kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
8,179,034
train.drop(['Name','Ticket','Cabin'],axis = 1,inplace = True )<correct_missing_values>
data_dict = {} for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/*'): name = i.split('/')[-1].split('.')[0] if name != 'MTeamSpellings': data_dict[name] = pd.read_csv(i) else: data_dict[name] = pd.read_csv(i, encoding='cp1252' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
train.dropna(inplace=True )<categorify>
data_dict['MNCAATourneySeeds']['Seed'] = data_dict['MNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3])) data_dict['MNCAATourneySeeds'] = data_dict['MNCAATourneySeeds'][['Season', 'TeamID', 'Seed']] data_dict['MNCAATourneyCompactResults'] = data_dict['MNCAATourneyCompactResults'][['Season','WTeamID', 'LTeamID']] df = pd.merge(data_dict['MNCAATourneyCompactResults'], data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID']) df = pd.merge(df, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID']) df = df.drop(['TeamID_x', 'TeamID_y'], axis=1) df.columns = ['Season', 'WTeamID', 'LTeamID', 'WSeed', 'LSeed'] df.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
embarked =pd.get_dummies(train['Embarked'], drop_first = True) embarked.head()<categorify>
team_win_score = data_dict['MRegularSeasonCompactResults'].groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count']} ).reset_index() team_win_score.columns = ['Season', 'WTeamID', 'WScore_sum', 'WScore_count'] team_loss_score = data_dict['MRegularSeasonCompactResults'].groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count']} ).reset_index() team_loss_score.columns = ['Season', 'LTeamID', 'LScore_sum', 'LScore_count'] df = pd.merge(df, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) df = pd.merge(df, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) df = pd.merge(df, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) df = pd.merge(df, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) df.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) df['x_score'] = df['WScore_sum_x'] + df['LScore_sum_y'] df['y_score'] = df['WScore_sum_y'] + df['LScore_sum_x'] df['x_count'] = df['WScore_count_x'] + df['LScore_count_y'] df['y_count'] = df['WScore_count_y'] + df['WScore_count_x'] df = df.drop(['WScore_sum_x','WScore_count_x','LScore_sum_x','LScore_count_x', 'LScore_sum_y','LScore_count_y','WScore_sum_y','WScore_count_y'], axis =1) df.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
pcl =pd.get_dummies(train['Pclass'], drop_first = True) pcl.head()<categorify>
df_win = df.copy() df_los = df.copy() df_win = df_win[['WSeed', 'LSeed', 'x_score', 'y_score', 'x_count', 'y_count']] df_los = df_los[['LSeed', 'WSeed', 'y_score', 'x_score', 'x_count', 'y_count']] df_win.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2'] df_los.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2'] df_win['Seed_diff'] = df_win['Seed_1'] - df_win['Seed_2'] df_win['Score_diff'] = df_win['Score_1'] - df_win['Score_2'] df_los['Seed_diff'] = df_los['Seed_1'] - df_los['Seed_2'] df_los['Score_diff'] = df_los['Score_1'] - df_los['Score_2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
sex = pd.get_dummies(train['Sex'], drop_first = True) sex.head()<concatenate>
df_win['result'] = 1 df_los['result'] = 0 data = pd.concat(( df_win, df_los)).reset_index(drop=True )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
train = pd.concat([train,embarked,pcl,sex],axis = 1 )<drop_column>
test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') test = test.drop(['Pred'], axis=1) test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0])) test['Team1'] = test['ID'].apply(lambda x: int(x.split('_')[1])) test['Team2'] = test['ID'].apply(lambda x: int(x.split('_')[2])) test = pd.merge(test, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'Team1'], right_on=['Season', 'TeamID']) test = pd.merge(test, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'Team2'], right_on=['Season', 'TeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'Team1'], right_on=['Season', 'WTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'Team2'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'Team1'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'Team2'], right_on=['Season', 'WTeamID']) test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) test.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
train.drop(['Embarked','Pclass','Sex'],axis = 1,inplace = True )<data_type_conversions>
test['x_score'] = test['WScore_sum_x'] + test['LScore_sum_y'] test['y_score'] = test['WScore_sum_y'] + test['LScore_sum_x'] test['x_count'] = test['WScore_count_x'] + test['LScore_count_y'] test['y_count'] = test['WScore_count_y'] + test['WScore_count_x'] test = test[['Seed_x', 'Seed_y', 'x_score', 'y_score', 'x_count', 'y_count']] test.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2'] test['Seed_diff'] = test['Seed_1'] - test['Seed_2'] test['Score_diff'] = test['Score_1'] - test['Score_2'] test_df = test
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
train.fillna(train.mean() , inplace=True )<prepare_x_and_y>
params_lgb = {'num_leaves': 127, 'min_data_in_leaf': 10, 'objective': 'binary', 'max_depth': -1, 'learning_rate': 0.01, "boosting_type": "gbdt", "bagging_seed": 11, "metric": 'logloss', "verbosity": -1, 'random_state': 42, } X = data.drop('result', axis=1) y = data['result']
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
X = train.drop(['Survived','PassengerId'],axis = 1) y = train['Survived']<split>
NFOLDS = 10 folds = KFold(n_splits=NFOLDS) columns = X.columns splits = folds.split(X, y) y_preds_lgb = np.zeros(test_df.shape[0]) y_train_lgb = np.zeros(X.shape[0]) y_oof = np.zeros(X.shape[0]) feature_importances = pd.DataFrame() feature_importances['feature'] = columns for fold_n,(train_index, valid_index)in enumerate(splits): print('Fold:',fold_n+1) X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index] y_train, y_valid = y.iloc[train_index], y.iloc[valid_index] dtrain = lgb.Dataset(X_train, label=y_train) dvalid = lgb.Dataset(X_valid, label=y_valid) clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200) feature_importances[f'fold_{fold_n + 1}'] = clf.feature_importance() y_pred_valid = clf.predict(X_valid) y_oof[valid_index] = y_pred_valid y_train_lgb += clf.predict(X)/ NFOLDS y_preds_lgb += clf.predict(test_df)/ NFOLDS del X_train, X_valid, y_train, y_valid gc.collect()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.33, random_state=123 )<train_model>
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
clf = GradientBoostingClassifier() clf.fit(X_train,y_train )<predict_on_test>
df_compact = data_dict['MNCAATourneyCompactResults'] df_detailed = data_dict['MNCAATourneyDetailedResults'] results_merged = pd.merge(df_compact, df_detailed) results_merged.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
y_pred = clf.predict(X_valid )<compute_test_metric>
results_merged['WeFG%'] =(results_merged['WFGM']+0.5*results_merged['WFGM3'])/ results_merged['WFGA'] results_merged['LeFG%'] =(results_merged['LFGM']+0.5*results_merged['LFGM3'])/ results_merged['LFGA'] results_merged['WTO%'] = results_merged['WTO'] /(results_merged['WFGA']+0.44*results_merged['WFTA'] +results_merged['WTO']) results_merged['LTO%'] = results_merged['LTO'] /(results_merged['LFGA']+0.44*results_merged['LFTA'] +results_merged['LTO']) results_merged['WFTR%'] = results_merged['WFTA'] / results_merged['WFGA'] results_merged['LFTR%'] = results_merged['LFTA'] / results_merged['LFGA'] results_merged['WORB%'] = results_merged['WOR'] / results_merged['LDR'] results_merged['LORB%'] = results_merged['LOR'] / results_merged['WDR']
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
report = classification_report(y_valid,y_pred) print(report )<compute_test_metric>
