kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,220,203
dataset[['BsmtExposure','SalePrice']].fillna('No' ).groupby('BsmtExposure' ).agg(['mean','median','min','max','count'] )<data_type_conversions>
display_batch_of_images(next(train_batch))
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['BsmtExposure']=dataset['BsmtExposure'].fillna('No') test['BsmtExposure']=test['BsmtExposure'].fillna('No' )<sort_values>
display_batch_of_images(next(test_batch))
Petals to the Metal - Flower Classification on TPU
11,220,203
cols_null=dataset.isna().sum(axis=0) cols_null=cols_null[cols_null>0] cols_null.sort_values(ascending=False )<groupby>
def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift): rotation = math.pi * rotation / 180. shear = math.pi * shear / 180. c1 = tf.math.cos(rotation) s1 = tf.math.sin(rotation) one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3]) c2 = tf.math.cos(shear) s2 = tf.math.sin(shear) shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3]) zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3]) shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3]) return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix))
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset[['BsmtFinType1','SalePrice']].fillna('O' ).groupby('BsmtFinType1' ).agg(['mean','median','min','max','count'] )<data_type_conversions>
def transform(image,label): DIM = IMAGE_SIZE[0] XDIM = DIM%2 rot = 15.* tf.random.normal([1],dtype='float32') shr = 5.* tf.random.normal([1],dtype='float32') h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. h_shift = 16.* tf.random.normal([1],dtype='float32') w_shift = 16.* tf.random.normal([1],dtype='float32') m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift) x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack([x,y,z]) idx2 = K.dot(m,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]]) d = tf.gather_nd(image,tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]),label
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['BsmtFinType1']=dataset['BsmtFinType1'].fillna('Unf') test['BsmtFinType1']=test['BsmtFinType1'].fillna('Unf' )<sort_values>
def onehot(image,label): CLASSES = len(classes) return image,tf.one_hot(label,CLASSES )
Petals to the Metal - Flower Classification on TPU
11,220,203
cols_null=dataset.isna().sum(axis=0) cols_null=cols_null[cols_null>0] cols_null.sort_values(ascending=False )<create_dataframe>
def mixup(image, label, PROBABILITY = 1.0): DIM = IMAGE_SIZE[0] CLASSES = 104 imgs = []; labs = [] for j in range(AUG_BATCH): P = tf.cast(tf.random.uniform([],0,1)<=PROBABILITY, tf.float32) k = tf.cast(tf.random.uniform([],0,AUG_BATCH),tf.int32) a = tf.random.uniform([],0,1)*P img1 = image[j,] img2 = image[k,] imgs.append(( 1-a)*img1 + a*img2) if len(label.shape)==1: lab1 = tf.one_hot(label[j],CLASSES) lab2 = tf.one_hot(label[k],CLASSES) else: lab1 = label[j,] lab2 = label[k,] labs.append(( 1-a)*lab1 + a*lab2) image2 = tf.reshape(tf.stack(imgs),(AUG_BATCH,DIM,DIM,3)) label2 = tf.reshape(tf.stack(labs),(AUG_BATCH,CLASSES)) return image2,label2
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset[['BsmtCond','SalePrice']].fillna('O' ).groupby('BsmtCond' ).agg(['mean','median','min','max','count'] )<data_type_conversions>
test_dataset = get_train_ds(TEST_FILENAMES, cutmix_aug = False, tta_aug = False, labeled = False, shuffle = True, repeat = False) test_dataset = test_dataset.unbatch().batch(20) test_batch = iter(test_dataset )
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['BsmtCond']=dataset['BsmtCond'].fillna('TA') test['BsmtCond']=test['BsmtCond'].fillna('TA' )<sort_values>
def cutmix(image, label, PROBABILITY = 1.0): DIM = IMAGE_SIZE[0] CLASSES = 104 imgs = []; labs = [] for j in range(AUG_BATCH): P = tf.cast(tf.random.uniform([],0,1)<=PROBABILITY, tf.int32) k = tf.cast(tf.random.uniform([],0,AUG_BATCH),tf.int32) x = tf.cast(tf.random.uniform([],0,DIM),tf.int32) y = tf.cast(tf.random.uniform([],0,DIM),tf.int32) b = tf.random.uniform([],0,1) WIDTH = tf.cast(DIM * tf.math.sqrt(1-b),tf.int32)* P ya = tf.math.maximum(0,y-WIDTH//2) yb = tf.math.minimum(DIM,y+WIDTH//2) xa = tf.math.maximum(0,x-WIDTH//2) xb = tf.math.minimum(DIM,x+WIDTH//2) one = image[j,ya:yb,0:xa,:] two = image[k,ya:yb,xa:xb,:] three = image[j,ya:yb,xb:DIM,:] middle = tf.concat([one,two,three],axis=1) img = tf.concat([image[j,0:ya,:,:],middle,image[j,yb:DIM,:,:]],axis=0) imgs.append(img) a = tf.cast(WIDTH*WIDTH/DIM/DIM,tf.float32) if len(label.shape)==1: lab1 = tf.one_hot(label[j],CLASSES) lab2 = tf.one_hot(label[k],CLASSES) else: lab1 = label[j,] lab2 = label[k,] labs.append(( 1-a)*lab1 + a*lab2) image2 = tf.reshape(tf.stack(imgs),(AUG_BATCH,DIM,DIM,3)) label2 = tf.reshape(tf.stack(labs),(AUG_BATCH,CLASSES)) return image2,label2
Petals to the Metal - Flower Classification on TPU
11,220,203
cols_null=dataset.isna().sum(axis=0) cols_null=cols_null[cols_null>0] cols_null.sort_values(ascending=False )<create_dataframe>
def mixup_and_cutmix(image,label): CLASSES = len(classes) DIM = IMAGE_SIZE[0] SWITCH = 1/2 CUTMIX_PROB = 2/3 MIXUP_PROB = 2/3 image2, label2 = cutmix(image, label, CUTMIX_PROB) image3, label3 = mixup(image, label, MIXUP_PROB) imgs = []; labs = [] for j in range(BATCH_SIZE): P = tf.cast(tf.random.uniform([],0,1)<=SWITCH, tf.float32) imgs.append(P*image2[j,]+(1-P)*image3[j,]) labs.append(P*label2[j,]+(1-P)*label3[j,]) image4 = tf.reshape(tf.stack(imgs),(BATCH_SIZE,DIM,DIM,3)) label4 = tf.reshape(tf.stack(labs),(BATCH_SIZE,CLASSES)) return image4,label4
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset[['BsmtQual','SalePrice']].fillna('O' ).groupby('BsmtQual' ).agg(['mean','median','min','max','count'] )<data_type_conversions>
EPOCHS = 20 STEPS_PER_EPOCH = count_data_items(TRAINING_FILENAMES)// BATCH_SIZE LR_START = 0.00001 LR_MAX = 0.00005 * strategy.num_replicas_in_sync LR_MIN = 0.00001 LR_RAMPUP_EPOCHS = 5 LR_SUSTAIN_EPOCHS = 0 LR_DECAY =.8 def lr_schedule(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_schedule, verbose = True) rng = [i for i in range(EPOCHS)] y = [lr_schedule(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['BsmtQual']=dataset['BsmtQual'].fillna('Gd') test['BsmtQual']=test['BsmtQual'].fillna('Gd' )<sort_values>
!pip install -q efficientnet def get_DenseNet201() : CLASSES = len(classes) with strategy.scope() : dnet = DenseNet201( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'imagenet', include_top = False ) dnet.trainable = True model = tf.keras.Sequential([ dnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_Xception() : CLASSES = len(classes) with strategy.scope() : xception = Xception( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'imagenet', include_top = False ) xception.trainable = True model = tf.keras.Sequential([ xception, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_InceptionV3() : CLASSES = len(classes) with strategy.scope() : inception = InceptionV3( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'imagenet', include_top = False ) inception.trainable = True model = tf.keras.Sequential([ inception, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_EfficientNetB4() : CLASSES = len(classes) with strategy.scope() : efficient = efn.EfficientNetB4( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'noisy-student', include_top = False ) efficient.trainable = True model = tf.keras.Sequential([ efficient, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_EfficientNetB5() : CLASSES = len(classes) with strategy.scope() : efficient = efn.EfficientNetB5( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'noisy-student', include_top = False ) efficient.trainable = True model = tf.keras.Sequential([ efficient, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_EfficientNetB6() : CLASSES = len(classes) with strategy.scope() : efficient = efn.EfficientNetB6( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'imagenet', include_top = False ) efficient.trainable = True model = tf.keras.Sequential([ efficient, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_EfficientNetB7() : CLASSES = len(classes) with strategy.scope() : efficient = efn.EfficientNetB7( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'noisy-student', include_top = False ) efficient.trainable = True model = tf.keras.Sequential([ efficient, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model def get_InceptionResNetV2() : CLASSES = len(classes) with strategy.scope() : inception_res = InceptionResNetV2( input_shape =(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights = 'imagenet', include_top = False ) inception_res.trainable = True model = tf.keras.Sequential([ inception_res, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(CLASSES, activation = 'softmax',dtype = 'float32') ]) model.compile( optimizer='adam', loss = 'categorical_crossentropy', metrics=['categorical_accuracy'] ) return model
Petals to the Metal - Flower Classification on TPU
11,220,203
cols_null=dataset.isna().sum(axis=0) cols_null=cols_null[cols_null>0] cols_null.sort_values(ascending=False )<feature_engineering>
