max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
packaging/pack1/andrew_mod1.py
AndreiHondrari/python_exploration
3
11400
<reponame>AndreiHondrari/python_exploration<gh_stars>1-10 def something() -> None: print("Andrew says: `something`.")
2.15625
2
app/api/v2/views/blacklist.py
MaggieChege/STORE-MANAGER-API-V2
0
11401
blacklist=set() def get_blacklist(): return blacklist def add_to_blacklist(jti): return blacklist.add(jti)
1.789063
2
apps/tasks/api/views.py
dayvidemerson/django-rest-example
0
11402
<gh_stars>0 from rest_framework import viewsets from rest_framework import generics from ..models import Task from .serializers import TaskSerializer class TaskViewSet(viewsets.ModelViewSet): serializer_class = TaskSerializer queryset = Task.objects.all()
1.71875
2
jarvis/__init__.py
jduncan8142/JARVIS
0
11403
__version__ = "0.0.3" __author__ = "<NAME>" __support__ = "<EMAIL>"
1.039063
1
src/figcli/test/cli/action.py
figtools/figgy-cli
36
11404
from typing import Union, List import pexpect from figcli.utils.utils import Utils import sys class FiggyAction: """ Actions prevent cyclic dependencies, and are designed for leveraging FiggyCli for cleanup steps when running inside of tests. """ def __init__(self, command, extra_args=""): self.c = Utils.default_colors() self.command = command self.extra_args = extra_args self._child = self.spawn(command) print(f"{self.c.fg_yl}Executing action: {self._child.args}{self.c.rs}") self._child.logfile = sys.stdout self._child.delaybeforesend = .5 def spawn(self, command: str): return pexpect.spawn(command, timeout=10, encoding='utf-8') def expect_multiple(self, regexes: List[str]): print(f'Expecting: {regexes}') return self._child.expect(regexes) def expect(self, regex: Union[List[str], str], retry=True): print(f'Expecting: {regex}') expect_list = [regex] + [pexpect.TIMEOUT] if isinstance(regex, str) else regex + [pexpect.TIMEOUT] result = self._child.expect(expect_list) if result == len(expect_list) - 1 and retry: self.alert(f"EXPECT FAILED: {regex} initiating retry!") self._child = self.spawn(self.command) return self.expect(regex, retry=False) else: return result def sendline(self, line: str): print(f'Sending: {line}') self._child.sendline(line) def wait(self): self._child.wait() def alert(self, msg: str): print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}") print(f"{self.c.fg_rd} ALERT: {msg}{self.c.rs}") print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}")
2.28125
2
test/python/test_elementwise_ops.py
avijit-chakroborty/ngraph-bridge
142
11405
<reponame>avijit-chakroborty/ngraph-bridge # ============================================================================== # Copyright 2018-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """nGraph TensorFlow bridge elementwise operations test """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pytest import numpy as np import tensorflow as tf tf.compat.v1.disable_eager_execution() from common import NgraphTest class TestElementwiseOperations(NgraphTest): @pytest.mark.parametrize(("v1", "v2", "expected"), ((1.0, -1.0, [1.0]), (100, 200, ([200],)), ([0.0, 5.0, 10.0], [6.0], (np.array([[6.0, 6.0, 10.0]]),)))) def test_maximum(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.maximum(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [False]), (-1.0, -1.0, ([True],)), (-1.0, 1000, [True]), (200, 200, ([True],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[True, False, True]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[True, False, True]]),)))) def test_less_equal(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.less_equal(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [False]), (-1.0, -1.0, ([False],)), (-1.0, 1000, [True]), (200, 200, ([False],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[True, False, False]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[False, False, True]]),)))) def test_less(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.less(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [True]), (-1.0, -1.0, ([True],)), (-1.0, 1000, [False]), (200, 200, ([True],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[False, True, True]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[True, True, False]]),)))) def test_greater_equal(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.greater_equal(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize( ("v1", "v2", "expected"), ((1.4, 1.0, [True]), (-1.0, -1.0, ([False],)), (-1.0, 1000, [False]), (200, 200, ([False],)), ([-1.0, 1.0, -4], [0.1, 0.1, -4], (np.array([[False, True, False]]),)), ([-1.0, 1.0, -4], [-1.0], (np.array([[False, True, False]]),)))) def test_greater(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.float32, shape=(None)) val2 = tf.compat.v1.placeholder(tf.float32, shape=(None)) out = tf.greater(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize(("v1", "v2", "expected"), ((True, True, [True]), (True, False, ([False],)), (1.0, -2.0, ([True],)), (False, 100, ([False],)), ([False, True, False], [True], (np.array([[False, True, False]]),)))) def test_logical_and(self, v1, v2, expected): val1 = tf.compat.v1.placeholder(tf.bool, shape=(None)) val2 = tf.compat.v1.placeholder(tf.bool, shape=(None)) out = tf.logical_and(val1, val2) sess_fn = lambda sess: sess.run((out,), feed_dict={ val1: (v1,), val2: (v2,) })[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() @pytest.mark.parametrize(("test_input", "expected"), ((False, True), (True, False))) def test_logicalnot_1d(self, test_input, expected): val = tf.compat.v1.placeholder(tf.bool, shape=(1,)) out = tf.logical_not(val) sess_fn = lambda sess: sess.run((out,), feed_dict={val: (test_input,)})[ 0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all() def test_logicalnot_2d(self): test_input = ((True, False, True), (False, True, False)) expected = np.logical_not(test_input) val = tf.compat.v1.placeholder(tf.bool, shape=(2, 3)) out = tf.logical_not(val) sess_fn = lambda sess: sess.run((out,), feed_dict={val: test_input})[0] assert (self.with_ngraph(sess_fn) == self.without_ngraph(sess_fn)).all() assert (self.with_ngraph(sess_fn) == expected).all()
1.742188
2
qc/slips.py
mfkiwl/UREGA-qc
0
11406
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>. @mail: <EMAIL> """ # from qc.__version__ import __version__ import georinex as gr import numpy as np from matplotlib.pyplot import figure, show import matplotlib.pyplot as plt obs = gr.load( 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx', # tlim=['2021-11-03T12:00', '2021-11-03T12:30']) tlim=['2021-11-03T05:30', '2021-11-03T07:30']) # tlim=['2021-11-03T15:00', '2021-11-03T18:00']) # hdr = gr.rinexheader( # 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx') # rnx_version = 3 # %% Starting test # Copying helper functions from Multipath class - later on, it could be turned # into a separate class with helper functions # Pick GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # %% # 5:30 to 7:30, G08 and G21 give 2 cycle slips # [290:300] # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') plt.title('Single-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% # Plot all loaded sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() for i in range(0, len(svG)): test = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label=svG[i], linewidth=2.0) #ax.plot(L2test.time, L2test, label='L2', linewidth=0.5) ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% # Plot separate sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() test = obs.sel(sv='E21').dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label='L1', linewidth=2.0) ax.plot(L2test.time, L2test, label='L2', linewidth=1.0) ax.grid() # ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% Dual-frequency Melbourne-Wuebbena testing # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W freq = [1575.42, 1227.60, 1176.45] # L1, L2, L5 for GPS f1 = freq[0]*1e6 f2 = freq[1]*1e6 P1 = sattest['C1C'] P2 = sattest['C2W'] L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L6 = (1/(f1-f2))*(f1*L1 - f2*L2) - (1/(f1+f2))*(f1*P1 + f2*P2) sigma_L6 = np.std(L6) k = 4 # criterion factor criterion = k*sigma_L6 slips_nr = 0 L6_diff = [] for i in range(1, len(L6)): L6_diff.append(np.abs(L6[i] - L6[i-1])) if (np.abs(L6[i] - L6[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L6_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L6') plt.title('Dual-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Work in Progress class Slips: """ Class for cycle slip detection of RINEX files. Provides options for different detection algorithms. Parameters ---------- L1 : TYPE DESCRIPTION. Returns ------- L4 : TYPE DESCRIPTION. """ def __init__(self): pass def slips_MW_single_freq(self, obs): """ Cycle slip detection algorithm 1. Based on Melbourne-Wuebbena, but only on carrier phase data (single-frequency) (from Vaclavovic-Dousa 2016 article) Parameters ---------- obs : TYPE DESCRIPTION. Returns ------- None. """ # Select a list of GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # Melbourne-Wuebbena parameters (predetermined) I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor # For each tracked satellite for i in range(0, len(svG)): current_sat = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1 = current_sat['L1C'] L2 = current_sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for j in range(1, len(L4)): L4_diff.append(np.abs(L4[j] - L4[j-1])) if (np.abs(L4[j] - L4[j-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 print('Sat:', svG[i], ', Slips:', slips_nr, ', Slip criterion:', criterion.values) def plot_slips(self, obs, sat_nr: str): """ Plot cycle slips for one satellite vehicle. Parameters ---------- obs : TYPE DESCRIPTION. sat_nr : str DESCRIPTION. Returns ------- None. """ sat = obs.sel(sv=sat_nr).dropna(dim='time', how='all') I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sat['L1C'] L2 = sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat_nr, linewidth=1.0) # labelfull = 'Slip limit: ', criterion.values plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') show() print('Sat:', sat_nr, ', Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Testing first algorithm sliptest = Slips().slips_MW_single_freq(obs) # %% Testing plot function sliptest = Slips().plot_slips(obs, 'G08')
2.03125
2
tests/test_utils.py
jga/goldfinchsong
0
11407
from collections import OrderedDict from datetime import datetime, timezone import unittest from os.path import join from tinydb import TinyDB, storages from goldfinchsong import utils IMAGE_NAMES = ['goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg', 'goldfinch5.jpg'] TEST_TEXT1 = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' TEST_TEXT2 = 'This is a test of the goldfinchsong project. Tests ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' class LoadContentTests(unittest.TestCase): def test_basic_load(self): image_directory = 'tests/images/' db = TinyDB(storage=storages.MemoryStorage) content = utils.load_content(db, image_directory) full_image_path = content[0] image_file = full_image_path.replace(image_directory, '') status_text = content[1] self.assertTrue(image_file in IMAGE_NAMES) self.assertEqual(image_file.replace('.jpg', ''), status_text) def test_storage_in_db(self): image_directory = 'tests/images/' # let's load a list of tweets into the db db = TinyDB(storage=storages.MemoryStorage) image_names = [ 'goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg' ] for image_name in image_names: delivery_timestamp = datetime.now(tz=timezone.utc).isoformat() tweet = {'image': image_name, 'delivered_on': delivery_timestamp} db.insert(tweet) content = utils.load_content(db, image_directory) self.assertEqual(content[2], 'goldfinch5.jpg') tweets = db.all() self.assertEqual(len(tweets), 4, msg=tweets) class UtilitiesTests(unittest.TestCase): def test_apply_abbreviations(self): text_conversions = { 'abbreviations': 'abbr', 'goldfinchsong': 'gf', 'important': 'impt' } # exhausts all conversions before reaching limit new_text1 = utils.apply_abbreviations(TEST_TEXT1, text_conversions) expected_text1 = 'This is a test of the gf project. This test checks ' \ 'abbr, vowel elision, length checking, and other logic. ' \ 'Tests are impt!' self.assertEqual(expected_text1, new_text1) new_text2 = utils.apply_abbreviations(TEST_TEXT2, text_conversions) self.assertTrue(len(new_text2) <= 117) def test_apply_vowel_elision(self): result_text = utils.apply_vowel_elision(TEST_TEXT1) expected_text = 'This is a tst of the gldfnchsng prjct. Ths tst chcks ' \ 'abbrvtns, vwl elsn, lngth chckng, and othr lgc. Tsts ' \ 'are imprtnt!' self.assertEqual(expected_text, result_text) def test_assemble_elided_status(self): complete_words = ['test', 'a', 'is', 'This'] elided_words = ['systm', 'gldfnch', 'the', 'of'] result = utils.assemble_elided_status(complete_words, elided_words) self.assertEqual('This is a test of the gldfnch systm', result) def test_chop_words(self): result_text = utils.chop_words(TEST_TEXT1) expected_text = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and' self.assertEqual(expected_text, result_text) def test_is_image(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertTrue(utils.is_image_file(image_file)) def test_is_not_image(self): image_files = [ 'image.docx', 'image.pdf', 'image.md', 'image.html', 'image.css', 'image.odt', 'image.sh', 'image.xlsx', 'image.txt', 'image.c', 'image.py', 'image' ] for image_file in image_files: self.assertFalse(utils.is_image_file(image_file)) def test_trim_file_extensions(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertEqual(utils.trim_file_extension(image_file), 'image') def test_to_compact_text(self): text_conversions = { 'abbreviations': 'abbrs', 'goldfinchsong': 'gfnch', 'important': 'importnt' } candidate_text1 = utils.to_compact_text(TEST_TEXT1, 100, text_conversions) expected_text1 = 'Ths is a tst of the gfnch prjct. Ths tst chcks abbrs, ' \ 'vwl elsn, lngth chckng, and othr lgc. Tsts are' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.to_compact_text(TEST_TEXT1, 50, text_conversions) expected_text2 = 'Ths is a tst of the gfnch prjct. Ths tst chcks' self.assertEqual(expected_text2, candidate_text2) candidate_text3 = utils.to_compact_text(TEST_TEXT1, 20, text_conversions) expected_text3 = 'Ths is a tst of the' self.assertEqual(expected_text3, candidate_text3) def test_extract_status_text(self): conversion_data = ( ('abbreviations', 'abbrs'), ('goldfinchsong', 'gfnch'), ('important', 'importnt'), ) text_conversions = OrderedDict(conversion_data) file = 'Some_goldfinchsong_image-file_with_a_very_long_set_of_' \ 'characters_and_abbreviations_that_conveys_important_info.png' candidate_text1 = utils.extract_status_text(file, text_conversions, maximum_length=100,) expected_text1 = 'Some gfnch image-file with a very long set of characters and abbrs that conveys important info' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.extract_status_text(file, text_conversions, maximum_length=70,) expected_text2 = 'Sme gfnch imge-fle wth a vry lng st of chrctrs and abbrs tht cnvys' self.assertEqual(expected_text2, candidate_text2) def test_get_unused_files(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,52): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 49) self.assertEqual(unused_files[0], 'image52.png') self.assertEqual(unused_files[5], 'image57.png') self.assertEqual(unused_files[10], 'image62.png') self.assertEqual(unused_files[15], 'image67.png') self.assertEqual(unused_files[20], 'image72.png') self.assertEqual(unused_files[33], 'image85.png') self.assertEqual(unused_files[48], 'image100.png') def test_db_purge_when_all_posted(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,106): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) self.assertEqual(len(db.all()), 105) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 100) self.assertEqual(unused_files[0], 'image1.png') self.assertEqual(unused_files[5], 'image6.png') self.assertEqual(unused_files[10], 'image11.png') self.assertEqual(unused_files[33], 'image34.png') self.assertEqual(unused_files[50], 'image51.png')
2.703125
3
lingvo/tasks/image/input_generator.py
allenwang28/lingvo
2,611
11408
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input generator for image data.""" import os import lingvo.compat as tf from lingvo.core import base_input_generator from tensorflow.python.ops import io_ops class _MnistInputBase(base_input_generator.BaseTinyDatasetInput): """Base input params for MNIST.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data_dtype = tf.uint8 p.data_shape = (28, 28, 1) p.label_dtype = tf.uint8 return p def _Preprocess(self, raw): data = tf.stack([ tf.image.per_image_standardization(img) for img in tf.unstack(raw) ]) data.set_shape(raw.shape) return data class MnistTrainInput(_MnistInputBase): """MNist training set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_train' p.label = 'y_train' p.num_samples = 60000 p.batch_size = 256 p.repeat = True return p class MnistTestInput(_MnistInputBase): """MNist test set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_test' p.label = 'y_test' p.num_samples = 10000 p.batch_size = 256 p.repeat = False return p def _GetRandomImages(batch_size): images = tf.random.uniform((batch_size, 28, 28, 1), 0, 255, tf.int32) return tf.cast(images, tf.uint8) def _GetRandomLabels(batch_size): labels = tf.random.categorical(0.1 * tf.ones((1, 10)), batch_size) return tf.cast(labels, tf.uint8) def FakeMnistData(tmpdir, train_size=60000, test_size=10000): """Fake Mnist data for unit tests.""" data_path = os.path.join(tmpdir, 'ckpt') with tf.Graph().as_default(): tf.random.set_seed(91) with tf.Session() as sess: sess.run( io_ops.save_v2( data_path, tensor_names=['x_train', 'y_train', 'x_test', 'y_test'], shape_and_slices=['', '', '', ''], tensors=[ _GetRandomImages(train_size), _GetRandomLabels(train_size), _GetRandomImages(test_size), _GetRandomLabels(test_size) ])) return data_path
2.359375
2
src/solutions/part1/q389_find_diff.py
hychrisli/PyAlgorithms
0
11409
from src.base.solution import Solution from src.tests.part1.q389_test_find_diff import FindDiffTestCases class FindDiff(Solution): def verify_output(self, test_output, output): return test_output[0] == output[0] def run_test(self, input): return self.findTheDifference(input[0], input[1]) def gen_test_cases(self): return FindDiffTestCases() def print_output(self, output): super(FindDiff, self).print_output(output) def findTheDifference(self, s, t): """ :type s: str :type t: str :rtype: str """ lkp = dict() for ch in s: lkp[ch] = lkp.get(ch, 0) + 1 for ch in t: lkp[ch] = lkp.get(ch, 0) - 1 if lkp[ch] < 0: return ch if __name__ == '__main__': solution = FindDiff() solution.run_tests()
2.859375
3
mydict.py
zengboming/python
0
11410
<reponame>zengboming/python #unit #mydict.py class Dict(dict): def __init__(self,**kw): super(Dict,self).__init__(**kw) def __getattr__(self,key): try: return self[key] except KeyError: raise AttributeError(r"'Dict' object han no attribute'%s'" %key) def __setattr__(self,key,value): self[key]=value
2.984375
3
copy_annotations/conflict.py
abhinav-kumar-thakur/TabularCellTypeClassification
19
11411
import contextlib import os import tempfile import warnings from enum import Enum import mip class IISFinderAlgorithm(Enum): DELETION_FILTER = 1 ADDITIVE_ALGORITHM = 2 class SubRelaxationInfeasible(Exception): pass class NonRelaxableModel(Exception): pass class ConflictFinder: """This class groups some IIS (Irreducible Infeasible Set) search algorithms""" def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model def find_iis( self, method: IISFinderAlgorithm = IISFinderAlgorithm.DELETION_FILTER, cbc_verbose: bool = False ) -> mip.ConstrList: """main method to find an IIS, this method is just a grouping of the other implementations Args: model (mip.Model): Infeasible model where to find the IIS method (str, optional): name of the method to use ["deletion-filter", "additive_algorithm"]. Defaults to 'deletion-filter". Returns: mip.ConstrList: IIS constraint list """ # assert ,is not because time limit with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: if method == IISFinderAlgorithm.DELETION_FILTER: return self.deletion_filter() if method == IISFinderAlgorithm.ADDITIVE_ALGORITHM: return self.additive_algorithm() def deletion_filter(self) -> mip.ConstrList: """deletion filter algorithm for search an IIS Args: model (mip.Model): Infeasible model Returns: mip.ConstrList: IIS """ # 1. create a model with all constraints but one aux_model = self.model.copy() aux_model.objective = 1 aux_model.emphasis = 1 # feasibility aux_model.preprocess = 1 # -1 automatic, 0 off, 1 on. print("starting deletion_filter algorithm") for inc_crt in self.model.constrs: aux_model_inc_crt = aux_model.constr_by_name( inc_crt.name ) # find constraint by name aux_model.remove(aux_model_inc_crt) # temporally remove inc_crt aux_model.optimize() status = aux_model.status # 2. test feasibility, if feasible, return dropped constraint to the set # 2.1 else removed it permanently # print('status {}'.format(status)) if status == mip.OptimizationStatus.INFEASIBLE: # print("removing permanently {}".format(inc_crt.name)) continue elif status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: aux_model.add_constr( inc_crt.expr, name=inc_crt.name, priority=inc_crt.priority ) iis = aux_model.constrs return iis def additive_algorithm(self) -> mip.ConstrList: """Additive algorithm to find an IIS Returns: mip.ConstrList: IIS """ # Create some aux models to test feasibility of the set of constraints aux_model_testing = mip.Model() for var in self.model.vars: aux_model_testing.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, # obj= var.obj, # column=var.column #!! libc++abi.dylib: terminating with uncaught exception of type CoinError ) aux_model_testing.objective = 1 aux_model_testing.emphasis = 1 # feasibility aux_model_testing.preprocess = 1 # -1 automatic, 0 off, 1 on. aux_model_iis = ( aux_model_testing.copy() ) # a second aux model to test feasibility of the incumbent iis # algorithm start all_constraints = self.model.constrs testing_crt_set = mip.ConstrList(model=aux_model_testing) # T iis = mip.ConstrList(model=aux_model_iis) # I while True: for crt in all_constraints: testing_crt_set.add(crt.expr, name=crt.name) aux_model_testing.constrs = testing_crt_set aux_model_testing.optimize() if aux_model_testing.status == mip.OptimizationStatus.INFEASIBLE: iis.add(crt.expr, name=crt.name) aux_model_iis.constrs = iis aux_model_iis.optimize() if aux_model_iis.status == mip.OptimizationStatus.INFEASIBLE: return iis elif aux_model_iis.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: testing_crt_set = mip.ConstrList(model=aux_model_testing) for ( crt ) in ( iis ): # basically this loop is for set T=I // aux_model_iis = iis.copy() testing_crt_set.add(crt.expr, name=crt.name) break def deletion_filter_milp_ir_lc_bd(self) -> mip.ConstrList: """Integer deletion filter algorithm (milp_ir_lc_bd) Raises: NotImplementedError: [description] Returns: mip.ConstrList: [description] """ raise NotImplementedError("WIP") # major constraint sets definition t_aux_model = mip.Model(name="t_auxiliary_model") iis_aux_model = mip.Model(name="t_auxiliary_model") linear_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constraints variable_bound_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constrants related specifically for the variable bounds integer_varlist_crt = mip.VarList( model=t_aux_model ) # the nature vars constraints for vartype in Integer/Binary # fill the above sets with the constraints for crt in self.model.constrs: linear_constraints.add(crt.expr, name=crt.name) for var in self.model.vars: if var.lb != -mip.INF: variable_bound_constraints.add( var >= var.lb, name="{}_lb_crt".format(var.name) ) if var.ub != mip.INF: variable_bound_constraints.add( var <= var.ub, name="{}_ub_crt".format(var.name) ) for var in self.model.vars: if var.var_type in (mip.INTEGER, mip.BINARY): integer_varlist_crt.add(var) status = "IIS" # add all LC,BD to the incumbent, T= LC + BD for ( var ) in ( self.model.vars ): # add all variables as if they where CONTINUOUS and without bonds (because this will be separated) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS ) for crt in linear_constraints + variable_bound_constraints: iis_aux_model.add_constr(crt.expr, name=crt.name, priority=crt.priority) iis_aux_model.optimize() if iis_aux_model.status == mip.OptimizationStatus.INFEASIBLE: # if infeasible means that this is a particular version of an LP return self.deletion_filter() # (STEP 2) # add all the integer constraints to the model iis_aux_model.vars.remove( [var for var in integer_varlist_crt] ) # remove all integer variables for var in integer_varlist_crt: iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=var.var_type, # this will add the var with his original type ) # filter IR constraints that create infeasibility (STEP 1) for var in integer_varlist_crt: iis_aux_model.vars.remove(iis_aux_model.var_by_name(var.name)) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, # relax the integer constraint over var ) iis_aux_model.optimize() # if infeasible then update incumbent T = T-{ir_var_crt} # else continue # STEP 2 filter lc constraints # STEP 3 filter BD constraints # return IS o IIS def deletion_filter_milp_lc_ir_bd(self) -> mip.ConstrList: raise NotImplementedError # TODO class ConflictRelaxer: def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model self.iis_num_iterations = 0 self.iis_iterations = [] self.relax_slack_iterations = [] @property def slack_by_crt(self) -> dict: answ = {} for slack_dict_iter in self.relax_slack_iterations: for crt_name in slack_dict_iter.keys(): if crt_name in answ.keys(): answ[crt_name] += slack_dict_iter[crt_name] else: answ[crt_name] = slack_dict_iter[crt_name] return answ def hierarchy_relaxer( self, relaxer_objective: str = "min_abs_slack_val", default_priority: mip.constants.ConstraintPriority = mip.constants.ConstraintPriority.MANDATORY, cbc_verbose: bool = False ) -> mip.Model: """hierarchy relaxer algorithm, it's gonna find a IIS and then relax it using the objective function defined (`relaxer_objective`) and then update the model with the relaxed constraints. This process runs until there's not more IIS on the model. Args: relaxer_objective (str, optional): objective function of the relaxer model (IIS relaxer model). Defaults to 'min_abs_slack_val'. default_priority (ConstraintPriority, optional): If a constraint does not have a supported substring priority in the name, it will assign a default priority. Defaults to ConstraintPriority.MANDATORY. Raises: NonRelaxableModel: [description] Returns: mip.Model: relaxed model """ relaxed_model = self.model.copy() relaxed_model._status = self.model._status # TODO solve this in a different way # map unmaped constraitns to default for crt in relaxed_model.constrs: if not crt.priority: crt.priority = default_priority iis_it = 0 iis_dict = {} taboo_list_iis = [] cf = ConflictFinder(relaxed_model) while True: # 1. find iis iis = cf.find_iis(IISFinderAlgorithm.DELETION_FILTER) self.iis_iterations.append([crt.name for crt in iis]) # track iteration self.iis_num_iterations += 1 # track iteration iis_priority_set = set([crt.priority for crt in iis]) # check if "relaxable" model mapping if iis_priority_set == set([mip.constants.ConstraintPriority.MANDATORY]): raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") # 2. relax iis with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: for level, relaxing_level in enumerate(sorted(iis_priority_set, key=lambda x: x.value)): # highest case (raise exception) if relaxing_level == mip.constants.ConstraintPriority.MANDATORY: raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") try: slack_dict = self.relax_iis(iis, relaxer_objective=relaxer_objective, lowest_priority=relaxing_level) except SubRelaxationInfeasible as e: warnings.warn(f'Warning relaxing more than one level, currently on l{level} : {relaxing_level}') continue else: # relaxable iis, this is will continue with the next iteration then break self.relax_slack_iterations.append(slack_dict) # 3. add the slack variables to the original problem with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model = self.relax_constraints(relaxed_model, slack_dict) # 4. check if feasible relaxed_model.emphasis = 1 # feasibility with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model.optimize() if relaxed_model.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: print("finished relaxation process !") break else: print( "relaxed the current IIS, still infeasible, searching for a new IIS to relax" ) print("relaxed constraints {0}".format(list(slack_dict.keys()))) iis_it += 1 # print(f'found iis_{iis_it} = {[crt.name for crt in iis]}') iis_dict[iis_it] = {} iis_crt = [crt.name for crt in iis] iis_dict[iis_it]['iis'] = [{'name': crt.name, 'priority': str(crt.priority).split('.')[1]} for crt in iis] print(f'found iis_{iis_it} : len = {len(iis_crt)} in_taboo = {(iis_crt in taboo_list_iis)}') taboo_list_iis.append(iis_crt) iis_dict[iis_it]['slack'] = slack_dict return relaxed_model @classmethod def relax_iis( cls, iis: mip.ConstrList, relaxer_objective: str = "min_abs_slack_val", lowest_priority: 'mip.constants.ConstraintPriority' = None ) -> dict: """This function is the sub module that finds the optimum relaxation for an IIS, given a crt priority mapping and a objective function Args: iis (mip.ConstrList): IIS constraint list relaxer_objective (str, optional): objective function to use when relaxing. Defaults to 'min_abs_slack_val'. Returns: dict: a slack variable dictionary with the value of the {constraint_name:slack.value} pair to be added to each constraint in order to make the IIS feasible """ relax_iis_model = mip.Model() if lowest_priority is None: lowest_priority = min([crt.priority for crt in iis]) to_relax_crts = [crt for crt in iis if crt.priority == lowest_priority or crt.priority < lowest_priority] # create a model that only contains the iis slack_vars = {} abs_slack_vars = {} abs_slack_cod_vars = {} for crt in iis: # print(crt.name, crt.priority) for var in crt._Constr__model.vars: relax_iis_model.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, obj=var.obj, ) if crt in to_relax_crts: # if this is a -to be relax- constraint slack_vars[crt.name] = relax_iis_model.add_var( name="{0}__{1}".format(crt.name, "slack"), lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, ) abs_slack_vars[crt.name] = relax_iis_model.add_var( name="{0}_abs".format(slack_vars[crt.name].name), lb=0, ub=mip.INF, var_type=mip.CONTINUOUS, ) # add relaxed constraint to model relax_expr = crt.expr + slack_vars[crt.name] relax_iis_model.add_constr( relax_expr, name="{}_relaxed".format(crt.name), ) # add abs(slack) variable encoding constraints relax_iis_model.add_constr( abs_slack_vars[crt.name] >= slack_vars[crt.name], name="{}_positive_min_bound".format(slack_vars[crt.name].name), ) relax_iis_model.add_constr( abs_slack_vars[crt.name] >= -slack_vars[crt.name], name="{}_negative_min_bound".format(slack_vars[crt.name].name), ) else: # if not to be relaxed we added directly to the model relax_iis_model.add_constr( crt.expr, name="{}_original".format(crt.name), priority=crt.priority ) # find the min abs value of the slack variables relax_iis_model.objective = mip.xsum(list(abs_slack_vars.values())) relax_iis_model.sense = mip.MINIMIZE relax_iis_model.optimize() if relax_iis_model.status == mip.OptimizationStatus.INFEASIBLE: raise SubRelaxationInfeasible("sub relaxation model infeasible, this could mean that in the IIS the mandatory constraints are infeasible sometimes") slack_dict = {} for crt in to_relax_crts: slack_dict[crt.name] = slack_vars[crt.name].x return slack_dict @classmethod def relax_constraints(cls, relaxed_model: mip.Model, slack_dict: dict) -> mip.Model: """this method creates a modification of the model `relaxed_model` where all the constraints in the slack_dict are modified in order to add the slack values to make the IIS disappear Args: relaxed_model (mip.Model): model to relax slack_dict (dict): pairs {constraint_name: slack_var.value} Returns: mip.Model: a modification of the original model where all the constraints are modified with the slack values """ for crt_name in slack_dict.keys(): crt_original = relaxed_model.constr_by_name(crt_name) relax_expr = crt_original.expr + slack_dict[crt_name] relaxed_model.add_constr( relax_expr, name=crt_original.name, priority=crt_original.priority ) relaxed_model.remove(crt_original) # remove constraint return relaxed_model @contextlib.contextmanager def ignore_output(): with tempfile.TemporaryFile() as f: orig_std_out = os.dup(1) os.dup2(f.fileno(), 1) yield # pause the coroutine to execute the with code os.dup2(orig_std_out, 1) os.close(orig_std_out)
2.53125
3
output/models/nist_data/atomic/integer/schema_instance/nistschema_sv_iv_atomic_integer_pattern_1_xsd/__init__.py
tefra/xsdata-w3c-tests
1
11412
<filename>output/models/nist_data/atomic/integer/schema_instance/nistschema_sv_iv_atomic_integer_pattern_1_xsd/__init__.py from output.models.nist_data.atomic.integer.schema_instance.nistschema_sv_iv_atomic_integer_pattern_1_xsd.nistschema_sv_iv_atomic_integer_pattern_1 import NistschemaSvIvAtomicIntegerPattern1 __all__ = [ "NistschemaSvIvAtomicIntegerPattern1", ]
1.140625
1
Dietscheduler/lib/menu_converter.py
floromaer/DietScheduler
0
11413
import re import xlsxwriter def parse_menu_to_excel(filename,menu_dict,days_dict,results,goal_dict,food_database,reversed_ingredient_dict,grocery_dict): # making a temporary dict to map dates and columns in excel: temp_dates_dict = {} i=0 for key in days_dict.keys(): temp_dates_dict[days_dict[key]['date_var'].get()] = i i += 1 temp_meals_dict = {} i = 0 for meal in ['Breakfast', 'Lunch','Dinner']: temp_meals_dict[meal] = i i += 1 # converting the menu-dict to dates and lunches for item in list(menu_dict.keys()): new_key = tuple(tuple(elem.replace('M1', 'Breakfast').replace('M2', 'Lunch').replace('M3', 'Dinner').replace('D1', days_dict['D1']['date_var'].get()).replace('D2',days_dict['D2']['date_var'].get()).replace('D3',days_dict['D3']['date_var'].get()).replace('D4',days_dict['D4']['date_var'].get()).replace('D5',days_dict['D5']['date_var'].get()).replace('D6',days_dict['D6']['date_var'].get()).replace('D7',days_dict['D7']['date_var'].get()) for elem in tup) for tup in item) menu_dict[new_key] = menu_dict[item] menu_dict.pop(item) # putting it into an excel file: workbook = xlsxwriter.Workbook(filename) separator_format = workbook.add_format({'bg_color': '#000000'}) # make worksheets menu_worksheet = workbook.add_worksheet(f"Menu - {days_dict['D1']['date_var'].get()} to {days_dict['D7']['date_var'].get()}") # for menu temp_worksheet_dict = {} global_groceries_worksheet = workbook.add_worksheet("your grocery list") for group in list(menu_dict.keys()): temp_worksheet_dict[group] = workbook.add_worksheet(f"{list(menu_dict[group].keys())[0][:31]}") # print the menu to menu-sheet col = 0 for key in temp_dates_dict: menu_worksheet.write(0, col, key) col += 1 row = 1 for key in temp_meals_dict: menu_worksheet.write(row, 0, key) row += 1 for group in menu_dict.keys(): for slot in group: menu_worksheet.write(temp_meals_dict[slot[1]] + 1,temp_dates_dict[slot[0]] + 1, str(list(menu_dict[group].keys())[0])) for i in range(0,8): menu_worksheet.write(4,i,"",separator_format) menu_worksheet.write(5,0, "Results:") row = 5 for metric in results.keys(): menu_worksheet.write(row,1,str(f"{metric}: {round(results[metric],2)}")) row += 1 menu_worksheet.write(5,2, "Goals:") row = 6 for metric in goal_dict.keys(): menu_worksheet.write(row,3,str(f"{metric}: {round(goal_dict[metric],2)}")) row += 1 # writing the global grocery-list: row = 1 col = 0 global_groceries_worksheet.write(0,0,"Your grocery list:") for ingredient in grocery_dict.keys(): ingredient_id = reversed_ingredient_dict[ingredient] global_groceries_worksheet.write(row, col, ingredient) global_groceries_worksheet.write(row, col + 1, str(grocery_dict[ingredient])) global_groceries_worksheet.write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 # writing the recipe-lists: for group in menu_dict.keys(): temp_worksheet_dict[group].write(0,0, f"Ingredient list for {list(menu_dict[group].keys())[0]}:") row = 1 col = 0 for recipe in menu_dict[group].keys(): for ingredient in menu_dict[group][recipe].keys(): ingredient_id = reversed_ingredient_dict[ingredient] temp_worksheet_dict[group].write(row, col, ingredient) temp_worksheet_dict[group].write(row, col + 1, str(menu_dict[group][recipe][ingredient])) temp_worksheet_dict[group].write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 workbook.close()
3.265625
3
example_problems/tutorial/graph_connectivity/services/esempi/check_one_sol_server.py
romeorizzi/TAlight
3
11414
<gh_stars>1-10 #!/usr/bin/env python3 from sys import stderr, exit from TALinputs import TALinput from multilanguage import Env, Lang, TALcolors from parentheses_lib import recognize # METADATA OF THIS TAL_SERVICE: problem="parentheses" service="check_one_sol_server" args_list = [ ('input_formula',str), ('n',str), ('silent',bool), ('lang',str), ('ISATTY',bool), ] ENV =Env(problem, service, args_list) TAc =TALcolors(ENV) LANG=Lang(ENV, TAc, lambda fstring: eval(f"f'{fstring}'")) # START CODING YOUR SERVICE: n=ENV['n'] len_input = len(ENV["input_formula"])//2 if not ENV["silent"]: TAc.print(LANG.opening_msg, "green") def answer(): if recognize(ENV["input_formula"], TAc, LANG) and not ENV["silent"]: TAc.OK() TAc.print(LANG.render_feedback("ok", f' Your string is a well-formed formula with {len_input} pairs of parentheses.'), "yellow", ["bold"]) if n=='free': answer() else: if len_input==int(n): answer() elif recognize(ENV["input_formula"], TAc, LANG) and not ENV['silent']: TAc.print(LANG.render_feedback("different_lengths", f"No! Your string represents a valid formula of parentheses but not of {n} pairs."), "red", ["bold"]) exit(0)
2.890625
3
app/validation/translator.py
codingedward/book-a-meal-api
0
11415
