kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
13,377,373 | <groupby><EOS> | test_ds = get_test_dataset(ordered=True)
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<groupby> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
13,357,670 | all_data.iloc[891:,:].groupby('honorific' ).size()<define_variables> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | name_map={
"Capt": "Officer",
"Col": "Officer",
"Major": "Officer",
"Jonkheer": "Royalty",
"Don": "Royalty",
"Sir" : "Royalty",
"Dr": "Officer",
"Rev": "Officer",
"the": "Royalty",
"Dona": "Royalty",
"Mme": "Mrs",
"Mlle": "Miss",
"Ms": "Mrs",
"Mr" : "Mr",
"Mrs" : "Mrs",
"Miss" : "Miss",
"Master" : "Master",
"Lady" : "Royalty"}
all_data.honorific.replace(name_map,inplace=True )<groupby> | GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" ) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | all_data.groupby(['honorific','Sex'] ).Survived.agg(['mean','size'] )<groupby> | IMAGE_SIZE = [512, 512]
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
SEED = 2020 | Petals to the Metal - Flower Classification on TPU |
13,357,670 | all_data.groupby(['honorific','Sex'] ).Age.mean()<categorify> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | def newage(cols):
title=cols[0]
Sex=cols[1]
Age=cols[2]
if pd.isnull(Age):
if title=='Master' and Sex=="male":
return 5.48
elif title=='Miss' and Sex=='female':
return 21.80
elif title=='Mr' and Sex=='male':
return 32.25
elif title=='Mrs' and Sex=='female':
return 36.87
elif title=='officer' and Sex=='female':
return 49
elif title=='Officer' and Sex=='male':
return 46.14
elif title=='Royalty' and Sex=='female':
return 40
else:
return 42.33
else:
return Age<feature_engineering> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
return Model(inputs=base_model.input, outputs=predictions)
with strategy.scope() :
model1 = get_model(MobileNet)
model1.load_weights("/kaggle/input/rashirdan24-11-start-with-pre-train-mobilenet/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | all_data.Age = all_data[['honorific','Sex','Age']].apply(newage,axis=1 )<count_values> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
return Model(inputs=base_model.input, outputs=predictions)
with strategy.scope() :
model2 = get_model(EfficientNetB1)
model2.load_weights("/kaggle/input/rashirdan-2-start-with-pre-train-efficientnetb1/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | all_data.family_name.value_counts().head(10 )<concatenate> | val_dataset = get_validation_dataset()
images_ds = val_dataset.map(lambda image, label: image)
labels_ds = val_dataset.map(lambda image, label: label ).unbatch()
val_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy()
m1 = model1.predict(images_ds)
m2 = model2.predict(images_ds)
scores = []
for alpha in np.linspace(0,1,100):
val_probabilities = alpha*m1+(1-alpha)*m2
val_predictions = np.argmax(val_probabilities, axis=-1)
scores.append(f1_score(val_labels, val_predictions, labels=range(104), average='macro'))
best_alpha = np.argmax(scores)/100
print('Best alpha: ' + str(best_alpha)) | Petals to the Metal - Flower Classification on TPU |
13,357,670 | <categorify><EOS> | test_ds = get_test_dataset(ordered=True)
best_alpha = 0.48
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<import_modules> | !pip install efficientnet --quiet
| Petals to the Metal - Flower Classification on TPU |
12,720,567 | from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
from lightgbm import LGBMClassifier
import lightgbm as lgb
import optuna<categorify> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | all_data_one_hot = pd.get_dummies(all_data[['Survived','Pclass','Sex','Age','Fare','Embarked','family_size','Cabin_class',
'Ticket_first_letter','family_survival']],
columns=['Ticket_first_letter','Cabin_class','Sex','Pclass','Embarked'] )<choose_model_class> | GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started')
print(GCS_DS_PATH ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | def objective(trial):
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbosity': -1,
'boosting_type': 'gbdt',
'learning_rate':trial.suggest_loguniform('learning_rate',0.01,0.05),
'num_leaves': trial.suggest_int('num_leaves', 2, 256),
'min_child_samples': trial.suggest_int('min_child_samples', 10, 60),
'max_depth':trial.suggest_int('max_depth',3,8)
}
kf = KFold(n_splits=5,shuffle=True,random_state=1)
accuracy_scores = []
for train_index,valid_index in kf.split(train):
X_train, X_valid = train.drop(columns='Survived' ).iloc[train_index],train.drop(columns='Survived' ).iloc[valid_index]
y_train, y_valid = train.Survived.iloc[train_index],train.Survived.iloc[valid_index]
lgb_train = lgb.Dataset(X_train,y_train)
gbm = lgb.train(params,lgb_train)
y_pred = np.round(gbm.predict(X_valid)).astype(int)
accuracy_scores.append(accuracy_score(y_valid,y_pred))
return np.mean(accuracy_scores)
study = optuna.create_study(direction='maximize',sampler=optuna.samplers.RandomSampler(seed=1))
optuna.logging.disable_default_handler()
study.optimize(objective, n_trials=100 )<find_best_params> | IMAGE_SIZE = [224, 224]
GCS_PATH = GCS_DS_PATH + '/tfrecords-jpeg-224x224'
AUTO = tf.data.experimental.AUTOTUNE
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] | Petals to the Metal - Flower Classification on TPU |
12,720,567 | print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))<init_hyperparams> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset | Petals to the Metal - Flower Classification on TPU |
12,720,567 | params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbosity': -1,
'boosting_type': 'gbdt'
}
params.update(trial.params )<train_model> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3])
shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3])
return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix))
def transform(image,label):
DIM = IMAGE_SIZE[0]
XDIM = DIM%2
rot = 15.* tf.random.normal([1],dtype='float32')
shr = 5.* tf.random.normal([1],dtype='float32')
h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
h_shift = 16.* tf.random.normal([1],dtype='float32')
w_shift = 16.* tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3]),label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
dataset = dataset.map(transform, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset(ordered=False):
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
NUM_TRAINING_IMAGES = 12753
NUM_VALIDATION_IMAGES = 3712
NUM_TEST_IMAGES = 7382 | Petals to the Metal - Flower Classification on TPU |
12,720,567 | kf = KFold(n_splits=5,shuffle=True,random_state=6)
accuracy_scores = []
for train_index,valid_index in kf.split(train):
X_train, X_valid = train.drop(columns='Survived' ).iloc[train_index],train.drop(columns='Survived' ).iloc[valid_index]
y_train, y_valid = train.Survived.iloc[train_index],train.Survived.iloc[valid_index]
lgb_train = lgb.Dataset(X_train,y_train)
gbm = lgb.train(params,lgb_train,num_boost_round=100)
y_pred = np.round(gbm.predict(X_valid)).astype(int)
accuracy_scores.append(accuracy_score(y_valid,y_pred))<create_dataframe> | BATCH_SIZE = 32 * strategy.num_replicas_in_sync
ds_train = get_training_dataset()
ds_valid = get_validation_dataset()
ds_test = get_test_dataset()
print("Training:", ds_train)
print("Validation:", ds_valid)
print("Test:", ds_test ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | all_train_data = lgb.Dataset(train.drop(columns=['Survived']),label=train.Survived )<train_model> | with strategy.scope() :
pretrained_model1 = efficientnet.EfficientNetB7(
weights='noisy-student',
include_top=False ,
input_shape=[*IMAGE_SIZE, 3])
pretrained_model1.trainable = True
model1 = tf.keras.Sequential([
pretrained_model1,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
pretrained_model2 = tf.keras.applications.Xception(
weights='imagenet',
include_top=False,
input_shape=[*IMAGE_SIZE,3])
pretrained_model2.trainable = True
model2 = tf.keras.Sequential([
pretrained_model2,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
pretrained_model3 = tf.keras.applications.InceptionResNetV2(
weights='imagenet',
include_top=False,
input_shape=[*IMAGE_SIZE,3])
pretrained_model3.trainable = True
model3 = tf.keras.Sequential([
pretrained_model3,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
pretrained_model4 = tf.keras.applications.DenseNet201(
weights='imagenet',
include_top=False,
input_shape=[*IMAGE_SIZE,3])
pretrained_model4.trainable = True
model4 = tf.keras.Sequential([
