max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
wagtail/users/models.py
originell/wagtail
0
11600
import os import uuid from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ def upload_avatar_to(instance, filename): filename, ext = os.path.splitext(filename) return os.path.join( 'avatar_images', 'avatar_{uuid}_{filename}{ext}'.format( uuid=uuid.uuid4(), filename=filename, ext=ext) ) class UserProfile(models.Model): user = models.OneToOneField( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='wagtail_userprofile' ) submitted_notifications = models.BooleanField( verbose_name=_('submitted notifications'), default=True, help_text=_("Receive notification when a page is submitted for moderation") ) approved_notifications = models.BooleanField( verbose_name=_('approved notifications'), default=True, help_text=_("Receive notification when your page edit is approved") ) rejected_notifications = models.BooleanField( verbose_name=_('rejected notifications'), default=True, help_text=_("Receive notification when your page edit is rejected") ) preferred_language = models.CharField( verbose_name=_('preferred language'), max_length=10, help_text=_("Select language for the admin"), default='' ) current_time_zone = models.CharField( verbose_name=_('current time zone'), max_length=40, help_text=_("Select your current time zone"), default='' ) avatar = models.ImageField( verbose_name=_('profile picture'), upload_to=upload_avatar_to, blank=True, ) @classmethod def get_for_user(cls, user): return cls.objects.get_or_create(user=user)[0] def get_preferred_language(self): return self.preferred_language or settings.LANGUAGE_CODE def get_current_time_zone(self): return self.current_time_zone or settings.TIME_ZONE def __str__(self): return self.user.get_username() class Meta: verbose_name = _('user profile') verbose_name_plural = _('user profiles')
2.109375
2
python/simulator.py
chongdashu/puzzlescript-analyze
1
11601
__author__ = '<NAME>, <EMAIL>' import uinput def Simulator(): def __init__(self): pass def test1(self): device = uinput.Device([uinput.KEY_E, uinput.KEY_H, uinput.KEY_L, uinput.KEY_O]) device.emit_click(uinput.KEY_H)
1.546875
2
PRESUBMIT.py
oneumyvakin/catapult
0
11602
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Top-level presubmit script for catapult. See https://www.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details about the presubmit API built into depot_tools. """ import re import sys _EXCLUDED_PATHS = ( r'(.*[\\/])?\.git[\\/].*', r'.+\.png$', r'.+\.svg$', r'.+\.skp$', r'.+\.gypi$', r'.+\.gyp$', r'.+\.gn$', r'.*\.gitignore$', r'.*codereview.settings$', r'.*AUTHOR$', r'^CONTRIBUTORS\.md$', r'.*LICENSE$', r'.*OWNERS$', r'.*README\.md$', r'^dashboard[\\/]dashboard[\\/]api[\\/]examples[\\/].*.js', r'^dashboard[\\/]dashboard[\\/]templates[\\/].*', r'^experimental[\\/]heatmap[\\/].*', r'^experimental[\\/]trace_on_tap[\\/]third_party[\\/].*', r'^perf_insights[\\/]test_data[\\/].*', r'^perf_insights[\\/]third_party[\\/].*', r'^telemetry[\\/]third_party[\\/].*', r'^third_party[\\/].*', r'^tracing[\\/]\.allow-devtools-save$', r'^tracing[\\/]bower\.json$', r'^tracing[\\/]\.bowerrc$', r'^tracing[\\/]tracing_examples[\\/]string_convert\.js$', r'^tracing[\\/]test_data[\\/].*', r'^tracing[\\/]third_party[\\/].*', r'^py_vulcanize[\\/]third_party[\\/].*', r'^common/py_vulcanize[\\/].*', # TODO(hjd): Remove after fixing long lines. ) _GITHUB_BUG_ID_RE = re.compile(r'#[1-9]\d*') _MONORAIL_BUG_ID_RE = re.compile(r'[1-9]\d*') _MONORAIL_PROJECT_NAMES = frozenset({'chromium', 'v8', 'angleproject'}) def CheckChangeLogBug(input_api, output_api): if not input_api.change.issue: # If there is no change issue, there won't be a bug yet. Skip the check. return [] # Show a presubmit message if there is no Bug line or an empty Bug line. if not input_api.change.BugsFromDescription(): return [output_api.PresubmitNotifyResult( 'If this change has associated bugs on GitHub or Monorail, add a ' '"Bug: <bug>(, <bug>)*" line to the patch description where <bug> can ' 'be one of the following: catapult:#NNNN, ' + ', '.join('%s:NNNNNN' % n for n in _MONORAIL_PROJECT_NAMES) + '.')] # Check that each bug in the BUG= line has the correct format. error_messages = [] catapult_bug_provided = False for index, bug in enumerate(input_api.change.BugsFromDescription()): # Check if the bug can be split into a repository name and a bug ID (e.g. # 'catapult:#1234' -> 'catapult' and '#1234'). bug_parts = bug.split(':') if len(bug_parts) != 2: error_messages.append('Invalid bug "%s". Bugs should be provided in the ' '"<project-name>:<bug-id>" format.' % bug) continue project_name, bug_id = bug_parts if project_name == 'catapult': if not _GITHUB_BUG_ID_RE.match(bug_id): error_messages.append('Invalid bug "%s". Bugs in the Catapult ' 'repository should be provided in the ' '"catapult:#NNNN" format.' % bug) catapult_bug_provided = True elif project_name in _MONORAIL_PROJECT_NAMES: if not _MONORAIL_BUG_ID_RE.match(bug_id): error_messages.append('Invalid bug "%s". Bugs in the Monorail %s ' 'project should be provided in the ' '"%s:NNNNNN" format.' % (bug, project_name, project_name)) else: error_messages.append('Invalid bug "%s". Unknown repository "%s".' % ( bug, project_name)) return map(output_api.PresubmitError, error_messages) def CheckChange(input_api, output_api): results = [] try: sys.path += [input_api.PresubmitLocalPath()] from catapult_build import bin_checks from catapult_build import html_checks from catapult_build import js_checks from catapult_build import repo_checks results += input_api.canned_checks.PanProjectChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += input_api.RunTests( input_api.canned_checks.CheckVPythonSpec(input_api, output_api)) results += CheckChangeLogBug(input_api, output_api) results += js_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += html_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += repo_checks.RunChecks(input_api, output_api) results += bin_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) finally: sys.path.remove(input_api.PresubmitLocalPath()) return results def CheckChangeOnUpload(input_api, output_api): return CheckChange(input_api, output_api) def CheckChangeOnCommit(input_api, output_api): return CheckChange(input_api, output_api)
1.453125
1
exam_at_home/2/boolean_expression.py
jamie-jjd/110_spring_IDS
2
11603
<gh_stars>1-10 # author: jamie # email: <EMAIL> def Priority (c): if c == '&': return 3 elif c == '|': return 2 elif c == '^': return 1 elif c == '(': return 0 def InfixToPostfix (infix, postfix): stack = [] for c in infix: if c == '(': stack.append('(') elif c == ')': while stack[-1] != '(': postfix.append(stack.pop()) stack.pop() elif c == '&' or c == '|' or c == '^': while len(stack) and Priority(c) <= Priority(stack[-1]): postfix.append(stack.pop()) stack.append(c) else: postfix.append(c) while len(stack): postfix.append(stack.pop()) def Evaluate (postfix, value): stack = [] for c in postfix: if c == '&' or c == '|' or c == '^': rhs = stack.pop() lhs = stack.pop() if c == '&': stack.append(lhs & rhs) elif c == '|': stack.append(lhs | rhs) elif c == '^': stack.append(lhs ^ rhs) elif c == '1' or c == '0': stack.append(ord(c) - ord('0')) else: stack.append(value[ord(c) - ord('A')]) return stack.pop() if __name__ == "__main__": infix = input() T = int(input()) for _ in range(T): value = list(map(int, input().split())) postfix = [] InfixToPostfix(infix, postfix) print(Evaluate(postfix, value))
3.8125
4
workoutlog/workout/admin.py
michaelrodgers/itc172_final
0
11604
<reponame>michaelrodgers/itc172_final from django.contrib import admin from .models import Target, Exercise, Workout # Register your models here. admin.site.register(Target) admin.site.register(Exercise) admin.site.register(Workout)
1.46875
1
ciclo.py
BeltetonJosue96/Ejercicio3Python
0
11605
<reponame>BeltetonJosue96/Ejercicio3Python class Ciclo: def __init__(self): self.cicloNew = () self.respu = () self.a = () self.b = () self.c = () def nuevoCiclo(self): cicloNew = [] print(" ") print("Formulario de ingreso de ciclos") print("-----------------------------------") respu = input("¿Quiere resgistrar un ciclo? (S/F): ") while respu == "S" or respu == "s": print("Ingrese el numero de semestre (1 o 2): ") a = int(input()) print("Ingrese año: ") b = int(input()) cicloNew.append((a, b)) respu = input("¿Quiere resgistrar otro ciclo? (S/F): ") print(" ") print("Datos guardados") print("-----------------------------------") for x in range(len(cicloNew)): print("[Numero de semestre: ", cicloNew[x][0], "] [año: ", cicloNew[x][1],"]") print(" ") print(" ") print(" ") return None Ciclo().nuevoCiclo()
4.1875
4
timeglass.py
mountwebs/timeglass
110
11606
<filename>timeglass.py import rumps import sys import icon_manager from datetime import timedelta import timekeeper import os # pyinstaller --onefile -w --add-data "Icons/:Icons" --icon="Icons/timeglass.png" --clean timeglass.spec # rumps.debug_mode(True) class TimerApp(rumps.App): def __init__(self, initial_seconds): super(TimerApp, self).__init__("") self.mode = "hourglass" self.timekeeper = timekeeper.Timer(initial_seconds) self.template = True self.im = icon_manager.Icon_manager(initial_seconds) self.change_icon() self.remaining_sec = rumps.MenuItem(self.timekeeper.get_remaining_string()) self.menu = [self.remaining_sec] self.next_icon_change = self.im.icon_interval self.rumps_timer = rumps.Timer(self.tick,0.5) self.rumps_timer.callback(self.tick) self.invert_counter = 0 self.notified = False self.sound = True def change_icon(self): print("frame:", self.im.icon_counter) self.icon = self.im.get_icon_path() def change_remaining(self): self.remaining_sec.title = self.timekeeper.get_remaining_string() def tick(self, _): if self.timekeeper.tick(): self.notDone = True self.invert_counter = 0 self.change_remaining() if self.timekeeper.elapsed >= self.next_icon_change: self.im.icon_counter = int(self.timekeeper.elapsed/self.im.icon_interval) + 1 #1-89 self.change_icon() self.next_icon_change += self.im.icon_interval if self.timekeeper.done: self.im.active = False self.change_icon() if not self.notified: self.notify() self.notified = True if self.notDone: self.icon = self.im.invert() self.invert_counter += 1 if self.invert_counter > 5: self.notDone = False self.rumps_timer.stop() self.reset() def notify(self): title = "Time is up!" text = "" sound = "Glass" try: if self.sound: os.system("""osascript -e 'display notification "{}" with title "{}" sound name "{}"'""".format(text, title, sound)) else: os.system("""osascript -e 'display notification "{}" with title "{}"'""".format(text, title, sound)) except: print("Could not send notification") @rumps.clicked("Start", key="s") def pause(self, sender): if sender.title == "Pause": self.timekeeper.pause_timer() self.rumps_timer.stop() sender.title = "Start" elif sender.title == "Start": self.timekeeper.start() self.im.active = True self.change_icon() self.rumps_timer.start() sender.title = "Pause" @rumps.clicked("Reset", key="r") def reset_button(self, sender): self.reset() self.menu["Start"].title = "Start" def reset(self): self.timekeeper.reset() self.rumps_timer.stop() self.im.active = False self.im.reset() self.change_icon() self.change_remaining() self.next_icon_change = self.im.icon_interval self.menu["Start"].title = "Start" self.notified = False def string_to_sec(self, text): nums = text.split(":") nums.reverse() seconds = 0 for i,n in enumerate(nums): if i == 0: seconds += int(n) else: seconds += (60**i) * int(n) print((i * 60) * int(n)) return seconds def validate_input(self, text): texts = text.split(":") if len(texts)>3: return False for s in texts: try: int(s) except: return False return True @rumps.clicked("Set time", key="t") def set_time(self, _): self.timekeeper.pause_timer() response = rumps.Window("Enter time: (hours:minutes:seconds)").run() if response.clicked: if not self.validate_input(response.text): skip = True rumps.alert("Does not compute! Please try again.") else: seconds = self.string_to_sec(response.text) print(seconds) skip = False if not skip: self.rumps_timer.stop() self.timekeeper.set_time(seconds) self.im.set_icon_interval(seconds) self.im.reset() self.im.active = False self.next_icon_change = self.im.icon_interval self.change_icon() self.change_remaining() self.menu["Start"].title = "Start" if __name__ == "__main__": default_secounds = 60 * 60 TimerApp(default_secounds).run()
2.421875
2
example_bot/bot.py
JakeCover/Flare-DiscordPy
1
11607
import os from discord.ext.commands import Bot from Flare import Flare bot = Bot("~~") bot.add_cog(Flare(bot)) @bot.command("ping") async def ping_pong(ctx): ctx.send("pong") bot.run(os.environ.get("BOT_TOKEN"))
2.3125
2
utils/logger.py
huangxd-/BTC-ISMIR19
82
11608
<reponame>huangxd-/BTC-ISMIR19 import logging import os import sys import time project_name = os.getcwd().split('/')[-1] _logger = logging.getLogger(project_name) _logger.addHandler(logging.StreamHandler()) def _log_prefix(): # Returns (filename, line number) for the stack frame. def _get_file_line(): # pylint: disable=protected-access # noinspection PyProtectedMember f = sys._getframe() # pylint: enable=protected-access our_file = f.f_code.co_filename f = f.f_back while f: code = f.f_code if code.co_filename != our_file: return code.co_filename, f.f_lineno f = f.f_back return '<unknown>', 0 # current time now = time.time() now_tuple = time.localtime(now) now_millisecond = int(1e3 * (now % 1.0)) # current filename and line filename, line = _get_file_line() basename = os.path.basename(filename) s = '%02d-%02d %02d:%02d:%02d.%03d %s:%d] ' % ( now_tuple[1], # month now_tuple[2], # day now_tuple[3], # hour now_tuple[4], # min now_tuple[5], # sec now_millisecond, basename, line) return s def logging_verbosity(verbosity=0): _logger.setLevel(verbosity) def debug(msg, *args, **kwargs): _logger.debug('D ' + project_name + ' ' + _log_prefix() + msg, *args, **kwargs) def info(msg, *args, **kwargs): _logger.info('I ' + project_name + ' ' + _log_prefix() + msg, *args, **kwargs) def warn(msg, *args, **kwargs): _logger.warning('W ' + project_name + ' ' + _log_prefix() + msg, *args, **kwargs) def error(msg, *args, **kwargs): _logger.error('E ' + project_name + ' ' + _log_prefix() + msg, *args, **kwargs) def fatal(msg, *args, **kwargs): _logger.fatal('F ' + project_name + ' ' + _log_prefix() + msg, *args, **kwargs)
2.21875
2
setup.py
VNOpenAI/OpenControl
5
11609
import setuptools ver = {} with open('OpenControl/_version.py') as fd: exec(fd.read(), ver) version = ver.get('__version__') with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="OpenControl", version=version, author="VNOpenAI", author_email="<EMAIL>", description="A python control systems package", long_description=long_description, long_description_content_type="text/markdown", url="https://opencontrol.readthedocs.io/en/latest/", project_urls={ "Bug Tracker": "https://github.com/VNOpenAI/OpenControl/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], packages=setuptools.find_packages(), python_requires=">=3.7", )
1.390625
1
ismore/plants.py
DerekYJC/bmi_python
0
11610
'''See the shared Google Drive documentation for an inheritance diagram that shows the relationships between the classes defined in this file. ''' import numpy as np import socket import time from riglib import source from ismore import settings, udp_feedback_client import ismore_bmi_lib from utils.constants import * #import armassist #import rehand from riglib.filter import Filter from riglib.plants import Plant import os class BasePlantUDP(Plant): ''' Common UDP interface for the ArmAssist/ReHand ''' debug = 0 sensor_data_timeout = 1 # seconds. if this number of seconds has passed since sensor data was received, velocity commands will not be sent lpf_vel = 0 # define in subclasses! ssm_cls = None addr = None feedback_data_cls = None data_source_name = None n_dof = None blocking_joints = None safety_grid = None feedback_str = '' def __init__(self, *args, **kwargs): self.source = source.DataSource(self.feedback_data_cls, bufferlen=5, name=self.data_source_name) self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # used only for sending ssm = self.ssm_cls() self.pos_state_names = [s.name for s in ssm.states if s.order == 0] self.vel_state_names = [s.name for s in ssm.states if s.order == 1] self.aa_xy_ix = [i for i, j in enumerate(ssm.states) if j.name in ['aa_px', 'aa_py']] self.aa_psi_ix = [i for i, j in enumerate(ssm.states) if j.name == 'aa_ppsi'] self.rh_pron_ix = [i for i, j in enumerate(ssm.states) if j.name == 'rh_pprono'] self.rh_pfings = [(i, j.name) for i, j in enumerate(ssm.states) if j.name in ['rh_pthumb', 'rh_pindex', 'rh_pfing3']] self.drive_velocity_raw = np.zeros((len(self.vel_state_names),)) self.drive_velocity_raw_fb_gain = np.zeros((len(self.vel_state_names),)) self.drive_velocity_sent = np.zeros((len(self.vel_state_names),)) self.drive_velocity_sent_pre_safety = np.zeros((len(self.vel_state_names),)) self.pre_drive_state = np.zeros((len(self.vel_state_names), )) # low-pass filters to smooth out command velocities # from scipy.signal import butter # b, a = butter(5, 0.1) # fifth order, 2 Hz bandpass (assuming 10 Hz update rate) #omega, H = signal.freqz(b, a) #plt.figure() #plt.plot(omega/np.pi, np.abs(H)) # self.vel_command_lpfs = [None] * self.n_dof # for k in range(self.n_dof): # self.vel_command_lpfs[k] = Filter(b=b, a=a) # self.last_sent_vel = np.ones(self.n_dof) * np.nan # calculate coefficients for a 4th-order Butterworth LPF at 1.5 Hz for kinematic data received from the exo # fs_synch = 20 #Frequency at which emg and kin data are synchronized # nyq = 0.5 * fs_synch # cuttoff_freq = 1.5 / nyq # bpf_kin_coeffs = butter(4, cuttoff_freq, btype='low') # self.pos_filt = [None] * self.n_dof # for k in range(self.n_dof): # self.pos_filt[k] = Filter(bpf_kin_coeffs[0], bpf_kin_coeffs[1]) def init(self): from riglib import sink sink.sinks.register(self.source) def start(self): # only start this DataSource after it has been registered with # the SinkManager singleton (sink.sinks) in the call to init() self.source.start() self.ts_start_data = time.time() def stop(self): # send a zero-velocity command self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(np.zeros(self.n_dof)))) self.source.stop() self.feedback_file.close() def last_data_ts_arrival(self): return self.source.read(n_pts=1)['ts_arrival'][0] def _send_command(self, command): self.sock.sendto(command, self.addr) def pack_vel(self, vel): format_str = "%f " * self.n_dof return format_str % tuple(vel) def send_vel(self, vel): assert len(vel) == self.n_dof vel = vel.copy() vel *= self.vel_gain # change the units of the velocity, if necessary self.last_sent_vel = vel #command_vel is already fitlered at the task level, no need to filter it again. #self.last_sent_vel = filt_vel = np.array([self.vel_command_lpfs[k](vel[k]) for k in range(self.n_dof)]).ravel() if all(v <= 0.00000001 for v in abs(self.last_sent_vel)): print ('last sent vel') print (self.last_sent_vel) if (self.last_data_ts_arrival() == 0) or ((self.last_data_ts_arrival() - time.time()) > self.sensor_data_timeout): print ("sensor data not received for %s recently enough, not sending velocity command!" % self.plant_type) return # squash any velocities which would take joints outside of the rectangular bounding box current_pos = self.get_pos() * self.vel_gain projected_pos = current_pos + vel * 0.1 max_reached, = np.nonzero((projected_pos > self.max_pos_vals) * (vel > 0)) min_reached, = np.nonzero((projected_pos < self.min_pos_vals) * (vel < 0)) vel[max_reached] = 0 vel[min_reached] = 0 self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(vel))) # set max speed limts faster_than_max_speed, = np.nonzero(np.abs(vel) > self.max_speed) vel[faster_than_max_speed] = self.max_speed[faster_than_max_speed] * np.sign(vel[faster_than_max_speed]) #if we wanna define some limit values for the rehand use the filt_vel. Otherwise use vel #self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(filt_vel))) self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(vel))) # set max speed limts faster_than_max_speed, = np.nonzero(np.abs(vel) > self.max_speed) vel[faster_than_max_speed] = self.max_speed[faster_than_max_speed] * np.sign(vel[faster_than_max_speed]) if self.debug: print ("input vel") print (vel) print ("vel sent to %s" % self.plant_type) print (vel) print ("current_pos") print (current_pos) print ("projected_pos") print (projected_pos) print ("actual velocity") print (self.get_vel()) if self.lpf_vel: # squash any velocities which would take joints outside of the rectangular bounding box current_pos = self.get_pos() * self.vel_gain projected_pos = current_pos + vel * (1.0/20) max_reached, = np.nonzero((projected_pos > self.max_pos_vals) * (vel > 0)) min_reached, = np.nonzero((projected_pos < self.min_pos_vals) * (vel < 0)) vel[max_reached] = 0 vel[min_reached] = 0 # set max speed limts faster_than_max_speed, = np.nonzero(np.abs(vel) > self.max_speed) vel[faster_than_max_speed] = self.max_speed[faster_than_max_speed] * np.sign(vel[faster_than_max_speed]) if faster_than_max_speed > 0: print ('faster_than_max_speed') print (faster_than_max_speed) if self.debug: print ("input vel") print (vel) print ("vel sent to %s" % self.plant_type) print (vel) #print "current_pos" #print current_pos #print "projected_pos" #print projected_pos #print "actual velocity" #print self.get_vel() self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(vel))) else: self._send_command('SetSpeed %s %s\r' % (self.plant_type, self.pack_vel(vel))) # def get_pos(self): # # udp_feedback_client takes care of converting sensor data to cm or rad, as appropriate for the DOF # return np.array(tuple(self.source.read(n_pts=1)['data'][self.pos_state_names][0])) def drive(self, decoder): vel = decoder['qdot'] vel_bl = vel.copy() feedback_str = '' if self.blocking_joints is not None: vel_bl[self.blocking_joints] = 0 if self.safety_grid is not None: #If the next position is outside of safety then damp velocity to only go to limit: pos_pred = decoder['q'] + 0.1*vel_bl #Make sure predicted AA PX, AA PY within bounds: xy_change = True if len(self.aa_xy_ix) > 0: if self.safety_grid.is_valid_pos(pos_pred[self.aa_xy_ix]) is False: #If not, make their velocity zero: vel_bl[self.aa_xy_ix] = 0 xy_change = False feedback_str = feedback_str+ ' stopping xy from moving' else: xy_change = False # Make sure AA Psi within bounds: if len(self.aa_psi_ix) > 0: # If X/Y ok if xy_change: mn, mx = self.safety_grid.get_minmax_psi(pos_pred[self.aa_xy_ix]) # If x/y not ok: else: mn, mx = self.safety_grid.get_minmax_psi(decoder['q'][self.aa_xy_ix]) # Set psi velocity : if np.logical_and(pos_pred[self.aa_psi_ix] >= mn, pos_pred[self.aa_psi_ix] <= mx): pass else: vel_bl[self.aa_psi_ix] = 0 feedback_str = feedback_str+ 'stopping psi' # Make sure RH Prono within bounds (if SSM is only RH, use settings.starting_pos for AAPX, AAPY) if len(self.rh_pron_ix) > 0: # If X/Y ok if xy_change: mn, mx = self.safety_grid.get_minmax_prono(pos_pred[self.aa_xy_ix]) # If x/y not ok or not moving bc not part of state pace : else: if len(self.aa_xy_ix) > 0: mn, mx = self.safety_grid.get_minmax_prono(decoder['q'][self.aa_xy_ix]) else: mn, mx = self.safety_grid.get_minmax_prono(settings.starting_pos['aa_px'], settings.starting_pos['aa_py']) # Set prono velocity : if np.logical_and(pos_pred[self.rh_pron_ix] >= mn, pos_pred[self.rh_pron_ix] <= mx): pass else: vel_bl[self.rh_pron_ix] = 0 feedback_str = feedback_str+ 'stopping prono' # Assure RH fingers are within range: if len(self.rh_pfings) > 0: for i, (ix, nm) in enumerate(self.rh_pfings): mn, mx = self.safety_grid.get_rh_minmax(nm) if np.logical_and(pos_pred[ix] >= mn, pos_pred[ix] <= mx): pass else: vel_bl[ix] = 0 feedback_str = feedback_str+ 'stopping rh fings' self.feedback_str = feedback_str self.drive_velocity = vel_bl self.send_vel(vel_bl) decoder['q'] = self.get_pos() def write_feedback(self): pos_vel = [str(i) for i in np.hstack(( self.get_pos(), self.get_vel() )) ] #self.feedback_file.write(','.join(pos_vel)+'\n') if self.feedback_str != '': self.feedback_file.write(self.feedback_str+ time.ctime() + '\n') class ArmAssistPlantUDP(BasePlantUDP): '''Sends velocity commands and receives feedback over UDP. Can be used with either the real or simulated ArmAssist. ''' ssm_cls = ismore_bmi_lib.StateSpaceArmAssist addr = settings.ARMASSIST_UDP_SERVER_ADDR feedback_data_cls = udp_feedback_client.ArmAssistData data_source_name = 'armassist' n_dof = 3 plant_type = 'ArmAssist' vel_gain = np.array([cm_to_mm, cm_to_mm, rad_to_deg]) # convert units to: [mm/s, mm/s, deg/s] max_pos_vals = np.array([np.inf, np.inf, np.inf]) min_pos_vals = np.array([-np.inf, -np.inf, -np.inf]) max_speed = np.array([np.inf, np.inf, np.inf]) feedback_file = open(os.path.expandvars('$HOME/code/bmi3d/log/armassist.txt'), 'w') #max_speed = np.array([40, 60, 20]) # in mm/s and deg/s #max_speed = np.array([60, 80, 50]) # in mm/s and deg/s #parameters for kinematics low-pass filtering from scipy.signal import butter, lfilter from ismore.filter import Filter fs_synch = 25 #Frequency at which emg and kin data are synchronized nyq = 0.5 * fs_synch cuttoff_freq = 1.5 / nyq bpf_kin_coeffs = butter(2, cuttoff_freq, btype='low') n_dof = 3 vel_filter = [None] * n_dof for k in range(n_dof): vel_filter[k] = Filter(bpf_kin_coeffs[0], bpf_kin_coeffs[1]) n_getpos_iter= 0 def __init__(self, *args, **kwargs): super(ArmAssistPlantUDP, self).__init__(*args, **kwargs) def set_pos_control(self): # position control with global reference system self._send_command('SetControlMode ArmAssist Position') def set_global_control(self): #velocity control with global reference system self._send_command('SetControlMode ArmAssist Global') def set_trajectory_control(self): #trajectory control with global reference system self._send_command('SetControlMode ArmAssist Trajectory') def send_vel(self, vel): vel = vel.copy() # units of vel should be: [cm/s, cm/s, rad/s] assert len(vel) == self.n_dof # convert units to: [mm/s, mm/s, deg/s] to send them through UDP to the ArmAssist application vel[0] *= cm_to_mm vel[1] *= cm_to_mm vel[2] *= rad_to_deg # set max speed limts faster_than_max_speed, = np.nonzero(np.abs(vel) > self.max_speed) vel[faster_than_max_speed] = self.max_speed[faster_than_max_speed] * np.sign(vel[faster_than_max_speed]) self.debug = True if self.debug: # print "vel sent to armassist" # print vel if faster_than_max_speed.any() > 0: print ('faster_than_max_speed') print (faster_than_max_speed) print ("speed set to: ") print (vel) self._send_command('SetSpeed ArmAssist %f %f %f\r' % tuple(vel)) # get raw position def get_pos_raw(self): # udp_feedback_client takes care of converting sensor data to cm or rad, as appropriate for the DOF #get the last poitns of data of the armassist and low-pass filter return np.array(tuple(self.source.read(n_pts=1)['data'][self.pos_state_names][0])) # get filtered position def get_pos(self): return np.array(tuple(self.source.read(n_pts=1)['data_filt'][self.pos_state_names][0])) # calculate vel from raw position def get_vel_raw(self): recent_pos_data = self.source.read(n_pts=2) pos = recent_pos_data['data'][self.pos_state_names] ts = recent_pos_data['ts'] delta_pos = np.array(tuple(pos[1])) - np.array(tuple(pos[0])) delta_ts = ts[1] - ts[0] vel = delta_pos / delta_ts #filt_vel = np.array([self.vel_command_lpfs[k](vel[k]) for k in range(self.n_dof)]).ravel() #nerea --> to test! if ts[0] != 0 and any(np.isnan(v) for v in vel): print ("WARNING -- delta_ts = 0 in AA vel calculation:", vel) for i in range(3): if np.isnan(vel[i]): vel[i] = 0 return vel #calculate vel from raw position and filter def get_vel(self): recent_pos_data = self.source.read(n_pts=2) pos = recent_pos_data['data'][self.pos_state_names] ts = recent_pos_data['ts'] delta_pos = np.array(tuple(pos[1])) - np.array(tuple(pos[0])) delta_ts = ts[1] - ts[0] vel = delta_pos / delta_ts if ts[0] != 0 and any(np.isnan(v) for v in vel): print ("WARNING -- delta_ts = 0 in AA vel calculation:", vel) for i in range(3): if np.isnan(vel[i]): vel[i] = 0 # the first value of the pos because it is always NaN and if a NaN is introduced in the filter, all the following filtered values will be also NaNs if np.any(np.isnan(vel)): self.n_getpos_iter = self.n_getpos_iter +1 vel_filt = vel else: vel_filt = np.array([self.vel_filter[k](vel[k]) for k in range(self.n_dof)]).ravel() return vel_filt def send_pos(self, pos, time): pos = pos.copy() # units of vel should be: [cm/s, cm/s, rad/s] assert len(pos) == 3 # convert units to: [mm/s, mm/s, deg/s] pos[0] *= cm_to_mm pos[1] *= cm_to_mm pos[2] *= rad_to_deg # mode 1: the forearm angle (psi) stays the same as it is. mode 2: psi will move according to the determined value mode = 2 pos_command = np.zeros(5) pos_command[0] = pos[0] pos_command[1] = pos[1] pos_command[2] = pos[2] pos_command[3] = time pos_command[4] = mode print ("pos") print (pos) print ("time") print (time) self._send_command('SetPosition ArmAssist %f %f %f %f %f\r' % tuple(pos_command)) def enable(self): self._send_command('SetControlMode ArmAssist Global\r') def disable(self): self._send_command('SetControlMode ArmAssist Disable\r') def enable_watchdog(self, timeout_ms): print ('ArmAssist watchdog not enabled, doing nothing') def send_traj(self, pos_vel): pos_vel = pos_vel.copy() # units of vel should be: [cm/s, cm/s, rad/s] assert len(pos_vel) == 6 # units to are alread in [mm/s, mm/s, rad/s] # convert values to integers to reduce noise #pos_vel_int = np.rint(pos_vel) pos_vel_int = pos_vel print ("trajectory sent to AA") print ("x y psi vx vy vpsi") print (pos_vel_int) traj_command = np.zeros(6) traj_command[0] = pos_vel_int[0] traj_command[1] = pos_vel_int[1] traj_command[2] = pos_vel_int[2] traj_command[3] = pos_vel_int[3] traj_command[4] = pos_vel_int[4] traj_command[5] = pos_vel_int[5] self._send_command('SetTrajectory ArmAssist %d %d %d %d %d %d\r' % tuple(traj_command)) class DummyPlantUDP(object): drive_velocity_raw = np.array([0,0,0]) drive_velocity_sent = np.array([0,0,0]) drive_velocity_sent_pre_safety = np.array([0,0,0]) pre_drive_state = np.array([0, 0, 0]) def init(self): pass def enable(self): pass def start(self): pass def stop(self): pass def write_feedback(self): pass def get_pos_raw(self): return np.array([0,0,0]) def get_pos(self): return np.array([0,0,0]) def get_vel_raw(self): return np.array([0,0,0]) def get_vel(self): return np.array([0,0,0]) class ReHandPlantUDP(BasePlantUDP): '''Sends velocity commands and receives feedback over UDP. Can be used with either the real or simulated ReHand. ''' ssm_cls = ismore_bmi_lib.StateSpaceReHand addr = settings.REHAND_UDP_SERVER_ADDR feedback_data_cls = udp_feedback_client.ReHandData data_source_name = 'rehand' n_dof = 4 plant_type = 'ReHand' vel_gain = np.array([rad_to_deg, rad_to_deg, rad_to_deg, rad_to_deg]) max_pos_vals = np.array([60, 60, 60, 90], dtype=np.float64) # degrees min_pos_vals = np.array([25, 25, 25, 25], dtype=np.float64) # degrees max_speed = np.array([np.inf, np.inf, np.inf, np.inf], dtype=np.float64) # degrees/sec #max_speed = np.array([15., 15., 15., 15.], dtype=np.float64) # degrees/sec feedback_file = open(os.path.expandvars('$HOME/code/bmi3d/log/rehand.txt'), 'w') def send_vel(self, vel): vel = vel.copy() # units of vel should be: [rad/s, rad/s, rad/s, rad/s] assert len(vel) == self.n_dof # convert units to: [deg/s, deg/s, deg/s, deg/s] vel *= rad_to_deg #filt_vel = np.array([self.vel_command_lpfs[k](vel[k]) for k in range(self.n_dof)]).ravel() # set max speed limts faster_than_max_speed, = np.nonzero(np.abs(vel) > self.max_speed) vel[faster_than_max_speed] = self.max_speed[faster_than_max_speed] * np.sign(vel[faster_than_max_speed]) self.debug = True if self.debug: # print 'filt_vel in plants in degrees' # print filt_vel #*np.array([deg_to_rad, deg_to_rad, deg_to_rad, deg_to_rad]) if faster_than_max_speed.any() > 0: print ('faster_than_max_speed') print (faster_than_max_speed) print ("speed set to: ") print (vel) # self.plant.enable() #when we send vel commands always enable the rehand motors # self._send_command('SystemEnable ReHand\r') self._send_command('SetSpeed ReHand %f %f %f %f\r' % tuple(vel)) def get_vel_raw(self): return np.array(tuple(self.source.read(n_pts=1)['data'][self.vel_state_names][0])) def get_vel(self): return np.array(tuple(self.source.read(n_pts=1)['data_filt'][self.vel_state_names][0])) def enable(self): self._send_command('SystemEnable ReHand\r') def disable(self): self._send_command('SystemDisable ReHand\r') def diff_enable(self,DoFs): self._send_command('DiffEnable ReHand %i %i %i %i\r' % tuple(DoFs)) def get_enable_state(self): self._send_command('GetEnableState ReHand\r') def enable_watchdog(self, timeout_ms): self._send_command('WatchDogEnable ReHand %d\r' % timeout_ms) def get_pos_raw(self): # udp_feedback_client takes care of converting sensor data to cm or rad, as appropriate for the DOF return np.array(tuple(self.source.read(n_pts=1)['data'][self.pos_state_names][0])) #get pos filtered def get_pos(self): return np.array(tuple(self.source.read(n_pts=1)['data_filt'][self.pos_state_names][0])) ################################################ class BasePlantIsMore(Plant): # define in subclasses! aa_plant_cls = None rh_plant_cls = None safety_grid = None both_feedback_str = '' def __init__(self, *args, **kwargs): self.aa_plant = self.aa_plant_cls() self.rh_plant = self.rh_plant_cls() self.drive_velocity_raw = np.zeros((7,)) self.drive_velocity_sent= np.zeros((7,)) self.drive_velocity_sent_pre_safety = np.zeros((7, )) self.pre_drive_state = np.zeros((7, )) self.prev_vel_bl_aa = np.zeros((3, ))*np.NaN self.prev_vel_bl_rh = np.zeros((4, ))*np.NaN self.accel_lim_armassist = np.inf #0.8 self.accel_lim_psi = np.inf #0.16 self.accel_lim_rehand = np.inf #0.16 def init(self): self.aa_plant.init() self.rh_plant.init() def start(self): self.aa_plant.start() self.rh_plant.start() self.ts_start_data = time.time() def stop(self): self.aa_plant.stop() self.rh_plant.stop() def last_data_ts_arrival(self): return { 'ArmAssist': self.aa_plant.last_data_ts_arrival(), 'ReHand': self.rh_plant.last_data_ts_arrival(), } def send_vel(self, vel): self.aa_plant.send_vel(vel[0:3]) self.rh_plant.send_vel(vel[3:7]) def get_pos_raw(self): aa_pos = self.aa_plant.get_pos_raw() rh_pos = self.rh_plant.get_pos_raw() return np.hstack([aa_pos, rh_pos]) def get_pos(self): aa_pos = self.aa_plant.get_pos() rh_pos = self.rh_plant.get_pos() return np.hstack([aa_pos, rh_pos]) def get_vel_raw(self): aa_vel = self.aa_plant.get_vel_raw() rh_vel = self.rh_plant.get_vel_raw() return np.hstack([aa_vel, rh_vel]) def get_vel(self): aa_vel = self.aa_plant.get_vel() rh_vel = self.rh_plant.get_vel() return np.hstack([aa_vel, rh_vel]) def enable(self): self.aa_plant.enable() self.rh_plant.enable() def disable(self): self.aa_plant.disable() self.rh_plant.disable() def drive(self, decoder): # print self.aa_plant.aa_xy_ix: [0, 1] # print self.aa_plant.aa_psi_ix: [2] # print self.rh_plant.rh_pfings: [0, 1, 2] # print self.rh_plant.rh_pron_ix: [3] vel = decoder['qdot'] vel_bl = vel.copy() current_state = self.get_pos() self.pre_drive_state = current_state.copy() self.drive_velocity_raw = vel_bl.copy() if self.blocking_joints is not None: vel_bl[self.blocking_joints] = 0 vel_bl_aa0 = vel_bl[0:3].copy() vel_bl_rh0 = vel_bl[3:7].copy() ### Accel Limit Velocitites ### # if not np.all(np.isnan(np.hstack((self.prev_vel_bl_aa, self.prev_vel_bl_rh)))): # aa_output_accel = vel_bl_aa - self.prev_vel_bl_aa # rh_output_accel = vel_bl_rh - self.prev_vel_bl_rh # ### AA XY ### # for i in np.arange(2): # if aa_output_accel[i] > self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] + self.accel_lim_armassist # elif aa_output_accel[i] < -1*self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] - self.accel_lim_armassist # ### AA PSI ### # if aa_output_accel[2] > self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] + self.accel_lim_psi # elif aa_output_accel[2] < -1*self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] - self.accel_lim_psi # ### RH All ### # for i in np.arange(4): # if rh_output_accel[i] > self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] + self.accel_lim_rehand # elif rh_output_accel[i] < -1*self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] - self.accel_lim_rehand ### Add Attractor ### if self.safety_grid is not None: attractor_point_aa = self.safety_grid.attractor_point[:3] attractor_point_rh = self.safety_grid.attractor_point[3:] vel_bl_aa_pull = self.attractor_speed_const*(attractor_point_aa - current_state[:3])/0.05 vel_bl_rh_pull = self.attractor_speed_const*(attractor_point_rh - current_state[3:])/0.05 vel_bl_aa = vel_bl_aa0 + vel_bl_aa_pull.copy() vel_bl_rh = vel_bl_rh0 + vel_bl_rh_pull.copy() else: vel_bl_aa = vel_bl_aa0 vel_bl_rh = vel_bl_rh0 ### LPF Filter Velocities ### for s, state in enumerate(['aa_vx', 'aa_vy', 'aa_vpsi']): vel_bl_aa[s] = self.command_lpfs[state](vel_bl_aa[s]) if np.isnan(vel_bl_aa[s]): vel_bl_aa[s] = 0 for s, state in enumerate(['rh_vthumb', 'rh_vindex', 'rh_vfing3', 'rh_vprono']): vel_bl_rh[s] = self.command_lpfs[state](vel_bl_rh[s]) if np.isnan(vel_bl_rh[s]): vel_bl_rh[s] = 0 self.drive_velocity_sent_pre_safety = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) #If the next position is outside of safety then damp velocity to only go to limit: pos_pred = current_state + 0.05*np.hstack((vel_bl_aa, vel_bl_rh)) pos_pred_aa = pos_pred[0:3] pos_pred_rh = pos_pred[3:7] both_feedback_str = '' if self.safety_grid is not None: if len(self.aa_plant.aa_xy_ix) > 0: x_tmp = self.safety_grid.is_valid_pos(pos_pred_aa[self.aa_plant.aa_xy_ix]) if x_tmp == False: current_pos = current_state[self.aa_plant.aa_xy_ix] pos_valid = attractor_point_aa[self.aa_plant.aa_xy_ix] #d_to_valid, pos_valid = self.safety_grid.dist_to_valid_point(current_pos) vel_bl_aa[self.aa_plant.aa_xy_ix] = self.attractor_speed*(pos_valid - current_pos)/0.05 pos_pred_aa[self.aa_plant.aa_xy_ix] = current_pos + 0.05*vel_bl_aa[self.aa_plant.aa_xy_ix] #print 'plant adjust: ', vel_bl_aa[self.aa_plant.aa_xy_ix], pos_pred_aa[self.aa_plant.aa_xy_ix] xy_change = True # Make sure AA Psi within bounds: if len(self.aa_plant.aa_psi_ix) > 0: mn, mx = self.safety_grid.get_minmax_psi(pos_pred_aa[self.aa_plant.aa_xy_ix]) predx, predy= pos_pred_aa[[0, 1]] # Set psi velocity : psi_ok = False if np.logical_and(pos_pred_aa[self.aa_plant.aa_psi_ix] >= mn, pos_pred_aa[self.aa_plant.aa_psi_ix] <= mx): # Test if globally ok: global_ok = self.safety_grid.global_hull.hull3d.find_simplex(np.array([predx, predy, pos_pred_aa[2]])) >=0 if global_ok: psi_ok = True if psi_ok == False: # Move psi back to attractor pos: psi_neutral = attractor_point_aa[self.aa_plant.aa_psi_ix] vel_bl_aa[self.aa_plant.aa_psi_ix] = self.attractor_speed*(psi_neutral-current_state[self.aa_plant.aa_psi_ix])/0.05 # Make sure RH Prono within bounds (if SSM is only RH, use settings.starting_pos for AAPX, AAPY) if len(self.rh_plant.rh_pron_ix) > 0: mn, mx = self.safety_grid.get_minmax_prono(pos_pred_aa[self.aa_plant.aa_xy_ix]) # Set prono velocity : if np.logical_and(pos_pred_rh[self.rh_plant.rh_pron_ix] >= mn, pos_pred_rh[self.rh_plant.rh_pron_ix] <= mx): pass else: tmp_pos = pos_pred_rh[self.rh_plant.rh_pron_ix] prono_neutral = attractor_point_rh[self.rh_plant.rh_pron_ix] vel_bl_rh[self.rh_plant.rh_pron_ix] = self.attractor_speed*(prono_neutral-tmp_pos)/0.05 # Assure RH fingers are within range: if len(self.rh_plant.rh_pfings) > 0: for i, (ix, nm) in enumerate(self.rh_plant.rh_pfings): mn, mx = self.safety_grid.get_rh_minmax(nm) if np.logical_and(pos_pred_rh[ix] >= mn, pos_pred_rh[ix] <= mx): pass else: tmp_ = pos_pred_rh[ix] neutral = attractor_point_rh[ix] vel_bl_rh[ix] = self.attractor_speed*(neutral - tmp_)/0.05 # If in the rest state -- block the arm: if self.task_state in ['rest', 'prep', 'baseline_check']: vel_bl_aa[:] = 0 vel_bl_rh[:] = 0 elif self.task_state == 'emg_rest': scaling = self.rest_emg_output if scaling <= 0.5: scaling = 0 else: scaling = 0.5*scaling vel_bl_aa = scaling*vel_bl_aa vel_bl_rh = scaling*vel_bl_rh max_vel_xy = 10. vel_bl_aa[vel_bl_aa>max_vel_xy] = max_vel_xy vel_bl_aa[vel_bl_aa<-1*max_vel_xy] = -1*max_vel_xy max_vel_ang = 2. if vel_bl_aa[2] > max_vel_ang: vel_bl_aa[2] = max_vel_ang elif vel_bl_aa[2] < -1*max_vel_ang: vel_bl_aa[2] = -1*max_vel_ang vel_bl_rh[vel_bl_rh>max_vel_ang] = max_vel_ang vel_bl_rh[vel_bl_rh<-1*max_vel_ang] = -1*max_vel_ang if self.blocking_joints is not None: for j in [0, 1, 2]: if j in self.blocking_joints: vel_bl_aa[j] = 0 #print 'blocking vel_bl_aa: ', j for j in [3, 4, 5, 6]: if j in self.blocking_joints: vel_bl_rh[j-3] = 0 #print 'blocking vel_bl_rh: ', j-3 self.both_feedback_str = both_feedback_str self.aa_plant.send_vel(vel_bl_aa) self.rh_plant.send_vel(vel_bl_rh) self.prev_vel_bl_aa = vel_bl_aa.copy() self.prev_vel_bl_rh = vel_bl_rh.copy() self.drive_velocity_sent = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) decoder['q'] = self.get_pos() class IsMorePlantUDP(BasePlantIsMore): '''Sends velocity commands and receives feedback over UDP. Can be used with either the real or simulated ArmAssist+ReHand. ''' aa_plant_cls = ArmAssistPlantUDP rh_plant_cls = ReHandPlantUDP def write_feedback(self): self.aa_plant.feedback_str = self.both_feedback_str self.aa_plant.write_feedback() #self.rh_plant.write_feedback() class IsMorePlantEMGControl(IsMorePlantUDP): # Plant used for the pure EMG control task def drive(self): vel_bl = self.drive_velocity_raw current_state = self.get_pos() self.pre_drive_state = current_state.copy() if self.blocking_joints is not None: vel_bl[self.blocking_joints] = 0 vel_bl_aa0 = vel_bl[0:3].copy() vel_bl_rh0 = vel_bl[3:7].copy() ### Accel Limit Velocitites ### # if not np.all(np.isnan(np.hstack((self.prev_vel_bl_aa, self.prev_vel_bl_rh)))): # aa_output_accel = vel_bl_aa - self.prev_vel_bl_aa # rh_output_accel = vel_bl_rh - self.prev_vel_bl_rh # ### AA XY ### # for i in np.arange(2): # if aa_output_accel[i] > self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] + self.accel_lim_armassist # elif aa_output_accel[i] < -1*self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] - self.accel_lim_armassist # ### AA PSI ### # if aa_output_accel[2] > self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] + self.accel_lim_psi # elif aa_output_accel[2] < -1*self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] - self.accel_lim_psi # ### RH All ### # for i in np.arange(4): # if rh_output_accel[i] > self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] + self.accel_lim_rehand # elif rh_output_accel[i] < -1*self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] - self.accel_lim_rehand ### Add Attractor ### attractor_point_aa = self.safety_grid.attractor_point[:3] attractor_point_rh = self.safety_grid.attractor_point[3:] vel_bl_aa_pull = self.attractor_speed_const*(attractor_point_aa - current_state[:3])/0.05 vel_bl_rh_pull = self.attractor_speed_const*(attractor_point_rh - current_state[3:])/0.05 vel_bl_aa = vel_bl_aa0 + vel_bl_aa_pull.copy() vel_bl_rh = vel_bl_rh0 + vel_bl_rh_pull.copy() ### LPF Filter Velocities ### for s, state in enumerate(['aa_vx', 'aa_vy', 'aa_vpsi']): vel_bl_aa[s] = self.command_lpfs[state](vel_bl_aa[s]) if np.isnan(vel_bl_aa[s]): vel_bl_aa[s] = 0 for s, state in enumerate(['rh_vthumb', 'rh_vindex', 'rh_vfing3', 'rh_vprono']): vel_bl_rh[s] = self.command_lpfs[state](vel_bl_rh[s]) if np.isnan(vel_bl_rh[s]): vel_bl_rh[s] = 0 self.drive_velocity_sent_pre_safety = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) #If the next position is outside of safety then damp velocity to only go to limit: pos_pred = current_state + 0.05*np.hstack((vel_bl_aa, vel_bl_rh)) pos_pred_aa = pos_pred[0:3] pos_pred_rh = pos_pred[3:7] both_feedback_str = '' if self.safety_grid is not None: if len(self.aa_plant.aa_xy_ix) > 0: x_tmp = self.safety_grid.is_valid_pos(pos_pred_aa[self.aa_plant.aa_xy_ix]) if x_tmp == False: current_pos = current_state[self.aa_plant.aa_xy_ix] pos_valid = attractor_point_aa[self.aa_plant.aa_xy_ix] #d_to_valid, pos_valid = self.safety_grid.dist_to_valid_point(current_pos) vel_bl_aa[self.aa_plant.aa_xy_ix] = self.attractor_speed*(pos_valid - current_pos)/0.05 pos_pred_aa[self.aa_plant.aa_xy_ix] = current_pos + 0.05*vel_bl_aa[self.aa_plant.aa_xy_ix] #print 'plant adjust: ', vel_bl_aa[self.aa_plant.aa_xy_ix], pos_pred_aa[self.aa_plant.aa_xy_ix] xy_change = True # Make sure AA Psi within bounds: if len(self.aa_plant.aa_psi_ix) > 0: mn, mx = self.safety_grid.get_minmax_psi(pos_pred_aa[self.aa_plant.aa_xy_ix]) predx, predy= pos_pred_aa[[0, 1]] # Set psi velocity : psi_ok = False if np.logical_and(pos_pred_aa[self.aa_plant.aa_psi_ix] >= mn, pos_pred_aa[self.aa_plant.aa_psi_ix] <= mx): # Test if globally ok: global_ok = self.safety_grid.global_hull.hull3d.find_simplex(np.array([predx, predy, pos_pred_aa[2]])) >=0 if global_ok: psi_ok = True if psi_ok == False: # Move psi back to attractor pos: psi_neutral = attractor_point_aa[self.aa_plant.aa_psi_ix] vel_bl_aa[self.aa_plant.aa_psi_ix] = self.attractor_speed*(psi_neutral-current_state[self.aa_plant.aa_psi_ix])/0.05 # Make sure RH Prono within bounds (if SSM is only RH, use settings.starting_pos for AAPX, AAPY) if len(self.rh_plant.rh_pron_ix) > 0: mn, mx = self.safety_grid.get_minmax_prono(pos_pred_aa[self.aa_plant.aa_xy_ix]) # Set prono velocity : if np.logical_and(pos_pred_rh[self.rh_plant.rh_pron_ix] >= mn, pos_pred_rh[self.rh_plant.rh_pron_ix] <= mx): pass else: tmp_pos = pos_pred_rh[self.rh_plant.rh_pron_ix] prono_neutral = attractor_point_rh[self.rh_plant.rh_pron_ix] vel_bl_rh[self.rh_plant.rh_pron_ix] = self.attractor_speed*(prono_neutral-tmp_pos)/0.05 # Assure RH fingers are within range: if len(self.rh_plant.rh_pfings) > 0: for i, (ix, nm) in enumerate(self.rh_plant.rh_pfings): mn, mx = self.safety_grid.get_rh_minmax(nm) if np.logical_and(pos_pred_rh[ix] >= mn, pos_pred_rh[ix] <= mx): pass else: tmp_ = pos_pred_rh[ix] neutral = attractor_point_rh[ix] vel_bl_rh[ix] = self.attractor_speed*(neutral - tmp_)/0.05 # If in the rest state -- block the arm: if self.task_state in ['rest', 'prep']: vel_bl_aa[:] = 0 vel_bl_rh[:] = 0 elif self.task_state == 'emg_rest': scaling = self.rest_emg_output if scaling <= 0.5: scaling = 0 else: scaling = 0.5*scaling vel_bl_aa = scaling*vel_bl_aa vel_bl_rh = scaling*vel_bl_rh max_vel_xy = 10. vel_bl_aa[vel_bl_aa>max_vel_xy] = max_vel_xy vel_bl_aa[vel_bl_aa<-1*max_vel_xy] = -1*max_vel_xy max_vel_ang = 2. if vel_bl_aa[2] > max_vel_ang: vel_bl_aa[2] = max_vel_ang elif vel_bl_aa[2] < -1*max_vel_ang: vel_bl_aa[2] = -1*max_vel_ang vel_bl_rh[vel_bl_rh>max_vel_ang] = max_vel_ang vel_bl_rh[vel_bl_rh<-1*max_vel_ang] = -1*max_vel_ang if self.blocking_joints is not None: for j in [0, 1, 2]: if j in self.blocking_joints: vel_bl_aa[j] = 0 #print 'blocking vel_bl_aa: ', j for j in [3, 4, 5, 6]: if j in self.blocking_joints: vel_bl_rh[j-3] = 0 #print 'blocking vel_bl_rh: ', j-3 self.both_feedback_str = both_feedback_str self.aa_plant.send_vel(vel_bl_aa) self.rh_plant.send_vel(vel_bl_rh) self.prev_vel_bl_aa = vel_bl_aa.copy() self.prev_vel_bl_rh = vel_bl_rh.copy() self.drive_velocity_sent = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) class IsMorePlantHybridBMI(IsMorePlantUDP): # Plant used for the hybrid (EMG + brain) BMI task. def __init__(self, *args, **kwargs): self.drive_velocity_raw_brain = np.zeros((7,)) self.emg_vel_raw_scaled = np.zeros((7,)) super(IsMorePlantHybridBMI, self).__init__(*args, **kwargs) def drive(self, decoder): vel = decoder['qdot'] vel_brain = vel.copy() vel_brain_aa = vel_brain[[0, 1, 2]] vel_brain_fingers = vel_brain[[3, 4, 5]] vel_brain_prono = vel_brain[[6]] self.drive_velocity_raw_brain = vel_brain.copy() # Use EMG scaled array to scale the output: vel_emg = self.emg_vel.copy() vel_emg_scaled = [] for i in range(7): vel_emg_scaled.append(vel_emg[i]*self.scale_emg_pred_arr[i]) vel_emg_scaled = np.hstack((vel_emg_scaled)) self.emg_vel_raw_scaled = vel_emg_scaled.copy() vel_emg_aa = vel_emg_scaled[[0, 1, 2]] vel_emg_fingers = vel_emg_scaled[[3, 4, 5]] vel_emg_prono = vel_emg_scaled[[6]] vel_bl_aa = vel_emg_aa*self.emg_weight_aa + vel_brain_aa*(1-self.emg_weight_aa) vel_bl_fingers = vel_emg_fingers*self.emg_weight_fingers + vel_brain_fingers*(1-self.emg_weight_fingers) vel_bl_prono = vel_emg_prono*self.emg_weight_prono + vel_brain_prono*(1-self.emg_weight_prono) vel_bl = np.hstack((vel_bl_aa, vel_bl_fingers, vel_bl_prono)) # Fuse velocities from EMG and neural decoders #vel_bl = vel_emg*self.emg_weight + vel_brain*(1-self.emg_weight) self.drive_velocity_raw = vel_bl.copy() vel_bl_fb_gain = [] for i in range(7): vel_bl_fb_gain.append(vel_bl[i]*self.fb_vel_gain[i]) vel_bl_fb_gain = np.hstack((vel_bl_fb_gain)) self.drive_velocity_raw_fb_gain = vel_bl_fb_gain.copy() current_state = self.get_pos() self.pre_drive_state = current_state.copy() if self.blocking_joints is not None: print ('self.blocking_joints --> ', self.blocking_joints) vel_bl_fb_gain[self.blocking_joints] = 0 vel_bl_aa0 = vel_bl_fb_gain[0:3].copy() vel_bl_rh0 = vel_bl_fb_gain[3:7].copy() ### Accel Limit Velocitites ### # if not np.all(np.isnan(np.hstack((self.prev_vel_bl_aa, self.prev_vel_bl_rh)))): # aa_output_accel = vel_bl_aa - self.prev_vel_bl_aa # rh_output_accel = vel_bl_rh - self.prev_vel_bl_rh # ### AA XY ### # for i in np.arange(2): # if aa_output_accel[i] > self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] + self.accel_lim_armassist # elif aa_output_accel[i] < -1*self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] - self.accel_lim_armassist # ### AA PSI ### # if aa_output_accel[2] > self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] + self.accel_lim_psi # elif aa_output_accel[2] < -1*self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] - self.accel_lim_psi # ### RH All ### # for i in np.arange(4): # if rh_output_accel[i] > self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] + self.accel_lim_rehand # elif rh_output_accel[i] < -1*self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] - self.accel_lim_rehand ### Add Attractor ### attractor_point_aa = self.safety_grid.attractor_point[:3] attractor_point_rh = self.safety_grid.attractor_point[3:] vel_bl_aa_pull = self.attractor_speed_const*(attractor_point_aa - current_state[:3])/0.05 vel_bl_rh_pull = self.attractor_speed_const*(attractor_point_rh - current_state[3:])/0.05 vel_bl_aa = vel_bl_aa0 + vel_bl_aa_pull.copy() vel_bl_rh = vel_bl_rh0 + vel_bl_rh_pull.copy() ### LPF Filter Velocities ### for s, state in enumerate(['aa_vx', 'aa_vy', 'aa_vpsi']): vel_bl_aa[s] = self.command_lpfs[state](vel_bl_aa[s]) if np.isnan(vel_bl_aa[s]): vel_bl_aa[s] = 0 for s, state in enumerate(['rh_vthumb', 'rh_vindex', 'rh_vfing3', 'rh_vprono']): vel_bl_rh[s] = self.command_lpfs[state](vel_bl_rh[s]) if np.isnan(vel_bl_rh[s]): vel_bl_rh[s] = 0 self.drive_velocity_sent_pre_safety = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) #If the next position is outside of safety then damp velocity to only go to limit: pos_pred = current_state + 0.05*np.hstack((vel_bl_aa, vel_bl_rh)) pos_pred_aa = pos_pred[0:3] pos_pred_rh = pos_pred[3:7] both_feedback_str = '' if self.safety_grid is not None: if len(self.aa_plant.aa_xy_ix) > 0: x_tmp = self.safety_grid.is_valid_pos(pos_pred_aa[self.aa_plant.aa_xy_ix]) if x_tmp == False: print ('false position') current_pos = current_state[self.aa_plant.aa_xy_ix] pos_valid = attractor_point_aa[self.aa_plant.aa_xy_ix] #d_to_valid, pos_valid = self.safety_grid.dist_to_valid_point(current_pos) vel_bl_aa[self.aa_plant.aa_xy_ix] = self.attractor_speed*(pos_valid - current_pos)/0.05 pos_pred_aa[self.aa_plant.aa_xy_ix] = current_pos + 0.05*vel_bl_aa[self.aa_plant.aa_xy_ix] #print 'plant adjust: ', vel_bl_aa[self.aa_plant.aa_xy_ix], pos_pred_aa[self.aa_plant.aa_xy_ix] xy_change = True # Make sure AA Psi within bounds: if len(self.aa_plant.aa_psi_ix) > 0: mn, mx = self.safety_grid.get_minmax_psi(pos_pred_aa[self.aa_plant.aa_xy_ix]) predx, predy= pos_pred_aa[[0, 1]] # Set psi velocity : psi_ok = False if np.logical_and(pos_pred_aa[self.aa_plant.aa_psi_ix] >= mn, pos_pred_aa[self.aa_plant.aa_psi_ix] <= mx): # Test if globally ok: #global_ok = self.safety_grid.global_hull.hull3d.find_simplex(np.array([predx, predy, pos_pred_aa[2]])) >=0 global_ok = True if global_ok: psi_ok = True if psi_ok == False: # Move psi back to attractor pos: psi_neutral = attractor_point_aa[self.aa_plant.aa_psi_ix] vel_bl_aa[self.aa_plant.aa_psi_ix] = self.attractor_speed*(psi_neutral-current_state[self.aa_plant.aa_psi_ix])/0.05 # Make sure RH Prono within bounds (if SSM is only RH, use settings.starting_pos for AAPX, AAPY) if len(self.rh_plant.rh_pron_ix) > 0: mn, mx = self.safety_grid.get_minmax_prono(pos_pred_aa[self.aa_plant.aa_xy_ix]) # Set prono velocity : if np.logical_and(pos_pred_rh[self.rh_plant.rh_pron_ix] >= mn, pos_pred_rh[self.rh_plant.rh_pron_ix] <= mx): pass else: tmp_pos = pos_pred_rh[self.rh_plant.rh_pron_ix] prono_neutral = attractor_point_rh[self.rh_plant.rh_pron_ix] vel_bl_rh[self.rh_plant.rh_pron_ix] = self.attractor_speed*(prono_neutral-tmp_pos)/0.05 # Assure RH fingers are within range: if len(self.rh_plant.rh_pfings) > 0: for i, (ix, nm) in enumerate(self.rh_plant.rh_pfings): mn, mx = self.safety_grid.get_rh_minmax(nm) if np.logical_and(pos_pred_rh[ix] >= mn, pos_pred_rh[ix] <= mx): pass else: tmp_ = pos_pred_rh[ix] neutral = attractor_point_rh[ix] vel_bl_rh[ix] = self.attractor_speed*(neutral - tmp_)/0.05 # print 'safely adjusting fingers! ', nm, 'min: ', mn, ' max: ', mx, ' pred: ', pos_pred_rh[ix] # If in the rest state -- block the arm: if self.task_state in ['rest', 'prep', 'baseline_check']: vel_bl_aa[:] = 0 vel_bl_rh[:] = 0 elif self.task_state == 'emg_rest': scaling = self.rest_emg_output if scaling <= 0.5: scaling = 0 else: scaling = 0.5*scaling vel_bl_aa = scaling*vel_bl_aa vel_bl_rh = scaling*vel_bl_rh elif self.task_state == 'rest_back': vel_bl_aa = vel_bl_aa_pull/self.attractor_speed_const*self.rest_back_attractor_speed vel_bl_rh = vel_bl_rh_pull/self.attractor_speed_const*self.rest_back_attractor_speed elif self.task_state in ['drive_to_start', 'drive_to_rest']: vel_bl_aa = self.back_to_target_speed*(self.drive_to_start_target[:3] - current_state[:3])/0.05 vel_bl_rh = self.back_to_target_speed*(self.drive_to_start_target[3:] - current_state[3:])/0.05 max_vel_xy = 10. vel_bl_aa[vel_bl_aa>max_vel_xy] = max_vel_xy vel_bl_aa[vel_bl_aa<-1*max_vel_xy] = -1*max_vel_xy max_vel_ang = 2. if vel_bl_aa[2] > max_vel_ang: vel_bl_aa[2] = max_vel_ang elif vel_bl_aa[2] < -1*max_vel_ang: vel_bl_aa[2] = -1*max_vel_ang vel_bl_rh[vel_bl_rh>max_vel_ang] = max_vel_ang vel_bl_rh[vel_bl_rh<-1*max_vel_ang] = -1*max_vel_ang if self.blocking_joints is not None: for j in [0, 1, 2]: if j in self.blocking_joints: vel_bl_aa[j] = 0 #print 'blocking vel_bl_aa: ', j for j in [3, 4, 5, 6]: if j in self.blocking_joints: vel_bl_rh[j-3] = 0 #print 'blocking vel_bl_rh: ', j-3 self.both_feedback_str = both_feedback_str self.aa_plant.send_vel(vel_bl_aa) self.rh_plant.send_vel(vel_bl_rh) self.prev_vel_bl_aa = vel_bl_aa.copy() self.prev_vel_bl_rh = vel_bl_rh.copy() self.drive_velocity_sent = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) decoder['q'] = self.get_pos() class IsMorePlantHybridBMISoftSafety(IsMorePlantHybridBMI): def drive(self, decoder): vel = decoder['qdot'] vel_brain = vel.copy() vel_brain_aa = vel_brain[[0, 1, 2]] vel_brain_fingers = vel_brain[[3, 4, 5]] vel_brain_prono = vel_brain[[6]] self.drive_velocity_raw_brain = vel_brain.copy() # Use EMG scaled array to scale the output: vel_emg = self.emg_vel.copy() vel_emg_scaled = [] for i in range(7): vel_emg_scaled.append(vel_emg[i]*self.scale_emg_pred_arr[i]) vel_emg_scaled = np.hstack((vel_emg_scaled)) self.emg_vel_raw_scaled = vel_emg_scaled.copy() vel_emg_aa = vel_emg_scaled[[0, 1, 2]] vel_emg_fingers = vel_emg_scaled[[3, 4, 5]] vel_emg_prono = vel_emg_scaled[[6]] vel_bl_aa = vel_emg_aa*self.emg_weight_aa + vel_brain_aa*(1-self.emg_weight_aa) vel_bl_fingers = vel_emg_fingers*self.emg_weight_fingers + vel_brain_fingers*(1-self.emg_weight_fingers) vel_bl_prono = vel_emg_prono*self.emg_weight_prono + vel_brain_prono*(1-self.emg_weight_prono) vel_bl = np.hstack((vel_bl_aa, vel_bl_fingers, vel_bl_prono)) # Fuse velocities from EMG and neural decoders #vel_bl = vel_emg*self.emg_weight + vel_brain*(1-self.emg_weight) self.drive_velocity_raw = vel_bl.copy() vel_bl_fb_gain = [] for i in range(7): vel_bl_fb_gain.append(vel_bl[i]*self.fb_vel_gain[i]) vel_bl_fb_gain = np.hstack((vel_bl_fb_gain)) self.drive_velocity_raw_fb_gain = vel_bl_fb_gain.copy() current_state = self.get_pos() self.pre_drive_state = current_state.copy() if self.blocking_joints is not None: vel_bl_fb_gain[self.blocking_joints] = 0 vel_bl_aa0 = vel_bl_fb_gain[0:3].copy() vel_bl_rh0 = vel_bl_fb_gain[3:7].copy() ### Accel Limit Velocitites ### # if not np.all(np.isnan(np.hstack((self.prev_vel_bl_aa, self.prev_vel_bl_rh)))): # aa_output_accel = vel_bl_aa - self.prev_vel_bl_aa # rh_output_accel = vel_bl_rh - self.prev_vel_bl_rh # ### AA XY ### # for i in np.arange(2): # if aa_output_accel[i] > self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] + self.accel_lim_armassist # elif aa_output_accel[i] < -1*self.accel_lim_armassist: # vel_bl_aa[i] = self.prev_vel_bl_aa[i] - self.accel_lim_armassist # ### AA PSI ### # if aa_output_accel[2] > self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] + self.accel_lim_psi # elif aa_output_accel[2] < -1*self.accel_lim_psi: # vel_bl_aa[2] = self.prev_vel_bl_aa[2] - self.accel_lim_psi # ### RH All ### # for i in np.arange(4): # if rh_output_accel[i] > self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] + self.accel_lim_rehand # elif rh_output_accel[i] < -1*self.accel_lim_rehand: # vel_bl_rh[i] = self.prev_vel_bl_rh[i] - self.accel_lim_rehand ### Add Attractor ### attractor_point_aa = self.safety_grid.attractor_point[:3] attractor_point_rh = self.safety_grid.attractor_point[3:] vel_bl_aa_pull = self.attractor_speed_const*(attractor_point_aa - current_state[:3])/0.05 vel_bl_rh_pull = self.attractor_speed_const*(attractor_point_rh - current_state[3:])/0.05 vel_bl_aa = vel_bl_aa0 + vel_bl_aa_pull.copy() vel_bl_rh = vel_bl_rh0 + vel_bl_rh_pull.copy() ### LPF Filter Velocities ### for s, state in enumerate(['aa_vx', 'aa_vy', 'aa_vpsi']): vel_bl_aa[s] = self.command_lpfs[state](vel_bl_aa[s]) if np.isnan(vel_bl_aa[s]): vel_bl_aa[s] = 0 for s, state in enumerate(['rh_vthumb', 'rh_vindex', 'rh_vfing3', 'rh_vprono']): vel_bl_rh[s] = self.command_lpfs[state](vel_bl_rh[s]) if np.isnan(vel_bl_rh[s]): vel_bl_rh[s] = 0 self.drive_velocity_sent_pre_safety = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) #If the next position is outside of safety then damp velocity to only go to limit: pos_pred = current_state + 0.05*np.hstack((vel_bl_aa, vel_bl_rh)) pos_pred_aa = pos_pred[0:3] pos_pred_rh = pos_pred[3:7] both_feedback_str = '' if self.safety_grid is not None: if len(self.aa_plant.aa_xy_ix) > 0: x_tmp = self.safety_grid.is_valid_pos(pos_pred_aa[self.aa_plant.aa_xy_ix]) if x_tmp == False: # Find the closest point on the boundary of the safety grid and set velocity in same # direction, but at 90% of way to get to the edge of the safety grid: current_pos = current_state[self.aa_plant.aa_xy_ix] ### loop through percentages of velocity and check validity of point: valid_scale = False scale = 1.0 while valid_scale is False: scale -= 0.05 pos_pred_xy = current_pos + 0.05*(vel_bl_aa[self.aa_plant.aa_xy_ix]*scale) valid_scale = self.safety_grid.is_valid_pos(pos_pred_xy) if scale < -1.0: scale = 0.0 break #d_to_valid, pos_valid = self.safety_grid.dist_to_valid_point(current_pos) vel_bl_aa[self.aa_plant.aa_xy_ix] = vel_bl_aa[self.aa_plant.aa_xy_ix]*scale pos_pred_aa[self.aa_plant.aa_xy_ix] = current_pos + 0.05*vel_bl_aa[self.aa_plant.aa_xy_ix] #print 'plant adjust: ', vel_bl_aa[self.aa_plant.aa_xy_ix], pos_pred_aa[self.aa_plant.aa_xy_ix] xy_change = True # Make sure AA Psi within bounds: if len(self.aa_plant.aa_psi_ix) > 0: mn, mx = self.safety_grid.get_minmax_psi(pos_pred_aa[self.aa_plant.aa_xy_ix]) predx, predy= pos_pred_aa[[0, 1]] # Set psi velocity : psi_ok = False if np.logical_and(pos_pred_aa[self.aa_plant.aa_psi_ix] >= mn, pos_pred_aa[self.aa_plant.aa_psi_ix] <= mx): # Test if globally ok: #global_ok = self.safety_grid.global_hull.hull3d.find_simplex(np.array([predx, predy, pos_pred_aa[2]])) >=0 global_ok = True if global_ok: psi_ok = True if psi_ok == False: valid_scale_psi = False scale = 1.0 while valid_scale_psi is False: scale -= 0.05 psi_pred = current_state[self.aa_plant.aa_psi_ix] + 0.05*(scale*vel_bl_aa[self.aa_plant.aa_psi_ix]) if np.logical_and(psi_pred >= mn, psi_pred <= mx): valid_scale_psi = True if scale < -1.0: scale = 0.0 break vel_bl_aa[self.aa_plant.aa_psi_ix] = scale*vel_bl_aa[self.aa_plant.aa_psi_ix] # Make sure RH Prono within bounds (if SSM is only RH, use settings.starting_pos for AAPX, AAPY) if len(self.rh_plant.rh_pron_ix) > 0: mn, mx = self.safety_grid.get_minmax_prono(pos_pred_aa[self.aa_plant.aa_xy_ix]) # Set prono velocity : if np.logical_and(pos_pred_rh[self.rh_plant.rh_pron_ix] >= mn, pos_pred_rh[self.rh_plant.rh_pron_ix] <= mx): pass else: valid_scale_prono = False scale = 1.0 while valid_scale_prono is False: scale -= 0.05 pron_pred = pos_pred_rh[self.rh_plant.rh_pron_ix] + 0.05*(scale*vel_bl_rh[self.rh_plant.rh_pron_ix]) if np.logical_and(pron_pred >= mn, pron_pred <= mx): valid_scale_prono = True if scale < -1.0: scale = 0. break vel_bl_rh[self.rh_plant.rh_pron_ix] = scale*vel_bl_rh[self.rh_plant.rh_pron_ix] # Assure RH fingers are within range: if len(self.rh_plant.rh_pfings) > 0: for i, (ix, nm) in enumerate(self.rh_plant.rh_pfings): mn, mx = self.safety_grid.get_rh_minmax(nm) if np.logical_and(pos_pred_rh[ix] >= mn, pos_pred_rh[ix] <= mx): pass else: finger_scale = False scale = 1.0 while finger_scale is False: scale -= 0.05 fing_pred = pos_pred_rh[ix] + 0.05*(scale*vel_bl_rh[ix]) if np.logical_and(fing_pred >= mn, fing_pred<= mx): finger_scale = True if scale < -1.0: scale = 0.0 break vel_bl_rh[ix] = scale*vel_bl_rh[ix] # If in the rest state -- block the arm: if self.task_state in ['rest', 'prep', 'baseline_check', 'wait']: vel_bl_aa[:] = 0 vel_bl_rh[:] = 0 elif self.task_state == 'emg_rest': scaling = self.rest_emg_output if scaling <= 0.5: scaling = 0 else: scaling = 0.5*scaling vel_bl_aa = scaling*vel_bl_aa vel_bl_rh = scaling*vel_bl_rh elif self.task_state == 'rest_back': vel_bl_aa = vel_bl_aa_pull/self.attractor_speed_const*self.rest_back_attractor_speed vel_bl_rh = vel_bl_rh_pull/self.attractor_speed_const*self.rest_back_attractor_speed elif self.task_state in ['drive_to_start', 'drive_to_rest']: vel_bl_aa = self.back_to_target_speed*(self.drive_to_start_target[:3] - current_state[:3])/0.05 vel_bl_rh = self.back_to_target_speed*(self.drive_to_start_target[3:] - current_state[3:])/0.05 max_vel_xy = 10. vel_bl_aa[vel_bl_aa>max_vel_xy] = max_vel_xy vel_bl_aa[vel_bl_aa<-1*max_vel_xy] = -1*max_vel_xy max_vel_ang = 2. if vel_bl_aa[2] > max_vel_ang: vel_bl_aa[2] = max_vel_ang elif vel_bl_aa[2] < -1*max_vel_ang: vel_bl_aa[2] = -1*max_vel_ang vel_bl_rh[vel_bl_rh>max_vel_ang] = max_vel_ang vel_bl_rh[vel_bl_rh<-1*max_vel_ang] = -1*max_vel_ang if self.blocking_joints is not None: for j in [0, 1, 2]: if j in self.blocking_joints: vel_bl_aa[j] = 0 #print 'blocking vel_bl_aa: ', j for j in [3, 4, 5, 6]: if j in self.blocking_joints: vel_bl_rh[j-3] = 0 #print 'blocking vel_bl_rh: ', j-3 self.both_feedback_str = both_feedback_str self.aa_plant.send_vel(vel_bl_aa) self.rh_plant.send_vel(vel_bl_rh) self.prev_vel_bl_aa = vel_bl_aa.copy() self.prev_vel_bl_rh = vel_bl_rh.copy() self.drive_velocity_sent = np.hstack(( vel_bl_aa.copy(), vel_bl_rh.copy())) decoder['q'] = self.get_pos() UDP_PLANT_CLS_DICT = { 'ArmAssist': ArmAssistPlantUDP, 'ReHand': ReHandPlantUDP, 'IsMore': IsMorePlantUDP, 'IsMoreEMGControl': IsMorePlantEMGControl, 'IsMoreHybridControl': IsMorePlantHybridBMI, 'IsMorePlantHybridBMISoftSafety': IsMorePlantHybridBMISoftSafety, 'DummyPlant': DummyPlantUDP, } ########################### ##### Deprecated code ##### ########################### class BasePlant(object): def __init__(self, *args, **kwargs): raise NotImplementedError('Implement in subclasses!') def init(self): raise NotImplementedError('Implement in subclasses!') def start(self): raise NotImplementedError('Implement in subclasses!') def stop(self): raise NotImplementedError('Implement in subclasses!') def last_data_ts_arrival(self): raise NotImplementedError('Implement in subclasses!') def send_vel(self, vel): raise NotImplementedError('Implement in subclasses!') def get_pos(self): raise NotImplementedError('Implement in subclasses!') def get_vel(self): raise NotImplementedError('Implement in subclasses!') def enable(self): '''Disable the device's motor drivers.''' raise NotImplementedError('Implement in subclasses!') def disable(self): '''Disable the device's motor drivers.''' raise NotImplementedError('Implement in subclasses!') def enable_watchdog(self, timeout_ms): raise NotImplementedError('Implement in subclasses!') def get_intrinsic_coordinates(self): return self.get_pos()
