kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
10,997,559
all_data["PoolQC"] = all_data["PoolQC"].fillna("None") all_data["MiscFeature"] = all_data["MiscFeature"].fillna("None") all_data["Alley"] = all_data["Alley"].fillna("None") all_data["Fence"] = all_data["Fence"].fillna("None") all_data["FireplaceQu"] = all_data["FireplaceQu"].fillna("None") for col in('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'): all_data[col] = all_data[col].fillna('None') for col in('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'): all_data[col] = all_data[col].fillna('None') all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode() [0]) all_data["MasVnrType"] = all_data["MasVnrType"].fillna("None") all_data["Functional"] = all_data["Functional"].fillna("Typ") all_data['Electrical'] = all_data['Electrical'].fillna(all_data['Electrical'].mode() [0]) all_data['KitchenQual'] = all_data['KitchenQual'].fillna(all_data['KitchenQual'].mode() [0]) all_data['Exterior1st'] = all_data['Exterior1st'].fillna(all_data['Exterior1st'].mode() [0]) all_data['Exterior2nd'] = all_data['Exterior2nd'].fillna(all_data['Exterior2nd'].mode() [0]) all_data['SaleType'] = all_data['SaleType'].fillna(all_data['SaleType'].mode() [0]) all_data['MSSubClass'] = all_data['MSSubClass'].fillna("None" )<categorify>
tokenizer = AutoTokenizer.from_pretrained(MODEL )
Contradictory, My Dear Watson
10,997,559
all_data["LotFrontage"] = all_data.groupby("Neighborhood")["LotFrontage"].transform( lambda x: x.fillna(x.median())) for col in('GarageYrBlt', 'GarageArea', 'GarageCars'): all_data[col] = all_data[col].fillna(0) for col in('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'): all_data[col] = all_data[col].fillna(0) all_data["MasVnrArea"] = all_data["MasVnrArea"].fillna(0 )<data_type_conversions>
def quick_encode(df,maxlen=100): values = df[['premise','hypothesis']].values.tolist() tokens=tokenizer.batch_encode_plus(values,max_length=maxlen,pad_to_max_length=True) return np.array(tokens['input_ids']) x_train = quick_encode(train) x_test = quick_encode(test) y_train = train.label.values
Contradictory, My Dear Watson
10,997,559
all_data['MSSubClass'] = all_data['MSSubClass'].apply(str) all_data['OverallCond'] = all_data['OverallCond'].astype(str) all_data['YrSold'] = all_data['YrSold'].astype(str) all_data['MoSold'] = all_data['MoSold'].astype(str )<feature_engineering>
def create_dist_dataset(X, y,val,batch_size= BATCH_SIZE): dataset = tf.data.Dataset.from_tensor_slices(( X,y)).shuffle(len(X)) if not val: dataset = dataset.repeat().batch(batch_size ).prefetch(AUTO) else: dataset = dataset.batch(batch_size ).prefetch(AUTO) return dataset test_dataset =( tf.data.Dataset .from_tensor_slices(( x_test)) .batch(BATCH_SIZE) )
Contradictory, My Dear Watson
10,997,559
all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF']<feature_engineering>
def build_model(transformer,max_len): input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer(input_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model
Contradictory, My Dear Watson
10,997,559
df_train["SalePrice"] = np.log1p(df_train["SalePrice"] )<feature_engineering>
n_steps = len(x_train)// batch_size train_history = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=n_epochs )
Contradictory, My Dear Watson
10,997,559
numeric_feats = all_data.dtypes[all_data.dtypes != "object"].index skewed_feats = all_data[numeric_feats].apply(lambda x: skew(x.dropna())) skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index all_data[skewed_feats] = np.log1p(all_data[skewed_feats] )<categorify>
pred_test=np.zeros(( test.shape[0],3)) skf = StratifiedKFold(n_splits=5,shuffle=True,random_state=777) val_score=[] history=[] for fold,(train_ind,valid_ind)in enumerate(skf.split(x_train,y_train)) : if fold < 4: print("fold",fold+1) tf.tpu.experimental.initialize_tpu_system(tpu) train_data = create_dist_dataset(x_train[train_ind],y_train[train_ind],val=False) valid_data = create_dist_dataset(x_train[valid_ind],y_train[valid_ind],val=True) Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"roberta_base.h5", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='min') with strategy.scope() : transformer_layer = TFAutoModel.from_pretrained(MODEL) model = build_model(transformer_layer, max_len=MAX_LEN) n_steps = len(train_ind)//BATCH_SIZE print("training model {} ".format(fold+1)) train_history = model.fit( train_data, steps_per_epoch=n_steps, validation_data=valid_data, epochs=EPOCHS,callbacks=[Checkpoint],verbose=0) print("Loading model...") model.load_weights(f"roberta_base.h5") print("fold {} validation acc {}".format(fold+1,np.mean(train_history.history['val_accuracy']))) print("fold {} validation acc {}".format(fold+1,np.mean(train_history.history['val_loss']))) history.append(train_history) val_score.append(np.mean(train_history.history['val_accuracy'])) print('predict on test.... ') preds=model.predict(test_dataset,verbose=1) pred_test+=preds/4
Contradictory, My Dear Watson
10,997,559
cols =('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond', 'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1', 'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope', 'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond', 'YrSold', 'MoSold') for c in cols: lbl = LabelEncoder() lbl.fit(list(all_data[c].values)) all_data[c] = lbl.transform(list(all_data[c].values))<categorify>
submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv') submission['prediction'] = np.argmax(pred_test,axis=1) submission.head()
Contradictory, My Dear Watson
10,997,559
<prepare_x_and_y><EOS>
submission.to_csv('submission.csv',index=False )