<gh_stars>0 """Translates validation error messages for the response""" messages = { 'accepted': 'The :field: must be accepted.', 'after': 'The :field: must be a date after :other:.', 'alpha': 'The :field: may contain only letters.', 'alpha_dash': 'The :field: may only contain letters, numbers, and dashes.', 'alpha_num': 'The :field: may contain only letters and numbers.', 'array': 'The :field: must be an array.', 'before': 'The :field: must be a date before :other:.', 'between': 'The :field: must be between :least: and :most:.', 'between_string': 'The :field: must be between :least: and :most: characters.', 'between_numeric': 'The :field: must be between :least: and :most:.', 'boolean': 'The :field: must be either true or false.', 'confirmed': 'The :field: confirmation does not match.', 'date': 'The :field: is not a valid date.', 'different': 'The :field: and :other: must be different.', 'digits': 'The :field: must be :length: digits.', 'email': 'The :field: must be a valid email address.', 'exists': 'The selected :field: is invalid.', 'found_in': 'The selected :field: is invalid.', 'integer': 'The :field: must be an integer.', 'json': 'The :field: must be valid json format.', 'most_string': 'The :field: must not be greater than :most: characters.', 'most_numeric': 'The :field: must not be greater than :most:.', 'least_string': 'The :field: must be at least :least: characters.', 'least_numeric': 'The :field: must be at least :least:.', 'not_in': 'The selected :field: is invalid.', 'numeric': 'The :field: must be a number.', 'positive': 'The :field: must be a positive number.', 'regex': 'The :field: format is invalid.', 'required': 'The :field: field is required.', 'required_with': 'The :field: field is required when :other: is present.', 'required_without': 'The :field: field is required when :other: si not present.', 'same': 'The :field: and :other: must match.', 'size_string': 'The :field: must be :size: characters.', 'size_numeric': 'The :field: must be :size:.', 'string': 'The :field: must be a string.', 'unique': 'The :field: is already taken.', 'url': 'The :field: format is invalid.', } def trans(rule, fields): message = messages[rule] for k, v in fields.items(): message = message.replace(k, v).replace('_', ' ') return message
2.5
2
chat/main/consumers.py
mlambir/channels_talk_pyconar2016
12
11416
from channels import Group # websocket.connect def ws_add(message): Group("chat").add(message.reply_channel) # websocket.receive def ws_message(message): Group("chat").send({ "text": message.content['text'], }) # websocket.disconnect def ws_disconnect(message): Group("chat").discard(message.reply_channel)
2.515625
3
env/enviroment.py
Dorebom/robot_pybullet
0
11417
from copy import deepcopy import numpy as np import pybullet as p import gym from gym import spaces from env.robot import Manipulator from env.work import Work class Env(): def __init__(self, reward, step_max_pos = 0.002, step_max_orn = 0.02, initial_pos_noise = 0.001, initial_orn_noise = 0.001, step_pos_noise = 0.0002, step_orn_noise = 0.0002): p.connect(p.GUI) p.setPhysicsEngineParameter(enableFileCaching=0) p.setRealTimeSimulation(False) p.setGravity(0, 0, -9.8) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.setPhysicsEngineParameter(contactBreakingThreshold=0.001) # Init self._is_init_env = False # Plane self.plane_pos = [0, 0, -0.1] p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) self.reward = reward self.max_initial_pos_noise = initial_pos_noise self.max_initial_orn_noise = initial_orn_noise self.max_step_pos_noise = step_pos_noise self.max_step_orn_noise = step_orn_noise # robot self.step_max_pos = step_max_pos self.step_max_orn = step_max_orn self.inv_scaled_force_coef = 5000 # for learning self.action_space = spaces.Box( low=-1, high=1, shape=(6,), dtype=np.float32 ) self.observation_space = spaces.Box( low=-1, high=1, shape=(12,), dtype=np.float32 ) self._act_rel_tcp_pose = [0, 0, 0, 0, 0, 0] def init_env(self, mode = 'rel', robot_tcp_pose = [0, 0, 0, 0, 0, 0], robot_base_pose = [0, 0, 0, 0, 0, 0], robot_tool_pose = [0, 0, 0, 0, 0, 0], work_base_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: # Load work self.work = Work(base_pose = work_base_pose) self.act_abs_work_pose = work_base_pose # Load robot self.robot = Manipulator(tool_pose=robot_tool_pose, base_pose=robot_base_pose) self._reset_robot_pose(mode=mode, tcp_pose=robot_tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self._is_init_env = True return self.observe_state(mode = mode) def _reset_robot_pose(self, mode='rel', tcp_pose=[0, 0, 0, 0, 0, 0]): abs_tcp_pose = np.zeros(6) if mode == 'rel': abs_tcp_pose = np.array(self.act_abs_work_pose) + np.array(tcp_pose) elif mode == 'abs': abs_tcp_pose = tcp_pose else: print("ERROR(enviroment.py): mode is not correct.") abs_tcp_pose = [0, 0, 0, 0, 0, 0] self.robot.reset_pose(abs_tcp_pose=abs_tcp_pose) def reset(self, mode = 'rel', tcp_pose = [0, 0, 0, 0, 0, 0], base_pose = [0, 0, 0, 0, 0, 0], tool_pose = [0, 0, 0, 0, 0, 0], work_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: return self.init_env(mode = mode, robot_tcp_pose = tcp_pose, robot_base_pose = base_pose, robot_tool_pose = tool_pose, work_base_pose = work_pose) # For 処理の高速化 ''' if np.linalg.norm( np.array(tool_pose) - self.prev_tool_pose ) < 1e-6: else: ''' # Reset env p.resetSimulation() # Load Plane p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) # Reset work self.work.reset(base_pose = work_pose) # Reset Robot self.robot.reset_base(base_pose=base_pose, tool_pose=tool_pose) self._reset_robot_pose(mode='rel', tcp_pose=tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self.prev_tool_pose = tool_pose return self.observe_state(mode = mode) def destory(self): p.disconnect() def step(self, action, step): # ここは指令値生成なので,真値が良い cmd_abs_tcp_pose = np.zeros(6) cmd_abs_tcp_pose[:3] = np.array(self._act_abs_tcp_pose[:3]) + np.array(action[:3]) cmd_abs_tcp_pose[3:6] = np.array(self._act_abs_tcp_pose[3:6]) + np.array(action[3:6]) print('next_pose:', cmd_abs_tcp_pose) self.robot.move_to_pose(cmd_abs_tcp_pose, mode='direct') pose, force, success, out_range = self.decision() r = self.calc_reward(relative_pose = pose, success = success, out_range = out_range, act_step = step) done = success or out_range return np.concatenate([pose, force]), r, done, success def decision(self): ''' observe act_abs_tcp_pose act_rel_tcp_pose act_abs_work_pose act_force ''' act_pose_noisy, act_force = self.observe_state(mode='rel') scaled_act_force = act_force / self.inv_scaled_force_coef # [Note] ここは真値で評価 success_range_of_pos = 0.003 success_range_of_orn = 0.04 success = (np.linalg.norm(self._act_rel_tcp_pose[:3]) <= success_range_of_pos and \ np.linalg.norm(self._act_rel_tcp_pose[3:]) <= success_range_of_orn) # [Note] ここは真値で評価は正しくない気がする. out_range_of_pos = 0.1 out_range_of_orn = 0.8 out_range = any([abs(pos) > out_range_of_pos for pos in act_pose_noisy[:3]]) \ or any([abs(orn) > out_range_of_orn for orn in act_pose_noisy[3:6]]) return act_pose_noisy, scaled_act_force, success, out_range def observe_state(self, mode='rel'): self._act_abs_tcp_pose, self.act_force, _ = self.robot.get_state() self._act_abs_work_pose = self.work.get_state() self._act_rel_tcp_pose = np.array(self._act_abs_tcp_pose) - np.array(self._act_abs_work_pose) ''' ノイズ処理 ''' act_rel_tcp_pose_noisy = np.zeros(6) act_rel_tcp_pose_noisy[:3] = self._act_rel_tcp_pose[:3] + self.initial_pos_noise act_rel_tcp_pose_noisy[3:6] = self._act_rel_tcp_pose[3:6] + self.initial_orn_noise act_rel_tcp_pose_noisy[:3] += np.random.uniform(-self.max_step_pos_noise, self.max_step_pos_noise, 3) act_rel_tcp_pose_noisy[3:6] += np.random.uniform(-self.max_step_orn_noise, self.max_step_orn_noise, 3) if mode == 'rel': return act_rel_tcp_pose_noisy, self.act_force elif mode == 'abs': act_abs_tcp_pose_noisy = np.zeros(6) act_abs_tcp_pose_noisy[:3] = self._act_abs_tcp_pose[:3] + self.initial_pos_noise act_abs_tcp_pose_noisy[3:6] = self._act_abs_tcp_pose[3:6] + self.initial_orn_noise act_abs_work_pose_noisy = np.zeros(6) act_abs_work_pose_noisy[:3] = self._act_abs_work_pose[:3] + self.initial_pos_noise act_abs_work_pose_noisy[3:6] = self._act_abs_work_pose[3:6] + self.initial_orn_noise return act_abs_tcp_pose_noisy, act_abs_work_pose_noisy, self.act_force def calc_reward(self, relative_pose, success, out_range, act_step): return self.reward.reward_function(relative_pose, success, out_range, act_step) def scale_action(self, action): scaled_action = deepcopy(action) scaled_action[:3]*=self.step_max_pos scaled_action[3:]*=self.step_max_orn return scaled_action
2.484375
2
Thread/Threading.py
zxg110/PythonGrammer
0
11418
import _thread import time import threading # # def print_time(threadName,delay): # count = 0; # while count < 5: # time.sleep(delay) # count += 1; # print("%s: %s" % (threadName, time.ctime(time.time()))) # # try: # _thread.start_new(print_time,("Thread-1",2,)) # _thread.start_new(print_time("Thread-2",4)) # except: # print("error") # # while 1: # pass # Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。 # _thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。 # threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。 # 除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法: # run(): 用以表示线程活动的方法。 # start():启动线程活动。 # join([time]): 主线程中,创建了子线程B,并且在主线程A中调用了B.join(),那么,主线程A会在调用的地方等待, # 直到子线程B完成操作后,才接着往下执行。参数time代表线程运行最大时间,即如果超过这个时间,不管这个此线程有 # 没有执行完毕都会被回收,然后主线程或函数都会接着执行的。 # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 exitFlag = 0 class MyThread(threading.Thread): def __init__(self,threadID,name,counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, 2,self.counter) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: # if exitFlag: # threadName.exit() time.sleep(delay) print("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = MyThread(1, "Thread-1", 5) thread2 = MyThread(2, "Thread-2", 5) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join() print ("退出主线程")
3.734375
4
server/petsAPI/views.py
StoyanDimStoyanov/ReactDJango
0
11419
<reponame>StoyanDimStoyanov/ReactDJango from django.shortcuts import render from rest_framework import generics # Create your views here. from petsAPI.models import Pets from petsAPI.serializers import PetSerializer def index(req): return render(req, 'index.html') class PetsListApiView(generics.ListCreateAPIView): queryset = Pets.objects.all() serializer_class = PetSerializer class PetDetailsApiView(generics.RetrieveUpdateDestroyAPIView): queryset = Pets.objects.all() serializer_class = PetSerializer
2.015625
2
cluster_faces.py
sandhyalaxmiK/faces_clustering
0
11420
<filename>cluster_faces.py import face_recognition import sys,os import re,cv2 def sorted_alphanumeric(data): convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] return sorted(data, key=alphanum_key) input_dir_path=sys.argv[1] output_dir_path=sys.argv[2] if not os.path.exists(output_dir_path): os.mkdir(output_dir_path) if not os.path.exists(output_dir_path+'/'+str(1)): os.mkdir(output_dir_path+'/'+str(1)) input_images=sorted_alphanumeric(os.listdir(input_dir_path)) cv2.imwrite(output_dir_path+'/'+str(1)+'/'+input_images[0],cv2.imread(input_dir_path+'/'+input_images[0])) if not os.path.exists(output_dir_path+'/back_imgs'): os.mkdir(output_dir_path+'/back_imgs') if not os.path.exists(output_dir_path+'/error'): os.mkdir(output_dir_path+'/error') for img_path in input_images[1:]: try: prev_similarity=0 img=face_recognition.load_image_file(input_dir_path+'/'+img_path) img_encoding=face_recognition.face_encodings(img) if img_encoding==[]: img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) cv2.imwrite(output_dir_path+'/back_imgs/'+img_path,img) continue img_encoding=face_recognition.face_encodings(img)[0] imgs_dirs=sorted_alphanumeric(os.listdir(output_dir_path)) imgs_dirs=list(set(imgs_dirs)-set(['error','back_imgs'])) for img_dir in imgs_dirs: check_img=face_recognition.load_image_file(output_dir_path+'/'+img_dir+'/'+sorted_alphanumeric(os.listdir(output_dir_path+'/'+img_dir))[0]) check_img_encoding=face_recognition.face_encodings(check_img)[0] similarity=1-face_recognition.compare_faces([img_encoding], check_img_encoding) if similarity>prev_similarity: prev_similarity=similarity result_dir=img_dir img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) if prev_similarity<0.6: new_dir=str(len(os.listdir(output_dir_path))+1) os.mkdir(output_dir_path+'/'+new_dir) cv2.imwrite(output_dir_path+'/'+new_dir+'/'+img_path,img) else: cv2.imwrite(output_dir_path+'/'+result_dir+'/'+img_path,img) except: img=cv2.cvtColor(img,cv2.COLOR_RGB2BGR) cv2.imwrite(output_dir_path+'/error/'+img_path,img)
2.703125
3
src/bbdata/endpoint/output/objects.py
big-building-data/bbdata-python
0
11421
import requests from bbdata.config import output_api_url from bbdata.util import handle_response class Objects: base_path = "/objects" auth = None def __init__(self, auth): self.auth = auth def get_all(self, tags=None, search=None, page=None, per_page=None, writable=False): """ Get the list of accessible objects. GET /objects https://bbdata.daplab.ch/api/#objects_get """ params = { "tags": tags, "search": search, "page": page, "perPage": per_page, "writable": writable, } url = output_api_url + self.base_path r = requests.get(url, params, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put(self, name, unit_symbol, owner, description=None): """ Create a new object. PUT /objects https://bbdata.daplab.ch/api/#objects_put """ json = { "name": name, "description": description, "unitSymbol": unit_symbol, 'owner': owner } url = output_api_url + self.base_path r = requests.put(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def get(self, object_id): """ Get an object. GET /objects/{objectIs} https://bbdata.daplab.ch/api/#objects__objectid__get """ url = output_api_url + self.base_path + "/" + str(object_id) r = requests.get(url, headers=self.auth.headers) # return ObjectResponse(r.json()) return handle_response(r.status_code, r.json()) def post(self, object_id, data): """ Edit the name and/or the description of the object. Only the properties appearing in the body will be modified. POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__post """ # TODO The data to send isn't define in the API Docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.post(url, data, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete(self, object_id): """ Delete the object with the given id POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__delete """ # TODO This method is in the Postman profile but isn't in the docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.delete(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_disable(self, object_id): """ Disable this object. All associated tokens will be removed. POST /objects/{objectId}/disable https://bbdata.daplab.ch/api/#objects__objectid__disable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/disable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def post_enable(self, object_id): """ Enable this object. POST /objects/{objectId}/enable https://bbdata.daplab.ch/api/#objects__objectid__enable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/enable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def get_tokens(self, object_id, description=None): """ Get the list of tokens for the object. A token is used to submit new measures (see input-api). An optional description can be passed in the body (max 65 characters). GET /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_get """ # TODO The API docs says it's possible to pass an optional description # but it looks like it's a mistake for a GET request... url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.get(url, json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put_tokens(self, object_id): """ Generate a new secured token. PUT /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_put """ # TODO The optional description should probably be added in this # method url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" r = requests.put(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_tokens(self, object_id, description): """ Edit the token's description. POST /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.post(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete_tokens(self, object_id, token_id): """ Revoke a token. DELETE /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" params = { "tokenId": token_id } r = requests.delete(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def put_tags(self, object_id, tags): """ Add tags to the object. PUT /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_put """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def delete_tags(self, object_id, tags): """ Remove tags. DELETE /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def get_comments(self, object_id): """ Get all comments attached to this object. Use the /comments endpoint for more actions. GET /objects/{objectId}/comments https://bbdata.daplab.ch/api/#objects__objectid__comments_get """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/comments" r = requests.get(url, headers=self.auth.headers) return handle_response(r.status_code, r.json())
2.78125
3
python/tako/client/__init__.py
vyomkeshj/tako
0
11422
<gh_stars>0 from .exception import TakoException, TaskFailed # noqa from .session import connect # noqa
1.109375
1
helpers/parser.py
yasahi-hpc/AMRNet
0
11423
<gh_stars>0 import argparse def parse(): parser = argparse.ArgumentParser(add_help=True) parser.add_argument('-data_dir', \ action='store', \ nargs='?', \ const=None, \ default='./dataset', \ type=str, \ choices=None, \ help='directory of datasets', \ metavar=None) parser.add_argument('--device', \ action='store', \ nargs='?', \ const=None, \ default='cuda', \ type=str, \ choices=None, \ help='Device to run the model', \ metavar=None) parser.add_argument('--dim', \ action='store', \ nargs='?', \ const=None, \ default=2, \ type=int, \ choices=None, \ help='Dimension of the model', \ metavar=None) parser.add_argument('--batch_size', \ action='store', \ nargs='?', \ const=None, \ default=25, \ type=int, \ choices=None, \ help='Batch size', \ metavar=None) parser.add_argument('--n_epochs', \ action='store', \ nargs='?', \ const=None, \ default=3, \ type=int, \ choices=None, \ help='Number of epochs', \ metavar=None) parser.add_argument('--run_number', \ action='store', \ nargs='?', \ const=None, \ default=0, \ type=int, \ choices=None, \ help='Run number', \ metavar=None) parser.add_argument('--padding_mode', \ action='store', \ nargs='?', \ const=None, \ default='reflect', \ type=str, \ choices=None, \ help='Padding type (default: reflect)', \ metavar=None) parser.add_argument('--preprocess_type', \ action='store', \ nargs='?', \ const=None, \ default='normalization', \ type=str, \ choices=None, \ help='Preprocess type (default: normalization)', \ metavar=None) parser.add_argument('--model_name', \ action='store', \ nargs='?', \ const=None, \ default='AMR_Net', \ type=str, \ choices=None, \ help='Name of the model (default: AMR_Net)', \ metavar=None) parser.add_argument('--lr', \ action='store', \ nargs='?', \ const=None, \ default=0.0002, \ type=float, \ choices=None, \ help='Learning rate', \ metavar=None) parser.add_argument('--beta_1', \ action='store', \ nargs='?', \ const=None, \ default=0.9, \ type=float, \ choices=None, \ help='beta_1 for Adam', \ metavar=None) parser.add_argument('--beta_2', \ action='store', \ nargs='?', \ const=None, \ default=0.999, \ type=float, \ choices=None, \ help='beta_2 for Adam', \ metavar=None) # Used for inference parser.add_argument('--inference_mode', \ action='store_true', \ default=False, \ help='train or inference') parser.add_argument('-state_file_dir', \ action='store', \ nargs='?', \ const=None, \ default='./', \ type=str, \ choices=None, \ help='directory storing torch state files', \ metavar=None) parser.add_argument('--load_nth_state_file', \ action='store', \ nargs='?', \ const=None, \ default=0, \ type=int, \ choices=None, \ help='nth state file to load', \ metavar=None) args = parser.parse_args() return args
2.296875
2
api/patients/urls.py
Wellheor1/l2
10
11424
<filename>api/patients/urls.py from django.urls import path from . import views urlpatterns = [ path('search-card', views.patients_search_card), path('search-individual', views.patients_search_individual), path('search-l2-card', views.patients_search_l2_card), path('create-l2-individual-from-card', views.create_l2_individual_from_card), path('card/<int:card_id>', views.patients_get_card_data), path('card/save', views.patients_card_save), path('card/archive', views.patients_card_archive), path('card/unarchive', views.patients_card_unarchive), path('individuals/search', views.individual_search), path('individuals/sex', views.get_sex_by_param), path('individuals/edit-doc', views.edit_doc), path('individuals/edit-agent', views.edit_agent), path('individuals/update-cdu', views.update_cdu), path('individuals/update-wia', views.update_wia), path('individuals/sync-rmis', views.sync_rmis), path('individuals/sync-tfoms', views.sync_tfoms), path('individuals/load-anamnesis', views.load_anamnesis), path('individuals/load-dreg', views.load_dreg), path('individuals/load-screening', views.load_screening), path('individuals/load-vaccine', views.load_vaccine), path('individuals/load-ambulatory-data', views.load_ambulatory_data), path('individuals/load-benefit', views.load_benefit), path('individuals/load-dreg-detail', views.load_dreg_detail), path('individuals/load-vaccine-detail', views.load_vaccine_detail), path('individuals/load-ambulatorydata-detail', views.load_ambulatory_data_detail), path('individuals/load-ambulatory-history', views.load_ambulatory_history), path('individuals/load-benefit-detail', views.load_benefit_detail), path('individuals/save-dreg', views.save_dreg), path('individuals/save-plan-dreg', views.update_dispensary_reg_plans), path('individuals/save-vaccine', views.save_vaccine), path('individuals/save-ambulatory-data', views.save_ambulatory_data), path('individuals/save-benefit', views.save_benefit), path('individuals/save-anamnesis', views.save_anamnesis), path('is-card', views.is_l2_card), path('save-screening-plan', views.update_screening_reg_plan), ]
1.742188
2
resolwe_bio/kb/migrations/0002_alter_field_max_length.py
JureZmrzlikar/resolwe-bio
0
11425
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-11-15 07:06 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resolwe_bio_kb', '0001_initial'), ] operations = [ migrations.AlterField( model_name='feature', name='aliases', field=django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=256), blank=True, default=[], size=None), ), migrations.AlterField( model_name='feature', name='name', field=models.CharField(max_length=1024), ), migrations.AlterField( model_name='feature', name='sub_type', field=models.CharField(choices=[(b'protein-coding', b'Protein-coding'), (b'pseudo', b'Pseudo'), (b'rRNA', b'rRNA'), (b'ncRNA', b'ncRNA'), (b'snRNA', b'snRNA'), (b'snoRNA', b'snoRNA'), (b'tRNA', b'tRNA'), (b'asRNA', b'asRNA'), (b'other', b'Other'), (b'unknown', b'Unknown')], max_length=20), ), ]
1.734375
2
setup.py
conan-hdk/xlwings
0
11426
<reponame>conan-hdk/xlwings<gh_stars>0 import os import sys import re import glob from setuptools import setup, find_packages # long_description: Take from README file with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as f: readme = f.read() # Version Number with open(os.path.join(os.path.dirname(__file__), 'xlwings', '__init__.py')) as f: version = re.compile(r".*__version__ = '(.*?)'", re.S).match(f.read()).group(1) # Dependencies if sys.platform.startswith('win'): if sys.version_info[:2] >= (3, 7): pywin32 = 'pywin32 >= 224' else: pywin32 = 'pywin32' install_requires = [pywin32] # This places dlls next to python.exe for standard setup and in the parent folder for virtualenv data_files = [('', glob.glob('xlwings*.dll'))] elif sys.platform.startswith('darwin'): install_requires = ['psutil >= 2.0.0', 'appscript >= 1.0.1'] data_files = [(os.path.expanduser("~") + '/Library/Application Scripts/com.microsoft.Excel', [f'xlwings/xlwings-{version}.applescript'])] else: if os.environ.get('READTHEDOCS', None) == 'True' or os.environ.get('INSTALL_ON_LINUX') == '1': data_files = [] install_requires = [] else: raise OSError("xlwings requires an installation of Excel and therefore only works on Windows and macOS. To enable the installation on Linux nevertheless, do: export INSTALL_ON_LINUX=1; pip install xlwings") extras_require = { 'pro': ['cryptography', 'Jinja2', 'pdfrw'], 'all': ['cryptography', 'Jinja2', 'pandas', 'matplotlib', 'plotly', 'flask', 'requests', 'pdfrw'] } setup( name='xlwings', version=version, url='https://www.xlwings.org', license='BSD 3-clause', author='Zoomer Analytics LLC', author_email='<EMAIL>', description='Make Excel fly: Interact with Excel from Python and vice versa.', long_description=readme, data_files=data_files, packages=find_packages(exclude=('tests', 'tests.*',)), package_data={'xlwings': ['xlwings.bas', 'Dictionary.cls', '*.xlsm', '*.xlam', '*.applescript', 'addin/xlwings.xlam', 'addin/xlwings_unprotected.xlam']}, keywords=['xls', 'excel', 'spreadsheet', 'workbook', 'vba', 'macro'], install_requires=install_requires, extras_require=extras_require, entry_points={'console_scripts': ['xlwings=xlwings.cli:main'],}, classifiers=[ 'Development Status :: 4 - Beta', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Topic :: Office/Business :: Financial :: Spreadsheet', 'License :: OSI Approved :: BSD License'], platforms=['Windows', 'Mac OS X'], python_requires='>=3.6', )
2.015625
2
secedgar/tests/test_cli.py
abbadata/sec-edgar
0
11427
import pytest from click.testing import CliRunner from secedgar.cli import daily, filing from secedgar.utils.exceptions import FilingTypeError def run_cli_command(cli, user_input, directory, catch_exceptions=False): runner = CliRunner() user_input = user_input + " --directory {}".format(directory) return runner.invoke(cli, user_input, catch_exceptions=catch_exceptions) def check_bad_inputs(cli, user_input, expected_exception, directory): # SystemExit does not raise exception by runner if expected_exception is SystemExit: result = run_cli_command(cli, user_input, directory) assert result.exit_code != 0 else: with pytest.raises(expected_exception): run_cli_command(cli, user_input, directory) class TestCLIFiling: @pytest.mark.parametrize( "user_input,expected_exception", [ ("-l aapl msft Facebook", SystemExit), # missing filing type ("-l aapl -t null", FilingTypeError), # unrecognized filing type ("-l aapl -t FILING_10Q -n abc", SystemExit), # count is not int ("-l aapl -t FILING_10Q -n 0", ValueError) # no filings available if 0 picked ] ) def test_filing_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(filing, user_input, expected_exception, tmp_data_directory) @pytest.mark.parametrize( "user_input", [ "-l aapl msft fb FILING_10Q", "-l aapl msft fb FILING_10Q -n 10", "-l aapl msft fb FILING_10Q -n 1" ] ) def test_multiple_companies_input(self, user_input, tmp_data_directory): pass class TestCLIDaily: @pytest.mark.parametrize( "user_input,expected_exception", [ ("", SystemExit), ("-d 2020", ValueError) ] ) def test_daily_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(daily, user_input, expected_exception, tmp_data_directory)
2.328125
2
hydro.py
garethcmurphy/hydrosolve
0
11428
import os import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec nstep=200 nx=400 nv=3 u=np.zeros((nx,nv)) prim=np.zeros((nx,nv)) gam=5./3. dx=1./nx dt=1e-3 time=0 x=np.linspace(0,1,num=nx) def ptou(pri): u=np.zeros((nx,nv)) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=rho*v u[:,0]=rho u[:,1]=mom u[:,2]=0.5*mom*v+prs/(gam-1) return(u) def utop(u): pri=np.zeros((nx,nv)) rho=u[:,0] mom=u[:,1] ene=u[:,2] vel=mom/(rho+1e-6) pri[:,0]=rho pri[:,1]=vel pri[:,2]=(ene-0.5*mom*vel)*(gam-1) return(pri) def getmaxv(pri): rho=pri[:,0] vel=pri[:,1] prs=pri[:,2] cs=np.sqrt(gam*prs/rho) return(max(abs(vel)+cs)) def getflux(u): f=np.zeros((nx,nv)) pri=utop(u) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=u[:,1] ene=u[:,2] f[:,0]=mom f[:,1]=mom*v+prs f[:,2]=(ene+prs)*v return(f) prim[:,0]=1. prim[:,1]=0. prim[:,2]=1. for i in range(int(nx/2),nx): prim[i,0]=0.1 prim[i,1]=0. prim[i,2]=0.125 print (prim[:,2]) u=ptou(prim) uold=u pold=prim fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(x,prim[:,0],'pres') ax2.plot(x,prim[:,1],'pres') ax3.plot(x,prim[:,2],'pres') fig.show() for nstep in range(0,nstep): print (time) um=np.roll(u, 1,axis=0) up=np.roll(u,-1,axis=0) um[0,:] =um[1,:] up[nx-1,:]=up[nx-2,:] fm=getflux(um) fp=getflux(up) cfl=0.49 dtdx=1./getmaxv(p) dt=dtdx*dx time=time+dt un=0.5*(um+up) - cfl*dtdx* (fp-fm) u=un p=utop(u) plt.close(fig) fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(p[:,0]) ax2.plot(p[:,1]) ax3.plot(p[:,2]) fig.show()
2.46875
2
tests/test_pluralize.py
weixu365/pluralizer-py
4
11429
import unittest from pluralizer import Pluralizer import re # Standard singular/plural matches. # # @type {Array} BASIC_TESTS = [ # Uncountables. ['firmware', 'firmware'], ['fish', 'fish'], ['media', 'media'], ['moose', 'moose'], ['police', 'police'], ['sheep', 'sheep'], ['series', 'series'], ['agenda', 'agenda'], ['news', 'news'], ['reindeer', 'reindeer'], ['starfish', 'starfish'], ['smallpox', 'smallpox'], ['tennis', 'tennis'], ['chickenpox', 'chickenpox'], ['shambles', 'shambles'], ['garbage', 'garbage'], ['you', 'you'], ['wildlife', 'wildlife'], ['Staff', 'Staff'], ['STAFF', 'STAFF'], ['turquois', 'turquois'], ['carnivorous', 'carnivorous'], ['only', 'only'], ['aircraft', 'aircraft'], # Latin. ['veniam', 'veniam'], # Pluralization. ['this', 'these'], ['that', 'those'], ['is', 'are'], ['man', 'men'], ['superman', 'supermen'], ['ox', 'oxen'], ['bus', 'buses'], ['airbus', 'airbuses'], ['railbus', 'railbuses'], ['wife', 'wives'], ['guest', 'guests'], ['thing', 'things'], ['mess', 'messes'], ['guess', 'guesses'], ['person', 'people'], ['meteor', 'meteors'], ['chateau', 'chateaus'], ['lap', 'laps'], ['cough', 'coughs'], ['death', 'deaths'], ['coach', 'coaches'], ['boy', 'boys'], ['toy', 'toys'], ['guy', 'guys'], ['girl', 'girls'], ['chair', 'chairs'], ['toe', 'toes'], ['tiptoe', 'tiptoes'], ['tomato', 'tomatoes'], ['potato', 'potatoes'], ['tornado', 'tornadoes'], ['torpedo', 'torpedoes'], ['hero', 'heroes'], ['superhero', 'superheroes'], ['volcano', 'volcanoes'], ['canto', 'cantos'], ['hetero', 'heteros'], ['photo', 'photos'], ['portico', 'porticos'], ['quarto', 'quartos'], ['kimono', 'kimonos'], ['albino', 'albinos'], ['cherry', 'cherries'], ['piano', 'pianos'], ['pro', 'pros'], ['combo', 'combos'], ['turbo', 'turbos'], ['bar', 'bars'], ['crowbar', 'crowbars'], ['van', 'vans'], ['tobacco', 'tobaccos'], ['afficionado', 'afficionados'], ['monkey', 'monkeys'], ['neutrino', 'neutrinos'], ['rhino', 'rhinos'], ['steno', 'stenos'], ['latino', 'latinos'], ['casino', 'casinos'], ['avocado', 'avocados'], ['commando', 'commandos'], ['tuxedo', 'tuxedos'], ['speedo', 'speedos'], ['dingo', 'dingoes'], ['echo', 'echoes'], ['nacho', 'nachos'], ['motto', 'mottos'], ['psycho', 'psychos'], ['poncho', 'ponchos'], ['pass', 'passes'], ['ghetto', 'ghettos'], ['mango', 'mangos'], ['lady', 'ladies'], ['bath', 'baths'], ['professional', 'professionals'], ['dwarf', 'dwarves'], # Proper spelling is "dwarfs". ['encyclopedia', 'encyclopedias'], ['louse', 'lice'], ['roof', 'roofs'], ['woman', 'women'], ['formula', 'formulas'], ['polyhedron', 'polyhedra'], ['index', 'indices'], # Maybe "indexes". ['matrix', 'matrices'], ['vertex', 'vertices'], ['axe', 'axes'], # Could also be plural of "ax". ['pickaxe', 'pickaxes'], ['crisis', 'crises'], ['criterion', 'criteria'], ['phenomenon', 'phenomena'], ['addendum', 'addenda'], ['datum', 'data'], ['forum', 'forums'], ['millennium', 'millennia'], ['alumnus', 'alumni'], ['medium', 'mediums'], ['census', 'censuses'], ['genus', 'genera'], ['dogma', 'dogmata'], ['life', 'lives'], ['hive', 'hives'], ['kiss', 'kisses'], ['dish', 'dishes'], ['human', 'humans'], ['knife', 'knives'], ['phase', 'phases'], ['judge', 'judges'], ['class', 'classes'], ['witch', 'witches'], ['church', 'churches'], ['massage', 'massages'], ['prospectus', 'prospectuses'], ['syllabus', 'syllabi'], ['viscus', 'viscera'], ['cactus', 'cacti'], ['hippopotamus', 'hippopotamuses'], ['octopus', 'octopuses'], ['platypus', 'platypuses'], ['kangaroo', 'kangaroos'], ['atlas', 'atlases'], ['stigma', 'stigmata'], ['schema', 'schemata'], ['phenomenon', 'phenomena'], ['diagnosis', 'diagnoses'], ['mongoose', 'mongooses'], ['mouse', 'mice'], ['liturgist', 'liturgists'], ['box', 'boxes'], ['gas', 'gases'], ['self', 'selves'], ['chief', 'chiefs'], ['quiz', 'quizzes'], ['child', 'children'], ['shelf', 'shelves'], ['fizz', 'fizzes'], ['tooth', 'teeth'], ['thief', 'thieves'], ['day', 'days'], ['loaf', 'loaves'], ['fix', 'fixes'], ['spy', 'spies'], ['vertebra', 'vertebrae'], ['clock', 'clocks'], ['lap', 'laps'], ['cuff', 'cuffs'], ['leaf', 'leaves'], ['calf', 'calves'], ['moth', 'moths'], ['mouth', 'mouths'], ['house', 'houses'], ['proof', 'proofs'], ['hoof', 'hooves'], ['elf', 'elves'], ['turf', 'turfs'], ['craft', 'crafts'], ['die', 'dice'], ['penny', 'pennies'], ['campus', 'campuses'], ['virus', 'viri'], ['iris', 'irises'], ['bureau', 'bureaus'], ['kiwi', 'kiwis'], ['wiki', 'wikis'], ['igloo', 'igloos'], ['ninja', 'ninjas'], ['pizza', 'pizzas'], ['kayak', 'kayaks'], ['canoe', 'canoes'], ['tiding', 'tidings'], ['pea', 'peas'], ['drive', 'drives'], ['nose', 'noses'], ['movie', 'movies'], ['status', 'statuses'], ['alias', 'aliases'], ['memorandum', 'memorandums'], ['language', 'languages'], ['plural', 'plurals'], ['word', 'words'], ['multiple', 'multiples'], ['reward', 'rewards'], ['sandwich', 'sandwiches'], ['subway', 'subways'], ['direction', 'directions'], ['land', 'lands'], ['row', 'rows'], ['grow', 'grows'], ['flow', 'flows'], ['rose', 'roses'], ['raise', 'raises'], ['friend', 'friends'], ['follower', 'followers'], ['male', 'males'], ['nail', 'nails'], ['sex', 'sexes'], ['tape', 'tapes'], ['ruler', 'rulers'], ['king', 'kings'], ['queen', 'queens'], ['zero', 'zeros'], ['quest', 'quests'], ['goose', 'geese'], ['foot', 'feet'], ['ex', 'exes'], ['reflex', 'reflexes'], ['heat', 'heats'], ['train', 'trains'], ['test', 'tests'], ['pie', 'pies'], ['fly', 'flies'], ['eye', 'eyes'], ['lie', 'lies'], ['node', 'nodes'], ['trade', 'trades'], ['chinese', 'chinese'], ['please', 'pleases'], ['japanese', 'japanese'], ['regex', 'regexes'], ['license', 'licenses'], ['zebra', 'zebras'], ['general', 'generals'], ['corps', 'corps'], ['pliers', 'pliers'], ['flyer', 'flyers'], ['scissors', 'scissors'], ['fireman', 'firemen'], ['chirp', 'chirps'], ['harp', 'harps'], ['corpse', 'corpses'], ['dye', 'dyes'], ['move', 'moves'], ['zombie', 'zombies'], ['variety', 'varieties'], ['talkie', 'talkies'], ['walkie-talkie', 'walkie-talkies'], ['groupie', 'groupies'], ['goonie', 'goonies'], ['lassie', 'lassies'], ['genie', 'genies'], ['foodie', 'foodies'], ['faerie', 'faeries'], ['collie', 'collies'], ['obloquy', 'obloquies'], ['looey', 'looies'], ['osprey', 'ospreys'], ['cover', 'covers'], ['tie', 'ties'], ['groove', 'grooves'], ['bee', 'bees'], ['ave', 'aves'], ['wave', 'waves'], ['wolf', 'wolves'], ['airwave', 'airwaves'], ['archive', 'archives'], ['arch', 'arches'], ['dive', 'dives'], ['aftershave', 'aftershaves'], ['cave', 'caves'], ['grave', 'graves'], ['gift', 'gifts'], ['nerve', 'nerves'], ['nerd', 'nerds'], ['carve', 'carves'], ['rave', 'raves'], ['scarf', 'scarves'], ['sale', 'sales'], ['sail', 'sails'], ['swerve', 'swerves'], ['love', 'loves'], ['dove', 'doves'], ['glove', 'gloves'], ['wharf', 'wharves'], ['valve', 'valves'], ['werewolf', 'werewolves'], ['view', 'views'], ['emu', 'emus'], ['menu', 'menus'], ['wax', 'waxes'], ['fax', 'faxes'], ['nut', 'nuts'], ['crust', 'crusts'], ['lemma', 'lemmata'], ['anathema', 'anathemata'], ['analysis', 'analyses'], ['locus', 'loci'], ['uterus', 'uteri'], ['curriculum', 'curricula'], ['quorum', 'quora'], ['genius', 'geniuses'], ['flower', 'flowers'], ['crash', 'crashes'], ['soul', 'souls'], ['career', 'careers'], ['planet', 'planets'], ['son', 'sons'], ['sun', 'suns'], ['drink', 'drinks'], ['diploma', 'diplomas'], ['dilemma', 'dilemmas'], ['grandma', 'grandmas'], ['no', 'nos'], ['yes', 'yeses'], ['employ', 'employs'], ['employee', 'employees'], ['history', 'histories'], ['story', 'stories'], ['purchase', 'purchases'], ['order', 'orders'], ['key', 'keys'], ['bomb', 'bombs'], ['city', 'cities'], ['sanity', 'sanities'], ['ability', 'abilities'], ['activity', 'activities'], ['cutie', 'cuties'], ['validation', 'validations'], ['floaty', 'floaties'], ['nicety', 'niceties'], ['goalie', 'goalies'], ['crawly', 'crawlies'], ['duty', 'duties'], ['scrutiny', 'scrutinies'], ['deputy', 'deputies'], ['beauty', 'beauties'], ['bank', 'banks'], ['family', 'families'], ['tally', 'tallies'], ['ally', 'allies'], ['alley', 'alleys'], ['valley', 'valleys'], ['medley', 'medleys'], ['melody', 'melodies'], ['trolly', 'trollies'], ['thunk', 'thunks'], ['koala', 'koalas'], ['special', 'specials'], ['book', 'books'], ['knob', 'knobs'], ['crab', 'crabs'], ['plough', 'ploughs'], ['high', 'highs'], ['low', 'lows'], ['hiccup', 'hiccups'], ['bonus', 'bonuses'], ['circus', 'circuses'], ['abacus', 'abacuses'], ['phobia', 'phobias'], ['case', 'cases'], ['lace', 'laces'], ['trace', 'traces'], ['mage', 'mages'], ['lotus', 'lotuses'], ['motorbus', 'motorbuses'], ['cutlas', 'cutlases'], ['tequila', 'tequilas'], ['liar', 'liars'], ['delta', 'deltas'], ['visa', 'visas'], ['flea', 'fleas'], ['favela', 'favelas'], ['cobra', 'cobras'], ['finish', 'finishes'], ['gorilla', 'gorillas'], ['mass', 'masses'], ['face', 'faces'], ['rabbit', 'rabbits'], ['adventure', 'adventures'], ['breeze', 'breezes'], ['brew', 'brews'], ['canopy', 'canopies'], ['copy', 'copies'], ['spy', 'spies'], ['cave', 'caves'], ['charge', 'charges'], ['cinema', 'cinemas'], ['coffee', 'coffees'], ['favourite', 'favourites'], ['themself', 'themselves'], ['country', 'countries'], ['issue', 'issues'], ['authority', 'authorities'], ['force', 'forces'], ['objective', 'objectives'], ['present', 'presents'], ['industry', 'industries'], ['believe', 'believes'], ['century', 'centuries'], ['category', 'categories'], ['eve', 'eves'], ['fee', 'fees'], ['gene', 'genes'], ['try', 'tries'], ['currency', 'currencies'], ['pose', 'poses'], ['cheese', 'cheeses'], ['clue', 'clues'], ['cheer', 'cheers'], ['litre', 'litres'], ['money', 'monies'], ['attorney', 'attorneys'], ['balcony', 'balconies'], ['cockney', 'cockneys'], ['donkey', 'donkeys'], ['honey', 'honeys'], ['smiley', 'smilies'], ['survey', 'surveys'], ['whiskey', 'whiskeys'], ['whisky', 'whiskies'], ['volley', 'volleys'], ['tongue', 'tongues'], ['suit', 'suits'], ['suite', 'suites'], ['cruise', 'cruises'], ['eave', 'eaves'], ['consultancy', 'consultancies'], ['pouch', 'pouches'], ['wallaby', 'wallabies'], ['abyss', 'abysses'], ['weekly', 'weeklies'], ['whistle', 'whistles'], ['utilise', 'utilises'], ['utilize', 'utilizes'], ['mercy', 'mercies'], ['mercenary', 'mercenaries'], ['take', 'takes'], ['flush', 'flushes'], ['gate', 