2.53125
3
catalog/client/services/catalog.py
eoss-cloud/madxxx_catalog_api
0
11611
<gh_stars>0 #-*- coding: utf-8 -*- """ EOSS catalog system functionality for the catalog endpoint """ from utilities.web_utils import remote_file_exists __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2016, EOSS GmbH" __credits__ = ["<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" import datetime import ujson import time import dateparser import falcon try: import cStringIO as StringIO except ImportError: import StringIO import csv from xlsxwriter import Workbook from dateutil.parser import parse import numpy from sqlalchemy import and_ import logging from collections import defaultdict from model.orm import Catalog_Dataset, Spatial_Reference from api import General_Structure from .db_calls import Persistance from . import getKeysFromDict from .tools import get_base_url, can_zip_response, compress_body, serialize, make_GeoJson from api_logging import logger def date_handler(obj): if hasattr(obj, 'isoformat'): return obj.isoformat() else: raise TypeError GRID_SYSTEMS = {'Sentinel - 2A': 10, 'LANDSAT_ETM': 11, 'LANDSAT_ETM_SLC_OFF': 11, 'OLI_TIRS': 11, 'TIRS': 11} class Catalog(object): """ EOSS catalog class from web API """ def __init__(self): self.logger = logging.getLogger('eoss.' + __name__) self.aggregations = defaultdict(list) for agg in Persistance().get_all_sensor_aggregations(): self.aggregations[agg.aggregation_name.lower()].append(agg) def _query_(self, areas, dates, sensors, clouds): sensors_filter = list() grid_list = defaultdict(set) for sensor_grid in set(GRID_SYSTEMS.values()): if 'ref_group' in areas[0].keys(): ref_type_id, ref_id = areas[0]['ref_group'], areas[0]['ref_id'] spatial_query = Persistance().get_reference_by_sensorgrid(ref_id, ref_type_id, sensor_grid) elif 'aoi' in areas[0].keys(): aoi = areas[0]['aoi'] spatial_query = Persistance().get_referencebyaoi(aoi, sensor_grid) for grid in spatial_query.all(): grid_list[sensor_grid].add(grid) if len(grid_list) == 0: description = 'Please specify valid reference object for data. (type:%s, id:%s)' \ % (ref_type_id, ref_id) raise falcon.HTTPBadRequest('SensorGrid', description, href='http://docs.example.com/auth') joint_gridset = grid_list[10] | grid_list[11] # TODO: better grid system handling from extra table? for item in sensors: sensor, level = item['sensor_name'], item['level'] if len(sensor) > 0 and len(level) > 0: sensors_filter.append(and_(Catalog_Dataset.level == level, Catalog_Dataset.sensor == sensor)) elif len(sensor) == 0 and len(level) > 0: sensors_filter.append(Catalog_Dataset.level == level) elif len(sensor) > 0 and len(level) == 0: sensors_filter.append(Catalog_Dataset.sensor == sensor) dates_filter = list() for item in dates: # ExtJS POST requests has provides unicode body if type(item["start_date"]) is unicode: item["start_date"] = parse(item["start_date"]) if type(item["end_date"]) is unicode: item["end_date"] = parse(item["end_date"]) dates_filter.append( and_(Catalog_Dataset.acq_time >= item["start_date"].isoformat(), Catalog_Dataset.acq_time <= item["end_date"].isoformat())) query = Persistance().find_dataset(dates_filter, sensors_filter, grid_list, joint_gridset, clouds) return query def _get_datasets(self, query): query_result = list() for ds in query: values = dict() types = dict() for k, v in ds.__dict__.iteritems(): if '_' != k[0]: values[k] = v types[k] = type(v) x = General_Structure(values, types) x.__class__.__name__ = 'Catalog_Dataset' query_result.append(serialize(x, as_json=False)['data']) return query_result # TODO: tiles list as input - only first will be returned or exception thrown ! def _query_tile_geom(self, tiles): tile_objs = Persistance().get_tile_geom(tiles) return tile_objs.all() def _export_query(self, found_dataset): row_keys = ['tile_identifier', 'entity_id', 'acq_time', 'clouds'] resources = [('resources', 'metadata'), ('resources', 'quicklook')] row = list() rows = list() for k in row_keys: row.append(k) for k in resources: row.append(' '.join(k)) row.append('data') rows.append(row) for ds in found_dataset: row = list() for k in row_keys: row.append(ds.get(k)) for k in resources: row.append(getKeysFromDict(ds, k)) if ds.get('sensor') in ['LANDSAT_TM', 'LANDSAT_ETM', 'LANDSAT_ETM_SLC_OFF']: if 'google' in ds.get('resources').keys(): row.append(getKeysFromDict(ds, ('resources', 'google', 'link'))) elif 'usgs' in ds.get('resources').keys(): row.append(getKeysFromDict(ds, ('resources', 'usgs', 'link'))) else: row.append('?') elif ds.get('sensor') in ['OLI_TIRS', 'OLI', 'TIRS']: if 's3public' in ds.get('resources').keys(): row.append(getKeysFromDict(ds, ('resources', 's3public', 'zip'))) elif 'google' in ds.get('resources').keys(): row.append(getKeysFromDict(ds, ('resources', 'google', 'link'))) elif ds.get('sensor') in ['Sentinel-2A']: if 's3public' in ds.get('resources').keys(): if getKeysFromDict(ds, ('resources', 's3public')) != None: row.append(getKeysFromDict(ds, ('resources', 's3public', 'zip'))) else: row.append('?') else: row.append('?') rows.append(row) return rows class CatalogApi(Catalog): def __init__(self, my_router): Catalog.__init__(self) self.router = my_router def on_get(self, req, resp, format, check_resources=False): """Handles GET requests http://localhost:8000/catalog/search/result.json?from_date=2016-05-01&to_date=2016-06-02&sensor=sentinel2&ref_group=9&ref_id=73&clouds=50 """ BASE_URL = get_base_url(req.url) start_time = time.time() query_filter = req.params results = dict() results['action'] = 'catalog search' results['action-time'] = str(datetime.datetime.now()) results.update({'query': query_filter}) dates = list() sensor_list = list() try: for date_string in ['from_date', 'to_date']: date = dateparser.parse(req.params[date_string]) if date is None: description = 'Please format date propery, used %s:%s.' % (date_string, date) raise falcon.HTTPBadRequest('DateFormat', description, href='http://docs.example.com/auth') else: dates.append(date) if dates[0] == dates[1]: description = 'Given dates didnt cover date range. Please correct date span. (%s-%s)' \ % (req.params['from_date'], req.params['to_date']) raise falcon.HTTPBadRequest('DateFormat', description, href='http://docs.example.com/auth') elif dates[0] > dates[1]: description = 'Given end date is before start date. Please reverse dates. (%s-%s)' \ % (req.params['from_date'], req.params['to_date']) raise falcon.HTTPBadRequest('DateFormat', description, href='http://docs.example.com/auth') if not req.params['sensor'].lower() in self.aggregations.keys(): description = 'Sensor label is unknown in aggregation table, use %s' % str(map(str, self.aggregations.keys())) raise falcon.HTTPBadRequest('DateFormat', description, href='http://docs.example.com/auth') for agg in self.aggregations[req.params['sensor'].lower()]: sensor_list.append({"sensor_name": agg.sensor, "level": agg.level}) ref_group, ref_id, clouds = int(req.params['ref_group']), int(req.params['ref_id']), int(req.params['clouds']) except KeyError, e: description = 'Search key: %s missing in query.' % e raise falcon.HTTPBadRequest('KeyError', description, href='http://docs.example.com/auth') except ValueError, e: description = 'Given parameters contain bad values: %s'% str(e) raise falcon.HTTPBadRequest('KeyError', description, href='http://docs.example.com/auth') query = self._query_([{"ref_group": ref_group, "ref_id": ref_id}], [{"start_date": dates[0], "end_date": dates[1]}], sensor_list, clouds) query_struct = {'area':[{"ref_group": ref_group, "ref_id": ref_id}], 'dates':[{"start_date": dates[0], "end_date": dates[1]}], 'sensors':sensor_list, 'clouds':clouds } found_dataset = self._get_datasets(query) logger.info('[GET] /catalog/search/result.%s' % format, extra={x:str(y) for x,y in query_struct.iteritems()}) if check_resources: for ds in found_dataset: if 's3public' in ds['resources'].keys(): if 'zip' in ds['resources']['s3public'].keys(): if not remote_file_exists( ds['resources']['s3public']['zip']): print '%s missing' % ds['resources']['s3public']['zip'] if format.lower() == 'json': if 'search/count' in req.url: results['count'] = query.count() else: results['count'] = query.count() results['found_dataset'] = found_dataset results['found_tiles'] = sorted(list(set([x['tile_identifier'] for x in found_dataset]))) results['found_resources'] = [BASE_URL + self.router.reverse('dataset_entity', entity_id=x['entity_id']) for x in results['found_dataset']] results['processing_time'] = time.time() - start_time elif format.lower() == 'geojson': tilegrids = defaultdict(lambda: defaultdict(list)) geoms, attrs = list(), list() for x in found_dataset: tilegrids[x['tile_identifier']]['acq_time'].append(x['acq_time']) # tilegrids[x['tile_identifier']]['acq_time_js'].append( # int(time.mktime(dateparser.parse(x['acq_time']).timetuple())) * 1000) tilegrids[x['tile_identifier']]['tile_identifier'].append(x['tile_identifier']) tilegrids[x['tile_identifier']]['clouds'].append(x['clouds']) for tile_id in tilegrids.keys(): tilegrids[tile_id]['count'] = len(tilegrids[tile_id]['clouds']) tilegrids[tile_id]['tile_identifier'] = tilegrids[tile_id]['tile_identifier'][0] tiles_dict = dict() if len(tilegrids.keys()) > 0: for ref_name, geom in self._query_tile_geom(tilegrids.keys()): tiles_dict[ref_name] = geom for tile_id in tilegrids.keys(): geoms.append(ujson.loads(tiles_dict[tile_id])) attrs.append(tilegrids[tile_id]) results = make_GeoJson(geoms, attrs) elif format.lower() == 'csv': rows = self._export_query(found_dataset) si = StringIO.StringIO() cw = csv.writer(si, delimiter='\t') for row in rows: cw.writerow(row) results = si.getvalue().strip('\r\n') elif format.lower() == 'xlsx': rows = self._export_query(found_dataset) strIO = StringIO.StringIO() workbook = Workbook(strIO, {'in_memory': True, 'constant_memory': True}) bold = workbook.add_format({'bold': True}) big_bold = workbook.add_format({'bold': True, 'size': 20}) italic = workbook.add_format({'italic': True}) worksheet = workbook.add_worksheet(name='EOSS analysis') worksheet.write(0, 0, 'EOSS data analysis', big_bold) ref_obj = Persistance().get_reference(query_filter.get('ref_id'), query_filter.get('ref_group')).one() query_filter['reference_name'] = ref_obj.ref_name query_filter['reference_type'] = ref_obj.referencetype.name # {'clouds': '60', 'ref_id': '5502', 'from_date': '09/07/2016', 'to_date': '10/07/2016', 'ref_group': '12', 'sensor': 'Sentinel2'} r = 3 worksheet.write(r - 1, 0, 'query filter:', big_bold) for c, k in enumerate(['sensor', 'from_date', 'to_date', 'clouds', 'reference_name', 'reference_type']): worksheet.write(r + c, 0, k, bold) worksheet.write(r + c, 1, query_filter[k]) r = 13 worksheet.write(r - 2, 0, 'query set:', big_bold) for c, k in enumerate(rows[0]): worksheet.write(r - 1, c, k, bold) for values in rows[1:]: for c, v in enumerate(values): worksheet.write(r, c, v) r += 1 workbook.close() strIO.seek(0) results = strIO.read() elif format.lower() == 'hist': found_tiles = sorted(list(set([x['tile_identifier'] for x in found_dataset]))) result_list = [] first = dict() first['tile_identifier'] = 'percentagelabel' first['span'] = 100 result_list.append(first) data = numpy.zeros((len(found_dataset))) tileslist = [] i = 0 for x in found_dataset: tileslist.append(x['tile_identifier']) data[i] = float(x['clouds']) i = i + 1 for t in found_tiles: ix = numpy.array(tileslist) == t subset_clouds = data[ix] num_scenes = sum(ix) hist_abs = numpy.histogram(subset_clouds, bins=[-1] + range(0, 120, 20)) hist_rel = hist_abs[0] * 1.0 / num_scenes hist_struct = dict() hist_struct['tile_identifier'] = t hist_struct['span'] = 100 hist_struct['scenes_perc_-1'] = hist_rel[0] hist_struct['scenes_perc_20'] = hist_rel[1] hist_struct['scenes_perc_40'] = hist_rel[2] hist_struct['scenes_perc_60'] = hist_rel[3] hist_struct['scenes_perc_80'] = hist_rel[4] hist_struct['scenes_perc_100'] = hist_rel[5] hist_struct['scenes_abs_-1'] = hist_abs[0][0] hist_struct['scenes_abs_20'] = hist_abs[0][1] hist_struct['scenes_abs_40'] = hist_abs[0][2] hist_struct['scenes_abs_60'] = hist_abs[0][3] hist_struct['scenes_abs_80'] = hist_abs[0][4] hist_struct['scenes_abs_100'] = hist_abs[0][5] result_list.append(hist_struct) results['found_tiles'] = result_list resp.status = falcon.HTTP_200 if can_zip_response(req.headers): if format.lower() in ['hist', 'json', 'geojson']: resp.set_header('Content-Type', 'application/json') resp.set_header('Content-Encoding', 'gzip') resp.body = compress_body(ujson.dumps(results)) elif format.lower() == 'csv': resp.set_header('Content-Type', 'text/csv') resp.set_header('Content-disposition', 'attachment;filename=%s;' % self.create_output_name('csv')) resp.set_header('Content-Encoding', 'gzip') resp.body = compress_body(results) elif format.lower() == 'xlsx': resp.set_header('Content-Type', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') resp.set_header('Content-disposition', 'attachment;filename=%s;' % self.create_output_name('xlsx')) resp.set_header('Content-Encoding', 'gzip') resp.body = compress_body(results) else: if format.lower() in ['hist', 'json', 'geojson']: resp.set_header('Content-Type', 'application/json') resp.body = ujson.dumps(results) elif format.lower() == 'csv': resp.set_header('Content-Type', 'text/csv') resp.set_header('Content-disposition', 'attachment;filename=%s;' % self.create_output_name('csv')) resp.body = results elif format.lower() == 'xlsx': resp.set_header('Content-Type', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') resp.set_header('Content-disposition', 'attachment;filename=%s;' % self.create_output_name('xlsx')) resp.body = results def create_output_name(self, extension): return 'EOSS_analysis_%s.%s' % (datetime.datetime.now().isoformat(), extension) def on_post(self, req, resp, format): """Handles POST requests { "daterange": [{ "start_date": "05/31/2000", "end_date": "07/02/2003" }], "clouds": 1, "sensors": [ {"sensor_name": "LANDSAT_ETM", "level": "" }], "areas": [{ "ref_group": 12, "ref_id": 6208 }] } {"clouds":20,"daterange":[{"start_date":"09/02/2015","end_date":"09/14/2016"}], "sensors":[{"name":"landsat"}], "areas":[{"ref_id":362,"ref_group":"9"}]} """ # TODO: loop over areas sensor_list = list() results = dict() start_time = time.time() output = StringIO.StringIO() while True: chunk = req.stream.read(4096) if not chunk: break output.write(chunk) body = output.getvalue() output.close() try: struct = ujson.loads(body.decode('utf-8')) except ValueError, e: # try decode x-www-form-urlencoded query_str = falcon.util.uri.decode(body.decode('utf-8')) query_str = query_str[query_str.find('{'):query_str.rfind('}') + 1] try: struct = ujson.loads(query_str) except ValueError, e: description = 'Give request is no valid JSON nor urlencoded psot body.' raise falcon.HTTPUnsupportedMediaType(description, href='http://docs.example.com/auth') try: for s in struct['sensors']: if 'sensor_name' in s.keys() and 'level' in s.keys(): sensor_list.append(s) elif 'name' in s.keys(): if not s['name'].lower() in self.aggregations.keys(): description = 'Sensor label is unknown in aggregation table' raise falcon.HTTPBadRequest('Catalog', description, href='http://docs.example.com/auth') for agg in self.aggregations[s['name'].lower()]: sensor_list.append({"sensor_name": agg.sensor, "level": agg.level}) else: description = 'Sensor is not specified in query' raise falcon.HTTPBadRequest('Catalog', description, href='http://docs.example.com/auth') query = self._query_(struct['areas'], struct['daterange'], sensor_list, struct['clouds']) query_struct = {'area': struct['areas'], 'dates': struct['daterange'], 'sensors': sensor_list, 'clouds': struct['clouds'] } logger.info('[POST] /catalog/search/result.%s' % format, extra={x:str(y) for x,y in query_struct.iteritems()}) except KeyError, e: description = 'Search key: %s missing in query.' % e raise falcon.HTTPBadRequest('KeyError', description, href='http://docs.example.com/auth') results['count'] = query.count() found_dataset = self._get_datasets(query) results['found_dataset'] = found_dataset results['found_tiles'] = sorted(list(set([x['tile_identifier'] for x in found_dataset]))) # results.update({'query': struct}) resp.body = ujson.dumps(results) resp.status = falcon.HTTP_200 results['processing_time'] = time.time() - start_time if can_zip_response(req.headers): resp.set_header('Content-Type', 'application/json') resp.set_header('Content-Encoding', 'gzip') resp.body = compress_body(ujson.dumps(results)) else: resp.set_header('Content-Type', 'application/json') resp.body = ujson.dumps(results)
2.03125
2
tests/ui/test_pvc_ui.py
MeridianExplorer/ocs-ci
0
11612
import logging import pytest from ocs_ci.framework.testlib import tier1, skipif_ui_not_support, ui from ocs_ci.ocs.ui.pvc_ui import PvcUI from ocs_ci.framework.testlib import skipif_ocs_version from ocs_ci.framework.pytest_customization.marks import green_squad from ocs_ci.ocs.resources.pvc import get_all_pvc_objs, get_pvc_objs from ocs_ci.ocs import constants from ocs_ci.helpers import helpers from ocs_ci.helpers.helpers import wait_for_resource_state, create_unique_resource_name from ocs_ci.utility.utils import get_ocp_version from ocs_ci.ocs.ui.views import locators from ocs_ci.ocs.resources.pod import get_fio_rw_iops logger = logging.getLogger(__name__) @ui @skipif_ocs_version("<4.6") @skipif_ui_not_support("pvc") @green_squad class TestPvcUserInterface(object): """ Test PVC User Interface """ @tier1 @pytest.mark.parametrize( argnames=["sc_name", "access_mode", "pvc_size", "vol_mode"], argvalues=[ pytest.param( "ocs-storagecluster-cephfs", "ReadWriteMany", "2", "Filesystem", ), pytest.param( "ocs-storagecluster-ceph-rbd", "ReadWriteMany", "3", "Block", ), pytest.param( "ocs-storagecluster-cephfs", "ReadWriteOnce", "10", "Filesystem", ), pytest.param( "ocs-storagecluster-ceph-rbd", "ReadWriteOnce", "11", "Block", ), pytest.param( "ocs-storagecluster-ceph-rbd", "ReadWriteOnce", "13", "Filesystem", ), ], ) def test_create_resize_delete_pvc( self, project_factory, teardown_factory, setup_ui, sc_name, access_mode, pvc_size, vol_mode, ): """ Test create, resize and delete pvc via UI """ # Creating a test project via CLI pro_obj = project_factory() project_name = pro_obj.namespace pvc_ui_obj = PvcUI(setup_ui) # Creating PVC via UI pvc_name = create_unique_resource_name("test", "pvc") pvc_ui_obj.create_pvc_ui( project_name, sc_name, pvc_name, access_mode, pvc_size, vol_mode ) pvc_objs = get_all_pvc_objs(namespace=project_name) pvc = [pvc_obj for pvc_obj in pvc_objs if pvc_obj.name == pvc_name] assert pvc[0].size == int(pvc_size), ( f"size error| expected size:{pvc_size} \n " f"actual size:{str(pvc[0].size)}" ) assert pvc[0].get_pvc_access_mode == access_mode, ( f"access mode error| expected access mode:{access_mode} " f"\n actual access mode:{pvc[0].get_pvc_access_mode}" ) assert pvc[0].backed_sc == sc_name, ( f"storage class error| expected storage class:{sc_name} " f"\n actual storage class:{pvc[0].backed_sc}" ) assert pvc[0].get_pvc_vol_mode == vol_mode, ( f"volume mode error| expected volume mode:{vol_mode} " f"\n actual volume mode:{pvc[0].get_pvc_vol_mode}" ) # Verifying PVC via UI logger.info("Verifying PVC Details via UI") pvc_ui_obj.verify_pvc_ui( pvc_size=pvc_size, access_mode=access_mode, vol_mode=vol_mode, sc_name=sc_name, pvc_name=pvc_name, project_name=project_name, ) logger.info("PVC Details Verified via UI..!!") # Creating Pod via CLI logger.info("Creating Pod") if sc_name in (constants.DEFAULT_STORAGECLASS_RBD,): interface_type = constants.CEPHBLOCKPOOL else: interface_type = constants.CEPHFILESYSTEM new_pod = helpers.create_pod( interface_type=interface_type, pvc_name=pvc_name, namespace=project_name, raw_block_pv=vol_mode == constants.VOLUME_MODE_BLOCK, ) logger.info(f"Waiting for Pod: state= {constants.STATUS_RUNNING}") wait_for_resource_state(resource=new_pod, state=constants.STATUS_RUNNING) # Calling the Teardown Factory Method to make sure Pod is deleted teardown_factory(new_pod) # Expanding the PVC logger.info("Pvc Resizing") new_size = int(pvc_size) + 3 pvc_ui_obj.pvc_resize_ui( pvc_name=pvc_name, new_size=new_size, project_name=project_name ) assert new_size > int( pvc_size ), f"New size of the PVC cannot be less than existing size: new size is {new_size})" ocp_version = get_ocp_version() self.pvc_loc = locators[ocp_version]["pvc"] # Verifying PVC expansion logger.info("Verifying PVC resize") expected_capacity = f"{new_size} GiB" pvc_resize = pvc_ui_obj.verify_pvc_resize_ui( project_name=project_name, pvc_name=pvc_name, expected_capacity=expected_capacity, ) assert pvc_resize, "PVC resize failed" logger.info( "Pvc resize verified..!!" f"New Capacity after PVC resize is {expected_capacity}" ) # Running FIO logger.info("Execute FIO on a Pod") if vol_mode == constants.VOLUME_MODE_BLOCK: storage_type = constants.WORKLOAD_STORAGE_TYPE_BLOCK else: storage_type = constants.WORKLOAD_STORAGE_TYPE_FS new_pod.run_io(storage_type, size=(new_size - 1), invalidate=0, rate="1000m") get_fio_rw_iops(new_pod) logger.info("FIO execution on Pod successfully completed..!!") # Checking if the Pod is deleted or not new_pod.delete(wait=True) new_pod.ocp.wait_for_delete(resource_name=new_pod.name) # Deleting the PVC via UI logger.info(f"Delete {pvc_name} pvc") pvc_ui_obj.delete_pvc_ui(pvc_name, project_name) pvc[0].ocp.wait_for_delete(pvc_name, timeout=120) pvc_objs = get_all_pvc_objs(namespace=project_name) pvcs = [pvc_obj for pvc_obj in pvc_objs if pvc_obj.name == pvc_name] if len(pvcs) > 0: assert f"PVC {pvcs[0].name} does not deleted" @tier1 @pytest.mark.parametrize( argnames=["sc_name", "access_mode", "clone_access_mode"], argvalues=[ pytest.param( "ocs-storagecluster-ceph-rbd", constants.ACCESS_MODE_RWO, constants.ACCESS_MODE_RWO, ), pytest.param( "ocs-storagecluster-cephfs", constants.ACCESS_MODE_RWX, constants.ACCESS_MODE_RWO, ), ], ) def test_clone_pvc( self, project_factory, teardown_factory, setup_ui, sc_name, access_mode, clone_access_mode, ): """ Test to verify PVC clone from UI """ pvc_size = "1" vol_mode = constants.VOLUME_MODE_FILESYSTEM # Creating a project from CLI pro_obj = project_factory() project_name = pro_obj.namespace pvc_ui_obj = PvcUI(setup_ui) # Creating PVC from UI pvc_name = create_unique_resource_name("test", "pvc") pvc_ui_obj.create_pvc_ui( project_name, sc_name, pvc_name, access_mode, pvc_size, vol_mode ) teardown_factory(get_pvc_objs(pvc_names=[pvc_name], namespace=project_name)[0]) # Verifying PVC details in UI logger.info("Verifying PVC details in UI") pvc_ui_obj.verify_pvc_ui( pvc_size=pvc_size, access_mode=access_mode, vol_mode=vol_mode, sc_name=sc_name, pvc_name=pvc_name, project_name=project_name, ) logger.info("Verified PVC details in UI") # Clone PVC from UI clone_pvc_name = f"{pvc_name}-clone" pvc_ui_obj.pvc_clone_ui( project_name=project_name, pvc_name=pvc_name, cloned_pvc_access_mode=clone_access_mode, cloned_pvc_name=clone_pvc_name, ) teardown_factory( get_pvc_objs(pvc_names=[clone_pvc_name], namespace=project_name)[0] ) # Verifying cloned PVC details in UI logger.info("Verifying cloned PVC details in UI") pvc_ui_obj.verify_pvc_ui( pvc_size=pvc_size, access_mode=clone_access_mode, vol_mode=vol_mode, sc_name=sc_name, pvc_name=clone_pvc_name, project_name=project_name, ) logger.info("Verified cloned PVC details in UI")
1.890625
2
feature_generation/datasets/CSCW.py
s0lvang/ideal-pancake
6
11613
<reponame>s0lvang/ideal-pancake import pandas as pd from feature_generation.datasets.Timeseries import Timeseries from os.path import basename class CSCW(Timeseries): def __init__(self): super().__init__("cscw") self.column_name_mapping = { "id": self.column_names["subject_id"], "Fixation Start [ms]": self.column_names["time"], "Position X": self.column_names["x"], "Position Y": self.column_names["y"], "Average Pupil Size [px] X": self.column_names["pupil_diameter"], "Fixation Duration [ms]": self.column_names["duration"], "Fixation End [ms]": self.column_names["fixation_end"], } self.label = "Posttest.Score" def prepare_files(self, file_references, metadata_references): labels = pd.DataFrame() dataset = [] with metadata_references[0].open("r") as f: metadata_file = pd.read_csv(f, sep=";") for file_reference in file_references: dataset, labels = self.prepare_file( file_reference, metadata_file, dataset, labels ) labels = labels.T return dataset, labels def prepare_file(self, file_reference, metadata_file, dataset, labels): participant_name_array = basename(file_reference.reference).split("_") participant_name = "_".join(participant_name_array[0:3]) participant_name_with_type = "_".join(participant_name_array[0:4]) with file_reference.open("r") as f: csv = pd.read_csv(f) csv = csv.rename(columns=self.column_name_mapping) csv[self.column_names["subject_id"]] = participant_name_with_type dataset.append(csv) print(participant_name) labels[participant_name_with_type] = metadata_file[ metadata_file["Participant"] == participant_name ].iloc[0] return dataset, labels def __str__(self): return super().__str__()
2.671875
3
reactics-smt/rs/reaction_system_with_concentrations.py
arturmeski/reactics
2
11614
from sys import exit from colour import * from rs.reaction_system import ReactionSystem class ReactionSystemWithConcentrations(ReactionSystem): def __init__(self): self.reactions = [] self.meta_reactions = dict() self.permanent_entities = dict() self.background_set = [] self.context_entities = [] # legacy. to be removed self.reactions_by_prod = None self.max_concentration = 0 self.max_conc_per_ent = dict() def add_bg_set_entity(self, e): name = "" def_max_conc = -1 if type(e) is tuple and len(e) == 2: name, def_max_conc = e elif type(e) is str: name = e print("\nWARNING: no maximal concentration level specified for:", e, "\n") else: raise RuntimeError( "Bad entity type when adding background set element") self.assume_not_in_bgset(name) self.background_set.append(name) if def_max_conc != -1: ent_id = self.get_entity_id(name) self.max_conc_per_ent.setdefault(ent_id, 0) if self.max_conc_per_ent[ent_id] < def_max_conc: self.max_conc_per_ent[ent_id] = def_max_conc if self.max_concentration < def_max_conc: self.max_concentration = def_max_conc def get_max_concentration_level(self, e): if e in self.max_conc_per_ent: return self.max_conc_per_ent[e] else: return self.max_concentration def is_valid_entity_with_concentration(self, e): """Sanity check for entities with concentration""" if type(e) is tuple: if len(e) == 2 and type(e[1]) is int: return True if type(e) is list: if len(e) == 2 and type(e[1]) is int: return True print("FATAL. Invalid entity+concentration: {:s}".format(e)) exit(1) return False def get_state_ids(self, state): """Returns entities of the given state without levels""" return [e for e, c in state] def has_non_zero_concentration(self, elem): if elem[1] < 1: raise RuntimeError( "Unexpected concentration level in state: " + str(elem)) def process_rip(self, R, I, P, ignore_empty_R=False): """Chcecks concentration levels and converts entities names into their ids""" if R == [] and not ignore_empty_R: raise RuntimeError("No reactants defined") reactants = [] for r in R: self.is_valid_entity_with_concentration(r) self.has_non_zero_concentration(r) entity, level = r reactants.append((self.get_entity_id(entity), level)) if self.max_concentration < level: self.max_concentration = level inhibitors = [] for i in I: self.is_valid_entity_with_concentration(i) self.has_non_zero_concentration(i) entity, level = i inhibitors.append((self.get_entity_id(entity), level)) if self.max_concentration < level: self.max_concentration = level products = [] for p in P: self.is_valid_entity_with_concentration(p) self.has_non_zero_concentration(p) entity, level = p products.append((self.get_entity_id(entity), level)) return reactants, inhibitors, products def add_reaction(self, R, I, P): """Adds a reaction""" if P == []: raise RuntimeError("No products defined") reaction = self.process_rip(R, I, P) self.reactions.append(reaction) def add_reaction_without_reactants(self, R, I, P): """Adds a reaction""" if P == []: raise RuntimeError("No products defined") reaction = self.process_rip(R, I, P, ignore_empty_R=True) self.reactions.append(reaction) def add_reaction_inc(self, incr_entity, incrementer, R, I): """Adds a macro/meta reaction for increasing the value of incr_entity""" reactants, inhibitors, products = self.process_rip( R, I, [], ignore_empty_R=True) incr_entity_id = self.get_entity_id(incr_entity) self.meta_reactions.setdefault(incr_entity_id, []) self.meta_reactions[incr_entity_id].append( ("inc", self.get_entity_id(incrementer), reactants, inhibitors)) def add_reaction_dec(self, decr_entity, decrementer, R, I): """Adds a macro/meta reaction for decreasing the value of incr_entity""" reactants, inhibitors, products = self.process_rip( R, I, [], ignore_empty_R=True) decr_entity_id = self.get_entity_id(decr_entity) self.meta_reactions.setdefault(decr_entity_id, []) self.meta_reactions[decr_entity_id].append( ("dec", self.get_entity_id(decrementer), reactants, inhibitors)) def add_permanency(self, ent, I): """Sets entity to be permanent unless it is inhibited""" ent_id = self.get_entity_id(ent) if ent_id in self.permanent_entities: raise RuntimeError( "Permanency for {0} already defined.".format(ent)) inhibitors = self.process_rip([], I, [], ignore_empty_R=True)[1] self.permanent_entities[ent_id] = inhibitors def set_context_entities(self, entities): raise NotImplementedError def entities_names_set_to_str(self, entities): s = "" for entity in entities: s += entity + ", " s = s[:-2] return s def entities_ids_set_to_str(self, entities): s = "" for entity in entities: s += self.get_entity_name(entity) + ", " s = s[:-2] return s def state_to_str(self, state): s = "" for ent, level in state: s += self.get_entity_name(ent) + "=" + str(level) + ", " s = s[:-2] return s def show_background_set(self): print( C_MARK_INFO + " Background set: {" + self.entities_names_set_to_str(self.background_set) + "}") def show_meta_reactions(self): print(C_MARK_INFO + " Meta reactions:") for param_ent, reactions in self.meta_reactions.items(): for r_type, command, reactants, inhibitors in reactions: if r_type == "inc" or r_type == "dec": print(" - [ Type=" + repr(r_type) + " Operand=( " + self.get_entity_name(param_ent) + " ) Command=( " + self.get_entity_name( command) + " ) ] -- ( R={" + self.state_to_str(reactants) + "}, I={" + self.state_to_str(inhibitors) + "} )") else: raise RuntimeError( "Unknown meta-reaction type: " + repr(r_type)) def show_max_concentrations(self): print( C_MARK_INFO + " Maximal allowed concentration levels (for optimized translation to RS):") for e, max_conc in self.max_conc_per_ent.items(): print(" - {0:^20} = {1:<6}".format(self.get_entity_name(e), max_conc)) def show_permanent_entities(self): print(C_MARK_INFO + " Permanent entities:") for e, inhibitors in self.permanent_entities.items(): print(" - {0:^20}{1:<6}".format(self.get_entity_name(e) + ": ", "I={" + self.state_to_str(inhibitors) + "}")) def show(self, soft=False): self.show_background_set() self.show_reactions(soft) self.show_permanent_entities() self.show_meta_reactions() self.show_max_concentrations() def get_reactions_by_product(self): """Sorts reactions by their products and returns a dictionary of products""" if self.reactions_by_prod != None: return self.reactions_by_prod producible_entities = set() for reaction in self.reactions: product_entities = [e for e, c in reaction[2]] producible_entities = producible_entities.union( set(product_entities)) reactions_by_prod = {} for p_e in producible_entities: reactions_by_prod[p_e] = [] rcts_for_p_e = reactions_by_prod[p_e] for r in self.reactions: product_entities = [e for e, c in r[2]] if p_e in product_entities: reactants = r[0] inhibitors = r[1] products = [(e, c) for e, c in r[2] if e == p_e] prod_conc = products[0][1] insert_place = None # we need to order the reactions w.r.t. the concentration levels produced (increasing order) for i in range(0, len(rcts_for_p_e)): checked_conc = rcts_for_p_e[i][2][0][1] if prod_conc <= checked_conc: insert_place = i break if insert_place == None: # empty or the is only one element which is smaller than the element being added # we append (to the end) rcts_for_p_e.append((reactants, inhibitors, products)) else: rcts_for_p_e.insert( insert_place, (reactants, inhibitors, products)) # save in cache self.reactions_by_prod = reactions_by_prod return reactions_by_prod def get_reaction_system(self): rs = ReactionSystem() for reactants, inhibitors, products in self.reactions: new_reactants = [] new_inhibitors = [] new_products = [] for ent, conc in reactants: n = self.get_entity_name(ent) + "#" + str(conc) rs.ensure_bg_set_entity(n) new_reactants.append(n) for ent, conc in inhibitors: n = self.get_entity_name(ent) + "#" + str(conc) rs.ensure_bg_set_entity(n) new_inhibitors.append(n) for ent, conc in products: for i in range(1, conc+1): n = self.get_entity_name(ent) + "#" + str(i) rs.ensure_bg_set_entity(n) new_products.append(n) rs.add_reaction(new_reactants, new_inhibitors, new_products) for param_ent, reactions in self.meta_reactions.items(): for r_type, command, reactants, inhibitors in reactions: param_ent_name = self.get_entity_name(param_ent) new_reactants = [] new_inhibitors = [] for ent, conc in reactants: n = self.get_entity_name(ent) + "#" + str(conc) rs.ensure_bg_set_entity(n) new_reactants.append(n) for ent, conc in inhibitors: n = self.get_entity_name(ent) + "#" + str(conc) rs.ensure_bg_set_entity(n) new_inhibitors.append(n) max_cmd_c = self.max_concentration if command in self.max_conc_per_ent: max_cmd_c = self.max_conc_per_ent[command] else: print( "WARNING:\n\tThere is no maximal concentration level defined for " + self.get_entity_name(command)) print("\tThis is a very bad idea -- expect degraded performance\n") for l in range(1, max_cmd_c+1): cmd_ent = self.get_entity_name(command) + "#" + str(l) rs.ensure_bg_set_entity(cmd_ent) if r_type == "inc": # pre_conc -- predecessor concentration # succ_conc -- successor concentration concentration for i in range(1, self.max_concentration): pre_conc = param_ent_name + "#" + str(i) rs.ensure_bg_set_entity(pre_conc) new_products = [] succ_value = i+l for j in range(1, succ_value+1): if j > self.max_concentration: break new_p = param_ent_name + "#" + str(j) rs.ensure_bg_set_entity(new_p) new_products.append(new_p) if new_products != []: rs.add_reaction( set(new_reactants + [pre_conc, cmd_ent]), set(new_inhibitors), set(new_products)) elif r_type == "dec": for i in range(1, self.max_concentration+1): pre_conc = param_ent_name + "#" + str(i) rs.ensure_bg_set_entity(pre_conc) new_products = [] succ_value = i-l for j in range(1, succ_value+1): if j > self.max_concentration: break new_p = param_ent_name + "#" + str(j) rs.ensure_bg_set_entity(new_p) new_products.append(new_p) if new_products != []: rs.add_reaction( set(new_reactants + [pre_conc, cmd_ent]), set(new_inhibitors), set(new_products)) else: raise RuntimeError( "Unknown meta-reaction type: " + repr(r_type)) for ent, inhibitors in self.permanent_entities.items(): max_c = self.max_concentration if ent in self.max_conc_per_ent: max_c = self.max_conc_per_ent[ent] else: print( "WARNING:\n\tThere is no maximal concentration level defined for " + self.get_entity_name(ent)) print("\tThis is a very bad idea -- expect degraded performance\n") def e_value(i): return self.get_entity_name(ent) + "#" + str(i) for value in range(1, max_c+1): new_reactants = [] new_inhibitors = [] new_products = [] new_reactants = [e_value(value)] for e_inh, conc in inhibitors: n = self.get_entity_name(e_inh) + "#" + str(conc) rs.ensure_bg_set_entity(n) new_inhibitors.append(n) for i in range(1, value+1): new_products.append(e_value(i)) rs.add_reaction(new_reactants, new_inhibitors, new_products) return rs class ReactionSystemWithAutomaton(object): def __init__(self, reaction_system, context_automaton): self.rs = reaction_system self.ca = context_automaton def show(self, soft=False): self.rs.show(soft) self.ca.show() def is_with_concentrations(self): if not isinstance(self.rs, ReactionSystemWithConcentrations): return False if not isinstance(self.ca, ContextAutomatonWithConcentrations): return False return True def sanity_check(self): pass def get_ordinary_reaction_system_with_automaton(self): if not self.is_with_concentrations(): raise RuntimeError("Not RS/CA with concentrations") ors = self.rs.get_reaction_system() oca = self.ca.get_automaton_with_flat_contexts(ors) return ReactionSystemWithAutomaton(ors, oca) # EOF
2.53125
3
src/models/cnn_train.py
zh272/AIGOGO
0
11615
<filename>src/models/cnn_train.py import os import time import fire import torch import random import numpy as np import pandas as pd import torch.nn.functional as F ## to detach from monitor import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from trainer import Trainer from model import ConvNet1D from helpers import get_dataset, test_epoch, ready, save_obj, load_obj def get_submission( X_train, X_valid, y_train, y_valid, X_test, model=ConvNet1D, max_epoch=200, base_lr=0.1, momentum=0.9, weight_decay=0.0001, batch_size = 128, train_params={}, plot=True, test_along=False, optimizer='sgd', hyper={}, save=False, load=False, mdl_name='cnn.pt' ): train_set, valid_set, X_test_np, X_train_np, X_valid_np, _ = get_dataset( X_train.values, y_train.values, X_test.values, X_valid.values, y_valid.values ) PATH = './saved_model' if not os.path.isdir(PATH): os.makedirs(PATH) start_time = time.time() end_time = start_time if load: trainer = Trainer( torch.load(os.path.join(PATH, mdl_name)), train_set=train_set, loss_fn=F.l1_loss, hyper=hyper, valid_set=valid_set, batch_size=batch_size, epochs=max_epoch, optimizer=optimizer ) else: trainer = Trainer( model(**train_params), train_set=train_set, loss_fn=F.l1_loss, hyper=hyper, valid_set=valid_set, batch_size=batch_size, epochs=max_epoch, optimizer=optimizer ) valid_hist = [] for epochs in range(max_epoch): trainer.train_epoch() temp_lr = trainer.optimizer.param_groups[0]['lr'] if test_along: temp_valid = trainer.loss_epoch() valid_hist.append(temp_valid) print('Epoch {:3}: Training MAE={:8.2f}, Valid MAE={:8.2f}, lr={}'.format(epochs, trainer.eval(), temp_valid, temp_lr)) else: print('Epoch {:3}: Training MAE={:8.2f}, lr={}'.format(epochs, trainer.eval(), temp_lr)) end_time = time.time() if plot: t_step = np.arange(0, max_epoch, 1) train_hist = trainer.evaluator.hist fig_path = 'figures' if not os.path.isdir(fig_path): os.makedirs(fig_path) plt.figure() plt.plot(t_step, train_hist, 'r', ls='-', label='training MAE') if test_along: plt.plot(t_step, valid_hist, 'b', ls='--', label='validation MAE') plt.legend(loc='best') plt.xlabel('steps') plt.title('Training and Validation MAE') plt.grid() plt.savefig(os.path.join(fig_path, 'training_plot.png')) plt.close() if save: torch.save(trainer.model, os.path.join(PATH, mdl_name)) train_loss = trainer.loss_epoch(load='train') valid_loss = trainer.loss_epoch(load='valid') state_dict = trainer.model.state_dict() if torch.cuda.device_count() > 1: input_weights = state_dict['module.regressor.fc0.weight'].cpu().numpy() else: input_weights = state_dict['regressor.fc0.weight'].cpu().numpy() # assume std deviation of each feature is 1 avg_w = np.mean(np.abs(input_weights), axis=0) feature_importances = avg_w feature_names = X_train.columns.values sorted_idx = np.argsort(feature_importances*-1) # descending order summary = '====== MLPRegressor Training Summary ======\n' summary += '>>> epochs={}, lr={}, momentum={}, weight_decay={}\n'.format(max_epoch,base_lr,momentum,weight_decay) summary += '>>> schedule={}\n'.format(hyper['lr_schedule']) summary += '>>> hidden={}, optimizer="{}", batch_size={}\n'.format(train_params['num_neuron'],optimizer,batch_size) for idx in sorted_idx: summary += '[{:<25s}] {:<10.4f}\n'.format(feature_names[idx], feature_importances[idx]) summary += '>>> training_time={:10.2f}min\n'.format((end_time-start_time)/60) summary += '>>> Final MAE: {:10.4f}(Training), {:10.4f}(Validation)\n'.format(train_loss,valid_loss) # Generate submission test_output = trainer.predict(torch.FloatTensor(X_test_np)).cpu().data.numpy() submission = pd.DataFrame(data=test_output,index=X_test.index, columns=['Next_Premium']) train_output = trainer.predict(torch.FloatTensor(X_train_np)).cpu().data.numpy() submission_train = pd.DataFrame(data=train_output,index=X_train.index, columns=['Next_Premium']) valid_output = trainer.predict(torch.FloatTensor(X_valid_np)).cpu().data.numpy() submission_valid = pd.DataFrame(data=valid_output,index=X_valid.index, columns=['Next_Premium']) return { 'model': trainer, 'submission': submission, 'submission_train':submission_train, 'submission_valid':submission_valid, 'valid_loss':valid_loss, 'summary':summary } def read_interim_data(file_name, index_col='Policy_Number'): ''' In: file_name Out: interim_data Description: read data from directory /data/interim ''' # set the path of raw data interim_data_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), os.path.pardir, os.path.pardir, 'data', 'interim' ) file_path = os.path.join(interim_data_path, file_name) interim_data = pd.read_csv(file_path, index_col=index_col) return(interim_data) def write_precessed_data(df, suffix=None): ''' In: DataFrame(df), str(file_name), Out: None Description: Write sample data to directory /data/interim ''' precessed_data_path = os.path.join( os.path.dirname(os.path.realpath(__file__)), os.path.pardir, os.path.pardir, 'data', 'processed' ) if suffix is None: file_name = 'testing-set.csv' else: file_name = 'testing-set_{}.csv'.format(suffix) write_sample_path = os.path.join(precessed_data_path, file_name) df.to_csv(write_sample_path) # empirical scale: weight_decay=0.0001 def demo( epochs=100, base_lr=0.0001, momentum=0.9, weight_decay=0, batch_size=128, optimizer='sgd', dropout=False, seed=None, get_train=False, get_test=False, save=False, load=False ): if seed is not None: rand_reset(seed) # X_train = read_interim_data('X_train_prefs.csv') # y_train = read_interim_data('y_train_prefs.csv') # X_valid = read_interim_data('X_valid_prefs.csv') # y_valid = read_interim_data('y_valid_prefs.csv') # X_test = read_interim_data('X_test_prefs.csv') X_train = read_interim_data('X_train_new.csv') y_train = read_interim_data('y_train_new.csv') X_valid = read_interim_data('X_valid_new.csv') y_valid = read_interim_data('y_valid_new.csv') X_test = read_interim_data('X_test_new.csv') feature_list = [feature for feature in X_train.columns.values if 'cat_' not in feature] num_features = len(feature_list) print('Number of features: {}'.format(num_features)) # Filter features X_train = X_train[feature_list] X_valid = X_valid[feature_list] X_test = X_test[feature_list] ### Fill Missing Values X_train = X_train.apply(lambda x:x.fillna(-1)) X_valid = X_valid.apply(lambda x:x.fillna(-1)) X_test = X_test.apply(lambda x:x.fillna(-1)) # begin training # n_input = X_train.shape[1] train_params = { 'num_cv_filter': [1,40,80], 'num_fc_neuron': [20,5,1], 'dropout': dropout } optim_hyper = { 'lr':base_lr, 'momentum':momentum, 'weight_decay':weight_decay, 'lr_schedule':{ epochs//4:base_lr, epochs//2:base_lr/5, epochs//4*3:base_lr/50, epochs: base_lr/200 } } model_output = get_submission( X_train, X_valid, y_train, y_valid, X_test, model=ConvNet1D, max_epoch=epochs, base_lr=base_lr, momentum=momentum, weight_decay=weight_decay, batch_size = batch_size, train_params=train_params, test_along=True, optimizer=optimizer, hyper=optim_hyper, save=save, load=load ) summary = model_output['summary'] summary += '>>> random seed: {}\n'.format(seed) print(summary) # generate submission if get_test: write_precessed_data(model_output['submission'], suffix='mlptest{}'.format(int(model_output['valid_loss']))) with open('summary_mlp{}.txt'.format(int(model_output['valid_loss'])), 'w') as f: f.write(summary) if get_train: write_precessed_data(model_output['submission_train'], suffix='mlptrain') write_precessed_data(model_output['submission_valid'], suffix='mlpvalid') def rand_reset(seed): random.seed(seed) torch.manual_seed(random.randint(0,1000)) torch.cuda.manual_seed_all(random.randint(0,1000)) np.random.seed(random.randint(0,1000)) if __name__ == '__main__': # Example usage: "python nn_train.py --epochs 100" fire.Fire(demo)
2.296875
2
tests/fetchers/test_hvdcLineCktOwnersFetcher.py
rohit98077/mis_outages_ingest
0
11616
<filename>tests/fetchers/test_hvdcLineCktOwnersFetcher.py import unittest from src.fetchers.hvdcLineCktOwnersFetcher import getOwnersForHvdcLineCktIds import datetime as dt from src.appConfig import getConfig class TestHvdcLineCktOwnersFetcher(unittest.TestCase): appConfig: dict = {} def setUp(self): self.appConfig = getConfig() def test_run(self) -> None: """tests the function that fetches the owners of HvdcLineCkts from reporting software """ elemIds = [12, 13] ownersDict = getOwnersForHvdcLineCktIds( self.appConfig['reportsConStr'], elemIds) expectedDict = { 12: "POWERGRID-WR1 (PGCIL)", 13: "POWERGRID-SR,POWERGRID-WR1 (PGCIL)"} self.assertTrue(ownersDict == expectedDict)
2.859375
3
3rdParty/boost/1.71.0/libs/python/test/iterator.py
rajeev02101987/arangodb
12,278
11617
# Copyright <NAME> 2004. Distributed under the Boost # Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) from __future__ import print_function ''' >>> from iterator_ext import * >>> from input_iterator import * >>> x = list_int() >>> x.push_back(1) >>> x.back() 1 >>> x.push_back(3) >>> x.push_back(5) >>> for y in x: ... print(y) 1 3 5 >>> z = range(x) >>> for y in z: ... print(y) 1 3 5 Range2 wraps a transform_iterator which doubles the elements it traverses. This proves we can wrap input iterators >>> z2 = range2(x) >>> for y in z2: ... print(y) 2 6 10 >>> l2 = two_lists() >>> for y in l2.primes: ... print(y) 2 3 5 7 11 13 >>> for y in l2.evens: ... print(y) 2 4 6 8 10 12 >>> ll = list_list() >>> ll.push_back(x) >>> x.push_back(7) >>> ll.push_back(x) >>> for a in ll: #doctest: +NORMALIZE_WHITESPACE ... for b in a: ... print(b, end='') ... print('') ... 1 3 5 1 3 5 7 ''' def run(args = None): import sys import doctest if args is not None: sys.argv = args return doctest.testmod(sys.modules.get(__name__)) if __name__ == '__main__': print("running...") import sys status = run()[0] if (status == 0): print("Done.") sys.exit(status)
3.109375
3
py/locationdb/geonames.py
acorg/locationdb
0
11618
# -*- Python -*- # license # license. # ====================================================================== """Looks name up in the [geonames database](http://www.geonames.org/). [GeoNames Search Webservice API](http://www.geonames.org/export/geonames-search.html) """ import sys, os, urllib.request, json, time from pathlib import Path import logging; module_logger = logging.getLogger(__name__) from .utilities import is_chinese # ====================================================================== def geonames(name): if not name: return name if is_chinese(name): r = _lookup_chinese(name=name) else: r = _lookup("search", isNameRequired="true", name=name) return r # ---------------------------------------------------------------------- def _lookup(feature, **args): def make(entry): if entry.get("fcl") in ["A", "P"]: return { # "local_name": entry[], "name": entry["toponymName"], "province": entry["adminName1"], "country": entry["countryName"], "latitude": entry["lat"], "longitude": entry["lng"], } else: return None return _get(feature, make, args) # ---------------------------------------------------------------------- def _get(feature, result_maker, args): args.update({"username": "acorg", "type": "json"}) url = "http://api.geonames.org/{}?{}".format(feature, urllib.parse.urlencode(args)) # module_logger.debug('_lookup {!r}'.format(url)) while True: rj = json.loads(urllib.request.urlopen(url=url).read().decode("utf-8")) try: return [e2 for e2 in (result_maker(e1) for e1 in rj["geonames"]) if e2] except KeyError: if "the hourly limit of" in rj.get("status", {}).get("message"): print(f"WARNING: {rj['status']['message']}", file=sys.stderr) seconds_to_wait = 120 print(f"WARNING: about to wait {seconds_to_wait} seconds", file=sys.stderr) time.sleep(seconds_to_wait) else: print(f"ERROR: {rj}", file=sys.stderr) raise RuntimeError(str(rj)) except Exception as err: print(f"ERROR: {rj}: {err}", file=sys.stderr) raise RuntimeError(f"{rj}: {err}") # ---------------------------------------------------------------------- def _lookup_chinese(name): if len(name) > 3: r = [] if provinces := _find_chinese_province(name): province = provinces[0] county = _find_chinese_county(name, province); if county: r = [{ "local_name": name, "name": _make_chinese_name(province, county), "province": _make_province_name(province), "country": province["countryName"], "latitude": county["lat"], "longitude": county["lng"], }] else: def make(entry): province_name = _make_province_name(entry) return { "local_name": name, "name": province_name, "province": province_name, "country": entry["countryName"], "latitude": entry["lat"], "longitude": entry["lng"], } r = [make(e) for e in _find_chinese_province(name)] return r # ---------------------------------------------------------------------- def _find_chinese_province(name): r = _get("search", lambda e: e if e["name"] == name[:2] else None, {"isNameRequired": "true", "name_startsWith": name[:2], "fclass": "A", "fcode": "ADM1", "lang": "cn"}) # module_logger.debug('name: {!r} : {!r}'.format(name[:2], r)) if not r: # Inner Mongolia is written using 3 Hanzi r = _get("search", lambda e: e if e["name"] == name[:3] else None, {"isNameRequired": "true", "name_startsWith": name[:3], "fclass": "A", "fcode": "ADM1", "lang": "cn"}) return r # ---------------------------------------------------------------------- def _make_province_name(entry): r = entry["toponymName"].upper() space_pos = r.find(' ', 6 if r[:6] == "INNER " else 0) if space_pos >= 0: r = r[:space_pos] return r; # ---------------------------------------------------------------------- def _find_chinese_county(full_name, province): name = full_name[len(province["name"]):] r = _get("search", lambda e: e, {"isNameRequired": "true", "name_startsWith": name, "fclass": "A", "fcode": "ADM3", "adminCode1": province["adminCode1"], "lang": "cn"}) if not r: r = _get("search", lambda e: e, {"isNameRequired": "true", "name_startsWith": name, "adminCode1": province["adminCode1"], "lang": "cn"}) # module_logger.debug('_find_chinese_county {}'.format(r)) return r[0] if r else None # ---------------------------------------------------------------------- def _make_chinese_name(province, county): return _make_province_name(province) + " " + _make_county_name(county) # ---------------------------------------------------------------------- def _make_county_name(county): def remove_suffix(source, suffix): if source[-len(suffix):] == suffix: source = source[:-len(suffix)] return source def remove_apostrophe(source): return source.replace("’", "") r = county["toponymName"].upper() r1 = remove_suffix(r, " ZIZHIXIAN") if r1 != r: r = remove_suffix(r1, "ZU") else: for s in [" QU", " XIAN", " SHI"]: r2 = remove_suffix(r, s) if r2 != r: r = r2 break r = remove_apostrophe(r) return r # ====================================================================== ### Local Variables: ### eval: (if (fboundp 'eu-rename-buffer) (eu-rename-buffer)) ### End:
2.515625
3
python/testData/completion/notImportedQualifiedName/UseImportPriorityWhenAddingImport/main.py
06needhamt/intellij-community
0
11619
<reponame>06needhamt/intellij-community import subprocess import sys import django.conf import django.utils.encoding subprocess.Popen sys.argv plt.<caret>
1.296875
1
Array/271EncodeDecodeStrings.py
john-the-dev/leetcode
0
11620
<reponame>john-the-dev/leetcode # 271. Encode and Decode Strings ''' Design an algorithm to encode a list of strings to a string. The encoded string is then sent over the network and is decoded back to the original list of strings. Machine 1 (sender) has the function: string encode(vector<string> strs) { // ... your code return encoded_string; } Machine 2 (receiver) has the function: vector<string> decode(string s) { //... your code return strs; } So Machine 1 does: string encoded_string = encode(strs); and Machine 2 does: vector<string> strs2 = decode(encoded_string); strs2 in Machine 2 should be the same as strs in Machine 1. Implement the encode and decode methods. Note: The string may contain any possible characters out of 256 valid ascii characters. Your algorithm should be generalized enough to work on any possible characters. Do not use class member/global/static variables to store states. Your encode and decode algorithms should be stateless. Do not rely on any library method such as eval or serialize methods. You should implement your own encode/decode algorithm. ''' from common import * ''' Encode to numbers and decode from numbers. O(N) runtime for both encode and decode, in which N is total # of characters in strs. O(N) storage. Beat 5% runtime, 29% storage of all Leetcode submissions. ''' class Codec: def toNum(self, s): num,zero,i,n = 0,0,0,len(s) while i < n and ord(s[i]) == 0: zero += 1 i += 1 while i < n: num = num << 8 num += ord(s[i]) i += 1 return [zero,num] def toStr(self, zero, num): s = [] while num > 0: s.append(chr(num % 256)) num = num >> 8 s.extend([chr(0)]*zero) return ''.join(s[::-1]) def encode(self, strs: [str]) -> str: """Encodes a list of strings to a single string. """ out = [] for s in strs: zero,num = self.toNum(s) out.append('{}:{}'.format(zero,num)) return ','.join(out) def decode(self, s: str) -> [str]: """Decodes a single string to a list of strings. """ out = [] strs = s.split(',') if len(s) > 0 else [] for s in strs: zero,num = s.split(':') out.append(self.toStr(int(zero),int(num))) return out # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.decode(codec.encode(strs)) # Tests. codec = Codec() strs = ['Great','Nice'] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = ['{}leading'.format(chr(0)),'Nice'] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = ['{}l:eadi.ng'.format(chr(0)),'{}leading,{}'.format(chr(0),chr(1))] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs) strs = [] encoded = codec.encode(strs) assert(codec.decode(encoded) == strs)
3.625
4
ois_api_client/v2_0/deserialization/deserialize_invoice_number_query.py
peterkulik/ois_api_client
7
11621
<filename>ois_api_client/v2_0/deserialization/deserialize_invoice_number_query.py from typing import Optional import xml.etree.ElementTree as ET from ...xml.XmlReader import XmlReader as XR from ..namespaces import API from ..namespaces import DATA from ...deserialization.create_enum import create_enum from ..dto.InvoiceNumberQuery import InvoiceNumberQuery from ..dto.InvoiceDirection import InvoiceDirection def deserialize_invoice_number_query(element: ET.Element) -> Optional[InvoiceNumberQuery]: if element is None: return None result = InvoiceNumberQuery( invoice_number=XR.get_child_text(element, 'invoiceNumber', API), invoice_direction=create_enum(InvoiceDirection, XR.get_child_text(element, 'invoiceDirection', API)), batch_index=XR.get_child_int(element, 'batchIndex', API), supplier_tax_number=XR.get_child_text(element, 'supplierTaxNumber', API), ) return result
2.3125
2
scripts/markov_rulesets.py
takuyakanbr/covfefe
0
11622
# Script to generate the necessary grammar rules for the # markov generator output type # Dataset: # http://www.drmaciver.com/2009/12/i-want-one-meelyun-sentences/ import re ALPHA = ' abcdefghijklmnopqrstuvwxyz' # read data from file with open('sentences', 'r', encoding="utf8") as f: content = f.read().splitlines() n = len(content) freq = {} # process sentences for i in range(n): content[i] = re.sub('[^a-z]+', ' ', content[i].lower()) for word in content[i].split(' '): if len(word) < 1: continue word = ' ' + word + ' ' # sum up next-letter frequencies pc = '' for j in range(len(word) - 1): c = word[j] if pc != ' ': c = pc + c nc = word[j+1] if c not in freq: freq[c] = {} for a in ALPHA: freq[c][a] = 0 freq[c][nc] += 1 pc = word[j] # normalize frequencies for c, d in freq.items(): sum_ = sum(d.values()) for nc in d: d[nc] /= sum_ # helper functions for printing rulesets def make_name(c): if c == ' ': return '@mstart' return '@m' + c def make_option(pc, c, nc): if nc == ' ': return pc + c + '|' if c == ' ': return '@m' + nc + '|' if len(pc) == 0: return '@m' + c + nc + '|' return pc + ',@m' + c + nc + '|' # print rulesets for c, d in freq.items(): rule = make_name(c) + '=' pc = c[:-1] c = c[-1] for nc in d: if d[nc] <= 0.0055: continue mult = max(1, int(d[nc] / 0.01)) rule += make_option(pc, c, nc) * mult print(rule[:-1])
3.09375
3
tools/mo/openvino/tools/mo/front/caffe/proposal_ext.py
ryanloney/openvino-1
1,127
11623
# Copyright (C) 2018-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 from openvino.tools.mo.front.common.partial_infer.utils import mo_array from openvino.tools.mo.ops.proposal import ProposalOp from openvino.tools.mo.front.caffe.collect_attributes import merge_attrs from openvino.tools.mo.front.extractor import FrontExtractorOp class ProposalFrontExtractor(FrontExtractorOp): op = 'Proposal' enabled = True @classmethod def extract(cls, node): proto_layer = node.pb param = proto_layer.proposal_param update_attrs = { 'feat_stride': param.feat_stride, 'base_size': param.base_size, 'min_size': param.min_size, 'ratio': mo_array(param.ratio), 'scale': mo_array(param.scale), 'pre_nms_topn': param.pre_nms_topn, 'post_nms_topn': param.post_nms_topn, 'nms_thresh': param.nms_thresh } mapping_rule = merge_attrs(param, update_attrs) # update the attributes of the node ProposalOp.update_node_stat(node, mapping_rule) return cls.enabled
1.804688
2
mk42/apps/users/migrations/0003_auto_20170614_0038.py
vint21h/mk42
5
11624
# -*- coding: utf-8 -*- # mk42 # mk42/apps/users/migrations/0003_auto_20170614_0038.py # Generated by Django 1.11.2 on 2017-06-14 00:38 from __future__ import unicode_literals from django.db import ( migrations, models, ) class Migration(migrations.Migration): dependencies = [ ("users", "0002_auto_20170613_2124"), ] operations = [ migrations.AlterField( model_name="user", name="language", field=models.CharField(choices=[("en", "English"), ("uk", "\u0423\u043a\u0440\u0430\u0457\u043d\u0441\u044c\u043a\u0430")], default="en", max_length=5, verbose_name="language"), ), ]
1.65625
2
utils/datasets.py
LukasStruppek/Plug-and-Play-Attacks
0
11625
import pickle import pandas as pd import torch import torch.nn as nn import torchvision.transforms as T from torch.utils import data from torch.utils.data import random_split from torch.utils.data.dataloader import DataLoader from torch.utils.data.dataset import Dataset from datasets.celeba import CelebA1000 from datasets.facescrub import FaceScrub from datasets.stanford_dogs import StanfordDogs def get_normalization(): normalization = T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) return normalization def get_train_val_split(data, split_ratio, seed=0): validation_set_length = int(split_ratio * len(data)) training_set_length = len(data) - validation_set_length torch.manual_seed(seed) training_set, validation_set = random_split( data, [training_set_length, validation_set_length]) return training_set, validation_set def get_subsampled_dataset(dataset, dataset_size=None, proportion=None, seed=0): if dataset_size > len(dataset): raise ValueError( 'Dataset size is smaller than specified subsample size') if dataset_size is None: if proportion is None: raise ValueError('Neither dataset_size nor proportion specified') else: dataset_size = int(proportion * len(dataset)) torch.manual_seed(seed) subsample, _ = random_split( dataset, [dataset_size, len(dataset) - dataset_size]) return subsample def get_facescrub_idx_to_class(): with open('utils/files/facescrub_idx_to_class.pkl', 'rb') as f: idx_to_class = pickle.load(f) return idx_to_class def get_facescrub_class_to_idx(): with open('utils/files/facescrub_class_to_idx.pkl', 'rb') as f: class_to_idx = pickle.load(f) return class_to_idx def get_celeba_idx_to_attr(list_attr_file='data/celeba/list_attr_celeba.txt'): file = pd.read_csv(list_attr_file) attributes = file.iloc[0].tolist()[0].split(' ')[:-1] attr_dict = {idx: attributes[idx] for idx in range(len(attributes))} return attr_dict def get_celeba_attr_to_idx(list_attr_file='data/celeba/list_attr_celeba.txt'): file = pd.read_csv(list_attr_file) attributes = file.iloc[0].tolist()[0].split(' ')[:-1] attr_dict = {attributes[idx]: idx for idx in range(len(attributes))} return attr_dict def get_stanford_dogs_idx_to_class(): with open('utils/files/stanford_dogs_idx_to_class.pkl', 'rb') as f: idx_to_class = pickle.load(f) return idx_to_class def get_stanford_dogs_class_to_idx(): with open('utils/files/stanford_dogs_class_to_idx.pkl', 'rb') as f: class_to_idx = pickle.load(f) return class_to_idx def create_target_dataset(dataset_name, transform): if dataset_name.lower() == 'facescrub': return FaceScrub(group='all', train=True, transform=transform) elif dataset_name.lower() == 'celeba_identities': return CelebA1000(train=True, transform=transform) elif 'stanford_dogs' in dataset_name.lower(): return StanfordDogs(train=True, cropped=True, transform=transform) else: print(f'{dataset_name} is no valid dataset.')
