kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,775,677
def transform_sex(dataframe): column_name = 'Sex' genders = {"female": 0, "male": 1} return dataframe[column_name].map(genders) <categorify>
auto = tf.data.experimental.AUTOTUNE def make_dataset(train_input, train_label): dataset = tf.data.Dataset.from_tensor_slices( ( train_input, train_label ) ).repeat().shuffle(batch_size ).batch(batch_size ).prefetch(auto) return dataset def xlm_roberta_encode(hypotheses, premises, src_langs, augmentation=False): num_examples = len(hypotheses) sentence_1 = [tokenizer.encode(s)for s in premises] sentence_2 = [tokenizer.encode(s)for s in hypotheses] input_word_ids = list(map(lambda x: x[0]+x[1], list(zip(sentence_1,sentence_2)))) input_mask = [np.ones_like(x)for x in input_word_ids] inputs = { 'input_word_ids': tf.keras.preprocessing.sequence.pad_sequences(input_word_ids, padding='post'), 'input_mask': tf.keras.preprocessing.sequence.pad_sequences(input_mask, padding='post') } return inputs train_df, validation_df = train_test_split(df_train, test_size=0.1) df_train['prediction'] = 0 num_augmentation = 1 train_input = xlm_roberta_encode(train_df.hypothesis.values,train_df.premise.values, train_df.lang_abv.values, augmentation=False) train_label = train_df.label.values train_sequence = make_dataset(train_input, train_label) validation_input = xlm_roberta_encode(validation_df.hypothesis.values, validation_df.premise.values,validation_df.lang_abv.values, augmentation=False) validation_label = validation_df.label.values tf.keras.backend.clear_session()
Contradictory, My Dear Watson
11,775,677
column_name = 'Sex' dataframe[column_name] = transform_sex(dataframe) dataframe.head(10) <create_dataframe>
train_df, validation_df = train_test_split(df_train, test_size=0.1) df_train['prediction'] = 0 num_augmentation = 1 train_input = xlm_roberta_encode(train_df.hypothesis.values,train_df.premise.values, train_df.lang_abv.values, augmentation=False) train_label = train_df.label.values train_sequence = make_dataset(train_input, train_label) validation_input = xlm_roberta_encode(validation_df.hypothesis.values, validation_df.premise.values,validation_df.lang_abv.values, augmentation=False) validation_label = validation_df.label.values tf.keras.backend.clear_session()
Contradictory, My Dear Watson
11,775,677
def transform_embarked(dataframe): column_name = 'Embarked' dataframe[column_name].fillna('S') dataframe = pd.concat( [ dataframe, pd.get_dummies(dataframe[column_name], prefix=column_name) ], axis=1) dataframe = dataframe.drop(columns=[column_name, 'Embarked_Q']) return dataframe <create_dataframe>
n_steps =(len(train_label)) // batch_size with strategy.scope() : history = model.fit( train_sequence, shuffle=True, steps_per_epoch=n_steps, validation_data =(validation_input, validation_label), epochs=50, verbose=1, callbacks=[ tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=10), tf.keras.callbacks.ReduceLROnPlateau(monitor='val_accuracy', factor=0.1, patience=5), tf.keras.callbacks.ModelCheckpoint( 'model.h5', monitor='val_accuracy', save_best_only=True,save_weights_only=True) ] ) model.load_weights('model.h5') validation_predictions = model.predict(validation_input) validation_predictions = np.argmax(validation_predictions, axis=-1) validation_df['predictions'] = validation_predictions acc = accuracy_score(validation_label, validation_predictions) print('Accuracy: {}'.format(acc))
Contradictory, My Dear Watson
11,775,677
<categorify><EOS>
if test_input is None: test_input = xlm_roberta_encode(df_test.hypothesis.values, df_test.premise.values, df_test.lang_abv.values,augmentation=False) test_split_predictions = model.predict(test_input) predictions = np.argmax(test_split_predictions, axis=-1) submission = df_test.id.copy().to_frame() submission['prediction'] = predictions submission.head() submission.to_csv("submission.csv", index = False )
Contradictory, My Dear Watson
11,470,784
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<create_dataframe>
import os import numpy as np import pandas as pd from kaggle_datasets import KaggleDatasets from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint import transformers from transformers import TFAutoModel, AutoTokenizer from tqdm.notebook import tqdm import plotly.express as px
Contradictory, My Dear Watson
11,470,784
column_name = 'Age' dataframe = transform_age(dataframe) dataframe.head(10) <create_dataframe>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
11,470,784
def transform_pclass(dataframe): column_name = 'Pclass' dataframe = pd.concat( [ dataframe, pd.get_dummies(dataframe[column_name], prefix=column_name) ], axis=1) dataframe = dataframe.drop(columns=[column_name, 'Pclass_2']) return dataframe <prepare_output>
model_name = 'jplu/tf-xlm-roberta-large' n_epochs = 10 max_len = 80 batch_size = 16 * strategy.num_replicas_in_sync
Contradictory, My Dear Watson
11,470,784
column_name = 'Pclass' dataframe = transform_pclass(dataframe) dataframe.head(10) <create_dataframe>
train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv' )
Contradictory, My Dear Watson
11,470,784
def transform_relatives(dataframe): column_name = 'Relatives' dataframe[column_name] = dataframe['SibSp'] + dataframe['Parch'] dataframe = dataframe.drop(columns=['SibSp', 'Parch']) dataframe[column_name] = dataframe[column_name].astype(int) dataframe.loc[dataframe[column_name] >= 6, column_name] = 6 return dataframe <create_dataframe>
twitter = pd.read_csv('/kaggle/input/sentiment140/training.1600000.processed.noemoticon.csv', encoding = 'latin1', names=['polarity','id','date','flag','user','text'] )
Contradictory, My Dear Watson
11,470,784
column_name = 'Relatives' dataframe = transform_relatives(dataframe) dataframe.head(10) <set_options>
twitter_premise, twitter_hypothesis = train_test_split(twitter['text'], test_size=0.5, random_state=2020 )
Contradictory, My Dear Watson
11,470,784
corr.style.background_gradient() <prepare_x_and_y>
twitter_df = pd.DataFrame() twitter_df['premise'] = twitter_premise.values twitter_df['hypothesis'] = twitter_hypothesis.values twitter_df.head()
Contradictory, My Dear Watson
11,470,784
minimal_features = [ "Sex", "Pclass_3" ] X = dataframe[minimal_features] y = dataframe['Survived'] <categorify>
tokenizer = AutoTokenizer.from_pretrained(model_name )
Contradictory, My Dear Watson
11,470,784
def preprocessing_data(source): columns = ['PassengerId', 'Name', 'Ticket', 'Cabin', 'Fare'] target = source.drop(columns=columns) column_name = 'Sex' target[column_name] = transform_sex(target) column_name = 'Embarked' target = transform_embarked(target) column_name = 'Age' target = transform_age(target) column_name = 'Pclass' target = transform_pclass(target) column_name = 'Relatives' target = transform_relatives(target) return target <train_model>
%%time train_text = train[['premise', 'hypothesis']].values.tolist() test_text = test[['premise', 'hypothesis']].values.tolist() twitter_text = twitter_df[['premise', 'hypothesis']].values.tolist() train_encoded = tokenizer.batch_encode_plus( train_text, pad_to_max_length=True, max_length=max_len ) test_encoded = tokenizer.batch_encode_plus( test_text, pad_to_max_length=True, max_length=max_len ) twitter_encoded = tokenizer.batch_encode_plus( twitter_text, pad_to_max_length=True, max_length=max_len )
Contradictory, My Dear Watson
11,470,784
print('LinearRegression: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) linreg = LinearRegression() linreg.fit(X_train, y_train) <predict_on_test>
x_train, x_valid, y_train, y_valid = train_test_split( train_encoded['input_ids'], train.label.values, test_size=0.2, random_state=2020 ) x_test = test_encoded['input_ids'] x_twitter_train1, x_twitter_train2 = train_test_split( twitter_encoded['input_ids'], test_size=0.5, random_state=2020 )
Contradictory, My Dear Watson
11,470,784
y_pred = linreg.predict(X_test) y_pred<categorify>
%%time auto = tf.data.experimental.AUTOTUNE train_dataset =( tf.data.Dataset .from_tensor_slices(( x_train, y_train)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) valid_dataset =( tf.data.Dataset .from_tensor_slices(( x_valid, y_valid)) .batch(batch_size) .cache() .prefetch(auto) ) test_dataset =( tf.data.Dataset .from_tensor_slices(x_test) .batch(batch_size) ) train_twitter_dataset1 =( tf.data.Dataset .from_tensor_slices(x_twitter_train1) .batch(batch_size) ) train_twitter_dataset2 =( tf.data.Dataset .from_tensor_slices(x_twitter_train2) .batch(batch_size) )