pretrained_model4,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
| Petals to the Metal - Flower Classification on TPU |
12,720,567 | gbm_final = lgb.train(train_set=all_train_data,
params = params,
num_boost_round=100
)<predict_on_test> | model1.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
model2.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
model3.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
model4.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | y_pred = np.round(gbm_final.predict(test.drop(columns=['Survived'])) ).astype(int )<load_from_csv> | def exponential_lr(epoch,
start_lr = 0.00001, min_lr = 0.00001, max_lr = 0.00005,
rampup_epochs = 5, sustain_epochs = 0,
exp_decay = 0.8):
def lr(epoch, start_lr, min_lr, max_lr, rampup_epochs, sustain_epochs, exp_decay):
if epoch < rampup_epochs:
lr =(( max_lr - start_lr)/ rampup_epochs * epoch + start_lr)
elif epoch < rampup_epochs + sustain_epochs:
lr = max_lr
else:
lr =(( max_lr - min_lr)* exp_decay**(epoch - rampup_epochs - sustain_epochs)+ min_lr)
return lr
return lr(epoch,start_lr,min_lr,max_lr,rampup_epochs,sustain_epochs,exp_decay)
lr_callback = tf.keras.callbacks.LearningRateScheduler(exponential_lr, verbose=True ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | submission_df = pd.read_csv('.. /input/titanic/gender_submission.csv' )<prepare_output> | EPOCHS = 15
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
history1 = model1.fit(
ds_train,
validation_data=ds_valid,
epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
callbacks=[lr_callback],
) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | submission_df['Survived'] = y_pred<save_to_csv> | history2 = model2.fit(
ds_train,
validation_data=ds_valid,
epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
callbacks=[lr_callback],
) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | JST = timezone(timedelta(hours=+9), 'JST')
ts = datetime.now(JST ).strftime('%y%m%d%H%M')
submission_df.to_csv(( ts+'lgb.csv'),index=False )<train_model> | history3 = model3.fit(
ds_train,
validation_data=ds_valid,
epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
callbacks=[lr_callback],
) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | kf = KFold(n_splits=5,shuffle=True,random_state=6)
mean_accuracy = {}
thresh_holds = np.arange(0.2,0.6,0.01)
for thresh_hold in thresh_holds:
accuracy_scores = []
for train_index,valid_index in kf.split(train):
X_train, X_valid = train.drop(columns='Survived' ).iloc[train_index],train.drop(columns='Survived' ).iloc[valid_index]
y_train, y_valid = train.Survived.iloc[train_index],train.Survived.iloc[valid_index]
lgb_train = lgb.Dataset(X_train,y_train)
gbm = lgb.train(params,lgb_train,num_boost_round=100)
y_pred = np.where(gbm.predict(X_valid)<thresh_hold,0,1)
accuracy_scores.append(accuracy_score(y_valid,y_pred))
mean_accuracy[thresh_hold] = np.mean(accuracy_scores )<install_modules> | history4 = model4.fit(
ds_train,
validation_data=ds_valid,
epochs=EPOCHS,
steps_per_epoch=STEPS_PER_EPOCH,
callbacks=[lr_callback],
) | Petals to the Metal - Flower Classification on TPU |
12,720,567 |
<load_from_url> | test_ds = get_test_dataset(ordered=True)
print('Computing predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities3 = model3.predict(test_images_ds)
probabilities4 = model4.predict(test_images_ds)
probabilities = probabilities1+probabilities2+probabilities3+probabilities4
predictions = np.argmax(probabilities, axis=-1)
print(predictions ) | Petals to the Metal - Flower Classification on TPU |
12,720,567 | <load_from_csv><EOS> | print('Generating submission.csv file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt(
'submission.csv',
np.rec.fromarrays([test_ids, predictions]),
fmt=['%s', '%d'],
delimiter=',',
header='id,label',
comments='',
)
!head submission.csv | Petals to the Metal - Flower Classification on TPU |
12,687,093 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<count_values> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
12,687,093 | hasCabin =(train["Cabin"].notnull().astype('int'))
sns.set_style('whitegrid')
sns.countplot(x='Survived', hue=hasCabin, data=train)
print("Percentage by has Cabin: ", train["Survived"][hasCabin == 1].value_counts(normalize=True)[1] * 100)
print("Percentage of hasn't Cabin: ", train["Survived"][hasCabin == 0].value_counts(normalize=True)[1] * 100 )<data_type_conversions> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | train["Age"].fillna(train["Age"].median() , inplace = True)
test["Age"].fillna(test["Age"].median() , inplace = True)
train["Fare"].fillna(train["Fare"].median() , inplace = True)
test["Fare"].fillna(test["Fare"].median() , inplace = True)
train["Embarked"].fillna(( train["Embarked"].append(test["Embarked"])).mode() , inplace = True)
test["Embarked"].fillna(( train["Embarked"].append(test["Embarked"])).mode() , inplace = True)
drop_column = ["PassengerId","Cabin", "Ticket"]
train.drop(drop_column, axis=1, inplace = True)
print(train.isnull().sum())
print("-"*10)
print(test.isnull().sum() )<feature_engineering> | GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" ) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | train["FamilySize"] = train["SibSp"] + train["Parch"] + 1
test["FamilySize"] = test["SibSp"] + test["Parch"] + 1
train["IsAlone"] = 1
test["IsAlone"] = 1
train["IsAlone"].loc[train["FamilySize"] > 1] = 0
test["IsAlone"].loc[test["FamilySize"] > 1] = 0
train["Title"] = train["Name"].str.split(",", expand = True)[1].str.split(".", expand = True)[0]
test["Title"] = test["Name"].str.split(",", expand = True)[1].str.split(".", expand = True)[0]
train["FareBin"] = pd.qcut(train["Fare"], 4)
test["FareBin"] = pd.qcut(test["Fare"], 4)
train["AgeBin"] = pd.cut(train["Age"].astype(int), 5)
test["AgeBin"] = pd.cut(test["Age"].astype(int), 5 )<feature_engineering> | IMAGE_SIZE = [512, 512]
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
SEED = 2020 | Petals to the Metal - Flower Classification on TPU |
12,687,093 | stat_min = 10
title_names =(train["Title"].value_counts() < stat_min)
title_names_t =(test["Title"].value_counts() < stat_min)
train["Title"] = train["Title"].apply(lambda x: "Misc" if title_names.loc[x] == True else x)
test["Title"] = test["Title"].apply(lambda x: "Misc" if title_names_t.loc[x] == True else x)
print(train["Title"].value_counts())
print("-"*10)
train.info()
test.info()
train.sample(10 )<categorify> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | label = preprocessing.LabelEncoder()
train["Sex_Code"] = label.fit_transform(train["Sex"])
test["Sex_Code"] = label.fit_transform(test["Sex"])
train["Embarked_Code"] = label.fit_transform(train["Embarked"].astype(str))
test["Embarked_Code"] = label.fit_transform(test["Embarked"].astype(str))
train["Title_Code"] = label.fit_transform(train["Title"])
test["Title_Code"] = label.fit_transform(test["Title"])
train["AgeBin_Code"] = label.fit_transform(train["AgeBin"])
test["AgeBin_Code"] = label.fit_transform(test["AgeBin"])
train["FareBin_Code"] = label.fit_transform(train["FareBin"])
test["FareBin_Code"] = label.fit_transform(test["FareBin"] )<define_variables> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model1 = get_model(DenseNet201)
model1.load_weights("/kaggle/input/start-with-densenet201/my_densenet_201.h5" ) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | Target = ["Survived"]
train_x = ["Sex", "Pclass", "Embarked", "Title", "SibSp", "Parch", "Age", "Fare", "FamilySize", "IsAlone"]
train_x_calc = ["Sex_Code", "Pclass", "Embarked_Code", "Title_Code", "SibSp", "Parch", "Age", "Fare"]
train_x_bin = ["Sex_Code", "Pclass", "Embarked_Code", "Title_Code", "FamilySize", "AgeBin_Code", "FareBin_Code"]<categorify> | def get_model(use_model):
base_model = use_model(weights='noisy-student',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model2 = get_model(EfficientNetB7)
model2.load_weights("/kaggle/input/start-with-pre-train/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | train_dummy = pd.get_dummies(train[train_x])
train_x_dummy = train_dummy.columns.tolist()
train_xy_dummy = Target + train_x_dummy
print("Dummy X Y: ", train_xy_dummy, '
')
train_dummy.head()<categorify> | val_dataset = get_validation_dataset()
images_ds = val_dataset.map(lambda image, label: image)
labels_ds = val_dataset.map(lambda image, label: label ).unbatch()
val_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy()
m1 = model1.predict(images_ds)
m2 = model2.predict(images_ds)
scores = []
for alpha in np.linspace(0,1,100):