2.34375
2
applications/MappingApplication/test_examples/Fluid_SubModelling/MainKratos.py
AndreaVoltan/MyKratos7.0
2
11626
from __future__ import print_function, absolute_import, division #makes KratosMultiphysics backward compatible with python 2.6 and 2.7 from KratosMultiphysics import * from KratosMultiphysics.IncompressibleFluidApplication import * from KratosMultiphysics.FluidDynamicsApplication import * from KratosMultiphysics.ExternalSolversApplication import * from KratosMultiphysics.MeshingApplication import * import KratosMultiphysics.MappingApplication as KratosMapping # In this example two domains are solved, a coarse background mesh and a fine mesh around # an obstacle. The fine domain receives the values from the coarse domain as input on it's boundary ###################################################################################### ###################################################################################### ###################################################################################### ##PARSING THE PARAMETERS #import define_output parameter_file_background = open("ProjectParameters_Background.json",'r') Projectparameters_BG = Parameters( parameter_file_background.read()) parameter_file_bodyfitted = open("ProjectParameters_BodyFitted.json",'r') Projectparameters_BF = Parameters( parameter_file_bodyfitted.read()) ## Fluid model part definition main_model_part_bg = ModelPart(Projectparameters_BG["problem_data"]["model_part_name"].GetString()) main_model_part_bg.ProcessInfo.SetValue(DOMAIN_SIZE, Projectparameters_BG["problem_data"]["domain_size"].GetInt()) main_model_part_bf = ModelPart(Projectparameters_BF["problem_data"]["model_part_name"].GetString()) main_model_part_bf.ProcessInfo.SetValue(DOMAIN_SIZE, Projectparameters_BF["problem_data"]["domain_size"].GetInt()) ###TODO replace this "model" for real one once available Model_BG = {Projectparameters_BG["problem_data"]["model_part_name"].GetString() : main_model_part_bg} Model_BF = {Projectparameters_BF["problem_data"]["model_part_name"].GetString() : main_model_part_bf} ## Solver construction solver_module = __import__(Projectparameters_BG["solver_settings"]["solver_type"].GetString()) solver_bg = solver_module.CreateSolver(main_model_part_bg, Projectparameters_BG["solver_settings"]) solver_bg.AddVariables() solver_module = __import__(Projectparameters_BF["solver_settings"]["solver_type"].GetString()) solver_bf = solver_module.CreateSolver(main_model_part_bf, Projectparameters_BF["solver_settings"]) solver_bf.AddVariables() ## Read the model - note that SetBufferSize is done here solver_bg.ImportModelPart() solver_bf.ImportModelPart() ## Add AddDofs solver_bg.AddDofs() solver_bf.AddDofs() ## Initialize GiD I/O from gid_output_process import GiDOutputProcess gid_output_bg = GiDOutputProcess(solver_bg.GetComputingModelPart(), Projectparameters_BG["problem_data"]["problem_name"].GetString() , Projectparameters_BG["output_configuration"]) gid_output_bg.ExecuteInitialize() gid_output_bf = GiDOutputProcess(solver_bf.GetComputingModelPart(), Projectparameters_BF["problem_data"]["problem_name"].GetString() , Projectparameters_BF["output_configuration"]) gid_output_bf.ExecuteInitialize() ##here all of the allocation of the strategies etc is done solver_bg.Initialize() solver_bf.Initialize() ##TODO: replace MODEL for the Kratos one ASAP ## Get the list of the skin submodel parts in the object Model for i in range(Projectparameters_BG["solver_settings"]["skin_parts"].size()): skin_part_name = Projectparameters_BG["solver_settings"]["skin_parts"][i].GetString() Model_BG.update({skin_part_name: main_model_part_bg.GetSubModelPart(skin_part_name)}) for i in range(Projectparameters_BF["solver_settings"]["skin_parts"].size()): skin_part_name = Projectparameters_BF["solver_settings"]["skin_parts"][i].GetString() Model_BF.update({skin_part_name: main_model_part_bf.GetSubModelPart(skin_part_name)}) ## Get the list of the initial conditions submodel parts in the object Model for i in range(Projectparameters_BF["initial_conditions_process_list"].size()): initial_cond_part_name = Projectparameters_BF["initial_conditions_process_list"][i]["Parameters"]["model_part_name"].GetString() Model_BF.update({initial_cond_part_name: main_model_part_bf.GetSubModelPart(initial_cond_part_name)}) ## Processes construction import process_factory # "list_of_processes_bg" contains all the processes already constructed (boundary conditions, initial conditions and gravity) # Note that the conditions are firstly constructed. Otherwise, they may overwrite the BCs information. list_of_processes_bg = process_factory.KratosProcessFactory(Model_BG).ConstructListOfProcesses( Projectparameters_BG["initial_conditions_process_list"] ) list_of_processes_bg += process_factory.KratosProcessFactory(Model_BG).ConstructListOfProcesses( Projectparameters_BG["boundary_conditions_process_list"] ) list_of_processes_bf = process_factory.KratosProcessFactory(Model_BF).ConstructListOfProcesses( Projectparameters_BF["initial_conditions_process_list"] ) list_of_processes_bf += process_factory.KratosProcessFactory(Model_BF).ConstructListOfProcesses( Projectparameters_BF["boundary_conditions_process_list"] ) ## Processes initialization for process in list_of_processes_bg: process.ExecuteInitialize() for process in list_of_processes_bf: process.ExecuteInitialize() # Mapper initialization mapper_settings_file = open("MapperSettings.json",'r') Projectparameters_Mapper = Parameters( mapper_settings_file.read())["mapper_settings"] inlet_mapper = KratosMapping.MapperFactory.CreateMapper(main_model_part_bg, main_model_part_bf, Projectparameters_Mapper[0]) sides_mapper = KratosMapping.MapperFactory.CreateMapper(main_model_part_bg, main_model_part_bf, Projectparameters_Mapper[1]) outlet_mapper = KratosMapping.MapperFactory.CreateMapper(main_model_part_bg, main_model_part_bf, Projectparameters_Mapper[2]) ## Stepping and time settings Dt = Projectparameters_BG["problem_data"]["time_step"].GetDouble() end_time = Projectparameters_BG["problem_data"]["end_time"].GetDouble() time = 0.0 step = 0 out = 0.0 gid_output_bg.ExecuteBeforeSolutionLoop() gid_output_bf.ExecuteBeforeSolutionLoop() for process in list_of_processes_bg: process.ExecuteBeforeSolutionLoop() for process in list_of_processes_bf: process.ExecuteBeforeSolutionLoop() while(time <= end_time): time = time + Dt step = step + 1 main_model_part_bg.CloneTimeStep(time) main_model_part_bf.CloneTimeStep(time) print("STEP = ", step) print("TIME = ", time) if(step >= 3): for process in list_of_processes_bg: process.ExecuteInitializeSolutionStep() for process in list_of_processes_bf: process.ExecuteInitializeSolutionStep() gid_output_bg.ExecuteInitializeSolutionStep() gid_output_bf.ExecuteInitializeSolutionStep() solver_bg.Solve() inlet_mapper.Map(VELOCITY, VELOCITY) sides_mapper.Map(VELOCITY, VELOCITY) outlet_mapper.Map(VELOCITY, VELOCITY) solver_bf.Solve() for process in list_of_processes_bg: process.ExecuteFinalizeSolutionStep() for process in list_of_processes_bf: process.ExecuteFinalizeSolutionStep() gid_output_bg.ExecuteFinalizeSolutionStep() gid_output_bf.ExecuteFinalizeSolutionStep() #TODO: decide if it shall be done only when output is processed or not for process in list_of_processes_bg: process.ExecuteBeforeOutputStep() for process in list_of_processes_bf: process.ExecuteBeforeOutputStep() if gid_output_bg.IsOutputStep(): gid_output_bg.PrintOutput() gid_output_bf.PrintOutput() for process in list_of_processes_bg: process.ExecuteAfterOutputStep() for process in list_of_processes_bf: process.ExecuteAfterOutputStep() out = out + Dt for process in list_of_processes_bg: process.ExecuteFinalize() for process in list_of_processes_bf: process.ExecuteFinalize() gid_output_bg.ExecuteFinalize() gid_output_bf.ExecuteFinalize()
1.976563
2
src/ga4gh/vrs/extras/vcf_annotation.py
reece/vmc-python
1
11627
<reponame>reece/vmc-python<gh_stars>1-10 """ Annotate VCF files with VRS Input Format: VCF Output Format: VCF The user should pass arguments for the VCF input, VCF output, & the vrs object file name. ex. python3 src/ga4gh/vrs/extras/vcf_annotation.py input.vcf.gz --out ./output.vcf.gz --vrs-file ./vrs_objects.pkl """ import argparse import sys import pickle import time from biocommons.seqrepo import SeqRepo import pysam from ga4gh.vrs.dataproxy import SeqRepoDataProxy from ga4gh.vrs.extras.translator import Translator class VCFAnnotator: """ This class provides utility for annotating VCF's with VRS allele id's. VCF's are read using pysam and stored as pysam objects. Alleles are translated into vrs allele id's using VRS-Python Translator. """ def __init__(self, tlr) -> None: """ param: Translator tlr Valid translator object with a specified data proxy """ self.tlr = tlr def annotate(self, inputfile, outputfile, vrsfile): """ Annotates an input VCF file with VRS allele ids & creates a pickle file containing the vrs object information. param: str inputfile The path and filename for the input VCF file param: str outputfile The path and filename for the output VCF file param: str vrsfile The path and filename for the output VRS object file """ INFO_FIELD_ID = "VRS_Allele" vrs_data = {} vcf_in = pysam.VariantFile(filename=inputfile) vcf_in.header.info.add(INFO_FIELD_ID, "1", "String", "vrs") vcf_out = pysam.VariantFile(outputfile, "w", header=vcf_in.header) vrs_out = open(vrsfile, "wb") # For sending VRS data to the pickle file for record in vcf_in: ld = self._record_digests(record, vrs_data) record.info[INFO_FIELD_ID] = ",".join(ld) vcf_out.write(record) pickle.dump(vrs_data, vrs_out) vrs_out.close() vcf_in.close() vcf_out.close() def _record_digests(self, record, vrs_data): """ Mutate vrs_data with vrs object information and returning a list of vrs allele ids param: pysam.VariantRecord record A row in the vcf file param: dict vrs_data Dictionary containing the VRS object information for the VCF return: list vrs_allele_ids List containing the vrs allele id information """ gnomad_loc = f"{record.chrom}-{record.pos}" alts = record.alts if record.alts else [] data = f"{record.chrom}\t{record.pos}\t{record.id}\t{record.ref}\t{record.alts}" # payloads like ['20:14369:1', '20:14369:1:G', '20:14369:1:A'] reference_allele = f"{gnomad_loc}-{record.ref}-{record.ref}" vrs_ref_object = self.tlr.translate_from(reference_allele, "gnomad") vrs_data[reference_allele] = str(vrs_ref_object.as_dict()) alleles = [f"{gnomad_loc}-{record.ref}-{a}" for a in [*alts]] # using gnomad format vrs_allele_ids = [vrs_ref_object._id._value] for allele in alleles: if "*" in allele: vrs_allele_ids.append("") else: vrs_object = self.tlr.translate_from(allele, "gnomad") vrs_allele_ids.append(vrs_object._id._value) vrs_data[data] = str(vrs_object.as_dict()) return vrs_allele_ids def parse_args(argv): """ Parses arguments passed in by the user param: list[str] argv Arguments passed by the user to specify file locations and names return: argparse.Namespace Returns the options passed by the user to be assigned to proper variables """ ap = argparse.ArgumentParser() ap.add_argument("VCF_IN") ap.add_argument("--out", "-o", default="-") ap.add_argument("--vrs-file", default="-") opts = ap.parse_args(argv) return opts if __name__ == "__main__": start_time = time.time() options = parse_args(sys.argv[1:]) print(f"These are the options that you have selected: {options}\n") data_proxy = SeqRepoDataProxy(SeqRepo("/usr/local/share/seqrepo/latest")) tlr = Translator(data_proxy) vcf_annotator = VCFAnnotator(tlr) vcf_annotator.annotate(options.VCF_IN, options.out, options.vrs_file) end_time = time.time() total_time = (float(end_time) - float(start_time)) total_time_minutes = (total_time / 60) print(f"This program took {total_time} seconds to run.") print(f"This program took {total_time_minutes} minutes to run.")
2.796875
3
ci/infra/testrunner/utils/utils.py
butsoleg/skuba
0
11628
<gh_stars>0 import glob import hashlib import logging import os import shutil import subprocess from functools import wraps from tempfile import gettempdir from threading import Thread import requests from timeout_decorator import timeout from utils.constants import Constant from utils.format import Format logger = logging.getLogger('testrunner') _stepdepth = 0 def step(f): @wraps(f) def wrapped(*args, **kwargs): global _stepdepth _stepdepth += 1 logger.debug("{} entering {} {}".format(Format.DOT * _stepdepth, f.__name__, f.__doc__ or "")) r = f(*args, **kwargs) logger.debug("{} exiting {}".format( Format.DOT_EXIT * _stepdepth, f.__name__)) _stepdepth -= 1 return r return wrapped class Utils: def __init__(self, conf): self.conf = conf @staticmethod def chmod_recursive(directory, permissions): os.chmod(directory, permissions) for file in glob.glob(os.path.join(directory, "**/*"), recursive=True): try: os.chmod(file, permissions) except Exception as ex: logger.debug(ex) @staticmethod def cleanup_file(file): if os.path.exists(file): logger.debug(f"Cleaning up {file}") try: try: # Attempt to remove the file first, because a socket (e.g. # ssh-agent) is not a file but has to be removed like one. os.remove(file) except IsADirectoryError: shutil.rmtree(file) except Exception as ex: logger.debug(ex) else: logger.debug(f"Nothing to clean up for {file}") @staticmethod def cleanup_files(files): """Remove any files or dirs in a list if they exist""" for file in files: Utils.cleanup_file(file) def ssh_cleanup(self): """Remove ssh sock files""" # TODO: also kill ssh agent here? maybe move pkill to kill_ssh_agent()? sock_file = self.ssh_sock_fn() sock_dir = os.path.dirname(sock_file) try: Utils.cleanup_file(sock_file) # also remove tempdir if it's empty afterwards if 0 == len(os.listdir(sock_dir)): os.rmdir(sock_dir) else: logger.warning(f"Dir {sock_dir} not empty; leaving it") except FileNotFoundError: pass except OSError as ex: logger.debug(ex) def collect_remote_logs(self, ip_address, logs, store_path): """ Collect logs from a remote machine :param ip_address: (str) IP of the machine to collect the logs from :param logs: (dict: list) The different logs to collect {"files": [], "dirs": [], ""services": []} :param store_path: (str) Path to copy the logs to :return: (bool) True if there was an error while collecting the logs """ logging_errors = False for log in logs.get("files", []): try: self.scp_file(ip_address, log, store_path) except Exception as ex: logger.debug( f"Error while collecting {log} from {ip_address}\n {ex}") logging_errors = True for log in logs.get("dirs", []): try: self.rsync(ip_address, log, store_path) except Exception as ex: logger.debug( f"Error while collecting {log} from {ip_address}\n {ex}") logging_errors = True for service in logs.get("services", []): try: self.ssh_run( ip_address, f"sudo journalctl -xeu {service} > {service}.log") self.scp_file(ip_address, f"{service}.log", store_path) except Exception as ex: logger.debug( f"Error while collecting {service}.log from {ip_address}\n {ex}") logging_errors = True return logging_errors def authorized_keys(self): public_key_path = self.conf.terraform.ssh_key + ".pub" os.chmod(self.conf.terraform.ssh_key, 0o400) with open(public_key_path) as f: pubkey = f.read().strip() return pubkey def ssh_run(self, ipaddr, cmd): key_fn = self.conf.terraform.ssh_key cmd = "ssh " + Constant.SSH_OPTS + " -i {key_fn} {username}@{ip} -- '{cmd}'".format( key_fn=key_fn, ip=ipaddr, cmd=cmd, username=self.conf.terraform.nodeuser) return self.runshellcommand(cmd) def scp_file(self, ip_address, remote_file_path, local_file_path): """ Copies a remote file from the given ip to the give path :param ip_address: (str) IP address of the node to copy from :param remote_file_path: (str) Path of the file to be copied :param local_file_path: (str) Path where to store the log :return: """ cmd = (f"scp {Constant.SSH_OPTS} -i {self.conf.terraform.ssh_key}" f" {self.conf.terraform.nodeuser}@{ip_address}:{remote_file_path} {local_file_path}") self.runshellcommand(cmd) def rsync(self, ip_address, remote_dir_path, local_dir_path): """ Copies a remote dir from the given ip to the give path :param ip_address: (str) IP address of the node to copy from :param remote_dir_path: (str) Path of the dir to be copied :param local_dir_path: (str) Path where to store the dir :return: """ cmd = (f'rsync -avz --no-owner --no-perms -e "ssh {Constant.SSH_OPTS} -i {self.conf.terraform.ssh_key}" ' f'--rsync-path="sudo rsync" --ignore-missing-args {self.conf.terraform.nodeuser}@{ip_address}:{remote_dir_path} ' f'{local_dir_path}') self.runshellcommand(cmd) def runshellcommand(self, cmd, cwd=None, env={}, ignore_errors=False, stdin=None): """Running shell command in {workspace} if cwd == None Eg) cwd is "skuba", cmd will run shell in {workspace}/skuba/ cwd is None, cmd will run in {workspace} cwd is abs path, cmd will run in cwd Keyword arguments: cmd -- command to run cwd -- dir to run the cmd env -- environment variables ignore_errors -- don't raise exception if command fails stdin -- standard input for the command in bytes """ if not cwd: cwd = self.conf.workspace if not os.path.isabs(cwd): cwd = os.path.join(self.conf.workspace, cwd) if not os.path.exists(cwd): raise FileNotFoundError(Format.alert("Directory {} does not exists".format(cwd))) if logging.DEBUG >= logger.level: logger.debug("Executing command\n" " cwd: {} \n" " env: {}\n" " cmd: {}".format(cwd, str(env) if env else "{}", cmd)) else: logger.info("Executing command {}".format(cmd)) stdout, stderr = [], [] p = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd, stdin=subprocess.PIPE if stdin else None, shell=True, env=env ) if stdin: p.stdin.write(stdin) p.stdin.close() stdoutStreamer = Thread(target = self.read_fd, args = (p, p.stdout, logger.debug, stdout)) stderrStreamer = Thread(target = self.read_fd, args = (p, p.stderr, logger.error, stderr)) stdoutStreamer.start() stderrStreamer.start() stdoutStreamer.join() stderrStreamer.join() # this is redundant, at this point threads were joined and they waited for the subprocess # to exit, however it should not hurt to explicitly wait for it again (no-op). p.wait() stdout, stderr = "".join(stdout), "".join(stderr) if p.returncode != 0: if not ignore_errors: raise RuntimeError("Error executing command {}".format(cmd)) else: return stderr return stdout def ssh_sock_fn(self): """generate path to ssh socket A socket path can't be over 107 chars on Linux, so generate a short hash of the workspace and use that in $TMPDIR (usually /tmp) so we have a predictable, test-unique, fixed-length path. """ path = os.path.join( gettempdir(), hashlib.md5(self.conf.workspace.encode()).hexdigest(), "ssh-agent-sock" ) maxl = 107 if len(path) > maxl: raise Exception(f"Socket path '{path}' len {len(path)} > {maxl}") return path def read_fd(self, proc, fd, logger_func, output): """Read from fd, logging using logger_func Read from fd, until proc is finished. All contents will also be appended onto output.""" while True: contents = fd.readline().decode() if contents == '' and proc.poll() is not None: return if contents: output.append(contents) logger_func(contents.strip()) @timeout(60) @step def setup_ssh(self): os.chmod(self.conf.terraform.ssh_key, 0o400) # use a dedicated agent to minimize stateful components sock_fn = self.ssh_sock_fn() # be sure directory containing socket exists and socket doesn't exist if os.path.exists(sock_fn): try: if os.path.isdir(sock_fn): os.path.rmdir(sock_fn) # rmdir only removes an empty dir else: os.remove(sock_fn) except FileNotFoundError: pass try: os.mkdir(os.path.dirname(sock_fn), mode=0o700) except FileExistsError: if os.path.isdir(os.path.dirname(sock_fn)): pass else: raise # clean up old ssh agent process(es) try: self.runshellcommand("pkill -f 'ssh-agent -a {}'".format(sock_fn)) logger.warning("Killed previous instance of ssh-agent") except: pass self.runshellcommand("ssh-agent -a {}".format(sock_fn)) self.runshellcommand( "ssh-add " + self.conf.terraform.ssh_key, env={"SSH_AUTH_SOCK": sock_fn}) @timeout(30) @step def info(self): """Node info""" info_lines = "Env vars: {}\n".format(sorted(os.environ)) info_lines += self.runshellcommand('ip a') info_lines += self.runshellcommand('ip r') info_lines += self.runshellcommand('cat /etc/resolv.conf') # TODO: the logic for retrieving external is platform depedant and should be # moved to the corresponding platform try: r = requests.get( 'http://169.254.169.254/2009-04-04/meta-data/public-ipv4', timeout=2) r.raise_for_status() except (requests.HTTPError, requests.Timeout) as err: logger.warning( f'Meta Data service unavailable could not get external IP addr{err}') else: info_lines += 'External IP addr: {}'.format(r.text) return info_lines
2.140625
2
nonebot/command/argfilter/controllers.py
EVAyo/nonebot
676
11629
""" 提供几种常用的控制器。 这些验证器通常需要提供一些参数进行一次调用,返回的结果才是真正的验证器,其中的技巧在于通过闭包使要控制的对象能够被内部函数访问。 版本: 1.3.0+ """ import re from nonebot import CommandSession from nonebot.helpers import render_expression def handle_cancellation(session: CommandSession): """ 在用户发送 `算了`、`不用了`、`取消吧`、`停` 之类的话的时候,结束当前传入的命令会话(调用 `session.finish()`),并发送配置项 `SESSION_CANCEL_EXPRESSION` 所填的内容。 如果不是上述取消指令,则将输入原样输出。 参数: session: 要控制的命令会话 """ def control(value): if _is_cancellation(value) is True: session.finish( render_expression(session.bot.config.SESSION_CANCEL_EXPRESSION)) return value return control def _is_cancellation(sentence: str) -> bool: for kw in ('算', '别', '不', '停', '取消'): if kw in sentence: # a keyword matches break else: # no keyword matches return False if re.match(r'^那?[算别不停]\w{0,3}了?吧?$', sentence) or \ re.match(r'^那?(?:[给帮]我)?取消了?吧?$', sentence): return True return False __all__ = [ 'handle_cancellation', ]
2.734375
3
hnn_core/dipole.py
chenghuzi/hnn-core
0
11630
<filename>hnn_core/dipole.py """Class to handle the dipoles.""" # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> import warnings import numpy as np from copy import deepcopy from .viz import plot_dipole, plot_psd, plot_tfr_morlet def simulate_dipole(net, tstop, dt=0.025, n_trials=None, record_vsoma=False, record_isoma=False, postproc=False): """Simulate a dipole given the experiment parameters. Parameters ---------- net : Network object The Network object specifying how cells are connected. tstop : float The simulation stop time (ms). dt : float The integration time step of h.CVode (ms) n_trials : int | None The number of trials to simulate. If None, the 'N_trials' value of the ``params`` used to create ``net`` is used (must be >0) record_vsoma : bool Option to record somatic voltages from cells record_isoma : bool Option to record somatic currents from cells postproc : bool If True, smoothing (``dipole_smooth_win``) and scaling (``dipole_scalefctr``) values are read from the parameter file, and applied to the dipole objects before returning. Note that this setting only affects the dipole waveforms, and not somatic voltages, possible extracellular recordings etc. The preferred way is to use the :meth:`~hnn_core.dipole.Dipole.smooth` and :meth:`~hnn_core.dipole.Dipole.scale` methods instead. Default: False. Returns ------- dpls: list List of dipole objects for each trials """ from .parallel_backends import _BACKEND, JoblibBackend if _BACKEND is None: _BACKEND = JoblibBackend(n_jobs=1) if n_trials is None: n_trials = net._params['N_trials'] if n_trials < 1: raise ValueError("Invalid number of simulations: %d" % n_trials) if not net.connectivity: warnings.warn('No connections instantiated in network. Consider using ' 'net = jones_2009_model() or net = law_2021_model() to ' 'create a predefined network from published models.', UserWarning) for drive_name, drive in net.external_drives.items(): if 'tstop' in drive['dynamics']: if drive['dynamics']['tstop'] is None: drive['dynamics']['tstop'] = tstop for bias_name, bias in net.external_biases.items(): for cell_type, bias_cell_type in bias.items(): if bias_cell_type['tstop'] is None: bias_cell_type['tstop'] = tstop if bias_cell_type['tstop'] < 0.: raise ValueError('End time of tonic input cannot be negative') duration = bias_cell_type['tstop'] - bias_cell_type['t0'] if duration < 0.: raise ValueError('Duration of tonic input cannot be negative') net._instantiate_drives(n_trials=n_trials, tstop=tstop) net._reset_rec_arrays() if isinstance(record_vsoma, bool): net._params['record_vsoma'] = record_vsoma else: raise TypeError("record_vsoma must be bool, got %s" % type(record_vsoma).__name__) if isinstance(record_isoma, bool): net._params['record_isoma'] = record_isoma else: raise TypeError("record_isoma must be bool, got %s" % type(record_isoma).__name__) if postproc: warnings.warn('The postproc-argument is deprecated and will be removed' ' in a future release of hnn-core. Please define ' 'smoothing and scaling explicitly using Dipole methods.', DeprecationWarning) dpls = _BACKEND.simulate(net, tstop, dt, n_trials, postproc) return dpls def read_dipole(fname): """Read dipole values from a file and create a Dipole instance. Parameters ---------- fname : str Full path to the input file (.txt) Returns ------- dpl : Dipole The instance of Dipole class """ dpl_data = np.loadtxt(fname, dtype=float) dpl = Dipole(dpl_data[:, 0], dpl_data[:, 1:]) return dpl def average_dipoles(dpls): """Compute dipole averages over a list of Dipole objects. Parameters ---------- dpls: list of Dipole objects Contains list of dipole objects, each with a `data` member containing 'L2', 'L5' and 'agg' components Returns ------- dpl: instance of Dipole A new dipole object with each component of `dpl.data` representing the average over the same components in the input list """ scale_applied = dpls[0].scale_applied for dpl_idx, dpl in enumerate(dpls): if dpl.scale_applied != scale_applied: raise RuntimeError('All dipoles must be scaled equally!') if not isinstance(dpl, Dipole): raise ValueError( f"All elements in the list should be instances of " f"Dipole. Got {type(dpl)}") if dpl.nave > 1: raise ValueError("Dipole at index %d was already an average of %d" " trials. Cannot reaverage" % (dpl_idx, dpl.nave)) avg_data = list() layers = dpl.data.keys() for layer in layers: avg_data.append( np.mean(np.array([dpl.data[layer] for dpl in dpls]), axis=0) ) avg_data = np.c_[avg_data].T avg_dpl = Dipole(dpls[0].times, avg_data) # The averaged scale should equal all scals in the input dpl list. avg_dpl.scale_applied = scale_applied # set nave to the number of trials averaged in this dipole avg_dpl.nave = len(dpls) return avg_dpl def _rmse(dpl, exp_dpl, tstart=0.0, tstop=0.0, weights=None): """ Calculates RMSE between data in dpl and exp_dpl Parameters ---------- dpl: instance of Dipole A dipole object with simulated data exp_dpl: instance of Dipole A dipole object with experimental data tstart | None: float Time at beginning of range over which to calculate RMSE tstop | None: float Time at end of range over which to calculate RMSE weights | None: array An array of weights to be applied to each point in simulated dpl. Must have length >= dpl.data If None, weights will be replaced with 1's for typical RMSE calculation. Returns ------- err: float Weighted RMSE between data in dpl and exp_dpl """ from scipy import signal exp_times = exp_dpl.times sim_times = dpl.times # do tstart and tstop fall within both datasets? # if not, use the closest data point as the new tstop/tstart for tseries in [exp_times, sim_times]: if tstart < tseries[0]: tstart = tseries[0] if tstop > tseries[-1]: tstop = tseries[-1] # make sure start and end times are valid for both dipoles exp_start_index = (np.abs(exp_times - tstart)).argmin() exp_end_index = (np.abs(exp_times - tstop)).argmin() exp_length = exp_end_index - exp_start_index sim_start_index = (np.abs(sim_times - tstart)).argmin() sim_end_index = (np.abs(sim_times - tstop)).argmin() sim_length = sim_end_index - sim_start_index if weights is None: # weighted RMSE with weights of all 1's is equivalent to # normal RMSE weights = np.ones(len(sim_times[0:sim_end_index])) weights = weights[sim_start_index:sim_end_index] dpl1 = dpl.data['agg'][sim_start_index:sim_end_index] dpl2 = exp_dpl.data['agg'][exp_start_index:exp_end_index] if (sim_length > exp_length): # downsample simulation timeseries to match exp data dpl1 = signal.resample(dpl1, exp_length) weights = signal.resample(weights, exp_length) indices = np.where(weights < 1e-4) weights[indices] = 0 elif (sim_length < exp_length): # downsample exp timeseries to match simulation data dpl2 = signal.resample(dpl2, sim_length) return np.sqrt((weights * ((dpl1 - dpl2) ** 2)).sum() / weights.sum()) class Dipole(object): """Dipole class. An instance of the ``Dipole``-class contains the simulated dipole moment timecourses for L2 and L5 pyramidal cells, as well as their aggregate (``'agg'``). The units of the dipole moment are in ``nAm`` (1e-9 Ampere-meters). Parameters ---------- times : array (n_times,) The time vector (in ms) data : array, shape (n_times x n_layers) The data. The first column represents 'agg' (the total diple), the second 'L2' layer and the last one 'L5' layer. For experimental data, it can contain only one column. nave : int Number of trials that were averaged to produce this Dipole. Defaults to 1 Attributes ---------- times : array-like The time vector (in ms) sfreq : float The sampling frequency (in Hz) data : dict of array Dipole moment timecourse arrays with keys 'agg', 'L2' and 'L5' nave : int Number of trials that were averaged to produce this Dipole scale_applied : int or float The total factor by which the dipole has been scaled (using :meth:`~hnn_core.dipole.Dipole.scale`). """ def __init__(self, times, data, nave=1): # noqa: D102 self.times = np.array(times) if data.ndim == 1: data = data[:, None] if data.shape[1] == 3: self.data = {'agg': data[:, 0], 'L2': data[:, 1], 'L5': data[:, 2]} elif data.shape[1] == 1: self.data = {'agg': data[:, 0]} self.nave = nave self.sfreq = 1000. / (times[1] - times[0]) # NB assumes len > 1 self.scale_applied = 1 # for visualisation def copy(self): """Return a copy of the Dipole instance Returns ------- dpl_copy : instance of Dipole A copy of the Dipole instance. """ return deepcopy(self) def _post_proc(self, window_len, fctr): """Apply scaling and smoothing from param-files (DEPRECATE) Parameters ---------- window_len : int Smoothing window in ms fctr : int Scaling factor """ self.scale(fctr) if window_len > 0: # this is to allow param-files with len==0 self.smooth(window_len) def _convert_fAm_to_nAm(self): """The NEURON simulator output is in fAm, convert to nAm NB! Must be run `after` :meth:`Dipole.baseline_renormalization` """ for key in self.data.keys(): self.data[key] *= 1e-6 def scale(self, factor): """Scale (multiply) the dipole moment by a fixed factor The attribute ``Dipole.scale_applied`` is updated to reflect factors applied and displayed in plots. Parameters ---------- factor : int Scaling factor, applied to the data in-place. """ for key in self.data.keys(): self.data[key] *= factor self.scale_applied *= factor return self def smooth(self, window_len): """Smooth the dipole waveform using Hamming-windowed convolution Note that this method operates in-place, i.e., it will alter the data. If you prefer a filtered copy, consider using the :meth:`~hnn_core.dipole.Dipole.copy`-method. Parameters ---------- window_len : float The length (in ms) of a `~numpy.hamming` window to convolve the data with. Returns ------- dpl_copy : instance of Dipole A copy of the modified Dipole instance. """ from .utils import smooth_waveform for key in self.data.keys(): self.data[key] = smooth_waveform(self.data[key], window_len, self.sfreq) return self def savgol_filter(self, h_freq): """Smooth the dipole waveform using Savitzky-Golay filtering Note that this method operates in-place, i.e., it will alter the data. If you prefer a filtered copy, consider using the :meth:`~hnn_core.dipole.Dipole.copy`-method. The high-frequency cutoff value of a Savitzky-Golay filter is approximate; see the SciPy reference: :func:`~scipy.signal.savgol_filter`. Parameters ---------- h_freq : float or None Approximate high cutoff frequency in Hz. Note that this is not an exact cutoff, since Savitzky-Golay filtering is done using polynomial fits instead of FIR/IIR filtering. This parameter is thus used to determine the length of the window over which a 5th-order polynomial smoothing is applied. Returns ------- dpl_copy : instance of Dipole A copy of the modified Dipole instance. """ from .utils import _savgol_filter if h_freq < 0: raise ValueError('h_freq cannot be negative') elif h_freq > 0.5 * self.sfreq: raise ValueError( 'h_freq must be less than half the sample rate') for key in self.data.keys(): self.data[key] = _savgol_filter(self.data[key], h_freq, self.sfreq) return self def plot(self, tmin=None, tmax=None, layer='agg', decim=None, ax=None, color='k', show=True): """Simple layer-specific plot function. Parameters ---------- tmin : float or None Start time of plot (in ms). If None, plot entire simulation. tmax : float or None End time of plot (in ms). If None, plot entire simulation. layer : str The layer to plot. Can be one of 'agg', 'L2', and 'L5' decimate : int Factor by which to decimate the raw dipole traces (optional) ax : instance of matplotlib figure | None The matplotlib axis color : tuple of float RGBA value to use for plotting. By default, 'k' (black) show : bool If True, show the figure Returns ------- fig : instance of plt.fig The matplotlib figure handle. """ return plot_dipole(self, tmin=tmin, tmax=tmax, ax=ax, layer=layer, decim=decim, color=color, show=show) def plot_psd(self, fmin=0, fmax=None, tmin=None, tmax=None, layer='agg', ax=None, show=True): """Plot power spectral density (PSD) of dipole time course Applies `~scipy.signal.periodogram` from SciPy with ``window='hamming'``. Note that no spectral averaging is applied across time, as most ``hnn_core`` simulations are short-duration. However, passing a list of `Dipole` instances will plot their average (Hamming-windowed) power, which resembles the `Welch`-method applied over time. Parameters ---------- dpl : instance of Dipole | list of Dipole instances The Dipole object. fmin : float Minimum frequency to plot (in Hz). Default: 0 Hz fmax : float Maximum frequency to plot (in Hz). Default: None (plot up to Nyquist) tmin : float or None Start time of data to include (in ms). If None, use entire simulation. tmax : float or None End time of data to include (in ms). If None, use entire simulation. layer : str, default 'agg' The layer to plot. Can be one of 'agg', 'L2', and 'L5' ax : instance of matplotlib figure | None The matplotlib axis. show : bool If True, show the figure Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ return plot_psd(self, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, layer=layer, ax=ax, show=show) def plot_tfr_morlet(self, freqs, n_cycles=7., tmin=None, tmax=None, layer='agg', decim=None, padding='zeros', ax=None, colormap='inferno', colorbar=True, show=True): """Plot Morlet time-frequency representation of dipole time course NB: Calls `~mne.time_frequency.tfr_array_morlet`, so ``mne`` must be installed. Parameters ---------- dpl : instance of Dipole | list of Dipole instances The Dipole object. If a list of dipoles is given, the power is calculated separately for each trial, then averaged. freqs : array Frequency range of interest. n_cycles : float or array of float, default 7.0 Number of cycles. Fixed number or one per frequency. tmin : float or None Start time of plot in milliseconds. If None, plot entire simulation. tmax : float or None End time of plot in milliseconds. If None, plot entire simulation. layer : str, default 'agg' The layer to plot. Can be one of 'agg', 'L2', and 'L5' decim : int or list of int or None (default) Optional (integer) factor by which to decimate the raw dipole traces. The SciPy function :func:`~scipy.signal.decimate` is used, which recommends values <13. To achieve higher decimation factors, a list of ints can be provided. These are applied successively. padding : str or None Optional padding of the dipole time course beyond the plotting limits. Possible values are: 'zeros' for padding with 0's (default), 'mirror' for mirror-image padding. ax : instance of matplotlib figure | None The matplotlib axis colormap : str The name of a matplotlib colormap, e.g., 'viridis'. Default: 'inferno' colorbar : bool If True (default), adjust figure to include colorbar. show : bool If True, show the figure Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ return plot_tfr_morlet( self, freqs, n_cycles=n_cycles, tmin=tmin, tmax=tmax, layer=layer, decim=decim, padding=padding, ax=ax, colormap=colormap, colorbar=colorbar, show=show) def _baseline_renormalize(self, N_pyr_x, N_pyr_y): """Only baseline renormalize if the units are fAm. Parameters ---------- N_pyr_x : int Nr of cells (x) N_pyr_y : int Nr of cells (y) """ # N_pyr cells in grid. This is PER LAYER N_pyr = N_pyr_x * N_pyr_y # dipole offset calculation: increasing number of pyr # cells (L2 and L5, simultaneously) # with no inputs resulted in an aggregate dipole over the # interval [50., 1000.] ms that # eventually plateaus at -48 fAm. The range over this interval # is something like 3 fAm # so the resultant correction is here, per dipole # dpl_offset = N_pyr * 50.207 dpl_offset = { # these values will be subtracted 'L2': N_pyr * 0.0443, 'L5': N_pyr * -49.0502 # 'L5': N_pyr * -48.3642, # will be calculated next, this is a placeholder # 'agg': None, } # L2 dipole offset can be roughly baseline shifted over # the entire range of t self.data['L2'] -= dpl_offset['L2'] # L5 dipole offset should be different for interval [50., 500.] # and then it can be offset # slope (m) and intercept (b) params for L5 dipole offset # uncorrected for N_cells # these values were fit over the range [37., 750.) m = 3.4770508e-3 b = -51.231085 # these values were fit over the range [750., 5000] t1 = 750. m1 = 1.01e-4 b1 = -48.412078 # piecewise normalization self.data['L5'][self.times <= 37.] -= dpl_offset['L5'] self.data['L5'][(self.times > 37.) & (self.times < t1)] -= N_pyr * \ (m * self.times[(self.times > 37.) & (self.times < t1)] + b) self.data['L5'][self.times >= t1] -= N_pyr * \ (m1 * self.times[self.times >= t1] + b1) # recalculate the aggregate dipole based on the baseline # normalized ones self.data['agg'] = self.data['L2'] + self.data['L5'] def write(self, fname): """Write dipole values to a file. Parameters ---------- fname : str Full path to the output file (.txt) Outputs ------- A tab separatd txt file where rows correspond to samples and columns correspond to 1) time (s), 2) aggregate current dipole (scaled nAm), 3) L2/3 current dipole (scaled nAm), and 4) L5 current dipole (scaled nAm) """ if self.nave > 1: warnings.warn("Saving Dipole to file that is an average of %d" " trials" % self.nave) X = [self.times] fmt = ['%3.3f'] for data in self.data.values(): X.append(data) fmt.append('%5.4f') X = np.r_[X].T np.savetxt(fname, X, fmt=fmt, delimiter='\t')
2.515625
3
openstates/openstates-master/openstates/ga/bills.py
Jgorsick/Advocacy_Angular
0
11631
<reponame>Jgorsick/Advocacy_Angular from billy.scrape.bills import BillScraper, Bill from billy.scrape.votes import Vote from collections import defaultdict from .util import get_client, get_url, backoff # Methods (7): # GetLegislationDetail(xs:int LegislationId, ) # # GetLegislationDetailByDescription(ns2:DocumentType DocumentType, # xs:int Number, xs:int SessionId) # # GetLegislationForSession(xs:int SessionId, ) # # GetLegislationRange(ns2:LegislationIndexRangeSet Range, ) # # GetLegislationRanges(xs:int SessionId, # ns2:DocumentType DocumentType, xs:int RangeSize, ) # # GetLegislationSearchResultsPaged(ns2:LegislationSearchConstraints # Constraints, xs:int PageSize, # xs:int StartIndex, ) # GetTitles() member_cache = {} SOURCE_URL = "http://www.legis.ga.gov/Legislation/en-US/display/{session}/{bid}" class GABillScraper(BillScraper): jurisdiction = 'ga' lservice = get_client("Legislation").service vservice = get_client("Votes").service mservice = get_client("Members").service lsource = get_url("Legislation") msource = get_url("Members") vsource = get_url("Votes") def get_member(self, member_id): if member_id in member_cache: return member_cache[member_id] mem = backoff(self.mservice.GetMember, member_id) member_cache[member_id] = mem return mem def scrape(self, session, chambers): sid = self.metadata['session_details'][session]['_guid'] legislation = backoff( self.lservice.GetLegislationForSession, sid )['LegislationIndex'] for leg in legislation: lid = leg['Id'] instrument = backoff(self.lservice.GetLegislationDetail, lid) history = [x for x in instrument['StatusHistory'][0]] actions = reversed([{ "code": x['Code'], "action": x['Description'], "_guid": x['Id'], "date": x['Date'] } for x in history]) guid = instrument['Id'] bill_type = instrument['DocumentType'] chamber = { "H": "lower", "S": "upper", "J": "joint" }[bill_type[0]] # XXX: This is a bit of a hack. bill_id = "%s %s" % ( bill_type, instrument['Number'], ) if instrument['Suffix']: bill_id += instrument['Suffix'] title = instrument['Caption'] description = instrument['Summary'] if title is None: continue bill = Bill( session, chamber, bill_id, title, description=description, _guid=guid ) if instrument['Votes']: for vote_ in instrument['Votes']: _, vote_ = vote_ vote_ = backoff(self.vservice.GetVote, vote_[0]['VoteId']) vote = Vote( {"House": "lower", "Senate": "upper"}[vote_['Branch']], vote_['Date'], vote_['Caption'] or "Vote on Bill", (vote_['Yeas'] > vote_['Nays']), vote_['Yeas'], vote_['Nays'], (vote_['Excused'] + vote_['NotVoting']), session=session, bill_id=bill_id, bill_chamber=chamber) vote.add_source(self.vsource) methods = {"Yea": vote.yes, "Nay": vote.no,} for vdetail in vote_['Votes'][0]: whom = vdetail['Member'] how = vdetail['MemberVoted'] try: m = methods[how] except KeyError: m = vote.other m(whom['Name']) bill.add_vote(vote) types = { "HI": ["other"], "SI": ["other"], "HH": ["other"], "SH": ["other"], "HPF": ["bill:introduced"], "HDSAS": ["other"], "SPF": ["bill:introduced"], "HSR": ["bill:reading:2"], "SSR": ["bill:reading:2"], "HFR": ["bill:reading:1"], "SFR": ["bill:reading:1"], "HRECM": ["bill:withdrawn", "committee:referred"], "SRECM": ["bill:withdrawn", "committee:referred"], "SW&C": ["bill:withdrawn", "committee:referred"], "HW&C": ["bill:withdrawn", "committee:referred"], "HRA": ["bill:passed"], "SRA": ["bill:passed"], "HPA": ["bill:passed"], "HRECO": ["other"], "SPA": ["bill:passed"], "HTABL": ["other"], # "House Tabled" - what is this? "SDHAS": ["other"], "HCFR": ["committee:passed:favorable"], "SCFR": ["committee:passed:favorable"], "HRAR": ["committee:referred"], "SRAR": ["committee:referred"], "STR": ["bill:reading:3"], "SAHAS": ["other"], "SE": ["bill:passed"], "SR": ["committee:referred"], "HTRL": ["bill:reading:3", "bill:failed"], "HTR": ["bill:reading:3"], "S3RLT": ["bill:reading:3", "bill:failed"], "HASAS": ["other"], "S3RPP": ["other"], "STAB": ["other"], "SRECO": ["other"], "SAPPT": ["other"], "HCA": ["other"], "HNOM": ["other"], "HTT": ["other"], "STT": ["other"], "SRECP": ["other"], "SCRA": ["other"], "SNOM": ["other"], "S2R": ["bill:reading:2"], "H2R": ["bill:reading:2"], "SENG": ["bill:passed"], "HENG": ["bill:passed"], "HPOST": ["other"], "HCAP": ["other"], "SDSG": ["governor:signed"], "SSG": ["governor:received"], "Signed Gov": ["governor:signed"], "HDSG": ["governor:signed"], "HSG": ["governor:received"], "EFF": ["other"], "HRP": ["other"], "STH": ["other"], "HTS": ["other"], } ccommittees = defaultdict(list) committees = instrument['Committees'] if committees: for committee in committees[0]: ccommittees[{ "House": "lower", "Senate": "upper", }[committee['Type']]].append(committee['Name']) for action in actions: chamber = { "H": "lower", "S": "upper", "E": "other", # Effective Date }[action['code'][0]] try: _types = types[action['code']] except KeyError: self.debug(action) _types = ["other"] committees = [] if any(('committee' in x for x in _types)): committees = [str(x) for x in ccommittees.get(chamber, [])] bill.add_action(chamber, action['action'], action['date'], _types, committees=committees, _code=action['code'], _code_id=action['_guid']) sponsors = [] if instrument['Authors']: sponsors = instrument['Authors']['Sponsorship'] if 'Sponsors' in instrument and instrument['Sponsors']: sponsors += instrument['Sponsors']['Sponsorship'] sponsors = [ (x['Type'], self.get_member(x['MemberId'])) for x in sponsors ] for typ, sponsor in sponsors: name = "{First} {Last}".format(**dict(sponsor['Name'])) bill.add_sponsor( 'primary' if 'Author' in typ else 'seconday', name ) for version in instrument['Versions']['DocumentDescription']: name, url, doc_id, version_id = [ version[x] for x in [ 'Description', 'Url', 'Id', 'Version' ] ] bill.add_version( name, url, mimetype='application/pdf', _internal_document_id=doc_id, _version_id=version_id ) versions = sorted( bill['versions'], key=lambda x: x['_internal_document_id'] ) bill['versions'] = versions bill.add_source(self.msource) bill.add_source(self.lsource) bill.add_source(SOURCE_URL.format(**{ "session": session, "bid": guid, })) self.save_bill(bill)
2.40625
2
data/external/repositories_2to3/267667/kaggle-heart-master/generate_roi_pkl.py
Keesiu/meta-kaggle
0
11632
import argparse import numpy as np import glob import re from log import print_to_file from scipy.fftpack import fftn, ifftn from skimage.feature import peak_local_max, canny from skimage.transform import hough_circle import pickle as pickle from paths import TRAIN_DATA_PATH, LOGS_PATH, PKL_TRAIN_DATA_PATH, PKL_TEST_DATA_PATH from paths import TEST_DATA_PATH def orthogonal_projection_on_slice(percentual_coordinate, source_metadata, target_metadata): point = np.array([[percentual_coordinate[0]], [percentual_coordinate[1]], [0], [1]]) image_size = [source_metadata["Rows"], source_metadata["Columns"]] point = np.dot(np.array( [[image_size[0],0,0,0], [0,image_size[1],0,0], [0,0,0,0], [0,0,0,1]]), point) pixel_spacing = source_metadata["PixelSpacing"] point = np.dot(np.array( [[pixel_spacing[0],0,0,0], [0,pixel_spacing[1],0,0], [0,0,0,0], [0,0,0,1]]), point) Fa = np.array(source_metadata["ImageOrientationPatient"]).reshape( (2,3) )[::-1,:] posa = source_metadata["ImagePositionPatient"] point = np.dot(np.array( [[Fa[0,0],Fa[1,0],0,posa[0]], [Fa[0,1],Fa[1,1],0,posa[1]], [Fa[0,2],Fa[1,2],0,posa[2]], [0,0,0,1]]), point) posb = target_metadata["ImagePositionPatient"] point = np.dot(np.array( [[1,0,0,-posb[0]], [0,1,0,-posb[1]], [0,0,1,-posb[2]], [0,0,0,1]]), point) Fb = np.array(target_metadata["ImageOrientationPatient"]).reshape( (2,3) )[::-1,:] ff0 = np.sqrt(np.sum(Fb[0,:]*Fb[0,:])) ff1 = np.sqrt(np.sum(Fb[1,:]*Fb[1,:])) point = np.dot(np.array( [[Fb[0,0]/ff0,Fb[0,1]/ff0,Fb[0,2]/ff0,0], [Fb[1,0]/ff1,Fb[1,1]/ff1,Fb[1,2]/ff1,0], [0,0,0,0], [0,0,0,1]]), point) pixel_spacing = target_metadata["PixelSpacing"] point = np.dot(np.array( [[1./pixel_spacing[0],0,0,0], [0,1./pixel_spacing[1],0,0], [0,0,0,0], [0,0,0,1]]), point) image_size = [target_metadata["Rows"], target_metadata["Columns"]] point = np.dot(np.array( [[1./image_size[0],0,0,0], [0,1./image_size[1],0,0], [0,0,0,0], [0,0,0,1]]), point) return point[:2,0] # percentual coordinate as well #joni minradius = 15 maxradius = 65 kernel_width = 5 center_margin = 8 num_peaks = 10 num_circles = 10 # 20 radstep = 2 #ira minradius_mm=25 maxradius_mm=45 kernel_width=5 center_margin=8 num_peaks=10 num_circles=20 radstep=2 def extract_roi(data, pixel_spacing, minradius_mm=15, maxradius_mm=65, kernel_width=5, center_margin=8, num_peaks=10, num_circles=10, radstep=2): """ Returns center and radii of ROI region in (i,j) format """ # radius of the smallest and largest circles in mm estimated from the train set # convert to pixel counts minradius = int(minradius_mm / pixel_spacing) maxradius = int(maxradius_mm / pixel_spacing) ximagesize = data[0]['data'].shape[1] yimagesize = data[0]['data'].shape[2] xsurface = np.tile(list(range(ximagesize)), (yimagesize, 1)).T ysurface = np.tile(list(range(yimagesize)), (ximagesize, 1)) lsurface = np.zeros((ximagesize, yimagesize)) allcenters = [] allaccums = [] allradii = [] for dslice in data: ff1 = fftn(dslice['data']) fh = np.absolute(ifftn(ff1[1, :, :])) fh[fh < 0.1 * np.max(fh)] = 0.0 image = 1. * fh / np.max(fh) # find hough circles and detect two radii edges = canny(image, sigma=3) hough_radii = np.arange(minradius, maxradius, radstep) hough_res = hough_circle(edges, hough_radii) if hough_res.any(): centers = [] accums = [] radii = [] for radius, h in zip(hough_radii, hough_res): # For each radius, extract num_peaks circles peaks = peak_local_max(h, num_peaks=num_peaks) centers.extend(peaks) accums.extend(h[peaks[:, 0], peaks[:, 1]]) radii.extend([radius] * num_peaks) # Keep the most prominent num_circles circles sorted_circles_idxs = np.argsort(accums)[::-1][:num_circles] for idx in sorted_circles_idxs: center_x, center_y = centers[idx] allcenters.append(centers[idx]) allradii.append(radii[idx]) allaccums.append(accums[idx]) brightness = accums[idx] lsurface = lsurface + brightness * np.exp( -((xsurface - center_x) ** 2 + (ysurface - center_y) ** 2) / kernel_width ** 2) lsurface = lsurface / lsurface.max() # select most likely ROI center roi_center = np.unravel_index(lsurface.argmax(), lsurface.shape) # determine ROI radius roi_x_radius = 0 roi_y_radius = 0 for idx in range(len(allcenters)): xshift = np.abs(allcenters[idx][0] - roi_center[0]) yshift = np.abs(allcenters[idx][1] - roi_center[1]) if (xshift <= center_margin) & (yshift <= center_margin): roi_x_radius = np.max((roi_x_radius, allradii[idx] + xshift)) roi_y_radius = np.max((roi_y_radius, allradii[idx] + yshift)) if roi_x_radius > 0 and roi_y_radius > 0: roi_radii = roi_x_radius, roi_y_radius else: roi_radii = None return roi_center, roi_radii def read_slice(path): return pickle.load(open(path))['data'] def read_metadata(path): d = pickle.load(open(path))['metadata'][0] metadata = {k: d[k] for k in ['PixelSpacing', 'ImageOrientationPatient', 'ImagePositionPatient', 'SliceLocation', 'PatientSex', 'PatientAge', 'Rows', 'Columns']} metadata['PixelSpacing'] = np.float32(metadata['PixelSpacing']) metadata['ImageOrientationPatient'] = np.float32(metadata['ImageOrientationPatient']) metadata['SliceLocation'] = np.float32(metadata['SliceLocation']) metadata['ImagePositionPatient'] = np.float32(metadata['ImagePositionPatient']) metadata['PatientSex'] = 1 if metadata['PatientSex'] == 'F' else 0 metadata['PatientAge'] = int(metadata['PatientAge'][1:3]) metadata['Rows'] = int(metadata['Rows']) metadata['Columns'] = int(metadata['Columns']) return metadata def get_patient_data(patient_data_path): patient_data = [] spaths = sorted(glob.glob(patient_data_path + '/sax_*.pkl'), key=lambda x: int(re.search(r'/\w*_(\d+)*\.pkl$', x).group(1))) pid = re.search(r'/(\d+)/study$', patient_data_path).group(1) for s in spaths: slice_id = re.search(r'/(sax_\d+\.pkl)$', s).group(1) metadata = read_metadata(s) d = read_slice(s) patient_data.append({'data': d, 'metadata': metadata, 'slice_id': slice_id, 'patient_id': pid}) return patient_data def get_patient_ch_data(patient_data_path): patient_data = [] spaths = sorted(glob.glob(patient_data_path + '/*ch_*.pkl'), key=lambda x: int(re.search(r'/\w*_(\d+)*\.pkl$', x).group(1))) pid = re.search(r'/(\d+)/study$', patient_data_path).group(1) for s in spaths: slice_id = re.search(r'/(\d+ch_\d+\.pkl)$', s).group(1) metadata = read_metadata(s) d = read_slice(s) patient_data.append({'data': d, 'metadata': metadata, 'slice_id': slice_id, 'patient_id': pid}) return patient_data def sort_slices(slices): nslices = len(slices) positions = np.zeros((nslices,)) for i in range(nslices): positions[i] = slices[i]['metadata']['SliceLocation'] sorted_slices = [s for pos, s in sorted(zip(positions.tolist(), slices), key=lambda x: x[0], reverse=True)] return sorted_slices def group_slices(slice_stack): """ Groups slices into stacks with the same image orientation :param slice_stack: :return: list of slice stacks """ img_orientations = [] for s in slice_stack: img_orientations.append(tuple(s['metadata']['ImageOrientationPatient'])) img_orientations = list(set(img_orientations)) if len(img_orientations) == 1: return [slice_stack] else: slice_groups = [[] for _ in range(len(img_orientations))] for s in slice_stack: group = img_orientations.index(tuple(s['metadata']['ImageOrientationPatient'])) slice_groups[group].append(s) return slice_groups def plot_roi(slice_group, roi_center, roi_radii): x_roi_center, y_roi_center = roi_center[0], roi_center[1] x_roi_radius, y_roi_radius = roi_radii[0], roi_radii[1] print('nslices', len(slice_group)) for dslice in [slice_group[len(slice_group) / 2]]: outdata = dslice['data'] # print dslice['slice_id'] # print dslice['metadata']['SliceLocation'] # print dslice['metadata']['ImageOrientationPatient'] # print dslice['metadata']['PixelSpacing'] # print dslice['data'].shape # print '--------------------------------------' roi_mask = np.zeros_like(outdata[0]) roi_mask[x_roi_center - x_roi_radius:x_roi_center + x_roi_radius, y_roi_center - y_roi_radius:y_roi_center + y_roi_radius] = 1 outdata[:, roi_mask > 0.5] = 0.4 * outdata[:, roi_mask > 0.5] outdata[:, roi_mask > 0.5] = 0.4 * outdata[:, roi_mask > 0.5] fig = plt.figure(1) fig.canvas.set_window_title(dslice['patient_id'] + dslice['slice_id']) def init_out(): im.set_data(outdata[0]) def animate_out(i): im.set_data(outdata[i]) return im im = fig.gca().imshow(outdata[0], cmap='gist_gray_r', vmin=0, vmax=255) anim = animation.FuncAnimation(fig, animate_out, init_func=init_out, frames=30, interval=50) plt.show() def get_slice2roi(data_path, plot=False): patient_paths = sorted(glob.glob(data_path + '*/study')) slice2roi = {} for p in patient_paths: patient_data = get_patient_data(p) sorted_slices = sort_slices(patient_data) grouped_slices = group_slices(sorted_slices) ch_data = get_patient_ch_data(p) ch4, ch2 = None,None for data in ch_data: if data['slice_id'].startswith("4"): ch4 = data elif data['slice_id'].startswith("2"): ch2 = data # init patient dict pid = sorted_slices[0]['patient_id'] print("processing patient %s" % pid) # print pid slice2roi[pid] = {} # pixel spacing doesn't change within one patient pixel_spacing = sorted_slices[0]['metadata']['PixelSpacing'][0] for slice_group in grouped_slices: try: roi_center, roi_radii = extract_roi(slice_group, pixel_spacing) except: print('Could not find ROI') roi_center, roi_radii = None, None print(roi_center, roi_radii) if plot and roi_center and roi_radii: pass #plot_roi(slice_group, roi_center, roi_radii) for s in slice_group: sid = s['slice_id'] slice2roi[pid][sid] = {'roi_center': roi_center, 'roi_radii': roi_radii} # project found roi_centers on the 4ch and 2ch slice ch4_centers = [] ch2_centers = [] for slice in sorted_slices: sid = slice['slice_id'] roi_center = slice2roi[pid][sid]['roi_center'] metadata_source = slice['metadata'] hough_roi_center = (float(roi_center[0]) / metadata_source['Rows'], float(roi_center[1]) / metadata_source['Columns']) if ch4 is not None: metadata_target = ch4['metadata'] result = orthogonal_projection_on_slice(hough_roi_center, metadata_source, metadata_target) ch_roi_center = [float(result[0]) * metadata_target['Rows'], float(result[1]) * metadata_target['Columns']] ch4_centers.append(ch_roi_center) if ch2 is not None: metadata_target = ch2['metadata'] result = orthogonal_projection_on_slice(hough_roi_center, metadata_source, metadata_target) ch_roi_center = [float(result[0]) * metadata_target['Rows'], float(result[1]) * metadata_target['Columns']] ch2_centers.append(ch_roi_center) if ch4 is not None: centers = np.array(ch4_centers) ch4_result_center = np.mean(centers, axis=0) ch4_result_radius = np.max(np.sqrt((centers - ch4_result_center)**2)) sid = ch4['slice_id'] slice2roi[pid][sid] = {'roi_center': tuple(ch4_result_center), 'roi_radii': (ch4_result_radius, ch4_result_radius)} if ch2 is not None: centers = np.array(ch2_centers) ch2_result_center = np.mean(centers, axis=0) ch2_result_radius = np.max(np.sqrt((centers - ch2_result_center)**2)) sid = ch2['slice_id'] slice2roi[pid][sid] = {'roi_center': tuple(ch2_result_center), 'roi_radii': (ch2_result_radius, ch2_result_radius)} filename = data_path.split('/')[-1] + '_slice2roi_joni.pkl' with open(filename, 'w') as f: pickle.dump(slice2roi, f) print('saved to ', filename) return slice2roi if __name__ == '__main__': parser = argparse.ArgumentParser(description=__doc__) required = parser.add_argument_group('required arguments') #required.add_argument('-c', '--config', # help='configuration to run', # required=True) args = parser.parse_args() data_paths = [PKL_TRAIN_DATA_PATH, PKL_TEST_DATA_PATH] log_path = LOGS_PATH + "generate_roi.log" with print_to_file(log_path): for d in data_paths: get_slice2roi(d, plot=True) print("log saved to '%s'" % log_path)
1.921875
2
scrapers/scrapsfbos.py
ndd365/showup
48
11633
<gh_stars>10-100 import feedparser from bs4 import BeautifulSoup from dateutil.parser import parse from datetime import timedelta import pytz from apiclient.discovery import build from httplib2 import Http from oauth2client import file, client, tools from oauth2client.service_account import ServiceAccountCredentials scopes = 'https://www.googleapis.com/auth/calendar' credentials = ServiceAccountCredentials.from_json_keyfile_name( 'client_secret.json', scopes) http_auth = credentials.authorize(Http()) CAL = build('calendar', 'v3', http=credentials.authorize(Http())) class Event(object): def __init__(self, name, start_date, end_date): self.name = name self.start_date = start_date self.end_date = end_date def __repr__(self): return self.name def get_calendar_data(): events = [] url = "http://sfbos.org/events/feed" feed = feedparser.parse(url) for item in feed["items"]: event_name = item["title"] event_details=item["summary_detail"]["value"] soup = BeautifulSoup(event_details, 'html.parser') start_date_unaware = parse(soup.span.string) start_date = start_date_unaware.replace(tzinfo=pytz.UTC) end_date = start_date + timedelta(hours=1) event = Event(event_name, start_date, end_date) print event events.append(event) return events def sync_to_google_calendar(events): for event in events: GMT_OFF = '-07:00' # PDT/MST/GMT-7 start_date = event.start_date.isoformat() end_date = event.end_date.isoformat() gcal_event = { 'summary': event.name, 'start': {'dateTime': start_date}, 'end': {'dateTime': end_date}, 'attendees': [ # {'email': '<EMAIL>'}, # {'email': '<EMAIL>'}, ], } print gcal_event e = CAL.events().insert(calendarId='<EMAIL>', sendNotifications=True, body=gcal_event).execute() print e def print_calendars(): page_token = None while True: calendar_list = CAL.calendarList().list(pageToken=page_token).execute() for calendar_list_entry in calendar_list['items']: print calendar_list_entry page_token = calendar_list.get('nextPageToken') if not page_token: break events = get_calendar_data() sync_to_google_calendar(events)
2.875
3
app/api/v2/models/product.py
danuluma/dannstore
0
11634