ts = TrueSkill(draw_probability=0.01) beta = 25 / 6 def win_probability(p1, p2): delta_mu = p1.mu - p2.mu sum_sigma = p1.sigma * p1.sigma + p2.sigma * p2.sigma denom = np.sqrt(2 *(beta * beta)+ sum_sigma) return ts.cdf(delta_mu / denom) submit = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') submit[['Season', 'Team1', 'Team2']] = submit.apply(lambda r:pd.Series([int(t)for t in r.ID.split('_')]), axis=1) df_tour = results_merged teamIds = np.unique(np.concatenate([df_tour.WTeamID.values, df_tour.LTeamID.values])) ratings = { tid:ts.Rating() for tid in teamIds } def feed_season_results(season): print("season = {}".format(season)) df1 = df_tour[df_tour.Season == season] for r in df1.itertuples() : ratings[r.WTeamID], ratings[r.LTeamID] = rate_1vs1(ratings[r.WTeamID], ratings[r.LTeamID]) def update_pred(season): beta = np.std([r.mu for r in ratings.values() ]) print("beta = {}".format(beta)) submit.loc[submit.Season==season, 'Pred'] = submit[submit.Season==season].apply(lambda r:win_probability(ratings[r.Team1], ratings[r.Team2]), axis=1) for season in sorted(df_tour.Season.unique())[:-5]: feed_season_results(season) update_pred(2015) feed_season_results(2015) update_pred(2016) feed_season_results(2016) update_pred(2017) feed_season_results(2017) update_pred(2018) feed_season_results(2018) update_pred(2019) submit.drop(['Season', 'Team1', 'Team2'], axis=1, inplace=True) y_preds_ts = submit['Pred']
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
accuracy_score(y_valid,y_pred )<categorify>
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') submission_df['Pred'] = 0.4*y_preds_lgb + 0.6*y_preds_ts
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,179,034
sex1 = pd.get_dummies(test['Sex'], drop_first = True )<categorify>
submission_df.to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
embarked1 = pd.get_dummies(test['Embarked'], drop_first = True) pcl1 = pd.get_dummies(test['Pclass'], drop_first = True )<concatenate>
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import GridSearchCV
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
test = pd.concat([test,embarked1,pcl1,sex1], axis = 1 )<drop_column>
tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv') tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
test.drop(['Sex', 'Embarked', 'Name', 'Ticket','Pclass','Cabin'], axis=1,inplace=True )<correct_missing_values>
tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
test.fillna(test.mean() , inplace=True )<predict_on_test>
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
ids = test['PassengerId'] predictions = clf.predict(test.drop('PassengerId', axis=1)) <save_to_csv>
def get_seed(x): return int(x[1:3]) tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x)) tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x)) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
output = pd.DataFrame({ 'PassengerId' : ids, 'Survived': predictions }) output.to_csv('submission.csv', index=False )<import_modules>
season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
tf.__version__<import_modules>
season_win_result = season_result[['Season', 'WTeamID', 'WScore']] season_lose_result = season_result[['Season', 'LTeamID', 'LScore']] season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True) season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True) season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True) season_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
from tensorflow.keras import layers import tensorflow.keras.backend as K from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPool2D, Dropout, Reshape, Input from tensorflow.keras.losses import CategoricalCrossentropy from tensorflow.keras.optimizers import Adam, Adadelta, Adagrad, Adamax, Nadam, RMSprop, Ftrl<set_options>
season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index() season_score
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
device = torch.device("cuda" )<load_from_csv>
tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Score':'WScoreT'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Score':'LScoreT'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
df_train = pd.read_csv(".. /input/digit-recognizer/train.csv") df_test = pd.read_csv(".. /input/digit-recognizer/test.csv") df_sub = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") df_Id = df_sub["ImageId"]<prepare_x_and_y>
tourney_win_result = tourney_result.drop(['Season', 'WTeamID', 'LTeamID'], axis=1) tourney_win_result.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2', 'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2'}, inplace=True) tourney_win_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
X = df_train.drop("label", axis=1 ).values y = df_train["label"].values X_test = df_test.values X = X / 255 X_test = X_test / 255 X = X.reshape(( -1, 1, 28, 28)) X_test = X_test.reshape(( -1, 1, 28, 28))<split>
tourney_lose_result = tourney_win_result.copy() tourney_lose_result['Seed1'] = tourney_win_result['Seed2'] tourney_lose_result['Seed2'] = tourney_win_result['Seed1'] tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2'] tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1'] tourney_lose_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=123 )<prepare_x_and_y>
tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2'] tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2'] tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2'] tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
t_X_train = torch.from_numpy(X_train ).float() t_y_train = torch.from_numpy(y_train ).long() t_X_val = torch.from_numpy(X_val ).float() t_y_val = torch.from_numpy(y_val ).long() dataset_train = TensorDataset(t_X_train, t_y_train) dataset_val = TensorDataset(t_X_val, t_y_val) loader_train = DataLoader(dataset_train, batch_size=20, shuffle=True) loader_val = DataLoader(dataset_val, batch_size=20 )<choose_model_class>
tourney_win_result['result'] = 1 tourney_lose_result['result'] = 0 tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
activation_relu = torch.nn.ReLU() class cnn(nn.Module): def __init__(self): super(cnn, self ).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 32, 3, padding=1) self.conv3 = nn.Conv2d(32, 32, 3, padding=1) self.conv4 = nn.Conv2d(32, 32, 3, padding=1) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = nn.Conv2d(32, 64, 3, padding=1) self.conv6 = nn.Conv2d(64, 64, 3, padding=1) self.conv7 = nn.Conv2d(64, 64, 3, padding=1) self.conv8 = nn.Conv2d(64, 64, 3, padding=1) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.flatten = nn.Flatten() self.drop1 = nn.Dropout(p=0.5) self.fc1 = nn.Linear(7*7*64, 1024) self.drop2 = nn.Dropout(p=0.5) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = activation_relu(self.conv1(x)) x = activation_relu(self.conv2(x)) x = activation_relu(self.conv3(x)) x = activation_relu(self.conv4(x)) x = activation_relu(self.maxpool1(x)) x = activation_relu(self.conv5(x)) x = activation_relu(self.conv6(x)) x = activation_relu(self.conv7(x)) x = activation_relu(self.conv8(x)) x = activation_relu(self.maxpool2(x)) x = self.flatten(x) x = self.drop1(x) x = activation_relu(self.fc1(x)) x = self.drop2(x) x = self.fc2(x) return x cnn = cnn()<set_options>
X_train=tourney_result.drop('result',axis=1) y_train=tourney_result.result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
device = torch.device("cuda") cnn.to(device )<choose_model_class>
import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import to_categorical, normalize from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(cnn.parameters() , lr=0.0002 )<train_on_grid>
model = tf.keras.models.Sequential([ tf.keras.layers.Dense(128, input_shape=(6,), activation='relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(125, activation='relu'), tf.keras.layers.BatchNormalization() , tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1, activation='sigmoid') ] )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