Contradictory, My Dear Watson
10,978,416
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<choose_model_class>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import re import plotly.express as px import plotly.figure_factory as ff import plotly.graph_objects as go from tqdm import tqdm import tensorflow as tf from tensorflow import keras from keras import backend as k from keras.utils import to_categorical import transformers
Contradictory, My Dear Watson
10,978,416
lr = LinearRegression( n_jobs = -1 ) rd = Ridge( alpha = 4.84 ) rf = RandomForestRegressor( n_estimators = 12, max_depth = 3, n_jobs = -1 ) gb = GradientBoostingRegressor( n_estimators = 40, max_depth = 2 ) nn = MLPRegressor( hidden_layer_sizes =(90, 90), alpha = 2.75 )<train_model>
DEVICE = 'TPU'
Contradictory, My Dear Watson
10,978,416
model = StackingRegressor( regressors=[rf, gb, nn, rd], meta_regressor=lr ) model.fit(X_train, y )<predict_on_test>
if DEVICE == 'TPU': print('Connecting to TPU...') try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU :',tpu.master()) except ValueError: print('Could not connect to TPU') tpu = None if tpu: try: print('Initializing TPU...') tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('TPU initialized!') except _: print('Failed to initialized TPU') else: DEVICE='GPU' if DEVICE != 'TPU': print('Using default strategy for CPU and single GPU') strategy = tf.distribute.get_strategy() if DEVICE == 'GPU': print('Num GPUs available : ',len(tf.config.experimental.list_physical_devices('GPU'))) AUTO = tf.data.experimental.AUTOTUNE REPLICAS = strategy.num_replicas_in_sync print('REPLICAS : ',REPLICAS )
Contradictory, My Dear Watson
10,978,416
y_pred = model.predict(X_train) print(sqrt(mean_squared_error(y, y_pred)) )<predict_on_test>
Batch_size = 16 * strategy.num_replicas_in_sync epochs = 13 AUTO = tf.data.experimental.AUTOTUNE MODEL = 'jplu/tf-xlm-roberta-large'
Contradictory, My Dear Watson
10,978,416
Y_pred = model.predict(X_test )<save_to_csv>
train = pd.read_csv(r'.. /input/contradictory-my-dear-watson/train.csv') test = pd.read_csv(r'.. /input/contradictory-my-dear-watson/test.csv') submission = pd.read_csv(r'.. /input/contradictory-my-dear-watson/sample_submission.csv' )
Contradictory, My Dear Watson
10,978,416
sub = pd.DataFrame() sub['Id'] = df_test['Id'] sub['SalePrice'] = np.expm1(Y_pred) sub.to_csv('submission.csv',index=False )<load_from_csv>
test_num_lang = test.groupby('language')['id'].count().sort_values(ascending=False ).reset_index() test_num_lang = pd.DataFrame(test_num_lang) test_num_lang['count'] = test_num_lang['id'] test_num_lang = test_num_lang.drop('id',axis=1) test_num_lang_data = test_num_lang.style.background_gradient(cmap='Oranges') test_num_lang_data
Contradictory, My Dear Watson
10,978,416
print(check_output(["ls", ".. /input"] ).decode("utf8")) train_df = pd.read_csv('.. /input/train.csv') test_df = pd.read_csv('.. /input/test.csv') <create_dataframe>
num_words_train_h = [None] * len(train) for i in range(len(train)) : num_words_train_h[i] = len(train['hypothesis'][i]) num_words_train_p = [None] * len(train) for i in range(len(train)) : num_words_train_p[i] = len(train['premise'][i]) num_words_test_h = [None] * len(test) for i in range(len(test)) : num_words_test_h[i] = len(test['hypothesis'][i]) num_words_test_p = [None] * len(test) for i in range(len(test)) : num_words_test_p[i] = len(test['premise'][i] )
Contradictory, My Dear Watson
10,978,416
new_age = pd.DataFrame() new_age['Age'] = train_df.Age.fillna(train_df.Age.mean()) new_age<import_modules>
train['num_words_hypothesis'] = num_words_train_h train['num_words_premise'] = num_words_train_p test['num_words_hypothesis'] = num_words_test_h test['num_words_premise'] = num_words_test_p
Contradictory, My Dear Watson
10,978,416
import seaborn as sns <groupby>
labels = train['label'].sort_values().value_counts().reset_index() labels = pd.DataFrame(labels) labels.columns = ['label','count'] labels_ = labels.style.background_gradient(cmap='Blues') labels_
Contradictory, My Dear Watson
10,978,416
train_df.groupby(['Sex'] ).Survived.sum() <count_values>
target = train['label'] train = train.drop('label',axis=1) train_text = [None] * len(train) test_text = [None] * len(test) for i in range(len(train)) : train_text[i] = train['premise'][i] + ' ' + train['hypothesis'][i] for i in range(len(test)) : test_text[i] = test['premise'][i] + ' ' + test['hypothesis'][i]
Contradictory, My Dear Watson
10,978,416
print(train_df[train_df.Sex == 'female'].Survived.sum() /train_df[train_df.Sex == 'female'].Survived.count()) print(train_df[train_df.Sex == 'male'].Survived.sum() /train_df[train_df.Sex == 'male'].Survived.count() )<feature_engineering>
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL )
Contradictory, My Dear Watson
10,978,416
data['Age'] = data.Age.fillna(data.Age.median()) data['Fare'] = data.Fare.fillna(data.Fare.median()) data.info()<categorify>
def roberta_encode(texts, maxlen=512): enc_di = tokenizer.batch_encode_plus( texts, pad_to_max_length=True, max_length=maxlen ) return np.array(enc_di['input_ids'] )
Contradictory, My Dear Watson
10,978,416
data = pd.get_dummies(data, columns=['Sex'], drop_first=True) data.head()<prepare_x_and_y>
train_input_ids = roberta_encode(train_text,maxlen=100) test_input_ids = roberta_encode(test_text,maxlen=100 )
Contradictory, My Dear Watson
10,978,416
data_train = data.iloc[:891] data_test = data.iloc[891:] X = data_train.values test = data_test.values y = survived_train.values<import_modules>
train_input_ids,validation_input_ids,train_labels,validation_labels = train_test_split(train_input_ids,target,test_size=0.2 )