<reponame>danuluma/dannstore<gh_stars>0 import os import sys LOCALPATH = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, LOCALPATH + '/../../../../') from app.api.v2.db import Db def format_book(book): """Formats the results to a dictionary""" book = { "id": book[0], "title": book[1], "description": book[2], "category": book[3], "price": book[4], "quantity": book[5], "minimum": book[6], "image_url": book[7], "created_by": book[8], "updated_by": book[9], "created_at": str(book[10]) } return book class ProductModel(Db): """Product Model. Books stuff here""" def get_all_books(self): """Gets all books from the db""" booklist = [] for book in Db().get_query('books'): details = format_book(book) booklist.append(details) return booklist def get_single_book(self, param, this_row): """Gets a single book""" books = [row for row in Db().get_query( 'books') if row[this_row] == param] if books: book = books[0] return format_book(book) def add_new_book(self, book): """Adds a new book to the db""" try: Db().db_query(f""" INSERT INTO books (title, description, category, price, quantity, minimum, image_url, created_by) VALUES ('{book[0]}', '{book[1]}', '{book[2]}', {book[3]}, {book[4]}, {book[5]}, '{book[6]}', {book[7]}); """) except: return "Failed to add", 500 def edit_book(self, book_id, book): """Updates a book's details""" Db().db_query(f"""UPDATE books SET title = '{book[0]}', description = '{book[1]}', category = '{book[2]}', price = {book[3]}, quantity = {book[4]}, minimum = {book[5]}, image_url = '{book[6]}', updated_by = {book[7]} WHERE id = {book_id};""") def sell_book(self, book_id, quantity): """Updates a book's quantity""" Db().db_query(f"""UPDATE books SET quantity = quantity - {quantity} WHERE id = {book_id};""") def delete_book(self, book_id): """Deletes a book""" try: Db().db_query(f"""DELETE FROM books WHERE id = {book_id};""") except: return "Failed", 500
3.09375
3
pbq/pbq.py
amirdor/pbq
0
11635
# -*- coding: utf-8 -*- """Main module.""" import os from google.cloud import bigquery from pbq.query import Query from google.cloud import bigquery_storage_v1beta1 from google.cloud.exceptions import NotFound from google.api_core.exceptions import BadRequest import pandas as pd import datetime class PBQ(object): """ bigquery driver using the google official API Attributes ------ query : str the query query_obj : Query pbq.Query object client : Client the client object for bigquery bqstorage_client : BigQueryStorageClient the google storage client object Methods ------ to_dataframe(save_query=False, **params) return the query results as data frame to_csv(filename, sep=',', save_query=False, **params) save the query results to a csv file save_to_table(table, dataset, project=None, replace=True, partition=None) save query to table run_query() simply execute your query table_details(table, dataset, project) get the information about the table Static Methods ------ save_file_to_table(filename, table, dataset, project, file_format=bigquery.SourceFormat.CSV, max_bad_records=0, replace=True, partition=None) save file to table, it can be partitioned and it can append to existing table. the supported formats are CSV or PARQUET save_dataframe_to_table(df: pd.DataFrame, table, dataset, project, max_bad_records=0, replace=True, partition=None) same as save file just with pandas dataframe table_exists(client: bigquery.Client, table_ref: bigquery.table.TableReference) check if table exists - if True - table exists else not exists Examples ------ getting query to dataframe >>> from pbq import Query, PBQ >>> query = Query("select * from table") >>> print("the query price:", query.price) >>> if not query.validate(): >>> raise RuntimeError("table not valid") >>> pbq = PBQ(query) >>> pbq.to_dataframe() saving query to csv >>> from pbq import Query, PBQ >>> query = Query("select * from table") >>> pbq = PBQ(query) >>> pbq.to_csv() saving dataframe to table >>> import pandas as pd >>> from pbq import Query, PBQ >>> df = pd.DataFrame() >>> PBQ.save_dataframe_to_table(df, 'table', 'dataset', 'project_id', partition='20191013', replace=False) """ def __init__(self, query: Query, project=None): """ bigquery driver using the google official API :param query: Query object :param project: str the BQ project """ self.query = query.query self.query_obj = query self.project = project if project: self.client = bigquery.Client(project=project) else: self.client = bigquery.Client() self.bqstorage_client = bigquery_storage_v1beta1.BigQueryStorageClient() def to_dataframe(self, save_query=False, **params): """ return the query results as data frame in order to save the query to a table as well as getting the dataframe, send a dict as params with: - table - dataset it will save to the same project :param save_query: boolean if to save the query to a table also :param params: dict when `save_query` flag is on you need to give the relevant params :return: pd.DataFrame the query results """ job_config = bigquery.QueryJobConfig() if save_query: table_ref = self.client.dataset(params['dataset']).table(params['table']) job_config.destination = table_ref query_job = self.client.query(query=self.query, job_config=job_config) query_job_res = query_job.result() df = query_job_res.to_dataframe(bqstorage_client=self.bqstorage_client) return df def to_csv(self, filename, sep=',', save_query=False, **params): """ save the query results to a csv file in order to save the query to a table as well as getting the dataframe, send a dict as params with: - table - dataset it will save to the same project :param filename: str with the path to save the file :param sep: str separator to the csv file :param save_query: boolean if to save the query to a table also :param params: dict when `save_query` flag is on you need to give the relevant params """ df = self.to_dataframe(save_query, **params) df.to_csv(filename, sep=sep, index=False) def run_query(self): """ execute your query """ # Set the destination table client = self.client query_job = client.query(self.query) query_job.result() print('Done running your amazing query') def save_to_table(self, table, dataset, project=None, replace=True, partition=None): """ save query to table :param table: str table name :param dataset: str data set name :param project: str project name :param replace: boolean if set as true - it will replace the table, else append to table (default: True) :param partition: str partition format DDMMYYY (default: None) """ job_config = bigquery.QueryJobConfig() # Set the destination table client = self.client if partition: table = '{0}${1}'.format(table, partition) table_ref = client.dataset(dataset).table(table.split('$')[0]) exists_ok = PBQ._writing_disposition(job_config, replace) if project: table_ref = client.dataset(dataset, project=project).table(table) PBQ._create_table(client, exists_ok, partition, replace, table_ref) job_config.destination = table_ref query_job = client.query(self.query, job_config=job_config) query_job.result() print('Query results loaded to table {}'.format(table_ref.path)) @staticmethod def _writing_disposition(job_config: bigquery.QueryJobConfig, replace): exists_ok = False if replace: exists_ok = True job_config.write_disposition = bigquery.WriteDisposition.WRITE_TRUNCATE else: job_config.write_disposition = bigquery.WriteDisposition.WRITE_APPEND return exists_ok @staticmethod def _create_table(client: bigquery.Client, exists_ok, partition, replace, table_ref): if (partition and not PBQ.table_exists(client, table_ref)) or (not partition and replace): bq_table = bigquery.Table(table_ref) if partition: time_partitioning = bigquery.TimePartitioning() bq_table.time_partitioning = time_partitioning client.create_table(bq_table, exists_ok=exists_ok) @staticmethod def save_file_to_table(filename, table, dataset, project, file_format=bigquery.SourceFormat.CSV, max_bad_records=0, replace=True, partition=None): """ save file to table, it can be partitioned and it can append to existing table. the supported formats are CSV or PARQUET :param filename: str with the path to save the file :param table: str table name :param dataset: str data set name :param project: str project name :param file_format: str possible file format (CSV, PARQUET) (default: CSV) :param max_bad_records: int number of bad records allowed in file (default: 0) :param replace: boolean if set as trueit will replace the table, else append to table (default: True) :param partition: str partition format DDMMYYY (default: None) """ client = bigquery.Client(project=project) dataset_ref = client.dataset(dataset) table_ref = dataset_ref.table(table) job_config = bigquery.LoadJobConfig() job_config.max_bad_records = max_bad_records job_config.source_format = file_format exists_ok = PBQ._writing_disposition(job_config, replace) if file_format == bigquery.SourceFormat.CSV: job_config.skip_leading_rows = 1 job_config.autodetect = True PBQ._create_table(client, exists_ok, partition, replace, table_ref) if not partition: with open(filename, "rb") as source_file: job = client.load_table_from_file(source_file, table_ref, job_config=job_config) job.result() # Waits for table load to complete. print("Loaded {} rows into {}:{}.".format(job.output_rows, dataset, table)) else: print('fallback loading by CMD command due to missing api feature for partition') table = '{0}${1}'.format(table, partition) cmd = "bq load" if replace: cmd = "{} --replace".format(cmd) cmd = "{cmd} --source_format={file_format} '{project}:{dataset}.{tbl_name}' {filename}". \ format(cmd=cmd, tbl_name=table, filename=filename, project=project, dataset=dataset, file_format=file_format) os.system(cmd) @staticmethod def save_dataframe_to_table(df: pd.DataFrame, table, dataset, project, max_bad_records=0, replace=True, partition=None, validate_params=False): """ save pd.DataFrame object to table :param df: pd.DataFrame the dataframe you want to save :param table: str table name :param dataset: str data set name :param project: str project name :param max_bad_records: int number of bad records allowed in file (default: 0) :param replace: boolean if set as true - it will replace the table, else append to table (default: True) :param partition: str partition format DDMMYYY (default: None) :param validate_params: boolean validate the schema of the table to the dataframe object (default: False) """ now = datetime.datetime.now() random_string = '{}'.format(now.strftime('%y%m%d%H%M%S')) input_path = "/tmp/tmp-{}.parquet".format(random_string) schema = None if validate_params: # because of the fallback it need to change to be as the schema table_details = PBQ.table_details(table, dataset, project) if 'schema' in table_details: schema = table_details['schema'] PBQ._save_df_to_parquet(df, input_path, schema=schema) PBQ.save_file_to_table(input_path, table, dataset, project, file_format=bigquery.SourceFormat.PARQUET, max_bad_records=max_bad_records, replace=replace, partition=partition) @staticmethod def _save_df_to_parquet(df, input_path, index=False, schema=None): if schema: for s in schema: if s['field_type'] == 'STRING': s['field_type'] = 'str' if s['field_type'] == 'INTEGER': s['field_type'] = 'int' if s['field_type'] == 'TIMESTAMP': df[s['column']] = pd.to_datetime(df[s['column']], errors='coerce') continue if s['field_type'] == 'DATE': df[s['column']] = pd.to_datetime(df[s['column']], errors='coerce') df[s['column']] = df[s['column']].dt.date continue df.columns = ["{}".format(col) for col in df.columns] df.to_parquet(input_path, index=index) @staticmethod def table_details(table, dataset, project): """ return a dict object with some details about the table :param table: str table name :param dataset: str data set name :param project: str project name :return: dict with some table information like, last_modified_time, num_bytes, num_rows, and creation_time """ client = bigquery.Client(project=project) dataset_ref = client.dataset(dataset, project=project) table_ref = dataset_ref.table(table) try: table = client.get_table(table_ref) except NotFound as error: return {} schema = [] for s in table.schema: schema.append({'column': s.name, 'field_type': s.field_type}) res = {'last_modified_time': table.modified, 'num_bytes': table.num_bytes, 'num_rows': table.num_rows, 'creation_time': table.created, 'schema': schema} return res @staticmethod def table_exists(client: bigquery.Client, table_ref: bigquery.table.TableReference): """ check if table exists - if True - table exists else not exists :param client: bigquery.Client object :param table_ref: bigquery.table.TableReference object with the table name and dataset :return: boolean True if table exists False if table not exists """ try: table = client.get_table(table_ref) if table: return True except NotFound as error: return False except BadRequest as error: return True
3.328125
3
appvalidator/specprocessor.py
mstriemer/app-validator
20
11636
import re import types from functools import partial LITERAL_TYPE = types.StringTypes + (int, float, long, bool, ) class Spec(object): """ This object, when overridden with an object that implements a file format specification, will perform validation on a given parsed version of the format input. SPEC Node Documentation: ======================== expected_type: A type object whose type the object should match. required_nodes: A list of nodes that are required for the current node. required_nodes_when: A dict of node name/lambda pairs. If the lambda evaluates to True, a node whose name corresponds to the node name is required. The current node is passed as a parameter to the lambda as the only argument. disallowed_nodes: A list of nodes that explicitly are disallowed in the current node. allowed_once_nodes: A list of nodes that are allowed only once. allowed_nodes: A list of nodes that are allowed multiple times. unknown_node_level: The message type to return when an unknown node is encountered. child_nodes: A dict of node definitions for nodes that can exist within this node. max_length: For sequence values only. An integer describing the maximum length of the string. not_empty: A boolean value describing whether the string/list/dict can be empty. values: A list of possible values for the node. Only applies to lists and literal nodes. value_matches: If `values` is not set, the value must match this regex. Only applies to string nodes. process: A lambda function that returns a function to process the node. The lambda accepts one parameter (self) and should return a function that accepts two parameters (self, node). child_process: A lambda function (similar to `process` that returns a function to process a child node. The lambda accepts one parameter (self) and should return a function that accepts three parameters (self, node_name, node). If this is set, no further testing will take place on child nodes. """ SPEC_NAME = "Specification" MORE_INFO = "You can find more info online." SPEC = None def __init__(self, data, err): self.data = self.parse(data) self.err = err self.error = partial(self._err_message, self.err.error) self.warning = partial(self._err_message, self.err.warning) self.notice = partial(self._err_message, self.err.notice) self.err_map = {"error": self.error, "warning": self.warning, "notice": self.notice} self.path = [] def _err_message(self, func, *args, **kwargs): if self.path: nodepath = "Node: %s" % self._get_path() if isinstance(kwargs["description"], list): kwargs["description"].append(nodepath) else: kwargs["description"] = [ kwargs["description"], nodepath] func(*args, **kwargs) def _message(self, type_, *args, **kwargs): kwargs[type_] = kwargs.pop("message") self.err_map[type_](*args, **kwargs) def validate(self): # Validate the root node. root_name, root_node = self.get_root_node(self.data) root_val_result = self.validate_root_node(root_node) if root_val_result == False: return # Iterate the tree and validate as we go. self.iterate(root_name, root_node, self.SPEC) def parse(self, data): pass def validate_root_node(self, node): pass def get_root_node(self, data): """ We expect this function to return a tuple: ("Root Node Name", root_node) """ def has_attribute(self, node, key): pass def get_attribute(self, node, key): pass def has_child(self, node, child_name): pass def get_children(self, node): """ This function should return a list of (child_name, child)-form tuples. """ def iterate(self, branch_name, branch, spec_branch): self.path.append(branch_name) self._iterate(branch_name, branch, spec_branch) self.path.pop() def _get_path(self): return ' > '.join(self.path) def _iterate(self, branch_name, branch, spec_branch): """Iterate the tree of nodes and validate as we go.""" # Check that the node is of the proper type. If it isn't, then we need # to stop iterating at this point. exp_type = spec_branch.get("expected_type") if (exp_type and not isinstance(branch, exp_type) or # Handle `isinstance(True, int) == True` :( (isinstance(branch, bool) and (exp_type == int if isinstance(exp_type, type) else bool not in exp_type))): self.error( err_id=("spec", "iterate", "bad_type"), error="%s's `%s` was of an unexpected type." % (self.SPEC_NAME, branch_name), description=["While validating a %s, a `%s` was encountered " "which is of an improper type." % (self.SPEC_NAME, branch_name), "Found: %s" % repr(branch), self.MORE_INFO]) return # Handle any generic processing. if "process" in spec_branch: # Let the spec processor resolve the processor and then run the # processor. spec_branch["process"](self)(branch) if "not_empty" in spec_branch and not branch: self.error( err_id=("spec", "iterate", "empty"), error="`%s` is empty." % branch_name, description=["A value was expected for `%s`, but one wasn't " "found." % branch_name, self.MORE_INFO]) # If the node isn't an object... if not isinstance(branch, dict): if "values" in spec_branch and branch not in spec_branch["values"]: self.error( err_id=("spec", "iterate", "bad_value"), error="`%s` contains an invalid value in %s" % (branch_name, self.SPEC_NAME), description=["A `%s` was encountered while validating a " "`%s` containing the value '%s'. This value " "is not appropriate for this type of " "element." % (branch_name, self.SPEC_NAME, branch), self.MORE_INFO]) elif ("value_matches" in spec_branch and isinstance(branch, types.StringTypes)): raw_pattern = spec_branch["value_matches"] if not re.match(raw_pattern, branch): self.error( err_id=("spec", "iterate", "value_pattern_fail"), error="`%s` contains an invalid value in %s" % (branch_name, self.SPEC_NAME), description=["A `%s` was encountered while validating " "a `%s`. Its value does not match the " "pattern required for `%s`s." % (branch_name, self.SPEC_NAME, branch_name), "Found value: %s" % branch, "Pattern: %s" % raw_pattern, self.MORE_INFO]) if ("max_length" in spec_branch and len(branch) > spec_branch["max_length"]): self.error( err_id=("spec", "iterate", "max_length"), error="`%s` has exceeded its maximum length." % branch_name, description=["`%s` has a maximum length (%d), which has " "been exceeded (%d)." % (branch_name, spec_branch["max_length"], len(branch)), self.MORE_INFO]) # The rest of the tests are for child items. if not isinstance(branch, (list, tuple)): return if "child_nodes" in spec_branch: for child in branch: self.iterate(branch_name + " descendant", child, spec_branch["child_nodes"]) # We've got nothing else to do with lists. return # If we need to process the child nodes individually, do that now. if "child_process" in spec_branch: processor = spec_branch["child_process"](self) for child_name, child in self.get_children(branch): processor(child_name, child) # If there's nothing else to do, don't go down that path. if ("required_nodes" not in spec_branch and "required_nodes_when" not in spec_branch and "disallowed_nodes" not in spec_branch): return considered_nodes = set() # Check that all required node as present. if "required_nodes" in spec_branch: considered_nodes.update(spec_branch["required_nodes"]) for req_node in [n for n in spec_branch["required_nodes"] if not self.has_child(branch, n)]: self.error( err_id=("spec", "iterate", "missing_req"), error="%s expecting `%s`" % (self.SPEC_NAME, req_node), description=["The '%s' node of the %s expects a `%s` " "element, which was not found." % (branch_name, self.SPEC_NAME, req_node), self.MORE_INFO]) # Check that conditionally required nodes are present. if "required_nodes_when" in spec_branch: considered_nodes.update(spec_branch["required_nodes_when"].keys()) for req_node in [name for name, cond in spec_branch["required_nodes_when"].items() if cond(branch) and not self.has_child(branch, name)]: self.error( err_id=("spec", "iterate", "missing_req_cond"), error="%s expecting `%s`" % (self.SPEC_NAME, req_node), description=["The '%s' node, under the current " "circumstances, is missing a `%s` element. " "This is a required condition of a %s." % (branch_name, req_node, self.SPEC_NAME), self.MORE_INFO]) # Check that there are no disallowed nodes. if "disallowed_nodes" in spec_branch: disallowed_nodes = spec_branch["disallowed_nodes"] considered_nodes.update(disallowed_nodes) for dnode in [n for n in disallowed_nodes if self.has_child(branch, n)]: self.error( err_id=("spec", "iterate", "disallowed"), error="%s found `%s`, which is not allowed." % (self.SPEC_NAME, dnode), description=["The '%s' node contains `%s`, which is a " "disallowed element. It should be removed." % (branch_name, dnode), self.MORE_INFO]) if ("allowed_nodes" not in spec_branch and "allowed_once_nodes" not in spec_branch): return # Check that allowed nodes are obeyed. allowed_nodes = set(spec_branch.setdefault("allowed_nodes", [])) allowed_once_nodes = spec_branch.setdefault("allowed_once_nodes", []) allowed_nodes.update(allowed_once_nodes) child_node_specs = spec_branch.setdefault("child_nodes", {}) seen_nodes = set() warned_nodes = set() for child_name, child in self.get_children(branch): cspec_branch = None # Process the node first. if child_name in child_node_specs: cspec_branch = child_node_specs[child_name] elif "*" in child_node_specs: cspec_branch = child_node_specs["*"] if cspec_branch is not None: # If it's a lazily evaluated branch, evaluate it now. if isinstance(cspec_branch, types.LambdaType): cspec_branch = cspec_branch(self) # Iterate the node. self.iterate(child_name, child, cspec_branch) # If we've seen a node before that's only supposed to be seen a # single time, warn about it. if child_name in allowed_once_nodes and child_name in seen_nodes: # Don't warn about the same node multiple times. if child_name in warned_nodes: continue self.error( err_id=("spec", "iterate", "allow_once_multiple"), error="%s found `%s` more than once." % (self.SPEC_NAME, child_name), description=["%ss may only contain a single `%s` element, " "however, it was encountered multiple times." % (self.SPEC_NAME, child_name), self.MORE_INFO]) continue # Remember that we've seen this node. seen_nodes.add(child_name) if child_name in considered_nodes: continue # If the child isn't allowed, throw an error. if child_name not in allowed_nodes and "*" not in allowed_nodes: self._message( spec_branch.get("unknown_node_level", "warning"), err_id=("spec", "iterate", "not_allowed"), message="`%s` is not a recognized element within a %s" % (child_name, self.SPEC_NAME), description=["While iterating a %s, a `%s` was found " "within a %s, which is not valid." % (self.SPEC_NAME, child_name, branch_name), self.MORE_INFO])
3.265625
3
head_first_v2/ch4/modules/setup.py
alex-d-bondarev/learn-python
0
11637
from setuptools import setup setup( name='lsearch', version='1.0', description='The Head First Python Search Tools', author='<NAME>', author_email='<EMAIL>', url='headfirstlabs.com', py_modules=['lsearch'], )
1.054688
1
desktop_local_tests/windows/test_windows_public_ip_disrupt_reorder_adapters.py
UAEKondaya1/expressvpn_leak_testing
219
11638
<filename>desktop_local_tests/windows/test_windows_public_ip_disrupt_reorder_adapters.py from desktop_local_tests.public_ip_during_disruption import PublicIPDuringDisruptionTestCase from desktop_local_tests.windows.windows_reorder_adapters_disrupter import WindowsReorderAdaptersDisrupter class TestWindowsPublicIPDisruptReorderAdapters(PublicIPDuringDisruptionTestCase): '''Summary: Tests whether traffic leaving the user's device has the public IP hidden when the adapter order is changed. Details: This test will connect to VPN then swap the priority of the primary and secondary network adapters. The test then queries a webpage to detect it's public IP. Discussion: It's not 100% clear if, in the real world, adapters can change their order without user involvement. It is still however a good stress test of the application. On Windows adapter order is determined by the interface metric. It can be manually set but otherwise it is determined by the system by deciding how "good" an adapter is, e.g. what is the throughput. In theory that means metrics can change dynamically. Weaknesses: The time taken to perform each IP request is relatively long. Tests using IPResponder should be preferred over these tests. Scenarios: Requires two active adapters. TODO: Consider a variant which changes the network "Location". This is much more likely to be something a user might do. ''' def __init__(self, devices, parameters): super().__init__(WindowsReorderAdaptersDisrupter, devices, parameters)
2.515625
3
rotkehlchen/api/server.py
rotkehlchenio/rotkehlchen
137
11639
import json import logging from http import HTTPStatus from typing import Any, Dict, List, Optional, Tuple, Type, Union import werkzeug from flask import Blueprint, Flask, Response, abort, jsonify from flask.views import MethodView from flask_cors import CORS from gevent.pywsgi import WSGIServer from geventwebsocket import Resource as WebsocketResource, WebSocketServer from marshmallow import Schema from marshmallow.exceptions import ValidationError from webargs.flaskparser import parser from werkzeug.exceptions import NotFound from rotkehlchen.api.rest import RestAPI, api_response, wrap_in_fail_result from rotkehlchen.api.v1.parser import ignore_kwarg_parser, resource_parser from rotkehlchen.api.v1.resources import ( AaveBalancesResource, AaveHistoryResource, AccountingReportDataResource, AccountingReportsResource, AdexBalancesResource, AdexHistoryResource, AllAssetsResource, AllBalancesResource, AssetIconsResource, AssetMovementsResource, AssetsReplaceResource, AssetsTypesResource, AssetUpdatesResource, AssociatedLocations, AsyncTasksResource, AvalancheTransactionsResource, BalancerBalancesResource, BalancerEventsHistoryResource, BalancerTradesHistoryResource, BinanceAvailableMarkets, BinanceUserMarkets, BlockchainBalancesResource, BlockchainsAccountsResource, BTCXpubResource, CompoundBalancesResource, CompoundHistoryResource, CounterpartiesResource, CurrentAssetsPriceResource, DatabaseBackupsResource, DatabaseInfoResource, DataImportResource, DBSnapshotDeletingResource, DBSnapshotDownloadingResource, DBSnapshotExportingResource, DBSnapshotImportingResource, DefiBalancesResource, ERC20TokenInfo, ERC20TokenInfoAVAX, Eth2DailyStatsResource, Eth2StakeDepositsResource, Eth2StakeDetailsResource, Eth2ValidatorsResource, EthereumAirdropsResource, EthereumAssetsResource, EthereumModuleDataResource, EthereumModuleResource, EthereumTransactionsResource, ExchangeBalancesResource, ExchangeRatesResource, ExchangesDataResource, ExchangesResource, ExternalServicesResource, HistoricalAssetsPriceResource, HistoryActionableItemsResource, HistoryBaseEntryResource, HistoryDownloadingResource, HistoryExportingResource, HistoryProcessingResource, HistoryStatusResource, IgnoredActionsResource, IgnoredAssetsResource, InfoResource, LedgerActionsResource, LiquityStakingHistoryResource, LiquityStakingResource, LiquityTrovesHistoryResource, LiquityTrovesResource, LoopringBalancesResource, MakerdaoDSRBalanceResource, MakerdaoDSRHistoryResource, MakerdaoVaultDetailsResource, MakerdaoVaultsResource, ManuallyTrackedBalancesResource, MessagesResource, NamedEthereumModuleDataResource, NamedOracleCacheResource, NFTSBalanceResource, NFTSResource, OraclesResource, OwnedAssetsResource, PeriodicDataResource, PickleDillResource, PingResource, QueriedAddressesResource, ReverseEnsResource, SettingsResource, StakingResource, StatisticsAssetBalanceResource, StatisticsNetvalueResource, StatisticsRendererResource, StatisticsValueDistributionResource, SushiswapBalancesResource, SushiswapEventsHistoryResource, SushiswapTradesHistoryResource, TagsResource, TradesResource, UniswapBalancesResource, UniswapEventsHistoryResource, UniswapTradesHistoryResource, UserAssetsResource, UserPasswordChangeResource, UserPremiumKeyResource, UserPremiumSyncResource, UsersByNameResource, UsersResource, WatchersResource, YearnVaultsBalancesResource, YearnVaultsHistoryResource, YearnVaultsV2BalancesResource, YearnVaultsV2HistoryResource, create_blueprint, ) from rotkehlchen.api.websockets.notifier import RotkiNotifier, RotkiWSApp from rotkehlchen.logging import RotkehlchenLogsAdapter URLS = List[ Union[ Tuple[str, Type[MethodView]], Tuple[str, Type[MethodView], str], ] ] URLS_V1: URLS = [ ('/users', UsersResource), ('/watchers', WatchersResource), ('/users/<string:name>', UsersByNameResource), ('/users/<string:name>/password', UserPasswordChangeResource), ('/premium', UserPremiumKeyResource), ('/premium/sync', UserPremiumSyncResource), ('/settings', SettingsResource), ('/tasks/', AsyncTasksResource), ('/tasks/<int:task_id>', AsyncTasksResource, 'specific_async_tasks_resource'), ('/exchange_rates', ExchangeRatesResource), ('/external_services/', ExternalServicesResource), ('/oracles', OraclesResource), ('/oracles/<string:oracle>/cache', NamedOracleCacheResource), ('/exchanges', ExchangesResource), ('/exchanges/balances', ExchangeBalancesResource), ( '/exchanges/balances/<string:location>', ExchangeBalancesResource, 'named_exchanges_balances_resource', ), ('/assets/<string:asset>/icon', AssetIconsResource), ('/trades', TradesResource), ('/ledgeractions', LedgerActionsResource), ('/asset_movements', AssetMovementsResource), ('/tags', TagsResource), ('/exchanges/binance/pairs', BinanceAvailableMarkets), ('/exchanges/binance/pairs/<string:name>', BinanceUserMarkets), ('/exchanges/data/', ExchangesDataResource), ('/exchanges/data/<string:location>', ExchangesDataResource, 'named_exchanges_data_resource'), ('/balances/blockchains', BlockchainBalancesResource), ( '/balances/blockchains/<string:blockchain>', BlockchainBalancesResource, 'named_blockchain_balances_resource', ), ('/balances/', AllBalancesResource), ('/balances/manual', ManuallyTrackedBalancesResource), ('/statistics/netvalue', StatisticsNetvalueResource), ('/statistics/balance/<string:asset>', StatisticsAssetBalanceResource), ('/statistics/value_distribution', StatisticsValueDistributionResource), ('/statistics/renderer', StatisticsRendererResource), ('/messages/', MessagesResource), ('/periodic/', PeriodicDataResource), ('/history/', HistoryProcessingResource), ('/history/status', HistoryStatusResource), ('/history/export/', HistoryExportingResource), ('/history/download/', HistoryDownloadingResource), ('/history/events', HistoryBaseEntryResource), ('/history/actionable_items', HistoryActionableItemsResource), ('/reports/', AccountingReportsResource), ( '/reports/<int:report_id>', AccountingReportsResource, 'per_report_resource', ), ( '/reports/<int:report_id>/data', AccountingReportDataResource, 'per_report_data_resource', ), ('/queried_addresses', QueriedAddressesResource), ('/blockchains/ETH/transactions', EthereumTransactionsResource), ( '/blockchains/ETH/transactions/<string:address>', EthereumTransactionsResource, 'per_address_ethereum_transactions_resource', ), ('/blockchains/ETH2/validators', Eth2ValidatorsResource), ('/blockchains/ETH2/stake/deposits', Eth2StakeDepositsResource), ('/blockchains/ETH2/stake/details', Eth2StakeDetailsResource), ('/blockchains/ETH2/stake/dailystats', Eth2DailyStatsResource), ('/blockchains/ETH/defi', DefiBalancesResource), ('/blockchains/ETH/airdrops', EthereumAirdropsResource), ('/blockchains/ETH/erc20details/', ERC20TokenInfo), ('/blockchains/ETH/modules/<string:module_name>/data', NamedEthereumModuleDataResource), ('/blockchains/ETH/modules/data', EthereumModuleDataResource), ('/blockchains/ETH/modules/data/counterparties', CounterpartiesResource), ('/blockchains/ETH/modules/', EthereumModuleResource), ('/blockchains/ETH/modules/makerdao/dsrbalance', MakerdaoDSRBalanceResource), ('/blockchains/ETH/modules/makerdao/dsrhistory', MakerdaoDSRHistoryResource), ('/blockchains/ETH/modules/makerdao/vaults', MakerdaoVaultsResource), ('/blockchains/ETH/modules/makerdao/vaultdetails', MakerdaoVaultDetailsResource), ('/blockchains/ETH/modules/aave/balances', AaveBalancesResource), ('/blockchains/ETH/modules/aave/history', AaveHistoryResource), ('/blockchains/ETH/modules/adex/balances', AdexBalancesResource), ('/blockchains/ETH/modules/adex/history', AdexHistoryResource), ('/blockchains/ETH/modules/balancer/balances', BalancerBalancesResource), ('/blockchains/ETH/modules/balancer/history/trades', BalancerTradesHistoryResource), ('/blockchains/ETH/modules/balancer/history/events', BalancerEventsHistoryResource), ('/blockchains/ETH/modules/compound/balances', CompoundBalancesResource), ('/blockchains/ETH/modules/compound/history', CompoundHistoryResource), ('/blockchains/ETH/modules/uniswap/balances', UniswapBalancesResource), ('/blockchains/ETH/modules/uniswap/history/events', UniswapEventsHistoryResource), ('/blockchains/ETH/modules/uniswap/history/trades', UniswapTradesHistoryResource), ('/blockchains/ETH/modules/sushiswap/balances', SushiswapBalancesResource), ('/blockchains/ETH/modules/sushiswap/history/events', SushiswapEventsHistoryResource), ('/blockchains/ETH/modules/sushiswap/history/trades', SushiswapTradesHistoryResource), ('/blockchains/ETH/modules/yearn/vaults/balances', YearnVaultsBalancesResource), ('/blockchains/ETH/modules/yearn/vaults/history', YearnVaultsHistoryResource), ('/blockchains/ETH/modules/yearn/vaultsv2/balances', YearnVaultsV2BalancesResource), ('/blockchains/ETH/modules/yearn/vaultsv2/history', YearnVaultsV2HistoryResource), ('/blockchains/ETH/modules/liquity/balances', LiquityTrovesResource), ('/blockchains/ETH/modules/liquity/events/trove', LiquityTrovesHistoryResource), ('/blockchains/ETH/modules/liquity/events/staking', LiquityStakingHistoryResource), ('/blockchains/ETH/modules/liquity/staking', LiquityStakingResource), ('/blockchains/ETH/modules/pickle/dill', PickleDillResource), ('/blockchains/ETH/modules/loopring/balances', LoopringBalancesResource), ('/blockchains/<string:blockchain>', BlockchainsAccountsResource), ('/blockchains/BTC/xpub', BTCXpubResource), ('/blockchains/AVAX/transactions', AvalancheTransactionsResource), ( '/blockchains/AVAX/transactions/<string:address>', AvalancheTransactionsResource, 'per_address_avalanche_transactions_resource', ), ('/blockchains/AVAX/erc20details/', ERC20TokenInfoAVAX), ('/assets', OwnedAssetsResource), ('/assets/types', AssetsTypesResource), ('/assets/replace', AssetsReplaceResource), ('/assets/all', AllAssetsResource), ('/assets/ethereum', EthereumAssetsResource), ('/assets/prices/current', CurrentAssetsPriceResource), ('/assets/prices/historical', HistoricalAssetsPriceResource), ('/assets/ignored', IgnoredAssetsResource), ('/assets/updates', AssetUpdatesResource), ('/assets/user', UserAssetsResource), ('/actions/ignored', IgnoredActionsResource), ('/info', InfoResource), ('/ping', PingResource), ('/import', DataImportResource), ('/nfts', NFTSResource), ('/nfts/balances', NFTSBalanceResource), ('/database/info', DatabaseInfoResource), ('/database/backups', DatabaseBackupsResource), ('/locations/associated', AssociatedLocations), ('/staking/kraken', StakingResource), ('/snapshot/download', DBSnapshotDownloadingResource), ('/snapshot/export', DBSnapshotExportingResource), ('/snapshot/import', DBSnapshotImportingResource), ('/snapshot/delete', DBSnapshotDeletingResource), ('/ens/reverse', ReverseEnsResource), ] logger = logging.getLogger(__name__) log = RotkehlchenLogsAdapter(logger) def setup_urls( rest_api: RestAPI, blueprint: Blueprint, urls: URLS, ) -> None: for url_tuple in urls: if len(url_tuple) == 2: route, resource_cls = url_tuple # type: ignore endpoint = resource_cls.__name__.lower() elif len(url_tuple) == 3: route, resource_cls, endpoint = url_tuple # type: ignore else: raise ValueError(f"Invalid URL format: {url_tuple!r}") blueprint.add_url_rule( route, view_func=resource_cls.as_view(endpoint, rest_api_object=rest_api), ) def endpoint_not_found(e: NotFound) -> Response: msg = 'invalid endpoint' # The isinstance check is because I am not sure if `e` is always going to # be a "NotFound" error here if isinstance(e, NotFound): msg = e.description return api_response(wrap_in_fail_result(msg), HTTPStatus.NOT_FOUND) @parser.error_handler # type: ignore @resource_parser.error_handler @ignore_kwarg_parser.error_handler def handle_request_parsing_error( err: ValidationError, _request: werkzeug.local.LocalProxy, _schema: Schema, error_status_code: Optional[int], # pylint: disable=unused-argument error_headers: Optional[Dict], # pylint: disable=unused-argument ) -> None: """ This handles request parsing errors generated for example by schema field validation failing.""" msg = str(err) if isinstance(err.messages, dict): # first key is just the location. Ignore key = list(err.messages.keys())[0] msg = json.dumps(err.messages[key]) elif isinstance(err.messages, list): msg = ','.join(err.messages) err_response = jsonify(result=None, message=msg) err_response.status_code = HTTPStatus.BAD_REQUEST abort(err_response) class APIServer(): _api_prefix = '/api/1' def __init__( self, rest_api: RestAPI, ws_notifier: RotkiNotifier, cors_domain_list: List[str] = None, ) -> None: flask_app = Flask(__name__) if cors_domain_list: CORS(flask_app, origins=cors_domain_list) blueprint = create_blueprint(self._api_prefix) setup_urls( blueprint=blueprint, rest_api=rest_api, urls=URLS_V1, ) self.rest_api = rest_api self.rotki_notifier = ws_notifier self.flask_app = flask_app self.blueprint = blueprint self.wsgiserver: Optional[WSGIServer] = None self.flask_app.register_blueprint(self.blueprint) self.ws_server: Optional[WebSocketServer] = None self.flask_app.errorhandler(HTTPStatus.NOT_FOUND)(endpoint_not_found) self.flask_app.register_error_handler(Exception, self.unhandled_exception) @staticmethod def unhandled_exception(exception: Exception) -> Response: """ Flask.errorhandler when an exception wasn't correctly handled """ log.critical( 'Unhandled exception when processing endpoint request', exc_info=True, exception=str(exception), ) return api_response(wrap_in_fail_result(str(exception)), HTTPStatus.INTERNAL_SERVER_ERROR) def run(self, host: str = '127.0.0.1', port: int = 5042, **kwargs: Any) -> None: """This is only used for the data faker and not used in production""" self.flask_app.run(host=host, port=port, **kwargs) def start( self, host: str = '127.0.0.1', rest_port: int = 5042, websockets_port: int = 5043, ) -> None: """This is used to start the API server in production""" wsgi_logger = logging.getLogger(__name__ + '.pywsgi') self.wsgiserver = WSGIServer( listener=(host, rest_port), application=self.flask_app, log=wsgi_logger, error_log=wsgi_logger, ) msg = f'rotki REST API server is running at: {host}:{rest_port}' print(msg) log.info(msg) self.wsgiserver.start() self.ws_server = WebSocketServer( listener=(host, websockets_port), application=WebsocketResource([ ('^/', RotkiWSApp), ]), debug=False, environ={'rotki_notifier': self.rotki_notifier}, ) msg = f'rotki Websockets API server is running at: {host}:{websockets_port}' print(msg) log.info(msg) self.ws_server.start() def stop(self, timeout: int = 5) -> None: """Stops the API server. If handlers are running after timeout they are killed""" if self.wsgiserver is not None: self.wsgiserver.stop(timeout) self.wsgiserver = None if self.ws_server is not None: self.ws_server.stop(timeout) self.wsgiserver = None self.rest_api.stop()
1.390625
1
stability/stairs_contacts.py
haudren/stability-polygon
0
11640
import numpy as np pos = [] normals = [] p = [[-0.4722227, -0.24517583, -0.6370031]] n = [[2.02215104e-04, -3.23903880e-05, 9.99999979e-01]] pos.append(p) normals.append(n) p = [[-0.2549828, -0.24587737, -0.63704705]] n = [[2.02215104e-04, -3.23903880e-05, 9.99999979e-01]] pos.append(p) normals.append(n) p = [[-0.25787751, -0.38255749, -0.63705089]] n = [[2.02215104e-04, -3.23903880e-05, 9.99999979e-01]] pos.append(p) normals.append(n) p = [[-0.47206733, -0.38317576, -0.6370076]] n = [[2.02215104e-04, -3.23903880e-05, 9.99999979e-01]] pos.append(p) normals.append(n) #Contact lgripper/handrail #Left p = [[0.3651077, 0.33419711, 0.63609439]] n = [[-3.39491173e-05, 9.99999875e-01, 4.99472000e-04]] pos.append(p) normals.append(n) #Right #p = [[0.36510907, 0.29419711, 0.63607441]] #p = [[0.3651077, 0.33419711, 0.63609439]] #n = [[3.44761855e-05, -9.99999874e-01, -5.00077386e-04]] #pos.append(p) #normals.append(n) #Bottom #p = [[0.34212609, 0.31418314, 0.66248165]] #n = [[-6.56636734e-01, -3.99160434e-04, 7.54206895e-01]] #pos.append(p) #normals.append(n) # ##Top p = [[0.38480749, 0.31420908, 0.61345819]] n = [[6.56636734e-01, 4.00439950e-04, -7.54206894e-01]] pos.append(p) normals.append(n) pos = [np.array(px).T for px in pos] #for p in pos: # p[2, 0] = 0.0 normals = [np.array(nx).T for nx in normals]
1.90625
2
generator/framework/analyser/analyser.py
sinsay/ds_generator
0
11641
<reponame>sinsay/ds_generator import inspect import re import types from collections import namedtuple from typing import List, Union, Dict from flask_restplus import fields from ...common import MetaData, Entry, Arg, ArgSource, RpcType,\ type_def, rpc_doc_args_key, rpc_doc_resp_key, rpc_impl_rename from ...common.web.namespace import get_namespace, NamespaceInfo function_type = frozenset([staticmethod, classmethod, types.FunctionType]) func_obj_types = frozenset([staticmethod, classmethod]) method_reg = re.compile(r"^[\s\S]+?(?=:param|:return:|$)") class Analyser(object): """ 解析器,解析指定的类型所绑定的 document 信息 """ @staticmethod def analyse(service_classes, service_impl_classes, need_impl: bool = True) -> List[MetaData]: """ 解析 service_classes 的信息,并返回其元数据,如果该类型未添加元数据,则不将其加入元数据列表 service_impl_classes 则为对应 service 的实现器, 两者应该是一一对应的关系 need_impl 指示了是否需要为 service_class 获取其具体实现 :param service_classes: :param service_impl_classes :param need_impl: :return: """ meta_data = [] for c in service_classes: methods = extract_methods(c) if not methods: continue # 查看是否有自定义名称 impl_name = getattr(c, rpc_impl_rename, c.__name__) # 找到对应 impl impl = list(filter(lambda i: i.__name__ == impl_name, service_impl_classes)) if not impl and need_impl: raise Exception( "found service %s definition without implement code" % c.__name__) meta = MetaData(c.__name__, c, methods, impl_type=impl and impl[0] or None) meta_data.append(meta) return sorted(meta_data, key=lambda m: m.name.lower()) def extract_methods(cls): """ 解析一个 Class, 得到所有定义了 api doc 的方法 :param cls: :return: """ # process cls' s apidoc if exists base_entries_arg: List[Arg] = process_cls_args(cls) entries = [] for (attr_name, attr) in cls.__dict__.items(): attr_type = type(attr) if attr_name.startswith('_') or attr_type not in function_type: continue rpc_doc_args: type_def.Dict = getattr(attr, rpc_doc_args_key, None) rpc_doc_resp: type_def.RpcType = getattr(attr, rpc_doc_resp_key, None) if attr_type in func_obj_types: # extract real method from method object attr = getattr(attr, "__func__", None) api_doc = getattr(attr, '__apidoc__', None) # TODO: 暂时不做多种配置方式的合并, 后续考虑提供 entry = None if api_doc: entry = analyse_doc(cls, attr, attr_name, api_doc, base_entries_arg) entry.args = base_entries_arg + entry.args args = list(base_entries_arg) result = type_def.Void() if rpc_doc_args: # args 必然是 model 的 RpcType.Dict 类型 # 根据 attr_name 来选择 ArgSource, 如果是非 http method, 则不管设置 # 成何种类型都不会有影响 for name, value in rpc_doc_args.get_elem_info().items(): source = get_source_type(attr_name, value) args.append(Arg(name, value, value.default_value, value.description, value.required, source)) if rpc_doc_resp: result = rpc_doc_resp if not entry: raw_doc = inspect.getdoc(attr) or "" method_doc = method_reg.search(raw_doc) if method_doc: method_doc = method_doc.group(0) args = sorted(args, key=lambda a: a.name.lower()) entry = Entry(attr_name, args, result, method_doc) entries.append(entry) return sorted(entries, key=lambda e: e.name.lower()) def get_source_type(method_name: str, field: RpcType) -> ArgSource: """ 获取 field 字段的来源信息,首先根据方法名,如果是 http 的方法, 则按照 get 对应 params, post 对应 body 的形式, 如果 field 主动设置了 source, 则使用 field 的 """ source = ArgSource.UNKNOWN if method_name == "get": source = ArgSource.PARAMS elif method_name == "post": source = ArgSource.BODY if field.source != ArgSource.UNKNOWN: source = field.get_source() return source def process_cls_args(cls) -> List[Arg]: """ 从 cls 的 api_doc 中获取参数信息 """ cls_api_doc = getattr(cls, "__apidoc__", {}) params: dict = cls_api_doc.get("params", {}) args: List[Arg] = [] for key, value in params.items(): field_type = switch_type(value.get("type", "str"), value) source_in = value.get("in", "path") source = ArgSource.PARAMS if source_in == "path": source = ArgSource.PATH elif source_in == "body": source = ArgSource.BODY elif source_in == "header": source = ArgSource.HEADER args.append(Arg(key, field_type, field_type.default_value, source=source, description=field_type.description)) # 处理完 Flask 的定义,还需要处理 CommonBase 的定义 ns_info: Union[NamespaceInfo, None] = get_namespace(cls) if ns_info is not None: for arg_name, arg_value in ns_info.params.items(): args.append( Arg( arg_name, arg_value, arg_value.default_value, description=arg_value.description, required=arg_value.required, source=ArgSource.PATH ) ) return args def analyse_doc(cls, method, name, api_doc, class_args: List[Arg]) -> Entry: """ 解析 cls 类型中 method 的 api_doc 信息,转换为本地格式,便于后续的分析 :param cls :param method :param name: :param api_doc: :param class_args: :return: """ # 首先查找函数命名的参数 # 首先解开函数的 wrapper, 拿到实际调用的函数体 while hasattr(method, "__wrapped__"): method = getattr(method, "__wrapped__") # 尝试获取 entry 的注释 method_doc_raw = inspect.getdoc(method) or "" method_doc = method_reg.search(method_doc_raw) or "" if method_doc: method_doc = method_doc.group(0) args = analyse_args(cls, method, method_doc_raw, api_doc, class_args) entry = Entry(name, args, type_def.Void(), method_doc) status_codes = api_doc.get("responses", {}).keys() for status_code in status_codes: result = analyse_result(api_doc, status_code) if result: entry.set_result(status_code, result) return entry def analyse_result(api_doc, status_code: int) -> type_def.RpcType: """ 解析出 api_doc 中的返回值信息 :param api_doc: :param status_code: :return: """ (desc, data_meta) = api_doc.get("responses", {}).get(status_code, (None, None)) if not desc and not data_meta: return type_def.Void() # 该接口返回空类型 if isinstance(data_meta, dict): # 说明是复合类型 result = type_def.fields.Dict(required=True) for (key, type_info) in data_meta.items(): result.add_field(key, switch_type(type_info)) else: # 说明是基础类型 result = switch_type(data_meta) return result def analyse_args(cls, method, method_doc_raw, api_doc, class_args: List[Arg]) -> List[Arg]: """ cls 为要解析的模块, method 为该模块对应的方法, api_doc 是该 method 的描述文件 通过以上信息解析出该函数的参数信息 :param cls: :param method: :param method_doc_raw: :param api_doc: :param class_args: :return: """ frame_info = inspect.getfullargspec(method) method_args = frame_info.args if len(frame_info.args) > 0 and frame_info.args[0] == "self": method_args = method_args[1:] if len(method_args) > len(frame_info.annotations): # 缺少必要的参数类型描述 raise Exception( "模块 %s 的函数 %s 有 %s 个参数,但具有类型描述的参数个数只有 %s 个. \n" "请为缺少类型描述的参数 %s 添加类型信息, eg: 为 id 添加参数说明\n\t" "def hello(id: int): pass" % ( cls.__name__, method.__name__, len(frame_info.args), len(frame_info.annotations), frame_info.args ) ) params: List[Arg] = [] params_dict = api_doc.get("params", {}) params.extend(analyse_flask_args(method, params_dict, False) or []) # post expect_list = api_doc.get("expect", []) for expect in expect_list: params.extend(analyse_flask_args(method, expect, True) or []) # 最后才处理函数定义的参数 func_params: List[Arg] = [] for (index, arg) in enumerate(method_args): arg_type = switch_type(frame_info.annotations[arg]) if isinstance(arg_type, (type_def.Void, )): continue # try to extract documentation from doc arg_doc = re.search( r":param %s:(?P<doc>[\s\S]+?)(?=:param|:return|$)" % arg, method_doc_raw) if arg_doc: arg_doc = arg_doc.group("doc") arg_info = Arg(arg, arg_type, None, arg_doc or "") func_params.append(arg_info) args_len = len(func_params) - 1 for (index, default) in enumerate(frame_info.defaults or []): func_params[len(args_len - index)].default = default # 移除重复的参数 for p in func_params: is_dup: bool = False for pp in params: if p.name == pp.name: is_dup = True break if not is_dup: for pp in class_args: if p.name == pp.name: is_dup = True break if not is_dup: params.append(p) return params def analyse_flask_args(method, type_dict, in_body: bool) -> List[Arg]: """ 解析 type_dict 中的信息,将其转换为无 flask 模块依赖的类型信息 :param method :param type_dict: :param in_body: 如果 in_body 则参数来自于 body, 否则的话需要根据 in 字段进行判断,如果 in header 则参数来自 header, 否则是 get 的参数 :return: """ params = [] for (key, value) in type_dict.items(): if isinstance(value, dict): # 可能是 param 定义,或 flask doc 的说明 attr_type = value.get("type", None) attr_type = switch_type(attr_type, value) if not attr_type or isinstance(attr_type, type_def.Void): raise Exception("%s 的参数 %s 没有类型定义" % (method, key)) if in_body: source = ArgSource.BODY else: if value.get("in", "params") == "params": source = ArgSource.PARAMS else: source = ArgSource.HEADER arg = Arg(key, attr_type, default=value.get("default", None), description=value.get("description", ""), source=source, required=attr_type.required) params.append(arg) else: attr_type = switch_type(value) if attr_type: if in_body: source = ArgSource.BODY else: source = ArgSource.PARAMS required = True if value.required is not None: required = not not value.required arg = Arg(key, attr_type, attr_type.default_value, value.description, required=required, source=source) params.append(arg) return params str_literal = ["str", "string"] number_literal = ["int", "integer"] base_mapping_fields = { "default": None, "required": True, "default_value": None, "maximum": None, "minimal": None, } sm = namedtuple( "DefaultMapping", [ "description", "required", "min_length", "max_length", "min_items", "max_items", "default_value", "must_true", "must_false", "minimum", "maximum" ] )( ("description", ""), ("required", True), ("min_length", None), ("max_length", None), ("min_items", None), ("max_items", None), ("default_value", None), ("must_true", None), ("must_false", None), ("minimum", None), ("maximum", None) ) field_adaptor = { "minimum": "min", "maximum": "max", "default_value": "default" } base_sm = [sm.description, sm.default_value, sm.required] def build_sm(*args, need_base: bool = True): sm_list = (need_base and base_sm or []) + list(args) def wrap(addition: Union[Dict, object, None]): def get_method(_key, _default): pass if isinstance(addition, dict): def get_method(key, default_value): return addition.get(key, default_value) elif isinstance(addition, object): def get_method(key, default_value): return getattr(addition, key, default_value) d = {} for (k, v) in sm_list: d[k] = v if not addition: continue v = get_method(k, None) if v is None: adapt_key = field_adaptor.get(k, None) if adapt_key is not None: v = get_method(adapt_key, None) if v is not None: d[k] = v return d return wrap number_sm = build_sm(sm.minimum, sm.maximum) str_sm = build_sm(sm.min_length, sm.max_length) bool_sm = build_sm(sm.must_true, sm.must_false) list_sm = build_sm(sm.description, sm.min_items, sm.max_items, need_base=False) type_switch_mapping = { "int": number_sm, int: number_sm, "integer": number_sm, fields.Integer: number_sm, "float": number_sm, float: number_sm, fields.Float: number_sm, "str": str_sm, "string": str_sm, str: str_sm, fields.String: str_sm, "bool": bool_sm, bool: bool_sm, fields.Boolean: bool_sm, "list": list_sm, fields.List: list_sm, } type_convert_mapping = { int: type_def.fields.Integer, str: type_def.fields.String, float: type_def.fields.Float, bool: type_def.fields.Bool, fields.Integer: type_def.fields.Integer, fields.String: type_def.fields.String, fields.Boolean: type_def.fields.Boolean, fields.Float: type_def.fields.Float } def switch_type(from_type, addition: Union[dict, None] = None) -> type_def.RpcType: """ 转换类型定义,将第三的定义转换为本地类型, addition 为 flask 类型信息的附加信息,可以为其增加类似 maximum, default, max_items 等信息 :param from_type: :param addition :return: """ map_func = type_switch_mapping.get(from_type, None) if map_func is None: map_func = type_switch_mapping.get(type(from_type), lambda _: {}) kwargs = map_func(addition) if isinstance(from_type, str): if from_type in str_literal: return type_def.fields.String(**kwargs) elif from_type in number_literal: return type_def.fields.Integer(**kwargs) # 如果是基础类型,或 flask 的基础类型,可以直接构造 from_type_constructor = type_convert_mapping.get(from_type, None) if not from_type_constructor: from_type_constructor = type_convert_mapping.get(type(from_type), None) if from_type_constructor: return from_type_constructor(**kwargs) if isinstance(from_type, fields.List): elem_type = switch_type(from_type.container) return type_def.fields.List( elem_type, **kwargs) elif isinstance(from_type, fields.Nested): field_dict = {} for (field, field_value) in from_type.model.items(): field_dict[field] = switch_type(field_value, field_value) return type_def.fields.Dict(field_dict, from_type.description, from_type.required) else: return type_def.Void()
1.945313
2
bot/helper/mirror_utils/download_utils/telegram_downloader.py
vincreator/Eunha
0
11642
<filename>bot/helper/mirror_utils/download_utils/telegram_downloader.py import logging import random from time import time from threading import RLock, Lock, Thread from bot import LOGGER, download_dict, download_dict_lock, app, STOP_DUPLICATE, STORAGE_THRESHOLD from bot.helper.ext_utils.bot_utils import get_readable_file_size from ..status_utils.telegram_download_status import TelegramDownloadStatus from bot.helper.telegram_helper.message_utils import sendMarkup, sendMessage, sendStatusMessage from bot.helper.mirror_utils.upload_utils.gdriveTools import GoogleDriveHelper from bot.helper.ext_utils.fs_utils import check_storage_threshold global_lock = Lock() GLOBAL_GID = set() logging.getLogger("pyrogram").setLevel(logging.WARNING) class TelegramDownloadHelper: def __init__(self, listener): self.name = "" self.size = 0 self.progress = 0 self.downloaded_bytes = 0 self.__start_time = time() self.__listener = listener self.__id = "" self.__is_cancelled = False self.__resource_lock = RLock() @property def download_speed(self): with self.__resource_lock: return self.downloaded_bytes / (time() - self.__start_time) def __onDownloadStart(self, name, size, file_id): with global_lock: GLOBAL_GID.add(file_id) with self.__resource_lock: self.name = name self.size = size self.__id = file_id gid = ''.join(random.choices(file_id, k=12)) with download_dict_lock: download_dict[self.__listener.uid] = TelegramDownloadStatus(self, self.__listener, gid) sendStatusMessage(self.__listener.message, self.__listener.bot) def __onDownloadProgress(self, current, total): if self.__is_cancelled: self.__onDownloadError('Cancelled by user!') app.stop_transmission() return with self.__resource_lock: self.downloaded_bytes = current try: self.progress = current / self.size * 100 except ZeroDivisionError: pass def __onDownloadError(self, error): with global_lock: try: GLOBAL_GID.remove(self.__id) except KeyError: pass self.__listener.onDownloadError(error) def __onDownloadComplete(self): with global_lock: GLOBAL_GID.remove(self.__id) self.__listener.onDownloadComplete() def __download(self, message, path): try: download = app.download_media(message, progress = self.__onDownloadProgress, file_name = path ) except Exception as e: LOGGER.error(str(e)) return self.__onDownloadError(str(e)) if download is not None: self.__onDownloadComplete() elif not self.__is_cancelled: self.__onDownloadError('Internal error occurred') def add_download(self, message, path, filename): _dmsg = app.get_messages(message.chat.id, reply_to_message_ids=message.message_id) media = None media_array = [_dmsg.document, _dmsg.video, _dmsg.audio] for i in media_array: if i is not None: media = i break if media is not None: with global_lock: # For avoiding locking the thread lock for long time unnecessarily download = media.file_id not in GLOBAL_GID if filename == "": name = media.file_name else: name = filename path = path + name if download: size = media.file_size if STOP_DUPLICATE and not self.__listener.isLeech: LOGGER.info('Checking File/Folder if already in Drive...') smsg, button = GoogleDriveHelper().drive_list(name, True, True) if smsg: msg = "File/Folder is already available in Drive.\nHere are the search results:" return sendMarkup(msg, self.__listener.bot, self.__listener.message, button) if STORAGE_THRESHOLD is not None: arch = any([self.__listener.isZip, self.__listener.extract]) acpt = check_storage_threshold(size, arch) if not acpt: msg = f'You must leave {STORAGE_THRESHOLD}GB free storage.' msg += f'\nYour File/Folder size is {get_readable_file_size(size)}' return sendMessage(msg, self.__listener.bot, self.__listener.message) self.__onDownloadStart(name, size, media.file_id) LOGGER.info(f'Downloading Telegram file with id: {media.file_id}') Thread(target=self.__download, args=(_dmsg, path)).start() else: self.__onDownloadError('File already being downloaded!') else: self.__onDownloadError('No document in the replied message') def cancel_download(self): LOGGER.info(f'Cancelling download on user request: {self.__id}') self.__is_cancelled = True
2.171875
2
setup.py
goofmint/qualityforward-py
0
11643
import setuptools setuptools.setup( name="qualityforward", version="1.1", author="<NAME>", author_email="<EMAIL>", description="Python library for QualityForward API", long_description="This is python library for QualityForward API. QualityForward is cloud based test management service.", long_description_content_type="text/markdown", url="https://cloud.veriserve.co.jp/", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3.7", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ] )
1.117188
1
backend/trips/models.py
repeating/PoputchikiInno
20
11644
from django.db import models from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, AbstractUser from django.utils import timezone from django.utils.translation import gettext as _ from django import forms from django.contrib.auth.hashers import make_password from django.contrib.auth import get_user_model from django.contrib.auth.models import User from phonenumber_field.modelfields import PhoneNumberField from datetime import datetime class CarTrip(models.Model): class Meta: verbose_name = _('carTrip') verbose_name_plural = _('cartrips') def __str__(self): return f'{self.driver_name} Car Trip' driver_name = models.CharField(max_length=200) destination = models.CharField(max_length=200) number_of_seats = models.IntegerField('number of seats') trip_date = models.CharField(max_length=200) pub_date = models.DateTimeField('date published') @classmethod def create(cls , driver_name, destination, number_of_seats, trip_date): trip = cls(driver_name= driver_name, destination=destination, number_of_seats=number_of_seats, trip_date=trip_date, pub_date=datetime.now() ) return trip def was_published_recently(self): now = timezone.now() return now - datetime.timedelta(days=1) <= self.pub_date <= now class Relation(models.Model): class Meta: verbose_name = _('relation') verbose_name_plural = _('relation') trip_number = models.IntegerField('trip_number') hiker_name = models.CharField(max_length=200) def __str__(self ): return f'{self.hiker_name} going on trip id = {self.trip_number}' @classmethod def create(cls , trip_number, hiker_name): rel = cls(trip_number=trip_number, hiker_name=hiker_name, ) return rel
2.21875
2
jcs/jcs_main.py
orenmel/lexsub
26
11645
