kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
10,966,859 | test = pd.read_csv('.. /input/titanic/test.csv')
X_test = test.copy()
X_test['Fare'] = np.log1p(X_test.Fare)
get_titles(X_test )<drop_column> | xnli_processed = xnli.map(preprocess_xnli, batched=True)
xnli_encoded = xnli_processed.map(convert_to_features, batched=True, remove_columns=['premise', 'hypothesis'])
xnli_encoded.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'] ) | Contradictory, My Dear Watson |
10,966,859 | X_test_imp = pd.DataFrame(missing_transformer.transform(X_test))
X_test_imp.columns = numerical + categorical
X_test.drop(numerical + categorical, axis = 1, inplace = True)
X_test = pd.concat([X_test, X_test_imp], axis = 1 )<categorify> | snli_encoded = snli.map(convert_to_features, batched=True, remove_columns=['premise', 'hypothesis'])
snli_encoded.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'] ) | Contradictory, My Dear Watson |
10,966,859 | X_test_enc = pd.DataFrame(ordinal_encoder.fit_transform(X_test[categorical]))
X_test_enc.columns = categorical
X_test.drop(categorical, axis = 1, inplace = True)
X_test = pd.concat([X_test, X_test_enc], axis = 1)
X_test = pd.get_dummies(X_test, columns = categorical, dtype = np.int64, drop_first = True )<save_to_csv> | train_dataset = nlp.load_dataset('csv', data_files=['.. /input/contradictory-my-dear-watson/train.csv'])['train']
print(train_dataset.num_rows)
print(train_dataset.column_names)
drop_columns = train_dataset.column_names[:-1]
encoded_train_dataset = train_dataset.map(convert_to_features, batched=True, remove_columns=drop_columns)
encoded_train_dataset.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'])
print(encoded_train_dataset.num_rows)
print(encoded_train_dataset.column_names ) | Contradictory, My Dear Watson |
10,966,859 | final_clf.fit(X[features], y)
final_preds = final_clf.predict(X_test[features])
final_submission = pd.DataFrame({'PassengerId' : X_test.PassengerId,
'Survived' : final_preds})
final_submission.to_csv('may12_finalpreds.csv', index = False )<load_from_csv> | train_dataset = nlp.concatenate_datasets([mnli_encoded,
xnli_encoded,
snli_encoded,
encoded_train_dataset
])
print(train_dataset.num_rows)
print(train_dataset.column_names ) | Contradictory, My Dear Watson |
10,966,859 | train_data_initial = pd.read_csv('.. /input/titanic/train.csv', index_col='PassengerId')
test_data = pd.read_csv('.. /input/titanic/test.csv', index_col='PassengerId')
train_data_initial.head()<drop_column> | train_dataset.cleanup_cache_files()
del mnli, mnli_encoded
del xnli, xnli_encoded, xnli_processed
del snli, snli_encoded
gc.collect() | Contradictory, My Dear Watson |
10,966,859 | train_data_initial.drop(columns = ['Name','Ticket','Cabin'], inplace=True )<create_dataframe> | class DatasetRetriever(Dataset):
def __init__(self, dataset:nlp.arrow_dataset.Dataset):
self.dataset = dataset
self.ids = self.dataset['input_ids']
self.mask = self.dataset['attention_mask']
self.type_ids = self.dataset['token_type_ids']
self.targets = self.dataset["label"]
def __len__(self):
return self.dataset.num_rows
def __getitem__(self, index):
ids = self.ids[index]
mask = self.mask[index]
type_ids = self.type_ids[index]
targets = self.targets[index]
return {
'ids':torch.tensor(ids),
'mask':torch.tensor(mask),
'type_ids':torch.tensor(type_ids),
'targets':targets
} | Contradictory, My Dear Watson |
10,966,859 | train_data = train_data_initial.copy()<count_values> | class XLMRoberta(nn.Module):
def __init__(self, num_labels, multisample):
super(XLMRoberta, self ).__init__()
output_hidden_states = False
self.num_labels = num_labels
self.multisample= multisample
self.roberta = XLMRobertaModel.from_pretrained("xlm-roberta-large",
output_hidden_states=output_hidden_states,
num_labels=1)
self.layer_norm = nn.LayerNorm(1024*2)
self.dropout = nn.Dropout(p=0.2)
self.high_dropout = nn.Dropout(p=0.5)
self.classifier = nn.Linear(1024*2, self.num_labels)
def forward(self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None):
outputs = self.roberta(input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds)
average_pool = torch.mean(outputs[0], 1)
max_pool, _ = torch.max(outputs[0], 1)
concatenate_layer = torch.cat(( average_pool, max_pool), 1)
normalization = self.layer_norm(concatenate_layer)
if self.multisample:
logits = torch.mean(
torch.stack(
[self.classifier(self.dropout(normalization)) for _ in range(5)],
dim=0,
),
dim=0,
)
else:
logits = self.dropout(normalization)
logits = self.classifier(logits)
outputs = logits
return outputs | Contradictory, My Dear Watson |
10,966,859 | train_data['Age'].fillna(value = train_data['Age'].mean() , inplace = True)
train_data['Embarked'].fillna(value = train_data['Embarked'].value_counts().idxmax() , inplace = True )<define_variables> | class AverageMeter(object):
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '}({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter)for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits)+ 'd}'
return '[' + fmt + '/' + fmt.format(num_batches)+ ']'
def accuracy(output, target, topk=(1,)) :
with torch.no_grad() :
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1 ).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1 ).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res | Contradictory, My Dear Watson |
10,966,859 | s =(train_data.dtypes == 'object')
object_cols = list(s[s].index)
print("Categorical variables:")
print(object_cols )<categorify> | def get_model_optimizer(model):
def is_backbone(name):
return "roberta" in name
optimizer_grouped_parameters = [
{'params': [param for name, param in model.named_parameters() if is_backbone(name)], 'lr': LR},
{'params': [param for name, param in model.named_parameters() if not is_backbone(name)], 'lr': 1e-3}
]
optimizer = AdamW(
optimizer_grouped_parameters, lr=LR, weight_decay=1e-2
)