Contradictory, My Dear Watson
10,978,416
from sklearn import tree from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV<train_model>
train_dataset =( tf.data.Dataset .from_tensor_slices(( train_input_ids,train_labels)) .repeat() .shuffle(2048) .batch(Batch_size) .prefetch(AUTO) ) validation_dataset =( tf.data.Dataset .from_tensor_slices(( validation_input_ids, validation_labels)) .batch(Batch_size) .cache() .prefetch(AUTO) ) test_dataset =( tf.data.Dataset .from_tensor_slices(test_input_ids) .batch(Batch_size) )
Contradictory, My Dear Watson
10,978,416
clf = tree.DecisionTreeClassifier(max_depth=3) clf.fit(X, y )<save_to_csv>
def create_model(bert_model): input_ids = tf.keras.Input(shape=(100,),dtype='int32') output = bert_model(input_ids)[0] output = output[:,0,:] output = tf.keras.layers.Dense(3,activation='softmax' )(output) model = tf.keras.models.Model(inputs = input_ids,outputs = output) model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model
Contradictory, My Dear Watson
10,978,416
Y_pred = clf.predict(test) test_df['Survived'] = Y_pred test_df[['PassengerId', 'Survived']].to_csv('dec_tree.csv', index=False )<set_options>
with strategy.scope() : bert_model =( transformers.TFAutoModel .from_pretrained(MODEL) ) model = create_model(bert_model )
Contradictory, My Dear Watson
10,978,416
sns.set_palette('deep' )<load_from_csv>
history = model.fit(train_dataset, validation_data = validation_dataset, epochs = epochs, batch_size = Batch_size, steps_per_epoch = len(train_input_ids)//Batch_size )
Contradictory, My Dear Watson
10,978,416
<concatenate><EOS>
pred = model.predict(test_dataset,verbose=1) print(len(pred)) pred = pred.argmax(axis=1) submission.prediction = pred submission.to_csv('submission.csv',index=False) submission.head()
Contradictory, My Dear Watson
10,962,695
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<train_model>
import os import numpy as np import pandas as pd from kaggle_datasets import KaggleDatasets from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint import transformers from transformers import TFAutoModel, AutoTokenizer from tqdm.notebook import tqdm import plotly.express as px
Contradictory, My Dear Watson
10,962,695
def fit(model, X, y, epochs=250, optim='adam', lr=0.001, verbose=0): valid_optims = ['sgd', 'rmsprop', 'adam'] optim = optim.lower() if optim.lower() not in valid_optims: raise ValueError("invalid optimizer got '{0}' and expect one of {1}" .format(optim, valid_optims)) loss_fn = torch.nn.BCEWithLogitsLoss() optim = optim.lower() if optim == 'sgd': optimizer = torch.optim.SGD(model.parameters() , lr=lr) elif optim == 'rmsprop': optimizer = torch.optim.RMSprop(model.parameters() , lr=lr) elif optim == 'adam': optimizer = torch.optim.Adam(model.parameters() , lr=lr) for t in range(epochs): logits = model(X) loss = loss_fn(logits, y) optimizer.zero_grad() loss.backward() optimizer.step() pred = torch.sigmoid(logits) acc = torch.eq(y, pred.round_() ).cpu().float().mean().data[0] if verbose > 1: print("Epoch {0:>{2}}/{1}: Loss={3:.4f}, Accuracy={4:.4f}" .format(t + 1, epochs, len(str(epochs)) , loss.data[0], acc)) if verbose > 0: print("Training complete! Loss={0:.4f}, Accuracy={1:.4f}".format(loss.data[0], acc)) return {'loss': loss.data[0], 'acc': acc}<compute_train_metric>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
10,962,695
def cross_val_score(model, X, y, cv=3, epochs=250, optim='adam', lr=0.001, use_cuda=True, verbose=0): kfolds = KFold(cv, False ).split(X) score = [] for fold,(train_idx, val_idx)in enumerate(kfolds): X_train = X[train_idx] y_train = y[train_idx] X_val = X[val_idx] y_val = y[val_idx] X_train = Variable(torch.Tensor(X_train), requires_grad=True) y_train = Variable(torch.Tensor(y_train), requires_grad=False ).unsqueeze_(-1) X_val = Variable(torch.Tensor(X_val), requires_grad=False) y_val = Variable(torch.Tensor(y_val), requires_grad=False ).unsqueeze_(-1) model_train = copy.deepcopy(model) if(use_cuda): X_train = X_train.cuda() y_train = y_train.cuda() X_val = X_val.cuda() y_val = y_val.cuda() model_train = model_train.cuda() metrics = fit(model_train, X_train, y_train, epochs=epochs, optim=optim, lr=lr, verbose=0) y_val_pred = torch.sigmoid(model_train(X_val)) acc = torch.eq(y_val, y_val_pred.round_() ).cpu().float().mean().data[0] score.append(acc) if verbose > 1: print("Fold {0:>{2}}/{1}: Validation accuracy={3:.4f}" .format(fold + 1, cv, len(str(cv)) , acc)) if verbose > 0: print("Mean k-fold accuracy: {0:.4f}".format(np.mean(score))) return score<train_on_grid>
model_name = 'jplu/tf-xlm-roberta-large' n_epochs = 10 max_len = 80 batch_size = 16 * strategy.num_replicas_in_sync
Contradictory, My Dear Watson
10,962,695
def titanic_net_grid_search(X, y, param_grid, cv=3, epochs=250, use_cuda=True, verbose=0): grid = list(( dict(zip(param_grid, param)) for param in itertools.product(*param_grid.values()))) n_candidates = len(grid) if verbose > 0: print("Fitting {0} folds for each of {1} candidates, totaling {2} fits" .format(n_folds, n_candidates, n_folds * n_candidates)) print() best_params = None best_model = None best_score = 0 for candidate, params in enumerate(grid): if verbose == 1: progress = "Candidate {0:>{2}}/{1}".format(candidate + 1, n_candidates, len(str(n_candidates))) print(progress, end="\r", flush=True) elif verbose > 1: print("Candidate", candidate + 1) print("Parameters: {}".format(params)) d_in = X_train.shape[-1] d_hidden = params['d_hidden'] n_hidden = params['n_hidden'] d_out = 1 model = titanic_net(d_in, d_hidden, n_hidden, d_out) cv_score = cross_val_score(model, X_train, Y_train, cv = n_folds, epochs=epochs, use_cuda=use_cuda, verbose=0) cv_mean_acc = np.mean(cv_score) if verbose > 1: print("Mean CV accuracy: {0:.4f}".format(cv_mean_acc)) print() if cv_mean_acc > best_score: best_params = params best_model = model best_score = cv_mean_acc if verbose > 0: if verbose == 1: print() print("Best model") print("Parameters: {}".format(best_params)) print("Mean CV accuracy: {0:.4f}".format(best_score)) return {'best_model': best_model, 'best_params': best_params, 'best_score': best_score}<train_model>