Contradictory, My Dear Watson
11,470,784
def transform_predicted(dataframe, threshold = 0.5): column_name = 'Predicted' dataframe.loc[dataframe[column_name] >= threshold, column_name] = 1 dataframe.loc[dataframe[column_name] < threshold, column_name] = 0 dataframe[column_name] = dataframe[column_name].astype(int) return dataframe<predict_on_test>
with strategy.scope() : transformer_encoder = TFAutoModel.from_pretrained(model_name) input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") last_hidden_states = transformer_encoder(input_ids)[0] cls_token = last_hidden_states[:, 0, :] out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.summary()
Contradictory, My Dear Watson
11,470,784
threshold = 0.5 y_pred2 = pd.DataFrame({'Predicted': y_pred}) y_pred2 = transform_predicted(y_pred2, threshold) y_pred2.head(10) <prepare_output>
n_steps = len(x_train)// batch_size train_history1 = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=n_epochs )
Contradictory, My Dear Watson
11,470,784
y_test2 = pd.DataFrame({'Survived': y_test}) y_test2.head(10) <compute_test_metric>
test_preds1 = model.predict(test_dataset, verbose=1 )
Contradictory, My Dear Watson
11,470,784
cm = confusion_matrix(y_test2['Survived'], y_pred2['Predicted']) print(cm) <train_model>
twitter_preds = model.predict(train_twitter_dataset1, verbose=1) twitter_pseudo_labels_train1 = twitter_preds.argmax(axis=1) twitter_preds = model.predict(train_twitter_dataset2, verbose=1) twitter_pseudo_labels_train2 = twitter_preds.argmax(axis=1 )
Contradictory, My Dear Watson
11,470,784
def display_cm_report(cm): TN = cm[0][0] FP = cm[0][1] FN = cm[1][0] TP = cm[1][1] print() print("TP: {}".format(TP)) print("FP: {}".format(FP)) print("FN: {}".format(FN)) print("TN: {} ".format(TN)) accuracy =(TP + TN)/(TP + TN + FP + FN) precision = TP /(TP + FP) recall = TP /(TP + FN) f1_score = 2 *(precision * recall)/(precision + recall) print("accuracy: {}".format(accuracy)) print("precision: {}".format(precision)) print("recall: {}".format(recall)) print("f1_score: {} ".format(f1_score)) plt.clf() plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia) plt.ylabel('True label') plt.xlabel('Predicted label') classNames = ['Negative', 'Positive'] tick_marks = np.arange(len(classNames)) plt.xticks(tick_marks, classNames) plt.yticks(tick_marks, classNames) s = [['TN', 'FP'], ['FN', 'TP']] for i in range(2): for j in range(2): plt.text(j, i, str(s[i][j])+ " = " + str(cm[i][j])) plt.show() <load_from_csv>
twitter_dataset_ssl1 =( tf.data.Dataset .from_tensor_slices(( x_twitter_train1, twitter_pseudo_labels_train1)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) twitter_dataset_ssl2 =( tf.data.Dataset .from_tensor_slices(( x_twitter_train2, twitter_pseudo_labels_train2)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) )
Contradictory, My Dear Watson
11,470,784
test_dataframe = pd.read_csv(".. /input/test.csv", sep=",") <create_dataframe>
n_steps = len(x_twitter_train1)// batch_size n_steps_val = len(x_valid)// batch_size model.fit( twitter_dataset_ssl1, steps_per_epoch=n_steps, validation_data=valid_dataset, validation_steps=n_steps_val, epochs=2 ) test_preds2 = model.predict(test_dataset, verbose=1 )
Contradictory, My Dear Watson
11,470,784
test_csv = pd.DataFrame() test_csv['PassengerId'] = test_dataframe['PassengerId'] <prepare_output>
n_steps = len(x_twitter_train2)// batch_size n_steps_val = len(x_valid)// batch_size model.fit( twitter_dataset_ssl2, steps_per_epoch=n_steps, validation_data=valid_dataset, validation_steps=n_steps_val, epochs=2 ) test_preds3 = model.predict(test_dataset, verbose=1 )
Contradictory, My Dear Watson
11,470,784
test_dataframe = preprocessing_data(test_dataframe) test_dataframe = test_dataframe[minimal_features] test_dataframe.head(10) <predict_on_test>
test_preds =(0.92)*test_preds1 +(0.05)*test_preds2 +(0.03)*test_preds3 test_preds = test_preds.argmax(axis=1) submission['prediction'] = test_preds
Contradictory, My Dear Watson
11,470,784
<load_from_csv><EOS>
submission.to_csv('submission.csv', index=False) submission.head()
Contradictory, My Dear Watson
11,685,223
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<save_to_csv>
os.environ["WANDB_API_KEY"] = "0" %matplotlib inline print(f"Using Tensorflow version: {tf.__version__}") tfa.register_all(custom_kernels=False) !pip install -q transformers==3.1.0 print(f"Using Transformers version: {transformers.__version__}")
Contradictory, My Dear Watson
11,685,223
test_csv['Survived'] = y_pred2['Predicted'] test_csv.to_csv('submission_all_lin_0.5.csv', index=False) <train_model>
DEVICE = 'TPU' if DEVICE == "TPU": print("connecting to TPU...") try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: print("Could not connect to TPU") tpu = None if tpu: try: print("initializing TPU...") tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print("TPU initialized") except _: print("failed to initialize TPU") else: DEVICE = "GPU" if DEVICE != "TPU": print("Using default strategy for CPU and single GPU") strategy = tf.distribute.get_strategy() if DEVICE == "GPU": print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) AUTO = tf.data.experimental.AUTOTUNE REPLICAS = strategy.num_replicas_in_sync print('REPLICAS: {}'.format(REPLICAS))
Contradictory, My Dear Watson
11,685,223
print('RandomForestClassifier: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) forest_model = RandomForestClassifier(n_estimators=100, criterion='entropy', random_state=1) forest_model.fit(X_train, y_train) <predict_on_test>
SEED = 777 DATA_PATH = ".. /input/contradictory-my-dear-watson/" MODEL = 'jplu/tf-xlm-roberta-large' TOKENIZER = transformers.AutoTokenizer.from_pretrained(MODEL) MAX_LEN = 96 BATCH_SIZE = 16 * REPLICAS EPOCHS= 10 FOLDS = 5 NUM_CLASSES = 3 OPT_TYPE = "Adam" LR = 1e-5
Contradictory, My Dear Watson
11,685,223
y_pred = forest_model.predict(X_test) <prepare_output>
train = pd.read_csv(DATA_PATH+"train.csv") test = pd.read_csv(DATA_PATH+"test.csv" )
Contradictory, My Dear Watson
11,685,223
threshold = 0.5 y_pred2 = pd.DataFrame({'Predicted': y_pred}) y_pred2 = transform_predicted(y_pred2) y_pred2.head(10) <prepare_output>
train.loc[:, 'lang_label'] = train.loc[:, ['lang_abv', 'label']].apply(lambda row: row['lang_abv']+'-'+str(row['label']), axis=1 )
Contradictory, My Dear Watson
11,685,223
y_test2 = pd.DataFrame({'Survived': y_test}) y_test2.head(10) <compute_test_metric>
out = TOKENIZER(train.loc[2,'premise'],train.loc[2,'hypothesis'],add_special_tokens=True, max_length=40, padding='max_length',truncation = True,return_token_type_ids=True) out
Contradictory, My Dear Watson
11,685,223
cm = confusion_matrix(y_test2['Survived'], y_pred2['Predicted']) print(cm) <predict_on_test>
def preprocess_input_data(idx, tokenizer, label = False, dataset = 'train',max_len = MAX_LEN): if dataset == 'train': enc = TOKENIZER(train.loc[idx,['premise', 'hypothesis']].values.tolist() , max_length=max_len, padding= 'max_length', add_special_tokens=True,truncation = True,return_token_type_ids=True) elif dataset == 'test': enc = TOKENIZER(test.loc[idx,['premise', 'hypothesis']].values.tolist() , max_length=max_len, padding= 'max_length', add_special_tokens=True,truncation = True,return_token_type_ids=True) attention_mask = enc.attention_mask input_ids = enc.input_ids token_type_ids = enc.token_type_ids input_tokens = [tokenizer.convert_ids_to_tokens(enc.input_ids[i])for i in range(len(enc.input_ids)) ] output_dict = {'token_type_ids': np.array(token_type_ids ).astype('int32'), 'input_ids': np.array(input_ids ).astype('int32'), 'input_tokens': input_tokens, 'attention_mask': np.array(attention_mask ).astype('int32'), } if label: output_dict['labels'] = to_categorical(train.loc[idx, 'label'], num_classes = NUM_CLASSES ).astype('int32') return output_dict processed_dict = preprocess_input_data(np.arange(train.shape[0]), tokenizer=TOKENIZER, label=True, dataset = 'train',max_len = MAX_LEN) input_ids, attention_mask, token_type_ids,labels = processed_dict['input_ids'],processed_dict['attention_mask'], processed_dict['token_type_ids'], processed_dict['labels'] processed_dict = preprocess_input_data(np.arange(test.shape[0]), tokenizer=TOKENIZER, label=False, dataset = 'test',max_len = MAX_LEN) input_ids_test, attention_mask_test, token_type_ids_test = processed_dict['input_ids'],processed_dict['attention_mask'], processed_dict['token_type_ids']
