kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
14,144,790
%%time module_url = 'https://tfhub.dev/google/universal-sentence-encoder-large/4' embed = hub.KerasLayer(module_url, trainable=False, name='USE_embedding' )<choose_model_class>
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg19 import VGG19 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201 from tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2 from tensorflow.keras.applications.nasnet import NASNetLarge from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2, EfficientNetB0, EfficientNetB1
Petals to the Metal - Flower Classification on TPU
14,144,790
def build_model(embed): model = Sequential([ Input(shape=[], dtype=tf.string), embed, Dense(128, activation='relu'), BatchNormalization() , Dropout(0.5), Dense(64, activation='relu'), BatchNormalization() , Dropout(0.5), Dense(1, activation='sigmoid') ]) model.compile(Adam(lr=0.0001), loss='binary_crossentropy', metrics=['accuracy']) return model<train_model>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
14,144,790
checkpoint = ModelCheckpoint('model.h5', monitor='val_loss', save_best_only=True) train_history = model.fit( train_data, train_labels, validation_split=0.2, epochs=20, callbacks=[checkpoint], batch_size=32 )<predict_on_test>
AUTO = tf.data.experimental.AUTOTUNE
Petals to the Metal - Flower Classification on TPU
14,144,790
model.load_weights('model.h5') test_pred = model.predict(test_data )<save_to_csv>
GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started') MORE_IMAGES_GCS_DS_PATH = KaggleDatasets().get_gcs_path('tf-flower-photo-tfrec' )
Petals to the Metal - Flower Classification on TPU
14,144,790
submission['target'] = test_pred.round().astype(int) submission.to_csv('submission.csv', index=False )<import_modules>
IMAGE_SIZE = [512, 512] EPOCHS = 20 BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') MOREIMAGES_PATH_SELECT = { 192: '/tfrecords-jpeg-192x192', 224: '/tfrecords-jpeg-224x224', 331: '/tfrecords-jpeg-331x331', 512: '/tfrecords-jpeg-512x512' } MOREIMAGES_PATH = MOREIMAGES_PATH_SELECT[IMAGE_SIZE[0]] IMAGENET_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/imagenet' + MOREIMAGES_PATH + '/*.tfrec') INATURELIST_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/inaturalist' + MOREIMAGES_PATH + '/*.tfrec') OPENIMAGE_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/openimage' + MOREIMAGES_PATH + '/*.tfrec') TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES + IMAGENET_FILES + INATURELIST_FILES + OPENIMAGE_FILES SEED = 2020 NUM_TRAINING_IMAGES = 12753 NUM_TEST_IMAGES = 7382 STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
Petals to the Metal - Flower Classification on TPU
14,144,790
import numpy as np import pandas as pd import tensorflow as tf from IPython.display import clear_output from sklearn.model_selection import train_test_split<import_modules>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def data_augment(image, label): flag = random.randint(1,3) coef_1 = random.randint(70, 90)* 0.01 coef_2 = random.randint(70, 90)* 0.01 if flag == 1: image = tf.image.random_flip_left_right(image, seed=SEED) elif flag == 2: image = tf.image.random_flip_up_down(image, seed=SEED) else: image = tf.image.random_crop(image, [int(IMAGE_SIZE[0]*coef_1), int(IMAGE_SIZE[0]*coef_2), 3],seed=SEED) return image, label def get_training_dataset() : dataset = load_dataset(TRAINING_FILENAMES, labeled=True) dataset = dataset.map(data_augment, num_parallel_calls=AUTO) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def get_validation_dataset() : dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=False) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
14,144,790
print(tf.__version__ )<load_from_csv>
LR_START = 0.00001 LR_MAX = 0.00005 * strategy.num_replicas_in_sync LR_MIN = 0.00001 LR_RAMPUP_EPOCHS = 5 LR_SUSTAIN_EPOCHS = 0 LR_EXP_DECAY =.75 def lrfn(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True) rng = [i for i in range(EPOCHS)] y = [lrfn(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
14,144,790
train_data = pd.read_csv('/kaggle/input/titanic/train.csv') test_data = pd.read_csv("/kaggle/input/titanic/test.csv") train_data.head(100 )<feature_engineering>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) return Model(inputs=base_model.input, outputs=predictions) with strategy.scope() : model = get_model(DenseNet201) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] )
Petals to the Metal - Flower Classification on TPU
14,144,790
def clean_data(df): df['Age'].fillna(0, inplace = True) df['Embarked'].fillna('S', inplace = True) df["Fare"] = df["Fare"].fillna(df["Fare"].median()) df['Family_Size'] = df['SibSp'] + df['Parch'] + 1 df['Title'] = df.Name.str.extract('([A-Za-z]+)\.', expand=False) df['Title'] = df['Title'].replace(['Lady', 'Countess','Capt', 'Col','Don',\ 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona', 'Dr'], 'Other') df['Title'] = df['Title'].replace('Mlle', 'Miss') df['Title'] = df['Title'].replace('Ms', 'Miss') df['Title'] = df['Title'].replace('Mme', 'Mrs') df['Title'].fillna('Unknown', inplace = True) df['Title'] = df['Title'].astype(str) df['Cabin'].fillna('U', inplace = True) df['Deck'] = df["Cabin"].str.slice(0,1) df['Last_Name'] = df['Name'].apply(lambda x: str.split(x, ",")[0]) Age_Title_Group = df.groupby('Title')['Age'].mean() df['Title_Age'] = df['Age'] Titles = df['Title'].unique() for i in range(len(Titles)) : df.loc[(df['Age']==0)&(df['Title']== Titles[i]), 'Title_Age'] = Age_Title_Group[Titles[i]] df['Age'] = df['Title_Age'].astype(int) return df<drop_column>
history = model.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, callbacks=[lr_callback, ModelCheckpoint(filepath='my_ef_net_b7.h5', monitor='val_loss', save_best_only=True)], validation_data=get_validation_dataset() , workers = 3) plt.plot(history.history['sparse_categorical_accuracy'], label='Оценка точности на обучающем наборе') plt.plot(history.history['val_sparse_categorical_accuracy'], label='Оценка точности на проверочном наборе') plt.xlabel('Эпоха обучения') plt.ylabel('Оценка точности') plt.legend() plt.show()
Petals to the Metal - Flower Classification on TPU
14,144,790
train_data = clean_data(train_data) test_data = clean_data(test_data )<groupby>
model = tf.keras.models.load_model('my_ef_net_b7.h5' )
Petals to the Metal - Flower Classification on TPU
14,144,790
<drop_column><EOS>
test_ds = get_test_dataset(ordered=True) print('Вычисляем предсказания...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions) print('Создание файла submission.csv...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
14,009,408
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<split>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
14,009,408
train_data, val_data = train_test_split(train_data, test_size=0.2) print(len(train_data), 'train examples') print(len(val_data), 'validation examples') print(len(test_data), 'test examples' )<create_dataframe>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
14,009,408
def df_to_dataset(df, shuffle, test, n_epochs =None): def input_fn() : dataframe = df.copy() NUM_EXAMPLES = len(dataframe) if test: ds = tf.data.Dataset.from_tensor_slices(dict(dataframe)) else: labels = dataframe.pop('Survived') ds = tf.data.Dataset.from_tensor_slices(( dict(dataframe), labels)) if shuffle: ds.shuffle(buffer_size=NUM_EXAMPLES) ds = ds.repeat(n_epochs) ds = ds.batch(NUM_EXAMPLES) return ds return input_fn<create_dataframe>
GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" )
Petals to the Metal - Flower Classification on TPU
14,009,408
train_ds = df_to_dataset(train_data, shuffle=True, test=False) val_ds = df_to_dataset(val_data, shuffle=False, test=False, n_epochs=1) test_ds = df_to_dataset(test_data, shuffle=False, test=True, n_epochs=1 )<train_model>