return optimizer | Contradictory, My Dear Watson |
10,966,859 | label_train_data = train_data.copy()
label_encoder = LabelEncoder()
for col in object_cols:
label_train_data[col] = label_encoder.fit_transform(train_data[col] )<prepare_x_and_y> | def loss_fn(outputs, targets):
return nn.CrossEntropyLoss()(outputs, targets ) | Contradictory, My Dear Watson |
10,966,859 | target_col = 'Survived'
y = label_train_data[target_col]
X = label_train_data.drop(columns=[target_col])
X.head()<split> | def train_loop_fn(train_loader, model, optimizer, device, scheduler, epoch=None):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1],
prefix="[xla:{}]Train: Epoch: [{}]".format(xm.get_ordinal() , epoch)
)
model.train()
end = time.time()
for i, data in enumerate(train_loader):
data_time.update(time.time() -end)
ids, mask, type_ids, targets = data["input_ids"], data["attention_mask"], data['token_type_ids'], data["label"]
ids = ids.to(device, dtype=torch.long)
mask = mask.to(device, dtype=torch.long)
type_ids = type_ids.to(device, dtype=torch.long)
targets = targets.to(device, dtype=torch.float)
optimizer.zero_grad()
outputs = model(
input_ids = ids,
attention_mask = mask,
token_type_ids = type_ids
)
loss = loss_fn(outputs, targets)
loss.backward()
xm.optimizer_step(optimizer)
loss = loss_fn(outputs, targets)
acc1= accuracy(outputs, targets, topk=(1,))
losses.update(loss.item() , ids.size(0))
top1.update(acc1[0].item() , ids.size(0))
scheduler.step()
batch_time.update(time.time() - end)
end = time.time()
if i % 50 == 0:
progress.display(i)
del loss
del outputs
del ids
del mask
del targets
gc.collect() | Contradictory, My Dear Watson |
10,966,859 | X_train, X_valid, y_train, y_valid = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0 )<define_search_space> | def eval_loop_fn(validation_loader, model, device):
model.eval()
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
learning_rate = AverageMeter('LR',':2.8f')
progress = ProgressMeter(
len(validation_loader),
[batch_time, losses, top1],
prefix='[xla:{}]Validation: '.format(xm.get_ordinal()))
with torch.no_grad() :
end = time.time()
for i, data in enumerate(validation_loader):
ids, mask, type_ids, targets = data["input_ids"], data["attention_mask"], data['token_type_ids'], data["label"]
ids = ids.to(device, dtype=torch.long)
mask = mask.to(device, dtype=torch.long)
type_ids = type_ids.to(device, dtype=torch.long)
targets = targets.to(device, dtype=torch.float)
outputs = model(
input_ids = ids,
attention_mask = mask,
token_type_ids = type_ids
)
loss = loss_fn(outputs, targets)
acc1= accuracy(outputs, targets, topk=(1,))
losses.update(loss.item() , ids.size(0))
top1.update(acc1[0].item() , ids.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % 50 == 0:
progress.display(i)
del loss
del outputs
del ids
del mask
del targets
gc.collect() | Contradictory, My Dear Watson |
10,966,859 | preds_dict = []
for n_estimators in range(100,1001,100):
for max_depth in range(6, 70,10):
for max_leaf_nodes in range(5, 500, 50):
parameters = {'n_estimators': n_estimators,
'max_depth': max_depth,
'max_leaf_nodes': max_leaf_nodes
}
model = RandomForestClassifier(**parameters)
model.fit(X_train, y_train)
preds = model.predict(X_valid)
prediction = {}
prediction['n_estimators'] = n_estimators
prediction['max_depth'] = max_depth
prediction['max_leaf_nodes'] = max_leaf_nodes
prediction['accuracy_score'] = accuracy_score(y_true=y_valid, y_pred=preds)
preds_dict.append(prediction)
print(preds_dict )<define_variables> | WRAPPED_MODEL = xmp.MpModelWrapper(XLMRoberta(num_labels=3, multisample=False))
dataset = train_dataset.train_test_split(test_size=0.1)
train_dataset = dataset['train']
valid_dataset = dataset['test']
train_dataset.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'])
valid_dataset.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'] ) | Contradictory, My Dear Watson |
10,966,859 | count = 0
indexIs = 0
maxValue = preds_dict[0]['accuracy_score']
for i in preds_dict:
if maxValue < i['accuracy_score']:
print(count , ' :', i['accuracy_score'])
maxValue = i['accuracy_score']
indexIs = count
count = count + 1
print(count ,': Max Val is :',maxValue)
print(preds_dict[indexIs] )<load_from_csv> | def _run() :
xm.master_print('Starting Run...')
train_sampler = DistributedSampler(
train_dataset,
num_replicas=xm.xrt_world_size() ,
rank=xm.get_ordinal() ,
shuffle=False
)
train_data_loader = DataLoader(
train_dataset,
batch_size=TRAIN_BATCH_SIZE,
sampler=train_sampler,
drop_last=True,
num_workers=0
)
xm.master_print('Train Loader Created.')
valid_sampler = DistributedSampler(
valid_dataset,
num_replicas=xm.xrt_world_size() ,
rank=xm.get_ordinal() ,
shuffle=False
)
valid_data_loader = DataLoader(
valid_dataset,
batch_size=VALID_BATCH_SIZE,
sampler=valid_sampler,
drop_last=True,
num_workers=0
)
xm.master_print('Valid Loader Created.')
num_train_steps = int(len(train_dataset)/ TRAIN_BATCH_SIZE / xm.xrt_world_size())
device = xm.xla_device()
model = WRAPPED_MODEL.to(device)
xm.master_print('Done Model Loading.')
optimizer = get_model_optimizer(model)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps = 0,
num_training_steps = num_train_steps * EPOCHS
)
xm.master_print(f'Num Train Steps= {num_train_steps}, XRT World Size= {xm.xrt_world_size() }.')
for epoch in range(EPOCHS):
para_loader = pl.ParallelLoader(train_data_loader, [device])
xm.master_print('Parallel Loader Created.Training...')
train_loop_fn(para_loader.per_device_loader(device),
model,
optimizer,
device,
scheduler,
epoch
)
xm.master_print("Finished training epoch {}".format(epoch))
para_loader = pl.ParallelLoader(valid_data_loader, [device])
xm.master_print('Parallel Loader Created.Validating...')
eval_loop_fn(para_loader.per_device_loader(device),
model,
device
)
if epoch == EPOCHS-1:
xm.master_print('Saving Model.. ')
xm.save(model.state_dict() , "model.bin")
xm.master_print('Model Saved.')
