kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,757,999 | clf_mlp = MLPClassifier(activation = "logistic", hidden_layer_sizes=(200,), random_state=0)
param_grid = { 'batch_size' : [batchsize] , 'max_iter': [600], 'alpha': [1e-4],
'solver': ['sgd'], 'learning_rate_init': [0.05,0.06],'tol': [1e-4] }
GridCV_MLP = GridSearchCV(clf_mlp, param_grid, verbose=1, cv=3)
GridCV_MLP.fit(X_train,y_train)
score_grid_MLP = get_best_score(GridCV_MLP )<predict_on_test> | x_train = train_dataset.map(lambda image, label : image)
train_preds = model.predict(x_train)
train_preds = np.argmax(train_preds, axis=-1)
print(classification_report(y_train, train_preds, target_names=CLASSES)) | Petals to the Metal - Flower Classification on TPU |
11,757,999 | pred_val_mlp = GridCV_MLP.predict(X_val )<compute_test_metric> | x_valid = valid_dataset.map(lambda image, label : image)
valid_preds = model.predict(x_valid)
valid_preds = np.argmax(valid_preds, axis=-1)
print(classification_report(y_valid, valid_preds, target_names=CLASSES)) | Petals to the Metal - Flower Classification on TPU |
11,757,999 | acc_mlp = print_validation_report(y_val, pred_val_mlp )<categorify> | x_train_samp, y_train_samp = dataset_to_numpy_util(train_dataset, 9)
train_samp_preds = model.predict(x_train_samp, batch_size=9)
display_9_images_with_predictions(x_train_samp, train_samp_preds, y_train_samp ) | Petals to the Metal - Flower Classification on TPU |
11,757,999 | y_train = to_categorical(y_train, 10)
y_val_10 = to_categorical(y_val, 10 )<choose_model_class> | x_valid_samp, y_valid_samp = dataset_to_numpy_util(valid_dataset, 9)
valid_samp_preds = model.predict(x_valid_samp, batch_size=9)
display_9_images_with_predictions(x_valid_samp, valid_samp_preds, y_valid_samp ) | Petals to the Metal - Flower Classification on TPU |
11,757,999 | def dense_model_0() :
model = Sequential()
model.add(Dense(10, input_dim=784, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model<train_model> | x_test = test_dataset.map(lambda image, idnum: image)
test_preds = model.predict(x_test)
test_preds = np.argmax(test_preds, axis=-1 ) | Petals to the Metal - Flower Classification on TPU |
11,757,999 | model_dense_0.fit(X_train, y_train, epochs=50, batch_size=batchsize )<predict_on_test> | test_ids_ds = test_dataset.map(lambda image, idnum:idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
submission = pd.DataFrame(test_ids, columns=['id'])
submission['label'] = test_preds
submission.to_csv('submission.csv', index=False)
display(submission.head(10)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_dense0 = model_dense_0.predict_classes(X_val )<compute_test_metric> | import re
import math
import numpy as np
import seaborn as sns
from kaggle_datasets import KaggleDatasets
from matplotlib import pyplot as plt
from sklearn.metrics import f1_score, precision_score, recall_score, confusion_matrix
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.callbacks import LearningRateScheduler
from tensorflow.keras.metrics import TruePositives, FalsePositives, FalseNegatives
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | acc_fc0 = print_validation_report(y_val, pred_val_dense0 )<choose_model_class> | !pip install efficientnet
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | def dense_model_1() :
model = Sequential()
model.add(Dense(100, input_dim=784, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model<train_model> | AUTO = tf.data.experimental.AUTOTUNE
AUTO | Petals to the Metal - Flower Classification on TPU |
11,704,220 | history_dense_1 = model_dense_1.fit(X_train, y_train, validation_data=(X_val,y_val_10),
epochs=50, batch_size=batchsize )<compute_train_metric> | tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_dense1 = model_dense_1.predict_classes(X_val)
plot_confusion_matrix(y_val, pred_val_dense1)
print(classification_report(y_val, pred_val_dense1))
acc_fc1 = accuracy_score(y_val, pred_val_dense1)
print(acc_fc1 )<choose_model_class> | IMAGE_SIZE = [512, 512]
EPOCHS = 30
LEARNING_RATE = 1e-3
TTA_NUM = 5
BATCH_SIZE = 32 * strategy.num_replicas_in_sync
print("Batch size used: ", BATCH_SIZE)
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | def dense_model_2() :
model = Sequential()
model.add(Dense(100, input_dim=784, activation='relu'))
model.add(Dense(200, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model<train_model> | GCS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started')
GCS_PATH_SELECT = {
192: GCS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_FPATH = GCS_PATH_SELECT[IMAGE_SIZE[0]] | Petals to the Metal - Flower Classification on TPU |
11,704,220 | history_dense_2 = model_dense_2.fit(X_train, y_train, validation_data=(X_val,y_val_10),
epochs=50, batch_size=batchsize )<compute_train_metric> | TRAINING_FILENAMES = tf.io.gfile.glob(GCS_FPATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_FPATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_FPATH + '/test/*.tfrec' ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_dense2 = model_dense_2.predict_classes(X_val)
plot_confusion_matrix(y_val, pred_val_dense2)
print(classification_report(y_val, pred_val_dense2))
acc_fc2 = accuracy_score(y_val, pred_val_dense2)
print(acc_fc2 )<choose_model_class> | SKIP_VALIDATION = True
if SKIP_VALIDATION:
TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES | Petals to the Metal - Flower Classification on TPU |
11,704,220 | def dense_model_3() :
model = Sequential()
model.add(Dense(100, activation='relu', input_dim=784))
model.add(Dense(200, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model<train_model> | CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose']
print(f"No of Flower classes in dataset: {len(CLASSES)}" ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | history_dense_3 = model_dense_3.fit(X_train, y_train, validation_data=(X_val,y_val_10),
epochs=50, batch_size=batchsize )<compute_train_metric> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 5
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.7