'gates'], ['evolve', 'evolves'], ['slave', 'slaves'], ['native', 'natives'], ['revolve', 'revolves'], ['twelve', 'twelves'], ['sleeve', 'sleeves'], ['subjective', 'subjectives'], ['stream', 'streams'], ['beam', 'beams'], ['foam', 'foams'], ['callus', 'calluses'], ['use', 'uses'], ['beau', 'beaus'], ['gateau', 'gateaus'], ['fetus', 'fetuses'], ['luau', 'luaus'], ['pilau', 'pilaus'], ['shoe', 'shoes'], ['sandshoe', 'sandshoes'], ['zeus', 'zeuses'], ['nucleus', 'nuclei'], ['sky', 'skies'], ['beach', 'beaches'], ['brush', 'brushes'], ['hoax', 'hoaxes'], ['scratch', 'scratches'], ['nanny', 'nannies'], ['negro', 'negroes'], ['taco', 'tacos'], ['cafe', 'cafes'], ['cave', 'caves'], ['giraffe', 'giraffes'], ['goodwife', 'goodwives'], ['housewife', 'housewives'], ['safe', 'safes'], ['save', 'saves'], ['pocketknife', 'pocketknives'], ['tartufe', 'tartufes'], ['tartuffe', 'tartuffes'], ['truffle', 'truffles'], ['jefe', 'jefes'], ['agrafe', 'agrafes'], ['agraffe', 'agraffes'], ['bouffe', 'bouffes'], ['carafe', 'carafes'], ['chafe', 'chafes'], ['pouffe', 'pouffes'], ['pouf', 'poufs'], ['piaffe', 'piaffes'], ['gaffe', 'gaffes'], ['executive', 'executives'], ['cove', 'coves'], ['dove', 'doves'], ['fave', 'faves'], ['positive', 'positives'], ['solve', 'solves'], ['trove', 'troves'], ['treasure', 'treasures'], ['suave', 'suaves'], ['bluff', 'bluffs'], ['half', 'halves'], ['knockoff', 'knockoffs'], ['handkerchief', 'handkerchiefs'], ['reed', 'reeds'], ['reef', 'reefs'], ['yourself', 'yourselves'], ['sunroof', 'sunroofs'], ['plateau', 'plateaus'], ['radius', 'radii'], ['stratum', 'strata'], ['stratus', 'strati'], ['focus', 'foci'], ['fungus', 'fungi'], ['appendix', 'appendices'], ['seraph', 'seraphim'], ['cherub', 'cherubim'], ['memo', 'memos'], ['cello', 'cellos'], ['automaton', 'automata'], ['button', 'buttons'], ['crayon', 'crayons'], ['captive', 'captives'], ['abrasive', 'abrasives'], ['archive', 'archives'], ['additive', 'additives'], ['hive', 'hives'], ['beehive', 'beehives'], ['olive', 'olives'], ['black olive', 'black olives'], ['chive', 'chives'], ['adjective', 'adjectives'], ['cattle drive', 'cattle drives'], ['explosive', 'explosives'], ['executive', 'executives'], ['negative', 'negatives'], ['fugitive', 'fugitives'], ['progressive', 'progressives'], ['laxative', 'laxatives'], ['incentive', 'incentives'], ['genesis', 'geneses'], ['surprise', 'surprises'], ['enterprise', 'enterprises'], ['relative', 'relatives'], ['positive', 'positives'], ['perspective', 'perspectives'], ['superlative', 'superlatives'], ['afterlife', 'afterlives'], ['native', 'natives'], ['detective', 'detectives'], ['collective', 'collectives'], ['lowlife', 'lowlives'], ['low-life', 'low-lives'], ['strife', 'strifes'], ['pony', 'ponies'], ['phony', 'phonies'], ['felony', 'felonies'], ['colony', 'colonies'], ['symphony', 'symphonies'], ['semicolony', 'semicolonies'], ['radiotelephony', 'radiotelephonies'], ['company', 'companies'], ['ceremony', 'ceremonies'], ['carnivore', 'carnivores'], ['emphasis', 'emphases'], ['abuse', 'abuses'], ['ass', 'asses'], ['mile', 'miles'], ['consensus', 'consensuses'], ['coatdress', 'coatdresses'], ['courthouse', 'courthouses'], ['playhouse', 'playhouses'], ['crispness', 'crispnesses'], ['racehorse', 'racehorses'], ['greatness', 'greatnesses'], ['demon', 'demons'], ['lemon', 'lemons'], ['pokemon', 'pokemon'], ['pokémon', 'pokémon'], ['christmas', 'christmases'], ['zymase', 'zymases'], ['accomplice', 'accomplices'], ['amice', 'amices'], ['titmouse', 'titmice'], ['slice', 'slices'], ['base', 'bases'], ['database', 'databases'], ['rise', 'rises'], ['uprise', 'uprises'], ['size', 'sizes'], ['prize', 'prizes'], ['booby', 'boobies'], ['hobby', 'hobbies'], ['baby', 'babies'], ['cookie', 'cookies'], ['budgie', 'budgies'], ['calorie', 'calories'], ['brownie', 'brownies'], ['lolly', 'lollies'], ['hippie', 'hippies'], ['smoothie', 'smoothies'], ['techie', 'techies'], ['specie', 'species'], ['quickie', 'quickies'], ['pixie', 'pixies'], ['rotisserie', 'rotisseries'], ['porkpie', 'porkpies'], ['newbie', 'newbies'], ['veggie', 'veggies'], ['bourgeoisie', 'bourgeoisies'], ['party', 'parties'], ['apology', 'apologies'], ['ancestry', 'ancestries'], ['anomaly', 'anomalies'], ['anniversary', 'anniversaries'], ['battery', 'batteries'], ['nappy', 'nappies'], ['hanky', 'hankies'], ['junkie', 'junkies'], ['hogtie', 'hogties'], ['footsie', 'footsies'], ['curry', 'curries'], ['fantasy', 'fantasies'], ['housefly', 'houseflies'], ['falsy', 'falsies'], ['doggy', 'doggies'], ['carny', 'carnies'], ['cabby', 'cabbies'], ['charlie', 'charlies'], ['bookie', 'bookies'], ['auntie', 'aunties'], # Prototype inheritance. ['constructor', 'constructors'], # Non-standard case. ['randomWord', 'randomWords'], ['camelCase', 'camelCases'], ['PascalCase', 'PascalCases'], ['Alumnus', 'Alumni'], ['CHICKEN', 'CHICKENS'], ['日本語', '日本語'], ['한국', '한국'], ['中文', '中文'], ['اللغة العربية', 'اللغة العربية'], ['四 chicken', '四 chickens'], ['Order2', 'Order2s'], ['Work Order2', 'Work Order2s'], ['SoundFX2', 'SoundFX2s'], ['oDonald', 'oDonalds'] ] # # Odd plural to singular tests. # # @type {Array} # SINGULAR_TESTS = [ ['dingo', 'dingos'], ['mango', 'mangoes'], ['echo', 'echos'], ['ghetto', 'ghettoes'], ['nucleus', 'nucleuses'], ['bureau', 'bureaux'], ['seraph', 'seraphs'] ] # # Odd singular to plural tests. # # @type {Array} # PLURAL_TESTS = [ ['plateaux', 'plateaux'], ['axis', 'axes'], ['basis', 'bases'], ['automatum', 'automata'], ['thou', 'you'], ['axiS', 'axes'], ['passerby', 'passersby'] ] class TestPluralize(unittest.TestCase): def test_methods_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.plural(test[0]), test[1]) def test_methods_is_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertTrue(pluralizer.isPlural(test[1]), f"isPlural('{test[1]}')") def test_methods_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.singular(test[1]), test[0]) def test_methods_is_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertTrue(pluralizer.isSingular(test[0])) def test_automatically_convert_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.pluralize(test[1], 5), test[1]) self.assertEqual(pluralizer.pluralize(test[0], 5), test[1]) def test_automatically_convert_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.pluralize(test[0], 1), test[0]) self.assertEqual(pluralizer.pluralize(test[1], 1), test[0]) def test_prepend_count_plural_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 5, True), '5 tests') def test_prepend_count_singular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 1, True), '1 test') def test_add_new_uncountable_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('paper'), 'papers') pluralizer.addUncountableRule('paper') self.assertEqual(pluralizer.pluralize('paper'), 'paper') def test_add_new_irregular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('irregular'), 'irregulars') pluralizer.addIrregularRule('irregular', 'regular') self.assertEqual(pluralizer.pluralize('irregular'), 'regular') def test_return_false_for_irregular_words(self): pluralizer = Pluralizer() self.assertTrue(pluralizer.isPlural('irregulars')) pluralizer.addIrregularRule('irregulars', 'regular') self.assertFalse(pluralizer.isPlural('irregulars')) def test_add_new_plural_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('regex'), 'regexes') pluralizer.addPluralRule(re.compile(r'(?i)gex$'), 'gexii') self.assertEqual(pluralizer.plural('regex'), 'regexii') def test_add_new_singular_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('singles'), 'single') pluralizer.addSingularRule(re.compile('singles$'), 'singular') self.assertEqual(pluralizer.singular('singles'), 'singular') def test_allow_new_plural_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('person'), 'people') pluralizer.addPluralRule('person', 'peeps') self.assertEqual(pluralizer.plural('person'), 'peeps') def test_allow_new_singular_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('mornings'), 'morning') pluralizer.addSingularRule('mornings', 'suck') self.assertEqual(pluralizer.singular('mornings'), 'suck') if __name__ == '__main__': unittest.main()
2.875
3
promgen/util.py
sundy-li/promgen
0
11430
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE import requests.sessions from django.db.models import F from promgen.version import __version__ from django.conf import settings # Wrappers around request api to ensure we always attach our user agent # https://github.com/requests/requests/blob/master/requests/api.py def post(url, data=None, json=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.post(url, data=data, json=json, **kwargs) def get(url, params=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.get(url, params=params, **kwargs) def delete(url, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.delete(url, **kwargs) def setting(key, default=None, domain=None): """ Settings helper based on saltstack's query Allows a simple way to query settings from YAML using the style `path:to:key` to represent path: to: key: value """ rtn = settings.PROMGEN if domain: rtn = rtn[domain] for index in key.split(":"): try: rtn = rtn[index] except KeyError: return default return rtn class HelpFor: # Wrap a model's lower level api so that we can easily # grab help_text for a specific field # help_text = HelpFor(DjangoModel) # help_test.field_name def __init__(self, model): self.model = model def __getattr__(self, name): return self.model._meta.get_field(name).help_text def inc_for_pk(model, pk, **kwargs): # key=F('key') + value model.objects.filter(pk=pk).update(**{key: F(key) + kwargs[key] for key in kwargs})
2.21875
2
integration_tests/test_suites/k8s-integration-test-suite/test_utils.py
ericct/dagster
0
11431
import time import kubernetes import pytest from dagster_k8s.client import DagsterK8sError, WaitForPodState from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod from dagster_k8s_test_infra.helm import get_helm_test_namespace def construct_pod_spec(name, cmd): return kubernetes.client.V1PodSpec( restart_policy="Never", containers=[ kubernetes.client.V1Container(name=name, image="busybox", args=["/bin/sh", "-c", cmd]) ], ) def construct_pod_manifest(name, cmd): return kubernetes.client.V1Pod( metadata=kubernetes.client.V1ObjectMeta(name=name), spec=construct_pod_spec(name, cmd), ) def construct_job_manifest(name, cmd): return kubernetes.client.V1Job( api_version="batch/v1", kind="Job", metadata=kubernetes.client.V1ObjectMeta(name=name), spec=kubernetes.client.V1JobSpec( template=kubernetes.client.V1PodTemplateSpec(spec=construct_pod_spec(name, cmd)), ), ) def test_wait_for_pod(cluster_provider): # pylint: disable=unused-argument api = kubernetes.client.CoreV1Api() with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api.create_namespaced_pod( body=construct_pod_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi1", namespace=namespace) assert retrieve_pod_logs("sayhi1", namespace=namespace) == "hello world\n" api.create_namespaced_pod( body=construct_pod_manifest("sayhi2", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi2", namespace=namespace, wait_for_state=WaitForPodState.Terminated) with pytest.raises( DagsterK8sError, match="Timed out while waiting for pod to become ready" ): api.create_namespaced_pod( body=construct_pod_manifest("sayhi3", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_pod("sayhi3", namespace=namespace, wait_timeout=1) with pytest.raises(DagsterK8sError) as exc_info: api.create_namespaced_pod( body=construct_pod_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_pod("fail", namespace=namespace, wait_for_state=WaitForPodState.Terminated) # not doing total match because integration test. unit tests test full log message assert "Pod did not exit successfully." in str(exc_info.value) finally: for pod_name in ["sayhi1", "sayhi2", "sayhi3", "fail"]: try: api.delete_namespaced_pod(pod_name, namespace=namespace) except kubernetes.client.rest.ApiException: pass def test_wait_for_job(cluster_provider): # pylint: disable=unused-argument with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api = kubernetes.client.BatchV1Api() api.create_namespaced_job( body=construct_job_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_job_success("sayhi1", namespace=namespace) with pytest.raises( DagsterK8sError, match="Timed out while waiting for job sayhi2 to complete" ): api.create_namespaced_job( body=construct_job_manifest("sayhi2", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_job_success("sayhi2", namespace=namespace, wait_timeout=1) with pytest.raises( DagsterK8sError, match="Encountered failed job pods for job fail with status:", ): api.create_namespaced_job( body=construct_job_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_job_success("fail", namespace=namespace) finally: for job in ["sayhi1", "sayhi2", "fail"]: try: api.delete_namespaced_job( job, namespace=namespace, propagation_policy="Foreground" ) except kubernetes.client.rest.ApiException: pass
1.757813
2
radioepg/migrations/0001_initial.py
mervij/radiodns
0
11432
# Generated by Django 3.1.6 on 2021-02-15 08:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('short_name', models.CharField(max_length=8)), ('medium_name', models.CharField(max_length=16)), ], ), migrations.CreateModel( name='Bearer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('bearer_id', models.TextField()), ('cost', models.IntegerField()), ('mimeValue', models.CharField(max_length=255)), ('service', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='radioepg.service')), ], ), ]
1.703125
2
uitester/ui/case_manager/tag_names_line_edit.py
IfengAutomation/uitester
4
11433
<filename>uitester/ui/case_manager/tag_names_line_edit.py from PyQt5.QtCore import Qt, QStringListModel from PyQt5.QtWidgets import QLineEdit, QCompleter class TagNamesLineEdit(QLineEdit): def __init__(self, parent=None): super(QLineEdit, self).__init__(parent) self.cmp = None self.is_completer = True def setCompleter(self, completer): self.cmp = completer self.cmp.setWidget(self) self.cmp.setCompletionMode(QCompleter.PopupCompletion) self.cmp.setCaseSensitivity(Qt.CaseInsensitive) self.textChanged.connect(self.tag_names_changed) self.cmp.activated.connect(self.insert_completion) def tag_names_changed(self): if self.is_completer: text = self.text() tag_names = text.split(';') last_tag_name = tag_names[len(tag_names) - 1] self.cmp.update(last_tag_name) self.cmp.popup().setCurrentIndex(self.cmp.completionModel().index(0, 0)) cr = self.cursorRect() cr.setWidth(self.cmp.popup().sizeHintForColumn(0) + self.cmp.popup().verticalScrollBar().sizeHint().width()) self.cmp.complete(cr) else: pass def completer(self): return self.cmp def insert_completion(self, string): text = self.text() tag_names = text.split(';') last_tag_name = tag_names[len(tag_names) - 1] new_text = text[0:len(text) - len(last_tag_name)] + string + ';' self.is_completer = False self.clear() self.setText(new_text) self.is_completer = True class TagCompleter(QCompleter): def __init__(self, string_list, parent=None): super(TagCompleter, self).__init__(parent) self.string_list = string_list self.setModel(QStringListModel()) def update(self, completion_text): filtered = [] for string in self.string_list: if completion_text in string: filtered.append(string) self.model().setStringList(filtered) self.popup().setCurrentIndex(self.model().index(0, 0))
2.078125
2
utils/__init__.py
millermuttu/torch_soft
0
11434
# # importing all the modules at once # from .config import * # from .normalization import * # from .others import * # from .img_reg import * # from .transformation import * # from .visualization import * # importing the modules in a selective way import utils.config import utils.normalization import utils.misc import utils.lr_finder
1.070313
1
tasks.py
epu-ntua/QualiChain-mediator
2
11435
from celery import Celery from clients.dobie_client import send_data_to_dobie app = Celery('qualichain_mediator') app.config_from_object('settings', namespace='CELERY_') @app.task() def consume_messages_async(message): """ This task is used to received job posting text and feed DOBIE component """ extracted_skills = send_data_to_dobie(message) print(extracted_skills, flush=True) return extracted_skills
2.34375
2
ingest/ambit_geo.py
brianhouse/okavango
2
11436
import json, math from ingest import ingest_json_body from housepy import config, log, strings, util def parse(request): log.info("ambit_geo.parse") sample = ingest_json_body(request) if sample is None: return sample, "Could not parse" data = {} for key, value in sample.items(): if key == "UTC": dt = util.parse_date(sample['UTC']) # these are marked UTC in the data t = util.timestamp(dt) data['t_utc'] = t continue if key == "Longitude": data['longitude'] = math.degrees(float(sample['Longitude'])) continue if key == "Latitude": data['latitude'] = math.degrees(float(sample['Latitude'])) continue if key == "GPSAltitude": data['altitude'] = float(sample['GPSAltitude']) continue if type(value) != str: continue data[key] = strings.as_numeric(value) try: log.debug("%s %s %s" % (data['longitude'], data['latitude'], data['altitude'])) except: log.error("MISSING GEO") return data
2.78125
3
gandyndns.py
nim65s/scripts
1
11437
#!/usr/bin/env python '''update gandi DNS domain entry, with LiveDNS v5 Cf. https://doc.livedns.gandi.net/#work-with-domains ''' import argparse import ipaddress import json import os from subprocess import check_output import requests parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('domain') parser.add_argument('name') parser.add_argument('--ip', help="defaults to ifconfig.me's return") parser.add_argument('--api_key', help="defaults to GANDI_API_KEY env var, or the return of 'pass api/gandi'") args = parser.parse_args() if args.ip is None: args.ip = requests.get('http://ifconfig.me', headers={'User-Agent': 'curl/7.61.1'}).content.decode().strip() ip = ipaddress.ip_address(args.ip) if args.api_key is None: args.api_key = os.environ.get('GANDI_API_KEY', check_output(['pass', 'api/gandi'], text=True).strip()) key = {'X-Api-Key': args.api_key} r = requests.get(f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}', headers=key) r.raise_for_status() if r.json()[0]['rrset_values'][0] == args.ip: if args.verbose: print('ok') else: type_ = 'AAAA' if isinstance(ip, ipaddress.IPv6Address) else 'A' url = f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}/{type_}' data = {'rrset_values': [args.ip]} headers = {'Content-Type': 'application/json', **key} r = requests.put(url, data=json.dumps(data), headers=headers) if args.verbose: print(r.json()) else: r.raise_for_status()
2.171875
2
leetcode.com/python/314_Binary_Tree_Vertical_Order_Traversal.py
mamane19/coding-interview-gym
713
11438
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque from collections import defaultdict class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] queue = deque([(root, 0)]) verticalNodeMap = defaultdict(list) while queue: node, horrizotalDistace = queue.popleft() if node: verticalNodeMap[horrizotalDistace].append(node.val) queue.append((node.left, horrizotalDistace - 1)) queue.append((node.right, horrizotalDistace + 1)) minHorrizotalDistace, maxHorrizotalDistace = min(verticalNodeMap.keys()), max(verticalNodeMap.keys()) result = [] for key in range(minHorrizotalDistace, maxHorrizotalDistace + 1): result.append(verticalNodeMap[key]) return result # My solution during mock, getting TLE, don't know why from collections import defaultdict from collections import deque class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] orderMap = defaultdict(list) queue = deque([(root, 0)]) while queue: currentNode, vLine = queue.popleft() if currentNode: orderMap[vLine].append(root.val) queue.append((root.left, vLine - 1)) queue.append((root.right, vLine + 1)) result = [] for i in range(min(orderMap.keys()), max(orderMap.keys()) + 1): result.append(orderMap[i]) return result
3.59375
4
src/sentry/models/pluginhealth.py
ayesha-omarali/sentry
0
11439
<reponame>ayesha-omarali/sentry from __future__ import absolute_import from sentry.db.models import ( ArrayField, BoundedPositiveIntegerField, Model, FlexibleForeignKey, sane_repr ) from django.db import models from jsonfield import JSONField from django.utils import timezone from sentry.constants import ObjectStatus from django.utils.translation import ugettext_lazy as _ class PluginFeatures(object): issue_basic = 'issue_basic' issue_sync = 'issue_sync' repository = 'repository' class PluginHealth(Model): __core__ = True name = models.CharField(max_length=128, db_index=True) features_list = ArrayField(of=models.TextField) date_added = models.DateTimeField(default=timezone.now) link = models.URLField(null=True, blank=True) author = models.CharField(max_length=64) metadata = JSONField() status = BoundedPositiveIntegerField( default=0, choices=( (ObjectStatus.VISIBLE, _('Active')), (ObjectStatus.PENDING_DELETION, _('Pending Deletion')), (ObjectStatus.DELETION_IN_PROGRESS, _('Deletion in Progress')), ), db_index=True ) class Meta: app_label = 'sentry' db_table = 'sentry_pluginhealth' __repr__ = sane_repr('name') def run_tests(self): plugin_test = PluginHealthTest.objects.create( plugin_id=self.id, ) plugin_test.test_data = plugin_test.run_tests(self) plugin_test.save() return plugin_test class PluginHealthTest(Model): __core__ = True date_added = models.DateTimeField(default=timezone.now) plugin = FlexibleForeignKey('sentry.PluginHealth') test_data = JSONField() class Meta: app_label = 'sentry' db_table = 'sentry_pluginhealthtest' unique_together = (('plugin', 'date_added')) __repr__ = sane_repr('plugin', 'date_added') def run_tests(self, plugin_health): return { 'configure_test': self.configure_test(plugin_health), 'create_issue_test': self.create_issue_test(plugin_health), 'link_issue_test': self.link_issue_test(plugin_health), 'sync_assignment_test': self.sync_assignment_test(plugin_health), 'sync_comment_test': self.sync_comment_test(plugin_health), 'sync_status_test': self.sync_status_test(plugin_health), 'repository_test': self.repository_test(plugin_health), } def configure_test(self, plugin_health): test_results = None return test_results def create_issue_test(self, plugin_health): if PluginFeatures.issue_basic not in plugin_health.features_list: return None test_results = None return test_results def link_issue_test(self, plugin_health): if PluginFeatures.issue_basic not in plugin_health.features_list: return None test_results = None return test_results def sync_assignment_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def sync_comment_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def sync_status_test(self, plugin_health): if PluginFeatures.issue_sync not in plugin_health.features_list: return None test_results = None return test_results def repository_test(self, plugin_health): if PluginFeatures.repository not in plugin_health.features_list: return None test_results = None return test_results
1.875
2
src/masonite/oauth/drivers/FacebookDriver.py
girardinsamuel/masonite-socialite
1
11440
from .BaseDriver import BaseDriver from ..OAuthUser import OAuthUser class FacebookDriver(BaseDriver): def get_default_scopes(self): return ["email"] def get_auth_url(self): return "https://www.facebook.com/dialog/oauth" def get_token_url(self): return "https://graph.facebook.com/oauth/access_token" def get_user_url(self): return "https://graph.facebook.com/me?" def get_request_options(self, token): return { "headers": {"Authorization": f"Bearer {token}", "Accept": "application/json"}, "query": {"prettyPrint": "false"}, } def user(self): user_data, token = super().user() user = ( OAuthUser() .set_token(token) .build( { "id": user_data["sub"], "nickname": user_data["nickname"], "name": user_data["name"], "email": user_data["email"], "avatar": user_data["picture"], } ) ) return user def user_from_token(self, token): user_data = super().user_from_token(token) user = ( OAuthUser() .set_token(token) .build( { "id": user_data["sub"], "nickname": user_data["nickname"], "name": user_data["name"], "email": user_data["email"], "avatar": user_data["picture"], } ) ) return user
2.59375
3
python/convert_to_readwise.py
t27/highlights-convert
0
11441
<filename>python/convert_to_readwise.py import pandas as pd import json import glob columns = ["Highlight","Title","Author","URL","Note","Location"] # for sample of the input json look at any json in the root of the `results` folder def convert_to_readwise_df(json_files): """Convert the internal json format to a readwise compatible dataframe Args: json_files (List[str]): list of json files Returns: pd.DataFrame: dataframe with columns as required by readwise """ df_data = [] for file in json_files: with open(file) as f: data = json.load(f) title = data['volume']['title'] author = ", ".join(data['volume']['authors']) for entry in data['highlights']: highlight = entry['content'] location = entry['location'] notes = "" if "notes" in entry: for note in notes: notes = notes+"\n"+note df_data.append([highlight,title,author,"",notes,location]) df = pd.DataFrame(df_data,columns = columns) return df if __name__ == "__main__": json_files = glob.glob("../results/*.json") df = convert_to_readwise_df(json_files) df.to_csv("tarang_readwise.csv",index=False)
3.5
4
ms_deisotope/qc/__init__.py
mstim/ms_deisotope
18
11442
"""A collection of methods for determining whether a given spectrum is of high quality (likely to produce a high quality interpretation) """ from .heuristic import xrea from .isolation import CoIsolation, PrecursorPurityEstimator __all__ = [ "xrea", "CoIsolation", "PrecursorPurityEstimator" ]
1.609375
2
rpi_animations/message.py
Anski-D/rpi_animations_old
0
11443
<filename>rpi_animations/message.py from .item import Item class Message(Item): """ Message feature object in the rpi_animations package. """ def __init__(self, group, screen_animator) -> None: """ Initialise Message object with sprite group and screen object. Run initial setup methods. Args: group (Group): Pygame sprite group to which the object will be added. screen_animator (ScreenAnimator): Main package object controlling the animation. """ super().__init__(group, screen_animator) # Store x position as float self._x = float(self._rect.x) # Set the flag that the message hasn't fully emerged self._has_fully_emerged = False def _setup_item(self) -> None: """ Run methods to setup the object. Returns: None """ self._set_text() # Run parent method super()._setup_item() def _set_text(self) -> None: """ Set font, message text, and outline of text. Returns: None """ # Set font self._font = self._settings.font # Set the message text self._text = self._settings.text # Set the outline text self._outline_text = self._font.render( self._text, self._settings.settings['text_aa'], self._settings.outline_colour ) def _set_item_content(self) -> None: """ Render the message text. Returns: None """ self.content = self._font.render( self._text, self._settings.settings['text_aa'], self._settings.text_colour ) def _place_item(self) -> None: """ Set the initial object position on the screen. Returns: None """ self._rect.midleft = self._screen_rect.midright def _draw_outline(self) -> None: """ Draw the message text outline. Returns: None """ outline_width = self._settings.settings['outline_width'] self._screen.blit(self._outline_text, (self._rect.x - outline_width, self._rect.y - outline_width)) self._screen.blit(self._outline_text, (self._rect.x - outline_width, self._rect.y + outline_width)) self._screen.blit(self._outline_text, (self._rect.x + outline_width, self._rect.y - outline_width)) self._screen.blit(self._outline_text, (self._rect.x + outline_width, self._rect.y + outline_width)) def blit(self) -> None: """ Add the object to the pygame screen. Returns: None """ # Draw outline text self._draw_outline() # Draw the message self._set_item_content() # Run parent method super().blit() def update(self) -> None: """ Move the object position to the left during a frame update. Returns: None """ self._x -= self._settings.settings['text_speed'] / self._settings.settings['fps'] self._rect.x = self._x def is_on_screen(self) -> bool: """ Determine whether the object is still on the screen. Returns: bool: True if still on screen, False otherwise. """ if self._rect.right <= self._screen_rect.left: return False return True def has_just_emerged(self) -> bool: """ Determine whether the right side of the message is now visible on the screen. Returns: bool: True if right edge is now on screen, False otherwise. """ if not self._has_fully_emerged and self._rect.right <= self._screen_rect.right: self._has_fully_emerged = True return True return False
3.046875
3
styrobot/cogs/help.py
ThatRedKite/styrobot
1
11444
<reponame>ThatRedKite/styrobot<gh_stars>1-10 import discord from discord.ext import commands from styrobot.util.contrib import info import random class BetterHelpCommand(commands.HelpCommand): async def send_embed(self, embed): embed.colour = discord.Colour.random() await self.get_destination().send(embed=embed) def blank_line(self, embed): embed.add_field(name='_ _', value='_ _', inline=False) def signature(self, command: commands.Command): out = [command.qualified_name] params = command.clean_params or {} for name, param in params.items(): # slightly copied from discord.py greedy = isinstance(param.annotation, commands.converter._Greedy) if param.default is not param.empty: should_print = param.default if isinstance(param.default, str) else param.default is not None if should_print: out.append(f'[{name}={param.default}]{"..." if greedy else ""}') else: out.append(f'[{name}]') elif param.kind == param.VAR_POSITIONAL: out.append(f'<{name}...>') elif greedy: out.append(f'[{name}]...') else: out.append(f'<{name}>') return ' '.join(out) async def send_bot_help(self, mapping): e = discord.Embed(title=info['name']) if random.random() < 0.95: e.add_field(name='I am', value=info['name'], inline=True) else: e.add_field(name='I am', value='an impostor', inline=True) e.set_author(name='sus', icon_url='https://i.redd.it/0qtc8un3bz061.png') e.add_field(name='Contribute at', value=info['repo'], inline=False) e.add_field(name='I send you my cogs (pls respond)', value='_ _', inline=True) cogs = [(cog, await self.filter_commands(mapping[cog])) for cog in mapping.keys()] cogs = [x for x in cogs if len(x[1]) > 0] for i, (cog, cmds) in enumerate(cogs): if i % 2 == 0: self.blank_line(e) h = '\n'.join([cmd.name for cmd in cmds]) if cog is None: e.add_field(name='builtin', value=h, inline=True) else: e.add_field(name=cog.qualified_name, value=h, inline=True) if random.random() < 0.9: e.set_footer(text='Made with ❤️') else: e.set_footer(text='Made with 🍆') await self.send_embed(e) async def send_cog_help(self, cog: commands.Cog): e = discord.Embed(title=cog.qualified_name) e.add_field(name='Cog', value=cog.qualified_name, inline=True) e.add_field(name='`in_code`', value=f'`{cog.__class__.__name__}`', inline=True) e.add_field(name='Commands', value='_ _', inline=False) for cmd in await self.filter_commands(cog.get_commands()): e.add_field(name=cmd, value=(cmd.help or '[no help]'), inline=False) await self.send_embed(e) async def send_group_help(self, group: commands.Group): e = discord.Embed(title=group.qualified_name) e.add_field(name='Command Group', value=group.qualified_name, inline=True) e.add_field(name='Help', value=(group.help or '[no help]'), inline=False) e.add_field(name='Subcommands', value='_ _', inline=False) for command in await self.filter_commands(group.commands): command: commands.Command e.add_field(name=self.signature(command), value=(command.help or '[no help]'), inline=False) await self.send_embed(e) async def send_command_help(self, command: commands.Command): e = discord.Embed(title=(command.qualified_name or command.name)) e.add_field(name='Name', value=(command.qualified_name or command.name), inline=False) e.add_field(name='Signature', value=(self.signature(command)), inline=False) e.add_field(name='Help', value=(command.help or '[no help]'), inline=False) await self.send_embed(e) class HelpCog(commands.Cog): def __init__(self, bot: commands.Bot): self.bot = bot help_command = BetterHelpCommand() help_command.cog = self self.bot.help_command = help_command def setup(bot): bot.add_cog(HelpCog(bot))
2.515625
3
misc/Queue_hello.py
benhunter/py-stuff
3
11445
<reponame>benhunter/py-stuff<gh_stars>1-10 # Testing with threading and queue modules for Thread-based parallelism import threading, queue, time # The worker thread gets jobs off the queue. When the queue is empty, it # assumes there will be no more work and exits. # (Realistically workers will run until terminated.) def worker(): print('Running worker') time.sleep(0.1) while True: try: arg = q.get(block=False) # False to terminate Thread when no work is available except queue.Empty: print('Worker', threading.currentThread(), end=' ') print('queue empty') break else: print('Worker', threading.currentThread(), end=' ') print('running with argument', arg) work_func(arg) # do the work time.sleep(0.5) q.task_done() # Create queue # Work function that processes the arguments def work_func(arg): print('Working on', arg) print('Square is', arg**2) print('Cube is', arg**3) q = queue.Queue() # Begin adding work to the queue for i in range(20): q.put(i) threadPool = [] # Start a pool of 5 workers for i in range(5): t = threading.Thread(target=worker, name='worker %i' % (i + 1)) t.start() threadPool.append(t) # time.sleep(5) # testing if workers die before work is queued - yes they do die # q.join() for i in range(20): q.put(i+20) for t in threadPool: t.join() # Give threads time to run # print('Main thread sleeping') # time.sleep(5) print('Main thread finished')
3.703125
4
tests/conftest.py
Beanxx/alonememo
0
11446
<reponame>Beanxx/alonememo import pytest from pymongo import MongoClient import app as flask_app test_database_name = 'spartatest' client = MongoClient('localhost', 27017) db = client.get_database(test_database_name) @pytest.fixture def app(): test_app = flask_app.create_app(test_database_name) # 제네레이터 문법(yield 구문까지만 실행하고 대기, # 이후 다시 호출할 때 yield 구문 다음이 진행됨) # app이 종료되는 것이 아니라 stop됨. yield test_app # 여기서부터는 모든 테스트가 완료되고 나서 시행됨 client.drop_database(test_database_name) print('테스트 DB 제거 완료')
2.15625
2
threader/__init__.py
mwoolweaver/threader
34
11447
"""Tools to quickly create twitter threads.""" from .thread import Threader __version__ = "0.1.1"
1.296875
1
src/utility/count_pages.py
WikiCommunityHealth/wikimedia-revert
0
11448
<reponame>WikiCommunityHealth/wikimedia-revert<gh_stars>0 # count numbers of pages from the Mediawiki history dumps import bz2 import subprocess import os from datetime import datetime inizio = datetime.now() dataset_folder = '/home/gandelli/dev/data/it/' totali = set() revisioni = set() revert = set() ns0 = set() for year in range(2001, 2021): dump_in = bz2.open(dataset_folder+'/it' + str(year) + '.tsv.bz2', 'r') line = dump_in.readline() print(year) while line != '': line = dump_in.readline().rstrip().decode('utf-8')[:-1] values = line.split('\t') if len(values) < 2: continue if values[23] != '': page = int(values[23]) totali.add(page) if values[28] == '0': ns0.add(page) if values[1] == 'revision': revisioni.add(page) if values[64] == 'true' and values[67] == 'true': revert.add(page) print('total page ',len(totali)) print('total pages ns0', len(ns0)) print('total revisions ns0', len(revisioni)) print('total revert ns0', len(revert) )
3.015625
3
livescore/LivescoreCommon.py
TechplexEngineer/frc-livescore
0
11449
import colorsys import cv2 from PIL import Image import pkg_resources from .LivescoreBase import LivescoreBase from .details import Alliance, OngoingMatchDetails class LivescoreCommon(LivescoreBase): def __init__(self, game_year, **kwargs): super(LivescoreCommon, self).__init__(game_year, **kwargs) self._match_key = None self._match_name = None def _getMatchKeyName(self, img, debug_img): if self._match_key is None: tl = self._transformPoint((220, 6)) br = self._transformPoint((570, 43)) raw_match_name = self._parseRawMatchName(self._getImgCropThresh(img, tl, br)) self._match_key = self._getMatchKey(raw_match_name) if self._match_key: self._match_name = raw_match_name else: self._match_name = None if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) return self._match_key, self._match_name def _getTimeAndMode(self, img, debug_img): # Check for match under review review_point1 = self._transformPoint((624, 93)) review_sample1 = img[review_point1[1], review_point1[0], :] hsvL = colorsys.rgb_to_hsv(float(review_sample1[2])/255, float(review_sample1[1])/255, float(review_sample1[0])/255) review_point2 = self._transformPoint((1279 - 624, 93)) review_sample2 = img[review_point2[1], review_point2[0], :] hsvR = colorsys.rgb_to_hsv(float(review_sample2[2])/255, float(review_sample2[1])/255, float(review_sample2[0])/255) if 0.116 < hsvL[0] < 0.216 and 0.116 < hsvR[0] < 0.216: return 0, 'post_match' # Find time remaining horiz_center = self._TEMPLATE_SHAPE[0]/2 tl = self._transformPoint((horiz_center-25, 56)) br = self._transformPoint((horiz_center+25, 82)) time_remaining = self._parseDigits(self._getImgCropThresh(img, tl, br)) if self._debug: # draw a green box for time box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) # Determine mode: 'pre_match', 'auto', 'teleop', or 'post_match' mode_point = self._transformPoint((520, 70)) mode_point2 = self._transformPoint((581, 70)) mode_sample = img[mode_point[1], mode_point[0], :] mode_sample2 = img[mode_point2[1], mode_point2[0], :] hsv1 = colorsys.rgb_to_hsv(float(mode_sample[2])/255, float(mode_sample[1])/255, float(mode_sample[0])/255) hsv2 = colorsys.rgb_to_hsv(float(mode_sample2[2])/255, float(mode_sample2[1])/255, float(mode_sample2[0])/255) if time_remaining is None: return None, None if time_remaining == 0: if hsv1[1] > 0.6 and hsv2[1] > 0.6: # Both saturated mode = 'post_match' elif hsv1[1] > 0.6: # First saturated mode = 'auto' # End of auton else: mode = 'pre_match' elif time_remaining <= 15 and hsv2[1] < 0.6: mode = 'auto' else: mode = 'teleop' if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) cv2.circle(debug_img, review_point1, 2, (0, 255, 0), -1) cv2.circle(debug_img, review_point2, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point2, 2, (0, 255, 0), -1) return time_remaining, mode def _getFlipped(self, img, debug_img): # Sample point to determine red/blue side color_point = self._transformPoint((520, 95)) color_sample = img[color_point[1], color_point[0], :] is_flipped = color_sample[0] > color_sample[2] # More blue than red if self._debug: cv2.circle(debug_img, color_point, 2, (0, 255, 0), -1) return is_flipped def _getScores(self, img, debug_img, is_flipped): # Left score limits left_tl = self._transformPoint((520, 110)) left_br = self._transformPoint((634, 155)) # Right score limits right_tl = self._transformPoint((644, 110)) right_br = self._transformPoint((760, 155)) left_score = self._parseDigits(self._getImgCropThresh(img, left_tl, left_br, white=True)) right_score = self._parseDigits(self._getImgCropThresh(img, right_tl, right_br, white=True)) if is_flipped: red_score = right_score blue_score = left_score else: red_score = left_score blue_score = right_score if self._debug: left_box = self._cornersToBox(left_tl, left_br) right_box = self._cornersToBox(right_tl, right_br) self._drawBox(debug_img, left_box, (255, 255, 0) if is_flipped else (255, 0, 255)) self._drawBox(debug_img, right_box, (255, 0, 255) if is_flipped else (255, 255, 0)) return red_score, blue_score def _getMatchDetails(self, img, force_find_overlay): debug_img = None if self._debug: debug_img = img.copy() time_remaining, mode = self._getTimeAndMode(img, debug_img) if self._is_new_overlay or force_find_overlay: self._match_key = None match_key, match_name = self._getMatchKeyName(img, debug_img) is_flipped = self._getFlipped(img, debug_img) red_score, blue_score = self._getScores(img, debug_img, is_flipped) box = self._cornersToBox(self._transformPoint((0, 0)), self._transformPoint((1280, 170))) self._drawBox(debug_img, box, (255, 255, 0)) if self._debug: cv2.imshow("Match Details", debug_img) cv2.waitKey() if match_key is not None and red_score is not None \ and blue_score is not None and time_remaining is not None: return OngoingMatchDetails( match_key=match_key, match_name=match_name, mode=mode, time=time_remaining, red=Alliance( score=red_score, ), blue=Alliance( score=blue_score, ) ) else: return None