<reponame>orenmel/lexsub ''' Run lexical substitution experiments ''' import sys import time import argparse import re import numpy from jcs.jcs_io import extract_word_weight from jcs.data.context_instance import ContextInstance from jcs.jcs_io import vec_to_str from jcs.jcs_io import vec_to_str_generated from jcs.cs_embedding_inferrer import CsEmbeddingInferrer from jcs.context2vec_inferrer import Context2vecInferrer target_re = re.compile(".*__(.*)__.*") def read_candidates(candidates_file): target2candidates = {} # finally.r::eventually;ultimately with open(candidates_file, 'r') as f: for line in f: segments = line.split('::') target = segments[0] candidates = set(segments[1].strip().split(';')) target2candidates[target] = candidates return target2candidates def run_test(inferrer): if args.candidatesfile != None: target2candidates = read_candidates(args.candidatesfile) else: target2candidates = None tfi = open(args.testfile, 'r') tfo = open(args.resultsfile, 'w') tfo_ranked = open(args.resultsfile+'.ranked', 'w') tfo_generated_oot = open(args.resultsfile+'.generated.oot', 'w') tfo_generated_best = open(args.resultsfile+'.generated.best', 'w') lines = 0 while True: context_line = tfi.readline() if not context_line: break; lst_instance = ContextInstance(context_line, args.no_pos) lines += 1 if (args.debug == True): tfo.write("\nTest context:\n") tfo.write("***************\n") tfo.write(lst_instance.decorate_context()) result_vec = inferrer.find_inferred(lst_instance, tfo) generated_results = inferrer.generate_inferred(result_vec, lst_instance.target, lst_instance.target_lemma, lst_instance.pos) tfo.write("\nGenerated lemmatized results\n") tfo.write("***************\n") tfo.write("GENERATED\t" + ' '.join([lst_instance.full_target_key, lst_instance.target_id]) + " ::: " + vec_to_str_generated(generated_results.iteritems(), args.topgenerated)+"\n") tfo_generated_oot.write(' '.join([lst_instance.full_target_key, lst_instance.target_id]) + " ::: " + vec_to_str_generated(generated_results.iteritems(), args.topgenerated)+"\n") tfo_generated_best.write(' '.join([lst_instance.full_target_key, lst_instance.target_id]) + " :: " + vec_to_str_generated(generated_results.iteritems(), 1)+"\n") filtered_results = inferrer.filter_inferred(result_vec, target2candidates[lst_instance.target_key], lst_instance.pos) tfo.write("\nFiltered results\n") tfo.write("***************\n") tfo.write("RANKED\t" + ' '.join([lst_instance.full_target_key, lst_instance.target_id]) + "\t" + vec_to_str(filtered_results.iteritems(), len(filtered_results))+"\n") tfo_ranked.write("RANKED\t" + ' '.join([lst_instance.full_target_key, lst_instance.target_id]) + "\t" + vec_to_str(filtered_results.iteritems(), len(filtered_results))+"\n") # print "end %f" % time.time() if lines % 10 == 0: print "Read %d lines" % lines print "Read %d lines in total" % lines print "Time per word: %f msec" % inferrer.msec_per_word() tfi.close() tfo.close() tfo_ranked.close() tfo_generated_oot.close() tfo_generated_best.close() def run(args): print time.asctime(time.localtime(time.time())) if args.inferrer == 'emb': inferrer = CsEmbeddingInferrer(args.vocabfile, args.ignoretarget, args.contextmath, args.embeddingpath, args.embeddingpathc, args.testfileconll, args.bow_size, 10) print "Using CsEmbeddingInferrer" elif args.inferrer == 'lstm': inferrer = Context2vecInferrer(args.lstm_config, args.ignoretarget, args.contextmath, 10) print "Using Context2vecInferrer" else: raise Exception("Unknown inferrer type: " + args.inferrer) print time.asctime(time.localtime(time.time())) run_test(inferrer) print "Finished" print time.asctime(time.localtime(time.time())) if __name__ == '__main__': parser = argparse.ArgumentParser(description='JCS utility') parser.add_argument('--inferrer', choices=['lstm', 'emb'], default='lstm', help='context type ("lstm", "emb")') # Only for Context2vecInferrer parser.add_argument('-lstm_config', action="store", dest="lstm_config", default=None, help="config file of lstm context model and respective word embeddings") # Only for CsEmbeddingInferrer parser.add_argument('-embeddingpath', action="store", dest="embeddingpath", default=None, help="prefix to files containing word embeddings") parser.add_argument('-embeddingpathc', action="store", dest="embeddingpathc", default=None, help="prefix to files containing context word embeddings") parser.add_argument('-vocabfile', action="store", dest="vocabfile") parser.add_argument('-bow',action='store',dest='bow_size', default=-1, type=int, help="context bag-of-words window size. 0 means entire sentence. -1 means syntactic dependency contexts.") # Common parser.add_argument('-targetsfile', action="store", dest="targetsfile", default=None) parser.add_argument('-testfile', action="store", dest="testfile") parser.add_argument('-testfileconll', action="store", dest="testfileconll", default=None, help="test file with sentences parsed in conll format") parser.add_argument('-candidatesfile', action="store", dest="candidatesfile", default=None) parser.add_argument('-resultsfile', action="store", dest="resultsfile") parser.add_argument('-contextmath', action="store", dest="contextmath", default=None, help="arithmetics used to consider context [add|mult|geomean|none]") parser.add_argument('--ignoretarget', action="store_true", dest="ignoretarget", default=False, help="ignore lhs target. compute only context compatibility.") parser.add_argument('--nopos',action='store_true',dest='no_pos', default=False, help="ignore part-of-speech of target word") parser.add_argument('-topgenerated', action="store", dest="topgenerated", type=int, default=10, help="top entries to print in generated parvecs") parser.add_argument('--debug',action='store_true',dest='debug') args = parser.parse_args(sys.argv[1:]) config_file_name = args.resultsfile + ".CONFIG" cf = open(config_file_name, 'w') cf.write(' '.join(sys.argv)+'\n') cf.close() numpy.seterr(all='raise', divide='raise', over='raise', under='raise', invalid='raise') run(args)
2.4375
2
src/django_richenum/__init__.py
adepue/django-richenum
0
11646
<filename>src/django_richenum/__init__.py __version__ = 'unknown' try: __version__ = __import__('pkg_resources').get_distribution('django_richenum').version except Exception as e: pass
1.523438
2
scripts/v.py
NatashaChopper/stage
0
11647
import numpy with open ("dic.txt", "w", encoding="utf-8") as dic: for x in range(5, 790, 1): if 92 < x <= 113: dic.write('"'+str(x)+'"'+":"+ '"'+'1'+'",') elif 113 < x <= 133: dic.write('"'+str(x)+'"'+":"+ '"'+'2'+'",') elif 133 < x <= 153: dic.write('"'+str(x)+'"'+":"+ '"'+'3'+'",') elif 153 < x <= 173: dic.write('"'+str(x)+'"'+":"+ '"'+'4'+'",') elif 173 < x <= 193: dic.write('"'+str(x)+'"'+":"+ '"'+'5'+'",') elif 193 < x <= 213: dic.write('"'+str(x)+'"'+":"+ '"'+'6'+'",') elif 213 < x <= 233: dic.write('"'+str(x)+'"'+":"+ '"'+'7'+'",') elif 233 < x <= 253: dic.write('"'+str(x)+'"'+":"+ '"'+'8'+'",') elif 253 < x <= 273: dic.write('"'+str(x)+'"'+":"+ '"'+'9'+'",') elif 273 < x <= 293: dic.write('"'+str(x)+'"'+":"+ '"'+'10'+'",') elif 293 < x <= 313: dic.write('"'+str(x)+'"'+":"+ '"'+'11'+'",') elif 313 < x <= 333: dic.write('"'+str(x)+'"'+":"+ '"'+'12'+'",') elif 333 < x <= 353: dic.write('"'+str(x)+'"'+":"+ '"'+'13'+'",') elif 353 < x <= 373: dic.write('"'+str(x)+'"'+":"+ '"'+'14'+'",') elif 373 < x <= 393: dic.write('"'+str(x)+'"'+":"+ '"'+'15'+'",') elif 393 < x <= 413: dic.write('"'+str(x)+'"'+":"+ '"'+'16'+'",') elif 413 < x <= 433: dic.write('"'+str(x)+'"'+":"+ '"'+'17'+'",') elif 433 < x <= 453: dic.write('"'+str(x)+'"'+":"+ '"'+'18'+'",') elif 453 < x <= 473: dic.write('"'+str(x)+'"'+":"+ '"'+'19'+'",') elif 473 < x <= 493: dic.write('"'+str(x)+'"'+":"+ '"'+'20'+'",') elif 493 < x <= 513: dic.write('"'+str(x)+'"'+":"+ '"'+'21'+'",') elif 513 < x <= 533: dic.write('"'+str(x)+'"'+":"+ '"'+'22'+'",') elif 533 < x <= 553: dic.write('"'+str(x)+'"'+":"+ '"'+'23'+'",') elif 553 < x <= 573: dic.write('"'+str(x)+'"'+":"+ '"'+'24'+'",') elif 573 < x <= 593: dic.write('"'+str(x)+'"'+":"+ '"'+'25'+'",') elif 593 < x <= 613: dic.write('"'+str(x)+'"'+":"+ '"'+'26'+'",') elif 613 < x <= 633: dic.write('"'+str(x)+'"'+":"+ '"'+'27'+'",') elif 633 < x <= 653: dic.write('"'+str(x)+'"'+":"+ '"'+'28'+'",') elif 653 < x <= 673: dic.write('"'+str(x)+'"'+":"+ '"'+'29'+'",') elif 673 < x <= 693: dic.write('"'+str(x)+'"'+":"+ '"'+'30'+'",') elif 693 < x <= 713: dic.write('"'+str(x)+'"'+":"+ '"'+'31'+'",') elif 713 < x <= 733: dic.write('"'+str(x)+'"'+":"+ '"'+'32'+'",') elif 733 < x <= 753: dic.write('"'+str(x)+'"'+":"+ '"'+'33'+'",') elif 753 < x <= 773: dic.write('"'+str(x)+'"'+":"+ '"'+'34'+'",') elif 773 < x <= 793: dic.write('"'+str(x)+'"'+":"+ '"'+'35'+'",') elif 4 < x <= 15: dic.write('"'+str(x)+'"'+":"+ '"'+'36'+'",') elif 15 < x <= 25: dic.write('"'+str(x)+'"'+":"+ '"'+'37'+'",') elif 25 < x <= 35: dic.write('"'+str(x)+'"'+":"+ '"'+'38'+'",') elif 35 < x <= 45: dic.write('"'+str(x)+'"'+":"+ '"'+'39'+'",') elif 45 < x <= 55: dic.write('"'+str(x)+'"'+":"+ '"'+'40'+'",') elif 55 < x <= 65: dic.write('"'+str(x)+'"'+":"+ '"'+'41'+'",') elif 65 < x <= 75: dic.write('"'+str(x)+'"'+":"+ '"'+'42'+'",') elif 75 < x <= 85: dic.write('"'+str(x)+'"'+":"+ '"'+'43'+'",') elif 85 < x <= 92: dic.write('"'+str(x)+'"'+":"+ '"'+'44'+'",') with open ("time.txt", "w", encoding="utf-8") as duree: for y in numpy.arange(0, 1.7, 0.01): if 0 < y <= 0.1: duree.write('"'+str(y)+'"'+":"+ '"'+'80'+'",') elif 0.1 < y <= 0.2: duree.write('"'+str(y)+'"'+":"+ '"'+'81'+'",') elif 0.2 < y <= 0.3: duree.write('"'+str(y)+'"'+":"+ '"'+'82'+'",') elif 0.3 < y <= 0.4: duree.write('"'+str(y)+'"'+":"+ '"'+'83'+'",') elif 0.4 < y <= 0.5: duree.write('"'+str(y)+'"'+":"+ '"'+'84'+'",') elif 0.5 < y <= 0.6: duree.write('"'+str(y)+'"'+":"+ '"'+'85'+'",') elif 0.6 < y <= 0.7: duree.write('"'+str(y)+'"'+":"+ '"'+'86'+'",') elif 0.7 < y <= 0.8: duree.write('"'+str(y)+'"'+":"+ '"'+'87'+'",') elif 0.8 < y <= 0.9: duree.write('"'+str(y)+'"'+":"+ '"'+'88'+'",') elif 0.9 < y <= 1: duree.write('"'+str(y)+'"'+":"+ '"'+'89'+'",') elif 1 < y <= 1.1: duree.write('"'+str(y)+'"'+":"+ '"'+'90'+'",') elif 1.1 < y <= 1.2: duree.write('"'+str(y)+'"'+":"+ '"'+'91'+'",') elif 1.2 < y <= 1.3: duree.write('"'+str(y)+'"'+":"+ '"'+'92'+'",') elif 1.3 < y <= 1.4: duree.write('"'+str(y)+'"'+":"+ '"'+'93'+'",') elif 1.4 < y <= 1.5: duree.write('"'+str(y)+'"'+":"+ '"'+'94'+'",') elif 1.5 < y <= 1.6: duree.write('"'+str(y)+'"'+":"+ '"'+'95'+'",') elif 1.6 < y <= 1.7: duree.write('"'+str(y)+'"'+":"+ '"'+'96'+'",')
2.703125
3
scrim/globals.py
danbradham/scrim
4
11648
# -*- coding: utf-8 -*- ''' ============= scrim.globals ============= Defines variables passed into the python script via Environment Variables by scrim scripts. If SCRIM_SHELL is None, then the python script was not executed by a scrim script. SHELLS (list): list of available shells SCRIM_SHELL (str): Parent shell, one of the above SHELLS SCRIM_PATH (str): Path to output shell script SCRIM_AUTO_WRITE (bool): Write to SCRIM_PATH when python exits? SCRIM_SCRIPT (str): Path to the scrim script that invoked python SCRIM_DEBUG (bool): Is scrim script running in debug mode? ''' from __future__ import absolute_import import os __all__ = [ 'SHELLS', 'SCRIM_SHELL', 'SCRIM_PATH', 'SCRIM_AUTO_WRITE', 'SCRIM_SCRIPT', 'SCRIM_DEBUG' ] SHELLS = [ 'powershell.exe', 'cmd.exe', 'bash' ] SCRIM_SHELL = os.environ.get('SCRIM_SHELL', None) SCRIM_PATH = os.environ.get('SCRIM_PATH', None) SCRIM_AUTO_WRITE = bool(os.environ.get('SCRIM_AUTO_WRITE', False)) SCRIM_SCRIPT = os.environ.get('SCRIM_SCRIPT', None) SCRIM_DEBUG = bool(os.environ.get('SCRIM_DEBUG', False))
2.453125
2
examples/Api/channels.py
asheshambasta/csound-expression
0
11649
import csnd6 class Control: def __init__(self, volume, frequency): engine = csnd6.Csound() engine.SetOption("-odac") engine.Compile("osc.csd") thread = csnd6.CsoundPerformanceThread(engine) thread.Play() self.engine = engine self.thread = thread self.set_volume(volume) self.set_frequency(frequency) def set_volume(self, volume): self.engine.SetChannel("volume", volume) def set_frequency(self, frequency): self.engine.SetChannel("frequency", frequency) def close(self): self.thread.Stop() self.thread.Join()
2.609375
3
virtual/lib/python3.6/site-packages/isbnlib/_goob.py
david12-wq/PITCHE_APP
0
11650
<gh_stars>0 # -*- coding: utf-8 -*- """Query the Google Books (JSON API v1) service for metadata.""" import logging from .dev import stdmeta from .dev._bouth23 import u from .dev._exceptions import ISBNNotConsistentError, RecordMappingError from .dev.webquery import query as wquery UA = 'isbnlib (gzip)' SERVICE_URL = ( 'https://www.googleapis.com/books/v1/volumes?q=isbn:{isbn}' '&fields=items/volumeInfo(title,subtitle,authors,publisher,publishedDate,' 'language,industryIdentifiers)&maxResults=1') LOGGER = logging.getLogger(__name__) # pylint: disable=broad-except def _mapper(isbn, records): """Mapp: canonical <- records.""" # canonical: ISBN-13, Title, Authors, Publisher, Year, Language try: canonical = {} canonical['ISBN-13'] = u(isbn) title = records.get('title', u('')).replace(' :', ':') subtitle = records.get('subtitle', u('')) title = title + ' - ' + subtitle if subtitle else title canonical['Title'] = title canonical['Authors'] = records.get('authors', [u('')]) # see issue #64 canonical['Publisher'] = records.get('publisher', u('')).strip('"') if 'publishedDate' in records and len(records['publishedDate']) >= 4: canonical['Year'] = records['publishedDate'][0:4] else: # pragma: no cover canonical['Year'] = u('') canonical['Language'] = records.get('language', u('')) except Exception: # pragma: no cover LOGGER.debug('RecordMappingError for %s with data %s', isbn, records) raise RecordMappingError(isbn) # call stdmeta for extra cleanning and validation return stdmeta(canonical) def _records(isbn, data): """Classify (canonically) the parsed data.""" # put the selected data in records try: recs = data['items'][0]['volumeInfo'] except Exception: # pragma: no cover # don't raise exception! LOGGER.debug('No data from "goob" for isbn %s', isbn) return {} # consistency check (isbn request = isbn response) if recs: ids = recs.get('industryIdentifiers', '') if u('ISBN_13') in repr(ids) and isbn not in repr( ids): # pragma: no cover LOGGER.debug('ISBNNotConsistentError for %s (%s)', isbn, repr(ids)) raise ISBNNotConsistentError('{0} not in {1}'.format( isbn, repr(ids))) else: return {} # pragma: no cover # map canonical <- records return _mapper(isbn, recs) def query(isbn): """Query the Google Books (JSON API v1) service for metadata.""" data = wquery(SERVICE_URL.format(isbn=isbn), user_agent=UA) return _records(isbn, data)
2.375
2
gdxpds/test/conftest.py
cdgaete/gdx-pandas
42
11651
# [LICENSE] # Copyright (c) 2020, Alliance for Sustainable Energy. # All rights reserved. # # Redistribution and use in source and binary forms, # with or without modification, are permitted provided # that the following conditions are met: # # 1. Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # # 2. Redistributions in binary form must reproduce the # above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other # materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or # promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # [/LICENSE] import pytest def pytest_addoption(parser): parser.addoption( "--no-clean-up", action="store_true", default=False, help="Pass this option to leave test outputs in place" ) @pytest.fixture(scope="session",autouse=True) def clean_up(request): return (not request.config.getoption('--no-clean-up'))
1.5
2
jinahub/indexers/storage/PostgreSQLStorage/tests/test_postgres_dbms.py
Taekyoon/executors
29
11652
<filename>jinahub/indexers/storage/PostgreSQLStorage/tests/test_postgres_dbms.py import os import time from pathlib import Path import numpy as np import pytest from jina import Document, DocumentArray, Executor, Flow from jina.logging.profile import TimeContext from jina_commons.indexers.dump import import_metas, import_vectors from ..postgres_indexer import PostgreSQLStorage from ..postgreshandler import doc_without_embedding @pytest.fixture() def docker_compose(request): os.system( f"docker-compose -f {request.param} --project-directory . up --build -d " f"--remove-orphans" ) time.sleep(5) yield os.system( f"docker-compose -f {request.param} --project-directory . down " f"--remove-orphans" ) d_embedding = np.array([1, 1, 1, 1, 1, 1, 1]) c_embedding = np.array([2, 2, 2, 2, 2, 2, 2]) cur_dir = os.path.dirname(os.path.abspath(__file__)) compose_yml = os.path.abspath(os.path.join(cur_dir, 'docker-compose.yml')) @pytest.fixture(scope='function', autouse=True) def patched_random_port(mocker): used_ports = set() from jina.helper import random_port def _random_port(): for i in range(10): _port = random_port() if _port is not None and _port not in used_ports: used_ports.add(_port) return _port raise Exception('no port available') mocker.patch('jina.helper.random_port', new_callable=lambda: _random_port) def get_documents(chunks, same_content, nr=10, index_start=0, same_tag_content=None): next_chunk_id = nr + index_start for i in range(index_start, nr + index_start): d = Document() d.id = i if same_content: d.text = 'hello world' d.embedding = np.random.random(d_embedding.shape) else: d.text = f'hello world {i}' d.embedding = np.random.random(d_embedding.shape) if same_tag_content: d.tags['field'] = 'tag data' elif same_tag_content is False: d.tags['field'] = f'tag data {i}' for j in range(chunks): c = Document() c.id = next_chunk_id if same_content: c.text = 'hello world from chunk' c.embedding = np.random.random(c_embedding.shape) else: c.text = f'hello world from chunk {j}' c.embedding = np.random.random(c_embedding.shape) if same_tag_content: c.tags['field'] = 'tag data' elif same_tag_content is False: c.tags['field'] = f'tag data {next_chunk_id}' next_chunk_id += 1 d.chunks.append(c) yield d def validate_db_side(postgres_indexer, expected_data): ids, vecs, metas = zip(*expected_data) with postgres_indexer.handler as handler: cursor = handler.connection.cursor() cursor.execute( f'SELECT doc_id, embedding, doc from {postgres_indexer.table} ORDER BY ' f'doc_id::int' ) record = cursor.fetchall() for i in range(len(expected_data)): np.testing.assert_equal(ids[i], str(record[i][0])) embedding = np.frombuffer(record[i][1], dtype=postgres_indexer.dump_dtype) np.testing.assert_equal(vecs[i], embedding) np.testing.assert_equal(metas[i], bytes(record[i][2])) def test_config(): ex = Executor.load_config( str(Path(__file__).parents[1] / 'config.yml'), override_with={'dry_run': True} ) assert ex.username == 'postgres' @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_postgres(tmpdir, docker_compose): postgres_indexer = PostgreSQLStorage() NR_DOCS = 10000 original_docs = DocumentArray( list(get_documents(nr=NR_DOCS, chunks=0, same_content=False)) ) postgres_indexer.delete(original_docs, {}) with TimeContext(f'### indexing {len(original_docs)} docs'): postgres_indexer.add(original_docs, {}) np.testing.assert_equal(postgres_indexer.size, NR_DOCS) info_original_docs = [ (doc.id, doc.embedding, doc_without_embedding(doc)) for doc in original_docs ] validate_db_side(postgres_indexer, info_original_docs) new_docs = DocumentArray( list(get_documents(chunks=False, nr=10, same_content=True)) ) postgres_indexer.update(new_docs, {}) info_new_docs = [ (doc.id, doc.embedding, doc_without_embedding(doc)) for doc in new_docs ] ids, vecs, metas = zip(*info_new_docs) expected_info = [(ids[0], vecs[0], metas[0])] validate_db_side(postgres_indexer, expected_info) postgres_indexer.delete(new_docs, {}) np.testing.assert_equal(postgres_indexer.size, len(original_docs) - len(new_docs)) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_mwu_empty_dump(tmpdir, docker_compose): f = Flow().add(uses=PostgreSQLStorage) with f: resp = f.post( on='/index', inputs=DocumentArray([Document()]), return_results=True ) print(f'{resp}') dump_path = os.path.join(tmpdir, 'dump') with f: f.post( on='/dump', parameters={'dump_path': os.path.join(tmpdir, 'dump'), 'shards': 1}, ) # assert dump contents ids, vecs = import_vectors(dump_path, pea_id='0') assert ids is not None ids, metas = import_metas(dump_path, pea_id='0') assert vecs is not None assert metas is not None @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_return_embeddings(docker_compose): indexer = PostgreSQLStorage() doc = Document(embedding=np.random.random(10)) da = DocumentArray([doc]) query1 = DocumentArray([Document(id=doc.id)]) indexer.add(da, parameters={}) indexer.search(query1, parameters={}) assert query1[0].embedding is not None assert query1[0].embedding.shape == (10,) query2 = DocumentArray([Document(id=doc.id)]) indexer.search(query2, parameters={"return_embeddings": False}) assert query2[0].embedding is None @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_get_documents(docker_compose): indexer = PostgreSQLStorage() NR = 10 docs = DocumentArray( list( get_documents( nr=NR, chunks=0, same_content=False, ) ) ) indexer.add(docs) assert len(list(indexer.get_document_iterator())) == NR indexer.delete(docs) assert len(list(indexer.get_document_iterator())) == 0 assert indexer.size == 0 @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_clear(docker_compose): indexer = PostgreSQLStorage() NR = 10 docs = DocumentArray( list( get_documents( nr=NR, chunks=0, same_content=False, ) ) ) indexer.add(docs) assert len(list(indexer.get_document_iterator())) == NR indexer.clear() assert indexer.size == 0 @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) @pytest.mark.parametrize('psql_virtual_shards', [44, 128]) @pytest.mark.parametrize('real_shards', [1, 5]) def test_snapshot(docker_compose, psql_virtual_shards, real_shards): postgres_indexer = PostgreSQLStorage(virtual_shards=psql_virtual_shards) def _assert_snapshot_shard_distribution(func, nr_shards, total_docs_expected): total_docs = 0 for i in range(nr_shards): data = func(shard_id=i, total_shards=nr_shards) docs_this_shard = len(list(data)) assert docs_this_shard >= postgres_indexer.virtual_shards // real_shards total_docs += docs_this_shard np.testing.assert_equal(total_docs, total_docs_expected) NR_SHARDS = real_shards NR_DOCS = postgres_indexer.virtual_shards * 2 + 3 original_docs = DocumentArray( list(get_documents(nr=NR_DOCS, chunks=0, same_content=False)) ) NR_NEW_DOCS = 30 new_docs = DocumentArray( list( get_documents( nr=NR_NEW_DOCS, index_start=NR_DOCS, chunks=0, same_content=False ) ) ) # make sure to cleanup if the PSQL instance is kept running postgres_indexer.delete(original_docs, {}) postgres_indexer.delete(new_docs, {}) # indexing the documents postgres_indexer.add(original_docs, {}) np.testing.assert_equal(postgres_indexer.size, NR_DOCS) # create a snapshot postgres_indexer.snapshot() # data added the snapshot will not be part of the export postgres_indexer.add(new_docs, {}) np.testing.assert_equal(postgres_indexer.size, NR_DOCS + NR_NEW_DOCS) np.testing.assert_equal(postgres_indexer.snapshot_size, NR_DOCS) _assert_snapshot_shard_distribution( postgres_indexer.get_snapshot, NR_SHARDS, NR_DOCS ) # create another snapshot postgres_indexer.snapshot() timestamp = postgres_indexer.last_snapshot_timestamp # docs for the delta resolving NR_DOCS_DELTA = 33 docs_delta = DocumentArray( list( get_documents( nr=NR_DOCS_DELTA, index_start=NR_DOCS + NR_NEW_DOCS, chunks=0, same_content=False, ) ) ) time.sleep(3) postgres_indexer.add(docs_delta, {}) np.testing.assert_equal( postgres_indexer.size, NR_DOCS + NR_NEW_DOCS + NR_DOCS_DELTA ) np.testing.assert_equal(postgres_indexer.snapshot_size, NR_DOCS + NR_NEW_DOCS) NR_DOCS_DELTA_DELETED = 10 docs_delta_deleted = DocumentArray( list( get_documents( nr=NR_DOCS_DELTA_DELETED, index_start=0, chunks=0, same_content=False ) ) ) postgres_indexer.delete(docs_delta_deleted, {'soft_delete': True}) _assert_snapshot_shard_distribution( postgres_indexer.get_snapshot, NR_SHARDS, NR_DOCS + NR_NEW_DOCS, ) # we use total_shards=1 in order to guarantee getting all the data in the delta deltas = postgres_indexer.get_delta_updates( shard_id=0, total_shards=1, timestamp=timestamp ) deltas = list(deltas) np.testing.assert_equal(len(deltas), NR_DOCS_DELTA + NR_DOCS_DELTA_DELETED) def test_postgres_shard_distribution(): assert ['0'] == PostgreSQLStorage._vshards_to_get(0, 3, 5) assert ['1'] == PostgreSQLStorage._vshards_to_get(1, 3, 5) assert ['2', '3', '4'] == PostgreSQLStorage._vshards_to_get(2, 3, 5) assert [str(s) for s in range(5)] == PostgreSQLStorage._vshards_to_get(0, 1, 5) with pytest.raises(ValueError): PostgreSQLStorage._vshards_to_get(1, 1, 5) @pytest.mark.parametrize('docker_compose', [compose_yml], indirect=['docker_compose']) def test_save_get_trained_model(docker_compose): postgres_indexer = PostgreSQLStorage() model = np.random.random((100, 5)).tobytes() postgres_indexer.save_trained_model(model, None) trained_model, trained_model_checksum = postgres_indexer.get_trained_model() assert trained_model == model assert trained_model_checksum is None postgres_indexer.save_trained_model(model, 'sha256:hello') trained_model, trained_model_checksum = postgres_indexer.get_trained_model() assert trained_model == model assert trained_model_checksum == 'sha256:hello'
1.84375
2
targhe/models.py
luca772005/studio
0
11653
from django.db import models # Create your models here. class Tipo(models.Model): descrizione = models.CharField(blank=False, null=False, max_length=128) def __unicode__(self): return "{}".format(self.descrizione) class Meta: verbose_name_plural = 'Tipi' class Marca(models.Model): descrizione = models.CharField(blank=False, null=False, max_length=128) def __unicode__(self): return "{}".format(self.descrizione) class Meta: verbose_name_plural = 'Marche' class Modello(models.Model): descrizione = models.CharField(blank=False, null=False, max_length=128) marca = models.ForeignKey(Marca, null=False, blank=False) tipo = models.ForeignKey(Tipo, null=False, blank=False) def __unicode__(self): return "{}".format(self.descrizione) class Meta: verbose_name_plural = 'Modelli' class Alimentazione(models.Model): descrizione = models.CharField(blank=False, null=False, max_length=128) def __unicode__(self): return "{}".format(self.descrizione) class Meta: verbose_name_plural = 'Alimentazioni' class Mezzo(models.Model): telaio = models.CharField(blank=False, null=False, max_length=128) colore = models.CharField(blank=False, null=False, max_length=128) alimentazione = models.ForeignKey(Alimentazione, null=False, blank=False) modello = models.ForeignKey(Modello, null=False, blank=False) def __unicode__(self): return "{} {}".format(self.telaio, self.modello) class Meta: verbose_name_plural = 'Mezzi' class Targa(models.Model): numero = models.CharField(null=False, blank=False, max_length=16) dal = models.DateField() al = models.DateField() mezzo = models.ForeignKey(Mezzo, null=False, blank=False) def __unicode__(self): return "{}".format(self.numero) class Meta: verbose_name_plural = 'Targhe'
2.234375
2
WhatSender/__init__.py
Shauryasamant/whatsender
1
11654
<filename>WhatSender/__init__.py from WhatSender.sender import SendMessage
1.21875
1
scenarios/sync_sheets_and_groups.py
Ragnaruk/api_integration
0
11655
import pickle from time import sleep import googleapiclient.errors from transliterate import translit from logs.logging import get_logger from api_google.google_api_sheets import get_sheets_service, get_multiple_ranges from api_google.google_api_directory import get_directory_service, get_users_for_domain, \ get_groups_for_domain, create_group, add_user_to_group from api_google.google_api_groupsettings import get_groupsettings_service, \ get_group_settings, update_group_settings from config.config import sync_sheets_and_groups, path_data_directory def main(): logger = get_logger('sync_sheets_and_groups', sync_sheets_and_groups['logging_level']) data_path = path_data_directory / 'sync_sheets_and_groups' data_path.mkdir(parents=True, exist_ok=True) synced_users_path = data_path / 'synced_users.pickle' while True: # number_of_registered_users = 0 # synced_users_dictionary_creation = False # # # Getting a list of users who have already been synced # if synced_users_path.exists(): # logger.debug('Reading synced users from: %s', synced_users_path) # with open(synced_users_path, 'rb') as f: # synced_users = pickle.load(f) # else: # logger.info('Creating synced users dictionary') # synced_users = dict() # synced_users_dictionary_creation = True try: service_directory = get_directory_service() service_sheets = get_sheets_service() # ranges = get_multiple_ranges( # service_sheets, # sync_sheets_and_groups['spreadsheet_id'], # sync_sheets_and_groups['range_names'] # ) # # with open(data_path / 'ranges.pickle', 'wb') as file: # pickle.dump(ranges, file) with open(data_path / 'ranges.pickle', 'rb') as file: ranges = pickle.load(file) # # [logger.debug(x) for x in ranges] # group_results = [] # for group in ranges[0]['values']: # group_name = group[0].split(" ", 1)[0] # # email = (translit(group_name, "ru", reversed=True)).lower() \ # + "@" \ # + sync_sheets_and_groups['google_domain'] # # try: # group_results.append(create_group(service_directory, email, group_name, "")) # except googleapiclient.errors.HttpError as exception: # # If group already exists among other things # logger.error(exception, exc_info=False) # # logger.debug(group_name, email) # # group_results.sort(key=lambda x: x['name']) # with open(data_path / 'group_results.pickle', 'wb') as file: # pickle.dump(group_results, file) with open(data_path / 'group_results.pickle', 'rb') as file: group_results = pickle.load(file) # # [logger.debug(x) for x in group_results] created_group_names = [x['name'] for x in group_results] [logger.debug(x) for x in created_group_names] # # A client should wait 1 minute before adding users or sending messages to a new group # sleep(60) students = dict(zip( [i[0] if i else "" for i in ranges[1]['values']], [i[0] if i else "" for i in ranges[2]['values']] )) logger.debug(students.items()) leaders = dict(zip( [i[0] if i else "" for i in ranges[3]['values']], [i[0] if i else "" for i in ranges[4]['values']] )) logger.debug(leaders.items()) group_users = {} for group in ranges[0]['values']: id = group[0].split(" ", 1)[0] if id not in created_group_names: logger.debug("Skipping group: ", id) continue else: logger.debug("Adding users to group: ", id) group_users[id] = [] # Leader email group_users[id].append( [leaders[group[1]], 'MEMBER'] ) # Member emails for i in range(2, len(group)): group_users[id].append( [students[group[i]], 'MEMBER'] ) # Mandatory user group_users[id] += sync_sheets_and_groups['mandatory_members'] with open(data_path / 'group_users.pickle', 'wb') as file: pickle.dump(group_users, file) with open(data_path / 'group_users.pickle', 'rb') as file: group_users = pickle.load(file) [logger.debug(x) for x in group_users] # # Add users to groups # user_results = [] # for group in group_users: # for group_user in group_users[group]: # user_results.append( # add_user_to_group(service, group, group_user[0], group_user[1]) # ) # # with open(data_path / 'user_results.pickle', 'wb') as file: # pickle.dump(user_results, file) # with open(data_path / 'user_results.pickle', 'rb') as file: # user_results = pickle.load(file) # # [logger.debug(x) for x in user_results] # students = dict(zip( # [i[0] if i else "" for i in ranges[1]['values']], # [i[0] if i else "" for i in ranges[2]['values']] # )) # # leaders = dict(zip( # [i[0] if i else "" for i in ranges[3]['values']], # [i[0] if i else "" for i in ranges[4]['values']] # )) # if id not in synced_users: # synced_users[id] = set() # # member_emails = set() # # # Leader email # member_emails.add( # leaders[group[1]] # ) # # # Member emails # for i in range(2, len(group)): # member_emails.add( # students[group[i]] # ) # # # Mandatory emails # member_emails |= set(sync_sheets_and_groups['mandatory_members']) # # # Synced users # member_emails -= synced_users[id] # synced_users[id] |= member_emails # # member_emails = list(member_emails) # # logger.debug('Name: %s - Description: %s - Users: %s', # name, description, member_emails) # # if not synced_users_dictionary_creation: # # TODO # number_of_registered_users += len(member_emails) # # logger.debug('Result: %s', result) # # ----- # # Might need rework # # ----- # # service = get_groupsettings_service() # # group_emails = [] # for group_name in group_names: # group_emails.append( # (translit(group_name, "ru", reversed=True)).lower() \ # + "@" \ # + create_google_groups['google_domain'] # ) # # with open(data_path / 'group_emails.pickle', 'wb') as file: # pickle.dump(group_emails, file) # with open(data_path / 'group_emails.pickle', 'rb') as file: # group_emails = pickle.load(file) # # [logger.debug(x) for x in group_emails] # # settings_results = [] # for group_email in group_emails: # settings_results.append( # update_group_settings( # service, # group_email, # { # "whoCanJoin": "INVITED_CAN_JOIN", # "whoCanViewMembership": "ALL_IN_DOMAIN_CAN_VIEW", # "whoCanViewGroup": "ALL_IN_DOMAIN_CAN_VIEW", # "whoCanPostMessage": "ALL_IN_DOMAIN_CAN_POST", # "isArchived": "true" # } # ) # ) # # with open(data_path / 'settings_results.pickle', 'wb') as file: # pickle.dump(settings_results, file) # with open(data_path / 'settings_results.pickle', 'rb') as file: # settings_results = pickle.load(file) # # [logger.debug(x) for x in settings_results] except Exception as exception: logger.error(exception, exc_info=True) # logger.debug('Writing synced users to: %s', synced_users_path) # with open(synced_users_path, 'wb') as f: # pickle.dump(synced_users, f) # # logger.info('Update finished. Registered %s users. Sleeping for %s seconds.', # number_of_registered_users, sync_sheets_and_groups['sleep_time']) sleep(sync_sheets_and_groups['sleep_time']) if __name__ == '__main__': main()
2.46875
2
src/GridCal/Gui/TowerBuilder/gui.py
SanPen/GridCal
284
11656
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'gui.ui' ## ## Created by: Qt User Interface Compiler version 5.15.2 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import * from PySide2.QtGui import * from PySide2.QtWidgets import * from .matplotlibwidget import MatplotlibWidget from .icons_rc import * class Ui_Dialog(object): def setupUi(self, Dialog): if not Dialog.objectName(): Dialog.setObjectName(u"Dialog") Dialog.resize(1183, 675) self.gridLayout = QGridLayout(Dialog) self.gridLayout.setObjectName(u"gridLayout") self.gridLayout.setContentsMargins(1, 1, 1, 1) self.tabWidget = QTabWidget(Dialog) self.tabWidget.setObjectName(u"tabWidget") self.tab_2 = QWidget() self.tab_2.setObjectName(u"tab_2") self.verticalLayout_6 = QVBoxLayout(self.tab_2) self.verticalLayout_6.setObjectName(u"verticalLayout_6") self.verticalLayout_6.setContentsMargins(0, 0, 0, 0) self.main_splitter = QSplitter(self.tab_2) self.main_splitter.setObjectName(u"main_splitter") self.main_splitter.setOrientation(Qt.Horizontal) self.frame_8 = QFrame(self.main_splitter) self.frame_8.setObjectName(u"frame_8") self.frame_8.setFrameShape(QFrame.NoFrame) self.frame_8.setFrameShadow(QFrame.Raised) self.verticalLayout_5 = QVBoxLayout(self.frame_8) self.verticalLayout_5.setObjectName(u"verticalLayout_5") self.verticalLayout_5.setContentsMargins(0, 0, 0, 0) self.frame_5 = QFrame(self.frame_8) self.frame_5.setObjectName(u"frame_5") sizePolicy = QSizePolicy(QSizePolicy.Minimum, QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.frame_5.sizePolicy().hasHeightForWidth()) self.frame_5.setSizePolicy(sizePolicy) self.frame_5.setFrameShape(QFrame.NoFrame) self.frame_5.setFrameShadow(QFrame.Raised) self.horizontalLayout = QHBoxLayout(self.frame_5) self.horizontalLayout.setObjectName(u"horizontalLayout") self.label_9 = QLabel(self.frame_5) self.label_9.setObjectName(u"label_9") self.horizontalLayout.addWidget(self.label_9) self.name_lineEdit = QLineEdit(self.frame_5) self.name_lineEdit.setObjectName(u"name_lineEdit") self.horizontalLayout.addWidget(self.name_lineEdit) self.verticalLayout_5.addWidget(self.frame_5) self.frame_6 = QFrame(self.frame_8) self.frame_6.setObjectName(u"frame_6") sizePolicy.setHeightForWidth(self.frame_6.sizePolicy().hasHeightForWidth()) self.frame_6.setSizePolicy(sizePolicy) self.frame_6.setFrameShape(QFrame.NoFrame) self.frame_6.setFrameShadow(QFrame.Raised) self.horizontalLayout_3 = QHBoxLayout(self.frame_6) self.horizontalLayout_3.setObjectName(u"horizontalLayout_3") self.horizontalSpacer_2 = QSpacerItem(40, 20, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout_3.addItem(self.horizontalSpacer_2) self.label_8 = QLabel(self.frame_6) self.label_8.setObjectName(u"label_8") self.horizontalLayout_3.addWidget(self.label_8) self.frequency_doubleSpinBox = QDoubleSpinBox(self.frame_6) self.frequency_doubleSpinBox.setObjectName(u"frequency_doubleSpinBox") self.frequency_doubleSpinBox.setDecimals(0) self.frequency_doubleSpinBox.setValue(50.000000000000000) self.horizontalLayout_3.addWidget(self.frequency_doubleSpinBox) self.label_11 = QLabel(self.frame_6) self.label_11.setObjectName(u"label_11") self.horizontalLayout_3.addWidget(self.label_11) self.rho_doubleSpinBox = QDoubleSpinBox(self.frame_6) self.rho_doubleSpinBox.setObjectName(u"rho_doubleSpinBox") self.rho_doubleSpinBox.setMaximum(9999999.000000000000000) self.rho_doubleSpinBox.setValue(100.000000000000000) self.horizontalLayout_3.addWidget(self.rho_doubleSpinBox) self.verticalLayout_5.addWidget(self.frame_6) self.splitter = QSplitter(self.frame_8) self.splitter.setObjectName(u"splitter") self.splitter.setMaximumSize(QSize(16777215, 16777215)) self.splitter.setOrientation(Qt.Vertical) self.frame_3 = QFrame(self.splitter) self.frame_3.setObjectName(u"frame_3") self.frame_3.setFrameShape(QFrame.NoFrame) self.frame_3.setFrameShadow(QFrame.Raised) self.verticalLayout_8 = QVBoxLayout(self.frame_3) self.verticalLayout_8.setObjectName(u"verticalLayout_8") self.label_12 = QLabel(self.frame_3) self.label_12.setObjectName(u"label_12") self.verticalLayout_8.addWidget(self.label_12) self.wires_tableView = QTableView(self.frame_3) self.wires_tableView.setObjectName(u"wires_tableView") self.verticalLayout_8.addWidget(self.wires_tableView) self.frame_7 = QFrame(self.frame_3) self.frame_7.setObjectName(u"frame_7") self.frame_7.setFrameShape(QFrame.StyledPanel) self.frame_7.setFrameShadow(QFrame.Raised) self.horizontalLayout_4 = QHBoxLayout(self.frame_7) self.horizontalLayout_4.setObjectName(u"horizontalLayout_4") self.horizontalLayout_4.setContentsMargins(0, 0, 0, 0) self.add_to_tower_pushButton = QPushButton(self.frame_7) self.add_to_tower_pushButton.setObjectName(u"add_to_tower_pushButton") icon = QIcon() icon.addFile(u":/Icons/icons/plus.svg", QSize(), QIcon.Normal, QIcon.Off) self.add_to_tower_pushButton.setIcon(icon) self.horizontalLayout_4.addWidget(self.add_to_tower_pushButton) self.horizontalSpacer_3 = QSpacerItem(990, 20, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout_4.addItem(self.horizontalSpacer_3) self.verticalLayout_8.addWidget(self.frame_7) self.splitter.addWidget(self.frame_3) self.frame_4 = QFrame(self.splitter) self.frame_4.setObjectName(u"frame_4") self.frame_4.setFrameShape(QFrame.NoFrame) self.frame_4.setFrameShadow(QFrame.Raised) self.verticalLayout_4 = QVBoxLayout(self.frame_4) self.verticalLayout_4.setObjectName(u"verticalLayout_4") self.verticalLayout_4.setContentsMargins(9, 9, 9, 9) self.label_10 = QLabel(self.frame_4) self.label_10.setObjectName(u"label_10") self.verticalLayout_4.addWidget(self.label_10) self.tower_tableView = QTableView(self.frame_4) self.tower_tableView.setObjectName(u"tower_tableView") self.verticalLayout_4.addWidget(self.tower_tableView) self.frame = QFrame(self.frame_4) self.frame.setObjectName(u"frame") self.frame.setFrameShape(QFrame.NoFrame) self.frame.setFrameShadow(QFrame.Raised) self.horizontalLayout_2 = QHBoxLayout(self.frame) self.horizontalLayout_2.setObjectName(u"horizontalLayout_2") self.horizontalLayout_2.setContentsMargins(0, 0, 0, 0) self.delete_from_tower_pushButton = QPushButton(self.frame) self.delete_from_tower_pushButton.setObjectName(u"delete_from_tower_pushButton") icon1 = QIcon() icon1.addFile(u":/Icons/icons/minus.svg", QSize(), QIcon.Normal, QIcon.Off) self.delete_from_tower_pushButton.setIcon(icon1) self.horizontalLayout_2.addWidget(self.delete_from_tower_pushButton) self.horizontalSpacer = QSpacerItem(40, 20, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout_2.addItem(self.horizontalSpacer) self.compute_pushButton = QPushButton(self.frame) self.compute_pushButton.setObjectName(u"compute_pushButton") icon2 = QIcon() icon2.addFile(u":/Icons/icons/calc.svg", QSize(), QIcon.Normal, QIcon.Off) self.compute_pushButton.setIcon(icon2) self.compute_pushButton.setIconSize(QSize(16, 16)) self.horizontalLayout_2.addWidget(self.compute_pushButton) self.verticalLayout_4.addWidget(self.frame) self.splitter.addWidget(self.frame_4) self.verticalLayout_5.addWidget(self.splitter) self.main_splitter.addWidget(self.frame_8) self.PlotFrame = QFrame(self.main_splitter) self.PlotFrame.setObjectName(u"PlotFrame") self.PlotFrame.setFrameShape(QFrame.NoFrame) self.PlotFrame.setFrameShadow(QFrame.Raised) self.verticalLayout_7 = QVBoxLayout(self.PlotFrame) self.verticalLayout_7.setObjectName(u"verticalLayout_7") self.verticalLayout_7.setContentsMargins(9, 9, 9, 9) self.label_4 = QLabel(self.PlotFrame) self.label_4.setObjectName(u"label_4") self.verticalLayout_7.addWidget(self.label_4) self.plotwidget = MatplotlibWidget(self.PlotFrame) self.plotwidget.setObjectName(u"plotwidget") self.verticalLayout_7.addWidget(self.plotwidget) self.frame_9 = QFrame(self.PlotFrame) self.frame_9.setObjectName(u"frame_9") self.frame_9.setMaximumSize(QSize(16777215, 24)) self.frame_9.setFrameShape(QFrame.StyledPanel) self.frame_9.setFrameShadow(QFrame.Raised) self.horizontalLayout_5 = QHBoxLayout(self.frame_9) self.horizontalLayout_5.setObjectName(u"horizontalLayout_5") self.horizontalLayout_5.setContentsMargins(0, 0, 0, 0) self.horizontalSpacer_4 = QSpacerItem(19, 19, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout_5.addItem(self.horizontalSpacer_4) self.acceptButton = QPushButton(self.frame_9) self.acceptButton.setObjectName(u"acceptButton") self.horizontalLayout_5.addWidget(self.acceptButton) self.verticalLayout_7.addWidget(self.frame_9) self.main_splitter.addWidget(self.PlotFrame) self.verticalLayout_6.addWidget(self.main_splitter) self.tabWidget.addTab(self.tab_2, "") self.tab = QWidget() self.tab.setObjectName(u"tab") self.verticalLayout_3 = QVBoxLayout(self.tab) self.verticalLayout_3.setObjectName(u"verticalLayout_3") self.frame_10 = QFrame(self.tab) self.frame_10.setObjectName(u"frame_10") self.frame_10.setFrameShape(QFrame.StyledPanel) self.frame_10.setFrameShadow(QFrame.Raised) self.gridLayout_2 = QGridLayout(self.frame_10) self.gridLayout_2.setObjectName(u"gridLayout_2") self.label_2 = QLabel(self.frame_10) self.label_2.setObjectName(u"label_2") self.gridLayout_2.addWidget(self.label_2, 0, 1, 1, 1) self.label_6 = QLabel(self.frame_10) self.label_6.setObjectName(u"label_6") self.gridLayout_2.addWidget(self.label_6, 2, 0, 1, 1) self.z_tableView_abcn = QTableView(self.frame_10) self.z_tableView_abcn.setObjectName(u"z_tableView_abcn") self.gridLayout_2.addWidget(self.z_tableView_abcn, 1, 0, 1, 1) self.y_tableView_abcn = QTableView(self.frame_10) self.y_tableView_abcn.setObjectName(u"y_tableView_abcn") self.gridLayout_2.addWidget(self.y_tableView_abcn, 1, 1, 1, 1) self.label_7 = QLabel(self.frame_10) self.label_7.setObjectName(u"label_7") self.gridLayout_2.addWidget(self.label_7, 4, 0, 1, 1) self.z_tableView_abc = QTableView(self.frame_10) self.z_tableView_abc.setObjectName(u"z_tableView_abc") self.gridLayout_2.addWidget(self.z_tableView_abc, 3, 0, 1, 1) self.label = QLabel(self.frame_10) self.label.setObjectName(u"label") self.gridLayout_2.addWidget(self.label, 0, 0, 1, 1) self.z_tableView_seq = QTableView(self.frame_10) self.z_tableView_seq.setObjectName(u"z_tableView_seq") self.gridLayout_2.addWidget(self.z_tableView_seq, 5, 0, 1, 1) self.label_3 = QLabel(self.frame_10) self.label_3.setObjectName(u"label_3") self.gridLayout_2.addWidget(self.label_3, 2, 1, 1, 1) self.y_tableView_abc = QTableView(self.frame_10) self.y_tableView_abc.setObjectName(u"y_tableView_abc") self.gridLayout_2.addWidget(self.y_tableView_abc, 3, 1, 1, 1) self.label_5 = QLabel(self.frame_10) self.label_5.setObjectName(u"label_5") self.gridLayout_2.addWidget(self.label_5, 4, 1, 1, 1) self.y_tableView_seq = QTableView(self.frame_10) self.y_tableView_seq.setObjectName(u"y_tableView_seq") self.gridLayout_2.addWidget(self.y_tableView_seq, 5, 1, 1, 1) self.verticalLayout_3.addWidget(self.frame_10) self.tabWidget.addTab(self.tab, "") self.gridLayout.addWidget(self.tabWidget, 4, 0, 1, 1) self.retranslateUi(Dialog) self.tabWidget.setCurrentIndex(0) QMetaObject.connectSlotsByName(Dialog) # setupUi def retranslateUi(self, Dialog): Dialog.setWindowTitle(QCoreApplication.translate("Dialog", u"Tower creation", None)) self.label_9.setText(QCoreApplication.translate("Dialog", u"Name", None)) self.label_8.setText(QCoreApplication.translate("Dialog", u"Frequency (Hz)", None)) self.label_11.setText(QCoreApplication.translate("Dialog", u"Earth resistivity (Ohm/m^3)", None)) self.label_12.setText(QCoreApplication.translate("Dialog", u"Wire catalogue", None)) #if QT_CONFIG(tooltip) self.add_to_tower_pushButton.setToolTip(QCoreApplication.translate("Dialog", u"Add wire", None)) #endif // QT_CONFIG(tooltip) self.add_to_tower_pushButton.setText("") self.label_10.setText(QCoreApplication.translate("Dialog", u"Wire compisition", None)) #if QT_CONFIG(tooltip) self.delete_from_tower_pushButton.setToolTip(QCoreApplication.translate("Dialog", u"Delete wire", None)) #endif // QT_CONFIG(tooltip) self.delete_from_tower_pushButton.setText("") #if QT_CONFIG(tooltip) self.compute_pushButton.setToolTip(QCoreApplication.translate("Dialog", u"Compute matrices", None)) #endif // QT_CONFIG(tooltip) self.compute_pushButton.setText("") self.label_4.setText(QCoreApplication.translate("Dialog", u"Tower", None)) self.acceptButton.setText(QCoreApplication.translate("Dialog", u"Accept", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), QCoreApplication.translate("Dialog", u"Tower designer", None)) self.label_2.setText(QCoreApplication.translate("Dialog", u" Y shunt (uS / km) for ABCN", None)) self.label_6.setText(QCoreApplication.translate("Dialog", u" Z series (Ohm / km) for ABC", None)) self.label_7.setText(QCoreApplication.translate("Dialog", u" Z series (Ohm / km) in sequence components", None)) self.label.setText(QCoreApplication.translate("Dialog", u" Z series (Ohm / km) for ABCN", None)) self.label_3.setText(QCoreApplication.translate("Dialog", u" Y shunt (uS / km) for ABC", None)) self.label_5.setText(QCoreApplication.translate("Dialog", u" Y shunt (uS / km) for the sequence components", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), QCoreApplication.translate("Dialog", u"Impedance matrices", None)) # retranslateUi
1.976563
2
PythonAPI/util/check_lidar_bb.py
inverted-ai/carla
0
11657
#!/usr/bin/env python # Copyright (c) 2020 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. """ Lidar/BB check for CARLA This script obtains the LiDAR's point cloud corresponding to all the vehicles of the scene and make sure that they are inside the bounding box of the corresponding actor. This is done in a predefined route in Town03 with a high speed and several agressive turns. In a nutshell, the script have a queue that is filled in each frame with a lidar point cloud and an structure for storing the Bounding Boxes. This last one is emulated as a sensor filling the queue in the on_tick callback of the carla.world. In this way, we make sure that we are correctly syncronizing the lidar point cloud and BB/actor transformations. Then, we select the points corresponding to each actor (car) in the scene and check they are inside the bounding boxes of that actor, all in each vehicle frame of reference. Important Data structure description: + Lidar data structure: four element tuple with: - [0] Frame - [1] Sensor name: 'semlidar' - [2] Point cloud in the form of a numpy dictionary with all semantic lidar information - [3] Global transformation of the sensor + Bounding box data structure: four element tuple with: - [0] Frame - [1] Sensor name: 'bb' - [2] List of actor information: each a tuple with: - [0] Actor id - [1] Actor type (blueprint's name) - [0] Actor's global transformation - [0] Actor's bounding box + ActorTrace class: Takes the Lidar data structure and one actor information and check if all the data points related with this actor are inside its BB. This is done in the local coordinate frame of the actor and should be done like: trace = ActorTrace(actor_info, lidar_data) trace.process() trace.check_lidar_data() """ import glob import os import sys import numpy as np from queue import Queue from queue import Empty try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla class ActorTrace(object): """Class that store and process information about an actor at certain moment.""" def __init__(self, actor, lidar): self.set_lidar(lidar) self.set_actor(actor) self._lidar_pc_local = np.array([]) self._bb_vertices = np.array([]) self._bb_minlimits = [0, 0, 0] self._bb_maxlimits = [0, 0, 0] def set_lidar(self, lidar): self._frame = lidar[0] self._lidar_data = lidar[2] self._lidar_transf = lidar[3] def set_actor(self, actor): self._actor_id = actor[0] self._actor_type = actor[1] self._actor_transf = actor[2] self._actor_bb = actor[3] def process(self): # Filter lidar points that correspond to my actor id data_actor = self._lidar_data[self._lidar_data['ObjIdx'] == self._actor_id] # Take the xyz point cloud data and transform it to actor's frame points = np.array([data_actor['x'], data_actor['y'], data_actor['z']]).T points = np.append(points, np.ones((points.shape[0], 1)), axis=1) points = np.dot(self._lidar_transf.get_matrix(), points.T).T # sensor -> world points = np.dot(self._actor_transf.get_inverse_matrix(), points.T).T # world -> actor points = points[:, :-1] # Saving the points in 'local' coordinates self._lidar_pc_local = points # We compute the limits in the local frame of reference using the # vertices of the bounding box vertices = self._actor_bb.get_local_vertices() ver_py = [] for v in vertices: ver_py.append([v.x, v.y, v.z]) ver_np = np.array(ver_py) self._bb_vertices = ver_np self._bb_minlimits = ver_np.min(axis=0) - 0.001 self._bb_maxlimits = ver_np.max(axis=0) + 0.001 def print(self, print_if_empty = False): if self._lidar_pc_local.shape[0] > 0 or print_if_empty: np.savetxt("veh_data_%d_%s_%d.out" % (self._frame, self._actor_type, self._actor_id), self._lidar_pc_local) np.savetxt("bb_data_%d_%s_%d.out" % (self._frame, self._actor_type, self._actor_id), self._bb_vertices) def lidar_is_outside_bb(self, check_axis = [True, True, True]): lidar_pc = self._lidar_pc_local if check_axis[0]: xmin = self._bb_minlimits[0] xmax = self._bb_maxlimits[0] out = np.any((lidar_pc[:,0] > xmax) | (lidar_pc[:,0] < xmin)) if out: print("Problem with x axis") return True if check_axis[1]: ymin = self._bb_minlimits[1] ymax = self._bb_maxlimits[1] out = np.any((lidar_pc[:, 1] > ymax) | (lidar_pc[:, 1] < ymin)) if out: print("Problem with y axis") return True if check_axis[2]: zmin = self._bb_minlimits[2] zmax = self._bb_maxlimits[2] out = np.any((lidar_pc[:, 2] > zmax) | (lidar_pc[:, 2] < zmin)) if out: print("Problem with z axis") return True return False def check_lidar_data(self): if self.lidar_is_outside_bb(): print("Error!!! Points of lidar point cloud are outside its BB for car %d: %s " % (self._actor_id, self._actor_type)) self.print() return False else: return True def wait(world, frames=100, queue = None, slist = None): for i in range(0, frames): world.tick() if queue != None and slist != None: try: for _i in range (0, len(slist)): s_frame = queue.get(True, 1.0) except Empty: print(" Some of the sensor information is missed") # Sensor callback. # This is where you receive the sensor data and # process it as you liked and the important part is that, # at the end, it should include an element into the sensor queue. def lidar_callback(sensor_data, sensor_queue, sensor_name): sensor_pc_local = np.frombuffer(sensor_data.raw_data, dtype=np.dtype([ ('x', np.float32), ('y', np.float32), ('z', np.float32), ('CosAngle', np.float32), ('ObjIdx', np.uint32), ('ObjTag', np.uint32)])) sensor_transf = sensor_data.transform sensor_queue.put((sensor_data.frame, sensor_name, sensor_pc_local, sensor_transf)) def bb_callback(snapshot, world, sensor_queue, sensor_name): data_array = [] vehicles = world.get_actors().filter('vehicle.*') for actor in vehicles: data_array.append((actor.id, actor.type_id, actor.get_transform(), actor.bounding_box)) sensor_queue.put((snapshot.frame, sensor_name, data_array)) def move_spectator(world, actor): actor_tr = actor.get_transform() spectator_transform = carla.Transform(actor_tr.location, actor_tr.rotation) spectator_transform.location -= actor_tr.get_forward_vector() * 5 spectator_transform.location -= actor_tr.get_up_vector() * 3 spectator = world.get_spectator() spectator.set_transform(spectator_transform) def world_callback(snapshot, world, sensor_queue, sensor_name, actor): move_spectator(world, actor) bb_callback(snapshot, world, sensor_queue, sensor_name) def process_sensors(w_frame, sensor_queue, sensor_number): if sensor_number != 2: print("Error!!! Sensor number should be two") sl_data = None bb_data = None try: for i in range (0, sensor_number): s_frame = sensor_queue.get(True, 1.0) while s_frame[0] != w_frame: print("Warning! Missmatch for sensor %s in the frame timestamp (w: %d, s: %d)" % (s_frame[1], w_frame, s_frame[0])) print("This could be due to accumulated data for previous steps") s_frame = sensor_queue.get(True, 1.0) if s_frame[1] == "semlidar": sl_data = s_frame elif s_frame[1] == "bb": bb_data = s_frame #print(" Frame: %d Sensor: %s Len: %d " % (s_frame[0], s_frame[1], len(s_frame[2]))) except Empty: print("Error!!! The needeinformation is not here!!!") return if sl_data == None or bb_data == None: print("Error!!! Missmatch for sensor %s in the frame timestamp (w: %d, s: %d)" % (s_frame[1], w_frame, s_frame[0])) for actor_data in bb_data[2]: trace_vehicle = ActorTrace(actor_data, sl_data) trace_vehicle.process() trace_vehicle.check_lidar_data() class SpawnCar(object): def __init__(self, location, rotation, filter="vehicle.*", autopilot = False, velocity = None): self._filter = filter self._transform = carla.Transform(location, rotation) self._autopilot = autopilot self._velocity = velocity self._actor = None self._world = None def spawn(self, world): self._world = world actor_BP = world.get_blueprint_library().filter(self._filter)[0] self._actor = world.spawn_actor(actor_BP, self._transform) self._actor.set_autopilot(True) return self._actor def destroy(self): if self._actor != None: self._actor.destroy() CarPropList = [ SpawnCar(carla.Location(x=83, y= -40, z=5), carla.Rotation(yaw=-90), filter= "*lincoln*", autopilot=True), SpawnCar(carla.Location(x=83, y= -30, z=3), carla.Rotation(yaw=-90), filter= "*ambulance*", autopilot=True), SpawnCar(carla.Location(x=83, y= -20, z=3), carla.Rotation(yaw=-90), filter= "*etron*", autopilot=True), SpawnCar(carla.Location(x=120, y= -3.5, z=2), carla.Rotation(yaw=+180), filter= "*isetta*", autopilot=True), SpawnCar(carla.Location(x=100, y= -3.5, z=2), carla.Rotation(yaw=+180), filter= "*etron*", autopilot=True), SpawnCar(carla.Location(x=140, y= -3.5, z=2), carla.Rotation(yaw=+180), filter= "*model3*", autopilot=True), SpawnCar(carla.Location(x=160, y= -3.5, z=2), carla.Rotation(yaw=+180), filter= "*impala*", autopilot=False), SpawnCar(carla.Location(x=180, y= -3.5, z=2), carla.Rotation(yaw=+180), filter= "*a2*", autopilot=True), SpawnCar(carla.Location(x=60, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*model3*", autopilot=True), SpawnCar(carla.Location(x=80, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*etron*", autopilot=True), SpawnCar(carla.Location(x=100, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*mustan*", autopilot=True), SpawnCar(carla.Location(x=120, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*isetta*", autopilot=True), SpawnCar(carla.Location(x=140, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*impala*", autopilot=True), SpawnCar(carla.Location(x=160, y= +6, z=2), carla.Rotation(yaw=+00), filter= "*prius*", autopilot=True), SpawnCar(carla.Location(x=234, y= +20,z=2), carla.Rotation(yaw=+90), filter= "*dodge*", autopilot=True), SpawnCar(carla.Location(x=234, y= +40,z=2), carla.Rotation(yaw=+90), filter= "*isetta*", autopilot=True), SpawnCar(carla.Location(x=234, y= +80,z=2), carla.Rotation(yaw=+90), filter= "*tt*", autopilot=True), SpawnCar(carla.Location(x=243, y= -40,z=2), carla.Rotation(yaw=-90), filter= "*etron*", autopilot=True), SpawnCar(carla.Location(x=243, y= -20,z=2), carla.Rotation(yaw=-90), filter= "*mkz2017*", autopilot=True), SpawnCar(carla.Location(x=243, y= +00,z=2), carla.Rotation(yaw=-90), filter= "*mustan*", autopilot=True), SpawnCar(carla.Location(x=243, y= +20,z=2), carla.Rotation(yaw=-90), filter= "*dodge*", autopilot=True), SpawnCar(carla.Location(x=243, y= +40,z=2), carla.Rotation(yaw=-90), filter= "*charger2020*", autopilot=True), SpawnCar(carla.Location(x=243, y= +60,z=2), carla.Rotation(yaw=-90), filter= "*lincoln2020*", autopilot=True), SpawnCar(carla.Location(x=243, y= +80,z=2), carla.Rotation(yaw=-90), filter= "*tt*", autopilot=True), SpawnCar(carla.Location(x=243, y=+100,z=2), carla.Rotation(yaw=-90), filter= "*a2*", autopilot=True), SpawnCar(carla.Location(x=243, y=+120,z=2), carla.Rotation(yaw=-90), filter= "*wrangler_rubicon*", autopilot=True), SpawnCar(carla.Location(x=243, y=+140,z=2), carla.Rotation(yaw=-90), filter= "*c3*", autopilot=True) ] def spawn_prop_vehicles(world): for car in CarPropList: car.spawn(world) def destroy_prop_vehicles(): for car in CarPropList: car.destroy() def main(): # We start creating the client client = carla.Client('localhost', 2000) client.set_timeout(2.0) world = client.get_world() try: # We need to save the settings to be able to recover them at the end # of the script to leave the server in the same state that we found it. original_settings = world.get_settings() settings = world.get_settings() # We set CARLA syncronous mode settings.fixed_delta_seconds = 0.05 settings.synchronous_mode = True world.apply_settings(settings) traffic_manager = client.get_trafficmanager(8000) traffic_manager.set_synchronous_mode(True) # We create the sensor queue in which we keep track of the information # already received. This structure is thread safe and can be # accessed by all the sensors callback concurrently without problem. sensor_queue = Queue() # Spawning ego vehicle actor_BP = world.get_blueprint_library().filter("vehicle.lincoln.mkz2017")[0] car_tr = carla.Transform(carla.Location(x=239, y=125, z=0.9), carla.Rotation(yaw=-88.5)) actor = world.spawn_actor(actor_BP, car_tr) world.tick() move_spectator(world, actor) spawn_prop_vehicles(world) wait(world, 10) # We create all the sensors and keep them in a list for convenience. sensor_list = [] lidar_bp = world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic') lidar_bp.set_attribute('channels', '64') lidar_bp.set_attribute('points_per_second', '500000') lidar_bp.set_attribute('range', '300') lidar_bp.set_attribute('upper_fov', '10.0') lidar_bp.set_attribute('lower_fov', '-90.0') lidar_tr = carla.Transform(carla.Location(z=3), carla.Rotation(yaw=0)) lidar = world.spawn_actor(lidar_bp, lidar_tr, attach_to=actor) lidar.listen(lambda data: lidar_callback(data, sensor_queue, "semlidar")) world.on_tick(lambda snapshot: world_callback(snapshot, world, sensor_queue, "bb", actor)) sensor_list.append(lidar) sensor_list.append(actor) # actor acts as a 'sensor' to simplify bb-lidar data comparison # Set autopilot for main vehicle actor.enable_constant_velocity(carla.Vector3D(20, 0, 0)) for _i in range(0, 100): # Tick the server world.tick() w_frame = world.get_snapshot().frame process_sensors(w_frame, sensor_queue, len(sensor_list)) actor.disable_constant_velocity() finally: world.apply_settings(original_settings) # Destroy all the actors destroy_prop_vehicles() for sensor in sensor_list: sensor.destroy() if __name__ == "__main__": try: main() except KeyboardInterrupt: print(' - Exited by user.')