train_history = [] val_history = [] for epoch in range(10): total_train_loss = 0 total_val_loss = 0 total_train_acc = 0 total_val_acc = 0 total_train = 0 total_val = 0 for inputs, labels in loader_train: inputs, labels = inputs.to(device), labels.to(device) cnn.train() optimizer.zero_grad() outputs = cnn(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_train_loss += loss with torch.no_grad() : y_pred = torch.argmax(cnn(inputs), dim=1) acc_train = int(( y_pred==labels ).sum()) total_train_acc += acc_train total_train += len(labels) for inputs, labels in loader_val: inputs, labels = inputs.to(device), labels.to(device) cnn.eval() outputs = cnn(inputs) loss = criterion(outputs, labels) total_val_loss += loss with torch.no_grad() : y_pred = torch.argmax(cnn(inputs), dim=1) total_acc_val = int(( y_pred==labels ).sum()) total_val += len(labels) avg_train_acc = total_train_acc / total_train avg_val_acc = total_acc_val / total_val train_history.append([total_train_loss, total_train_acc]) val_history.append([total_val_loss, total_val_acc]) print(f"Epoch {epoch+1} ---> train_loss: {total_train_loss:.5f} | val_loss: {total_val_loss:.5f} || "\ f"train_acc {avg_train_acc:.5f} | val_acc {avg_val_acc:.5f}" )<prepare_x_and_y>
model.compile(loss='binary_crossentropy', optimizer=Adam(0.0001), metrics=['acc'] )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
x = torch.tensor([[1, 2, 3, 4, 5], [2, 2, 2, 2, 2]]) y = torch.tensor([1, 3, 4, 4, 5]) type(len(x))<choose_model_class>
history = model.fit(X_train, y_train,epochs=150,verbose=1 )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
cnn1 = tf.keras.models.Sequential([Conv2D(input_shape=(28, 28, 1), filters=16, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=16, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=16, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=16, kernel_size=(3, 3), activation="relu", padding="same"), MaxPool2D(pool_size=(2, 2), strides=(2, 2)) , Conv2D(filters=32, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=32, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=32, kernel_size=(3, 3), activation="relu", padding="same"), Conv2D(filters=32, kernel_size=(3, 3), activation="relu", padding="same"), MaxPool2D(pool_size=(2, 2), strides=(2, 2)) , Flatten() , Dense(units=1024, activation="relu"), Dropout(rate=0.5), Dense(units=10, activation="softmax")] )<train_model>
test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
def seq_train_val(X, y, model, optimizer=Adam, validation_data=None, learning_rate=0.0001, loss="categorical_crossentropy", batch_size=10, epochs=40): model.summary() learning_rate_reduction = tf.keras.callbacks.ReduceLROnPlateau(monitor="val_loss", mode="min", patiencs=5, verbose=1, factor=0.5, min_lr=0.000001) model.compile(optimizer=optimizer(learning_rate=learning_rate), loss=loss, metrics=["acc"]) model.fit(X_train, y_train, validation_data=validation_data, batch_size=batch_size, verbose=2, epochs=epochs, callbacks=[learning_rate_reduction]) return None def predict(X, model): y_pred = model.predict(X) y_pred = np.argmax(y_pred, axis=1) return y_pred<train_model>
test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4])) test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9])) test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14])) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
seq_train_val(X=X_train_std, y=y_train, validation_data=(X_val_std, y_val), model=cnn1 )<compute_test_metric>
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
validation(X_val_std, y_val, model=cnn )<save_to_csv>
test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x)) test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x)) test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2'] test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2'] test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
y_pred = predict(X_test_std, model=cnn) y_pred = pd.DataFrame(y_pred, columns=["Label"]) sub = pd.concat([df_Id, y_pred], axis=1) sub.to_csv("submission.csv", index=False )<choose_model_class>
from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import GridSearchCV from sklearn.model_selection import KFold import lightgbm as lgb import xgboost as xgb from xgboost import XGBClassifier import gc
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
ac_relu = layers.Activation("relu") ac_softmax = layers.Activation("softmax") class cnn2(tf.keras.Model): def __init__(self, *args, **kwargs): super(cnn2, self ).__init__(*args, **kwargs) self.conv1 = Conv2D(filters=8, kernel_size=(3, 3), padding="same") self.conv2 = Conv2D(filters=8, kernel_size=(3, 3), padding="same") self.conv3 = Conv2D(filters=8, kernel_size=(3, 3), padding="same") self.maxpool1 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same") self.conv4 = Conv2D(filters=16, kernel_size=(3, 3), padding="same") self.conv5 = Conv2D(filters=16, kernel_size=(3, 3), padding="same") self.conv6 = Conv2D(filters=16, kernel_size=(3, 3), padding="same") self.maxpool2 = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding="same") self.conv7 = Conv2D(filters=32, kernel_size=(3, 3), padding="same") self.conv8 = Conv2D(filters=32, kernel_size=(3, 3), padding="same") self.conv9 = Conv2D(filters=32, kernel_size=(3, 3), padding="same") self.conv10 = Conv2D(filters=32, kernel_size=(3, 3), padding="same") self.maxpool3 = MaxPool2D(pool_size=(2, 2), strides=(2, 2)) self.conv11 = Conv2D(filters=64, kernel_size=(3, 3), padding="same") self.conv12 = Conv2D(filters=64, kernel_size=(3, 3), padding="same") self.conv13 = Conv2D(filters=64, kernel_size=(3, 3), padding="same") self.conv14 = Conv2D(filters=64, kernel_size=(3, 3), padding="same") self.maxpool4 = MaxPool2D(pool_size=(2, 2), strides=(2, 2)) self.flatten = Flatten() self.dense1 = Dense(units=1024) self.drop = Dropout(rate=0.5) self.dense2 = Dense(units=10) def call(self, inputs, training=None): x2 = ac_relu(self.conv1(inputs)) x3 = ac_relu(self.conv2(x2)) x4 = ac_relu(self.conv3(x3)) x5 = ac_relu(self.maxpool1(x4)) x6 = ac_relu(self.conv4(x5)) x7 = ac_relu(self.conv5(x6)) x8 = ac_relu(self.conv6(x7)) x9 = ac_relu(self.maxpool2(x8)) x10 = ac_relu(self.conv7(x9)) x11 = ac_relu(self.conv8(x10)) x12 = ac_relu(self.conv9(x11)) x13 = ac_relu(self.conv10(x12)) x14 = ac_relu(self.maxpool3(x13)) x15 = ac_relu(self.conv11(x14)) x16 = ac_relu(self.conv12(x15)) x17 = ac_relu(self.conv13(x16)) x18 = ac_relu(self.conv14(x17)) x19 = ac_relu(self.maxpool4(x18)) x20 = self.flatten(x19) x21 = ac_relu(self.dense1(x20)) x22 = self.drop(x21) outputs = ac_softmax(self.dense2(x22)) return outputs cnn2 = cnn2()<categorify>
params_lgb = {'num_leaves': 400, 'min_child_weight': 0.034, 'feature_fraction': 0.379, 'bagging_fraction': 0.418, 'min_data_in_leaf': 106, 'objective': 'binary', 'max_depth': 50, 'learning_rate': 0.0068, "boosting_type": "gbdt", "bagging_seed": 11, "metric": 'logloss', "verbosity": -1, 'reg_alpha': 0.3899, 'reg_lambda': 0.648, 'random_state': 47, } params_xgb = {'colsample_bytree': 0.8, 'learning_rate': 0.0004, 'max_depth': 31, 'subsample': 1, 'objective':'binary:logistic', 'eval_metric':'logloss', 'min_child_weight':3, 'gamma':0.25, 'n_estimators':5000 }
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
