittest.main()
2.390625
2
iam/__init__.py
dataday/aws-utilities-sdk
0
11358
""" .. module:: aws_utilities_cli.iam :platform: OS X :synopsis: Small collection of utilities that use the Amazon Web Services (AWS) SDK .. moduleauthor:: dataday """ __all__ = ['generate_identity', 'generate_policy']
1.109375
1
tests/common/test_run/triangle_run.py
KnowingNothing/akg-test
0
11359
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tests.common.tensorio import compare_tensor from tests.common.test_op import triangle from akg.utils import kernel_exec as utils from tests.common.gen_random import random_gaussian def triangle_execute(shape, const_value, lower, dtype, attrs): support_type = ['float16', 'float32'] assert dtype in support_type assert len(shape) <= 2 if attrs is None: attrs = {'enable_pre_poly_loop_partition': False} attrs['enable_pre_poly_loop_partition'] = False attrs['enable_post_poly_loop_partition'] = False attrs['enable_convert_if'] = True attrs['enable_double_buffer'] = False output_shape = shape if len(shape) == 1: output_shape = [shape[0], shape[0]] input, bench_mark = gen_data(shape, output_shape, const_value, lower, dtype) op_attrs = [const_value, lower] mod = triangle_compile(shape, dtype, op_attrs, attrs) source_code = mod.imported_modules[0].get_source() output = np.full(output_shape, np.nan, dtype) output = utils.mod_launch(mod, (input, output), expect=bench_mark) # compare result compare_result = compare_tensor(output, bench_mark, rtol=5e-3, equal_nan=True) return input, output, bench_mark, compare_result def triangle_compile(shape, dtype, op_attrs, attrs): return utils.op_build_test(triangle.triangle, [shape], [dtype], op_attrs, kernel_name='triangle', attrs=attrs) def gen_data(shape, output_shape, const_value, lower, dtype): input = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) if len(shape) == 2: bench_mark = input else: bench_mark = np.zeros(output_shape).astype(dtype) for i in range(output_shape[0]): bench_mark[i] = input if lower: for i in range(output_shape[0]): bench_mark[i][i + 1:] = const_value else: for i in range(output_shape[0]): bench_mark[i][:i] = const_value return input, bench_mark
1.75
2
profiles/migrations/0018_auto_20180514_2106.py
brentfraser/geotabloid
2
11360
<reponame>brentfraser/geotabloid<gh_stars>1-10 # Generated by Django 2.0.3 on 2018-05-14 21:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('profiles', '0017_otherfiles_location'), ] operations = [ migrations.AlterField( model_name='project', name='url', field=models.FileField(upload_to='projects/'), ), ]
1.523438
2
orio/main/tuner/tuner.py
parsabee/Orio
24
11361
<reponame>parsabee/Orio # # The tuner class to initiate the empirical performance tuning process # import re, sys, os from orio.main.util.globals import * import orio.main.dyn_loader, orio.main.tspec.tspec, orio.main.tuner.ptest_codegen, orio.main.tuner.ptest_driver #-------------------------------------------------- # the name of the module containing various search algorithms SEARCH_MOD_NAME = 'orio.main.tuner.search' #-------------------------------------------------- class PerfTuner: ''' The empirical performance tuner. This class is responsible for invoking the code generators of the annotation modules, compiling the resulting code, and interfacing with the search interface to run the tests and collect the results. ''' #------------------------------------------------- def __init__(self, odriver): '''To instantiate an empirical performance tuner object''' self.odriver = odriver self.dloader = orio.main.dyn_loader.DynLoader() self.num_params=0 self.num_configs=0 self.num_bin=0 self.num_int=0 self.tinfo = None #------------------------------------------------- def tune(self, module_body_code, line_no, cfrags): ''' Perform empirical performance tuning on the given annotated code. And return the best optimized code variant. ''' # extract the tuning information specified from the given annotation tinfo = self.__extractTuningInfo(module_body_code, line_no) self.tinfo = tinfo # determine if parallel search is required use_parallel_search = tinfo.batch_cmd != None # create a performance-testing code generator for each distinct problem size ptcodegens = [] #timing_code = '' for prob_size in self.__getProblemSizes(tinfo.iparam_params, tinfo.iparam_constraints): if self.odriver.lang == 'c': c = orio.main.tuner.ptest_codegen.PerfTestCodeGen(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search, tinfo.validation_file) elif self.odriver.lang == 'cuda': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenCUDA(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) elif self.odriver.lang == 'opencl': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenOpenCL(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) elif self.odriver.lang == 'fortran': c = orio.main.tuner.ptest_codegen.PerfTestCodeGenFortran(prob_size, tinfo.ivar_decls, tinfo.ivar_decl_file, tinfo.ivar_init_file, tinfo.ptest_skeleton_code_file, self.odriver.lang, tinfo.random_seed, use_parallel_search) else: err('main.tuner.tuner: unknown output language specified: %s' % self.odriver.lang) ptcodegens.append(c) # create the performance-testing driver ptdriver = orio.main.tuner.ptest_driver.PerfTestDriver(self.tinfo, use_parallel_search, self.odriver.lang, c.getTimerCode(use_parallel_search)) # get the axis names and axis value ranges to represent the search space axis_names, axis_val_ranges = self.__buildCoordSystem(tinfo.pparam_params, tinfo.cmdline_params) info('%s' % axis_names) info('%s' % axis_val_ranges) # combine the performance parameter constraints pparam_constraint = 'True' for vname, rhs in tinfo.pparam_constraints: pparam_constraint += ' and (%s)' % rhs # dynamically load the search engine class and configure it if Globals().extern: tinfo.search_algo='Extern' info('Running in %s mode' % tinfo.search_algo) info('Using parameters %s' % Globals().config) class_name = tinfo.search_algo mod_name = '.'.join([SEARCH_MOD_NAME, class_name.lower(), class_name.lower()]) search_class = self.dloader.loadClass(mod_name, class_name) # convert the search time limit (from minutes to seconds) and get the total number of # search runs search_time_limit = 60 * tinfo.search_time_limit search_total_runs = tinfo.search_total_runs search_use_z3 = tinfo.search_use_z3 search_resume = tinfo.search_resume # get the search-algorithm-specific arguments search_opts = dict(tinfo.search_opts) # perform the performance tuning for each distinct problem size optimized_code_seq = [] for ptcodegen in ptcodegens: if Globals().verbose: info('\n----- begin empirical tuning for problem size -----') # Sort y variable name... not sure it's really necessary iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: info(' %s = %s' % (pname, pvalue)) iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: Globals().metadata['size_' + pname] = pvalue debug(ptcodegen.input_params[:]) # create the search engine search_eng = search_class({'cfrags':cfrags, # code versions 'axis_names':axis_names, # performance parameter names 'axis_val_ranges':axis_val_ranges, # performance parameter values 'pparam_constraint':pparam_constraint, 'search_time_limit':search_time_limit, 'search_total_runs':search_total_runs, 'search_resume':search_resume, 'search_opts':search_opts, 'ptcodegen':ptcodegen, 'ptdriver':ptdriver, 'odriver':self.odriver, 'use_parallel_search':use_parallel_search, 'input_params':ptcodegen.input_params[:]}) # search for the best performance parameters best_perf_params, best_perf_cost = search_eng.search() # output the best performance parameters if Globals().verbose and not Globals().extern: info('----- the obtained best performance parameters -----') pparams = sorted(list(best_perf_params.items())) for pname, pvalue in pparams: info(' %s = %s' % (pname, pvalue)) # generate the optimized code using the obtained best performance parameters if Globals().extern: best_perf_params=Globals().config debug("[orio.main.tuner.tuner] Globals config: %s" % str(Globals().config), obj=self, level=6) cur_optimized_code_seq = self.odriver.optimizeCodeFrags(cfrags, best_perf_params) # check the optimized code sequence if len(cur_optimized_code_seq) != 1: err('orio.main.tuner internal error: the empirically optimized code cannot contain multiple versions') # get the optimized code optimized_code, _, externals = cur_optimized_code_seq[0] # insert comments into the optimized code to include information about # the best performance parameters and the input problem sizes iproblem_code = '' iparams = sorted(ptcodegen.input_params[:]) for pname, pvalue in iparams: if pname == '__builtins__': continue iproblem_code += ' %s = %s \n' % (pname, pvalue) pparam_code = '' pparams = sorted(list(best_perf_params.items())) for pname, pvalue in pparams: if pname == '__builtins__': continue pparam_code += ' %s = %s \n' % (pname, pvalue) info_code = '\n/**-- (Generated by Orio) \n' if not Globals().extern: info_code += 'Best performance cost: \n' info_code += ' %s \n' % best_perf_cost info_code += 'Tuned for specific problem sizes: \n' info_code += iproblem_code info_code += 'Best performance parameters: \n' info_code += pparam_code info_code += '--**/\n' optimized_code = info_code + optimized_code # store the optimized for this problem size optimized_code_seq.append((optimized_code, ptcodegen.input_params[:], externals)) # return the optimized code return optimized_code_seq # Private methods #------------------------------------------------- def __extractTuningInfo(self, code, line_no): '''Extract tuning information from the given annotation code''' # parse the code match_obj = re.match(r'^\s*import\s+spec\s+([/A-Za-z_]+);\s*$', code) # if the code contains a single import statement if match_obj: # get the specification name spec_name = match_obj.group(1) spec_file = spec_name+'.spec' try: src_dir = '/'.join(list(Globals().src_filenames.keys())[0].split('/')[:-1]) spec_file_path = os.getcwd() + '/' + src_dir + '/' + spec_file f = open(spec_file_path, 'r') tspec_code = f.read() f.close() except: err('%s: cannot open file for reading: %s' % (self.__class__, spec_file_path)) tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseProgram(tspec_code) # if the tuning specification is hardcoded into the given code elif code.lstrip().startswith('spec'): tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseProgram(code) else: # parse the specification code to get the tuning information tuning_spec_dict = orio.main.tspec.tspec.TSpec().parseSpec(code, line_no) # return the tuning information return tuning_spec_dict #------------------------------------------------- def __listAllCombinations(self, seqs): ''' Enumerate all combinations of the given sequences. e.g. input: [['a','b'],[1,2]] --> [['a',1],['a',2],['b',1],['b',2]] ''' # the base case if len(seqs) == 0: return [] # the recursive step trailing_combs = self.__listAllCombinations(seqs[1:]) if trailing_combs == []: trailing_combs = [[]] combs = [] for i in seqs[0]: for c in trailing_combs: combs.append([i] + c) # return the combinations return combs #------------------------------------------------- def __getProblemSizes(self, iparam_params, iparam_constraints): '''Return all valid problem sizes''' # combine the input parameter constraints iparam_constraint = 'True' for vname, rhs in iparam_constraints: iparam_constraint += ' and (%s)' % rhs # compute all possible combinations of problem sizes prob_sizes = [] pnames, pvalss = list(zip(*iparam_params)) for pvals in self.__listAllCombinations(pvalss): prob_sizes.append(list(zip(pnames, pvals))) # exclude all invalid problem sizes n_prob_sizes = [] for p in prob_sizes: try: is_valid = eval(iparam_constraint, dict(p)) except Exception as e: err('orio.main.tuner.tuner:%s: failed to evaluate the input parameter constraint expression\n --> %s: %s' % (iparam_constraint,e.__class__.__name__, e)) if is_valid: n_prob_sizes.append(p) prob_sizes = n_prob_sizes # check if the new problem sizes is empty if len(prob_sizes) == 0: err('orio.main.tuner.tuner: no valid problem sizes exist. please check the input parameter ' + 'constraints') # return all possible combinations of problem sizes return prob_sizes #------------------------------------------------- def __buildCoordSystem(self, perf_params, cmdline_params): '''Return information about the coordinate systems that represent the search space''' debug("BUILDING COORD SYSTEM", obj=self,level=3) # get the axis names and axis value ranges axis_names = [] axis_val_ranges = [] for pname, prange in perf_params: axis_names.append(pname) # BN: why on earth would someone do this????? # axis_val_ranges.append(self.__sort(prange)) axis_val_ranges.append(prange) for pname, prange in cmdline_params: axis_names.append('__cmdline_' + pname) axis_val_ranges.append(prange) self.num_params=len(axis_names) self.num_configs=1 self.num_bin=0 self.num_categorical = 0 self.num_int=self.num_params ptype=[] for vals in axis_val_ranges: self.num_configs=self.num_configs*len(vals) ptype.append('I') if type(vals[0]) == bool: self.num_bin=self.num_bin+1 ptype[len(ptype)-1]=('B') if type(vals[0]) == str: self.num_categorical = self.num_categorical+1 self.num_int -= self.num_bin self.num_int -= self.num_categorical info('Search_Space = %1.3e' % self.num_configs) info('Number_of_Parameters = %02d' % self.num_params) info('Numeric_Parameters = %02d' % self.num_int) info('Binary_Parameters = %02d' % self.num_bin) info('Categorical_Parameters = %02d' % self.num_categorical) sys.stderr.write('%s\n'% Globals().configfile) return (axis_names, axis_val_ranges)
2.671875
3
verify_data.py
goowell/DrAdvice
0
11362
from transformer import * from logger import logger def find_missing(): from db import paients_source, paients_info import re for pi in paients_info.find(): if paients_source.find({'_id': re.compile(pi['住院号'], re.IGNORECASE)}).count()>0: pass else: print(pi['住院号']) def verify_data(collection): 'verify the data format is correct or not.' for d in collection.find(): info = d.get('d').get('info') if len(info) <12 and info[0] != '1': logger.error('invalid patient info:' + d['_id']+str(info)) if len(d.get('d').get('doctor_advice')) == 0: logger.error('invalid doctor advice:' + d['_id']) else: has_long = False has_short = False for a in d.get('d').get('doctor_advice'): if len(a) != 18: logger.error('invalid doctor advice:' + d['_id']) logger.error("invalid doctor advice: " + a) if a[3] == '长': has_long = True else: has_short = True if not (has_long and has_short): logger.error('invalid doctor advice: ' + d['_id'] + ', long/short: {}/{}'.format(has_long, has_short) ) def get_info(collection): 'count PE' for d in collection.find(): if len(d.get('d').get('doctor_advice')) == 0: print('invalid doctor advice:' + d['_id']) else: one_p = split_all_ad(d) print(one_p) break def main(): 'main entry' from datetime import datetime from db import paients_source start = datetime.now() print('hello..') # verify_data(paients_source) # get_info(collection) find_missing() print(datetime.now() - start) if __name__ == '__main__': main()
2.671875
3
jvm-packages/cudautils.py
NVIDIA/spark-xgboost
15
11363
#!/usr/bin/env python import os import re import subprocess import sys # version -> classifier # '' means default classifier cuda_vers = { '11.2': ['cuda11', ''] } def check_classifier(classifier): ''' Check the mapping from cuda version to jar classifier. Used by maven build. ''' cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] if classifier not in classifier_list: raise Exception("Jar classifier '{}' mismatches the 'nvcc' version {} !".format(classifier, cu_ver)) def get_classifier(): cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] return classifier_list[0] def get_supported_vers(): ''' Get the supported cuda versions. ''' return cuda_vers.keys() def get_supported_vers_str(): ''' Get the supported cuda versions and join them as a string. Used by shell script. ''' return ' '.join(cuda_vers.keys()) def detect_cuda_ver(): ''' Detect the cuda version from current nvcc tool. ''' nvcc_ver_bin = subprocess.check_output('nvcc --version', shell=True) nvcc_ver = re.search('release ([.0-9]+), V([.0-9]+)', str(nvcc_ver_bin)).group(1) if nvcc_ver in get_supported_vers(): return nvcc_ver else: raise Exception("Unsupported cuda version: {}, Please check your 'nvcc' version.".format(nvcc_ver)) def cudaver(): return 'cuda{}'.format(detect_cuda_ver()) if __name__ == "__main__": num_args = len(sys.argv) action = sys.argv[1].lower() if num_args > 1 else 'l' if action =='c': classifier = sys.argv[2].lower() if num_args > 2 else '' check_classifier(classifier) elif action == 'd': print(detect_cuda_ver()) elif action == 'g': print(get_classifier()) elif action == 'l': print(get_supported_vers_str()) else: print("Unsupported action: " + action)
2.5625
3
hitchhikeproject/hitchhikeapp/migrations/0011_delete_dog.py
AlexW57/HitchHikeProject
0
11364