histories = [] models = [] kfold = KFold(FOLDS, shuffle = True, random_state = SEED) for f,(train_index, val_index)in enumerate(kfold.split(TRAINING_FILENAMES)) : print() ; print('-'*25) print(f"Training fold {f + 1} with EfficientNetB6") print('-'*25) print('Getting training data...') print('') train_ds = get_train_ds(list(pd.DataFrame({'TRAINING_FILENAMES': TRAINING_FILENAMES} ).loc[train_index]['TRAINING_FILENAMES']), cutmix_aug = True, tta_aug = False, labeled = True, shuffle = True, repeat = True) print('Geting validation data...') print('') val_ds = get_val_ds(list(pd.DataFrame({'TRAINING_FILENAMES': TRAINING_FILENAMES} ).loc[val_index]['TRAINING_FILENAMES']), labeled = True, shuffle = True, return_image_names = False) model = get_EfficientNetB6() history = model.fit(train_ds, steps_per_epoch = STEPS_PER_EPOCH, epochs = EPOCHS, callbacks = [lr_callback], validation_data = val_ds, verbose = 2) models.append(model) histories.append(history )
Petals to the Metal - Flower Classification on TPU
11,220,203
test['MasVnrArea']=test['MasVnrArea'].fillna(test['MasVnrArea'].median()) dataset['MasVnrArea']=dataset['MasVnrArea'].fillna(dataset['MasVnrArea'].median() )<count_values>
def get_test_dataset(filenames, shuffle = False, repeat = True, labeled = False, tta_aug = True, return_image_names = True): ds = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) ds = ds.cache() if repeat: ds = ds.repeat() if shuffle: ds = ds.shuffle(1024*8) opt = tf.data.Options() opt.experimental_deterministic = False ds = ds.with_options(opt) if labeled: ds = ds.map(read_labeled_tfrecord, num_parallel_calls=AUTO) else: ds = ds.map(lambda example: read_unlabeled_tfrecord(example, return_image_names), num_parallel_calls=AUTO) if tta_aug: ds = ds.map(data_augment, num_parallel_calls = AUTO) ds = ds.map(transform, num_parallel_calls=AUTO) ds = ds.batch(BATCH_SIZE) ds = ds.prefetch(AUTO) return ds
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['MasVnrType'].value_counts()<data_type_conversions>
def average_tta_preds(tta_preds): average_preds = np.zeros(( ct_test, 104)) for fold in range(FOLDS): average_preds += tta_preds[(fold)*ct_test:(fold + 1)*ct_test] / FOLDS return average_preds
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset['MasVnrType']=dataset['MasVnrType'].fillna('None') test['MasVnrType']=test['MasVnrType'].fillna('None' )<groupby>
test_ds = get_test_dataset(TEST_FILENAMES, tta_aug = True, labeled = False, repeat = True, return_image_names = True) test_images_ds = test_ds.map(lambda image, idnum: image) ct_test = count_data_items(TEST_FILENAMES) STEPS = TTA * ct_test/BATCH_SIZE print('Getting TTA predictions...') pred0 = models[0].predict(test_images_ds,steps = STEPS,verbose = 2)[:TTA*ct_test,] pred1 = models[1].predict(test_images_ds,steps = STEPS,verbose = 2)[:TTA*ct_test,] pred2 = models[2].predict(test_images_ds,steps = STEPS,verbose = 2)[:TTA*ct_test,] print('') print('Averaging TTA predictions...') average_pred0 = average_tta_preds(pred0) average_pred1 = average_tta_preds(pred1) average_pred2 = average_tta_preds(pred1) print('') print('Merging predictions from models...') final_preds = np.zeros(( ct_test, 104)) final_preds += average_pred0 final_preds += average_pred1 final_preds += average_pred2 final_preds = np.argmax(final_preds, axis = 1) test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') print('Done' )
Petals to the Metal - Flower Classification on TPU
11,220,203
dataset[['Electrical','SalePrice']].groupby('Electrical' ).agg(['mean','median','min','max','count'] )<data_type_conversions>
submission = pd.DataFrame() submission['id'] = test_ids submission['label'] = final_preds print(submission.shape) submission.head(10 )
Petals to the Metal - Flower Classification on TPU
11,220,203
<filter><EOS>
submission.to_csv('submission.csv', index = False) print('Submission saved' )
Petals to the Metal - Flower Classification on TPU
10,878,259
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<drop_column>
print("Tensorflow version " + tf.__version__) AUTO = tf.data.experimental.AUTOTUNE
Petals to the Metal - Flower Classification on TPU
10,878,259
dataset=dataset.reset_index(drop=True )<filter>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
10,878,259
dataset=dataset.loc[dataset['LotArea']<dataset['LotArea'].quantile(0.995),:] dataset=dataset.reset_index(drop=True )<filter>
def data_augment(image, label): image = tf.image.random_flip_left_right(image) image = tf.image.random_saturation(image, 0, 2) return image, label
Petals to the Metal - Flower Classification on TPU
10,878,259
dataset=dataset.loc[dataset['MasVnrArea']<=dataset['MasVnrArea'].quantile(0.999),:] dataset=dataset.reset_index(drop=True )<filter>
GCS_DS_PATH = KaggleDatasets().get_gcs_path() IMAGE_SIZE = [512, 512] BATCH_SIZE = 16 * strategy.num_replicas_in_sync NUM_TRAINING_IMAGES = 12753 NUM_TEST_IMAGES = 7382 STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord) return dataset def get_training_dataset() : dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/train/*.tfrec'), labeled=True) dataset = dataset.map(data_augment, num_parallel_calls = AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) return dataset def get_validation_dataset() : dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/val/*.tfrec'), labeled=True, ordered=False) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() return dataset def get_test_dataset(ordered=False): dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-512x512/test/*.tfrec'), labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) return dataset training_dataset = get_training_dataset() validation_dataset = get_validation_dataset()
Petals to the Metal - Flower Classification on TPU
10,878,259
dataset=dataset.loc[dataset['BsmtFinSF2']<=dataset['BsmtFinSF2'].quantile(0.9991),:] dataset=dataset.reset_index(drop=True )<filter>
with strategy.scope() : pretrained_model = DenseNet201(weights='imagenet', include_top=False ,input_shape=[*IMAGE_SIZE, 3]) pretrained_model.trainable = True model = tf.keras.Sequential([ pretrained_model, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(1024, activation='relu'), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(104, activation='softmax') ]) LEARNING_RATE = 3e-5 * strategy.num_replicas_in_sync optimizer = optimizers.Adam(lr=LEARNING_RATE) model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) EPOCHS = 35 ES_PATIENCE = 6 LR_START = 0.00000001 LR_MIN = 0.000001 LR_MAX = LEARNING_RATE LR_RAMPUP_EPOCHS = 3 LR_SUSTAIN_EPOCHS = 0 LR_EXP_DECAY =.8 def lrfn(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr rng = [i for i in range(EPOCHS)] y = [lrfn(x)for x in rng] es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) lr_callback = LearningRateScheduler(lrfn, verbose=1) callback_list = [es, lr_callback] historical = model.fit(x=get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, validation_data=get_validation_dataset() , callbacks=callback_list, epochs=EPOCHS, verbose=2 ).history
Petals to the Metal - Flower Classification on TPU
10,878,259
dataset=dataset.loc[dataset['EnclosedPorch']<=dataset['EnclosedPorch'].quantile(0.997),:] dataset=dataset.reset_index(drop=True )<sort_values>
test_ds = get_test_dataset(ordered=True) print('Computing predictions...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions )
Petals to the Metal - Flower Classification on TPU
10,878,259
<import_modules><EOS>
print('Generating submission.csv file...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
11,290,882
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<data_type_conversions>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
11,290,882
def _check_numberic(data): return pd.to_numeric(data[data.notna() ], errors='coerce' ).notnull().all()<import_modules>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
11,290,882
from sklearn.preprocessing import LabelEncoder<count_missing_values>
np.set_printoptions(threshold=15, linewidth=80) IMAGE_SIZE = [512, 512] AUTO = tf.data.experimental.AUTOTUNE EPOCHS = 12 BATCH_SIZE = 32 * strategy.num_replicas_in_sync
Petals to the Metal - Flower Classification on TPU
11,290,882
test.isna().sum()<concatenate>
GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started') GCS_PATH = GCS_DS_PATH + f'/tfrecords-jpeg-{IMAGE_SIZE[0]}x{IMAGE_SIZE[0]}' TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', 'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', 'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', 'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose']
Petals to the Metal - Flower Classification on TPU
11,290,882
newdata=pd.concat([dataset,test],axis=0 )<count_missing_values>