2.640625
3
claim.py
bukovyn/claim
0
11658
<gh_stars>0 #!/usr/bin/env python3 """ Text files created on DOS/Windows machines have different line endings than files created on Unix/Linux. DOS uses carriage return and new line ("\r\n") as a line ending, while Unix uses just new line ("\n"). The purpose of this script is to have a quick, on the go, shell friendly solution to convert one to the other. """ import sys import argparse def main(): """ Removes error traceback clutter and converts files specified. """ sys.tracebacklimit = 0 args = commands() for filename in args.filenames: convert(filename, args.dos) def commands(): """ Sets up command line arguments and improper argument error handling. Returns: parser (object) """ parser = argparse.ArgumentParser() parser.add_argument('-dos', action='store_true', help="converts file to DOS") parser.add_argument('filenames', metavar='filename', type=str, nargs='+', help="file to be converted") return parser.parse_args() def convert(filename, flag): """ Converts the file's line endings appropriately. Args: filename (string): the file being converted flag (bool): defaults to UNIX. If flag is true, converts line endings to DOS """ unix, dos = '\n', '\r\n' style = 'UNIX' with open(filename, 'rb') as f: content = f.read().decode('UTF-8') if flag: style = 'DOS' content = content.replace(unix, dos) else: content = content.replace(dos, unix) with open(filename, 'wb') as f: f.write(content.encode('UTF-8')) print("converting file '{}' to {} ...".format(filename, style)) if __name__ == '__main__': main()
3.40625
3
reference/Python/media/moviepy/audio/extract_audio.py
steadylearner/code
4
11659
import sys from moviepy.editor import * clip = VideoFileClip(sys.argv[1]) audioclip = clip.audio audioclip.write_audiofile(sys.argv[2])
2.390625
2
objettoqt/mixins.py
brunonicko/objettoqt
0
11660
# -*- coding: utf-8 -*- """Mix-in classes for `Qt` types.""" from ._mixins import ( OQAbstractItemModelMixin, OQAbstractItemViewMixin, OQObjectMixin, OQWidgetMixin, ) from ._views import OQListViewMixin __all__ = [ "OQObjectMixin", "OQWidgetMixin", "OQAbstractItemModelMixin", "OQAbstractItemViewMixin", "OQListViewMixin", ]
1.15625
1
util/mccLog.py
ccchooko/webControlClient
0
11661
<gh_stars>0 #-*-coding:utf8-*- import logging from datetime import datetime class mccLog(object): def __init__(self): logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename= datetime.now().strftime("%Y%m%d%H%M%S") + '.log', filemode='a') def mccWriteLog(self, logContent): logging.info(logContent) def mccError(self, errorContent): logging.error(errorContent)
2.796875
3
Learning-Python/Jumble-Solver/jumble_solver.py
oliverkeen/Sandbox
0
11662
# <NAME> # Software Engineering 001 # jumble_solver.py # 2/17/2021 # Assignment: # Consider the game "Jumble" # https://www.sandiegouniontribune.com/sd-jumble-daily-htmlstory.html # Create a Python program to find the individual words in Jumble puzzles such # that INJURE prints after entering the following: solve("JNUIER") from PyDictionary import PyDictionary # Installation: pip install PyDictionary from math import factorial from random import shuffle def solve(jumble): combos = [] chars = list(jumble.upper()) dict = PyDictionary() # Maximum possible unique combinations of chars limit = factorial(len(chars)) while len(combos) < limit: # Generates random string from chars shuffle(chars) tmp = "".join(chars) # Appends tmp to combos list only if it is unique if tmp not in combos: combos.append(tmp) # Prints tmp only if it returns an English meaning if dict.meaning(tmp, disable_errors = True): print(tmp) break
4.15625
4
msm/skill_entry.py
luca-vercelli/mycroft-skills-manager
0
11663
# Copyright (c) 2018 <NAME>, Inc. # # This file is part of Mycroft Skills Manager # (see https://github.com/MycroftAI/mycroft-skills-manager). # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import logging import os import shutil import subprocess import yaml from contextlib import contextmanager from difflib import SequenceMatcher from functools import wraps from git import Repo, GitError from git.exc import GitCommandError from lazy import lazy from os.path import exists, join, basename, dirname, isfile from shutil import rmtree, move from subprocess import PIPE, Popen from tempfile import mktemp, gettempdir from threading import Lock from typing import Callable from pako import PakoManager from msm import SkillRequirementsException, git_to_msm_exceptions from msm.exceptions import PipRequirementsException, \ SystemRequirementsException, AlreadyInstalled, SkillModified, \ AlreadyRemoved, RemoveException, CloneException, NotInstalled, GitException from msm.util import cached_property, Git LOG = logging.getLogger(__name__) # Branches which can be switched from when updating # TODO Make this configurable SWITCHABLE_BRANCHES = ['master'] # default constraints to use if no are given DEFAULT_CONSTRAINTS = '/etc/mycroft/constraints.txt' FIVE_MINUTES = 300 @contextmanager def work_dir(directory): old_dir = os.getcwd() os.chdir(directory) try: yield finally: os.chdir(old_dir) def _backup_previous_version(func: Callable = None): """Private decorator to back up previous skill folder""" @wraps(func) def wrapper(self, *args, **kwargs): self.old_path = None if self.is_local: self.old_path = join(gettempdir(), self.name) if exists(self.old_path): rmtree(self.old_path) shutil.copytree(self.path, self.old_path) try: func(self, *args, **kwargs) # Modified skill or GitError should not restore working copy except (SkillModified, GitError, GitException): raise except Exception: LOG.info('Problem performing action. Restoring skill to ' 'previous state...') if exists(self.path): rmtree(self.path) if self.old_path and exists(self.old_path): shutil.copytree(self.old_path, self.path) self.is_local = exists(self.path) raise finally: # Remove temporary path if needed if self.old_path and exists(self.old_path): rmtree(self.old_path) return wrapper class SkillEntry(object): pip_lock = Lock() manifest_yml_format = { 'dependencies': { 'system': {}, 'exes': [], 'skill': [], 'python': [] } } def __init__(self, name, path, url='', sha='', msm=None): url = url.rstrip('/') url = url[:-len('.git')] if url.endswith('.git') else url self.path = path self.url = url self.sha = sha self.msm = msm if msm: u = url.lower() self.meta_info = msm.repo.skills_meta_info.get(u, {}) else: self.meta_info = {} if name is not None: self.name = name elif 'name' in self.meta_info: self.name = self.meta_info['name'] else: self.name = basename(path) # TODO: Handle git:// urls as well from_github = False if url.startswith('https://'): url_tokens = url.rstrip("/").split("/") from_github = url_tokens[-3] == 'github.com' if url else False self.author = self.extract_author(url) if from_github else '' self.id = self.extract_repo_id(url) if from_github else self.name self.is_local = exists(path) self.old_path = None # Path of previous version while upgrading @property def is_beta(self): return not self.sha or self.sha == 'HEAD' @property def is_dirty(self): """True if different from the version in the mycroft-skills repo. Considers a skill dirty if - the checkout sha doesn't match the mycroft-skills repo - the skill doesn't exist in the mycroft-skills repo - the skill is not a git repo - has local modifications """ if not exists(self.path): return False try: checkout = Git(self.path) mod = checkout.status(porcelain=True, untracked_files='no') != '' current_sha = checkout.rev_parse('HEAD') except GitCommandError: # Not a git checkout return True skill_shas = {d[0]: d[3] for d in self.msm.repo.get_skill_data()} return (self.name not in skill_shas or current_sha != skill_shas[self.name] or mod) @cached_property(ttl=FIVE_MINUTES) def skill_gid(self): """Format skill gid for the skill. This property does some Git gymnastics to determine its return value. When a device boots, each skill accesses this property several times. To reduce the amount of boot time, cache the value returned by this property. Cache expires five minutes after it is generated. """ LOG.debug('Generating skill_gid for ' + self.name) gid = '' if self.is_dirty: gid += '@|' if self.meta_info != {}: gid += self.meta_info['skill_gid'] else: name = self.name.split('.')[0] gid += name return gid def __str__(self): return self.name def attach(self, remote_entry): """Attach a remote entry to a local entry""" self.name = remote_entry.name self.sha = remote_entry.sha self.url = remote_entry.url self.author = remote_entry.author return self @classmethod def from_folder(cls, path, msm=None, use_cache=True): """Find or create skill entry from folder path. Arguments: path: path of skill folder msm: msm instance to use for caching and extended information retrieval. use_cache: Enable/Disable cache usage. defaults to True """ if msm and use_cache: skills = {skill.path: skill for skill in msm.local_skills.values()} if path in skills: return skills[path] return cls(None, path, cls.find_git_url(path), msm=msm) @classmethod def create_path(cls, folder, url, name=''): return join(folder, '{}.{}'.format( name or cls.extract_repo_name(url), cls.extract_author(url) ).lower()) @staticmethod def extract_repo_name(url): s = url.rstrip('/').split("/")[-1] a, b, c = s.rpartition('.git') if not c: return a return s @staticmethod def extract_author(url): return url.rstrip('/').split("/")[-2].split(':')[-1] @classmethod def extract_repo_id(cls, url): return '{}:{}'.format(cls.extract_author(url).lower(), cls.extract_repo_name(url)).lower() @staticmethod def _tokenize(x): return x.replace('-', ' ').split() @staticmethod def _extract_tokens(s, tokens): s = s.lower().replace('-', ' ') extracted = [] for token in tokens: extracted += [token] * s.count(token) s = s.replace(token, '') s = ' '.join(i for i in s.split(' ') if i) tokens = [i for i in s.split(' ') if i] return s, tokens, extracted @classmethod def _compare(cls, a, b): return SequenceMatcher(a=a, b=b).ratio() def match(self, query, author=None): search, search_tokens, search_common = self._extract_tokens( query, ['skill', 'fallback', 'mycroft'] ) name, name_tokens, name_common = self._extract_tokens( self.name, ['skill', 'fallback', 'mycroft'] ) weights = [ (9, self._compare(name, search)), (9, self._compare(name.split(' '), search_tokens)), (2, self._compare(name_common, search_common)), ] if author: author_weight = self._compare(self.author, author) weights.append((5, author_weight)) author_weight = author_weight else: author_weight = 1.0 return author_weight * ( sum(weight * val for weight, val in weights) / sum(weight for weight, val in weights) ) def run_pip(self, constraints=None): if not self.dependent_python_packages: return False # Use constraints to limit the installed versions if constraints and not exists(constraints): LOG.error('Couldn\'t find the constraints file') return False elif exists(DEFAULT_CONSTRAINTS): constraints = DEFAULT_CONSTRAINTS LOG.info('Installing requirements.txt for ' + self.name) can_pip = os.access(dirname(sys.executable), os.W_OK | os.X_OK) pip_args = [sys.executable, '-m', 'pip', 'install'] if constraints: pip_args += ['-c', constraints] if not can_pip: pip_args = ['sudo', '-n'] + pip_args with self.pip_lock: """ Iterate over the individual Python packages and install them one by one to enforce the order specified in the manifest. """ for dependent_python_package in self.dependent_python_packages: pip_command = pip_args + [dependent_python_package] proc = Popen(pip_command, stdout=PIPE, stderr=PIPE) pip_code = proc.wait() if pip_code != 0: stderr = proc.stderr.read().decode() if pip_code == 1 and 'sudo:' in stderr and pip_args[0] == 'sudo': raise PipRequirementsException( 2, '', 'Permission denied while installing pip ' 'dependencies. Please run in virtualenv or use sudo' ) raise PipRequirementsException( pip_code, proc.stdout.read().decode(), stderr ) return True def install_system_deps(self): self.run_requirements_sh() system_packages = { exe: (packages or '').split() for exe, packages in self.dependent_system_packages.items() } LOG.info('Installing system requirements...') all_deps = system_packages.pop('all', []) try: manager = PakoManager() success = manager.install(all_deps, overrides=system_packages) except RuntimeError as e: LOG.warning('Failed to launch package manager: {}'.format(e)) success = False missing_exes = [ exe for exe in self.dependencies.get('exes') or [] if not shutil.which(exe) ] if missing_exes: if not success: LOG.warning('Failed to install dependencies.') if all_deps: LOG.warning('Please install manually: {}'.format( ' '.join(all_deps) )) raise SkillRequirementsException('Could not find exes: {}'.format( ', '.join(missing_exes) )) return success def run_requirements_sh(self): setup_script = join(self.path, "requirements.sh") if not exists(setup_script): return False with work_dir(self.path): rc = subprocess.call(["bash", setup_script]) if rc != 0: LOG.error("Requirements.sh failed with error code: " + str(rc)) raise SystemRequirementsException(rc) LOG.info("Successfully ran requirements.sh for " + self.name) return True def run_skill_requirements(self): if not self.msm: raise ValueError('Pass msm to SkillEntry to install skill deps') try: for skill_dep in self.dependent_skills: LOG.info("Installing skill dependency: {}".format(skill_dep)) try: self.msm.install(skill_dep) except AlreadyInstalled: pass except Exception as e: raise SkillRequirementsException(e) def verify_info(self, info, fmt): if not info: return if not isinstance(info, type(fmt)): LOG.warning('Invalid value type manifest.yml for {}: {}'.format( self.name, type(info) )) return if not isinstance(info, dict) or not fmt: return for key in info: if key not in fmt: LOG.warning('Unknown key in manifest.yml for {}: {}'.format( self.name, key )) continue self.verify_info(info[key], fmt[key]) @lazy def skill_info(self): yml_path = join(self.path, 'manifest.yml') if exists(yml_path): LOG.info('Reading from manifest.yml') with open(yml_path) as f: info = yaml.safe_load(f) self.verify_info(info, self.manifest_yml_format) return info or {} return {} @lazy def dependencies(self): return self.skill_info.get('dependencies') or {} @lazy def dependent_skills(self): skills = set() reqs = join(self.path, "skill_requirements.txt") if exists(reqs): with open(reqs, "r") as f: for i in f.readlines(): skill = i.strip() if skill: skills.add(skill) for i in self.dependencies.get('skill') or []: skills.add(i) return list(skills) @lazy def dependent_python_packages(self): reqs = join(self.path, "requirements.txt") req_lines = [] if exists(reqs): with open(reqs, "r") as f: req_lines += f.readlines() req_lines += self.dependencies.get('python') or [] # Strip comments req_lines = [l.split('#')[0].strip() for l in req_lines] return [i for i in req_lines if i] # Strip empty lines @lazy def dependent_system_packages(self): return self.dependencies.get('system') or {} def remove(self): if not self.is_local: raise AlreadyRemoved(self.name) try: rmtree(self.path) self.is_local = False except OSError as e: raise RemoveException(str(e)) LOG.info('Successfully removed ' + self.name) @_backup_previous_version def install(self, constraints=None): if self.is_local: raise AlreadyInstalled(self.name) LOG.info("Downloading skill: " + self.url) try: tmp_location = mktemp() Repo.clone_from(self.url, tmp_location) self.is_local = True Git(tmp_location).reset(self.sha or 'HEAD', hard=True) except GitCommandError as e: raise CloneException(e.stderr) if isfile(join(tmp_location, '__init__.py')): move(join(tmp_location, '__init__.py'), join(tmp_location, '__init__')) try: move(tmp_location, self.path) if self.msm: self.run_skill_requirements() self.install_system_deps() self.run_pip(constraints) finally: if isfile(join(self.path, '__init__')): move(join(self.path, '__init__'), join(self.path, '__init__.py')) LOG.info('Successfully installed ' + self.name) def update_deps(self, constraints=None): if self.msm: self.run_skill_requirements() self.install_system_deps() self.run_pip(constraints) def _find_sha_branch(self): git = Git(self.path) sha_branches = git.branch( contains=self.sha, all=True ).split('\n') sha_branch = [b for b in sha_branches if ' -> ' not in b][0] sha_branch = sha_branch.strip('* \n').replace('remotes/', '') for remote in git.remote().split('\n'): sha_branch = sha_branch.replace(remote + '/', '') return sha_branch @_backup_previous_version def update(self): if not self.is_local: raise NotInstalled('{} is not installed'.format(self.name)) git = Git(self.path) with git_to_msm_exceptions(): sha_before = git.rev_parse('HEAD') modified_files = git.status(porcelain=True, untracked='no') if modified_files != '': raise SkillModified('Uncommitted changes:\n' + modified_files) git.fetch() current_branch = git.rev_parse('--abbrev-ref', 'HEAD').strip() if self.sha and current_branch in SWITCHABLE_BRANCHES: # Check out correct branch git.checkout(self._find_sha_branch()) git.merge(self.sha or 'origin/HEAD', ff_only=True) sha_after = git.rev_parse('HEAD') if sha_before != sha_after: self.update_deps() LOG.info('Updated ' + self.name) # Trigger reload by modifying the timestamp os.utime(join(self.path, '__init__.py')) return True else: LOG.info('Nothing new for ' + self.name) return False @staticmethod def find_git_url(path): """Get the git url from a folder""" try: LOG.debug( 'Attempting to retrieve the remote origin URL config for ' 'skill in path ' + path ) return Git(path).config('remote.origin.url') except GitError: return '' def __repr__(self): return '<SkillEntry {}>'.format(' '.join( '{}={}'.format(attr, self.__dict__[attr]) for attr in ['name', 'author', 'is_local'] ))
1.492188
1
sleekxmpp/plugins/xep_0027/stanza.py
elrond79/SleekXMPP
3
11664
<gh_stars>1-10 """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2012 <NAME>, <NAME> This file is part of SleekXMPP. See the file LICENSE for copying permission. """ from sleekxmpp.xmlstream import ElementBase class Signed(ElementBase): name = 'x' namespace = 'jabber:x:signed' plugin_attrib = 'signed' interfaces = set(['signed']) is_extension = True def set_signed(self, value): parent = self.parent() xmpp = parent.stream data = xmpp['xep_0027'].sign(value, parent['from']) if data: self.xml.text = data else: del parent['signed'] def get_signed(self): return self.xml.text class Encrypted(ElementBase): name = 'x' namespace = 'jabber:x:encrypted' plugin_attrib = 'encrypted' interfaces = set(['encrypted']) is_extension = True def set_encrypted(self, value): parent = self.parent() xmpp = parent.stream data = xmpp['xep_0027'].encrypt(value, parent['to'].bare) if data: self.xml.text = data else: del parent['encrypted'] def get_encrypted(self): parent = self.parent() xmpp = parent.stream if self.xml.text: return xmpp['xep_0027'].decrypt(self.xml.text, parent['to']) return None
2.03125
2
tcptofpc.py
catenacyber/fuzzpcap
6
11665
#tshark -r input.pcap -qz "follow,tcp,raw,0" import struct import sys import binascii import subprocess result = subprocess.Popen( ["tshark", "-r", sys.argv[1], "-qz", "follow,tcp,raw,0"], stdout=subprocess.PIPE) sys.stdout.buffer.write(b"FPC\x80") for i in range(4): result.stdout.readline() dp=result.stdout.readline().split(b":")[2] sp=result.stdout.readline().split(b":")[2] sys.stdout.buffer.write(struct.pack('>H', int(sp))) sys.stdout.buffer.write(struct.pack('>H', int(dp))) for l in result.stdout.readlines(): s2c = 0 if l[0] == 9: l = l[1:] s2c = 1 try: r = binascii.unhexlify(l[:-1]) except: continue sys.stdout.buffer.write(struct.pack('>B', int(s2c))) sys.stdout.buffer.write(r) sys.stdout.buffer.write(b"FPC0")
2.25
2
AIJ Filter Collection/AIJ_Night_Filters.py
kjkoeller/BSU-Code
1
11666
""" Created: November 11, 2020 Author: <NAME> Python Version 3.9 This program is meant to make the process of collecting the different filters from AIJ excel spreadsheets faster. The user enters however many nights they have and the program goes through and checks those text files for the different columns for,HJD, Amag, and Amag error for the B and V filters. The program will also calculate the R magnitude from the rel flux of T1. There are error catching statements within the program so if the user mistypes, the program will not crash and close on them. """ import pandas as pd from os import path def main(c): # warning prompts for the user to read to make sure this program works correctly if c == 0: # warning prompts for the user to read to make sure this program works correctly print() print("Make sure you have turned the output xls files from AIJ into tab delimited text files. " "Since these xls files are corrupt for reading directly from.") print("You will also need to go into each night and filter and " "make the HJD column 6 decimals instead of the output of 3 within Excel.") print() else: print() while True: # checks to see whether you have entered a number and a correct filter letter try: num = int(input("Number of nights you have: ")) filter_name = input("Which filter are these nights in (B, V, R): ") if filter_name.upper() == "B" or filter_name.upper() == "V" or filter_name.upper() == "R": break else: print("Please enter B, V, or R for your filter.") print() continue except ValueError: print("You have entered an invalid number for your number of nights. Please enter a number.") print("") get_filters(num) def get_filters(n): """ Takes a number of nights for a given filter and takes out the HJD, either A_Mag1 or T1_flux, and error for mag or flux :param n: Number of observation nights :param f: The filter letter being used :return: the output text files for each night in a given filter """ total_hjd = [] total_amag = [] total_error = [] # checks for either the b, v, r filter as either upper or lowercase will work for i in range(n): while True: # makes sure the file pathway is real and points to some file # (does not check if that file is the correct one though) try: # an example pathway for the files # E:\Research\Data\NSVS_254037\2018.10.12-reduced\Check\V\2018.10.12.APASS.V_measurements.txt file = input("Enter night %d file path: " % (i+1)) if path.exists(file): break else: continue except FileNotFoundError: print("Please enter a correct file path") # noinspection PyUnboundLocalVariable df = pd.read_csv(file, delimiter="\t") # set parameters to lists from the file by the column header hjd = [] amag = [] amag_error = [] try: hjd = list(df["HJD"]) amag = list(df["Source_AMag_T1"]) amag_error = list(df["Source_AMag_Err_T1"]) except KeyError: print("The file you entered does not have the columns of HJD, Source_AMag_T1, or Source_AMag_Err_T1. " "Please re-enter the file path and make sure its the correct file.") c = 1 main(c) total_hjd.append(hjd) total_amag.append(amag) total_error.append(amag_error) # converts the Dataframe embedded lists into a normal flat list new_hjd = [item for elem in total_hjd for item in elem] new_amag = [item for elem in total_amag for item in elem] new_error = [item for elem in total_error for item in elem] # outputs the new file to dataframe and then into a text file for use in Peranso or PHOEBE data = pd.DataFrame({ "HJD": new_hjd, "AMag": new_amag, "AMag Error": new_error }) print("") output = input("What is the file output name (with file extension .txt): ") data.to_csv(output, index=False, header=False, sep='\t') print("") print("Fished saving the file to the same location as this program.") # Press the green button in the gutter to run the script. if __name__ == '__main__': count = 0 main(count)
4
4
backend/songwriter/migrations/0006_auto_20170902_0723.py
giliam/turbo-songwriter
0
11667
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-09-02 05:23 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('songwriter', '0005_auto_20170824_1726'), ] operations = [ migrations.AlterModelOptions( name='author', options={'ordering': ['lastname', 'firstname']}, ), migrations.AlterModelOptions( name='chord', options={'ordering': ['note']}, ), migrations.AlterModelOptions( name='editor', options={'ordering': ['name']}, ), migrations.AlterModelOptions( name='theme', options={'ordering': ['name']}, ), ]
1.53125
2
util/textbox_utils.py
yannl35133/sslib
0
11668
CHARACTERS_PER_LINE = 39 def break_lines(text): chars_in_line = 1 final_text = '' skip = False for char in text: if chars_in_line >= CHARACTERS_PER_LINE: if char == ' ': # we happen to be on a space, se we can just break here final_text += '\n' skip = True else: # work backwards to find the space to break on for i in range(len(final_text) - 1, 0, -1): if final_text[i] == ' ': final_text = final_text[:i] + '\n' + final_text[i + 1:] break chars_in_line = 0 chars_in_line += 1 if not skip: final_text += char skip = False return final_text if __name__ == '__main__': print(break_lines('The <y<Spirit of the Sword>> guides the goddess\' chosen hero to <r<Skyloft Village>>')) print(break_lines('Hey, you look like you have a Questions?')) print(break_lines('Skyloft Peater/Peatrice\'s Crystals has Bug Net'))
3.765625
4
tools/isolate/data/isolate/with_flag.py
Scopetta197/chromium
212
11669
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys def main(): print 'with_flag: Verify the test data files were mapped properly' assert len(sys.argv) == 2 mode = sys.argv[1] assert mode in ('run', 'trace') files = sorted(os.listdir('files1')) tree = { 'test_file1.txt': 'Foo\n', 'test_file2.txt': 'Bar\n', } # Ignore .svn directory which happens to be there with --mode=trace # from a svn checkout. The file shouldn't be there when --mode=run is used. if mode == 'trace' and '.svn' in files: files.remove('.svn') if files != sorted(tree): print '%s != %s' % (files, sorted(tree)) return 2 for k, v in tree.iteritems(): content = open(os.path.join('files1', k), 'rb').read() if v != content: print '%s: %r != %r' % (k, v, content) return 3 root_dir = os.path.dirname(os.path.abspath(__file__)) parent_dir, base = os.path.split(root_dir) if mode == 'trace': # Verify the parent directory. parent_dir, base2 = os.path.split(parent_dir) if base != 'isolate' or base2 != 'data': print 'mode trace: Invalid root dir %s' % root_dir return 4 else: # Verify that we are not inside a checkout. if base == 'data': print 'mode run: Invalid root dir %s' % root_dir return 5 return 0 if __name__ == '__main__': sys.exit(main())
2.15625
2
tensorflow/load_mnist.py
stone-zeng/ising
1
11670
"""Loading MNIST dataset. """ import struct import numpy as np class MNIST: """ Loading MNIST dataset. In the directory of MNIST dataset, there should be the following files: - Training set: - train-images-idx3-ubyte - train-labels-idx1-ubyte - Test set: - t10k-images-idx3-ubyte - t10k-labels-idx1-ubyte Functions --------- next_batch() image_pair(index: int) sample_batch(batch_index: int) to_ndarray() Attributes ---------- data_type: Can be either `"test"` or `"train"`. path: Path for MNIST data. data_size: Size of the dataset. Default value `None` means using all data in MNIST. batch_size: Size of the mini-batch. Default value `None` means using the whole dataset as a mini-batch. binarize: Whether to binarize the images (using 0 and 1 values). Default value is True. reshape: Whether to reshape the images into 2D arrays. Default value is False. one_hot: whether to use one-hot encoding for labels (e.g. using vector `[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]` for 0). Default value is False. """ IMAGE_SIZE = 784 LABEL_SIZE = 1 _IMAGE_SIZE_FMT = ">784B" _LABEL_SIZE_FMT = ">B" IMAGE_SHAPE = (28, 28) batch_index = 0 def __init__(self, data_type: str, path: str, data_size: int = None, batch_size: int = None, binarize=True, reshape=False, one_hot=False): self.data_type = data_type self.path = path # Options self.binarize = binarize self.reshape = reshape self.one_hot = one_hot # Data buffer # `data_size` will be updated according to the actual data image_buf, label_buf = self._read_file() # Size if data_size is None: # `len(image_buf)` may not be exactly divided by 784 self.data_size = len(image_buf) // self.IMAGE_SIZE else: self.data_size = data_size if batch_size is None: self.batch_size = self.data_size else: if batch_size <= self.data_size: self.batch_size = batch_size else: raise ValueError("batch size larger than data size") self.batch_num = self.data_size // self.batch_size # Data self._images = self._get_image(image_buf) self._labels = self._get_label(label_buf) def _read_file(self): if self.data_type == "test": image_file_name = self.path + "t10k-images-idx3-ubyte" label_file_name = self.path + "t10k-labels-idx1-ubyte" elif self.data_type == "train": image_file_name = self.path + "train-images-idx3-ubyte" label_file_name = self.path + "train-labels-idx1-ubyte" else: raise ValueError("only type \"test\" and \"train\" are available") # "rb" means reading + binary mode with open(image_file_name, "rb") as image_file: image_buf = image_file.read() with open(label_file_name, "rb") as label_file: label_buf = label_file.read() return image_buf, label_buf def _get_image(self, image_buf): """Get an image array from `image_buf`. This is the structure of the image file (training set): [offset] [type] [value] [description] 0000 32 bit integer 0x00000803(2051) magic number 0004 32 bit integer 60000 number of images 0008 32 bit integer 28 number of rows 0012 32 bit integer 28 number of columns 0016 unsigned byte ?? pixel 0017 unsigned byte ?? pixel ........ xxxx unsigned byte ?? pixel """ image_buf_len = self.data_size * self.IMAGE_SIZE + 16 image_offset = 16 image_arr = [] while image_offset < image_buf_len: temp = struct.unpack_from(self._IMAGE_SIZE_FMT, image_buf, image_offset) if self.binarize: temp = np.vectorize(lambda x: 0 if x <= 127 else 1)(temp) if self.reshape: temp = np.reshape(temp, self.IMAGE_SHAPE) image_arr.append(temp) image_offset += self.IMAGE_SIZE return image_arr def _get_label(self, label_buf): """Get an label array from `label_buf`. This is the structure of the label file (training set): [offset] [type] [value] [description] 0000 32 bit integer 0x00000801(2049) magic number (MSB first) 0004 32 bit integer 60000 number of items 0008 unsigned byte ?? label 0009 unsigned byte ?? label ........ xxxx unsigned byte ?? label """ label_buf_len = self.data_size * self.LABEL_SIZE + 8 label_offset = 8 label_arr = [] while label_offset < label_buf_len: temp = struct.unpack_from(self._LABEL_SIZE_FMT, label_buf, label_offset)[0] if self.one_hot: vec = np.zeros(10) vec[temp] = 1 label_arr.append(vec) else: label_arr.append(temp) label_offset += self.LABEL_SIZE return label_arr def next_batch(self): """Increase `batch_index` by 1, then return a mini-batch of (image, label) tuples.""" this_batch = self.batch(self.batch_index) self.batch_index = (self.batch_index + 1) % self.batch_num return this_batch def image_pair(self, index: int): """Return a (image, label) tuple at `index`.""" if index < self.data_size: return self._images[index], self._labels[index] raise IndexError("image index out of range") def batch(self, batch_index: int): """Return a mini-batch of (image, label) tuples at `batch_index`.""" if batch_index < self.batch_num: begin = batch_index * self.batch_size end = (batch_index + 1) * self.batch_size return self._images[begin:end], self._labels[begin:end] raise IndexError("batch index out of range") def to_ndarray(self): """Return the raw data tuple `(images, labels)` as `np.ndarray`. """ images = [] labels = [] for i in range(self.batch_num): image, label = self.batch(i) images.append(image) labels.append(label) return np.asarray(images), np.asarray(labels) def _test(): data = MNIST("train", MNIST_PATH, data_size=200, batch_size=8, reshape=True, one_hot=False, binarize=False) print("Meta-data:") print("\tDataset size:", data.data_size) print("\tBatch size:", data.batch_size) col_num = 4 row_num = data.batch_size // col_num + 1 _test_random_images(data, col_num, row_num) _test_random_batch(data, col_num, row_num) _test_next_batch(data, col_num, row_num) def _test_random_images(data, col_num, row_num): images = [] labels = [] for _ in range(10): index = random.randrange(data.data_size) image, label = data.image_pair(index) images.append(image) labels.append(label) _plot(images, labels, col_num=col_num, row_num=row_num) def _test_random_batch(data, col_num, row_num): index = random.randrange(data.batch_num) images, labels = data.batch(index) _plot(images, labels, col_num=col_num, row_num=row_num) def _test_next_batch(data, col_num, row_num): for _ in range(3): images, labels = data.next_batch() _plot(images, labels, col_num=col_num, row_num=row_num) def _plot(images, labels, col_num, row_num): for i, (image, label) in enumerate(zip(images, labels)): plt.subplot(row_num, col_num, i + 1) plt.imshow(image, cmap="gray") plt.axis('off') plt.title(str(label)) plt.show() def _test_numpy(): images, labels = MNIST("train", MNIST_PATH, data_size=200, batch_size=8, reshape=False, one_hot=False, binarize=False).to_ndarray() print(images.shape) # shape = (num_batches, batch_size, num_visible) print(np.moveaxis(images, 0, -1).shape) # shape = (batch_size, num_visible, num_batches) print(labels.shape) # shape = (num_batches, batch_size) if __name__ == "__main__": import random import matplotlib.pyplot as plt # Local MNIST data MNIST_PATH = "../../machine-learning/data/mnist/" _test() _test_numpy()
3.8125
4
sarnet_td3/common/gpu_multithread.py
JingdiC/SARNet
16
11671
import threading, queue, time, os, pickle # from queue import Queue import numpy as np import tensorflow as tf import sarnet_td3.common.tf_util as U from tensorflow.python.keras.backend import set_session lock = threading.Lock() class MultiTrainTD3(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_end_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]] for i in range(self.num_agents)] for _ in range(self.num_env)] # self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_end_rewards = [] self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 self.save_n_ep = self.num_env * 10 self.print_step = -int(self.save_n_ep / self.num_env) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_qdebug": out = self.get_qdebug(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, q1_h_t[p_index], is_train) # print(np.shape(obs_n_t)) act_j_t, state_j_t1, mem_j_t1, attn_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM" or self.args.encoder_model != "DDPG": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t def get_qdebug(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] obs_n_t, action_n_t, q1_h_n_t, q2_h_n_t = data obs_n_t = np.stack(obs_n_t, axis=-2) # This returns [agent, batch, dim] obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] q1_j_input = agent.prep_q_input(obs_n_t, action_n_t, q1_h_n_t[p_index]) _, q1_h_j_t1 = agent.q1_debug['q_values'](*(q1_j_input)) if self.args.td3: q2_input = agent.prep_q_input(obs_n_t, action_n_t, q2_h_n_t[p_index]) _, q2_h_j_t1 = agent.q2_debug['q_values'](*(q2_input)) else: q2_h_j_t1 = [] return q1_h_j_t1, q2_h_j_t1 def get_loss(self, data, p_index): with lock: # with sess.as_default(): agent = self.trainers[p_index] train_step = data loss = agent.update(self.trainers, self.buffer_op, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, ep_step = data # rew_n (num_env, num_agents) if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): if ep_step >= self.args.max_episode_len - 10: # Compute only last 10 episode step rewards self.ep_end_rewards[j][-1] += rew self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[j][i][-1].append(info) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) self.ep_end_rewards[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): for i in range(self.num_agents): self.agent_info[j][i].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') # pickle_info = [self.agent_info[j] for j in range(self.num_env)] with open(file_name, 'wb') as fp: # Dump files as [num_env, [# agents, [#ep, [#stps, [dim]]]] pickle.dump(self.agent_info, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File if num_episodes % (self.save_n_ep) == 0: save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) # episode_rewards, agent_rewards, final_ep_rewards, final_ep_ag_rewards = rewards if self.args.env_type == "mpe": # print statement depends on whether or not there are adversaries if self.num_adversaries == 0: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) / 10. for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3))) with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, round(time.time() - self.time_prev, 3)) + "\n") else: episode_b_rewards = [] ep_end_b_rewards = [] ep_ag_b_rewards = [] for j in range(self.num_env): episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) ep_end_b_rewards.append(np.mean(self.ep_end_rewards[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) ep_end_b_rewards = np.mean(ep_end_b_rewards) for i in range(self.num_agents): temp_ag_reward = [] for j in range(self.num_env): temp_ag_reward.append(np.mean(self.agent_rewards[j][i][self.print_step:])) ep_ag_b_rewards.append(np.mean(np.array(temp_ag_reward))) print("steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode reward: {}, mean end rewards: {}, agent episode reward: {}, time: {}".format( train_step, num_episodes, episode_b_rewards, ep_end_b_rewards, [rew for rew in ep_ag_b_rewards], round(time.time() - self.time_prev, 3)) + "\n") # Keep track of final episode reward self.final_ep_rewards.append(episode_b_rewards) self.final_ep_end_rewards.append(ep_end_b_rewards) for rew in ep_ag_b_rewards: self.final_ep_ag_rewards.append(rew) self.time_prev = time.time() def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) rew_ep_end_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards_ep_end.pkl' with open(rew_ep_end_file_name, 'wb') as fp: pickle.dump(self.final_ep_end_rewards, fp) agrew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_agrewards.pkl' with open(agrew_file_name, 'wb') as fp: pickle.dump(self.final_ep_ag_rewards, fp) """ REINFORCE Threads """ class MultiTrainVPG(threading.Thread): def __init__(self, input_queue, output_queue, args=(), kwargs=None): threading.Thread.__init__(self, args=(), kwargs=None) self.input_queue = input_queue self.output_queue = output_queue self.daemon = True self.trainers = args[0] self.args = args[1] self.buffer_op = args[2] self.num_env = args[3] self.sess = args[4] self.num_agents = args[5] self.num_adversaries = args[6] self.ep_rewards = [[0.0] for _ in range(self.num_env)] self.ep_success = [[0.0] for _ in range(self.num_env)] self.agent_rewards = [[[0.0] for _ in range(self.num_agents)] for _ in range(self.num_env)] self.agent_info = [[[[]]] for _ in range(self.num_env)] self.final_ep_rewards = [] # Shape: (batch, #) sum of rewards for training curve self.final_ep_ag_rewards = [] # agent rewards for training curve self.save_rate = self.args.max_episode_len * 100 if self.args.env_type == "mpe": self.print_step = -int(self.save_rate / self.num_env) else: # print for episode end only (success rate) self.print_step = -int(self.save_rate / (self.num_env * self.args.max_episode_len)) self.q_h_init = np.zeros(shape=(self.num_env, self.args.critic_units)) self.mem_init = np.zeros(shape=(self.num_env, self.args.value_units)) self.time_prev = time.time() def run(self): # print(threading.currentThread().getName(), self.receive_messages) with self.sess.as_default(): # Freeze graph to avoid memory leaks # self.sess.graph.finalize() while True: try: action, p_index, data = self.input_queue.get() if action is "None": # If you send `None`, the thread will exit. return elif action is "get_action": out = self.get_action(data, p_index) self.output_queue.put(out) elif action is "get_loss": out = self.get_loss(data, p_index) self.output_queue.put(out) elif action is "write_tboard": self.write_tboard(data) elif action is "add_to_buffer": self.buffer_op.collect_exp(data) elif action is "add_to_buffer_reinforce": self.buffer_op.collect_exp(data) elif action is "save_rew_info": self.save_rew_info(data) elif action is "save_benchmark": out = self.save_benchmark(data) self.output_queue.put(out) elif action is "reset_rew_info": self.reset_rew_info() elif action is "save_model_rew": if not (self.args.benchmark or self.args.display): self.save_model(data) self.plot_rewards(data) except queue.Empty: continue def get_action(self, data, p_index): with lock: agent = self.trainers[p_index] obs_n_t, h_n_t, c_n_t, mem_n_t, is_train = data obs_n_t = np.stack(obs_n_t, axis=-2) obs_n_t = np.expand_dims(obs_n_t, axis=1) # This adds [agent, time, batch, dim] p_input_j = agent.prep_input(obs_n_t, h_n_t, c_n_t, mem_n_t, is_train) act_j_t, act_soft_j_t, state_j_t1, mem_j_t1, attn_j_t, value_j_t = agent.action(p_input_j, is_train) if self.args.encoder_model == "LSTM": c_j_t1, h_j_t1 = state_j_t1 else: h_j_t1 = state_j_t1 c_j_t1 = state_j_t1 if agent.comm_type in {"DDPG", "COMMNET", "IC3NET"}: mem_j_t1 = np.zeros(shape=(self.num_env, self.args.value_units)) return act_j_t, act_soft_j_t, h_j_t1, c_j_t1, mem_j_t1, attn_j_t, value_j_t def get_loss(self, data, p_index): with lock: # with sess.as_default(): train_step, buffer_data = data agent = self.trainers[p_index] loss = agent.update(self.trainers, buffer_data, train_step) return loss def write_tboard(self, data): with lock: loss, train_step, writer, summary_ops, summary_vars, num_agents = data # Tensorboard episode_b_rewards = [] for j in range(self.num_env): if self.args.env_type == "mpe": episode_b_rewards.append(np.mean(self.ep_rewards[j][self.print_step:])) else: episode_b_rewards.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_rewards = np.mean(np.array(episode_b_rewards)) num_steps = train_step * self.num_env # Add to tensorboard only when actor agent is updated if loss[0][1] is not None: fd = {} for i, key in enumerate(summary_vars): if i == 0: fd[key] = episode_b_rewards else: agnt_idx = int((i - 1) / 5) if agnt_idx == num_agents: agnt_idx -= 1 if loss[agnt_idx] is not None: fd[key] = loss[agnt_idx][int((i - 1) % 5)] summary_str = U.get_session().run(summary_ops, feed_dict=fd) writer.add_summary(summary_str, num_steps) writer.flush() def save_rew_info(self, data): with lock: rew_n, info_n, terminal = data if self.args.env_type == "mpe": for j in range(self.num_env): for i, rew in enumerate(rew_n[j]): self.ep_rewards[j][-1] += rew self.agent_rewards[j][i][-1] += rew elif self.args.env_type == "ic3net": for j in range(self.num_env): self.ep_success[j][-1] += info_n[j] if self.args.benchmark and self.args.env_type == "mpe": for j in range(self.num_env): for i, info in enumerate(info_n[j]): self.agent_info[-1][i].append(info_n[0]['n']) def reset_rew_info(self): with lock: for j in range(self.num_env): self.ep_rewards[j].append(0) self.ep_success[j].append(0) for i in range(self.num_agents): self.agent_rewards[j][i].append(0) if self.args.benchmark: for j in range(self.num_env): self.agent_info[j].append([[]]) def save_benchmark(self, data): with lock: exp_name, exp_itr = data benchmark_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.benchmark_dir) if not os.path.exists(benchmark_dir): os.mkdir(benchmark_dir) file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.benchmark_dir + '/' + exp_name + '.pkl' print('Finished benchmarking, now saving...') with open(file_name, 'wb') as fp: pickle.dump(self.ep_success, fp) return "bench_saved" def save_model(self, data): with lock: # train_step = t_step * num_env train_step, num_episodes, time_taken, exp_name, exp_itr, data_file, saver = data # Policy File save_dir = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.save_dir + str(train_step) U.save_state(save_dir, self.sess, saver=saver) episode_b_success = [] for j in range(self.num_env): episode_b_success.append(np.mean(self.ep_success[j][self.print_step:])) episode_b_success = np.mean(np.array(episode_b_success)) / self.args.max_episode_len print("steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") with open(data_file, "a+") as f: f.write("\n" + "steps: {}, episodes: {}, mean episode success: {}, time: {}".format( train_step, num_episodes, episode_b_success, round(time.time() - self.time_prev, 3)) + "\n") self.final_ep_rewards.append(episode_b_success) def plot_rewards(self, data): with lock: train_step, num_episodes, t_start, exp_name, exp_itr, data_file, saver = data plot_dir = os.path.join('./exp_data', exp_name, exp_itr, self.args.plots_dir) if not os.path.exists(plot_dir): os.mkdir(plot_dir) rew_file_name = './exp_data/' + exp_name + '/' + exp_itr + '/' + self.args.plots_dir + '/' + exp_name + '_rewards.pkl' with open(rew_file_name, 'wb') as fp: pickle.dump(self.final_ep_rewards, fp) def get_gputhreads(trainers, args, buffer_op, num_env, num_agents, num_adv): threads = [] sess = tf.compat.v1.get_default_session() for t in range(args.num_gpu_threads): input_q = queue.Queue() output_q = queue.Queue() if args.policy_grad == "maddpg": threads.append(MultiTrainTD3(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) elif args.policy_grad == "reinforce": threads.append( MultiTrainVPG(input_q, output_q, args=(trainers, args, buffer_op, num_env, sess, num_agents, num_adv))) threads[t].start() time.sleep(1) return threads def close_gputhreads(threads): for t in threads: t.input_queue.put(("None", None, None)) for t in threads: t.join() print('GPU trainers cancelled') return
2
2
Scripts/Miscellaneous/Fake_news_web/app.py
valterm/Python_and_the_Web
1
11672
from flask import Flask, request, render_template from sklearn.externals import joblib from feature import * pipeline = joblib.load('pipeline.sav') app = Flask(__name__) @app.route('/') def home(): return render_template('index.html') @app.route('/api',methods=['POST']) def get_delay(): result=request.form query_title = result['title'] query_author = result['author'] query_text = result['maintext'] print(query_text) query = get_all_query(query_title, query_author, query_text) ##user_input = {'query':query} pred = pipeline.predict(query) print(pred) dic = {1:'real',0:'fake'} return f'<html><body><h1>{dic[pred[0]]}</h1> <form action="/"> <button type="submit">back </button> </form></body></html>' if __name__ == '__main__': app.run(port=8080, debug=True)
2.546875
3
1019.next-greater-node-in-linked-list.py
elfgzp/leetCode
3
11673
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def nextLargerNodes(self, head: ListNode) -> List[int]: nums = [] while head: nums.append(head.val) head = head.next stack = [] res = [0] * len(nums) for i, n in enumerate(nums): while stack and nums[stack[-1]] < n: res[stack.pop()] = n stack.append(i) return res
3.71875
4
WXApi/WXApi/__init__.py
KEDYY/pyweipi
1
11674
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Create: 2014/5/20 Update: 2017/11/22 """ from .WXError import * from .WXMenu import * from .WXUtils import * from .event import * from .request import MPCenter __date__ = '2017/3/12' __version__ = '1.0.1' __license__ = 'The MIT License'
1.070313
1
evaluator_package/Parsing_tools.py
MONICA-Project/GOST-tools
0
11675
def is_field(token): """Checks if the token is a valid ogc type field """ return token in ["name", "description", "encodingType", "location", "properties", "metadata", "definition", "phenomenonTime", "resultTime", "observedArea", "result", "id", "@iot.id", "resultQuality", "validTime", "time", "parameters", "feature"] def tokenize_parentheses(tokens): """ Finds non parsed parentheses in tokens (ex.: ['x(y']['z)'] -> ['x']['(']['y']['z'][')'] :param tokens: a list of tokens :return: the list with unchecked parenteses tokenized """ for index, token in enumerate(tokens): if ("(" in token or ")" in token) and len(token) > 1: parenthesis_index = token.find("(") parenthesis = "(" if parenthesis_index < 0: parenthesis_index = token.find(")") parenthesis = ")" left_side = token[:parenthesis_index] right_side = token[parenthesis_index + 1:] del tokens[index] if bool(left_side): tokens.insert(index, left_side) index += 1 tokens.insert(index, parenthesis) if bool(right_side): index += 1 tokens.insert(index, right_side)
3.53125
4
salt/runners/mine.py
byteskeptical/salt
12
11676
<gh_stars>10-100 # -*- coding: utf-8 -*- ''' A runner to access data from the salt mine ''' from __future__ import absolute_import, print_function, unicode_literals # Import Python Libs import logging # Import salt libs import salt.utils.minions log = logging.getLevelName(__name__) def get(tgt, fun, tgt_type='glob'): ''' Gathers the data from the specified minions' mine, pass in the target, function to look up and the target type CLI Example: .. code-block:: bash salt-run mine.get '*' network.interfaces ''' ret = salt.utils.minions.mine_get(tgt, fun, tgt_type, __opts__) return ret def update(tgt, tgt_type='glob', clear=False, mine_functions=None): ''' .. versionadded:: 2017.7.0 Update the mine data on a certain group of minions. tgt Which minions to target for the execution. tgt_type: ``glob`` The type of ``tgt``. clear: ``False`` Boolean flag specifying whether updating will clear the existing mines, or will update. Default: ``False`` (update). mine_functions Update the mine data on certain functions only. This feature can be used when updating the mine for functions that require refresh at different intervals than the rest of the functions specified under ``mine_functions`` in the minion/master config or pillar. CLI Example: .. code-block:: bash salt-run mine.update '*' salt-run mine.update 'juniper-edges' tgt_type='nodegroup' ''' ret = __salt__['salt.execute'](tgt, 'mine.update', tgt_type=tgt_type, clear=clear, mine_functions=mine_functions) return ret
2.25
2
app.py
rhedgeco/test_plaid_webapp
0
11677
from plaid import Client from backend.link_token import LinkToken from general_falcon_webserver import WebApp client = Client(client_id='5e2e3527dd6924001167e8e8', secret='<KEY>', environment='sandbox') app = WebApp() app.add_route('link', LinkToken(client)) app.launch_webserver()
1.984375
2
examples/circuitplayground_light_plotter.py
sommersoft/Adafruit_CircuitPython_CircuitPlayground
0
11678
<reponame>sommersoft/Adafruit_CircuitPython_CircuitPlayground """If you're using Mu, this example will plot the light levels from the light sensor (located next to the eye) on your Circuit Playground. Try shining a flashlight on your Circuit Playground, or covering the light sensor to see the plot increase and decrease.""" import time from adafruit_circuitplayground import cp while True: print("Light:", cp.light) print((cp.light,)) time.sleep(0.1)
2.953125
3
kickeststats/exceptions.py
antimaLinux/kickscarper
0
11679
<filename>kickeststats/exceptions.py<gh_stars>0 """Exception utilities.""" class ParsingException(Exception): pass class EnvVariableNotSet(Exception): def __init__(self, varname: str) -> None: super(EnvVariableNotSet, self).__init__(f"Env variable [{varname}] not set.") class InvalidLineUp(Exception): pass class UnsupportedLineUp(Exception): def __init__(self, line_up_name: str) -> None: super(UnsupportedLineUp, self).__init__( f"Line-up [{line_up_name}] is not supported." ) class InvalidTeamLineup(Exception): pass
2.40625
2
helpers/HurstEstimationNumerics.py
Baozhen-Li/SurfaceTopography
0
11680
# # Copyright 2018, 2020 <NAME> # 2019-2020 <NAME> # 2015-2016 <NAME> # # ### MIT license # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # """ Tests to understand the difficulties in extracting hurst from noisy data """ import numpy as np import scipy import matplotlib.pyplot as plt import PyCo.Tools as Tools import SurfaceTopography as Surf def plot_naive(surface, lam_max): fig = plt.figure() ax=fig.add_subplot(111) ax.set_yscale('log') ax.set_xscale('log') surf = Tools.CharacterisePeriodicSurface(surface) q = surf.q C = surf.C H, alpha = surf.estimate_hurst_naive(lambda_max=lam_max, full_output=True) print("H = {}, alpha = {}".format(H, alpha)) ax.loglog(q, C, alpha=.1) mean, err, q_g = surf.grouped_stats(100) mask = np.isfinite(mean) mean = mean[mask] err = err[:, mask] q_g = q_g[mask] ax.errorbar(q_g, mean, yerr=err) ax.set_title("Naive: H={:.2f}, h_rms={:.2e}".format(H, np.sqrt((surface.heights() ** 2).mean()))) a, b = np.polyfit(np.log(q), np.log(C), 1) ax.plot(q, q**(-2-2*H)*alpha, label="{}, H={:.2f}".format('fit', H)) ax.legend(loc='best') def plot_grad_C0(surface, H_in, lam_max): surf = Tools.CharacterisePeriodicSurface(surface) q_min = 2*np.pi/lam_max sl = surf.q > q_min q = surf.q[sl] C = surf.C[sl] dim = 2 def C0_of_H(H): return ((q**(-3-2*H)).sum() / (q**(-5-4*H)/C).sum()) def objective(H, C0): return ((1 - C0*q**(-2*H-2)/C)**2 / q**(dim-1)).sum() C0 = C0_of_H(H_in) O0 = objective(H_in, C0) c_s = np.linspace(0, 2*C0, 51) o_s = np.zeros_like(c_s) for i, c in enumerate(c_s): o_s[i] = objective(H_in, c) fig = plt.figure() ax=fig.add_subplot(111) fig.suptitle('grad(C0)') ax.plot(c_s, o_s, marker= '+') ax.scatter(C0, O0, marker='x', label = 'root', c='r') ax.grid(True) print("C0 = {}, obj0 = {}".format(C0, O0)) return C0 def plot_grad_H(surface, lam_max): surf = Tools.CharacterisePeriodicSurface(surface) q_min = 2*np.pi/lam_max sl = surf.q > q_min q = surf.q[sl]# np.array(surf.q[sl][0], surf.q[sl][-1]) C = surf.C[sl]# np.array(surf.C[sl][0], surf.C[sl][-1]) dim = 2 def C0_of_H(H): return ((C**2/q**(-5-dim-4*H)).sum() / (C/q**(-3-dim-2*H)).sum()) def grad_h(H, C0): return (4*C0/C*np.log(q)*q**(-1-2*H-dim)*(1 - C0*q**(-2-2*H)/C)).sum() def objective(H, C0): return ((c/q**(-2*H-2) - C0)**2 / q**(dim-1)).sum() def full_obj(H): C0 = C0_of_H(H) return ((1 - C0/C*q**(-2*H-2))**2 / q**(dim-1)).sum() h_s = np.linspace(.0, 2., 51) o_s = np.zeros_like(h_s) g_s = np.zeros_like(h_s) for i, h in enumerate(h_s): c = C0_of_H(h) o_s[i] = objective(h, c) g_s[i] = grad_h(h, c) H_opt, obj_opt, err, nfeq = scipy.optimize.fminbound(full_obj, 0, 2, full_output=True) if err != 0: raise Exception() fig = plt.figure() ax=fig.add_subplot(211) ax.set_xlim(h_s[0], h_s[-1]) fig.suptitle('grad(H)') ax.plot(h_s, o_s, marker= '+') ax.grid(True) ax.scatter(H_opt, obj_opt, marker='x', label = 'root', c='r') ax=fig.add_subplot(212) ax.set_xlim(h_s[0], h_s[-1]) ax.plot(h_s, g_s, marker= '+') grad_opt = grad_h(H_opt, C0_of_H(H_opt)) ax.scatter(H_opt, grad_opt, marker='x', label = 'root', c='r') #res = scipy.optimize.fmin #print("H_out = {}, obj0 = {}".format(C0, O0)) ax.grid(True) return H_opt, C0_of_H(H_opt) def compare_to_PyPy(surface, lam_max, H_ref, C0_ref): fig = plt.figure() ax=fig.add_subplot(111) ax.set_yscale('log') ax.set_xscale('log') surf = Tools.CharacterisePeriodicSurface(surface) q_min = 2*np.pi/lam_max sl = surf.q > q_min q = surf.q C = surf.C H, alpha, res = surf.estimate_hurst_alt(lambda_max=lam_max, full_output=True) print("H = {}, alpha = {}".format(H, alpha)) ax.loglog(q, C, alpha=.1) mean, err, q_g = surf.grouped_stats(100) mask = np.isfinite(mean) mean = mean[mask] err = err[:, mask] q_g = q_g[mask] ax.errorbar(q_g, mean, yerr=err) ax.set_title("New: H_pypy={:.2f}, H_ref = {:.2f}, h_rms={:.2e}".format(H, H_ref, np.sqrt((surface.heights() ** 2).mean()))) ax.plot(q[sl], q[sl]**(-2-2*H)*alpha, label="{}, H={:.4f}".format('fit', H), lw = 3) ax.plot(q[sl], q[sl]**(-2-2*H_ref)*C0_ref, label="{}, H={:.4f}".format('ref_fit', H_ref), lw = 3) ax.legend(loc='best') fig = plt.figure() ax = fig.add_subplot(111) ax.loglog(q[sl], C[sl]/(q[sl]**(-2-2*H_ref)*C0_ref), alpha=.1) ax.errorbar(q_g, mean/(q_g**(-2-2*H_ref)*C0_ref), yerr=err/(q_g**(-2-2*H_ref)*C0_ref)) def main(): siz = 2000e-9 lam_max = .2*siz size = (siz, siz) hurst = .75 h_rms = 3.24e-8 res = 128 nb_grid_pts = (res, res) seed = 2 surface = Tools.RandomSurfaceGaussian( nb_grid_pts, size, hurst, h_rms, lambda_max=lam_max, seed=seed).get_surface() plot_naive(surface, lam_max) plot_grad_C0(surface, hurst, lam_max) H, C0 = plot_grad_H(surface, lam_max) print("H_ref = {}, C0_ref = {}".format(H, C0)) compare_to_PyPy(surface, lam_max, H, C0) if __name__ == "__main__": main() plt.show()
1.90625
2
test/serverless_mock_test.py
zhangyuan/serverless-mock-python
5
11681
import threading import requests import json import os from nose.tools import * from server import Httpd app_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "app") class TestServerlessMock(object): def test_ok(self): ok_(True) def setUp(self): self.httpd = Httpd(app_path, 0) thread = threading.Thread(target=self.httpd.serve, args=()) thread.daemon = True thread.start() self.prefix = "http://localhost:%d" % self.httpd.port def tearDown(self): self.httpd.shutdown() def test_return_hello_world(self): response = requests.get(self.url("")) eq_("Hello World", response.text) def test_simple_get(self): response = requests.get(self.url("/simple_get")) eq_(200, response.status_code) data = response.json() eq_(200, data.get("statusCode")) body = json.loads(data.get("body")) eq_("Go Serverless v1.0! Your function executed successfully!", body.get("message")) def test_simple_get_and_ignore_query_string(self): response = requests.get(self.url("/simple_get?status=unknown")) eq_(200, response.status_code) data = response.json() eq_(200, data.get("statusCode")) body = json.loads(data.get("body")) eq_("Go Serverless v1.0! Your function executed successfully!", body.get("message")) def test_simple_post(self): response = requests.post(self.url("/simple_post")) eq_(200, response.status_code) data = response.json() eq_(201, data.get("statusCode")) def test_post_with_payload(self): response = requests.post(self.url("/post_with_payload"), data=json.dumps({"id" : 123})) eq_(200, response.status_code) data = response.json() eq_(200, data.get("statusCode")) eq_({"id" : 123}, data.get("body")) def test_post_with_payload_and_template(self): response = requests.post(self.url("/post_with_payload_and_template"), data=json.dumps({"id" : 123})) eq_(200, response.status_code) data = response.json() eq_(200, data.get("statusCode")) eq_({"body" : {"id" : 123}}, data.get("body")) def test_post_with_payload_and_template_without_any_function(self): response = requests.post(self.url("/post_with_payload_and_template_without_any_function"), data=json.dumps({"id" : 123})) eq_(200, response.status_code) data = response.json() eq_(200, data.get("statusCode")) eq_({"action" : "trigger"}, data.get("body")) def url(self, path): return "%s%s" % (self.prefix, path)
2.375
2
setup.py
holoyan/python-data-validation
3
11682
<reponame>holoyan/python-data-validation from setuptools import setup, find_packages # read the contents of your README file from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='pyva', packages=find_packages(), version='0.4.1', license='MIT', description='Simple and flexible python data validation library', long_description=long_description, long_description_content_type='text/markdown', author='Artak', author_email='<EMAIL>', url='https://github.com/holoyan/python-data-validation', keywords=['data', 'validation', 'validator', 'data validator'], install_requires=[ # I get to this in a second 'python-dateutil', ], classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], )
1.835938
2
bus_system/apps/trip/migrations/0007_auto_20210624_1812.py
pygabo/bus_system
0
11683
# Generated by Django 3.1.12 on 2021-06-24 18:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('trip', '0006_remove_travelmodel_driver'), ] operations = [ migrations.AddField( model_name='tripmodel', name='tickets_sold', field=models.PositiveSmallIntegerField(default=0), ), migrations.AlterField( model_name='travelmodel', name='trip', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='travel_trip_set', related_query_name='travel_trip_set', to='trip.tripmodel'), ), ]
1.617188
2
geoscilabs/dcip/DCWidgetPlate2_5D.py
lheagy/geosci-labs
1
11684
<filename>geoscilabs/dcip/DCWidgetPlate2_5D.py from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import numpy as np from scipy.constants import epsilon_0 from scipy.ndimage.measurements import center_of_mass from ipywidgets import IntSlider, FloatSlider, FloatText, ToggleButtons import matplotlib import matplotlib.pyplot as plt import matplotlib.pylab as pylab from matplotlib.ticker import LogFormatter from matplotlib.path import Path import matplotlib.patches as patches from pymatsolver import Pardiso from discretize import TensorMesh from SimPEG import maps, SolverLU, utils from SimPEG.utils import ExtractCoreMesh from SimPEG.electromagnetics.static import resistivity as DC from ..base import widgetify # Mesh, mapping can be globals global npad = 15 growrate = 2.0 cs = 0.5 hx = [(cs, npad, -growrate), (cs, 200), (cs, npad, growrate)] hy = [(cs, npad, -growrate), (cs, 100)] mesh = TensorMesh([hx, hy], "CN") expmap = maps.ExpMap(mesh) mapping = expmap dx = 5 xr = np.arange(-40, 41, dx) dxr = np.diff(xr) xmin = -40.0 xmax = 40.0 ymin = -40.0 ymax = 8.0 xylim = np.c_[[xmin, ymin], [xmax, ymax]] indCC, meshcore = ExtractCoreMesh(xylim, mesh) indx = ( (mesh.gridFx[:, 0] >= xmin) & (mesh.gridFx[:, 0] <= xmax) & (mesh.gridFx[:, 1] >= ymin) & (mesh.gridFx[:, 1] <= ymax) ) indy = ( (mesh.gridFy[:, 0] >= xmin) & (mesh.gridFy[:, 0] <= xmax) & (mesh.gridFy[:, 1] >= ymin) & (mesh.gridFy[:, 1] <= ymax) ) indF = np.concatenate((indx, indy)) _cache = { "A": None, "B": None, "dx": None, "dz": None, "xc": None, "zc": None, "rotAng": None, "sigplate": None, "sighalf": None, } def plate_fields(A, B, dx, dz, xc, zc, rotAng, sigplate, sighalf): re_run = ( _cache["A"] != A or _cache["B"] != B or _cache["dx"] != dx or _cache["dz"] != dz or _cache["xc"] != xc or _cache["zc"] != zc or _cache["rotAng"] != rotAng or _cache["sigplate"] != sigplate or _cache["sighalf"] != sighalf ) if re_run: # Create halfspace model mhalf = np.log(sighalf * np.ones([mesh.nC])) # Create true model with plate mtrue = createPlateMod(xc, zc, dx, dz, rotAng, sigplate, sighalf) if B == []: src = DC.sources.Pole([], np.r_[A, 0.0]) else: src = DC.sources.Dipole([], np.r_[A, 0.0], np.r_[B, 0.0]) survey = DC.survey.Survey([src]) problem = DC.Simulation2DCellCentered( mesh, survey=survey, sigmaMap=mapping, solver=Pardiso, bc_type='Dirichlet' ) problem_prim = DC.Simulation2DCellCentered( mesh, survey=survey, sigmaMap=mapping, solver=Pardiso, bc_type='Dirichlet' ) total_field = problem.fields(mtrue) primary_field = problem_prim.fields(mhalf) _cache["A"] = A _cache["B"] = B _cache["dx"] = dx _cache["dz"] = dz _cache["xc"] = xc _cache["zc"] = zc _cache["rotAng"] = rotAng _cache["sigplate"] = sigplate _cache["sighalf"] = sighalf _cache["mtrue"] = mtrue _cache["mhalf"] = mhalf _cache["src"] = src _cache["primary_field"] = primary_field _cache["total_field"] = total_field else: mtrue = _cache["mtrue"] mhalf = _cache["mhalf"] src = _cache["src"] primary_field = _cache["primary_field"] total_field = _cache["total_field"] return mtrue, mhalf, src, primary_field, total_field def getPlateCorners(xc, zc, dx, dz, rotAng): # Form rotation matix rotMat = np.array( [ [np.cos(rotAng * (np.pi / 180.0)), -np.sin(rotAng * (np.pi / 180.0))], [np.sin(rotAng * (np.pi / 180.0)), np.cos(rotAng * (np.pi / 180.0))], ] ) originCorners = np.array( [ [-0.5 * dx, 0.5 * dz], [0.5 * dx, 0.5 * dz], [-0.5 * dx, -0.5 * dz], [0.5 * dx, -0.5 * dz], ] ) rotPlateCorners = np.dot(originCorners, rotMat) plateCorners = rotPlateCorners + np.hstack( [np.repeat(xc, 4).reshape([4, 1]), np.repeat(zc, 4).reshape([4, 1])] ) return plateCorners def createPlateMod(xc, zc, dx, dz, rotAng, sigplate, sighalf): # use matplotlib paths to find CC inside of polygon plateCorners = getPlateCorners(xc, zc, dx, dz, rotAng) verts = [ (plateCorners[0, :]), # left, top (plateCorners[1, :]), # right, top (plateCorners[3, :]), # right, bottom (plateCorners[2, :]), # left, bottom (plateCorners[0, :]), # left, top (closes polygon) ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] path = Path(verts, codes) CCLocs = mesh.gridCC insideInd = np.where(path.contains_points(CCLocs)) # Check selected cell centers by plotting # print insideInd # fig = plt.figure() # ax = fig.add_subplot(111) # patch = patches.PathPatch(path, facecolor='none', lw=2) # ax.add_patch(patch) # plt.scatter(CCLocs[insideInd,0],CCLocs[insideInd,1]) # ax.set_xlim(-10,10) # ax.set_ylim(-20,0) # plt.axes().set_aspect('equal') # plt.show() mtrue = sighalf * np.ones([mesh.nC]) mtrue[insideInd] = sigplate mtrue = np.log(mtrue) return mtrue def get_Surface_Potentials(survey, src, field_obj): phi = field_obj[src, "phi"] CCLoc = mesh.gridCC zsurfaceLoc = np.max(CCLoc[:, 1]) surfaceInd = np.where(CCLoc[:, 1] == zsurfaceLoc) xSurface = CCLoc[surfaceInd, 0].T phiSurface = phi[surfaceInd] phiScale = 0.0 if survey == "Pole-Dipole" or survey == "Pole-Pole": refInd = utils.closestPoints(mesh, [xmax + 60.0, 0.0], gridLoc="CC") # refPoint = CCLoc[refInd] # refSurfaceInd = np.where(xSurface == refPoint[0]) # phiScale = np.median(phiSurface) phiScale = phi[refInd] phiSurface = phiSurface - phiScale return xSurface, phiSurface, phiScale def sumPlateCharges(xc, zc, dx, dz, rotAng, qSecondary): # plateCorners = getPlateCorners(xc,zc,dx,dz,rotAng) chargeRegionCorners = getPlateCorners(xc, zc, dx + 1.0, dz + 1.0, rotAng) # plateVerts = [ # (plateCorners[0,:]), # left, top # (plateCorners[1,:]), # right, top # (plateCorners[3,:]), # right, bottom # (plateCorners[2,:]), # left, bottom # (plateCorners[0,:]), # left, top (closes polygon) # ] chargeRegionVerts = [ (chargeRegionCorners[0, :]), # left, top (chargeRegionCorners[1, :]), # right, top (chargeRegionCorners[3, :]), # right, bottom (chargeRegionCorners[2, :]), # left, bottom (chargeRegionCorners[0, :]), # left, top (closes polygon) ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] # platePath = Path(plateVerts, codes) chargeRegionPath = Path(chargeRegionVerts, codes) CCLocs = mesh.gridCC # plateInsideInd = np.where(platePath.contains_points(CCLocs)) chargeRegionInsideInd = np.where(chargeRegionPath.contains_points(CCLocs)) plateChargeLocs = CCLocs[chargeRegionInsideInd] plateCharge = qSecondary[chargeRegionInsideInd] posInd = np.where(plateCharge >= 0) negInd = np.where(plateCharge < 0) qPos = utils.mkvc(plateCharge[posInd]) qNeg = utils.mkvc(plateCharge[negInd]) qPosLoc = plateChargeLocs[posInd, :][0] qNegLoc = plateChargeLocs[negInd, :][0] # qPosData = np.vstack([qPosLoc[:, 0], qPosLoc[:, 1], qPos]).T # qNegData = np.vstack([qNegLoc[:, 0], qNegLoc[:, 1], qNeg]).T if qNeg.shape == (0,) or qPos.shape == (0,): qNegAvgLoc = np.r_[-10, -10] qPosAvgLoc = np.r_[+10, -10] else: qNegAvgLoc = np.average(qNegLoc, axis=0, weights=qNeg) qPosAvgLoc = np.average(qPosLoc, axis=0, weights=qPos) qPosSum = np.sum(qPos) qNegSum = np.sum(qNeg) # # Check things by plotting # fig = plt.figure() # ax = fig.add_subplot(111) # platePatch = patches.PathPatch(platePath, facecolor='none', lw=2) # ax.add_patch(platePatch) # chargeRegionPatch = patches.PathPatch(chargeRegionPath, facecolor='none', lw=2) # ax.add_patch(chargeRegionPatch) # plt.scatter(qNegAvgLoc[0],qNegAvgLoc[1],color='b') # plt.scatter(qPosAvgLoc[0],qPosAvgLoc[1],color='r') # ax.set_xlim(-15,5) # ax.set_ylim(-25,-5) # plt.axes().set_aspect('equal') # plt.show() return qPosSum, qNegSum, qPosAvgLoc, qNegAvgLoc # The only thing we need to make it work is a 2.5D field object in SimPEG def getSensitivity(survey, A, B, M, N, model): src_type, rx_type = survey.split("-") if rx_type == "Pole": rx = DC.receivers.Pole(np.r_[M, 0.0]) else: rx = DC.receivers.Dipole(np.r_[M, 0.0], np.r_[N, 0.0]) if src_type == "Pole": src = DC.sources.Pole([rx], np.r_[A, 0.0]) else: src = DC.sources.Dipole([rx], np.r_[A, 0.0], np.r_[B, 0.0]) # Model mappings expmap = maps.ExpMap(mesh) mapping = expmap survey = DC.Survey([src]) sim = DC.Simulation3DCellCentered( mesh, sigmaMap=mapping, solver=Pardiso, survey=survey ) J = sim.getJ(model)[0] return J def calculateRhoA(survey, VM, VN, A, B, M, N): eps = 1e-9 # to stabilize division if survey == "Dipole-Dipole": G = 1.0 / ( 1.0 / (np.abs(A - M) + eps) - 1.0 / (np.abs(M - B) + eps) - 1.0 / (np.abs(N - A) + eps) + 1.0 / (np.abs(N - B) + eps) ) rho_a = (VM - VN) * 2.0 * np.pi * G elif survey == "Pole-Dipole": G = 1.0 / (1.0 / (np.abs(A - M) + eps) - 1.0 / (np.abs(N - A) + eps)) rho_a = (VM - VN) * 2.0 * np.pi * G elif survey == "Dipole-Pole": G = 1.0 / (1.0 / (np.abs(A - M) + eps) - 1.0 / (np.abs(M - B) + eps)) rho_a = (VM) * 2.0 * np.pi * G elif survey == "Pole-Pole": G = 1.0 / (1.0 / (np.abs(A - M) + eps)) rho_a = (VM) * 2.0 * np.pi * G return rho_a def PLOT( survey, A, B, M, N, dx, dz, xc, zc, rotAng, rhohalf, rhoplate, Field, Type, Scale ): labelsize = 16.0 ticksize = 16.0 sigplate = 1.0 / rhoplate sighalf = 1.0 / rhohalf if survey == "Pole-Dipole" or survey == "Pole-Pole": B = [] mtrue, mhalf, src, primary_field, total_field = plate_fields( A, B, dx, dz, xc, zc, rotAng, sigplate, sighalf ) fig, ax = plt.subplots(2, 1, figsize=(9 * 1.5, 9 * 1.8), sharex=True) fig.subplots_adjust(right=0.8, wspace=0.05, hspace=0.05) xSurface, phiTotalSurface, phiScaleTotal = get_Surface_Potentials( survey, src, total_field ) xSurface, phiPrimSurface, phiScalePrim = get_Surface_Potentials( survey, src, primary_field ) ylim = np.r_[-1.0, 1.0] * np.max(np.abs(phiTotalSurface)) xlim = np.array([-40, 40]) if survey == "Dipole-Pole" or survey == "Pole-Pole": MInd = np.where(xSurface == M) N = [] VM = phiTotalSurface[MInd[0]] VN = 0.0 VMprim = phiPrimSurface[MInd[0]] VNprim = 0.0 else: MInd = np.where(xSurface == M) NInd = np.where(xSurface == N) VM = phiTotalSurface[MInd[0]] VN = phiTotalSurface[NInd[0]] VMprim = phiPrimSurface[MInd[0]] VNprim = phiPrimSurface[NInd[0]] # 2D geometric factor G2D = rhohalf / (calculateRhoA(survey, VMprim, VNprim, A, B, M, N)) # Subplot 1: Full set of surface potentials ax[0].plot(xSurface, phiTotalSurface, color=[0.1, 0.5, 0.1], linewidth=2) ax[0].plot(xSurface, phiPrimSurface, linestyle="dashed", linewidth=0.5, color="k") ax[0].grid( which="both", linestyle="-", linewidth=0.5, color=[0.2, 0.2, 0.2], alpha=0.5 ) if survey == "Pole-Dipole" or survey == "Pole-Pole": ax[0].plot(A, 0, "+", markersize=12, markeredgewidth=3, color=[1.0, 0.0, 0]) else: ax[0].plot(A, 0, "+", markersize=12, markeredgewidth=3, color=[1.0, 0.0, 0]) ax[0].plot(B, 0, "_", markersize=12, markeredgewidth=3, color=[0.0, 0.0, 1.0]) ax[0].set_ylabel("Potential, (V)", fontsize=labelsize) ax[0].set_xlabel("x (m)", fontsize=labelsize) ax[0].set_xlim(xlim) ax[0].set_ylim(ylim) if survey == "Dipole-Pole" or survey == "Pole-Pole": ax[0].plot(M, VM, "o", color="k") xytextM = (M + 0.5, max(min(VM, ylim.max()), ylim.min()) + 10) ax[0].annotate("%2.1e" % (VM), xy=xytextM, xytext=xytextM, fontsize=labelsize) else: ax[0].plot(M, VM, "o", color="k") ax[0].plot(N, VN, "o", color="k") xytextM = (M + 0.5, max(min(VM, ylim.max()), ylim.min()) + 10) xytextN = (N + 0.5, max(min(VN, ylim.max()), ylim.min()) + 10) ax[0].annotate("%2.1e" % (VM), xy=xytextM, xytext=xytextM, fontsize=labelsize) ax[0].annotate("%2.1e" % (VN), xy=xytextN, xytext=xytextN, fontsize=labelsize) ax[0].tick_params(axis="both", which="major", labelsize=ticksize) props = dict(boxstyle="round", facecolor="grey", alpha=0.4) ax[0].text( xlim.max() + 1, ylim.max() - 0.1 * ylim.max(), "$\\rho_a$ = %2.2f" % (G2D * calculateRhoA(survey, VM, VN, A, B, M, N)), verticalalignment="bottom", bbox=props, fontsize=labelsize, ) ax[0].legend(["Model Potential", "Half-Space Potential"], loc=3, fontsize=labelsize) # # Subplot 2: Surface potentials with gaps around current electrodes # # Select points more than 5m from Tx electrodes of plotting # xSurface_AInd = np.where(np.abs(xSurface - A) >= 5.)[0] # xSurface_BInd = np.where(np.abs(xSurface - B) >= 5.)[0] # xSurfaceTxGapInd = list(set(xSurface_AInd).intersection(xSurface_BInd)) # xSurface_TxGap = xSurface[xSurfaceTxGapInd] # phiTotalSurface_TxGap = phiTotalSurface[xSurfaceTxGapInd] # phiPrimSurface_TxGap = phiPrimSurface[xSurfaceTxGapInd] # ylim = np.r_[-1., 1.]*(np.max(np.abs(phiTotalSurface_TxGap)) - 0.05*np.max(np.abs(phiTotalSurface_TxGap))) # ax[1].plot(xSurface_TxGap,phiTotalSurface_TxGap ,color=[0.1,0.5,0.1],linewidth=2) # ax[1].plot(xSurface_TxGap,phiPrimSurface_TxGap ,linestyle='dashed',linewidth=0.5,color='k') # ax[1].grid(which='both',linestyle='-',linewidth=0.5,color=[0.2,0.2,0.2],alpha=0.5) # ax[1].plot(A,0,'+',markersize = 12, markeredgewidth = 3, color=[1.,0.,0]) # ax[1].plot(B,0,'_',markersize = 12, markeredgewidth = 3, color=[0.,0.,1.]) # ax[1].set_ylabel('Potential, (V)',fontsize = labelsize) # ax[1].set_xlabel('x (m)',fontsize = labelsize) # ax[1].set_xlim(xlim) # ax[1].set_ylim(ylim) # ax[1].plot(M,VM,'o',color='k') # ax[1].plot(N,VN,'o',color='k') # ax[1].annotate('%2.1e'%(VM), xy=xytextM, xytext=xytextM,fontsize = labelsize) # ax[1].annotate('%2.1e'%(VN), xy=xytextN, xytext=xytextN,fontsize = labelsize) # ax[1].tick_params(axis='both', which='major', labelsize=ticksize) # props = dict(boxstyle='round', facecolor='grey', alpha=0.4) # ax[1].text(xlim.max()+1,ylim.max()-0.1*ylim.max(),'$\\rho_a$ = %2.2f'%(G2D*rho_a(VM,VN,A,B,M,N)), # verticalalignment='bottom', bbox=props, fontsize = labelsize) # ax[1].legend(['Model Potential','Half-Space Potential'], loc=3, fontsize = labelsize) if Field == "Model": label = "Resisitivity (ohm-m)" xtype = "CC" view = "real" streamOpts = None ind = indCC formatter = "%.1e" pcolorOpts = {"cmap": "jet_r"} if Scale == "Log": pcolorOpts = {"norm": matplotlib.colors.LogNorm(), "cmap": "jet_r"} if Type == "Total": u = 1.0 / (mapping * mtrue) elif Type == "Primary": u = 1.0 / (mapping * mhalf) elif Type == "Secondary": u = 1.0 / (mapping * mtrue) - 1.0 / (mapping * mhalf) if Scale == "Log": linthresh = 10.0 pcolorOpts = { "norm": matplotlib.colors.SymLogNorm( linthresh=linthresh, linscale=0.2 ), "cmap": "jet_r", } elif Field == "Potential": label = "Potential (V)" xtype = "CC" view = "real" streamOpts = None ind = indCC formatter = "%.1e" pcolorOpts = {"cmap": "viridis"} if Scale == "Log": linthresh = 10.0 pcolorOpts = { "norm": matplotlib.colors.SymLogNorm(linthresh=linthresh, linscale=0.2), "cmap": "viridis", } if Type == "Total": # formatter = LogFormatter(10, labelOnlyBase=False) # pcolorOpts = {'norm':matplotlib.colors.SymLogNorm(linthresh=10, linscale=0.1)} u = total_field[src, "phi"] - phiScaleTotal elif Type == "Primary": # formatter = LogFormatter(10, labelOnlyBase=False) # pcolorOpts = {'norm':matplotlib.colors.SymLogNorm(linthresh=10, linscale=0.1)} u = primary_field[src, "phi"] - phiScalePrim elif Type == "Secondary": # formatter = None # pcolorOpts = {"cmap":"viridis"} uTotal = total_field[src, "phi"] - phiScaleTotal uPrim = primary_field[src, "phi"] - phiScalePrim u = uTotal - uPrim elif Field == "E": label = "Electric Field (V/m)" xtype = "F" view = "vec" streamOpts = {"color": "w"} ind = indF # formatter = LogFormatter(10, labelOnlyBase=False) pcolorOpts = {"cmap": "viridis"} if Scale == "Log": pcolorOpts = {"norm": matplotlib.colors.LogNorm(), "cmap": "viridis"} formatter = "%.1e" if Type == "Total": u = total_field[src, "e"] elif Type == "Primary": u = primary_field[src, "e"] elif Type == "Secondary": uTotal = total_field[src, "e"] uPrim = primary_field[src, "e"] u = uTotal - uPrim elif Field == "J": label = "Current density ($A/m^2$)" xtype = "F" view = "vec" streamOpts = {"color": "w"} ind = indF # formatter = LogFormatter(10, labelOnlyBase=False) pcolorOpts = {"cmap": "viridis"} if Scale == "Log": pcolorOpts = {"norm": matplotlib.colors.LogNorm(), "cmap": "viridis"} formatter = "%.1e" if Type == "Total": u = total_field[src, "j"] elif Type == "Primary": u = primary_field[src, "j"] elif Type == "Secondary": uTotal = total_field[src, "j"] uPrim = primary_field[src, "j"] u = uTotal - uPrim elif Field == "Charge": label = "Charge Density ($C/m^2$)" xtype = "CC" view = "real" streamOpts = None ind = indCC # formatter = LogFormatter(10, labelOnlyBase=False) pcolorOpts = {"cmap": "RdBu_r"} if Scale == "Log": linthresh = 1e-12 pcolorOpts = { "norm": matplotlib.colors.SymLogNorm(linthresh=linthresh, linscale=0.2), "cmap": "RdBu_r", } formatter = "%.1e" if Type == "Total": u = total_field[src, "charge"] elif Type == "Primary": u = primary_field[src, "charge"] elif Type == "Secondary": uTotal = total_field[src, "charge"] uPrim = primary_field[src, "charge"] u = uTotal - uPrim elif Field == "Sensitivity": label = "Sensitivity" xtype = "CC" view = "real" streamOpts = None ind = indCC # formatter = None # pcolorOpts = {"cmap":"viridis"} # formatter = LogFormatter(10, labelOnlyBase=False) pcolorOpts = {"cmap": "viridis"} if Scale == "Log": linthresh = 1e-4 pcolorOpts = { "norm": matplotlib.colors.SymLogNorm(linthresh=linthresh, linscale=0.2), "cmap": "viridis", } # formatter = formatter = "$10^{%.1f}$" formatter = "%.1e" if Type == "Total": u = getSensitivity(survey, A, B, M, N, mtrue) elif Type == "Primary": u = getSensitivity(survey, A, B, M, N, mhalf) elif Type == "Secondary": uTotal = getSensitivity(survey, A, B, M, N, mtrue) uPrim = getSensitivity(survey, A, B, M, N, mhalf) u = uTotal - uPrim # u = np.log10(abs(u)) if Scale == "Log": eps = 1e-16 else: eps = 0.0 dat = meshcore.plotImage( u[ind] + eps, v_type=xtype, ax=ax[1], grid=False, view=view, stream_opts=streamOpts, pcolor_opts=pcolorOpts, ) # gridOpts={'color':'k', 'alpha':0.5} # Get plate corners plateCorners = getPlateCorners(xc, zc, dx, dz, rotAng) if rhoplate != rhohalf: # plot top of plate outline ax[1].plot( plateCorners[[0, 1], 0], plateCorners[[0, 1], 1], linestyle="dashed", color="k", ) # plot east side of plate outline ax[1].plot( plateCorners[[1, 3], 0], plateCorners[[1, 3], 1], linestyle="dashed", color="k", ) # plot bottom of plate outline ax[1].plot( plateCorners[[2, 3], 0], plateCorners[[2, 3], 1], linestyle="dashed", color="k", ) # plot west side of plate outline ax[1].plot( plateCorners[[0, 2], 0], plateCorners[[0, 2], 1], linestyle="dashed", color="k", ) if (Field == "Charge") and (Type != "Primary") and (Type != "Total"): qTotal = total_field[src, "charge"] qPrim = primary_field[src, "charge"] qSecondary = qTotal - qPrim qPosSum, qNegSum, qPosAvgLoc, qNegAvgLoc = sumPlateCharges( xc, zc, dx, dz, rotAng, qSecondary ) ax[1].plot( qPosAvgLoc[0], qPosAvgLoc[1], marker=".", color="black", markersize=labelsize, ) ax[1].plot( qNegAvgLoc[0], qNegAvgLoc[1], marker=".", color="black", markersize=labelsize, ) if qPosAvgLoc[0] > qNegAvgLoc[0]: xytext_qPos = (qPosAvgLoc[0] + 1.0, qPosAvgLoc[1] - 1) xytext_qNeg = (qNegAvgLoc[0] - 15.0, qNegAvgLoc[1] - 1) else: xytext_qPos = (qPosAvgLoc[0] - 15.0, qPosAvgLoc[1] - 1) xytext_qNeg = (qNegAvgLoc[0] + 1.0, qNegAvgLoc[1] - 1) ax[1].annotate( "+Q = %2.1e" % (qPosSum), xy=xytext_qPos, xytext=xytext_qPos, fontsize=labelsize, ) ax[1].annotate( "-Q = %2.1e" % (qNegSum), xy=xytext_qNeg, xytext=xytext_qNeg, fontsize=labelsize, ) ax[1].set_xlabel("x (m)", fontsize=labelsize) ax[1].set_ylabel("z (m)", fontsize=labelsize) if survey == "Dipole-Dipole": ax[1].plot(A, 1.0, marker="v", color="red", markersize=labelsize) ax[1].plot(B, 1.0, marker="v", color="blue", markersize=labelsize) ax[1].plot(M, 1.0, marker="^", color="yellow", markersize=labelsize) ax[1].plot(N, 1.0, marker="^", color="green", markersize=labelsize) xytextA1 = (A - 0.5, 3) xytextB1 = (B - 0.5, 3) xytextM1 = (M - 0.5, 3) xytextN1 = (N - 0.5, 3) ax[1].annotate("A", xy=xytextA1, xytext=xytextA1, fontsize=labelsize) ax[1].annotate("B", xy=xytextB1, xytext=xytextB1, fontsize=labelsize) ax[1].annotate("M", xy=xytextM1, xytext=xytextM1, fontsize=labelsize) ax[1].annotate("N", xy=xytextN1, xytext=xytextN1, fontsize=labelsize) elif survey == "Pole-Dipole": ax[1].plot(A, 1.0, marker="v", color="red", markersize=labelsize) ax[1].plot(M, 1.0, marker="^", color="yellow", markersize=labelsize) ax[1].plot(N, 1.0, marker="^", color="green", markersize=labelsize) xytextA1 = (A - 0.5, 3) xytextM1 = (M - 0.5, 3) xytextN1 = (N - 0.5, 3) ax[1].annotate("A", xy=xytextA1, xytext=xytextA1, fontsize=labelsize) ax[1].annotate("M", xy=xytextM1, xytext=xytextM1, fontsize=labelsize) ax[1].annotate("N", xy=xytextN1, xytext=xytextN1, fontsize=labelsize) elif survey == "Dipole-Pole": ax[1].plot(A, 1.0, marker="v", color="red", markersize=labelsize) ax[1].plot(B, 1.0, marker="v", color="blue", markersize=labelsize) ax[1].plot(M, 1.0, marker="^", color="yellow", markersize=labelsize) xytextA1 = (A - 0.5, 3) xytextB1 = (B - 0.5, 3) xytextM1 = (M - 0.5, 3) ax[1].annotate("A", xy=xytextA1, xytext=xytextA1, fontsize=labelsize) ax[1].annotate("B", xy=xytextB1, xytext=xytextB1, fontsize=labelsize) ax[1].annotate("M", xy=xytextM1, xytext=xytextM1, fontsize=labelsize) elif survey == "Pole-Pole": ax[1].plot(A, 1.0, marker="v", color="red", markersize=labelsize) ax[1].plot(M, 1.0, marker="^", color="yellow", markersize=labelsize) xytextA1 = (A - 0.5, 3) xytextM1 = (M - 0.5, 3) ax[1].annotate("A", xy=xytextA1, xytext=xytextA1, fontsize=labelsize) ax[1].annotate("M", xy=xytextM1, xytext=xytextM1, fontsize=labelsize) ax[1].tick_params(axis="both", which="major", labelsize=ticksize) cbar_ax = fig.add_axes([0.8, 0.05, 0.08, 0.5]) cbar_ax.axis("off") vmin, vmax = dat[0].get_clim() if Scale == "Log": if (Field == "E") or (Field == "J"): cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.logspace(np.log10(vmin), np.log10(vmax), 5), ) elif Field == "Model": if Type == "Secondary": cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.r_[np.minimum(0.0, vmin), np.maximum(0.0, vmax)], ) else: cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.logspace(np.log10(vmin), np.log10(vmax), 5), ) else: cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.r_[ -1.0 * np.logspace(np.log10(-vmin - eps), np.log10(linthresh), 3)[:-1], 0.0, np.logspace(np.log10(linthresh), np.log10(vmax), 3)[1:], ], ) else: if (Field == "Model") and (Type == "Secondary"): cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.r_[np.minimum(0.0, vmin), np.maximum(0.0, vmax)], ) else: cb = plt.colorbar( dat[0], ax=cbar_ax, format=formatter, ticks=np.linspace(vmin, vmax, 5) ) cb.ax.tick_params(labelsize=ticksize) cb.set_label(label, fontsize=labelsize) ax[1].set_xlim([-40.0, 40.0]) ax[1].set_ylim([-40.0, 8.0]) # ax[1].set_aspect('equal') plt.show() # return fig, ax def plate_app(): app = widgetify( PLOT, survey=ToggleButtons( options=["Dipole-Dipole", "Dipole-Pole", "Pole-Dipole", "Pole-Pole"], value="Dipole-Dipole", ), dx=FloatSlider( min=1.0, max=1000.0, step=1.0, value=10.0, continuous_update=False ), dz=FloatSlider( min=1.0, max=200.0, step=1.0, value=10.0, continuous_update=False ), xc=FloatSlider( min=-30.0, max=30.0, step=1.0, value=0.0, continuous_update=False ), zc=FloatSlider( min=-30.0, max=0.0, step=1.0, value=-10.0, continuous_update=False ), rotAng=FloatSlider( min=-90.0, max=90.0, step=1.0, value=0.0, continuous_update=False, description="$\\theta$", ), rhoplate=FloatText( min=1e-8, max=1e8, value=500.0, continuous_update=False, description="$\\rho_2$", ), rhohalf=FloatText( min=1e-8, max=1e8, value=500.0, continuous_update=False, description="$\\rho_1$", ), A=FloatSlider( min=-30.25, max=30.25, step=0.5, value=-30.25, continuous_update=False ), B=FloatSlider( min=-30.25, max=30.25, step=0.5, value=30.25, continuous_update=False ), M=FloatSlider( min=-30.25, max=30.25, step=0.5, value=-10.25, continuous_update=False ), N=FloatSlider( min=-30.25, max=30.25, step=0.5, value=10.25, continuous_update=False ), Field=ToggleButtons( options=["Model", "Potential", "E", "J", "Charge", "Sensitivity"], value="Model", ), Type=ToggleButtons(options=["Total", "Primary", "Secondary"], value="Total"), Scale=ToggleButtons(options=["Linear", "Log"], value="Linear"), ) return app