# Generated by Django 3.0.2 on 2020-03-29 19:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('hitchhikeapp', '0010_userdata_userid'), ] operations = [ migrations.DeleteModel( name='Dog', ), ]
1.59375
2
support/models.py
gurupratap-matharu/django-tickets-app
1
11365
<filename>support/models.py import pytz from datetime import date, time, datetime, timedelta from django.core.exceptions import ValidationError from django.db import models START_HOUR = 9 END_HOUR = 18 workingHours = END_HOUR - START_HOUR class Vendor(models.Model): """ This class defines which vendors are allowed raise tickets with our system. """ vendor = models.CharField(max_length=25) def __str__(self): return self.vendor def no_past(value): today = date.today() if value < today: raise ValidationError('Holiday Date cannot be in the past.') class Holiday(models.Model): """ Define the holiday or non-working days for each based on each region. """ day = models.DateField(help_text="Enter the date of Holiday", validators=[no_past]) description = models.CharField(max_length=200, blank=True) class Meta: ordering = ('day',) def __str__(self): return "{} {}".format(self.day, self.description) class Category(models.Model): """ We define the type of category to which a particular ticket belongs here. """ CATEGORY_CHOICES = ( ('Website Down', 'Website Down'), ('Problem with WiFi', 'Problem with WiFi'), ('Server Down', 'Server Down'), ('Cannot Login', 'Cannot Login'), ('Critical Bug','Critical Bug'), ('Problem with Billing System','Problem with Billing System'), ) category = models.CharField(max_length=50, choices=CATEGORY_CHOICES) class Meta: verbose_name_plural = "categories" def __str__(self): return self.category class Ticket(models.Model): """ Our ticket models objects are created here and stored in the database as a table with the attributes mentioned below. """ SEVERITY_CHOICES = ( (4, 1), # severity 1 to be resolved in 4 hours (24, 2), # severity 2 to be resolved in 24 hours (72, 3), # severity 3 to be resolved in 72 hours / 3 days (168, 4), # severity 4 to be resolved in 168 hours / 7 days (720, 5), # severity 5 to be resolved in 720 hours / 30 days ) STATUS_CHOICES = ( ('Issued', 'Issued'), # ticket raised but not assigned ('In Process', 'In Process'), # ticket assigned ('Resolved', 'Resolved'), # ticket resolved ('Cancelled', 'Cancelled'), ) vendor = models.ForeignKey(Vendor, on_delete=models.CASCADE) category = models.ForeignKey(Category, on_delete=models.CASCADE) severity = models.PositiveIntegerField(choices=SEVERITY_CHOICES) description = models.CharField(max_length=255) status = models.CharField(max_length=20, choices=STATUS_CHOICES, default='Issued') created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) expiry = models.DateTimeField(blank=True, null=True) def save(self, *args, **kwargs): """ Here we over-ride the default `save` method to populate the expiry field based on creation date, holidays and weekends. """ self.expiry = findExpiryDate(self.severity) super().save(*args, **kwargs) # Call the "real" save() method. def __str__(self): return "{} | {} | {} ".format(self.vendor.vendor, self.category.category, self.created_at) def findExpiryDate(sla): """ Finds the expiry date for a ticket based on 1. Severity of the ticket 2. Date of issue """ now = datetime.now() flag = 1 # if ticket is received today between 00:00 hours to Start_Hour # we reset the flag if now.hour < START_HOUR: flag = 0 # if ticket is received today between office hours then # we simply deduct working hours left today from sla if START_HOUR < now.hour < END_HOUR: hoursLeftToday = END_HOUR - sla sla -= hoursLeftToday tomorrow = date.today() + timedelta(days=flag) shiftTime = time(START_HOUR,0,0) dt = datetime.combine(tomorrow, shiftTime, pytz.utc) dt = adjust_Weekends_And_Holidays(dt) # adjust incase we hit a weekend # now we find the office days and office hours # we would need to complete the sla days, hours = divmod(sla, workingHours) dt += timedelta(hours=hours) dt = adjust_Weekends_And_Holidays(dt, days=days) # adjust incase we hit a weekend return dt def isWeekend(dt): """Finds if a date lies on a weekend or not. Returns a boolean""" if 0 < dt.weekday() < 6: return False else: return True def isHoliday(dt): """Finds if a date lies on a holiday or not. Returns a boolean""" return Holiday.objects.filter(day=dt.date()).exists() def adjust_Weekends_And_Holidays(dt, days=0): """ Adjust the datetime to a future datetime accomodating for 1. days needed 2. skipping Weekends """ while isWeekend(dt) or isHoliday(dt): dt += timedelta(days=1) while days: dt += timedelta(days=1) if isWeekend(dt) or isHoliday(dt): continue else: days -= 1 return dt
2.890625
3
tests/port_tests/point_tests/test_bounding_box.py
skrat/martinez
7
11366
<gh_stars>1-10 from hypothesis import given from tests.port_tests.hints import (PortedBoundingBox, PortedPoint) from tests.utils import equivalence from . import strategies @given(strategies.points) def test_basic(point: PortedPoint) -> None: assert isinstance(point.bounding_box, PortedBoundingBox) @given(strategies.points, strategies.points) def test_bijection(first_point: PortedPoint, second_point: PortedPoint) -> None: assert equivalence(first_point == second_point, first_point.bounding_box == second_point.bounding_box)
2.546875
3
test/conftest.py
alexandonian/lightning
0
11367
<reponame>alexandonian/lightning import pytest # import station def pytest_addoption(parser): parser.addoption("--engine", action="store", default="local", help="engine to run tests with") @pytest.fixture(scope='module') def eng(request): engine = request.config.getoption("--engine") if engine == 'local': return None if engine == 'spark': station.start(spark=True) return station.engine()
2.140625
2
pytorch_translate/dual_learning/dual_learning_models.py
dzhulgakov/translate
1
11368
#!/usr/bin/env python3 import logging import torch.nn as nn from fairseq import checkpoint_utils from fairseq.models import BaseFairseqModel, register_model from pytorch_translate import rnn from pytorch_translate.rnn import ( LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture, ) from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask logger = logging.getLogger(__name__) @register_model("dual_learning") class DualLearningModel(BaseFairseqModel): """ An architecture to jointly train primal model and dual model by leveraging distribution duality, which exist for both parallel data and monolingual data. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__() self.args = args self.task_keys = ["primal", "dual"] self.models = nn.ModuleDict( {"primal": primal_model, "dual": dual_model, "lm": lm_model} ) def forward(self, src_tokens, src_lengths, prev_output_tokens=None): """ If batch is monolingual, need to run beam decoding to generate fake prev_output_tokens. """ # TODO: pass to dual model too primal_encoder_out = self.models["primal"].encoder(src_tokens, src_lengths) primal_decoder_out = self.models["primal"].decoder( prev_output_tokens, primal_encoder_out ) return primal_decoder_out def max_positions(self): return { "primal_source": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_source": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), "primal_parallel": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_parallel": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), } @register_model("dual_learning_rnn") class RNNDualLearningModel(DualLearningModel): """Train two models for a task and its duality jointly. This class uses RNN arch, but can be extended to take arch as an arument. This class takes translation as a task, but the framework is intended to be general enough to be applied to other tasks as well. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__(args, task, primal_model, dual_model, lm_model) @staticmethod def add_args(parser): rnn.RNNModel.add_args(parser) parser.add_argument( "--unsupervised-dual", default=False, action="store_true", help="Train with dual loss from monolingual data.", ) parser.add_argument( "--supervised-dual", default=False, action="store_true", help="Train with dual loss from parallel data.", ) @classmethod def build_model(cls, args, task): """ Build both the primal and dual models. For simplicity, both models share the same arch, i.e. the same model params would be used to initialize both models. Support for different models/archs would be added in further iterations. """ base_architecture(args) if args.sequence_lstm: encoder_class = LSTMSequenceEncoder else: encoder_class = RNNEncoder decoder_class = RNNDecoder encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.primal_src_dict, task.primal_tgt_dict ) primal_encoder = encoder_class( task.primal_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) primal_decoder = decoder_class( src_dict=task.primal_src_dict, dst_dict=task.primal_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) primal_task = PytorchTranslateTask( args, task.primal_src_dict, task.primal_tgt_dict ) primal_model = rnn.RNNModel(primal_task, primal_encoder, primal_decoder) if args.pretrained_forward_checkpoint: pretrained_forward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_forward_checkpoint ) primal_model.load_state_dict(pretrained_forward_state["model"], strict=True) print( f"Loaded pretrained primal model from {args.pretrained_forward_checkpoint}" ) encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.dual_src_dict, task.dual_tgt_dict ) dual_encoder = encoder_class( task.dual_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) dual_decoder = decoder_class( src_dict=task.dual_src_dict, dst_dict=task.dual_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) dual_task = PytorchTranslateTask(args, task.dual_src_dict, task.dual_tgt_dict) dual_model = rnn.RNNModel(dual_task, dual_encoder, dual_decoder) if args.pretrained_backward_checkpoint: pretrained_backward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_backward_checkpoint ) dual_model.load_state_dict(pretrained_backward_state["model"], strict=True) print( f"Loaded pretrained dual model from {args.pretrained_backward_checkpoint}" ) # TODO (T36875783): instantiate a langauge model lm_model = None return RNNDualLearningModel(args, task, primal_model, dual_model, lm_model)
2.421875
2
thgsp/sampling/__init__.py
qiuyy20/thgsp
0
11369
from ._utils import construct_dia, construct_hth, construct_sampling_matrix from .bsgda import bsgda, computing_sets, recon_bsgda, solving_set_covering from .ess import ess, ess_sampling, recon_ess from .fastgsss import fastgsss, recon_fastssss from .rsbs import cheby_coeff4ideal_band_pass, estimate_lk, recon_rsbs, rsbs __all__ = [ "ess", "ess_sampling", "bsgda", "computing_sets", "solving_set_covering", "cheby_coeff4ideal_band_pass", "estimate_lk", "rsbs", "fastgsss", # reconstruction "recon_fastssss", "recon_bsgda", "recon_ess", "recon_rsbs", # utils "construct_sampling_matrix", "construct_hth", "construct_dia", ]
1.140625
1
h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_glm.py
vishalbelsare/h2o-3
1
11370
<filename>h2o-py/tests/testdir_generic_model/pyunit_generic_model_mojo_glm.py import tempfile import os import sys sys.path.insert(1,"../../") import h2o from h2o.estimators import H2OGeneralizedLinearEstimator, H2OGenericEstimator from tests import pyunit_utils from tests.testdir_generic_model import compare_output, Capturing, compare_params def test(x, y, output_test, strip_part, algo_name, generic_algo_name, family): # GLM airlines = h2o.import_file(path=pyunit_utils.locate("smalldata/testng/airlines_train.csv")) glm = H2OGeneralizedLinearEstimator(nfolds = 2, family = family, max_iterations=2) # alpha = 1, lambda_ = 1, bad values, use default glm.train(x = x, y = y, training_frame=airlines, validation_frame=airlines, ) print(glm) with Capturing() as original_output: glm.show() original_model_filename = tempfile.mkdtemp() original_model_filename = glm.download_mojo(original_model_filename) generic_mojo_model_from_file = H2OGenericEstimator.from_file(original_model_filename) assert generic_mojo_model_from_file is not None print(generic_mojo_model_from_file) compare_params(glm, generic_mojo_model_from_file) with Capturing() as generic_output: generic_mojo_model_from_file.show() output_test(str(original_output), str(generic_output), strip_part, algo_name, generic_algo_name) predictions = generic_mojo_model_from_file.predict(airlines) assert predictions is not None assert predictions.nrows == 24421 assert generic_mojo_model_from_file._model_json["output"]["model_summary"] is not None assert len(generic_mojo_model_from_file._model_json["output"]["model_summary"]._cell_values) > 0 assert generic_mojo_model_from_file._model_json["output"]["variable_importances"] is not None assert len(generic_mojo_model_from_file._model_json["output"]["variable_importances"]._cell_values) > 0 generic_mojo_filename = tempfile.mkdtemp("zip", "genericMojo"); generic_mojo_filename = generic_mojo_model_from_file.download_mojo(path=generic_mojo_filename) assert os.path.getsize(generic_mojo_filename) == os.path.getsize(original_model_filename) def mojo_model_test_binomial(): test(["Origin", "Dest"], "IsDepDelayed", compare_output, 'GLM Model: summary', 'ModelMetricsBinomialGLM: glm', 'ModelMetricsBinomialGLMGeneric: generic', 'binomial') def mojo_model_test_regression(): test(["Origin", "Dest"], "Distance", compare_output, 'GLM Model: summary', 'ModelMetricsRegressionGLM: glm', 'ModelMetricsRegressionGLMGeneric: generic', 'gaussian') def mojo_model_test_multinomial(): test(["Origin", "Distance"], "Dest", compare_output, 'GLM Model: summary', 'ModelMetricsMultinomialGLM: glm', 'ModelMetricsMultinomialGLMGeneric: generic', 'multinomial') def mojo_model_test_ordinal(): test(["Origin", "Distance", "IsDepDelayed"], "fDayOfWeek", compare_output, 'GLM Model: summary', 'ModelMetricsOrdinalGLM: glm', 'ModelMetricsOrdinalGLMGeneric: generic', 'ordinal') if __name__ == "__main__": pyunit_utils.standalone_test(mojo_model_test_binomial) pyunit_utils.standalone_test(mojo_model_test_multinomial) pyunit_utils.standalone_test(mojo_model_test_regression) pyunit_utils.standalone_test(mojo_model_test_ordinal) else: mojo_model_test_binomial() mojo_model_test_multinomial() mojo_model_test_regression() mojo_model_test_ordinal()
2.328125
2
test/HPE3ParClient_base.py
jyotsnalothe/python-3parclient
35
11371
<filename>test/HPE3ParClient_base.py # (c) Copyright 2015 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test base class of 3PAR Client.""" import os import sys import unittest import subprocess import time import inspect from pytest_testconfig import config import datetime from functools import wraps from hpe3parclient import client, file_client TIME = datetime.datetime.now().strftime('%H%M%S') try: # For Python 3.0 and later from urllib.parse import urlparse except ImportError: # Fall back to Python 2's urllib2 from urlparse import urlparse class HPE3ParClientBaseTestCase(unittest.TestCase): user = config['TEST']['user'] password = config['<PASSWORD>']['<PASSWORD>'] flask_url = config['TEST']['flask_url'] url_3par = config['TEST']['3par_url'] debug = config['TEST']['debug'].lower() == 'true' unitTest = config['TEST']['unit'].lower() == 'true' port = None remote_copy = config['TEST']['run_remote_copy'].lower() == 'true' run_remote_copy = remote_copy and not unitTest if run_remote_copy: secondary_user = config['TEST_REMOTE_COPY']['user'] secondary_password = config['TEST_REMOTE_COPY']['pass'] secondary_url_3par = config['TEST_REMOTE_COPY']['3par_url'] secondary_target_name = config['TEST_REMOTE_COPY']['target_name'] ssh_port = None if 'ssh_port' in config['TEST']: ssh_port = int(config['TEST']['ssh_port']) elif unitTest: ssh_port = 2200 else: ssh_port = 22 # Don't setup SSH unless needed. It slows things down. withSSH = False if 'domain' in config['TEST']: DOMAIN = config['TEST']['domain'] else: DOMAIN = 'UNIT_TEST_DOMAIN' if 'cpg_ldlayout_ha' in config['TEST']: CPG_LDLAYOUT_HA = int(config['TEST']['cpg_ldlayout_ha']) if 'disk_type' in config['TEST']: DISK_TYPE = int(config['TEST']['disk_type']) CPG_OPTIONS = {'domain': DOMAIN, 'LDLayout': {'HA': CPG_LDLAYOUT_HA, 'diskPatterns': [{'diskType': DISK_TYPE}]}} else: CPG_OPTIONS = {'domain': DOMAIN, 'LDLayout': {'HA': CPG_LDLAYOUT_HA}} else: CPG_LDLAYOUT_HA = None CPG_OPTIONS = {'domain': DOMAIN} if 'known_hosts_file' in config['TEST']: known_hosts_file = config['TEST']['known_hosts_file'] else: known_hosts_file = None if 'missing_key_policy' in config['TEST']: missing_key_policy = config['TEST']['missing_key_policy'] else: missing_key_policy = None def setUp(self, withSSH=False, withFilePersona=False): self.withSSH = withSSH self.withFilePersona = withFilePersona cwd = os.path.dirname(os.path.abspath( inspect.getfile(inspect.currentframe()))) if self.unitTest: self.printHeader('Using flask ' + self.flask_url) parsed_url = urlparse(self.flask_url) userArg = '-user=%s' % self.user passwordArg = <PASSWORD>' % self.password