def batch_to_numpy_images_and_labels(data): images, labels = data numpy_images = images.numpy() numpy_labels = labels.numpy() if numpy_labels.dtype == object: numpy_labels = [None for _ in enumerate(numpy_images)] return numpy_images, numpy_labels def title_from_label_and_target(label, correct_label): if correct_label is None: return CLASSES[label], True correct =(label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower(image, title, subplot, red=False, titlesize=16): plt.subplot(*subplot) plt.axis('off') plt.imshow(image) if len(title)> 0: plt.title(title, fontsize=int(titlesize)if not red else int(titlesize/1.2), color='red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5)) return(subplot[0], subplot[1], subplot[2]+1) def display_batch_of_images(databatch, predictions=None): images, labels = batch_to_numpy_images_and_labels(databatch) if labels is None: labels = [None for _ in enumerate(images)] rows = int(math.sqrt(len(images))) cols = len(images)//rows FIGSIZE = 13.0 SPACING = 0.1 subplot=(rows,cols,1) if rows < cols: plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows)) else: plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE)) for i,(image, label)in enumerate(zip(images[:rows*cols], labels[:rows*cols])) : title = '' if label is None else CLASSES[label] correct = True if predictions is not None: title, correct = title_from_label_and_target(predictions[i], label) dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize) plt.tight_layout() if label is None and predictions is None: plt.subplots_adjust(wspace=0, hspace=0) else: plt.subplots_adjust(wspace=SPACING, hspace=SPACING) plt.show() def display_confusion_matrix(cmat, score, precision, recall): plt.figure(figsize=(15,15)) ax = plt.gca() ax.matshow(cmat, cmap='Reds') ax.set_xticks(range(len(CLASSES))) ax.set_xticklabels(CLASSES, fontdict={'fontsize': 7}) plt.setp(ax.get_xticklabels() , rotation=45, ha="left", rotation_mode="anchor") ax.set_yticks(range(len(CLASSES))) ax.set_yticklabels(CLASSES, fontdict={'fontsize': 7}) plt.setp(ax.get_yticklabels() , rotation=45, ha="right", rotation_mode="anchor") titlestring = "" if score is not None: titlestring += 'f1 = {:.3f} '.format(score) if precision is not None: titlestring += ' precision = {:.3f} '.format(precision) if recall is not None: titlestring += ' recall = {:.3f} '.format(recall) if len(titlestring)> 0: ax.text(101, 1, titlestring, fontdict={'fontsize': 18, 'horizontalalignment':'right', 'verticalalignment':'top', 'color':' plt.show() def display_training_curves(training, validation, title, subplot): if subplot%10==1: plt.subplots(figsize=(10,10), facecolor=' plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor(' ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def data_augment(image, label): image = tf.image.random_flip_left_right(image) return image, label def get_training_dataset() : dataset = load_dataset(TRAINING_FILENAMES, labeled=True) dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def get_validation_dataset(ordered=False): dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n )
Petals to the Metal - Flower Classification on TPU
11,290,882
newdata.SalePrice.isna().sum()<drop_column>
training_dataset = get_training_dataset() validation_dataset = get_validation_dataset() testing_dataset = get_test_dataset()
Petals to the Metal - Flower Classification on TPU
11,290,882
newdata=newdata.reset_index(drop=True )<drop_column>
print(f"Training dataset info: {training_dataset}") print(f"Validation dataset info: {validation_dataset}") print(f"Test set info: {testing_dataset}" )
Petals to the Metal - Flower Classification on TPU
11,290,882
del newdata['3SsnPorch'] del newdata['Condition2'] del newdata['GarageCars'] del newdata['LowQualFinSF'] del newdata['MiscVal'] del newdata['RoofMatl'] del newdata['Street'] del newdata['Utilities']<feature_engineering>
display_batch_of_images(next(iter(training_dataset.unbatch().batch(12))))
Petals to the Metal - Flower Classification on TPU
11,290,882
newdata['HalfBath']=[1 if val>0 else 0 for val in newdata['HalfBath']] newdata['PoolArea']=[1 if val>0 else 0 for val in newdata['PoolArea']]<count_missing_values>
with strategy.scope() : B7_base = efn.EfficientNetB7(weights='imagenet', include_top=False, input_shape=[*IMAGE_SIZE, 3]) B7_base.trainable = True set_trainable = False for layer in B7_base.layers: if layer == B7_base.layers[-96]: set_trainable = True if set_trainable: layer.trainable = True else: layer.trainable = False model = tf.keras.Sequential([ B7_base, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.15), tf.keras.layers.Dense(720, activation = 'relu'), tf.keras.layers.Dropout(0.15), tf.keras.layers.Dense(len(CLASSES), activation='softmax') ]) model.compile( optimizer = tf.keras.optimizers.Adam(learning_rate=0.0005, beta_1=0.9, beta_2=0.999, amsgrad=False), loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] , ) model.summary()
Petals to the Metal - Flower Classification on TPU
11,290,882
nacols=newdata.isna().sum()<filter>
NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print(NUM_TRAINING_IMAGES) print(STEPS_PER_EPOCH) print(EPOCHS )
Petals to the Metal - Flower Classification on TPU
11,290,882
nacols[nacols>0]<feature_engineering>
history2 = model.fit(training_dataset, validation_data=validation_dataset, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH )
Petals to the Metal - Flower Classification on TPU
11,290,882
newdata['BsmtFinSF1']=newdata['BsmtFinSF1'].fillna(newdata['BsmtFinSF1'].median()) newdata['BsmtFinSF2']=newdata['BsmtFinSF2'].fillna(newdata['BsmtFinSF2'].median()) newdata['BsmtFullBath']=newdata['BsmtFullBath'].fillna(newdata['BsmtFullBath'].median()) newdata['BsmtHalfBath']=newdata['BsmtHalfBath'].fillna(newdata['BsmtHalfBath'].median()) newdata['BsmtUnfSF']=newdata['BsmtUnfSF'].fillna(newdata['BsmtUnfSF'].median()) newdata['GarageArea']=newdata['GarageArea'].fillna(newdata['GarageArea'].median()) newdata['TotalBsmtSF']=newdata['TotalBsmtSF'].fillna(newdata['TotalBsmtSF'].median() )<count_values>
model.save('model_9383' )
Petals to the Metal - Flower Classification on TPU
11,290,882
col='Exterior1st' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax()) col='Exterior2nd' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax()) col='Functional' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax()) col='KitchenQual' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax()) col='MSZoning' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax()) col='SaleType' newdata[col]=newdata[col].fillna(newdata[col].value_counts().idxmax() )<count_missing_values>
test_ds = get_test_dataset(ordered=True) print('Computing predictions...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions )
Petals to the Metal - Flower Classification on TPU
11,290,882
<filter><EOS>
print('Generating submission.csv file...') NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt( 'submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='', )
Petals to the Metal - Flower Classification on TPU
10,764,604
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<categorify>
print("TF version " + tf.__version__) AUTO = tf.data.experimental.AUTOTUNE
Petals to the Metal - Flower Classification on TPU
10,764,604
le=LabelEncoder() for col in newdata.columns: if not _check_numberic(newdata[col]): le.fit(newdata[col]) newdata[col]=le.transform(newdata[col] )<filter>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
10,764,604
test_data=newdata.loc[newdata.SalePrice.isna() ,:]<filter>
IMAGE_SIZE = [224, 224] EPOCHS = 35 BATCH_SIZE = 16 * strategy.num_replicas_in_sync SEED = 752 SKIP_VALIDATION = False TTA_NUM = 5 random.seed(SEED) np.random.seed(SEED) tf.random.set_seed(SEED )
Petals to the Metal - Flower Classification on TPU
10,764,604
train_data=newdata.loc[newdata.SalePrice.notna() ,:]<compute_test_metric>
GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started') GCS_DS_PATH_EXT = KaggleDatasets().get_gcs_path('tf-flower-photo-tfrec') GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] GCS_PATH_SELECT_EXT = { 192: '/tfrecords-jpeg-192x192', 224: '/tfrecords-jpeg-224x224', 331: '/tfrecords-jpeg-331x331', 512: '/tfrecords-jpeg-512x512' } GCS_PATH_EXT = GCS_PATH_SELECT_EXT[IMAGE_SIZE[0]] IMAGENET_FILES = tf.io.gfile.glob(GCS_DS_PATH_EXT + '/imagenet' + GCS_PATH_EXT + '/*.tfrec') INATURELIST_FILES = tf.io.gfile.glob(GCS_DS_PATH_EXT + '/inaturalist' + GCS_PATH_EXT + '/*.tfrec') OPENIMAGE_FILES = tf.io.gfile.glob(GCS_DS_PATH_EXT + '/openimage' + GCS_PATH_EXT + '/*.tfrec') OXFORD_FILES = tf.io.gfile.glob(GCS_DS_PATH_EXT + '/oxford_102' + GCS_PATH_EXT + '/*.tfrec') TENSORFLOW_FILES = tf.io.gfile.glob(GCS_DS_PATH_EXT + '/tf_flowers' + GCS_PATH_EXT + '/*.tfrec') ADDITIONAL_TRAINING_FILENAMES = IMAGENET_FILES + INATURELIST_FILES + OPENIMAGE_FILES + OXFORD_FILES + TENSORFLOW_FILES CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', 'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', 'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', 'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') TRAINING_FILENAMES = TRAINING_FILENAMES + ADDITIONAL_TRAINING_FILENAMES
Petals to the Metal - Flower Classification on TPU
10,764,604
def rmsle(y, y_pred): assert len(y)== len(y_pred) terms_to_sum = [(math.log(y_pred[i] + 1)- math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)] return(sum(terms_to_sum)*(1.0/len(y)))** 0.5<import_modules>