1.71875
2
retratodefases/phase_diagrams/__init__.py
Loracio/retrato-de-fases
3
11685
<gh_stars>1-10 try: __PHASE_DIAGRAMS_IMPORTED__ except NameError: __PHASE_DIAGRAMS_IMPORTED__= False if not __PHASE_DIAGRAMS_IMPORTED__: from .phase_portrait import PhasePortrait from .funcion1D import Funcion1D from .nullclines import Nullcline2D __PHASE_DIAGRAMS_IMPORTED__ = True
1.257813
1
P13pt/spectrumfitter/spectrumfitter.py
green-mercury/P13pt
3
11686
#!/usr/bin/python import sys import os import shutil from glob import glob from PyQt5.QtCore import (Qt, qInstallMessageHandler, QtInfoMsg, QtCriticalMsg, QtDebugMsg, QtWarningMsg, QtFatalMsg, QSettings, pyqtSlot, QStandardPaths, QUrl) from PyQt5.QtGui import QIcon, QDesktopServices from PyQt5.QtWidgets import (QApplication, QMessageBox, QMainWindow, QDockWidget, QAction, QFileDialog, QProgressDialog) from P13pt.spectrumfitter.dataloader import DataLoader from P13pt.spectrumfitter.navigator import Navigator from P13pt.spectrumfitter.fitter import Fitter from P13pt.spectrumfitter.plotter import Plotter from P13pt.spectrumfitter.load_fitresults import load_fitresults from P13pt.params_from_filename import params_from_filename class MainWindow(QMainWindow): session_file = None def __init__(self, parent=None): super(MainWindow, self).__init__(parent) self.settings = QSettings("Mercury", "SpectrumFitter") # set up data loading area self.dock_loader = QDockWidget('Data loading', self) self.dock_loader.setObjectName('loader') self.loader = DataLoader() self.dock_loader.setWidget(self.loader) # set up data navigator self.dock_navigator = QDockWidget('Data navigation', self) self.dock_navigator.setObjectName('navigator') self.navigator = Navigator() self.dock_navigator.setWidget(self.navigator) # set up plotter self.plotter = Plotter() self.setCentralWidget(self.plotter) # set up fitter self.dock_fitter = QDockWidget('Fitting', self) self.dock_fitter.setObjectName('fitter') self.fitter = Fitter() self.dock_fitter.setWidget(self.fitter) # set up the dock positions self.addDockWidget(Qt.TopDockWidgetArea, self.dock_loader) self.addDockWidget(Qt.LeftDockWidgetArea, self.dock_navigator) self.addDockWidget(Qt.RightDockWidgetArea, self.dock_fitter) # set up menus fileMenu = self.menuBar().addMenu('File') self.act_new_session = QAction('New session', self) self.act_load_session = QAction('Load session', self) self.act_save_session = QAction('Save session', self) self.act_save_session_as = QAction('Save session as...', self) for a in [self.act_new_session, self.act_load_session, self.act_save_session, self.act_save_session_as]: fileMenu.addAction(a) self.recent_menu = fileMenu.addMenu('Recent sessions') self.update_recent_list() fileMenu.addSeparator() self.act_save_image = QAction('Save spectrum as image', self) self.act_save_allimages = QAction('Save all spectra as images', self) for a in [self.act_save_image, self.act_save_allimages]: fileMenu.addAction(a) viewMenu = self.menuBar().addMenu('View') for w in [self.dock_loader, self.dock_navigator, self.dock_fitter]: viewMenu.addAction(w.toggleViewAction()) self.act_restore_default_view = QAction('Restore default', self) viewMenu.addAction(self.act_restore_default_view) self.act_toggle_display_style = QAction('Toggle display style', self) self.act_toggle_display_style.setShortcut(Qt.Key_F8) viewMenu.addAction(self.act_toggle_display_style) toolsMenu = self.menuBar().addMenu('Tools') self.act_install_builtin_models = QAction('Install built-in models', self) toolsMenu.addAction(self.act_install_builtin_models) self.act_open_model_folder = QAction('Open model folder', self) toolsMenu.addAction(self.act_open_model_folder) # make connections self.loader.dataset_changed.connect(self.dataset_changed) self.loader.new_file_in_dataset.connect(self.navigator.new_file_in_dataset) self.loader.deembedding_changed.connect(self.deembedding_changed) self.navigator.selection_changed.connect(self.selection_changed) self.fitter.fit_changed.connect(lambda: self.plotter.plot_fit(self.fitter.model)) self.fitter.fitted_param_changed.connect(self.plotter.fitted_param_changed) self.fitter.btn_fitall.clicked.connect(self.fit_all) self.act_new_session.triggered.connect(self.new_session) self.act_load_session.triggered.connect(self.load_session) self.act_save_session.triggered.connect(self.save_session) self.act_save_session_as.triggered.connect(self.save_session_as) self.act_save_image.triggered.connect(self.save_image) self.act_save_allimages.triggered.connect(self.save_all_images) self.act_restore_default_view.triggered.connect(lambda: self.restoreState(self.default_state)) self.act_toggle_display_style.triggered.connect(self.toggle_display_style) self.act_install_builtin_models.triggered.connect(self.install_builtin_models) self.act_open_model_folder.triggered.connect(self.open_model_folder) # set up fitted parameter (this has to be done after making connections, so that fitter and plotter sync) self.fitter.fitted_param = '-Y12' # default value # create new session self.new_session() # show window self.show() self.default_state = self.saveState() # restore layout from config (this has to be done AFTER self.show()) if self.settings.contains('geometry'): self.restoreGeometry(self.settings.value("geometry")) if self.settings.contains('windowState'): self.restoreState(self.settings.value("windowState")) def closeEvent(self, event): self.settings.setValue("geometry", self.saveGeometry()) self.settings.setValue("windowState", self.saveState()) super(MainWindow, self).closeEvent(event) def dataset_changed(self): self.fitter.empty_cache() self.navigator.update_file_list(self.loader.dut_files) for a in [self.act_save_session, self.act_save_session_as, self.act_save_image, self.act_save_allimages]: a.setEnabled(True) def toggle_display_style(self): if self.plotter.display_style == 'MP': self.plotter.display_style = 'RI' else: self.plotter.display_style = 'MP' self.deembedding_changed() # TODO: rename and/or remove redundancies, c.f. deembedding_changed() def deembedding_changed(self): # TODO: reduce redundancy with selection_changed() i = self.navigator.file_list.currentRow() spectrum = self.loader.get_spectrum(i) if spectrum is not None: #TODO: show parameters on plot self.plotter.plot(spectrum, {}) else: self.plotter.clear() self.fitter.update_network(spectrum, self.loader.dut_files[i]) def selection_changed(self, i): if i < 0: # when file_list is cleared: return QApplication.setOverrideCursor(Qt.WaitCursor) # TODO: the argument here should be a filename, not the index spectrum = self.loader.get_spectrum(i) if spectrum is not None: self.plotter.plot(spectrum, params_from_filename(self.loader.dut_files[i])) else: self.plotter.clear() self.fitter.update_network(spectrum, self.loader.dut_files[i]) QApplication.restoreOverrideCursor() def new_session(self): self.session_file = None self.setWindowTitle('Spectrum Fitter - New session') self.fitter.unload_model() self.loader.clear() self.navigator.clear() self.plotter.clear() for a in [self.act_save_session, self.act_save_session_as, self.act_save_image, self.act_save_allimages]: a.setEnabled(False) @pyqtSlot() def save_session_as(self, res_file=None): if not res_file: res_file, filter = QFileDialog.getSaveFileName(self, 'Fit results file', filter='*.txt') if not res_file: return res_folder = os.path.dirname(res_file) try: with open(res_file, 'w') as f: # write the header f.write('# fitting results generated by P13pt spectrum fitter\n') if len(self.loader.dut_files) == 1: f.write('# dut: ' + os.path.join( os.path.relpath(self.loader.dut_folder, res_folder), self.loader.dut_files[0] ).replace('\\', '/') + '\n') else: f.write('# dut: ' + os.path.relpath(self.loader.dut_folder, res_folder).replace('\\', '/') + '\n') if self.loader.thru and self.loader.thru_toggle_status: f.write('# thru: ' + os.path.relpath(self.loader.thru_file, res_folder).replace('\\', '/') + '\n') if self.loader.dummy and self.loader.dummy_toggle_status: f.write('# dummy: ' + os.path.relpath(self.loader.dummy_file, res_folder).replace('\\', '/') + '\n') f.write('# fitted_param: ' + self.plotter.fitted_param + '\n') try: ra = float(self.loader.txt_ra.text()) except: ra = 0. if not ra == 0: f.write('# ra: ' + str(ra) + '\n') if self.fitter.model: f.write('# model: ' + os.path.basename(self.fitter.model_file).replace('\\', '/') + '\n') f.write('# model_func: ' + self.fitter.cmb_modelfunc.currentText() + '\n') # TODO: this all could clearly be done in a more elegant way if self.fitter.cmb_fitmethod.currentText() != 'No fit methods found': f.write('# fit_method: ' + self.fitter.cmb_fitmethod.currentText() + '\n') # determine columns f.write('# filename\t') for p in params_from_filename(self.loader.dut_files[0]): f.write(p + '\t') f.write('\t'.join([p for p in self.fitter.model.params])) f.write('\n') # write data filelist = sorted([filename for filename in self.fitter.model_params]) for filename in filelist: f.write(filename + '\t') # TODO: what if some filenames do not contain all parameters? should catch exceptions for p in params_from_filename(self.loader.dut_files[0]): f.write(str(params_from_filename(filename)[p]) + '\t') f.write('\t'.join([str(self.fitter.model_params[filename][p]) for p in self.fitter.model.params])) f.write('\n') except EnvironmentError as e: QMessageBox.critical(self, 'Error', 'Could not save session: '+str(e)) return self.update_recent_list(res_file) self.setWindowTitle('Spectrum Fitter - '+res_file) self.session_file = res_file def save_session(self): self.save_session_as(self.session_file) @pyqtSlot() def load_session(self, res_file=None): if not res_file: res_file, filter = QFileDialog.getOpenFileName(self, 'Fit results file', filter='*.txt') if not res_file: return res_folder = os.path.dirname(res_file) self.new_session() # read the data try: data, dut, thru, dummy, ra, fitter_info = load_fitresults(res_file, readfilenameparams=False, extrainfo=True) except IOError as e: QMessageBox.warning(self, 'Error', 'Could not load data: '+str(e)) return # using os.path.realpath to get rid of relative path remainders ("..") self.loader.load_dataset(dut=os.path.realpath(os.path.join(res_folder, dut)) if dut else None, thru=os.path.realpath(os.path.join(res_folder, thru)) if thru else None, dummy=os.path.realpath(os.path.join(res_folder, dummy)) if dummy else None, ra=ra if ra else None) # if a fitted_param was provided in the session file, set it up if 'fitted_param' in fitter_info: self.fitter.fitted_param = fitter_info['fitted_param'] # if a model was provided in the session file, load this model and the provided data if 'model' in fitter_info: self.fitter.load_model(filename=fitter_info['model'], info=fitter_info, data=data if data else None) # update the fitter with the first spectrum in the list self.fitter.update_network(self.loader.get_spectrum(0), self.loader.dut_files[0]) self.update_recent_list(res_file) self.setWindowTitle('Spectrum Fitter - '+res_file) self.session_file = res_file #TODO: this is not really in the right place @pyqtSlot() def fit_all(self): totalnum = len(self.loader.dut_files) progressdialog = QProgressDialog('Fitting all spectra...', 'Cancel', 0, totalnum-1, self) progressdialog.setWindowTitle('Progress') progressdialog.setModal(True) progressdialog.setAutoClose(True) progressdialog.show() for i in range(totalnum): QApplication.processEvents() if progressdialog.wasCanceled(): break self.navigator.file_list.setCurrentRow(i) self.fitter.fit_model() progressdialog.setValue(i) def save_image(self): basename, ext = os.path.splitext(self.loader.dut_files[self.navigator.file_list.currentRow()]) filename, filter = QFileDialog.getSaveFileName(self, 'Choose file', os.path.join(self.loader.dut_folder, basename+'.png'), filter='*.png;;*.jpg;;*.eps') if filename: self.plotter.save_fig(filename) def save_all_images(self): foldername = QFileDialog.getExistingDirectory(self, 'Choose folder', self.loader.dut_folder) totalnum = len(self.loader.dut_files) progressdialog = QProgressDialog('Saving all images...', 'Cancel', 0, totalnum - 1, self) progressdialog.setWindowTitle('Progress') progressdialog.setModal(True) progressdialog.setAutoClose(True) progressdialog.show() for i in range(totalnum): QApplication.processEvents() if progressdialog.wasCanceled(): break self.navigator.file_list.setCurrentRow(i) basename, ext = os.path.splitext(self.loader.dut_files[self.navigator.file_list.currentRow()]) self.plotter.save_fig(os.path.join(foldername, basename+'.png')) progressdialog.setValue(i) def load_recent(self): action = self.sender() self.load_session(action.text()) def update_recent_list(self, filename=None): recentlist = list(self.settings.value('recentSessions')) if self.settings.contains('recentSessions') \ else [] if filename: if filename in recentlist: recentlist.remove(filename) recentlist.insert(0, filename) recentlist = recentlist[0:5] self.settings.setValue('recentSessions', recentlist) self.recent_menu.clear() for r in recentlist: a = QAction(r, self) self.recent_menu.addAction(a) a.triggered.connect(self.load_recent) def install_builtin_models(self): builtin_folder = os.path.join(os.path.dirname(__file__), 'models') for filename in sorted(glob(os.path.join(builtin_folder, '*.py'))): # check if the file already exists in the models folder if os.path.exists(os.path.join(self.fitter.models_dir, os.path.basename(filename))): answer = QMessageBox.question(self, 'File already exists', 'The file: '+os.path.basename(filename)+ 'already exists in your models folder. Would you like to replace it?') if answer != QMessageBox.Yes: continue # if file does not exist or user does not mind replacing it, let's copy: shutil.copyfile(filename, os.path.join(self.fitter.models_dir, os.path.basename(filename))) def open_model_folder(self): QDesktopServices.openUrl(QUrl.fromLocalFile(self.fitter.models_dir)) def msghandler(type, context, message): if type == QtInfoMsg: QMessageBox.information(None, 'Info', message) elif type == QtDebugMsg: QMessageBox.information(None, 'Debug', message) elif type == QtCriticalMsg: QMessageBox.critical(None, 'Critical', message) elif type == QtWarningMsg: QMessageBox.warning(None, 'Warning', message) elif type == QtFatalMsg: QMessageBox.critical(None, 'Fatal error', message) def main(): qInstallMessageHandler(msghandler) # CD into directory where this script is saved d = os.path.dirname(__file__) if d != '': os.chdir(d) app = QApplication(sys.argv) app.setWindowIcon(QIcon('audacity.png')) mainwindow = MainWindow() # Start the main loop. ret = app.exec_() sys.exit(ret) if __name__ == '__main__': main()
1.84375
2
subversion/tests/cmdline/lock_tests.py
centic9/subversion-ppa
0
11687
<gh_stars>0 #!/usr/bin/env python # encoding=utf-8 # # lock_tests.py: testing versioned properties # # Subversion is a tool for revision control. # See http://subversion.apache.org for more information. # # ==================================================================== # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ###################################################################### # General modules import re, os, stat, logging logger = logging.getLogger() # Our testing module import svntest # (abbreviation) Skip = svntest.testcase.Skip_deco SkipUnless = svntest.testcase.SkipUnless_deco XFail = svntest.testcase.XFail_deco Issues = svntest.testcase.Issues_deco Issue = svntest.testcase.Issue_deco Wimp = svntest.testcase.Wimp_deco Item = svntest.wc.StateItem ###################################################################### # Helpers def check_writability(path, writable): bits = stat.S_IWGRP | stat.S_IWOTH | stat.S_IWRITE mode = os.stat(path)[0] if bool(mode & bits) != writable: raise svntest.Failure("path '%s' is unexpectedly %s (mode %o)" % (path, ["writable", "read-only"][writable], mode)) def is_writable(path): "Raise if PATH is not writable." check_writability(path, True) def is_readonly(path): "Raise if PATH is not readonly." check_writability(path, False) ###################################################################### # Tests #---------------------------------------------------------------------- # Each test refers to a section in # notes/locking/locking-functional-spec.txt # II.A.2, II.C.2.a: Lock a file in wc A as user FOO and make sure we # have a representation of it. Checkout wc B as user BAR. Verify # that user BAR cannot commit changes to the file nor its properties. def lock_file(sbox): "lock a file and verify that it's locked" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author file_path = sbox.ospath('iota') file_path_b = sbox.ospath('iota', wc_dir=wc_b) svntest.main.file_append(file_path, "This represents a binary file\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', file_path) # --- Meanwhile, in our other working copy... --- err_re = "(svn\: E195022\: File '.*iota' is locked in another)|" + \ "(svn\: E160039: User '?jconstant'? does not own lock on path.*iota')" svntest.main.run_svn(None, 'update', wc_b) # -- Try to change a file -- # change the locked file svntest.main.file_append(file_path_b, "Covert tweak\n") # attempt (and fail) to commit as user Sally svntest.actions.run_and_verify_commit(wc_b, None, None, err_re, '--username', svntest.main.wc_author2, '-m', '', file_path_b) # Revert our change that we failed to commit svntest.main.run_svn(None, 'revert', file_path_b) # -- Try to change a property -- # change the locked file's properties svntest.main.run_svn(None, 'propset', 'sneakyuser', 'Sally', file_path_b) err_re = "(svn\: E195022\: File '.*iota' is locked in another)|" + \ "(svn\: E160039\: User '?jconstant'? does not own lock on path)" # attempt (and fail) to commit as user Sally svntest.actions.run_and_verify_commit(wc_b, None, None, err_re, '--username', svntest.main.wc_author2, '-m', '', file_path_b) #---------------------------------------------------------------------- # II.C.2.b.[12]: Lock a file and commit using the lock. Make sure the # lock is released. Repeat, but request that the lock not be # released. Make sure the lock is retained. def commit_file_keep_lock(sbox): "commit a file and keep lock" sbox.build() wc_dir = sbox.wc_dir # lock 'A/mu' as wc_author svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'some lock comment', sbox.ospath('A/mu')) # make a change and commit it, holding lock sbox.simple_append('A/mu', 'Tweak!\n') svntest.main.run_svn(None, 'commit', '-m', '', '--no-unlock', sbox.ospath('A/mu')) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/mu', wc_rev=2, writelocked='K') # Make sure the file is still locked svntest.actions.run_and_verify_status(wc_dir, expected_status) def commit_file_unlock(sbox): "commit a file and release lock" sbox.build() wc_dir = sbox.wc_dir # lock A/mu and iota as wc_author svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'some lock comment', sbox.ospath('A/mu'), sbox.ospath('iota')) # make a change and commit it, allowing lock to be released sbox.simple_append('A/mu', 'Tweak!\n') sbox.simple_commit() expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/mu', wc_rev=2) expected_status.tweak('iota', wc_rev=2) # Make sure the file is unlocked svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def commit_propchange(sbox): "commit a locked file with a prop change" sbox.build() wc_dir = sbox.wc_dir # lock A/mu as wc_author svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'some lock comment', sbox.ospath('A/mu')) # make a property change and commit it, allowing lock to be released sbox.simple_propset('blue', 'azul', 'A/mu') sbox.simple_commit('A/mu') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/mu', wc_rev=2) # Make sure the file is unlocked svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # II.C.2.c: Lock a file in wc A as user FOO. Attempt to unlock same # file in same wc as user BAR. Should fail. # # Attempt again with --force. Should succeed. # # II.C.2.c: Lock a file in wc A as user FOO. Attempt to unlock same # file in wc B as user FOO. Should fail. # # Attempt again with --force. Should succeed. def break_lock(sbox): "lock a file and verify lock breaking behavior" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author file_path = sbox.ospath('iota') file_path_b = sbox.ospath('iota', wc_dir=wc_b) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', file_path) # --- Meanwhile, in our other working copy... --- svntest.main.run_svn(None, 'update', wc_b) # attempt (and fail) to unlock file # This should give a "iota' is not locked in this working copy" error svntest.actions.run_and_verify_svn(None, None, ".*not locked", 'unlock', file_path_b) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', '--force', file_path_b) #---------------------------------------------------------------------- # II.C.2.d: Lock a file in wc A as user FOO. Attempt to lock same # file in wc B as user BAR. Should fail. # # Attempt again with --force. Should succeed. # # II.C.2.d: Lock a file in wc A as user FOO. Attempt to lock same # file in wc B as user FOO. Should fail. # # Attempt again with --force. Should succeed. def steal_lock(sbox): "lock a file and verify lock stealing behavior" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author file_path = sbox.ospath('iota') file_path_b = sbox.ospath('iota', wc_dir=wc_b) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', file_path) # --- Meanwhile, in our other working copy... --- svntest.main.run_svn(None, 'update', wc_b) # attempt (and fail) to lock file # This should give a "iota' is already locked... error, but exits 0. svntest.actions.run_and_verify_svn2(None, None, ".*already locked", 0, 'lock', '-m', 'trying to break', file_path_b) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--force', '-m', 'trying to break', file_path_b) #---------------------------------------------------------------------- # II.B.2, II.C.2.e: Lock a file in wc A. Query wc for the # lock and verify that all lock fields are present and correct. def examine_lock(sbox): "examine the fields of a lockfile for correctness" sbox.build() # lock a file as wc_author svntest.actions.run_and_validate_lock(sbox.ospath('iota'), svntest.main.wc_author) #---------------------------------------------------------------------- # II.C.1: Lock a file in wc A. Check out wc B. Break the lock in wc # B. Verify that wc A gracefully cleans up the lock via update as # well as via commit. def handle_defunct_lock(sbox): "verify behavior when a lock in a wc is defunct" sbox.build() wc_dir = sbox.wc_dir # set up our expected status expected_status = svntest.actions.get_virginal_state(wc_dir, 1) # lock the file svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', sbox.ospath('iota')) # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) file_path_b = sbox.ospath('iota', wc_dir=wc_b) # --- Meanwhile, in our other working copy... --- # Try unlocking the file in the second wc. svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', file_path_b) # update the 1st wc, which should clear the lock there sbox.simple_update() # Make sure the file is unlocked svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # II.B.1: Set "svn:needs-lock" property on file in wc A. Checkout wc # B and verify that that file is set as read-only. # # Tests propset, propdel, lock, and unlock def enforce_lock(sbox): "verify svn:needs-lock read-only behavior" sbox.build() wc_dir = sbox.wc_dir iota_path = sbox.ospath('iota') lambda_path = sbox.ospath('A/B/lambda') mu_path = sbox.ospath('A/mu') # svn:needs-lock value should be forced to a '*' svntest.actions.set_prop('svn:needs-lock', 'foo', iota_path) svntest.actions.set_prop('svn:needs-lock', '*', lambda_path) expected_err = ".*svn: warning: W125005: To turn off the svn:needs-lock property,.*" svntest.actions.set_prop('svn:needs-lock', ' ', mu_path, expected_err) # Check svn:needs-lock svntest.actions.check_prop('svn:needs-lock', iota_path, ['*']) svntest.actions.check_prop('svn:needs-lock', lambda_path, ['*']) svntest.actions.check_prop('svn:needs-lock', mu_path, ['*']) svntest.main.run_svn(None, 'commit', '-m', '', iota_path, lambda_path, mu_path) # Now make sure that the perms were flipped on all files if os.name == 'posix': mode = stat.S_IWGRP | stat.S_IWOTH | stat.S_IWRITE if ((os.stat(iota_path)[0] & mode) or (os.stat(lambda_path)[0] & mode) or (os.stat(mu_path)[0] & mode)): logger.warn("Setting 'svn:needs-lock' property on a file failed to set") logger.warn("file mode to read-only.") raise svntest.Failure # obtain a lock on one of these files... svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', iota_path) # ...and verify that the write bit gets set... if not (os.stat(iota_path)[0] & mode): logger.warn("Locking a file with 'svn:needs-lock' failed to set write bit.") raise svntest.Failure # ...and unlock it... svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', iota_path) # ...and verify that the write bit gets unset if (os.stat(iota_path)[0] & mode): logger.warn("Unlocking a file with 'svn:needs-lock' failed to unset write bit.") raise svntest.Failure # Verify that removing the property restores the file to read-write svntest.main.run_svn(None, 'propdel', 'svn:needs-lock', iota_path) if not (os.stat(iota_path)[0] & mode): logger.warn("Deleting 'svn:needs-lock' failed to set write bit.") raise svntest.Failure #---------------------------------------------------------------------- # Test that updating a file with the "svn:needs-lock" property works, # especially on Windows, where renaming A to B fails if B already # exists and has its read-only bit set. See also issue #2278. @Issue(2278) def update_while_needing_lock(sbox): "update handles svn:needs-lock correctly" sbox.build() sbox.simple_propset('svn:needs-lock', 'foo', 'iota') sbox.simple_commit('iota') sbox.simple_update() # Lock, modify, commit, unlock, to create r3. svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', sbox.ospath('iota')) sbox.simple_append('iota', 'This line added in r2.\n') sbox.simple_commit('iota') # auto-unlocks # Backdate to r2. sbox.simple_update(revision=2) # Try updating forward to r3 again. This is where the bug happened. sbox.simple_update(revision=3) #---------------------------------------------------------------------- # Tests update / checkout with changing props def defunct_lock(sbox): "verify svn:needs-lock behavior with defunct lock" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) iota_path = sbox.ospath('iota') iota_path_b = sbox.ospath('iota', wc_dir=wc_b) mode = stat.S_IWGRP | stat.S_IWOTH | stat.S_IWRITE # Set the prop in wc a sbox.simple_propset('svn:needs-lock', 'foo', 'iota') # commit r2 sbox.simple_commit('iota') # update wc_b svntest.main.run_svn(None, 'update', wc_b) # lock iota in wc_b svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', iota_path_b) # break the lock iota in wc a svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--force', '-m', '', iota_path) # update wc_b svntest.main.run_svn(None, 'update', wc_b) # make sure that iota got set to read-only if (os.stat(iota_path_b)[0] & mode): logger.warn("Upon removal of a defunct lock, a file with 'svn:needs-lock'") logger.warn("was not set back to read-only") raise svntest.Failure #---------------------------------------------------------------------- # Tests dealing with a lock on a deleted path def deleted_path_lock(sbox): "verify lock removal on a deleted path" sbox.build() wc_dir = sbox.wc_dir iota_path = sbox.ospath('iota') iota_url = sbox.repo_url + '/iota' svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', iota_path) sbox.simple_rm('iota') svntest.actions.run_and_verify_svn(None, None, [], 'commit', '--no-unlock', '-m', '', iota_path) # Now make sure that we can delete the lock from iota via a URL svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', iota_url) #---------------------------------------------------------------------- # Tests dealing with locking and unlocking def lock_unlock(sbox): "lock and unlock some files" sbox.build() wc_dir = sbox.wc_dir pi_path = sbox.ospath('A/D/G/pi') rho_path = sbox.ospath('A/D/G/rho') tau_path = sbox.ospath('A/D/G/tau') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/D/G/pi', 'A/D/G/rho', 'A/D/G/tau', writelocked='K') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', pi_path, rho_path, tau_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) expected_status.tweak('A/D/G/pi', 'A/D/G/rho', 'A/D/G/tau', writelocked=None) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', pi_path, rho_path, tau_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # Tests dealing with directory deletion and locks def deleted_dir_lock(sbox): "verify removal of a directory with locks inside" sbox.build() wc_dir = sbox.wc_dir pi_path = sbox.ospath('A/D/G/pi') rho_path = sbox.ospath('A/D/G/rho') tau_path = sbox.ospath('A/D/G/tau') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', pi_path, rho_path, tau_path) sbox.simple_rm('A/D/G') # the parent directory svntest.actions.run_and_verify_svn(None, None, [], 'commit', '--no-unlock', '-m', '', sbox.ospath('A/D/G')) #---------------------------------------------------------------------- # III.c : Lock a file and check the output of 'svn stat' from the same # working copy and another. def lock_status(sbox): "verify status of lock in working copy" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) sbox.simple_append('iota', "This is a spreadsheet\n") sbox.simple_commit('iota') svntest.main.run_svn(None, 'lock', '-m', '', sbox.ospath('iota')) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('iota', wc_rev=2, writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Verify status again after modifying the file sbox.simple_append('iota', 'check stat output after mod') expected_status.tweak('iota', status='M ') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Verify status of lock from another working copy svntest.main.run_svn(None, 'update', wc_b) expected_status = svntest.actions.get_virginal_state(wc_b, 2) expected_status.tweak('iota', writelocked='O') svntest.actions.run_and_verify_status(wc_b, expected_status) #---------------------------------------------------------------------- # III.c : Steal lock on a file from another working copy with 'svn lock # --force', and check the status of lock in the repository from the # working copy in which the file was initially locked. def stolen_lock_status(sbox): "verify status of stolen lock" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) file_path_b = os.path.join(wc_b, fname) svntest.main.file_append(file_path, "This is a spreadsheet\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) svntest.main.run_svn(None, 'lock', '-m', '', file_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak(fname, wc_rev=2) expected_status.tweak(fname, writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Forcibly lock same file (steal lock) from another working copy svntest.main.run_svn(None, 'update', wc_b) svntest.main.run_svn(None, 'lock', '-m', '', '--force', file_path_b) # Verify status from working copy where file was initially locked expected_status.tweak(fname, writelocked='T') svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # III.c : Break lock from another working copy with 'svn unlock --force' # and verify the status of the lock in the repository with 'svn stat -u' # from the working copy in the file was initially locked def broken_lock_status(sbox): "verify status of broken lock" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) # lock a file as wc_author fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) file_path_b = os.path.join(wc_b, fname) svntest.main.file_append(file_path, "This is a spreadsheet\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) svntest.main.run_svn(None, 'lock', '-m', '', file_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak(fname, wc_rev=2) expected_status.tweak(fname, writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Forcibly unlock the same file (break lock) from another working copy svntest.main.run_svn(None, 'update', wc_b) svntest.main.run_svn(None, 'unlock', '--force', file_path_b) # Verify status from working copy where file was initially locked expected_status.tweak(fname, writelocked='B') svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # Invalid input test - lock non-existent file def lock_non_existent_file(sbox): "verify error on locking non-existent file" sbox.build() fname = 'A/foo' file_path = os.path.join(sbox.wc_dir, fname) exit_code, output, error = svntest.main.run_svn(1, 'lock', '-m', '', file_path) error_msg = "The node '%s' was not found." % os.path.abspath(file_path) for line in error: if line.find(error_msg) != -1: break else: logger.warn("Error: %s : not found in: %s" % (error_msg, error)) raise svntest.Failure #---------------------------------------------------------------------- # Check that locking an out-of-date file fails. def out_of_date(sbox): "lock an out-of-date file and ensure failure" sbox.build() wc_dir = sbox.wc_dir # Make a second copy of the working copy wc_b = sbox.add_wc_path('_b') svntest.actions.duplicate_dir(wc_dir, wc_b) fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) file_path_b = os.path.join(wc_b, fname) # Make a new revision of the file in the first WC. svntest.main.file_append(file_path, "This represents a binary file\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) # --- Meanwhile, in our other working copy... --- svntest.actions.run_and_verify_svn2(None, None, ".*newer version of '/iota' exists", 0, 'lock', '--username', svntest.main.wc_author2, '-m', '', file_path_b) #---------------------------------------------------------------------- # Tests reverting a svn:needs-lock file def revert_lock(sbox): "verify svn:needs-lock behavior with revert" sbox.build() wc_dir = sbox.wc_dir iota_path = sbox.ospath('iota') mode = stat.S_IWGRP | stat.S_IWOTH | stat.S_IWRITE # set the prop in wc svntest.actions.run_and_verify_svn(None, None, [], 'propset', 'svn:needs-lock', 'foo', iota_path) # commit r2 svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', iota_path) # make sure that iota got set to read-only if (os.stat(iota_path)[0] & mode): logger.warn("Committing a file with 'svn:needs-lock'") logger.warn("did not set the file to read-only") raise svntest.Failure # verify status is as we expect expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('iota', wc_rev=2) svntest.actions.run_and_verify_status(wc_dir, expected_status) # remove read-only-ness svntest.actions.run_and_verify_svn(None, None, [], 'propdel', 'svn:needs-lock', iota_path) # make sure that iota got read-only-ness removed if (os.stat(iota_path)[0] & mode == 0): logger.warn("Deleting the 'svn:needs-lock' property ") logger.warn("did not remove read-only-ness") raise svntest.Failure # revert the change svntest.actions.run_and_verify_svn(None, None, [], 'revert', iota_path) # make sure that iota got set back to read-only if (os.stat(iota_path)[0] & mode): logger.warn("Reverting a file with 'svn:needs-lock'") logger.warn("did not set the file back to read-only") raise svntest.Failure # try propdel and revert from a different directory so # full filenames are used extra_name = 'xx' # now lock the file svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', iota_path) # modify it svntest.main.file_append(iota_path, "This line added\n") expected_status.tweak(wc_rev=1) expected_status.tweak('iota', wc_rev=2) expected_status.tweak('iota', status='M ', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # revert it svntest.actions.run_and_verify_svn(None, None, [], 'revert', iota_path) # make sure it is still writable since we have the lock if (os.stat(iota_path)[0] & mode == 0): logger.warn("Reverting a 'svn:needs-lock' file (with lock in wc) ") logger.warn("did not leave the file writable") raise svntest.Failure #---------------------------------------------------------------------- def examine_lock_via_url(sbox): "examine the fields of a lock from a URL" sbox.build() wc_dir = sbox.wc_dir fname = 'iota' comment = 'This is a lock test.' file_path = os.path.join(sbox.wc_dir, fname) file_url = sbox.repo_url + '/' + fname # lock the file url and check the contents of lock svntest.actions.run_and_validate_lock(file_url, svntest.main.wc_author2) #---------------------------------------------------------------------- def lock_several_files(sbox): "lock/unlock several files in one go" sbox.build() wc_dir = sbox.wc_dir # Deliberately have no direct child of A as a target iota_path = os.path.join(sbox.wc_dir, 'iota') lambda_path = os.path.join(sbox.wc_dir, 'A', 'B', 'lambda') alpha_path = os.path.join(sbox.wc_dir, 'A', 'B', 'E', 'alpha') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--username', svntest.main.wc_author2, '-m', 'lock several', iota_path, lambda_path, alpha_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('iota', 'A/B/lambda', 'A/B/E/alpha', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', '--username', svntest.main.wc_author2, iota_path, lambda_path, alpha_path) expected_status.tweak('iota', 'A/B/lambda', 'A/B/E/alpha', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def lock_switched_files(sbox): "lock/unlock switched files" sbox.build() wc_dir = sbox.wc_dir gamma_path = sbox.ospath('A/D/gamma') lambda_path = sbox.ospath('A/B/lambda') iota_URL = sbox.repo_url + '/iota' alpha_URL = sbox.repo_url + '/A/B/E/alpha' svntest.actions.run_and_verify_svn(None, None, [], 'switch', iota_URL, gamma_path, '--ignore-ancestry') svntest.actions.run_and_verify_svn(None, None, [], 'switch', alpha_URL, lambda_path, '--ignore-ancestry') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/D/gamma', 'A/B/lambda', switched='S') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'lock several', gamma_path, lambda_path) expected_status.tweak('A/D/gamma', 'A/B/lambda', writelocked='K') # In WC-NG locks are kept per working copy, not per file expected_status.tweak('A/B/E/alpha', 'iota', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', gamma_path, lambda_path) expected_status.tweak('A/D/gamma', 'A/B/lambda', writelocked=None) expected_status.tweak('A/B/E/alpha', 'iota', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) def lock_uri_encoded(sbox): "lock and unlock a file with an URI-unsafe name" sbox.build() wc_dir = sbox.wc_dir # lock a file as wc_author fname = 'amazing space' file_path = sbox.ospath(fname) svntest.main.file_append(file_path, "This represents a binary file\n") svntest.actions.run_and_verify_svn(None, None, [], "add", file_path) expected_output = svntest.wc.State(wc_dir, { fname : Item(verb='Adding'), }) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add({ fname: Item(wc_rev=2, status=' ') }) # Commit the file. svntest.actions.run_and_verify_commit(wc_dir, expected_output, expected_status, None, file_path) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', file_path) # Make sure that the file was locked. expected_status.tweak(fname, writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', file_path) # Make sure it was successfully unlocked again. expected_status.tweak(fname, writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) # And now the URL case. file_url = sbox.repo_url + '/' + fname svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', file_url) # Make sure that the file was locked. expected_status.tweak(fname, writelocked='O') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', file_url) # Make sure it was successfully unlocked again. expected_status.tweak(fname, writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # A regression test for a bug when svn:needs-lock and svn:executable # interact badly. The bug was fixed in trunk @ r854933. @SkipUnless(svntest.main.is_posix_os) def lock_and_exebit1(sbox): "svn:needs-lock and svn:executable, part I" mode_w = stat.S_IWUSR mode_x = stat.S_IXUSR mode_r = stat.S_IRUSR sbox.build() wc_dir = sbox.wc_dir gamma_path = sbox.ospath('A/D/gamma') expected_err = ".*svn: warning: W125005: To turn off the svn:needs-lock property,.*" svntest.actions.run_and_verify_svn2(None, None, expected_err, 0, 'ps', 'svn:needs-lock', ' ', gamma_path) expected_err = ".*svn: warning: W125005: To turn off the svn:executable property,.*" svntest.actions.run_and_verify_svn2(None, None, expected_err, 0, 'ps', 'svn:executable', ' ', gamma_path) # commit svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', gamma_path) # mode should be +r, -w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Committing a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-only, executable") raise svntest.Failure # lock svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', gamma_path) # mode should be +r, +w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or not gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Locking a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-write, executable") raise svntest.Failure # modify svntest.main.file_append(gamma_path, "check stat output after mod & unlock") # unlock svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', gamma_path) # Mode should be +r, -w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Unlocking a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-only, executable") raise svntest.Failure # ci svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', gamma_path) # Mode should be still +r, -w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Commiting a file with 'svn:needs-lock, svn:executable'") logger.warn("after unlocking modified file's permissions") raise svntest.Failure #---------------------------------------------------------------------- # A variant of lock_and_exebit1: same test without unlock @SkipUnless(svntest.main.is_posix_os) def lock_and_exebit2(sbox): "svn:needs-lock and svn:executable, part II" mode_w = stat.S_IWUSR mode_x = stat.S_IXUSR mode_r = stat.S_IRUSR sbox.build() wc_dir = sbox.wc_dir gamma_path = sbox.ospath('A/D/gamma') expected_err = ".*svn: warning: W125005: To turn off the svn:needs-lock property,.*" svntest.actions.run_and_verify_svn2(None, None, expected_err, 0, 'ps', 'svn:needs-lock', ' ', gamma_path) expected_err = ".*svn: warning: W125005: To turn off the svn:executable property,.*" svntest.actions.run_and_verify_svn2(None, None, expected_err, 0, 'ps', 'svn:executable', ' ', gamma_path) # commit svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', gamma_path) # mode should be +r, -w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Committing a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-only, executable") raise svntest.Failure # lock svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', gamma_path) # mode should be +r, +w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or not gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Locking a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-write, executable") raise svntest.Failure # modify svntest.main.file_append(gamma_path, "check stat output after mod & unlock") # commit svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', gamma_path) # Mode should be +r, -w, +x gamma_stat = os.stat(gamma_path)[0] if (not gamma_stat & mode_r or gamma_stat & mode_w or not gamma_stat & mode_x): logger.warn("Commiting a file with 'svn:needs-lock, svn:executable'") logger.warn("did not set the file to read-only, executable") raise svntest.Failure def commit_xml_unsafe_file_unlock(sbox): "commit file with xml-unsafe name and release lock" sbox.build() wc_dir = sbox.wc_dir fname = 'foo & bar' file_path = os.path.join(sbox.wc_dir, fname) svntest.main.file_append(file_path, "Initial data.\n") svntest.main.run_svn(None, 'add', file_path) svntest.main.run_svn(None, 'commit', '-m', '', file_path) # lock fname as wc_author svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'some lock comment', file_path) # make a change and commit it, allowing lock to be released svntest.main.file_append(file_path, "Followup data.\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add({ fname : Item(status=' ', wc_rev=3), }) # Make sure the file is unlocked svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def repos_lock_with_info(sbox): "verify info path@X or path -rY return repos lock" sbox.build() wc_dir = sbox.wc_dir fname = 'iota' comment = 'This is a lock test.' file_path = os.path.join(sbox.wc_dir, fname) file_url = sbox.repo_url + '/' + fname # lock wc file svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--username', svntest.main.wc_author2, '-m', comment, file_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak(fname, writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Steal lock on wc file svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--username', svntest.main.wc_author2, '--force', '-m', comment, file_url) expected_status.tweak(fname, writelocked='T') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Get repository lock token repos_lock_token \ = svntest.actions.run_and_parse_info(file_url)[0]['Lock Token'] # info with revision option expected_infos = [ { 'Lock Token' : repos_lock_token }, ] svntest.actions.run_and_verify_info(expected_infos, file_path, '-r1') # info with peg revision svntest.actions.run_and_verify_info(expected_infos, file_path + '@1') #---------------------------------------------------------------------- @Issue(4126) def unlock_already_unlocked_files(sbox): "(un)lock set of files, one already (un)locked" sbox.build() wc_dir = sbox.wc_dir # Deliberately have no direct child of A as a target iota_path = sbox.ospath('iota') lambda_path = sbox.ospath('A/B/lambda') alpha_path = sbox.ospath('A/B/E/alpha') gamma_path = sbox.ospath('A/D/gamma') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '--username', svntest.main.wc_author2, '-m', 'lock several', iota_path, lambda_path, alpha_path) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('iota', 'A/B/lambda', 'A/B/E/alpha', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) error_msg = ".*Path '/A/B/E/alpha' is already locked by user '" + \ svntest.main.wc_author2 + "'.*" svntest.actions.run_and_verify_svn2(None, None, error_msg, 0, 'lock', '--username', svntest.main.wc_author2, alpha_path, gamma_path) expected_status.tweak('A/D/gamma', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, ".*unlocked", [], 'unlock', '--username', svntest.main.wc_author2, lambda_path) expected_status.tweak('A/B/lambda', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) error_msg = "(.*No lock on path '/A/B/lambda'.*)" + \ "|(.*'A/B/lambda' is not locked.*)" svntest.actions.run_and_verify_svn2(None, None, error_msg, 0, 'unlock', '--username', svntest.main.wc_author2, '--force', iota_path, lambda_path, alpha_path) expected_status.tweak('iota', 'A/B/E/alpha', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def info_moved_path(sbox): "show correct lock info on moved path" sbox.build() wc_dir = sbox.wc_dir fname = sbox.ospath("iota") fname2 = sbox.ospath("iota2") # Move iota, creating r2. svntest.actions.run_and_verify_svn(None, None, [], "mv", fname, fname2) expected_output = svntest.wc.State(wc_dir, { 'iota2' : Item(verb='Adding'), 'iota' : Item(verb='Deleting'), }) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add({ "iota2" : Item(status=' ', wc_rev=2) }) expected_status.remove("iota") svntest.actions.run_and_verify_commit(wc_dir, expected_output, expected_status, None, wc_dir) # Create a new, unrelated iota, creating r3. svntest.main.file_append(fname, "Another iota") svntest.actions.run_and_verify_svn(None, None, [], "add", fname) expected_output = svntest.wc.State(wc_dir, { 'iota' : Item(verb='Adding'), }) expected_status.add({ "iota" : Item(status=' ', wc_rev=3) }) svntest.actions.run_and_verify_commit(wc_dir, expected_output, expected_status, None, wc_dir) # Lock the new iota. svntest.actions.run_and_verify_svn(None, ".*locked by user", [], "lock", fname) expected_status.tweak("iota", writelocked="K") svntest.actions.run_and_verify_status(wc_dir, expected_status) # Get info for old iota at r1. This shouldn't give us any lock info. expected_infos = [ { 'URL' : '.*' , 'Lock Token' : None }, ] svntest.actions.run_and_verify_info(expected_infos, fname2, '-r1') #---------------------------------------------------------------------- def ls_url_encoded(sbox): "ls locked path needing URL encoding" sbox.build() wc_dir = sbox.wc_dir dirname = sbox.ospath("space dir") fname = os.path.join(dirname, "f") # Create a dir with a space in its name and a file therein. svntest.actions.run_and_verify_svn(None, None, [], "mkdir", dirname) svntest.main.file_append(fname, "someone was here") svntest.actions.run_and_verify_svn(None, None, [], "add", fname) expected_output = svntest.wc.State(wc_dir, { 'space dir' : Item(verb='Adding'), 'space dir/f' : Item(verb='Adding'), }) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add({ "space dir" : Item(status=' ', wc_rev=2), "space dir/f" : Item(status=' ', wc_rev=2), }) svntest.actions.run_and_verify_commit(wc_dir, expected_output, expected_status, None, wc_dir) # Lock the file. svntest.actions.run_and_verify_svn("Lock space dir/f", ".*locked by user", [], "lock", fname) # Make sure ls shows it being locked. expected_output = " +2 " + re.escape(svntest.main.wc_author) + " +O .+f|" \ " +2 " + re.escape(svntest.main.wc_author) + " .+\./" svntest.actions.run_and_verify_svn("List space dir", expected_output, [], "list", "-v", dirname) #---------------------------------------------------------------------- # Make sure unlocking a path with the wrong lock token fails. @Issue(3794) def unlock_wrong_token(sbox): "verify unlocking with wrong lock token" sbox.build() wc_dir = sbox.wc_dir # lock a file as wc_author fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) file_url = sbox.repo_url + "/iota" svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', file_path) # Steal the lock as the same author, but using a URL to keep the old token # in the WC. svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', "--force", file_url) # Then, unlocking the WC path should fail. ### The error message returned is actually this, but let's worry about that ### another day... svntest.actions.run_and_verify_svn2( None, None, ".*((No lock on path)|(400 Bad Request))", 0, 'unlock', file_path) #---------------------------------------------------------------------- # Verify that info shows lock info for locked files with URI-unsafe names # when run in recursive mode. def examine_lock_encoded_recurse(sbox): "verify recursive info shows lock info" sbox.build() wc_dir = sbox.wc_dir fname = 'A/B/F/one iota' file_path = os.path.join(sbox.wc_dir, fname) svntest.main.file_append(file_path, "This represents a binary file\n") svntest.actions.run_and_verify_svn(None, None, [], "add", file_path) expected_output = svntest.wc.State(wc_dir, { fname : Item(verb='Adding'), }) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add({ fname: Item(wc_rev=2, status=' ') }) # Commit the file. svntest.actions.run_and_verify_commit(wc_dir, expected_output, expected_status, None, file_path) # lock the file and validate the contents svntest.actions.run_and_validate_lock(file_path, svntest.main.wc_author) # Trying to unlock someone else's lock with --force should fail. @Issue(3801) def unlocked_lock_of_other_user(sbox): "unlock file locked by other user" sbox.build() wc_dir = sbox.wc_dir # lock a file with user jrandom pi_path = sbox.ospath('A/D/G/pi') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/D/G/pi', writelocked='K') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', pi_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) # now try to unlock with user jconstant, should fail but exit 0. if sbox.repo_url.startswith("http"): expected_err = ".*403 Forbidden.*" else: expected_err = "svn: warning: W160039: User '%s' is trying to use a lock owned by "\ "'%s'.*" % (svntest.main.wc_author2, svntest.main.wc_author) svntest.actions.run_and_verify_svn2(None, [], expected_err, 0, 'unlock', '--username', svntest.main.wc_author2, pi_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def lock_funky_comment_chars(sbox): "lock a file using a comment with xml special chars" sbox.build() wc_dir = sbox.wc_dir # lock a file as wc_author fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) svntest.main.file_append(file_path, "This represents a binary file\n") svntest.main.run_svn(None, 'commit', '-m', '', file_path) svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', 'lock & load', file_path) #---------------------------------------------------------------------- # Check that the svn:needs-lock usage applies to a specific location # in a working copy, not to the working copy overall. def lock_twice_in_one_wc(sbox): "try to lock a file twice in one working copy" sbox.build() wc_dir = sbox.wc_dir mu_path = sbox.ospath('A/mu') mu2_path = sbox.ospath('A/B/mu') # Create a needs-lock file svntest.actions.set_prop('svn:needs-lock', '*', mu_path) svntest.actions.run_and_verify_svn(None, None, [], 'commit', wc_dir, '-m', '') # Mark the file readonly svntest.actions.run_and_verify_svn(None, None, [], 'update', wc_dir) # Switch a second location for the same file in the same working copy svntest.actions.run_and_verify_svn(None, None, [], 'switch', sbox.repo_url + '/A', sbox.ospath('A/B'), '--ignore-ancestry') # Lock location 1 svntest.actions.run_and_verify_svn(None, None, [], 'lock', mu_path, '-m', 'Locked here') # Locking in location 2 should fail ### Currently returns exitcode 0 svntest.actions.run_and_verify_svn2(None, None, ".*is already locked.*", 0, 'lock', '-m', '', mu2_path) # Change the file anyway os.chmod(mu2_path, 0700) svntest.main.file_append(mu2_path, "Updated text") # Commit will just succeed as the DB owns the lock. It's a user decision # to commit the other target instead of the one originally locked svntest.actions.run_and_verify_svn(None, None, [], 'commit', mu2_path, '-m', '') #---------------------------------------------------------------------- # Test for issue #3524 'Locking path via ra_serf which doesn't exist in # HEAD triggers assert' @Issue(3524) def lock_path_not_in_head(sbox): "lock path that does not exist in HEAD" sbox.build() wc_dir = sbox.wc_dir D_path = sbox.ospath('A/D') lambda_path = sbox.ospath('A/B/lambda') # Commit deletion of A/D and A/B/lambda as r2, then update the WC # back to r1. Then attempt to lock some paths that no longer exist # in HEAD. These should fail gracefully. svntest.actions.run_and_verify_svn(None, None, [], 'delete', lambda_path, D_path) svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', 'Some deletions', wc_dir) svntest.actions.run_and_verify_svn(None, None, [], 'up', '-r1', wc_dir) expected_lock_fail_err_re = "svn: warning: W160042: " \ "((Path .* doesn't exist in HEAD revision)" \ "|(L(ock|OCK) request (on '.*' )?failed: 405 Method Not Allowed))" # Issue #3524 These lock attemtps were triggering an assert over ra_serf: # # working_copies\lock_tests-37>svn lock A\D # ..\..\..\subversion\libsvn_client\ra.c:275: (apr_err=235000) # svn: In file '..\..\..\subversion\libsvn_ra_serf\util.c' line 1120: # assertion failed (ctx->status_code) # # working_copies\lock_tests-37>svn lock A\B\lambda # ..\..\..\subversion\libsvn_client\ra.c:275: (apr_err=235000) # svn: In file '..\..\..\subversion\libsvn_ra_serf\util.c' line 1120: # assertion failed (ctx->status_code) svntest.actions.run_and_verify_svn2(None, None, expected_lock_fail_err_re, 0, 'lock', lambda_path) expected_err = 'svn: E155008: The node \'.*D\' is not a file' svntest.actions.run_and_verify_svn(None, None, expected_err, 'lock', D_path) #---------------------------------------------------------------------- def verify_path_escaping(sbox): "verify escaping of lock paths" sbox.build() wc_dir = sbox.wc_dir # Add test paths using two characters that need escaping in a url, but # are within the normal ascii range file1 = sbox.ospath('file #1') file2 = sbox.ospath('file #2') file3 = sbox.ospath('file #3') svntest.main.file_write(file1, 'File 1') svntest.main.file_write(file2, 'File 2') svntest.main.file_write(file3, 'File 3') svntest.main.run_svn(None, 'add', file1, file2, file3) svntest.main.run_svn(None, 'ci', '-m', 'commit', wc_dir) svntest.main.run_svn(None, 'lock', '-m', 'lock 1', file1) svntest.main.run_svn(None, 'lock', '-m', 'lock 2', sbox.repo_url + '/file%20%232') svntest.main.run_svn(None, 'lock', '-m', 'lock 3', file3) svntest.main.run_svn(None, 'unlock', sbox.repo_url + '/file%20%233') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.add( { 'file #1' : Item(status=' ', writelocked='K', wc_rev='2'), 'file #2' : Item(status=' ', writelocked='O', wc_rev='2'), 'file #3' : Item(status=' ', writelocked='B', wc_rev='2') }) # Make sure the file locking is reported correctly svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- # Issue #3674: Replace + propset of locked file fails over DAV @Issue(3674) def replace_and_propset_locked_path(sbox): "test replace + propset of locked file" sbox.build() wc_dir = sbox.wc_dir mu_path = sbox.ospath('A/mu') G_path = sbox.ospath('A/D/G') rho_path = sbox.ospath('A/D/G/rho') # Lock mu and A/D/G/rho. svntest.actions.run_and_verify_svn(None, None, [], 'lock', mu_path, rho_path, '-m', 'Locked') # Now replace and propset on mu. svntest.actions.run_and_verify_svn(None, None, [], 'rm', '--keep-local', mu_path) svntest.actions.run_and_verify_svn(None, None, [], 'add', mu_path) svntest.actions.run_and_verify_svn(None, None, [], 'propset', 'foo', 'bar', mu_path) # Commit mu. svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', mu_path) # Let's try this again where directories are involved, shall we? # Replace A/D/G and A/D/G/rho, propset on A/D/G/rho. svntest.actions.run_and_verify_svn(None, None, [], 'rm', G_path) svntest.actions.run_and_verify_svn(None, None, [], 'mkdir', G_path) svntest.main.file_append(rho_path, "This is the new file 'rho'.\n") svntest.actions.run_and_verify_svn(None, None, [], 'add', rho_path) svntest.actions.run_and_verify_svn(None, None, [], 'propset', 'foo', 'bar', rho_path) # And commit G. svntest.actions.run_and_verify_svn(None, None, [], 'commit', '-m', '', G_path) #---------------------------------------------------------------------- def cp_isnt_ro(sbox): "uncommitted svn:needs-lock add/cp not read-only" sbox.build() wc_dir = sbox.wc_dir mu_URL = sbox.repo_url + '/A/mu' mu_path = sbox.ospath('A/mu') mu2_path = sbox.ospath('A/mu2') mu3_path = sbox.ospath('A/mu3') kappa_path = sbox.ospath('kappa') open(kappa_path, 'w').write("This is the file 'kappa'.\n") ## added file sbox.simple_add('kappa') svntest.actions.set_prop('svn:needs-lock', 'yes', kappa_path) is_writable(kappa_path) sbox.simple_commit('kappa') is_readonly(kappa_path) ## versioned file svntest.actions.set_prop('svn:needs-lock', 'yes', mu_path) is_writable(mu_path) sbox.simple_commit('A/mu') is_readonly(mu_path) # At this point, mu has 'svn:needs-lock' set ## wc->wc copied file svntest.main.run_svn(None, 'copy', mu_path, mu2_path) is_writable(mu2_path) sbox.simple_commit('A/mu2') is_readonly(mu2_path) ## URL->wc copied file svntest.main.run_svn(None, 'copy', mu_URL, mu3_path) is_writable(mu3_path) sbox.simple_commit('A/mu3') is_readonly(mu3_path) #---------------------------------------------------------------------- # Issue #3525: Locked file which is scheduled for delete causes tree # conflict @Issue(3525) def update_locked_deleted(sbox): "updating locked scheduled-for-delete file" sbox.build() wc_dir = sbox.wc_dir iota_path = sbox.ospath('iota') mu_path = sbox.ospath('A/mu') alpha_path = sbox.ospath('A/B/E/alpha') svntest.main.run_svn(None, 'lock', '-m', 'locked', mu_path, iota_path, alpha_path) sbox.simple_rm('iota') sbox.simple_rm('A/mu') sbox.simple_rm('A/B/E') # Create expected output tree for an update. expected_output = svntest.wc.State(wc_dir, { }) # Create expected status tree for the update. expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/B/E', status='D ') expected_status.tweak('iota', 'A/mu', 'A/B/E/alpha', status='D ', writelocked='K') expected_status.tweak('A/B/E/beta', status='D ') svntest.actions.run_and_verify_update(wc_dir, expected_output, None, expected_status) # Now we steal the lock of iota and A/mu via URL and retry svntest.main.run_svn(None, 'lock', '-m', 'locked', sbox.repo_url + '/iota', '--force', sbox.repo_url + '/A/mu', sbox.repo_url + '/A/B/E/alpha') expected_status.tweak('iota', 'A/mu', 'A/B/E/alpha', status='D ', writelocked='O') expected_output = svntest.wc.State(wc_dir, { 'A/mu' : Item(status='B '), 'A/B/E/alpha' : Item(status='B '), 'iota' : Item(status='B '), }) svntest.actions.run_and_verify_update(wc_dir, expected_output, None, expected_status) #---------------------------------------------------------------------- def block_unlock_if_pre_unlock_hook_fails(sbox): "block unlock operation if pre-unlock hook fails" sbox.build() wc_dir = sbox.wc_dir repo_dir = sbox.repo_dir svntest.actions.create_failing_hook(repo_dir, "pre-unlock", "error text") # lock a file. pi_path = sbox.ospath('A/D/G/pi') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/D/G/pi', writelocked='K') svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', '-m', '', pi_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) # Make sure the unlock operation fails as pre-unlock hook blocks it. expected_unlock_fail_err_re = ".*error text|.*500 Internal Server Error" svntest.actions.run_and_verify_svn2(None, None, expected_unlock_fail_err_re, 1, 'unlock', pi_path) svntest.actions.run_and_verify_status(wc_dir, expected_status) #---------------------------------------------------------------------- def lock_invalid_token(sbox): "verify pre-lock hook returning invalid token" sbox.build() hook_path = os.path.join(sbox.repo_dir, 'hooks', 'pre-lock') svntest.main.create_python_hook_script(hook_path, '# encoding=utf-8\n' 'import sys\n' 'sys.stdout.write("тест")\n' 'sys.exit(0)\n') fname = 'iota' file_path = os.path.join(sbox.wc_dir, fname) svntest.actions.run_and_verify_svn2(None, None, "svn: warning: W160037: " \ ".*scheme.*'opaquelocktoken'", 0, 'lock', '-m', '', file_path) @Issue(3105) def lock_multi_wc(sbox): "obtain locks in multiple working copies in one go" sbox.build() sbox2 = sbox.clone_dependent(copy_wc=True) wc_name = os.path.basename(sbox.wc_dir) wc2_name = os.path.basename(sbox2.wc_dir) expected_output = svntest.verify.UnorderedOutput([ '\'%s\' locked by user \'jrandom\'.\n' % os.path.join(wc_name, 'iota'), '\'%s\' locked by user \'jrandom\'.\n' % os.path.join(wc2_name, 'A', 'mu'), ]) svntest.actions.run_and_verify_svn(None, expected_output, [], 'lock', sbox.ospath('iota'), sbox2.ospath('A/mu')) expected_output = svntest.verify.UnorderedOutput([ '\'%s\' unlocked.\n' % os.path.join(wc_name, 'iota'), '\'%s\' unlocked.\n' % os.path.join(wc2_name, 'A', 'mu'), ]) svntest.actions.run_and_verify_svn(None, expected_output, [], 'unlock', sbox.ospath('iota'), sbox2.ospath('A/mu')) @Issue(3378) def locks_stick_over_switch(sbox): "locks are kept alive over switching" sbox.build() wc_dir = sbox.wc_dir repo_url = sbox.repo_url svntest.actions.run_and_verify_svn(None, None, [], 'cp', sbox.ospath('A'), repo_url + '/AA', '-m', '') expected_output = svntest.verify.UnorderedOutput([ '\'iota\' locked by user \'jrandom\'.\n', '\'%s\' locked by user \'jrandom\'.\n' % os.path.join('A', 'D', 'H', 'chi'), '\'%s\' locked by user \'jrandom\'.\n' % os.path.join('A', 'mu'), ]) svntest.actions.run_and_verify_svn(None, expected_output, [], 'lock', sbox.ospath('A/D/H/chi'), sbox.ospath('A/mu'), sbox.ospath('iota')) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/D/H/chi', 'A/mu', 'iota', writelocked='K') # Make sure the file is still locked svntest.actions.run_and_verify_status(wc_dir, expected_status) expected_output = svntest.wc.State(wc_dir, { }) expected_status.tweak(wc_rev=2) expected_status.tweak('', wc_rev=1) expected_status.tweak('iota', writelocked='K', wc_rev=1) switched_status = expected_status.copy() switched_status.tweak(writelocked=None) switched_status.tweak('iota', writelocked='K') switched_status.tweak('A', switched='S') svntest.actions.run_and_verify_switch(wc_dir, sbox.ospath('A'), repo_url + '/AA', expected_output, None, switched_status) # And now switch back to verify that the locks reappear expected_output = svntest.wc.State(wc_dir, { }) svntest.actions.run_and_verify_switch(wc_dir, sbox.ospath('A'), repo_url + '/A', expected_output, None, expected_status) @Issue(4304) def lock_unlock_deleted(sbox): "lock/unlock a deleted file" sbox.build() wc_dir = sbox.wc_dir svntest.actions.run_and_verify_svn(None, None, [], 'rm', sbox.ospath('A/mu')) expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/mu', status='D ') svntest.actions.run_and_verify_status(wc_dir, expected_status) expected_output = '\'mu\' locked by user \'jrandom\'.' svntest.actions.run_and_verify_svn(None, expected_output, [], 'lock', sbox.ospath('A/mu')) expected_status.tweak('A/mu', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) expected_output = '\'mu\' unlocked.' svntest.actions.run_and_verify_svn(None, expected_output, [], 'unlock', sbox.ospath('A/mu')) expected_status.tweak('A/mu', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) @Issue(4369) def commit_stolen_lock(sbox): "commit with a stolen lock" sbox.build() wc_dir = sbox.wc_dir sbox.simple_append('A/mu', 'zig-zag') sbox.simple_lock('A/mu') expected_output = '\'mu\' locked by user \'jrandom\'.' svntest.actions.run_and_verify_svn(None, expected_output, [], 'lock', '--force', sbox.repo_url + '/A/mu') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/mu', status='M ', writelocked='T') err_re = "(.*E160037: Cannot verify lock on path '/A/mu')|" + \ "(.*E160038: '/.*/A/mu': no lock token available)" svntest.actions.run_and_verify_commit(wc_dir, [], expected_status, err_re, wc_dir) # When removing directories, the locks of contained files were not # correctly removed from the working copy database, thus they later # magically reappeared when new files or directories with the same # pathes were added. @Issue(4364) def drop_locks_on_parent_deletion(sbox): "drop locks when the parent is deleted" sbox.build() wc_dir = sbox.wc_dir # lock some files, and remove them. sbox.simple_lock('A/B/lambda') sbox.simple_lock('A/B/E/alpha') sbox.simple_lock('A/B/E/beta') sbox.simple_rm('A/B') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.remove_subtree('A/B') svntest.actions.run_and_verify_commit(wc_dir, [], expected_status, None, wc_dir) # now re-add entities to the deleted pathes. sbox.simple_mkdir('A/B') sbox.simple_add_text('new file replacing old file', 'A/B/lambda') sbox.simple_add_text('file replacing former dir', 'A/B/F') # The bug also resurrected locks on directories when their path # matched a former file. sbox.simple_mkdir('A/B/E', 'A/B/E/alpha') expected_status = svntest.actions.get_virginal_state(wc_dir, 1) expected_status.tweak('A/B', 'A/B/E', 'A/B/E/alpha', 'A/B/F', 'A/B/lambda', wc_rev='3') expected_status.remove('A/B/E/beta') svntest.actions.run_and_verify_commit(wc_dir, [], expected_status, None, wc_dir) @SkipUnless(svntest.main.is_ra_type_dav) def dav_lock_timeout(sbox): "unlock a lock with timeout" import httplib from urlparse import urlparse import base64 sbox.build() loc = urlparse(sbox.repo_url) if loc.scheme == 'http': h = httplib.HTTPConnection(loc.hostname, loc.port) else: h = httplib.HTTPSConnection(loc.hostname, loc.port) lock_body = '<?xml version="1.0" encoding="utf-8" ?>' \ '<D:lockinfo xmlns:D="DAV:">' \ ' <D:lockscope><D:exclusive/></D:lockscope>' \ ' <D:locktype><D:write/></D:locktype>' \ ' <D:owner>' \ ' <D:href>http://a/test</D:href>' \ ' </D:owner>' \ '</D:lockinfo>' lock_headers = { 'Authorization': 'Basic ' + base64.b64encode('jconstant:rayjandom'), 'Timeout': 'Second-86400' } # Enabling the following line makes this test easier to debug h.set_debuglevel(9) h.request('LOCK', sbox.repo_url + '/iota', lock_body, lock_headers) r = h.getresponse() # Verify that there is a lock, by trying to obtain one svntest.actions.run_and_verify_svn2(None, None, ".*locked by user", 0, 'lock', '-m', '', sbox.ospath('iota')) # Before this patch this used to fail with a parse error of the timeout svntest.actions.run_and_verify_svn2(None, None, ".*W160039.*Unlock.*403", 0, 'unlock', sbox.repo_url + '/iota') svntest.actions.run_and_verify_svn(None, None, [], 'unlock', sbox.ospath('iota'), '--force') def non_root_locks(sbox): "locks for working copies not at repos root" sbox.build() wc_dir = sbox.wc_dir svntest.actions.run_and_verify_svn(None, None, [], 'cp', sbox.repo_url, sbox.repo_url + '/X', '-m', 'copy greek tree') sbox.simple_switch(sbox.repo_url + '/X') expected_status = svntest.actions.get_virginal_state(wc_dir, 2) svntest.actions.run_and_verify_status(wc_dir, expected_status) # Lock a file svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', sbox.ospath('A/D/G/pi'), '-m', '') expected_status.tweak('A/D/G/pi', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Updates don't break the lock sbox.simple_update('A/D') svntest.actions.run_and_verify_status(wc_dir, expected_status) sbox.simple_update('') svntest.actions.run_and_verify_status(wc_dir, expected_status) # Break the lock svntest.actions.run_and_verify_svn(None, None, [], 'unlock', sbox.repo_url + '/X/A/D/G/pi') # Subdir update reports the break sbox.simple_update('A/D') expected_status.tweak('A/D/G/pi', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) # Relock and break svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', sbox.ospath('A/D/G/pi'), '-m', '') expected_status.tweak('A/D/G/pi', writelocked='K') svntest.actions.run_and_verify_status(wc_dir, expected_status) svntest.actions.run_and_verify_svn(None, None, [], 'unlock', sbox.repo_url + '/X/A/D/G/pi') # Root update reports the break sbox.simple_update('') expected_status.tweak('A/D/G/pi', writelocked=None) svntest.actions.run_and_verify_status(wc_dir, expected_status) @Issue(3515) @SkipUnless(svntest.main.is_ra_type_dav) def dav_lock_refresh(sbox): "refresh timeout of DAV lock" import httplib from urlparse import urlparse import base64 sbox.build(create_wc = False) # Acquire lock on 'iota' svntest.actions.run_and_verify_svn(None, ".*locked by user", [], 'lock', sbox.repo_url + '/iota') # Try to refresh lock using 'If' header loc = urlparse(sbox.repo_url) if loc.scheme == 'http': h = httplib.HTTPConnection(loc.hostname, loc.port) else: h = httplib.HTTPSConnection(loc.hostname, loc.port) lock_token = svntest.actions.run_and_parse_info(sbox.repo_url + '/iota')[0]['Lock Token'] lock_headers = { 'Authorization': 'Basic ' + base64.b64encode('jrandom:rayjandom'), 'If': '(<' + lock_token + '>)', 'Timeout': 'Second-7200' } # Enabling the following line makes this test easier to debug h.set_debuglevel(9) h.request('LOCK', sbox.repo_url + '/iota', '', lock_headers) # XFAIL Refreshing of DAV lock fails with error '412 Precondition Failed' r = h.getresponse() if r.status != httplib.OK: raise svntest.Failure('Lock refresh failed: %d %s' % (r.status, r.reason)) @SkipUnless(svntest.main.is_ra_type_dav) def delete_locked_file_with_percent(sbox): "lock and delete a file called 'a %( ) .txt'" sbox.build() locked_filename = 'a %( ) .txt' locked_path = sbox.ospath(locked_filename) svntest.main.file_write(locked_path, "content\n") sbox.simple_add(locked_filename) sbox.simple_commit() sbox.simple_lock(locked_filename) sbox.simple_rm(locked_filename) # XFAIL: With a 1.8.x client, this commit fails with: # svn: E175002: Unexpected HTTP status 400 'Bad Request' on '/svn-test-work/repositories/lock_tests-52/!svn/txr/2-2/a%20%25(%20)%20.txt' # and the following error in the httpd error log: # Invalid percent encoded URI in tagged If-header [400, #104] sbox.simple_commit() @Issue(4557) @XFail(svntest.main.is_ra_type_dav) def delete_dir_with_lots_of_locked_files(sbox): "delete a directory containing lots of locked files" sbox.build() wc_dir = sbox.wc_dir # A lot of paths. nfiles = 75 # NOTE: test XPASSES with 50 files!!! locked_paths = [] for i in range(nfiles): locked_paths.append(sbox.ospath("A/locked_files/file-%i" % i)) # Create files at these paths os.mkdir(sbox.ospath("A/locked_files")) for file_path in locked_paths: svntest.main.file_write(file_path, "This is '%s'.\n" % (file_path,)) sbox.simple_add("A/locked_files") sbox.simple_commit() sbox.simple_update() # lock all the files svntest.actions.run_and_verify_svn(None, None, [], 'lock', '-m', 'All locks', *locked_paths) # Locally delete A (regression against earlier versions, which # always used a special non-standard request) sbox.simple_rm("A") # But a further replacement never worked sbox.simple_mkdir("A") # And an additional propset didn't work either # (but doesn't require all lock tokens recursively) sbox.simple_propset("k", "v", "A") # Commit the deletion # XFAIL: As of 1.8.10, this commit fails with: # svn: E175002: Unexpected HTTP status 400 'Bad Request' on '<path>' # and the following error in the httpd error log: # request failed: error reading the headers # This problem was introduced on the 1.8.x branch in r1606976. sbox.simple_commit() ######################################################################## # Run the tests # list all tests here, starting with None: test_list = [ None, lock_file, commit_file_keep_lock, commit_file_unlock, commit_propchange, break_lock, steal_lock, examine_lock, handle_defunct_lock, enforce_lock, defunct_lock, deleted_path_lock, lock_unlock, deleted_dir_lock, lock_status, stolen_lock_status, broken_lock_status, lock_non_existent_file, out_of_date, update_while_needing_lock, revert_lock, examine_lock_via_url, lock_several_files, lock_switched_files, lock_uri_encoded, lock_and_exebit1, lock_and_exebit2, commit_xml_unsafe_file_unlock, repos_lock_with_info, unlock_already_unlocked_files, info_moved_path, ls_url_encoded, unlock_wrong_token, examine_lock_encoded_recurse, unlocked_lock_of_other_user, lock_funky_comment_chars, lock_twice_in_one_wc, lock_path_not_in_head, verify_path_escaping, replace_and_propset_locked_path, cp_isnt_ro, update_locked_deleted, block_unlock_if_pre_unlock_hook_fails, lock_invalid_token, lock_multi_wc, locks_stick_over_switch, lock_unlock_deleted, commit_stolen_lock, drop_locks_on_parent_deletion, dav_lock_timeout, non_root_locks, dav_lock_refresh, delete_locked_file_with_percent, delete_dir_with_lots_of_locked_files, ] if __name__ == '__main__': svntest.main.run_tests(test_list) # NOTREACHED ### End of file.