val_probabilities = alpha*m1+(1-alpha)*m2
val_predictions = np.argmax(val_probabilities, axis=-1)
scores.append(f1_score(val_labels, val_predictions, labels=range(104), average='macro'))
best_alpha = np.argmax(scores)/100
print('Best alpha: ' + str(best_alpha)) | Petals to the Metal - Flower Classification on TPU |
12,687,093 | test_dummy = pd.get_dummies(test[train_x])
test_x_dummy = train_dummy.columns.tolist()
test_xy_dummy = Target + test_x_dummy
print("Dummy X Y: ", test_xy_dummy, '
')
test_dummy.head()<split> | test_ds = get_test_dataset(ordered=True)
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | x_train, x_test, y_train, y_test = train_test_split(train[train_x_calc], train[Target], test_size = 0.22, random_state = 0)
x_train_bin, x_test_bin, y_train_bin, y_test_bin = train_test_split(train[train_x_bin], train[Target], test_size = 0.22, random_state = 0)
x_train_dummy, x_test_dummy, y_train_dummy, y_test_dummy = \
train_test_split(train_dummy[train_x_dummy], train[Target], test_size = 0.22, random_state = 0)
print("Original Train Shape: {}".format(train.shape))
print("Train Shape: {}".format(np.asarray(x_train ).shape))
print("Test Shape: {}".format(np.asarray(x_test ).shape))<normalization> | import os
import numpy as np
import torch
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import pandas as pd
from kaggle_datasets import KaggleDatasets
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from PIL import Image, ImageFile
import matplotlib.pyplot as plt | Petals to the Metal - Flower Classification on TPU |
10,264,576 |
<train_model> | if 'google.colab' in sys.modules:
%tensorflow_version 2.x
print("Tensorflow version " + tf.__version__)
AUTO = tf.data.experimental.AUTOTUNE | Petals to the Metal - Flower Classification on TPU |
10,264,576 | gaussian = GaussianNB()
gaussian.fit(x_train_dummy, y_train_dummy)
y_hat_train = gaussian.predict(x_train_dummy)
y_hat_test = gaussian.predict(x_test_dummy)
acc_gaussian = gaussian.score(x_test_dummy, y_test_dummy)
print('Gaussian Naive Bayes train accuracy score: ', gaussian.score(x_train_dummy, y_train_dummy))
print('Gaussian Naive Bayes test accuracy score: ', acc_gaussian)
print('Gaussian Naive Bayes train accuracy score: ', round(accuracy_score(y_hat_train, y_train_dummy)* 100, 2))
print('Gaussian Naive Bayes test accuracy score: ', round(accuracy_score(y_hat_test, y_test_dummy)* 100, 2))<train_model> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.cluster_spec().as_dict() ['worker'])
except ValueError:
tpu = None
gpus = tf.config.experimental.list_logical_devices("GPU")
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
elif len(gpus)> 1:
strategy = tf.distribute.MirroredStrategy(gpus)
else:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | logreg = LogisticRegression()
logreg.fit(x_train_dummy, y_train_dummy)
y_hat_train = logreg.predict(x_train_dummy)
y_hat_test = logreg.predict(x_test_dummy)
acc_logreg = logreg.score(x_test_dummy, y_test_dummy)
print('Logistic Regression train accuracy score: ', logreg.score(x_train_dummy, y_train_dummy))
print('Logistic Regression test accuracy score: ', acc_logreg )<compute_train_metric> | GCS_DS_PATH = KaggleDatasets().get_gcs_path() | Petals to the Metal - Flower Classification on TPU |
10,264,576 | svc = SVC()
svc.fit(x_train_dummy, y_train_dummy)
y_hat_train = svc.predict(x_train_dummy)
y_hat_test = svc.predict(x_test_dummy)
cv_score = cross_val_score(svc, x_train_dummy, y_train_dummy, cv=10)
plt.plot(cv_score)
acc_svc = svc.score(x_test_dummy, y_test_dummy)
print('Support Vector Machines train accuracy score: ', svc.score(x_train_dummy, y_train_dummy))
print('Support Vector Machines test accuracy score: ', acc_svc)
print('Support Vector Machines cross validation train accuracy score: ', cv_score.mean() )<train_model> | EPOCHS = 50
IMAGE_SIZE = [512, 512]
FLOWERS_DATASETS = {
512: 'gs://kds-f0a1db95190f5af9d47fb82f7af36915a50096ee81e54178f8c49016/tfrecords-jpeg-512x512/*/*.tfrec',
}
assert IMAGE_SIZE[0] == IMAGE_SIZE[1], "only square images are supported"
assert IMAGE_SIZE[0] in FLOWERS_DATASETS, "this image size is not supported"
MIXED_PRECISION = False
if MIXED_PRECISION:
if tpu:
policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
else:
policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
tf.config.optimizer.set_jit(True)
tf.keras.mixed_precision.experimental.set_policy(policy)
print('Mixed precision enabled')
if strategy.num_replicas_in_sync == 8:
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
VALIDATION_BATCH_SIZE = 16 * strategy.num_replicas_in_sync
start_lr = 0.00001
min_lr = 0.00001
max_lr = 0.00005 * strategy.num_replicas_in_sync
rampup_epochs = 5
sustain_epochs = 0
exp_decay =.8
elif strategy.num_replicas_in_sync == 1:
BATCH_SIZE = 16
VALIDATION_BATCH_SIZE = 16
start_lr = 0.00001
min_lr = 0.00001
max_lr = 0.0002
rampup_epochs = 5
sustain_epochs = 0
exp_decay =.8
else:
BATCH_SIZE = 8 * strategy.num_replicas_in_sync
VALIDATION_BATCH_SIZE = 8 * strategy.num_replicas_in_sync
start_lr = 0.00001
min_lr = 0.00001
max_lr = 0.00002 * strategy.num_replicas_in_sync
rampup_epochs = 7
sustain_epochs = 0
exp_decay =.8
def lrfn(epoch):
def lr(epoch, start_lr, min_lr, max_lr, rampup_epochs, sustain_epochs, exp_decay):
if epoch < rampup_epochs:
lr =(max_lr - start_lr)/rampup_epochs * epoch + start_lr
elif epoch < rampup_epochs + sustain_epochs:
lr = max_lr
else:
lr =(max_lr - min_lr)* exp_decay**(epoch-rampup_epochs-sustain_epochs)+ min_lr
return lr
return lr(epoch, start_lr, min_lr, max_lr, rampup_epochs, sustain_epochs, exp_decay)
lr_callback = tf.keras.callbacks.LearningRateScheduler(lambda epoch: lrfn(epoch), verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, [lrfn(x)for x in rng])
print(y[0], y[-1] ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | linear_svc = LinearSVC()
linear_svc.fit(x_train_dummy, y_train_dummy)
y_hat_train = linear_svc.predict(x_train_dummy)
y_hat_test = linear_svc.predict(x_test_dummy)
acc_linear_svc = linear_svc.score(x_test_dummy, y_test_dummy)
print('Linear SVC train accuracy score: ', linear_svc.score(x_train_dummy, y_train_dummy))
print('Linear SVC test accuracy score: ', acc_linear_svc )<train_model> | def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | perceptron = Perceptron()
perceptron.fit(x_train_dummy, y_train_dummy)
y_hat_train = perceptron.predict(x_train_dummy)
y_hat_test = perceptron.predict(x_test_dummy)
acc_perceptron = perceptron.score(x_test_dummy, y_test_dummy)
print('Perceptron train accuracy score: ', perceptron.score(x_train_dummy, y_train_dummy))
print('Perceptron test accuracy score: ', acc_perceptron )<train_model> | TRAIN_FILENAMES = tf.io.gfile.glob(GCS_DS_PATH +'/tfrecords-jpeg-512x512/train/*.tfrec')
TRAIN_STEPS = count_data_items(TRAIN_FILENAMES)// BATCH_SIZE
NUM_TEST_IMAGES = 7382 | Petals to the Metal - Flower Classification on TPU |
10,264,576 | decisiontree = DecisionTreeClassifier()
decisiontree.fit(x_train_dummy, y_train_dummy)
y_hat_train = decisiontree.predict(x_train_dummy)
y_hat_test = decisiontree.predict(x_test_dummy)
acc_decisiontree = decisiontree.score(x_test_dummy, y_test_dummy)
print('Decision Tree train accuracy score: ', decisiontree.score(x_train_dummy, y_train_dummy))
print('Decision Tree test accuracy score: ', acc_decisiontree )<train_model> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord)
return dataset | Petals to the Metal - Flower Classification on TPU |
10,264,576 | randomforest = RandomForestClassifier()
randomforest.fit(x_train_dummy, y_train_dummy)
y_hat_train = randomforest.predict(x_train_dummy)
y_hat_test = randomforest.predict(x_test_dummy)
acc_randomforest = randomforest.score(x_test_dummy, y_test_dummy)
print('Random Forest train accuracy score: ', randomforest.score(x_train_dummy, y_train_dummy))
print('Random Forest test accuracy score: ', acc_randomforest )<train_model> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3])
shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3])
return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix)) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | knn = KNeighborsClassifier()
knn.fit(x_train_dummy, y_train_dummy)
y_hat_train = knn.predict(x_train_dummy)
y_hat_test = knn.predict(x_test_dummy)
acc_knn = knn.score(x_test_dummy, y_test_dummy)
print('KNN train accuracy score: ', knn.score(x_train_dummy, y_train_dummy))
print('KNN test accuracy score: ', acc_knn )<train_model> | def data_transform(image,label):
DIM = IMAGE_SIZE[0]