if METRICS_DEBUG:
xm.master_print(met.metrics_report() , flush=True ) | Contradictory, My Dear Watson |
10,966,859 | <drop_column><EOS> | def _mp_fn(rank, flags):
_run()
FLAGS={}
xmp.spawn(_mp_fn, args=(FLAGS,), nprocs=8, start_method='fork' ) | Contradictory, My Dear Watson |
8,005,170 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<define_variables> | warnings.filterwarnings("ignore")
| Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | prediction.index = range(0,len(prediction))<load_from_csv> | result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
result = result.drop(columns=['WLoc', 'NumOT', 'DayNum'])
result.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | sub_format = pd.read_csv('/kaggle/input/covid19-global-forecasting-week-2/submission.csv' )<drop_column> | seeds = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv')
seeds.Seed = seeds.Seed.map(lambda string : int(string[1:3]))
seeds.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | sub_format = sub_format['ForecastId']<concatenate> | team_name = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MTeamSpellings.csv',
encoding='cp1252')
team_name = team_name.drop_duplicates(subset=['TeamID'], keep='last' ).reset_index(drop=True)
team_name.TeamNameSpelling = team_name.TeamNameSpelling.map(lambda string : string.upper())
team_name.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | final = pd.concat([sub_format,prediction],axis=1 )<save_to_csv> | Wname = team_name.rename(columns={'TeamNameSpelling':'Wteam_name', 'TeamID':'WTeamID'})
team_result = pd.merge(left=result, right=Wname, how='left', on=['WTeamID'])
win_by_year = team_result.groupby(['Season', 'Wteam_name'])\
['WScore'].count().reset_index() \
.rename(columns={'Wteam_name':'Team', 'WScore':'Win_matches'})
df = win_by_year[win_by_year.Win_matches == win_by_year.Win_matches.max() ].drop(columns=['Win_matches'] ).set_index('Season')
df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | final.to_csv('submission.csv',index=False )<set_options> | win_by_year = win_by_year.groupby(['Team', 'Season'] ).Win_matches.sum() \
.unstack(fill_value=0 ).cumsum(axis=1 ).sort_values(by=2019, ascending=False ).head(15)
cum_win = pd.melt(win_by_year, value_vars=win_by_year.columns, value_name="Win_matches")
cum_win['Team'] = list(win_by_year.index)*35
cum_win = cum_win[['Season', 'Team', 'Win_matches']] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | pd.set_option('display.max.columns',3000 )<load_from_csv> | Wseeds = seeds.rename(columns={'TeamID':'WTeamID', 'Seed':'WSeed'})
Lseeds = seeds.rename(columns={'TeamID':'LTeamID', 'Seed':'LSeed'})
data = pd.merge(left=result, right=Wseeds, how='left', on=['Season', 'WTeamID'])
data = pd.merge(left=data, right=Lseeds, on=['Season', 'LTeamID'])
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train=pd.read_csv('/kaggle/input/knit-hacks/train.csv')
test=pd.read_csv('/kaggle/input/knit-hacks/test.csv' )<count_values> | scores = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv')
scores.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train['Col2'].value_counts() /train.shape[0]<count_missing_values> | season_score = result_scores.groupby(['Season', 'TeamID'])['Score'].sum()
season_score.sort_values(ascending=False ).head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train.isnull().sum().any()<define_variables> | result_scores.sort_values(by='Score', ascending=False ).head(15 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | cat_col=[col for col in train.columns if train[col].dtype=='O']<drop_column> | team_name[team_name.TeamID.isin([1258, 1328])] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train=train.drop(cat_col,axis=1 )<create_dataframe> | data = pd.merge(data, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
data = data.rename(columns={'Score':'WScoreT'})
data = pd.merge(data, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
data = data.rename(columns={'Score':'LScoreT'})
data = data.drop(columns=['WScore', 'LScore'])
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | test_new=test.copy(deep=True )<drop_column> | Wdata = data.drop(columns=['Season',
])
Wdata.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2',
'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2',
'WTeamID':'TeamID_1', 'LTeamID': 'TeamID_2'}, inplace=True)
Wdata.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | test_new=test_new.drop(cat_col,axis=1 )<correct_missing_values> | Ldata = data[['LTeamID', 'WTeamID', 'LSeed', 'WSeed', 'LScoreT', 'WScoreT']]
Ldata.rename(columns={'LTeamID':'TeamID_1', 'WTeamID':'TeamID_2',
'LSeed':'Seed1', 'WSeed':'Seed2',
'LScoreT':'ScoreT1', 'WScoreT':'ScoreT2',}, inplace=True)
Ldata.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train=train.fillna(0 )<correct_missing_values> | Wdata['Seed_diff'] = Wdata['Seed1'] - Wdata['Seed2']
Wdata['ScoreT_diff'] = Wdata['ScoreT1'] - Wdata['ScoreT2']
Ldata['Seed_diff'] = Ldata['Seed1'] - Ldata['Seed2']
Ldata['ScoreT_diff'] = Ldata['ScoreT1'] - Ldata['ScoreT2'] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | test_new=test_new.fillna(0 )<install_modules> | Wdata['result'] = 1
Ldata['result'] = 0
train = pd.concat(( Wdata, Ldata)).reset_index(drop=True)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | ! pip install -U sliced<create_dataframe> | test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
test['Season'] = test.ID.map(lambda string : int(string.split('_')[0]))
test['TeamID_1'] = test.ID.map(lambda string : int(string.split('_')[1]))
test['TeamID_2'] = test.ID.map(lambda string : int(string.split('_')[2]))
test = test.drop(columns=['ID'])
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train_copy=train.copy(deep=True )<drop_column> | test = pd.merge(test, seeds, left_on=['Season', 'TeamID_1'], right_on=['Season', 'TeamID'], how='left')
test.rename(columns={'Seed':'Seed1'}, inplace=True)
test = test.drop('TeamID', axis=1)
test = pd.merge(test, seeds, left_on=['Season', 'TeamID_2'], right_on=['Season', 'TeamID'], how='left')
test.rename(columns={'Seed':'Seed2'}, inplace=True)
test = test.drop('TeamID', axis=1)
test = pd.merge(test, season_score, left_on=['Season', 'TeamID_1'], right_on=['Season', 'TeamID'], how='left')
test.rename(columns={'Score':'ScoreT1'}, inplace=True)
test = pd.merge(test, season_score, left_on=['Season', 'TeamID_2'], right_on=['Season', 'TeamID'], how='left')
test.rename(columns={'Score':'ScoreT2'}, inplace=True)
test['Seed_diff'] = test['Seed1'] - test['Seed2']
test['ScoreT_diff'] = test['ScoreT1'] - test['ScoreT2']
test = test.drop(columns=['Pred', 'Season'])
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | train_copy=train_copy.drop('Col2',axis=1 )<normalization> | X_train = train.drop(columns=['result'])
y_train = train.result
X_test = test.copy()
data_full = pd.concat([X_train, X_test])
data_full.shape | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | vt=VarianceThreshold(threshold=0)
vt_x=vt.fit_transform(train_copy )<categorify> | OH_cols = ['TeamID_1', 'TeamID_2']
OH_full = pd.get_dummies(
data_full[OH_cols],
columns=OH_cols,
drop_first=True,
dummy_na=True,
sparse=True,
).sparse.to_coo() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | vt_test=vt.transform(test_new )<choose_model_class> | retain_full = data_full.drop(columns=OH_cols)