np.set_printoptions(threshold=15, linewidth=80) def batch_to_numpy_images_and_labels(data): images, labels = data numpy_images = images.numpy() numpy_labels = labels.numpy() if numpy_labels.dtype == object: numpy_labels = [None for _ in enumerate(numpy_images)] return numpy_images, numpy_labels def title_from_label_and_target(label, correct_label): if correct_label is None: return CLASSES[label], True correct =(label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower(image, title, subplot, red=False, titlesize=16): plt.subplot(*subplot) plt.axis('off') plt.imshow(image) if len(title)> 0: plt.title(title, fontsize=int(titlesize)if not red else int(titlesize/1.2), color='red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5)) return(subplot[0], subplot[1], subplot[2]+1) def display_batch_of_images(databatch, predictions=None): images, labels = batch_to_numpy_images_and_labels(databatch) if labels is None: labels = [None for _ in enumerate(images)] rows = int(math.sqrt(len(images))) cols = len(images)//rows FIGSIZE = 13.0 SPACING = 0.1 subplot=(rows,cols,1) if rows < cols: plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows)) else: plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE)) for i,(image, label)in enumerate(zip(images[:rows*cols], labels[:rows*cols])) : title = '' if label is None else CLASSES[label] correct = True if predictions is not None: title, correct = title_from_label_and_target(predictions[i], label) dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize) plt.tight_layout() if label is None and predictions is None: plt.subplots_adjust(wspace=0, hspace=0) else: plt.subplots_adjust(wspace=SPACING, hspace=SPACING) plt.show() def display_confusion_matrix(cmat, score, precision, recall): plt.figure(figsize=(15,15)) ax = plt.gca() ax.matshow(cmat, cmap='Reds') ax.set_xticks(range(len(CLASSES))) ax.set_xticklabels(CLASSES, fontdict={'fontsize': 7}) plt.setp(ax.get_xticklabels() , rotation=45, ha="left", rotation_mode="anchor") ax.set_yticks(range(len(CLASSES))) ax.set_yticklabels(CLASSES, fontdict={'fontsize': 7}) plt.setp(ax.get_yticklabels() , rotation=45, ha="right", rotation_mode="anchor") titlestring = "" if score is not None: titlestring += 'f1 = {:.3f} '.format(score) if precision is not None: titlestring += ' precision = {:.3f} '.format(precision) if recall is not None: titlestring += ' recall = {:.3f} '.format(recall) if len(titlestring)> 0: ax.text(101, 1, titlestring, fontdict={'fontsize': 18, 'horizontalalignment':'right', 'verticalalignment':'top', 'color':' plt.show() def display_training_curves(training, validation, title, subplot): if subplot%10==1: plt.subplots(figsize=(10,10), facecolor=' plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor(' ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.'] )
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.model_selection import train_test_split<import_modules>
def random_blockout(img, sl=0.1, sh=0.2, rl=0.4): p=random.random() if p>=0.25: w, h, c = IMAGE_SIZE[0], IMAGE_SIZE[1], 3 origin_area = tf.cast(h*w, tf.float32) e_size_l = tf.cast(tf.round(tf.sqrt(origin_area * sl * rl)) , tf.int32) e_size_h = tf.cast(tf.round(tf.sqrt(origin_area * sh / rl)) , tf.int32) e_height_h = tf.minimum(e_size_h, h) e_width_h = tf.minimum(e_size_h, w) erase_height = tf.random.uniform(shape=[], minval=e_size_l, maxval=e_height_h, dtype=tf.int32) erase_width = tf.random.uniform(shape=[], minval=e_size_l, maxval=e_width_h, dtype=tf.int32) erase_area = tf.zeros(shape=[erase_height, erase_width, c]) erase_area = tf.cast(erase_area, tf.uint8) pad_h = h - erase_height pad_top = tf.random.uniform(shape=[], minval=0, maxval=pad_h, dtype=tf.int32) pad_bottom = pad_h - pad_top pad_w = w - erase_width pad_left = tf.random.uniform(shape=[], minval=0, maxval=pad_w, dtype=tf.int32) pad_right = pad_w - pad_left erase_mask = tf.pad([erase_area], [[0,0],[pad_top, pad_bottom], [pad_left, pad_right], [0,0]], constant_values=1) erase_mask = tf.squeeze(erase_mask, axis=0) erased_img = tf.multiply(tf.cast(img,tf.float32), tf.cast(erase_mask, tf.float32)) return tf.cast(erased_img, img.dtype) else: return tf.cast(img, img.dtype )
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.model_selection import train_test_split<drop_column>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def data_augment(image, label): image = tf.image.random_flip_left_right(image, seed=SEED) image = random_blockout(image) return image, label def get_training_dataset() : dataset = load_dataset(TRAINING_FILENAMES, labeled=True) dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def get_validation_dataset(ordered=False): dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
10,764,604
features.remove('Id') features.remove('SalePrice' )<prepare_x_and_y>
if SKIP_VALIDATION: TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES
Petals to the Metal - Flower Classification on TPU
10,764,604
train=train_data[features].values train_y=train_data['SalePrice']<normalization>
print("Training data shapes:") for image, label in get_training_dataset().take(3): print(image.numpy().shape, label.numpy().shape) print("Training data label examples:", label.numpy()) print("Validation data shapes:") for image, label in get_validation_dataset().take(3): print(image.numpy().shape, label.numpy().shape) print("Validation data label examples:", label.numpy()) print("Test data shapes:") for image, idnum in get_test_dataset().take(3): print(image.numpy().shape, idnum.numpy().shape) print("Test data IDs:", idnum.numpy().astype('U'))
Petals to the Metal - Flower Classification on TPU
10,764,604
sc= RobustScaler() sc.fit(train) train=sc.transform(train )<import_modules>
training_dataset = get_training_dataset() training_dataset = training_dataset.unbatch().batch(20) train_batch = iter(training_dataset )
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.model_selection import train_test_split<import_modules>
display_batch_of_images(next(train_batch))
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.model_selection import train_test_split<split>
test_dataset = get_test_dataset() test_dataset = test_dataset.unbatch().batch(20) test_batch = iter(test_dataset )
Petals to the Metal - Flower Classification on TPU
10,764,604
x_train,x_test,y_train,y_test=train_test_split(train,train_y,test_size=0.2 )<train_model>
display_batch_of_images(next(test_batch))
Petals to the Metal - Flower Classification on TPU
10,764,604
rf = RandomForestRegressor(n_estimators = 120, random_state = 42 )<train_model>
LR_START = 0.00001 LR_MAX = 0.00005 * strategy.num_replicas_in_sync LR_MIN = 0.00001 LR_RAMPUP_EPOCHS = 5 LR_SUSTAIN_EPOCHS = 0 LR_EXP_DECAY =.8 def lrfn(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose = True) rng = [i for i in range(25 if EPOCHS<25 else EPOCHS)] y = [lrfn(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
10,764,604
rf.fit(x_train, y_train )<predict_on_test>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
10,764,604
predictions=rf.predict(x_test) rmsle(y_test.to_list() ,predictions )<import_modules>
with strategy.scope() : enet = efn.EfficientNetB7(input_shape=[*IMAGE_SIZE, 3], weights='noisy-student', include_top=False) enet.trainable = True model1 = tf.keras.Sequential([ enet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax') ]) model1.compile( optimizer=tf.keras.optimizers.Adam() , loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) model1.summary()
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.metrics import mean_squared_error<import_modules>
if not SKIP_VALIDATION: history1 = model1.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=get_validation_dataset() , callbacks = [lr_callback]) else: history1 = model1.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, callbacks = [lr_callback] )
Petals to the Metal - Flower Classification on TPU
10,764,604
from sklearn.metrics import mean_squared_error<import_modules>
with strategy.scope() : densenet = tf.keras.applications.DenseNet201(input_shape=[*IMAGE_SIZE, 3], weights='imagenet', include_top=False) densenet.trainable = True model2 = tf.keras.Sequential([ densenet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax') ]) model2.compile( optimizer=tf.keras.optimizers.Adam() , loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) model2.summary()
Petals to the Metal - Flower Classification on TPU
10,764,604
import xgboost as xgb<choose_model_class>
if not SKIP_VALIDATION: history2 = model2.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=get_validation_dataset() , callbacks = [lr_callback]) else: history2 = model2.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, callbacks = [lr_callback] )
Petals to the Metal - Flower Classification on TPU
10,764,604
model=xgb.XGBRegressor(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.4603, gamma=0.0468, importance_type='split', learning_rate=0.05, max_delta_step=0, max_depth=20, min_child_weight=1.7817, missing=None, n_estimators=1024, n_jobs=1, nthread=-1, objective='reg:squarederror', random_state=7, reg_alpha=0.464, reg_lambda=0.8571, scale_pos_weight=1, seed=None, silent=1, subsample=0.5213, verbosity=1 )<train_model>
if not SKIP_VALIDATION: cmdataset = get_validation_dataset(ordered=True) images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label ).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() m1 = model1.predict(images_ds) m2 = model2.predict(images_ds) scores = [] for alpha in np.linspace(0,1,100): cm_probabilities = alpha*m1+(1-alpha)*m2 cm_predictions = np.argmax(cm_probabilities, axis=-1) scores.append(f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')) best_alpha = np.argmax(scores)/100 else: best_alpha = 0.51 print('Best alpha: ' + str(best_alpha))