XDIM = DIM%2
rot = 15.* tf.random.normal([1],dtype='float32')
shr = 5.* tf.random.normal([1],dtype='float32')
h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
h_shift = 16.* tf.random.normal([1],dtype='float32')
w_shift = 16.* tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3]),label | Petals to the Metal - Flower Classification on TPU |
10,264,576 | sgd = SGDClassifier()
sgd.fit(x_train_dummy, y_train_dummy)
y_hat_train = sgd.predict(x_train_dummy)
y_hat_test = sgd.predict(x_test_dummy)
acc_sgd = sgd.score(x_test_dummy, y_test_dummy)
print('SGD train accuracy score: ', sgd.score(x_train_dummy, y_train_dummy))
print('SGD test accuracy score: ', acc_sgd )<train_model> | def random_blockout(img, sl=0.1, sh=0.2, rl=0.4):
p=random.random()
if p>=0.25:
w, h, c = IMAGE_SIZE[0], IMAGE_SIZE[1], 3
origin_area = tf.cast(h*w, tf.float32)
e_size_l = tf.cast(tf.round(tf.sqrt(origin_area * sl * rl)) , tf.int32)
e_size_h = tf.cast(tf.round(tf.sqrt(origin_area * sh / rl)) , tf.int32)
e_height_h = tf.minimum(e_size_h, h)
e_width_h = tf.minimum(e_size_h, w)
erase_height = tf.random.uniform(shape=[], minval=e_size_l, maxval=e_height_h, dtype=tf.int32)
erase_width = tf.random.uniform(shape=[], minval=e_size_l, maxval=e_width_h, dtype=tf.int32)
erase_area = tf.zeros(shape=[erase_height, erase_width, c])
erase_area = tf.cast(erase_area, tf.uint8)
pad_h = h - erase_height
pad_top = tf.random.uniform(shape=[], minval=0, maxval=pad_h, dtype=tf.int32)
pad_bottom = pad_h - pad_top
pad_w = w - erase_width
pad_left = tf.random.uniform(shape=[], minval=0, maxval=pad_w, dtype=tf.int32)
pad_right = pad_w - pad_left
erase_mask = tf.pad([erase_area], [[0,0],[pad_top, pad_bottom], [pad_left, pad_right], [0,0]], constant_values=1)
erase_mask = tf.squeeze(erase_mask, axis=0)
erased_img = tf.multiply(tf.cast(img,tf.float32), tf.cast(erase_mask, tf.float32))
return tf.cast(erased_img, img.dtype)
else:
return tf.cast(img, img.dtype ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | gbk = GradientBoostingClassifier()
gbk.fit(x_train_dummy, y_train_dummy)
y_hat_train = gbk.predict(x_train_dummy)
y_hat_test = gbk.predict(x_test_dummy)
acc_gbk = gbk.score(x_test_dummy, y_test_dummy)
print('SGD train accuracy score: ', gbk.score(x_train_dummy, y_train_dummy))
print('SGD test accuracy score: ', acc_gbk )<train_model> | def get_training_dataset() :
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/train/*.tfrec'), labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.map(data_transform, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/val/*.tfrec'), labeled=True, ordered=False)
dataset = dataset.batch(VALIDATION_BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
opt = tf.data.Options()
opt.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.DATA
dataset = dataset.with_options(opt)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/test/*.tfrec'), labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
return dataset
training_dataset = get_training_dataset()
validation_dataset = get_validation_dataset() | Petals to the Metal - Flower Classification on TPU |
10,264,576 | ada = AdaBoostClassifier()
ada.fit(x_train_dummy, y_train_dummy)
y_hat_train = ada.predict(x_train_dummy)
y_hat_test = ada.predict(x_test_dummy)
acc_ada = ada.score(x_test_dummy, y_test_dummy)
print('Ada Boost train accuracy score: ', ada.score(x_train_dummy, y_train_dummy))
print('Ada Boost accuracy score: ', acc_ada )<create_dataframe> | def dataset_to_numpy_util(dataset, N):
dataset = dataset.unbatch().batch(N)
for images, labels in dataset:
numpy_images = images.numpy()
numpy_labels = labels.numpy()
break;
return numpy_images, numpy_labels
def title_from_label_and_target(label, correct_label):
label = np.argmax(label, axis=-1)
correct_label = np.argmax(correct_label, axis=-1)
correct =(label == correct_label)
return "{} [{}{}{}]".format(label, str(correct), ', shoud be ' if not correct else '',
correct_label if not correct else ''), correct
def display_one_flower(image, title, subplot, red=False):
plt.subplot(subplot)
plt.axis('off')
plt.imshow(image)
plt.title(title, fontsize=16, color='red' if red else 'black')
return subplot+1
def display_9_images_from_dataset(dataset):
subplot=331
plt.figure(figsize=(13,13))
images, labels = dataset_to_numpy_util(dataset, 9)
for i, image in enumerate(images):
title = labels[i]
subplot = display_one_flower(image, title, subplot)
if i >= 8:
break;
plt.tight_layout()
plt.subplots_adjust(wspace=0.1, hspace=0.1)
plt.show()
| Petals to the Metal - Flower Classification on TPU |
10,264,576 | models = pd.DataFrame({
"Model": ["SVM", "KNN", "Logistic Regression", "Random Forest",
"Naive Bayes", "Perceptron", "Linear SVC",
"Decision Tree", "SGD", "GBK", "Ada Boost"],
"Score": [acc_svc, acc_knn, acc_logreg, acc_randomforest,
acc_gaussian, acc_perceptron, acc_linear_svc,
acc_decisiontree, acc_sgd, acc_gbk, acc_ada]
})
models.sort_values(by="Score", ascending=False )<choose_model_class> | display_9_images_from_dataset(training_dataset ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | eclf_hard = VotingClassifier(estimators = [("DecisionTree", decisiontree),
("GBK", gbk),
("Logistic", logreg),
("Linear SVC", linear_svc),
("Ada Boost", ada),
("KNN", knn),
('SVM', svc)], voting="hard", weights=[6, 2, 1, 0.8, 3.5, 5, 4])
eclf_hard.fit(x_train_dummy, y_train_dummy)
print('Emsemble Voting train accuracy score: ', eclf_hard.score(x_train_dummy, y_train_dummy))
print('Emsemble Voting accuracy score: ', eclf_hard.score(x_test_dummy, y_test_dummy))<train_on_grid> | !pip install -q efficientnet
| Petals to the Metal - Flower Classification on TPU |
10,264,576 | mlp = MLPClassifier(max_iter=50)
parameter_space = {
'hidden_layer_sizes': [(50,50,50),(50,100,50),(100,)],
'activation': ['tanh', 'relu'],
'solver': ['lbfgs', 'adam'],
'alpha': [0.0001, 0.05],
'learning_rate': ['constant','adaptive'],
}
gridsearch = GridSearchCV(mlp, parameter_space, n_jobs=-1, cv=3)
gridsearch.fit(x_train_dummy, y_train_dummy)
print("Best parameters found: ", gridsearch.best_params_)
means = gridsearch.cv_results_['mean_test_score']
stds = gridsearch.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, gridsearch.cv_results_['params']):
print("%0.3f(+/-%0.03f)for %r" %(mean, std * 2, params))
print('Results on the train set:')
print(classification_report(y_train, gridsearch.predict(x_train_dummy)))
print('Results on the test set:')
print(classification_report(y_test, gridsearch.predict(x_test_dummy)))
<train_model> | with strategy.scope() :
pretrained_model = efn.EfficientNetB7(input_shape=[*IMAGE_SIZE, 3], weights='noisy-student', include_top=False)
pretrained_model.trainable = True
model = tf.keras.Sequential([
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(104, activation='softmax')
])
model.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
| Petals to the Metal - Flower Classification on TPU |
10,264,576 | xgbc = XGBClassifier()
xgbc.fit(x_train_dummy, y_train_dummy)
y_hat_train = xgbc.predict(x_train_dummy)
y_hat_test = xgbc.predict(x_test_dummy)
print('Xgboost train accuracy score: ', xgbc.score(x_train_dummy, y_train_dummy))
print('Xgboost test accuracy score: ', xgbc.score(x_test_dummy, y_test_dummy))
print('Results on the test set: ')
print(classification_report(y_test_dummy, y_hat_test))<save_to_csv> | historical = model.fit(training_dataset,
steps_per_epoch=TRAIN_STEPS,
epochs= EPOCHS,
callbacks=[lr_callback],
validation_data=validation_dataset ) | Petals to the Metal - Flower Classification on TPU |
10,264,576 | <save_to_csv><EOS> | test_ds = get_test_dataset(ordered=True)
print('Computing predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities = model.predict(test_images_ds)
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Generating submission.csv file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
14,014,727 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<save_to_csv> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
14,014,727 | predictions = eclf_hard.predict(test_dummy)
output = pd.DataFrame({ 'PassengerId' : test["PassengerId"], "Survived": predictions })
output.to_csv("ensmble_submission.csv", index=False )<save_to_csv> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
14,014,727 | predictions = gridsearch.predict(test_dummy)
output = pd.DataFrame({ 'PassengerId' : test["PassengerId"], "Survived": predictions })
output.to_csv("gd_mlp_submission.csv", index=False )<train_model> | GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" ) | Petals to the Metal - Flower Classification on TPU |