Contradictory, My Dear Watson
11,685,223
y_pred = forest_model.predict(test_dataframe) threshold = 0.5 y_pred2 = pd.DataFrame({'Predicted': y_pred}) y_pred2 = transform_predicted(y_pred2) y_pred2.head(10) <load_from_csv>
def data_loader(idx,data= 'train', labelled=True, return_ids=False, repeat=True, shuffle=True,cache=True, batch_size = BATCH_SIZE): if data == 'train': if labelled: dataset = tf.data.Dataset.from_tensor_slices(((input_ids[idx,],attention_mask[idx,],token_type_ids[idx,]), labels[idx,])) else: dataset = tf.data.Dataset.from_tensor_slices(((input_ids[idx,],attention_mask[idx,],token_type_ids[idx,]),)) if return_ids: dataset = tf.data.Dataset.from_tensor_slices(((input_ids[idx,],attention_mask[idx,],token_type_ids[idx,], train.loc[idx,'id'].values),)) elif data == 'test': dataset = tf.data.Dataset.from_tensor_slices(((input_ids_test,attention_mask_test,token_type_ids_test),)) if cache: dataset = dataset.cache() if shuffle: dataset = dataset.shuffle(2048) if repeat: dataset = dataset.repeat() dataset = dataset.batch(batch_size ).prefetch(AUTO) return dataset for out in data_loader(np.arange(10),batch_size=5 ).unbatch().take(1): print(out[0], out[1] )
Contradictory, My Dear Watson
11,685,223
y_test = pd.read_csv(".. /input/gender_submission.csv", sep=",") cm = confusion_matrix(y_test['Survived'], y_pred2['Predicted']) print(cm) <save_to_csv>
def get_lr_callback(PLOT_LR = False): lr_start = 1e-5 lr_max = 1.5e-5 lr_min = 1e-5 lr_ramp_ep = 3 lr_sus_ep = 0 lr_decay = 0.8 def lrfn(epoch): if epoch < lr_ramp_ep: lr =(lr_max - lr_start)/ lr_ramp_ep * epoch + lr_start elif epoch < lr_ramp_ep + lr_sus_ep: lr = lr_max else: lr =(lr_max - lr_min)* lr_decay**(epoch - lr_ramp_ep - lr_sus_ep)+ lr_min return lr if PLOT_LR: plt.figure(figsize=(15, 5)) plt.subplot(1, 2, 1) plt.plot([lrfn(e)for e in range(EPOCHS)]); plt.xlabel('Epoch'); plt.ylabel('LR'); plt.subplot(1, 2, 2); plt.plot([lrfn(e)for e in range(EPOCHS)]); plt.xlabel('Epoch'); plt.ylabel('Log LR'); plt.yscale('log'); lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=False) return lr_callback get_lr_callback(PLOT_LR = True) def display_training_curves(training, validation, title, subplot): if subplot%10==1: plt.subplots(figsize=(10,10), facecolor=' plt.tight_layout() ax = plt.subplot(subplot) ax.set_facecolor(' ax.plot(training) ax.plot(validation) ax.set_title('model '+ title) ax.set_ylabel(title) ax.set_xlabel('epoch') ax.legend(['train', 'valid.']) def build_model(opt = OPT_TYPE): ids = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32) att = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32) tok = tf.keras.layers.Input(( MAX_LEN,), dtype=tf.int32) transformer_embedding = transformers.TFAutoModel.from_pretrained(MODEL) x = transformer_embedding({'input_ids':ids,'attention_mask': att, 'token_type_ids':tok})[0][:,0,:] x = tf.keras.layers.Dropout(0.3 )(x) x = tf.keras.layers.Dense(128, activation="relu" )(x) x = tf.keras.layers.Dense(3 )(x) x = tf.keras.layers.Activation('softmax' )(x) model = tf.keras.Model(inputs = [ids,att,tok], outputs = x) if opt == 'Adam': optimizer = tf.keras.optimizers.Adam(learning_rate=LR) elif OPT_TYPE == "RAdam": optimizer = tfa.optimizers.RectifiedAdam(lr=LR) loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True) model.compile(optimizer = optimizer, loss=loss_fn, metrics = ['accuracy']) return model
Contradictory, My Dear Watson
11,685,223
test_csv['Survived'] = y_pred2['Predicted'] test_csv.to_csv('submission_all_tree_0.5.csv', index=False) <train_model>
def memory() : pid = os.getpid() py = psutil.Process(pid) memoryUse = py.memory_info() [0]/2.**30 print('memory use:', memoryUse )
Contradictory, My Dear Watson
11,685,223
print('MLPRegressor: ') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) mlpr_model = MLPRegressor() mlpr_model.fit(X_train, y_train) <predict_on_test>
display_training_curve=True oof_preds = np.zeros(shape =(train.shape[0],3)) ypreds_test = np.zeros(shape =(test.shape[0],3)) val_ids = [] print(f'DEVICE: {DEVICE}') skf = StratifiedKFold(n_splits=FOLDS,shuffle=True,random_state=SEED) for fold,(idxT,idxV)in enumerate(skf.split(train,train.lang_label.values)) : print(' print(f' print(' print(f"Training on {len(idxT)} examples with batch size = {BATCH_SIZE}, validate on {len(idxV)} examples") if DEVICE=='TPU': if tpu: tf.tpu.experimental.initialize_tpu_system(tpu) memory() train_dataset = data_loader(idxT,labelled=True,repeat=True, shuffle=True) valid_dataset = data_loader(idxV,labelled=True,repeat=False, shuffle=False, cache=False) K.clear_session() with strategy.scope() : model = build_model() mod_checkpoint = tf.keras.callbacks.ModelCheckpoint("fold{}.h5".format(fold+1), monitor="val_accuracy", verbose=1, save_best_only=True, save_weights_only=True, mode='max', save_freq='epoch') reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_accuracy', factor=0.5,verbose=1,mode='max', patience=2, min_lr=5e-6) history = model.fit(train_dataset, epochs=EPOCHS, batch_size=BATCH_SIZE, verbose=1, steps_per_epoch= len(idxT)//BATCH_SIZE, callbacks=[mod_checkpoint,get_lr_callback() ], validation_data=valid_dataset) print("-"*5 +" Loading model weights from best epoch "+"-"*5) try: model.load_weights("fold{}.h5".format(fold+1)) print('Done') except OSError: print(f'Unable to load model!') valid_dataset_unlabelled = data_loader(idxV,labelled=False,return_ids=False,repeat=False, shuffle=False, cache=False) oof_preds[idxV,] = model.predict(valid_dataset_unlabelled, steps = len(idxV)/BATCH_SIZE) oof_acc = accuracy_score(np.argmax(oof_preds[idxV,],axis=1), train.label.values[idxV]) print(f' Out-of-fold accuracy score: {oof_acc}') valid_dataset_unlabelled = data_loader(idxV,labelled=False,return_ids=True,repeat=False, shuffle=False) val_ids.extend([sample[0][3].numpy().decode('utf-8')for sample in valid_dataset_unlabelled.unbatch() ]) test_dataset = data_loader(_,data='test', labelled=False,repeat=False, shuffle=False, cache=False) ypreds_test += model.predict(test_dataset, steps = test.shape[0]/BATCH_SIZE)/FOLDS os.remove("fold{}.h5".format(fold+1)) if display_training_curve: display_training_curves(history.history['loss'], history.history['val_loss'], 'loss', 211) display_training_curves(history.history['accuracy'], history.history['val_accuracy'], 'Accuracy', 212) gc.collect()
Contradictory, My Dear Watson
11,685,223
y_pred = mlpr_model.predict(X_test) <prepare_output>
ypred_oof = np.argmax(oof_preds,axis=1) print(f"{FOLDS}-fold CV accuracy score = {accuracy_score(ypred_oof, train.label.values)}") oof_df = pd.DataFrame(list(zip(val_ids,ypred_oof.tolist())) ,columns = ['id','pred']) oof_df.to_csv('oof.csv', index=False) oof_df.head()
Contradictory, My Dear Watson
11,685,223
<prepare_output><EOS>
ypred_sub = np.argmax(ypreds_test, axis=1) sub_df = pd.read_csv(".. /input/contradictory-my-dear-watson/sample_submission.csv") sub_df.loc[:,'prediction'] = ypred_sub sub_df.to_csv('submission.csv',index=False) sub_df.head()
Contradictory, My Dear Watson
11,543,499
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<compute_test_metric>
!pip install --upgrade pip > /dev/null !pip install --upgrade transformers > /dev/null !pip install nlp > /dev/null
Contradictory, My Dear Watson
11,543,499
cm = confusion_matrix(y_test2['Survived'], y_pred2['Predicted']) print(cm) <predict_on_test>
import os import gc import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import plotly.express as px from tensorflow.keras.layers import Dense, Input, GlobalAveragePooling1D, GlobalMaxPooling1D from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model import tensorflow as tf from transformers import TFAutoModel, AutoTokenizer import nlp
Contradictory, My Dear Watson
11,543,499
y_pred = mlpr_model.predict(test_dataframe) threshold = 0.5 tansform_survived = np.vectorize(lambda x: 1 if x >= threshold else 0) y_pred2 = tansform_survived(y_pred) y_pred2 = pd.DataFrame({'Predicted': y_pred2}) <load_from_csv>