Petals to the Metal - Flower Classification on TPU
10,764,604
model.fit(x_train,y_train )<predict_on_test>
if not SKIP_VALIDATION: cm_probabilities = best_alpha*m1 +(1-best_alpha)*m2 cm_predictions = np.argmax(cm_probabilities, axis=-1) cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES))) score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') display_confusion_matrix(cmat, score, precision, recall) print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall))
Petals to the Metal - Flower Classification on TPU
10,764,604
predictions=model.predict(x_test) rmsle(y_test.to_list() ,predictions )<choose_model_class>
def predict_tta(model, n_iter): probs = [] for i in range(n_iter): test_ds = get_test_dataset(ordered=True) test_images_ds = test_ds.map(lambda image, idnum: image) probs.append(model.predict(test_images_ds,verbose=0)) return probs
Petals to the Metal - Flower Classification on TPU
10,764,604
<compute_train_metric><EOS>
test_ds = get_test_dataset(ordered=True) print('Calculating predictions...') test_images_ds = test_ds.map(lambda image, idnum: image) probs1 = np.mean(predict_tta(model1, TTA_NUM), axis=0) probs2 = np.mean(predict_tta(model2, TTA_NUM), axis=0) probabilities = best_alpha*probs1 +(1-best_alpha)*probs2 predictions = np.argmax(probabilities, axis=-1) print('Generating submission file...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
10,977,475
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<compute_test_metric>
import numpy as np import tensorflow as tf import pandas as pd import random, re, math from tensorflow import keras import matplotlib.pyplot as plt from kaggle_datasets import KaggleDatasets from keras.callbacks import LearningRateScheduler from keras import backend as K from keras import layers from sklearn.model_selection import KFold
Petals to the Metal - Flower Classification on TPU
10,977,475
score=rmsle_cv(model_lgb) print("Xgboost score: {:.4f}({:.4f}) ".format(score.mean() , score.std()))<train_model>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled = True, ordered = False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def data_augment(image, label): image = tf.image.random_flip_left_right(image) return image, label def get_training_dataset(dataset,do_aug=True): dataset = dataset.map(data_augment, num_parallel_calls=AUTO) if do_aug: dataset = dataset.map(transform, num_parallel_calls=AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def get_validation_dataset(dataset): dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', 'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', 'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', 'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose']
Petals to the Metal - Flower Classification on TPU
10,977,475
model_lgb.fit(train,train_y )<predict_on_test>
def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift): rotation = math.pi * rotation / 180. shear = math.pi * shear / 180. c1 = tf.math.cos(rotation) s1 = tf.math.sin(rotation) one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3]) c2 = tf.math.cos(shear) s2 = tf.math.sin(shear) shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3]) zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3]) shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3]) return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix)) def transform(image,label): DIM = IMAGE_SIZE[0] XDIM = DIM%2 rot = 15.* tf.random.normal([1],dtype='float32') shr = 5.* tf.random.normal([1],dtype='float32') h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. h_shift = 16.* tf.random.normal([1],dtype='float32') w_shift = 16.* tf.random.normal([1],dtype='float32') m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift) x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack([x,y,z]) idx2 = K.dot(m,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]]) d = tf.gather_nd(image,tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]),label
Petals to the Metal - Flower Classification on TPU
10,977,475
model.fit(x_train,y_train) predictions=model.predict(x_test) rmsle(y_test.to_list() ,predictions )<choose_model_class>
NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
10,977,475
model_lgb=lgb.LGBMRegressor(bagging_fraction=0.8, bagging_freq=5, bagging_seed=9, boosting_type='gbdt', class_weight=None, colsample_bytree=1.0, feature_fraction=0.8, feature_fraction_seed=9, importance_type='gain', learning_rate=0.02, max_bin=55, max_depth=-1, min_child_samples=30, min_child_weight=0.01, min_data_in_leaf=6, min_split_gain=0.0, min_sum_hessian_in_leaf=11, n_estimators=1024, n_jobs=-1, num_leaves=20, objective='regression', random_state=None, reg_alpha=0.01, reg_lambda=0.01, silent=True, subsample=1.0, subsample_for_bin=200000, subsample_freq=0 )<predict_on_test>
train_dataset = load_dataset(TRAINING_FILENAMES, labeled = True) valid_dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True) test_dataset = get_test_dataset(ordered=True) print('Loaded Datasets.... ' )
Petals to the Metal - Flower Classification on TPU
10,977,475
model_lgb.fit(x_train,y_train) predictions=model_lgb.predict(x_test) rmsle(y_test.to_list() ,predictions )<normalization>
from tensorflow.keras.applications import ResNet50, Xception, DenseNet201 from tensorflow.keras import Sequential from keras.layers import Dense, GlobalAveragePooling2D
Petals to the Metal - Flower Classification on TPU
10,977,475
test_sc=sc.transform(test_data[features].values )<predict_on_test>
def build_xception_network() : with strategy.scope() : network = Xception(input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3),weights='imagenet',include_top=False) network.trainable = True model = Sequential([network, GlobalAveragePooling2D() , Dense(len(CLASSES), activation = 'softmax', dtype = 'float32')]) opt = 'Adam' model.compile(optimizer = opt, loss = 'sparse_categorical_crossentropy', metrics = ['sparse_categorical_accuracy']) return model def build_resnet_network() : with strategy.scope() : network = ResNet50(input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3),weights='imagenet',include_top=False) network.trainable = True model = Sequential([network, GlobalAveragePooling2D() , Dense(len(CLASSES), activation = 'softmax', dtype = 'float32')]) opt = 'Adam' model.compile(optimizer = opt, loss = 'sparse_categorical_crossentropy', metrics = ['sparse_categorical_accuracy']) return model def build_densenet_network() : with strategy.scope() : network = DenseNet201(input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3),weights='imagenet',include_top=False) network.trainable = True model = Sequential([network, GlobalAveragePooling2D() , Dense(len(CLASSES), activation = 'softmax', dtype = 'float32')]) opt = 'Adam' model.compile(optimizer = opt, loss = 'sparse_categorical_crossentropy', metrics = ['sparse_categorical_accuracy']) return model
Petals to the Metal - Flower Classification on TPU
10,977,475
model_lgb.fit(train,train_y) predicted_values=model_lgb.predict(test_sc )<train_model>
print('Computing predictions.... ') test_images_ds = test_dataset.map(lambda image, idnum: image) test_ids_ds = test_dataset.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') probabilities = 0.25*model_resnet.predict(test_images_ds)+0.25*model_xception.predict(test_images_ds)+0.5*model_densenet.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print('Compiling submission file...') np.savetxt('submission.csv',np.rec.fromarrays([test_ids, predictions]),fmt=['%s', '%d'],delimiter=',',header='id,label',comments='' )
Petals to the Metal - Flower Classification on TPU
10,977,475
<create_dataframe><EOS>
cmdataset = get_validation_dataset(load_dataset(VALIDATION_FILENAMES, labeled = True, ordered = True)) images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label ).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model_xception.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) cmat_1 = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES))) score_1 = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') precision_1 = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') recall_1 = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') cmat_1 =(cmat_1.T / cmat_1.sum(axis=1)).T display_confusion_matrix(cmat_1, score_1, precision_1, recall_1) cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model_resnet.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) cmat_2 = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES))) score_2 = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') precision_2 = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') recall_2 = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') cmat_2 =(cmat_2.T / cmat_2.sum(axis=1)).T display_confusion_matrix(cmat_2, score_2, precision_2, recall_2) cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model_densenet.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) cmat_3 = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES))) score_3 = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') precision_3 = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') recall_3 = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') cmat_3 =(cmat_3.T / cmat_3.sum(axis=1)).T display_confusion_matrix(cmat_3, score_3, precision_3, recall_3) cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = 0.25*model_resnet.predict(images_ds)+0.25*model_xception.predict(images_ds)+0.5*model_densenet.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES))) score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro') cmat =(cmat.T / cmat.sum(axis=1)).T display_confusion_matrix(cmat, score, precision, recall)