def sub_train_val(X_train, y_train, X_val, y_val, model, optimizer=Adam, learning_rate=0.0001, loss_object=CategoricalCrossentropy() , batch_size=20, y_label=10, epochs=5): X_trainn = X_train.astype("float32") if y_label: y_trainn = tf.one_hot(y_train, 10, dtype="float32") else: y_trainn = y_train.astype("float32") train_sliced = tf.data.Dataset.from_tensor_slices(( X_trainn, y_trainn)) train_dataset = train_sliced.shuffle(100000 ).batch(batch_size) X_vall = X_val.astype("float32") if y_label: y_vall = tf.one_hot(y_val, 10, dtype="float32") else: y_vall = y_vall.astype("float32") val_sliced = tf.data.Dataset.from_tensor_slices(( X_vall, y_vall)) val_dataset = val_sliced.batch(batch_size) optimizer = optimizer(learning_rate=learning_rate) loss_object = loss_object train_loss = tf.keras.metrics.Mean(name="train_loss") val_loss = tf.keras.metrics.Mean(name="val_loss") train_loss_list = [] val_loss_list = [] @tf.function def train_step(X_train, y_train, model, optimizer, loss_object, train_loss): training = True K.set_learning_phase(training) with tf.GradientTape() as tape: y_pred_tra = model(X_train, training=training) loss = loss_object(y_train, y_pred_tra) gradient = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(gradient, model.trainable_weights)) train_loss(loss) @tf.function def val_step(X_val, y_val, model, optimizer, loss_object, val_loss): training = False y_pred_val = model(X_val, training=training) loss = loss_object(y_val, y_pred_val) val_loss(loss) for epoch in range(epochs): print(f"Epoch is {str(epoch+1 ).zfill(3)} ----->", end=" ") for X, y in train_dataset: train_step(X, y, model=model, optimizer=optimizer, loss_object=loss_object, train_loss=train_loss) print("train_loss: {:.6f}".format(float(train_loss.result())) , end=" | ") train_loss_list.append(float(train_loss.result())) train_loss.reset_states() for X, y in val_dataset: val_step(X, y, model=model, optimizer=optimizer, loss_object=loss_object, val_loss=val_loss) print("val_loss: {:.6f}".format(float(val_loss.result()))) val_loss_list.append(float(val_loss.result())) val_loss.reset_states() print() print("-"*100) print() print("Best val_loss is {:.6f}, and when the epoch is {}".format(min(val_loss_list), epoch+1)) fig = plt.figure(figsize=(10, 8)) plt.plot(range(1, epochs+1), train_loss_list, marker="o", c="b", label="train_loss") plt.plot(range(1, epochs+1), val_loss_list, marker="v", c="r", label="validation_loss") plt.legend() plt.xlabel("epochs") plt.ylabel("loss") plt.title("train_and_validation_loss" )<train_model>
NFOLDS = 200 folds = KFold(n_splits=NFOLDS) columns = X_train.columns splits = folds.split(X_train, y_train )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
train_val(X_train=X_train_std, y_train=y_train, X_val=X_val_std, y_val=y_val, model=cnn2, learning_rate=0.0001, epochs=40, optimizer=Adam )<predict_on_test>
y_preds_lgb = np.zeros(test_df.shape[0]) y_oof_lgb = np.zeros(X_train.shape[0] )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
def validate(X, y, model): X_tensor = tf.convert_to_tensor(X) y_pred = model(X_tensor) y_pred = y_pred.numpy() y_pred = np.argmax(y_pred, axis=1) acc = accuracy_score(y, y_pred) return acc def predict(X, model): X_tensor = tf.convert_to_tensor(X) y_pred = model(X_tensor) y_pred = y_pred.numpy() y_pred = np.argmax(y_pred, axis=1) return y_pred<compute_test_metric>
for fold_n,(train_index, valid_index)in enumerate(splits): print('Fold:',fold_n+1) X_train1, X_valid1 = X_train[columns].iloc[train_index], X_train[columns].iloc[valid_index] y_train1, y_valid1 = y_train.iloc[train_index], y_train.iloc[valid_index] dtrain = lgb.Dataset(X_train1, label=y_train1) dvalid = lgb.Dataset(X_valid1, label=y_valid1) clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200) y_pred_valid = clf.predict(X_valid1) y_oof_lgb[valid_index] = y_pred_valid y_preds_lgb += clf.predict(test_df)/ NFOLDS del X_train1, X_valid1, y_train1, y_valid1 gc.collect()
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
validate(X_train_std, y_train, cnn2 )<categorify>
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
x = torch.empty(2, 3) print(x) x = torch.rand(2, 3) print(x) x = torch.zeros(2, 3, dtype=torch.float) print(x) x = torch.ones(2, 3, dtype=torch.int) print(x) x = torch.tensor([[0.0, 0.1, 0.2], [1.0, 1.1, 1.2]]) print(x) y = x.new_ones(1, 2) print(y) y = torch.ones_like(x, dtype=torch.int) print(y )<categorify>
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') submission_df['Pred'] = y_preds_lgb submission_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
b = x.numpy() print('PyTorch計算→NumPy反映:') print(b); x.add_(y); print(b) print('NumPy計算→PyTorch反映:') print(x); np.add(b, b, out=b); print(x) c = np.ones(( 2, 3), dtype=np.float64) d = torch.from_numpy(c) print('NumPy計算→PyTorch反映:') print(d); np.add(c, c, out=c); print(d) print('PyTorch計算→NumPy反映:') print(c); d.add_(y); print(c )<set_options>
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,994,061
<define_variables><EOS>
submission_df.to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
<SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<import_modules>
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import GridSearchCV
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
import numpy as np import pandas as pd import tensorflow as tf import os import math from IPython.display import clear_output import matplotlib.pyplot as plt from sklearn.utils import shuffle<load_from_csv>
tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv') tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
training_data_raw = pd.read_csv("/kaggle/input/titanic/train.csv") testing_data_raw = pd.read_csv("/kaggle/input/titanic/test.csv") print(training_data_raw.head()) print(testing_data_raw.head() )<create_dataframe>
tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
training_data = training_data_raw[['Sex','Name','Age','Pclass','SibSp','Parch','Fare','Survived']] testing_data = testing_data_raw[['Sex','Name','Age','Pclass','SibSp','Parch','Fare']]<count_missing_values>
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
print(( training_data[['Name','Sex','Age','Pclass','SibSp','Parch','Fare','Survived']].isnull() ).sum()) print(( testing_data[['Name','Sex','Age','Pclass','SibSp','Parch','Fare']].isnull() ).sum() )<feature_engineering>
def get_seed(x): return int(x[1:3]) tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x)) tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x)) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
def handle_nans(dataframe): dataframe['HasNAN'] = 0 for column in dataframe: if dataframe[column].dtypes != 'int32' and dataframe[column].dtypes != 'float32' and \ dataframe[column].dtypes != 'int64' and dataframe[column].dtypes != 'float64': continue for row, value in dataframe[column].iteritems() : if math.isnan(value): dataframe.loc[row,'HasNAN'] = 1 if dataframe[column].isnull().sum() != 0: temp = testing_data[column] median = temp.append(training_data[column] ).median() dataframe[column] = dataframe[column].fillna(median) return dataframe <categorify>
season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
training_data = handle_nans(training_data) testing_data = handle_nans(testing_data) <categorify>
season_win_result = season_result[['Season', 'WTeamID', 'WScore']] season_lose_result = season_result[['Season', 'LTeamID', 'LScore']] season_win_result.rename(columns={'WTeamID':'TeamID', 'WScore':'Score'}, inplace=True) season_lose_result.rename(columns={'LTeamID':'TeamID', 'LScore':'Score'}, inplace=True) season_result = pd.concat(( season_win_result, season_lose_result)).reset_index(drop=True) season_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
def get_title(name): first_part_name = name.split(",")[1] title = first_part_name.split(" ")[1] return title def age_class_dummies(dataframe): dataframe['Sex'] = pd.factorize(dataframe['Sex'])[0] dataframe['Name'] = dataframe['Name'].apply(get_title) dataframe['Name'] = pd.factorize(dataframe['Name'])[0] dataframe = dataframe.rename(columns={'Name':'Title'}) dataframe = pd.get_dummies(dataframe, columns=['Title']) dataframe = dataframe.astype('int32') return dataframe training_data = age_class_dummies(training_data) testing_data = age_class_dummies(testing_data) for column in training_data: if(column not in testing_data)and(column != 'Survived'): print("Column not in testing data: ", column) testing_data[column] = 0 for column in testing_data: if column not in training_data: print("Column not in training data: ", column) training_data[column] = 0 training_data = training_data.reindex(sorted(training_data.columns), axis=1) testing_data = testing_data.reindex(sorted(testing_data.columns), axis=1) <categorify>