2.09375
2
challenges/challenge.py
Tech-With-Tim/models
2
11450
<filename>challenges/challenge.py<gh_stars>1-10 from postDB import Model, Column, types from datetime import datetime import utils class Challenge(Model): """ Challenge class to store the challenge details Database Attributes: Attributes stored in the `challenges` table. :param int id: The challenge Snowflake ID. :param str title: The challenge title. :param int author_id: The challenge author's Discord ID. :param str description: A description. :param List[str] example_in: Example input. :param List[str] example_out: Example output. :param List[int] language_ids: The languages you can use to complete this challenge. :param :class:`datetime` released_at: The time this challenge was released at. :param bool deleted: Whether or not this challenge has been deleted. :param str slug: The URL slug this challenge relates to. """ id = Column(types.Integer(big=True), primary_key=True) title = Column(types.String, unique=True) author_id = Column( types.ForeignKey("users", "id", sql_type=types.Integer(big=True)), ) description = Column(types.String) example_in = Column(types.Array(types.String)) example_out = Column(types.Array(types.String)) # Implicit ForeignKey to ChallengeLanguage.id language_ids = Column(types.Array(types.Integer(big=True))) released_at = Column(types.DateTime, nullable=True) deleted = Column(types.Boolean, default=False) slug = Column(types.String, unique=True) @property def created_at(self) -> datetime: """Returns the time the challenge was created""" return utils.snowflake_time(self.id)
3.046875
3
settings.py
embrace-inpe/cycle-slip-correction
6
11451
""" Commom settings to all applications """ A = 40.3 TECU = 1.0e16 C = 299792458 F1 = 1.57542e9 F2 = 1.22760e9 factor_1 = (F1 - F2) / (F1 + F2) / C factor_2 = (F1 * F2) / (F2 - F1) / C DIFF_TEC_MAX = 0.05 LIMIT_STD = 7.5 plot_it = True REQUIRED_VERSION = 3.01 CONSTELLATIONS = ['G', 'R'] COLUMNS_IN_RINEX = {'3.03': {'G': {'L1': 'L1C', 'L2': 'L2W', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1C', 'L2': 'L2C', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} }, '3.02': {'G': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} }, '3.01': {'G': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1W', 'P2': 'C2W'}, 'R': {'L1': 'L1', 'L2': 'L2', 'C1': 'C1C', 'P1': 'C1P', 'P2': 'C2P'} } }
1.882813
2
io_almacen/channel/__init__.py
xyla-io/io_almacen
0
11452
<reponame>xyla-io/io_almacen<gh_stars>0 from .channel_io import Channel, channel_entity_url
1.046875
1
tests/api/test_libcoap_api.py
ggravlingen/ikeatradfri
726
11453
"""Test API utilities.""" import json from pytradfri.api.libcoap_api import APIFactory from pytradfri.gateway import Gateway def test_constructor_timeout_passed_to_subprocess(monkeypatch): """Test that original timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", timeout=20, psk="abc") api.request(Gateway().get_devices()) assert capture["timeout"] == 20 def test_custom_timeout_passed_to_subprocess(monkeypatch): """Test that custom timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", psk="abc") api.request(Gateway().get_devices(), timeout=1) assert capture["timeout"] == 1
2.46875
2
scrape_tvz.py
awordforthat/rhymes
0
11454
# scrapes Townes van Zandt lyrics # sample code so I don't have to remember all of this stuff # the next time I want to source some verses from bs4 import BeautifulSoup as soup import requests import string punctuation_trans_table = str.maketrans("", "", string.punctuation) def strip_punctuation(s): return s.translate(punctuation_trans_table) base_url = "http://ippc2.orst.edu/coopl/lyrics/" index = requests.get(base_url + "albums.html") parsed_index = soup(index.text) all_links = parsed_index.find_all("a") # get all <a> tags links = [l for l in all_links if l.text] # filter out image links def to_filename(s, path="texts/townes_van_zandt/"): '''Quick and dirty snake-casing''' s = s.replace("&amp;", "and") # special case, "Poncho & Lefty" s = strip_punctuation(s) s = s.lower() s = s.replace(" ", "_") s = path + s + ".txt" return s def process_link(link): title = link.text f = open(to_filename(title), "w") remote_file = link.get("href") song_file = requests.get(base_url + remote_file) verses = [l for l in soup(song_file.text).find_all("font") if l.get("size")] for verse in verses: if verse.text: f.writelines("\n".join(verse.stripped_strings)) f.write("\n\n")
3.21875
3
chapter04/ifelse.py
persevere-in-coding-persist-in-learning/python2
3
11455
# coding=utf-8 """ 控制结构if elif else的研究 Version: 0.1 Author: huijz Date: 2020-08-24 """ # 例1:if的基本用法: flag = False name = 'huijz' if name == 'python': # 判断变量是否为 python flag = True # 条件成立时设置标志为真 print 'welcome boss' # 并输出欢迎信息 else: print name # 条件不成立时输出变量名称 # 例2:elif用法 num = 5 if num == 3: # 判断num的值 print 'boss' elif num == 2: print 'user' elif num == 1: print 'worker' elif num < 0: # 值小于零时输出 print 'error' else: print 'road' # 条件均不成立时输出 # 例3:if语句多个条件 num = 9 if 0 <= num <= 10: # 判断值是否在0~10之间 print 'hello' # 输出结果: hello num = 10 if num < 0 or num > 10: # 判断值是否在小于0或大于10 print 'hello' else: print 'unDefine' # 输出结果: unDefine num = 8 # 判断值是否在0~5或者10~15之间 if (0 <= num <= 5) or (10 <= num <= 15): print 'hello' else: print 'unDefine' # 输出结果: unDefine # 例4:var = 100 var = 100 if var == 100: print "变量 var 的值为100" print "Good bye!"
4.15625
4
setup.py
korymath/JANN
39
11456
<filename>setup.py<gh_stars>10-100 from setuptools import setup from setuptools import find_packages setup( name="Jann", version="4.0.0", description="Jann is a Nearest Neighbour retrieval-based chatbot.", author="<NAME>", author_email="<EMAIL>", license="MIT", url="https://github.com/korymath/jann", packages=find_packages(), setup_requires=[ "pytest-runner" ], tests_require=[ "pytest" ], )
1.25
1
tests/scanner/scanners/ke_version_scanner_test.py
pombredanne/forseti-security
1
11457
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KE Version Rule Scanner Tests.""" import unittest import mock from tests import unittest_utils from google.cloud.security.common.gcp_type import ( ke_cluster as ke_cluster_type) from google.cloud.security.common.gcp_type import ( organization as organization_type) from google.cloud.security.common.gcp_type import project as project_type from google.cloud.security.scanner.scanners import ke_version_scanner # pylint: disable=bad-indentation class FakeProjectDao(object): def get_project(self, project_id, snapshot_timestamp=0): return project_type.Project(project_id=project_id) class FakeOrgDao(object): def find_ancestors(self, resource_id, snapshot_timestamp=0): return [organization_type.Organization(organization_id=123456)] class KeVersionScannerTest(unittest_utils.ForsetiTestCase): def tearDown(self): self.org_patcher.stop() self.project_patcher.stop() def setUp(self): # patch the daos self.org_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'org_resource_rel_dao.OrgResourceRelDao') self.mock_org_rel_dao = self.org_patcher.start() self.mock_org_rel_dao.return_value = FakeOrgDao() self.project_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'project_dao.ProjectDao') self.mock_project_dao = self.project_patcher.start() self.mock_project_dao.return_value = FakeProjectDao() self.server_config = { 'defaultClusterVersion': '1.7.11-gke.1', 'validNodeVersions': [ '1.8.6-gke.0', '1.7.11-gke.1', '1.7.10-gke.1', '1.6.13-gke.1', ], 'defaultImageType': 'COS', 'validImageTypes': [ 'UBUNTU', 'COS' ], 'validMasterVersions': [ '1.8.6-gke.0', '1.7.11-gke.1' ] } self.ke_clusters = { # The main backend service. 'master-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'master-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.6.13-gke.1' }], 'initialClusterVersion': '1.6.13-gke.1', 'currentMasterVersion': '1.6.13-gke.1', 'currentNodeVersion': '1.6.13-gke.1' }), 'node-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.8.4-gke.1' }], 'initialClusterVersion': '1.8.4-gke.1', 'currentMasterVersion': '1.8.6-gke.0', 'currentNodeVersion': '1.8.4-gke.1' }), 'node-version-not-allowed': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-not-allowed', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.10-gke.1' }], 'initialClusterVersion': '1.7.10-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.10-gke.1' }), 'multiple-node-pools': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'multiple-node-pools', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.11-gke.1' }, { 'name': 'secondary-pool', 'version': '1.7.11-gke.1' }], 'initialClusterVersion': '1.7.11-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.11-gke.1' }) } self.scanner = ke_version_scanner.KeVersionScanner( {}, {}, '', unittest_utils.get_datafile_path( __file__, 'ke_version_scanner_test_data.yaml')) self.scanner._retrieve = mock.Mock( return_value=self.ke_clusters.values()) @mock.patch.object( ke_version_scanner.KeVersionScanner, '_output_results_to_db', autospec=True) def test_run_scanner(self, mock_output_results): self.scanner.run() expected_violations = [ {'resource_id': 'node-version-not-allowed', 'resource_type': 'ke', 'rule_index': 2, 'rule_name': 'Disallowed node pool version', 'violation_data': {'cluster_name': 'node-version-not-allowed', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.7.10-gke.1 is not " "allowed (['>= 1.6.13-gke.1', " "'>= 1.7.11-gke.1', '>= 1.8.4-gke.1', " "'>= 1.9.*']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'master-version-invalid', 'resource_type': 'ke', 'rule_index': 1, 'rule_name': 'Unsupported master version', 'violation_data': {'cluster_name': 'master-version-invalid', 'node_pool_name': '', 'project_id': 'foo', 'violation_reason': ( "Master version 1.6.13-gke.1 is not " "supported (['1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'node-version-invalid', 'resource_type': 'ke', 'rule_index': 0, 'rule_name': 'Unsupported node pool version', 'violation_data': {'cluster_name': 'node-version-invalid', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.8.4-gke.1 is not " "supported (['1.6.13-gke.1', " "'1.7.10-gke.1', '1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}] mock_output_results.assert_called_once_with(mock.ANY, expected_violations) if __name__ == '__main__': unittest.main()
1.828125
2
metrics/utils.py
edwardyehuang/iSeg
4
11458
<filename>metrics/utils.py<gh_stars>1-10 # ================================================================ # MIT License # Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang) # ================================================================ import tensorflow as tf from iseg.metrics.seg_metric_wrapper import SegMetricWrapper from iseg.metrics.mean_iou import MeanIOU class SegMetricBuilder: def __init__(self, num_class, ignore_label): self.num_class = num_class self.ignore_label = ignore_label self.__metrics = [] def add(self, prefix="", use_iou=True, pre_compute_fn=None): metrics_list = [] if prefix is None: prefix = "" if prefix != "": prefix = prefix + "_" if use_iou: iou_metric = SegMetricWrapper( MeanIOU(self.num_class), num_class=self.num_class, ignore_label=self.ignore_label, name=prefix + "IOU" ) iou_metric.add_pre_compute_fn(pre_compute_fn) metrics_list.append(iou_metric) self.__metrics.append(metrics_list) @property def metrics(self): return self.__metrics
2.0625
2
src/core/stats.py
dynaryu/vaws
0
11459
import math def lognormal_mean(m, stddev): """ compute mean of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: mean of log x """ return math.log(m) - (0.5 * math.log(1.0 + (stddev * stddev) / (m * m))) def lognormal_stddev(m, stddev): """ compute std. of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: std. of log x """ return math.sqrt(math.log((stddev * stddev) / (m * m) + 1)) def lognormal_underlying_mean(m, stddev): """ compute mean of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: """ # if m == 0 or stddev == 0: # print '{}'.format('why ???') # return 0 return math.exp(m + 0.5 * stddev * stddev) def lognormal_underlying_stddev(m, stddev): """ compute std of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: std of x """ # if m == 0 or stddev == 0: # print '{}'.format('strange why???') # return 0 return math.sqrt((math.exp(stddev**2.0) - 1.0) * math.exp(2.0*m + stddev**2.0)) #return lognormal_underlying_mean(m, stddev) * \ # math.sqrt((math.exp(stddev * stddev) - 1.0))
3.875
4
vim.d/vimfiles/bundle/taghighlight/plugin/TagHighlight/module/languages.py
lougxing/gbox
0
11460
#!/usr/bin/env python # Tag Highlighter: # Author: <NAME> <abudden _at_ gmail _dot_ com> # Copyright: Copyright (C) 2009-2013 <NAME> # Permission is hereby granted to use and distribute this code, # with or without modifications, provided that this copyright # notice is copied with it. Like anything else that's free, # the TagHighlight plugin is provided *as is* and comes with no # warranty of any kind, either expressed or implied. By using # this plugin, you agree that in no event will the copyright # holder be liable for any damages resulting from the use # of this software. # --------------------------------------------------------------------- import os import glob from .config import config from .loaddata import LoadDataFile, LoadFile, GlobData from .debug import Debug class Languages(): registry = {} def __init__(self, options): self.options = options self.kinds = None language_list_entries = ['SkipList','Priority'] # Import language specific modules: this will make them be parsed # and will add to the registry self.defaults = LoadDataFile('language_defaults.txt') for entry in language_list_entries: if entry in self.defaults: if not isinstance(self.defaults[entry], list): self.defaults[entry] = self.defaults[entry].split(',') for language_file in GlobData('languages/*.txt'): language_dict = LoadDataFile(language_file) for entry in language_list_entries: if entry in language_dict: if not isinstance(language_dict[entry], list): language_dict[entry] = language_dict[entry].split(',') language_dict['Filename'] = language_file if 'ReservedKeywords' in language_dict: # This is some weird python magic that takes a list of # strings containing space-separated items and produces # a single list of those items. language_dict['ReservedKeywords'] = \ [item for sublist in language_dict['ReservedKeywords'] for item in sublist.split(' ')] else: language_dict['ReservedKeywords'] = [] language_dict = self.VerifyLanguage(language_dict) self.registry[language_dict['FriendlyName']] = language_dict def ReadConfigFile(self, filename): result = {} fh = open(filename, 'r') list_entries = ['SkipList','Priority'] key = None for line in fh: if line.strip().endswith(':') and line[0] not in [' ','\t',':','#']: key = line.strip()[:-1] result[key] = [] elif key is not None and line.startswith('\t'): result[key] += [line.strip()] elif ':' in line and line[0] not in [' ','\t',':','#']: # End of the previous list, so reset key key = None parts = line.strip().split(':',1) if parts[0] in list_entries: if ',' in parts[1]: result[parts[0]] = parts[1].split(',') else: result[parts[0]] = [parts[1]] else: result[parts[0]] = parts[1] fh.close() return result def VerifyLanguage(self, language_dict): required_keys = [ 'FriendlyName', 'CTagsName', 'PythonExtensionMatcher', 'VimExtensionMatcher', 'Suffix', 'SkipList', 'IsKeyword', 'Priority', ] for key in required_keys: if key not in language_dict: if key in self.defaults: language_dict[key] = self.defaults[key] else: raise Exception("Language data from file {filename} is " \ "missing required key {key} (no default " \ "available).".format(filename=language_dict['Filename'], key=key)) return language_dict def GetAllLanguages(self): return list(self.registry.keys()) def GetAllLanguageHandlers(self): return list(self.registry.values()) def GetLanguageHandler(self, name): return self.registry[name] def GenerateExtensionTable(self): results = {} for handler in list(self.registry.values()): extensions = handler.GetVimMatcher() suffix = handler.GetSuffix() results[extensions] = suffix return results def GenerateFullKindList(self): self.LoadKindList() kinds = set() for language in list(self.kinds.keys()): kinds |= set(self.kinds[language].values()) return sorted(list(kinds)) def GetKindList(self, language=None): """Explicit list of kinds exported from ctags help.""" if self.kinds is None: kind_import = LoadDataFile('kinds.txt') # Generate the kind database with 'ctags_' prefix on the keys self.kinds = {} for key in kind_import: self.kinds[key] = {} for kind in kind_import[key]: self.kinds[key]['ctags_'+kind] = kind_import[key][kind] if language is None: return self.kinds elif language in self.kinds: return self.kinds[language] else: return None
2.390625
2
archive/bayes_sensor.py
robmarkcole/HASS-data-science
11
11461
""" Bayes sensor code split out from https://github.com/home-assistant/home-assistant/blob/dev/homeassistant/components/binary_sensor/bayesian.py This module is used to explore the sensor. """ from collections import OrderedDict from const import * def update_probability(prior, prob_true, prob_false): """Update probability using Bayes' rule.""" numerator = prob_true * prior denominator = numerator + prob_false * (1 - prior) probability = numerator / denominator return probability def setup_platform(config): """Set up the Bayesian Binary sensor. Modified from async_setup_platform.""" name = config[CONF_NAME] observations = config[CONF_OBSERVATIONS] prior = config[CONF_PRIOR] probability_threshold = config[CONF_PROBABILITY_THRESHOLD] device_class = config[CONF_DEVICE_CLASS] return BayesianBinarySensor( name, prior, observations, probability_threshold, device_class) class BinarySensorDevice(): # Entity """Represent a binary sensor.""" @property def is_on(self): """Return true if the binary sensor is on.""" return None @property def state(self): """Return the state of the binary sensor.""" return STATE_ON if self.is_on else STATE_OFF @property def device_class(self): """Return the class of this device, from component DEVICE_CLASSES.""" return None class BayesianBinarySensor(BinarySensorDevice): """Representation of a Bayesian sensor. Removed some methods I don't think will be needed for this investigation. """ def __init__(self, name, prior, observations, probability_threshold, device_class): """Initialize the Bayesian sensor.""" self._name = name self._observations = observations self._probability_threshold = probability_threshold self._device_class = device_class self._deviation = False self.prior = prior self.probability = prior self.current_obs = OrderedDict({}) # return the entity_id to observ to_observe = set(obs['entity_id'] for obs in self._observations) self.entity_obs = dict.fromkeys(to_observe, []) # Append observations for ind, obs in enumerate(self._observations): obs['id'] = ind self.entity_obs[obs['entity_id']].append(obs) self.watchers = { 'numeric_state': self._process_numeric_state, 'state': self._process_state } # @asyncio.coroutine def async_added_to_hass(self): """Call when entity about to be added.""" @callback # pylint: disable=invalid-name def async_threshold_sensor_state_listener(entity, old_state, new_state): """Handle sensor state changes.""" if new_state.state == STATE_UNKNOWN: return entity_obs_list = self.entity_obs[entity] for entity_obs in entity_obs_list: platform = entity_obs['platform'] self.watchers[platform](entity_obs) prior = self.prior for obs in self.current_obs.values(): prior = update_probability( prior, obs['prob_true'], obs['prob_false']) self.probability = prior # Updates prior for each observation. # self.hass.async_add_job(self.async_update_ha_state, True) entities = [obs['entity_id'] for obs in self._observations] # async_track_state_change( # self.hass, entities, async_threshold_sensor_state_listener) def _update_current_obs(self, entity_observation, should_trigger): """Update current observation for single entity.""" obs_id = entity_observation['id'] if should_trigger: prob_true = entity_observation['prob_given_true'] prob_false = entity_observation.get( 'prob_given_false', 1 - prob_true) # Update prob_true and prob_false self.current_obs[obs_id] = { 'prob_true': prob_true, 'prob_false': prob_false } else: self.current_obs.pop(obs_id, None) def _process_numeric_state(self, entity_observation): """Add entity to current_obs if numeric state conditions are met (regular sensor).""" entity = entity_observation['entity_id'] should_trigger = condition.async_numeric_state( self.hass, entity, entity_observation.get('below'), entity_observation.get('above'), None, entity_observation) self._update_current_obs(entity_observation, should_trigger) def _process_state(self, entity_observation): """Add entity to current observations if state conditions are met (binary sensor).""" entity = entity_observation['entity_id'] should_trigger = condition.state( self.hass, entity, entity_observation.get('to_state')) self._update_current_obs(entity_observation, should_trigger) @property def name(self): """Return the name of the sensor.""" return self._name @property def is_on(self): """Return true if sensor is on.""" return self._deviation @property def should_poll(self): """No polling needed.""" return False @property def device_class(self): """Return the sensor class of the sensor.""" return self._device_class @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return { ATTR_OBSERVATIONS: [val for val in self.current_obs.values()], ATTR_PROBABILITY: round(self.probability, 2), ATTR_PROBABILITY_THRESHOLD: self._probability_threshold, } <EMAIL> def async_update(self): """Get the latest data and update the states.""" self._deviation = bool(self.probability > self._probability_threshold)
3.1875
3
CoarseNet/MinutiaeNet_utils.py
khaihp98/minutiae
0
11462
<gh_stars>0 import os import glob import shutil import logging import matplotlib.pyplot as plt import numpy as np from scipy import ndimage, misc, signal, spatial from skimage.filters import gaussian, gabor_kernel import cv2 import math def mkdir(path): if not os.path.exists(path): os.makedirs(path) def re_mkdir(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) def init_log(output_dir): re_mkdir(output_dir) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%Y%m%d-%H:%M:%S', filename=os.path.join(output_dir, 'log.log'), filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) logging.getLogger('').addHandler(console) return logging def copy_file(path_s, path_t): shutil.copy(path_s, path_t) def get_files_in_folder(folder, file_ext=None): files = glob.glob(folder + file_ext) files_name = [] for i in files: _, name = os.path.split(i) name, ext = os.path.splitext(name) files_name.append(name) return np.asarray(files), np.asarray(files_name) def point_rot(points, theta, b_size, a_size): cosA = np.cos(theta) sinA = np.sin(theta) b_center = [b_size[1] / 2.0, b_size[0] / 2.0] a_center = [a_size[1] / 2.0, a_size[0] / 2.0] points = np.dot(points - b_center, np.array([[cosA, -sinA], [sinA, cosA]])) + a_center return points def mnt_reader(file_name): f = open(file_name) minutiae = [] for i, line in enumerate(f): if i < 4 or len(line) == 0: continue w, h, o = [float(x) for x in line.split()] w, h = int(round(w)), int(round(h)) minutiae.append([w, h, o]) f.close() return minutiae def mnt_writer(mnt, image_name, image_size, file_name): f = open(file_name, 'w') f.write('%s\n' % (image_name)) f.write('%d %d %d\n' % (mnt.shape[0], image_size[0], image_size[1])) for i in range(mnt.shape[0]): f.write('%d %d %.6f %.4f\n' % (mnt[i, 0], mnt[i, 1], mnt[i, 2], mnt[i, 3])) f.close() return def gabor_fn(ksize, sigma, theta, Lambda, psi, gamma): sigma_x = sigma sigma_y = float(sigma) / gamma # Bounding box nstds = 3 xmax = ksize[0] / 2 ymax = ksize[1] / 2 xmin = -xmax ymin = -ymax (y, x) = np.meshgrid(np.arange(ymin, ymax + 1), np.arange(xmin, xmax + 1)) # Rotation x_theta = x * np.cos(theta) + y * np.sin(theta) y_theta = -x * np.sin(theta) + y * np.cos(theta) gb_cos = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.cos( 2 * np.pi / Lambda * x_theta + psi) gb_sin = np.exp(-.5 * (x_theta ** 2 / sigma_x ** 2 + y_theta ** 2 / sigma_y ** 2)) * np.sin( 2 * np.pi / Lambda * x_theta + psi) return gb_cos, gb_sin def gabor_bank(stride=2, Lambda=8): filters_cos = np.ones([25, 25, 180 // stride], dtype=float) filters_sin = np.ones([25, 25, 180 // stride], dtype=float) for n, i in enumerate(range(-90, 90, stride)): theta = i * np.pi / 180. kernel_cos, kernel_sin = gabor_fn((24, 24), 4.5, -theta, Lambda, 0, 0.5) filters_cos[..., n] = kernel_cos filters_sin[..., n] = kernel_sin filters_cos = np.reshape(filters_cos, [25, 25, 1, -1]) filters_sin = np.reshape(filters_sin, [25, 25, 1, -1]) return filters_cos, filters_sin def gaussian2d(shape=(5, 5), sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2. * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def gausslabel(length=180, stride=2): gaussian_pdf = signal.gaussian(length + 1, 3) label = np.reshape(np.arange(stride / 2, length, stride), [1, 1, -1, 1]) y = np.reshape(np.arange(stride / 2, length, stride), [1, 1, 1, -1]) delta = np.array(np.abs(label - y), dtype=int) delta = np.minimum(delta, length - delta) + length // 2 return gaussian_pdf[delta] def angle_delta(A, B, max_D=np.pi * 2): delta = np.abs(A - B) delta = np.minimum(delta, max_D - delta) return delta def fmeasure(P, R): return 2 * P * R / (P + R + 1e-10) def distance(y_true, y_pred, max_D=16, max_O=np.pi / 6): D = spatial.distance.cdist(y_true[:, :2], y_pred[:, :2], 'euclidean') O = spatial.distance.cdist(np.reshape(y_true[:, 2], [-1, 1]), np.reshape(y_pred[:, 2], [-1, 1]), angle_delta) return (D <= max_D) * (O <= max_O) def metric_P_R_F(y_true, y_pred, maxd=16, maxo=np.pi / 6): # Calculate Precision, Recall, F-score if y_pred.shape[0] == 0 or y_true.shape[0] == 0: return 0, 0, 0, 0, 0 y_true, y_pred = np.array(y_true), np.array(y_pred) total_gt, total = float(y_true.shape[0]), float(y_pred.shape[0]) # Using L2 loss dis = spatial.distance.cdist(y_pred[:, :2], y_true[:, :2], 'euclidean') mindis, idx = dis.min(axis=1), dis.argmin(axis=1) # Change to adapt to new annotation: old version. When training, comment it # y_pred[:,2] = -y_pred[:,2] angle = abs(np.mod(y_pred[:, 2], 2 * np.pi) - y_true[idx, 2]) angle = np.asarray([angle, 2 * np.pi - angle]).min(axis=0) # Satisfy the threshold tmp = (mindis <= maxd) & (angle <= maxo) # print('mindis,idx,angle,tmp=%s,%s,%s,%s'%(mindis,idx,angle,tmp)) precision = len(np.unique(idx[(mindis <= maxd) & (angle <= maxo)])) / float(y_pred.shape[0]) recall = len(np.unique(idx[(mindis <= maxd) & (angle <= maxo)])) / float(y_true.shape[0]) # print('pre=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_pred.shape[0]))) # print('recall=%f/ %f'%(len(np.unique(idx[(mindis <= maxd) & (angle<=maxo)])),float(y_true.shape[0]))) if recall != 0: loc = np.mean(mindis[(mindis <= maxd) & (angle <= maxo)]) ori = np.mean(angle[(mindis <= maxd) & (angle <= maxo)]) else: loc = 0 ori = 0 return precision, recall, fmeasure(precision, recall), loc, ori def nms(mnt): if mnt.shape[0] == 0: return mnt # sort score mnt_sort = mnt.tolist() mnt_sort.sort(key=lambda x: x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=np.pi / 6).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in range(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i + 1:] = keep_list[i + 1:] * (1 - inrange[i, i + 1:]) return mnt_sort[keep_list.astype(np.bool), :] def fuse_nms(mnt, mnt_set_2): if mnt.shape[0] == 0: return mnt # sort score all_mnt = np.concatenate((mnt, mnt_set_2)) mnt_sort = all_mnt.tolist() mnt_sort.sort(key=lambda x: x[3], reverse=True) mnt_sort = np.array(mnt_sort) # cal distance inrange = distance(mnt_sort, mnt_sort, max_D=16, max_O=2 * np.pi).astype(np.float32) keep_list = np.ones(mnt_sort.shape[0]) for i in range(mnt_sort.shape[0]): if keep_list[i] == 0: continue keep_list[i + 1:] = keep_list[i + 1:] * (1 - inrange[i, i + 1:]) return mnt_sort[keep_list.astype(np.bool), :] def py_cpu_nms(det, thresh): if det.shape[0] == 0: return det dets = det.tolist() dets.sort(key=lambda x: x[3], reverse=True) dets = np.array(dets) box_sz = 25 x1 = np.reshape(dets[:, 0], [-1, 1]) - box_sz y1 = np.reshape(dets[:, 1], [-1, 1]) - box_sz x2 = np.reshape(dets[:, 0], [-1, 1]) + box_sz y2 = np.reshape(dets[:, 1], [-1, 1]) + box_sz scores = dets[:, 2] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return dets[keep, :] def draw_minutiae(image, minutiae, fname, saveimage=False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') # plt.hold(True) # Check if no minutiae if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight', pad_inches=0) plt.close(fig) else: plt.show() return def draw_minutiae_overlay(image, minutiae, mnt_gt, fname, saveimage=False, r=15, drawScore=False): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') plt.hold(True) if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:, :3] if mnt_gt.shape[0] > 0: if mnt_gt.shape[1] > 3: mnt_gt = mnt_gt[:, :3] plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) for x, y, o in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') if drawScore == True: plt.text(x - 10, y - 10, '%.2f' %s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') plt.show() if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_minutiae_overlay_with_score(image, minutiae, mnt_gt, fname, saveimage=False, r=15): image = np.squeeze(image) fig = plt.figure() plt.imshow(image, cmap='gray') plt.hold(True) if mnt_gt.shape[0] > 0: plt.plot(mnt_gt[:, 0], mnt_gt[:, 1], 'bs', fillstyle='none', linewidth=1) if mnt_gt.shape[1] > 3: for x, y, o, s in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') plt.text(x - 10, y - 5, '%.2f' % s, color='green', fontsize=4) else: for x, y, o in mnt_gt: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'b-') if minutiae.shape[0] > 0: plt.plot(minutiae[:, 0], minutiae[:, 1], 'rs', fillstyle='none', linewidth=1) for x, y, o, s in minutiae: plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') plt.text(x - 10, y - 10, '%.2f' % s, color='yellow', fontsize=4) plt.axis([0, image.shape[1], image.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, dpi=500, bbox_inches='tight') plt.close(fig) else: plt.show() return def draw_ori_on_img(img, ori, mask, fname, saveimage=False, coh=None, stride=16): ori = np.squeeze(ori) # mask = np.squeeze(np.round(mask)) img = np.squeeze(img) ori = ndimage.zoom(ori, np.array(img.shape) / np.array(ori.shape, dtype=float), order=0) if mask.shape != img.shape: mask = ndimage.zoom(mask, np.array(img.shape) / np.array(mask.shape, dtype=float), order=0) if coh is None: coh = np.ones_like(img) fig = plt.figure() plt.imshow(img, cmap='gray') plt.hold(True) for i in range(stride, img.shape[0], stride): for j in range(stride, img.shape[1], stride): if mask[i, j] == 0: continue x, y, o, r = j, i, ori[i, j], coh[i, j] * (stride * 0.9) plt.plot([x, x + r * np.cos(o)], [y, y + r * np.sin(o)], 'r-') plt.axis([0, img.shape[1], img.shape[0], 0]) plt.axis('off') if saveimage: plt.savefig(fname, bbox_inches='tight') plt.close(fig) else: plt.show() return def local_constrast_enhancement(img): img = img.astype(np.float32) meanV = cv2.blur(img, (15, 15)) normalized = img - meanV var = abs(normalized) var = cv2.blur(var, (15, 15)) normalized = normalized / (var + 10) * 0.75 normalized = np.clip(normalized, -1, 1) normalized = (normalized + 1) * 127.5 return normalized def get_quality_map_ori_dict(img, dict, spacing, dir_map=None, block_size=16): if img.dtype == 'uint8': img = img.astype(np.float) img = FastEnhanceTexture(img) h, w = img.shape blkH, blkW = dir_map.shape quality_map = np.zeros((blkH, blkW), dtype=np.float) fre_map = np.zeros((blkH, blkW), dtype=np.float) ori_num = len(dict) # dir_map = math.pi/2 - dir_map dir_ind = dir_map * ori_num / math.pi dir_ind = dir_ind.astype(np.int) dir_ind = dir_ind % ori_num patch_size = np.sqrt(dict[0].shape[1]) patch_size = patch_size.astype(np.int) pad_size = (patch_size - block_size) // 2 img = np.lib.pad(img, (pad_size, pad_size), 'symmetric') for i in range(0, blkH): for j in range(0, blkW): ind = dir_ind[i, j] patch = img[i * block_size:i * block_size + patch_size, j * block_size:j * block_size + patch_size] patch = patch.reshape(patch_size * patch_size, ) patch = patch - np.mean(patch) patch = patch / (np.linalg.norm(patch) + 0.0001) patch[patch > 0.05] = 0.05 patch[patch < -0.05] = -0.05 simi = np.dot(dict[ind], patch) similar_ind = np.argmax(abs(simi)) quality_map[i, j] = np.max(abs(simi)) fre_map[i, j] = 1. / spacing[ind][similar_ind] quality_map = gaussian(quality_map, sigma=2) return quality_map, fre_map def FastEnhanceTexture(img, sigma=2.5, show=False): img = img.astype(np.float32) h, w = img.shape h2 = 2 ** nextpow2(h) w2 = 2 ** nextpow2(w) FFTsize = np.max([h2, w2]) x, y = np.meshgrid(range(-FFTsize // 2, FFTsize // 2), range(-FFTsize // 2, FFTsize // 2)) r = np.sqrt(x * x + y * y) + 0.0001 r = r // FFTsize L = 1. // (1 + (2 * math.pi * r * sigma) ** 4) img_low = LowpassFiltering(img, L) gradim1 = compute_gradient_norm(img) gradim1 = LowpassFiltering(gradim1, L) gradim2 = compute_gradient_norm(img_low) gradim2 = LowpassFiltering(gradim2, L) diff = gradim1 - gradim2 ar1 = np.abs(gradim1) diff[ar1 > 1] = diff[ar1 > 1] // ar1[ar1 > 1] diff[ar1 <= 1] = 0 cmin = 0.3 cmax = 0.7 weight = (diff - cmin) / (cmax - cmin) weight[diff < cmin] = 0 weight[diff > cmax] = 1 u = weight * img_low + (1 - weight) * img temp = img - u lim = 20 temp1 = (temp + lim) * 255 / (2 * lim) temp1[temp1 < 0] = 0 temp1[temp1 > 255] = 255 v = temp1 if show: plt.imshow(v, cmap='gray') plt.show() return v def compute_gradient_norm(input): input = input.astype(np.float32) Gx, Gy = np.gradient(input) out = np.sqrt(Gx * Gx + Gy * Gy) + 0.000001 return out def LowpassFiltering(img, L): h, w = img.shape h2, w2 = L.shape img = cv2.copyMakeBorder(img, 0, h2 - h, 0, w2 - w, cv2.BORDER_CONSTANT, value=0) img_fft = np.fft.fft2(img) img_fft = np.fft.fftshift(img_fft) img_fft = img_fft * L rec_img = np.fft.ifft2(np.fft.fftshift(img_fft)) rec_img = np.real(rec_img) rec_img = rec_img[:h, :w] return rec_img def nextpow2(x): return int(math.ceil(math.log(x, 2))) def construct_dictionary(ori_num=30): ori_dict = [] s = [] for i in range(ori_num): ori_dict.append([]) s.append([]) patch_size2 = 16 patch_size = 32 dict_all = [] spacing_all = [] ori_all = [] Y, X = np.meshgrid(range(-patch_size2, patch_size2), range(-patch_size2, patch_size2)) for spacing in range(6, 13): for valley_spacing in range(3, spacing // 2): ridge_spacing = spacing - valley_spacing for k in range(ori_num): theta = np.pi / 2 - k * np.pi / ori_num X_r = X * np.cos(theta) - Y * np.sin(theta) for offset in range(0, spacing - 1, 2): X_r_offset = X_r + offset + ridge_spacing / 2 X_r_offset = np.remainder(X_r_offset, spacing) Y1 = np.zeros((patch_size, patch_size)) Y2 = np.zeros((patch_size, patch_size)) Y1[X_r_offset <= ridge_spacing] = X_r_offset[X_r_offset <= ridge_spacing] Y2[X_r_offset > ridge_spacing] = X_r_offset[X_r_offset > ridge_spacing] - ridge_spacing element = -np.sin(2 * math.pi * (Y1 / ridge_spacing / 2)) + np.sin( 2 * math.pi * (Y2 / valley_spacing / 2)) element = element.reshape(patch_size * patch_size, ) element = element - np.mean(element) element = element / np.linalg.norm(element) ori_dict[k].append(element) s[k].append(spacing) dict_all.append(element) spacing_all.append(1.0 / spacing) ori_all.append(theta) for i in range(len(ori_dict)): ori_dict[i] = np.asarray(ori_dict[i]) s[k] = np.asarray(s[k]) dict_all = np.asarray(dict_all) dict_all = np.transpose(dict_all) spacing_all = np.asarray(spacing_all) ori_all = np.asarray(ori_all) return ori_dict, s, dict_all, ori_all, spacing_all def get_maps_STFT(img, patch_size=64, block_size=16, preprocess=False): assert len(img.shape) == 2 nrof_dirs = 16 ovp_size = (patch_size - block_size) // 2 if preprocess: img = FastEnhanceTexture(img, sigma=2.5, show=False) img = np.lib.pad(img, (ovp_size, ovp_size), 'symmetric') h, w = img.shape blkH = (h - patch_size) // block_size + 1 blkW = (w - patch_size) // block_size + 1 local_info = np.empty((blkH, blkW), dtype=object) x, y = np.meshgrid(range(-patch_size // 2, patch_size // 2), range(-patch_size // 2, patch_size // 2)) x = x.astype(np.float32) y = y.astype(np.float32) r = np.sqrt(x * x + y * y) + 0.0001 RMIN = 3 # min allowable ridge spacing RMAX = 18 # maximum allowable ridge spacing FLOW = patch_size // RMAX FHIGH = patch_size // RMIN dRLow = 1. // (1 + (r // FHIGH) ** 4) dRHigh = 1. // (1 + (FLOW // r) ** 4) dBPass = dRLow * dRHigh # bandpass dir = np.arctan2(y, x) dir[dir < 0] = dir[dir < 0] + math.pi dir_ind = np.floor(dir / (math.pi // nrof_dirs)) dir_ind = dir_ind.astype(np.int, copy=False) dir_ind[dir_ind == nrof_dirs] = 0 dir_ind_list = [] for i in range(nrof_dirs): tmp = np.argwhere(dir_ind == i) dir_ind_list.append(tmp) sigma = patch_size // 3 weight = np.exp(-(x * x + y * y) // (sigma * sigma)) for i in range(0, blkH): for j in range(0, blkW): patch = img[i * block_size:i * block_size + patch_size, j * block_size:j * block_size + patch_size].copy() local_info[i, j] = local_STFT(patch, weight, dBPass) local_info[i, j].analysis(r, dir_ind_list) # get the ridge flow from the local information dir_map, fre_map = get_ridge_flow_top(local_info) dir_map = smooth_dir_map(dir_map) return dir_map, fre_map def smooth_dir_map(dir_map, sigma=2.0, mask=None): cos2Theta = np.cos(dir_map * 2) sin2Theta = np.sin(dir_map * 2) if mask is not None: assert (dir_map.shape[0] == mask.shape[0]) assert (dir_map.shape[1] == mask.shape[1]) cos2Theta[mask == 0] = 0 sin2Theta[mask == 0] = 0 cos2Theta = gaussian(cos2Theta, sigma, multichannel=False, mode='reflect') sin2Theta = gaussian(sin2Theta, sigma, multichannel=False, mode='reflect') dir_map = np.arctan2(sin2Theta, cos2Theta) * 0.5 return dir_map def get_ridge_flow_top(local_info): blkH, blkW = local_info.shape dir_map = np.zeros((blkH, blkW)) - 10 fre_map = np.zeros((blkH, blkW)) - 10 for i in range(blkH): for j in range(blkW): if local_info[i, j].ori is None: continue dir_map[i, j] = local_info[i, j].ori[0] # + math.pi*0.5 fre_map[i, j] = local_info[i, j].fre[0] return dir_map, fre_map class local_STFT: def __init__(self, patch, weight=None, dBPass=None): if weight is not None: patch = patch * weight patch = patch - np.mean(patch) norm = np.linalg.norm(patch) patch = patch / (norm + 0.000001) f = np.fft.fft2(patch) fshift = np.fft.fftshift(f) if dBPass is not None: fshift = dBPass * fshift self.patch_FFT = fshift self.patch = patch self.ori = None self.fre = None self.confidence = None self.patch_size = patch.shape[0] def analysis(self, r, dir_ind_list=None, N=2): assert (dir_ind_list is not None) energy = np.abs(self.patch_FFT) energy = energy / (np.sum(energy) + 0.00001) nrof_dirs = len(dir_ind_list) ori_interval = math.pi / nrof_dirs ori_interval2 = ori_interval / 2 pad_size = 1 dir_norm = np.zeros((nrof_dirs + 2,)) for i in range(nrof_dirs): tmp = energy[dir_ind_list[i][:, 0], dir_ind_list[i][:, 1]] dir_norm[i + 1] = np.sum(tmp) dir_norm[0] = dir_norm[nrof_dirs] dir_norm[nrof_dirs + 1] = dir_norm[1] # smooth dir_norm smoothed_dir_norm = dir_norm for i in range(1, nrof_dirs + 1): smoothed_dir_norm[i] = (dir_norm[i - 1] + dir_norm[i] * 4 + dir_norm[i + 1]) / 6 smoothed_dir_norm[0] = smoothed_dir_norm[nrof_dirs] smoothed_dir_norm[nrof_dirs + 1] = smoothed_dir_norm[1] den = np.sum(smoothed_dir_norm[1:nrof_dirs + 1]) + 0.00001 # verify if den == 1 smoothed_dir_norm = smoothed_dir_norm / den # normalization if den == 1, this line can be removed ori = [] fre = [] confidence = [] wenergy = energy * r for i in range(1, nrof_dirs + 1): if smoothed_dir_norm[i] > smoothed_dir_norm[i - 1] and smoothed_dir_norm[i] > smoothed_dir_norm[i + 1]: tmp_ori = (i - pad_size) * ori_interval + ori_interval2 + math.pi / 2 ori.append(tmp_ori) confidence.append(smoothed_dir_norm[i]) tmp_fre = np.sum(wenergy[dir_ind_list[i - pad_size][:, 0], dir_ind_list[i - pad_size][:, 1]]) / \ dir_norm[i] tmp_fre = 1 / (tmp_fre + 0.00001) fre.append(tmp_fre) if len(confidence) > 0: confidence = np.asarray(confidence) fre = np.asarray(fre) ori = np.asarray(ori) ind = confidence.argsort()[::-1] confidence = confidence[ind] fre = fre[ind] ori = ori[ind] if len(confidence) >= 2 and confidence[0] / confidence[1] > 2.0: self.ori = [ori[0]] self.fre = [fre[0]] self.confidence = [confidence[0]] elif len(confidence) > N: fre = fre[:N] ori = ori[:N] confidence = confidence[:N] self.ori = ori self.fre = fre self.confidence = confidence else: self.ori = ori self.fre = fre self.confidence = confidence def get_features_of_topN(self, N=2): if self.confidence is None: self.border_wave = None return candi_num = len(self.ori) candi_num = np.min([candi_num, N]) patch_size = self.patch_FFT.shape for i in range(candi_num): kernel = gabor_kernel(self.fre[i], theta=self.ori[i], sigma_x=10, sigma_y=10) kernel_f = np.fft.fft2(kernel.real, patch_size) kernel_f = np.fft.fftshift(kernel_f) patch_f = self.patch_FFT * kernel_f patch_f = np.fft.ifftshift(patch_f) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(patch_f)) plt.subplot(121), plt.imshow(self.patch, cmap='gray') plt.title('Input patch'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(rec_patch, cmap='gray') plt.title('filtered patch'), plt.xticks([]), plt.yticks([]) plt.show() def reconstruction(self, weight=None): f_ifft = np.fft.ifftshift(self.patch_FFT) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(f_ifft)) if weight is not None: rec_patch = rec_patch * weight return rec_patch def gabor_filtering(self, theta, fre, weight=None): patch_size = self.patch_FFT.shape kernel = gabor_kernel(fre, theta=theta, sigma_x=4, sigma_y=4) f = kernel.real f = f - np.mean(f) f = f / (np.linalg.norm(f) + 0.0001) kernel_f = np.fft.fft2(f, patch_size) kernel_f = np.fft.fftshift(kernel_f) patch_f = self.patch_FFT * kernel_f patch_f = np.fft.ifftshift(patch_f) # *np.sqrt(np.abs(fshift))) rec_patch = np.real(np.fft.ifft2(patch_f)) if weight is not None: rec_patch = rec_patch * weight return rec_patch def show_orientation_field(img, dir_map, mask=None, fname=None): h, w = img.shape[:2] if mask is None: mask = np.ones((h, w), dtype=np.uint8) blkH, blkW = dir_map.shape blk_size = h / blkH R = blk_size / 2 * 0.8 fig, ax = plt.subplots(1) ax.imshow(img, cmap='gray') for i in range(blkH): y0 = i * blk_size + blk_size / 2 y0 = int(y0) for j in range(blkW): x0 = j * blk_size + blk_size / 2 x0 = int(x0) ori = dir_map[i, j] if mask[y0, x0] == 0: continue if ori < -9: continue x1 = x0 - R * math.cos(ori) x2 = x0 + R * math.cos(ori) y1 = y0 - R * math.sin(ori) y2 = y0 + R * math.sin(ori) plt.plot([x1, x2], [y1, y2], 'r-', lw=0.5) plt.axis('off') if fname is not None: fig.savefig(fname, dpi=500, bbox_inches='tight', pad_inches=0) plt.close() else: plt.show(block=True)