14,014,727 |
<compute_test_metric> | IMAGE_SIZE = [512, 512]
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
SEED = 2020 | Petals to the Metal - Flower Classification on TPU |
14,014,727 |
<load_from_csv> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
14,014,727 | train_data = pd.read_csv("/kaggle/input/titanic/train.csv")
train_data.head()<load_from_csv> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model1 = get_model(VGG16)
model1.load_weights("/kaggle/input/start-with-pre-train-c4af96/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
14,014,727 | test_data = pd.read_csv("/kaggle/input/titanic/test.csv")
test_data.head()<count_missing_values> | def get_model(use_model):
base_model = use_model(weights='noisy-student',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model2 = get_model(EfficientNetB7)
model2.load_weights("/kaggle/input/more-data-with-efficientnetb7/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
14,014,727 | <data_type_conversions><EOS> | test_ds = get_test_dataset(ordered=True)
best_alpha = 0.48
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<drop_column> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
12,959,204 | train_data = train_data.drop(['Cabin'], axis=1)
test_data = test_data.drop(['Cabin'], axis=1)
train_data = train_data.drop(['Name'], axis=1)
test_data = test_data.drop(['Name'], axis=1)
train_data = train_data.drop(['Ticket'], axis=1)
test_data = test_data.drop(['Ticket'], axis=1)
train_data = train_data.drop(['PassengerId'], axis=1)
train_data.head()<feature_engineering> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | mean_value = 29
data = [train_data, test_data]
for dataset in data:
dataset['Age'] = dataset['Age'].fillna(mean_value)
print(train_data['Age'].isnull().sum())
print(test_data['Age'].isnull().sum() )<feature_engineering> | GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" ) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | data = [train_data, test_data]
for dataset in data:
dataset['Age'] = dataset['Age'].astype(int)
dataset.loc[ dataset['Age'] <= 11, 'Age'] = 0
dataset.loc[(dataset['Age'] > 11)&(dataset['Age'] <= 18), 'Age'] = 1
dataset.loc[(dataset['Age'] > 18)&(dataset['Age'] <= 22), 'Age'] = 2
dataset.loc[(dataset['Age'] > 22)&(dataset['Age'] <= 27), 'Age'] = 3
dataset.loc[(dataset['Age'] > 27)&(dataset['Age'] <= 33), 'Age'] = 4
dataset.loc[(dataset['Age'] > 33)&(dataset['Age'] <= 40), 'Age'] = 5
dataset.loc[(dataset['Age'] > 40)&(dataset['Age'] <= 66), 'Age'] = 6
dataset.loc[ dataset['Age'] > 66, 'Age'] = 6
train_data['Age'].value_counts()<data_type_conversions> | IMAGE_SIZE = [512, 512]
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
SEED = 2020 | Petals to the Metal - Flower Classification on TPU |
12,959,204 | top_value = 'S'
data = [train_data, test_data]
for dataset in data:
dataset['Embarked'] = dataset['Embarked'].fillna(top_value)
print(train_data['Embarked'].isnull().sum())
print(test_data['Embarked'].isnull().sum() )<categorify> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | ports = {"S": 0, "C": 1, "Q": 2}
data = [train_data, test_data]
for dataset in data:
dataset['Embarked'] = dataset['Embarked'].map(ports )<data_type_conversions> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model1 = get_model(InceptionV3)
model1.load_weights(".. /input/notebook1cf87d6468/my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | mean_value = 32
data = [train_data, test_data]
for dataset in data:
dataset['Fare'] = dataset['Fare'].fillna(mean_value)
print(train_data['Fare'].isnull().sum())
print(test_data['Fare'].isnull().sum() )<feature_engineering> | def get_model(use_model):
base_model = use_model(weights='noisy-student',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
return model
with strategy.scope() :
model2 = get_model(EfficientNetB7)
model2.load_weights(".. /input/fork-of-notebook1cf87d6468-2965ed/this_is_my_ef_net_b7.h5" ) | Petals to the Metal - Flower Classification on TPU |
12,959,204 | <categorify><EOS> | test_ds = get_test_dataset(ordered=True)
best_alpha = 0.48
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities1 = model1.predict(test_images_ds)
probabilities2 = model2.predict(test_images_ds)
probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<train_model> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
12,689,410 | X_train = train_data.drop("Survived", axis=1)
Y_train = train_data["Survived"]
X_test = test_data.drop("PassengerId", axis=1 ).copy()
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
decision_tree.score(X_train, Y_train )<save_to_csv> | from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201
from tensorflow.keras.applications.xception import Xception
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2
from tensorflow.keras.applications.nasnet import NASNetLarge
from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2, EfficientNetB0, EfficientNetB1 | Petals to the Metal - Flower Classification on TPU |
12,689,410 | prediction = decision_tree.predict(X_test)
output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': prediction})
output.to_csv('my_submission.csv', index=False)
print("Your submission was saved." )<set_options> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | warnings.filterwarnings("ignore" )<load_from_csv> | GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started")
MORE_IMAGES_GCS_DS_PATH = KaggleDatasets().get_gcs_path('tf-flower-photo-tfrec' ) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | df_train=pd.read_csv(".. /input/covid19-global-forecasting-week-3/train.csv")
df_test=pd.read_csv(".. /input/covid19-global-forecasting-week-3/test.csv")
df_sub=pd.read_csv(".. /input/covid19-global-forecasting-week-3/submission.csv" )<load_from_csv> | IMAGE_SIZE = [512, 512]
EPOCHS = 30
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
MOREIMAGES_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
IMAGENET_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/imagenet' + MOREIMAGES_PATH + '/*.tfrec')
INATURELIST_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/inaturalist' + MOREIMAGES_PATH + '/*.tfrec')
OPENIMAGE_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/openimage' + MOREIMAGES_PATH + '/*.tfrec')
TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES + IMAGENET_FILES + INATURELIST_FILES + OPENIMAGE_FILES
SEED = 2020 | Petals to the Metal - Flower Classification on TPU |
12,689,410 |
print(df_train.shape)
print(df_test.shape)
print(df_sub.shape )<count_unique_values> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def data_augment(image, label):
flag = random.randint(1,3)
coef_1 = random.randint(70, 90)* 0.01
coef_2 = random.randint(70, 90)* 0.01
if flag == 1:
image = tf.image.random_flip_left_right(image, seed=SEED)
elif flag == 2:
image = tf.image.random_flip_up_down(image, seed=SEED)
else:
image = tf.image.random_crop(image, [int(IMAGE_SIZE[0]*coef_1), int(IMAGE_SIZE[0]*coef_2), 3],seed=SEED)
return image, label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset() :
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=False)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | print(f"Unique Countries: {len(df_train.Country_Region.unique())}")
train_dates=list(df_train.Date.unique())
print(f"Period : {len(df_train.Date.unique())} days")
print(f"From : {df_train.Date.min() } To : {df_train.Date.max() }" )<count_values> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 8
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.8
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | print(f"Unique Regions: {df_train.shape[0]/75}")
df_train.Country_Region.value_counts()<feature_engineering> | def get_model(use_model):
base_model = use_model(weights='noisy-student',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
return Model(inputs=base_model.input, outputs=predictions)
with strategy.scope() :
model = get_model(EfficientNetB7)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
| Petals to the Metal - Flower Classification on TPU |
12,689,410 | print(f"Number of rows without Country_Region : {df_train.Country_Region.isna().sum() }")
df_train["UniqueRegion"]=df_train.Country_Region
df_train.UniqueRegion[df_train.Province_State.isna() ==False]=df_train.Province_State+" , "+df_train.Country_Region
df_train[df_train.Province_State.isna() ==False]<drop_column> | history = model.fit(get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, ModelCheckpoint(filepath='my_ef_net_b7.h5', monitor='val_loss',