IMAGE_SIZE = [512, 512] BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') SEED = 2020
Petals to the Metal - Flower Classification on TPU
14,009,408
n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) est.train(train_ds, max_steps=100) result = est.evaluate(val_ds) clear_output() print(pd.Series(result))<predict_on_test>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def get_validation_dataset() : dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
14,009,408
predictions = est.predict(test_ds) probs = pd.Series([pred['probabilities'][1] for pred in predictions]) print(probs) predictions =(probs >= 0.5 ).astype(int )<create_dataframe>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model1 = get_model(EfficientNetB7) model1.load_weights("/kaggle/input/more-data-with-efficientnetb7/my_ef_net_b7.h5" )
Petals to the Metal - Flower Classification on TPU
14,009,408
predictions_dataframe = test_data[["PassengerId"]] predictions_dataframe["Survived"] = predictions<save_to_csv>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model2 = get_model(VGG19) model2.load_weights("/kaggle/input/start-with-pre-train/my_ef_net_b7.h5" )
Petals to the Metal - Flower Classification on TPU
14,009,408
predictions_dataframe.to_csv("my_submission.csv",index=False )<load_from_csv>
val_dataset = get_validation_dataset() images_ds = val_dataset.map(lambda image, label: image) labels_ds = val_dataset.map(lambda image, label: label ).unbatch() val_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() m1 = model1.predict(images_ds) m2 = model2.predict(images_ds) scores = [] for alpha in np.linspace(0,1,100): val_probabilities = alpha*m1+(1-alpha)*m2 val_predictions = np.argmax(val_probabilities, axis=-1) scores.append(f1_score(val_labels, val_predictions, labels=range(104), average='macro')) best_alpha = np.argmax(scores)/100 print('Best alpha: ' + str(best_alpha))
Petals to the Metal - Flower Classification on TPU
14,009,408
<count_missing_values><EOS>
test_ds = get_test_dataset(ordered=True) best_alpha = 0.48 print('Вычисляем предсказания...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities1 = model1.predict(test_images_ds) probabilities2 = model2.predict(test_images_ds) probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2 predictions = np.argmax(probabilities, axis=-1) print(predictions) print('Создание файла submission.csv...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
13,709,597
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<count_missing_values>
!pip install efficientnet
Petals to the Metal - Flower Classification on TPU
13,709,597
Total = Total.drop(['Ticket','Cabin'], axis = 1) fare_mode = Total['Fare'].mode().iat[0] Total['Fare'].fillna(fare_mode,inplace = True) embarked_mode = Total['Embarked'].mode().iat[0] Total['Embarked'].fillna(embarked_mode, inplace = True) for column in Total: if Total[column].isnull().sum() != 0: print('Missing values in',column,':', Total[column].isnull().sum() )<categorify>
import random, re, math, os import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt import tensorflow_addons as tfa from kaggle_datasets import KaggleDatasets from tensorflow.keras.mixed_precision import experimental as mixed_precision import tensorflow.keras.backend as K import efficientnet.tfkeras as efn from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix import datetime import tqdm import json from collections import Counter import gc
Petals to the Metal - Flower Classification on TPU
13,709,597
sex_dummy = pd.get_dummies(Total['Sex']) Total = Total.drop('Sex', axis = 1) Total = pd.concat([Total, sex_dummy], axis = 1) embark_dummy = pd.get_dummies(Total['Embarked']) Total = Total.drop('Embarked', axis = 1) Total = pd.concat([Total, embark_dummy], axis = 1) Total<drop_column>
IMAGE_SIZE = [512, 512] EPOCHS = 16 BATCH_SIZE = 16 * strategy.num_replicas_in_sync SEED = 100
Petals to the Metal - Flower Classification on TPU
13,709,597
title = lambda x: x.split(',')[1].split('.')[0].strip() Total['Title']=Total['Name'].map(title) Total = Total.drop('Name', axis = 1) Total<categorify>
GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started') GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec' )
Petals to the Metal - Flower Classification on TPU
13,709,597
title_dummy = pd.get_dummies(Total['Title']) title_dummy title_dummy['Mil'] = title_dummy['Capt']+title_dummy['Col']+title_dummy['Major'] title_dummy = title_dummy.drop(['Capt','Col','Major'], axis = 1) title_dummy['Senior Male Honorific'] = title_dummy['Don']+title_dummy['Sir'] title_dummy = title_dummy.drop(['Don','Sir'], axis = 1) title_dummy['Senior Female Honorific'] = title_dummy['Dona']+title_dummy['Mme']+title_dummy['Lady'] title_dummy = title_dummy.drop(['Dona','Mme','Lady'], axis = 1) title_dummy['Ms+Mlle'] = title_dummy['Ms']+title_dummy['Mlle'] title_dummy = title_dummy.drop(['Ms','Mlle'], axis = 1) title_dummy['Fancy'] = title_dummy['Jonkheer']+title_dummy['the Countess'] title_dummy = title_dummy.drop(['Jonkheer','the Countess'], axis = 1) Total = Total.drop('Title', axis = 1) Total = pd.concat([Total, title_dummy], axis = 1) Total<filter>
MIXED_PRECISION = False XLA_ACCELERATE = False if MIXED_PRECISION: if tpu: policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16') else: policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16') mixed_precision.set_policy(policy) print('Mixed precision enabled') if XLA_ACCELERATE: tf.config.optimizer.set_jit(True) print('Accelerated Linear Algebra enabled' )
Petals to the Metal - Flower Classification on TPU
13,709,597
Age_Total = Total Age_Total = Age_Total.dropna() Age_Total def nans(df): return df[df.isnull().any(axis=1)] Age_Total_Predict = nans(Total) Age_Total_Predict<drop_column>
CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', 'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', 'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', 'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose']
Petals to the Metal - Flower Classification on TPU
13,709,597
col = list(Age_Total.columns) col.remove('Age') col.remove('Survived') Age_Total[col]<normalization>
def batch_to_numpy_images_and_labels(data): images, labels = data numpy_images = images.numpy() numpy_labels = labels.numpy() if numpy_labels.dtype == object: numpy_labels = [None for _ in enumerate(numpy_images)] return numpy_images, numpy_labels def title_from_label_and_target_(label, correct_label): if correct_label is None: return CLASSES[label], True correct =(label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower(image, title, subplot, red = False, titlesize = 16): plt.subplot(*subplot) plt.axis('off') plt.imshow(image) if len(title)> 0: plt.title(title, fontsize = int(titlesize)if not red else int(titlesize / 1.2), color = 'red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5)) return(subplot[0], subplot[1], subplot[2] + 1) def display_batch_of_images(databatch, predictions = None): images, labels = batch_to_numpy_images_and_labels(databatch) if labels is None: labels = [None for _ in enumerate(images)] rows = int(math.sqrt(len(images))) cols = len(images)// rows FIGSIZE = 13.0 SPACING = 0.1 subplot =(rows,cols,1) if rows < cols: plt.figure(figsize =(FIGSIZE, FIGSIZE / cols*rows)) else: plt.figure(figsize =(FIGSIZE / rows * cols,FIGSIZE)) for i,(image, label)in enumerate(zip(images[:rows*cols], labels[:rows*cols])) : title = '' if label is None else CLASSES[label] correct = True if predictions is not None: title, correct = title_from_label_and_target_(predictions[i], label) dynamic_titlesize = FIGSIZE * SPACING / max(rows,cols)* 40 + 3 subplot = display_one_flower(image, title, subplot, not correct, titlesize = dynamic_titlesize) plt.tight_layout() if label is None and predictions is None: plt.subplots_adjust(wspace = 0, hspace = 0) else: plt.subplots_adjust(wspace = SPACING, hspace = SPACING) plt.show() def dataset_to_numpy_util(dataset, N): dataset = dataset.unbatch().batch(N) for images, labels in dataset: numpy_images = images.numpy() numpy_labels = labels.numpy() break; return numpy_images, numpy_labels def title_from_label_and_target(label, correct_label): label = np.argmax(label, axis = -1) correct =(label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], str(correct), ', should be ' if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower_eval(image, title, subplot, red = False): plt.subplot(subplot) plt.axis('off') plt.imshow(image) plt.title(title, fontsize = 14, color = 'red' if red else 'black') return subplot + 1 def display_9_images_with_predictions(images, predictions, labels): subplot = 331 plt.figure(figsize =(13,13)) for i, image in enumerate(images): title, correct = title_from_label_and_target(predictions[i], labels[i]) subplot = display_one_flower_eval(image, title, subplot, not correct) if i >= 8: break; plt.tight_layout() plt.subplots_adjust(wspace = 0.1, hspace = 0.1) plt.show()