2.125
2
config/paths.py
fusic-com/flask-todo
34
11463
from settings import VAR_DIR CACHE=VAR_DIR/'cache'
1.273438
1
Android.py
ChakradharG/Sudoku-Core
0
11464
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #To suppress warnings thrown by tensorflow from time import sleep import numpy as np from cv2 import cv2 import pyautogui as pg import Sudoku_Core as SC import OCR s = 513//9 #Size of board//9 fs = 25 #Size of the final image def getBoard(): pg.click(266, 740) sleep(1) pg.click(266, 930) #Changing the difficulty to expert sleep(2) image = pg.screenshot(region=(10, 187, 513, 513)) image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2GRAY) _,image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV) return image def readBoard(image): for i in range(9): for j in range(9): subImage = image[i*s + 3: (i+1)*s - 3, j*s + 3: (j+1)*s - 3] #(+3, -3) is a hack to remove border contours contour, _ = cv2.findContours(subImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contour != []: (x, y, w, h) = cv2.boundingRect(contour[0]) img = cv2.resize(subImage[y: y+h, x: x+w], (fs, fs), interpolation=cv2.INTER_AREA) else: img = np.zeros((fs,fs), dtype='uint8') SC.board[i][j] = OCR.model.predict(img.reshape(1, fs, fs, 1)).argmax() def outputBoard(): for ((posY, posX), v) in SC.moves.items(): posX = 42 + posX * 57 posY = 216 + posY * 57 pg.moveTo(posX, posY, 0.1) pg.click() # vX = 42 + 55*(v-1) # vY = 843 # pg.moveTo(vX, vY, 0.1) #To use the numpad in the app # pg.click() pg.typewrite(str(v)) #To send numbers from the keyboard def main(): image = getBoard() readBoard(image) print('Got the board, now solving') if SC.solve(0, 0): outputBoard() else: print('Couldn\'t solve') input('Press any key to exit') if __name__ == '__main__': main()
2.65625
3
app/model.py
kurapikaaaa/CITS3403Project
1
11465
from app import db, login from flask_login import UserMixin from datetime import datetime from flask import url_for, redirect from werkzeug.security import generate_password_hash, check_password_hash class users(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True, autoincrement=True) username = db.Column(db.String(100), nullable=False, unique=True) password = db.Column(db.String(96), nullable=False) email = db.Column(db.String(128), nullable=False, unique=True) firstname = db.Column(db.String(130), nullable=False) lastname = db.Column(db.String(130), nullable=False) lastLogin = db.Column(db.DateTime) isActive = db.Column(db.Boolean) isAdmin = db.Column(db.Boolean) noteHighScore = db.Column(db.Integer) KeyHighScore = db.Column(db.Integer) submit = db.relationship("submission", backref="submitter") ################################################### def __init__(self): self.isActive = True self.isAdmin = False self.noteHighScore = 0 self.lastLogin = None self.KeyHighScore = 0 def set_password(self, pwd): self.password = generate_password_hash(pwd, method="<PASSWORD>") def check_password(self, pwd): return check_password_hash(self.password, pwd) def is_active(self): return self.isActive def validate(self): if self.username and self.email and self.firstname and self.lastname: return True else: return False def getSubmissions(self): res = submission.query.filter_by(creater_id=self.id).all() return res def __repr__(self): return '<user %r>' % self.username class submission(db.Model): __tablename__ = 'submission' id = db.Column(db.Integer, primary_key=True, autoincrement=True) createdAt = db.Column(db.DateTime, nullable=False) markedAt = db.Column(db.DateTime) feedback = db.Column(db.Boolean) totalmark = db.Column(db.Integer) difficulty = db.Column(db.String(30), nullable=False) passed = db.Column(db.Boolean) creater_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) answers = db.relationship("answer", backref="submission") def __init__(self): self.createdAt = datetime.utcnow() self.markedAt = None self.feedback = False self.totalmark = None self.marked = False self.passed = False def validate(self): if self.difficulty and self.creater_id and self.createdAt: return True def __repr__(self): return '<submission %r>' % self.id class answer(db.Model): __tablename__ = 'answer' id = db.Column(db.Integer, primary_key=True, autoincrement=True) answerSeq = db.Column(db.Integer) submittedAnswer = db.Column(db.String(400)) feedback = db.Column(db.String(400)) markreceived = db.Column(db.Boolean) submissionId = db.Column(db.Integer, db.ForeignKey("submission.id")) def __init__(self): self.feedback = None self.markreceived = False def validate(self): if self.answerSeq and self.submittedAnswer and self.submissionId: return True else: print("missingfield") return False def __repr__(self): return '<ans>' @login.user_loader def load_user(usr_id): return users.query.get(int(usr_id)) @login.unauthorized_handler def unauthorized(): return redirect(url_for("auth.login"))
2.625
3
bert_multitask_learning/top.py
akashnd/bert-multitask-learning
1
11466
# AUTOGENERATED! DO NOT EDIT! File to edit: source_nbs/12_top.ipynb (unless otherwise specified). __all__ = ['empty_tensor_handling_loss', 'nan_loss_handling', 'create_dummy_if_empty', 'BaseTop', 'SequenceLabel', 'Classification', 'PreTrain', 'Seq2Seq', 'MultiLabelClassification', 'MaskLM'] # Cell import logging from functools import partial from typing import Dict, Tuple, Union import tensorflow as tf import tensorflow_addons as tfa import transformers from transformers.modeling_tf_utils import TFSharedEmbeddings from tensorflow_addons.layers.crf import CRF from tensorflow_addons.text.crf import crf_log_likelihood from .params import BaseParams from .utils import gather_indexes @tf.function def empty_tensor_handling_loss(labels, logits, loss_fn): if tf.equal(tf.size(labels), 0): return 0.0 if tf.equal(tf.size(tf.shape(labels)), 0): return 0.0 if tf.equal(tf.shape(labels)[0], 0): return 0.0 else: return tf.reduce_mean(loss_fn( labels, logits, from_logits=True)) @tf.function def nan_loss_handling(loss): if tf.math.is_nan(loss): return 0.0 else: return loss @tf.function def create_dummy_if_empty(inp_tensor: tf.Tensor) -> tf.Tensor: shape_tensor = tf.shape(inp_tensor) if tf.equal(shape_tensor[0], 0): data_type = inp_tensor.dtype dummy_shape_first_dim = tf.convert_to_tensor([1], dtype=tf.int32) dummy_shape = tf.concat( [dummy_shape_first_dim, shape_tensor[1:]], axis=0) dummy_tensor = tf.zeros(dummy_shape, dtype=data_type) return dummy_tensor else: return inp_tensor class BaseTop(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(BaseTop, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name def call(self, inputs: Tuple[Dict], mode: str): raise NotImplementedError # Cell class SequenceLabel(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str): super(SequenceLabel, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) if self.params.crf: self.crf = CRF(num_classes) self.metric_fn = tf.keras.metrics.Accuracy( name='{}_acc'.format(self.problem_name) ) else: self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) def return_crf_result(self, labels: tf.Tensor, logits: tf.Tensor, mode: str, input_mask: tf.Tensor): input_mask.set_shape([None, None]) logits = create_dummy_if_empty(logits) input_mask = create_dummy_if_empty(input_mask) viterbi_decoded, potentials, sequence_length, chain_kernel = self.crf( logits, input_mask) if mode != tf.estimator.ModeKeys.PREDICT: loss = -crf_log_likelihood(potentials, labels, sequence_length, chain_kernel)[0] loss = tf.reduce_mean(loss) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn( labels, viterbi_decoded, sample_weight=input_mask) self.add_metric(acc) # make the crf prediction has the same shape as non-crf prediction return tf.one_hot(viterbi_decoded, name='%s_predict' % self.problem_name, depth=self.params.num_classes[self.problem_name]) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['seq'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] # sometimes the length of labels dose not equal to length of inputs # that's caused by tf.data.experimental.bucket_by_sequence_length in multi problem scenario pad_len = tf.shape(input=hidden_feature)[ 1] - tf.shape(input=labels)[1] # top, bottom, left, right pad_tensor = [[0, 0], [0, pad_len]] labels = tf.pad(tensor=labels, paddings=pad_tensor) else: labels = None hidden_feature = self.dropout(hidden_feature, training) if self.params.crf: return self.return_crf_result(labels, hidden_feature, mode, feature['model_input_mask']) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: loss = empty_tensor_handling_loss( labels, logits, tf.keras.losses.sparse_categorical_crossentropy) self.add_loss(loss) acc = self.metric_fn( labels, logits, sample_weight=feature['model_input_mask']) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class Classification(tf.keras.layers.Layer): def __init__(self, params: BaseParams, problem_name: str) -> None: super(Classification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: # labels = tf.squeeze(labels) # convert labels to one-hot to use label_smoothing one_hot_labels = tf.one_hot( labels, depth=self.params.num_classes[self.problem_name]) loss_fn = partial(tf.keras.losses.categorical_crossentropy, from_logits=True, label_smoothing=self.params.label_smoothing) loss = empty_tensor_handling_loss( one_hot_labels, logits, loss_fn) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn(labels, logits) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class PreTrain(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.Tensor=None, share_embedding=True): super(PreTrain, self).__init__(name=problem_name) self.params = params self.nsp = transformers.models.bert.modeling_tf_bert.TFBertNSPHead( self.params.bert_config) if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str) -> Tuple[tf.Tensor, tf.Tensor]: features, hidden_features = inputs # compute logits nsp_logits = self.nsp(hidden_features['pooled']) # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat( [shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: nsp_labels = features['next_sentence_label_ids'] mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss nsp_loss = empty_tensor_handling_loss( nsp_labels, nsp_logits, tf.keras.losses.sparse_categorical_crossentropy) mlm_loss_layer = transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss() # mlm_loss = tf.reduce_mean( # mlm_loss_layer.compute_loss(mlm_labels, mlm_logits)) # add a useless from_logits argument to match the function signature of keras losses. def loss_fn_wrapper(labels, logits, from_logits=True): return mlm_loss_layer.compute_loss(labels, logits) mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, loss_fn_wrapper ) loss = nsp_loss + mlm_loss self.add_loss(loss) return (tf.sigmoid(nsp_logits), tf.nn.softmax(mlm_logits)) # Cell class Seq2Seq(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer): super(Seq2Seq, self).__init__(name=problem_name) # self.params = params # self.problem_name = problem_name # # if self.params.init_weight_from_huggingface: # # self.decoder = load_transformer_model( # # self.params.transformer_decoder_model_name, # # self.params.transformer_decoder_model_loading) # # else: # # self.decoder = load_transformer_model( # # self.params.bert_decoder_config, self.params.transformer_decoder_model_loading) # # TODO: better implementation # logging.warning( # 'Seq2Seq model is not well supported yet. Bugs are expected.') # config = self.params.bert_decoder_config # # some hacky approach to share embeddings from encoder to decoder # word_embedding_weight = input_embeddings.word_embeddings # self.vocab_size = word_embedding_weight.shape[0] # self.share_embedding_layer = TFSharedEmbeddings( # vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) # self.share_embedding_layer.build([1]) # self.share_embedding_layer.weight = word_embedding_weight # # self.decoder = TFBartDecoder( # # config=config, embed_tokens=self.share_embedding_layer) # self.decoder = TFBartDecoderForConditionalGeneration( # config=config, embedding_layer=self.share_embedding_layer) # self.decoder.set_bos_id(self.params.bos_id) # self.decoder.set_eos_id(self.params.eos_id) # self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( # name='{}_acc'.format(self.problem_name)) raise NotImplementedError def _seq2seq_label_shift_right(self, labels: tf.Tensor, eos_id: int) -> tf.Tensor: batch_eos_ids = tf.fill([tf.shape(labels)[0], 1], eos_id) batch_eos_ids = tf.cast(batch_eos_ids, dtype=tf.int64) decoder_lable = labels[:, 1:] decoder_lable = tf.concat([decoder_lable, batch_eos_ids], axis=1) return decoder_lable def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str): features, hidden_features = inputs encoder_mask = features['model_input_mask'] if mode == tf.estimator.ModeKeys.PREDICT: input_ids = None decoder_padding_mask = None else: input_ids = features['%s_label_ids' % self.problem_name] decoder_padding_mask = features['{}_mask'.format( self.problem_name)] if mode == tf.estimator.ModeKeys.PREDICT: return self.decoder.generate(eos_token_id=self.params.eos_id, encoder_hidden_states=hidden_features['seq']) else: decoder_output = self.decoder(input_ids=input_ids, encoder_hidden_states=hidden_features['seq'], encoder_padding_mask=encoder_mask, decoder_padding_mask=decoder_padding_mask, decode_max_length=self.params.decode_max_seq_len, mode=mode) loss = decoder_output.loss logits = decoder_output.logits self.add_loss(loss) decoder_label = self._seq2seq_label_shift_right( features['%s_label_ids' % self.problem_name], eos_id=self.params.eos_id) acc = self.metric_fn(decoder_label, logits) self.add_metric(acc) return logits # Cell class MultiLabelClassification(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(MultiLabelClassification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name self.dense = tf.keras.layers.Dense( self.params.num_classes[problem_name]) self.dropout = tf.keras.layers.Dropout( 1-self.params.dropout_keep_prob ) # self.metric_fn = tfa.metrics.F1Score( # num_classes=self.params.num_classes[problem_name], # threshold=self.params.multi_cls_threshold, # average='macro', # name='{}_f1'.format(problem_name)) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: labels = tf.cast(labels, tf.float32) # use weighted loss label_weights = self.params.multi_cls_positive_weight def _loss_fn_wrapper(x, y, from_logits=True): return tf.nn.weighted_cross_entropy_with_logits(x, y, pos_weight=label_weights, name='{}_loss'.format(self.problem_name)) loss = empty_tensor_handling_loss( labels, logits, _loss_fn_wrapper) loss = nan_loss_handling(loss) self.add_loss(loss) # labels = create_dummy_if_empty(labels) # logits = create_dummy_if_empty(logits) # f1 = self.metric_fn(labels, logits) # self.add_metric(f1) return tf.nn.sigmoid( logits, name='%s_predict' % self.problem_name) # Cell class MaskLM(tf.keras.Model): """Multimodal MLM top layer. """ def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer=None, share_embedding=True) -> None: super(MaskLM, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=self.vocab_size, hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs, mode): features, hidden_features = inputs # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat([shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, tf.keras.losses.sparse_categorical_crossentropy ) loss = nan_loss_handling(mlm_loss) self.add_loss(loss) return tf.nn.softmax(mlm_logits)
1.96875
2
strings/#387/strings.py
sharmarkei/DSA-Practice
0
11467
<reponame>sharmarkei/DSA-Practice<gh_stars>0 class Solution(object): def firstUniqChar(self, s): """ :type s: str :rtype: int """ dict_1 = {} for i in s: if i not in dict_1: dict_1[i] = 1 else: dict_1[i] += 1 print(dict_1) for idx, val in enumerate(s): if dict_1[val] == 1: return idx return -1
3.109375
3
challenge/utils/cancellation_code.py
AlonViz/IML.HUJI
0
11468
<reponame>AlonViz/IML.HUJI import re def process_cancellation_code(code): regex_days_before = "^(([0-9]+)D)(([0-9]+)N|([0-9]+)P)" regex_no_show = "(([0-9]+)P|([0-9]+)N)" options = re.split("_", code) final = [] for option in options: days_match = re.match(regex_days_before, option) if days_match: days_before = None if days_match.group(2) is None else int(days_match.group(2)) nights_to_pay = None if days_match.group(4) is None else int(days_match.group(4)) percentage = None if days_match.group(5) is None else int(days_match.group(5)) final.append([days_before, nights_to_pay, percentage]) continue no_show_match = re.match(regex_no_show, option) if no_show_match: nights_to_pay = None if no_show_match.group(3) is None else int(no_show_match.group(3)) percentage = None if no_show_match.group(2) is None else int(no_show_match.group(2)) final.append([0, nights_to_pay, percentage]) return final def evaluate_cancellation_code(cancellation_code: str, booking_time_before: int, stay_duration: int) -> float: """ gives a numerical value to given cancellation code, return expected fine in percentage :return: """ cancellations = process_cancellation_code(cancellation_code) p = min(7, booking_time_before) chosen_p = min([lst for lst in cancellations if lst[0] > p], key=lambda tup: tup[0], default=[None, None, None]) expected_fine = 0 if chosen_p[0] is None else chosen_p[2] if chosen_p[1] is None else chosen_p[1] / stay_duration return expected_fine def filter(cancellation_code: str, booking_time_before: int, stay_duration: int) -> float: cancellations = process_cancellation_code(cancellation_code) filtered = [i for i in cancellations if i[0] < booking_time_before] prec_only = [] for i in filtered: if i[2] is not None: prec_only.append([i[0], i[2]]) else: prec_only.append([i[0], i[1] / stay_duration]) def no_show(cancellation_code: str) -> int: """ returns 1 if the cancellation code contains a no-show fee, and 0 otherwise """ cancellations = process_cancellation_code(cancellation_code) return any(lst for lst in cancellations if lst[0] == 0) def fine_after_x_days(cancellation_code: str, booking_time_before: int, stay_duration: int, days: int): """ returns the expected fine in percentages after 'days' days from reservation. """ time_before_reservation = booking_time_before - days if time_before_reservation < 0: return 0 cancellations = process_cancellation_code(cancellation_code) # convert cancellation policy to format (Days, Percentage) percentage_cancellations = [] for cancel in cancellations: if cancel[1] is None: percentage_cancellations.append((cancel[0], cancel[2])) else: percentage_cancellations.append((cancel[0], cancel[1] / stay_duration)) if not percentage_cancellations: return 0 # return the fine associated with the smallest number of days larger than time_before_reservation fines = [x for x in percentage_cancellations if x[0] > time_before_reservation] if not fines: return 0 return min(fines, key=lambda x: x[0])[1]
2.71875
3
acronym/scoring.py
sigma67/acronym
340
11469
import re regex = re.compile('[^a-zA-Z]') def score_word(word, corpus=None): word = regex.sub('', word) # leave only alpha score = 0 consec_bonus = 2 for i, letter in enumerate(word): if letter.islower(): continue if i > 0 and word[i-1].upper(): score += consec_bonus if i == 0: score += 10 elif (i == 1) or (i == len(word)-1): score += 3 else: score += 1 if (i >= 1) and (corpus is not None) and (word[i:].lower() in corpus): score += len(word[i:])-1 return score def score_acronym(capitalized_acronym, corpus=None): """ For each capitalized letter in the acronym: * 10 points if first letter in a word (with exception of first letter) * 3 point if second or last letter in a word * 1 point otherwise * N bonus points if begins an N-length valid sub-word (ex: multiVariable -> 8 bonus points) * 2 bonus points if immediately following a capitalizd letter """ return sum([score_word(word, corpus=corpus) for word in capitalized_acronym.split(' ')]) - 10
3.828125
4
e2e_test.py
bartossh/hebbian_mirror
2
11470
<gh_stars>1-10 import requests num_of_iter = 2 data = open('./assets/test.jpg', 'rb').read() for i in range(0, num_of_iter): res = requests.get( url='http://0.0.0.0:8000/recognition/object/boxes_names' ) print("\n RESPONSE GET boxes names for test number {}: \n {}" .format(i, res.__dict__)) res = requests.post(url='http://0.0.0.0:8000/recognition/object/boxes', data=data, headers={'Content-Type': 'application/octet-stream'}) print("\n RESPONSE POST to boxes, test num {} \n Sending buffer length: {},\n Received {}" .format(i, len(data), res.__dict__)) res = requests.post(url='http://0.0.0.0:8000/recognition/object/image', data=data, headers={'Content-Type': 'application/octet-stream'}) print("\n RESPONSE POST to image, test num {} \n Sending buffer length: {},\n Received {}" .format(i, len(data), res))
3.03125
3
appendix/auc_accuracy/train_nn_metric.py
rit-git/tagging
7
11471
<gh_stars>1-10 import argparse import os import torch import torch.nn as nn from torchtext.data import TabularDataset, BucketIterator from torchtext.data import Field from torchtext.vocab import Vectors, GloVe from tqdm import tqdm, trange import sys import os sys.path.insert(0, "../../pyfunctor") sys.path.insert(0, "../../model") from cnn import CNNModel from lstm import LSTMModel from bilstm import BILSTMModel from sklearn import metrics import csv_handler as csv_handler import transform as transform import time #from util.weight import WeightClassCSV device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_data(path, batch_size, max_seq_length, glove="840B", emb_size=300): TEXT = Field(sequential=True, fix_length=max_seq_length, lower=True) LABEL = Field(sequential=False, use_vocab=False) ID = Field(sequential=False, use_vocab=False) data_fields = [("id", ID), ("sent", TEXT), ("label", LABEL)] train_path = os.path.join(path, "train.csv") train = TabularDataset(path=train_path, format="csv", skip_header=False, fields=data_fields) test_path = os.path.join(path, "dev.csv") test = TabularDataset(path=test_path, format="csv", skip_header=False, fields=data_fields) TEXT.build_vocab(train, vectors=GloVe(name=glove, dim=emb_size)) LABEL.build_vocab(train) vocab_size = len(TEXT.vocab) vocab_weights = TEXT.vocab.vectors train_iter = BucketIterator(dataset=train, batch_size=batch_size, sort_key=lambda x: x.id, shuffle=True, repeat=False) test_iter = BucketIterator(dataset=test, batch_size=batch_size, sort_key=lambda x: x.id, shuffle=False, repeat=False) return train_iter, test_iter, vocab_size, vocab_weights def F1(predicts, golds): true_predict = 0 true = 0 predict = 0 for i in range(len(predicts)): if predicts[i] == 1: predict += 1 if golds[i] == 1: true += 1 if predicts[i] == 1 and golds[i] == 1: true_predict += 1 precision = (true_predict+0.0)/(predict+0.0) if predict>0 else 0 recall = (true_predict+0.0)/(true+0.0) if true>0 else 0 f1 = (2*precision*recall)/(precision+recall) if predict>0 and true>0 else 0 return precision, recall, f1 if __name__ == "__main__": start_time = time.time() parser = argparse.ArgumentParser() parser.add_argument("--dataset", default=None, type=str, required=True, help="Dataset folder") parser.add_argument("--model", default=None, type=str, required=True, help="Model type: CNN, LSTM or BILSTM") parser.add_argument("--glove", default="840B", type=str, help="Golve version (6B, 42B, 840B)") parser.add_argument("--emb_size", default=300, type=int, help="Golve embedding size (100, 200, 300)") parser.add_argument("--max_seq_length", default=256, type=int, help="Maximum sequence length") parser.add_argument("--num_epoch", default=9, type=int, help="Number of training epoch") parser.add_argument("--batch_size", default=32, type=int, help="Batch size") parser.add_argument("--lr", default=1e-4, type=float, help="Learning rate") parser.add_argument("--fix_emb", default=False, type=bool, help="Fix embedding layer") parser.add_argument("--log_file", default=False, type=str, required=True, help="log file path") args = parser.parse_args() # Load data print("Loading data ...") train_iter, test_iter, vocab_size, vocab_weights = load_data(args.dataset, args.batch_size, args.max_seq_length, glove=args.glove, emb_size=args.emb_size) # Initialize model assert args.model in ["CNN", "LSTM", "BILSTM"], "Only support CNN, LSTM or BILSTM." if args.model == "CNN": model = CNNModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) elif args.model == "LSTM": model = LSTMModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) else: model = BILSTMModel(vocab_size, args.emb_size, args.max_seq_length, weights=vocab_weights, fix_emb_weight=args.fix_emb) model = model.to(device) # Train print("Training %s ..." % args.model) params = filter(lambda p: p.requires_grad, model.parameters()) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) loss_func = nn.CrossEntropyLoss() #label_weight = WeightClassCSV(args.dataset + "/train.csv").get_weights(['0', '1']) #loss_func = nn.CrossEntropyLoss(weight = torch.tensor(label_weight).to(device)) model.train() for epoch in trange(args.num_epoch, desc="Epoch"): total_loss = 0 for idx, batch in enumerate(tqdm(train_iter, desc="Iteration")): inputs, labels = batch.sent, batch.label inputs = inputs.to(device) labels = labels.to(device) logits = model(inputs) loss = loss_func(logits, labels) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.data.item() print("\tEpoch %d, total loss: %f" % (epoch, total_loss)) train_finish_time = time.time() train_overall_time = train_finish_time - start_time # Evaluate print("Evaluating ...") model.eval() predicts = [] golds = [] predicted_proba = [] with torch.no_grad(): for idx, batch in enumerate(tqdm(test_iter, desc="Iteration")): inputs, labels = batch.sent, batch.label inputs = inputs.to(device) logits = model(inputs) predicted_proba += list(logits.data.cpu().numpy()) predict = torch.argmax(logits, dim=1).data.cpu().numpy() predicts += list(predict) golds += list(labels.data.cpu().numpy()) precision, recall, f1 = F1(predicts, golds) print("Precision: %f, Recall: %f, F1: %f" % (precision, recall, f1)) train_time = train_overall_time test_time = time.time() - train_finish_time print(metrics.classification_report(golds, predicts)) (precision, recall, fscore, support) = metrics.precision_recall_fscore_support(golds, predicts) log_row = [] log_row.append(args.dataset) log_row.append(precision[1]) log_row.append(recall[1]) log_row.append(fscore[1]) log_row.append(train_time) log_row.append(test_time) pos_predicted = transform.map_func(predicted_proba, lambda p : p[1]) auc = metrics.roc_auc_score(golds, pos_predicted) log_row.append(auc) accuracy = metrics.accuracy_score(golds, predicts) log_row.append(accuracy) csv_handler.append_row(args.log_file, log_row)
2.28125
2
setup.py
teamproserve/pinkopy
0
11472
<filename>setup.py #!/usr/bin/env python from setuptools import setup, find_packages import sys try: import pypandoc readme = pypandoc.convert('README.md', 'rst') except(IOError, ImportError): with open('README.md') as f: readme = f.read() install_requires = [ 'cachetools>=1.1.5', 'requests>=2.7.0', 'xmltodict>=0.9.2', ] tests_require = [ 'pytest', 'requests-mock==0.7.0' ] setup( name='pinkopy', version='2.1.3-dev', description='Python wrapper for Commvault api', long_description=readme, author='<NAME>', author_email='<EMAIL>', url='https://github.com/teamproserve/pinkopy', download_url='https://github.com/teamproserve/pinkopy/archive/2.1.3-dev.zip', packages=find_packages(), platforms=['all'], license='MIT', install_requires=install_requires, setup_requires=['pytest-runner'], tests_require=tests_require, classifiers=[ 'Development Status :: 4 - Beta', 'License :: Other/Proprietary License', 'License :: OSI Approved :: MIT License', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Unix', 'Operating System :: POSIX', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Utilities', ], )
1.476563
1
scss/extension/core.py
xen0n/pyScss
0
11473