portArg = '-port=%s' % parsed_url.port script = 'HPE3ParMockServer_flask.py' path = "%s/%s" % (cwd, script) try: self.mockServer = subprocess.Popen([sys.executable, path, userArg, passwordArg, portArg], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE ) except Exception: pass time.sleep(1) if self.withFilePersona: self.cl = file_client.HPE3ParFilePersonaClient(self.flask_url) else: self.cl = client.HPE3ParClient(self.flask_url) if self.withSSH: self.printHeader('Using paramiko SSH server on port %s' % self.ssh_port) ssh_script = 'HPE3ParMockServer_ssh.py' ssh_path = "%s/%s" % (cwd, ssh_script) self.mockSshServer = subprocess.Popen([sys.executable, ssh_path, str(self.ssh_port)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) time.sleep(1) else: if withFilePersona: self.printHeader('Using 3PAR %s with File Persona' % self.url_3par) self.cl = file_client.HPE3ParFilePersonaClient(self.url_3par) else: self.printHeader('Using 3PAR ' + self.url_3par) self.cl = client.HPE3ParClient(self.url_3par) if self.withSSH: # This seems to slow down the test cases, so only use this when # requested if self.unitTest: # The mock SSH server can be accessed at 0.0.0.0. ip = '0.0.0.0' else: parsed_3par_url = urlparse(self.url_3par) ip = parsed_3par_url.hostname.split(':').pop() try: # Now that we don't do keep-alive, the conn_timeout needs to # be set high enough to avoid sometimes slow response in # the File Persona tests. self.cl.setSSHOptions( ip, self.user, self.password, port=self.ssh_port, conn_timeout=500, known_hosts_file=self.known_hosts_file, missing_key_policy=self.missing_key_policy) except Exception as ex: print(ex) self.fail("failed to start ssh client") # Setup remote copy target if self.run_remote_copy: parsed_3par_url = urlparse(self.secondary_url_3par) ip = parsed_3par_url.hostname.split(':').pop() self.secondary_cl = client.HPE3ParClient(self.secondary_url_3par) try: self.secondary_cl.setSSHOptions( ip, self.secondary_user, self.secondary_password, port=self.ssh_port, conn_timeout=500, known_hosts_file=self.known_hosts_file, missing_key_policy=self.missing_key_policy) except Exception as ex: print(ex) self.fail("failed to start ssh client") self.secondary_cl.login(self.secondary_user, self.secondary_password) if self.debug: self.cl.debug_rest(True) self.cl.login(self.user, self.password) if not self.port: ports = self.cl.getPorts() ports = [p for p in ports['members'] if p['linkState'] == 4 and # Ready ('device' not in p or not p['device']) and p['mode'] == self.cl.PORT_MODE_TARGET] self.port = ports[0]['portPos'] def tearDown(self): self.cl.logout() if self.run_remote_copy: self.secondary_cl.logout() if self.unitTest: self.mockServer.kill() if self.withSSH: self.mockSshServer.kill() def print_header_and_footer(func): """Decorator to print header and footer for unit tests.""" @wraps(func) def wrapper(*args, **kwargs): test = args[0] test.printHeader(unittest.TestCase.id(test)) result = func(*args, **kwargs) test.printFooter(unittest.TestCase.id(test)) return result return wrapper def printHeader(self, name): print("\n##Start testing '%s'" % name) def printFooter(self, name): print("##Completed testing '%s\n" % name) def findInDict(self, dic, key, value): for i in dic: if key in i and i[key] == value: return True
2.171875
2
test/drivers/second_quantization/hdf5d/test_driver_hdf5.py
jschuhmac/qiskit-nature
0
11372
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Driver HDF5 """ import os import pathlib import shutil import tempfile import unittest import warnings from test import QiskitNatureTestCase from test.drivers.second_quantization.test_driver import TestDriver from qiskit_nature.drivers.second_quantization import HDF5Driver from qiskit_nature.drivers import QMolecule from qiskit_nature.properties.second_quantization.electronic import ElectronicStructureDriverResult class TestDriverHDF5(QiskitNatureTestCase, TestDriver): """HDF5 Driver tests.""" def setUp(self): super().setUp() driver = HDF5Driver( hdf5_input=self.get_resource_path( "test_driver_hdf5.hdf5", "drivers/second_quantization/hdf5d" ) ) self.driver_result = driver.run() def test_convert(self): """Test the legacy-conversion method.""" legacy_file_path = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) with self.subTest("replace=True"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # replacing file won't trigger deprecation on run driver.convert(replace=True) driver.run() finally: os.unlink(tmp_file.name) msg_mol_ref = ( "The HDF5Driver.run with legacy HDF5 file method is deprecated as of version 0.4.0 " "and will be removed no sooner than 3 months after the release " ". Your HDF5 file contains the legacy QMolecule object! You should " "consider converting it to the new property framework. See also HDF5Driver.convert." ) with self.subTest("replace=False"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() new_file_name = pathlib.Path(tmp_file.name).with_name( str(pathlib.Path(tmp_file.name).stem) + "_new.hdf5" ) os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # not replacing file will trigger deprecation on run driver.convert(replace=False) with warnings.catch_warnings(record=True) as c_m: warnings.simplefilter("always") driver.run() self.assertEqual(str(c_m[0].message), msg_mol_ref) # using new file won't trigger deprecation HDF5Driver(new_file_name).run() finally: os.unlink(tmp_file.name) os.unlink(new_file_name) class TestDriverHDF5Legacy(QiskitNatureTestCase, TestDriver): """HDF5 Driver legacy file-support tests.""" def setUp(self): super().setUp() hdf5_file = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) # Using QMolecule directly here to avoid the deprecation on HDF5Driver.run method # to be triggered and let it be handled on the method test_convert # Those deprecation messages are shown only once and this one could prevent # the test_convert one to show if called first. molecule = QMolecule(hdf5_file) molecule.load() warnings.filterwarnings("ignore", category=DeprecationWarning) self.driver_result = ElectronicStructureDriverResult.from_legacy_driver_result(molecule) warnings.filterwarnings("default", category=DeprecationWarning) if __name__ == "__main__": unittest.main()
2.21875
2
01_test_pytorch.py
yokaji/dcase2021_task2_baseline_ae
0
11373
<gh_stars>0 ######################################################################## # import default libraries ######################################################################## import os import csv import sys import gc ######################################################################## ######################################################################## # import additional libraries ######################################################################## import numpy as np import scipy.stats import torch import torch.nn as nn # from import from tqdm import tqdm from sklearn import metrics try: from sklearn.externals import joblib except: import joblib # original lib import common as com from pytorch_model import AutoEncoder ######################################################################## ######################################################################## # load parameter.yaml ######################################################################## param = com.yaml_load() ####################################################################### ######################################################################## # output csv file ######################################################################## def save_csv(save_file_path, save_data): with open(save_file_path, "w", newline="") as f: writer = csv.writer(f, lineterminator='\n') writer.writerows(save_data) ######################################################################## ######################################################################## # main 01_test.py ######################################################################## if __name__ == "__main__": #################################################################### # set device #################################################################### device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("device : {}".format(device)) #################################################################### # check mode # "development": mode == True # "evaluation": mode == False mode = com.command_line_chk() if mode is None: sys.exit(-1) # make output result directory os.makedirs(param["result_directory"], exist_ok=True) # load base directory dirs = com.select_dirs(param=param, mode=mode) # initialize lines in csv for AUC and pAUC csv_lines = [] if mode: performance_over_all = [] # loop of the base directory for idx, target_dir in enumerate(dirs): print("\n===========================") print("[{idx}/{total}] {target_dir}".format(target_dir=target_dir, idx=idx+1, total=len(dirs))) machine_type = os.path.split(target_dir)[1] print("============== MODEL LOAD ==============") # load model file model_file = "{model}/model_{machine_type}.hdf5".format(model=param["model_directory"], machine_type=machine_type) if not os.path.exists(model_file): com.logger.error("{} model not found ".format(machine_type)) sys.exit(-1) input_channel = param["feature"]["n_mels"] * param["feature"]["n_frames"] model = AutoEncoder(input_channel).to(device) model.eval() if device.type == "cuda": model.load_state_dict(torch.load(model_file)) elif device.type == "cpu": model.load_state_dict(torch.load(model_file, map_location=torch.device("cpu"))) # load anomaly score distribution for determining threshold score_distr_file_path = "{model}/score_distr_{machine_type}.pkl".format(model=param["model_directory"], machine_type=machine_type) shape_hat, loc_hat, scale_hat = joblib.load(score_distr_file_path) # determine threshold for decision decision_threshold = scipy.stats.gamma.ppf(q=param["decision_threshold"], a=shape_hat, loc=loc_hat, scale=scale_hat) if mode: # results for each machine type csv_lines.append([machine_type]) csv_lines.append(["section", "domain", "AUC", "pAUC", "precision", "recall", "F1 score"]) performance = [] dir_names = ["source_test", "target_test"] for dir_name in dir_names: #list machine id section_names = com.get_section_names(target_dir, dir_name=dir_name) for section_name in section_names: # load test file files, y_true = com.file_list_generator(target_dir=target_dir, section_name=section_name, dir_name=dir_name, mode=mode) # setup anomaly score file path anomaly_score_csv = "{result}/anomaly_score_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"], machine_type=machine_type, section_name=section_name, dir_name=dir_name) anomaly_score_list = [] # setup decision result file path decision_result_csv = "{result}/decision_result_{machine_type}_{section_name}_{dir_name}.csv".format(result=param["result_directory"], machine_type=machine_type, section_name=section_name, dir_name=dir_name) decision_result_list = [] print("\n============== BEGIN TEST FOR A SECTION ==============") y_pred = [0. for k in files] for file_idx, file_path in tqdm(enumerate(files), total=len(files)): try: data = com.file_to_vectors(file_path, n_mels=param["feature"]["n_mels"], n_frames=param["feature"]["n_frames"], n_fft=param["feature"]["n_fft"], hop_length=param["feature"]["hop_length"], power=param["feature"]["power"]) except: com.logger.error("File broken!!: {}".format(file_path)) data = torch.tensor(data, dtype=torch.float32).to(device) reconst = model(data) mseloss = nn.functional.mse_loss(data.detach(), reconst.detach()) y_pred[file_idx] = mseloss.item() # store anomaly scores anomaly_score_list.append([os.path.basename(file_path), y_pred[file_idx]]) # store decision results if y_pred[file_idx] > decision_threshold: decision_result_list.append([os.path.basename(file_path), 1]) else: decision_result_list.append([os.path.basename(file_path), 0]) # output anomaly scores save_csv(save_file_path=anomaly_score_csv, save_data=anomaly_score_list) com.logger.info("anomaly score result -> {}".format(anomaly_score_csv)) # output decision results save_csv(save_file_path=decision_result_csv, save_data=decision_result_list) com.logger.info("decision result -> {}".format(decision_result_csv)) if mode: # append AUC and pAUC to lists auc = metrics.roc_auc_score(y_true, y_pred) p_auc = metrics.roc_auc_score(y_true, y_pred, max_fpr=param["max_fpr"]) tn, fp, fn, tp = metrics.confusion_matrix(y_true, [1 if x > decision_threshold else 0 for x in y_pred]).ravel() prec = tp / np.maximum(tp + fp, sys.float_info.epsilon) recall = tp / np.maximum(tp + fn, sys.float_info.epsilon) f1 = 2.0 * prec * recall / np.maximum(prec + recall, sys.float_info.epsilon) csv_lines.append([section_name.split("_", 1)[1], dir_name.split("_", 1)[0], auc, p_auc, prec, recall, f1]) performance.append([auc, p_auc, prec, recall, f1]) performance_over_all.append([auc, p_auc, prec, recall, f1]) com.logger.info("AUC : {}".format(auc)) com.logger.info("pAUC : {}".format(p_auc)) com.logger.info("precision : {}".format(prec)) com.logger.info("recall : {}".format(recall)) com.logger.info("F1 score : {}".format(f1)) print("\n============ END OF TEST FOR A SECTION ============") if mode: # calculate averages for AUCs and pAUCs amean_performance = np.mean(np.array(performance, dtype=float), axis=0) csv_lines.append(["arithmetic mean", ""] + list(amean_performance)) hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance, dtype=float), sys.float_info.epsilon), axis=0) csv_lines.append(["harmonic mean", ""] + list(hmean_performance)) csv_lines.append([]) del data del model if mode: csv_lines.append(["", "", "AUC", "pAUC", "precision", "recall", "F1 score"]) # calculate averages for AUCs and pAUCs amean_performance = np.mean(np.array(performance_over_all, dtype=float), axis=0) csv_lines.append(["arithmetic mean over all machine types, sections, and domains", ""] + list(amean_performance)) hmean_performance = scipy.stats.hmean(np.maximum(np.array(performance_over_all, dtype=float), sys.float_info.epsilon), axis=0) csv_lines.append(["harmonic mean over all machine types, sections, and domains", ""] + list(hmean_performance)) csv_lines.append([]) # output results result_path = "{result}/{file_name}".format(result=param["result_directory"], file_name=param["result_file"]) com.logger.info("results -> {}".format(result_path)) save_csv(save_file_path=result_path, save_data=csv_lines)
1.8125
2
Replace Downloads/replace_downloads.py
crake7/Defensor-Fortis-
0
11374
<gh_stars>0 #!/usr/bin/env python import netfilterqueue import scapy.all as scapy ack_list = [] def set_load(packet, load): packet[scapy.Raw].load = load del packet[scapy.IP].len del packet[scapy.IP].chksum del packet[scapy.TCP].chksum return packet def process_packet(packet): """Modify downloads files on the fly while target uses HTTP/HTTPS. Do not forget to choose the port you will be using in line 22/29. Do not forget to modify line 24 and 35 and uncomment them afterwards.""" scapy_packet = scapy.IP (packet.get_payload()) if scapy_packet.haslayer(scapy.Raw): if scapy_packet[scapy.TCP].dport == #CHOOSE PORT HERE: 80 / 10000: # print("HTTP Request") if ".exe" in scapy_packet[scapy.Raw].load and #Input IP of your web server here: "10.0.2.15" not in scapy_packet[scapy.Raw].load: print("Captured .exe file in the Request packet.") ack_list.append(scapy_packet[scapy.TCP].ack) # print(scapy_packet.show()) elif scapy_packet[scapy.TCP].sport ==#CHOOSE PORT HERE: 80 / 10000: # print("HTTP Response") if scapy_packet[scapy.TCP].seq in ack_list: ack_list.remove(scapy_packet[scapy.TCP].seq) print("Replacing the file.") # print(scapy_packet.show()) modified_packet = set_load(scapy_packet, #Input the full path of your executable here: "HTTP/1.1 301 Moved Permanently\nLocation: http://10.0.2.15/Evil%20Files/lazagne.exe\n\n") packet.set_payload(str(modified_packet)) packet.accept() queue = netfilterqueue.NetfilterQueue() queue.bind(0, process_packet) queue.run()
2.90625
3
tmpmodels.py
firaan1/iamgrateful
0
11375
<reponame>firaan1/iamgrateful from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, func, Boolean from sqlalchemy.orm import relation, sessionmaker, relationship, backref from datetime import datetime import os # Database DATABASE = 'sqlite:///db.sqlite3' DEBUG = True # ORM Base = declarative_base() # model class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True, autoincrement=True) passcode = Column(Integer, nullable=False) question = Column(String) answer = Column(String) def __init__(self, passcode): self.passcode = passcode def __repr__(self): return '<User %s>' % {self.id} class Memory(Base): __tablename__ = 'memory' id = Column(Integer, primary_key=True, autoincrement=True) happiness = Column(Integer) date = Column(DateTime, default = datetime.now()) things = relationship('Thing', secondary = 'memory_thing_link') def __repr__(self): return '<Memory %s>' % {self.date} class Thing(Base): __tablename__ = 'thing' id = Column(Integer, primary_key=True, autoincrement=True) text = Column(Text) def __repr__(self): return '<Item %s>' % {self.text} class MemoryThingLink(Base): __tablename__ = 'memory_thing_link' memory_id = Column(Integer, ForeignKey('memory.id'), primary_key=True) thing_id = Column(Integer, ForeignKey('thing.id'), primary_key=True) # if __name__ == '__main__': # connection engine = create_engine(DATABASE, echo = DEBUG) session_factory = sessionmaker(bind = engine) session = session_factory() # initialize database if not os.path.exists('db.sqlite3'): Base.metadata.create_all(engine)