train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv' )
Contradictory, My Dear Watson
10,962,695
X_train = np.array(train.drop(columns='Survived')) Y_train = np.array(train['Survived'].astype(int)) X_test = np.array(test) print("Training samples shape: {}".format(X_train.shape)) print("Training targets shape: {}".format(Y_train.shape)) print("Test samples shape: {}".format(X_test.shape))<train_on_grid>
tokenizer = AutoTokenizer.from_pretrained(model_name )
Contradictory, My Dear Watson
10,962,695
n_folds = 10 grid = { 'n_hidden': [0, 3, 7, 10, 15], 'd_hidden': [3, 7, 10], 'lr': [0.001, 0.005, 0.01], 'optim': ['Adam'] } best_candidate = titanic_net_grid_search(X_train, Y_train, grid, cv=n_folds, epochs=500, verbose=1) best_model = best_candidate['best_model']<train_model>
train_text = train[['premise', 'hypothesis']].values.tolist() test_text = test[['premise', 'hypothesis']].values.tolist() train_encoded = tokenizer.batch_encode_plus( train_text, pad_to_max_length=True, max_length=max_len ) test_encoded = tokenizer.batch_encode_plus( test_text, pad_to_max_length=True, max_length=max_len )
Contradictory, My Dear Watson
10,962,695
X_train_t = Variable(torch.Tensor(X_train), requires_grad=True) y_train_t = Variable(torch.Tensor(Y_train), requires_grad=False ).unsqueeze_(-1) X_test_t = Variable(torch.Tensor(X_test), requires_grad=False) best_params = best_candidate["best_params"] _ = fit(best_model, X_train_t, y_train_t, epochs=500,optim=best_params['optim'], lr=best_params['lr'] )<save_to_csv>
x_train, x_valid, y_train, y_valid = train_test_split( train_encoded['input_ids'], train.label.values, test_size=0.2, random_state=2020 ) x_test = test_encoded['input_ids']
Contradictory, My Dear Watson
10,962,695
prediction = torch.sigmoid(best_model(X_test_t)).data.round_().numpy().flatten() _test = pd.read_csv(".. /input/titanic/test.csv") submission_df = pd.DataFrame({'PassengerId': _test['PassengerId'], 'Survived': prediction.astype(int)}) submission_df.to_csv("submission.csv", index=False) train.to_csv("submission_train.csv", index=False) test.to_csv("submission_test.csv", index=False )<import_modules>
auto = tf.data.experimental.AUTOTUNE train_dataset =( tf.data.Dataset .from_tensor_slices(( x_train, y_train)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) valid_dataset =( tf.data.Dataset .from_tensor_slices(( x_valid, y_valid)) .batch(batch_size) .cache() .prefetch(auto) ) test_dataset =( tf.data.Dataset .from_tensor_slices(x_test) .batch(batch_size) )
Contradictory, My Dear Watson
10,962,695
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder, MinMaxScaler <load_from_csv>
with strategy.scope() : transformer_encoder = TFAutoModel.from_pretrained(model_name) input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer_encoder(input_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.summary()
Contradictory, My Dear Watson
10,962,695
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') print('The size of the training set: ', train.shape) print('The size of the test set is: ' ,test.shape )<define_variables>
n_steps = len(x_train)// batch_size train_history = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=n_epochs )
Contradictory, My Dear Watson
10,962,695
Passenger_Id = test['PassengerId']<define_variables>
test_preds = model.predict(test_dataset, verbose=1) submission['prediction'] = test_preds.argmax(axis=1 )
Contradictory, My Dear Watson
10,962,695
<count_values><EOS>
submission.to_csv('submission.csv', index=False) submission.head()
Contradictory, My Dear Watson
10,973,244
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<count_values>
!pip install transformers==3.0.2
Contradictory, My Dear Watson
10,973,244
test.dtypes.value_counts()<drop_column>
import tensorflow as tf import transformers from sklearn.model_selection import KFold
Contradictory, My Dear Watson
10,973,244
data = pd.concat(( train, test)) data.drop('Survived', axis = 1, inplace = True) data.drop('PassengerId', axis = 1, inplace = True )<count_values>
transformers.__version__
Contradictory, My Dear Watson
10,973,244
data.Sex.value_counts(normalize = True )<count_values>
from transformers import AutoTokenizer, TFAutoModel
Contradictory, My Dear Watson
10,973,244
embarked_counts = data.Embarked.value_counts(normalize = True) embarked_counts<sort_values>
train_df = pd.read_csv("/kaggle/input/contradictory-my-dear-watson/train.csv") test_df = pd.read_csv("/kaggle/input/contradictory-my-dear-watson/test.csv" )
Contradictory, My Dear Watson
10,973,244
null_values = data.columns[data.isnull().any() ] null_features = data[null_values].isnull().sum().sort_values(ascending = False) missing_data = pd.DataFrame({'No of Nulls' :null_features}) missing_data<count_missing_values>
epochs = 3 maxlen = 50 model_name = "jplu/tf-xlm-roberta-large" batch_size = 16 * strategy.num_replicas_in_sync
Contradictory, My Dear Watson
10,973,244
test.isnull().sum()<count_missing_values>
tokenizer = AutoTokenizer.from_pretrained(model_name )
Contradictory, My Dear Watson
10,973,244
test.isnull().sum()<count_missing_values>
%%time train_encode = tokenizer(list(train_df.premise.values), list(train_df.hypothesis.values), max_length=maxlen, return_tensors="np", padding=True, return_token_type_ids=True, return_attention_mask=True )