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1]))
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_dense3 = model_dense_3.predict_classes(X_val)
plot_confusion_matrix(y_val, pred_val_dense3)
print(classification_report(y_val, pred_val_dense3))
acc_fc3 = accuracy_score(y_val, pred_val_dense3)
print(acc_fc3 )<prepare_x_and_y> | def display_batch_of_images(databatch, predictions=None):
images, labels = batch_to_numpy_images_and_labels(databatch)
if labels is None:
labels = [None for _ in enumerate(images)]
rows = int(math.sqrt(len(images)))
cols = len(images)//rows
FIGSIZE = 13.0
SPACING = 0.1
subplot=(rows,cols,1)
if rows < cols:
plt.figure(figsize=(FIGSIZE,FIGSIZE/cols*rows))
else:
plt.figure(figsize=(FIGSIZE/rows*cols,FIGSIZE))
for i,(image, label)in enumerate(zip(images[:rows*cols], labels[:rows*cols])) :
title = '' if label is None else CLASSES[label]
correct = True
if predictions is not None:
title, correct = title_from_label_and_target(predictions[i], label)
dynamic_titlesize = FIGSIZE*SPACING/max(rows,cols)*40+3
subplot = display_one_flower(image, title, subplot, not correct, titlesize=dynamic_titlesize)
plt.tight_layout()
if label is None and predictions is None:
plt.subplots_adjust(wspace=0, hspace=0)
else:
plt.subplots_adjust(wspace=SPACING, hspace=SPACING)
plt.show() | Petals to the Metal - Flower Classification on TPU |
11,704,220 | X_train = X_train.values.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_val = X_val.values.reshape(X_val.shape[0], img_rows, img_cols, 1)
input_shape =(img_rows, img_cols, 1 )<define_variables> | def dataset_to_numpy_util(dataset, N):
dataset = dataset.unbatch().batch(N)
for images, labels in dataset:
numpy_images = images.numpy()
numpy_labels = labels.numpy()
break;
return numpy_images, numpy_labels | Petals to the Metal - Flower Classification on TPU |
11,704,220 | batchsize = 128
epochs = 12<feature_engineering> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def data_augment(image, label, seed=2020):
image = tf.image.random_flip_left_right(image, seed=seed)
return image, label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset(ordered=False):
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_train_valid_datasets() :
dataset = load_dataset(TRAINING_FILENAMES + VALIDATION_FILENAMES, labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | activation = 'relu'
adadelta = Adadelta()
loss = categorical_crossentropy<choose_model_class> | models = []
histories = [] | Petals to the Metal - Flower Classification on TPU |
11,704,220 | def cnn_model_1(activation):
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation=activation, input_shape=input_shape))
model.add(Conv2D(64,(3, 3), activation=activation))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation=activation))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=loss, optimizer=adadelta, metrics=['accuracy'])
return model<find_best_params> | NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
STEPS_PER_EPOCH =(NUM_TRAINING_IMAGES + NUM_VALIDATION_IMAGES)// BATCH_SIZE
print('Dataset: {} training images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES+NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | model_cnn_1 = cnn_model_1(activation)
model_cnn_1.summary()<train_model> | def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_training_dataset_preview(ordered=True):
dataset = load_dataset(TRAINING_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
np.set_printoptions(threshold=15, linewidth=80)
def batch_to_numpy_images_and_labels(data):
images, labels = data
numpy_images = images.numpy()
numpy_labels = labels.numpy()
if numpy_labels.dtype == object:
numpy_labels = [None for _ in enumerate(numpy_images)]
return numpy_images, numpy_labels
def title_from_label_and_target(label, correct_label):
if correct_label is None:
return CLASSES[label], True
correct =(label == correct_label)
return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '',
CLASSES[correct_label] if not correct else ''), correct
def dataset_to_numpy_util(dataset, N):
dataset = dataset.unbatch().batch(N)
for images, labels in dataset:
numpy_images = images.numpy()
numpy_labels = labels.numpy()
break;
return numpy_images, numpy_labels | Petals to the Metal - Flower Classification on TPU |
11,704,220 | history_cnn_1 = model_cnn_1.fit(X_train, y_train, validation_data=(X_val,y_val_10),
epochs=epochs, batch_size=batchsize, verbose=1 )<compute_train_metric> | train_dataset = get_training_dataset_preview(ordered=True)
y_train = next(iter(train_dataset.unbatch().map(lambda image, label: label ).batch(NUM_TRAINING_IMAGES)) ).numpy()
print('Number of training images %d' % NUM_TRAINING_IMAGES ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_cnn1 = model_cnn_1.predict_classes(X_val)
plot_confusion_matrix(y_val, pred_val_cnn1)
print(classification_report(y_val, pred_val_cnn1))
acc_cnn1 = accuracy_score(y_val, pred_val_cnn1)
print(acc_cnn1)
<define_variables> | display_batch_of_images(next(iter(train_dataset.unbatch().batch(20)))) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | batch_size=90
epochs=30
<choose_model_class> | test_dataset = get_test_dataset()
test_dataset = test_dataset.unbatch().batch(20)
test_batch = iter(test_dataset ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | def cnn_model_2(optimizer,loss):
model = Sequential()
model.add(Conv2D(32,(3, 3), padding = 'Same', activation="relu", input_shape=input_shape))
model.add(MaxPooling2D(pool_size =(2, 2)))
model.add(Conv2D(32,(3, 3), activation="relu"))
model.add(MaxPooling2D(pool_size =(2, 2)))
model.add(Flatten())
model.add(Dense(256, activation=activation))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer = optimizer, loss = loss, metrics = ['accuracy'])
return model<compute_train_metric> | display_batch_of_images(next(test_batch)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | model_cnn_2 = cnn_model_2(adadelta, categorical_crossentropy)
model_cnn_2.summary()<train_model> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear/ 180.