season_score = season_result.groupby(['Season', 'TeamID'])['Score'].sum().reset_index() season_score
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
print(len(training_data)) validation_split = int(len(training_data)/ 2) def shuffle_data() : global train_x, train_y, validation_x, validation_y, test_x shuffled_training_data = shuffle(training_data) shuffled_training_data.reset_index(inplace=True, drop=True) train_x = shuffled_training_data.drop(columns=['Survived'] ).to_numpy() train_y = shuffled_training_data['Survived'].to_numpy() validation_x = train_x[validation_split + 1:] validation_y = train_y[validation_split + 1:] train_x = train_x[0:validation_split] train_y = train_y[0:validation_split] test_x = testing_data.to_numpy()<import_modules>
tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Score':'WScoreT'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result = pd.merge(tourney_result, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Score':'LScoreT'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
from xgboost import XGBRegressor, XGBClassifier from sklearn.metrics import mean_absolute_error<find_best_model_class>
tourney_win_result = tourney_result.drop(['Season', 'WTeamID', 'LTeamID'], axis=1) tourney_win_result.rename(columns={'WSeed':'Seed1', 'LSeed':'Seed2', 'WScoreT':'ScoreT1', 'LScoreT':'ScoreT2'}, inplace=True) tourney_win_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
loss_log = pd.DataFrame(columns=['loss']) best_model = None best_score = 99 for i in range(0,50): shuffle_data() model = XGBClassifier(n_estimators=2000, learning_rate=0.001) model.fit(train_x, train_y, early_stopping_rounds=150, eval_set=[(train_x, train_y)], verbose=False) predictions = model.predict(validation_x) mae = mean_absolute_error(predictions, validation_y) if mae < best_score: best_score = mae loss_log.loc[len(loss_log)] = [mae] loss_log.plot(figsize=[20,4]) plt.show()<predict_on_test>
tourney_lose_result = tourney_win_result.copy() tourney_lose_result['Seed1'] = tourney_win_result['Seed2'] tourney_lose_result['Seed2'] = tourney_win_result['Seed1'] tourney_lose_result['ScoreT1'] = tourney_win_result['ScoreT2'] tourney_lose_result['ScoreT2'] = tourney_win_result['ScoreT1'] tourney_lose_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
test_y = model.predict(test_x) test_y = test_y.flatten()<save_to_csv>
tourney_win_result['Seed_diff'] = tourney_win_result['Seed1'] - tourney_win_result['Seed2'] tourney_win_result['ScoreT_diff'] = tourney_win_result['ScoreT1'] - tourney_win_result['ScoreT2'] tourney_lose_result['Seed_diff'] = tourney_lose_result['Seed1'] - tourney_lose_result['Seed2'] tourney_lose_result['ScoreT_diff'] = tourney_lose_result['ScoreT1'] - tourney_lose_result['ScoreT2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
final_prediction = pd.DataFrame(columns=['PassengerId','Survived']) final_prediction['Survived'] = test_y final_prediction['PassengerId'] = testing_data_raw['PassengerId'] print(final_prediction.head()) final_prediction.to_csv('submission.csv', index=False )<load_from_csv>
tourney_win_result['result'] = 1 tourney_lose_result['result'] = 0 tourney_result = pd.concat(( tourney_win_result, tourney_lose_result)).reset_index(drop=True) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
train_data = pd.read_csv('.. /input/titanic/train.csv') test_data = pd.read_csv('.. /input/titanic/test.csv') features = ["Pclass", "Sex", "SibSp", "Parch"] X_train = pd.get_dummies(train_data[features]) y_train = train_data["Survived"] final_X_test = pd.get_dummies(test_data[features]) classifier = XGBClassifier(n_estimators=750,learning_rate=0.02,max_depth=3) classifier.fit(X_train, y_train) predictions = classifier.predict(final_X_test) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('submission.csv', index=False )<import_modules>
test_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import RandomizedSearchCV from sklearn.preprocessing import LabelEncoder<load_from_csv>
test_df['Season'] = test_df['ID'].map(lambda x: int(x[:4])) test_df['WTeamID'] = test_df['ID'].map(lambda x: int(x[5:9])) test_df['LTeamID'] = test_df['ID'].map(lambda x: int(x[10:14])) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
train = pd.read_csv("/kaggle/input/titanic/train.csv") train.head()<load_from_csv>
test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Seed':'Seed2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, season_score, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT1'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df = pd.merge(test_df, season_score, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') test_df.rename(columns={'Score':'ScoreT2'}, inplace=True) test_df = test_df.drop('TeamID', axis=1) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
test = pd.read_csv("/kaggle/input/titanic/test.csv") test.head()<load_from_csv>
test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x)) test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x)) test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2'] test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2'] test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1) test_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
df_sub = pd.read_csv("/kaggle/input/titanic/gender_submission.csv") df_sub.head()<prepare_x_and_y>
h2o.init( nthreads=-1, max_mem_size = "8G" )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X, y = train.drop(['PassengerId','Name','Survived'], axis = 1), train[['Survived']] <count_missing_values>
train_1=h2o.H2OFrame(tourney_result) train_1['result']=train_1['result'].asfactor()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X.isnull().sum()<data_type_conversions>
param = { "ntrees" : 2000 , "max_depth" : 20 , "learn_rate" : 0.02 , "sample_rate" : 0.7 , "col_sample_rate_per_tree" : 0.9 , "min_rows" : 5 , "seed": 4241 , "score_tree_interval": 100,"stopping_metric" :"MSE","nfolds":8,"fold_assignment":"AUTO","keep_cross_validation_predictions" : True,"booster":"dart" } model_xgb = H2OXGBoostEstimator(**param) model_xgb.train(x = train_list, y = 'result', training_frame = train_1 )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X.Age = X.Age.fillna(X.Age.median()) X.Cabin = X.Cabin.fillna(X.Cabin.mode()) X.Embarked = X.Embarked.fillna(X.Embarked.mode()) <count_missing_values>
param={ "ntrees" : 1000 , "max_depth" : 20 , "learn_rate" : 0.02 , "sample_rate" : 0.7 , "col_sample_rate_per_tree" : 0.9 , "min_rows" : 5 , "seed": 4241 , "score_tree_interval": 100,"stopping_metric" :"MSE","nfolds":8,"fold_assignment":"AUTO","keep_cross_validation_predictions" : True } model_gbm = H2OGradientBoostingEstimator(**param) model_gbm.train(x = train_list, y = 'result', training_frame = train_1 )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X.isnull().sum()<drop_column>
stack = H2OStackedEnsembleEstimator(model_id="ensemble11", training_frame=train_1, base_models=[model_xgb.model_id,model_gbm.model_id],metalearner_algorithm="glm") stack.train(x=train_list, y="result", training_frame=train_1)
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X_test = test.drop(['PassengerId', 'Name'], axis = 1 )<count_missing_values>
test_1=h2o.H2OFrame(test_df )
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X_test.isnull().sum()<data_type_conversions>
pred1=model_xgb.predict(test_1) pred2=model_gbm.predict(test_1)
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
X_test.Cabin = X_test.Cabin.astype('str') X_test.Fare = X_test.Fare.astype('float' )<count_missing_values>