def init_strategy() : try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print("Init TPU strategy") except ValueError: strategy = tf.distribute.get_strategy() print("Init CPU/GPU strategy") return strategy def build_model(model_name, maxlen, head="avg_pooling"): input_ids = Input(shape=(maxlen,), dtype=tf.int32, name="input_ids") encoder = TFAutoModel.from_pretrained(model_name) encoder_output = encoder(input_ids)[0] if head == "cls": features = encoder_output[:, 0, :] elif head == "avg_pooling": features = GlobalAveragePooling1D()(encoder_output) elif head == "max_pooling": features = GlobalMaxPooling1D()(encoder_output) else: raise NotImplementedError out = Dense(3, activation='softmax' )(features) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model def tokenize_dataframe(df, tokenizer, max_length): text = df[['premise', 'hypothesis']].values.tolist() encoded = tokenizer.batch_encode_plus(text, padding=True, max_length=max_length, truncation=True) x = encoded['input_ids'] y = None if 'label' in df.columns: y = df.label.values return x, y def build_dataset(x, y, mode, batch_size): if mode == "train": dataset =( tf.data.Dataset .from_tensor_slices(( x, y)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) elif mode == "valid": dataset =( tf.data.Dataset .from_tensor_slices(( x, y)) .batch(batch_size) .cache() .prefetch(auto) ) elif mode == "test": dataset =( tf.data.Dataset .from_tensor_slices(x) .batch(batch_size) ) else: raise NotImplementedError return dataset def load_mnli(use_validation=True): result = [] dataset = nlp.load_dataset(path='glue', name='mnli') keys = ['train', 'validation_matched','validation_mismatched'] if use_validation else ['train'] for k in keys: for record in dataset[k]: c1, c2, c3 = record['premise'], record['hypothesis'], record['label'] if c1 and c2 and c3 in {0,1,2}: result.append(( c1,c2,c3,'en')) result = pd.DataFrame(result, columns=['premise','hypothesis','label','lang_abv']) return result def load_xnli() : result = [] dataset = nlp.load_dataset(path='xnli') for k in dataset.keys() : for record in dataset[k]: hp, pr, lb = record['hypothesis'], record['premise'], record['label'] if hp and pr and lb in {0,1,2}: for lang, translation in zip(hp['language'], hp['translation']): pr_lang = pr.get(lang, None) if pr_lang is None: continue result.append(( pr_lang, translation, lb,lang)) result = pd.DataFrame(result, columns=['premise','hypothesis','label','lang_abv']) return result
Contradictory, My Dear Watson
11,543,499
y_test = pd.read_csv(".. /input/gender_submission.csv", sep=",") cm = confusion_matrix(y_test['Survived'], y_pred2['Predicted']) print(cm) <save_to_csv>
MODEL = 'jplu/tf-xlm-roberta-large' MAXLEN = 120 strategy = init_strategy() BATCH_SIZE = 16 * strategy.num_replicas_in_sync tokenizer = AutoTokenizer.from_pretrained(MODEL) auto = tf.data.experimental.AUTOTUNE def preprocess(df): return tokenize_dataframe(df, tokenizer, MAXLEN )
Contradictory, My Dear Watson
11,543,499
test_csv['Survived'] = y_pred2['Predicted'] test_csv.to_csv('submission_all_nn_0.5.csv', index=False) <train_model>
train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv') x, y = preprocess(train) x_test, _ = preprocess(test) test_dataset = build_dataset(x_test, None, "test", BATCH_SIZE) mnli = load_mnli() xnli = load_xnli()
Contradictory, My Dear Watson
11,543,499
print('Keras NN: ') nn = Sequential() nn.add( Dense( units=3, kernel_initializer='uniform', activation='relu', input_dim=2)) nn.add(Dense(units=1, kernel_initializer='uniform', activation='sigmoid')) nn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) nn.fit(X_train, y_train, batch_size=10, epochs=100) <predict_on_test>
punct = '[' + ''.join([c for c in string.punctuation if c != "'"])+ ']' def preprocess_query(q): q = q.lower() q = re.sub(punct, ' ', q) q = re.sub('[ ]{2,}', ' ', q) return q def search_in_base(q, kb): q = preprocess_query(q) return int(q in kb)
Contradictory, My Dear Watson
11,543,499
y_pred = nn.predict(X_test) <prepare_output>
premises = pd.concat([train[['premise', 'lang_abv']], test[['premise', 'lang_abv']]] )
Contradictory, My Dear Watson
11,543,499
threshold = 0.5 tansform_survived = np.vectorize(lambda x: 1 if x >= threshold else 0) y_pred2 = tansform_survived(y_pred) y_pred2 = pd.DataFrame({'Predicted': y_pred2[:,0]}) y_pred2.head(10) <prepare_output>
knowledge_base = set(mnli['premise'].apply(preprocess_query)) premises['mnli'] = premises['premise'].apply(lambda q: search_in_base(q, knowledge_base)) print(f"fraction of train set english premises occurence in MNLI = {premises.loc[premises.lang_abv=='en', 'mnli'].mean() * 100}%" )
Contradictory, My Dear Watson
11,543,499
y_test2 = pd.DataFrame({'Survived': y_test}) y_test2.head(10) <compute_test_metric>
knowledge_base = set(xnli['premise'].apply(preprocess_query)) premises['xnli'] = premises['premise'].apply(lambda q: search_in_base(q, knowledge_base)) print(f"fraction of train set non-english premises occurence in XNLI = {premises.loc[premises.lang_abv!='en', 'xnli'].mean() * 100}%" )
Contradictory, My Dear Watson
11,543,499
<predict_on_test><EOS>
strategy = init_strategy() with strategy.scope() : model = build_model(MODEL, MAXLEN) model.load_weights(".. /input/watson-xlmr-models/XLMR_mnlixnli_ep6.h5") dataset = build_dataset(x, y, "valid", BATCH_SIZE) pr = np.argmax(model.predict(dataset), axis=1) print(f"accuracy {accuracy_score(y, pr):.4f}") test_preds = model.predict(test_dataset, verbose=0) submission['prediction'] = test_preds.argmax(axis=1) submission.to_csv('submission.csv', index=False )
Contradictory, My Dear Watson
11,144,692
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<load_from_csv>
!pip install -q nlp !pip install -q wordcloud
Contradictory, My Dear Watson
11,144,692
y_test = pd.read_csv(".. /input/gender_submission.csv", sep=",") cm = confusion_matrix(y_test['Survived'], y_pred2['Predicted']) print(cm) <save_to_csv>
nltk.download("stopwords")
Contradictory, My Dear Watson
11,144,692
test_csv['Survived'] = y_pred2['Predicted'] test_csv.to_csv('submission_all_keras_nn_0.5.csv', index=False) <set_options>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() print('Number of replicas:', strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
11,144,692
%matplotlib inline<load_from_csv>
train_csv = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") test_csv = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv" )
Contradictory, My Dear Watson
11,144,692
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv") train.head()<count_missing_values>
AUTO = tf.data.experimental.AUTOTUNE MODEL_NAME = "jplu/tf-xlm-roberta-base" REPLICAS = strategy.num_replicas_in_sync TOKENIZER = AutoTokenizer.from_pretrained(MODEL_NAME) BATCH_SIZE = 16 * REPLICAS MAX_LEN = 192 EPOCHS = 8 SEED = 48 FONT_DIR = ".. /input/font-dataset/FontScripts/" np.random.seed(SEED) random.seed(SEED )
Contradictory, My Dear Watson
11,144,692
print(pd.isnull(train ).sum() )<count_values>
def prepare_input_v2(sentences): sen_enc = TOKENIZER.batch_encode_plus(sentences, pad_to_max_length=True, return_attention_mask=False, return_token_type_ids=False, max_length=MAX_LEN) return np.array(sen_enc["input_ids"]) def get_dataset(features, labels=None, labelled=True, batch_size=8, repeat=True, shuffle=True): if labelled: ds = tf.data.Dataset.from_tensor_slices(( features, labels)) else: ds = tf.data.Dataset.from_tensor_slices(features) if repeat: ds = ds.repeat() if shuffle: ds = ds.shuffle(2048) ds = ds.batch(batch_size*REPLICAS) ds.prefetch(AUTO) return ds def build_model() : encoder = TFAutoModel.from_pretrained(MODEL_NAME) input_word_ids = tf.keras.layers.Input(shape=(MAX_LEN,), dtype=tf.int32, name="input_word_ids") embeddings = encoder(input_word_ids)[0] x = embeddings[:, 0, :] output = tf.keras.layers.Dense(3, activation="softmax" )(x) model = tf.keras.models.Model(inputs=input_word_ids, outputs=output) model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.05), optimizer=tf.keras.optimizers.Adam(lr=1e-5), metrics=["accuracy"]) return model def ratio_languages(df): languages = np.unique(df.language) total = df.language.value_counts().sum() ratios = {} for e in languages: ratios[e] = round(( df.language.value_counts().loc[e] / total), 2)*100 ratios = sorted(ratios.items() , key=lambda x:(x[1],x[0]), reverse=True) languages = [] values = [] for e in ratios: languages.append(e[0]) values.append(e[1]) _, texts, _ = plt.pie(values, explode=[0.2]*(len(values)) , labels=languages, autopct="%.2i%%", radius=2, rotatelabels=True) for e in texts: e.set_fontsize(15) e.set_fontfamily('fantasy') plt.show() def get_lr_callback(batch_size): lr_start = 0.000001 lr_max = 0.00000125 * batch_size lr_min = 0.00000001 lr_sus_epoch = 0 lr_decay = 0.80 lr_ramp_ep = 5 lr = lr_start def lrfn(epoch): if epoch < lr_ramp_ep: lr =(lr_max- lr_start)/lr_ramp_ep * epoch + lr_start elif epoch <(lr_ramp_ep + lr_sus_epoch): lr = lr_max else: lr =(lr_max - lr_min)*lr_decay**(epoch - lr_ramp_ep - lr_sus_epoch)+ lr_min return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True) return lr_callback def plot_wordcloud(df, col): words = " " font_path = None fig, ax = plt.subplots(nrows=2, ncols=2) fig.set_size_inches(12, 12) res = [] for i in range(2): for j in range(2): res.append([i,j]) for i,lang in enumerate(["English", "Hindi", "Urdu", "German" , ]): for line in df[df.language==lang][col].values: tokens = line.split() tokens = [word.lower() for word in tokens] words += " ".join(tokens)+" " fig.add_subplot(ax[res[i][0]][res[i][1]]) if lang=="Hindi": font_path = FONT_DIR + "Hindi.ttf" if lang=="French": font_path = FONT_DIR + "French.ttf" if lang=="Russian": font_path= FONT_DIR + "Russian.ttf" if lang=="Arabic": font_path = FONT_DIR + "Arabic.ttf" if lang=="Chinese": font_path = FONT_DIR + "Chinese.otf" if lang=="Swahili": font_path = FONT_DIR + "Swahili.ttf" if lang=="Urdu": font_path = FONT_DIR + "Urdu.ttf" if lang=="Vietnamese": font_path = FONT_DIR + "Vietnamese.ttf" if lang=="Greek": font_path = FONT_DIR + "Greek.ttf" if lang=="Thai": font_path = FONT_DIR + "Thai.ttf" if lang=="Spanish": font_path = FONT_DIR + "Spanish.ttf" if lang=="German": font_path = FONT_DIR + "German.ttf" if lang=="Turkish": font_path = FONT_DIR + "Turkish.ttf" if lang=="Bulgarian": font_path = FONT_DIR + "Bulgarian.ttf" s_words = STOPWORDS wordcloud = WordCloud(font_path=font_path, width=800, height=800, background_color="black", min_font_size=10, stopwords=s_words ).generate(words) ax[res[i][0]][res[i][1]].imshow(wordcloud) ax[res[i][0]][res[i][1]].axis("off") ax[res[i][0]][res[i][1]].set_title(f"Language: {lang}", fontsize=14 )
Contradictory, My Dear Watson
11,144,692
print("Percentage of females who survived:", train["Survived"][train["Sex"] == 'female'].value_counts(normalize = True)[1]*100) print("Percentage of males who survived:", train["Survived"][train["Sex"] == 'male'].value_counts(normalize = True)[1]*100) <drop_column>
print(train_csv["language"].value_counts()) print() ratio_languages(train_csv )
Contradictory, My Dear Watson
11,144,692
train = train.drop(['Cabin'], axis = 1) test = test.drop(['Cabin'], axis = 1) <drop_column>
xnli = nlp.load_dataset(path="xnli") buff = {} buff["premise"] = [] buff["hypothesis"] = [] buff["label"] = [] buff["language"] = [] uniq_lang = set() for e in xnli["test"]: for i in e["hypothesis"]["language"]: uniq_lang.add(i) language_map = {} for e in uniq_lang: language_map[e] = test_csv.loc[test_csv.lang_abv==e, "language"].iloc[0] for x in xnli['test']: label = x['label'] for idx, lang in enumerate(x['hypothesis']['language']): if lang=="en": continue hypothesis = x['hypothesis']['translation'][idx] premise = x['premise'][lang] buff['premise'].append(premise) buff['hypothesis'].append(hypothesis) buff['label'].append(label) buff['language'].append(language_map[lang]) xnli_df = pd.DataFrame(buff )
Contradictory, My Dear Watson
11,144,692
train = train.drop(['Ticket'], axis = 1) test = test.drop(['Ticket'], axis = 1 )<categorify>
xnli_df["language"].value_counts()
Contradictory, My Dear Watson
11,144,692
print("Number of people embarking in Southampton(S):") southampton = train[train["Embarked"] == "S"].shape[0] print(southampton) print("Number of people embarking in Cherbourg(C):") cherbourg = train[train["Embarked"] == "C"].shape[0] print(cherbourg) print("Number of people embarking in Queenstown(Q):") queenstown = train[train["Embarked"] == "Q"].shape[0] print(queenstown) train = train.fillna({"Embarked": "S"} )<feature_engineering>
new_df = pd.concat([train_df, xnli_df], axis=0) new_df.sample(5 )
Contradictory, My Dear Watson
11,144,692
for dataset in combine: dataset['Title'] = dataset['Title'].replace(['Lady', 'Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Jonkheer', 'Dona'], 'Rare') dataset['Title'] = dataset['Title'].replace(['Countess', 'Lady', 'Sir'], 'Royal') dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss') dataset['Title'] = dataset['Title'].replace('Ms', 'Miss') dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs') train[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<categorify>
pd.merge(new_df, test_csv, how="inner" )
Contradictory, My Dear Watson
11,144,692
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Royal": 5, "Rare": 6} for dataset in combine: dataset['Title'] = dataset['Title'].map(title_mapping) dataset['Title'] = dataset['Title'].fillna(0) train.head()<categorify>
new_df = new_df.merge(pd.merge(new_df, test_csv, how="inner"), how="left", indicator=True) new_df = new_df[new_df._merge=="left_only"] new_df = new_df.drop(["id", "lang_abv", "_merge"], axis=1) new_df.info()
Contradictory, My Dear Watson
11,144,692
mr_age = train[train["Title"] == 1]["AgeGroup"].mode() miss_age = train[train["Title"] == 2]["AgeGroup"].mode() mrs_age = train[train["Title"] == 3]["AgeGroup"].mode() master_age = train[train["Title"] == 4]["AgeGroup"].mode() royal_age = train[train["Title"] == 5]["AgeGroup"].mode() rare_age = train[train["Title"] == 6]["AgeGroup"].mode() age_title_mapping = {1: "Young Adult", 2: "Student", 3: "Adult", 4: "Baby", 5: "Adult", 6: "Adult"} for x in range(len(train["AgeGroup"])) : if train["AgeGroup"][x] == "Unknown": train["AgeGroup"][x] = age_title_mapping[train["Title"][x]] for x in range(len(test["AgeGroup"])) : if test["AgeGroup"][x] == "Unknown": test["AgeGroup"][x] = age_title_mapping[test["Title"][x]]<categorify>
pd.merge(new_df, test_csv, how="inner" )
Contradictory, My Dear Watson
11,144,692
age_mapping = {'Baby': 1, 'Child': 2, 'Teenager': 3, 'Student': 4, 'Young Adult': 5, 'Adult': 6, 'Senior': 7} train['AgeGroup'] = train['AgeGroup'].map(age_mapping) test['AgeGroup'] = test['AgeGroup'].map(age_mapping) train.head()<categorify>
ratio_languages(new_df )
Contradictory, My Dear Watson
11,144,692
train = train.drop(['Age'], axis = 1) test = test.drop(['Age'], axis = 1) train = train.drop(['Name'], axis = 1) test = test.drop(['Name'], axis = 1) sex_mapping = {"male": 0, "female": 1} train['Sex'] = train['Sex'].map(sex_mapping) test['Sex'] = test['Sex'].map(sex_mapping) train.head() <categorify>
new_df.language.value_counts()
Contradictory, My Dear Watson
11,144,692
embarked_mapping = {"S": 1, "C": 2, "Q": 3} train['Embarked'] = train['Embarked'].map(embarked_mapping) test['Embarked'] = test['Embarked'].map(embarked_mapping) train.head() <split>
X, y = new_df[["premise", "hypothesis"]], new_df.label
Contradictory, My Dear Watson
11,144,692
predictors = train.drop(['Survived', 'PassengerId'], axis=1) target = train["Survived"] x_train, x_val, y_train, y_val = train_test_split(predictors, target, test_size = 0.22, random_state = 0 )<compute_train_metric>
X["language_label"] = new_df.language.astype(str)+ "_" + new_df.label.astype(str )
Contradictory, My Dear Watson
11,144,692
svc = SVC() svc.fit(x_train, y_train) y_pred = svc.predict(x_val) acc_svc = round(accuracy_score(y_pred, y_val)* 100, 2) print(acc_svc )<save_to_csv>
print("Splitting Data...") x_train, x_test, y_train, y_test = train_test_split(X, y, stratify=X.language_label, test_size=0.2, random_state=SEED) y_train = tf.one_hot(y_train, depth=3) y_test = tf.one_hot(y_test, depth=3) print("Prepairing Input...") train_input = prepare_input_v2(x_train[["premise", "hypothesis"]].values.tolist()) valid_input = prepare_input_v2(x_test[["premise", "hypothesis"]].values.tolist()) print("Preparing Dataset...") train_dataset = get_dataset(train_input, y_train, labelled=True, batch_size=BATCH_SIZE, repeat=True, shuffle=True) valid_dataset = get_dataset(valid_input, y_test, labelled=True, batch_size=BATCH_SIZE//REPLICAS, repeat=False, shuffle=False) print("Downloading and Building Model...") with strategy.scope() : model = build_model() lr_callback = get_lr_callback(BATCH_SIZE) checkpoint = tf.keras.callbacks.ModelCheckpoint("XLM-R-base.h5", save_weights_only=True, save_best_only=True, save_freq="epoch", monitor="val_loss", mode="min") print("Training...") model.fit(train_dataset, steps_per_epoch= x_train.shape[0]/BATCH_SIZE, validation_data=valid_dataset, epochs=EPOCHS, callbacks=[lr_callback, checkpoint] )