2.84375
3
doc/filters.py
CargobaseDev/openpyxl
6
11376
from openpyxl import Workbook wb = Workbook() ws = wb.active data = [ ["Fruit", "Quantity"], ["Kiwi", 3], ["Grape", 15], ["Apple", 3], ["Peach", 3], ["Pomegranate", 3], ["Pear", 3], ["Tangerine", 3], ["Blueberry", 3], ["Mango", 3], ["Watermelon", 3], ["Blackberry", 3], ["Orange", 3], ["Raspberry", 3], ["Banana", 3] ] for r in data: ws.append(r) ws.auto_filter.ref = "A1:B15" ws.auto_filter.add_filter_column(0, ["Kiwi", "Apple", "Mango"]) ws.auto_filter.add_sort_condition("B2:B15") wb.save("filtered.xlsx")
2.78125
3
Bleak/two_devices.py
mbdev2/MIS_FindMyProfessor
0
11377
from bleak import BleakClient import asyncio import functools notify_uuid = "00002a19-0000-1000-8000-00805f9b34fb".format(0x2A19) def callback(sender, data, mac_address): #data = bytearray(data) dataint = int.from_bytes(data, byteorder='little', signed=True) print(mac_address, dataint) def run(addresses): loop = asyncio.get_event_loop() tasks = asyncio.gather(*(connect_to_device(address) for address in addresses)) loop.run_until_complete(tasks) async def connect_to_device(address): print("starting", address, "loop") async with BleakClient(address, timeout=10.0) as client: print("connect to", address) try: #model_number = await client.read_gatt_char(address) await client.start_notify(notify_uuid, functools.partial(callback, mac_address=address)) await asyncio.sleep(1000.0) await client.stop_notify(notify_uuid) except Exception as e: print(e) print("disconnect from", address) if __name__ == "__main__": run( ["96E8409A-F2EB-4029-B3DC-615FADE0C838","D31CB0CA-890E-476B-80D9-80ED8A3AA69A"] )
2.453125
2
binary search tree insertion.py
buhuhaha/python
0
11378
<filename>binary search tree insertion.py<gh_stars>0 class Node: left = right = None def __init__(self, data): self.data = data def inorder(root): if root is None: return inorder(root.left) print(root.data, end=' ') inorder(root.right) def insert(root, key): if root is None: return Node(key) if key < root.data: root.left = insert(root.left, key) else: root.right = insert(root.right, key) return root def constructBST(keys): root = None for key in keys: root = insert(root, key) return root if __name__ == '__main__': keys = [15, 10, 20, 8, 12, 16, 25] root = constructBST(keys) inorder(root)
3.71875
4
tests/test_env_helpers.py
Azraeht/py-ndebug
0
11379
<reponame>Azraeht/py-ndebug from ndebug import env_helpers def test_inspect_ops(mocker): mocker.patch.dict('os.environ', {'DEBUG_COLORS': 'no', 'DEBUG_DEPTH': '10', 'DEBUG_SHOW_HIDDEN': 'enabled', 'DEBUG_SOMETHING': 'null'}) actual = env_helpers.options() assert actual == {'colors': False, 'depth': 10, 'show_hidden': True, 'something': None} def test_load_and_save(): actual = env_helpers.load() assert actual == '' env_helpers.save('test:data') actual = env_helpers.load() assert actual == 'test:data'
2.09375
2
relay_lib_seeed_test_2.py
johnwargo/seeed-studio-relay-v2
1
11380
#!/usr/bin/python '''***************************************************************************************************************** Seeed Studio Relay Board Library V2 Test Application #2 By <NAME> (https://www.johnwargo.com) ********************************************************************************************************************''' import sys import time from seeed_relay_v1 import Relay def process_loop(): # turn all of the relays on relay.all_on() relay.print_status_all() # wait a second time.sleep(1) # turn all of the relays off relay.all_off() relay.print_status_all() # wait a second time.sleep(1) # now cycle each relay every second in an infinite loop while True: # test the on/off methods print('Testing on/off methods') for i in range(1, 5): relay.on(i) relay.print_status_all() time.sleep(1) relay.off(i) relay.print_status_all() time.sleep(1) # test the toggle method print('Testing the toggle methods') for i in range(1, 5): relay.toggle_port(i) relay.print_status_all() time.sleep(1) relay.toggle_port(i) relay.print_status_all() time.sleep(1) print('Repeating loop') # Now see what we're supposed to do next if __name__ == "__main__": # Create the relay object relay = Relay() try: process_loop() except KeyboardInterrupt: print("\nExiting application") # turn off all of the relays relay.all_off() # exit the application sys.exit(0)
2.859375
3
quasar/sa_database.py
stevencyrway/quasar
12
11381
<reponame>stevencyrway/quasar import os from sqlalchemy import bindparam, create_engine, exc from sqlalchemy.dialects.postgresql.json import JSONB from sqlalchemy.engine.url import URL from sqlalchemy.sql import text from .utils import log, logerr # Setup SQL Alchemy vars. pg_opts = { 'drivername': os.getenv('PG_DRIVER'), 'username': os.getenv('PG_USER'), 'password': os.getenv('<PASSWORD>'), 'host': os.getenv('PG_HOST'), 'port': os.getenv('PG_PORT'), 'database': os.getenv('PG_DATABASE') } pg_ssl = os.getenv('PG_SSL') class Database: def __init__(self, options={}): pg_opts.update(options) self.connect() def connect(self): # Setup SQL Alchemy postgres connection. try: engine = create_engine(URL(**pg_opts), connect_args={'sslmode': pg_ssl}) self.engine = engine self.conn = engine.connect() except exc.InterfaceError as e: log("Couldnt't establsh DB connection!") log("Error is:") logerr(e) def disconnect(self): self.conn.close() return self.conn def query(self, query): return self.conn.execute(query) def query_str(self, query, record): # Run query with string substitution using ':thisvar' SQL Alchemy # standard based formatting. e.g. # query = 'INSERT :bar into foo;', record = {bar: 'baz'} run_query = text(query) return self.conn.execute(run_query, record) def query_json(self, query, record, col_name): # Based on the post https://stackoverflow.com/a/46031085, this # function forces a JSONB binding to insert JSON record types # into a table using SQL Alchemy. # This function is tightly coupled with the log_event function # in the cio_queue.py code. Hacky solution to get # https://www.pivotaltracker.com/story/show/172585118 resolved. run_query = text(query) return self.conn.execute( run_query.bindparams(bindparam(col_name, type_=JSONB)), record)
2.59375
3
commands/__init__.py
CorneliaXaos/Command-Block-Assembly
1
11382
import abc class CommandBlock: def __init__(self, command, conditional=True, mode='CHAIN', auto=True, opposite=False, single_use=True): self.command = command self.cond = conditional self.mode = mode self.auto = auto self.opposite = opposite self.single_use = single_use def resolve(self, scope): return self.command.resolve(scope) class Resolvable(metaclass=abc.ABCMeta): @abc.abstractmethod def resolve(self, scope): pass class SimpleResolve(Resolvable): def __init__(self, *args): self.args = args def resolve(self, scope): return ' '.join(map(lambda el: el.resolve(scope) \ if isinstance(el, Resolvable) \ else el, self.args)) class Command(Resolvable): pass class EntityRef(Resolvable): def is_single_entity(self, scope): raise NotImplementedError() @property def ref(self): return EntityReference(self) class ObjectiveRef(Resolvable): def __init__(self, name): assert type(name) == str self.objective = name def resolve(self, scope): return scope.objective(self.objective) class NameRef(EntityRef): def __init__(self, name): assert type(name) == str self.name = name @property def is_single_entity(self, scope): return True def resolve(self, scope): return self.name class ScoreRef: def __init__(self, target, objective): assert isinstance(target, EntityRef) assert isinstance(objective, ObjectiveRef) self.target = target self.objective = objective def resolve_pair(self, scope): return '%s %s' % (self.target.resolve(scope), self.objective.resolve(scope)) class Var(ScoreRef): def __init__(self, nameref): super().__init__(GlobalEntity, ObjectiveRef(nameref)) def make_selector(selector, **kwargs): output = '@' + selector if not kwargs: return output def str_pairs(items): output = [] for key, value in items: if type(value) == dict: value = '{%s}' % str_pairs(value.items()) output.append('%s=%s' % (key, value)) return ','.join(output) return '%s[%s]' % (output, str_pairs(kwargs.items())) class Selector(EntityRef): def __init__(self, type, args=None): assert type in 'aespr' self.type = type assert args is None or isinstance(args, SelectorArgs) self.args = args def resolve_params(self, scope): if not self.args: return {} return self.args.resolve(scope) def is_single_entity(self, scope): if self.type in 'spr': return True params = self.resolve_params(scope) return 'limit' in params and params['limit'] == '1' def resolve(self, scope): return make_selector(self.type, **self.resolve_params(scope)) class _GlobalEntity(EntityRef): def is_single_entity(self, scope): return True def resolve(self, scope): return scope.global_entity() GlobalEntity = _GlobalEntity() class _PosUtil(EntityRef): def is_single_entity(self, scope): return True def resolve(self, scope): return scope.pos_util_entity() PosUtil = _PosUtil() class NbtPath(Resolvable): def __init__(self, path): self.path = path def subpath(self, childpath): # TODO path validation return self.__class__(self.path + childpath) def resolve(self, scope): return self.path def __eq__(self, other): if type(other) != type(self): return False return self.path == other.path def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self.path) class Path(NbtPath): def resolve(self, scope): return scope.custom_nbt_path(self.path) class ArrayPath(Path): def __init__(self, index=None, key=None): sub = '[%d]' % index if index is not None else '' assert key is None or index is not None sub += '.%s' % key if key else '' super().__init__('%s%s' % (self.name, sub)) def subpath(self, childpath): # Don't use our constructor return Path(self.path).subpath(childpath) class StackPath(ArrayPath): name = 'stack' def StackFrame(index): class StackFramePath(ArrayPath): name = 'stack[%d].stack' % (-index - 1) return StackFramePath StackFrameHead = StackFrame(0) class GlobalPath(ArrayPath): name = 'globals' class Cmd(Command): def __init__(self, cmd): self.command = cmd def resolve(self, scope): return self.command class Execute(Command): def __init__(self, chain): self.chain = SimpleResolve(*chain._components) def resolve(self, scope): return 'execute %s' % self.chain.resolve(scope) def ensure_selector(sel_arg): assert isinstance(sel_arg, EntityRef), sel_arg return sel_arg class ExecuteChain: def __init__(self): self._components = [] self.can_terminate = False def add(self, *args): for arg in args: if type(arg) in [str, int, float]: self._components.append(str(arg)) elif isinstance(arg, Resolvable): self._components.append(arg) else: assert False, type(arg) return self def run(self, cmd): self.add('run', cmd) return Execute(self) def finish(self): assert self.can_terminate return Execute(self) def as_entity(self, select_arg): self.can_terminate = False return self.add('as', ensure_selector(select_arg)) def at(self, select_arg): self.can_terminate = False return self.add('at', ensure_selector(select_arg)) def at_pos(self, pos): self.can_terminate = False return self.add('positioned', pos) def at_entity_pos(self, select_arg): self.can_terminate = False return self.add('positioned', 'as', ensure_selector(select_arg)) def align(self, axes): self.can_terminate = False assert ''.join(axis for axis in axes if axis in 'xyz') == axes return self.add('align', axes) def facing(self, pos): self.can_terminate = False return self.add('facing', pos) def facing_entity(self, select_arg, feature): self.can_terminate = False assert feature == 'eyes' or feature == 'feet' return self.add('facing', 'entity', ensure_selector(select_arg), \ feature) def rotated(self, y, x): self.can_terminate = False return self.add('rotated', y, x) def rotated_as_entity(self, select_arg): self.can_terminate = False return self.add('rotated', 'as', ensure_selector(select_arg)) def anchored(self, anchor): self.can_terminate = False assert anchor == 'feet' or anchor == 'eyes' return self.add('anchored', anchor) def cond(self, cond_type): self.can_terminate = False assert cond_type == 'if' or cond_type == 'unless' return ExecuteChain.Cond(self, cond_type) class Cond: def add(self, *args): self.parent.can_terminate = True return self.parent.add(*((self.cond_type,) + args)) def __init__(self, parent, cond_type): self.parent = parent self.cond_type = cond_type def entity(self, entityref): return self.add('entity', ensure_selector(entityref)) def score(self, targetref, operator, sourceref): assert isinstance(targetref, ScoreRef) assert isinstance(sourceref, ScoreRef) assert operator in ['<', '<=', '=', '>=', '>'] return self.add('score', targetref.target, targetref.objective, operator, sourceref.target, sourceref.objective) def score_range(self, scoreref, range): assert isinstance(scoreref, ScoreRef) assert isinstance(range, ScoreRange) return self.add('score', scoreref.target, scoreref.objective, 'matches', range) def block(self, pos, block): assert isinstance(pos, WorldPos) and pos.block_pos return self.add('block', pos, block) def blocks_match(self, begin, end, dest, type): assert type in ['all', 'masked'] return self.add('blocks', begin, end, dest, type) def store(self, store_type): assert store_type in ['result', 'success'] self.can_terminate = False return ExecuteChain.Store(self, store_type) class Store: def add(self, *args): return self.parent.add(*(('store', self.store_type) + args)) def __init__(self, parent, store_type): self.parent = parent self.store_type = store_type def score(self, scoreref): assert isinstance(scoreref, ScoreRef) return self.add('score', scoreref.target, scoreref.objective) def entity(self, target, path, data_type, scale=1): return self.add('entity', ensure_selector(target), \ path, data_type, scale) def bossbar(self, bar, attr): assert attr in ['value', 'max'] return self.add('bossbar', bar, attr) class BlockOrEntityRef(Resolvable): pass class EntityReference(BlockOrEntityRef): def __init__(self, target): assert isinstance(target, EntityRef) self.target = target def resolve(self, scope): assert self.target.is_single_entity(scope) return 'entity %s' % self.target.resolve(scope) class WorldPos(Resolvable): def __init__(self, x, y, z, block_pos=False): is_anchor = self._check_coord(x, True, not block_pos) was_anchor = self._check_coord(y, is_anchor, not block_pos) is_anchor = self._check_coord(z, was_anchor, not block_pos) if was_anchor: assert is_anchor self.x, self.y, self.z = x, y, z self.block_pos = block_pos def _check_coord(self, val, allow_anchor, allow_float): if isinstance(val, AnchorRelCoord): assert allow_anchor return True if type(val) == float: assert allow_float return False if type(val) == int: return False if isinstance(val, WorldRelCoord): return False assert False, val @property def ref(self): return BlockReference(self) def resolve(self, scope): return '%s %s %s' % (self.x, self.y, self.z) class RelativeCoord: def __init__(self, val): self.str = self.marker if type(val) == int: if val != 0: self.str += '%d' % val elif type(val) == float: if val != 0.0: # https://stackoverflow.com/a/2440786 self.str += ('%f' % val).rstrip('0').rstrip('.') else: assert False, val self.val = val def __str__(self): return self.str class WorldRelCoord(RelativeCoord): marker = '~' class AnchorRelCoord(RelativeCoord): marker = '^' class BlockReference(BlockOrEntityRef): def __init__(self, pos): assert isinstance(pos, WorldPos) and pos.block_pos self.pos = pos def resolve(self, scope): return 'block %s' % self.pos.resolve(scope) class _UtilBlockPos(WorldPos): def __init__(self, is_zero_tick): self.block_pos = True self.is_zero_tick = is_zero_tick def resolve(self, scope): if self.is_zero_tick: return scope.get_zero_tick_block() return scope.get_util_block() UtilBlockPos = _UtilBlockPos(False) ZeroTickBlockPos = _UtilBlockPos(True) class DataGet(Command): def __init__(self, target, path, scale=1): assert isinstance(target, BlockOrEntityRef) assert isinstance(scale, (int, float)) self.target = target self.path = path self.scale = int(scale) if scale == int(scale) else scale def resolve(self, scope): return 'data get %s %s %s' % (self.target.resolve(scope), self.path.resolve(scope), self.scale) class DataMerge(Command): def __init__(self, ref, nbt): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.nbt = nbt def resolve(self, scope): return 'data merge %s %s' % (self.ref.resolve(scope), self.nbt.resolve(scope)) class DataModify(Command): def __init__(self, ref, path, action, *rest): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.path = path self.action = action self.init(*rest) def resolve(self, scope): return 'data modify %s %s %s' % ( self.ref.resolve(scope), self.path.resolve(scope), self.action) class DataModifyValue(DataModify): def init(self, val): self.val = val def resolve(self, scope): return '%s value %s' % (super().resolve(scope), self.val.resolve(scope)) class DataModifyFrom(DataModify): def init(self, ref, path): assert isinstance(ref, BlockOrEntityRef) self.fromref = ref self.frompath = path def resolve(self, scope): return '%s from %s %s' % (super().resolve(scope), self.fromref.resolve(scope), self.frompath.resolve(scope)) class DataModifyStack(DataModifyValue): def __init__(self, index, key, action, value, path=StackPath): super().