Petals to the Metal - Flower Classification on TPU
13,709,597
x = Age_Total[col] x_test = Age_Total_Predict[col] y_train = Age_Total['Age'] x_train = StandardScaler().fit(x ).transform(x) x_test = StandardScaler().fit(x_test ).transform(x_test )<train_on_grid>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels = 3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image
Petals to the Metal - Flower Classification on TPU
13,709,597
lasso = LassoCV(alphas = [0.01, 0.05, 0.1, 0.15,0.5] ).fit(x_train, y_train) alpha = 0.1 lasso_tuned = LassoCV(alphas = [0.8*alpha, 0.9*alpha, alpha, 1.1*alpha, 1.2*alpha] ).fit(x_train, y_train )<train_on_grid>
def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_labeled_id_tfrecord(example): LABELED_ID_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, LABELED_ID_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) idnum = example['id'] return image, label, idnum
Petals to the Metal - Flower Classification on TPU
13,709,597
svm_age = svm.SVR(kernel = 'rbf') svm_age.fit(x_train, y_train )<train_on_grid>
def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum
Petals to the Metal - Flower Classification on TPU
13,709,597
ridge = Ridge() parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]} ridge_age = GridSearchCV(ridge, parameters, scoring = 'neg_root_mean_squared_error', cv=5) ridge_age.fit(x_train, y_train) print(ridge_age.best_params_) print(-ridge_age.best_score_ )<compute_train_metric>
def load_dataset(filenames, labeled = True, ordered = False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_id_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset
Petals to the Metal - Flower Classification on TPU
13,709,597
print('The average R squared score for the lasso model is:', -cross_val_score(lasso_tuned, x_train, y_train, scoring ='neg_root_mean_squared_error' ).mean()) print('The average R squared score for the svm model is:', -cross_val_score(svm_age, x_train, y_train, scoring ='neg_root_mean_squared_error' ).mean()) print('The average R squared score for the ridge model is:', -ridge_age.best_score_) <predict_on_test>
def get_training_dataset() : train = load_dataset(TRAINING_FILENAMES, labeled = True) train = train.map(lambda image, label, idnum: [image, label]) train = train.repeat() train = train.shuffle(2048) train = train.batch(BATCH_SIZE) train = train.prefetch(AUTO) return train def get_training_dataset_preview(ordered = True): train = load_dataset(TRAINING_FILENAMES, labeled = True, ordered = ordered) train = train.batch(BATCH_SIZE) train = train.cache() train = train.prefetch(AUTO) return train
Petals to the Metal - Flower Classification on TPU
13,709,597
predicted_ages = pd.DataFrame(lasso_tuned.predict(x_test), columns=['Age']) Age_Total_Predict.drop('Age',axis = 1) Age_Total_Predict = Age_Total_Predict.assign(Age = lasso_tuned.predict(x_test ).round()) Age_Total_Predict['PassengerId'] = Age_Total_Predict.index Age_Total_Predict = Age_Total_Predict.reset_index(drop=True) Age_Total_Predict<feature_engineering>
def get_validation_dataset(ordered = False): validation = load_dataset(VALIDATION_FILENAMES, labeled = True, ordered = ordered) validation = validation.map(lambda image, label, idnum: [image, label]) validation = validation.batch(BATCH_SIZE) validation = validation.cache() validation = validation.prefetch(AUTO) return validation
Petals to the Metal - Flower Classification on TPU
13,709,597
Age_Total['PassengerId'] = Age_Total.index Age_Total = Age_Total.reset_index(drop=True) Total_Processed = pd.concat([Age_Total_Predict,Age_Total]) Total_Processed.set_index('PassengerId', inplace = True) Total_Processed = Total_Processed.sort_index() fix_neg = lambda x: x + 11.148738330664404 if x < 0 else x Total_Processed['Age'] = Total_Processed['Age'].apply(fix_neg) Total_Processed<split>
def get_test_dataset(ordered = False): test = load_dataset(TEST_FILENAMES, labeled = False, ordered = ordered) test = test.batch(BATCH_SIZE) test = test.prefetch(AUTO) return test
Petals to the Metal - Flower Classification on TPU
13,709,597
Train_Processed = Total_Processed[:len(train)] Test_Processed = Total_Processed[len(train):]<prepare_x_and_y>
def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
13,709,597
col = list(Train_Processed.columns) col.remove('Survived') x_train = Train_Processed[col] y_train = Train_Processed['Survived'] y_train = y_train.astype('int') x_final = Test_Processed[col] x_train = preprocessing.StandardScaler().fit(x_train ).transform(x_train) x_final= preprocessing.StandardScaler().fit(x_final ).transform(x_final )<train_on_grid>
train_dataset_aug = get_training_dataset() display_batch_of_images(next(iter(train_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(train_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(train_dataset_aug.unbatch().batch(20))))
Petals to the Metal - Flower Classification on TPU
13,709,597
k_score = [] k_range = range(1,16) for k in k_range: neigh = KNeighborsClassifier(n_neighbors = k ).fit(x_train,y_train) score = -cross_val_score(neigh, x_train, y_train, scoring ='neg_root_mean_squared_error' ).mean() k_score.append(score) Scores = pd.DataFrame(k_score, columns = ['Score']) Scores.index += 1 Scores.sort_values('Score' )<save_to_csv>
validation_dataset_aug = get_validation_dataset() display_batch_of_images(next(iter(validation_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(validation_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(validation_dataset_aug.unbatch().batch(20))))
Petals to the Metal - Flower Classification on TPU
13,709,597
neigh = KNeighborsClassifier(n_neighbors = 8 ).fit(x_train,y_train) y_KNN = pd.DataFrame(neigh.predict(x_final), columns = ['Survived']) y_KNN = y_KNN.assign(PassengerId = Test_Processed.index) cols = y_KNN.columns.tolist() cols = cols[-1:] + cols[:-1] y_KNN = y_KNN[cols] filename = 'Titanic Predictions KNN.csv' y_KNN.to_csv(filename,index=False) print('Saved file: ' + filename )<compute_train_metric>
test_dataset_aug = get_test_dataset() display_batch_of_images(next(iter(test_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(test_dataset_aug.unbatch().batch(20)))) display_batch_of_images(next(iter(test_dataset_aug.unbatch().batch(20))))
Petals to the Metal - Flower Classification on TPU
13,709,597
svm_lin = svm.SVC(kernel='linear' ).fit(x_train, y_train) print('The average R squared score for the svm_lin is:', cross_val_score(svm_lin, x_train, y_train, scoring ='accuracy' ).mean()) svm_rbf = svm.SVC(kernel='rbf' ).fit(x_train, y_train) print('The average R squared score for the svm_rbf is:', cross_val_score(svm_rbf, x_train, y_train, scoring ='accuracy' ).mean() )<train_on_grid>