save_best_only=True)],
validation_data=get_validation_dataset() ,
workers = 3 ) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | df_train.drop(labels=["Id","Province_State","Country_Region"], axis=1, inplace=True)
df_train<define_variables> | model = tf.keras.models.load_model('my_ef_net_b7.h5' ) | Petals to the Metal - Flower Classification on TPU |
12,689,410 | <feature_engineering><EOS> | test_ds = get_test_dataset(ordered=True)
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities = model.predict(test_images_ds)
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
12,508,579 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<feature_engineering> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
12,508,579 | %%time
final_df=pd.DataFrame(columns=["Date","ConfirmedCases","Fatalities","UniqueRegion"])
for region in df_train.UniqueRegion.unique() :
df_temp=df_train[df_train.UniqueRegion==region].reset_index()
df_temp["Delta"]=1.0
size_train=df_temp.shape[0]
for i in range(1,df_temp.shape[0]):
if(df_temp.ConfirmedCases[i-1]>0):
df_temp.Delta[i]=df_temp.ConfirmedCases[i]/df_temp.ConfirmedCases[i-1]
n=5
delta_avg=df_temp.tail(n ).Delta.mean()
delta_list=df_temp.tail(n ).Delta
death_rate=df_temp.tail(1 ).Fatalities.sum() /df_temp.tail(1 ).ConfirmedCases.sum()
df_test_app=df_test_temp[df_test_temp.UniqueRegion==region]
df_test_app=df_test_app[df_test_app.Date>df_temp.Date.max() ]
X=np.arange(1,n+1 ).reshape(-1,1)
Y=delta_list
model=LinearRegression()
model.fit(X,Y)
df_temp=pd.concat([df_temp,df_test_app])
df_temp=df_temp.reset_index()
for i in range(size_train, df_temp.shape[0]):
n=n+1
df_temp.Delta[i]=max(1,model.predict(np.array([n] ).reshape(-1,1)) [0])
df_temp.ConfirmedCases[i]=round(df_temp.ConfirmedCases[i-1]*df_temp.Delta[i],0)
df_temp.Fatalities[i]=round(death_rate*df_temp.ConfirmedCases[i],0)
size_test=df_temp.shape[0]-df_test_temp[df_test_temp.UniqueRegion==region].shape[0]
df_temp=df_temp.iloc[size_test:,:]
df_temp=df_temp[["Date","ConfirmedCases","Fatalities","UniqueRegion"]]
final_df=pd.concat([final_df,df_temp], ignore_index=True)
final_df.shape<save_to_csv> | from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201
from tensorflow.keras.applications.xception import Xception
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2
from tensorflow.keras.applications.nasnet import NASNetLarge
from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2, EfficientNetB7 | Petals to the Metal - Flower Classification on TPU |
12,508,579 | df_sub.Fatalities=final_df.Fatalities
df_sub.ConfirmedCases=final_df.ConfirmedCases
df_sub.to_csv("submission.csv", index=None )<import_modules> | %matplotlib inline
print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
12,508,579 | print(tf.__version__ )<load_from_csv> | GCS_DS_PATH = KaggleDatasets().get_gcs_path() | Petals to the Metal - Flower Classification on TPU |
12,508,579 | train_pd = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
test_pd = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv' )<define_variables> | IMAGE_SIZE = [331, 331]
EPOCHS = 30
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
NUM_TRAINING_IMAGES = 12753
NUM_TEST_IMAGES = 7382
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE | Petals to the Metal - Flower Classification on TPU |
12,508,579 | no_of_rows, no_of_cols = train_pd.shape<count_missing_values> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord)
return dataset
def get_training_dataset() :
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/train/*.tfrec'), labeled=True)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
return dataset
def get_validation_dataset() :
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/val/*.tfrec'), labeled=True, ordered=False)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/test/*.tfrec'), labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
return dataset
training_dataset = get_training_dataset()
validation_dataset = get_validation_dataset() | Petals to the Metal - Flower Classification on TPU |
12,508,579 | print("keyword column analysis")
print("-" * 30)
no_na_keywords, _ = train_pd[train_pd['keyword'].isna() ].shape
print(f"number of rows w/ value: NaN: {no_na_keywords} i.e {(no_na_keywords/no_of_rows)*100}%")
print(f"number of rows w/0 value: NaN: {no_of_rows - no_na_keywords} i.e {(( no_of_rows-no_na_keywords)/no_of_rows)*100}%")
print()
print('*' * 80)
print()
print("location column analysis")
print("-" * 30)
no_na_location, _ = train_pd[train_pd['location'].isna() ].shape
print(f"number of rows w/ value: NaN: {no_na_location} i.e {(no_na_location/no_of_rows)*100}%")
print(f"number of rows w/0 value: NaN: {no_of_rows - no_na_location} i.e.{(( no_of_rows-no_na_location)/no_of_rows)*100}%" )<drop_column> | LR_START = 0.00001
LR_MAX = 0.0001
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 8
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.8
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) | Petals to the Metal - Flower Classification on TPU |
12,508,579 | train_pd = train_pd.drop(['location'], axis=1)
train_pd = train_pd[train_pd['keyword'].notna() ]
train_pd = train_pd.reset_index(drop=True)
print(train_pd.head())
print(f"Number of rows: {len(train_pd)}" )<drop_column> | def get_model(use_model):
base_model = use_model(weights='imagenet',
include_top=False, pooling='avg',
input_shape=(*IMAGE_SIZE, 3))
x = base_model.output
predictions = Dense(104, activation='softmax' )(x)
return Model(inputs=base_model.input, outputs=predictions)
with strategy.scope() :
model = get_model(EfficientNetB7)
model.compile(
optimizer='nadam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
history = model.fit(training_dataset,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, ModelCheckpoint(filepath='my_ef_net_b7.h5', monitor='val_loss',
save_best_only=True)],
validation_data=validation_dataset ) | Petals to the Metal - Flower Classification on TPU |
12,508,579 | test_pd = test_pd.drop(['location'], axis=1)
test_pd = test_pd.fillna(value={'keyword': ''})
print(test_pd.head())
print(f"Number of rows: {len(test_pd)}" )<choose_model_class> | model = tf.keras.models.load_model('my_ef_net_b7.h5' ) | Petals to the Metal - Flower Classification on TPU |
12,508,579 | eng_stopwords = set(stopwords.words('english'))
stemmer = PorterStemmer()<categorify> | test_ds = get_test_dataset(ordered=True)
print('Вычисляем предсказания...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities = model.predict(test_images_ds)
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Создание файла submission.csv...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
12,096,421 | def parse_tweet(tweet):
tweet = tweet.lstrip().rstrip()
tweet = re.sub("http:\S+", "", tweet)
tweet = re.sub("https:\S+", "", tweet)
tweet = re.sub(r"[,.;
tweet = tweet.replace(" ", " ")
tweet = tweet.lower()
tweet = tweet.replace('...', '...' ).strip()
tweet = tweet.replace("'", " ' " ).strip()
tweet = re.sub(r"\x89Û_", "", tweet)
tweet = re.sub(r"\x89ÛÒ", "", tweet)
tweet = re.sub(r"\x89ÛÓ", "", tweet)
tweet = re.sub(r"\x89ÛÏWhen", "When", tweet)
tweet = re.sub(r"\x89ÛÏ", "", tweet)
tweet = re.sub(r"China\x89Ûªs", "China's", tweet)
tweet = re.sub(r"let\x89Ûªs", "let's", tweet)
tweet = re.sub(r"\x89Û÷", "", tweet)
tweet = re.sub(r"\x89Ûª", "", tweet)
tweet = re.sub(r"\x89Û\x9d", "", tweet)
tweet = re.sub(r"å_", "", tweet)
tweet = re.sub(r"\x89Û¢", "", tweet)
tweet = re.sub(r"\x89Û¢åÊ", "", tweet)
tweet = re.sub(r"fromåÊwounds", "from wounds", tweet)
tweet = re.sub(r"åÊ", "", tweet)
tweet = re.sub(r"åÈ", "", tweet)
tweet = re.sub(r"JapÌ_n", "Japan", tweet)
tweet = re.sub(r"Ì©", "e", tweet)
tweet = re.sub(r"å¨", "", tweet)
tweet = re.sub(r"Surṳ", "Suruc", tweet)
tweet = re.sub(r"he's", "he is", tweet)
tweet = re.sub(r"there's", "there is", tweet)
tweet = re.sub(r"We're", "We are", tweet)
tweet = re.sub(r"That's", "That is", tweet)
tweet = re.sub(r"won't", "will not", tweet)
tweet = re.sub(r"they're", "they are", tweet)
tweet = re.sub(r"Can't", "Cannot", tweet)
tweet = re.sub(r"wasn't", "was not", tweet)
tweet = re.sub(r"don\x89Ûªt", "do not", tweet)
tweet = re.sub(r"aren't", "are not", tweet)
tweet = re.sub(r"isn't", "is not", tweet)
tweet = re.sub(r"What's", "What is", tweet)
tweet = re.sub(r"haven't", "have not", tweet)
tweet = re.sub(r"hasn't", "has not", tweet)
tweet = re.sub(r"There's", "There is", tweet)