__init__(GlobalEntity.ref, path(index, key), action, value) class DataRemove(Command): def __init__(self, ref, path): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.path = path def resolve(self, scope): return 'data remove %s %s' % (self.ref.resolve(scope), self.path.resolve(scope)) class Function(Command): def __init__(self, func_name): self.name = func_name def resolve(self, scope): return 'function %s' % scope.function_name(self.name) class Tellraw(Command): def __init__(self, text, target): assert isinstance(text, TextComponentHolder) assert isinstance(target, EntityRef) self.text = text self.target = target def resolve(self, scope): return 'tellraw %s %s' % (self.target.resolve(scope), self.text.resolve_str(scope)) class TextComponent(Resolvable): pass class TextComponentHolder(TextComponent): def __init__(self, style, children): self.style = style self.children = children def resolve_str(self, scope): import json return json.dumps(self.resolve(scope), separators=(',', ':')) def resolve(self, scope): text = {} for key, value in self.style.items(): text[key] = self._resolve_style(key, value, scope) extra = [] for child in self.children: if isinstance(child, TextComponentHolder) and not child.style: for child_child in child.children: extra.append(child_child.resolve(scope)) else: extra.append(child.resolve(scope)) if not self.style: return extra if extra: if len(extra) == 1 and type(extra[0]) == dict: text.update(extra[0]) else: text['extra'] = extra return text def _resolve_style(self, key, value, scope): if key == 'clickEvent': assert isinstance(value, TextClickAction) return value.resolve(scope) return value class TextStringComponent(TextComponent): def __init__(self, stringval): self.val = stringval def resolve(self, scope): return {'text': self.val} class TextNBTComponent(TextComponent): def __init__(self, entity, path): assert isinstance(entity, EntityRef) assert isinstance(path, Path) self.entity = entity self.path = path def resolve(self, scope): assert self.entity.is_single_entity(scope) return {'nbt': self.path.resolve(scope), 'entity': self.entity.resolve(scope)} class TextScoreComponent(TextComponent): def __init__(self, ref): assert isinstance(ref, ScoreRef) self.ref = ref def resolve(self, scope): return {'score': {'name': self.ref.target.resolve(scope), 'objective': self.ref.objective.resolve(scope)}} class TextClickAction(Resolvable): def __init__(self, action, value): self.action = action self.value = value def resolve(self, scope): if type(self.value) == str: value = self.value else: assert self.action in ['run_command', 'suggest_command'] \ and isinstance(self.value, Command) value = self.value.resolve(scope) return {'action': self.action, 'value': value} class Teleport(Command): def __init__(self, target, *more): assert isinstance(target, EntityRef) self.args = [target] self.args.extend(more) def resolve(self, scope): return 'tp %s' % ' '.join(a.resolve(scope) for a in self.args) class Clone(Command): def __init__(self, src0, src1, dest): self.src0 = src0 self.src1 = src1 self.dest = dest def resolve(self, scope): return 'clone %s %s %s' % (self.src0.resolve(scope), self.src1.resolve(scope), self.dest.resolve(scope)) class Setblock(Command): def __init__(self, pos, block): assert isinstance(pos, WorldPos) and pos.block_pos self.pos = pos self.block = block def resolve(self, scope): return 'setblock %s %s' % (self.pos.resolve(scope), self.block.resolve(scope)) class Scoreboard(Command): allows_negative = False def __init__(self, varref, value): assert isinstance(varref, ScoreRef) assert isinstance(value, int) assert self.allows_negative or value >= 0 self.var = varref self.value = value def resolve(self, scope): return 'scoreboard players %s %s %d' % ( self.op, self.var.resolve_pair(scope), self.value) class SetConst(Scoreboard): op = 'set' allows_negative = True class AddConst(Scoreboard): op = 'add' class RemConst(Scoreboard): op = 'remove' class GetValue(Command): def __init__(self, scoreref): assert isinstance(scoreref, ScoreRef) self.ref = scoreref def resolve(self, scope): return 'scoreboard players get %s' % self.ref.resolve_pair(scope) class Operation(Command): def __init__(self, left, right): assert isinstance(left, ScoreRef) assert isinstance(right, ScoreRef) self.left = left self.right = right def resolve(self, scope): return 'scoreboard players operation %s %s %s' % ( self.left.resolve_pair(scope), self.op, self.right.resolve_pair(scope)) class OpAssign(Operation): op = '=' class OpAdd(Operation): op = '+=' class OpSub(Operation): op = '-=' class OpMul(Operation): op = '*=' class OpDiv(Operation): op = '/=' class OpMod(Operation): op = '%=' class OpIfLt(Operation): op = '<' class OpIfGt(Operation): op = '>' class OpSwap(Operation): op = '><' class SelectorArgs(Resolvable): pass class SimpleSelectorArgs(SelectorArgs): def __init__(self, args): self.args = args def resolve(self, scope): return dict(self.args) class ScoreRange(Resolvable): def __init__(self, min=None, max=None): assert min is not None or max is not None self.min = min self.max = max def resolve(self, scope): range = '' if self.min is not None: range = '%d' % self.min if self.max is not None and self.max != self.min: range += '..%d' % self.max elif self.max is None: range += '..' return range class SelRange(SelectorArgs): def __init__(self, objective, min=None, max=None): assert isinstance(objective, ObjectiveRef) self.objective = objective self.range = ScoreRange(min, max) def resolve(self, scope): return {'scores': { self.objective.resolve(scope): self.range.resolve(scope) }} class SelEquals(SelRange): def __init__(self, objective, value): super().__init__(objective, value, value) class ComboSelectorArgs(SelectorArgs): @staticmethod def new(first, second): if first is None: return second if second is None: return first return ComboSelectorArgs(first, second) def __init__(self, first, second): self.first = first self.second = second def resolve(self, scope): sel = {} sel.update(self.first.resolve(scope)) sel.update(self.second.resolve(scope)) return sel class SelNbt(SelectorArgs): def __init__(self, path, value): self.nbt_spec = {} if not path: self.nbt_spec = value else: self.build_selector(path, self.nbt_spec, value) def build_selector(self, path, parent, value): for i in range(len(path) - 1): node = path[i] if node.isdigit(): pos = int(node) while len(parent) < pos + 1: parent.append({}) parent = parent[pos] continue if node not in parent: parent[node] = {} if len(path) > i + 1: if path[i+1].isdigit(): if not parent[node]: parent[node] = [] else: assert type(parent[node]) == list parent = parent[node] if path[-1].isdigit(): pos = int(path[-1]) while len(parent) < pos + 1: parent.append({}) path[-1] = pos parent[path[-1]] = value def stringify_nbt(self, node, scope): # TODO quoted keys if type(node) == dict: return '{%s}' % ','.join('%s:%s' % (k, self.stringify_nbt(v, scope)) for k,v in node.items()) if type(node) == list: return '[%s]' % ','.join(map(lambda n:self.stringify_nbt(n, scope), node)) if isinstance(node, Resolvable): return node.resolve(scope) assert False, type(node) def resolve(self, scope): return {'nbt': self.stringify_nbt(self.nbt_spec, scope)} class TeamName(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.team_name(self.name) class TeamModify(Command): def __init__(self, team, attr, value): assert isinstance(team, TeamName) self.team = team assert attr in ['color', 'friendlyFire', 'seeFriendlyInvisibles', 'nametagVisibility', 'deathMessageVisibility', 'collisionRule', 'displayName', 'prefix', 'suffix'] self.attr = attr self.value = value def resolve(self, scope): return 'team modify %s %s %s' % (self.team.resolve(scope), self.attr, self.value) class JoinTeam(Command): def __init__(self, team, members): assert isinstance(team, TeamName) assert members is None or isinstance(members, EntityRef) self.team = team self.members = members def resolve(self, scope): members = (' ' + self.members.resolve(scope)) if self.members else '' return 'team join %s%s' % (self.team.resolve(scope), members) class Bossbar(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.bossbar(self.name) class BossbarSet(Command): def __init__(self, bar, prop, value): assert isinstance(bar, Bossbar) self.bar = bar self.prop = prop self.value = value def resolve(self, scope): value = (' ' + self.value.resolve(scope)) if self.value else '' return 'bossbar set %s %s%s' % (self.bar.resolve(scope), self.prop, value) class Kill(Command): def __init__(self, target): assert isinstance(target, EntityRef) self.target = target def resolve(self, scope): return 'kill %s' % self.target.resolve(scope) class ReplaceItem(Command): def __init__(self, ref, slot, item, amount=None): assert isinstance(ref, BlockOrEntityRef) self.ref = ref self.slot = slot self.item = item self.amount = amount def resolve(self, scope): amount = (' %d' % self.amount) if self.amount is not None else '' return 'replaceitem %s %s %s%s' % (self.ref.resolve(scope), self.slot, self.item.resolve(scope), amount) class GiveItem(Command): def __init__(self, targets, item, count=1): assert isinstance(targets, EntityRef) self.targets = targets self.item = item self.count = count def resolve(self, scope): return 'give %s %s %d' % (self.targets.resolve(scope), self.item.resolve(scope), self.count) class ClearItem(Command): def __init__(self, targets, item, max_count=-1): assert isinstance(targets, EntityRef) self.targets = targets self.item = item self.max_count = max_count def resolve(self, scope): return 'clear %s %s %d' % (self.targets.resolve(scope), self.item.resolve(scope), self.max_count) class EffectGive(Command): def __init__(self, target, effect, seconds=None, amp=None, hide=None): assert isinstance(target, EntityRef) self.target = target self.effect = effect self.seconds = seconds if seconds is not None else 30 self.amp = amp if amp is not None else 0 self.hide = hide if hide is not None else False def resolve(self, scope): return 'effect give %s %s %d %d %s' % (self.target.resolve(scope), self.effect, self.seconds, self.amp, 'true' if self.hide else 'false') class Particle(Command): def __init__(self, name, pos, delta, speed, count, mode, players): self.name = name self.pos = pos self.delta = delta self.speed = speed self.count = count self.mode = mode self.players = players def resolve(self, scope): players = (' ' + self.players.resolve(scope)) if self.players else '' return 'particle %s %s %s %f %d %s%s' % (self.name, self.pos.resolve(scope), self.delta.resolve(scope), self.speed, self.count, self.mode, players) class Title(Command): def __init__(self, target, action, *args): assert isinstance(target, EntityRef) self.target = target self.action = action self.args = args def resolve(self, scope): args = (' ' + SimpleResolve(*self.args).resolve(scope)) \ if self.args else '' return 'title %s %s%s' % (self.target.resolve(scope), self.action, args) class Summon(Command): def __init__(self, entity_name, pos, data=None): assert pos is None or isinstance(pos, WorldPos) self.name = entity_name self.pos = pos self.data = data def resolve(self, scope): pos = (' ' + self.pos.resolve(scope)) if self.pos else \ (' ~ ~ ~' if self.data else '') data = (' ' + self.data.resolve(scope)) if self.data else '' return 'summon %s%s%s' % (self.name, pos, data) class Advancement(Command): def __init__(self, action, target, range, *args): assert action in ['grant', 'revoke'] assert isinstance(target, EntityRef) self.action = action self.target = target self.range = range self.args = args def resolve(self, scope): args = (' ' + SimpleResolve(*self.args).resolve(scope)) \ if self.args else '' return 'advancement %s %s %s%s' % (self.action, self.target.resolve(scope), self.range, args) class AdvancementRef(Resolvable): def __init__(self, name): self.name = name def resolve(self, scope): return scope.advancement_name(self.name)
2.9375
3
top/clearlight/reptile/bilibili/bj_tech_mooc/example_04_360.py
ClearlightY/Python_learn
1
11383
import requests keyword = "python" try: kv = {'q':keyword} r = requests.get('http://www.so.com/s', params=kv) print(r.request.url) r.raise_for_status() print(len(r.text)) except: print('爬取失败')
2.828125
3
rodnet/models/backbones/cdc_deep.py
zhengzangw/RODNet
0
11384
import torch.nn as nn class RODEncode(nn.Module): def __init__(self, in_channels=2): super(RODEncode, self).__init__() self.conv1a = nn.Conv3d( in_channels=in_channels, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_1 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_2 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1b = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv2a = nn.Conv3d( in_channels=64, out_channels=128, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv2b = nn.Conv3d( in_channels=128, out_channels=128, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv3a = nn.Conv3d( in_channels=128, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv3b = nn.Conv3d( in_channels=256, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 2, 2), padding=(4, 2, 2), ) self.bn1a = nn.BatchNorm3d(num_features=64) self.bn1a_1 = nn.BatchNorm3d(num_features=64) self.bn1a_2 = nn.BatchNorm3d(num_features=64) self.bn1b = nn.BatchNorm3d(num_features=64) self.bn2a = nn.BatchNorm3d(num_features=128) self.bn2b = nn.BatchNorm3d(num_features=128) self.bn3a = nn.BatchNorm3d(num_features=256) self.bn3b = nn.BatchNorm3d(num_features=256) self.relu = nn.ReLU() def forward(self, x): x = self.relu( self.bn1a(self.conv1a(x)) ) # (B, 2, W, 128, 128) -> (B, 64, W, 128, 128) # additional x = self.relu( self.bn1a_1(self.conv1a_1(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1a_2(self.conv1a_2(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1b(self.conv1b(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W/2, 64, 64) x = self.relu( self.bn2a(self.conv2a(x)) ) # (B, 64, W/2, 64, 64) -> (B, 128, W/2, 64, 64) x = self.relu( self.bn2b(self.conv2b(x)) ) # (B, 128, W/2, 64, 64) -> (B, 128, W/4, 32, 32) x = self.relu( self.bn3a(self.conv3a(x)) ) # (B, 128, W/4, 32, 32) -> (B, 256, W/4, 32, 32) x = self.relu( self.bn3b(self.conv3b(x)) ) # (B, 256, W/4, 32, 32) -> (B, 256, W/4, 16, 16) return x class RODDecode(nn.Module): def __init__(self, n_class): super(RODDecode, self).__init__() self.convt1 = nn.ConvTranspose3d( in_channels=256, out_channels=128, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt2 = nn.ConvTranspose3d( in_channels=128, out_channels=64, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt3 = nn.ConvTranspose3d( in_channels=64, out_channels=n_class, kernel_size=(3, 6, 6), stride=(1, 2, 2), padding=(1, 2, 2), ) self.prelu = nn.PReLU() self.sigmoid = nn.Sigmoid() # self.upsample = nn.Upsample(size=(rodnet_configs['win_size'], radar_configs['ramap_rsize'], # radar_configs['ramap_asize']), mode='nearest') def forward(self, x): x = self.prelu(self.convt1(x)) # (B, 256, W/4, 16, 16) -> (B, 128, W/2, 32, 32) x = self.prelu(self.convt2(x)) # (B, 128, W/2, 32, 32) -> (B, 64, W, 64, 64) x = self.convt3(x) # (B, 64, W, 64, 64) -> (B, 3, W, 128, 128) return x
2.375
2
File/admin.py
alstn2468/Likelion_DRF_Project
28
11385
from django.contrib import admin from .models import File admin.site.register(File)
1.289063
1
agent/windows/agent.py
fortinet/ips-bph-framework
21
11386