def lrfn(epoch): LR_START = 0.00001 LR_MAX = 0.00005 * strategy.num_replicas_in_sync LR_MIN = 0.00001 LR_RAMPUP_EPOCHS = 5 LR_SUSTAIN_EPOCHS = 0 LR_EXP_DECAY =.8 if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY **(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose = True) rng = [i for i in range(25 if EPOCHS<25 else EPOCHS)] y = [lrfn(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
13,709,597
gammas = [0.01,0.1, 1, 10, 100] for gamma in gammas: svm_rbf = svm.SVC(kernel='rbf' ).fit(x_train, y_train) print('The average R squared score for the svm_rbf with a gamma of',gamma,' is:', cross_val_score(svm_rbf, x_train, y_train, scoring ='accuracy' ).mean() )<compute_train_metric>
with strategy.scope() : enet = efn.EfficientNetB7( input_shape =(512, 512, 3), weights = 'imagenet', include_top = False ) model = tf.keras.Sequential([ enet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation = 'softmax') ]) model.compile( optimizer=tf.keras.optimizers.Adam() , loss = 'sparse_categorical_crossentropy', metrics = ['sparse_categorical_accuracy'] ) model.summary() model.save('ML_finalproject.h5' )
Petals to the Metal - Flower Classification on TPU
13,709,597
cs = [0.65,0.67] for c in cs: svm_rbf = svm.SVC(kernel='rbf', C=c ).fit(x_train, y_train) print('The average R squared score for the svm_rbf with a C of',c,' is:', cross_val_score(svm_rbf, x_train, y_train, scoring ='accuracy' ).mean() )<save_to_csv>
gc.enable() def get_training_dataset_raw() : dataset = load_dataset(TRAINING_FILENAMES, labeled = True, ordered = False) return dataset raw_training_dataset = get_training_dataset_raw() label_counter = Counter() for images, labels, id in raw_training_dataset: label_counter.update([labels.numpy() ]) del raw_training_dataset TARGET_NUM_PER_CLASS = 122 def get_weight_for_class(class_id): counting = label_counter[class_id] weight = TARGET_NUM_PER_CLASS / counting return weight weight_per_class = {class_id: get_weight_for_class(class_id)for class_id in range(104)}
Petals to the Metal - Flower Classification on TPU
13,709,597
svm_rbf = svm.SVC(kernel='rbf' ).fit(x_train, y_train) y_SVM = pd.DataFrame(svm_rbf.predict(x_final), columns = ['Survived']) y_SVM = y_SVM.assign(PassengerId = Test_Processed.index) cols = y_SVM.columns.tolist() cols = cols[-1:] + cols[:-1] y_SVM = y_SVM[cols] filename = 'Titanic Predictions SVM.csv' y_SVM.to_csv(filename,index=False) print('Saved file: ' + filename )<compute_test_metric>
history = model.fit( get_training_dataset() , steps_per_epoch = STEPS_PER_EPOCH, epochs = EPOCHS, callbacks = [lr_callback], validation_data = get_validation_dataset() , class_weight = weight_per_class )
Petals to the Metal - Flower Classification on TPU
13,709,597
print('The average accuracy score for the SVM model is:', cross_val_score(svm_rbf, x_train, y_train, scoring ='accuracy' ).mean()) <install_modules>
cmdataset = get_validation_dataset(ordered = True) images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label ).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis = -1) print("Correct labels: ", cm_correct_labels.shape, cm_correct_labels) print("Predicted labels: ", cm_predictions.shape, cm_predictions )
Petals to the Metal - Flower Classification on TPU
13,709,597
!pip install category_encoders<install_modules>
cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels = range(len(CLASSES))) score = f1_score(cm_correct_labels, cm_predictions, labels = range(len(CLASSES)) , average = 'macro') precision = precision_score(cm_correct_labels, cm_predictions, labels = range(len(CLASSES)) , average = 'macro') recall = recall_score(cm_correct_labels, cm_predictions, labels = range(len(CLASSES)) , average = 'macro') cmat =(cmat.T / cmat.sum(axis = 1)).T display_confusion_matrix(cmat, score, precision, recall) print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall))
Petals to the Metal - Flower Classification on TPU
13,709,597
<import_modules><EOS>
test_ds = get_test_dataset(ordered = True) test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis = -1) print(predictions) test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') test = pd.DataFrame({"id": test_ids, "label": predictions}) print(test.head) test.to_csv("submission.csv",index = False )
Petals to the Metal - Flower Classification on TPU
13,589,735
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<set_options>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
13,589,735
%matplotlib inline warnings.filterwarnings('ignore' )<load_from_csv>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
13,589,735
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv") train.describe(include="all" )<count_missing_values>
GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" )
Petals to the Metal - Flower Classification on TPU
13,589,735
print(pd.isnull(train ).sum() )<count_missing_values>
IMAGE_SIZE = [512, 512] BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') SEED = 2020
Petals to the Metal - Flower Classification on TPU
13,589,735
print(pd.isnull(test ).sum() )<feature_engineering>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def get_validation_dataset() : dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
13,589,735
train['family'] = train['SibSp'] + train['Parch']+1 test['family'] = test['SibSp'] + test['Parch']+1<feature_engineering>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model1 = get_model(EfficientNetB1) model1.load_weights("/kaggle/input/first-start-with-pre-train/my_ef_net_b1.h5" )
Petals to the Metal - Flower Classification on TPU
13,589,735
train['Fare_log'] = train['Fare'].apply(lambda x: np.log(x+1)) test['Fare'] = test['Fare'].fillna(test['Fare'].mean()) test['Fare_log'] = test['Fare'].apply(lambda x: np.log(x+1))<feature_engineering>
def get_model(use_model): base_model = use_model(weights='noisy-student', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model2 = get_model(EfficientNetB1) model2.load_weights("/kaggle/input/last-start-with-pre-train/my_ef_net_b1.h5" )
Petals to the Metal - Flower Classification on TPU
13,589,735
<feature_engineering><EOS>
test_ds = get_test_dataset(ordered=True) best_alpha = 0.51 print('Вычисляем предсказания...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities1 = model1.predict(test_images_ds) probabilities2 = model2.predict(test_images_ds) probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2 predictions = np.argmax(probabilities, axis=-1) print(predictions) print('Создание файла submission.csv...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
13,080,498
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<feature_engineering>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
13,080,498
train['nick'] = train['Name'].apply(lambda x: x.split('.')[0].split(', ')[-1]) test['nick'] = test['Name'].apply(lambda x: x.split('.')[0].split(', ')[-1]) pd.concat([train['nick'], test['nick']] ).value_counts()<categorify>
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg19 import VGG19 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201 from tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2 from tensorflow.keras.applications.nasnet import NASNetLarge from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2, EfficientNetB0
Petals to the Metal - Flower Classification on TPU
13,080,498
train['nick'] = train['nick'].replace(['Lady', 'Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona', 'Sir', 'the Countess'], 'rare' ).replace(['Ms', 'Mme', 'Mlle'],'Miss') test['nick'] = test['nick'].replace(['Lady', 'Capt', 'Col','Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona', 'Sir', 'the Countess'], 'rare' ).replace(['Ms', 'Mme', 'Mlle'],'Miss' )<feature_engineering>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
13,080,498
train['Embarked'] = train['Embarked'].fillna('S' )<categorify>
GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started") MORE_IMAGES_GCS_DS_PATH = KaggleDatasets().get_gcs_path('tf-flower-photo-tfrec' )