pred_df1=pred1.as_data_frame() pred_df2=pred2.as_data_frame()
Google Cloud & NCAA® ML Competition 2020-NCAAM
8,158,539
<count_missing_values><EOS>
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') submission_df['Pred'] = pred_df2['p1']*0.9+pred_df1['p1']*0.1 submission_df submission_df.to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
<SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<feature_engineering>
pd.set_option('max_columns', None) plt.style.use('seaborn') %matplotlib inline py.init_notebook_mode(connected=True) warnings.filterwarnings('ignore')
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
X['type'] = 'train'<feature_engineering>
class LGBWrapper(object): def __init__(self): self.model = lgb.LGBMClassifier() def fit(self, X_train, y_train, X_valid=None, y_valid=None, X_holdout=None, y_holdout=None, params=None): eval_set = [(X_train, y_train)] eval_names = ['train'] self.model = self.model.set_params(**params) if X_valid is not None: eval_set.append(( X_valid, y_valid)) eval_names.append('valid') if X_holdout is not None: eval_set.append(( X_holdout, y_holdout)) eval_names.append('holdout') if 'cat_cols' in params.keys() : cat_cols = [col for col in params['cat_cols'] if col in X_train.columns] if len(cat_cols)> 0: categorical_columns = params['cat_cols'] else: categorical_columns = 'auto' else: categorical_columns = 'auto' self.model.fit(X=X_train, y=y_train, eval_set=eval_set, eval_names=eval_names, verbose=params['verbose'], early_stopping_rounds=params['early_stopping_rounds']) self.best_score_ = self.model.best_score_ self.feature_importances_ = self.model.feature_importances_ def predict_proba(self, X_test): if self.model.objective == 'binary': return self.model.predict_proba(X_test, num_iteration=self.model.best_iteration_)[:, 1] else: return self.model.predict_proba(X_test, num_iteration=self.model.best_iteration_ )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
X_test['type'] = 'test'<concatenate>
class MainTransformer(BaseEstimator, TransformerMixin): def __init__(self, convert_cyclical: bool = False, create_interactions: bool = False, n_interactions: int = 20): self.convert_cyclical = convert_cyclical self.create_interactions = create_interactions self.feats_for_interaction = None self.n_interactions = n_interactions def fit(self, X, y=None): if self.create_interactions: pass return self def transform(self, X, y=None): data = copy.deepcopy(X) return data def fit_transform(self, X, y=None, **fit_params): data = copy.deepcopy(X) self.fit(data) return self.transform(data) class FeatureTransformer(BaseEstimator, TransformerMixin): def __init__(self, main_cat_features: list = None, num_cols: list = None): self.main_cat_features = main_cat_features self.num_cols = num_cols def fit(self, X, y=None): self.num_cols = [col for col in X.columns if 'sum' in col or 'mean' in col or 'max' in col or 'std' in col or 'attempt' in col] return self def transform(self, X, y=None): data = copy.deepcopy(X) return data def fit_transform(self, X, y=None, **fit_params): data = copy.deepcopy(X) self.fit(data) return self.transform(data )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
df = pd.concat([X, X_test] )<count_values>
class ClassifierModel(object): def __init__(self, columns: list = None, model_wrapper=None): self.columns = columns self.model_wrapper = model_wrapper self.result_dict = {} self.train_one_fold = False self.preprocesser = None def fit(self, X: pd.DataFrame, y, X_holdout: pd.DataFrame = None, y_holdout=None, folds=None, params: dict = None, eval_metric='auc', cols_to_drop: list = None, preprocesser=None, transformers: dict = None, adversarial: bool = False, plot: bool = True): self.cols_to_drop = cols_to_drop if folds is None: folds = KFold(n_splits=3, random_state=42) self.train_one_fold = True self.columns = X.columns if self.columns is None else self.columns self.feature_importances = pd.DataFrame(columns=['feature', 'importance']) self.trained_transformers = {k: [] for k in transformers} self.transformers = transformers self.models = [] self.folds_dict = {} self.eval_metric = eval_metric n_target = 1 if len(set(y.values)) == 2 else len(set(y.values)) self.oof = np.zeros(( len(X), n_target)) self.n_target = n_target X = X[self.columns] if X_holdout is not None: X_holdout = X_holdout[self.columns] if preprocesser is not None: self.preprocesser = preprocesser self.preprocesser.fit(X, y) X = self.preprocesser.transform(X, y) self.columns = X.columns.tolist() if X_holdout is not None: X_holdout = self.preprocesser.transform(X_holdout) for fold_n,(train_index, valid_index)in enumerate(folds.split(X, y)) : if X_holdout is not None: X_hold = X_holdout.copy() else: X_hold = None self.folds_dict[fold_n] = {} if params['verbose']: print(f'Fold {fold_n + 1} started at {time.ctime() }') self.folds_dict[fold_n] = {} X_train, X_valid = X.iloc[train_index], X.iloc[valid_index] y_train, y_valid = y.iloc[train_index], y.iloc[valid_index] if self.train_one_fold: X_train = X[self.original_columns] y_train = y X_valid = None y_valid = None datasets = {'X_train': X_train, 'X_valid': X_valid, 'X_holdout': X_hold, 'y_train': y_train} X_train, X_valid, X_hold = self.transform_(datasets, cols_to_drop) self.folds_dict[fold_n]['columns'] = X_train.columns.tolist() model = copy.deepcopy(self.model_wrapper) if adversarial: X_new1 = X_train.copy() if X_valid is not None: X_new2 = X_valid.copy() elif X_holdout is not None: X_new2 = X_holdout.copy() X_new = pd.concat([X_new1, X_new2], axis=0) y_new = np.hstack(( np.zeros(( X_new1.shape[0])) , np.ones(( X_new2.shape[0])))) X_train, X_valid, y_train, y_valid = train_test_split(X_new, y_new) model.fit(X_train, y_train, X_valid, y_valid, X_hold, y_holdout, params=params) self.folds_dict[fold_n]['scores'] = model.best_score_ if self.oof.shape[0] != len(X): self.oof = np.zeros(( X.shape[0], self.oof.shape[1])) if not adversarial: self.oof[valid_index] = model.predict_proba(X_valid ).reshape(-1, n_target) fold_importance = pd.DataFrame(list(zip(X_train.columns, model.feature_importances_)) , columns=['feature', 'importance']) self.feature_importances = self.feature_importances.append(fold_importance) self.models.append(model) self.feature_importances['importance'] = self.feature_importances['importance'].astype(float) self.calc_scores_() if plot: print(classification_report(y,(self.oof > 0.5)* 1)) fig, ax = plt.subplots(figsize=(16, 12)) plt.subplot(2, 2, 1) self.plot_feature_importance(top_n=25) plt.subplot(2, 2, 2) self.plot_metric() plt.subplot(2, 2, 3) g = sns.heatmap(confusion_matrix(y,(self.oof > 0.5)* 1), annot=True, cmap=plt.cm.Blues,fmt="d") g.set(ylim=(-0.5, 4), xlim=(-0.5, 4), title='Confusion matrix') plt.subplot(2, 2, 4) plt.hist(self.oof) plt.xticks(range(self.n_target), range(self.n_target)) plt.title('Distribution of oof predictions'); def transform_(self, datasets, cols_to_drop): for name, transformer in self.transformers.items() : transformer.fit(datasets['X_train'], datasets['y_train']) datasets['X_train'] = transformer.transform(datasets['X_train']) if datasets['X_valid'] is not None: datasets['X_valid'] = transformer.transform(datasets['X_valid']) if datasets['X_holdout'] is not None: datasets['X_holdout'] = transformer.transform(datasets['X_holdout']) self.trained_transformers[name].append(transformer) if cols_to_drop is not None: cols_to_drop = [col for col in cols_to_drop if col in datasets['X_train'].columns] self.cols_to_drop = cols_to_drop datasets['X_train'] = datasets['X_train'].drop(cols_to_drop, axis=1) if datasets['X_valid'] is not None: datasets['X_valid'] = datasets['X_valid'].drop(cols_to_drop, axis=1) if datasets['X_holdout'] is not None: datasets['X_holdout'] = datasets['X_holdout'].drop(cols_to_drop, axis=1) return datasets['X_train'], datasets['X_valid'], datasets['X_holdout'] def