<reponame>fortinet/ips-bph-framework import shutil import socket import subprocess import threading import json import pickle import tempfile import time import box import threading import os import base64 import getpass import urllib import requests import zipfile import sys import pprint import platform DEBUG = True BPH_TEMPLATE_SERVER_IP = sys.argv[1] BPH_TEMPLATE_SERVER_PORT = int(sys.argv[2]) BPH_CONTROLLER_WEB_PORT = int(sys.argv[3]) running_os = platform.release() if running_os == "7": APP_DATA = "C:\\Users\\{current_user}\\AppData\\Roaming\\".format( current_user=getpass.getuser()) TMP_FOLDER = "C:\\Users\\{current_user}\\AppData\\Local\\Temp\\".format( current_user=getpass.getuser()) elif running_os == "XP": # To avoid tool issues when dealing with white-spaced paths. APP_DATA = "C:\\DOCUME~1\\{current_user}\\APPLIC~1\\".format( current_user=getpass.getuser()) TMP_FOLDER = "C:\\DOCUME~1\\{current_user}\\LOCALS~1\\Temp\\".format( current_user=getpass.getuser()) else: print "Unsupported platform! Exiting..." sys.exit() class FilterSpecialVars(): def __init__(self, unfiltered_data, template=None, custom_user_vars=None): # unfiltered_data should be a list self.unfiltered_data = unfiltered_data self.filtered_data = [] self.special_vars = { '@appdata@': APP_DATA, # os.path.expandvars('%appdata%'), '@temp@': TMP_FOLDER, '@toolname@': template['tool_name'], # "peid" '@filename@': template.tool.filename, # "peid.exe" '@rid@': template['rid'], '@md5@': template['md5'], '@sample@': "\"" + ExecutionManager.sample_abs_path + "\"", '@sample_filename@': "\"" + os.path.basename(ExecutionManager.sample_abs_path) + "\"", '@tool_drive@': template['tool_drive'], '@tool_path@': os.path.join(template['tool_drive'], template['remote_tool_path'].replace('/','\\')), '@tool_abs_path@': os.path.join(template['tool_drive'], template['remote_tool_path'], template.tool.filename), '@report_folder@': os.path.join(APP_DATA, template['rid'], template['tool_name']) } if custom_user_vars != None: self.custom_user_vars_filter(custom_user_vars) def custom_user_vars_filter(self, custom_user_vars): if DEBUG: print "Custom User Vars Filtering: {}".format(custom_user_vars) for k, v in custom_user_vars.items(): key = "@{}@".format(k) self.special_vars.update({key: v}) if DEBUG: print self.special_vars def filter_now(self): def do_filter(unfiltered_string): for k, v in self.special_vars.items(): if k in str(unfiltered_string): unfiltered_string = unfiltered_string.replace(k, v) if DEBUG: print ">> Found: {}".format(unfiltered_string) return unfiltered_string for unfiltered_string in self.unfiltered_data: if len(unfiltered_string) != 0: if DEBUG: print "### Searching Variable ###: {}".format(unfiltered_string) self.filtered_data.append(do_filter(unfiltered_string)) if DEBUG: print self.special_vars if DEBUG: print"FILTERED: {}".format(self.filtered_data) # return " ".join(self.filtered_data) class File(object): def __init__(self): pass def generate_random_file_name(self): import string import random return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(0, 10)) def zip_file(self, file_abs_path, seconds=5): if not file_abs_path.endswith('.log') and not file_abs_path.endswith('.zip'): if DEBUG: print "Creating compressed (zip) archive: {}".format(file_abs_path) #time.sleep(5) try: zip_filename = "{}.zip".format(os.path.basename(file_abs_path)) if DEBUG: print zip_filename original_filename = os.path.basename(file_abs_path) if DEBUG: print original_filename path_location = os.path.dirname(file_abs_path) if DEBUG: print path_location zip_file_abs_path = "{}\\{}".format(path_location, zip_filename) if DEBUG: print zip_file_abs_path zf = zipfile.ZipFile(zip_file_abs_path, 'w', zipfile.ZIP_DEFLATED) # When a file is bein created as compressed file (zip), in some cases # the set delay time is not enough and file-access errors appears. # To avoid such situation, several attempts are made until the access # to the source file is ready. try: zf.write(file_abs_path, os.path.basename(file_abs_path)) except IOError: if DEBUG: print "Target file is still in use... attempting in ({}) seconds".format(seconds) time.sleep(seconds) self.zip_file(file_abs_path) else: if DEBUG: print "Zip file creation - Done." except OSError as e: if DEBUG: print "Error when setting up info for target zip file: {}".format(e) raise else: zipfile.ZIP_DEFLATED if os.path.isfile(zip_file_abs_path): if DEBUG: print "Zip file ok: {}".format(zip_file_abs_path) # os.remove(file_abs_path) return zip_filename else: if DEBUG: print "Zip file can't be created" return None class AutoItScript(File): def __init__(self, automation_data): self.autoit_script = None self.__base64totmp(automation_data) def __base64totmp(self, automation_data): if DEBUG: print "Converting from base64 file data to Auto-it Script" tmp_au_script_abs_path = os.path.join( APP_DATA, self.generate_random_file_name()) with open(tmp_au_script_abs_path, 'w+') as tmp_au_script: for _ in automation_data: if DEBUG: print "Writing: {}\n".format(_) tmp_au_script.write(_) self.autoit_script = tmp_au_script_abs_path class DownloadedFile(File): def __init__(self, download_url): self.download_dir = APP_DATA self.fake_file_name = self.generate_random_file_name() self.original_file_name = os.path.basename(download_url) self.extension = os.path.splitext(download_url)[1].replace('.', '') #self.abs_path = os.path.join(self.download_dir, "{}.{}".format( # self.fake_file_name, self.extension)) self.abs_path = os.path.join(self.download_dir, self.original_file_name) if DEBUG: print self.abs_path class ExecutionManager(object): report_path = "" sample_abs_path = "" #### Agent Command Control ###### def execute_tool(self, **cmd_data): if DEBUG: print cmd_data tool_drive = cmd_data['tool_drive'] tool_path = cmd_data['tool_path'].replace('/', '\\') tool_name = cmd_data['tool_name'] tool_abs_path = "\"{tool_drive}{tool_path}\\{tool_name}\"".format( tool_drive=tool_drive, tool_path=tool_path, tool_name=tool_name, ) if DEBUG: print tool_abs_path tool_args = cmd_data['tool_args'] if DEBUG: print tool_args cmd = "{} {}".format(tool_abs_path, tool_args) if DEBUG: print cmd print "\nExecuting Cmd: {}\n".format(cmd) subprocess.call(cmd, shell=True) def exec_manager(self, **cmd_data): if DEBUG: if DEBUG: print "\nExecuting Thread with data: {}\n".format(cmd_data) thread_name = cmd_data['tool_name'] thread = threading.Thread(target=self.execute_tool, name=thread_name, kwargs=cmd_data) thread.start() def write_tmp_file(self, datatowrite, sample_abs_path): try: if DEBUG: print "Writing Tmp file: {}".format(sample_abs_path) with open(sample_abs_path, 'wb+') as f: f.write(datatowrite) except: if DEBUG: print "Error while creating the tmp file." else: if DEBUG: print "Done." if os.path.isfile(sample_abs_path): if DEBUG: print "Temp file created correctly." # Destination folder is created this way because because # some tools shows weird behaviors when passing arguments # For instance, CFF Explorer does not work correctly when # the file agument resides on a directory with whitespaces. # The workaround is to use DOS version of the path. #fixed_sample_abs_path = sample_abs_path.split('\\') #fixed_sample_abs_path[1] = "docume~1" #fixed_sample_abs_path[3] = "applic~1" # print fixed_sample_abs_path # Setting up Class attribute for sample path return sample_abs_path return False def download_file(self, download_url): if DEBUG: print "Downloading: {}".format(download_url) try: import urllib2 filedata = urllib2.urlopen(download_url) except urllib2.URLError: if DEBUG: print "Can't download the target sample file. Make sure BPH Webserver is running on the host." return False else: datatowrite = filedata.read() sample_abs_path = DownloadedFile(download_url).abs_path # Used when filtering custom variables ExecutionManager.sample_abs_path = sample_abs_path if DEBUG: print "Downloaded file: {}".format(sample_abs_path) return self.write_tmp_file(datatowrite, sample_abs_path) def execute_autoit_script(self, template, auto_it_script_abs_path): # The previously generated AutoIT script will be executed. if DEBUG: print "Executing Auto-It script" self.exec_manager( tool_drive=template.tool_drive, tool_path='misc\\autoitv3\\', tool_name='AutoIt3.exe', tool_args=auto_it_script_abs_path) def tool_execution(self, template): def selected_execution(filtered_parameters, filtered_automation): cascade_execution = False if filtered_parameters is not None and filtered_automation is not None: if DEBUG: print "Cascaded Execution Detected: parameters -> autoit" cascade_execution = True if filtered_parameters is not None: if DEBUG: print "Parameter Execution Detected" self.exec_manager( tool_drive=template.tool_drive, tool_path=template.remote_tool_path, tool_name=template.tool.filename, tool_args=filtered_parameters ) if filtered_automation is not None: # If cascase execution is set, then a delay between tool execution # and automation is also set. This to allow the tool to properly # load and the automation be able to run properly. A default value # of 5 seconds was given. if cascade_execution: if DEBUG: print "Cascade Execution Delay - Running now..." time.sleep(5) if DEBUG: print "Automation-Only Execution Detected" custom_user_vars = template.configuration.execution.custom_user_vars auto_it_script_abs_path = AutoItScript(filtered_automation).autoit_script self.execute_autoit_script(template, auto_it_script_abs_path) def filter_custom_vars(template, filter_type=None): # Handling template parameters custom vars if filter_type is not None: custom_user_vars = template.configuration.execution.custom_user_vars if filter_type == "parameters": parameters = template.actions[template.actions.action]['parameters'] if parameters is not None: if DEBUG: print "Parameters: {}".format(parameters) if len(custom_user_vars) != 0: if DEBUG: print "Custom Parameters Vars {} - Parameters({})".format(custom_user_vars, parameters) filtered_parameters = self.filter_variables( parameters, template, filter_type='parameters', custom_user_vars=custom_user_vars) else: filtered_parameters = self.filter_variables( parameters, template, filter_type='parameters', custom_user_vars=None) return filtered_parameters if filter_type == "automation": automation = template.actions[template.actions.action]['automation'] if automation is not None: if DEBUG: print "Automation: {}".format(automation) if len(custom_user_vars) != 0: if DEBUG: print "Custom Automation Vars {}".format(custom_user_vars) filtered_automation = self.filter_variables( automation, template, filter_type='automation', custom_user_vars=custom_user_vars) else: filtered_automation = self.filter_variables( automation, template, filter_type='automation', custom_user_vars=None) return filtered_automation action_name = template.actions.action if DEBUG: print "Executing: {}".format(action_name) filtered_parameters = filter_custom_vars(template, filter_type='parameters') filtered_automation = filter_custom_vars(template, filter_type='automation') selected_execution(filtered_parameters, filtered_automation) class TemplateManager(ExecutionManager): def __init__(self, template): # self.report_directory_check(template.vm_report_name) if DEBUG: print "#"*50 if DEBUG: print dict(template) if DEBUG: print "#"*50 # Each tool request must save files. Those can be either a log file # or output files from its execution. This "report path" folder will # be created per request. # # The /files/ folder will be used to store any additional files generated # by the tool. self.report_path_files = os.path.join( APP_DATA, template.rid, template.tool_name, 'files') self.report_path = os.path.join( APP_DATA, template.rid, template.tool_name) if not os.path.isdir(self.report_path_files): if DEBUG: print "Creating: {}".format(self.report_path_files) os.makedirs(self.report_path_files) if template.configuration.execution['download_sample']: self.download_file(template.download_url) # Tool execution will eventually select which execution type will be run, # either automated or manual (only based in parameters) self.tool_execution(template) # Delay (seconds) between tool executions. exec_delay = template.configuration.execution.delay if DEBUG: print "Execution Delay (in seconds): {}".format(exec_delay) time.sleep(exec_delay) while True: if DEBUG: print threading.active_count() if DEBUG: print threading.enumerate() threads = str(threading.enumerate()).lower() if template.configuration.execution.background_run: if DEBUG: print "TOOL DOES RUN IN BACKGROUND..." if template.tool.filename.lower() in threads: # FIXED: This allows more than one tool running in background if threading.active_count() != 1: if "autoit" not in threads: if DEBUG: print "TOOL RUN CHECK DONE" break else: if DEBUG: print "TOOL DOES NOT RUN IN BACKGROUND..." if template.tool.filename.lower() not in threads: if "autoit" not in threads: if DEBUG: print "TOOL RUN CHECK - DONE" break time.sleep(1) if DEBUG: print "\n###### Tool execution has ended #######\n" if DEBUG: print threading.active_count() if DEBUG: print threading.enumerate() if template.configuration.reporting.report_files: if DEBUG: print "########## Starting COLLECTING HTTP FILES ##############" self.report(template) def filter_variables(self, data, template, filter_type=None, custom_user_vars=None): if filter_type == "parameters": # Convert into list here. data = data.split(' ') if filter_type == "automation": # Decode first, then convert into a list. data = base64.decodestring(data).split('\n') if DEBUG: print "Filtering Variables: {}".format(data) unfiltered_data = FilterSpecialVars(data, template=template, custom_user_vars=custom_user_vars) unfiltered_data.filter_now() if DEBUG: print "Filtered Args: ({})".format(unfiltered_data.filtered_data) if filter_type == "parameters": return " ".join(unfiltered_data.filtered_data) if filter_type == "automation": return unfiltered_data.filtered_data def report_back(self, report_data): url = "http://{}:{}/bph/report.php".format(BPH_TEMPLATE_SERVER_IP, BPH_CONTROLLER_WEB_PORT) files = {'file': open(report_data['file_abs_path'], 'rb')} response = requests.post(url, data={'project_name': report_data['project_name'], 'md5': report_data['md5'], 'sid': report_data['sid'], 'tool': report_data['tool_name'], 'rid': report_data['rid'], 'file': report_data['file'], 'dir': report_data['dir']}, files=files) if DEBUG: print "Response: {}".format(response.text) def report_files(self, base_folder, tool_name): if DEBUG: print "Searching files in: {} - tool: {}".format(base_folder, tool_name) while True: if len(os.listdir(base_folder)) != 0: if DEBUG: print "Files found.. Collecting them now..." files_found = [] for root, dirs, files in os.walk(base_folder): for file in files: full_path = os.path.join(root, file) if DEBUG: print "FullPath: {}".format(full_path) file_name = os.path.basename(full_path) if DEBUG: print "FileName: {}".format(file_name) index = full_path.split('\\').index(tool_name) if DEBUG: print "Index: {}".format(index) path_found = "/".join([x for x in full_path.split('\\')[index+1:]]) if DEBUG: print "PathFound: {}".format(path_found) if path_found.count('/') == 0: # Tool log file was found (e.g. bintext.log) if DEBUG: print "Found log file: {}".format(path_found) if path_found.endswith('.log'): if DEBUG: print "FullPath: {}".format(full_path) file_and_path_found = [full_path, path_found, '/'] files_found.append(file_and_path_found) else: # Any file inside of the /files/ folder. if DEBUG: print "Found non-log file: {}".format(path_found) # For non-log files, a file version of the file will be generated # due problems of uploading big files through HTTP. This is a temporary fix. zip_filename = File().zip_file(full_path) file_and_path_found = zip_filename.split() + \ path_found.split('/')[:-1] if DEBUG: print file_and_path_found file_and_path_found.insert( 0, full_path.replace(file_name, zip_filename)) if file_and_path_found not in files_found: if DEBUG: print "Appending file found: {}".format(file_and_path_found) files_found.append(file_and_path_found) if DEBUG: print "FullPathFound: {}".format(file_and_path_found) if DEBUG: print "Files Found: {}".format(files_found) return list(files_found) else: if DEBUG: print "Waiting for files to appear..." time.sleep(1) def report(self, template): def filter_dir(unfiltered_dir): if DEBUG: print "Unfiltered dir: {}".format(unfiltered_dir) dir_path = "/".join(unfiltered_dir) if dir_path.startswith('/'): return unfiltered_dir[0] return "/{}".format(dir_path) report_data = {} if os.path.isdir(self.report_path): if DEBUG: print "Sending back results to C&C server..." # Request variables. Generate data on the server. report_data['project_name'] = template.project_name report_data['md5'] = template.md5 report_data['sid'] = template.sid report_data['rid'] = template.rid report_data['tool_name'] = template.tool_name for file_found in self.report_files(self.report_path, template.tool_name): # if DEBUG: print "FileFound: {}".format(file_found) report_data['file_abs_path'] = file_found[0] report_data['file'] = urllib.quote(file_found[1], safe='') report_data['dir'] = filter_dir(file_found[2:]) if DEBUG: print report_data self.report_back(report_data) if DEBUG: print "Done." else: if DEBUG: print "Report Directory ({}) does not exist".format(self.report_path) def report_directory_check(self, vm_report_name): report_path = os.path.join(APP_DATA, vm_report_name) if DEBUG: print report_path if not os.path.isdir(report_path): os.mkdir(report_path) self.report_directory_check() else: REPORT_PATH = report_path class Agent: RETRY_SECS = 1 BUFFER_SIZE = 16384 def __init__(self): self.connection_status = False #### Agent Control Functions #### def start(self): print "Starting Agent..." # Connect to Server self.connect() def stop(self): print "Stopping Agent..." self.disconnect() self.connection_status = False def restart(self): self.stop() self.start() #### Agent Connection Functions #### def check_connection(self): pass # print dir(self._clientsocket) def is_connected(self): if self.connection_status == True: return True return False def send(self, data): print "Sending Data: {}".format(data) try: self._clientsocket.send(data) except: self.reconnect() def listen(self): print "Connected to C&C Template Server. Waiting for instructions..." try: while True: # Keeps running receiving data. Once received # it its automatically un-serialized and converted # into an Python dictionary object. serialized_data = pickle.loads(self._clientsocket.recv(self.BUFFER_SIZE)) template_data = box.Box(serialized_data) # TemplateManager decomposes serialized data # and take actions to execute the selected program TemplateManager(template_data) print "Sending back to C&C => OK status" self.send('ok') except socket.error as e: print "Server disconnection: {}".format(e) self.reconnect() except EOFError as e: print "Server disconnection...".format(e) self.reconnect() else: # If template data was received correctly, then acknowledge. self.send('skip') def connect(self): # Make the connection to the server print "Connecting to C&C Template Server: {}:{}".format(BPH_TEMPLATE_SERVER_IP, BPH_TEMPLATE_SERVER_PORT) try: # Initialize Socket & connect back to server. self._clientsocket = socket.socket() self._clientsocket.connect((BPH_TEMPLATE_SERVER_IP, BPH_TEMPLATE_SERVER_PORT)) self._clientsocket.setblocking(1) except socket.error: self.reconnect() except KeyboardInterrupt: print "Interrupting execution." sys.exit() else: print "Connection established. " self.connection_status = True self.listen() def disconnect(self): self._clientsocket.close() def reconnect(self): print "Reconnecting...." if DEBUG: print "Connection Error. Server down? Attempting connection in: ({}) seconds".format(self.RETRY_SECS) time.sleep(self.RETRY_SECS) if DEBUG: print "Attempting now..." self.connect() if __name__ == "__main__": agent = Agent() try: agent.start() while True: # agent.check_connection() if not agent.is_connected(): # If agent stops. Start it again. agent.start() except KeyboardInterrupt: print "Manual interruption. Bye!" sys.exit()