Petals to the Metal - Flower Classification on TPU
13,080,498
list_cols = ['Sex', 'Embarked', 'cabin_ini', 'nick'] target_columns = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Embarked','family', 'Fare_log', 'cabin_ini', 'ticket_id', 'nick'] ce_ohe = ce.OneHotEncoder(cols=list_cols) train_onehot = ce_ohe.fit_transform(train[target_columns] )<split>
IMAGE_SIZE = [512, 512] EPOCHS = 30 BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] MOREIMAGES_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') IMAGENET_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/imagenet' + MOREIMAGES_PATH + '/*.tfrec') INATURELIST_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/inaturalist' + MOREIMAGES_PATH + '/*.tfrec') OPENIMAGE_FILES = tf.io.gfile.glob(MORE_IMAGES_GCS_DS_PATH + '/openimage' + MOREIMAGES_PATH + '/*.tfrec') TRAINING_FILENAMES = TRAINING_FILENAMES + IMAGENET_FILES + INATURELIST_FILES + OPENIMAGE_FILES SEED = 2020
Petals to the Metal - Flower Classification on TPU
13,080,498
target = train["Survived"] x_train, x_val, y_train, y_val = train_test_split(train_onehot, target, test_size = 0.2, random_state = 0 )<train_model>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord) return dataset def data_augment(image, label): image = tf.image.random_flip_left_right(image, seed=SEED) return image, label def get_training_dataset() : dataset = load_dataset(TRAINING_FILENAMES, labeled=True) dataset = dataset.map(data_augment) dataset = dataset.repeat() dataset = dataset.shuffle(2048) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(-1) return dataset def get_validation_dataset() : dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + f'/tfrecords-jpeg-{IMAGE_SIZE[0]}x{IMAGE_SIZE[0]}/val/*.tfrec'), labeled=True, ordered=False) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(-1) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(tf.io.gfile.glob(GCS_DS_PATH + f'/tfrecords-jpeg-{IMAGE_SIZE[0]}x{IMAGE_SIZE[0]}/test/*.tfrec'), labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(-1) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
13,080,498
gbk = GradientBoostingClassifier() gbk.fit(x_train, y_train) y_pred = gbk.predict(x_val) acc_gbk = round(accuracy_score(y_pred, y_val)* 100, 2) print(acc_gbk )<train_model>
LR_START = 0.00001 LR_MAX = 0.0001 LR_MIN = 0.00001 LR_RAMPUP_EPOCHS = 8 LR_SUSTAIN_EPOCHS = 0 LR_EXP_DECAY =.8 def lrfn(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True) rng = [i for i in range(EPOCHS)] y = [lrfn(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
13,080,498
gbk = GradientBoostingClassifier() gbk.fit(x_train, y_train) y_pred = gbk.predict(x_val) acc_gbk = round(accuracy_score(y_pred, y_val)* 100, 2) print(acc_gbk )<compute_train_metric>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) return Model(inputs=base_model.input, outputs=predictions) with strategy.scope() : model = get_model(InceptionV3) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] )
Petals to the Metal - Flower Classification on TPU
13,080,498
rfc = RandomForestClassifier() rfc.fit(x_train, y_train) y_pred = rfc.predict(x_val) acc_rfc = round(accuracy_score(y_pred, y_val)* 100, 2) print(acc_rfc )<train_model>
history = model.fit(get_training_dataset() , steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, callbacks=[lr_callback, ModelCheckpoint(filepath='my_ef_net_b7.h5', monitor='val_loss', save_best_only=True)], validation_data=get_validation_dataset() , workers = 3 )
Petals to the Metal - Flower Classification on TPU
13,080,498
mlp = MLPClassifier(max_iter=1000, hidden_layer_sizes=(100,), activation='relu', solver='sgd', learning_rate_init=0.01) mlp.fit(x_train, y_train) y_pred = mlp.predict(x_val) acc_rfc = round(accuracy_score(y_pred, y_val)* 100, 2) print(acc_rfc )<predict_on_test>
model = tf.keras.models.load_model('my_ef_net_b7.h5' )
Petals to the Metal - Flower Classification on TPU
13,080,498
<save_to_csv><EOS>
test_ds = get_test_dataset(ordered=True) print('Вычисляем предсказания...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions) print('Создание файла submission.csv...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
13,367,476
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<define_variables>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
13,367,476
def seed_everything(seed): random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) np.random.seed(seed )<define_variables>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
13,367,476
SEED = 2020 seed_everything(SEED )<define_variables>
GCS_DS_PATH = KaggleDatasets().get_gcs_path("tpu-getting-started" )
Petals to the Metal - Flower Classification on TPU
13,367,476
TRAIN_FILE_PATH = '/kaggle/input/nlp-getting-started/train.csv' TEST_FILE_PATH = '/kaggle/input/nlp-getting-started/test.csv' SUBMISSION_FILE_PATH = '/kaggle/input/nlp-getting-started/sample_submission.csv'<load_from_csv>
IMAGE_SIZE = [512, 512] BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') SEED = 2020
Petals to the Metal - Flower Classification on TPU
13,367,476
train_df = pd.read_csv(TRAIN_FILE_PATH) test_df = pd.read_csv(TEST_FILE_PATH )<feature_engineering>
def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset def get_validation_dataset() : dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=True) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.cache() dataset = dataset.prefetch(AUTO) return dataset def get_test_dataset(ordered=False): dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered) dataset = dataset.batch(BATCH_SIZE) dataset = dataset.prefetch(AUTO) return dataset def count_data_items(filenames): n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames] return np.sum(n) NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES) NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES) print('Dataset: {} validation images, {} unlabeled test images'.format(NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES))
Petals to the Metal - Flower Classification on TPU
13,367,476
ids_with_target_error = [328,443,513,2619,3640,3900,4342,5781,6552,6554,6570,6701,6702,6729,6861,7226] train_df.at[train_df['id'].isin(ids_with_target_error),'target'] = 0 train_df[train_df['id'].isin(ids_with_target_error)]<drop_column>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model1 = get_model(DenseNet201) model1.load_weights("/kaggle/input/more-data-with-densenet220011/my_ef_net_b7.h5" )
Petals to the Metal - Flower Classification on TPU
13,367,476
def clean_tweets(tweet): tweet = ''.join([x for x in tweet if x in string.printable]) tweet = re.sub(r"http\S+", "", tweet) return tweet<feature_engineering>
def get_model(use_model): base_model = use_model(weights='imagenet', include_top=False, pooling='avg', input_shape=(*IMAGE_SIZE, 3)) x = base_model.output predictions = Dense(104, activation='softmax' )(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile( optimizer='nadam', loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) return model with strategy.scope() : model2 = get_model(EfficientNetB1) model2.load_weights("/kaggle/input/fork-of-more-data-with-effnetb1/my_ef_net_b7.h5" )
Petals to the Metal - Flower Classification on TPU
13,367,476
train_df["text"] = train_df["text"].apply(lambda x: clean_tweets(x)) test_df["text"] = test_df["text"].apply(lambda x: clean_tweets(x))<drop_column>
val_dataset = get_validation_dataset() images_ds = val_dataset.map(lambda image, label: image) labels_ds = val_dataset.map(lambda image, label: label ).unbatch() val_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() m1 = model1.predict(images_ds) m2 = model2.predict(images_ds) scores = [] for alpha in np.linspace(0,1,100): val_probabilities = alpha*m1+(1-alpha)*m2 val_predictions = np.argmax(val_probabilities, axis=-1) scores.append(f1_score(val_labels, val_predictions, labels=range(104), average='macro')) best_alpha = np.argmax(scores)/100 print('Best alpha: ' + str(best_alpha))