c1 = tf.math.cos(rotation)
c2 = tf.math.sin(rotation)
one = tf.constant([1], dtype='float32')
zero = tf.constant([0], dtype='float32')
rotation_mat = tf.reshape(tf.concat([c1, s1, zero, -s1, c1, zero, \
zero, zero, one], axis=0), [3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_mat = tf.reshape(tf.concat([one, s2, zero, zero, c2, \
zero, zero, zero, one], axis=0), [3,3])
zoom_mat = tf.reshape(tf.concat([one/height_zoom, zero, zero, zero, \
oneb/width_zoom, zero, zero, zero, one], axis=0), [3,3])
shift_mat = tf.reshape(tf.concat([one_zero, height_shift, zero, one, width_shift, zero, \
zero, one], axis=0), [3,3])
return K.dot(K.dot(rotation_mat, shear_mat), K.dot(zoom_mat, shift_mat)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | history_cnn_2 = model_cnn_2.fit(X_train, y_train, validation_data=(X_val,y_val_10),
epochs=epochs, batch_size=batchsize, verbose=1 )<compute_train_metric> | def transform(image, label):
DIM = 512
XIM = DIM%2
rot = 15.* tf.random.normal([1], dtype='float32')
shr = 5.*tf.random.normal([1], dtype='float32')
h_zoom = 1.0 + tf.random.normal([1], dtype='float32')/ 1.0
w_zoom = 1.0 + tf.random.normal([1], dtype='float32')/1.0
h_shift = 16.* tf.random.normal([1],dtype='float32')
w_shift = 16.* tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3]), label | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_val_cnn2 = model_cnn_2.predict_classes(X_val)
plot_confusion_matrix(y_val, pred_val_cnn2)
print(classification_report(y_val, pred_val_cnn2))
acc_cnn2 = accuracy_score(y_val, pred_val_cnn2)
print(acc_cnn2 )<load_from_csv> | with strategy.scope() :
enet = efn.EfficientNetB3(
input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3),
weights='imagenet',
include_top=False
)
enet.trainable = True
model1 = tf.keras.Sequential([
enet,
tf.keras.layers.GlobalMaxPooling2D(name="Layer1"),
tf.keras.layers.Dropout(0.) ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model1.compile(
optimizer=tf.keras.optimizers.Adam(lr=0.0001),
loss = 'sparse_categorical_crossentropy',
metrics = "sparse_categorical_accuracy"
)
model1.summary()
models.append(model1 ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | sample_submission = pd.read_csv('.. /input/sample_submission.csv')
if mode == "edit" :
X = X[:nr_samples//2]
y = y[:nr_samples//2]
X_test = X_test[:nr_samples//2]
sample_submission = sample_submission[:nr_samples//2]<train_on_grid> | tf.keras.utils.plot_model(
model1, to_file='model.png', show_shapes=True, show_layer_names=True,
)
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | print(GridCV_Perceptron.best_params_)
GridCV_Perceptron.best_estimator_.fit(X,y )<save_to_csv> | Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"Enet_model.h5", monitor='val_accuracy', verbose=1, save_best_only=True,
save_weights_only=True,mode='max')
train_history1 = model1.fit(
get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, Checkpoint, keras.callbacks.EarlyStopping(
monitor="val_loss",
min_delta=1e-2,
patience=2,
verbose=1,
)],
)
histories.append(train_history1)
| Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_test_perc = GridCV_Perceptron.best_estimator_.predict(X_test)
result_perc = pd.DataFrame({'ImageId':sample_submission.ImageId, 'Label':pred_test_perc})
result_perc.to_csv("subm_perc.csv",index=False )<train_on_grid> | with strategy.scope() :
densenet = tf.keras.applications.DenseNet201(input_shape=[*IMAGE_SIZE, 3], weights='imagenet', include_top=False)
densenet.trainable = True
model2 = tf.keras.Sequential([
densenet,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model2.compile(
optimizer=tf.keras.optimizers.Adam() ,
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
model2.summary() | Petals to the Metal - Flower Classification on TPU |
11,704,220 | print(GridCV_LR.best_params_)
GridCV_LR.best_estimator_.fit(X,y )<save_to_csv> | tf.keras.utils.plot_model(
model1, to_file='model.png', show_shapes=True, show_layer_names=True,
) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_test_lr = GridCV_LR.best_estimator_.predict(X_test)
result_lr = pd.DataFrame({'ImageId':sample_submission.ImageId, 'Label':pred_test_lr})
result_lr.to_csv("subm_lr.csv",index=False )<train_model> | Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"Dnet_model.h5", monitor='val_accuracy', verbose=1, save_best_only=True,
save_weights_only=True,mode='max')
train_history2 = model2.fit(get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=30,
callbacks = [lr_callback, Checkpoint, keras.callbacks.EarlyStopping(
monitor="val_loss",
min_delta=1e-2,
patience=2,
verbose=1,
)])
histories.append(train_history2 ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | clf_knn.fit(X,y )<save_to_csv> | if not SKIP_VALIDATION:
cmdataset = get_validation_dataset(ordered=True)
images_ds = cmdataset.map(lambda image, label: image)
labels_ds = cmdataset.map(lambda image, label: label ).unbatch()
cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy()
m1 = model1.predict(images_ds)
m2 = model2.predict(images_ds)
scores = []
for alpha in np.linspace(0,1,100):
cm_probabilities = alpha*m1+(1-alpha)*m2
cm_predictions = np.argmax(cm_probabilities, axis=-1)
scores.append(f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro'))
best_alpha = np.argmax(scores)/100
print('Best alpha: ' + str(best_alpha)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_test_knn = clf_knn.predict(X_test)