retain_full = retain_full/retain_full.max()
retain_full.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | sir = SlicedInverseRegression(n_directions=2)
<train_model> | encoded_full = scipy.sparse.hstack([OH_full, retain_full, retain_full**2] ).tocsr()
print(encoded_full.shape)
encoded_train = encoded_full[:len(X_train)]
encoded_test = encoded_full[len(X_train):] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | sir.fit(vt_x,train['Col2'] )<normalization> | submission = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
submission.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | X_sir=sir.transform(vt_x )<normalization> | LGB = LGBMClassifier(
n_estimators=10000,
learning_rate =0.005,
max_depth=-1,
objective= 'binary',
eval_metric='cross_entropy',
first_metric_only=True, ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | X_test=sir.transform(vt_test )<import_modules> | n_folds = 10
cv = StratifiedKFold(n_splits=n_folds, shuffle=True)
losses = []
LGB_predicts = []
for i,(train,valid)in enumerate(cv.split(encoded_train, y_train)) :
LGB.fit(encoded_train[train], y_train[train],
eval_set=[(encoded_train[train], y_train[train]),(encoded_train[valid, :], y_train[valid])],
verbose=False)
test_pred = LGB.predict_proba(encoded_test)[:,1]
LGB_predicts.append(test_pred)
LGB_predicts = np.asarray(LGB_predicts)
LGB_predict = np.mean(LGB_predicts, axis=0 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | from sklearn.linear_model import LogisticRegression<train_model> | submission.Pred = LGB_predict
submission.to_csv(f'LGB.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | lr=LogisticRegression().fit(X_sir,train['Col2'] )<create_dataframe> | opt_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
opt_result = opt_result[opt_result.Season > 2014].reset_index()
opt_result = opt_result[['Season', 'WTeamID', 'LTeamID']]
opt_result.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | submission=pd.DataFrame({'Col1':test.Col1,'Col2':lr.predict(X_test)} )<save_to_csv> | for index, match in opt_result.iterrows() :
opt_result.loc[index, 'ID'] = f"{match.Season}_{'_'.join(str(num)for num in sorted([match.WTeamID,match.LTeamID])) }"
opt_result.loc[index, 'Pred'] = 1 if match.WTeamID < match.LTeamID else 0
opt_result = opt_result[['ID', 'Pred']]
opt_result.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | submission.to_csv('submission_reduction.csv',index=False )<load_from_csv> | opt_test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' ).drop(columns='Pred')
opt_test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,005,170 | <feature_engineering><EOS> | predict = pd.merge(left=opt_test, right=opt_result, how='left', on='ID')
predict.Pred = predict.Pred.fillna(0)
predict.to_csv('Phan_Viet_Hoang.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<import_modules> | py.init_notebook_mode(connected=True)
pd.set_option('max_columns', 50 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | import matplotlib.pyplot as plt<data_type_conversions> | datadir = Path('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament')
stage1dir = datadir/'MDataFiles_Stage1' | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | datetime_str = '01/22/20 00:00:00'
datetime_object = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S')
data['days']=pd.to_datetime(data['Date'] ).sub(datetime_object)/np.timedelta64(1, 'D')
test['days']=pd.to_datetime(test['Date'] ).sub(datetime_object)/np.timedelta64(1, 'D' )<sort_values> | teams_df = pd.read_csv(stage1dir/'MTeams.csv')
print('teams_df', teams_df.shape)
teams_df.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | data.loc[(data['Province_State']=='')&(data['Country_Region']=='India'),:].sort_values(by="Date" )<import_modules> | seasons_df = pd.read_csv(stage1dir/'MSeasons.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | from statsmodels.tsa.arima_model import ARIMA
<data_type_conversions> | tourney_seeds_df = pd.read_csv(stage1dir/'MNCAATourneySeeds.csv')
tourney_seeds_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | data['Date']=pd.to_datetime(data['Date'])
test['Date']=pd.to_datetime(test['Date'] )<create_dataframe> | regular_season_results_df = pd.read_csv(stage1dir/'MRegularSeasonCompactResults.csv')
tournament_results_df = pd.read_csv(stage1dir/'MNCAATourneyCompactResults.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | pd.DataFrame(data.loc[data['Country_Region']=='Afghanistan',['ConfirmedCases']] ).reset_index(drop=True )<count_missing_values> | sample_submission = pd.read_csv(datadir/'MSampleSubmissionStage1_2020.csv')
sample_submission | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | data.isna().sum(axis=0 )<filter> | regular_season_detailed_results_df = pd.read_csv(stage1dir/'MRegularSeasonDetailedResults.csv')
tournament_detailed_results_df = pd.read_csv(stage1dir/'MNCAATourneyDetailedResults.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | data['ConfirmedCases'][data['Country_Region']==''][51:]<count_values> | cities_df = pd.read_csv(stage1dir/'Cities.csv')
mgame_cities_df = pd.read_csv(stage1dir/'MGameCities.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | data['ConfirmedCases'][data['Country_Region']=='India'].value_counts()<create_dataframe> | massey_df = pd.read_csv(stage1dir/'MMasseyOrdinals.csv')
massey_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | pd.DataFrame(data.loc[data['Country_Region']=='India',['ConfirmedCases']] )<data_type_conversions> | event2015_df = pd.read_csv(datadir/'MEvents2015.csv')
| Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | datetime_str = '03/22/20 00:00:00'
datetime_object = datetime.strptime(datetime_str, '%m/%d/%y %H:%M:%S' )<import_modules> | players_df = pd.read_csv(datadir/'MPlayers.csv')
players_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | from datetime import timedelta<import_modules> | team_coaches_df = pd.read_csv(stage1dir/'MTeamCoaches.csv')
print('team_coaches_df', team_coaches_df.shape)
team_coaches_df.iloc[80:85] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | import math<compute_test_metric> | conferences_df = pd.read_csv(stage1dir/'Conferences.csv')
team_conferences_df = pd.read_csv(stage1dir/'MTeamConferences.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | def rmsle(y, y_pred):
assert len(y)== len(y_pred)
terms_to_sum = [(math.log(y_pred[i] + 1)- math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)]
return(sum(terms_to_sum)*(1.0/len(y)))** 0.5<train_model> | team_conferences_df[team_conferences_df['TeamID'] == 1102] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | def evaluate_arima_model(X,forecast_days, arima_order):
X=[x for x in X]
train_size = int(len(X)* 0.9)
train, test1 = X[0:train_size], X[train_size:]
history=train
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=0)
predictions = list()
predictions =model_fit.forecast(steps=len(test1)) [0]
model = ARIMA(X, order=arima_order)
model_fit = model.fit(disp=0)
if np.isnan(model_fit.forecast(steps=forecast_days)[0] ).sum() >0:
return float('inf')
error = rmsle(test1, predictions)
return error<find_best_params> | conference_tourney_games_df = pd.read_csv(stage1dir/'MConferenceTourneyGames.csv')