Contradictory, My Dear Watson
10,973,244
train.isnull().sum()<count_missing_values>
def get_model(maxlen=50): base_model = TFAutoModel.from_pretrained(model_name) input_ids = tf.keras.layers.Input(shape =(maxlen,), dtype=tf.int32, name="input_ids") input_type = tf.keras.layers.Input(shape =(maxlen,), dtype=tf.int32, name="token_type_ids") input_mask = tf.keras.layers.Input(shape =(maxlen,), dtype=tf.int32, name="attention_mask") embedding = base_model([input_ids, input_mask, input_type])[0] print(embedding.shape) output = tf.keras.layers.Dense(3, activation="softmax" )(embedding[:, 0, :]) model = tf.keras.models.Model(inputs=[input_ids, input_mask, input_type], outputs = output) model.compile(tf.keras.optimizers.Adam(1e-5), "sparse_categorical_crossentropy", ["accuracy"]) return model
Contradictory, My Dear Watson
10,973,244
train.isnull().sum()<data_type_conversions>
%%time ps = cls_model([train_encode['input_ids'][:10], train_encode['attention_mask'][:10], train_encode['token_type_ids'][:10]] )
Contradictory, My Dear Watson
10,973,244
data["Embarked"] = data["Embarked"].fillna('S' )<filter>
fold = KFold(n_splits=3, shuffle=True, random_state=108 )
Contradictory, My Dear Watson
10,973,244
data[data['Fare'].isnull() ]<data_type_conversions>
%%time hists = [] models = [] for i,(train_idx, val_idx)in enumerate(fold.split(np.arange(train_df.label.shape[0]))): print(f"----FOLD: {i+1}---- ",train_idx, val_idx) x_train = [train_encode['input_ids'][train_idx], train_encode['attention_mask'][train_idx], train_encode['token_type_ids'][train_idx]] y_train = train_df.label.values[train_idx] x_val = [train_encode['input_ids'][val_idx], train_encode['attention_mask'][val_idx], train_encode['token_type_ids'][val_idx]] y_val = train_df.label.values[val_idx] hist=cls_model.fit(x_train, y_train, epochs=epochs, batch_size = batch_size, validation_data =(x_val, y_val), ) hists.append(hist) gc.collect()
Contradictory, My Dear Watson
10,973,244
def fill_missing_fare(df): median_fare=df[(df['Pclass'] == 3)&(df['Embarked'] == 'S')]['Fare'].median() df["Fare"] = df["Fare"].fillna(median_fare) return df data=fill_missing_fare(data )<define_search_space>
gc.collect()
Contradictory, My Dear Watson
10,973,244
sizeof_null = data["Age"].isnull().sum() rand_age = np.random.randint(0, 80, size = sizeof_null )<data_type_conversions>
%%time test_encode = tokenizer(list(test_df.premise.values), list(test_df.hypothesis.values), max_length=maxlen, return_tensors="tf", padding=True, return_token_type_ids=True, return_attention_mask=True )
Contradictory, My Dear Watson
10,973,244
age_slice = data["Age"].copy() age_slice[np.isnan(age_slice)] = rand_age data["Age"] = age_slice data["Age"] = data["Age"].astype(int )<feature_engineering>
ps = cls_model.predict([test_encode['input_ids'], test_encode['attention_mask'], test_encode['token_type_ids']], verbose=1, batch_size=batch_size )
Contradictory, My Dear Watson
10,973,244
data['Age'] = data['Age'].astype(int) data.loc[ data['Age'] <= 18, 'Age'] = 0 data.loc[(data['Age'] > 18)&(data['Age'] <= 35), 'Age'] = 1 data.loc[(data['Age'] > 35)&(data['Age'] <= 60), 'Age'] = 2 data.loc[(data['Age'] > 60)&(data['Age'] <= 80), 'Age'] = 3 data['Age'].value_counts()<data_type_conversions>
submission = test_df.id.copy().to_frame() submission['prediction'] = np.argmax(ps, 1 )
Contradictory, My Dear Watson
10,973,244
<count_values><EOS>
submission.to_csv("submission.csv", index = False )
Contradictory, My Dear Watson
13,666,218
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<feature_engineering>
!pip install -q transformers==3.0.2 !pip install -q nlp
Contradictory, My Dear Watson
13,666,218
data.loc[ data['FamilySize'] == 1, 'FSize'] = 'Single family' data.loc[(data['FamilySize'] > 1)&(data['FamilySize'] <= 5), 'FSize'] = 'Small Family' data.loc[(data['FamilySize'] > 5), 'FSize'] = ' Extended Family'<categorify>
np.random.seed(12345 )
Contradictory, My Dear Watson
13,666,218
le = LabelEncoder() data['Sex'] = le.fit_transform(data['Sex']) data['Embarked'] = le.fit_transform(data['Embarked']) data['Deck'] = le.fit_transform(data['Deck']) data['FSize'] = le.fit_transform(data['FSize'] )<count_values>
pd.set_option('display.max_colwidth', 100) os.environ["WANDB_API_KEY"] = "0" sns.set_context("talk", font_scale=1.05 )
Contradictory, My Dear Watson
13,666,218
data.dtypes.value_counts()<drop_column>
train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv" )
Contradictory, My Dear Watson
13,666,218
data = data.drop(['Name', 'Ticket','Cabin',], axis = 1 )<feature_engineering>
print("Any duplicate rows(train or test): ", max(train['id'].nunique() != train.shape[0], test['id'].nunique() != test.shape[0]))
Contradictory, My Dear Watson
13,666,218
skewed = skew_cols.index.tolist() data[skewed] = data[skewed].apply(np.log1p )<import_modules>
print("Train and test datasets have unique, non-overlapping ids: ", pd.merge(train['id'], test['id'], on = 'id', how = 'inner' ).shape[0] == 0 )
Contradictory, My Dear Watson
13,666,218
from sklearn.model_selection import KFold, cross_val_score from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from xgboost import XGBClassifier from lightgbm import LGBMClassifier from sklearn.ensemble import VotingClassifier <count_values>
print("% distribution by language - training dataset") train['language'].value_counts(normalize=True)* 100 .
Contradictory, My Dear Watson
13,666,218
train_new.dtypes.value_counts()<count_values>
print("% distribution by language - test dataset") test['language'].value_counts(normalize=True)* 100 .