result_knn = pd.DataFrame({'ImageId':sample_submission.ImageId, 'Label':pred_test_knn})
result_knn.to_csv("subm_knn.csv",index=False )<train_on_grid> | if not SKIP_VALIDATION:
cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)))
score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
display_confusion_matrix(cmat, score, precision, recall)
print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall)) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | print(GridCV_RF.best_params_)
GridCV_RF.best_estimator_.fit(X,y )<save_to_csv> | def predict_tta(model, n_iter):
probs = []
for i in range(n_iter):
test_ds = get_test_dataset(ordered=True)
test_images_ds = test_ds.map(lambda image, idnum: image)
probs.append(model.predict(test_images_ds,verbose=0))
return probs | Petals to the Metal - Flower Classification on TPU |
11,704,220 | pred_test_rf = GridCV_RF.best_estimator_.predict(X_test)
result_rf = pd.DataFrame({'ImageId':sample_submission.ImageId, 'Label':pred_test_rf})
result_rf.to_csv("subm_rf.csv",index=False )<train_model> | test_ds = get_test_dataset(ordered=True)
print('Calculating predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probs1 = np.mean(predict_tta(model1, TTA_NUM), axis=0)
probs2 = np.mean(predict_tta(model2, TTA_NUM), axis=0)
probabilities = best_alpha*probs1 +(1-best_alpha)*probs2
predictions = np.argmax(probabilities, axis=-1 ) | Petals to the Metal - Flower Classification on TPU |
11,704,220 | <save_to_csv><EOS> | print('Generating submission file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='')
| Petals to the Metal - Flower Classification on TPU |
11,043,234 | <SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<normalization> | warnings.filterwarnings('ignore')
os.environ["WANDB_API_KEY"] = "0" | Contradictory, My Dear Watson |
11,043,234 | testforfilna =preprocessing.scale(testforfilna )<feature_engineering> | def Init_TPU() :
try:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
REPLICAS = strategy.num_replicas_in_sync
print("Connected to TPU Successfully:
TPUs Initialised with Replicas:",REPLICAS)
return strategy
except ValueError:
print("Connection to TPU Falied")
print("Using default strategy for CPU and single GPU")
strategy = tf.distribute.get_strategy()
return strategy
strategy=Init_TPU() | Contradictory, My Dear Watson |
11,043,234 | data["FamSize"] = data.SibSp +data.Parch
data['Alone'] = data.FamSize == 0
data.Alone
data_test["FamSize"] = data_test.SibSp +data_test.Parch
data_test['Alone'] = data_test.FamSize == 0<drop_column> | path = '.. /input/contradictory-my-dear-watson/' | Contradictory, My Dear Watson |
11,043,234 | data.drop("AgeGroup", axis = 1, inplace =True)
data_test.drop("AgeGroup", axis = 1, inplace =True )<count_missing_values> | train_url = os.path.join(path,'train.csv')
train_data = pd.read_csv(train_url, header='infer')
sample_sub_url = os.path.join(path,'sample_submission.csv')
sample_sub = pd.read_csv(sample_sub_url, header='infer')
test_url = os.path.join(path,'test.csv')
test_data = pd.read_csv(test_url, header='infer' ) | Contradictory, My Dear Watson |
11,043,234 | data.isna().sum()<count_missing_values> | print("Records per Label:
", train_data.groupby('label' ).size() ) | Contradictory, My Dear Watson |
11,043,234 | data_test.isna().sum()<find_best_model_class> | print("Records per Language:
", train_data.groupby('language' ).size() ) | Contradictory, My Dear Watson |
11,043,234 | lr = LogisticRegression(C=2)
lr.fit(data.drop('Survived', axis=1), data.Survived)
kf = KFold(n_splits=10,shuffle=True,random_state=42)
scores = cross_val_score(lr,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scores.mean()
<drop_column> | gc.collect() | Contradictory, My Dear Watson |
11,043,234 | data_test.drop(['Status_Col', 'Status_Dona', 'Status_Dr'], axis= 1, inplace=True )<train_on_grid> | transformer_model = 'jplu/tf-xlm-roberta-large'
tokenizer = XLMRobertaTokenizer.from_pretrained(transformer_model ) | Contradictory, My Dear Watson |
11,043,234 | KNN = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=7, p=2,
weights='uniform')
KNN.fit(data.drop('Survived', axis=1), data.Survived)
scoresKNN = cross_val_score(KNN,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scoresKNN.mean()
<train_on_grid> | tokenizer.convert_tokens_to_ids(list(tokenizer.tokenize("Elementary, My Dear Watson!")) ) | Contradictory, My Dear Watson |
11,043,234 | tr = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter='best')
tr.fit(data.drop('Survived', axis=1), data.Survived)
scorestr = cross_val_score(tr,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scorestr.mean()<train_on_grid> | train = train_data[['premise','hypothesis']].values.tolist()
test = test_data[['premise','hypothesis']].values.tolist() | Contradictory, My Dear Watson |
11,043,234 | rf = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=5, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=20, n_jobs=None,
oob_score=False, random_state=None, verbose=0,
warm_start=False)
rf.fit(data.drop('Survived', axis=1), data.Survived)
scoresrf = cross_val_score(rf,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scoresrf.mean()<train_on_grid> | max_len = 80
train_encode = tokenizer.batch_encode_plus(train, pad_to_max_length=True, max_length=max_len)
test_encode = tokenizer.batch_encode_plus(test, pad_to_max_length=True, max_length=max_len ) | Contradictory, My Dear Watson |