"""Extension for built-in Sass functionality.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from itertools import product import math import os.path from pathlib import PurePosixPath from six.moves import xrange from scss.extension import Extension from scss.namespace import Namespace from scss.source import SourceFile from scss.types import ( Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type) class CoreExtension(Extension): name = 'core' namespace = Namespace() def handle_import(self, name, compilation, rule): """Implementation of the core Sass import mechanism, which just looks for files on disk. """ # TODO virtually all of this is the same as the django stuff, except # for the bit that actually looks for and tries to open the file. # would be much easier if you could just stick an object in the search # path that implements the pathlib API. the only problem is what to do # when one path is a child of another, so the same file has two names, # but tbh i'm not actually sure that's something worth protecting # against...? like, the only cost is that we'll parse twice (or, later # on, not respect single-import), and the fix is to just Not Do That # TODO i think with the new origin semantics, i've made it possible to # import relative to the current file even if the current file isn't # anywhere in the search path. is that right? path = PurePosixPath(name) if path.suffix: search_exts = [path.suffix] else: search_exts = ['.scss', '.sass'] relative_to = path.parent basename = path.stem search_path = [] # tuple of (origin, start_from) if relative_to.is_absolute(): relative_to = PurePosixPath(*relative_to.parts[1:]) elif rule.source_file.origin: # Search relative to the current file first, only if not doing an # absolute import search_path.append( rule.source_file.origin / rule.source_file.relpath.parent) search_path.extend(compilation.compiler.search_path) for prefix, suffix in product(('_', ''), search_exts): filename = prefix + basename + suffix for origin in search_path: relpath = relative_to / filename # Lexically (ignoring symlinks!) eliminate .. from the part # of the path that exists within Sass-space. pathlib # deliberately doesn't do this, but os.path does. relpath = PurePosixPath(os.path.normpath(str(relpath))) if rule.source_file.key == (origin, relpath): # Avoid self-import # TODO is this what ruby does? continue path = origin / relpath if not path.exists(): continue # All good! # TODO if this file has already been imported, we'll do the # source preparation twice. make it lazy. return SourceFile.read(origin, relpath) # Alias to make the below declarations less noisy ns = CoreExtension.namespace # ------------------------------------------------------------------------------ # Color creation def _interpret_percentage(n, relto=1., clamp=True): expect_type(n, Number, unit='%') if n.is_unitless: ret = n.value / relto else: ret = n.value / 100 if clamp: if ret < 0: return 0 elif ret > 1: return 1 return ret @ns.declare def rgba(r, g, b, a): r = _interpret_percentage(r, relto=255) g = _interpret_percentage(g, relto=255) b = _interpret_percentage(b, relto=255) a = _interpret_percentage(a, relto=1) return Color.from_rgb(r, g, b, a) @ns.declare def rgb(r, g, b, type='rgb'): return rgba(r, g, b, Number(1.0)) @ns.declare def rgba_(color, a=None): if a is None: alpha = 1 else: alpha = _interpret_percentage(a) return Color.from_rgb(*color.rgba[:3], alpha=alpha) @ns.declare def rgb_(color): return rgba_(color, a=Number(1)) @ns.declare def hsla(h, s, l, a): return Color.from_hsl( h.value / 360 % 1, # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % _interpret_percentage(s, relto=100), _interpret_percentage(l, relto=100), alpha=a.value, ) @ns.declare def hsl(h, s, l): return hsla(h, s, l, Number(1)) @ns.declare def hsla_(color, a=None): return rgba_(color, a) @ns.declare def hsl_(color): return rgba_(color, a=Number(1)) @ns.declare def mix(color1, color2, weight=Number(50, "%")): """ Mixes together two colors. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. The weight specifies the amount of the first color that should be included in the returned color. 50%, means that half the first color and half the second color should be used. 25% means that a quarter of the first color and three quarters of the second color should be used. For example: mix(#f00, #00f) => #7f007f mix(#f00, #00f, 25%) => #3f00bf mix(rgba(255, 0, 0, 0.5), #00f) => rgba(63, 0, 191, 0.75) """ # This algorithm factors in both the user-provided weight # and the difference between the alpha values of the two colors # to decide how to perform the weighted average of the two RGB values. # # It works by first normalizing both parameters to be within [-1, 1], # where 1 indicates "only use color1", -1 indicates "only use color 0", # and all values in between indicated a proportionately weighted average. # # Once we have the normalized variables w and a, # we apply the formula (w + a)/(1 + w*a) # to get the combined weight (in [-1, 1]) of color1. # This formula has two especially nice properties: # # * When either w or a are -1 or 1, the combined weight is also that # number (cases where w * a == -1 are undefined, and handled as a # special case). # # * When a is 0, the combined weight is w, and vice versa # # Finally, the weight of color1 is renormalized to be within [0, 1] # and the weight of color2 is given by 1 minus the weight of color1. # # Algorithm from the Sass project: http://sass-lang.com/ p = _interpret_percentage(weight) # Scale weight to [-1, 1] w = p * 2 - 1 # Compute difference in alpha channels a = color1.alpha - color2.alpha # Weight of first color if w * a == -1: # Avoid zero-div case scaled_weight1 = w else: scaled_weight1 = (w + a) / (1 + w * a) # Unscale back to [0, 1] and get the weight of the other color w1 = (scaled_weight1 + 1) / 2 w2 = 1 - w1 # Do the scaling. Note that alpha isn't scaled by alpha, as that wouldn't # make much sense; it uses the original untwiddled weight, p. channels = [ ch1 * w1 + ch2 * w2 for (ch1, ch2) in zip(color1.rgba[:3], color2.rgba[:3])] alpha = color1.alpha * p + color2.alpha * (1 - p) return Color.from_rgb(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # Color inspection @ns.declare def red(color): r, g, b, a = color.rgba return Number(r * 255) @ns.declare def green(color): r, g, b, a = color.rgba return Number(g * 255) @ns.declare def blue(color): r, g, b, a = color.rgba return Number(b * 255) @ns.declare_alias('opacity') @ns.declare def alpha(color): return Number(color.alpha) @ns.declare def hue(color): h, s, l = color.hsl return Number(h * 360, "deg") @ns.declare def saturation(color): h, s, l = color.hsl return Number(s * 100, "%") @ns.declare def lightness(color): h, s, l = color.hsl return Number(l * 100, "%") @ns.declare def ie_hex_str(color): c = Color(color).value return String("#{3:02X}{0:02X}{1:02X}{2:02X}".format( int(round(c[0])), int(round(c[1])), int(round(c[2])), int(round(c[3] * 255)), )) # ------------------------------------------------------------------------------ # Color modification @ns.declare_alias('fade-in') @ns.declare_alias('fadein') @ns.declare def opacify(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a + amt) @ns.declare_alias('fade-out') @ns.declare_alias('fadeout') @ns.declare def transparentize(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a - amt) @ns.declare def lighten(color, amount): return adjust_color(color, lightness=amount) @ns.declare def darken(color, amount): return adjust_color(color, lightness=-amount) @ns.declare def saturate(color, amount): return adjust_color(color, saturation=amount) @ns.declare def desaturate(color, amount): return adjust_color(color, saturation=-amount) @ns.declare def greyscale(color): h, s, l = color.hsl return Color.from_hsl(h, 0, l, alpha=color.alpha) @ns.declare def grayscale(color): if isinstance(color, Number): # grayscale(n) and grayscale(n%) are CSS3 filters and should be left # intact, but only when using the "a" spelling return String.unquoted("grayscale(%s)" % (color.render(),)) else: return greyscale(color) @ns.declare_alias('spin') @ns.declare def adjust_hue(color, degrees): h, s, l = color.hsl delta = degrees.value / 360 return Color.from_hsl((h + delta) % 1, s, l, alpha=color.alpha) @ns.declare def complement(color): h, s, l = color.hsl return Color.from_hsl((h + 0.5) % 1, s, l, alpha=color.alpha) @ns.declare def invert(color): """Returns the inverse (negative) of a color. The red, green, and blue values are inverted, while the opacity is left alone. """ r, g, b, a = color.rgba return Color.from_rgb(1 - r, 1 - g, 1 - b, alpha=a) @ns.declare def adjust_lightness(color, amount): return adjust_color(color, lightness=amount) @ns.declare def adjust_saturation(color, amount): return adjust_color(color, saturation=amount) @ns.declare def scale_lightness(color, amount): return scale_color(color, lightness=amount) @ns.declare def scale_saturation(color, amount): return scale_color(color, saturation=amount) @ns.declare def adjust_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't adjust both RGB and HSL channels at the same time") zero = Number(0) a = color.alpha + (alpha or zero).value if do_rgb: r, g, b = color.rgba[:3] channels = [ current + (adjustment or zero).value / 255 for (current, adjustment) in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=a) else: h, s, l = color.hsl h = (h + (hue or zero).value / 360) % 1 s += _interpret_percentage(saturation or zero, relto=100, clamp=False) l += _interpret_percentage(lightness or zero, relto=100, clamp=False) return Color.from_hsl(h, s, l, a) def _scale_channel(channel, scaleby): if scaleby is None: return channel expect_type(scaleby, Number) if not scaleby.is_simple_unit('%'): raise ValueError("Expected percentage, got %r" % (scaleby,)) factor = scaleby.value / 100 if factor > 0: # Add x% of the remaining range, up to 1 return channel + (1 - channel) * factor else: # Subtract x% of the existing channel. We add here because the factor # is already negative return channel * (1 + factor) @ns.declare def scale_color( color, red=None, green=None, blue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't scale both RGB and HSL channels at the same time") scaled_alpha = _scale_channel(color.alpha, alpha) if do_rgb: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=scaled_alpha) else: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.hsl, (None, saturation, lightness))] return Color.from_hsl(*channels, alpha=scaled_alpha) @ns.declare def change_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't change both RGB and HSL channels at the same time") if alpha is None: alpha = color.alpha else: alpha = alpha.value if do_rgb: channels = list(color.rgba[:3]) if red: channels[0] = _interpret_percentage(red, relto=255) if green: channels[1] = _interpret_percentage(green, relto=255) if blue: channels[2] = _interpret_percentage(blue, relto=255) return Color.from_rgb(*channels, alpha=alpha) else: channels = list(color.hsl) if hue: expect_type(hue, Number, unit=None) channels[0] = (hue.value / 360) % 1 # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % if saturation: channels[1] = _interpret_percentage(saturation, relto=100) if lightness: channels[2] = _interpret_percentage(lightness, relto=100) return Color.from_hsl(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # String functions @ns.declare_alias('e') @ns.declare_alias('escape') @ns.declare def unquote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes=None) else: return String(arg.render(), quotes=None) @ns.declare def quote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes='"') else: return String(arg.render(), quotes='"') @ns.declare def str_length(string): expect_type(string, String) # nb: can't use `len(string)`, because that gives the Sass list length, # which is 1 return Number(len(string.value)) # TODO this and several others should probably also require integers # TODO and assert that the indexes are valid @ns.declare def str_insert(string, insert, index): expect_type(string, String) expect_type(insert, String) expect_type(index, Number, unit=None) py_index = index.to_python_index(len(string.value), check_bounds=False) return String( string.value[:py_index] + insert.value + string.value[py_index:], quotes=string.quotes) @ns.declare def str_index(string, substring): expect_type(string, String) expect_type(substring, String) # 1-based indexing, with 0 for failure return Number(string.value.find(substring.value) + 1) @ns.declare def str_slice(string, start_at, end_at=None): expect_type(string, String) expect_type(start_at, Number, unit=None) py_start_at = start_at.to_python_index(len(string.value)) if end_at is None: py_end_at = None else: expect_type(end_at, Number, unit=None) # Endpoint is inclusive, unlike Python py_end_at = end_at.to_python_index(len(string.value)) + 1 return String( string.value[py_start_at:py_end_at], quotes=string.quotes) @ns.declare def to_upper_case(string): expect_type(string, String) return String(string.value.upper(), quotes=string.quotes) @ns.declare def to_lower_case(string): expect_type(string, String) return String(string.value.lower(), quotes=string.quotes) # ------------------------------------------------------------------------------ # Number functions @ns.declare def percentage(value): expect_type(value, Number, unit=None) return value * Number(100, unit='%') ns.set_function('abs', 1, Number.wrap_python_function(abs)) ns.set_function('round', 1, Number.wrap_python_function(round)) ns.set_function('ceil', 1, Number.wrap_python_function(math.ceil)) ns.set_function('floor', 1, Number.wrap_python_function(math.floor)) # ------------------------------------------------------------------------------ # List functions def __parse_separator(separator, default_from=None): if separator is None: separator = 'auto' separator = String.unquoted(separator).value if separator == 'comma': return True elif separator == 'space': return False elif separator == 'auto': if not default_from: return True elif len(default_from) < 2: return True else: return default_from.use_comma else: raise ValueError('Separator must be auto, comma, or space') # TODO get the compass bit outta here @ns.declare_alias('-compass-list-size') @ns.declare def length(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return Number(len(lst)) @ns.declare def set_nth(list, n, value): expect_type(n, Number, unit=None) py_n = n.to_python_index(len(list)) return List( tuple(list[:py_n]) + (value,) + tuple(list[py_n + 1:]), use_comma=list.use_comma) # TODO get the compass bit outta here @ns.declare_alias('-compass-nth') @ns.declare def nth(lst, n): """Return the nth item in the list.""" expect_type(n, (String, Number), unit=None) if isinstance(n, String): if n.value.lower() == 'first': i = 0 elif n.value.lower() == 'last': i = -1 else: raise ValueError("Invalid index %r" % (n,)) else: # DEVIATION: nth treats lists as circular lists i = n.to_python_index(len(lst), circular=True) return lst[i] @ns.declare def join(lst1, lst2, separator=String.unquoted('auto')): expect_type(separator, String) ret = [] ret.extend(List.from_maybe(lst1)) ret.extend(List.from_maybe(lst2)) if separator.value == 'comma': use_comma = True elif separator.value == 'space': use_comma = False elif separator.value == 'auto': # The Sass docs are slightly misleading here, but the algorithm is: use # the delimiter from the first list that has at least 2 items, or # default to spaces. if len(lst1) > 1: use_comma = lst1.use_comma elif len(lst2) > 1: use_comma = lst2.use_comma else: use_comma = False else: raise ValueError("separator for join() must be comma, space, or auto") return List(ret, use_comma=use_comma) @ns.declare def min_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return min(lst) @ns.declare def max_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return max(lst) @ns.declare def append(lst, val, separator=None): ret = [] ret.extend(List.from_maybe(lst)) ret.append(val) use_comma = __parse_separator(separator, default_from=lst) return List(ret, use_comma=use_comma) @ns.declare def index(lst, val): for i in xrange(len(lst)): if lst.value[i] == val: return Number(i + 1) return Boolean(False) @ns.declare def zip_(*lists): return List( [List(zipped) for zipped in zip(*lists)], use_comma=True) # TODO need a way to use "list" as the arg name without shadowing the builtin @ns.declare def list_separator(list): if list.use_comma: return String.unquoted('comma') else: return String.unquoted('space') # ------------------------------------------------------------------------------ # Map functions @ns.declare def map_get(map, key): return map.to_dict().get(key, Null()) @ns.declare def map_merge(*maps): key_order = [] index = {} for map in maps: for key, value in map.to_pairs(): if key not in index: key_order.append(key) index[key] = value pairs = [(key, index[key]) for key in key_order] return Map(pairs, index=index) @ns.declare def map_keys(map): return List( [k for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_values(map): return List( [v for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_has_key(map, key): return Boolean(key in map.to_dict()) # DEVIATIONS: these do not exist in ruby sass @ns.declare def map_get3(map, key, default): return map.to_dict().get(key, default) @ns.declare def map_get_nested3(map, keys, default=Null()): for key in keys: map = map.to_dict().get(key, None) if map is None: return default return map @ns.declare def map_merge_deep(*maps): pairs = [] keys = set() for map in maps: for key, value in map.to_pairs(): keys.add(key) for key in keys: values = [map.to_dict().get(key, None) for map in maps] values = [v for v in values if v is not None] if all(isinstance(v, Map) for v in values): pairs.append((key, map_merge_deep(*values))) else: pairs.append((key, values[-1])) return Map(pairs) # ------------------------------------------------------------------------------ # Meta functions @ns.declare def type_of(obj): # -> bool, number, string, color, list return String(obj.sass_type_name) @ns.declare def unit(number): # -> px, em, cm, etc. numer = '*'.join(sorted(number.unit_numer)) denom = '*'.join(sorted(number.unit_denom)) if denom: ret = numer + '/' + denom else: ret = numer return String.unquoted(ret) @ns.declare def unitless(value): if not isinstance(value, Number): raise TypeError("Expected number, got %r" % (value,)) return Boolean(value.is_unitless) @ns.declare def comparable(number1, number2): left = number1.to_base_units() right = number2.to_base_units() return Boolean( left.unit_numer == right.unit_numer and left.unit_denom == right.unit_denom) @ns.declare def keywords(value): """Extract named arguments, as a map, from an argument list.""" expect_type(value, Arglist) return value.extract_keywords() # ------------------------------------------------------------------------------ # Miscellaneous @ns.declare def if_(condition, if_true, if_false=Null()): return if_true if condition else if_false
2.03125
2
pypy/module/cpyext/test/test_iterator.py
wdv4758h/mu-client-pypy
34
11474
from pypy.module.cpyext.test.test_api import BaseApiTest class TestIterator(BaseApiTest): def test_check_iter(self, space, api): assert api.PyIter_Check(space.iter(space.wrap("a"))) assert api.PyIter_Check(space.iter(space.newlist([]))) assert not api.PyIter_Check(space.w_type) assert not api.PyIter_Check(space.wrap(2)) def test_getIter(self, space, api): w_iter = api.PyObject_GetIter(space.wrap([1, 2, 3])) assert space.unwrap(api.PyIter_Next(w_iter)) == 1 assert space.unwrap(api.PyIter_Next(w_iter)) == 2 assert space.unwrap(api.PyIter_Next(w_iter)) == 3 assert api.PyIter_Next(w_iter) is None assert not api.PyErr_Occurred() def test_iternext_error(self,space, api): assert api.PyIter_Next(space.w_None) is None assert api.PyErr_Occurred() is space.w_TypeError api.PyErr_Clear()
2.234375
2
capsule_em/experiment.py
jrmendeshurb/google-research
6
11475
<reponame>jrmendeshurb/google-research # coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The runners.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import time import numpy as np import tensorflow as tf from capsule_em import model as f_model from capsule_em.mnist \ import mnist_record from capsule_em.norb \ import norb_record from tensorflow.contrib import tfprof as contrib_tfprof from tensorflow.python import debug as tf_debug FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('num_prime_capsules', 32, 'Number of first layer capsules.') tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate') tf.app.flags.DEFINE_integer('routing_iteration', 3, 'Number of iterations for softmax routing') tf.app.flags.DEFINE_float( 'routing_rate', 1, 'ratio for combining routing logits and routing feedback') tf.app.flags.DEFINE_float('decay_rate', 0.96, 'ratio for learning rate decay') tf.app.flags.DEFINE_integer('decay_steps', 20000, 'number of steps for learning rate decay') tf.app.flags.DEFINE_bool('normalize_kernels', False, 'Normalize the capsule weight kernels') tf.app.flags.DEFINE_integer('num_second_atoms', 16, 'number of capsule atoms for the second layer') tf.app.flags.DEFINE_integer('num_primary_atoms', 16, 'number of capsule atoms for the first layer') tf.app.flags.DEFINE_integer('num_start_conv', 32, 'number of channels for the start layer') tf.app.flags.DEFINE_integer('kernel_size', 5, 'kernel size for the start layer.') tf.app.flags.DEFINE_integer( 'routing_iteration_prime', 1, 'number of routing iterations for primary capsules.') tf.app.flags.DEFINE_integer('max_steps', 2000000, 'Number of steps to run trainer.') tf.app.flags.DEFINE_string('data_dir', '/datasets/mnist/', 'Directory for storing input data') tf.app.flags.DEFINE_string('summary_dir', '/tmp/tensorflow/mnist/logs/mnist_with_summaries', 'Summaries log directory') tf.app.flags.DEFINE_bool('train', True, 'train or test.') tf.app.flags.DEFINE_integer( 'checkpoint_steps', 1500, 'number of steps before saving a training checkpoint.') tf.app.flags.DEFINE_bool('verbose_image', False, 'whether to show images.') tf.app.flags.DEFINE_bool('multi', True, 'whether to use multiple digit dataset.') tf.app.flags.DEFINE_bool('eval_once', False, 'whether to evaluate once on the ckpnt file.') tf.app.flags.DEFINE_integer('eval_size', 24300, 'number of examples to evaluate.') tf.app.flags.DEFINE_string( 'ckpnt', '/tmp/tensorflow/mnist/logs/mnist_with_summaries/train/model.ckpnt', 'The checkpoint to load and evaluate once.') tf.app.flags.DEFINE_integer('keep_ckpt', 5, 'number of examples to evaluate.') tf.app.flags.DEFINE_bool( 'clip_lr', False, 'whether to clip learning rate to not go bellow 1e-5.') tf.app.flags.DEFINE_integer('stride_1', 2, 'stride for the first convolutinal layer.') tf.app.flags.DEFINE_integer('kernel_2', 9, 'kernel size for the secon convolutinal layer.') tf.app.flags.DEFINE_integer('stride_2', 2, 'stride for the second convolutinal layer.') tf.app.flags.DEFINE_string('padding', 'VALID', 'the padding method for conv layers.') tf.app.flags.DEFINE_integer('extra_caps', 2, 'number of extra conv capsules.') tf.app.flags.DEFINE_string('caps_dims', '32,32', 'output dim for extra conv capsules.') tf.app.flags.DEFINE_string('caps_strides', '2,1', 'stride for extra conv capsules.') tf.app.flags.DEFINE_string('caps_kernels', '3,3', 'kernel size for extra conv capsuls.') tf.app.flags.DEFINE_integer('extra_conv', 0, 'number of extra conv layers.') tf.app.flags.DEFINE_string('conv_dims', '', 'output dim for extra conv layers.') tf.app.flags.DEFINE_string('conv_strides', '', 'stride for extra conv layers.') tf.app.flags.DEFINE_string('conv_kernels', '', 'kernel size for extra conv layers.') tf.app.flags.DEFINE_bool('leaky', False, 'Use leaky routing.') tf.app.flags.DEFINE_bool('staircase', False, 'Use staircase decay.') tf.app.flags.DEFINE_integer('num_gpus', 1, 'number of gpus to train.') tf.app.flags.DEFINE_bool('adam', True, 'Use Adam optimizer.') tf.app.flags.DEFINE_bool('pooling', False, 'Pooling after convolution.') tf.app.flags.DEFINE_bool('use_caps', True, 'Use capsule layers.') tf.app.flags.DEFINE_integer( 'extra_fc', 512, 'number of units in the extra fc layer in no caps mode.') tf.app.flags.DEFINE_bool('dropout', False, 'Dropout before last layer.') tf.app.flags.DEFINE_bool('tweak', False, 'During eval recons from tweaked rep.') tf.app.flags.DEFINE_bool('softmax', False, 'softmax loss in no caps.') tf.app.flags.DEFINE_bool('c_dropout', False, 'dropout after conv capsules.') tf.app.flags.DEFINE_bool( 'distort', True, 'distort mnist images by cropping to 24 * 24 and rotating by 15 degrees.') tf.app.flags.DEFINE_bool('restart', False, 'Clean train checkpoints.') tf.app.flags.DEFINE_bool('use_em', True, 'If set use em capsules with em routing.') tf.app.flags.DEFINE_float('final_beta', 0.01, 'Temperature at the sigmoid.') tf.app.flags.DEFINE_bool('eval_ensemble', False, 'eval over aggregated logits.') tf.app.flags.DEFINE_string('part1', 'ok', 'ok') tf.app.flags.DEFINE_string('part2', 'ok', 'ok') tf.app.flags.DEFINE_bool('debug', False, 'If set use tfdbg wrapper.') tf.app.flags.DEFINE_bool('reduce_mean', False, 'If set normalize mean of each image.') tf.app.flags.DEFINE_float('loss_rate', 1.0, 'classification to regularization rate.') tf.app.flags.DEFINE_integer('batch_size', 64, 'Batch size.') tf.app.flags.DEFINE_integer('norb_pixel', 48, 'Batch size.') tf.app.flags.DEFINE_bool('patching', True, 'If set use patching for eval.') tf.app.flags.DEFINE_string('data_set', 'norb', 'the data set to use.') tf.app.flags.DEFINE_string('cifar_data_dir', '/tmp/cifar10_data', """Path to the CIFAR-10 data directory.""") tf.app.flags.DEFINE_string('norb_data_dir', '/tmp/smallNORB/', """Path to the norb data directory.""") tf.app.flags.DEFINE_string('affnist_data_dir', '/tmp/affnist_data', """Path to the affnist data directory.""") num_classes = { 'mnist': 10, 'cifar10': 10, 'mnist_multi': 10, 'svhn': 10, 'affnist': 10, 'expanded_mnist': 10, 'norb': 5, } def get_features(train, total_batch): """Return batched inputs.""" print(FLAGS.data_set) batch_size = total_batch // max(1, FLAGS.num_gpus) split = 'train' if train else 'test' features = [] for i in xrange(FLAGS.num_gpus): with tf.device('/cpu:0'): with tf.name_scope('input_tower_%d' % (i)): if FLAGS.data_set == 'norb': features += [ norb_record.inputs( train_dir=FLAGS.norb_data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, image_pixel=FLAGS.norb_pixel, distort=FLAGS.distort, patching=FLAGS.patching, ) ] elif FLAGS.data_set == 'affnist': features += [ mnist_record.inputs( train_dir=FLAGS.affnist_data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, shift=0, height=40, train_file='test.tfrecords') ] elif FLAGS.data_set == 'expanded_mnist': features += [ mnist_record.inputs( train_dir=FLAGS.data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, height=40, train_file='train_6shifted_6padded_mnist.tfrecords', shift=6) ] else: if train and not FLAGS.distort: shift = 2 else: shift = 0 features += [ mnist_record.inputs( train_dir=FLAGS.data_dir, batch_size=batch_size, split=split, multi=FLAGS.multi, shift=shift, distort=FLAGS.distort) ] print(features) return features def run_training(): """Train.""" with tf.Graph().as_default(): # Input images and labels. features = get_features(True, FLAGS.batch_size) model = f_model.multi_gpu_model print('so far so good!') result = model(features) param_stats = contrib_tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=contrib_tfprof.model_analyzer .TRAINABLE_VARS_PARAMS_STAT_OPTIONS) sys.stdout.write('total_params: %d\n' % param_stats.total_parameters) contrib_tfprof.model_analyzer.print_model_analysis( tf.get_default_graph(), tfprof_options=contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS) merged = result['summary'] train_step = result['train'] # test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) if FLAGS.debug: sess = tf_debug.LocalCLIDebugWrapperSession(sess, ui_type='curses') sess.add_tensor_filter('has_inf_or_nan', tf_debug.has_inf_or_nan) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) saver = tf.train.Saver(max_to_keep=FLAGS.keep_ckpt) if tf.gfile.Exists(FLAGS.summary_dir + '/train'): ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') print(ckpt) if (not FLAGS.restart) and ckpt and ckpt.model_checkpoint_path: print('hesllo') saver.restore(sess, ckpt.model_checkpoint_path) prev_step = int( ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]) else: print('what??') tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/train') tf.gfile.MakeDirs(FLAGS.summary_dir + '/train') prev_step = 0 else: tf.gfile.MakeDirs(FLAGS.summary_dir + '/train') prev_step = 0 train_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/train', sess.graph) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: step = 0 for i in range(prev_step, FLAGS.max_steps): step += 1 summary, _ = sess.run([merged, train_step]) train_writer.add_summary(summary, i) if (i + 1) % FLAGS.checkpoint_steps == 0: saver.save( sess, os.path.join(FLAGS.summary_dir + '/train', 'model.ckpt'), global_step=i + 1) except tf.errors.OutOfRangeError: print('Done training for %d steps.' % step) finally: # When done, ask the threads to stop. coord.request_stop() train_writer.close() # Wait for threads to finish. coord.join(threads) sess.close() def run_eval(): """Evaluate on test or validation.""" with tf.Graph().as_default(): # Input images and labels. features = get_features(False, 5) model = f_model.multi_gpu_model result = model(features) merged = result['summary'] correct_prediction_sum = result['correct'] almost_correct_sum = result['almost'] saver = tf.train.Saver() test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test') seen_step = -1 time.sleep(3 * 60) paused = 0 while paused < 360: ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') if ckpt and ckpt.model_checkpoint_path: # Restores from checkpoin global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] else: time.sleep(2 * 60) paused += 2 continue while seen_step == int(global_step): time.sleep(2 * 60) ckpt = tf.train.get_checkpoint_state(FLAGS.summary_dir + '/train/') global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] paused += 2 if paused > 360: test_writer.close() return paused = 0 seen_step = int(global_step) print(seen_step) sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) saver.restore(sess, ckpt.model_checkpoint_path) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: total_tp = 0 total_almost = 0 for i in range(FLAGS.eval_size // 5): summary_j, tp, almost = sess.run( [merged, correct_prediction_sum, almost_correct_sum]) total_tp += tp total_almost += almost total_false = FLAGS.eval_size - total_tp total_almost_false = FLAGS.eval_size - total_almost summary_tp = tf.Summary.FromString(summary_j) summary_tp.value.add(tag='correct_prediction', simple_value=total_tp) summary_tp.value.add(tag='wrong_prediction', simple_value=total_false) summary_tp.value.add( tag='almost_wrong_prediction', simple_value=total_almost_false) test_writer.add_summary(summary_tp, global_step) print('write done') except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() test_writer.close() def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def eval_ensemble(ckpnts): """Evaluate on an ensemble of checkpoints.""" with tf.Graph().as_default(): first_features = get_features(False, 100)[0] h = first_features['height'] d = first_features['depth'] features = { 'images': tf.placeholder(tf.float32, shape=(100, d, h, h)), 'labels': tf.placeholder(tf.float32, shape=(100, 10)), 'recons_image': tf.placeholder(tf.float32, shape=(100, d, h, h)), 'recons_label': tf.placeholder(tf.int32, shape=(100)), 'height': first_features['height'], 'depth': first_features['depth'] } model = f_model.multi_gpu_model result = model([features]) logits = result['logits'] config = tf.ConfigProto(allow_soft_placement=True) # saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpnt)) batch_logits = np.zeros((FLAGS.eval_size // 100, 100, 10), dtype=np.float32) batch_recons_label = np.zeros((FLAGS.eval_size // 100, 100), dtype=np.float32) batch_labels = np.zeros((FLAGS.eval_size // 100, 100, 10), dtype=np.float32) batch_images = np.zeros((FLAGS.eval_size // 100, 100, d, h, h), dtype=np.float32) batch_recons_image = np.zeros((FLAGS.eval_size // 100, 100, d, h, h), dtype=np.float32) saver = tf.train.Saver() sess = tf.Session(config=config) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) try: for i in range(FLAGS.eval_size // 100): (batch_recons_label[i, Ellipsis], batch_labels[i, Ellipsis], batch_images[i, Ellipsis], batch_recons_image[i, Ellipsis]) = sess.run([ first_features['recons_label'], first_features['labels'], first_features['images'], first_features['recons_image'] ]) for ckpnt in ckpnts: saver.restore(sess, ckpnt) for i in range(FLAGS.eval_size // 100): logits_i = sess.run( logits, feed_dict={ features['recons_label']: batch_recons_label[i, Ellipsis], features['labels']: batch_labels[i, Ellipsis], features['images']: batch_images[i, Ellipsis], features['recons_image']: batch_recons_image[i, Ellipsis] }) # batch_logits[i, ...] += softmax(logits_i) batch_logits[i, Ellipsis] += logits_i except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() batch_pred = np.argmax(batch_logits, axis=2) total_wrong = np.sum(np.not_equal(batch_pred, batch_recons_label)) print(total_wrong) def eval_once(ckpnt): """Evaluate on one checkpoint once.""" ptches = np.zeros((14, 14, 32, 32)) for i in range(14): for j in range(14): ind_x = i * 2 ind_y = j * 2 for k in range(5): for h in range(5): ptches[i, j, ind_x + k, ind_y + h] = 1 ptches = np.reshape(ptches, (14 * 14, 32, 32)) with tf.Graph().as_default(): features = get_features(False, 1)[0] if FLAGS.patching: features['images'] = features['cc_images'] features['recons_label'] = features['cc_recons_label'] features['labels'] = features['cc_labels'] model = f_model.multi_gpu_model result = model([features]) # merged = result['summary'] correct_prediction_sum = result['correct'] # almost_correct_sum = result['almost'] # mid_act = result['mid_act'] logits = result['logits'] saver = tf.train.Saver() test_writer = tf.summary.FileWriter(FLAGS.summary_dir + '/test_once') config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.per_process_gpu_memory_fraction = 0.3 sess = tf.Session(config=config) # saver.restore(sess, tf.train.latest_checkpoint(FLAGS.ckpnt)) saver.restore(sess, ckpnt) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) i = 0 try: total_tp = 0 for i in range(FLAGS.eval_size): #, g_ac, ac lb, tp, lg = sess.run([ features['recons_label'], correct_prediction_sum, logits, ]) if FLAGS.patching: batched_lg = np.sum(lg / np.sum(lg, axis=1, keepdims=True), axis=0) batch_pred = np.argmax(batched_lg) tp = np.equal(batch_pred, lb[0]) total_tp += tp total_false = FLAGS.eval_size - total_tp print('false:{}, true:{}'.format(total_false, total_tp)) # summary_tp = tf.Summary.FromString(summary_j) # summary_tp.value.add(tag='correct_prediction', simple_value=total_tp) # summary_tp.value.add(tag='wrong_prediction', simple_value=total_false) # summary_tp.value.add( # tag='almost_wrong_prediction', simple_value=total_almost_false) # test_writer.add_summary(summary_tp, i + 1) except tf.errors.OutOfRangeError: print('Done eval for %d steps.' % i) finally: # When done, ask the threads to stop. coord.request_stop() # Wait for threads to finish. coord.join(threads) sess.close() test_writer.close() def main(_): if FLAGS.eval_ensemble: if tf.gfile.Exists(FLAGS.summary_dir + '/test_ensemble'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_ensemble') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_ensemble') ensem = [] for i in range(1, 12): f_name = '/tmp/cifar10/{}{}{}-600000'.format(FLAGS.part1, i, FLAGS.part2) if tf.train.checkpoint_exists(f_name): ensem += [f_name] print(len(ensem)) eval_ensemble(ensem) elif FLAGS.eval_once: if tf.gfile.Exists(FLAGS.summary_dir + '/test_once'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_once') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_once') eval_once(FLAGS.ckpnt) elif FLAGS.train: run_training() else: if tf.gfile.Exists(FLAGS.summary_dir + '/test_once'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test_once') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test_once') if tf.gfile.Exists(FLAGS.summary_dir + '/test'): tf.gfile.DeleteRecursively(FLAGS.summary_dir + '/test') tf.gfile.MakeDirs(FLAGS.summary_dir + '/test') run_eval() if __name__ == '__main__': tf.app.run()
1.742188
2
grafana/common/dashboards/aggregated/client_subnet_statistics_detail.py
MikeAT/visualizer
6
11476
# Copyright 2021 Internet Corporation for Assigned Names and Numbers. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at https://mozilla.org/MPL/2.0/. # # Developed by Sinodun IT (sinodun.com) # # Aggregation client subnet statistics import textwrap import grafanalib.core as GCore import grafanacommon as GCommon def query_classification_chart(chart_title, yaxis_label, prefix_field, agginfo, nodesel): return GCommon.BarChart( title = chart_title, orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = yaxis_label, ), ), traces = [ GCommon.BarChartTrace( name = 'AForA', x = 'AForA', y = 'AForAPrefix', text = 'AForA', ), GCommon.BarChartTrace( name = 'AForRoot', x = 'AForRoot', y = 'AForRootPrefix', text = 'AForRoot', ), GCommon.BarChartTrace( name = 'FunnyQueryClass', x = 'FunnyQueryClass', y = 'FunnyQueryClassPrefix', text = 'FunnyQueryClass', ), GCommon.BarChartTrace( name = 'FunnyQueryType', x = 'FunnyQueryType', y = 'FunnyQueryTypePrefix', text = 'FunnyQueryType', ), GCommon.BarChartTrace( name = 'Localhost', x = 'Localhost', y = 'LocalhostPrefix', text = 'Localhost', ), GCommon.BarChartTrace( name = 'NonAuthTld', x = 'NonAuthTld', y = 'NonAuthTldPrefix', text = 'NonAuthTld', ), GCommon.BarChartTrace( name = 'Ok', x = 'Ok', y = 'OkPrefix', text = 'Ok', ), GCommon.BarChartTrace( name = 'RFC1918Ptr', x = 'RFC1918Ptr', y = 'RFC1918PtrPrefix', text = 'RFC1918Ptr', ), GCommon.BarChartTrace( name = 'RootServersNet', x = 'RootServersNet', y = 'RootServersNetPrefix', text = 'RootServersNet', ), GCommon.BarChartTrace( name = 'SrcPortZero', x = 'SrcPortZero', y = 'SrcPortZeroPrefix', text = 'SrcPortZero', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForAPrefix, AForA, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForACount)/($to - $from) AS AForA FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForRootPrefix, AForRoot, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForRootCount)/($to - $from) AS AForRoot FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'B' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryClassPrefix, FunnyQueryClass, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryClassCount)/($to - $from) AS FunnyQueryClass FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'C' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryTypePrefix, FunnyQueryType, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryTypeCount)/($to - $from) AS FunnyQueryType FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count DESC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'D' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS LocalhostPrefix, Localhost, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(LocalhostCount)/($to - $from) AS Localhost FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'E' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS NonAuthTldPrefix, NonAuthTld, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(NonAuthTldCount)/($to - $from) AS NonAuthTld FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'F' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS OkPrefix, Ok, TotalCount FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS TotalCount, sum(Count - (AForACount + AForRootCount + FunnyQueryClassCount + FunnyQueryTypeCount + LocalhostCount + NonAuthTldCount + RFC1918PtrCount + RootServersNetCount + SrcPortZeroCount))/($to - $from) AS Ok FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY TotalCount DESC LIMIT 40 ) ORDER BY TotalCount ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'G' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RFC1918PtrPrefix, RFC1918Ptr, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RFC1918PtrCount)/($to - $from) AS RFC1918Ptr FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'H' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RootServersNetPrefix, RootServersNet, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RootServersNetCount)/($to - $from) AS RootServersNet FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'I' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS SrcPortZeroPrefix, SrcPortZero, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(SrcPortZeroCount)/($to - $from) AS SrcPortZero FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'J' ), ], ) def dash(myuid, agginfo, nodesel, **kwargs): return GCommon.Dashboard( title = "Client subnet statistics detail", tags = [ agginfo['graph_tag'] ], uid = myuid, rows = [ GCore.Row( height = GCore.Pixels(50), panels = [ GCommon.HTMLPanel('grafana/common/dashboards/aggregated/client_subnet_statistics_header.html', transparent=True), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT Prefix AS Subnet, sum(Count)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY QPS DESC LIMIT 30 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by ASN', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'ASN', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, ClientASN FROM ( SELECT ClientASN, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT ClientASN, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ORDER BY sCount DESC, ClientASN ASC LIMIT 30 ) AS ClientASNCounts ALL LEFT JOIN ( SELECT ClientASN, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN, rcode UNION ALL ( SELECT ClientASN, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, ClientASN FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ) AS ZeroClientASN ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS ClientASNRcodeCounts USING ClientASN GROUP BY ClientASN, rcode ) AS ClientASNRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS ClientASNNameCountsTotal USING rcode GROUP BY ClientASN, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, ClientASN DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by AS subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'AS Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BGPPrefix' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefox ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefix ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Root abusers by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT FixedPrefix AS Subnet, sum(RootAbuseCount)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY FixedPrefix ORDER BY QPS DESC LIMIT 40 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest fixed subnet', 'Fixed Subnet', 'FixedPrefix', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest ASN', 'ASN', 'ClientASN', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest AS subnet', 'AS subnet', 'ASPrefix', agginfo, nodesel) ], ), ] )
1.734375
2
pylearn2/neuroimaging_utils/tutorials/nice/jobman/simple_train.py
rdevon/pylearn2
1
11477