Petals to the Metal - Flower Classification on TPU
10,871,371
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<save_to_csv>
print('Tensorflow version ' + tf.__version__) !pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
10,871,371
output.to_csv('sample_submission.csv',index=False )<set_options>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
10,871,371
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )<load_from_csv>
AUTO = tf.data.experimental.AUTOTUNE IMAGE_SIZE = [224, 224] EPOCHS = 30 FOLDS = 3 SEED = 777 BATCH_SIZE = 16 * strategy.num_replicas_in_sync
Petals to the Metal - Flower Classification on TPU
10,871,371
train=pd.read_csv(".. /input/digit-recognizer/train.csv") test=pd.read_csv(".. /input/digit-recognizer/test.csv") label=train["label"] train=train.drop(labels = ["label"],axis = 1) train=train/255 test=test/255<init_hyperparams>
MIXED_PRECISION = False XLA_ACCELERATE = False if MIXED_PRECISION: if tpu: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') else: policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') mixed_precision.set_policy(policy) print('Mixed precision enabled') if XLA_ACCELERATE: tf.config.optimizer.set_jit(True) print('Accelerated Linear Algebra enabled' )
Petals to the Metal - Flower Classification on TPU
10,871,371
datagen = ImageDataGenerator( rotation_range=10, zoom_range = 0.10, width_shift_range=0.1, height_shift_range=0.1 )<create_dataframe>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled = True, ordered = False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls = AUTO) return dataset def data_augment(image, label): image = tf.image.random_flip_left_right(image) return image, label def get_training_dataset(dataset,do_aug=True): dataset = dataset.map(data_augment, num_parallel_calls=AUTO) if do_aug: dataset = dataset.map(transform, num_parallel_calls=AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def get_validation_dataset(dataset): dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_TRAINING_IMAGES = int(count_data_items(TRAINING_FILENAMES)*(FOLDS-1.) /FOLDS) NUM_VALIDATION_IMAGES = int(count_data_items(TRAINING_FILENAMES)*(1./FOLDS)) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
10,871,371
train=torch.tensor(train, dtype=torch.float) label=torch.tensor(label.values, dtype=torch.float) batch_size = 32 train_data = torch.utils.data.TensorDataset(train,label) train_iter = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True )<define_search_model>
def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift): rotation = math.pi * rotation / 180. shear = math.pi * shear / 180. c1 = tf.math.cos(rotation) s1 = tf.math.sin(rotation) one = tf.constant([1],dtype='float32') zero = tf.constant([0],dtype='float32') rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3]) c2 = tf.math.cos(shear) s2 = tf.math.sin(shear) shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3]) zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3]) shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3]) return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix)) def transform(image,label): DIM = IMAGE_SIZE[0] XDIM = DIM%2 rot = 15.* tf.random.normal([1],dtype='float32') shr = 5.* tf.random.normal([1],dtype='float32') h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10. h_shift = 16.* tf.random.normal([1],dtype='float32') w_shift = 16.* tf.random.normal([1],dtype='float32') m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift) x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM) y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM]) z = tf.ones([DIM*DIM],dtype='int32') idx = tf.stack([x,y,z]) idx2 = K.dot(m,tf.cast(idx,dtype='float32')) idx2 = K.cast(idx2,dtype='int32') idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2) idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]]) d = tf.gather_nd(image,tf.transpose(idx3)) return tf.reshape(d,[DIM,DIM,3]),label
Petals to the Metal - Flower Classification on TPU
10,871,371
class Residual(nn.Module): def __init__(self, in_channels, out_channels, use_1x1conv=False, stride=1): super(Residual, self ).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) if use_1x1conv: self.conv3 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride) else: self.conv3 = None self.bn1 = nn.BatchNorm2d(out_channels) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, X): Y = F.relu(self.bn1(self.conv1(X))) Y = self.bn2(self.conv2(Y)) if self.conv3: X = self.conv3(X) return F.relu(Y + X )<define_search_model>
train_dataset_all = load_dataset(list(pd.DataFrame({'TRAINING_FILENAMES': TRAINING_FILENAMES})['TRAINING_FILENAMES']), labeled = True) test_dataset_all = load_dataset(list(pd.DataFrame({'TEST_FILENAMES': TEST_FILENAMES})['TEST_FILENAMES']), labeled = True, ordered=True) train_dataset = load_dataset(list(pd.DataFrame({'TRAINING_FILENAMES_ONLY': TRAINING_FILENAMES_ONLY})['TRAINING_FILENAMES_ONLY']), labeled = True) val_dataset = load_dataset(list(pd.DataFrame({'VAL_FILENAMES_ONLY': VAL_FILENAMES_ONLY})['VAL_FILENAMES_ONLY']), labeled=True, ordered=True) train_all = get_training_dataset(train_dataset_all) test = get_test_dataset(test_dataset_all) test_images_ds = test.map(lambda image, idnum: image) train = get_training_dataset(train_dataset) val = get_validation_dataset(val_dataset) def Xception_model() : with strategy.scope() : rnet = Xception( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def VGG16_model() : with strategy.scope() : rnet = VGG16( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def DenseNet201_model() : with strategy.scope() : rnet = DenseNet201( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def InceptionV3_model() : with strategy.scope() : rnet = InceptionV3( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def EfficientNetB7_model() : with strategy.scope() : rnet = EfficientNetB7( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def ResNet152V2_model() : with strategy.scope() : rnet = ResNet152V2( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def MobileNetV2_model() : with strategy.scope() : rnet = MobileNetV2( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model def InceptionResNetV2_model() : with strategy.scope() : rnet = InceptionResNetV2( input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3), weights='imagenet', include_top=False ) rnet.trainable = True model = tf.keras.Sequential([ rnet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(len(CLASSES), activation='softmax',dtype='float32') ]) model.compile( optimizer='adam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model models = {'Xception' : Xception_model, 'VGG16' : VGG16_model, 'DenseNet201' : DenseNet201_model, 'InceptionV3' : InceptionV3_model, 'EfficientNetB7' : EfficientNetB7_model, 'MobileNetV2' : MobileNetV2_model, } historys = {} predictions = {} predictions_val = {} predictions_prob = {} MODELS_NUMBER = 6
Petals to the Metal - Flower Classification on TPU
10,871,371
def resnet_block(in_channels, out_channels, num_residuals, first_block=False): if first_block: assert in_channels == out_channels blk = [] for i in range(num_residuals): if i == 0 and not first_block: blk.append(Residual(in_channels, out_channels, use_1x1conv=True, stride=2)) else: blk.append(Residual(out_channels, out_channels)) return nn.Sequential(*blk )<choose_model_class>
df = pd.DataFrame(predictions) pred = [] for i in range(0, 7382): if df.loc[i,:].unique().shape[0] < MODELS_NUMBER : pred.append(stats.mode(df.loc[i,:].values)[0][0]) else : pred.append(df.loc[i,'Xception']) df = pd.DataFrame(predictions_val) pred_val = [] for i in range(0, 3712): if df.loc[i,:].unique().shape[0] < MODELS_NUMBER : pred_val.append(stats.mode(df.loc[i,:].values)[0][0]) else : pred_val.append(df.loc[i,'Xception'] )
Petals to the Metal - Flower Classification on TPU
10,871,371
net = nn.Sequential( nn.Conv2d(1, 32, kernel_size=7, stride=2, padding=3), nn.BatchNorm2d(32), nn.ReLU() , nn.MaxPool2d(kernel_size=3, stride=2, padding=1), resnet_block(32, 32, 2, first_block=True), resnet_block(32, 64, 2), resnet_block(64, 128, 2), resnet_block(128, 256, 2), nn.AdaptiveAvgPool2d(( 1,1)) , nn.Flatten() , nn.Linear(256,10), )<choose_model_class>
avg_prob = predictions_prob['Xception'] + predictions_prob['VGG16'] + predictions_prob['DenseNet201'] + predictions_prob['InceptionV3'] + predictions_prob['EfficientNetB7'] pred_avg = pd.DataFrame(np.argmax(avg_prob, axis=-1))
Petals to the Metal - Flower Classification on TPU
10,871,371
<train_model><EOS>