Contradictory, My Dear Watson
13,666,218
test_new.dtypes.value_counts()<choose_model_class>
train['label_str'] = train['label'].map({0 : "entailment", 1 : "neutral", 2 : "contradiction"} )
Contradictory, My Dear Watson
13,666,218
n_folds = 5 kf = KFold(n_folds, shuffle = True, random_state = 42 ).get_n_splits(train_new) <compute_train_metric>
def _get_word_count(snt): return len(str(snt ).split() )
Contradictory, My Dear Watson
13,666,218
y_train = train.Survived n_folds = 5 def f1_score(model): kf = KFold(n_folds, shuffle = True, random_state = 42 ).get_n_splits(train_new) rmse = np.sqrt(cross_val_score(model, train_new, y_train, scoring = 'f1', cv = kf)) return(rmse )<define_search_model>
train['premise_len'] = train['premise'].apply(lambda x: _get_word_count(x)) train['hypothesis_len'] = train['hypothesis'].apply(lambda x: _get_word_count(x)) train['relative_diff'] =(train['hypothesis_len'] - train['premise_len'])* 1./ train['premise_len']
Contradictory, My Dear Watson
13,666,218
logreg = LogisticRegression() rf = RandomForestClassifier() gboost = GradientBoostingClassifier() xgb = XGBClassifier() lgbm = LGBMClassifier()<import_modules>
snli = load_dataset(path='snli' )
Contradictory, My Dear Watson
13,666,218
<compute_test_metric>
result_snli = [] for k in ['train', 'validation']: for record in snli[k]: c1, c2, c3 = record['premise'], record['hypothesis'], record['label'] if c1 and c2 and c3 in {0,1,2}: result_snli.append(( c1,c2,'en','English',c3)) snli_df = pd.DataFrame(result_snli, columns=['premise','hypothesis','lang_abv', 'language', 'label'] )
Contradictory, My Dear Watson
13,666,218
score = f1_score(logreg) print(" Logistic regression score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<compute_test_metric>
pd.merge(train['premise'], snli_df['premise'], on = 'premise', how='inner' ).shape[0] != 0
Contradictory, My Dear Watson
13,666,218
score = f1_score(rf) print(" Random Forest score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<compute_test_metric>
final_df = shuffle(train.drop(columns=['id', 'label_str', 'premise_len', 'hypothesis_len', 'relative_diff'])).reset_index(drop = True )
Contradictory, My Dear Watson
13,666,218
score = f1_score(gboost) print(" Gradient Boosting Classifier score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<compute_test_metric>
X, y = final_df[['premise', 'hypothesis']].values.tolist() , final_df['label'] x_train, x_valid, y_train, y_valid = train_test_split(X, y, test_size=0.25, random_state=12345 )
Contradictory, My Dear Watson
13,666,218
score = f1_score(xgb) print(" eXtreme Gradient BOOSTing score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<compute_test_metric>
del snli gc.collect()
Contradictory, My Dear Watson
13,666,218
score = f1_score(lgbm) print(" Light Gradient Boosting score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<train_model>
encoder_handle = 'jplu/tf-xlm-roberta-large'
Contradictory, My Dear Watson
13,666,218
all_classifier = VotingClassifier(estimators=[('logreg', logreg),('rf', rf), ('gboost', gboost),('xgb', xgb), ('lgbm', lgbm)], voting='soft') VC = all_classifier.fit(train_new, y_train )<compute_test_metric>
tokenizer = AutoTokenizer.from_pretrained(encoder_handle )
Contradictory, My Dear Watson
13,666,218
score = f1_score(VC) print(" Voting Classifier score: mean = {:.4f} std =({:.4f}) ".format(score.mean() , score.std()))<predict_on_test>
max_len = 64 random_seed = 11887 learning_rate = 1e-5 epochs = 5 batch_size = 16 * strategy.num_replicas_in_sync loss = 'sparse_categorical_crossentropy' metrics = ['accuracy'] steps_per_epoch = 1000 auto = tf.data.experimental.AUTOTUNE
Contradictory, My Dear Watson
13,666,218
prediction = VC.predict(test_new )<save_to_csv>
def encode_sentence(s, tokenizer): tokens = list(tokenizer.tokenize(s)) tokens.append(tokenizer.sep_token) return tokenizer.convert_tokens_to_ids(tokens) def tokenize(data, tokenizer, max_len): PAD_ID = tokenizer.convert_tokens_to_ids(tokenizer.pad_token) tokens1 = tf.ragged.constant([encode_sentence(s[0], tokenizer)for s in data], dtype=tf.int32) tokens2 = tf.ragged.constant([encode_sentence(s[1], tokenizer)for s in data], dtype=tf.int32) cls_label = [tokenizer.convert_tokens_to_ids([tokenizer.cls_token])]*tokens1.shape[0] tokens = tf.concat([cls_label, tokens1, tokens2], axis=-1) tokens = tokens[:, :max_len] tokens = tokens.to_tensor(default_value=PAD_ID) pad = max_len - tf.shape(tokens)[1] tokens = tf.pad(tokens, [[0, 0], [0, pad]], constant_values=PAD_ID) input_word_ids = tf.reshape(tokens, [-1, max_len]) input_mask = tf.cast(input_word_ids != PAD_ID, tf.int32) input_mask = tf.reshape(input_mask, [-1, max_len]) input_type_ids = tf.concat([tf.zeros_like(cls_label), tf.zeros_like(tokens1), tf.ones_like(tokens2)], axis=-1 ).to_tensor() inputs = { 'input_word_ids': input_word_ids, 'input_mask': input_mask, 'input_type_ids': input_type_ids} return inputs
Contradictory, My Dear Watson
13,666,218
titanic_submission = pd.DataFrame({"PassengerId": test["PassengerId"], "Survived": prediction}) titanic_submission.to_csv('Titanic_Submission.csv', index = False) titanic_submission.sample(10) <import_modules>
def build_dataset(x, y, mode, batch_size): if mode == "train": dataset =( tf.data.Dataset .from_tensor_slices(( x, y)) .repeat() .shuffle(5678) .batch(batch_size) .prefetch(auto) ) elif mode == "valid": dataset =( tf.data.Dataset .from_tensor_slices(( x, y)) .batch(batch_size) .cache() .prefetch(auto) ) elif mode == "test": dataset =( tf.data.Dataset .from_tensor_slices(x) .batch(batch_size) ) else: raise NotImplementedError return dataset
Contradictory, My Dear Watson
13,666,218
import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier<load_from_csv>
x_train_ = tokenize(x_train, tokenizer, max_len) x_valid_ = tokenize(x_valid, tokenizer, max_len )