11,043,234 | gr = GradientBoostingClassifier(learning_rate=0.1, n_estimators=250,max_depth=10)
gr.fit(data.drop('Survived', axis=1), data.Survived)
scores_gr = cross_val_score(tr,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scores_gr.mean()<train_on_grid> | test_size = 0.1
x_train, x_val, y_train, y_val = train_test_split(train_encode['input_ids'], train_data.label.values, test_size=test_size)
x_test = test_encode['input_ids'] | Contradictory, My Dear Watson |
11,043,234 | mlpc = MLPClassifier(max_iter=5000)
mlpc.fit(data.drop('Survived', axis=1), data.Survived)
scores_mlpc = cross_val_score(mlpc,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scores_mlpc.mean()<drop_column> | gc.collect() | Contradictory, My Dear Watson |
11,043,234 | data.drop(['Status_OTHER'], inplace=True, axis=1)
data_test.drop(['Status_Rev'], inplace=True, axis=1 )<train_on_grid> | AUTO = tf.data.experimental.AUTOTUNE
batch_size = 16 * strategy.num_replicas_in_sync
train_ds =(tf.data.Dataset.from_tensor_slices(( x_train, y_train)).repeat().shuffle(2048 ).batch(batch_size ).prefetch(AUTO))
val_ds =(tf.data.Dataset.from_tensor_slices(( x_val, y_val)).batch(batch_size ).prefetch(AUTO))
test_ds =(tf.data.Dataset.from_tensor_slices(x_test ).batch(batch_size)) | Contradictory, My Dear Watson |
11,043,234 | XGBC = XGBClassifier(n_estimators=1000, learning_rate=0.05, max_depth=3)
XGBC.fit(data.drop('Survived', axis=1), data.Survived);
XGBC_scores = cross_val_score(XGBC,data.drop(['Survived'], axis=1), data.Survived, cv = kf);
XGBC_scores.mean()<save_to_csv> | gc.collect() | Contradictory, My Dear Watson |
11,043,234 | preds = XGBC.predict(data_test)
submission = pd.DataFrame({
"PassengerId": ID,
"Survived": preds
})
submission.to_csv('titanic.csv', index=False )<import_modules> | def build_model(strategy,transformer):
with strategy.scope() :
transformer_encoder = TFXLMRobertaModel.from_pretrained(transformer)
input_layer = Input(shape=(max_len,), dtype=tf.int32, name="input_layer")
sequence_output = transformer_encoder(input_layer)[0]
cls_token = sequence_output[:, 0, :]
output_layer = Dense(3, activation='softmax' )(cls_token)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(
Adam(lr=1e-5),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
return model
model = build_model(strategy,transformer_model ) | Contradictory, My Dear Watson |
11,043,234 | from sklearn.model_selection import GridSearchCV<import_modules> | epochs = 30
n_steps = len(train_data)// batch_size
model.fit(train_ds,
steps_per_epoch = n_steps,
validation_data = val_ds,
epochs = epochs ) | Contradictory, My Dear Watson |
11,043,234 | from sklearn.model_selection import GridSearchCV<train_on_grid> | gc.collect() | Contradictory, My Dear Watson |
11,043,234 | lgbm = LGBMClassifier(n_estimators=1000, random_state=5)
lgbm.fit(data.drop('Survived', axis=1), data.Survived)
scores_lgbm = cross_val_score(lgbm,data.drop(['Survived'], axis=1), data.Survived, cv = kf)
scores_lgbm.mean()<train_on_grid> | prediction = model.predict(test_ds, verbose=0)
sample_sub['prediction'] = prediction.argmax(axis=1 ) | Contradictory, My Dear Watson |
11,043,234 | <find_best_params><EOS> | sample_sub.to_csv("submission.csv", index=False ) | Contradictory, My Dear Watson |
11,016,766 | <SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<train_on_grid> | df_submit = pd.read_csv(".. /input/mberttrain10epochs/submission(1 ).csv")
| Contradictory, My Dear Watson |
11,016,766 | <train_on_grid><EOS> | df_submit.to_csv("submission.csv", index=False)
df_submit.head() | Contradictory, My Dear Watson |
10,997,559 | <SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<import_modules> | pip install pyspellchecker | Contradictory, My Dear Watson |
10,997,559 | from sklearn.linear_model import Lasso<import_modules> | import pandas as pd
from spellchecker import SpellChecker
import regex as re | Contradictory, My Dear Watson |
10,997,559 | from sklearn.linear_model import Lasso<train_on_grid> | warnings.filterwarnings("ignore" ) | Contradictory, My Dear Watson |
10,997,559 | ls = LogisticRegression(C=0.000002)
ls.fit(data.drop('Survived', axis=1), data.Survived)
ls.coef_<import_modules> | train = pd.read_csv('.. /input/contradictory-my-dear-watson/train.csv')
test = pd.read_csv('.. /input/contradictory-my-dear-watson/test.csv' ) | Contradictory, My Dear Watson |
10,997,559 | import numpy as np
import pandas as pd
import tensorflow as tf
from skimage import io, transform
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import accuracy_score<import_modules> | eng = train.loc[train.language == 'English'] | Contradictory, My Dear Watson |
10,997,559 | from keras.models import Sequential
from keras.layers import Conv2D, MaxPool2D, Dropout, Flatten, Dense, BatchNormalization
from keras.utils import to_categorical
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import RMSprop
from keras.callbacks import ReduceLROnPlateau
from keras.datasets import mnist<load_from_csv> | spell = SpellChecker()
spell.word_frequency.load_text_file('.. /input/english-words/words_alpha.txt')
spell.word_frequency.load_words([''] ) | Contradictory, My Dear Watson |
10,997,559 | train_data = pd.read_csv(".. /input/train.csv")
test_data = pd.read_csv(".. /input/test.csv")
print(train_data.shape,