conference_tourney_games_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | def evaluate_models(dataset,forcast_days, p_values, d_values, q_values):
best_score, best_cfg = float("inf"),(0,0,0)
for p in p_values:
for d in d_values:
for q in q_values:
order =(p,d,q)
try:
mse = evaluate_arima_model(dataset,forcast_days, order)
if mse < best_score:
best_score, best_cfg = mse, order
except:
continue
print('Best ARIMA%s MSE=%.3f' %(best_cfg, best_score))
return best_cfg, best_score<set_options> | secondary_tourney_teams_df = pd.read_csv(stage1dir/'MSecondaryTourneyTeams.csv')
secondary_tourney_teams_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | warnings.filterwarnings('ignore' )<feature_engineering> | secondary_tourney_results_df = pd.read_csv(stage1dir/'MSecondaryTourneyCompactResults.csv')
secondary_tourney_results_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | test['ConfirmedCases']=0
test['Fatalities']=0<filter> | team_spellings_df = pd.read_csv(stage1dir/'MTeamSpellings.csv',encoding="cp1252" ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | sliced_data=data.loc[(data['Province_State']=='')&(data['Country_Region']=='India'),:]<import_modules> | tourney_slots_df = pd.read_csv(stage1dir/'MNCAATourneySlots.csv')
tourney_seed_round_slots_df = pd.read_csv(stage1dir/'MNCAATourneySeedRoundSlots.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | from pandas import read_csv
from pandas import datetime
from matplotlib import pyplot
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from math import sqrt
from time import time
from sklearn.metrics import mean_squared_error<remove_duplicates> | tourney_slots_df[(tourney_slots_df['Season'] == 1985)&(tourney_slots_df['Slot'].str.startswith('R1W')) ] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | country='India'
state=''
sliced_data=data.loc[(data['Province_State']==state)&(data['Country_Region']==country),:]
test_sliced=test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:]
sliced_data=sliced_data.drop_duplicates()
sliced_data=sliced_data.reset_index(drop=True)
sliced_data=sliced_data.sort_values(by='Date')
if sliced_data.loc[sliced_data['ConfirmedCases']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['ConfirmedCases']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['ConfirmedCases'].to_list()
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(10),range(7),range(7))
preds=[]
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions=pd.DataFrame()
predictions['Date']=dates
predictions['ConfirmedCases']=preds
test_sliced=test_sliced.merge(sliced_data[['Date','ConfirmedCases']], on='Date',how='left')
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
test_sliced=test_sliced.merge(predictions, on='Date',how='left')
test_sliced['ConfirmedCases_x'][test_sliced['ConfirmedCases_x'].isna() ]=test_sliced['ConfirmedCases_y'][test_sliced['ConfirmedCases_x'].isna() ]
test_sliced['ConfirmedCases']=test_sliced['ConfirmedCases_x']
del test_sliced['ConfirmedCases_y']
del test_sliced['ConfirmedCases_x']
sliced_data_bck=sliced_data.copy()
if sliced_data.loc[sliced_data['Fatalities']>0,:].shape[0]>0:
sliced_data=sliced_data.loc[sliced_data['Fatalities']>0,:]
sliced_data=sliced_data.reset_index(drop=True)
max_date_train=sliced_data['Date'].max()
max_date_test=test_sliced['Date'].max()
forcast_days=int(( max_date_test-max_date_train)/np.timedelta64(1, 'D'))
history=sliced_data['Fatalities'].to_list()
if len(history)==1:
history.append(history[0])
best_cfg,best_score=evaluate_models(history,forcast_days,range(5),range(5),range(5))
preds=[]
model=None
model = ARIMA(history, order=best_cfg)
model_fit = model.fit(disp=0)
preds=model_fit.forecast(steps=forcast_days)[0]
preds=[round(p)if p>0 else 0 for p in preds]
dates=[max_date_train+timedelta(days=day+1)for day in range(forcast_days)]
predictions_f=pd.DataFrame()
predictions_f['Date']=dates
predictions_f['Fatalities']=preds
test_sliced=test_sliced.merge(sliced_data_bck[['Date','Fatalities']], on='Date',how='left')
test_sliced['Fatalities']=test_sliced['Fatalities_y']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test_sliced=test_sliced.merge(predictions_f, on='Date',how='left')
test_sliced['Fatalities_x'][test_sliced['Fatalities_x'].isna() ]=test_sliced['Fatalities_y'][test_sliced['Fatalities_x'].isna() ]
test_sliced['Fatalities']=test_sliced['Fatalities_x']
del test_sliced['Fatalities_y']
del test_sliced['Fatalities_x']
test=test.merge(test_sliced,on='ForecastId',how='left')
test['ConfirmedCases_x'][test['ConfirmedCases_y'].notna() ]=test['ConfirmedCases_y'][test['ConfirmedCases_y'].notna() ]
test['Fatalities_x'][test['Fatalities_y'].notna() ]=test['Fatalities_y'][test['Fatalities_y'].notna() ]
new_cols=[]
for col in test.columns:
if col[-2:]=='_y':
del test[col]
elif col[-2:]=='_x':
new_cols.append(col[:-2])
else:
new_cols.append(col)
test.columns=new_cols
test.loc[(test['Province_State']==state)&(test['Country_Region']==country),:].head()
plt.plot('Date', 'ConfirmedCases', data=sliced_data, color='blue', linewidth=2)
plt.plot('Date','ConfirmedCases',data=test_sliced,color='orange',linewidth=2)
plt.plot('Date', 'Fatalities', data=sliced_data, color='purple', linewidth=2)
plt.plot('Date','Fatalities',data=test_sliced,color='red',linewidth=2)
plt.show()<filter> | tournament_results2015_df = tournament_results_df.query("Season >= 2015")
tournament_results2015_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | test.loc[(test['Province_State']==state)&(test['Country_Region']==country),['Country_Region','Date','ConfirmedCases','Fatalities']]<feature_engineering> | for key, row in tournament_results2015_df.iterrows() :
if row['WTeamID'] < row['LTeamID']:
id_name = str(row['Season'])+ '_' + str(row['WTeamID'])+ '_' + str(row['LTeamID'])
sample_submission.loc[sample_submission['ID'] == id_name, 'Pred'] = 1.0
else:
id_name = str(row['Season'])+ '_' + str(row['LTeamID'])+ '_' + str(row['WTeamID'])
sample_submission.loc[sample_submission['ID'] == id_name, 'Pred'] = 0.0 | Google Cloud & NCAA® ML Competition 2020-NCAAM |
7,995,295 | <remove_duplicates><EOS> | sample_submission.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<save_to_csv> | lgb_num_leaves_max = 255
lgb_in_leaf = 50
lgb_lr = 0.0001
lgb_bagging = 7
xgb_max_depth = 20
xgb_min_child_weight = 75
xgb_lr = 0.0005
xgb_num_boost_round_max = 4000
w_lgb = 0.6
w_xgb = 0.3
w_logreg = 1 - w_lgb - w_xgb
w_logreg | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | output=pd.DataFrame()
output['ForecastId']=test['ForecastId'].astype(int)
output['ConfirmedCases']=test['ConfirmedCases'].astype(int)
output['Fatalities']=test['Fatalities'].astype(int)
output.to_csv('submission.csv',index=False )<load_from_csv> | warnings.filterwarnings("ignore" ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | train_dataset = pd.read_csv('/kaggle/input/titanic/train.csv')
test_dataset = pd.read_csv('/kaggle/input/titanic/test.csv')
X_train = train_dataset.iloc[:, [False,False,True,False,True,True,True,True,False,True,False,False]].values
y_train = train_dataset.iloc[:, 1].values
X_test = test_dataset.iloc[:, [False,True,False,True,True,True,True,False,True,False,False]].values<categorify> | tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
tourney_result = tourney_result[tourney_result['Season'] < 2015]
tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv')
tourney_seed = tourney_seed[tourney_seed['Season'] < 2015]
tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | ct = ColumnTransformer(transformers = [('encoder',OneHotEncoder() ,[1])],remainder = 'passthrough')
<normalization> | def get_seed(x):
return int(x[1:3])
tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x))
tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x)) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | X_train = np.array(ct.fit_transform(X_train))
X_test = np.array(ct.fit_transform(X_test))<train_model> | season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv')
season_result = season_result[season_result['Season'] < 2015]
season_win_result = season_result[['Season', 'WTeamID', 'WScore']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True)
season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | imputer = SimpleImputer(missing_values = np.nan, strategy = 'mean')
imputer.fit(X_train)
X_train = imputer.transform(X_train)
imputer.fit(X_test)
X_test = imputer.transform(X_test )<normalization> | tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'WScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1)
tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
tourney_result.rename(columns={'Score':'LScoreT'}, inplace=True)
tourney_result = tourney_result.drop('TeamID', axis=1 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test )<feature_engineering> | tourney_win_result = tourney_result.drop(['Season', 'WTeamID', 'LTeamID'], axis=1)
tourney_win_result.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2', 'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2'}, inplace=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | for i in range(len(X_train)) :
if X_train[i][0]>X_train[i][1]:
X_train[i][0] = 1
X_train[i][1] = 0
else:
X_train[i][0] = 0
X_train[i][1] = 1
print(X_train )<feature_engineering> | tourney_lose_result = tourney_win_result.copy()
tourney_lose_result['Seed1'] = tourney_win_result['Seed2']
tourney_lose_result['Seed2'] = tourney_win_result['Seed1']
tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2']
tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1'] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | for i in range(len(X_test)) :
if X_test[i][0]>X_test[i][1]:
X_test[i][0] = 1
X_test[i][1] = 0
else:
X_test[i][0] = 0
X_test[i][1] = 1
print(X_test )<train_model> | tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2']
tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2']
tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2']
tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2'] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | classifier = KNeighborsClassifier(n_neighbors=5, metric='minkowski',p=2)
classifier.fit(X_train, y_train )<predict_on_test> | tourney_win_result['result'] = 1
tourney_lose_result['result'] = 0
train_df = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True)
train_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | y_test = classifier.predict(X_test)
print(y_test )<save_to_csv> | test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv')
sub = test_df.copy() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | output = pd.DataFrame({'PassengerId': test_dataset.PassengerId, 'Survived': y_test})
output.to_csv('my_submission.csv', index=False)
print("Your submission was successfully saved!" )<set_options> | test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4]))
test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9]))
test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14])) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
class Model1Xgb:
def __init__(self):
self.model = None
def fit(self, tr_x, tr_y, va_x, va_y):
params = {
'booster': 'gbtree',
'objective': 'binary:logistic',
'eta': 0.1,
'gamma': 0.1,
'reg_alpha':0.01 ,
'reg_lambda': 0,
'min_child_weight': 4,
'max_depth': 9,
'subsample': 0.8,
'colsample_bytree': 0.75,
'scale_pos_weight': 1,
'random_state': 1
}
num_round = 30
dtrain = xgb.DMatrix(tr_x, label=tr_y)
dvalid = xgb.DMatrix(va_x, label=va_y)
watchlist = [(dtrain, 'train'),(dvalid, 'eval')]
self.model = xgb.train(params, dtrain, num_round, evals=watchlist)
def predict(self, x):
data = xgb.DMatrix(x)
pred = self.model.predict(data)
return pred
class Model1NN:
def __init__(self, params):
self.params = params
self.model = None
self.scaler = None
def fit(self, tr_x, tr_y, va_x, va_y):
input_dropout = self.params['input_dropout']
hidden_layers = int(self.params['hidden_layers'])
hidden_units = int(self.params['hidden_units'])
hidden_activation = self.params['hidden_activation']
hidden_dropout = self.params['hidden_dropout']
batch_norm = self.params['batch_norm']
optimizer_type = self.params['optimizer']['type']
optimizer_lr = self.params['optimizer']['lr']
batch_size = int(self.params['batch_size'])
self.scaler = StandardScaler()
self.scaler.fit(tr_x)
batch_size = 32
epochs = 20
tr_x = self.scaler.transform(tr_x)
va_x = self.scaler.transform(va_x)
model = Sequential()
model.add(Dropout(input_dropout, input_shape=(tr_x.shape[1],)))
for i in range(hidden_layers):
model.add(Dense(hidden_units))
if batch_norm == 'before_act':
model.add(BatchNormalization())
if hidden_activation == 'prelu':
model.add(PReLU())
elif hidden_activation == 'relu':
model.add(ReLU())
else:
raise NotImplementedError
model.add(Dropout(hidden_dropout))
model.add(Dense(1, activation='sigmoid'))
if optimizer_type == 'sgd':
optimizer = SGD(lr=optimizer_lr, decay=1e-6, momentum=0.9, nesterov=True)
elif optimizer_type == 'adam':
optimizer = Adam(lr=optimizer_lr, beta_1=0.9, beta_2=0.999, decay=0.)
else:
raise NotImplementedError
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
history = model.fit(tr_x, tr_y, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(va_x, va_y))
self.model = model
def predict(self, x):
x = self.scaler.transform(x)
pred = self.model.predict_proba(x ).reshape(-1)
return pred
class Model2Linear:
def __init__(self):
self.model = None
self.scaler = None
def fit(self, tr_x, tr_y, va_x, va_y):
self.scaler = StandardScaler()
self.scaler.fit(tr_x)
tr_x = self.scaler.transform(tr_x)
self.model = LogisticRegression(solver='lbfgs', C=100, random_state=1)
self.model.fit(tr_x, tr_y)
def predict(self, x):
x = self.scaler.transform(x)
pred = self.model.predict_proba(x)[:, 1]
return pred
def predict_cv(model, train_x, train_y, test_x):
preds = []
preds_test = []
va_idxes = []
kf = KFold(n_splits=4, shuffle=True, random_state=1)
for i,(tr_idx, va_idx)in enumerate(kf.split(train_x)) :
tr_x, va_x = train_x.iloc[tr_idx], train_x.iloc[va_idx]
tr_y, va_y = train_y.iloc[tr_idx], train_y.iloc[va_idx]
model.fit(tr_x, tr_y, va_x, va_y)
pred = model.predict(va_x)
preds.append(pred)
pred_test = model.predict(test_x)
preds_test.append(pred_test)
va_idxes.append(va_idx)
va_idxes = np.concatenate(va_idxes)
preds = np.concatenate(preds, axis=0)
order = np.argsort(va_idxes)
pred_train = preds[order]
preds_test = np.mean(preds_test, axis=0)
return pred_train, preds_test
train_df = pd.read_csv('.. /input/titanic/train.csv')
test_df = pd.read_csv('.. /input/titanic/test.csv')
train_y = train_df['Survived']
train_df = train_df.drop(["Ticket", "Cabin"], axis=1)