Contradictory, My Dear Watson
13,666,218
train = pd.read_csv('.. /input/train.csv') test = pd.read_csv('.. /input/test.csv') full_data = [train, test]<count_missing_values>
train_dataset = build_dataset(x_train_, y_train, "train", batch_size) valid_dataset = build_dataset(x_valid_, y_valid, "valid", batch_size )
Contradictory, My Dear Watson
13,666,218
print(train.isnull().sum()) print('_'*40) print(test.isnull().sum() )<feature_engineering>
def build_model(encoder_handle, random_seed, learning_rate, loss, metrics, max_len): tf.keras.backend.clear_session() tf.random.set_seed(random_seed) with strategy.scope() : input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_mask") roberta = TFXLMRobertaModel.from_pretrained(encoder_handle) roberta = roberta([input_word_ids, input_mask])[0] out = GlobalAveragePooling1D()(roberta) out = Dense(3, activation='softmax' )(out) model = Model(inputs=[input_word_ids, input_mask], outputs = out) model.compile(optimizer=Adam(lr=learning_rate), loss=loss, metrics=metrics) model.summary() return model
Contradictory, My Dear Watson
13,666,218
PassengerId = test['PassengerId'] for dataset in full_data: dataset['Has_Cabin'] = dataset["Cabin"].apply(lambda x: 0 if type(x)== float else 1) dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1 dataset['IsAlone'] = 0 dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1 dataset['Sex'] = dataset['Sex'].replace(['male', 'female'], [0, 1]) master_ave = dataset.loc[dataset.Name.str.contains('Master'), 'Age'].mean() mr_ave = dataset.loc[dataset.Name.str.contains('Mr'), 'Age'].mean() miss_ave = dataset.loc[dataset.Name.str.contains('Miss'), 'Age'].mean() mrs_ave = dataset.loc[dataset.Name.str.contains('Mrs'), 'Age'].mean() dataset.loc[dataset.Name.str.contains('Mraster')& dataset.Age.isnull() , 'Age'] = master_ave dataset.loc[dataset.Name.str.contains('Mr')& dataset.Age.isnull() , 'Age'] = mr_ave dataset.loc[dataset.Name.str.contains('Miss')& dataset.Age.isnull() , 'Age'] = miss_ave dataset.loc[dataset.Name.str.contains('Mrs')& dataset.Age.isnull() , 'Age'] = mrs_ave dataset['Age'] = dataset['Age'].fillna(dataset['Age'].mean()) dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0 dataset.loc[(dataset['Age'] > 16)&(dataset['Age'] <= 32), 'Age'] = 1 dataset.loc[(dataset['Age'] > 32)&(dataset['Age'] <= 48), 'Age'] = 2 dataset.loc[(dataset['Age'] > 48)&(dataset['Age'] <= 64), 'Age'] = 3 dataset.loc[ dataset['Age'] > 64, 'Age'] = 4 dataset['Age'] = dataset['Age'].astype(int) dataset['Fare'] = dataset['Fare'].fillna(dataset['Fare'].mean()) dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0 dataset.loc[(dataset['Fare'] > 7.91)&(dataset['Fare'] <= 14.454), 'Fare'] = 1 dataset.loc[(dataset['Fare'] > 14.454)&(dataset['Fare'] <= 31), 'Fare'] = 2 dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3 dataset['Fare'] = dataset['Fare'].astype(int) dataset['Embarked'] = dataset['Embarked'].fillna('S') dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2} ).astype(int) dataset.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True )<count_missing_values>
model = build_model(encoder_handle, random_seed, learning_rate, loss, metrics, max_len )
Contradictory, My Dear Watson
13,666,218
print(train.isnull().sum()) print('_'*40) print(test.isnull().sum() )<prepare_x_and_y>
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', verbose=1, patience=2, mode='min', restore_best_weights=True )
Contradictory, My Dear Watson
13,666,218
trn_x = train.drop(['Survived'], axis=1, inplace=False) trn_y = train['Survived']<train_model>
x_small_train, y_small_train = X[:batch_size], y[:batch_size]
Contradictory, My Dear Watson
13,666,218
pred = np.zeros(( test.shape[0], 10)) for i in range(10): model = RandomForestClassifier( max_depth = 10, max_features =10, min_samples_split = 15, n_estimators = 10, n_jobs = -1, random_state = i) model.fit(trn_x, trn_y) pred[:,i] = model.predict_proba(test)[:,1].reshape(test.shape[0],) output = pred.mean(axis=1) output[output >= 0.5] = 1 output[output < 0.5] = 0 output = output.astype(int )<save_to_csv>
x_small_train = tokenize(x_small_train, tokenizer, max_len) small_train_dataset = build_dataset(x_small_train, y_small_train, "train", batch_size )
Contradictory, My Dear Watson
13,666,218
df_out = pd.DataFrame({ 'PassengerId': PassengerId, 'Survived': output }) df_out.to_csv("submission.csv", index=False )<set_options>
history_small_train = model.fit(small_train_dataset, steps_per_epoch=100, epochs=3 )
Contradictory, My Dear Watson
13,666,218
warnings.filterwarnings("ignore" )<load_from_csv>
model = build_model(encoder_handle, random_seed, learning_rate, loss, metrics, max_len )
Contradictory, My Dear Watson
13,666,218
traindata = pd.read_csv('/kaggle/input/titanic/train.csv') testdata = pd.read_csv('/kaggle/input/titanic/test.csv' )<categorify>
history = model.fit(train_dataset, validation_data=valid_dataset, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=[early_stopping] )
Contradictory, My Dear Watson
13,666,218
le = LabelEncoder() traindata['Sex'] = le.fit_transform(traindata['Sex']) testdata['Sex'] = le.fit_transform(testdata['Sex']) traindata['Embarked'] = le.fit_transform(traindata['Embarked'].astype(str)) testdata['Embarked'] = le.fit_transform(testdata['Embarked'].astype(str))<prepare_x_and_y>
x_test = tokenize(test[['premise', 'hypothesis']].values.tolist() , tokenizer, max_len) test_dataset = build_dataset(x_test, None, "test", batch_size )
Contradictory, My Dear Watson
13,666,218
X = traindata[['Pclass','Sex','Age','Fare','Parch','SibSp','Embarked']].values y = traindata.iloc[:,1].values X_real_test = testdata[['Pclass','Sex','Age','Fare','Parch','SibSp','Embarked']].values<count_missing_values>