test_data.shape )<concatenate> | eng['premise_misspelled'] = eng.premise.apply(lambda sentence: tuple(spell.unknown(re.split('[!\:;,.\-\% \b\s() "/$0-9]',re.sub('['\[\]]', '', sentence)))) ) | Contradictory, My Dear Watson |
10,997,559 | ( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data()
x_train1 = np.concatenate(( x_test1, x_train1))
y_train1 = np.concatenate(( y_test1, y_train1))
x_train1 = x_train1.reshape(( x_train1.shape[0], 28, 28, 1))
print(x_train1.shape, y_train1.shape )<prepare_x_and_y> | misspelled_df = eng.loc[eng.premise_misspelled !=() ]
list(misspelled_df.premise_misspelled ) | Contradictory, My Dear Watson |
10,997,559 | x = np.array(train_data.drop(['label'], axis = 1))
y = np.array(train_data['label'])
test_data = np.array(test_data)
x = x.reshape(( x.shape[0], 28, 28, 1))
test_data = test_data.reshape(test_data.shape[0], 28, 28, 1)
x = np.concatenate(( x, x_train1))
y = np.concatenate(( y, y_train1))
x = x/255
test_data = test_data/255
y = to_categorical(y, num_classes = 10)
print(x.shape, y.shape )<split> | pd.set_option('display.max_colwidth', -1 ) | Contradictory, My Dear Watson |
10,997,559 | x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.10, shuffle = True)
print(x_train.shape, y_train.shape, x_test.shape, y_test.shape )<choose_model_class> | err1 = misspelled_df.loc[eng.premise.str.contains('\?\?', case = False)]
err2 = misspelled_df.loc[eng.premise.str.contains("\xad", case = False)]
print(len(err1), len(err2)) | Contradictory, My Dear Watson |
10,997,559 | model = Sequential()
model.add(Conv2D(filters = 32, kernel_size =(3,3), activation ='relu', input_shape =(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(3,3), activation ='relu'))
model.add(MaxPool2D(( 2,2)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3), activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3), activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3), activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3), activation ='relu'))
model.add(BatchNormalization())
model.add(Flatten())
model.add(Dense(128, activation = "relu"))
model.add(Dropout(0.30))
model.add(Dense(10, activation = "softmax"))
optimizer = RMSprop(lr = 0.01, rho = 0.9, epsilon = 1e-08, decay = 0.0)
model.compile(optimizer = optimizer, loss = 'categorical_crossentropy', metrics = ['accuracy'])
model.summary()<define_variables> | reduced_1 = pd.concat([misspelled_df, err1, err1] ).drop_duplicates(keep=False)
reduced_2 = pd.concat([reduced_1, err2, err2] ).drop_duplicates(keep=False ) | Contradictory, My Dear Watson |
10,997,559 | datagen = ImageDataGenerator(
rotation_range = 10,
zoom_range = 0.1,
width_shift_range = 0.1,
height_shift_range = 0.1,)
train_batch = datagen.flow(x, y, batch_size = 64)
val_batch = datagen.flow(x_test, y_test, batch_size = 64 )<choose_model_class> | correction = err1.premise.apply(lambda sentence: re.sub('\?\?', 'e', sentence))
correct_rhone = correction.apply(lambda sentence: re.sub('Rhene', 'Rhone', sentence))
correct_ataturk = correct_rhone.apply(lambda sentence: re.sub('Ataterk', 'Ataturk', sentence))
correct_madrileno = correct_ataturk.apply(lambda sentence: re.sub('Madrileeo', 'Madrileno', sentence))
correct_alacahoyuk = correct_madrileno.apply(lambda sentence: re.sub('Alacaheyek', 'Alacahoyuk', sentence))
correct_alcudia = correct_alacahoyuk.apply(lambda sentence: re.sub('Alcedia', 'Alcudia', sentence))
correction1 = correct_alcudia | Contradictory, My Dear Watson |
10,997,559 | learning_rate_reduction = ReduceLROnPlateau(monitor = 'val_loss',
patience = 3,
verbose = 1,
factor = 0.1,
min_lr = 0.00001 )<train_model> | for i in correction1.index:
eng.loc[eng.index == i, 'premise'] = correction1.loc[correction1.index == i] | Contradictory, My Dear Watson |
10,997,559 | history = model.fit_generator(generator = train_batch,
epochs = 100,
steps_per_epoch = len(train_batch),
validation_data = val_batch,
validation_steps = len(val_batch),
verbose = 1,
callbacks = [learning_rate_reduction] )<save_to_csv> | err2 = eng.loc[eng.premise.str.contains("\?\xad", case = False)]
err2 | Contradictory, My Dear Watson |
10,997,559 | res = model.predict_classes(test_data, batch_size = 64)
result = pd.Series(res, name = 'Label')
submission = pd.concat([pd.Series(range(1, 28001), name = 'ImageId'), result], axis = 1)
submission.to_csv('Submission.csv', index = False )<compute_test_metric> | correction2 = err2.premise.apply(lambda sentence: re.sub('\?\xad', '', sentence))
for i in correction2.index:
eng.loc[eng.index == i, 'premise'] = correction2.loc[correction2.index == i] | Contradictory, My Dear Watson |
10,997,559 | res = model.evaluate(x, y, batch_size = 1024)
print(res[1]*100 )<set_options> | eng['hypothesis_misspelled'] = eng.hypothesis.apply(lambda sentence: tuple(spell.unknown(re.split('[\?!\:;,.\-\% \b\s() "/$0-9]',re.sub('['\[\]]', '', sentence)))))
misspelled_hyp_df = eng.loc[eng.hypothesis_misspelled !=() ]
list(misspelled_hyp_df.hypothesis_misspelled ) | Contradictory, My Dear Watson |
10,997,559 | %matplotlib inline<import_modules> | eng.loc[eng.hypothesis.str.contains('Ile de R', case = False)] | Contradictory, My Dear Watson |
10,997,559 | from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import RMSprop
from keras.callbacks import ReduceLROnPlateau
from sklearn.model_selection import train_test_split<load_from_csv> | eng.loc[eng.hypothesis == 'Ile de R is no longer part of the attraction.', 'hypothesis'] = 'Ile de Re is no longer part of the attraction.'