calc_scores_(self): print() datasets = [k for k, v in [v['scores'] for k, v in self.folds_dict.items() ][0].items() if len(v)> 0] self.scores = {} for d in datasets: scores = [v['scores'][d][self.eval_metric] for k, v in self.folds_dict.items() ] print(f"CV mean score on {d}: {np.mean(scores):.4f} +/- {np.std(scores):.4f} std.") self.scores[d] = np.mean(scores) def predict(self, X_test, averaging: str = 'usual'): full_prediction = np.zeros(( X_test.shape[0], self.oof.shape[1])) if self.preprocesser is not None: X_test = self.preprocesser.transform(X_test) for i in range(len(self.models)) : X_t = X_test.copy() for name, transformers in self.trained_transformers.items() : X_t = transformers[i].transform(X_t) if self.cols_to_drop: cols_to_drop = [col for col in self.cols_to_drop if col in X_t.columns] X_t = X_t.drop(cols_to_drop, axis=1) y_pred = self.models[i].predict_proba(X_t[self.folds_dict[i]['columns']] ).reshape(-1, full_prediction.shape[1]) if full_prediction.shape[0] != len(y_pred): full_prediction = np.zeros(( y_pred.shape[0], self.oof.shape[1])) if averaging == 'usual': full_prediction += y_pred elif averaging == 'rank': full_prediction += pd.Series(y_pred ).rank().values return full_prediction / len(self.models) def plot_feature_importance(self, drop_null_importance: bool = True, top_n: int = 10): top_feats = self.get_top_features(drop_null_importance, top_n) feature_importances = self.feature_importances.loc[self.feature_importances['feature'].isin(top_feats)] feature_importances['feature'] = feature_importances['feature'].astype(str) top_feats = [str(i)for i in top_feats] sns.barplot(data=feature_importances, x='importance', y='feature', orient='h', order=top_feats) plt.title('Feature importances') def get_top_features(self, drop_null_importance: bool = True, top_n: int = 10): grouped_feats = self.feature_importances.groupby(['feature'])['importance'].mean() if drop_null_importance: grouped_feats = grouped_feats[grouped_feats != 0] return list(grouped_feats.sort_values(ascending=False ).index)[:top_n] def plot_metric(self): full_evals_results = pd.DataFrame() for model in self.models: evals_result = pd.DataFrame() for k in model.model.evals_result_.keys() : evals_result[k] = model.model.evals_result_[k][self.eval_metric] evals_result = evals_result.reset_index().rename(columns={'index': 'iteration'}) full_evals_results = full_evals_results.append(evals_result) full_evals_results = full_evals_results.melt(id_vars=['iteration'] ).rename(columns={'value': self.eval_metric, 'variable': 'dataset'}) full_evals_results[self.eval_metric] = np.abs(full_evals_results[self.eval_metric]) sns.lineplot(data=full_evals_results, x='iteration', y=self.eval_metric, hue='dataset') plt.title('Training progress' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
df.type.value_counts()<categorify>
data_dict = {} for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/*'): name = i.split('/')[-1].split('.')[0] if name != 'MTeamSpellings': data_dict[name] = pd.read_csv(i) else: data_dict[name] = pd.read_csv(i, encoding='cp1252' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
le = LabelEncoder()<data_type_conversions>
data_dict['MNCAATourneySeeds'] = data_dict['MNCAATourneySeeds'].loc[data_dict['MNCAATourneySeeds']['Season'] <= 2014] data_dict['MNCAATourneySeeds']['Seed'] = data_dict['MNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3])) data_dict['MNCAATourneySeeds'] = data_dict['MNCAATourneySeeds'][['Season', 'TeamID', 'Seed']] data_dict['MNCAATourneyCompactResults'] = data_dict['MNCAATourneyCompactResults'][['Season','WTeamID', 'LTeamID']] data_dict['MNCAATourneyCompactResults'] = data_dict['MNCAATourneyCompactResults'].loc[data_dict['MNCAATourneyCompactResults']['Season'] <= 2014] df = pd.merge(data_dict['MNCAATourneyCompactResults'], data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID']) df = pd.merge(df, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID']) df = df.drop(['TeamID_x', 'TeamID_y'], axis=1) df.columns = ['Season', 'WTeamID', 'LTeamID', 'WSeed', 'LSeed'] df.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
df[['Sex','Ticket','Cabin','Embarked']] = df[['Sex','Ticket','Cabin','Embarked']].apply(lambda x: le.fit_transform(x.astype('str')) )<drop_column>
team_win_score = data_dict['MRegularSeasonCompactResults'].groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count']} ).reset_index() team_win_score.columns = ['Season', 'WTeamID', 'WScore_sum', 'WScore_count'] team_loss_score = data_dict['MRegularSeasonCompactResults'].groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count']} ).reset_index() team_loss_score.columns = ['Season', 'LTeamID', 'LScore_sum', 'LScore_count'] df = pd.merge(df, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID']) df = pd.merge(df, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID']) df = pd.merge(df, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID']) df = pd.merge(df, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID']) df.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True) df.head()
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
X = df[df.type == "train"].drop("type", axis = 1) X.head()<drop_column>
df['x_score'] = df['WScore_sum_x'] + df['LScore_sum_y'] df['y_score'] = df['WScore_sum_y'] + df['LScore_sum_x'] df['x_count'] = df['WScore_count_x'] + df['LScore_count_y'] df['y_count'] = df['WScore_count_y'] + df['LScore_count_x']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
X_test_orig = df[df.type == "test"].drop("type", axis = 1) X_test_orig.head()<train_model>
df_win = df.copy() df_los = df.copy() df_win = df_win[['WSeed', 'LSeed', 'x_score', 'y_score', 'x_count', 'y_count']] df_los = df_los[['LSeed', 'WSeed', 'y_score', 'x_score', 'y_count', 'x_count']] df_win.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2'] df_los.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.3, random_state=42) xg_cl = xgb.XGBClassifier(objective='binary:logistic', n_estimators=10, seed=42) xg_cl.fit(X_train,y_train) preds = xg_cl.predict(X_test) accuracy = float(np.sum(preds==y_test[['Survived']].values.ravel())) /y_test.shape[0] print("accuracy: %f" %(accuracy))<choose_model_class>
df_win['Seed_diff'] = df_win['Seed_1'] - df_win['Seed_2'] df_win['Score_diff'] = df_win['Score_1'] - df_win['Score_2'] df_los['Seed_diff'] = df_los['Seed_1'] - df_los['Seed_2'] df_los['Score_diff'] = df_los['Score_1'] - df_los['Score_2'] df_win['Count_diff'] = df_win['Count_1'] - df_win['Count_2'] df_win['Mean_score1'] = df_win['Score_1'] / df_win['Count_1'] df_win['Mean_score2'] = df_win['Score_2'] / df_win['Count_2'] df_win['Mean_score_diff'] = df_win['Mean_score1'] - df_win['Mean_score2'] df_los['Count_diff'] = df_los['Count_1'] - df_los['Count_2'] df_los['Mean_score1'] = df_los['Score_1'] / df_los['Count_1'] df_los['Mean_score2'] = df_los['Score_2'] / df_los['Count_2'] df_los['Mean_score_diff'] = df_los['Mean_score1'] - df_los['Mean_score2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
gbm_param_grid = { 'num_rounds': [1,5, 10, 15, 20], 'eta_vals' : [0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9], 'colsample_bytree': [0.3,0.4, 0.5, 0.7, 0.9], 'n_estimators': [5,10,15,20,25], 'max_depth': range(2, 20) } gbm = xgb.XGBClassifier(objective='binary:logistic', seed=42) randomized_accuracy = RandomizedSearchCV(param_distributions=gbm_param_grid, estimator = gbm, scoring = "accuracy", n_iter = 5, cv = 4, verbose = 1) randomized_accuracy.fit(X,y) print("Best parameters found: ", randomized_accuracy.best_params_) print("Best Accuracy Score: ", np.sqrt(np.abs(randomized_accuracy.best_score_))) <predict_on_test>
df_win['result'] = 1 df_los['result'] = 0 data = pd.concat(( df_win, df_los)).reset_index(drop=True )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
y_predicted = randomized_accuracy.best_estimator_.predict(X_test_orig )<create_dataframe>