predictions_prob = model.predict(test_dataset) final = predictions_prob.argmax(axis=-1) submission = pd.DataFrame() submission['id'] = test['id'] submission['prediction'] = final.astype(np.int32 )
Contradictory, My Dear Watson
13,666,218
<categorify><EOS>
submission.to_csv("submission.csv", index = False )
Contradictory, My Dear Watson
13,511,536
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<split>
!pip install sentence-transformers !pip install pandas !pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
Contradictory, My Dear Watson
13,511,536
<normalization><EOS>
logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler() ]) dataset_path = '.. /input/contradictory-my-dear-watson/train.csv' logging.info("Read AllNLI train dataset") label2int = {"contradiction": 0, "entailment": 1, "neutral": 2} train_samples = [] dev_samples = [] train_data = pandas.read_csv(dataset_path) train_data['label'] = train_data['label'].replace([0, 2], [2, 0]) for id, row in train_data.iterrows() : label_id = int(row['label']) train_samples.append(InputExample(texts=[row['premise'], row['hypothesis']], label=label_id)) train_batch_size = 16 num_epochs = 20 model_save_path = './training_allnli-' + datetime.now().strftime("%Y-%m-%d_%H-%M-%S") model = CrossEncoder('sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens', num_labels=len(label2int)) train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size) evaluator = CESoftmaxAccuracyEvaluator.from_input_examples(dev_samples, name='AllNLI-dev') warmup_steps = math.ceil(len(train_dataloader)* num_epochs * 0.1) logging.info("Warmup-steps: {}".format(warmup_steps)) model.fit(train_dataloader=train_dataloader, epochs=num_epochs, warmup_steps=warmup_steps, output_path=model_save_path) test_dataset = '.. /input/contradictory-my-dear-watson/test.csv' df = pandas.read_csv(test_dataset) sentence_pairs = [] ids = [] for id, row in df.iterrows() : label_id = 0 ids.append(row['id']) sentence_pairs.append([row['premise'], row['hypothesis']]) pred_scores = model.predict(sentence_pairs, convert_to_numpy=True, show_progress_bar=False, batch_size=train_batch_size) pred_labels = np.argmax(pred_scores, axis=1) out_df = pandas.DataFrame([ids, pred_labels] ).transpose() out_df = out_df.rename(columns={0: 'id', 1: 'prediction'}) out_df['prediction'] = out_df['prediction'].replace([0, 2],[2, 0]) out_df.to_csv('submission.csv', index=False)
Contradictory, My Dear Watson
11,775,677
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<predict_on_test>
!pip install googletrans textAugment
Contradictory, My Dear Watson
11,775,677
classifier = SVC(kernel='rbf',random_state=0) classifier.fit(X_train,y_train) y_pred = classifier.predict(X_test) cm = confusion_matrix(y_test,y_pred) print(cm )<save_to_csv>
os.environ["WANDB_API_KEY"] = "0"
Contradictory, My Dear Watson
11,775,677
y_pred_test = classifier.predict(X_real_test) pid = testdata[['PassengerId']].values res = np.expand_dims(y_pred_test,axis=1) f = np.hstack(( pid,res)) df = pd.DataFrame(f, columns = ['PassengerId', 'Survived']) df.to_csv('gender_submission.csv', index=False )<set_options>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print('Number of replicas:', strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
11,775,677
pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.3f}'.format <load_from_csv>
df_train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') df_test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv' )
Contradictory, My Dear Watson
11,775,677
dataframe = pd.read_csv(".. /input/train.csv", sep=",") dataframe.head(10) <create_dataframe>
def clean_word(value): language = value[0] word = value[1] if language != 'English': word = word.lower() return word word = word.lower() word = re.sub(r'\?\?', 'e', word) word = re.sub('\.\.\.', '.', word) word = re.sub('\/', ' ', word) word = re.sub('--', ' ', word) word = re.sub('/\xad', '', word) word = word.strip(' ') return word df_train['premise'] = df_train[['language', 'premise']].apply(lambda v: clean_word(v), axis=1) df_train['hypothesis'] = df_train[['language', 'hypothesis']].apply(lambda v: clean_word(v), axis=1) df_test['premise'] = df_test[['language', 'premise']].apply(lambda v: clean_word(v), axis=1) df_test['hypothesis'] = df_test[['language', 'hypothesis']].apply(lambda v: clean_word(v), axis=1) languages = [ 'zh-cn' if lang == 'zh' else lang for lang in df_train['lang_abv'].unique() ]
Contradictory, My Dear Watson
11,775,677
print('null value summary:') dataframe.isnull().sum().sort_values(ascending=False) <create_dataframe>
seed = 42 tf.random.set_seed(seed) model_name = 'jplu/tf-xlm-roberta-large' tokenizer = XLMRobertaTokenizer.from_pretrained(model_name) def build_model() : with strategy.scope() : bert_encoder = TFXLMRobertaModel.from_pretrained(model_name) input_word_ids = tf.keras.Input(shape=(None,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.Input(shape=(None,), dtype=tf.int32, name="input_mask") embedding = bert_encoder([input_word_ids, input_mask])[0] output_layer = tf.keras.layers.Dropout(0.25 )(embedding) output_layer = tf.keras.layers.GlobalAveragePooling1D()(output_layer) output_dense_layer = tf.keras.layers.Dense(64, activation='relu' )(output_layer) output_dense_layer = tf.keras.layers.Dense(32, activation='relu' )(output_dense_layer) output = tf.keras.layers.Dense(3, activation='softmax' )(output_dense_layer) model = tf.keras.Model(inputs=[input_word_ids, input_mask], outputs=output) model.compile(tf.keras.optimizers.Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model with strategy.scope() : model = build_model() model.summary()
Contradictory, My Dear Watson
11,775,677
dataframe = dataframe.drop(columns=['PassengerId', 'Name', 'Ticket', 'Cabin', 'Fare']) <categorify>
batch_size = 8 * strategy.num_replicas_in_sync num_splits = 5 test_input = None
Contradictory, My Dear Watson