eng.loc[eng.hypothesis == 'Ile de R.', 'hypothesis'] = 'Ile de Re.' | Contradictory, My Dear Watson |
10,997,559 | train = pd.read_csv(".. /input/train.csv")
test = pd.read_csv(".. /input/test.csv" )<prepare_x_and_y> | square_brackets = eng.loc[eng.premise.str.contains('[\[\]]', case = False)]
for i in square_brackets.index:
eng.loc[eng.index == i, 'premise'] = re.sub('[\[\]]', '', str(eng.loc[eng.index == i].premise.values[0]))
ampersands = eng.loc[eng.premise.str.contains('\&', case = False)]
for i in ampersands.index:
eng.loc[eng.index == i, 'premise'] = re.sub('\&', ' and ', str(eng.loc[eng.index == i].premise.values[0])) | Contradictory, My Dear Watson |
10,997,559 | X_train=train.drop('label',axis=1)
y_train=train['label']<count_values> | eng.drop(columns=['premise_misspelled', 'hypothesis_misspelled'])
for i in eng.index:
train.loc[train.index == i] = eng.loc[eng.index == i] | Contradictory, My Dear Watson |
10,997,559 | sns.countplot(x=y_train)
y_train.value_counts()<count_missing_values> | eng_test = test.loc[test.language == 'English'] | Contradictory, My Dear Watson |
10,997,559 | X_train.isnull().any().value_counts()<count_missing_values> | err1 = eng_test.loc[eng_test.premise.str.contains('\?\?', case = False)]
correction = err1.premise.apply(lambda sentence: re.sub('\?\?', 'e', sentence))
correct_alacahoyuk = correction.apply(lambda sentence: re.sub('Alacaheyek', 'Alacahoyuk', sentence))
correct_madrileno = correct_alacahoyuk.apply(lambda sentence: re.sub('Madrileeo', 'Madrileno', sentence))
correct_alcudia = correct_madrileno.apply(lambda sentence: re.sub('Alcedia', 'Alcudia', sentence))
correct_ataturk = correct_alcudia.apply(lambda sentence: re.sub('Ataterk', 'Ataturk', sentence))
for i in correct_ataturk.index:
eng_test.loc[eng_test.index == i, 'premise'] = correct_ataturk.loc[correct_ataturk.index == i] | Contradictory, My Dear Watson |
10,997,559 | test.isnull().any().value_counts()<normalization> | err2 = eng_test.loc[eng_test.premise.str.contains('\?\xad', case = False)]
correction = err2.premise.apply(lambda sentence: re.sub('\?\xad', '', sentence))
for i in correction.index:
eng_test.loc[eng_test.index == i, 'premise'] = correction.loc[correction.index == i] | Contradictory, My Dear Watson |
10,997,559 | X_train = X_train / 255.0
test = test / 255.0<categorify> | square_brackets = eng_test.loc[eng_test.premise.str.contains('[\[\]]', case = False)]
for i in square_brackets.index:
eng_test.loc[eng_test.index == i, 'premise'] = re.sub('[\[\]]', '', str(eng_test.loc[eng_test.index == i].premise.values[0])) | Contradictory, My Dear Watson |
10,997,559 | X_train = X_train.values.reshape(-1,28,28,1)
test = test.values.reshape(-1,28,28,1 )<categorify> | ampersands = eng_test.loc[eng_test.premise.str.contains('\&', case = False)]
for i in ampersands.index:
eng_test.loc[eng_test.index == i, 'premise'] = re.sub('\&', ' and ', str(eng_test.loc[eng_test.index == i].premise.values[0])) | Contradictory, My Dear Watson |
10,997,559 | y_train=to_categorical(y_train,num_classes=10 )<split> | for i in eng_test.index:
test.loc[test.index == i] = eng_test.loc[eng_test.index == i] | Contradictory, My Dear Watson |
10,997,559 | X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size = 0.1, random_state=42 )<choose_model_class> | train.to_csv('train_cleaned.csv',index=False)
test.to_csv('test_cleaned.csv',index=False ) | Contradictory, My Dear Watson |
10,997,559 | model=Sequential()
model.add(Conv2D(filters=32,kernel_size=(5,5),padding='Same',activation='relu',input_shape=(28,28,1)))
model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(Dropout(0.5))
model.add(Dense(10, activation = "softmax"))<choose_model_class> | !pip install git+https://github.com/ssut/py-googletrans.git | Contradictory, My Dear Watson |
10,997,559 | optimizer = RMSprop()
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1,
factor=0.5, min_lr=0.00001 )<init_hyperparams> | from googletrans import Translator
from dask import bag, diagnostics
import numpy as np | Contradictory, My Dear Watson |
10,997,559 | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train )<define_variables> | def translate(words, dest):
dest_choices = ['zh-cn',
'ar',
'fr',
'sw',
'ur',
'vi',
'ru',
'hi',
'el',
'th',
'es',
'de',
'tr',
'bg'
]
if not dest:
dest = np.random.choice(dest_choices)
translator = Translator()
decoded = translator.translate(words, dest=dest ).text
return decoded
def trans_parallel(df, dest):
premise_bag = bag.from_sequence(df.premise.tolist() ).map(translate, dest)
hypo_bag = bag.from_sequence(df.hypothesis.tolist() ).map(translate, dest)
with diagnostics.ProgressBar() :
premises = premise_bag.compute()
hypos = hypo_bag.compute()