test_ids_ds = test.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission_vote.csv', np.rec.fromarrays([test_ids, pred]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, np.argmax(avg_prob, axis=-1)]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
10,859,686
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<save_to_csv>
!pip install -U -t /kaggle/working/ git+https://github.com/Kaggle/learntools.git binder.bind(globals()) step_1.check()
Petals to the Metal - Flower Classification on TPU
10,859,686
test=torch.tensor(test, dtype=torch.float) sub=net(test) sub=sub.argmax(dim=1) sub=sub.numpy() sub.reshape(-1,1) submission=pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") submission["Label"]=sub submission.to_csv('submission.csv', index=False )<count_duplicates>
from petal_helper import *
Petals to the Metal - Flower Classification on TPU
10,859,686
duplicate_count = train["Id"].nunique() - train.shape[0]; if(duplicate_count == 0): print("There is no duplicate data in the train data.") else: print("There are %d duplicate data in the train data." %duplicate_count) train.drop("Id", axis = 1, inplace = True )<define_variables>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
10,859,686
med = train['SalePrice'].median() medAbsDev = abs(train['SalePrice'] - med ).median() ind =(abs(train['SalePrice'] - med)*.6745 / medAbsDev)> 3.5 print("There are suspected %d outliers in the train data." % sum(ind)) train = train[-ind] train = train[train.GrLivArea < 4000]<data_type_conversions>
ds_train = get_training_dataset() ds_valid = get_validation_dataset() ds_test = get_test_dataset() print("Training:", ds_train) print("Validation:", ds_valid) print("Test:", ds_test )
Petals to the Metal - Flower Classification on TPU
10,859,686
train["Alley"].fillna("None", inplace=True) train["BsmtQual"].fillna("None", inplace=True) train["BsmtCond"].fillna("None", inplace=True) train["BsmtExposure"].fillna("None", inplace=True) train["BsmtFinType1"].fillna("None", inplace=True) train["BsmtFinSF1"].fillna(0, inplace=True) train["BsmtFinType2"].fillna("None", inplace=True) train["BsmtFinSF2"].fillna(0, inplace=True) train["BsmtFullBath"].fillna(0, inplace=True) train["BsmtHalfBath"].fillna(0, inplace=True) train["BsmtUnfSF"].fillna(0, inplace=True) train["TotalBsmtSF"].fillna(0, inplace=True) train["KitchenQual"].fillna(0, inplace=True) train["Functional"].fillna(0, inplace=True) train["FireplaceQu"].fillna("None", inplace=True) train["GarageType"].fillna("None", inplace=True) train["GarageQual"].fillna(0, inplace=True) train["GarageCond"].fillna(0, inplace=True) train["GarageYrBlt"].fillna("None", inplace=True) train["GarageFinish"].fillna("None", inplace=True) train["GarageCars"].fillna(0, inplace=True) train["GarageArea"].fillna(0, inplace=True) train["PoolQC"].fillna("None", inplace=True) train["Fence"].fillna("None", inplace=True) train["MiscFeature"].fillna("None", inplace=True) train["LotFrontage"].fillna(0, inplace=True) train["MasVnrType"].fillna("None", inplace=True) train["MasVnrArea"].fillna(0, inplace=True) train["Electrical"].fillna("SBrkr", inplace=True) train["Utilities"].fillna("None", inplace=True) <categorify>
print("Number of classes: {}".format(len(CLASSES))) print("First five classes, sorted alphabetically:") for name in sorted(CLASSES)[:5]: print(name) print("Number of training images: {}".format(NUM_TRAINING_IMAGES))
Petals to the Metal - Flower Classification on TPU
10,859,686
train = train.replace({"MSSubClass" : {20 : "SC20", 30 : "SC30", 40 : "SC40", 45 : "SC45", 50 : "SC50", 60 : "SC60", 70 : "SC70", 75 : "SC75", 80 : "SC80", 85 : "SC85", 90 : "SC90", 120 : "SC120", 150 : "SC150", 160 : "SC160", 180 : "SC180", 190 : "SC190"}, "MoSold" : {1 : "Jan", 2 : "Feb", 3 : "Mar", 4 : "Apr", 5 : "May", 6 : "Jun", 7 : "Jul", 8 : "Aug", 9 : "Sep", 10 : "Oct", 11 : "Nov", 12 : "Dec"} }) train = train.replace({"Alley" : {"Grvl" : 1, "Pave" : 2}, "BsmtCond" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "BsmtExposure" : {"No" : 0, "Mn" : 1, "Av": 2, "Gd" : 3}, "BsmtFinType1" : {"No" : 0, "Unf" : 1, "LwQ": 2, "Rec" : 3, "BLQ" : 4, "ALQ" : 5, "GLQ" : 6}, "BsmtFinType2" : {"No" : 0, "Unf" : 1, "LwQ": 2, "Rec" : 3, "BLQ" : 4, "ALQ" : 5, "GLQ" : 6}, "BsmtQual" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA": 3, "Gd" : 4, "Ex" : 5}, "ExterCond" : {"Po" : 1, "Fa" : 2, "TA": 3, "Gd": 4, "Ex" : 5}, "ExterQual" : {"Po" : 1, "Fa" : 2, "TA": 3, "Gd": 4, "Ex" : 5}, "FireplaceQu" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "Functional" : {"Sal" : 1, "Sev" : 2, "Maj2" : 3, "Maj1" : 4, "Mod": 5, "Min2" : 6, "Min1" : 7, "Typ" : 8}, "GarageCond" : {"None" : 0, "No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "GarageQual" : {"None" : 0, "No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "HeatingQC" : {"Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "KitchenQual" : {"Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "LandSlope" : {"Sev" : 1, "Mod" : 2, "Gtl" : 3}, "LotShape" : {"IR3" : 1, "IR2" : 2, "IR1" : 3, "Reg" : 4}, "PavedDrive" : {"N" : 0, "P" : 1, "Y" : 2}, "PoolQC" : {"No" : 0, "Fa" : 1, "TA" : 2, "Gd" : 3, "Ex" : 4}, "Street" : {"Grvl" : 1, "Pave" : 2}, "Utilities" : {"None" : 0, "ELO" : 1, "NoSeWa" : 2, "NoSewr" : 3, "AllPub" : 4}} )<feature_engineering>
print("Training data shapes:") for image, label in ds_train.take(3): print(image.numpy().shape, label.numpy().shape) print("Training data label examples:", label.numpy() )
Petals to the Metal - Flower Classification on TPU
10,859,686
train["OverallGrade"] = train["OverallQual"] * train["OverallCond"] train["GarageGrade"] = train["GarageQual"] * train["GarageCond"] train["ExterGrade"] = train["ExterQual"] * train["ExterCond"] train["KitchenScore"] = train["KitchenAbvGr"] * train["KitchenQual"] train["FireplaceScore"] = train["Fireplaces"] * train["FireplaceQu"] train["GarageScore"] = train["GarageArea"] * train["GarageQual"] train["PoolScore"] = train["PoolArea"] * train["PoolQC"] train["TotalBath"] = train["BsmtFullBath"] + train["BsmtHalfBath"]/2 + train["FullBath"] + train["HalfBath"]/2 train["AllSF"] = train["GrLivArea"] + train["TotalBsmtSF"] train["AllFlrsSF"] = train["1stFlrSF"] + train["2ndFlrSF"] train["AllPorchSF"] = train["OpenPorchSF"] + train["EnclosedPorch"] + train["3SsnPorch"] + train["ScreenPorch"]<sort_values>
print("Test data shapes:") for image, idnum in ds_test.take(3): print(image.numpy().shape, idnum.numpy().shape) print("Test data IDs:", idnum.numpy().astype('U'))
Petals to the Metal - Flower Classification on TPU
10,859,686
corr = train.corr() corr.sort_values(["SalePrice"], ascending = False, inplace = True) corr.SalePrice<feature_engineering>
one_batch = next(iter(ds_train.unbatch().batch(20))) display_batch_of_images(one_batch )
Petals to the Metal - Flower Classification on TPU
10,859,686
train["AllSF-s2"] = train["AllSF"] ** 2 train["AllSF-Sq"] = np.sqrt(train["AllSF"]) train["OverallQual-s2"] = train["OverallQual"] ** 2 train["OverallQual-Sq"] = np.sqrt(train["OverallQual"]) train["AllFlrsSF-s2"] = train["AllFlrsSF"] ** 2 train["AllFlrsSF-Sq"] = np.sqrt(train["AllFlrsSF"]) train["GrLivArea-s2"] = train["GrLivArea"] ** 2 train["GrLivArea-Sq"] = np.sqrt(train["GrLivArea"]) train["ExterQual-s2"] = train["ExterQual"] ** 2 train["ExterQual-Sq"] = np.sqrt(train["ExterQual"] )<categorify>
pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
10,859,686
categorical_features = train.select_dtypes(include = ["object"] ).columns numerical_features = train.select_dtypes(exclude = ["object"] ).columns numerical_features = numerical_features.drop("SalePrice") train_num = train[numerical_features] train_cat = train[categorical_features] skewness = train_num.apply(lambda x: skew(x)) skewness = skewness[abs(skewness)> 0.5] print("%d out of %d numerical features are skewed.Apply log transform to these features." %(skewness.shape[0], train_num.shape[1])) train_num.loc[:,skewness.index] = np.log1p(np.asarray(train_num[skewness.index] , dtype=float)) train_cat = pd.get_dummies(train_cat )<train_model>
import efficientnet.tfkeras as efficientnet
Petals to the Metal - Flower Classification on TPU
10,859,686
y = np.log1p(train["SalePrice"]) X_train, X_test, y_train, y_test = train_test_split(pd.concat([train_num, train_cat], axis = 1), y, test_size = 0.3, random_state = 514) stdSc = StandardScaler() X_train.loc[:, numerical_features] = stdSc.fit_transform(X_train.loc[:, numerical_features]) X_test.loc[:, numerical_features] = stdSc.transform(X_test.loc[:, numerical_features] )<compute_train_metric>
with strategy.scope() : pretrained_model = efficientnet.EfficientNetB7(weights='noisy-student',include_top=False,input_shape=[*IMAGE_SIZE, 3]) pretrained_model.trainable=True model = Sequential() model.add(pretrained_model) model.add(GlobalAveragePooling2D()) model.add(Dense(104, activation='softmax')) model.compile(optimizer="adam",loss="sparse_categorical_crossentropy",metrics=["sparse_categorical_accuracy"] )
Petals to the Metal - Flower Classification on TPU
10,859,686
scorer = make_scorer(mean_squared_error, greater_is_better = True) def rmse_cv_train(model): rmse = np.sqrt(cross_val_score(model, X_train, y_train, scoring = scorer, cv = 10)) return(rmse) def rmse_cv_test(model): rmse = np.sqrt(cross_val_score(model, X_test, y_test, scoring = scorer, cv = 10)) return(rmse )<train_model>