test_df = test_df.drop(["Ticket", "Cabin"], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)
df_list = pd.crosstab(train_df['Title'], train_df['Sex'])
for dataset in combine:
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
train_df[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
combine = [train_df, test_df]
for dataset in combine:
dataset["Title"] = dataset["Title"].map({"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5})
dataset['Title'] = dataset['Title'].fillna(0)
train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Sex'] = dataset['Sex'].map({'female': 1, 'male': 0} ).astype(int)
train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False ).mean().sort_values(by='AgeBand', ascending=True)
for dataset in combine:
dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
dataset.loc[(dataset['Age'] > 16)&(dataset['Age'] <= 32), 'Age'] = 1
dataset.loc[(dataset['Age'] > 32)&(dataset['Age'] <= 48), 'Age'] = 2
dataset.loc[(dataset['Age'] > 48)&(dataset['Age'] <= 64), 'Age'] = 3
dataset.loc[ dataset['Age'] > 64, 'Age']
train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False ).mean().sort_values(by='Survived', ascending=False)
for dataset in combine:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False ).mean()
train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
for dataset in combine:
dataset['Age*Class'] = dataset.Age * dataset.Pclass
freq_port = train_df.Embarked.dropna().mode() [0]
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False ).mean().sort_values(by='Survived', ascending=False)
for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2} ).astype(int)
test_df['Fare'].fillna(test_df['Fare'].dropna().median() , inplace=True)
train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False ).mean().sort_values(by='FareBand', ascending=True)
combine = [train_df, test_df]
for dataset in combine:
dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91)&(dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454)&(dataset['Fare'] <= 31), 'Fare'] = 2
dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
train_df = train_df.drop(['FareBand','Survived'], axis=1)
test_df = test_df.drop(['PassengerId'], axis=1)
train_df['Age'] = train_df['Age'].fillna(train_df['Age'].mean())
train_df['Age*Class'] = train_df['Age*Class'].fillna(train_df['Age*Class'].mean())
test_df['Age'] = test_df['Age'].fillna(test_df['Age'].mean())
test_df['Age*Class'] = test_df['Age*Class'].fillna(test_df['Age*Class'].mean())
train_x = train_df.copy()
test_x = test_df.copy()
train_nn = pd.read_csv('.. /input/titanic/train.csv')
train_x_nn = train_df.copy()
train_y_nn = train_nn['Survived']
test_x_nn = pd.read_csv('.. /input/titanic/test.csv')
test_x_nn = test_df.copy()
base_param = {
'input_dropout': 0.05,
'hidden_layers': 2.0,
'hidden_units': 96.0,
'hidden_activation': 'prelu',
'hidden_dropout': 0.05,
'batch_norm': 'before_act',
'optimizer': {'type': 'adam', 'lr': 0.00037640141509672924},
'batch_size': 32.0}
model_1a = Model1Xgb()
pred_train_1a, pred_test_1a = predict_cv(model_1a, train_x, train_y, test_x)
model_1b = Model1NN(base_param)
pred_train_1b, pred_test_1b = predict_cv(model_1b, train_x_nn, train_y_nn, test_x_nn)
print(f'logloss: {log_loss(train_y, pred_train_1a, eps=1e-7):.4f}')
print(f'logloss: {log_loss(train_y, pred_train_1b, eps=1e-7):.4f}')
train_x_2 = pd.DataFrame({'pred_1a': pred_train_1a, 'pred_1b': pred_train_1b})
test_x_2 = pd.DataFrame({'pred_1a': pred_test_1a, 'pred_1b': pred_test_1b})
model_2 = Model2Linear()
pred_train_2, pred_test_2 = predict_cv(model_2, train_x_2, train_y, test_x_2)
print(f'logloss: {log_loss(train_y, pred_train_2, eps=1e-7):.4f}')
pred_test_2 = np.where(pred_test_2 < 0.5, 0, 1)
pred_test_2 = pred_test_2.tolist()
print(pred_test_2)
sub = pd.read_csv('.. /input/titanic/gender_submission.csv')
sub['Survived'] = list(map(int, pred_test_2))
sub.to_csv('submission_stacking3.csv', index=False)
<load_from_csv> | tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv')
tourney_seed = tourney_seed[tourney_seed['Season'] > 2014] | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | train = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/train.csv")
test = pd.read_csv(".. /input/house-prices-advanced-regression-techniques/test.csv" )<train_model> | season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv')
season_result = season_result[season_result['Season'] > 2014]
season_win_result = season_result[['Season', 'WTeamID', 'WScore']]
season_lose_result = season_result[['Season', 'LTeamID', 'LScore']]
season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True)
season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True)
season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True)
season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | data_size_train = train.memory_usage().sum() / 1024 / 1024
print("Data memory size: %.2f MB" % data_size_train )<train_model> | test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Seed':'Seed2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT1'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1)
test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left')
test_df.rename(columns={'Score':'ScoreT2'}, inplace=True)
test_df = test_df.drop('TeamID', axis=1 ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | data_size_test = test.memory_usage().sum() / 1024 / 1024
print("Data memory size: %.2f MB" % data_size_test )<categorify> | test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x))
test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2']
test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1)
test_df | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | train = train.drop(["PoolQC", "MiscFeature", "Alley", "Fence", "Street", "Alley"], axis = 1)
none_values_train = ["FireplaceQu", "GarageCond", "GarageType", "GarageFinish", "GarageQual",
"BsmtExposure", "BsmtFinType2", "BsmtFinType1", "BsmtCond", "BsmtQual",
"MasVnrType", "Electrical"]
for value in none_values_train:
train = train.fillna({value : "None"})
zero_values_train = ["LotFrontage", "GarageYrBlt", "MasVnrArea"]
for value in zero_values_train:
train = train.fillna({value : 0} )<categorify> | X = train_df.drop('result', axis=1)
y = train_df.result | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | test = test.drop(["PoolQC", "MiscFeature", "Alley", "Fence", "Street", "Alley"], axis = 1)
none_values_test = ["FireplaceQu", "GarageCond", "GarageType", "GarageFinish", "GarageQual",
"BsmtExposure", "BsmtFinType2", "BsmtFinType1", "BsmtCond", "BsmtQual",
"MasVnrType", "Electrical", "MSZoning", "Utilities", "Functional",
"Exterior2nd", "SaleType", "Exterior1st", "KitchenQual"]
for value in none_values_test:
test = test.fillna({value : "None"})
zero_values_test = ["LotFrontage", "GarageYrBlt", "MasVnrArea", "BsmtHalfBath", "BsmtFullBath",
"BsmtFinSF2", "BsmtFinSF1", "TotalBsmtSF", "GarageArea", "GarageCars", "BsmtUnfSF"]
for value in zero_values_test:
test = test.fillna({value : 0} )<drop_column> | params_lgb = {'num_leaves': lgb_num_leaves_max,
'min_data_in_leaf': lgb_in_leaf,
'objective': 'binary',
'max_depth': -1,
'learning_rate': lgb_lr,
"boosting_type": "gbdt",
"bagging_seed": lgb_bagging,
"metric": 'logloss',
"verbosity": -1,
'random_state': 42,
} | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | train = train.drop(train[train["GrLivArea"] > 4000].index )<data_type_conversions> | NFOLDS = 10
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_lgb = np.zeros(test_df.shape[0])
y_train_lgb = np.zeros(X.shape[0])
y_oof = np.zeros(X.shape[0])
feature_importances = pd.DataFrame()
feature_importances['feature'] = columns
for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
dtrain = lgb.Dataset(X_train, label=y_train)
dvalid = lgb.Dataset(X_valid, label=y_valid)
clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
feature_importances[f'fold_{fold_n + 1}'] = clf.feature_importance()
y_pred_valid = clf.predict(X_valid)
y_oof[valid_index] = y_pred_valid
y_train_lgb += clf.predict(X)/ NFOLDS
y_preds_lgb += clf.predict(test_df)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | upper = corr.where(np.triu(np.ones(corr.shape), k = 1 ).astype(np.bool))
to_drop = [column for column in upper.columns if any(upper[column] > 0.90)]
print(to_drop )<import_modules> | params_xgb = {'max_depth': xgb_max_depth,
'objective': 'binary:logistic',
'min_child_weight': xgb_min_child_weight,
'learning_rate': xgb_lr,
'eta' : 0.3,
'subsample': 0.8,
'lambda ' : 4,
'eval_metric': 'logloss',
'colsample_bytree ': 0.9,
'colsample_bylevel': 1
} | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | from sklearn.linear_model import Ridge, Lasso, LinearRegression
from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, StackingRegressor
from sklearn.model_selection import GridSearchCV, train_test_split, cross_val_score, learning_curve
from sklearn.preprocessing import StandardScaler, RobustScaler
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from catboost import CatBoostRegressor
import lightgbm as lgb<prepare_x_and_y> | NFOLDS = 10
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_xgb = np.zeros(test_df.shape[0])
y_train_xgb = np.zeros(X.shape[0])
y_oof_xgb = np.zeros(X.shape[0])
train_df_set = xgb.DMatrix(X)
test_set = xgb.DMatrix(test_df)
for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
train_set = xgb.DMatrix(X_train, y_train)
val_set = xgb.DMatrix(X_valid, y_valid)
clf = xgb.train(params_xgb, train_set, num_boost_round=xgb_num_boost_round_max, evals=[(train_set, 'train'),(val_set, 'val')], verbose_eval=100)
y_train_xgb += clf.predict(train_df_set)/ NFOLDS
y_preds_xgb += clf.predict(test_set)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | all_data = pd.concat([train.drop("SalePrice", axis = 1), test])
all_data = pd.get_dummies(all_data)
train_dummy = all_data[0:1456]
test_dummy = all_data[1456:2915]
train_dummy["SalePrice"] = train["SalePrice"]
X = train_dummy.drop(["SalePrice", "Id"], axis = 1 ).values
Y = train_dummy["SalePrice"].values<normalization> | %%time
scaler = StandardScaler()
train_log = pd.DataFrame(
scaler.fit_transform(X),
columns=X.columns,
index=X.index
)
test_log = pd.DataFrame(
scaler.transform(test_df),
columns=test_df.columns,
index=test_df.index
) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | scaler = StandardScaler()
X = scaler.fit_transform(X)
test_dummy = test_dummy.drop("Id", axis = 1)
test_dummy = scaler.fit_transform(test_dummy )<choose_model_class> | logreg = LogisticRegression()
logreg.fit(train_log, y)
coeff_logreg = pd.DataFrame(train_log.columns.delete(0))
coeff_logreg.columns = ['feature']
coeff_logreg["score_logreg"] = pd.Series(logreg.coef_[0])
coeff_logreg.sort_values(by='score_logreg', ascending=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | pipe_cat = Pipeline([
("scaler", StandardScaler()),
("cat", CatBoostRegressor(verbose = 0)) ])
params_cat = {
"cat__depth" : [3, 4, 5],
"cat__learning_rate" : [0.001, 0.01, 0.1, 1],
"cat__n_estimators" : [300, 400, 500]}
model_cat = CatBoostRegressor(verbose = 0,
depth = 5,
learning_rate = 0.1,
n_estimators = 500)
model_cat.fit(X, Y)
model_score = cross_val_score(model_cat, X, Y, cv = 5, n_jobs = -1)
Y_preds = model_cat.predict(X)
print("R2 : " + str(model_score.mean()))
print("RMSE : " + str(np.sqrt(mean_squared_error(Y, Y_preds))))<choose_model_class> | eli5.show_weights(logreg ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | pipe_gbm = Pipeline([
("gbm", lgb.LGBMRegressor())])
params_gbm = {
"gbm__n_estimators" : [300, 500, 700],
"gbm__learning_rate" : [0.001, 0.01, 0.1],
"gbm__max_depth" : [3, 6, 9],
"gbm__max_bin" : [32, 64, 128, 256, 512]}
model_gbm = lgb.LGBMRegressor(verbose = 0,
learning_rate = 0.1,
max_bin = 32,
max_depth = 4,
n_estimators = 500)
model_gbm.fit(X, Y)
model_score = cross_val_score(model_gbm, X, Y, cv = 5, n_jobs = -1)
Y_preds = model_gbm.predict(X)
print("R2 : " + str(model_score.mean()))
print("RMSE : " + str(np.sqrt(mean_squared_error(Y, Y_preds))))<find_best_model_class> | y_logreg_train = logreg.predict(train_log)
y_logreg_pred = logreg.predict(test_log ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | estimators = [("CatBoost", model_cat),
("LightGBM", model_gbm)]
stacker = StackingRegressor(estimators = estimators)
stacker.fit(X, Y)
stacker_score = cross_val_score(stacker, X, Y, cv = 5, n_jobs = -1)
Y_pred_stack = stacker.predict(X)
Y_preds_sub = stacker.predict(test_dummy)
print("R2 : " + str(stacker_score.mean()))
print("RMSE : " + str(np.sqrt(mean_squared_error(Y, Y_pred_stack))))<save_to_csv> | def plot_cm(y_true, y_pred, title, figsize=(7,6)) :
y_pred = y_pred.round().astype(int)
cm = confusion_matrix(y_true, y_pred, labels=np.unique(y_true))
cm_sum = np.sum(cm, axis=1, keepdims=True)
cm_perc = cm / cm_sum.astype(float)* 100
annot = np.empty_like(cm ).astype(str)
nrows, ncols = cm.shape
for i in range(nrows):
for j in range(ncols):
c = cm[i, j]
p = cm_perc[i, j]
if i == j:
s = cm_sum[i]
annot[i, j] = '%.1f%%
%d/%d' %(p, c, s)
elif c == 0:
annot[i, j] = ''
else:
annot[i, j] = '%.1f%%
%d' %(p, c)
cm = pd.DataFrame(cm, index=np.unique(y_true), columns=np.unique(y_true))
cm.index.name = 'Actual'
cm.columns.name = 'Predicted'
fig, ax = plt.subplots(figsize=figsize)
plt.title(title)
sns.heatmap(cm, cmap= "YlGnBu", annot=annot, fmt='', ax=ax ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | submission = pd.DataFrame({"Id" : test.Id, "SalePrice" : Y_preds_sub})
submission.to_csv("submission_reg.csv", index = False)
submission.head()<save_to_csv> | y_preds = w_lgb*y_preds_lgb + w_xgb*y_preds_xgb + w_logreg*y_logreg_pred | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | f = open(".. /input/submission/final_5_0.10117320406891336.csv")
tem = pd.read_csv(f)
tem.head(10)
tem.to_csv('submission.csv', index=False )<import_modules> | sub['Pred'] = y_preds
sub.head() | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | import pandas as pd
import numpy as np
import seaborn as sns
import pylab as pl
import matplotlib.pyplot as plt
import math
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score<set_options> | sub.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,053,294 | <load_from_csv><EOS> | sub.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAM |
8,179,034 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<drop_column> | pd.set_option('max_columns', None)
plt.style.use('seaborn')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
| Google Cloud & NCAA® ML Competition 2020-NCAAM |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.