<filename>pylearn2/neuroimaging_utils/tutorials/nice/jobman/simple_train.py """ Module to train a simple MLP for demo. """ from jobman.tools import expand from jobman.tools import flatten import logging import nice_experiment import numpy as np from os import path from pylearn2.config import yaml_parse from pylearn2.neuroimaging_utils.datasets import MRI from pylearn2.neuroimaging_utils.dataset_utils import mri_nifti from pylearn2.scripts.jobman.experiment import ydict from pylearn2.utils import serial logging.basicConfig(format="[%(module)s:%(levelname)s]:%(message)s") logger = logging.getLogger(__name__) yaml_file = nice_experiment.yaml_file def main(dataset_name="smri"): logger.info("Getting dataset info for %s" % args.dataset_name) data_path = serial.preprocess("${PYLEARN2_NI_PATH}/" + args.dataset_name) mask_file = path.join(data_path, "mask.npy") mask = np.load(mask_file) input_dim = (mask == 1).sum() if input_dim % 2 == 1: input_dim -= 1 mri = MRI.MRI_Standard(which_set="full", dataset_name=args.dataset_name, unit_normalize=True, even_input=True, apply_mask=True) variance_map_file = path.join(data_path, "variance_map.npy") mri_nifti.save_variance_map(mri, variance_map_file) user = path.expandvars("$USER") save_path = serial.preprocess("/export/mialab/users/%s/pylearn2_outs/%s" % (user, "nice_jobman_test")) file_params = {"save_path": save_path, "variance_map_file": variance_map_file } yaml_template = open(yaml_file).read() hyperparams = expand(flatten(nice_experiment.default_hyperparams(input_dim=input_dim)), dict_type=ydict) for param in hyperparams: if hasattr(args, param) and getattr(args, param): val = getattr(args, param) logger.info("Filling %s with %r" % (param, val)) hyperparams[param] = type(hyperparams[param])(val) elif param == "weight_decay": val = getattr(args, "l1_decay") if val == 0.0: hyperparams["weight_decay"] = "" else: hyperparams["weight_decay"] = { "__builder__": "pylearn2.costs.mlp.L1WeightDecay", "coeffs": {"z": val} } for param in file_params: yaml_template = yaml_template.replace("%%(%s)s" % param, file_params[param]) yaml = yaml_template % hyperparams print yaml logger.info("Training") train = yaml_parse.load(yaml) train.main_loop() if __name__ == "__main__": parser = nice_experiment.make_argument_parser() args = parser.parse_args() if args.verbose: logger.setLevel(logging.DEBUG) main(args)
2.484375
2
_Framework/Layer.py
isfopo/MacroPushScript
0
11478
<filename>_Framework/Layer.py #Embedded file name: /Users/versonator/Jenkins/live/output/Live/mac_64_static/Release/python-bundle/MIDI Remote Scripts/_Framework/Layer.py u""" Module implementing a way to resource-based access to controls in an unified interface dynamic. """ from __future__ import absolute_import, print_function, unicode_literals from builtins import str from builtins import object from future.utils import raise_ from itertools import repeat from .ControlElement import ControlElementClient from .Util import nop from .Resource import ExclusiveResource, CompoundResource from .Disconnectable import Disconnectable class LayerError(Exception): pass class UnhandledControlError(LayerError): pass class SimpleLayerOwner(Disconnectable): u""" Simple owner that grabs a given layer until it's disconnected """ def __init__(self, layer = None): self._layer = layer self._layer.grab(self) def disconnect(self): self._layer.release(self) class LayerClient(ControlElementClient): u""" Client of the indivial controls that delivers the controls to the layer owner. """ def __init__(self, layer = None, layer_client = None, *a, **k): super(LayerClient, self).__init__(*a, **k) assert layer_client assert layer self.layer_client = layer_client self.layer = layer def set_control_element(self, control_element, grabbed): layer = self.layer owner = self.layer_client assert owner assert control_element in layer._control_to_names, u'Control not in layer: %s' % (control_element,) names = layer._control_to_names[control_element] if not grabbed: control_element = None for name in names: try: handler = getattr(owner, u'set_' + name) except AttributeError: try: control = getattr(owner, name) handler = control.set_control_element except AttributeError: if name[0] != u'_': raise_(UnhandledControlError, u'Component %s has no handler for control_element %s' % (str(owner), name)) else: handler = nop handler(control_element or None) layer._name_to_controls[name] = control_element class LayerBase(object): pass class CompoundLayer(LayerBase, CompoundResource): u""" A compound resource takes two layers and makes them look like one, grabbing both of them. Both can have different priorities thought. """ def _get_priority(self): assert self.first.priority == self.second.priority return self.first.priority def _set_priority(self, priority): self.first.priority = priority self.second.priority = priority priority = property(_get_priority, _set_priority) def __getattr__(self, key): try: return getattr(self.first, key) except AttributeError: return getattr(self.second, key) class Layer(LayerBase, ExclusiveResource): u""" A layer provides a convenient interface to control resources. In a layer, you can group several controls by name. The layer itself is an exclusive resource. When grabbing the layer, it will try to grab all controls and will forward them to its own owner when he receives them, and will take them from him when they are release. The layer with give and take away the controls from its client using methods of the form:: client.set[control-name](control) Where [control-name] is the name the control was given in this layer. This way, layers are a convenient way to provide controls to components indirectly, with automatic handling of competition for them. Note that [control-name] can not be any of the following reserved names: priority, grab, release, on_received, on_lost, owner, get_owner If [control-name] starts with an underscore (_) it is considered private. It is grabbed but it is not delivered to the client. """ def __init__(self, priority = None, **controls): super(Layer, self).__init__() self._priority = priority self._name_to_controls = dict(zip(iter(controls.keys()), repeat(None))) self._control_to_names = dict() self._control_clients = dict() for name, control in controls.items(): assert control is not None, name self._control_to_names.setdefault(control, []).append(name) def __add__(self, other): return CompoundLayer(self, other) def _get_priority(self): return self._priority def _set_priority(self, priority): if priority != self._priority: if self.owner: raise RuntimeError(u"Cannot change priority of a layer while it's owned") self._priority = priority priority = property(_get_priority, _set_priority) def __getattr__(self, name): u""" Provides access to controls """ try: return self._name_to_controls[name] except KeyError: raise AttributeError def grab(self, client, *a, **k): if client == self.owner: self.on_received(client, *a, **k) return True return super(Layer, self).grab(client, *a, **k) def on_received(self, client, *a, **k): u""" Override from ExclusiveResource """ for control in self._control_to_names.keys(): k.setdefault(u'priority', self._priority) control.resource.grab(self._get_control_client(client), *a, **k) def on_lost(self, client): u""" Override from ExclusiveResource """ for control in self._control_to_names.keys(): control.resource.release(self._get_control_client(client)) def _get_control_client(self, client): try: control_client = self._control_clients[client] except KeyError: control_client = self._control_clients[client] = LayerClient(layer_client=client, layer=self) return control_client
2.25
2
src/retrieve_exons_sequence_genomes.py
naturalis/brassicaceae-hybseq-pipeline
5
11479
<gh_stars>1-10 # retrieve_exons_sequence_genomes.py # This script is to retrieve exons from sequenced genomes which are also present in the reference genome (A. thaliana). # To identify the contigs from the sequenced genomes, each contig has to be retrieved from A. thaliana first. # Then, for each sequence query of A. thaliana, the query can be BLAT against the database reference. # In this case, the database reference will be S. irio and A. lyrata. # Made by: <NAME> # Date: 19 May 2020 import os from Bio import SeqIO path_to_at_exons_dir = "/mnt/c/Users/elfyl/PycharmProjects/brassicaceae-hybseq-pipeline-offline/results/exons" path_to_at_dir = "/mnt/c/Users/elfyl/PycharmProjects/brassicaceae-hybseq-pipeline-offline/data/reference_genomes" path_to_at_reference = path_to_at_dir + "/ref-at.fasta" # Create exons_AT Directory if don't exist if not os.path.exists(path_to_at_exons_dir): os.mkdir(path_to_at_exons_dir) print("Directory ", path_to_at_exons_dir, " Created ") else: print("Directory ", path_to_at_exons_dir, " already exists") # Create new files for every sequence query of the reference genome A. thaliana count_id = 0 for seq_record in SeqIO.parse(path_to_at_reference, "fasta"): f = open(path_to_at_exons_dir + "/" + seq_record.id + ".txt", "w+") print("New text file created: " + seq_record.id + ".fa") seq_id = seq_record.id seq_seq = str(seq_record.seq) f.write(">" + seq_id + "\n" + seq_seq) f.close() count_id += 1 print("Number of sequence records: " + str(count_id))
2.828125
3
lexical/lexical.py
xmeng17/Malicious-URL-Detection
0
11480
import re class lexical(object): '''Lexical Features: Top Level domain (str) Number of dots in hostname (int) Average token length of hostname (float) Max token length of hostname (int) Average token length of path (float) Max token length of path (int) ''' def __init__(self): pass def lexical(self,hostname,path): dot_num=self.dots(hostname) arr_host=self.split(hostname) arr_path=self.split(path) avg_host=self.avg(arr_host) max_host=self.max(arr_host) avg_path=self.avg(arr_path) max_path=self.max(arr_path) return dot_num,avg_host,max_host,avg_path,max_path def dots(self,hostname): # returns number of dots return hostname.count('.') def split(self,string): # returns a list split by ‘/’, ‘?’, ‘.’, ‘=’, ‘-’ and ‘_’ return re.split('/|\?|\.|=|-|_', string) def avg(self,arr): # returns average token length return sum(len(token) for token in arr)/len(arr) def max(self,arr): # returns max token length return max(len(token) for token in arr)
3.703125
4
stacker/tests/providers/aws/test_interactive.py
GoodRx/stacker
1
11481
<gh_stars>1-10 import unittest from ....providers.aws.interactive import requires_replacement def generate_resource_change(replacement=True): resource_change = { "Action": "Modify", "Details": [], "LogicalResourceId": "Fake", "PhysicalResourceId": "arn:aws:fake", "Replacement": "True" if replacement else "False", "ResourceType": "AWS::Fake", "Scope": ["Properties"], } return { "ResourceChange": resource_change, "Type": "Resource", } class TestInteractiveProvider(unittest.TestCase): def test_requires_replacement(self): changeset = [ generate_resource_change(), generate_resource_change(replacement=False), generate_resource_change(), ] replacement = requires_replacement(changeset) self.assertEqual(len(replacement), 2) for resource in replacement: self.assertEqual(resource["ResourceChange"]["Replacement"], "True")
2.953125
3
setup.py
digicert/digicert_express
2
11482
from setuptools import setup, find_packages def readme(): with open('README.rst') as f: return f.read() setup( name='digicert-express', version='1.1dev2', description='Express Install for DigiCert, Inc.', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Information Technology', 'License :: OSI Approved :: MIT License', 'Topic :: Security', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], url='https://github.com/digicert/digicert_express', author='DigiCert, Inc.', author_email='<EMAIL>', license='MIT', zip_safe=False, packages=find_packages(exclude=['tests.*', '*.tests.*', '*.tests', 'tests', 'scripts']), include_package_data=True, install_requires=[ 'python-augeas', 'requests>=2.8.1', 'ndg-httpsclient', 'pyasn1', 'pyOpenSSL' # prefer OS install but we can try here, too ], )
1.335938
1
pytorch/plane.py
NunoEdgarGFlowHub/autoregressive-energy-machines
83
11483
import argparse import json import numpy as np import os import torch import data_ import models import utils from matplotlib import cm, pyplot as plt from tensorboardX import SummaryWriter from torch import optim from torch.utils import data from tqdm import tqdm from utils import io parser = argparse.ArgumentParser() # CUDA parser.add_argument('--use_gpu', type=bool, default=True, help='Whether to use GPU.') # data parser.add_argument('--dataset_name', type=str, default='spirals', help='Name of dataset to use.') parser.add_argument('--n_data_points', default=int(1e6), help='Number of unique data points in training set.') parser.add_argument('--batch_size', type=int, default=256, help='Size of batch used for training.') parser.add_argument('--num_workers', type=int, default=0, help='Number of workers used in data loaders.') # MADE parser.add_argument('--n_residual_blocks_made', default=4, help='Number of residual blocks in MADE.') parser.add_argument('--hidden_dim_made', default=256, help='Dimensionality of hidden layers in MADE.') parser.add_argument('--activation_made', default='relu', help='Activation function for MADE.') parser.add_argument('--use_batch_norm_made', default=False, help='Whether to use batch norm in MADE.') parser.add_argument('--dropout_probability_made', default=None, help='Dropout probability for MADE.') # energy net parser.add_argument('--context_dim', default=64, help='Dimensionality of context vector.') parser.add_argument('--n_residual_blocks_energy_net', default=4, help='Number of residual blocks in energy net.') parser.add_argument('--hidden_dim_energy_net', default=128, help='Dimensionality of hidden layers in energy net.') parser.add_argument('--energy_upper_bound', default=0, help='Max value for output of energy net.') parser.add_argument('--activation_energy_net', default='relu', help='Activation function for energy net.') parser.add_argument('--use_batch_norm_energy_net', default=False, help='Whether to use batch norm in energy net.') parser.add_argument('--dropout_probability_energy_net', default=None, help='Dropout probability for energy net.') parser.add_argument('--scale_activation', default='softplus', help='Activation to use for scales in proposal mixture components.') parser.add_argument('--apply_context_activation', default=False, help='Whether to apply activation to context vector.') # proposal parser.add_argument('--n_mixture_components', default=10, help='Number of proposal mixture components (per dimension).') parser.add_argument('--proposal_component', default='gaussian', help='Type of location-scale family distribution ' 'to use in proposal mixture.') parser.add_argument('--n_proposal_samples_per_input', default=20, help='Number of proposal samples used to estimate ' 'normalizing constant during training.') parser.add_argument('--n_proposal_samples_per_input_validation', default=100, help='Number of proposal samples used to estimate ' 'normalizing constant during validation.') parser.add_argument('--mixture_component_min_scale', default=1e-3, help='Minimum scale for proposal mixture components.') # optimization parser.add_argument('--learning_rate', default=5e-4, help='Learning rate for Adam.') parser.add_argument('--n_total_steps', default=int(4e5), help='Number of total training steps.') parser.add_argument('--alpha_warm_up_steps', default=5000, help='Number of warm-up steps for AEM density.') parser.add_argument('--hard_alpha_warm_up', default=True, help='Whether to use a hard warm up for alpha') # logging and checkpoints parser.add_argument('--monitor_interval', default=100, help='Interval in steps at which to report training stats.') parser.add_argument('--visualize_interval', default=10000, help='Interval in steps at which to report training stats.') parser.add_argument('--save_interval', default=10000, help='Interval in steps at which to save model.') # reproducibility parser.add_argument('--seed', default=1638128, help='Random seed for PyTorch and NumPy.') args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) if args.use_gpu and torch.cuda.is_available(): device = torch.device('cuda') torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = torch.device('cpu') # Generate data train_dataset = data_.load_plane_dataset(args.dataset_name, args.n_data_points) train_loader = data_.InfiniteLoader( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_epochs=None ) # Generate test grid data n_points_per_axis = 512 bounds = np.array([ [-4, 4], [-4, 4] ]) grid_dataset = data_.TestGridDataset(n_points_per_axis=n_points_per_axis, bounds=bounds) grid_loader = data.DataLoader( dataset=grid_dataset, batch_size=1000, drop_last=False ) # various dimensions for autoregressive and energy nets dim = 2 # D output_dim_multiplier = args.context_dim + 3 * args.n_mixture_components # K + 3M # Create MADE made = models.ResidualMADE( input_dim=dim, n_residual_blocks=args.n_residual_blocks_made, hidden_dim=args.hidden_dim_made, output_dim_multiplier=output_dim_multiplier, conditional=False, activation=utils.parse_activation(args.activation_made), use_batch_norm=args.use_batch_norm_made, dropout_probability=args.dropout_probability_made ).to(device) # create energy net energy_net = models.ResidualEnergyNet( input_dim=(args.context_dim + 1), n_residual_blocks=args.n_residual_blocks_energy_net, hidden_dim=args.hidden_dim_energy_net, energy_upper_bound=args.energy_upper_bound, activation=utils.parse_activation(args.activation_energy_net), use_batch_norm=args.use_batch_norm_energy_net, dropout_probability=args.dropout_probability_energy_net ).to(device) # create AEM aem = models.AEM( autoregressive_net=made, energy_net=energy_net, context_dim=args.context_dim, n_proposal_mixture_components=args.n_mixture_components, proposal_component_family=args.proposal_component, n_proposal_samples_per_input=args.n_proposal_samples_per_input, mixture_component_min_scale=args.mixture_component_min_scale, apply_context_activation=args.apply_context_activation ).to(device) # make optimizer parameters = list(made.parameters()) + list(energy_net.parameters()) optimizer = optim.Adam(parameters, lr=args.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_total_steps) # create summary writer and write to log directory timestamp = io.get_timestamp() log_dir = os.path.join(io.get_log_root(), args.dataset_name, timestamp) writer = SummaryWriter(log_dir=log_dir) filename = os.path.join(log_dir, 'config.json') with open(filename, 'w') as file: json.dump(vars(args), file) # Training loop tbar = tqdm(range(args.n_total_steps)) alpha = 0 for step in tbar: aem.train() scheduler.step(step) optimizer.zero_grad() # training step batch = next(train_loader).to(device) log_density, log_proposal_density, _, log_normalizer = aem(batch) mean_log_density = torch.mean(log_density) mean_log_proposal_density = torch.mean(log_proposal_density) mean_log_normalizer = torch.mean(log_normalizer) if args.alpha_warm_up_steps is not None: if args.hard_alpha_warm_up: alpha = float(step > args.alpha_warm_up_steps) else: alpha = torch.Tensor([min(step / args.alpha_warm_up_steps, 1)]) loss = - (alpha * mean_log_density + mean_log_proposal_density) else: loss = - (mean_log_density + mean_log_proposal_density) loss.backward() optimizer.step() if (step + 1) % args.monitor_interval == 0: s = 'Loss: {:.4f}, log p: {:.4f}, log q: {:.4f}'.format( loss.item(), mean_log_density.item(), mean_log_proposal_density.item() ) tbar.set_description(s) # write summaries summaries = { 'loss': loss.detach(), 'log-prob-aem': mean_log_density.detach(), 'log-prob-proposal': mean_log_proposal_density.detach(), 'log-normalizer': mean_log_normalizer.detach(), 'learning-rate': torch.Tensor(scheduler.get_lr()), } for summary, value in summaries.items(): writer.add_scalar(tag=summary, scalar_value=value, global_step=step) if (step + 1) % args.visualize_interval == 0: # Plotting aem.eval() aem.set_n_proposal_samples_per_input_validation( args.n_proposal_samples_per_input_validation) log_density_np = [] log_proposal_density_np = [] for batch in grid_loader: batch = batch.to(device) log_density, log_proposal_density, unnormalized_log_density, log_normalizer = aem( batch) log_density_np = np.concatenate(( log_density_np, utils.tensor2numpy(log_density) )) log_proposal_density_np = np.concatenate(( log_proposal_density_np, utils.tensor2numpy(log_proposal_density) )) fig, axs = plt.subplots(1, 3, figsize=(7.5, 2.5)) axs[0].hist2d(train_dataset.data[:, 0], train_dataset.data[:, 1], range=bounds, bins=512, cmap=cm.viridis, rasterized=False) axs[0].set_xticks([]) axs[0].set_yticks([]) axs[1].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_proposal_density_np).reshape(grid_dataset.X.shape)) axs[1].set_xlim(bounds[0]) axs[1].set_ylim(bounds[1]) axs[1].set_xticks([]) axs[1].set_yticks([]) axs[2].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_density_np).reshape(grid_dataset.X.shape)) axs[2].set_xlim(bounds[0]) axs[2].set_ylim(bounds[1]) axs[2].set_xticks([]) axs[2].set_yticks([]) plt.tight_layout() path = os.path.join(io.get_output_root(), 'pytorch', '{}.png'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_output_root()) plt.savefig(path, dpi=300) writer.add_figure(tag='test-grid', figure=fig, global_step=step) plt.close() if (step + 1) % args.save_interval == 0: path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}.t'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_checkpoint_root()) torch.save(aem.state_dict(), path) path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}-{}.t'.format(args.dataset_name, timestamp)) torch.save(aem.state_dict(), path)
2.109375
2
music/music.py
spacerunaway/world_recoder
0
11484
<reponame>spacerunaway/world_recoder import sys sys.path.append('../utils') from utils import * from doubly_linkedlist import * def link_chords(chordprogression): """ Chord progression is a sequences of chords. A valid linked_chords can be one of the following: 1: the chord name(str) in CHORD dict 2: the key(type Key) and a music have to a signal of start and end. >>> c_p1 = [START,C_Major,'C','Am','F','G','C','Am','F','G7',END] >>> c_p2 = [START,C_Major,'C','Am','F','G','C','Am','F','G',G_Major,'Em','C','D','D7','G',END] >>> l1 = link_chords(c_p1) >>> l1 start - C - Am - F - G - C - Am - F - G7 - end >>> l2 = link_chords(c_p2) >>> l2 start - C - Am - F - G - C - Am - F - G - Em - C - D - D7 - G - end >>> l2[8].key is C_Major True >>> l2[8].chord == CHORD['G'] True >>> l2[9].key is G_Major True >>> l2[9].chord == CHORD['Em'] True >>> c_p3 = [C_Major,C_Major,START,'C',END,START,START,END,'F',G_Major] >>> l3 = link_chords(c_p3) >>> l3 start - C - end - start - start - end - F """ key = None res = LinkedList() for item in chordprogression: if type(item) is Major_Scale or type(item) is minor_Scale: key = item else: if item not in CHORD: chord = item else: chord = CHORD[item] node = LinkedChord(chord,key,item) res.append(node) return res def parse_chordprogression(chordprogression): link_chords(chordprogression) cpd(chordprogression) class Music(object): melody = [] chordprogression = [] rhythm = [] def __init__(self,title,composer,key_signature,metre,arranger=''): self.title = title self.composer = composer self.arranger = arranger self.key = key self.metre = metre def add_subtitle(self,subtitle): self.subtitle = subtitle def add_chordprogression(self,chordprogression): self.chordprogression = chordprogression def add_tags(self,tags): self.tags = tags class Info(object): def __init__(self,key,beat,tempo=90,rhythmtype=''): self.key = key self.beat = beat self.tempo = tempo self.rhythmtype = rhythmtype
3.359375
3
azure-mgmt/tests/test_mgmt_documentdb.py
v-Ajnava/azure-sdk-for-python
4
11485
# coding: utf-8 #------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. #-------------------------------------------------------------------------- import unittest import azure.mgmt.documentdb from msrestazure.azure_exceptions import CloudError from testutils.common_recordingtestcase import record from tests.mgmt_testcase import HttpStatusCode, AzureMgmtTestCase import logging #logging.basicConfig(level=logging.DEBUG) class MgmtDocDBTest(AzureMgmtTestCase): def setUp(self): super(MgmtDocDBTest, self).setUp() self.client = self.create_mgmt_client( azure.mgmt.documentdb.DocumentDB ) # I don't record resource group creation, since it's another package if not self.is_playback(): self.create_resource_group() @record def test_accounts_create(self): account_name = self.get_resource_name('pydocdbtst') self.assertFalse(self.client.database_accounts.check_name_exists(account_name)) async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) account = async_docdb_create.result() self.assertIsNotNone(account) # Rest API issue # self.assertEqual(account.name, account_name) def test_accounts_features(self): account_name = self.get_resource_name('pydocdbtest') if not self.is_playback(): async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) async_docdb_create.wait() with self.recording(): account = self.client.database_accounts.get( self.group_name, account_name ) self.assertEqual(account.name, account_name) my_accounts = list(self.client.database_accounts.list_by_resource_group(self.group_name)) self.assertEqual(len(my_accounts), 1) self.assertEqual(my_accounts[0].name, account_name) my_accounts = list(self.client.database_accounts.list()) self.assertTrue(len(my_accounts) >= 1) self.assertTrue(any(db.name == account_name for db in my_accounts)) # I guess we can make this test with no error, need to check with DocDB team # This is an interesting test anyway, this implies that the serialization works # and error message is available. Since this method does not return an object # (i.e. no deserialization to test), this is a complete test. # We are NOT here to test the RestAPI, but the Swagger file and Python code. with self.assertRaises(CloudError) as cm: async_change = self.client.database_accounts.failover_priority_change( self.group_name, account_name, [{ 'location_name': self.region, 'failover_priority': 0 }] ) async_change.wait() self.assertIn('Failover priorities must be unique', cm.exception.message) my_keys = self.client.database_accounts.list_keys( self.group_name, account_name ) self.assertIsNotNone(my_keys.primary_master_key) self.assertIsNotNone(my_keys.secondary_master_key) self.assertIsNotNone(my_keys.primary_readonly_master_key) self.assertIsNotNone(my_keys.secondary_readonly_master_key) my_keys = self.client.database_accounts.list_read_only_keys( self.group_name, account_name ) self.assertIsNotNone(my_keys.primary_readonly_master_key) self.assertIsNotNone(my_keys.secondary_readonly_master_key) async_regenerate = self.client.database_accounts.regenerate_key( self.group_name, account_name, "primary" ) async_regenerate.wait() def test_accounts_delete(self): account_name = self.get_resource_name('pydocumentdbtst') if not self.is_playback(): async_docdb_create = self.client.database_accounts.create_or_update( self.group_name, account_name, { 'location': self.region, 'locations': [{ 'location_name': self.region }] } ) async_docdb_create.wait() with self.recording(): # Current implementation of msrestazure does not support 404 as a end of LRO delete # https://github.com/Azure/msrestazure-for-python/issues/7 async_delete = self.client.database_accounts.delete(self.group_name, account_name) try: async_delete.wait() except CloudError as err: if err.response.status_code != 404: raise #------------------------------------------------------------------------------ if __name__ == '__main__': unittest.main()
2
2
config.py
somritabanerjee/speedplusbaseline
0
11486
import argparse PROJROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplusbaseline', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/speedplusbaseline'} DATAROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplus/data/datasets', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/dataset'} parser = argparse.ArgumentParser('Configurations for SPEED+ Baseline Study') # ------------------------------------------------------------------------------------------ # Basic directories and names parser.add_argument('--seed', type=int, default=2021) parser.add_argument('--projroot', type=str, default=PROJROOTDIR['linux']) parser.add_argument('--dataroot', type=str, default=DATAROOTDIR['linux']) parser.add_argument('--dataname', type=str, default='speedplus') parser.add_argument('--savedir', type=str, default='checkpoints/synthetic/krn') parser.add_argument('--resultfn', type=str, default='') parser.add_argument('--logdir', type=str, default='log/synthetic/krn') parser.add_argument('--pretrained', type=str, default='') # ------------------------------------------------------------------------------------------ # Model config. parser.add_argument('--model_name', type=str, default='krn') parser.add_argument('--input_shape', nargs='+', type=int, default=(224, 224)) parser.add_argument('--num_keypoints', type=int, default=11) # KRN-specific parser.add_argument('--num_classes', type=int, default=5000) # SPN-specific parser.add_argument('--num_neighbors', type=int, default=5) # SPN-specific parser.add_argument('--keypts_3d_model', type=str, default='src/utils/tangoPoints.mat') parser.add_argument('--attitude_class', type=str, default='src/utils/attitudeClasses.mat') # ------------------------------------------------------------------------------------------ # Training config. parser.add_argument('--start_over', dest='auto_resume', action='store_false', default=True) parser.add_argument('--randomize_texture', dest='randomize_texture', action='store_true', default=False) parser.add_argument('--perform_dann', dest='dann', action='store_true', default=False) parser.add_argument('--texture_alpha', type=float, default=0.5) parser.add_argument('--texture_ratio', type=float, default=0.5) parser.add_argument('--use_fp16', dest='fp16', action='store_true', default=False) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--max_epochs', type=int, default=75) parser.add_argument('--num_workers', type=int, default=8) parser.add_argument('--test_epoch', type=int, default=-1) parser.add_argument('--optimizer', type=str, default='rmsprop') parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=5e-5) parser.add_argument('--lr_decay_alpha', type=float, default=0.96) parser.add_argument('--lr_decay_step', type=int, default=1) # ------------------------------------------------------------------------------------------ # Dataset-related inputs parser.add_argument('--train_domain', type=str, default='synthetic') parser.add_argument('--test_domain', type=str, default='lightbox') parser.add_argument('--train_csv', type=str, default='train.csv') parser.add_argument('--test_csv', type=str, default='lightbox.csv') # ------------------------------------------------------------------------------------------ # Other miscellaneous settings parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', default=True) # End cfg = parser.parse_args()
2.03125
2
h1/api/insight_project_journal_api.py
hyperonecom/h1-client-python
0
11487
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.insight_project_journal_create import InsightProjectJournalCreate from h1.model.insight_project_journal_credential_patch import InsightProjectJournalCredentialPatch from h1.model.insight_project_journal_transfer import InsightProjectJournalTransfer from h1.model.insight_project_journal_update import InsightProjectJournalUpdate from h1.model.journal import Journal from h1.model.journal_credential import JournalCredential from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class InsightProjectJournalApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __insight_project_journal_create( self, project_id, location_id, insight_project_journal_create, **kwargs ): """Create insight/journal # noqa: E501 Create journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_create(project_id, location_id, insight_project_journal_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id insight_project_journal_create (InsightProjectJournalCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['insight_project_journal_create'] = \ insight_project_journal_create return self.call_with_http_info(**kwargs) self.insight_project_journal_create = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'insight_project_journal_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'insight_project_journal_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'insight_project_journal_create': (InsightProjectJournalCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'insight_project_journal_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_create ) def __insight_project_journal_credential_create( self, project_id, location_id, journal_id, journal_credential, **kwargs ): """Create insight/journal.credential # noqa: E501 Create insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_create(project_id, location_id, journal_id, journal_credential, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id journal_credential (JournalCredential): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['journal_credential'] = \ journal_credential return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_create = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'journal_credential': (JournalCredential,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'journal_credential': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_create ) def __insight_project_journal_credential_delete( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Delete insight/journal.credential # noqa: E501 Delete insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_delete(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_delete = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_delete ) def __insight_project_journal_credential_get( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Get insight/journal.credential # noqa: E501 Get insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_get(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_get = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_get ) def __insight_project_journal_credential_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.credential # noqa: E501 List insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [JournalCredential] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_list = _Endpoint( settings={ 'response_type': ([JournalCredential],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_list ) def __insight_project_journal_credential_patch( self, project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, **kwargs ): """Update insight/journal.credential # noqa: E501 Update insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_patch(project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId insight_project_journal_credential_patch (InsightProjectJournalCredentialPatch): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id kwargs['insight_project_journal_credential_patch'] = \ insight_project_journal_credential_patch return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_patch = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_patch', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), 'insight_project_journal_credential_patch': (InsightProjectJournalCredentialPatch,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', 'insight_project_journal_credential_patch': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_patch ) def __insight_project_journal_delete( self, project_id, location_id, journal_id, **kwargs ): """Delete insight/journal # noqa: E501 Delete journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_delete(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_delete ) def __insight_project_journal_event_get( self, project_id, location_id, journal_id, event_id, **kwargs ): """Get insight/journal.event # noqa: E501 Get insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_get(project_id, location_id, journal_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}', 'operation_id': 'insight_project_journal_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_get ) def __insight_project_journal_event_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.event # noqa: E501 List insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event', 'operation_id': 'insight_project_journal_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_list ) def __insight_project_journal_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal # noqa: E501 Returns a single journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_get = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_get ) def __insight_project_journal_list( self, project_id, location_id, **kwargs ): """List insight/journal # noqa: E501 List journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Journal] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.insight_project_journal_list = _Endpoint( settings={ 'response_type': ([Journal],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_list ) def __insight_project_journal_log_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal.log # noqa: E501 websocket is also supported # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_log_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: since (datetime): since. [optional] until (datetime): until. [optional] follow (bool): follow. [optional] if omitted the server will use the default value of False tail (float): tail. [optional] tag (TagArray): tag. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_log_get = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/log', 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'since', 'until', 'follow', 'tail', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'since': (datetime,), 'until': (datetime,), 'follow': (bool,), 'tail': (float,), 'tag': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until': 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow': 'query', 'tail': 'query', 'tag': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_log_get ) def __insight_project_journal_service_get( self, project_id, location_id, journal_id, service_id, **kwargs ): """Get insight/journal.service # noqa: E501 Get insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_get(project_id, location_id, journal_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}', 'operation_id': 'insight_project_journal_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_get ) def __insight_project_journal_service_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.service # noqa: E501 List insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service', 'operation_id': 'insight_project_journal_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_list ) def __insight_project_journal_tag_create( self, project_id, location_id, journal_id, tag, **kwargs ): """Create insight/journal.tag # noqa: E501 Create insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_create(project_id, location_id, journal_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_create ) def __insight_project_journal_tag_delete( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Delete insight/journal.tag # noqa: E501 Delete insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_delete(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_delete ) def __insight_project_journal_tag_get( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Get insight/journal.tag # noqa: E501 Get insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_get(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_get ) def __insight_project_journal_tag_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.tag # noqa: E501 List insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_list ) def __insight_project_journal_tag_put( self, project_id, location_id, journal_id, tag_array, **kwargs ): """Replace insight/journal.tag # noqa: E501 Replace insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_put(project_id, location_id, journal_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_put ) def __insight_project_journal_transfer( self, project_id, location_id, journal_id, insight_project_journal_transfer, **kwargs ): """Transfer insight/journal # noqa: E501 action transfer # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_transfer(project_id, location_id, journal_id, insight_project_journal_transfer, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_transfer (InsightProjectJournalTransfer): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_transfer'] = \ insight_project_journal_transfer return self.call_with_http_info(**kwargs) self.insight_project_journal_transfer = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer', 'operation_id': 'insight_project_journal_transfer', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_transfer': (InsightProjectJournalTransfer,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_transfer': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_transfer ) def __insight_project_journal_update( self, project_id, location_id, journal_id, insight_project_journal_update, **kwargs ): """Update insight/journal # noqa: E501 Returns modified journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_update(project_id, location_id, journal_id, insight_project_journal_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_update (InsightProjectJournalUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_update'] = \ insight_project_journal_update return self.call_with_http_info(**kwargs) self.insight_project_journal_update = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_update': (InsightProjectJournalUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_update )