tweet = re.sub(r"He's", "He is", tweet)
tweet = re.sub(r"It's", "It is", tweet)
tweet = re.sub(r"You're", "You are", tweet)
tweet = re.sub(r"I'M", "I am", tweet)
tweet = re.sub(r"shouldn't", "should not", tweet)
tweet = re.sub(r"wouldn't", "would not", tweet)
tweet = re.sub(r"i'm", "I am", tweet)
tweet = re.sub(r"I\x89Ûªm", "I am", tweet)
tweet = re.sub(r"I'm", "I am", tweet)
tweet = re.sub(r"Isn't", "is not", tweet)
tweet = re.sub(r"Here's", "Here is", tweet)
tweet = re.sub(r"you've", "you have", tweet)
tweet = re.sub(r"you\x89Ûªve", "you have", tweet)
tweet = re.sub(r"we're", "we are", tweet)
tweet = re.sub(r"what's", "what is", tweet)
tweet = re.sub(r"couldn't", "could not", tweet)
tweet = re.sub(r"we've", "we have", tweet)
tweet = re.sub(r"it\x89Ûªs", "it is", tweet)
tweet = re.sub(r"doesn\x89Ûªt", "does not", tweet)
tweet = re.sub(r"It\x89Ûªs", "It is", tweet)
tweet = re.sub(r"Here\x89Ûªs", "Here is", tweet)
tweet = re.sub(r"who's", "who is", tweet)
tweet = re.sub(r"I\x89Ûªve", "I have", tweet)
tweet = re.sub(r"y'all", "you all", tweet)
tweet = re.sub(r"can\x89Ûªt", "cannot", tweet)
tweet = re.sub(r"would've", "would have", tweet)
tweet = re.sub(r"it'll", "it will", tweet)
tweet = re.sub(r"we'll", "we will", tweet)
tweet = re.sub(r"wouldn\x89Ûªt", "would not", tweet)
tweet = re.sub(r"We've", "We have", tweet)
tweet = re.sub(r"he'll", "he will", tweet)
tweet = re.sub(r"Y'all", "You all", tweet)
tweet = re.sub(r"Weren't", "Were not", tweet)
tweet = re.sub(r"Didn't", "Did not", tweet)
tweet = re.sub(r"they'll", "they will", tweet)
tweet = re.sub(r"they'd", "they would", tweet)
tweet = re.sub(r"DON'T", "DO NOT", tweet)
tweet = re.sub(r"That\x89Ûªs", "That is", tweet)
tweet = re.sub(r"they've", "they have", tweet)
tweet = re.sub(r"i'd", "I would", tweet)
tweet = re.sub(r"should've", "should have", tweet)
tweet = re.sub(r"You\x89Ûªre", "You are", tweet)
tweet = re.sub(r"where's", "where is", tweet)
tweet = re.sub(r"Don\x89Ûªt", "Do not", tweet)
tweet = re.sub(r"we'd", "we would", tweet)
tweet = re.sub(r"i'll", "I will", tweet)
tweet = re.sub(r"weren't", "were not", tweet)
tweet = re.sub(r"They're", "They are", tweet)
tweet = re.sub(r"Can\x89Ûªt", "Cannot", tweet)
tweet = re.sub(r"you\x89Ûªll", "you will", tweet)
tweet = re.sub(r"I\x89Ûªd", "I would", tweet)
tweet = re.sub(r"let's", "let us", tweet)
tweet = re.sub(r">", ">", tweet)
tweet = re.sub(r"<", "<", tweet)
tweet = re.sub(r"&", "&", tweet)
tweet = re.sub(r"w/e", "whatever", tweet)
tweet = re.sub(r"w/", "with", tweet)
tweet = re.sub(r"USAgov", "USA government", tweet)
tweet = re.sub(r"recentlu", "recently", tweet)
tweet = re.sub(r"Ph0tos", "Photos", tweet)
tweet = re.sub(r"exp0sed", "exposed", tweet)
tweet = re.sub(r"<3", "love", tweet)
tweet = re.sub(r"amageddon", "armageddon", tweet)
tweet = re.sub(r"Trfc", "Traffic", tweet)
tweet = re.sub(r"8/5/2015", "2015-08-05", tweet)
tweet = re.sub(r"chest/torso", "chest / torso", tweet)
tweet = re.sub(r"WindStorm", "Wind Storm", tweet)
tweet = re.sub(r"8/6/2015", "2015-08-06", tweet)
tweet = re.sub(r"10:38PM", "10:38 PM", tweet)
tweet = re.sub(r"10:30pm", "10:30 PM", tweet)
tweet = re.sub(r"MH370:", "MH370 :", tweet)
tweet = re.sub(r"PM:", "Prime Minister :", tweet)
tweet = re.sub(r"Legionnaires:", "Legionnaires :", tweet)
tweet = re.sub(r"Latest:", "Latest :", tweet)
tweet = re.sub(r"Crash:", "Crash :", tweet)
tweet = re.sub(r"News:", "News :", tweet)
tweet = re.sub(r"derailment:", "derailment :", tweet)
tweet = re.sub(r"attack:", "attack :", tweet)
tweet = re.sub(r"Saipan:", "Saipan :", tweet)
tweet = re.sub(r"Photo:", "Photo :", tweet)
tweet = re.sub(r"Funtenna:", "Funtenna :", tweet)
tweet = re.sub(r"quiz:", "quiz :", tweet)
tweet = re.sub(r"VIDEO:", "VIDEO :", tweet)
tweet = re.sub(r"MP:", "MP :", tweet)
tweet = re.sub(r"UTC2015-08-05", "UTC 2015-08-05", tweet)
tweet = re.sub(r"California:", "California :", tweet)
tweet = re.sub(r"horror:", "horror :", tweet)
tweet = re.sub(r"Past:", "Past :", tweet)
tweet = re.sub(r"Time2015-08-06", "Time 2015-08-06", tweet)
tweet = re.sub(r"here:", "here :", tweet)
tweet = re.sub(r"fires.", "fires.", tweet)
tweet = re.sub(r"Forest:", "Forest :", tweet)
tweet = re.sub(r"Cramer:", "Cramer :", tweet)
tweet = re.sub(r"Chile:", "Chile :", tweet)
tweet = re.sub(r"link:", "link :", tweet)
tweet = re.sub(r"crash:", "crash :", tweet)
tweet = re.sub(r"Video:", "Video :", tweet)
tweet = re.sub(r"Bestnaijamade:", "bestnaijamade :", tweet)
tweet = re.sub(r"NWS:", "National Weather Service :", tweet)
tweet = re.sub(r".caught", ".caught", tweet)
tweet = re.sub(r"Hobbit:", "Hobbit :", tweet)
tweet = re.sub(r"2015:", "2015 :", tweet)
tweet = re.sub(r"post:", "post :", tweet)
tweet = re.sub(r"BREAKING:", "BREAKING :", tweet)
tweet = re.sub(r"Island:", "Island :", tweet)
tweet = re.sub(r"Med:", "Med :", tweet)
tweet = re.sub(r"97/Georgia", "97 / Georgia", tweet)
tweet = re.sub(r"Here:", "Here :", tweet)
tweet = re.sub(r"horror;", "horror ;", tweet)
tweet = re.sub(r"people;", "people ;", tweet)
tweet = re.sub(r"refugees;", "refugees ;", tweet)
tweet = re.sub(r"Genocide;", "Genocide ;", tweet)
tweet = re.sub(r".POTUS", ".POTUS", tweet)
tweet = re.sub(r"Collision-No", "Collision - No", tweet)
tweet = re.sub(r"Rear-", "Rear -", tweet)
tweet = re.sub(r"Broadway:", "Broadway :", tweet)
tweet = re.sub(r"Correction:", "Correction :", tweet)
tweet = re.sub(r"UPDATE:", "UPDATE :", tweet)
tweet = re.sub(r"Times:", "Times :", tweet)
tweet = re.sub(r"RT:", "RT :", tweet)
tweet = re.sub(r"Police:", "Police :", tweet)
tweet = re.sub(r"Training:", "Training :", tweet)
tweet = re.sub(r"Hawaii:", "Hawaii :", tweet)
tweet = re.sub(r"Selfies:", "Selfies :", tweet)
tweet = re.sub(r"Content:", "Content :", tweet)
tweet = re.sub(r"101:", "101 :", tweet)
tweet = re.sub(r"story:", "story :", tweet)
tweet = re.sub(r"injured:", "injured :", tweet)
tweet = re.sub(r"poll:", "poll :", tweet)
tweet = re.sub(r"Guide:", "Guide :", tweet)
tweet = re.sub(r"Update:", "Update :", tweet)
tweet = re.sub(r"alarm:", "alarm :", tweet)
tweet = re.sub(r"floods:", "floods :", tweet)
tweet = re.sub(r"Flood:", "Flood :", tweet)
tweet = re.sub(r"MH370;", "MH370 ;", tweet)
tweet = re.sub(r"life:", "life :", tweet)
tweet = re.sub(r"crush:", "crush :", tweet)
tweet = re.sub(r"now:", "now :", tweet)
tweet = re.sub(r"Vote:", "Vote :", tweet)
tweet = re.sub(r"Catastrophe.", "Catastrophe.", tweet)
tweet = re.sub(r"library:", "library :", tweet)
tweet = re.sub(r"Bush:", "Bush :", tweet)
tweet = re.sub(r";ACCIDENT", "; ACCIDENT", tweet)
tweet = re.sub(r"accident:", "accident :", tweet)
tweet = re.sub(r"Taiwan;", "Taiwan ;", tweet)
tweet = re.sub(r"Map:", "Map :", tweet)
tweet = re.sub(r"failure:", "failure :", tweet)
tweet = re.sub(r"150-Foot", "150 - Foot", tweet)
tweet = re.sub(r"failure:", "failure :", tweet)
tweet = re.sub(r"prefer:", "prefer :", tweet)
tweet = re.sub(r"CNN:", "CNN :", tweet)
tweet = re.sub(r"Oops:", "Oops :", tweet)
tweet = re.sub(r"Disco:", "Disco :", tweet)
tweet = re.sub(r"Disease:", "Disease :", tweet)
tweet = re.sub(r"Grows:", "Grows :", tweet)
tweet = re.sub(r"projected:", "projected :", tweet)
tweet = re.sub(r"Pakistan.", "Pakistan.", tweet)
tweet = re.sub(r"ministers:", "ministers :", tweet)
tweet = re.sub(r"Photos:", "Photos :", tweet)
tweet = re.sub(r"Disease:", "Disease :", tweet)
tweet = re.sub(r"pres:", "press :", tweet)
tweet = re.sub(r"winds.", "winds.", tweet)
tweet = re.sub(r"MPH.", "MPH.", tweet)
tweet = re.sub(r"PHOTOS:", "PHOTOS :", tweet)
tweet = re.sub(r"Time2015-08-05", "Time 2015-08-05", tweet)
tweet = re.sub(r"Denmark:", "Denmark :", tweet)
tweet = re.sub(r"Articles:", "Articles :", tweet)
tweet = re.sub(r"Crash:", "Crash :", tweet)
tweet = re.sub(r"casualties.:", "casualties.:", tweet)
tweet = re.sub(r"Afghanistan:", "Afghanistan :", tweet)
tweet = re.sub(r"Day:", "Day :", tweet)
tweet = re.sub(r"AVERTED:", "AVERTED :", tweet)
tweet = re.sub(r"sitting:", "sitting :", tweet)
tweet = re.sub(r"Multiplayer:", "Multiplayer :", tweet)
tweet = re.sub(r"Kaduna:", "Kaduna :", tweet)
tweet = re.sub(r"favorite:", "favorite :", tweet)
tweet = re.sub(r"home:", "home :", tweet)
tweet = re.sub(r"just:", "just :", tweet)
tweet = re.sub(r"Collision-1141", "Collision - 1141", tweet)
tweet = re.sub(r"County:", "County :", tweet)
tweet = re.sub(r"Duty:", "Duty :", tweet)
tweet = re.sub(r"page:", "page :", tweet)
tweet = re.sub(r"Attack:", "Attack :", tweet)
tweet = re.sub(r"Minecraft:", "Minecraft :", tweet)
tweet = re.sub(r"wounds;", "wounds ;", tweet)