Petals to the Metal - Flower Classification on TPU
13,367,476
<feature_engineering><EOS>
test_ds = get_test_dataset(ordered=True) print('Вычисляем предсказания...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities1 = model1.predict(test_images_ds) probabilities2 = model2.predict(test_images_ds) probabilities = best_alpha * probabilities1 +(1 - best_alpha)* probabilities2 predictions = np.argmax(probabilities, axis=-1) print(predictions) print('Создание файла submission.csv...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' )
Petals to the Metal - Flower Classification on TPU
13,341,122
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<define_variables>
print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
13,341,122
def remove_punctuations(text): punctuations = '@ for p in punctuations: text = text.replace(p, f' {p} ') text = text.replace('...', '...') if '...' not in text: text = text.replace('.. ', '...') return text<feature_engineering>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Petals to the Metal - Flower Classification on TPU
13,341,122
train_df["text"] = train_df["text"].apply(lambda x: remove_punctuations(x)) test_df["text"] = test_df["text"].apply(lambda x: remove_punctuations(x))<define_variables>
GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started') print(GCS_DS_PATH )
Petals to the Metal - Flower Classification on TPU
13,341,122
abbreviations = { "$" : " dollar ", "€" : " euro ", "4ao" : "for adults only", "a.m" : "before midday", "a3" : "anytime anywhere anyplace", "aamof" : "as a matter of fact", "acct" : "account", "adih" : "another day in hell", "afaic" : "as far as i am concerned", "afaict" : "as far as i can tell", "afaik" : "as far as i know", "afair" : "as far as i remember", "afk" : "away from keyboard", "app" : "application", "approx" : "approximately", "apps" : "applications", "asap" : "as soon as possible", "asl" : "age, sex, location", "atk" : "at the keyboard", "ave." : "avenue", "aymm" : "are you my mother", "ayor" : "at your own risk", "b&b" : "bed and breakfast", "b+b" : "bed and breakfast", "b.c" : "before christ", "b2b" : "business to business", "b2c" : "business to customer", "b4" : "before", "b4n" : "bye for now", "b@u" : "back at you", "bae" : "before anyone else", "bak" : "back at keyboard", "bbbg" : "bye bye be good", "bbc" : "british broadcasting corporation", "bbias" : "be back in a second", "bbl" : "be back later", "bbs" : "be back soon", "be4" : "before", "bfn" : "bye for now", "blvd" : "boulevard", "bout" : "about", "brb" : "be right back", "bros" : "brothers", "brt" : "be right there", "bsaaw" : "big smile and a wink", "btw" : "by the way", "bwl" : "bursting with laughter", "c/o" : "care of", "cet" : "central european time", "cf" : "compare", "cia" : "central intelligence agency", "csl" : "can not stop laughing", "cu" : "see you", "cul8r" : "see you later", "cv" : "curriculum vitae", "cwot" : "complete waste of time", "cya" : "see you", "cyt" : "see you tomorrow", "dae" : "does anyone else", "dbmib" : "do not bother me i am busy", "diy" : "do it yourself", "dm" : "direct message", "dwh" : "during work hours", "e123" : "easy as one two three", "eet" : "eastern european time", "eg" : "example", "embm" : "early morning business meeting", "encl" : "enclosed", "encl." : "enclosed", "etc" : "and so on", "faq" : "frequently asked questions", "fawc" : "for anyone who cares", "fb" : "facebook", "fc" : "fingers crossed", "fig" : "figure", "fimh" : "forever in my heart", "ft." : "feet", "ft" : "featuring", "ftl" : "for the loss", "ftw" : "for the win", "fwiw" : "for what it is worth", "fyi" : "for your information", "g9" : "genius", "gahoy" : "get a hold of yourself", "gal" : "get a life", "gcse" : "general certificate of secondary education", "gfn" : "gone for now", "gg" : "good game", "gl" : "good luck", "glhf" : "good luck have fun", "gmt" : "greenwich mean time", "gmta" : "great minds think alike", "gn" : "good night", "g.o.a.t" : "greatest of all time", "goat" : "greatest of all time", "goi" : "get over it", "gps" : "global positioning system", "gr8" : "great", "gratz" : "congratulations", "gyal" : "girl", "h&c" : "hot and cold", "hp" : "horsepower", "hr" : "hour", "hrh" : "his royal highness", "ht" : "height", "ibrb" : "i will be right back", "ic" : "i see", "icq" : "i seek you", "icymi" : "in case you missed it", "idc" : "i do not care", "idgadf" : "i do not give a damn fuck", "idgaf" : "i do not give a fuck", "idk" : "i do not know", "ie" : "that is", "i.e" : "that is", "ifyp" : "i feel your pain", "IG" : "instagram", "iirc" : "if i remember correctly", "ilu" : "i love you", "ily" : "i love you", "imho" : "in my humble opinion", "imo" : "in my opinion", "imu" : "i miss you", "iow" : "in other words", "irl" : "in real life", "j4f" : "just for fun", "jic" : "just in case", "jk" : "just kidding", "jsyk" : "just so you know", "l8r" : "later", "lb" : "pound", "lbs" : "pounds", "ldr" : "long distance relationship", "lmao" : "laugh my ass off", "lmfao" : "laugh my fucking ass off", "lol" : "laughing out loud", "ltd" : "limited", "ltns" : "long time no see", "m8" : "mate", "mf" : "motherfucker", "mfs" : "motherfuckers", "mfw" : "my face when", "mofo" : "motherfucker", "mph" : "miles per hour", "mr" : "mister", "mrw" : "my reaction when", "ms" : "miss", "mte" : "my thoughts exactly", "nagi" : "not a good idea", "nbc" : "national broadcasting company", "nbd" : "not big deal", "nfs" : "not for sale", "ngl" : "not going to lie", "nhs" : "national health service", "nrn" : "no reply necessary", "nsfl" : "not safe for life", "nsfw" : "not safe for work", "nth" : "nice to have", "nvr" : "never", "nyc" : "new york city", "oc" : "original content", "og" : "original", "ohp" : "overhead projector", "oic" : "oh i see", "omdb" : "over my dead body", "omg" : "oh my god", "omw" : "on my way", "p.a" : "per annum", "p.m" : "after midday", "pm" : "prime minister", "poc" : "people of color", "pov" : "point of view", "pp" : "pages", "ppl" : "people", "prw" : "parents are watching", "ps" : "postscript", "pt" : "point", "ptb" : "please text back", "pto" : "please turn over", "qpsa" : "what happens", "ratchet" : "rude", "rbtl" : "read between the lines", "rlrt" : "real life retweet", "rofl" : "rolling on the floor laughing", "roflol" : "rolling on the floor laughing out loud", "rotflmao" : "rolling on the floor laughing my ass off", "rt" : "retweet", "ruok" : "are you ok", "sfw" : "safe for work", "sk8" : "skate", "smh" : "shake my head", "sq" : "square", "srsly" : "seriously", "ssdd" : "same stuff different day", "tbh" : "to be honest", "tbs" : "tablespooful", "tbsp" : "tablespooful", "tfw" : "that feeling when", "thks" : "thank you", "tho" : "though", "thx" : "thank you", "tia" : "thanks in advance", "til" : "today i learned", "tl;dr" : "too long i did not read", "tldr" : "too long i did not read", "tmb" : "tweet me back", "tntl" : "trying not to laugh", "ttyl" : "talk to you later", "u" : "you", "u2" : "you too", "u4e" : "yours for ever", "utc" : "coordinated universal time", "w/" : "with", "w/o" : "without", "w8" : "wait", "wassup" : "what is up", "wb" : "welcome back", "wtf" : "what the fuck", "wtg" : "way to go", "wtpa" : "where the party at", "wuf" : "where are you from", "wuzup" : "what is up", "wywh" : "wish you were here", "yd" : "yard", "ygtr" : "you got that right", "ynk" : "you never know", "zzz" : "sleeping bored and tired" }<categorify>