Contradictory, My Dear Watson
11,144,692
ids = test['PassengerId'] predictions = svc.predict(test.drop('PassengerId', axis=1)) output = pd.DataFrame({ 'PassengerId' : ids, 'Survived': predictions }) output.to_csv('submission.csv', index=False )<set_options>
test_input = prepare_input_v2(test_csv[["premise", "hypothesis"]].values.tolist()) test_dataset = get_dataset(test_input, None, labelled=False, batch_size=BATCH_SIZE, repeat=False, shuffle=False )
Contradictory, My Dear Watson
11,144,692
%config InlineBackend.figure_format = 'retina' %matplotlib inline<load_from_csv>
preds = model.predict(test_dataset )
Contradictory, My Dear Watson
11,144,692
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )<load_from_csv>
preds = preds.argmax(axis=1 )
Contradictory, My Dear Watson
11,144,692
train = pd.read_csv(".. /input/train.csv") test = pd.read_csv(".. /input/test.csv" )<concatenate>
submission = pd.read_csv(".. /input/contradictory-my-dear-watson/sample_submission.csv") submission.head()
Contradictory, My Dear Watson
11,144,692
all_data = pd.concat(( train.loc[:,'MSSubClass':'SaleCondition'], test.loc[:,'MSSubClass':'SaleCondition']))<feature_engineering>
submission["prediction"] = preds
Contradictory, My Dear Watson
11,144,692
<categorify><EOS>
submission.to_csv("submission.csv", header=True, index=False )
Contradictory, My Dear Watson
11,248,074
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<data_type_conversions>
os.environ["WANDB_API_KEY"] = "0" !pip uninstall -y transformers !pip install transformers !pip install nlp strategy = None def seed_all(seed=2020): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed_all(2020 )
Contradictory, My Dear Watson
11,248,074
all_data = all_data.fillna(all_data.mean() )<prepare_x_and_y>
original_train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") original_train = shuffle(original_train) original_valid = original_train[:len(original_train)// 5] original_train = original_train[len(original_train)// 5:]
Contradictory, My Dear Watson
11,248,074
X_train = all_data[:train.shape[0]] X_test = all_data[train.shape[0]:] y = train.SalePrice<compute_train_metric>
print(f"original - training: {len(original_train)} examples") original_train.head(10 )
Contradictory, My Dear Watson
11,248,074
def rmse_cv(model): rmse= np.sqrt(-cross_val_score(model, X_train, y, scoring="neg_mean_squared_error", cv = 5)) return(rmse )<choose_model_class>
print(f"original - validation: {len(original_valid)} examples") original_valid.head(10 )
Contradictory, My Dear Watson
11,248,074
model_ridge = Ridge()<define_search_space>
original_test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv") print(f"original - test: {len(original_test)} examples") original_test.head(10 )
Contradictory, My Dear Watson
11,248,074
alphas = [0.05, 0.1, 0.3, 1, 3, 5, 10, 15, 30, 50, 75] cv_ridge = [rmse_cv(Ridge(alpha = alpha)).mean() for alpha in alphas]<train_on_grid>
mnli = nlp.load_dataset(path='glue', name='mnli' )
Contradictory, My Dear Watson
11,248,074
model_lasso = LassoCV(alphas = [1, 0.1, 0.001, 0.0005] ).fit(X_train, y )<find_best_params>
print(mnli, ' ') print('The split names in MNLI dataset:') for k in mnli: print(' ', k) print(" mnli['train'] is ", type(mnli['train'])) mnli['train']
Contradictory, My Dear Watson
11,248,074
rmse_cv(model_lasso ).mean()<define_variables>
print('The number of training examples in mnli dataset:', mnli['train'].num_rows) print('The number of validation examples in mnli dataset - part 1:', mnli['validation_matched'].num_rows) print('The number of validation examples in mnli dataset - part 2:', mnli['validation_mismatched'].num_rows, ' ') print('The class names in mnli dataset:', mnli['train'].features['label'].names) print('The feature names in mnli dataset:', list(mnli['train'].features.keys()), ' ') for elt in mnli['train']: print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', mnli['train'].features['label'].names[elt['label']]) print('idx', elt['idx']) print('-' * 80) if elt['idx'] >= 10: break
Contradictory, My Dear Watson
11,248,074
print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " + str(sum(coef == 0)) + " variables" )<concatenate>
snli = nlp.load_dataset(path='snli') print('The number of training examples in snli dataset:', snli['train'].num_rows) print('The number of validation examples in snli dataset:', snli['validation'].num_rows, ' ') print('The class names in snli dataset:', snli['train'].features['label'].names) print('The feature names in snli dataset:', list(snli['train'].features.keys()), ' ') for idx, elt in enumerate(snli['train']): print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', snli['train'].features['label'].names[elt['label']]) print('-' * 80) if idx >= 10: break
Contradictory, My Dear Watson
11,248,074
imp_coef = pd.concat([coef.sort_values().head(10), coef.sort_values().tail(10)] )<import_modules>
xnli = nlp.load_dataset(path='xnli') print('The number of validation examples in xnli dataset:', xnli['validation'].num_rows, ' ') print('The class names in xnli dataset:', xnli['validation'].features['label'].names) print('The feature names in xnli dataset:', list(xnli['validation'].features.keys()), ' ') for idx, elt in enumerate(xnli['validation']): print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', xnli['validation'].features['label'].names[elt['label']]) print('-' * 80) if idx >= 3: break
Contradictory, My Dear Watson
11,248,074
import xgboost as xgb<train_on_grid>
for k in raw_ds_mapping: for idx, x in enumerate(get_raw_dataset(k)) : print(x) if idx >= 3: break
Contradictory, My Dear Watson
11,248,074
dtrain = xgb.DMatrix(X_train, label = y) dtest = xgb.DMatrix(X_test) params = {"max_depth":2, "eta":0.1} model = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100 )<train_model>
def get_unbatched_dataset(ds_names, model_name, max_len=64): if type(ds_names)== list: ds_names = {k: None for k in ds_names} ds_names = {k: v for k, v in ds_names.items() if k in raw_ds_mapping} tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_fast=True) raw_datasets = [get_raw_dataset(x)for x in ds_names] nb_examples = 0 sentence_pairs = [] labels = [] for name in ds_names: raw_ds = get_raw_dataset(name) nb_examples_to_use = raw_ds_mapping[name][2] if ds_names[name]: nb_examples_to_use = min(ds_names[name], nb_examples_to_use) nb_examples += nb_examples_to_use n = 0 for x in raw_ds: sentence_pairs.append(( x['premise'], x['hypothesis'])) labels.append(x['label']) n += 1 if n >= nb_examples_to_use: break r = dict(tokenizer.batch_encode_plus(batch_text_or_text_pairs=sentence_pairs, max_length=max_len, padding='max_length', truncation=True)) dataset = tf.data.Dataset.from_tensor_slices(( r, labels)) return dataset, nb_examples def get_batched_training_dataset(dataset, nb_examples, batch_size=16, shuffle_buffer_size=1, repeat=False): if repeat: dataset = dataset.repeat() if not shuffle_buffer_size: shuffle_buffer_size = nb_examples dataset = dataset.shuffle(shuffle_buffer_size) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset def get_prediction_dataset(dataset, batch_size=16): dataset = dataset.batch(batch_size, drop_remainder=False) dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE) return dataset
Contradictory, My Dear Watson
11,248,074
model_xgb = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) model_xgb.fit(X_train, y )<predict_on_test>
for k in raw_ds_mapping.keys() : ds, nb_examples = get_unbatched_dataset({k: 100}, model_name='distilbert-base-uncased') ds_batched = get_batched_training_dataset(ds, nb_examples, batch_size=16, shuffle_buffer_size=1, repeat=False) print('{} - select {} examples'.format(k, nb_examples)) for x in ds_batched: break
Contradictory, My Dear Watson
11,248,074
xgb_preds = np.expm1(model_xgb.predict(X_test)) lasso_preds = np.expm1(model_lasso.predict(X_test))<create_dataframe>
class Classifier(tf.keras.Model): def __init__(self, model_name): super(Classifier, self ).__init__() self.transformer = transformers.TFAutoModel.from_pretrained(model_name) self.dropout = tf.keras.layers.Dropout(rate=0.05) self.global_pool = tf.keras.layers.GlobalAveragePooling1D() self.classifier = tf.keras.layers.Dense(3) def call(self, inputs, training=False): x = self.transformer(inputs, training=training)[0] x = self.dropout(x, training=training) x = self.global_pool(x) return self.classifier(x) class Trainer: def __init__( self, ds_names, model_name, max_len=64, batch_size_per_replica=16, prediction_batch_size_per_replica=64, shuffle_buffer_size=1 ): global strategy try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() print('Number of replicas:', strategy.num_replicas_in_sync) self.ds_names = ds_names self.model_name = model_name self.max_len = max_len self.batch_size_per_replica = batch_size_per_replica self.prediction_batch_size_per_replica = prediction_batch_size_per_replica self.batch_size = batch_size_per_replica * strategy.num_replicas_in_sync self.prediction_batch_size = prediction_batch_size_per_replica * strategy.num_replicas_in_sync self.shuffle_buffer_size = shuffle_buffer_size train_ds, self.nb_examples = get_unbatched_dataset( ds_names=ds_names, model_name=model_name, max_len=max_len ) self.train_ds = get_batched_training_dataset( train_ds, self.nb_examples, batch_size=self.batch_size, shuffle_buffer_size=self.shuffle_buffer_size, repeat=True ) valid_ds, self.nb_valid_examples = get_unbatched_dataset( ds_names=['original valid'], model_name=model_name, max_len=max_len ) self.valid_ds = get_prediction_dataset(valid_ds, self.prediction_batch_size) self.valid_labels = next(iter(self.valid_ds.map(lambda inputs, label: label ).unbatch().batch(len(original_valid)))) test_ds, self.nb_test_examples = get_unbatched_dataset( ds_names=['original test'], model_name=model_name, max_len=max_len ) self.test_ds = get_prediction_dataset(test_ds, self.prediction_batch_size) self.steps_per_epoch = self.nb_examples // self.batch_size def get_model(self, model_name, lr, verbose=False): with strategy.scope() : model = Classifier(model_name) model.trainable = True dummy = model(tf.constant(1, shape=[1, 64])) if verbose: model.summary() optimizer = tf.keras.optimizers.Adam(lr=lr) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction=tf.keras.losses.Reduction.SUM) metrics = { 'train loss': tf.keras.metrics.Sum() , 'train acc': tf.keras.metrics.SparseCategoricalAccuracy() } return model, loss_fn, optimizer, metrics def get_routines(self, model, loss_fn, optimizer, metrics): def train_1_step(batch): inputs, labels = batch with tf.GradientTape() as tape: logits = model(inputs, training=True) loss = loss_fn(labels, logits)/ self.batch_size grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) metrics['train loss'].update_state(loss) metrics['train acc'].update_state(labels, logits) @tf.function def dist_train_1_epoch(data_iter): for _ in tf.range(self.steps_per_epoch): strategy.run(train_1_step, args=(next(data_iter),)) @tf.function def predict_step(batch): inputs, _ = batch logits = model(inputs, training=False) return logits def predict_fn(dist_test_ds): all_logits = [] for batch in dist_test_ds: logits = strategy.run(predict_step, args=(batch,)) logits = strategy.experimental_local_results(logits) logits = tf.concat(logits, axis=0) all_logits.append(logits) logits = tf.concat(all_logits, axis=0) return logits return dist_train_1_epoch, predict_fn def train(self, train_name, model_name, epochs, verbose=False): global strategy try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) except ValueError: strategy = tf.distribute.get_strategy() print('Number of replicas:', strategy.num_replicas_in_sync) model, loss_fn, optimizer, metrics = self.get_model(model_name, 1e-5, verbose=verbose) dist_train_1_epoch, predict_fn = self.get_routines(model, loss_fn, optimizer, metrics) train_dist_ds = strategy.experimental_distribute_dataset(self.train_ds) train_dist_iter = iter(train_dist_ds) dist_valid_ds = strategy.experimental_distribute_dataset(self.valid_ds) dist_test_ds = strategy.experimental_distribute_dataset(self.test_ds) history = {} best_acc=0.5 for epoch in range(epochs): s = datetime.datetime.now() dist_train_1_epoch(train_dist_iter) train_loss = metrics['train loss'].result() / self.steps_per_epoch train_acc = metrics['train acc'].result() metrics['train loss'].reset_states() metrics['train acc'].reset_states() print('epoch: {} '.format(epoch + 1)) print('train loss: {}'.format(train_loss)) print('train acc: {} '.format(train_acc)) e = datetime.datetime.now() elapsed =(e - s ).total_seconds() logits = predict_fn(dist_valid_ds) valid_loss = tf.reduce_mean(tf.keras.losses.sparse_categorical_crossentropy(self.valid_labels, logits, from_logits=True, axis=-1)) valid_acc = tf.reduce_mean(tf.keras.metrics.sparse_categorical_accuracy(self.valid_labels, logits)) if valid_acc>best_acc: best_acc=valid_acc model.save_weights('best.h5') print('valid loss: {}'.format(valid_loss)) print('valid acc: {} '.format(valid_acc)) print('train timing: {} '.format(elapsed)) history[epoch] = { 'train loss': float(train_loss), 'train acc': float(train_acc), 'valid loss': float(valid_loss), 'valid acc': float(valid_acc), 'train timing': elapsed } print('-' * 40) print('best acc:{}'.format(best_acc)) model.load_weights('best.h5') logits = predict_fn(dist_test_ds) preds = tf.math.argmax(logits, axis=-1) submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv') submission['prediction'] = preds.numpy() submission.to_csv(f'submission-{train_name}.csv', index=False) return history, submission,logits
Contradictory, My Dear Watson
11,248,074
predictions = pd.DataFrame({"xgb":xgb_preds, "lasso":lasso_preds}) predictions.plot(x = "xgb", y = "lasso", kind = "scatter" )<prepare_output>
def print_config(trainer): print('nb.of training examples used: {}'.format(trainer.nb_examples)) print('nb.of valid examples used: {}'.format(trainer.nb_valid_examples)) print('nb.of test examples used: {}'.format(trainer.nb_test_examples)) print('per replica batch size for training: {}'.format(trainer.batch_size_per_replica)) print('batch size for training: {}'.format(trainer.batch_size)) print('per replica batch size for prediction: {}'.format(trainer.prediction_batch_size_per_replica)) print('batch size for prediction: {}'.format(trainer.prediction_batch_size)) print('steps per epoch: {}'.format(trainer.steps_per_epoch))
Contradictory, My Dear Watson
11,248,074
preds = 0.7*lasso_preds + 0.3*xgb_preds<save_to_csv>
trainer = Trainer( ds_names={'original train': None, 'xnli valid': None, 'mnli train': 60000, 'mnli valid 1': None, 'mnli valid 2': None}, model_name=model_name, max_len=208, batch_size_per_replica=16, prediction_batch_size_per_replica=64, shuffle_buffer_size=None ) print_config(trainer) train_name = f'{model_name} + extra-xnli-mnli'.replace('/', '-') history_3, submission_3,preds = trainer.train(train_name=train_name, model_name=model_name, epochs=epochs, verbose=True )
Contradictory, My Dear Watson
11,248,074
solution = pd.DataFrame({"id":test.Id, "SalePrice":preds}) solution.to_csv("ridge_sol.csv", index = False )<import_modules>
np.savez_compressed('preds',a=preds )
Contradictory, My Dear Watson
11,248,074
<normalization><EOS>
s = pd.read_csv(f'submission-{train_name}.csv') s.to_csv(f'submission.csv', index=False) s.head(20 )
Contradictory, My Dear Watson
11,162,722
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<split>
!pip install -q --upgrade pip !pip install --use-feature=2020-resolver -q transformers==3.0.2 !pip install -q googletrans
Contradictory, My Dear Watson
11,162,722
X_tr, X_val, y_tr, y_val = train_test_split(X_train, y, random_state = 3 )<choose_model_class>
print(f"TensorFlow version: {tf.__version__}") print(f"Transformers version: {transformers.__version__}") warnings.filterwarnings("ignore")
Contradictory, My Dear Watson
11,162,722
model = Sequential() model.add(Dense(1, input_dim = X_train.shape[1], W_regularizer=l1(0.001))) model.compile(loss = "mse", optimizer = "adam" )<train_model>
class Configuration() : def __init__( self, model_name, translation = True, max_length = 64, padding = True, batch_size = 128, epochs = 5, learning_rate = 1e-5, metrics = ["sparse_categorical_accuracy"], verbose = 1, train_splits = 5, accelerator = "TPU", myluckynumber = 13 ): self.SEED = myluckynumber self.ACCELERATOR = accelerator self.PATH_TRAIN = Path("/kaggle/input/contradictory-my-dear-watson/train.csv") self.PATH_TEST = Path("/kaggle/input/contradictory-my-dear-watson/test.csv") self.TRAIN_SPLITS = train_splits self.LANGUAGE_MAP = { "English" : 0, "Chinese" : 1, "Arabic" : 2, "French" : 3, "Swahili" : 4, "Urdu" : 5, "Vietnamese": 6, "Russian" : 7, "Hindi" : 8, "Greek" : 9, "Thai" : 10, "Spanish" : 11, "German" : 12, "Turkish" : 13, "Bulgarian" : 14 } self.INVERSE_LANGUAGE_MAP = {v: k for k, v in self.LANGUAGE_MAP.items() } self.MODEL_NAME = model_name self.TRANSLATION = translation self.TOKENIZER = AutoTokenizer.from_pretrained(self.MODEL_NAME) self.MAX_LENGTH = max_length self.PAD_TO_MAX_LENGTH = padding self.BATCH_SIZE = batch_size self.EPOCHS = epochs self.LEARNING_RATE = learning_rate self.METRICS = metrics self.VERBOSE = verbose self.initialize_accelerator() def initialize_accelerator(self): if self.ACCELERATOR == "TPU": print("Connecting to TPU") try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print(f"Running on TPU {tpu.master() }") except ValueError: print("Could not connect to TPU") tpu = None if tpu: try: print("Initializing TPU") tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) self.strategy = tf.distribute.experimental.TPUStrategy(tpu) self.tpu = tpu print("TPU initialized") except _: print("Failed to initialize TPU") else: print("Unable to initialize TPU") self.ACCELERATOR = "GPU" if self.ACCELERATOR != "TPU": print("Using default strategy for CPU and single GPU") self.strategy = tf.distribute.get_strategy() if self.ACCELERATOR == "GPU": print(f"GPUs Available: {len(tf.config.experimental.list_physical_devices('GPU')) }") self.AUTO = tf.data.experimental.AUTOTUNE self.REPLICAS = self.strategy.num_replicas_in_sync print(f"REPLICAS: {self.REPLICAS}")
Contradictory, My Dear Watson
11,162,722
hist = model.fit(X_tr, y_tr, validation_data =(X_val, y_val))<import_modules>
def translate_text_to_english(text): translator = Translator() return translator.translate(text, dest = "en" ).text def encode_text(df, tokenizer, max_len, padding): text = df[["premise", "hypothesis"]].values.tolist() text_encoded = tokenizer.batch_encode_plus( text, pad_to_max_length = padding, max_length = max_len ) return text_encoded def get_tf_dataset(X, y, auto, labelled = True, repeat = False, shuffle = False, batch_size = 128): if labelled: ds =(tf.data.Dataset.from_tensor_slices(( X["input_ids"], y))) else: ds =(tf.data.Dataset.from_tensor_slices(X["input_ids"])) if repeat: ds = ds.repeat() if shuffle: ds = ds.shuffle(2048) ds = ds.batch(batch_size) ds = ds.prefetch(auto) return ds
Contradictory, My Dear Watson
11,162,722
print(os.listdir(".. /input")) warnings.filterwarnings('ignore') <load_from_csv>
def build_model(model_name, max_len, learning_rate, metrics): input_ids = Input(shape =(max_len,), dtype = tf.int32, name = "input_ids") transformer_model = TFAutoModel.from_pretrained(model_name) transformer_embeddings = transformer_model(input_ids)[0] output_values = Dense(3, activation = "softmax" )(transformer_embeddings[:, 0, :]) model = Model(inputs = input_ids, outputs = output_values) opt = Adam(learning_rate = learning_rate) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True) metrics = metrics model.compile(optimizer = opt, loss = loss, metrics = metrics) return model
Contradictory, My Dear Watson
11,162,722
train = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/train.csv") train.head()<load_from_csv>
def run_model(config): df_train = pd.read_csv(config.PATH_TRAIN) df_test = pd.read_csv(config.PATH_TEST) if config.TRANSLATION: df_train.loc[df_train.language != "English", "premise"] = df_train[df_train.language != "English"].premise.apply(lambda x: translate_text_to_english(x)) df_test.loc[df_test.language != "English", "premise"] = df_test[df_test.language != "English"].premise.apply(lambda x: translate_text_to_english(x)) df_train.loc[df_train.language != "English", "hypothesis"] = df_train[df_train.language != "English"].hypothesis.apply(lambda x: translate_text_to_english(x)) df_test.loc[df_test.language != "English", "hypothesis"] = df_test[df_test.language != "English"].hypothesis.apply(lambda x: translate_text_to_english(x)) df_train["language_label"] = df_train.language.astype(str)+ "_" + df_train.label.astype(str) skf = StratifiedKFold(n_splits = config.TRAIN_SPLITS, shuffle = True, random_state = config.SEED) preds_oof = np.zeros(( df_train.shape[0], 3)) preds_test = np.zeros(( df_test.shape[0], 3)) acc_oof = [] for(fold,(train_index, valid_index)) in enumerate(skf.split(df_train, df_train.language_label)) : if config.ACCELERATOR == "TPU": if config.tpu: config.initialize_accelerator() K.clear_session() with config.strategy.scope() : model = build_model(config.MODEL_NAME, config.MAX_LENGTH, config.LEARNING_RATE, config.METRICS) if fold == 0: print(model.summary()) print(" ") print(" print(f" print(" X_train = df_train.iloc[train_index] X_valid = df_train.iloc[valid_index] y_train = X_train.label.values y_valid = X_valid.label.values print(" Tokenizing") X_train_encoded = encode_text(df = X_train, tokenizer = config.TOKENIZER, max_len = config.MAX_LENGTH, padding = config.PAD_TO_MAX_LENGTH) X_valid_encoded = encode_text(df = X_valid, tokenizer = config.TOKENIZER, max_len = config.MAX_LENGTH, padding = config.PAD_TO_MAX_LENGTH) ds_train = get_tf_dataset(X_train_encoded, y_train, config.AUTO, repeat = True, shuffle = True, batch_size = config.BATCH_SIZE * config.REPLICAS) ds_valid = get_tf_dataset(X_valid_encoded, y_valid, config.AUTO, batch_size = config.BATCH_SIZE * config.REPLICAS * 4) n_train = X_train.shape[0] if fold == 0: X_test_encoded = encode_text(df = df_test, tokenizer = config.TOKENIZER, max_len = config.MAX_LENGTH, padding = config.PAD_TO_MAX_LENGTH) sv = tf.keras.callbacks.ModelCheckpoint( "model.h5", monitor = "val_sparse_categorical_accuracy", verbose = 0, save_best_only = True, save_weights_only = True, mode = "max", save_freq = "epoch" ) print(" Training") model_history = model.fit( ds_train, epochs = config.EPOCHS, callbacks = [sv], steps_per_epoch = n_train / config.BATCH_SIZE // config.REPLICAS, validation_data = ds_valid, verbose = config.VERBOSE ) print(" Validating") model.load_weights("model.h5") ds_valid = get_tf_dataset(X_valid_encoded, -1, config.AUTO, labelled = False, batch_size = config.BATCH_SIZE * config.REPLICAS * 4) preds_valid = model.predict(ds_valid, verbose = config.VERBOSE) acc = accuracy_score(y_valid, np.argmax(preds_valid, axis = 1)) preds_oof[valid_index] = preds_valid acc_oof.append(acc) print(" Inferencing") ds_test = get_tf_dataset(X_test_encoded, -1, config.AUTO, labelled = False, batch_size = config.BATCH_SIZE * config.REPLICAS * 4) preds_test += model.predict(ds_test, verbose = config.VERBOSE)/ config.TRAIN_SPLITS print(f" Fold {fold + 1} Accuracy: {round(acc, 4)} ") g = gc.collect() print(f" CV Mean Accuracy: {round(np.mean(acc_oof), 4)}") print(f"CV StdDev Accuracy: {round(np.std(acc_oof), 4)} ") return preds_oof, preds_test
Contradictory, My Dear Watson
11,162,722
test = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/test.csv") test.head()<count_missing_values>
config_1 = Configuration("jplu/tf-xlm-roberta-large", translation = False, max_length = 84, batch_size = 64, epochs = 16, train_splits = 4) preds_train_1, preds_test_1 = run_model(config_1)
Contradictory, My Dear Watson
11,162,722
missing_percentage(test )<sort_values>
df_test = pd.read_csv(config_1.PATH_TEST) df_submission = pd.DataFrame({"id": df_test.id.values, "prediction": np.argmax(preds_test_1, axis = 1)}) df_submission.to_csv("submission.csv", index = False) df_submission.prediction.value_counts()
Contradictory, My Dear Watson
11,104,798
( train.corr() **2)["SalePrice"].sort_values(ascending = False)[1:]<create_dataframe>
from transformers import BertTokenizer, TFBertModel from transformers import RobertaTokenizer, TFRobertaModel from transformers import XLMRobertaTokenizer, TFXLMRobertaModel from transformers import AutoTokenizer import matplotlib.pyplot as plt import tensorflow as tf from dask import bag, diagnostics from sklearn.utils import shuffle
Contradictory, My Dear Watson
11,104,798
train = train[train.GrLivArea < 4500] train.reset_index(drop = True, inplace = True) previous_train = train.copy()<prepare_x_and_y>
!pip install --quiet googletrans
Contradictory, My Dear Watson
11,104,798
train.drop(columns=['Id'],axis=1, inplace=True) test.drop(columns=['Id'],axis=1, inplace=True) y = train['SalePrice'].reset_index(drop=True) previous_train = train.copy()<drop_column>
submission = pd.read_csv("/kaggle/input/output/submission(2 ).csv") submission.head()
Contradictory, My Dear Watson