tweet = re.sub(r"Shots:", "Shots :", tweet)
tweet = re.sub(r"shots:", "shots :", tweet)
tweet = re.sub(r"Gunfire:", "Gunfire :", tweet)
tweet = re.sub(r"hike:", "hike :", tweet)
tweet = re.sub(r"Email:", "Email :", tweet)
tweet = re.sub(r"System:", "System :", tweet)
tweet = re.sub(r"Radio:", "Radio :", tweet)
tweet = re.sub(r"King:", "King :", tweet)
tweet = re.sub(r"upheaval:", "upheaval :", tweet)
tweet = re.sub(r"tragedy;", "tragedy ;", tweet)
tweet = re.sub(r"HERE:", "HERE :", tweet)
tweet = re.sub(r"terrorism:", "terrorism :", tweet)
tweet = re.sub(r"police:", "police :", tweet)
tweet = re.sub(r"Mosque:", "Mosque :", tweet)
tweet = re.sub(r"Rightways:", "Rightways :", tweet)
tweet = re.sub(r"Brooklyn:", "Brooklyn :", tweet)
tweet = re.sub(r"Arrived:", "Arrived :", tweet)
tweet = re.sub(r"Home:", "Home :", tweet)
tweet = re.sub(r"Earth:", "Earth :", tweet)
tweet = re.sub(r"three:", "three :", tweet)
tweet = re.sub(r"IranDeal", "Iran Deal", tweet)
tweet = re.sub(r"ArianaGrande", "Ariana Grande", tweet)
tweet = re.sub(r"camilacabello97", "camila cabello", tweet)
tweet = re.sub(r"RondaRousey", "Ronda Rousey", tweet)
tweet = re.sub(r"MTVHottest", "MTV Hottest", tweet)
tweet = re.sub(r"TrapMusic", "Trap Music", tweet)
tweet = re.sub(r"ProphetMuhammad", "Prophet Muhammad", tweet)
tweet = re.sub(r"PantherAttack", "Panther Attack", tweet)
tweet = re.sub(r"StrategicPatience", "Strategic Patience", tweet)
tweet = re.sub(r"socialnews", "social news", tweet)
tweet = re.sub(r"NASAHurricane", "NASA Hurricane", tweet)
tweet = re.sub(r"onlinecommunities", "online communities", tweet)
tweet = re.sub(r"humanconsumption", "human consumption", tweet)
tweet = re.sub(r"Typhoon-Devastated", "Typhoon Devastated", tweet)
tweet = re.sub(r"Meat-Loving", "Meat Loving", tweet)
tweet = re.sub(r"facialabuse", "facial abuse", tweet)
tweet = re.sub(r"LakeCounty", "Lake County", tweet)
tweet = re.sub(r"BeingAuthor", "Being Author", tweet)
tweet = re.sub(r"withheavenly", "with heavenly", tweet)
tweet = re.sub(r"thankU", "thank you", tweet)
tweet = re.sub(r"iTunesMusic", "iTunes Music", tweet)
tweet = re.sub(r"OffensiveContent", "Offensive Content", tweet)
tweet = re.sub(r"WorstSummerJob", "Worst Summer Job", tweet)
tweet = re.sub(r"HarryBeCareful", "Harry Be Careful", tweet)
tweet = re.sub(r"NASASolarSystem", "NASA Solar System", tweet)
tweet = re.sub(r"animalrescue", "animal rescue", tweet)
tweet = re.sub(r"KurtSchlichter", "Kurt Schlichter", tweet)
tweet = re.sub(r"aRmageddon", "armageddon", tweet)
tweet = re.sub(r"Throwingknifes", "Throwing knives", tweet)
tweet = re.sub(r"GodsLove", "God's Love", tweet)
tweet = re.sub(r"bookboost", "book boost", tweet)
tweet = re.sub(r"ibooklove", "I book love", tweet)
tweet = re.sub(r"NestleIndia", "Nestle India", tweet)
tweet = re.sub(r"realDonaldTrump", "Donald Trump", tweet)
tweet = re.sub(r"DavidVonderhaar", "David Vonderhaar", tweet)
tweet = re.sub(r"CecilTheLion", "Cecil The Lion", tweet)
tweet = re.sub(r"weathernetwork", "weather network", tweet)
tweet = re.sub(r"withBioterrorism&use", "with Bioterrorism & use", tweet)
tweet = re.sub(r"Hostage&2", "Hostage & 2", tweet)
tweet = re.sub(r"GOPDebate", "GOP Debate", tweet)
tweet = re.sub(r"RickPerry", "Rick Perry", tweet)
tweet = re.sub(r"frontpage", "front page", tweet)
tweet = re.sub(r"NewsInTweets", "News In Tweets", tweet)
tweet = re.sub(r"ViralSpell", "Viral Spell", tweet)
tweet = re.sub(r"til_now", "until now", tweet)
tweet = re.sub(r"volcanoinRussia", "volcano in Russia", tweet)
tweet = re.sub(r"ZippedNews", "Zipped News", tweet)
tweet = re.sub(r"MicheleBachman", "Michele Bachman", tweet)
tweet = re.sub(r"53inch", "53 inch", tweet)
tweet = re.sub(r"KerrickTrial", "Kerrick Trial", tweet)
tweet = re.sub(r"abstorm", "Alberta Storm", tweet)
tweet = re.sub(r"Beyhive", "Beyonce hive", tweet)
tweet = re.sub(r"IDFire", "Idaho Fire", tweet)
tweet = re.sub(r"DETECTADO", "Detected", tweet)
tweet = re.sub(r"RockyFire", "Rocky Fire", tweet)
tweet = re.sub(r"Listen/Buy", "Listen / Buy", tweet)
tweet = re.sub(r"NickCannon", "Nick Cannon", tweet)
tweet = re.sub(r"FaroeIslands", "Faroe Islands", tweet)
tweet = re.sub(r"yycstorm", "Calgary Storm", tweet)
tweet = re.sub(r"IDPs:", "Internally Displaced People :", tweet)
tweet = re.sub(r"ArtistsUnited", "Artists United", tweet)
tweet = re.sub(r"ClaytonBryant", "Clayton Bryant", tweet)
tweet = re.sub(r"jimmyfallon", "jimmy fallon", tweet)
words = [x.lstrip().rstrip() for x in tweet.split() ]
words = [x for x in words if x and x not in eng_stopwords]
if not words:
return ""
words = ['user' if x.startswith('@')else x for x in words]
tweet = " ".join(words)
tweet = re.sub(r"[,.;@
return tweet<feature_engineering> | !pip install tfa-nightly | Petals to the Metal - Flower Classification on TPU |
12,096,421 | train_pd['combined_filtered_data'] = train_pd['keyword'] + ' ' + train_pd['text']
train_pd['combined_filtered_data'] = train_pd['combined_filtered_data'].apply(lambda x: parse_tweet(x))
train_pd.head()<feature_engineering> | !pip install -q pyyaml h5py | Petals to the Metal - Flower Classification on TPU |
12,096,421 | test_pd['combined_filtered_data'] = test_pd['keyword'] + ' ' + test_pd['text']
test_pd['combined_filtered_data'] = test_pd['combined_filtered_data'].apply(lambda x: parse_tweet(x))
test_pd.head()<data_type_conversions> | import tensorflow as tf
from kaggle_datasets import KaggleDatasets
from matplotlib import pyplot as plt
import numpy as np
import random
import tensorflow_addons as tfa | Petals to the Metal - Flower Classification on TPU |
12,096,421 | test_pd = test_pd.fillna(value={'combined_filtered_data': ''} )<define_variables> | random.seed(1 ) | Petals to the Metal - Flower Classification on TPU |
12,096,421 | max_len = max(map(len, train_pd['combined_filtered_data']))
max_len = max(max_len, max(map(len, test_pd['combined_filtered_data'])))
print(max_len )<define_variables> | GCS_DS_PATH = KaggleDatasets().get_gcs_path() | Petals to the Metal - Flower Classification on TPU |
12,096,421 | embedding_dim = 300
trunc_type='post'
padding_type='post'
oov_tok = "<OOV>"<train_model> | AUTO = tf.data.experimental.AUTOTUNE
ignore_order = tf.data.Options()
ignore_order.experimental_deterministic = False
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64)}
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
IMAGE_SIZE = [512,512]
EPOCHS = 20
BATCH_SIZE = 16 * strategy.num_replicas_in_sync | Petals to the Metal - Flower Classification on TPU |
12,096,421 | tokenizer = Tokenizer(oov_token=oov_tok)
tokenizer.fit_on_texts(train_pd['combined_filtered_data'])
tokenizer.fit_on_texts(test_pd['combined_filtered_data'])
word_index = tokenizer.word_index
vocab_size = len(word_index )<string_transform> | training_data = tf.io.gfile.glob(GCS_DS_PATH + "/tfrecords-jpeg-512x512/train/*.tfrec")
validation_data = tf.io.gfile.glob(GCS_DS_PATH + "/tfrecords-jpeg-512x512/val/*.tfrec")
testing_data = tf.io.gfile.glob(GCS_DS_PATH + "/tfrecords-jpeg-512x512/test/*.tfrec")
NUM_CLASSES = 104
NUM_TRAINING_IMAGES = 12753
NUM_TEST_IMAGES = 7382
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE | Petals to the Metal - Flower Classification on TPU |
12,096,421 | X = tokenizer.texts_to_sequences(train_pd['combined_filtered_data'])
X_padded = pad_sequences(X, maxlen=max_len, padding=padding_type, truncating=trunc_type )<prepare_x_and_y> | def augment_data(image , label):
check = random.randint(0,9)
if check == 1:
image = flip(image)
elif check == 2:
image = color(image)
elif check == 3:
image = rotate(image)
elif check == 4:
image = shear(image)
elif check == 5:
image = random_all(image)
return image , label | Petals to the Metal - Flower Classification on TPU |
12,096,421 | split = int(1.0 * len(X_padded))
trainX, trainY = X_padded[:split], train_pd['target'][:split]
valX, valY = X_padded[split:], train_pd['target'][split:]<string_transform> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image | Petals to the Metal - Flower Classification on TPU |
12,096,421 | testX = tokenizer.texts_to_sequences(test_pd['combined_filtered_data'])
testX = pad_sequences(testX, maxlen=max_len, padding=padding_type, truncating=trunc_type )<load_pretrained> | def read_labeled_tfrecord(record):
record = tf.io.parse_single_example(record , LABELED_TFREC_FORMAT)
image = decode_image(record['image'])
label = tf.cast(record['class'] , tf.int32)
return image , label
| Petals to the Metal - Flower Classification on TPU |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.