IMAGE_SIZE = [512, 512] GCS_PATH = GCS_DS_PATH + '/tfrecords-jpeg-512x512' AUTO = tf.data.experimental.AUTOTUNE TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle', 'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily', 'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william', 'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose', 'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion', 'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia', 'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy', 'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium', 'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily', 'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower', 'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] def decode_image(image_data): image = tf.image.decode_jpeg(image_data, channels=3) image = tf.cast(image, tf.float32)/ 255.0 image = tf.reshape(image, [*IMAGE_SIZE, 3]) return image def read_labeled_tfrecord(example): LABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "class": tf.io.FixedLenFeature([], tf.int64), } example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT) image = decode_image(example['image']) label = tf.cast(example['class'], tf.int32) return image, label def read_unlabeled_tfrecord(example): UNLABELED_TFREC_FORMAT = { "image": tf.io.FixedLenFeature([], tf.string), "id": tf.io.FixedLenFeature([], tf.string), } example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT) image = decode_image(example['image']) idnum = example['id'] return image, idnum def load_dataset(filenames, labeled=True, ordered=False): ignore_order = tf.data.Options() if not ordered: ignore_order.experimental_deterministic = False dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO) dataset = dataset.with_options(ignore_order) dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO) return dataset
Petals to the Metal - Flower Classification on TPU
13,341,122
def convert_abbrev(word): return abbreviations[word.lower() ] if word.lower() in abbreviations.keys() else word<string_transform>
BATCH_SIZE = 16 * strategy.num_replicas_in_sync ds_train = get_training_dataset() ds_valid = get_validation_dataset() ds_test = get_test_dataset() print("Training:", ds_train) print("Validation:", ds_valid) print("Test:", ds_test )
Petals to the Metal - Flower Classification on TPU
13,341,122
def convert_abbrev_in_text(text): tokens = word_tokenize(text) tokens = [convert_abbrev(word)for word in tokens] text = ' '.join(tokens) return text<feature_engineering>
np.set_printoptions(threshold=10, linewidth=80) print("Training data shapes:") for image, label in ds_train.take(3): print(image.numpy().shape, label.numpy().shape) print("Training data label examples:", label.numpy() )
Petals to the Metal - Flower Classification on TPU
13,341,122
train_df["text"] = train_df["text"].apply(lambda x: convert_abbrev_in_text(x)) test_df["text"] = test_df["text"].apply(lambda x: convert_abbrev_in_text(x))<categorify>
print("Test data shapes:") for image, idnum in ds_test.take(3): print(image.numpy().shape, idnum.numpy().shape) print("Test data IDs:", idnum.numpy().astype('U'))
Petals to the Metal - Flower Classification on TPU
13,341,122
def fast_encode(texts, tokenizer, chunk_size=256, maxlen=512): tokenizer.enable_truncation(max_length=maxlen) tokenizer.enable_padding(max_length=maxlen) all_ids = [] for i in tqdm(range(0, len(texts), chunk_size)) : text_chunk = texts[i:i+chunk_size].tolist() encs = tokenizer.encode_batch(text_chunk) all_ids.extend([enc.ids for enc in encs]) return np.array(all_ids )<choose_model_class>
def batch_to_numpy_images_and_labels(data): images, labels = data numpy_images = images.numpy() numpy_labels = labels.numpy() if numpy_labels.dtype == object: numpy_labels = [None for _ in enumerate(numpy_images)] return numpy_images, numpy_labels def title_from_label_and_target(label, correct_label): if correct_label is None: return CLASSES[label], True correct =(label == correct_label) return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '', CLASSES[correct_label] if not correct else ''), correct def display_one_flower(image, title, subplot, red=False, titlesize=16): plt.subplot(*subplot) plt.axis('off') plt.imshow(image) if len(title)> 0: plt.title(title, fontsize=int(titlesize)if not red else int(titlesize/1.2), color='red' if red else 'black', fontdict={'verticalalignment':'center'}, pad=int(titlesize/1.5)) return(subplot[0], subplot[1], subplot[2]+1) def display_batch_of_images(databatch, predictions=None): images, labels = batch_to_numpy_images_and_labels(databatch) if labels is None: labels = [None for _ in enumerate(images)] rows = int(math.sqrt(len(images))) cols = len(images)//rows FIGSIZE = 13.0 SPACING = 0.1 subplot=(rows,cols,1) if rows < cols: plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows)) else: plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE)) for i,(image, label)in enumerate(zip(images[:rows*cols], labels[:rows*cols])) : title = '' if label is None else CLASSES[label] correct = True if predictions is not None: title, correct = title_from_label_and_target(predictions[i], label) dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3 subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize) plt.tight_layout() if label is None and predictions is None: plt.subplots_adjust(wspace=0, hspace=0) else: plt.subplots_adjust(wspace=SPACING, hspace=SPACING) plt.show() def display_training_curves(training, validation, title, subplot): if subplot%10==1: plt.subplots(figsize=(10,10), facecolor=' plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor(' ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.'] )
Petals to the Metal - Flower Classification on TPU
13,341,122
def build_model(transformer, loss='binary_crossentropy', max_len=512): input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") sequence_output = transformer(input_word_ids)[0] cls_token = sequence_output[:, 0, :] x = tf.keras.layers.Dropout(0.35 )(cls_token) out = Dense(1, activation='sigmoid' )(x) model = Model(inputs=input_word_ids, outputs=out) model.compile(Adam(lr=3e-5), loss=loss, metrics=[tf.keras.metrics.AUC() ]) return model<string_transform>
ds_iter = iter(ds_train.unbatch().batch(20))
Petals to the Metal - Flower Classification on TPU
13,341,122
nltk.download('punkt') stemmer = nltk.stem.porter.PorterStemmer() remove_punctuation_map = dict(( ord(char), None)for char in string.punctuation) def stem_tokens(tokens): return [stemmer.stem(item)for item in tokens] def normalize(text): return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map))) vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english') def cosine_sim(text1, text2): tfidf = vectorizer.fit_transform([text1, text2]) return(( tfidf * tfidf.T ).A)[0,1]<choose_model_class>
one_batch = next(ds_iter) display_batch_of_images(one_batch )
Petals to the Metal - Flower Classification on TPU
13,341,122
AUTO = tf.data.experimental.AUTOTUNE tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu )<compute_test_metric>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
13,341,122
def metric(y_true, y_pred): acc = accuracy_score(y_true, y_pred) f1 = f1_score(y_true, y_pred, average='macro') return acc, f1<load_pretrained>
with strategy.scope() : enet = efn.EfficientNetB7(input_shape=[*IMAGE_SIZE, 3], weights='noisy-student', include_top=False) enet.trainable = True model1 = tf.keras.Sequential([ enet, tf.keras.layers.GlobalAveragePooling2D() , tf.keras.layers.Dense(len(CLASSES), activation='softmax') ])
Petals to the Metal - Flower Classification on TPU
13,341,122
tokenizer = BertTokenizer.from_pretrained('bert-base-cased') save_path = '/kaggle/working/distilbert_base_uncased/' if not os.path.exists(save_path): os.makedirs(save_path) tokenizer.save_pretrained(save_path) fast_tokenizer = BertWordPieceTokenizer('distilbert_base_uncased/vocab.txt', lowercase=False) fast_tokenizer<init_hyperparams>
EPOCHS=100
Petals to the Metal - Flower Classification on TPU
13,341,122
MAX_SEQ_LENGTH = 512 LEARNING_RATE = 3e-5 NUM_EPOCHS = 30<split>
model1.compile( optimizer=tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9), loss = 'sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'] ) model1.summary()