2.34375
2
python/src/learn/lstmSequence.py
kakaba2009/MachineLearning
0
11387
# LSTM with Variable Length Input Sequences to One Character Output import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils from keras.preprocessing.sequence import pad_sequences from theano.tensor.shared_randomstreams import RandomStreams # fix random seed for reproducibility numpy.random.seed(7) # define the raw dataset alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # create mapping of characters to integers (0-25) and the reverse char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) # prepare the dataset of input to output pairs encoded as integers num_inputs = 16 max_len = 5 dataX = [] dataY = [] for i in range(num_inputs): start = numpy.random.randint(len(alphabet)-2) end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1)) sequence_in = alphabet[start:end+1] sequence_out = alphabet[end + 1] dataX.append([char_to_int[char] for char in sequence_in]) dataY.append(char_to_int[sequence_out]) print( sequence_in, '->', sequence_out ) # convert list of lists to array and pad sequences if needed X = pad_sequences(dataX, maxlen=max_len, dtype='float32') # reshape X to be [samples, time steps, features] X = numpy.reshape(X, (X.shape[0], max_len, 1)) # normalize X = X / float(len(alphabet)) # one hot encode the output variable y = np_utils.to_categorical(dataY) # create and fit the model batch_size = 1 model = Sequential() model.add(LSTM(16, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) for i in range(1): model.fit(X, y, nb_epoch=1, batch_size=batch_size, verbose=2, shuffle=False) model.reset_states() # summarize performance of the model scores = model.evaluate(X, y, batch_size=batch_size, verbose=0) model.reset_states() print("Model Accuracy: %.2f%%" % (scores[1]*100)) # demonstrate some model predictions for i in range(1): pattern_index = numpy.random.randint(len(dataX)) pattern = dataX[pattern_index] x = pad_sequences([pattern], maxlen=max_len, dtype='float32') x = numpy.reshape(x, (1, max_len, 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print( seq_in, "->", result )
2.9375
3
DATA/prediction/direction/pred_script.py
korcsmarosgroup/ARN2DataBase
0
11388
""" Direction prediction based on learning dataset from reactome PPI direction calculated from domain interaction directions """ # Imports import sqlite3, csv, os import pandas as pd import logging import pickle # # Initiating logger # logger = logging.getLogger() # handler = logging.FileHandler('../../workflow/SLK3.log') # logger.setLevel(logging.DEBUG) # handler.setLevel(logging.DEBUG) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # handler.setFormatter(formatter) # logger.addHandler(handler) class DirScore: def __init__(self): # Defining constants self.REACTOME_DB = '../../SLKlib/mapper/protein/output/reactome_mapped.db' self.PFAM_FILE = ['../prediction/direction/files/uniprot-pfam_human.tab', '../prediction/direction/files/uniprot-pfam_drosi.tab', '../prediction/direction/files/uniprot-pfam_danio.tab', '../prediction/direction/files/uniprot-pfam_celegans.tab'] logging.basicConfig(level=logging.DEBUG) self.pfam_dict = {} self.dir_score_dict = {} # Adding the two output dictionaries of test_score function to a pickle files # so that the next function can access them inbetween script executions # TODO: remove pickle files after each run self.PICKLE_FILE = 'dir_score.pickle' if os.path.isfile(self.PICKLE_FILE): self.pfam_dict, self.dir_score_dict = pickle.load(open(self.PICKLE_FILE, 'rb')) else: self.test_scores() pickle.dump((self.pfam_dict, self.dir_score_dict), open(self.PICKLE_FILE, 'wb')) def test_scores(self): # Setting as global so next script can access it df_all = pd.DataFrame(columns=['a_dom', 'b_dom']) conn = sqlite3.connect(self.REACTOME_DB) # Setting up learning data set logging.debug("Started connection to reactome dataset") for inpfam in self.PFAM_FILE: with open(inpfam) as infile: infile.readline() for line in infile: line = line.strip().split('\t') if len(line) == 4: self.pfam_dict[line[0]] = line[3].split(';')[0:-1] with conn: c = conn.cursor() counter = 0 # Getting PPI data logging.debug('Getting PPI data') c.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM edge") while True: row = c.fetchone() counter += 1 if row is None: break else: a_node = row[0].split(':')[1] b_node = row[1].split(':')[1] if a_node not in self.pfam_dict or b_node not in self.pfam_dict: continue int_list = [self.pfam_dict[a_node], self.pfam_dict[b_node]] for id1, id2 in zip(int_list[0], int_list[1]): # Setting up dataframe for all domain-domain interactions # len(df_all) sets the name of the line df_all = df_all.set_value(len(df_all), col=['a_dom', 'b_dom'], value=[id1, id2]) # All domains in a dataframe, without direction all_domain_df = df_all['a_dom'].append(df_all['b_dom']).reset_index(name='domain') all_count = all_domain_df.groupby('domain').size().reset_index(name='counter') # Getting probability of each domain # Number of domain occurrence / Number of all domains logging.debug('Getting probability of each domain') prob_dom = {} # Number of all domain occurrences total_occurrence = all_count['counter'].sum() # Iterating over domains for index, domain in all_count['domain'].iteritems(): dom_count = all_count.loc[all_count['domain'] == domain, 'counter'].iloc[0] P_domain = dom_count / total_occurrence # Adding data into a dictionary prob_dom[domain] = P_domain #print(domain, P_domain) # Getting directed domain-domain interaction probabilities # Number of directed DDI / number of all DDIs logging.debug('Getting DDI probabilities') prob_inter = {} # Getting the occurrences for each directed interaction all_inter_counted = df_all.groupby(['a_dom', 'b_dom']).size().reset_index(name='counter') all_inter_counter = all_inter_counted['counter'].sum() # Iterating over interactions for index2, count in all_inter_counted['counter'].iteritems(): P_inter = count / all_inter_counter # Getting domain ids a_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'a_dom'].iloc[0] b_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'b_dom'].iloc[0] # Adding the into a dictionary prob_inter['->'.join((a_dom, b_dom))] = P_inter # Calculating direction score # (P_AtoB - P_BtoA) / P_A * P_B logging.debug('Calculating direction scores') for key in prob_inter.keys(): a = key.split('->')[0] b = key.split('->')[1] other_dir = '->'.join((b, a)) if other_dir in prob_inter.keys(): dir_score = (prob_inter[key] - prob_inter[other_dir]) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score else: dir_score = (prob_inter[key] - 0) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score #print(key, dir_score) #return self.dir_score_dict, self.pfam_dict # LAYER 3 def apply_to_db(self): #logger.debug(self.pfam_dict) #logger.debug(self.dir_score_dict) conn2 = sqlite3.connect('SLK3_layers.db') # logger.debug("Connected to '%s" % conn2) with conn2: c2 = conn2.cursor() c22 = conn2.cursor() c2.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM ATG_Reg") while True: row = c2.fetchone() if row is None: break else: prot_a = row[0].split(':')[1] prot_b = row[1].split(':')[1] dir_score_sum = 0 # Summing DDI scores #logging.debug('Summing DDI scores') if prot_a in self.pfam_dict.keys() and prot_b in self.pfam_dict.keys(): for dom_a, dom_b in zip(self.pfam_dict[prot_a], self.pfam_dict[prot_b]): #print(dir_score_dict['->'.join((dom_a, dom_b))]) if '->'.join((dom_a, dom_b)) in self.dir_score_dict.keys(): dir_score_sum += self.dir_score_dict['->'.join((dom_a, dom_b))] # To get final direction score of the unknown PPIs we calculate # the average of each proteins' all domain interaction scores if len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b]) == 0: logging.debug(prot_a, len(self.pfam_dict[prot_a]), prot_b, len(self.pfam_dict[prot_b])) continue else: dir_score_final_PPI = dir_score_sum / (len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b])) #logging.debug("Updating scores") c22.execute("UPDATE ATG_Reg SET confidence_scores = '%s' " "WHERE ATG_Reg.interactor_a_node_name = '%s' AND ATG_Reg.interactor_b_node_name = '%s'" % ('|dir_pred:' + str(dir_score_final_PPI), row[0], row[1])) if __name__ == '__main__': test = DirScore() logger.debug('Creating test set') test.test_scores() logger.debug('Adding scores to dataset') test.apply_to_db() logger.debug('Direction prediction done')
2.296875
2
src/main.py
vcodrins/json_to_folder
0
11389
import json import os.path import sys from exceptions import * from create_folder_structure import create_folder_structure def main(): try: if len(sys.argv) != 3: raise InvalidArgumentCount if not os.path.exists(sys.argv[2]): raise InvalidFilePath if not os.path.exists(sys.argv[1]): raise InvalidFolderPath try: json_object = json.load(open(sys.argv[2])) except ValueError: raise InvalidJsonFile output_folder = sys.argv[1] create_folder_structure(output_folder, json_object) except InvalidArgumentCount: print(""" Invalid number of arguments Please make sure to use quotes for outputFolder and jsonFile if path includes spaces Valid paths may be: "file.json" "./file.json" "folder/file.json" "./folder/file.json" "absolute/path/to/file.json" Usage: main.py "<outputFolder>" "<jsonFile>" """) except InvalidFolderPath: print(""" Output folder does not exist """) except InvalidFilePath: print(""" Input json file does not exist """) except InvalidJsonFile: print(""" Input json file is invalid """) main()
3.703125
4
app/conftest.py
hbyyy/newsmailing
0
11390
<gh_stars>0 from datetime import timedelta import pytest from model_bakery import baker @pytest.fixture() def create_expire_user(): def make_user(**kwargs): user = baker.make('members.User') user.created -= timedelta(days=4) return user return make_user
2.078125
2
src/SecurityDecorator.py
JanCwik/SoftwarePraktikum
7
11391
from flask import request from google.auth.transport import requests import google.oauth2.id_token from server.ApplikationsAdministration import ApplikationsAdministration #Benutzer.py, BenutzerMapper + BenutzerMethoden in ApplikationsAdministration def secured(function): """Decorator zur Google Firebase-basierten Authentifizierung von Benutzern Da es sich bei diesem System um eine basale Fallstudie zu Lehrzwecken handelt, wurde hier bewusst auf ein ausgefeiltes Berechtigungskonzept verzichtet. Vielmehr soll dieses Decorator einen Weg aufzeigen, wie man technisch mit vertretbarem Aufwand in eine Authentifizierung einsteigen kann. POLICY: Die hier demonstrierte Policy ist, dass jeder, der einen durch Firebase akzeptierten Account besitzt, sich an diesem System anmelden kann. Bei jeder Anmeldung werden Klarname, Mail-Adresse sowie die Google User ID in unserem System gespeichert bzw. geupdated. Auf diese Weise könnte dann für eine Erweiterung des Systems auf jene Daten zurückgegriffen werden. """ firebase_request_adapter = requests.Request() def wrapper(*args, **kwargs): # Verify Firebase auth. id_token = request.cookies.get("token") error_message = None claims = None objects = None if id_token: try: # Verify the token against the Firebase Auth API. This example # verifies the token on each page load. For improved performance, # some applications may wish to cache results in an encrypted # session store (see for instance # http://flask.pocoo.org/docs/1.0/quickstart/#sessions). claims = google.oauth2.id_token.verify_firebase_token( id_token, firebase_request_adapter) if claims is not None: adm = ApplikationsAdministration() google_user_id = claims.get("user_id") email = claims.get("email") name = claims.get("name") user = adm.get_user_by_google_user_id(google_user_id) # Benennen wie in ApplikationsAdministration if user is not None: """Fall: Der Benutzer ist unserem System bereits bekannt. Wir gehen davon aus, dass die google_user_id sich nicht ändert. Wohl aber können sich der zugehörige Klarname (name) und die E-Mail-Adresse ändern. Daher werden diese beiden Daten sicherheitshalber in unserem System geupdated.""" user.set_name(name) user.set_email(email) adm.update_benutzer(user) #set_name und set_email benennen wie in Benutzer.py #adm.save-user benennen wie in ApplikationsAdministration.py else: """Fall: Der Benutzer war bislang noch nicht eingelogged. Wir legen daher ein neues User-Objekt an, um dieses ggf. später nutzen zu können. """ user = adm.benutzer_anlegen(name, email, google_user_id) #Benennen wie in ApplikationsAdministration print(request.method, request.path, "angefragt durch:", name, email) objects = function(*args, **kwargs) return objects else: return '', 401 # UNAUTHORIZED !!! except ValueError as exc: # This will be raised if the token is expired or any other # verification checks fail. error_message = str(exc) return exc, 401 # UNAUTHORIZED !!! return '', 401 # UNAUTHORIZED !!! return wrapper
2.9375
3
code/django18/django18/newsletter/forms.py
dvl/celerytalk
0
11392
<reponame>dvl/celerytalk # -*- coding: utf-8 -*- from __future__ import unicode_literals from django import forms class NewsletterForm(forms.Form): assunto = forms.CharField() mensagem = forms.CharField(widget=forms.Textarea)
1.828125
2
RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Fall17_noIso_V1_cff.py
ckamtsikis/cmssw
852
11393