es = EarlyStopping(monitor='val_loss', mode='min', patience=6, restore_best_weights=True, verbose=1) lr = ReduceLROnPlateau(monitor='val_loss',factor=0.2,patience=4,verbose=1) callbacks = [es, lr]
Petals to the Metal - Flower Classification on TPU
10,859,686
elasticNet = ElasticNetCV(l1_ratio = [0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, 1], alphas = [0.0001, 0.001, 0.01, 0.1, 1], max_iter = 50000, cv = 10) elasticNet.fit(X_train, y_train) alpha = elasticNet.alpha_ ratio = elasticNet.l1_ratio_ print("Best l1_ratio :", ratio) print("Best alpha :", alpha )<train_on_grid>
BATCH_SIZE = 16 * strategy.num_replicas_in_sync EPOCHS = 30 STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE history = model.fit( ds_train, validation_data=ds_valid, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, callbacks=callbacks )
Petals to the Metal - Flower Classification on TPU
10,859,686
print("Try again for more precision with l1_ratio centered around " + str(ratio)) elasticNet = ElasticNetCV(l1_ratio = [ratio *.9, ratio *.95, ratio, ratio * 1.05, ratio * 1.1], alphas = [0.0001, 0.001, 0.01, 0.1, 1], max_iter = 50000, cv = 10) elasticNet.fit(X_train, y_train) alpha = elasticNet.alpha_ ratio = elasticNet.l1_ratio_ print("Best l1_ratio :", ratio) print("Best alpha :", alpha )<train_on_grid>
cmdataset = get_validation_dataset(ordered=True) images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label ).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) labels = range(len(CLASSES)) cmat = confusion_matrix( cm_correct_labels, cm_predictions, labels=labels, ) cmat =(cmat.T / cmat.sum(axis=1)).T
Petals to the Metal - Flower Classification on TPU
10,859,686
print("Now try again for more precision on alpha, with l1_ratio fixed at " + str(ratio)+ " and alpha centered around " + str(alpha)) elasticNet = ElasticNetCV(l1_ratio = ratio, alphas = [alpha *.6, alpha *.7, alpha *.8, alpha *.9, alpha, alpha * 1.1, alpha * 1.2, alpha * 1.3, alpha * 1.4], max_iter = 50000, cv = 5) elasticNet.fit(X_train, y_train) print("Best l1_ratio :", elasticNet.l1_ratio_) print("Best alpha :", elasticNet.alpha_) print("ElasticNet RMSE on Training set :", rmse_cv_train(elasticNet ).mean()) print("ElasticNet RMSE on Test set :", rmse_cv_test(elasticNet ).mean()) y_train_ela = elasticNet.predict(X_train) y_test_ela = elasticNet.predict(X_test )<load_from_csv>
score = f1_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) precision = precision_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) recall = recall_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) display_confusion_matrix(cmat, score, precision, recall )
Petals to the Metal - Flower Classification on TPU
10,859,686
test = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/test.csv") test["Alley"].fillna("None", inplace=True) test["BsmtQual"].fillna("None", inplace=True) test["BsmtCond"].fillna("None", inplace=True) test["BsmtExposure"].fillna("None", inplace=True) test["BsmtFinType1"].fillna("None", inplace=True) test["BsmtFinSF1"].fillna(0, inplace=True) test["BsmtFinType2"].fillna("None", inplace=True) test["BsmtFinSF2"].fillna(0, inplace=True) test["BsmtFullBath"].fillna(0, inplace=True) test["BsmtHalfBath"].fillna(0, inplace=True) test["BsmtUnfSF"].fillna(0, inplace=True) test["TotalBsmtSF"].fillna(0, inplace=True) test["KitchenQual"].fillna(0, inplace=True) test["Functional"].fillna(0, inplace=True) test["FireplaceQu"].fillna("None", inplace=True) test["GarageType"].fillna("None", inplace=True) test["GarageQual"].fillna(0, inplace=True) test["GarageCond"].fillna(0, inplace=True) test["GarageYrBlt"].fillna("None", inplace=True) test["GarageFinish"].fillna("None", inplace=True) test["GarageCars"].fillna(0, inplace=True) test["GarageArea"].fillna(0, inplace=True) test["PoolQC"].fillna("None", inplace=True) test["Fence"].fillna("None", inplace=True) test["MiscFeature"].fillna("None", inplace=True) test["LotFrontage"].fillna(0, inplace=True) test["MasVnrType"].fillna("None", inplace=True) test["MasVnrArea"].fillna(0, inplace=True) test["Electrical"].fillna("SBrkr", inplace=True) test["Utilities"].fillna("None", inplace=True) test = test.replace({"MSSubClass" : {20 : "SC20", 30 : "SC30", 40 : "SC40", 45 : "SC45", 50 : "SC50", 60 : "SC60", 70 : "SC70", 75 : "SC75", 80 : "SC80", 85 : "SC85", 90 : "SC90", 120 : "SC120", 150 : "SC150", 160 : "SC160", 180 : "SC180", 190 : "SC190"}, "MoSold" : {1 : "Jan", 2 : "Feb", 3 : "Mar", 4 : "Apr", 5 : "May", 6 : "Jun", 7 : "Jul", 8 : "Aug", 9 : "Sep", 10 : "Oct", 11 : "Nov", 12 : "Dec"} }) test = test.replace({"Alley" : {"Grvl" : 1, "Pave" : 2}, "BsmtCond" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "BsmtExposure" : {"No" : 0, "Mn" : 1, "Av": 2, "Gd" : 3}, "BsmtFinType1" : {"No" : 0, "Unf" : 1, "LwQ": 2, "Rec" : 3, "BLQ" : 4, "ALQ" : 5, "GLQ" : 6}, "BsmtFinType2" : {"No" : 0, "Unf" : 1, "LwQ": 2, "Rec" : 3, "BLQ" : 4, "ALQ" : 5, "GLQ" : 6}, "BsmtQual" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA": 3, "Gd" : 4, "Ex" : 5}, "ExterCond" : {"Po" : 1, "Fa" : 2, "TA": 3, "Gd": 4, "Ex" : 5}, "ExterQual" : {"Po" : 1, "Fa" : 2, "TA": 3, "Gd": 4, "Ex" : 5}, "FireplaceQu" : {"No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "Functional" : {"Sal" : 1, "Sev" : 2, "Maj2" : 3, "Maj1" : 4, "Mod": 5, "Min2" : 6, "Min1" : 7, "Typ" : 8}, "GarageCond" : {"None" : 0, "No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "GarageQual" : {"None" : 0, "No" : 0, "Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "HeatingQC" : {"Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "KitchenQual" : {"Po" : 1, "Fa" : 2, "TA" : 3, "Gd" : 4, "Ex" : 5}, "LandSlope" : {"Sev" : 1, "Mod" : 2, "Gtl" : 3}, "LotShape" : {"IR3" : 1, "IR2" : 2, "IR1" : 3, "Reg" : 4}, "PavedDrive" : {"N" : 0, "P" : 1, "Y" : 2}, "PoolQC" : {"No" : 0, "Fa" : 1, "TA" : 2, "Gd" : 3, "Ex" : 4}, "Street" : {"Grvl" : 1, "Pave" : 2}, "Utilities" : {"None" : 0, "ELO" : 1, "NoSeWa" : 2, "NoSewr" : 3, "AllPub" : 4}}) test["OverallGrade"] = test["OverallQual"] * test["OverallCond"] test["GarageGrade"] = test["GarageQual"] * test["GarageCond"] test["ExterGrade"] = test["ExterQual"] * test["ExterCond"] test["KitchenScore"] = test["KitchenAbvGr"] * test["KitchenQual"] test["FireplaceScore"] = test["Fireplaces"] * test["FireplaceQu"] test["GarageScore"] = test["GarageArea"] * test["GarageQual"] test["PoolScore"] = test["PoolArea"] * test["PoolQC"] test["TotalBath"] = test["BsmtFullBath"] + test["BsmtHalfBath"]/2 + test["FullBath"] + test["HalfBath"]/2 test["AllSF"] = test["GrLivArea"] + test["TotalBsmtSF"] test["AllFlrsSF"] = test["1stFlrSF"] + test["2ndFlrSF"] test["AllPorchSF"] = test["OpenPorchSF"] + test["EnclosedPorch"] + test["3SsnPorch"] + test["ScreenPorch"] test["AllSF-s2"] = test["AllSF"] ** 2 test["AllSF-Sq"] = np.sqrt(test["AllSF"]) test["OverallQual-s2"] = test["OverallQual"] ** 2 test["OverallQual-Sq"] = np.sqrt(test["OverallQual"]) test["AllFlrsSF-s2"] = test["AllFlrsSF"] ** 2 test["AllFlrsSF-Sq"] = np.sqrt(test["AllFlrsSF"]) test["GrLivArea-s2"] = test["GrLivArea"] ** 2 test["GrLivArea-Sq"] = np.sqrt(test["GrLivArea"]) test["ExterQual-s2"] = test["ExterQual"] ** 2 test["ExterQual-Sq"] = np.sqrt(test["ExterQual"]) test_num = test[numerical_features] test_cat = test[categorical_features] test_num.loc[:,skewness.index] = np.log1p(np.asarray(test_num[skewness.index] , dtype=float)) test_cat = pd.get_dummies(test_cat) test_processed = pd.concat([test_num, test_cat], axis = 1) test_processed.loc[:, numerical_features] = stdSc.transform(test_processed.loc[:, numerical_features] )<save_to_csv>
dataset = get_validation_dataset() dataset = dataset.unbatch().batch(20) batch = iter(dataset )
Petals to the Metal - Flower Classification on TPU
10,859,686
final_train, final_test = X_train.align(test_processed, join='left', axis=1, fill_value=0) y_test = elasticNet.predict(final_test) sub = pd.DataFrame() sub['Id'] = test["Id"] sub['SalePrice'] = np.expm1(y_test) sub.to_csv('submission.csv',index=False )<import_modules>
images, labels = next(batch) probabilities = model.predict(images) predictions = np.argmax(probabilities, axis=-1) display_batch_of_images(( images, labels), predictions )
Petals to the Metal - Flower Classification on TPU
10,859,686
import pandas as pd import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Input, BatchNormalization, Dropout, Concatenate from tensorflow.keras.models import Model, Sequential from tensorflow.keras.callbacks import ModelCheckpoint<load_from_csv>
test_ds = get_test_dataset(ordered=True) print('Computing predictions...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions )
Petals to the Metal - Flower Classification on TPU
10,859,686
<define_variables><EOS>
print('Generating submission.csv file...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt( 'submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='', ) !head submission.csv
Petals to the Metal - Flower Classification on TPU
14,144,790
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<find_best_params>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU