kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
14,631,065 | nlp_train_df = pd.read_csv('/kaggle/input/nlp-getting-started/train.csv')
nlp_test_df = pd.read_csv('/kaggle/input/nlp-getting-started/test.csv')
def callback(operation_future):
result = operation_future.result()<filter> | model.load_weights(checkpoint_filepath ) | Contradictory, My Dear Watson |
14,631,065 | nlp_train_df.loc[nlp_train_df['text'].str.contains('fire', na=False, case=False)]<count_values> | test_input = encode(test, tokenizer=tokenizer, max_len=MAX_LEN ) | Contradictory, My Dear Watson |
14,631,065 | nlp_train_df.loc[nlp_train_df['text'].str.contains('fire', na=False, case=False)].target.value_counts()<load_pretrained> | predictions = [np.argmax(i)for i in model.predict(test_input)]
| Contradictory, My Dear Watson |
14,631,065 | def upload_blob(bucket_name, source_file_name, destination_blob_name):
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(destination_blob_name)
blob.upload_from_filename(source_file_name)
print('File {} uploaded to {}'.format(
source_file_name,
'gs://' + bucket_name + '/' + destination_blob_name))
def download_to_kaggle(bucket_name,destination_directory,file_name,prefix=None):
os.makedirs(destination_directory, exist_ok = True)
full_file_path = os.path.join(destination_directory, file_name)
blobs = storage_client.list_blobs(bucket_name,prefix=prefix)
for blob in blobs:
blob.download_to_filename(full_file_path )<prepare_output> | submission = test.id.copy().to_frame()
submission['prediction'] = predictions
submission.head() | Contradictory, My Dear Watson |
14,631,065 | bucket = storage.Bucket(storage_client, name=bucket_name)
if not bucket.exists() :
bucket.create(location=region )<save_to_csv> | submission.to_csv("submission.csv", index = False ) | Contradictory, My Dear Watson |
13,825,770 | nlp_train_df[['text','target']].to_csv('train.csv', index=False, header=False )<load_from_csv> | !pip install --upgrade pip
!pip install --upgrade allennlp
!pip install transformers==4.0.1 | Contradictory, My Dear Watson |
13,825,770 | training_gcs_path = 'uploads/kaggle_getstarted/full_train.csv'
upload_blob(bucket_name, 'train.csv', training_gcs_path )<choose_model_class> | !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py
!python pytorch-xla-env-setup.py --apt-packages libomp5 libopenblas-dev | Contradictory, My Dear Watson |
13,825,770 | amw = AutoMLWrapper(client=client,
project_id=PROJECT_ID,
bucket_name=bucket_name,
region='us-central1',
dataset_display_name=dataset_display_name,
model_display_name=model_display_name)
<prepare_x_and_y> | import transformers
import pandas as pd
import torch | Contradictory, My Dear Watson |
13,825,770 | print(f'Getting dataset ready at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
if not amw.get_dataset_by_display_name(dataset_display_name):
print('dataset not found')
amw.create_dataset()
amw.import_gcs_data(training_gcs_path)
amw.dataset
print(f'Dataset ready at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
<train_model> | import torch_xla
import torch_xla.core.xla_model as xm | Contradictory, My Dear Watson |
13,825,770 | print(f'Getting model trained at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
if not amw.get_model_by_display_name() :
print(f'Training model at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
amw.train_model()
print(f'Model trained.Ensuring model is deployed at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
amw.deploy_model()
amw.model
print(f'Model trained and deployed at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
<find_best_params> | print('Transformers version: ', transformers.__version__)
print('Pytorch version: ', torch.__version__ ) | Contradictory, My Dear Watson |
13,825,770 | amw.model_full_path<predict_on_test> | data_dir = '/kaggle/input/contradictory-my-dear-watson/'
train_df = pd.read_csv(data_dir+'train.csv' ).sample(frac=1, random_state=100)
test_df = pd.read_csv(data_dir+'test.csv')
print(train_df['label'].value_counts())
train_df.head(5 ) | Contradictory, My Dear Watson |
13,825,770 | print(f'Begin getting predictions at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}')
prediction_client = automl.PredictionServiceClient()
amw.set_prediction_client(prediction_client)
predictions_df = amw.get_predictions(nlp_test_df,
input_col_name='text',
limit=None,
threshold=0.5,
verbose=False)
print(f'Finished getting predictions at {datetime.fromtimestamp(time.time() ).strftime("%Y-%m-%d, %H:%M:%S UTC")}' )<concatenate> | PRE_TRAINED_MODEL = 'xlm-roberta-large'
tokenizer = transformers.AutoTokenizer.from_pretrained(PRE_TRAINED_MODEL ) | Contradictory, My Dear Watson |
13,825,770 | submission_df = pd.concat([nlp_test_df['id'], predictions_df['class']], axis=1)
submission_df.head()<rename_columns> | MAX_LEN = 84
split_idx = int(train_df.shape[0] * 0.8 ) | Contradictory, My Dear Watson |
13,825,770 | submission_df = submission_df.rename(columns={'class':'target'})
submission_df.head()<save_to_csv> | def get_encode(data):
tokenized_data=tokenizer(
text=list(data['premise']), text_pair=list(data['hypothesis']),
max_length=MAX_LEN,
pad_to_max_length=True,
add_special_tokens=True,
truncation=True,
return_attention_mask=True,
return_token_type_ids=True,
return_tensors='pt')
return tokenized_data
| Contradictory, My Dear Watson |
13,825,770 | submission_df.to_csv("submission.csv", index=False, header=True )<load_from_csv> | seed=2
tokenized_train=get_encode(train_df[:split_idx])
labels_train=torch.tensor(train_df.label.values[:split_idx])
tokenized_valid=get_encode(train_df[split_idx:])
labels_valid=torch.tensor(train_df.label.values[split_idx:])
tokenized_test=get_encode(test_df ) | Contradictory, My Dear Watson |
13,825,770 | train, test = pd.read_csv('.. /input/train.csv'), pd.read_csv('.. /input/test.csv')
train['Boy'], test['Boy'] = [(df.Name.str.split().str[1] == 'Master.' ).astype('int')for df in [train, test]]
train['Surname'], test['Surname'] = [df.Name.str.split(',' ).str[0] for df in [train, test]]
model = catboost.CatBoostClassifier(one_hot_max_size=4, iterations=100, random_seed=0, verbose=False)
model.fit(train[['Sex', 'Pclass', 'Embarked', 'Boy', 'Surname']].fillna(''), train['Survived'], cat_features=[0, 2, 4])
pred = model.predict(test[['Sex', 'Pclass', 'Embarked', 'Boy', 'Surname']].fillna('')).astype('int')
pd.concat([test['PassengerId'], pd.DataFrame(pred, columns=['Survived'])], axis=1 ).to_csv('submission.csv', index=False )<train_on_grid> | batch_size=64
train_data=TensorDataset(torch.tensor(tokenized_train['input_ids']),
torch.tensor(tokenized_train['token_type_ids']),torch.tensor(tokenized_train['attention_mask'])
,labels_train)
train_sampler=RandomSampler(train_data)
train_dataloader=DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)
valid_data=TensorDataset(torch.tensor(tokenized_valid['input_ids']),
torch.tensor(tokenized_valid['token_type_ids']),
torch.tensor(tokenized_valid['attention_mask'])
,labels_valid)
valid_sampler=SequentialSampler(valid_data)
valid_dataloader=DataLoader(valid_data, sampler=valid_sampler, batch_size=batch_size)
test_data=TensorDataset(torch.tensor(tokenized_test['input_ids']),
torch.tensor(tokenized_test['token_type_ids']),
torch.tensor(tokenized_test['attention_mask']))
test_dataloader=DataLoader(test_data, batch_size=batch_size ) | Contradictory, My Dear Watson |
13,825,770 | features = ['Sex', 'Pclass', 'Embarked']
X_train = train[features].fillna('')
y_train = train['Survived']
X_test = test[features].fillna('')
model = catboost.CatBoostClassifier(
one_hot_max_size=4,
iterations=100,
random_seed=0,
verbose=False,
eval_metric='Accuracy'
)
pool = catboost.Pool(X_train, y_train, cat_features=[0, 2])
print('To see the Catboost plots, fork this kernel and run it in the editing mode.')
cv_scores = catboost.cv(pool, model.get_params() , fold_count=10, plot=True)
print('CV score: {:.5f}'.format(cv_scores['test-Accuracy-mean'].values[-1]))<save_to_csv> | model = AutoModelForSequenceClassification.from_pretrained(PRE_TRAINED_MODEL,
num_labels = 3,
output_attentions = False,
output_hidden_states = False)
| Contradictory, My Dear Watson |
13,825,770 | model.fit(pool)
pred = model.predict(X_test ).astype('int')
output = pd.concat([test['PassengerId'], pd.DataFrame(pred, columns=['Survived'])], axis=1)
output.to_csv('submission2.csv', index=False )<train_on_grid> |
device = xm.xla_device()
torch.set_default_tensor_type('torch.FloatTensor')
print(model.to(device))
print('TPU available')
| Contradictory, My Dear Watson |
13,825,770 | features = ['Sex', 'Pclass', 'Embarked', 'Boy']
X_train = train[features].fillna('')
y_train = train['Survived']
X_test = test[features].fillna('')
model = catboost.CatBoostClassifier(
one_hot_max_size=4,
iterations=100,
random_seed=0,
verbose=False,
eval_metric='Accuracy'
)
pool = catboost.Pool(X_train, y_train, cat_features=[0, 2])
print('To see the Catboost plots, fork this kernel and run it in the editing mode.')
cv_scores = catboost.cv(pool, model.get_params() , fold_count=10, plot=True)
print('CV score: {:.5f}'.format(cv_scores['test-Accuracy-mean'].values[-1]))<save_to_csv> | def accuracy(predictions, labels):
prediction_flat = np.argmax(predictions, axis=1 ).flatten()
labels_flat = labels.flatten()
return np.sum(prediction_flat == labels_flat)/ len(labels_flat ) | Contradictory, My Dear Watson |
13,825,770 | model.fit(pool)
pred = model.predict(X_test ).astype('int')
output = pd.concat([test['PassengerId'], pd.DataFrame(pred, columns=['Survived'])], axis=1)
output.to_csv('submission3.csv', index=False )<train_on_grid> | optimizer = AdamW(model.parameters() ,
lr = 2e-5
)
epochs = 20
total_steps = len(train_dataloader)* epochs
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0,
num_training_steps = total_steps ) | Contradictory, My Dear Watson |
13,825,770 | features = ['Sex', 'Pclass', 'Embarked', 'Boy', 'Surname']
X_train = train[features].fillna('')
y_train = train['Survived']
X_test = test[features].fillna('')
model = catboost.CatBoostClassifier(
one_hot_max_size=4,
iterations=100,
random_seed=0,
verbose=False,
eval_metric='Accuracy'
)
pool = catboost.Pool(X_train, y_train, cat_features=[0, 2, 4])
print('To see the Catboost plots, fork this kernel and run it in the editing mode.')
cv_scores = catboost.cv(pool, model.get_params() , fold_count=10, plot=True)
print('CV score: {:.5f}'.format(cv_scores['test-Accuracy-mean'].values[-1]))<save_to_csv> | random.seed(10)
np.random.seed(10)
torch.manual_seed(10)
torch.cuda.manual_seed_all(10)
losses = []
for i in range(0, epochs):
print('Epoch {:} of {:} Training...'.format(i+1, epochs))
total_loss = 0
model.train()
for step, batch in enumerate(train_dataloader):
if step % 10 == 0 and step != 0:
print('[{}] Batch {:>5,} of {:>5,}'
.format(datetime.datetime.now().strftime('%H:%M:%S'), step, len(train_dataloader)))
train_batch_input = batch[0].to(device)
train_batch_input_types = batch[1].to(device)
train_batch_mask = batch[2].to(device)
train_batch_label = batch[3].to(device)
model.zero_grad()
outputs = model(train_batch_input, token_type_ids = train_batch_input_types,
attention_mask = train_batch_mask, labels = train_batch_label)
loss = outputs[0]
total_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters() , 1.0)
xm.optimizer_step(optimizer, barrier=True)
scheduler.step()
average_train_loss = total_loss / len(train_dataloader)
losses.append(average_train_loss)
print('Training loss={:.2f}'.format(average_train_loss))
model.eval()
eval_accuracy = 0
eval_count = 0
for batch in valid_dataloader:
valid_batch_input = batch[0].to(device)
valid_batch_input_types = batch[1].to(device)
valid_batch_mask = batch[2].to(device)
valid_batch_labels = batch[3].to(device)
with torch.no_grad() :
outputs = model(valid_batch_input, token_type_ids = valid_batch_input_types,
attention_mask = valid_batch_mask)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
label_ids = valid_batch_labels.to('cpu' ).numpy()
batch_accuracy = accuracy(logits, label_ids)
eval_accuracy += batch_accuracy
eval_count += 1
print('Validation accuracy={:.2f}'.format(eval_accuracy / eval_count))
print('')
if i == 4:
break
print("Training done")
| Contradictory, My Dear Watson |
13,825,770 | model.fit(pool)
pred = model.predict(X_test ).astype('int')
output = pd.concat([test['PassengerId'], pd.DataFrame(pred, columns=['Survived'])], axis=1)
output.to_csv('submission4.csv', index=False )<set_options> | model.eval()
submissions = []
for batch in test_dataloader:
test_batch_input = batch[0].to(device)
test_batch_input_types = batch[1].to(device)
test_batch_mask = batch[2].to(device)
with torch.no_grad() :
outputs = model(test_batch_input, token_type_ids = test_batch_input_types,
attention_mask = test_batch_mask)
logits = outputs[0]
submissions.extend(np.argmax(logits.detach().cpu().numpy() , axis=1 ).flatten())
| Contradictory, My Dear Watson |
13,825,770 | %matplotlib inline
color = sns.color_palette()
sns.set_style('darkgrid')
def ignore_warn(*args, **kwargs):
pass
warnings.warn = ignore_warn
<load_from_csv> | output = pd.DataFrame({'id': test_df.id,
'prediction': submissions})
output.to_csv('submission.csv', index=False ) | Contradictory, My Dear Watson |
13,380,346 | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv')
train.describe()<drop_column> | !pip install datasets
!pip install --upgrade seaborn | Contradictory, My Dear Watson |
13,380,346 | train_ID = train['Id']
test_ID = test['Id']
train.drop("Id", axis = 1, inplace = True)
test.drop("Id", axis = 1, inplace = True )<drop_column> | import os
import seaborn as sns
import numpy as np
import random
from sklearn.utils import shuffle
import matplotlib.pyplot as plt
import pandas as pd
from collections import namedtuple
import plotly.express as px
import transformers
import tokenizers
import datetime
import time
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, matthews_corrcoef
import tensorflow
from datasets import load_dataset
import torch
from torch import nn
from transformers import BertTokenizer, AutoTokenizer, TrainingArguments, AutoModel, AutoModelForSequenceClassification
from torch.utils.data import TensorDataset, random_split
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from transformers import BertForSequenceClassification, AdamW, BertConfig
from transformers import get_linear_schedule_with_warmup
from transformers import RobertaTokenizer, RobertaForSequenceClassification, XLMRobertaModel | Contradictory, My Dear Watson |
13,380,346 | train = train.drop(train[(train['GrLivArea']>4000)&(train['SalePrice']<300000)].index )<feature_engineering> | mnli = load_dataset('glue', 'mnli')
len(mnli ) | Contradictory, My Dear Watson |
13,380,346 | train["SalePrice"] = np.log1p(train["SalePrice"])
check_skewness('SalePrice' )<prepare_x_and_y> | xnli = load_dataset('xnli', 'all_languages')
len(xnli ) | Contradictory, My Dear Watson |
13,380,346 | ntrain = train.shape[0]
ntest = test.shape[0]
y_train = train.SalePrice.values
all_data = pd.concat(( train, test)).reset_index(drop=True)
all_data.drop(['SalePrice'], axis=1, inplace=True)
print("all_data size is : {}".format(all_data.shape))<create_dataframe> | original_train_df = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv")
original_train_df = shuffle(original_train_df)
print(original_train_df.shape)
original_valid_df = original_train_df[:len(original_train_df)//2]
original_train_df = original_train_df[(len(original_train_df)//2):]
print(original_train_df.shape, original_valid_df.shape)
original_train_df.head() | Contradictory, My Dear Watson |
13,380,346 | all_data_na =(all_data.isnull().sum() / len(all_data)) * 100
all_data_na = all_data_na.drop(all_data_na[all_data_na == 0].index ).sort_values(ascending=False)[:30]
missing_data = pd.DataFrame({'Missing Ratio' :all_data_na} )<filter> | original_test_df = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv")
original_test_df.shape | Contradictory, My Dear Watson |
13,380,346 | all_data.PoolQC.loc[all_data.PoolQC.notnull() ]<data_type_conversions> | bert_model_name = 'joeddav/xlm-roberta-large-xnli'
max_len = 128
tokenizer = AutoTokenizer.from_pretrained(bert_model_name ) | Contradictory, My Dear Watson |
13,380,346 | all_data["PoolQC"] = all_data["PoolQC"].fillna("None" )<data_type_conversions> | def encode(premise, hypothesis, label):
encoded_dict = tokenizer(
premise,
hypothesis,
add_special_tokens = True,
truncation=True,
max_length = max_len,
padding='max_length',
return_attention_mask = True,
return_tensors = 'pt',
)
for k in encoded_dict:
encoded_dict[k] = torch.squeeze(encoded_dict[k])
encoded_dict['labels'] = label
return encoded_dict | Contradictory, My Dear Watson |
13,380,346 | all_data["MiscFeature"] = all_data["MiscFeature"].fillna("None" )<data_type_conversions> | raw_ds_mapping = {
'original train':(_get_raw_datasets_from_dataframe, original_train_df, len(original_train_df)) ,
'original valid':(_get_raw_datasets_from_dataframe, original_valid_df, len(original_valid_df)) ,
'mnli train' :(_get_raw_datasets_from_nlp, mnli['train'], mnli['train'].num_rows),
'mnli valid 1' :(_get_raw_datasets_from_nlp, mnli['validation_matched'], mnli['validation_matched'].num_rows),
'mnli valid 2' :(_get_raw_datasets_from_nlp, mnli['validation_mismatched'], mnli['validation_mismatched'].num_rows),
'xnli valid' :(_get_raw_datasets_from_nlp, xnli['validation'], xnli['validation'].num_rows * 15),
'xnli test' :(_get_raw_datasets_from_nlp, xnli['test'], xnli['test'].num_rows * 15),
'original test' :(_get_raw_datasets_from_dataframe, original_test_df, len(original_test_df)) ,
}
def get_raw_dataset(ds_name):
fn, ds, nb_examples = raw_ds_mapping[ds_name]
for x in fn(ds):
yield x
return | Contradictory, My Dear Watson |
13,380,346 | all_data["Alley"] = all_data["Alley"].fillna("None" )<data_type_conversions> | train_ds_names = ['original train', 'mnli train', 'mnli valid 1', 'mnli valid 2', 'xnli valid', 'xnli test']
eval_ds_names = ['original valid']
test_ds_names = ['original test'] | Contradictory, My Dear Watson |
13,380,346 | all_data["Fence"] = all_data["Fence"].fillna("None" )<data_type_conversions> | class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, ds_names, isLabeledDataset=False):
super(MyIterableDataset ).__init__()
self.ds_names = ds_names
self.length = self.getLen()
self.isLabeledDataset = isLabeledDataset
return
def getLen(self):
length = 0
for ds_name in self.ds_names:
fn, ds, nb_examples = raw_ds_mapping[ds_name]
length += nb_examples
return length
def __iter__(self):
for ds_name in self.ds_names:
fn, ds, nb_examples = raw_ds_mapping[ds_name]
for x in fn(ds):
if self.isLabeledDataset and x['labels'] == -1:
continue
yield x
return
def __len__(self):
return self.length | Contradictory, My Dear Watson |
13,380,346 | all_data["FireplaceQu"] = all_data["FireplaceQu"].fillna("None" )<groupby> | train_dataset = MyIterableDataset(train_ds_names, True)
for i, d in enumerate(train_dataset):
if i==0:
print(d)
break | Contradictory, My Dear Watson |
13,380,346 | grouped_df = all_data.groupby('Neighborhood')['LotFrontage']
for key, item in grouped_df:
print(key,"
")
print(grouped_df.get_group(key))
break<categorify> | def get_dataLoaders(train_dataset, per_device_train_batch_size=64, epochs=1):
if isinstance(train_dataset, torch.utils.data.IterableDataset):
train_sampler = None
else:
train_sampler = SequentialSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler = train_sampler,
batch_size = per_device_train_batch_size
)
return train_dataloader
def test_iterate_dataloader(train_dataloader):
for step, batch in enumerate(train_dataloader):
print(step, batch)
return
| Contradictory, My Dear Watson |
13,380,346 | all_data["LotFrontage"] = all_data.groupby("Neighborhood")["LotFrontage"].transform(
lambda x: x.fillna(x.median()))<data_type_conversions> | class My_Dataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
return
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx])for key, val in self.encodings.items() }
if self.labels is not None and len(self.labels)>0:
item['labels'] = self.labels[idx]
return item
def __len__(self):
return len(self.labels ) | Contradictory, My Dear Watson |
13,380,346 | for col in ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond']:
all_data[col] = all_data[col].fillna('None' )<groupby> | def get_mapType_Dataset(ds_names, isLabeledDataset):
input_ids = []
attention_mask = []
labels = []
lang = []
dataset_iter = MyIterableDataset(ds_names, isLabeledDataset)
for encoded_dict in dataset_iter:
input_ids.append(encoded_dict['input_ids'])
attention_mask.append(encoded_dict['attention_mask'])
labels.append(encoded_dict['labels'])
encodings = {'input_ids':input_ids, 'attention_mask':attention_mask}
my_dataset = My_Dataset(encodings, labels)
return my_dataset | Contradictory, My Dear Watson |
13,380,346 | abc = ['GarageType', 'GarageFinish', 'GarageQual', 'GarageCond','GarageYrBlt', 'GarageArea', 'GarageCars']
all_data.groupby('GarageType')[abc].count()<data_type_conversions> | eval_dataset = get_mapType_Dataset(eval_ds_names, True)
test_dataset = get_mapType_Dataset(test_ds_names, False ) | Contradictory, My Dear Watson |
13,380,346 | for col in('GarageYrBlt', 'GarageArea', 'GarageCars'):
all_data[col] = all_data[col].fillna(0 )<data_type_conversions> | def save_my_model_and_tokenizer(model, tokenizer=None, output_dir='./model_save/'):
model_state_file = output_dir + 'my_model.bin'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print("Saving model to %s" % model_state_file)
model.cpu()
state = model.state_dict()
torch.save(state, model_state_file)
if tokenizer is not None:
tokenizer.save_pretrained(output_dir)
model.cuda()
return | Contradictory, My Dear Watson |
13,380,346 | for col in('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF','TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'):
all_data[col] = all_data[col].fillna(0 )<data_type_conversions> | def load_model(bert_model_name, output_dir='./model_save/'):
model_state_file = output_dir + 'my_model.bin'
model = MyGAPModelForSeqClf(bert_model_name)
state = torch.load(model_state_file)
model.load_state_dict(state)
return model | Contradictory, My Dear Watson |
13,380,346 | for col in('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):
all_data[col] = all_data[col].fillna('None' )<data_type_conversions> | def format_time(elapsed):
elapsed_rounded = int(round(( elapsed)))
return str(datetime.timedelta(seconds=elapsed_rounded)) | Contradictory, My Dear Watson |
13,380,346 | all_data["MasVnrType"] = all_data["MasVnrType"].fillna("None")
all_data["MasVnrArea"] = all_data["MasVnrArea"].fillna(0 )<count_values> | def compute_metrics(labels, pred_logits):
preds = pred_logits.argmax(-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='macro')
acc = accuracy_score(labels, preds)
mcc = matthews_corrcoef(labels, preds)
metrics = {
'mcc': mcc,
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
return metrics | Contradictory, My Dear Watson |
13,380,346 | all_data['MSZoning'].value_counts()<data_type_conversions> | class MyTrainer:
def __init__(self, model, args, train_dataset, eval_dataset, tokenizer, compute_metrics=compute_metrics):
self.model = model
self.args = args
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.tokenizer = tokenizer
self.compute_metrics = compute_metrics
self.isTrained = False
self.device = self.get_device_type()
self.optimizer = AdamW(model.parameters() ,
lr = args.learning_rate,
eps = args.adam_epsilon
)
self.epochs = self.args.num_train_epochs
self.train_dataloader, self.validation_dataloader, self.lr_scheduler, self.num_training_steps = self.get_dataLoaders()
return
def get_device_type(self):
if torch.cuda.is_available() :
device = torch.device("cuda")
print('There are %d GPU(s)available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
return device
def get_dataLoaders(self):
if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
train_sampler = None
else:
train_sampler = SequentialSampler(self.train_dataset)
train_dataloader = DataLoader(
self.train_dataset,
sampler = train_sampler,
batch_size = self.args.per_device_train_batch_size
)
validation_dataloader = DataLoader(
self.eval_dataset,
sampler = SequentialSampler(self.eval_dataset),
batch_size = self.args.per_device_eval_batch_size
)
num_training_steps = len(train_dataloader)* self.epochs
lr_scheduler = get_linear_schedule_with_warmup(self.optimizer,
num_warmup_steps = self.args.warmup_steps,
num_training_steps = num_training_steps)
return train_dataloader, validation_dataloader, lr_scheduler, num_training_steps
def test_iterate_dataloader() :
for step, batch in enumerate(self.train_dataloader):
print(step, batch)
return
def train(self, is_train_base_encoding_model=True):
if is_train_base_encoding_model:
self.model.unfreez()
else:
self.model.freez()
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
training_stats = []
total_t0 = time.time()
min_val_loss = 99999999
for epoch_i in range(0, self.epochs):
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, self.epochs))
print('Training...')
t0 = time.time()
total_train_loss = 0
self.model.train()
for step, batch in enumerate(self.train_dataloader):
if step % 50 == 0 and not step == 0:
elapsed = format_time(time.time() - t0)
print(' Batch {:>5,} of {:>5,}.Elapsed: {:}.'.format(step, len(self.train_dataloader), elapsed))
if(self.args.max_steps > 0 and self.args.max_steps < step)or \
(is_train_base_encoding_model and self.args.eval_steps>0 and step % self.args.eval_steps==0 and step>0):
avg_train_loss = total_train_loss / step
training_time = format_time(time.time() - t0)
print("Running Validation...")
avg_val_loss, avg_val_f1, avg_val_mcc, avg_val_precision, avg_val_recall, avg_val_accuracy, validation_time = self.evaluate()
training_stats.append({
'epoch' : epoch_i + 1,
'training_loss' : avg_train_loss,
'eval_loss' : avg_val_loss,
'eval_f1' : avg_val_f1,
'eval_mcc' : avg_val_mcc,
'eval_precision': avg_val_precision,
'eval_recall' : avg_val_recall,
'eval_accuracy' : avg_val_accuracy,
'training_time' : training_time,
'eval_time' : validation_time
})
if avg_val_loss < min_val_loss:
min_val_loss = avg_val_loss
save_my_model_and_tokenizer(self.model, self.tokenizer, output_dir='./model_save/')
if self.args.max_steps > 0 and self.args.max_steps < step:
return training_stats
self.model.zero_grad()
for k in batch:
batch[k] = batch[k].to(self.device)
output = self.model(**batch)
loss = output.loss
logits = output.logits
total_train_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters() , 1.0)
self.optimizer.step()
self.lr_scheduler.step()
avg_train_loss = total_train_loss / len(self.train_dataloader)
training_time = format_time(time.time() - t0)
print(" Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training epcoh took: {:}".format(training_time))
print("
Running Validation...")
avg_val_loss, avg_val_f1, avg_val_mcc, avg_val_precision, avg_val_recall, avg_val_accuracy, validation_time = self.evaluate()
training_stats.append({
'epoch' : epoch_i + 1,
'training_loss' : avg_train_loss,
'eval_loss' : avg_val_loss,
'eval_f1' : avg_val_f1,
'eval_mcc' : avg_val_mcc,
'eval_precision': avg_val_precision,
'eval_recall' : avg_val_recall,
'eval_accuracy' : avg_val_accuracy,
'training_time' : training_time,
'eval_time' : validation_time
})
if avg_val_loss < min_val_loss:
min_val_loss = avg_val_loss
save_my_model_and_tokenizer(self.model, self.tokenizer, output_dir='./model_save/')
print("")
print("Training complete!")
print("Total training took {:}(h:mm:ss)".format(format_time(time.time() -total_t0)))
self.isTrained = True
self.plot_train_stats(training_stats)
return training_stats
def evaluate(self):
t0 = time.time()
self.model.eval()
total_eval_mcc = 0
total_eval_f1 = 0
total_eval_precision = 0
total_eval_recall = 0
total_eval_accuracy = 0
total_eval_loss = 0
nb_eval_steps = 0
for batch in self.validation_dataloader:
with torch.no_grad() :
for k in batch:
batch[k] = batch[k].to(self.device)
output = self.model(**batch)
loss = output.loss
logits = output.logits
total_eval_loss += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = batch['labels'].to('cpu' ).numpy()
metrics = self.compute_metrics(label_ids, logits)
total_eval_mcc += metrics['mcc']
total_eval_f1 += metrics['f1']
total_eval_precision += metrics['precision']
total_eval_recall += metrics['recall']
total_eval_accuracy += metrics['accuracy']
avg_val_f1 = total_eval_f1 / len(self.validation_dataloader)
print(" F1: {0:.3f}".format(avg_val_f1))
avg_val_mcc = total_eval_mcc / len(self.validation_dataloader)
print(" MCC: {0:.3f}".format(avg_val_mcc))
avg_val_precision = total_eval_precision / len(self.validation_dataloader)
print(" Precision: {0:.3f}".format(avg_val_precision))
avg_val_recall = total_eval_recall / len(self.validation_dataloader)
print(" Recall: {0:.3f}".format(avg_val_recall))
avg_val_accuracy = total_eval_accuracy / len(self.validation_dataloader)
print(" Accuracy: {0:.3f}".format(avg_val_accuracy))
avg_val_loss = total_eval_loss / len(self.validation_dataloader)
validation_time = format_time(time.time() - t0)
print(" Validation Loss: {0:.2f}".format(avg_val_loss))
print(" Validation took: {:}".format(validation_time))
return avg_val_loss, avg_val_f1, avg_val_mcc, avg_val_precision, avg_val_recall, avg_val_accuracy, validation_time
def plot_train_stats(self, training_stats):
mccs = [e['eval_mcc'] for e in training_stats]
accuracies = [e['eval_accuracy'] for e in training_stats]
f1_scores = [e['eval_f1'] for e in training_stats]
precisions = [e['eval_precision'] for e in training_stats]
recalls = [e['eval_recall'] for e in training_stats]
losses = [e['eval_loss'] for e in training_stats]
epochs = training_stats[-1]['epoch']
print('mccs:', mccs)
print('accuracies:', accuracies)
print('precisions:', precisions)
print('recalls:', recalls)
print('f1_scores:', f1_scores)
print('losses:', losses)
sns.lineplot(x=np.arange(1, epochs + 1), y=mccs, label='val_mcc')
sns.lineplot(x=np.arange(1, epochs + 1), y=accuracies, label='val_accuracy')
sns.lineplot(x=np.arange(1, epochs + 1), y=precisions, label='val_precision')
sns.lineplot(x=np.arange(1, epochs + 1), y=recalls, label='val_recall')
sns.lineplot(x=np.arange(1, epochs + 1), y=f1_scores, label='val_f1')
plt.show()
return
def getTrainedModel(self):
if self.isTrained:
return self.model
return None
def predict(self, prediction_dataset, isRemoveLabels=True):
prediction_sampler = SequentialSampler(prediction_dataset)
prediction_dataloader = DataLoader(prediction_dataset, sampler=prediction_sampler, batch_size=self.args.per_device_eval_batch_size)
print('Predicting labels for {:,} test sentences...'.format(len(prediction_dataset)))
self.model.eval()
predictions = []
for batch in prediction_dataloader:
batch = {t:batch[t].to(self.device)for t in batch}
with torch.no_grad() :
if isRemoveLabels:
batch.pop('labels')
for k in batch:
batch[k] = batch[k].to(self.device)
outputs = model(**batch)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.append(logits)
print('Done predictions for ', len(predictions), '/', len(prediction_dataloader), 'batches')
print('Done prediction')
pred_logits = np.concatenate(predictions, axis=0)
return pred_logits, None, None | Contradictory, My Dear Watson |
13,380,346 | all_data['MSZoning'] = all_data['MSZoning'].fillna(all_data['MSZoning'].mode() [0] )<count_values> | class MyGAPModelForSeqClf(nn.Module):
def __init__(self, bert_model_name, outputCount=3, drop_prob=0.1, nonlin=nn.ReLU()):
super(MyGAPModelForSeqClf, self ).__init__()
self.model = AutoModelForSequenceClassification.from_pretrained(bert_model_name ).base_model
self.drop_prob = drop_prob
self.nonlin = nonlin
self.outputCount = outputCount
hidden_size = self.model.config.hidden_size
self.dense = nn.Linear(hidden_size, hidden_size)
self.batchnorm = nn.BatchNorm1d(hidden_size)
self.outDense = nn.Linear(hidden_size, outputCount)
self.dropout = nn.Dropout(drop_prob)
self.outActivtn = nn.LogSoftmax(dim=1)
self.NLLLoss = nn.NLLLoss()
return
def freez(self):
for param in self.model.base_model.parameters() :
param.requires_grad = False
return
def unfreez(self):
for param in self.model.base_model.parameters() :
param.requires_grad = True
return
def forward(self, input_ids, attention_mask, token_type_ids=None, labels=None, **kwargs):
last_hidden_states = None
if token_type_ids is None:
moutput = self.model(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_states = moutput[0]
else:
moutput = self.model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
last_hidden_states = moutput[0]
last_hidden_states = torch.mean(last_hidden_states, 1)
X = self.dropout(self.nonlin(self.batchnorm(self.dense(last_hidden_states))))
out_logits = self.outDense(X)
if labels is None:
Logits = namedtuple('Logits',['logits'])
out_logits = Logits(out_logits)
return out_logits
log_ps = self.outActivtn(out_logits)
batchLoss = self.NLLLoss(log_ps, labels)
Loss_Logits = namedtuple('Loss_Logits',['loss','logits'])
loss_logits = Loss_Logits(batchLoss, out_logits)
return loss_logits | Contradictory, My Dear Watson |
13,380,346 | all_data['Utilities'].value_counts()<drop_column> | model = MyGAPModelForSeqClf(bert_model_name)
try:
model.load_state_dict(torch.load(".. /input/robertagapxnlimnlirishi/roberta-gap-xnli-mnli-rishi/my_model.bin"))
except:
model.load_state_dict(torch.load(".. /input/robertagapxnlimnlirishi/roberta-gap-xnli-mnli-rishi/my_model.bin", map_location='cpu'))
warnings.filterwarnings("ignore")
model.cuda() | Contradictory, My Dear Watson |
13,380,346 | all_data = all_data.drop(['Utilities'], axis=1 )<data_type_conversions> | training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=1,
warmup_steps=1000,
eval_steps=5000,
max_steps=5000,
learning_rate=5e-4,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
)
trainer = MyTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
| Contradictory, My Dear Watson |
13,380,346 | all_data["Functional"] = all_data["Functional"].fillna("Typ" )<categorify> | training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=1,
warmup_steps=1000,
eval_steps=5000,
learning_rate=1e-5,
per_device_train_batch_size=24,
per_device_eval_batch_size=24,
)
trainer = MyTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
training_stats = trainer.train() | Contradictory, My Dear Watson |
13,380,346 | mode_col = ['Electrical','KitchenQual', 'Exterior1st', 'Exterior2nd', 'SaleType']
for col in mode_col:
all_data[col] = all_data[col].fillna(all_data[col].mode() [0] )<data_type_conversions> | predictions, true_labels, metrics_dummy = trainer.predict(test_dataset)
pred_labels = np.argmax(predictions, axis=1)
pred_labels | Contradictory, My Dear Watson |
13,380,346 | <sort_values><EOS> | submitDF = original_test_df[['id']]
submitDF['prediction'] = pred_labels
submitDF.prediction = submitDF.prediction.astype(int)
submitDF.to_csv('submission.csv', index=False)
submitDF.head() | Contradictory, My Dear Watson |
12,093,149 | <SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<count_values> | !pip install transformers | Contradictory, My Dear Watson |
12,093,149 | all_data['OverallCond'].value_counts()<data_type_conversions> | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained("joeddav/xlm-roberta-large-xnli", padding=True)
model = AutoModelForSequenceClassification.from_pretrained("joeddav/xlm-roberta-large-xnli" ).to(device)
model.config | Contradictory, My Dear Watson |
12,093,149 | all_data['MSSubClass'] = all_data['MSSubClass'].apply(str)
all_data['OverallCond'] = all_data['OverallCond'].astype(str)
all_data['YrSold'] = all_data['YrSold'].astype(str)
all_data['MoSold'] = all_data['MoSold'].astype(str )<categorify> | train_data = pd.read_csv('.. /input/contradictory-my-dear-watson/train.csv', encoding='utf8')
test_data = pd.read_csv('.. /input/contradictory-my-dear-watson/test.csv', encoding='utf8')
train_data.head() | Contradictory, My Dear Watson |
12,093,149 | cols =('FireplaceQu', 'BsmtQual', 'BsmtCond', 'GarageQual', 'GarageCond',
'ExterQual', 'ExterCond','HeatingQC', 'PoolQC', 'KitchenQual', 'BsmtFinType1',
'BsmtFinType2', 'Functional', 'Fence', 'BsmtExposure', 'GarageFinish', 'LandSlope',
'LotShape', 'PavedDrive', 'Street', 'Alley', 'CentralAir', 'MSSubClass', 'OverallCond',
'YrSold', 'MoSold')
for c in cols:
lbl = LabelEncoder()
lbl.fit(list(all_data[c].values))
all_data[c] = lbl.transform(list(all_data[c].values))
print('Shape all_data: {}'.format(all_data.shape))<feature_engineering> | train_data['label'] = train_data['label'].replace([0, 2], [2, 0])
train_data.head() | Contradictory, My Dear Watson |
12,093,149 | all_data['TotalSF'] = all_data['TotalBsmtSF'] + all_data['1stFlrSF'] + all_data['2ndFlrSF']<feature_engineering> | class MyDataset(Dataset):
def __init__(self, df, tokenizer, labels = False):
self.inputs = df.loc[:,['premise', 'hypothesis']].values
self.tokenizer = tokenizer
self.labels = labels
if self.labels:
self.tgt = df['label'].values
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
inputs = tokenizer(self.inputs[idx].tolist() , add_special_tokens=True, padding=True, return_tensors='pt')
if self.labels:
inputs['labels'] = self.tgt[idx]
return inputs
return inputs | Contradictory, My Dear Watson |
12,093,149 | skewness = skewness[abs(skewness)> 0.75]
print("There are {} skewed numerical features to Box Cox transform".format(skewness.shape[0]))
skewed_features = skewness.index
lam = 0.15
for feat in skewed_features:
all_data[feat] = boxcox1p(all_data[feat], lam )<categorify> | def eval_model(model, dataloader, device):
correct = 0
eval_loss = 0
model.eval()
for i, batch in enumerate(dataloader):
out = model(input_ids=batch['input_ids'].squeeze().to(device),
attention_mask=batch['attention_mask'].squeeze().to(device),
labels=batch['labels'].squeeze().to(device))
eval_loss += out[0].item()
correct +=(out[1].argmax(dim=1)==batch['labels'].squeeze().to(device)).float().sum()
accu = correct / train_dataloader.dataset.__len__()
eval_loss /= len(dataloader)
return eval_loss, accu | Contradictory, My Dear Watson |
12,093,149 | all_data = pd.get_dummies(all_data)
all_data.shape<prepare_x_and_y> | train_dataset = MyDataset(train_data.loc[0:1000], tokenizer, labels=True)
train_dataloader = DataLoader(dataset=train_dataset,
sampler=BatchSampler(
SequentialSampler(train_dataset),
batch_size=8, drop_last=True))
loss, accuracy = eval_model(model, train_dataloader, device)
print("Loss: {}, Accuracy: {}".format(loss, accuracy)) | Contradictory, My Dear Watson |
12,093,149 | train = all_data[:ntrain]
test = all_data[ntrain:]
train.shape<import_modules> | def submission_predict(model, dataloader, device):
model.eval()
predicts = np.array([])
for i, batch in enumerate(dataloader):
inp_ids = batch['input_ids'].squeeze().to(device)
mask = batch['attention_mask'].squeeze().to(device)
out = model(input_ids=inp_ids, attention_mask=mask)
batch_preds = out[0].argmax(dim=1)
predicts = np.concatenate(( predicts, batch_preds.cpu().detach().numpy()))
return predicts | Contradictory, My Dear Watson |
12,093,149 | from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model_selection import KFold, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error
import xgboost as xgb
import lightgbm as lgb<compute_train_metric> | test_dataset = MyDataset(test_data, tokenizer, labels=False)
test_dataloader = DataLoader(dataset=test_dataset,
sampler=BatchSampler(
SequentialSampler(test_dataset),
batch_size=8, drop_last=False), shuffle=False)
test_preds = submission_predict(model, test_dataloader, device ) | Contradictory, My Dear Watson |
12,093,149 | n_folds = 5
def rmsle_cv(model):
kf = KFold(n_folds, shuffle=True, random_state=42 ).get_n_splits(train.values)
rmse= np.sqrt(-cross_val_score(model, train.values, y_train, scoring="neg_mean_squared_error", cv = kf))
return(rmse )<compute_train_metric> | submission = np.concatenate(( test_data['id'].values.reshape(-1,1), np.int32(test_preds.reshape(-1,1))), axis=1)
submission = pd.DataFrame(submission, columns=['id', 'prediction'])
submission['prediction'] = submission['prediction'].astype(np.int32 ).replace([0,2], [2,0])
submission.to_csv('submission.csv', index=False)
model.save_pretrained('./model.pt')
tokenizer.save_pretrained('.. /tokenizer' ) | Contradictory, My Dear Watson |
11,089,925 | KRR = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5)
score = rmsle_cv(KRR)
print("Kernel Ridge score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_test_metric> | !pip install googletrans textAugment | Contradictory, My Dear Watson |
11,089,925 | lasso = make_pipeline(RobustScaler() , Lasso(alpha =0.0005, random_state=1))
score = rmsle_cv(lasso)
print("Lasso score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_train_metric> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
print('Running on TPU ', tpu.master())
except ValueError:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Contradictory, My Dear Watson |
11,089,925 | ENet = make_pipeline(RobustScaler() , ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3))
score = rmsle_cv(ENet)
print("ElasticNet score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<compute_train_metric> | df_train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv')
df_test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv' ) | Contradictory, My Dear Watson |
11,089,925 | GBoost = GradientBoostingRegressor(n_estimators=3000, learning_rate=0.05,
max_depth=4, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10,
loss='huber', random_state =5)
score = rmsle_cv(GBoost)
print("Gradient Boosting score: {:.4f}({:.4f})
".format(score.mean() , score.std()))<train_model> | from textaugment import EDA
from googletrans import Translator | Contradictory, My Dear Watson |
11,089,925 | LassoMd = lasso.fit(train.values,y_train)
ENetMd = ENet.fit(train.values,y_train)
KRRMd = KRR.fit(train.values,y_train)
GBoostMd = GBoost.fit(train.values,y_train )<predict_on_test> | for lang in df_train['language'].unique() :
number_of_training_samples = df_train[df_train['language'] == lang].shape[0] / df_train.shape[0]
number_of_testing_samples = df_test[df_test['language'] == lang].shape[0] / df_test.shape[0]
print('distribution of {} in training samples: {} and in testing samples {}'.format(lang, number_of_training_samples, number_of_testing_samples)) | Contradictory, My Dear Watson |
11,089,925 | finalMd =(np.expm1(LassoMd.predict(test.values)) + np.expm1(ENetMd.predict(test.values)) + np.expm1(KRRMd.predict(test.values)) + np.expm1(GBoostMd.predict(test.values)))/ 4
finalMd<save_to_csv> | idx2label = {0: 'entailment', 1 :'neutral', 2: 'contradiction'}
for label in df_train['label'].unique() :
number_of_training_samples = df_train[df_train['label'] == label].shape[0] / df_train.shape[0]
print('distribution of {} in training samples: {}'.format(idx2label[label], number_of_training_samples))
| Contradictory, My Dear Watson |
11,089,925 | sub = pd.DataFrame()
sub['Id'] = test_ID
sub['SalePrice'] = finalMd
sub.to_csv('submission.csv',index=False )<define_search_space> | tf.random.set_seed(seed ) | Contradictory, My Dear Watson |
11,089,925 | %%writefile main.cpp
using namespace std;
using namespace std::chrono;
constexpr array<uint8_t, 12> DISTRIBUTION{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5}; // You can setup how many families you need for swaps and what best choice use for each family
// {2, 5} it's mean the first random family will brute force for choices 1-2 and the second random family will brute force for choices 1-5
constexpr int MAX_OCCUPANCY = 300;
constexpr int MIN_OCCUPANCY = 125;
constexpr int NUMBER_FAMILIES = 6000;
constexpr int NUMBER_DAYS = 100;
constexpr int BEST_N = 10;
array<uint8_t, NUMBER_FAMILIES> n_people;
array<array<uint8_t, 10>, NUMBER_FAMILIES> choices;
array<array<uint16_t, 10>, NUMBER_FAMILIES> PCOSTM;
array<array<array<double, 5>, 176>, 176> ACOSTM;
void init_data() {
ifstream in(".. /input/santa-2019-revenge-of-the-accountants/family_data.csv");
assert(in && "family_data.csv");
string header;
int n,x;
char comma;
getline(in, header);
for(int j = 0; j < choices.size() ; ++j){
in >> x >> comma;
for(int i = 0; i < 10; ++i){
in >> x >> comma;
choices[j][i] = x-1;
}
in >> n;
n_people[j] = n;
}
array<int, 10> pc{0, 50, 50, 100, 200, 200, 300, 300, 400, 500};
array<int, 10> pn{0, 0, 9, 9, 9, 18, 18, 36, 36, 235};
for(int j = 0; j < PCOSTM.size() ; ++j)
for(int i = 0; i < 10; ++i)
PCOSTM[j][i] = pc[i] + pn[i] * n_people[j];
for(int i = 0; i < 176; ++i)
for(int j = 0; j < 176; ++j)
for(int k = 1; k <= 5; ++k)
ACOSTM[i][j][k-1] = i * pow(i+MIN_OCCUPANCY, 0.5 + abs(i-j)/ 50.0)/ 400.0 / k / k;
}
array<uint8_t, NUMBER_FAMILIES> read_submission(string filename){
ifstream in(filename);
assert(in && "submission.csv");
array<uint8_t, NUMBER_FAMILIES> assigned_day{};
string header;
int id, x;
char comma;
getline(in, header);
for(int j = 0; j < choices.size() ; ++j){
in >> id >> comma >> x;
assigned_day[j] = x-1;
auto it = find(begin(choices[j]), end(choices[j]), assigned_day[j]);
if(it != end(choices[j]))
assigned_day[j] = distance(begin(choices[j]), it);
}
return assigned_day;
}
struct Index {
Index(array<uint8_t, NUMBER_FAMILIES> assigned_days_): assigned_days(assigned_days_){
setup() ;
}
array<uint8_t, NUMBER_FAMILIES> assigned_days;
array<uint16_t, NUMBER_DAYS> daily_occupancy_{};
int preference_cost_ = 0;
void setup() {
preference_cost_ = 0;
daily_occupancy_.fill(0);
for(int j = 0; j < assigned_days.size() ; ++j){
daily_occupancy_[choices[j][assigned_days[j]]] += n_people[j];
preference_cost_ += PCOSTM[j][assigned_days[j]];
}
}
double calc(const array<uint16_t, NUMBER_FAMILIES>& indices, const array<uint8_t, DISTRIBUTION.size() >& change){
double accounting_penalty = 0.0;
auto daily_occupancy = daily_occupancy_;
int preference_cost = preference_cost_;
for(int i = 0; i < DISTRIBUTION.size() ; ++i){
int j = indices[i];
daily_occupancy[choices[j][assigned_days[j]]] -= n_people[j];
daily_occupancy[choices[j][ change[i]]] += n_people[j];
preference_cost += PCOSTM[j][change[i]] - PCOSTM[j][assigned_days[j]];
}
for(auto occupancy : daily_occupancy)
if(occupancy < MIN_OCCUPANCY)
return 1e12*(MIN_OCCUPANCY-occupancy);
else if(occupancy > MAX_OCCUPANCY)
return 1e12*(occupancy - MAX_OCCUPANCY);
for(int day = 0; day < NUMBER_DAYS; ++day)
for(int j = 0; j < 5; ++j)
accounting_penalty += ACOSTM[daily_occupancy[day]-MIN_OCCUPANCY][daily_occupancy[min(NUMBER_DAYS-1, day+j+1)]-MIN_OCCUPANCY][j];
return preference_cost + accounting_penalty;
}
void reindex(const array<uint16_t, DISTRIBUTION.size() >& indices, const array<uint8_t, DISTRIBUTION.size() >& change){
for(int i = 0; i < DISTRIBUTION.size() ; ++i){
assigned_days[indices[i]] = change[i];
}
setup() ;
}
};
double calc(const array<uint8_t, NUMBER_FAMILIES>& assigned_days, bool print=false){
int preference_cost = 0;
double accounting_penalty = 0.0;
array<uint16_t, NUMBER_DAYS> daily_occupancy{};
for(int j = 0; j < assigned_days.size() ; ++j){
preference_cost += PCOSTM[j][assigned_days[j]];
daily_occupancy[choices[j][assigned_days[j]]] += n_people[j];
}
for(auto occupancy : daily_occupancy)
if(occupancy < MIN_OCCUPANCY)
return 1e12*(MIN_OCCUPANCY-occupancy);
else if(occupancy > MAX_OCCUPANCY)
return 1e12*(occupancy - MAX_OCCUPANCY);
for(int day = 0; day < NUMBER_DAYS; ++day)
for(int j = 0; j < 5; ++j)
accounting_penalty += ACOSTM[daily_occupancy[day]-MIN_OCCUPANCY][daily_occupancy[min(99, day+j+1)]-MIN_OCCUPANCY][j];
if(print){
cout << preference_cost << " " << accounting_penalty << " " << preference_cost+accounting_penalty << endl;
}
return preference_cost + accounting_penalty;
}
void save_sub(const array<uint8_t, NUMBER_FAMILIES>& assigned_day){
ofstream out("submission.csv");
out << "family_id,assigned_day" << endl;
for(int i = 0; i < assigned_day.size() ; ++i)
out << i << "," << choices[i][assigned_day[i]]+1 << endl;
}
const vector<array<uint8_t, DISTRIBUTION.size() >> changes = []() {
vector<array<uint8_t, DISTRIBUTION.size() >> arr;
array<uint8_t, DISTRIBUTION.size() > tmp{};
for(int i = 0; true; ++i){
arr.push_back(tmp);
tmp[0] += 1;
for(int j = 0; j < DISTRIBUTION.size() ; ++j)
if(tmp[j] >= DISTRIBUTION[j]){
if(j >= DISTRIBUTION.size() -1)
return arr;
tmp[j] = 0;
++tmp[j+1];
}
}
return arr;
}() ;
template<class ExitFunction>
void stochastic_product_search(Index index, ExitFunction fn){
double best_local_score = calc(index.assigned_days);
thread_local std::mt19937 gen(std::random_device{}());
uniform_int_distribution<> dis(0, NUMBER_FAMILIES-1);
array<uint16_t, NUMBER_FAMILIES> indices;
iota(begin(indices), end(indices), 0);
array<uint16_t, DISTRIBUTION.size() > best_indices{};
array<uint8_t, DISTRIBUTION.size() > best_change{};
bool need_save = false;
for(; fn() ;){
bool found_better = false;
for(int k = 0; k < BEST_N; ++k){
for(int i = 0; i < DISTRIBUTION.size() ; ++i)//random swap
swap(indices[i], indices[dis(gen)]);
for(const auto& change : changes){
auto score = index.calc(indices, change);
if(score < best_local_score){
found_better = true;
best_local_score = score;
best_change = change;
copy_n(begin(indices), DISTRIBUTION.size() , begin(best_indices)) ;
}
}
}
if(found_better){ // reindex from N best if found better
need_save = true;
index.reindex(best_indices, best_change);
// save_sub(index.assigned_days);
calc(index.assigned_days, true);
}
}
if(need_save)
save_sub(index.assigned_days);
}
int main() {
init_data() ;
auto assigned_day = read_submission(".. /input/mip-optimization-preference-cost-santa2019revenge/submission.csv");
Index index(assigned_day);
calc(index.assigned_days, true);
// auto forever = []() { return true; };
// auto count_exit = [start = 0]() mutable { return(++start <= 1000); };
auto time_exit = [start = high_resolution_clock::now() ]() {
return duration_cast<minutes>(high_resolution_clock::now() -start ).count() < 355; //5h55
};
stochastic_product_search(index, time_exit);
return 0;
}<set_options> | model_name = 'jplu/tf-xlm-roberta-large'
tokenizer = XLMRobertaTokenizer.from_pretrained(model_name ) | Contradictory, My Dear Watson |
11,089,925 | !g++ -pthread -lpthread -O3 -std=c++17 -o main main.cpp<set_options> | def clean_word(value):
language = value[0]
word = value[1]
if language != 'English':
word = word.lower()
return word
word = word.lower()
word = re.sub(r'\?\?', 'e', word)
word = re.sub('\.\.\.', '.', word)
word = re.sub('\/', ' ', word)
word = re.sub('--', ' ', word)
word = re.sub('/\xad', '', word)
word = word.strip(' ')
return word
df_train['premise'] = df_train[['language', 'premise']].apply(lambda v: clean_word(v), axis=1)
df_train['hypothesis'] = df_train[['language', 'hypothesis']].apply(lambda v: clean_word(v), axis=1)
df_test['premise'] = df_test[['language', 'premise']].apply(lambda v: clean_word(v), axis=1)
df_test['hypothesis'] = df_test[['language', 'hypothesis']].apply(lambda v: clean_word(v), axis=1 ) | Contradictory, My Dear Watson |
11,089,925 | sns.set_style('whitegrid')
%matplotlib inline
<load_from_csv> | def build_model() :
with strategy.scope() :
bert_encoder = TFXLMRobertaModel.from_pretrained(model_name)
input_word_ids = tf.keras.Input(shape=(None,), dtype=tf.int32, name="input_word_ids")
input_mask = tf.keras.Input(shape=(None,), dtype=tf.int32, name="input_mask")
embedding = bert_encoder([input_word_ids, input_mask])[0]
output_layer = tf.keras.layers.Dropout(0.25 )(embedding)
output_layer = tf.keras.layers.GlobalAveragePooling1D()(output_layer)
output_dense_layer = tf.keras.layers.Dense(64, activation='relu' )(output_layer)
output_dense_layer = tf.keras.layers.Dense(32, activation='relu' )(output_dense_layer)
output = tf.keras.layers.Dense(3, activation='softmax' )(output_dense_layer)
model = tf.keras.Model(inputs=[input_word_ids, input_mask], outputs=output)
model.compile(tf.keras.optimizers.Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
return model | Contradictory, My Dear Watson |
11,089,925 | titanic_df = pd.read_csv(".. /input/train.csv")
test_df = pd.read_csv(".. /input/test.csv")
titanic_df.head()<categorify> | batch_size = 8 * strategy.num_replicas_in_sync
num_splits = 5
test_input = None | Contradictory, My Dear Watson |
11,089,925 | def get_title(name):
if '.' in name:
return name.split(',')[1].split('.')[0].strip()
else:
return 'Unknown'
def title_map(title):
if title in ['Mr']:
return 1
elif title in ['Master']:
return 3
elif title in ['Ms','Mlle','Miss']:
return 4
elif title in ['Mme','Mrs']:
return 5
else:
return 2
titanic_df['title'] = titanic_df['Name'].apply(get_title ).apply(title_map)
test_df['title'] = test_df['Name'].apply(get_title ).apply(title_map)
title_xt = pd.crosstab(titanic_df['title'], titanic_df['Survived'])
title_xt_pct = title_xt.div(title_xt.sum(1 ).astype(float), axis=0)
title_xt_pct.plot(kind='bar',
stacked=True,
title='Survival Rate by title')
plt.xlabel('title')
plt.ylabel('Survival Rate' )<drop_column> | auto = tf.data.experimental.AUTOTUNE
languages = [ 'zh-cn' if lang == 'zh' else lang for lang in df_train['lang_abv'].unique() ]
def make_dataset(train_input, train_label):
dataset = tf.data.Dataset.from_tensor_slices(
(
train_input,
train_label
)
).repeat().shuffle(batch_size ).batch(batch_size ).prefetch(auto)
return dataset | Contradictory, My Dear Watson |
11,089,925 | titanic_df = titanic_df.drop(['PassengerId','Name','Ticket'], axis=1)
test_df = test_df.drop(['Name','Ticket'], axis=1 )<feature_engineering> | def xlm_roberta_encode(hypotheses, premises, src_langs, augmentation=False):
num_examples = len(hypotheses)
sentence_1 = [tokenizer.encode(s)for s in premises]
sentence_2 = [tokenizer.encode(s)for s in hypotheses]
input_word_ids = list(map(lambda x: x[0]+x[1], list(zip(sentence_1,sentence_2))))
input_mask = [np.ones_like(x)for x in input_word_ids]
inputs = {
'input_word_ids': tf.keras.preprocessing.sequence.pad_sequences(input_word_ids, padding='post'),
'input_mask': tf.keras.preprocessing.sequence.pad_sequences(input_mask, padding='post')
}
return inputs | Contradictory, My Dear Watson |
11,089,925 | test_df["Fare"].fillna(test_df["Fare"].median() , inplace=True)
titanic_df.loc[ titanic_df['Fare'] <= 7.91, 'Fare'] = 0
titanic_df.loc[(titanic_df['Fare'] > 7.91)&(titanic_df['Fare'] <= 14.454), 'Fare'] = 1
titanic_df.loc[(titanic_df['Fare'] > 14.454)&(titanic_df['Fare'] <= 31), 'Fare'] = 2
titanic_df.loc[ titanic_df['Fare'] > 31, 'Fare'] = 3
test_df.loc[ test_df['Fare'] <= 7.91, 'Fare'] = 0
test_df.loc[(test_df['Fare'] > 7.91)&(test_df['Fare'] <= 14.454), 'Fare'] = 1
test_df.loc[(test_df['Fare'] > 14.454)&(test_df['Fare'] <= 31), 'Fare'] = 2
test_df.loc[test_df['Fare'] > 31, 'Fare'] = 3
titanic_df['Fare'] = titanic_df['Fare'].astype(int)
test_df['Fare'] = test_df['Fare'].astype(int)
<categorify> | train_df, validation_df = train_test_split(df_train, test_size=0.1)
if test_input is None:
test_input = xlm_roberta_encode(df_test.hypothesis.values, df_test.premise.values, df_test.lang_abv.values,augmentation=False)
df_train['prediction'] = 0
num_augmentation = 1
train_input = xlm_roberta_encode(train_df.hypothesis.values,train_df.premise.values, train_df.lang_abv.values, augmentation=False)
train_label = train_df.label.values
train_sequence = make_dataset(train_input, train_label)
n_steps =(len(train_label)) // batch_size
validation_input = xlm_roberta_encode(validation_df.hypothesis.values, validation_df.premise.values,validation_df.lang_abv.values, augmentation=False)
validation_label = validation_df.label.values
tf.keras.backend.clear_session()
with strategy.scope() :
model = build_model()
history = model.fit(
train_sequence, shuffle=True, steps_per_epoch=n_steps,
validation_data =(validation_input, validation_label), epochs=50, verbose=1,
callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=10),
tf.keras.callbacks.ReduceLROnPlateau(monitor='val_accuracy', factor=0.1, patience=5),
tf.keras.callbacks.ModelCheckpoint(
'model.h5', monitor='val_accuracy', save_best_only=True,save_weights_only=True)
]
)
model.load_weights('model.h5')
validation_predictions = model.predict(validation_input)
validation_predictions = np.argmax(validation_predictions, axis=-1)
validation_df['predictions'] = validation_predictions
acc = accuracy_score(validation_label, validation_predictions)
print('Accuracy: {}'.format(acc))
test_split_predictions = model.predict(test_input)
del train_input, train_label, validation_input, validation_label, model, train_sequence
gc.collect() | Contradictory, My Dear Watson |
11,089,925 | titanic_df['Age'] = titanic_df.groupby(['Pclass'])['Age'].transform(lambda x: x.fillna(x.mean()))
test_df['Age'] = test_df.groupby(['Pclass'])['Age'].transform(lambda x: x.fillna(x.mean()))<drop_column> | fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(15,10))
labels = list(idx2label.values())
for ax,language in zip(axes.flatten() [:validation_df['language'].nunique() ],validation_df['language'].unique()):
y_pred = validation_df[validation_df['language'] == language]['prediction'].values
y_true = validation_df[validation_df['language'] == language]['label'].values
lang_acc = accuracy_score(y_true, y_pred)
print('Language {} has accuracy {}'.format(language, lang_acc))
cm = confusion_matrix(np.array([idx2label[v] for v in y_true]),
np.array([idx2label[v] for v in y_pred]),
labels=labels)
cax = ConfusionMatrixDisplay(cm, display_labels=labels)
cax.plot(ax=ax)
ax.set_title(language)
ax.set_xticklabels([''] + labels)
ax.set_yticklabels([''] + labels)
plt.title('Confusion matrix of the classifier')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.tight_layout()
plt.show() | Contradictory, My Dear Watson |
11,089,925 | titanic_df.drop("Cabin",axis=1,inplace=True)
test_df.drop("Cabin",axis=1,inplace=True )<feature_engineering> | predictions = np.argmax(test_split_predictions, axis=-1)
submission = df_test.id.copy().to_frame()
submission['prediction'] = predictions | Contradictory, My Dear Watson |
11,089,925 | <categorify><EOS> | submission.head()
submission.to_csv("submission.csv", index = False ) | Contradictory, My Dear Watson |
11,148,955 | <SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<categorify> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModel
from tqdm.notebook import tqdm | Contradictory, My Dear Watson |
11,148,955 | titanic_df['age_class'] = titanic_df['Age'] * titanic_df['Pclass']
test_df['age_class'] = test_df['Age'] * test_df['Pclass']<prepare_x_and_y> | !pip install nlp
| Contradictory, My Dear Watson |
11,148,955 | X_train = titanic_df.drop("Survived",axis=1)
Y_train = titanic_df["Survived"]
X_test = test_df.drop("PassengerId",axis=1 ).copy()<compute_train_metric> | MODEL_NAME = 'jplu/tf-xlm-roberta-large'
EPOCHS = 10
MAX_LEN = 80
RATE = 1e-5
BATCH_SIZE = 64 * strategy.num_replicas_in_sync | Contradictory, My Dear Watson |
11,148,955 |
<train_on_grid> | train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv')
test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv')
submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv' ) | Contradictory, My Dear Watson |
11,148,955 |
<train_model> | train = train[['premise', 'hypothesis', 'label']] | Contradictory, My Dear Watson |
11,148,955 | random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred_1 = random_forest.predict(X_test)
random_forest.score(X_train, Y_train )<train_on_grid> | multigenre_data = nlp.load_dataset(path='glue', name='mnli' ) | Contradictory, My Dear Watson |
11,148,955 |
<train_on_grid> | index = []
premise = []
hypothesis = []
label = []
for example in multigenre_data['train']:
premise.append(example['premise'])
hypothesis.append(example['hypothesis'])
label.append(example['label'] ) | Contradictory, My Dear Watson |
11,148,955 |
<data_type_conversions> | multigenre_df = pd.DataFrame(data={
'premise': premise,
'hypothesis': hypothesis,
'label': label
} ) | Contradictory, My Dear Watson |
11,148,955 | Y_pred = Y_pred_1<save_to_csv> | adversarial_data = nlp.load_dataset(path='anli' ) | Contradictory, My Dear Watson |
11,148,955 | submission = pd.DataFrame({
"PassengerId": test_df["PassengerId"],
"Survived": Y_pred
})
submission.to_csv('titanic.csv', index=False )<load_from_csv> | index = []
premise = []
hypothesis = []
label = []
for example in adversarial_data['train_r1']:
premise.append(example['premise'])
hypothesis.append(example['hypothesis'])
label.append(example['label'])
for example in adversarial_data['train_r2']:
premise.append(example['premise'])
hypothesis.append(example['hypothesis'])
label.append(example['label'])
for example in adversarial_data['train_r3']:
premise.append(example['premise'])
hypothesis.append(example['hypothesis'])
label.append(example['label'] ) | Contradictory, My Dear Watson |
11,148,955 | train_df = pd.read_csv("/kaggle/input/titanic/train.csv")
test_df = pd.read_csv("/kaggle/input/titanic/test.csv" )<count_missing_values> | adversarial_df = pd.DataFrame(data={
'premise': premise,
'hypothesis': hypothesis,
'label': label
} ) | Contradictory, My Dear Watson |
11,148,955 | train_df.isnull().sum()<count_missing_values> | train = pd.concat([train, multigenre_df, adversarial_df] ) | Contradictory, My Dear Watson |
11,148,955 | test_df.isnull().sum()<count_missing_values> | tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME ) | Contradictory, My Dear Watson |
11,148,955 | train_df.isnull().sum()<count_missing_values> | train_text = train[['premise', 'hypothesis']].values.tolist()
test_text = test[['premise', 'hypothesis']].values.tolist() | Contradictory, My Dear Watson |
11,148,955 | train_df.drop('Cabin', axis=1, inplace=True)
train_df.isnull().sum()<count_missing_values> | train_encoded = tokenizer.batch_encode_plus(
train_text,
pad_to_max_length=True,
max_length=MAX_LEN
) | Contradictory, My Dear Watson |
11,148,955 | train_df.dropna(subset=['Embarked'], inplace=True)
train_df.isnull().sum()<data_type_conversions> | test_encoded = tokenizer.batch_encode_plus(
test_text,
pad_to_max_length=True,
max_length=MAX_LEN
) | Contradictory, My Dear Watson |
11,148,955 | train_df['Age'].fillna(train_df['Age'].mean() , inplace=True)
train_df.isnull().sum()<count_missing_values> | vocab = tokenizer.get_vocab()
print(vocab['<s>'])
print(vocab['▁and'])
print(vocab['▁these'])
print(vocab['▁comments'])
print(vocab['▁were'])
print(vocab['▁considered'])
print(vocab['▁in'])
print(vocab['▁formula'])
print(vocab['ting'])
print(vocab['▁the'])
print(vocab['▁inter'])
print(vocab['im'])
print(vocab['▁rules'])
print(vocab['.'] ) | Contradictory, My Dear Watson |
11,148,955 | test_df.isnull().sum()<count_missing_values> | x_train, x_valid, y_train, y_valid = train_test_split(
train_encoded['input_ids'],
train.label.values,
test_size=0.2,
random_state=2020
) | Contradictory, My Dear Watson |
11,148,955 | test_df.drop('Cabin', axis=1, inplace=True)
test_df.isnull().sum()<feature_engineering> | x_test = test_encoded['input_ids'] | Contradictory, My Dear Watson |
11,148,955 | test_df['Fare'] = test_df['Fare'].fillna(train_df['Fare'].median())
test_df.isnull().sum()<count_missing_values> | auto = tf.data.experimental.AUTOTUNE
train_dataset =(
tf.data.Dataset
.from_tensor_slices(( x_train, y_train))
.repeat()
.shuffle(2048)
.batch(BATCH_SIZE)
.prefetch(auto)
) | Contradictory, My Dear Watson |
11,148,955 | test_df['Age'].fillna(train_df['Age'].mean() , inplace=True)
test_df.isnull().sum()<prepare_x_and_y> | valid_dataset =(
tf.data.Dataset
.from_tensor_slices(( x_valid, y_valid))
.batch(BATCH_SIZE)
.cache()
.prefetch(auto)
) | Contradictory, My Dear Watson |
11,148,955 | X = train_df.drop(['PassengerId', 'Survived', 'Name', 'Ticket', 'Fare'], axis=1)
y = train_df['Survived']
n_test_df = test_df.drop(['PassengerId', 'Name', 'Ticket', 'Fare'], axis=1 )<categorify> | test_dataset =(
tf.data.Dataset
.from_tensor_slices(x_test)
.batch(BATCH_SIZE)
) | Contradictory, My Dear Watson |
11,148,955 | X = pd.get_dummies(X, drop_first=True )<categorify> | with strategy.scope() :
backbone = TFAutoModel.from_pretrained(MODEL_NAME ) | Contradictory, My Dear Watson |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.