df[['premise', 'hypothesis']] = list(zip(premises, hypos))
return df
eng_trans = train.loc[train.lang_abv == "en"].copy() \
.pipe(trans_parallel, dest=None)
non_eng_trans = train.loc[train.lang_abv != "en"].copy() \
.pipe(trans_parallel, dest='en')
eng_trans[['lang_abv', 'language']] = [['mx', 'Mixed']]*len(eng)
non_eng_trans[['lang_abv', 'language']] = [['en', 'English']]*len(non_eng_trans)
train = train.append([eng_trans, non_eng_trans])
train.reset_index
train.shape | Contradictory, My Dear Watson |
10,997,559 | batch_size=30
nb_train=len(X_train)
nb_val=len(X_val )<train_model> | !pip install git+https://github.com/makcedward/nlpaug | Contradictory, My Dear Watson |
10,997,559 | history = model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = 20,verbose = 1,
steps_per_epoch=nb_train // batch_size,
validation_data =(X_val,y_val),
validation_steps=nb_val//batch_size
,callbacks=[learning_rate_reduction])
model.save('Digit_recognizer.h5')
model.save_weights('Weight_file_for_Digit_recognizer.h5' )<predict_on_test> | import nlpaug.augmenter.word as naw
import nlpaug.flow as nafc
from nlpaug.util import Action | Contradictory, My Dear Watson |
10,997,559 | prob_pred= model.predict(test)
results = np.argmax(prob_pred,axis = 1 )<save_to_csv> | text = train.premise.values[0]
model = 'distilbert-base-uncased'
ins_aug = naw.ContextualWordEmbsAug(
model_path=model, action="insert")
print("Original:")
print(text)
print("Augmented Text:")
for i in range(10):
augmented_text = ins_aug.augment(text)
print(augmented_text ) | Contradictory, My Dear Watson |
10,997,559 | results = pd.Series(results,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("my_submission.csv",index=False )<import_modules> | syn_aug = naw.SynonymAug(aug_src='wordnet')
augmented_text = syn_aug.augment(text)
print("Original:")
print(text)
print("Augmented Text:")
for i in range(10):
augmented_text = syn_aug.augment(text)
print(augmented_text ) | Contradictory, My Dear Watson |
10,997,559 | import numpy as np
import pandas as pd
from scipy.stats import skew
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import Ridge
from sklearn.linear_model import LinearRegression
from mlxtend.regressor import StackingRegressor
from sklearn.metrics import mean_squared_error
from math import sqrt<load_from_csv> | def insert_augment(words, model):
ins_aug = naw.ContextualWordEmbsAug(
model_path=model, action="insert")
augmented_text = ins_aug.augment(words)
return augmented_text
def ins_aug_parallel(df, model):
premise_bag = bag.from_sequence(df.premise.tolist() ).map(insert_augment, model)
hypo_bag = bag.from_sequence(df.hypothesis.tolist() ).map(insert_augment, model)
with diagnostics.ProgressBar() :
premises = premise_bag.compute()
hypos = hypo_bag.compute()
df[['premise', 'hypothesis']] = list(zip(premises, hypos))
return df
eng_ins_aug = train.loc[train.lang_abv == "en"].copy() \
.pipe(ins_aug_parallel, model='distilbert-base-uncased')
train = train.append([eng_ins_aug])
train.to_csv('train_cleaned_ins.csv',index=False)
| Contradictory, My Dear Watson |
10,997,559 | df_train = pd.read_csv('.. /input/train.csv')
df_test = pd.read_csv('.. /input/test.csv' )<drop_column> | def synonym_augment(words):
syn_aug = naw.SynonymAug(
aug_src = 'wordnet')
augmented_text = syn_aug.augment(words)
return augmented_text
def syn_aug_parallel(df):
premise_bag = bag.from_sequence(df.premise.tolist() ).map(synonym_augment)
hypo_bag = bag.from_sequence(df.hypothesis.tolist() ).map(synonym_augment)
with diagnostics.ProgressBar() :
premises = premise_bag.compute()
hypos = hypo_bag.compute()
df[['premise', 'hypothesis']] = list(zip(premises, hypos))
return df
eng_syn_aug = train.loc[train.lang_abv == "en"].copy() \
.pipe(syn_aug_parallel)
train = train.append([eng_syn_aug])
train.to_csv('train_cleaned_ins_syn.csv',index=False)
| Contradictory, My Dear Watson |
10,997,559 | df_train = df_train.drop(
df_train[(df_train['GrLivArea']>4000)&(df_train['SalePrice']<300000)].index )<concatenate> | plt.style.use('fivethirtyeight')
warnings.filterwarnings('ignore')
| Contradictory, My Dear Watson |
10,997,559 | all_data = pd.concat(( df_train.loc[:,'MSSubClass':'SaleCondition'],
df_test.loc[:,'MSSubClass':'SaleCondition']))<drop_column> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
print('Running on TPU ', tpu.master())
except ValueError:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Contradictory, My Dear Watson |
10,997,559 | all_data = all_data.drop(['Utilities'], axis=1 )<data_type_conversions> | MODEL = 'jplu/tf-xlm-roberta-large'
EPOCHS = 8
MAX_LEN = 96
BATCH_SIZE= 16 * strategy.num_replicas_in_sync
AUTO = tf.data.experimental.AUTOTUNE | Contradictory, My Dear Watson |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.