import FWCore.ParameterSet.Config as cms from RecoEgamma.ElectronIdentification.Identification.mvaElectronID_tools import * # Documentation of the MVA # https://twiki.cern.ch/twiki/bin/viewauth/CMS/MultivariateElectronIdentificationRun2 # https://rembserj.web.cern.ch/rembserj/notes/Electron_MVA_ID_2017_documentation # # In this file we define the locations of the MVA weights, cuts on the MVA values # for specific working points, and configure those cuts in VID # # The tag is an extra string attached to the names of the products # such as ValueMaps that needs to distinguish cases when the same MVA estimator # class is used with different tuning/weights mvaTag = "Fall17NoIsoV1" # There are 6 categories in this MVA. They have to be configured in this strict order # (cuts and weight files order): # 0 EB1 (eta<0.8) pt 5-10 GeV | pt < ptSplit && |eta| < ebSplit # 1 EB2 (eta>=0.8) pt 5-10 GeV | pt < ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 2 EE pt 5-10 GeV | pt < ptSplit && |eta| >= ebeeSplit # 3 EB1 (eta<0.8) pt 10-inf GeV | pt >= ptSplit && |eta| < ebSplit # 4 EB2 (eta>=0.8) pt 10-inf GeV | pt >= ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 5 EE pt 10-inf GeV | pt >= ptSplit && |eta| >= ebeeSplit mvaFall17WeightFiles_V1 = cms.vstring( "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz" ) ## The working point for this MVA that is expected to have about 90% signal # WP tuned to give about 90 and 80% signal efficiecny for electrons from Drell-Yan with pT > 25 GeV # The working point for the low pt categories is just taken over from the high pt idName90 = "mvaEleID-Fall17-noIso-V1-wp90" MVA_WP90 = EleMVA_WP( idName = idName90, mvaTag = mvaTag, cutCategory0 = "0.9165112826974601 - exp(-pt / 2.7381703555094217) * 1.03549199648109", # EB1 low pt cutCategory1 = "0.8655738322220173 - exp(-pt / 2.4027944652597073) * 0.7975615613282494", # EB2 low pt cutCategory2 = "-3016.035055227131 - exp(-pt / -52140.61856333602) * -3016.3029387236506", # EE low pt cutCategory3 = "0.9616542816132922 - exp(-pt / 8.757943837889817) * 3.1390200321591206", # EB1 cutCategory4 = "0.9319258011430132 - exp(-pt / 8.846057432565809) * 3.5985063793347787", # EB2 cutCategory5 = "0.8899260780999244 - exp(-pt / 10.124234115859881) * 4.352791250718547", # EE ) idName80 = "mvaEleID-Fall17-noIso-V1-wp80" MVA_WP80 = EleMVA_WP( idName = idName80, mvaTag = mvaTag, cutCategory0 = "0.9530240956555949 - exp(-pt / 2.7591425841003647) * 0.4669644718545271", # EB1 low pt cutCategory1 = "0.9336564763961019 - exp(-pt / 2.709276284272272) * 0.33512286599215946", # EB2 low pt cutCategory2 = "0.9313133688365339 - exp(-pt / 1.5821934800715558) * 3.8889462619659265", # EE low pt cutCategory3 = "0.9825268564943458 - exp(-pt / 8.702601455860762) * 1.1974861596609097", # EB1 cutCategory4 = "0.9727509457929913 - exp(-pt / 8.179525631018565) * 1.7111755094657688", # EB2 cutCategory5 = "0.9562619539540145 - exp(-pt / 8.109845366281608) * 3.013927699126942", # EE ) ### WP tuned for HZZ analysis with very high efficiency (about 98%) # The working points were found by requiring the same signal efficiencies in # each category as for the Spring 16 HZZ ID # (see RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Spring16_HZZ_V1_cff.py) idNamewpLoose = "mvaEleID-Fall17-noIso-V1-wpLoose" MVA_WPLoose = EleMVA_WP( idName = idNamewpLoose, mvaTag = mvaTag, cutCategory0 = "-0.13285867293779202", # EB1 low pt cutCategory1 = "-0.31765300958836074", # EB2 low pt cutCategory2 = "-0.0799205914718861" , # EE low pt cutCategory3 = "-0.856871961305474" , # EB1 cutCategory4 = "-0.8107642141584835" , # EB2 cutCategory5 = "-0.7179265933023059" # EE ) # # Finally, set up VID configuration for all cuts # # Create the PSet that will be fed to the MVA value map producer mvaEleID_Fall17_noIso_V1_producer_config = cms.PSet( mvaName = cms.string(mvaClassName), mvaTag = cms.string(mvaTag), # Category parameters nCategories = cms.int32(6), categoryCuts = cms.vstring(*EleMVA_6CategoriesCuts), # Weight files and variable definitions weightFileNames = mvaFall17WeightFiles_V1, variableDefinition = cms.string("RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt") ) # Create the VPset's for VID cuts mvaEleID_Fall17_V1_wpLoose = configureVIDMVAEleID( MVA_WPLoose ) mvaEleID_Fall17_V1_wp90 = configureVIDMVAEleID( MVA_WP90 ) mvaEleID_Fall17_V1_wp80 = configureVIDMVAEleID( MVA_WP80 ) mvaEleID_Fall17_V1_wpLoose.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp90.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp80.isPOGApproved = cms.untracked.bool(True)
1.75
2
dqn_plus/notebooks/code/train_ram.py
hadleyhzy34/reinforcement_learning
0
11394
<reponame>hadleyhzy34/reinforcement_learning<gh_stars>0 import numpy as np import gym from utils import * from agent import * from config import * def train(env, agent, num_episode, eps_init, eps_decay, eps_min, max_t): rewards_log = [] average_log = [] eps = eps_init for i in range(1, 1 + num_episode): episodic_reward = 0 done = False state = env.reset() t = 0 while not done and t < max_t: t += 1 state = state.reshape(1, -1) action = agent.act(state, eps) next_state, reward, done, _ = env.step(action) agent.memory.remember(state, action, reward, next_state, done) if t % 4 == 0 and len(agent.memory) >= agent.bs: agent.learn() agent.soft_update(agent.tau) state = next_state.copy() episodic_reward += reward rewards_log.append(episodic_reward) average_log.append(np.mean(rewards_log[-100:])) print('\rEpisode {}, Reward {:.3f}, Average Reward {:.3f}'.format(i, episodic_reward, average_log[-1]), end='') if i % 100 == 0: print() eps = max(eps * eps_decay, eps_min) return rewards_log, average_log if __name__ == '__main__': env = gym.make(RAM_ENV_NAME) agent = Agent(env.observation_space.shape[0], env.action_space.n, BATCH_SIZE, LEARNING_RATE, TAU, GAMMA, DEVICE, False, DUEL, DOUBLE, PRIORITIZED) rewards_log, _ = train(env, agent, RAM_NUM_EPISODE, EPS_INIT, EPS_DECAY, EPS_MIN, MAX_T) np.save('{}_rewards.npy'.format(RAM_ENV_NAME), rewards_log) agent.Q_local.to('cpu') torch.save(agent.Q_local.state_dict(), '{}_weights.pth'.format(RAM_ENV_NAME))
2.5625
3
tools/parallel_launcher/parallel_launcher.py
Gitman1989/chromium
2
11395
#!/usr/bin/python # Copyright (c) 2010 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ This tool launches several shards of a gtest-based binary in parallel on a local machine. Example usage: parallel_launcher.py path/to/base_unittests """ import optparse import os import subprocess import sys import threading import time def StreamCopyWindows(stream_from, stream_to): """Copies stream_from to stream_to.""" while True: buf = stream_from.read(1024) if not buf: break stream_to.write(buf) stream_to.flush() def StreamCopyPosix(stream_from, stream_to, child_exited): """ Copies stream_from to stream_to, and exits if child_exited is signaled. """ import fcntl # Put the source stream in a non-blocking mode, so we can check # child_exited when there is no data. fd = stream_from.fileno() fl = fcntl.fcntl(fd, fcntl.F_GETFL) fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK) while True: try: buf = os.read(fd, 1024) except OSError, e: if e.errno == 11: if child_exited.isSet(): break time.sleep(0.1) continue raise if not buf: break stream_to.write(buf) stream_to.flush() class TestLauncher(object): def __init__(self, args, executable, num_shards, shard): self._args = args self._executable = executable self._num_shards = num_shards self._shard = shard self._test = None def launch(self): env = os.environ.copy() env['CHROME_LOG_FILE'] = 'chrome_log_%d' % self._shard if 'GTEST_TOTAL_SHARDS' in env: # Handle the requested sharding transparently. outer_shards = int(env['GTEST_TOTAL_SHARDS']) outer_index = int(env['GTEST_SHARD_INDEX']) env['GTEST_TOTAL_SHARDS'] = str(self._num_shards * outer_shards) # Calculate the right shard index to pass to the child. This is going # to be a shard of a shard. env['GTEST_SHARD_INDEX'] = str((self._num_shards * outer_index) + self._shard) else: env['GTEST_TOTAL_SHARDS'] = str(self._num_shards) env['GTEST_SHARD_INDEX'] = str(self._shard) args = self._args + ['--test-server-shard=' + str(self._shard)] self._test = subprocess.Popen(args=args, executable=self._executable, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env) def wait(self): if subprocess.mswindows: stdout_thread = threading.Thread( target=StreamCopyWindows, args=[self._test.stdout, sys.stdout]) stdout_thread.start() code = self._test.wait() stdout_thread.join() return code else: child_exited = threading.Event() stdout_thread = threading.Thread( target=StreamCopyPosix, args=[self._test.stdout, sys.stdout, child_exited]) stdout_thread.start() code = self._test.wait() child_exited.set() stdout_thread.join() return code def main(argv): parser = optparse.OptionParser() parser.add_option("--shards", type="int", dest="shards", default=10) # Make it possible to pass options to the launched process. # Options for parallel_launcher should be first, then the binary path, # and finally - optional arguments for the launched binary. parser.disable_interspersed_args() options, args = parser.parse_args(argv) if not args: print 'You must provide path to the test binary' return 1 env = os.environ if bool('GTEST_TOTAL_SHARDS' in env) != bool('GTEST_SHARD_INDEX' in env): print 'Inconsistent environment. GTEST_TOTAL_SHARDS and GTEST_SHARD_INDEX' print 'should either be both defined, or both undefined.' return 1 launchers = [] for shard in range(options.shards): launcher = TestLauncher(args, args[0], options.shards, shard) launcher.launch() launchers.append(launcher) return_code = 0 for launcher in launchers: if launcher.wait() != 0: return_code = 1 return return_code if __name__ == "__main__": sys.exit(main(sys.argv[1:]))
2.46875
2
05_Practice1/Step06/yj.py
StudyForCoding/BEAKJOON
0
11396
a = int(input()) for i in range(a): print('* '*(a-a//2)) print(' *'*(a//2))
3.53125
4
greydot/errors.py
TralahM/greydot-api
0
11397
<gh_stars>0 class NoMessageRecipients(Exception): """ Raised when Message Recipients are not specified. """ pass class InvalidAmount(Exception): """ Raised when an invalid currency amount is specified """ pass
1.757813
2
ginga/util/dp.py
kyraikeda/ginga
76
11398
<gh_stars>10-100 # # dp.py -- Data pipeline and reduction routines # # This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. # import numpy as np from collections import OrderedDict from ginga import AstroImage, colors from ginga.RGBImage import RGBImage from ginga.util import wcs # counter used to name anonymous images prefixes = dict(dp=0) def get_image_name(image, pfx='dp'): global prefixes name = image.get('name', None) if name is None: if pfx not in prefixes: prefixes[pfx] = 0 name = '{0}{1:d}'.format(pfx, prefixes[pfx]) prefixes[pfx] += 1 image.set(name=name) return name def make_image(data_np, oldimage, header, pfx='dp'): # Prepare a new image with the numpy array as data image = AstroImage.AstroImage() image.set_data(data_np) # Set the header to be the old image header updated # with items from the new header oldhdr = oldimage.get_header() oldhdr.update(header) image.update_keywords(oldhdr) # give the image a name get_image_name(image, pfx=pfx) return image def create_blank_image(ra_deg, dec_deg, fov_deg, px_scale, rot_deg, cdbase=[1, 1], dtype=None, logger=None, pfx='dp', mmap_path=None, mmap_mode='w+'): # ra and dec in traditional format ra_txt = wcs.raDegToString(ra_deg, format='%02d:%02d:%06.3f') dec_txt = wcs.decDegToString(dec_deg, format='%s%02d:%02d:%05.2f') if np.isscalar(px_scale): px_wd_scale, px_ht_scale = (px_scale, px_scale) else: px_wd_scale, px_ht_scale = px_scale # Create an empty image if np.isscalar(fov_deg): fov_wd_deg, fov_ht_deg = (fov_deg, fov_deg) else: fov_wd_deg, fov_ht_deg = fov_deg width = int(round(fov_wd_deg / px_wd_scale)) height = int(round(fov_ht_deg / px_ht_scale)) # round to an even size if width % 2 != 0: width += 1 if height % 2 != 0: height += 1 if dtype is None: dtype = np.float32 if mmap_path is None: data = np.zeros((height, width), dtype=dtype) else: data = np.memmap(mmap_path, dtype=dtype, mode=mmap_mode, shape=(height, width)) crpix1 = float(width // 2) crpix2 = float(height // 2) header = OrderedDict((('SIMPLE', True), ('BITPIX', -32), ('EXTEND', True), ('NAXIS', 2), ('NAXIS1', width), ('NAXIS2', height), ('RA', ra_txt), ('DEC', dec_txt), ('EQUINOX', 2000.0), ('OBJECT', 'MOSAIC'), ('LONPOLE', 180.0), )) # Add basic WCS keywords wcshdr = wcs.simple_wcs(crpix1, crpix2, ra_deg, dec_deg, (px_wd_scale, px_ht_scale), rot_deg, cdbase=cdbase) header.update(wcshdr) # Create image container image = AstroImage.AstroImage(data, logger=logger) image.update_keywords(header) # give the image a name get_image_name(image, pfx=pfx) return image def recycle_image(image, ra_deg, dec_deg, fov_deg, px_scale, rot_deg, cdbase=[1, 1], logger=None, pfx='dp'): # ra and dec in traditional format ra_txt = wcs.raDegToString(ra_deg, format='%02d:%02d:%06.3f') dec_txt = wcs.decDegToString(dec_deg, format='%s%02d:%02d:%05.2f') header = image.get_header() pointing = OrderedDict((('RA', ra_txt), ('DEC', dec_txt), )) header.update(pointing) # Update WCS keywords and internal wcs objects wd, ht = image.get_size() crpix1 = wd // 2 crpix2 = ht // 2 wcshdr = wcs.simple_wcs(crpix1, crpix2, ra_deg, dec_deg, px_scale, rot_deg, cdbase=cdbase) header.update(wcshdr) # this should update the wcs image.update_keywords(header) # zero out data array data = image.get_data() data.fill(0) ## # Create new image container sharing same data ## new_image = AstroImage.AstroImage(data, logger=logger) ## new_image.update_keywords(header) ## # give the image a name ## get_image_name(new_image, pfx=pfx) new_image = image return new_image def make_flat(imglist, bias=None): flats = [image.get_data() for image in imglist] flatarr = np.array(flats) # Take the median of the individual frames flat = np.median(flatarr, axis=0) # Normalize flat # mean or median? #norm = np.mean(flat.flat) norm = np.median(flat.flat) flat = flat / norm # no zero divisors flat[flat == 0.0] = 1.0 img_flat = make_image(flat, imglist[0], {}, pfx='flat') return img_flat def make_bias(imglist): biases = [image.get_data() for image in imglist] biasarr = np.array(biases) # Take the median of the individual frames bias = np.median(biasarr, axis=0) img_bias = make_image(bias, imglist[0], {}, pfx='bias') return img_bias def add(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np + data2_np image = make_image(result, image1, {}, pfx='add') return image def subtract(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np - data2_np image = make_image(result, image1, {}, pfx='sub') return image def divide(image1, image2): data1_np = image1.get_data() data2_np = image2.get_data() result = data1_np / data2_np image = make_image(result, image1, {}, pfx='div') return image # https://gist.github.com/stscieisenhamer/25bf6287c2c724cb9cc7 def masktorgb(mask, color='lightgreen', alpha=1.0): """Convert boolean mask to RGB image object for canvas overlay. Parameters ---------- mask : ndarray Boolean mask to overlay. 2D image only. color : str Color name accepted by Ginga. alpha : float Opacity. Unmasked data are always transparent. Returns ------- rgbobj : RGBImage RGB image for canvas Image object. Raises ------ ValueError Invalid mask dimension. """ mask = np.asarray(mask) if mask.ndim != 2: raise ValueError('ndim={0} is not supported'.format(mask.ndim)) ht, wd = mask.shape r, g, b = colors.lookup_color(color) rgbobj = RGBImage(data_np=np.zeros((ht, wd, 4), dtype=np.uint8)) rc = rgbobj.get_slice('R') gc = rgbobj.get_slice('G') bc = rgbobj.get_slice('B') ac = rgbobj.get_slice('A') ac[:] = 0 # Transparent background rc[mask] = int(r * 255) gc[mask] = int(g * 255) bc[mask] = int(b * 255) ac[mask] = int(alpha * 255) # For debugging #rgbobj.save_as_file('ztmp_rgbobj.png') return rgbobj def split_n(lst, sz): n = len(lst) k, m = n // sz, n % sz return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(sz)] # END
2.546875
3
jigsaw/datasets/datasets.py
alexvishnevskiy/jigsaw
0
11399
<gh_stars>0 from torch.utils.data import Dataset from ..utils.optimal_lenght import find_optimal_lenght class PairedDataset(Dataset): def __init__( self, df, cfg, tokenizer, more_toxic_col='more_toxic', less_toxic_col='less_toxic' ): self.df = df self.cfg = cfg self.tokenizer = tokenizer self.more_toxic = df[more_toxic_col].values self.less_toxic = df[less_toxic_col].values self.more_toxic_max_lenght = find_optimal_lenght( df, tokenizer, more_toxic_col, cfg.max_length ) self.less_toxic_max_lenght = find_optimal_lenght( df, tokenizer, less_toxic_col, cfg.max_length ) def __len__(self): return len(self.df) def __getitem__(self, index): more_toxic = self.more_toxic[index] less_toxic = self.less_toxic[index] inputs_more_toxic = self.tokenizer.encode_plus( more_toxic, truncation=True, max_length=self.more_toxic_max_lenght, add_special_tokens=True, ) inputs_less_toxic = self.tokenizer.encode_plus( less_toxic, truncation=True, max_length=self.less_toxic_max_lenght, add_special_tokens=True, ) target = 1 more_toxic_ids = inputs_more_toxic['input_ids'] more_toxic_mask = inputs_more_toxic['attention_mask'] less_toxic_ids = inputs_less_toxic['input_ids'] less_toxic_mask = inputs_less_toxic['attention_mask'] return { 'more_toxic_ids': more_toxic_ids, 'more_toxic_mask': more_toxic_mask, 'less_toxic_ids': less_toxic_ids, 'less_toxic_mask': less_toxic_mask, 'target': target } class RegressionDataset(Dataset): def __init__(self, df, cfg, tokenizer, text_col, target_col = None): self.df = df self.cfg = cfg self.tokenizer = tokenizer self.X = df[text_col].values self.target_col = target_col self.max_lenght = find_optimal_lenght( df, tokenizer, text_col, cfg.max_length ) if target_col is not None: self.y = df[target_col].values def __len__(self): return len(self.df) def __getitem__(self, index): text = self.X[index] if self.target_col is not None: target = self.y[index] inputs = self.tokenizer.encode_plus( text, truncation=True, max_length=self.max_lenght, add_special_tokens=True, ) ids = inputs['input_ids'] mask = inputs['attention_mask'] if self.target_col is not None: return { 'input_ids': ids, 'attention_mask': mask, 'target': target } else: return { 'input_ids': ids, 'attention_mask': mask }
2.375
2