1.804688
2
forms/views.py
urchinpro/L2-forms
0
11488
<filename>forms/views.py from django.http import HttpResponse from django.utils.module_loading import import_string def pdf(request): """ Get form's number (decimal type: 101.15 - where "101" is form's group and "15"-number itsels). Can't use 1,2,3,4,5,6,7,8,9 for number itsels - which stands after the point. Bacause in database field store in decimal format xxx.yy - two number after dot, and active status. Must use: 01,02,03-09,10,11,12-19,20,21,22-29,30,31..... :param request: :return: """ response = HttpResponse(content_type='application/pdf') t = request.GET.get("type") response['Content-Disposition'] = 'inline; filename="form-' + t + '.pdf"' f = import_string('forms.forms' + t[0:3] + '.form_' + t[4:6]) response.write(f(request_data=request.GET)) return response
2.171875
2
main.py
code-aifarmer/Python-EXE-maker
2
11489
<gh_stars>1-10 #!/usr/bin/env python import PySimpleGUI as sg import cv2 import subprocess import shutil import os import sys # Demonstrates a number of PySimpleGUI features including: # Default element size # auto_size_buttons # Button # Dictionary return values # update of elements in form (Text, Input) def runCommand(cmd, timeout=None, window=None): """ run shell command @param cmd: command to execute @param timeout: timeout for command execution @return: (return code from command, command output) """ p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output = '' for line in p.stdout: line = line.decode(errors='replace' if (sys.version_info) < (3, 5) else 'backslashreplace').rstrip() output += line print(line) if window: window.Refresh() retval = p.wait(timeout) return (retval, output) def w(): sg.theme('LightGreen') layout = [[sg.Text(' Python EXE Creator', font='Any 15')], [sg.Text('Source Python File'), sg.Input(key='-sourcefile-', size=(45, 1)), sg.FileBrowse(file_types=(("Python Files", "*.py"),))], [sg.Text('Icon File'), sg.Input(key='-iconfile-', size=(45, 1)), sg.FileBrowse(file_types=(("Icon Files", "*.ico"),))], [sg.Frame('Output', font='Any 15', layout=[ [sg.Output(size=(65, 15), font='Courier 10')]])], [sg.Button('Make EXE', bind_return_key=True), sg.Button('Quit', button_color=('white', 'firebrick3'))], ] window = sg.Window('PySimpleGUI EXE Maker', layout, auto_size_text=False, auto_size_buttons=False, default_element_size=(20, 1), text_justification='right') # ---===--- Loop taking in user input --- # while True: event, values = window.read() if event in ('Exit', 'Quit', None): break source_file = values['-sourcefile-'] icon_file = values['-iconfile-'] icon_option = '-i "{}"'.format(icon_file) if icon_file else '' source_path, source_filename = os.path.split(source_file) workpath_option = '--workpath "{}"'.format(source_path) dispath_option = '--distpath "{}"'.format(source_path) specpath_option = '--specpath "{}"'.format(source_path) folder_to_remove = os.path.join(source_path, source_filename[:-3]) file_to_remove = os.path.join(source_path, source_filename[:-3] + '.spec') command_line = 'pyinstaller -wF --clean "{}" {} {} {} {}'.format(source_file, icon_option, workpath_option, dispath_option, specpath_option) if event == 'Make EXE': try: print(command_line) print('Making EXE...the program has NOT locked up...') window.refresh() # print('Running command {}'.format(command_line)) out, err = runCommand(command_line, window=window) shutil.rmtree(folder_to_remove) os.remove(file_to_remove) print('**** DONE ****') except: sg.PopupError('Something went wrong', 'close this window and copy command line from text printed out in main window', 'Here is the output from the run', out) print('Copy and paste this line into the command prompt to manually run PyInstaller:\n\n', command_line) layout = [[sg.Text('Enter Your Passcode')], [sg.Input('', size=(10, 1), key='input')], [sg.Button('1'), sg.Button('2'), sg.Button('3')], [sg.Button('4'), sg.Button('5'), sg.Button('6')], [sg.Button('7'), sg.Button('8'), sg.Button('9')], [sg.Button('Submit'), sg.Button('0'), sg.Button('Clear')], [sg.Text('', size=(15, 1), font=('Helvetica', 18), text_color='red', key='out')], ] window = sg.Window('Keypad', layout, default_button_element_size=(5, 2), auto_size_buttons=False, grab_anywhere=False) # Loop forever reading the form's values, updating the Input field keys_entered = '' while True: event, values = window.read() # read the form if event == sg.WIN_CLOSED: # if the X button clicked, just exit break if event == 'Clear': # clear keys if clear button keys_entered = '' elif event in '1234567890': keys_entered = values['input'] # get what's been entered so far keys_entered += event # add the new digit elif event == 'Submit': keys_entered = values['input'] if values['input']=='123456': sg.popup('输入正确') w() else: sg.popup('输入错误') window['out'].update(keys_entered) # output the final string # change the form to reflect current key string window['input'].update(keys_entered) window.close()
2.765625
3
seisflows/system/lsf_sm.py
jpvantassel/seisflows
97
11490
# # This is Seisflows # # See LICENCE file # ############################################################################### raise NotImplementedError
1.023438
1
data/objects/sample.py
predictive-analytics-lab/tiny-comparison-framework
0
11491
<filename>data/objects/sample.py from data.objects.data import Data class Sample(Data): """ A way to sample from a dataset for testing purposes. """ def __init__(self, data, num = 100): self.data = data self.dataset_name = data.get_dataset_name() self.class_attr = data.get_class_attribute() self.positive_class_val = data.get_positive_class_val("") # sigh self.sensitive_attrs = data.get_sensitive_attributes() self.privileged_class_names = data.get_privileged_class_names("") # sigh self.categorical_features = data.get_categorical_features() self.features_to_keep = data.get_features_to_keep() self.missing_val_indicators = data.get_missing_val_indicators() self.num_to_sample = num def data_specific_processing(self, dataframe): dataframe = self.data.data_specific_processing(dataframe) return dataframe.sample(n = self.num_to_sample, replace=True)
3.328125
3
parkrundata/views.py
remarkablerocket/parkrundata
0
11492
<reponame>remarkablerocket/parkrundata # -*- coding: utf-8 -*- from rest_framework import viewsets from rest_framework.permissions import IsAuthenticatedOrReadOnly from .models import Country, Event from .serializers import CountrySerializer, EventSerializer class CountryViewSet(viewsets.ModelViewSet): queryset = Country.objects.all() serializer_class = CountrySerializer permission_classes = [IsAuthenticatedOrReadOnly] class EventViewSet(viewsets.ModelViewSet): queryset = Event.objects.all() serializer_class = EventSerializer permission_classes = [IsAuthenticatedOrReadOnly]
1.976563
2
spearmint/models/gp_classifier.py
jatinarora2409/Spearmint
0
11493
<gh_stars>0 # -*- coding: utf-8 -*- # Spearmint # # Academic and Non-Commercial Research Use Software License and Terms # of Use # # Spearmint is a software package to perform Bayesian optimization # according to specific algorithms (the “Software”). The Software is # designed to automatically run experiments (thus the code name # 'spearmint') in a manner that iteratively adjusts a number of # parameters so as to minimize some objective in as few runs as # possible. # # The Software was developed by <NAME>, <NAME>, and # <NAME> at Harvard University, <NAME> at the # University of Toronto (“Toronto”), and <NAME> at the # Université de Sherbrooke (“Sherbrooke”), which assigned its rights # in the Software to Socpra Sciences et Génie # S.E.C. (“Socpra”). Pursuant to an inter-institutional agreement # between the parties, it is distributed for free academic and # non-commercial research use by the President and Fellows of Harvard # College (“Harvard”). # # Using the Software indicates your agreement to be bound by the terms # of this Software Use Agreement (“Agreement”). Absent your agreement # to the terms below, you (the “End User”) have no rights to hold or # use the Software whatsoever. # # Harvard agrees to grant hereunder the limited non-exclusive license # to End User for the use of the Software in the performance of End # User’s internal, non-commercial research and academic use at End # User’s academic or not-for-profit research institution # (“Institution”) on the following terms and conditions: # # 1. NO REDISTRIBUTION. The Software remains the property Harvard, # Toronto and Socpra, and except as set forth in Section 4, End User # shall not publish, distribute, or otherwise transfer or make # available the Software to any other party. # # 2. NO COMMERCIAL USE. End User shall not use the Software for # commercial purposes and any such use of the Software is expressly # prohibited. This includes, but is not limited to, use of the # Software in fee-for-service arrangements, core facilities or # laboratories or to provide research services to (or in collaboration # with) third parties for a fee, and in industry-sponsored # collaborative research projects where any commercial rights are # granted to the sponsor. If End User wishes to use the Software for # commercial purposes or for any other restricted purpose, End User # must execute a separate license agreement with Harvard. # # Requests for use of the Software for commercial purposes, please # contact: # # Office of Technology Development # Harvard University # Smith Campus Center, Suite 727E # 1350 Massachusetts Avenue # Cambridge, MA 02138 USA # Telephone: (617) 495-3067 # Facsimile: (617) 495-9568 # E-mail: <EMAIL> # # 3. OWNERSHIP AND COPYRIGHT NOTICE. Harvard, Toronto and Socpra own # all intellectual property in the Software. End User shall gain no # ownership to the Software. End User shall not remove or delete and # shall retain in the Software, in any modifications to Software and # in any Derivative Works, the copyright, trademark, or other notices # pertaining to Software as provided with the Software. # # 4. DERIVATIVE WORKS. End User may create and use Derivative Works, # as such term is defined under U.S. copyright laws, provided that any # such Derivative Works shall be restricted to non-commercial, # internal research and academic use at End User’s Institution. End # User may distribute Derivative Works to other Institutions solely # for the performance of non-commercial, internal research and # academic use on terms substantially similar to this License and # Terms of Use. # # 5. FEEDBACK. In order to improve the Software, comments from End # Users may be useful. End User agrees to provide Harvard with # feedback on the End User’s use of the Software (e.g., any bugs in # the Software, the user experience, etc.). Harvard is permitted to # use such information provided by End User in making changes and # improvements to the Software without compensation or an accounting # to End User. # # 6. NON ASSERT. End User acknowledges that Harvard, Toronto and/or # Sherbrooke or Socpra may develop modifications to the Software that # may be based on the feedback provided by End User under Section 5 # above. Harvard, Toronto and Sherbrooke/Socpra shall not be # restricted in any way by End User regarding their use of such # information. End User acknowledges the right of Harvard, Toronto # and Sherbrooke/Socpra to prepare, publish, display, reproduce, # transmit and or use modifications to the Software that may be # substantially similar or functionally equivalent to End User’s # modifications and/or improvements if any. In the event that End # User obtains patent protection for any modification or improvement # to Software, End User agrees not to allege or enjoin infringement of # End User’s patent against Harvard, Toronto or Sherbrooke or Socpra, # or any of the researchers, medical or research staff, officers, # directors and employees of those institutions. # # 7. PUBLICATION & ATTRIBUTION. End User has the right to publish, # present, or share results from the use of the Software. In # accordance with customary academic practice, End User will # acknowledge Harvard, Toronto and Sherbrooke/Socpra as the providers # of the Software and may cite the relevant reference(s) from the # following list of publications: # # Practical Bayesian Optimization of Machine Learning Algorithms # <NAME>, <NAME> and <NAME> # Neural Information Processing Systems, 2012 # # Multi-Task Bayesian Optimization # <NAME>, <NAME> and <NAME> # Advances in Neural Information Processing Systems, 2013 # # Input Warping for Bayesian Optimization of Non-stationary Functions # <NAME>, <NAME>, <NAME> and <NAME> # Preprint, arXiv:1402.0929, http://arxiv.org/abs/1402.0929, 2013 # # Bayesian Optimization and Semiparametric Models with Applications to # Assistive Technology <NAME>, PhD Thesis, University of # Toronto, 2013 # # 8. NO WARRANTIES. THE SOFTWARE IS PROVIDED "AS IS." TO THE FULLEST # EXTENT PERMITTED BY LAW, HARVARD, TORONTO AND SHERBROOKE AND SOCPRA # HEREBY DISCLAIM ALL WARRANTIES OF ANY KIND (EXPRESS, IMPLIED OR # OTHERWISE) REGARDING THE SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY # IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR # PURPOSE, OWNERSHIP, AND NON-INFRINGEMENT. HARVARD, TORONTO AND # SHERBROOKE AND SOCPRA MAKE NO WARRANTY ABOUT THE ACCURACY, # RELIABILITY, COMPLETENESS, TIMELINESS, SUFFICIENCY OR QUALITY OF THE # SOFTWARE. HARVARD, TORONTO AND SHERBROOKE AND SOCPRA DO NOT WARRANT # THAT THE SOFTWARE WILL OPERATE WITHOUT ERROR OR INTERRUPTION. # # 9. LIMITATIONS OF LIABILITY AND REMEDIES. USE OF THE SOFTWARE IS AT # END USER’S OWN RISK. IF END USER IS DISSATISFIED WITH THE SOFTWARE, # ITS EXCLUSIVE REMEDY IS TO STOP USING IT. IN NO EVENT SHALL # HARVARD, TORONTO OR SHERBROOKE OR SOCPRA BE LIABLE TO END USER OR # ITS INSTITUTION, IN CONTRACT, TORT OR OTHERWISE, FOR ANY DIRECT, # INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR OTHER # DAMAGES OF ANY KIND WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH # THE SOFTWARE, EVEN IF HARVARD, TORONTO OR SHERBROOKE OR SOCPRA IS # NEGLIGENT OR OTHERWISE AT FAULT, AND REGARDLESS OF WHETHER HARVARD, # TORONTO OR SHERBROOKE OR SOCPRA IS ADVISED OF THE POSSIBILITY OF # SUCH DAMAGES. # # 10. INDEMNIFICATION. To the extent permitted by law, End User shall # indemnify, defend and hold harmless Harvard, Toronto and Sherbrooke # and Socpra, their corporate affiliates, current or future directors, # trustees, officers, faculty, medical and professional staff, # employees, students and agents and their respective successors, # heirs and assigns (the "Indemnitees"), against any liability, # damage, loss or expense (including reasonable attorney's fees and # expenses of litigation) incurred by or imposed upon the Indemnitees # or any one of them in connection with any claims, suits, actions, # demands or judgments arising from End User’s breach of this # Agreement or its Institution’s use of the Software except to the # extent caused by the gross negligence or willful misconduct of # Harvard, Toronto or Sherbrooke or Socpra. This indemnification # provision shall survive expiration or termination of this Agreement. # # 11. GOVERNING LAW. This Agreement shall be construed and governed by # the laws of the Commonwealth of Massachusetts regardless of # otherwise applicable choice of law standards. # # 12. NON-USE OF NAME. Nothing in this License and Terms of Use shall # be construed as granting End Users or their Institutions any rights # or licenses to use any trademarks, service marks or logos associated # with the Software. You may not use the terms “Harvard” or # “University of Toronto” or “Université de Sherbrooke” or “Socpra # Sciences et Génie S.E.C.” (or a substantially similar term) in any # way that is inconsistent with the permitted uses described # herein. You agree not to use any name or emblem of Harvard, Toronto # or Sherbrooke, or any of their subdivisions for any purpose, or to # falsely suggest any relationship between End User (or its # Institution) and Harvard, Toronto and/or Sherbrooke, or in any # manner that would infringe or violate any of their rights. # # 13. End User represents and warrants that it has the legal authority # to enter into this License and Terms of Use on behalf of itself and # its Institution. import copy import sys, logging import numpy as np import numpy.random as npr import scipy.linalg as spla import scipy.optimize as spo import scipy.io as sio import scipy.stats as sps try: import scipy.weave as weave except ImportError: import weave from .gp import GP from ..utils.param import Param as Hyperparameter from ..kernels import Matern52, Noise, Scale, SumKernel, TransformKernel from ..sampling.slice_sampler import SliceSampler from ..sampling.whitened_prior_slice_sampler import WhitenedPriorSliceSampler from ..sampling.elliptical_slice_sampler import EllipticalSliceSampler from ..utils import priors from ..transformations import BetaWarp, Transformer try: module = sys.modules['__main__'].__file__ log = logging.getLogger(module) except: log = logging.getLogger() print 'Not running from main.' class GPClassifier(GP): def __init__(self, num_dims, **options): self.counts = None log.debug('GP Classifier initialized with options: %s' % (options)) self.ess_thinning = int(options.get("ess-thinning", 10)) self._set_likelihood(options) self.prior_whitening = options.get('prior-whitening', True) sigmoid = options.get("sigmoid", "probit") if not self.noiseless: if sigmoid == "probit": self.sigmoid = sps.norm.cdf self.sigmoid_derivative = sps.norm.pdf # not used self.sigmoid_inverse = sps.norm.ppf elif sigmoid == "logistic": self.sigmoid = sps.logistic.cdf self.sigmoid_derivative = sps.logistic.pdf self.sigmoid_inverse = sps.logistic.ppf else: raise Exception("Only probit and logistic sigmoids are supported") else: # If no noise we use the step function and ignore the "sigmoid" argument. # (This is the step function likelihood) # assert options['likelihood'] == 'STEP' self.sigmoid = lambda x: np.greater_equal(x, 0) self.sigmoid_derivative = lambda x: 0. self.sigmoid_inverse = lambda x: 0. # The constraint is that p=s(f) > 1-epsilon # where s if the sigmoid and f is the latent function value, and p is the binomial probability # This is only in more complicated situations. The main situation where this is used # we want f>0. This is equivalent to epsilon=0.5 for the sigmoids we use # The point is: do not set epsilon unless you know what you are doing! # (and do not confuse it with delta, the min constraint confidence) self._one_minus_epsilon = 1.0 - float(options.get("epsilon", 0.5)) self.latent_values_list = [] super(GPClassifier, self).__init__(num_dims, **options) def _set_likelihood(self, options): self.likelihood = options.get('likelihood', 'binomial').lower() if self.likelihood.lower() == "binomial": self.noiseless = False elif self.likelihood.lower() == "step": self.noiseless = True else: raise Exception("GP classifier only supports step or binomial likelihood, not %s" % (options['likelihood'])) def _reset(self): super(GPClassifier, self)._reset() # Reset the latent values if self.counts is not None: initial_latent_vals = self.counts - 0.5 else: initial_latent_vals = np.zeros(0) self.latent_values.initial_value = initial_latent_vals self.latent_values.reset_value() self._latent_values_list = [] def _set_latent_values_from_dict(self, latent_values_dict): # Read in the latent values. For pre-existing data, just load them in # For new data, set them to a default. default_latent_values = self.counts - 0.5 latent_values = np.zeros(self._inputs.shape[0]) for i in xrange(self._inputs.shape[0]): key = str(hash(self._inputs[i].tostring())) if key in latent_values_dict: latent_values[i] = latent_values_dict[key] else: latent_values[i] = default_latent_values[i] self.latent_values.value = latent_values def _burn_samples(self, num_samples): # sys.stderr.write('GPClassifer: burning %s: ' % ', '.join(self.params.keys())) # sys.stderr.write('%04d/%04d' % (0, num_samples)) for i in xrange(num_samples): # sys.stderr.write('\b'*9+'%04d/%04d' % (i, num_samples)) for sampler in self._samplers: sampler.sample(self) self.latent_values_sampler.sample(self) self.chain_length += 1 # sys.stderr.write('\n') def _collect_samples(self, num_samples): # sys.stderr.write('GPClassifer: sampling %s: ' % ', '.join(self.params.keys())) # sys.stderr.write('%04d/%04d' % (0, num_samples)) hypers_list = [] latent_values_list = [] for i in xrange(num_samples): # sys.stderr.write('\b'*9+'%04d/%04d' % (i, num_samples)) for sampler in self._samplers: sampler.sample(self) self.latent_values_sampler.sample(self) current_dict = self.to_dict() hypers_list.append(current_dict['hypers']) latent_values_list.append(current_dict['latent values']) self.chain_length += 1 # sys.stderr.write('\n') return hypers_list, latent_values_list def _build(self): self.params = {} self.latent_values = None # Build the transformer beta_warp = BetaWarp(self.num_dims) beta_alpha, beta_beta = beta_warp.hypers self.params['beta_alpha'] = beta_alpha self.params['beta_beta'] = beta_beta transformer = Transformer(self.num_dims) transformer.add_layer(beta_warp) # Build the component kernels input_kernel = Matern52(self.num_dims) ls = input_kernel.hypers self.params['ls'] = ls # Now apply the transformation. transform_kernel = TransformKernel(input_kernel, transformer) # Add some perturbation for stability stability_noise = Noise(self.num_dims) # Finally make a noisy version if necessary # In a classifier GP the notion of "noise" is really just the scale. if self.noiseless: self._kernel = SumKernel(transform_kernel, stability_noise) else: scaled_kernel = Scale(transform_kernel) self._kernel = SumKernel(scaled_kernel, stability_noise) amp2 = scaled_kernel.hypers self.params['amp2'] = amp2 # Build the mean function (just a constant mean for now) self.mean = Hyperparameter( initial_value = 0.0, prior = priors.Gaussian(0.0,1.0), name = 'mean' ) self.params['mean'] = self.mean # Buld the latent values. Empty for now until the GP gets data. self.latent_values = Hyperparameter( initial_value = np.array([]), name = 'latent values' ) # Build the samplers to_sample = [self.mean] if self.noiseless else [self.mean, amp2] self._samplers.append(SliceSampler(*to_sample, compwise=False, thinning=self.thinning)) self._samplers.append(WhitenedPriorSliceSampler(ls, beta_alpha, beta_beta, compwise=True, thinning=self.thinning)) self.latent_values_sampler = EllipticalSliceSampler(self.latent_values, thinning=self.ess_thinning) @property def values(self): if self.pending is None or len(self._fantasy_values_list) < self.num_states: return self.observed_values if self.num_fantasies == 1: return np.append(self.latent_values.value, self._fantasy_values_list[self.state].flatten(), axis=0) else: return np.append(np.tile(self.latent_values.value[:,None], (1,self.num_fantasies)), self._fantasy_values_list[self.state], axis=0) @property def observed_values(self): if self.latent_values is not None: return self.latent_values.value else: return np.array([]) def set_state(self, state): self.state = state self._set_params_from_dict(self._hypers_list[state]) self._set_latent_values_from_dict(self._latent_values_list[state]) def pi(self, pred, compute_grad=False): return super(GPClassifier, self).pi( pred, compute_grad=compute_grad, C=self.sigmoid_inverse(self._one_minus_epsilon) ) def fit(self, inputs, counts, pending=None, hypers=None, reburn=False, fit_hypers=True): # Set the data for the GP self._inputs = inputs self.counts = counts # Reset the GP self._reset() # Initialize the GP with hypers if provided if hypers: self.from_dict(hypers) if fit_hypers: # Burn samples (if needed) num_samples = self.burnin if reburn or self.chain_length < self.burnin else 0 self._burn_samples(num_samples) # Now collect some samples self._hypers_list, self._latent_values_list = self._collect_samples(self.mcmc_iters) # Now we have more states self.num_states = self.mcmc_iters elif not self._hypers_list: # Just use the current hypers as the only state current_dict = self.to_dict() self._hypers_list = [current_dict['hypers']] self._latent_values_list = [current_dict['latent values']] self.num_states = 1 # Set pending data and generate corresponding fantasies if pending is not None: self.pending = pending self._fantasy_values_list = self._collect_fantasies(pending) # Get caching ready if self.caching: self._prepare_cache() # Set the hypers to the final state of the chain self.set_state(len(self._hypers_list)-1) return self.to_dict() def log_binomial_likelihood(self, y=None): # If no data, don't do anything if not self.has_data: return 0.0 if y is None: y = self.latent_values.value p = self.sigmoid(y) # Note on the below: the obvious implementation would be # return np.sum( pos*np.log(p) + neg*np.log(1-p) ) # The problem is, if pos = 0, and p=0, we will get a 0*-Inf = nan # This messes things up. So we use the safer implementation below that ignores # the term entirely if the counts are 0. pos = self.counts # positive counts neg = 1 - pos with np.errstate(divide='ignore'): # suppress warnings about log(0) return np.sum( pos[pos>0]*np.log(p[pos>0]) ) + np.sum( neg[neg>0]*np.log(1-p[neg>0]) ) def to_dict(self): gp_dict = {} gp_dict['hypers'] = {} for name, hyper in self.params.iteritems(): gp_dict['hypers'][name] = hyper.value # Save the latent values as a dict with keys as hashes of the data # so that each latent value is associated with its input # then when we load them in we know which ones are which gp_dict['latent values'] = {str(hash(self._inputs[i].tostring())) : self.latent_values.value[i] for i in xrange(self._inputs.shape[0])} gp_dict['chain length'] = self.chain_length return gp_dict def from_dict(self, gp_dict): self._set_params_from_dict(gp_dict['hypers']) self._set_latent_values_from_dict(gp_dict['latent values']) self.chain_length = gp_dict['chain length']
1.382813
1
pycom_lopy4_LoRaBattMonitor/transmitter/main.py
AidanTek/Fab-Cre8_IoT
0
11494
from machine import Pin, ADC from network import LoRa import socket from utime import sleep # Use a pin for a 'config' mode configPin = Pin('P21', Pin.IN, Pin.PULL_UP) # Create an ADC object adc = ADC() # vbatt pin: vbatt = adc.channel(attn=1, pin='P16') def battConversion(): adcVoltage = vbatt() voltage = adcVoltage*3*1.334/4095 return voltage # Initialise LoRa in LoRa mode # For Europe, use LoRa.EU868 lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868) # Create a raw LoRa socket s = socket.socket(socket.AF_LORA, socket.SOCK_RAW) # Check the Config pin: configMode = not configPin() if not configMode: print('Reading Battery') pycom.rgbled(0x0000FF) message = 'Battery Status: {}'.format(battConversion()) print(message) sleep(2) print('Sending battery status estimate...') pycom.rgbled(0xFF0000) sleep(2) s.setblocking(True) # Send some data s.send(message) print('Message Sent!') pycom.rgbled(0x00FF00) sleep(2) print('Going to sleep') machine.deepsleep(300000) # Otherwise, we are in 'config' so exit to REPL print('Config Mode')
2.875
3
scrapi/harvesters/lwbin.py
wearpants/scrapi
34
11495
""" A Lake Winnipeg Basin Information Network (BIN) harvester for the SHARE project Example API request: http://130.179.67.140/api/3/action/package_search?q= (problematic) http://130.179.67.140/api/3/action/current_package_list_with_resources (currently using) It oddly returns 5 more datasets than all searchable ones on LWBIN data hub. Known issues: 1 -- Five datasets can be searched but cannot be accessed via LWBIN. Clicking on the searching result would result in linking to a redirected page like this: http://172.16.58.3/user/login?came_from=http://130.179.67.140/dataset/mpca-surface-water-data-access-interactive-map Within each dataset there are resouces that contain urls to source pages. For future work considering using resources urls as canonical urls. 2 -- Resouces properties contained in raw metadata of the datasets are not added to the normalized metadata at this point. 3 -- Single name contributors can be used as filters or an invalid query will be returned. Has nothing to do with scrapi but the frontend. """ from __future__ import unicode_literals import json import logging from dateutil.parser import parse from scrapi import requests from scrapi.base import JSONHarvester from scrapi.linter.document import RawDocument from scrapi.base.helpers import build_properties, datetime_formatter, parse_name logger = logging.getLogger(__name__) ORGANIZATIONS = ( "organization", "fund", "canada", "agriculture", "commitee", "international", "council", "office", "of", "observation", "institute", "lwbin", "cocorahs", "usgs", "nsidc" ) def is_organization(name): """Return a boolean to indicate if the name passed to the function is an organization """ words = name.split(' ') return any(word.strip(";").lower() in ORGANIZATIONS for word in words) def clean_authors(authors): """Cleam authors list. """ authors = authors.strip().replace('<span class="author-names">', '').replace('</span>', '') authors = authors.split(',') new_authors = [] for author in authors: if is_organization(author): new_authors.append(author) else: if ' and ' in author or ' <em>et al.</em>' in author: split_name = author.replace(' <em>et al.</em>', '').split(' and ') new_authors.extend(split_name) else: new_authors.append(author) return new_authors def process_contributors(authors, emails): """Process authors and add author emails If multiple authors and one email, put email in a new author """ emails = emails.split(',') authors = clean_authors(authors) contributor_list = [] append_emails = len(authors) == 1 and len(emails) == 1 and not emails[0] == u'' # append the email to the author only when 1 record is observed for i, author in enumerate(authors): if is_organization(author): contributor = { 'name': author } else: contributor = parse_name(author) if append_emails: contributor['email'] = emails[i] contributor_list.append(contributor) if not append_emails and emails[0] != u'': for email in emails: contributor = { 'name': '', 'email': email } contributor_list.append(contributor) return contributor_list def process_licenses(license_title, license_url, license_id): """Process licenses to comply with the normalized schema """ if not license_url: return [] else: license = { 'uri': license_url, 'description': "{} ({})".format(license_title, license_id) or "" } return [license] def construct_url(url, dataset_path, end_point): """ :return: a url that directs back to the page on LBWIN Data Hub instead of the source page. :param url: host url :param dataset_path: parent path of all datasets :param end_point: name of datasets """ return "/".join([url, dataset_path, end_point]) def process_object_uris(url, extras): """Extract doi from /extras, and return a list of object uris including /url and doi if it exists. """ doi = [] for d in extras: if d['key'] == "DOI" or d['key'] == "DOI:": doi.append(d['value']) if doi == []: return [url] else: return [url].extend(doi) class LWBINHarvester(JSONHarvester): short_name = 'lwbin' long_name = 'Lake Winnipeg Basin Information Network' url = 'http://130.179.67.140' dataset_path = "dataset" # dataset base url for constructing urls that go back to LWBIN instead of source pages. DEFAULT_ENCODING = 'UTF-8' record_encoding = None @property def schema(self): return { 'title': ('/title', lambda x: x or ''), 'description': ('/notes'), 'providerUpdatedDateTime': ('/metadata_modified', datetime_formatter), 'uris': { 'canonicalUri': ('/name', lambda x: construct_url(self.url, self.dataset_path, x)), # Construct new urls directing to LWBIN 'objectUris': ('/url', '/extras', process_object_uris) # Default urls from the metadata directing to source pages }, 'contributors': ('/author', '/author_email', process_contributors), 'licenses': ('/license_title', '/license_url', '/license_id', process_licenses), 'tags': ('/tags', lambda x: [tag['name'].lower() for tag in (x or [])]), 'freeToRead': { 'startDate': ('/isopen', '/metadata_created', lambda x, y: parse(y).date().isoformat() if x else None) }, 'otherProperties': build_properties( ('maintainer', '/maintainer'), ('maintainerEmail', '/maintainer_email'), ('revisionTimestamp', ('/revision_timestamp', datetime_formatter)), ('id', '/id'), ('metadataCreated', ('/metadata_created', datetime_formatter)), ('state', '/state'), ('version', '/version'), ('creatorUserId', '/creator_user_id'), ('type', '/type'), ('numberOfResources', '/num_resources'), ('numberOfTags', '/num_tags'), ('name', '/name'), ('groups', '/groups'), ) } def harvest(self, start_date=None, end_date=None): """Returns a list of Rawdocuments (metadata) Searching by time is not supported by LWBIN CKAN API. all datasets have to be scanned each time. """ base_url = 'http://172.16.58.3/api/3/action/current_package_list_with_resources' records = requests.get(base_url).json()['result'] total = len(records) # Total number of documents logger.info('{} documents to be harvested'.format(total)) return [ RawDocument({ 'doc': json.dumps(record), 'source': self.short_name, 'docID': record['id'], 'filetype': 'json' }) for record in records ]
2.140625
2
catalog/bindings/gmd/point.py
NIVANorge/s-enda-playground
0
11496
from dataclasses import dataclass from bindings.gmd.point_type import PointType __NAMESPACE__ = "http://www.opengis.net/gml" @dataclass class Point(PointType): """A Point is defined by a single coordinate tuple. The direct position of a point is specified by the pos element which is of type DirectPositionType. """ class Meta: namespace = "http://www.opengis.net/gml"
3.15625
3
hknweb/exams/migrations/0019_auto_20200413_0212.py
AndrewKe/hknweb
0
11497
<gh_stars>0 # Generated by Django 2.2.8 on 2020-04-13 09:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('exams', '0018_auto_20200412_1715'), ] operations = [ migrations.CreateModel( name='ExamChoice', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('exam_Choice', models.CharField(max_length=50)), ], ), migrations.AlterField( model_name='exam', name='exam_type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exams.ExamChoice'), ), migrations.AlterField( model_name='exam', name='instructor', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='exams.Instructor'), ), migrations.DeleteModel( name='CourseSemester', ), ]
1.632813
2
tools/linear_algebra/preconditioners/Jacobi.py
mathischeap/mifem
1
11498
<gh_stars>1-10 # -*- coding: utf-8 -*- """Jacobian preconditioner. """ from root.config.main import * from scipy import sparse as spspa from tools.linear_algebra.preconditioners.base import Preconditioner class JacobiPreconditioner(Preconditioner): """""" def __init__(self, A): """""" super(JacobiPreconditioner, self).__init__(A) self._freeze_self_() @property def invM(self): A = self._A_.M diag = A.diagonal() if rAnk != mAster_rank: DIAG = None else: DIAG = np.empty((sIze, self._A_.shape[0])) cOmm.Gather(diag, DIAG, root=mAster_rank) if rAnk == mAster_rank: DIAG = np.sum(DIAG, axis=0) DIAG = np.reciprocal(DIAG) else: DIAG = np.empty((self._A_.shape[0],)) cOmm.Bcast(DIAG, root=mAster_rank) invM = spspa.dia_matrix((DIAG, 0), shape=self._A_.shape) return invM @property def ___applying_method___(self): return 'left_multiply_invM'
2.34375
2
social_redirects/models.py
JoshZero87/site
4
11499
<reponame>JoshZero87/site from django.contrib.sites.models import Site from django.db import models class Redirect(models.Model): title = models.CharField(max_length=200) description = models.CharField(max_length=1024, blank=True, null=True) social_image = models.ImageField(null=True, blank=True) old_path = models.CharField(max_length=200, db_index=True, verbose_name="Redirect From", help_text="This should be an absolute path, excluding the domain name. Example: '/events/search/'.") new_path = models.CharField(max_length=200, blank=True, verbose_name="Redirect To", help_text="This can be either an absolute path (as above) or a full URL starting with 'http://'.") site = models.ForeignKey(Site, models.CASCADE) class Meta: unique_together = (('site', 'old_path'),) ordering = ('old_path',) def __str__(self): return "%s ---> %s" % (self.old_path, self.new_path)
2.234375
2