for col in ['Score_1', 'Score_2', 'Count_1', 'Count_2', 'Score_diff', 'Count_diff']: print(col) data[col] = data[col].fillna(0 ).astype(int )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
sub = pd.DataFrame({"PassengerId":test.PassengerId, "Survived":y_predicted} )<save_to_csv>
n_fold = 5 folds = RepeatedStratifiedKFold(n_splits=n_fold)
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
sub.to_csv('submission.csv', index = False) sub.head()<import_modules>
X = data.drop(['result'], axis=1) y = data['result']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns from sklearn.preprocessing import PowerTransformer<load_from_csv>
param = {'n_estimators':10000, 'num_leaves': 400, 'min_child_weight': 0.034, 'feature_fraction': 0.379, 'bagging_fraction': 0.418, 'min_data_in_leaf': 106, 'objective': 'binary', 'max_depth': -1, 'learning_rate': 0.007, "boosting_type": "gbdt", "metric": 'binary_logloss', "verbosity": 10, 'reg_alpha': 0.3899, 'reg_lambda': 0.648, 'random_state': 47, 'task':'train', 'nthread':-1, 'verbose': 100, 'early_stopping_rounds': 30, 'eval_metric': 'binary_logloss' } cat_cols = [] mt = MainTransformer(create_interactions=False) ft = FeatureTransformer() transformers = {'ft': ft} lgb_model = ClassifierModel(model_wrapper=LGBWrapper()) lgb_model.fit(X=X, y=y, folds=folds, params=param, preprocesser=mt, transformers=transformers, eval_metric='binary_logloss', cols_to_drop=None, plot=True )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
train = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/train.csv") test_x = pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/test.csv") train.columns<prepare_x_and_y>
test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') test = test.drop(['Pred'], axis=1) test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0])) test['Team1'] = test['ID'].apply(lambda x: int(x.split('_')[1])) test['Team2'] = test['ID'].apply(lambda x: int(x.split('_')[2])) test = pd.merge(test, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'Team1'], right_on=['Season', 'TeamID']) test = pd.merge(test, data_dict['MNCAATourneySeeds'], how='left', left_on=['Season', 'Team2'], right_on=['Season', 'TeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'Team1'], right_on=['Season', 'WTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'Team2'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'Team1'], right_on=['Season', 'LTeamID']) test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'Team2'], right_on=['Season', 'WTeamID']) test['seed_diff'] = test['Seed_x'] - test['Seed_y']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
train_x = train.drop("SalePrice",axis=1) train_y = train["SalePrice"] all_data = pd.concat([train_x,test_x],axis=0,sort=True) train_ID = train['Id'] test_ID = test_x['Id'] all_data.drop("Id", axis = 1, inplace = True) print("train_x: "+str(train_x.shape)) print("train_y: "+str(train_y.shape)) print("test_x: "+str(test_x.shape)) print("all_data: "+str(all_data.shape))<sort_values>
test['x_score'] = test['WScore_sum_x'] + test['LScore_sum_y'] test['y_score'] = test['WScore_sum_y'] + test['LScore_sum_x'] test['x_count'] = test['WScore_count_x'] + test['LScore_count_y'] test['y_count'] = test['WScore_count_y'] + test['WScore_count_x']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
all_data_na = all_data.isnull().sum() [all_data.isnull().sum() >0].sort_values(ascending=False) all_data_na<sort_values>
test = test[['Seed_x', 'Seed_y', 'x_score', 'y_score', 'x_count', 'y_count']] test.columns = ['Seed_1', 'Seed_2', 'Score_1', 'Score_2', 'Count_1', 'Count_2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
na_col_list = all_data.isnull().sum() [all_data.isnull().sum() >0].index.tolist() all_data[na_col_list].dtypes.sort_values() <data_type_conversions>
test['Seed_diff'] = test['Seed_1'] - test['Seed_2'] test['Score_diff'] = test['Score_1'] - test['Score_2'] test['Seed_diff'] = test['Seed_1'] - test['Seed_2'] test['Score_diff'] = test['Score_1'] - test['Score_2'] test['Count_diff'] = test['Count_1'] - test['Count_2'] test['Mean_score1'] = test['Score_1'] / test['Count_1'] test['Mean_score2'] = test['Score_2'] / test['Count_2'] test['Mean_score_diff'] = test['Mean_score1'] - test['Mean_score2'] test['Count_diff'] = test['Count_1'] - test['Count_2'] test['Mean_score1'] = test['Score_1'] / test['Count_1'] test['Mean_score2'] = test['Score_2'] / test['Count_2'] test['Mean_score_diff'] = test['Mean_score1'] - test['Mean_score2']
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
all_data['LotFrontage'] = all_data.groupby('Neighborhood')['LotFrontage'].transform(lambda x: x.fillna(x.median())) float_list = all_data[na_col_list].dtypes[all_data[na_col_list].dtypes == "float64"].index.tolist() obj_list = all_data[na_col_list].dtypes[all_data[na_col_list].dtypes == "object"].index.tolist() all_data[float_list] = all_data[float_list].fillna(0) all_data[obj_list] = all_data[obj_list].fillna("None") all_data.isnull().sum() [all_data.isnull().sum() > 0]<data_type_conversions>
test_preds = lgb_model.predict(test )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
all_data['MSSubClass'] = all_data['MSSubClass'].apply(str) all_data['YrSold'] = all_data['YrSold'].astype(str) all_data['MoSold'] = all_data['MoSold'].astype(str )<filter>
submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MSampleSubmissionStage1_2020.csv') submission_df['Pred'] = test_preds submission_df
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,982,339
<feature_engineering><EOS>
submission_df.to_csv('submission.csv', index=False )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
<SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-mens-tournament<count_values>
import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.model_selection import GridSearchCV
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
all_data.dtypes.value_counts()<categorify>
tourney_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneyCompactResults.csv') tourney_seed = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MNCAATourneySeeds.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
all_data = pd.get_dummies(all_data,columns=cal_list) all_data.shape<import_modules>
tourney_result = tourney_result.drop(['DayNum', 'WScore', 'LScore', 'WLoc', 'NumOT'], axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.metrics import mean_squared_error import xgboost as xgb from sklearn.model_selection import GridSearchCV import lightgbm as lgb<split>
tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'WSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result = pd.merge(tourney_result, tourney_seed, left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], how='left') tourney_result.rename(columns={'Seed':'LSeed'}, inplace=True) tourney_result = tourney_result.drop('TeamID', axis=1) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
train_x, valid_x, train_y, valid_y = train_test_split( train_x, train_y, test_size=0.3, random_state=0 )<train_model>
def get_seed(x): return int(x[1:3]) tourney_result['WSeed'] = tourney_result['WSeed'].map(lambda x: get_seed(x)) tourney_result['LSeed'] = tourney_result['LSeed'].map(lambda x: get_seed(x)) tourney_result
Google Cloud & NCAA® ML Competition 2020-NCAAM
7,985,375
dtrain = xgb.DMatrix(train_x, label=train_y) dvalid = xgb.DMatrix(valid_x,label=valid_y) num_round = 5000 evallist = [(dvalid, 'eval'),(dtrain, 'train')] evals_result = {} param = { 'max_depth': 3, 'eta': 0.01, 'objective': 'reg:squarederror', } bst = xgb.train( param, dtrain, num_round, evallist, evals_result=evals_result, early_stopping_rounds = 1000 )<save_to_csv>
season_result = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament/MDataFiles_Stage1/MRegularSeasonCompactResults.csv' )
Google Cloud & NCAA® ML Competition 2020-NCAAM