Petals to the Metal - Flower Classification on TPU
13,341,122
train_df, valid_df = train_test_split(train_df, test_size=0.2 )<prepare_x_and_y>
def exponential_lr(epoch, start_lr = 0.00001, min_lr = 0.00001, max_lr = 0.00005, rampup_epochs = 5, sustain_epochs = 0, exp_decay = 0.8): def lr(epoch, start_lr, min_lr, max_lr, rampup_epochs, sustain_epochs, exp_decay): if epoch < rampup_epochs: lr =(( max_lr - start_lr)/ rampup_epochs * epoch + start_lr) elif epoch < rampup_epochs + sustain_epochs: lr = max_lr else: lr =(( max_lr - min_lr)* exp_decay**(epoch - rampup_epochs - sustain_epochs)+ min_lr) return lr return lr(epoch, start_lr, min_lr, max_lr, rampup_epochs, sustain_epochs, exp_decay) lr_callback = tf.keras.callbacks.LearningRateScheduler(exponential_lr, verbose=True) rng = [i for i in range(EPOCHS)] y = [exponential_lr(x)for x in rng] plt.plot(rng, y) print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
Petals to the Metal - Flower Classification on TPU
13,341,122
x_train = fast_encode(train_df.text.astype(str), fast_tokenizer, maxlen=MAX_SEQ_LENGTH) x_valid = fast_encode(valid_df.text.astype(str), fast_tokenizer, maxlen=MAX_SEQ_LENGTH) x_test = fast_encode(test_df.text.astype(str), fast_tokenizer, maxlen=MAX_SEQ_LENGTH) y_train = train_df.target.values y_valid = valid_df.target.values<define_variables>
EPOCHS = 21 STEPS_PER_EPOCH = NUM_TRAINING_IMAGES//256 history = model1.fit( ds_train, validation_data=ds_valid, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, callbacks=[lr_callback], )
Petals to the Metal - Flower Classification on TPU
13,341,122
train_dataset =( tf.data.Dataset .from_tensor_slices(( x_train, y_train)) .repeat() .shuffle(2048) .batch(64) .prefetch(AUTO) ) valid_dataset =( tf.data.Dataset .from_tensor_slices(( x_valid, y_valid)) .batch(64) .cache() .prefetch(AUTO) ) test_dataset = [( tf.data.Dataset .from_tensor_slices(x_test) .batch(64) )]<compute_train_metric>
cmdataset = get_validation_dataset(ordered=True) images_ds = cmdataset.map(lambda image, label: image) labels_ds = cmdataset.map(lambda image, label: label ).unbatch() cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy() cm_probabilities = model1.predict(images_ds) cm_predictions = np.argmax(cm_probabilities, axis=-1) labels = range(len(CLASSES)) cmat = confusion_matrix( cm_correct_labels, cm_predictions, labels=labels, ) cmat =(cmat.T / cmat.sum(axis=1)).T
Petals to the Metal - Flower Classification on TPU
13,341,122
def focal_loss(gamma=2., alpha=.2): def focal_loss_fixed(y_true, y_pred): pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) return -K.mean(alpha * K.pow(1.- pt_1, gamma)* K.log(pt_1)) - K.mean(( 1 - alpha)* K.pow(pt_0, gamma)* K.log(1.- pt_0)) return focal_loss_fixed<load_pretrained>
score = f1_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) precision = precision_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) recall = recall_score( cm_correct_labels, cm_predictions, labels=labels, average='macro', ) display_confusion_matrix(cmat, score, precision, recall )
Petals to the Metal - Flower Classification on TPU
13,341,122
with strategy.scope() : transformer_layer = TFBertModel.from_pretrained('bert-base-cased') model = build_model(transformer_layer, loss=focal_loss(gamma=1.5), max_len=512) model.summary()<choose_model_class>
dataset = get_validation_dataset() dataset = dataset.unbatch().batch(20) batch = iter(dataset )
Petals to the Metal - Flower Classification on TPU
13,341,122
def build_lrfn(lr_start=0.000001, lr_max=0.000004, lr_min=0.0000001, lr_rampup_epochs=7, lr_sustain_epochs=0, lr_exp_decay=.87): lr_max = lr_max * strategy.num_replicas_in_sync def lrfn(epoch): if epoch < lr_rampup_epochs: lr =(lr_max - lr_start)/ lr_rampup_epochs * epoch + lr_start elif epoch < lr_rampup_epochs + lr_sustain_epochs: lr = lr_max else: lr =(lr_max - lr_min)* lr_exp_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs)+ lr_min return lr return lrfn<train_model>
images, labels = next(batch) probabilities = model1.predict(images) predictions = np.argmax(probabilities, axis=-1) display_batch_of_images(( images, labels), predictions )
Petals to the Metal - Flower Classification on TPU
13,341,122
lrfn = build_lrfn() lr_schedule = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=1) train_history = model.fit( train_dataset, steps_per_epoch=110, validation_data=valid_dataset, callbacks=[lr_schedule], epochs=6 )<load_from_csv>
test_ds = get_test_dataset(ordered=True) print('Computing predictions...') test_images_ds = test_ds.map(lambda image, idnum: image) probabilities = model1.predict(test_images_ds) predictions = np.argmax(probabilities, axis=-1) print(predictions )
Petals to the Metal - Flower Classification on TPU
13,341,122
<prepare_output><EOS>
print('Generating submission.csv file...') test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch() test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U') np.savetxt( 'submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='', ) !head submission.csv
Petals to the Metal - Flower Classification on TPU
12,686,034
<SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<prepare_output>
!pip install -q efficientnet
Petals to the Metal - Flower Classification on TPU
12,686,034
sample['target'] = preds<save_to_csv>
from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.applications.vgg19 import VGG19 from tensorflow.keras.applications.inception_v3 import InceptionV3 from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 from tensorflow.keras.applications.densenet import DenseNet121, DenseNet169, DenseNet201 from tensorflow.keras.applications.xception import Xception from tensorflow.keras.applications.resnet50 import ResNet50 from tensorflow.keras.applications.resnet_v2 import ResNet50V2, ResNet101V2, ResNet152V2 from tensorflow.keras.applications.nasnet import NASNetLarge from efficientnet.tfkeras import EfficientNetB7, EfficientNetL2, EfficientNetB0, EfficientNetB1
Petals to the Metal - Flower Classification on TPU
12,686,034
sample.to_csv('submission.csv', index=False )<load_from_csv>
%matplotlib inline print("Tensorflow version " + tf.__version__ )
Petals to the Metal - Flower Classification on TPU
12,686,034
df = pd.read_csv('.. /input/44352/training_solutions_rev1.csv') df_train, df_test = train_test_split(df, test_size=.2) df_train.shape, df_test.shape<prepare_x_and_y>
GCS_DS_PATH = KaggleDatasets().get_gcs_path()
Petals to the Metal - Flower Classification on TPU
12,686,034
%matplotlib inline ORIG_SHAPE =(424,424) CROP_SIZE =(256,256) IMG_SHAPE =(64,64) def get_image(path, x1,y1, shape, crop_size): x = plt.imread(path) x = x[x1:x1+crop_size[0], y1:y1+crop_size[1]] x = resize(x, shape) x = x/255. return x def get_all_images(dataframe, shape=IMG_SHAPE, crop_size=CROP_SIZE): x1 =(ORIG_SHAPE[0]-CROP_SIZE[0])//2 y1 =(ORIG_SHAPE[1]-CROP_SIZE[1])//2 sel = dataframe.values ids = sel[:,0].astype(int ).astype(str) y_batch = sel[:,1:] x_batch = [] for i in tqdm(ids): x = get_image('.. /input/44352/images_training_rev1/'+i+'.jpg', x1,y1, shape=shape, crop_size=crop_size) x_batch.append(x) x_batch = np.array(x_batch) return x_batch, y_batch X_train, y_train = get_all_images(df_train) X_test, y_test = get_all_images(df_test )<choose_model_class>
IMAGE_SIZE = [512, 512] EPOCHS = 30 BATCH_SIZE = 16 * strategy.num_replicas_in_sync GCS_PATH_SELECT = { 192: GCS_DS_PATH + '/tfrecords-jpeg-192x192', 224: GCS_DS_PATH + '/tfrecords-jpeg-224x224', 331: GCS_DS_PATH + '/tfrecords-jpeg-331x331', 512: GCS_DS_PATH + '/tfrecords-jpeg-512x512' } GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec') VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec') TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec') SEED = 2020
Petals to the Metal - Flower Classification on TPU