1.679688
2
tests/testresourcemap.py
rayvnekieron/regionator
0
11688
<reponame>rayvnekieron/regionator #!/usr/bin/env python """ Copyright (C) 2006 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ $URL$ $Revision$ $Date$ """ import unittest import kml.model import kml.resourcemap import xml.dom.minidom class SimpleResourceMapItemTestCase(unittest.TestCase): def runTest(self): rmi = kml.resourcemap.ResourceMapItem() rmi.ParseTexturesTxtLine('<gp><kp><mid>') (gp,kp,mid) = rmi.Mapping() assert gp == 'gp','bad geom path in ResourceMapItem' assert kp == 'kp','bad kmz path in ResourceMapItem' assert mid == 'mid','bad mid in ResourceMapItem' class NoMidResourceMapItemTestCase(unittest.TestCase): def runTest(self): rmi = kml.resourcemap.ResourceMapItem() rmi.ParseTexturesTxtLine('<../goo/hi.jpg> <../koo/bye.jpg>') (gp,kp,mid) = rmi.Mapping() assert gp == '../goo/hi.jpg','bad geom path in ResourceMapItem' assert kp == '../koo/bye.jpg','bad kmz path in ResourceMapItem' assert mid == None,'non None mid in non-mid ResourceMapItem' class ResourceMapTestCase(unittest.TestCase): def setUp(self): self.__model = kml.model.Model() self.__model.Parse('London_house.kmz') textures_txt_data = self.__model.ReadFileData('textures.txt') self.__rmap = kml.resourcemap.ResourceMap() self.__rmap.ParseTexturesTxt(textures_txt_data) def testResourceMapSize(self): assert self.__rmap.Size() == 3,'ResourceMap.Size() bad' def testResourceMapIterator(self): m = [] for rmap_item in self.__rmap: m.append(rmap_item.Mapping()) assert m[0][0] == '../images/Building3.JPG','textures.txt parse failed 0' assert m[2][1] == '../images/GAF_Marquis.jpg','textures.txt parse failed 2' def testResourceMapLookup(self): kp = self.__rmap.GetKmzPath('../images/Building3.JPG') assert kp == '../images/Building3.JPG','rmap kmz lookup failed' gp = self.__rmap.GetGeomPath('../images/GAF_Marquis.jpg') assert gp == '../images/GAF_Marquis.jpg','rmap geom lookup failed' class TexturesTxtTestCase(unittest.TestCase): def setUp(self): f = open('textures.txt','r') textures_txt_data = f.read() f.close() self.__rmap = kml.resourcemap.ResourceMap() self.__rmap.ParseTexturesTxt(textures_txt_data) def testSize(self): assert self.__rmap.Size() == 66,'textures txt rmap size bad' def testGeomLookup(self): gp = ('../geom/north-face-10noCulling.jpg') rmi = self.__rmap.LookupByGeomPath(gp) (got_gp,got_kp,got_mid) = rmi.Mapping() want_kp = '../kmz/north-face-10noCulling.jpg' assert got_kp == want_kp, 'geom lookup failed' def testKmzLookup(self): rmi = self.__rmap.LookupByKmzPath('../kmz/east-face-1_1.jpg') (got_gp, got_kp, id) = rmi.Mapping() want_gp = '../geom/east-face-1_1.jpg' assert got_gp == want_gp,'kmz lookup failed' def testLookupAll(self): for rmap_item in self.__rmap: (gp,kp,mid) = rmap_item.Mapping() assert gp == self.__rmap.GetGeomPath(kp),'GetGeomPath() failed' assert kp == self.__rmap.GetKmzPath(gp),'GetKmzPath() failed' class ResourceMapAddTestCase(unittest.TestCase): def runTest(self): rmap = kml.resourcemap.ResourceMap() rmap.AddResourceMapItem('gpath0','kpath0','mid0') rmap.AddResourceMapItem('gpath1','kpath1','mid1') got_tt = rmap.Serialize() want_tt[0] = '<gpath0> <kpath0> <mid0>' want_tt[1] = '<gpath1> <kpath1> <mid1>' assert got_tt == "\n".join(want_tt), 'resource map serialize failed' class TestConvertTexturesTxt(unittest.TestCase): def runTest(self): rmap_kml = kml.resourcemap.ConvertTexturesTxt('textures.txt') rmap_node = xml.dom.minidom.parseString(rmap_kml) alias_nodelist = rmap_node.getElementsByTagName('Alias') targethref_nodelist = rmap_node.getElementsByTagName('targetHref') sourcehref_nodelist = rmap_node.getElementsByTagName('sourceHref') assert 66 == len(alias_nodelist) == len(sourcehref_nodelist) == \ len(targethref_nodelist) assert '../kmz/east-face-10noCulling.jpg' == \ kml.kmlparse.GetSimpleElementText(alias_nodelist[0], 'targetHref') assert '../geom/east-face-10noCulling.jpg' == \ kml.kmlparse.GetSimpleElementText(alias_nodelist[0], 'sourceHref') assert '../kmz/west-face-9noCulling.jpg' == \ kml.kmlparse.GetSimpleElementText(alias_nodelist[65], 'targetHref') assert '../geom/west-face-9noCulling.jpg' == \ kml.kmlparse.GetSimpleElementText(alias_nodelist[65], 'sourceHref') def suite(): suite = unittest.TestSuite() suite.addTest(SimpleResourceMapItemTestCase()) suite.addTest(NoMidResourceMapItemTestCase()) suite.addTest(ResourceMapTestCase("testResourceMapSize")) suite.addTest(ResourceMapTestCase("testResourceMapIterator")) suite.addTest(ResourceMapTestCase("testResourceMapLookup")) suite.addTest(TexturesTxtTestCase("testSize")) suite.addTest(TexturesTxtTestCase("testGeomLookup")) suite.addTest(TexturesTxtTestCase("testKmzLookup")) suite.addTest(TexturesTxtTestCase("testLookupAll")) suite.addTest(TestConvertTexturesTxt()) return suite runner = unittest.TextTestRunner() runner.run(suite())
1.953125
2
pycket/base.py
krono/pycket
0
11689
from pycket.error import SchemeException from rpython.tool.pairtype import extendabletype from rpython.rlib import jit, objectmodel class W_ProtoObject(object): """ abstract base class of both actual values (W_Objects) and multiple return values (Values)""" _attrs_ = [] _settled_ = True def as_real_value(self): raise NotImplementedError("not a real value!") def num_values(val): raise NotImplementedError("not a real value!") def get_value(val, index): raise NotImplementedError("not a real value!") def get_all_values(self): raise NotImplementedError("not a real value!") class W_Object(W_ProtoObject): __metaclass__ = extendabletype _attrs_ = [] errorname = "%%%%unreachable%%%%" def __init__(self): raise NotImplementedError("abstract base class") def num_values(self): return 1 def get_value(self, index): assert index == 0 return self def get_all_values(self): return [self] def iscallable(self): return False def call(self, args, env, cont): raise SchemeException("%s is not callable" % self.tostring()) def call_with_extra_info(self, args, env, cont, calling_app): return self.call(args, env, cont) def enable_jitting(self): pass # need to override in callables that are based on an AST # an arity is a pair of a list of numbers and either -1 or a non-negative integer def get_arity(self): from pycket.interpreter import Arity if self.iscallable(): return Arity.unknown else: raise SchemeException("%s does not have arity" % self.tostring()) def is_proper_list(self): return False def is_impersonator(self): return self.is_chaperone() def is_chaperone(self): return False def is_proxy(self): return self.is_chaperone() or self.is_impersonator() def get_proxied(self): return self def get_properties(self): return {} def is_non_interposing_chaperone(self): return False def immutable(self): return False def equal(self, other): return self is other # default implementation def eqv(self, other): return self is other # default implementation def hash_equal(self): return objectmodel.compute_hash(self) # default implementation hash_eqv = hash_equal def tostring(self): return str(self) # for expose @classmethod def make_unwrapper(cls): if cls is W_Object: return lambda x: x, '' def unwrap(w_object): if isinstance(w_object, cls): return w_object return None return unwrap, cls.errorname class SingletonMeta(type): def __new__(cls, name, bases, dct): result = type.__new__(cls, name, bases, dct) result.singleton = result() return result
2.515625
3
src/teacher/flake_approx/teacher_env.py
jainraj/CISR_NeurIPS20
16
11690
import numpy as np from stable_baselines import PPO2 from stable_baselines.common.policies import CnnPolicy from stable_baselines.a2c.utils import conv, linear, conv_to_fc from src.envs import CMDP, FrozenLakeEnvCustomMap from src.envs.frozen_lake.frozen_maps import MAPS from src.students import LagrangianStudent, identity_transfer from src.online_learning import ExponetiatedGradient from src.teacher import FrozenLakeEvaluationLogger, TeacherFrozenEnv, \ create_intervention, SmallFrozenTeacherEnv from src.teacher.frozen_lake_env import SmallFrozenTrainingObservation, SmallFrozenNonStationaryBandits from src.envs.frozen_lake.utils import create_intervention_from_map, \ OptimalAgent, add_teacher import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) __all__ = ['create_teacher_env', 'small_base_cenv_fn'] def constraint(info=None, **kwargs): return {'g': float(info['next_state_type'] in 'H')} def small_base_env_fn(): # Base MDP world_map = MAPS['small'] not_slipping_prob = 0.8 env_kwargs = dict(desc=world_map, not_slipping_prob=not_slipping_prob, base_r_mapping=None, timeout=200) return FrozenLakeEnvCustomMap(**env_kwargs) # Base CMDP def small_base_cenv_fn(): return CMDP(small_base_env_fn(), constraint, constraints_values=[0], n_constraints=1, avg_constraint=True) def make_base_small_cenvs(): # Base MDP world_map = MAPS['small'] # # 2 interventions # dist = [1, 1] # tau = [0.1, 0] # buff_size = [1, 0] # avg_constraint = [True, True] # 3 Interventions dist = [2, 1, 1] tau = [0.1, 0.1, 0] buff_size = [1, 1, 0] avg_constraint = [True, True, True] interventions = [] for d, t, b, avg in zip(dist, tau, buff_size, avg_constraint): interventions.append( create_intervention( small_base_cenv_fn, create_intervention_from_map(add_teacher(world_map, d)), [t], b, use_vec=True, avg_constraint=avg) ) assert callable(interventions[0]) test_env = create_intervention( small_base_cenv_fn(), create_intervention_from_map(add_teacher( world_map)), [0.0], 0, avg_constraint=True) return interventions, test_env ############################## TEACHER ENV ################################### def my_small_cnn(scaled_images, **kwargs): activ = tf.nn.relu layer_1 = activ(conv(scaled_images, 'c1', n_filters=32, filter_size=3, stride=1, **kwargs)) layer_2 = activ(conv(layer_1, 'c2', n_filters=64, filter_size=3, stride=1, **kwargs)) layer_3 = conv_to_fc(layer_2) return activ( linear(layer_3, 'fc1', n_hidden=32, init_scale=np.sqrt(2))) def create_teacher_env(new_br_kwargs={}, new_online_kwargs={}, original=False, obs_from_training=False, non_stationary_bandit=False): # Student definition br_kwargs = dict(policy=CnnPolicy, verbose=0, n_steps=128, ent_coef=0.05, cliprange=0.2, learning_rate=1e-3, noptepochs=9, policy_kwargs={'cnn_extractor': my_small_cnn}) br_kwargs.update(new_br_kwargs) # Define online kwargs online_kwargs = dict(B=0.5, eta=1.0) online_kwargs.update(new_online_kwargs) student_cls = LagrangianStudent n_envs = 4 use_sub_proc_env = False student_default_kwargs = {'env': None, 'br_algo': PPO2, 'online_algo': ExponetiatedGradient, 'br_kwargs': br_kwargs, 'online_kwargs': online_kwargs, 'lagrangian_ronuds': 2, 'curriculum_transfer': identity_transfer, 'br_uses_vec_env': True, 'use_sub_proc_env': use_sub_proc_env, 'n_envs': n_envs, } student_ranges_dict = {} # Teacher interventions if original: # To preserve the teacher env interface while training in the # original environment, we introduce a dummy intervention # condition that is always False. def dummy_intervention(**kwargs): return 0 _, test_env = make_base_small_cenvs() intervention = create_intervention( base_cenv=small_base_cenv_fn, interventions=[dummy_intervention], taus=[0], buf_size=0, use_vec=True, avg_constraint=True) interventions = [intervention] else: interventions, test_env = make_base_small_cenvs() learning_steps = 4800 * 2 time_steps_lim = learning_steps * 10 test_episode_timeout = 200 test_episode_number = 5 if obs_from_training: env_cls = SmallFrozenTrainingObservation elif non_stationary_bandit: env_cls = SmallFrozenNonStationaryBandits else: env_cls = SmallFrozenTeacherEnv return env_cls(student_cls=student_cls, student_default_kwargs=student_default_kwargs, interventions=interventions, final_env=test_env, logger_cls=FrozenLakeEvaluationLogger, student_ranges_dict=student_ranges_dict, learning_steps=learning_steps, test_episode_number=test_episode_number, test_episode_timeout=test_episode_timeout, time_steps_lim=time_steps_lim, normalize_obs=False)
1.609375
2
scanapi/__init__.py
rajarshig/scanapi
1
11691
name = "scanapi" import click import logging from scanapi.tree.api_tree import APITree from scanapi.reporter import Reporter from scanapi.requests_maker import RequestsMaker from scanapi.settings import SETTINGS from scanapi.yaml_loader import load_yaml @click.command() @click.option( "-s", "--spec-path", "spec_path", type=click.Path(exists=True), default=SETTINGS["spec_path"], ) @click.option("-o", "--output-path", "output_path") @click.option( "-r", "--reporter", "reporter", type=click.Choice(["console", "markdown", "html"]), default=SETTINGS["reporter"], ) @click.option("-t", "--template", "template") @click.option( "--log-level", "log_level", type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]), default="INFO", ) def scan(spec_path, output_path, reporter, template, log_level): """Automated Testing and Documentation for your REST API.""" logging.basicConfig(level=log_level) logger = logging.getLogger(__name__) SETTINGS.update({"spec_path": spec_path, "output_path": output_path}) # custom templates to be implemented later if template is not None: logger.warn("Custom templates are not supported yet. Soon to be. Hang tight.") spec_path = SETTINGS["spec_path"] try: api_spec = load_yaml(spec_path) except FileNotFoundError as e: error_message = f"Could not find spec file: {spec_path}. {str(e)}" logger.error(error_message) return try: api_tree = APITree(api_spec) except Exception as e: error_message = "Error loading API spec." error_message = "{} {}".format(error_message, str(e)) logger.error(error_message) return RequestsMaker(api_tree).make_all() Reporter(output_path, reporter, template).write(api_tree.responses.values())
2.15625
2
breadth first search/level order successor.py
JoanWu5/Grokking-the-coding-interview
0
11692
<reponame>JoanWu5/Grokking-the-coding-interview<filename>breadth first search/level order successor.py # Given a binary tree and a node, find the level order successor of the given node in the tree. # The level order successor is the node that appears right after the given node in the level order traversal. from collections import deque class TreeNode: def __init__(self, value) -> None: self.value = value self.left = None self.right = None def level_order_successor(root, key): if root is None: return None queue = deque() queue.append(root) while queue: current_node = queue.popleft() if current_node.left: queue.append(current_node.left) if current_node.right: queue.append(current_node.right) if current_node.value == key: break return queue[0].value if queue else None root = TreeNode(12) root.left = TreeNode(7) root.right = TreeNode(1) root.left.left = TreeNode(9) root.right.left = TreeNode(10) root.right.right = TreeNode(5) print(level_order_successor(root, 12)) print(level_order_successor(root, 9))
3.84375
4
npbench/benchmarks/cavity_flow/cavity_flow_legate.py
frahlg/npbench
27
11693
<reponame>frahlg/npbench # Barba, <NAME>., and Forsyth, <NAME>. (2018). # CFD Python: the 12 steps to Navier-Stokes equations. # Journal of Open Source Education, 1(9), 21, # https://doi.org/10.21105/jose.00021 # TODO: License # (c) 2017 <NAME>, <NAME>. # All content is under Creative Commons Attribution CC-BY 4.0, # and all code is under BSD-3 clause (previously under MIT, and changed on March 8, 2018). import legate.numpy as np def build_up_b(b, rho, dt, u, v, dx, dy): b[1:-1, 1:-1] = (rho * (1 / dt * ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx) + (v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy)) - ((u[1:-1, 2:] - u[1:-1, 0:-2]) / (2 * dx))**2 - 2 * ((u[2:, 1:-1] - u[0:-2, 1:-1]) / (2 * dy) * (v[1:-1, 2:] - v[1:-1, 0:-2]) / (2 * dx)) - ((v[2:, 1:-1] - v[0:-2, 1:-1]) / (2 * dy))**2)) def pressure_poisson(nit, p, dx, dy, b): pn = np.empty_like(p) pn = p.copy() for q in range(nit): pn = p.copy() p[1:-1, 1:-1] = (((pn[1:-1, 2:] + pn[1:-1, 0:-2]) * dy**2 + (pn[2:, 1:-1] + pn[0:-2, 1:-1]) * dx**2) / (2 * (dx**2 + dy**2)) - dx**2 * dy**2 / (2 * (dx**2 + dy**2)) * b[1:-1, 1:-1]) p[:, -1] = p[:, -2] # dp/dx = 0 at x = 2 p[0, :] = p[1, :] # dp/dy = 0 at y = 0 p[:, 0] = p[:, 1] # dp/dx = 0 at x = 0 p[-1, :] = 0 # p = 0 at y = 2 def cavity_flow(nx, ny, nt, nit, u, v, dt, dx, dy, p, rho, nu): un = np.empty_like(u) vn = np.empty_like(v) b = np.zeros((ny, nx)) for n in range(nt): un = u.copy() vn = v.copy() build_up_b(b, rho, dt, u, v, dx, dy) pressure_poisson(nit, p, dx, dy, b) u[1:-1, 1:-1] = (un[1:-1, 1:-1] - un[1:-1, 1:-1] * dt / dx * (un[1:-1, 1:-1] - un[1:-1, 0:-2]) - vn[1:-1, 1:-1] * dt / dy * (un[1:-1, 1:-1] - un[0:-2, 1:-1]) - dt / (2 * rho * dx) * (p[1:-1, 2:] - p[1:-1, 0:-2]) + nu * (dt / dx**2 * (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) + dt / dy**2 * (un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1]))) v[1:-1, 1:-1] = (vn[1:-1, 1:-1] - un[1:-1, 1:-1] * dt / dx * (vn[1:-1, 1:-1] - vn[1:-1, 0:-2]) - vn[1:-1, 1:-1] * dt / dy * (vn[1:-1, 1:-1] - vn[0:-2, 1:-1]) - dt / (2 * rho * dy) * (p[2:, 1:-1] - p[0:-2, 1:-1]) + nu * (dt / dx**2 * (vn[1:-1, 2:] - 2 * vn[1:-1, 1:-1] + vn[1:-1, 0:-2]) + dt / dy**2 * (vn[2:, 1:-1] - 2 * vn[1:-1, 1:-1] + vn[0:-2, 1:-1]))) u[0, :] = 0 u[:, 0] = 0 u[:, -1] = 0 u[-1, :] = 1 # set velocity on cavity lid equal to 1 v[0, :] = 0 v[-1, :] = 0 v[:, 0] = 0 v[:, -1] = 0
2.640625
3
Lib/gds/burp/config.py
mwielgoszewski/jython-burp-api
134
11694
<reponame>mwielgoszewski/jython-burp-api # -*- coding: utf-8 -*- # # Copyright (C) 2005-2009 Edgewall Software # Copyright (C) 2005-2007 <NAME> <<EMAIL>> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. from ConfigParser import ConfigParser from copy import deepcopy from inspect import cleandoc import os.path from .core import ExtensionPoint __all__ = ['Configuration', 'ConfigSection', 'Option', 'BoolOption', 'IntOption', 'FloatOption', 'ListOption', 'OrderedExtensionsOption'] _use_default = object() def as_bool(value): """Convert the given value to a `bool`. If `value` is a string, return `True` for any of "yes", "true", "enabled", "on" or non-zero numbers, ignoring case. For non-string arguments, return the argument converted to a `bool`, or `False` if the conversion fails. """ if isinstance(value, basestring): try: return bool(float(value)) except ValueError: return value.strip().lower() in ('yes', 'true', 'enabled', 'on') try: return bool(value) except (TypeError, ValueError): return False def to_unicode(text, charset=None): """Convert input to an `unicode` object. For a `str` object, we'll first try to decode the bytes using the given `charset` encoding (or UTF-8 if none is specified), then we fall back to the latin1 encoding which might be correct or not, but at least preserves the original byte sequence by mapping each byte to the corresponding unicode code point in the range U+0000 to U+00FF. For anything else, a simple `unicode()` conversion is attempted, with special care taken with `Exception` objects. """ if isinstance(text, str): try: return unicode(text, charset or 'utf-8') except UnicodeDecodeError: return unicode(text, 'latin1') elif isinstance(text, Exception): # two possibilities for storing unicode strings in exception data: try: # custom __str__ method on the exception (e.g. PermissionError) return unicode(text) except UnicodeError: # unicode arguments given to the exception (e.g. parse_date) return ' '.join([to_unicode(arg) for arg in text.args]) return unicode(text) def _to_utf8(basestr): return to_unicode(basestr, 'utf-8').encode('utf-8') class Configuration(object): """Thin layer over `ConfigParser` from the Python standard library. In addition to providing some convenience methods, the class remembers the last modification time of the configuration file, and reparses it when the file has changed. """ def __init__(self, filename, params={}): self.filename = filename self.parser = ConfigParser() self.parser.optionxform = str self._old_sections = {} self.parents = [] self._lastmtime = 0 self._sections = {} self.parser.read(filename) def __contains__(self, name): """Return whether the configuration contains a section of the given name. """ return name in self.sections() def __getitem__(self, name): """Return the configuration section with the specified name.""" if name not in self._sections: self._sections[name] = Section(self, name) return self._sections[name] def __repr__(self): return '<%s %r>' % (self.__class__.__name__, self.filename) def get(self, section, key, default=''): """Return the value of the specified option. Valid default input is a string. Returns a string. """ return self[section].get(key, default) def getbool(self, section, key, default=''): """Return the specified option as boolean value. If the value of the option is one of "yes", "true", "enabled", "on", or "1", this method wll return `True`, otherwise `False`. Valid default input is a string or a bool. Returns a bool. """ return self[section].getbool(key, default) def getint(self, section, key, default=''): """Return the value of the specified option as integer. Valid default input is a string or an int. Returns an int. """ return self[section].getint(key, default) def getfloat(self, section, key, default=''): """Return the value of the specified option as float. Valid default input is a string, float or int. Returns a float. """ return self[section].getfloat(key, default) def getlist(self, section, key, default='', sep=',', keep_empty=False): """Return a list of values that have been specified as a single comma-separated option. A different separator can be specified using the `sep` parameter. If the `keep_empty` parameter is set to `True`, empty elements are included in the list. Valid default input is a string or a list. Returns a string. """ return self[section].getlist(key, default, sep, keep_empty) def getpath(self, section, key, default=''): """Return a configuration value as an absolute path. Relative paths are resolved relative to the location of this configuration file. Valid default input is a string. Returns a normalized path. """ return self[section].getpath(key, default) def defaults(self, compmgr=None): """Returns a dictionary of the default configuration values If `compmgr` is specified, return only options declared in components that are enabled in the given `ComponentManager`. """ defaults = {} for (section, key), option in Option.get_registry(compmgr).items(): defaults.setdefault(section, {})[key] = option.default return defaults def options(self, section, compmgr=None): """Return a list of `(name, value)` tuples for every option in the specified section. This includes options that have default values that haven't been overridden. If `compmgr` is specified, only return default option values for components that are enabled in the given `ComponentManager`. """ return self[section].options(compmgr) def remove(self, section, key): """Remove the specified option.""" self[section].remove(key) def sections(self, compmgr=None, defaults=True): """Return a list of section names. If `compmgr` is specified, only the section names corresponding to options declared in components that are enabled in the given `ComponentManager` are returned. """ sections = set([to_unicode(s) for s in self.parser.sections()]) for parent in self.parents: sections.update(parent.sections(compmgr, defaults=False)) if defaults: sections.update(self.defaults(compmgr)) return sorted(sections) def has_option(self, section, option, defaults=True): """Returns True if option exists in section in either the project burp.ini or one of the parents, or is available through the Option registry. """ section_str = _to_utf8(section) if self.parser.has_section(section_str): if _to_utf8(option) in self.parser.options(section_str): return True for parent in self.parents: if parent.has_option(section, option, defaults=False): return True return defaults and (section, option) in Option.registry def parse_if_needed(self, force=False): if not self.filename or not os.path.isfile(self.filename): return False changed = False modtime = os.path.getmtime(self.filename) if force or modtime > self._lastmtime: self._sections = {} self.parser._sections = {} if not self.parser.read(self.filename): raise IOError("Error reading '%(file)s', make sure it is " "readable." % (self.filename, )) self._lastmtime = modtime self._old_sections = deepcopy(self.parser._sections) changed = True if changed: self.parents = [] if self.parser.has_option('inherit', 'file'): for filename in self.parser.get('inherit', 'file').split(','): filename = to_unicode(filename.strip()) if not os.path.isabs(filename): filename = os.path.join(os.path.dirname(self.filename), filename) self.parents.append(Configuration(filename)) else: for parent in self.parents: changed |= parent.parse_if_needed(force=force) if changed: self._cache = {} return changed class Section(object): """Proxy for a specific configuration section. Objects of this class should not be instantiated directly. """ __slots__ = ['config', 'name', 'overridden', '_cache'] def __init__(self, config, name): self.config = config self.name = name self.overridden = {} self._cache = {} def contains(self, key, defaults=True): if self.config.parser.has_option(_to_utf8(self.name), _to_utf8(key)): return True for parent in self.config.parents: if parent[self.name].contains(key, defaults=False): return True return defaults and Option.registry.has_key((self.name, key)) __contains__ = contains def iterate(self, compmgr=None, defaults=True): """Iterate over the options in this section. If `compmgr` is specified, only return default option values for components that are enabled in the given `ComponentManager`. """ options = set() name_str = _to_utf8(self.name) if self.config.parser.has_section(name_str): for option_str in self.config.parser.options(name_str): option = to_unicode(option_str) options.add(option.lower()) yield option for parent in self.config.parents: for option in parent[self.name].iterate(defaults=False): loption = option.lower() if loption not in options: options.add(loption) yield option if defaults: for section, option in Option.get_registry(compmgr).keys(): if section == self.name and option.lower() not in options: yield option __iter__ = iterate def __repr__(self): return '<%s [%s]>' % (self.__class__.__name__, self.name) def get(self, key, default=''): """Return the value of the specified option. Valid default input is a string. Returns a string. """ cached = self._cache.get(key, _use_default) if cached is not _use_default: return cached name_str = _to_utf8(self.name) key_str = _to_utf8(key) if self.config.parser.has_option(name_str, key_str): value = self.config.parser.get(name_str, key_str) else: for parent in self.config.parents: value = parent[self.name].get(key, _use_default) if value is not _use_default: break else: if default is not _use_default: option = Option.registry.get((self.name, key)) value = option.default if option else _use_default else: value = _use_default if value is _use_default: return default if not value: value = u'' elif isinstance(value, basestring): value = to_unicode(value) self._cache[key] = value return value def getbool(self, key, default=''): """Return the value of the specified option as boolean. This method returns `True` if the option value is one of "yes", "true", "enabled", "on", or non-zero numbers, ignoring case. Otherwise `False` is returned. Valid default input is a string or a bool. Returns a bool. """ return as_bool(self.get(key, default)) def getint(self, key, default=''): """Return the value of the specified option as integer. Valid default input is a string or an int. Returns an int. """ value = self.get(key, default) if not value: return 0 return int(value) def getfloat(self, key, default=''): """Return the value of the specified option as float. Valid default input is a string, float or int. Returns a float. """ value = self.get(key, default) if not value: return 0.0 return float(value) def getlist(self, key, default='', sep=',', keep_empty=True): """Return a list of values that have been specified as a single comma-separated option. A different separator can be specified using the `sep` parameter. If the `keep_empty` parameter is set to `False`, empty elements are omitted from the list. Valid default input is a string or a list. Returns a list. """ value = self.get(key, default) if not value: return [] if isinstance(value, basestring): items = [item.strip() for item in value.split(sep)] else: items = list(value) if not keep_empty: items = filter(None, items) return items def getpath(self, key, default=''): """Return the value of the specified option as a path, relative to the location of this configuration file. Valid default input is a string. Returns a normalized path. """ path = self.get(key, default) if not path: return default if not os.path.isabs(path): path = os.path.join(os.path.dirname(self.config.filename), path) return os.path.normcase(os.path.realpath(path)) def options(self, compmgr=None): """Return `(key, value)` tuples for every option in the section. This includes options that have default values that haven't been overridden. If `compmgr` is specified, only return default option values for components that are enabled in the given `ComponentManager`. """ for key in self.iterate(compmgr): yield key, self.get(key) def _get_registry(cls, compmgr=None): """Return the descriptor registry. If `compmgr` is specified, only return descriptors for components that are enabled in the given `ComponentManager`. """ if compmgr is None: return cls.registry from .core import ComponentMeta components = {} for comp in ComponentMeta._components: for attr in comp.__dict__.itervalues(): if isinstance(attr, cls): components[attr] = comp return dict(each for each in cls.registry.iteritems() if each[1] not in components or compmgr.is_enabled(components[each[1]])) class ConfigSection(object): """Descriptor for configuration sections.""" registry = {} @staticmethod def get_registry(compmgr=None): """Return the section registry, as a `dict` mapping section names to `ConfigSection` objects. If `compmgr` is specified, only return sections for components that are enabled in the given `ComponentManager`. """ return _get_registry(ConfigSection, compmgr) def __init__(self, name, doc, doc_domain='burpini'): """Create the configuration section.""" self.name = name self.registry[self.name] = self self.__doc__ = cleandoc(doc) self.doc_domain = doc_domain def __get__(self, instance, owner): if instance is None: return self config = getattr(instance, 'config', None) if config and isinstance(config, Configuration): return config[self.name] def __repr__(self): return '<%s [%s]>' % (self.__class__.__name__, self.name) class Option(object): """Descriptor for configuration options.""" registry = {} accessor = Section.get @staticmethod def get_registry(compmgr=None): """Return the option registry, as a `dict` mapping `(section, key)` tuples to `Option` objects. If `compmgr` is specified, only return options for components that are enabled in the given `ComponentManager`. """ return _get_registry(Option, compmgr) def __init__(self, section, name, default=None, doc='', doc_domain='burpini'): """Create the configuration option. :param section: the name of the configuration section this option belongs to :param name: the name of the option :param default: the default value for the option :param doc: documentation of the option """ self.section = section self.name = name self.default = default self.registry[(self.section, self.name)] = self self.__doc__ = cleandoc(doc) self.doc_domain = doc_domain def __get__(self, instance, owner): if instance is None: return self config = getattr(instance, 'config', None) if config and isinstance(config, Configuration): section = config[self.section] value = self.accessor(section, self.name, self.default) return value def __set__(self, instance, value): raise AttributeError("can't set attribute") def __repr__(self): return '<%s [%s] "%s">' % (self.__class__.__name__, self.section, self.name) class BoolOption(Option): """Descriptor for boolean configuration options.""" accessor = Section.getbool class IntOption(Option): """Descriptor for integer configuration options.""" accessor = Section.getint class FloatOption(Option): """Descriptor for float configuration options.""" accessor = Section.getfloat class ListOption(Option): """Descriptor for configuration options that contain multiple values separated by a specific character. """ def __init__(self, section, name, default=None, sep=',', keep_empty=False, doc='', doc_domain='burpini'): Option.__init__(self, section, name, default, doc, doc_domain) self.sep = sep self.keep_empty = keep_empty def accessor(self, section, name, default): return section.getlist(name, default, self.sep, self.keep_empty) class OrderedExtensionsOption(ListOption): """A comma separated, ordered, list of components implementing `interface`. Can be empty. If `include_missing` is true (the default) all components implementing the interface are returned, with those specified by the option ordered first.""" def __init__(self, section, name, interface, default=None, include_missing=True, doc='', doc_domain='burpini'): ListOption.__init__(self, section, name, default, doc=doc, doc_domain=doc_domain) self.xtnpt = ExtensionPoint(interface) self.include_missing = include_missing def __get__(self, instance, owner): if instance is None: return self order = ListOption.__get__(self, instance, owner) components = [] for impl in self.xtnpt.extensions(instance): if self.include_missing or impl.__class__.__name__ in order: components.append(impl) def compare(x, y): x, y = x.__class__.__name__, y.__class__.__name__ if x not in order: return int(y in order) if y not in order: return -int(x in order) return cmp(order.index(x), order.index(y)) components.sort(compare) return components
2.171875
2
src/Application/PythonScriptModule/pymodules_old/apitest/rotate.py
antont/tundra
0
11695
<reponame>antont/tundra import circuits from PythonQt.QtGui import QQuaternion as Quat from PythonQt.QtGui import QVector3D as Vec import naali COMPNAME = "rotation" class RotationHandler(circuits.BaseComponent): def __init__(self, entity=None, comp=None, changetype=None): circuits.BaseComponent.__init__(self) self.entity = entity self.comp = comp if self.comp is not None: #normal run, check for nonEC run now # Todo: OnChanged() is deprecated comp.connect("OnChanged()", self.onChanged) self.rot = Quat.fromAxisAndAngle(Vec(0, 1, 0), 1) def onChanged(self): y = self.comp.GetAttribute('y') self.rot = Quat.fromAxisAndAngle(Vec(0, y, 0), 1) #print self.rot, y @circuits.handler("update") def update(self, frametime): if self.entity is not None: p = self.entity.placeable ort = p.Orientation ort *= self.rot p.Orientation = ort # else: #testing without EC, as a autoloaded module # entid = 2088826547 # try: # self.entity = naali.getEntity(entid) # except: # pass #not there (yet) # else: # self.entity.createComponent("EC_DynamicComponent") # oldent = r.getEntity(ent.id) # self.comp = oldent.dynamic @circuits.handler("on_logout") def on_logout(self, evid): self.entity = None #XXX figure out proper unregistering, preferrably in componenthandler.py / EC_Script biz
2.34375
2
pyqubo/package_info.py
caja-matematica/pyqubo
1
11696
<gh_stars>1-10 # (major, minor, patch, prerelease) VERSION = (0, 0, 6, "") __shortversion__ = '.'.join(map(str, VERSION[:3])) __version__ = '.'.join(map(str, VERSION[:3])) + "".join(VERSION[3:]) __package_name__ = 'pyqubo' __contact_names__ = 'Recruit Communications Co., Ltd.' __contact_emails__ = '<EMAIL>' __homepage__ = 'https://pyqubo.readthedocs.io/en/latest/' __repository_url__ = 'https://github.com/recruit-communications/pyqubo' __download_url__ = 'https://github.com/recruit-communications/pyqubo' __description__ = 'PyQUBO allows you to create QUBOs or Ising models from mathematical expressions.' __license__ = 'Apache 2.0' __keywords__ = 'QUBO, quantum annealing, annealing machine, ising model, optimization'
1.804688
2
bin/DBImportOperation/etl_operations.py
karlam123/DBImport
0
11697
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import re import logging import subprocess import errno, os, pty import shlex from subprocess import Popen, PIPE from ConfigReader import configuration import mysql.connector from mysql.connector import errorcode from common.Singleton import Singleton from DBImportConfig import import_config from DBImportOperation import common_operations from datetime import datetime, timedelta import pandas as pd import numpy as np import time class operation(object, metaclass=Singleton): def __init__(self, Hive_DB=None, Hive_Table=None): logging.debug("Executing etl_operations.__init__()") self.Hive_DB = None self.Hive_Table = None self.mysql_conn = None self.mysql_cursor = None self.startDate = None self.common_operations = common_operations.operation(Hive_DB, Hive_Table) self.import_config = import_config.config(Hive_DB, Hive_Table) if Hive_DB != None and Hive_Table != None: self.setHiveTable(Hive_DB, Hive_Table) else: # If the class already is initialized, we just pull the parameters and set them here self.Hive_DB = self.common_operations.Hive_DB self.Hive_Table = self.common_operations.Hive_Table self.startDate = self.import_config.startDate logging.debug("Executing etl_operations.__init__() - Finished") def setHiveTable(self, Hive_DB, Hive_Table): """ Sets the parameters to work against a new Hive database and table """ self.Hive_DB = Hive_DB.lower() self.Hive_Table = Hive_Table.lower() self.common_operations.setHiveTable(self.Hive_DB, self.Hive_Table) self.import_config.setHiveTable(self.Hive_DB, self.Hive_Table) try: self.import_config.getImportConfig() self.startDate = self.import_config.startDate self.import_config.lookupConnectionAlias() except: self.import_config.remove_temporary_files() sys.exit(1) def remove_temporary_files(self): self.import_config.remove_temporary_files() def connectToHive(self,): logging.debug("Executing etl_operations.connectToHive()") try: self.common_operations.connectToHive() except Exception as ex: logging.error(ex) self.import_config.remove_temporary_files() sys.exit(1) logging.debug("Executing etl_operations.connectToHive() - Finished") def mergeHiveTables(self, sourceDB, sourceTable, targetDB, targetTable, historyDB = None, historyTable=None, targetDeleteDB = None, targetDeleteTable=None, createHistoryAudit=False, sourceIsIncremental=False, sourceIsImportTable=False, softDelete=False, mergeTime=datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'), datalakeSource=None, PKColumns=None, hiveMergeJavaHeap=None, oracleFlashbackSource=False, mssqlChangeTrackingSource=False, deleteNotUpdatedRows=False, oracleFlashbackImportTable=None, mssqlChangeTrackingImportTable=None): """ Merge source table into Target table. Also populate a History Audit table if selected """ logging.debug("Executing etl_operations.mergeHiveTables()") targetColumns = self.common_operations.getHiveColumns(hiveDB=targetDB, hiveTable=targetTable, includeType=False, includeComment=False) columnMerge = self.common_operations.getHiveColumnNameDiff(sourceDB=sourceDB, sourceTable=sourceTable, targetDB=targetDB, targetTable=targetTable, importTool = self.import_config.importTool, sourceIsImportTable=True) if PKColumns == None: PKColumns = self.common_operations.getPKfromTable(hiveDB=targetDB, hiveTable=targetTable, quotedColumns=False) datalakeIUDExists = False datalakeInsertExists = False datalakeUpdateExists = False datalakeDeleteExists = False datalakeSourceExists = False for index, row in targetColumns.iterrows(): if row['name'] == "datalake_iud": datalakeIUDExists = True if row['name'] == "datalake_insert": datalakeInsertExists = True if row['name'] == "datalake_update": datalakeUpdateExists = True if row['name'] == "datalake_delete": datalakeDeleteExists = True if row['name'] == "datalake_source": datalakeSourceExists = True if hiveMergeJavaHeap != None: query = "set hive.tez.container.size=%s"%(hiveMergeJavaHeap) self.common_operations.executeHiveQuery(query) query = "merge into `%s`.`%s` as T \n"%(targetDB, targetTable) query += "using `%s`.`%s` as S \n"%(sourceDB, sourceTable) query += "on \n" for i, targetColumn in enumerate(PKColumns.split(",")): try: sourceColumn = columnMerge.loc[columnMerge['Exist'] == 'both'].loc[columnMerge['targetName'] == targetColumn].iloc[0]['sourceName'] except IndexError: logging.error("Primary Key cant be found in the source target table. Please check PK override") self.import_config.remove_temporary_files() sys.exit(1) if sourceColumn == None: logging.error("ERROR: Problem determine column name in source table for primary key column '%s'"%(targetColumn)) self.import_config.remove_temporary_files() sys.exit(1) if i == 0: query += " T.`%s` = S.`%s` "%(targetColumn, sourceColumn) else: query += "and\n T.`%s` = S.`%s` "%(targetColumn, sourceColumn) query += "\n" query += "when matched " if sourceIsIncremental == False: # If the source is not incremental, it means that we need to check all the values in # all columns as we dont know if the row have changed or not query += "and (\n" firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): foundPKcolumn = False for column in PKColumns.split(","): if row['targetName'] == column: foundPKcolumn = True if foundPKcolumn == False: if firstIteration == True: query += " " firstIteration = False else: query += " or " query += "T.`%s` != S.`%s` "%(row['targetName'], row['sourceName']) query += "or ( T.`%s` is null and S.`%s` is not null ) "%(row['targetName'], row['sourceName']) query += "or ( T.`%s` is not null and S.`%s` is null ) "%(row['targetName'], row['sourceName']) query += "\n" if softDelete == True and datalakeIUDExists == True: # If a row is deleted and then inserted again with the same values in all fields, this will still trigger an update query += " or T.datalake_iud = 'D' \n" query += ") \n" if oracleFlashbackSource == True: query += "and ( S.datalake_flashback_operation is null or S.datalake_flashback_operation != 'D' ) \n" if mssqlChangeTrackingSource == True: query += "and ( S.datalake_mssql_changetrack_operation is null or S.datalake_mssql_changetrack_operation != 'D' ) \n" query += "then update set " firstIteration = True nonPKcolumnFound = False for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): foundPKcolumn = False for column in PKColumns.split(","): if row['targetName'] == column: foundPKcolumn = True if foundPKcolumn == False: if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s` = S.`%s`"%(row['targetName'], row['sourceName']) nonPKcolumnFound = True if nonPKcolumnFound == False: # This will happen if there are only columns that is part of the PK in the table. Impossible to merge it with full history logging.error("This table only have columns that is part of the PrimaryKey. Merge operations cant be used") self.import_config.remove_temporary_files() sys.exit(1) if datalakeIUDExists == True: query += ", \n `datalake_iud` = 'U'" if datalakeUpdateExists == True: query += ", \n `datalake_update` = '%s'"%(mergeTime) if datalakeSourceExists == True and datalakeSource != None: query += ", \n `datalake_source` = '%s'"%(datalakeSource) query += " \n" if oracleFlashbackSource == True: query += "when matched and S.datalake_flashback_operation = 'D' then delete \n" if mssqlChangeTrackingSource == True: query += "when matched and S.datalake_mssql_changetrack_operation = 'D' then delete \n" query += "when not matched " if oracleFlashbackSource == True: query += "and ( S.datalake_flashback_operation is null or S.datalake_flashback_operation != 'D' ) \n" if mssqlChangeTrackingSource == True: query += "and ( S.datalake_mssql_changetrack_operation is null or S.datalake_mssql_changetrack_operation != 'D' ) \n" query += "then insert values ( " firstIteration = True for index, row in targetColumns.iterrows(): ColumnName = row['name'] sourceColumnName = columnMerge.loc[columnMerge['targetName'] == ColumnName]['sourceName'].fillna('').iloc[0] if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" if sourceColumnName != "": query += " S.`%s`"%(sourceColumnName) elif ColumnName == "datalake_iud": query += " 'I'" elif ColumnName == "datalake_insert": query += " '%s'"%(mergeTime) elif ColumnName == "datalake_update": query += " '%s'"%(mergeTime) elif ColumnName == "datalake_source": query += " '%s'"%(datalakeSource) else: query += " NULL" query += " \n) \n" # print("==============================================================") # print(query) # self.import_config.remove_temporary_files() # sys.exit(1) ## query = query.replace('\n', '') self.common_operations.executeHiveQuery(query) if deleteNotUpdatedRows == True: # This is used by Oracle Flashback and MSSQL Change Tracking imports when doing a reinitialization of the data and we need to # remove the rows that was not updated query = "delete from `%s`.`%s` where datalake_update != '%s' "%(targetDB, targetTable, mergeTime) self.common_operations.executeHiveQuery(query) # If a row was previously deleted and now inserted again and we are using Soft Delete, # then the information in the datalake_iud, datalake_insert and datalake_delete is wrong. if softDelete == True: query = "update `%s`.`%s` set "%(targetDB, targetTable) query += " datalake_iud = 'I', " query += " datalake_insert = datalake_update, " query += " datalake_delete = null " query += "where " query += " datalake_iud = 'U' and " query += " datalake_delete is not null" # print("==============================================================") # print(query) # query = query.replace('\n', '') self.common_operations.executeHiveQuery(query) # Statement to select all rows that was changed in the Target table and insert them to the History table if createHistoryAudit == True and historyDB != None and historyTable != None and oracleFlashbackSource == False: query = "insert into table `%s`.`%s` \n"%(historyDB, historyTable) query += "( " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n `datalake_source`" query += ",\n `datalake_iud`" query += ",\n `datalake_timestamp`" query += "\n) \n" query += "select " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n '%s'"%(datalakeSource) query += ",\n `datalake_iud`" query += ",\n `datalake_update`" query += "\nfrom `%s`.`%s` \n"%(targetDB, targetTable) query += "where datalake_update = '%s'"%(mergeTime) self.common_operations.executeHiveQuery(query) if sourceIsIncremental == False and targetDeleteDB != None and targetDeleteTable != None: # Start with truncating the History Delete table as we need to rebuild this one from scratch to determine what rows are deleted query = "truncate table `%s`.`%s`"%(targetDeleteDB, targetDeleteTable) self.common_operations.executeHiveQuery(query) # Insert all rows (PK columns only) that exists in the Target Table but dont exists in the Import table (the ones that was deleted) query = "insert into table `%s`.`%s` \n(`"%(targetDeleteDB, targetDeleteTable) query += "`, `".join(PKColumns.split(",")) query += "`) \nselect T.`" query += "`, T.`".join(PKColumns.split(",")) query += "` \nfrom `%s`.`%s` as T \n"%(targetDB, targetTable) query += "left outer join `%s`.`%s` as S \n"%(sourceDB, sourceTable) query += "on \n" for i, targetColumn in enumerate(PKColumns.split(",")): sourceColumn = columnMerge.loc[columnMerge['Exist'] == 'both'].loc[columnMerge['targetName'] == targetColumn].iloc[0]['sourceName'] if i == 0: query += " T.`%s` = S.`%s` "%(targetColumn, sourceColumn) else: query += "and\n T.`%s` = S.`%s` "%(targetColumn, sourceColumn) query += "\nwhere \n" for i, targetColumn in enumerate(PKColumns.split(",")): sourceColumn = columnMerge.loc[columnMerge['Exist'] == 'both'].loc[columnMerge['targetName'] == targetColumn].iloc[0]['sourceName'] if i == 0: query += " S.`%s` is null "%(sourceColumn) else: query += "and\n S.`%s` is null "%(sourceColumn) self.common_operations.executeHiveQuery(query) if oracleFlashbackSource == True and createHistoryAudit == True: # If it is a history merge with Oracle Flashback, we need to handle the deletes separatly query = "insert into table `%s`.`%s` \n"%(historyDB, historyTable) query += "( " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n `datalake_source`" query += ",\n `datalake_iud`" query += ",\n `datalake_timestamp`" query += "\n) \n" query += "select " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n '%s'"%(datalakeSource) query += ",\n `datalake_flashback_operation` as `datalake_iud`" query += ",\n timestamp('%s') as `datalake_timestamp`"%(mergeTime) query += "\nfrom `%s`.`%s`"%(sourceDB, oracleFlashbackImportTable) self.common_operations.executeHiveQuery(query) if mssqlChangeTrackingSource == True and createHistoryAudit == True: # If it is a history merge with MSSQL Change Traging, we need to handle the deletes separatly query = "insert into table `%s`.`%s` \n"%(historyDB, historyTable) query += "( " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n `datalake_source`" query += ",\n `datalake_iud`" query += ",\n `datalake_timestamp`" query += "\n) \n" query += "select " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n '%s'"%(datalakeSource) query += ",\n `datalake_mssql_changetrack_operation` as `datalake_iud`" query += ",\n timestamp('%s') as `datalake_timestamp`"%(mergeTime) query += "\nfrom `%s`.`%s`"%(sourceDB, mssqlChangeTrackingImportTable) self.common_operations.executeHiveQuery(query) # Insert the deleted rows into the History table. Without this, it's impossible to see what values the column had before the delete if sourceIsIncremental == False and createHistoryAudit == True and historyDB != None and historyTable != None and targetDeleteDB != None and targetDeleteTable != None: query = "insert into table `%s`.`%s` \n"%(historyDB, historyTable) query += "( " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " `%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n `datalake_source`" query += ",\n `datalake_iud`" query += ",\n `datalake_timestamp`" query += "\n) \n" query += "select " firstIteration = True for index, row in columnMerge.loc[columnMerge['Exist'] == 'both'].iterrows(): if firstIteration == True: firstIteration = False query += " \n" else: query += ", \n" query += " T.`%s`"%(row['targetName']) if datalakeSourceExists == True: query += ",\n '%s' as `datalake_source`"%(datalakeSource) query += ",\n 'D' as `datalake_iud`" query += ",\n timestamp('%s') as `datalake_timestamp`"%(mergeTime) query += "\nfrom `%s`.`%s` as D \n"%(targetDeleteDB, targetDeleteTable) query += "left join `%s`.`%s` as T \n"%(targetDB, targetTable) query += "on \n" for i, column in enumerate(PKColumns.split(",")): if i == 0: query += " T.`%s` = D.`%s` "%(column, column) else: query += "and\n T.`%s` = D.`%s` "%(column, column) # print("==============================================================") # print(query) # query = query.replace('\n', '') self.common_operations.executeHiveQuery(query) if sourceIsIncremental == False and targetDeleteDB != None and targetDeleteTable != None: # Use the merge command to delete found rows between the Delete Table and the History Table query = "merge into `%s`.`%s` as T \n"%(targetDB, targetTable) query += "using `%s`.`%s` as D \n"%(targetDeleteDB, targetDeleteTable) query += "on \n" for i, column in enumerate(PKColumns.split(",")): if i == 0: query += " T.`%s` = D.`%s` "%(column, column) else: query += "and\n T.`%s` = D.`%s` "%(column, column) if softDelete == True: query += "and\n T.`datalake_delete` != 'D' " query += "\n" if softDelete == False: query += "when matched then delete \n" else: query += "when matched then update set \n" query += "datalake_iud = 'D', \n" query += "datalake_update = timestamp('%s'), \n"%(mergeTime) query += "datalake_delete = timestamp('%s') "%(mergeTime) # print("==============================================================") # print(query) # query = query.replace('\n', '') self.common_operations.executeHiveQuery(query) logging.debug("Executing etl_operations.mergeHiveTables() - Finished")
1.796875
2
grvx/nodes/ieeg/read.py
UMCU-RIBS/grvx
1
11698
<reponame>UMCU-RIBS/grvx from logging import getLogger from numpy import mean, std from pickle import dump from wonambi import Dataset from wonambi.trans import math, concatenate from bidso import Task, Electrodes lg = getLogger(__name__) def read_ieeg_block(filename, electrode_file, conditions, minimalduration, output_dir): d = Dataset(filename, bids=True) markers = d.read_markers() electrodes = Electrodes(electrode_file) elec_names = [x['name'] for x in electrodes.electrodes.tsv] elec_names = [x for x in elec_names if x in d.header['chan_name']] # exclude elec location that have no corresponding channel all_conditions = [x for v in conditions.values() for x in v] clean_labels = _reject_channels(d, elec_names, all_conditions, minimalduration) outputs = [] for active_baseline, data_conds in conditions.items(): block_beg = [] block_end = [] for mrk in markers: if mrk['name'] in data_conds: dur = (mrk['end'] - mrk['start']) if dur >= minimalduration: block_beg.append(mrk['start']) block_end.append(mrk['end']) data = d.read_data(begtime=block_beg, endtime=block_end, chan=clean_labels) output_task = Task(filename) output_task.extension = '.pkl' output_task.task += active_baseline output_file = output_dir / output_task.get_filename() with output_file.open('wb') as f: dump(data, f) outputs.append(output_file) return outputs def _reject_channels(d, elec_names, cond, minimalduration): markers = d.read_markers() block_beg = [] block_end = [] for mrk in markers: if mrk['name'] in cond: dur = (mrk['end'] - mrk['start']) if dur >= minimalduration: block_beg.append(mrk['start']) block_end.append(mrk['end']) data = d.read_data(chan=elec_names, begtime=block_beg, endtime=block_end) data = concatenate(data, 'time') clean_labels = reject_channels(data, 3) return clean_labels def reject_channels(dat, reject_chan_thresh): dat_std = math(dat, operator_name='nanstd', axis='time') THRESHOLD = reject_chan_thresh x = dat_std.data[0] thres = [mean(x) + THRESHOLD * std(x)] clean_labels = list(dat_std.chan[0][dat_std.data[0] < thres]) return clean_labels
2.09375
2
bin/analysis/ipa/constraints/split.py
ncbray/pystream
6
11699
# Copyright 2011 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from language.python import ast from . base import Constraint from .. calling import cpa class Splitter(Constraint): def __init__(self, src): assert src.isNode(), src self.src = src self.dst = [] self.callbacks = [] def addSplitCallback(self, callback): self.callbacks.append(callback) if self.objects: callback() def attach(self): self.src.addNext(self) def localName(self): return 'split_temp' def makeTarget(self, context): lcl = context.local(ast.Local(self.localName())) lcl.addPrev(self) self.dst.append(lcl) return lcl def makeConsistent(self, context): # Make constraint consistent if self.src.values: self.changed(context, self.src, self.src.values) if self.src.critical.values: self.criticalChanged(context, self.src, self.src.critical.values) def criticalChanged(self, context, node, diff): for dst in self.dst: dst.critical.updateValues(context, dst, diff) def doNotify(self): for callback in self.callbacks: callback() def isSplit(self): return True class TypeSplitConstraint(Splitter): def __init__(self, src): Splitter.__init__(self, src) self.objects = {} self.megamorphic = False def localName(self): return 'type_split_temp' def types(self): return self.objects.keys() def makeMegamorphic(self): assert not self.megamorphic self.megamorphic = True self.objects.clear() self.objects[cpa.anyType] = self.src self.doNotify() def changed(self, context, node, diff): if self.megamorphic: return changed = False for obj in diff: cpaType = obj.cpaType() if cpaType not in self.objects: if len(self.objects) >= 4: self.makeMegamorphic() break else: temp = self.makeTarget(context) self.objects[cpaType] = temp changed = True else: temp = self.objects[cpaType] temp.updateSingleValue(obj) else: if changed: self.doNotify() # TODO prevent over splitting? All objects with the same qualifier should be grouped? class ExactSplitConstraint(Splitter): def __init__(self, src): Splitter.__init__(self, src) self.objects = {} def localName(self): return 'exact_split_temp' def changed(self, context, node, diff): changed = False for obj in diff: if obj not in self.objects: temp = self.makeTarget(context) self.objects[obj] = temp changed = True else: temp = self.objects[obj] temp.updateSingleValue(obj) if changed: self.doNotify()
2.234375
2