kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
11,148,955
n_test_df = pd.get_dummies(n_test_df, drop_first=True )<split>
with strategy.scope() : x_input = tf.keras.Input(shape=(MAX_LEN,), dtype=tf.int32, name="input_ids") x = backbone(x_input)[0] x = x[:, 0, :] x = tf.keras.layers.Dense(3, activation='softmax' )(x) model = tf.keras.models.Model(inputs=x_input, outputs=x )
Contradictory, My Dear Watson
11,148,955
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42 )<define_search_space>
model.compile( tf.keras.optimizers.Adam(lr=RATE), loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Contradictory, My Dear Watson
11,148,955
parameters = {"learning_rate": [0.1, 0.01, 0.001], "gamma" : [0.01, 0.1, 0.3, 0.5, 1, 1.5, 2], "max_depth": [2, 4, 7, 10], "colsample_bytree": [0.3, 0.6, 0.8, 1.0], "subsample": [0.2, 0.4, 0.5, 0.6, 0.7], "reg_alpha": [0, 0.5, 1], "reg_lambda": [1, 1.5, 2, 3, 4.5], "min_child_weight": [1, 3, 5, 7], "n_estimators": [100, 250, 500, 1000]} xgb_rscv = RandomizedSearchCV(XGBClassifier() , param_distributions = parameters, cv = 7, verbose = 3, random_state = 40) model_rscv = xgb_rscv.fit(X_train, y_train) model_rscv.best_params_<train_model>
steps = len(x_train)// BATCH_SIZE history = model.fit( train_dataset, validation_data=valid_dataset, epochs=EPOCHS, steps_per_epoch=steps, )
Contradictory, My Dear Watson
11,148,955
tuned_model = XGBClassifier(booster='gbtree', subsample= 0.7, reg_lambda= 3, reg_alpha= 1, n_estimators= 100, min_child_weight= 3, max_depth= 10, learning_rate = 0.001, gamma= 0.01, colsample_bytree= 0.6) tuned_model.fit(X_train, y_train )<compute_test_metric>
test_preds = model.predict(test_dataset, verbose=1) submission['prediction'] = test_preds.argmax(axis=1 )
Contradictory, My Dear Watson
11,148,955
tuned_model.score(X_test, y_test )<save_to_csv>
submission.to_csv('submission.csv', index=False )
Contradictory, My Dear Watson
11,148,955
predictions = tuned_model.predict(n_test_df) output = pd.DataFrame({'PassengerId': test_df.PassengerId, 'Survived': predictions}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )<install_modules>
submission.to_csv('submission.csv', index=False )
Contradictory, My Dear Watson
11,164,561
%%time !cp.. /input/rapids/rapids.0.13.0 /opt/conda/envs/rapids.tar.gz !cd /opt/conda/envs/ && tar -xzvf rapids.tar.gz sys.path = ["/opt/conda/envs/rapids/lib"] + ["/opt/conda/envs/rapids/lib/python3.6"] + ["/opt/conda/envs/rapids/lib/python3.6/site-packages"] + sys.path !cp /opt/conda/envs/rapids/lib/libxgboost.so /opt/conda/lib/<import_modules>
os.environ["WANDB_API_KEY"] = "0"
Contradictory, My Dear Watson
11,164,561
import cupy, cudf, cuml from cuml.linear_model import LogisticRegression from cuml.ensemble import RandomForestClassifier from cuml.svm import SVC import os<load_from_csv>
SEED=42 max_len = 48 EPOCHS = 3 BATCH_SIZE = 64 LR = 1e-5
Contradictory, My Dear Watson
11,164,561
train = cudf.read_csv('/kaggle/input/titanic/train.csv') test = cudf.read_csv('/kaggle/input/titanic/test.csv' )<drop_column>
from transformers import BertTokenizer, TFBertModel,TFAutoModel,TFXLMRobertaModel, AutoTokenizer import matplotlib.pyplot as plt import tensorflow as tf
Contradictory, My Dear Watson
11,164,561
train = train.drop(columns= ['Name','Ticket','Cabin']) test = test.drop(columns= ['Name','Ticket','Cabin'] )<data_type_conversions>
train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv" )
Contradictory, My Dear Watson
11,164,561
train['Embarked_S'] =(train['Embarked'] == 'S' ).astype(int) train['Embarked_C'] =(train['Embarked'] == 'C' ).astype(int) train['Embarked_Q'] =(train['Embarked'] == 'Q' ).astype(int) train['Gender'] =(train['Sex'] == 'male' ).astype(int )<data_type_conversions>
model_name = 'jplu/tf-xlm-roberta-large' tokenizer = AutoTokenizer.from_pretrained(model_name)
Contradictory, My Dear Watson
11,164,561
test['Embarked_S'] =(test['Embarked'] == 'S' ).astype(int) test['Embarked_C'] =(test['Embarked'] == 'C' ).astype(int) test['Embarked_Q'] =(test['Embarked'] == 'Q' ).astype(int) test['Gender'] =(test['Sex'] == 'male' ).astype(int )<drop_column>
def encode_sentence(s): tokens = list(tokenizer.tokenize(s)) tokens.append('[SEP]') return tokenizer.convert_tokens_to_ids(tokens )
Contradictory, My Dear Watson
11,164,561
train = train.drop(columns= ['Embarked','Sex',]) test = test.drop(columns= ['Embarked','Sex',]) <train_model>
encode_sentence("I love machine learning" )
Contradictory, My Dear Watson
11,164,561
train.fillna(0,inplace=True) test.fillna(0,inplace=True )<prepare_x_and_y>
def bert_encode(hypotheses, premises, tokenizer): num_examples = len(hypotheses) sentence1 = tf.ragged.constant([ encode_sentence(s) for s in np.array(hypotheses)]) sentence2 = tf.ragged.constant([ encode_sentence(s) for s in np.array(premises)]) cls = [tokenizer.convert_tokens_to_ids(['[CLS]'])]*sentence1.shape[0] input_word_ids = tf.concat([cls, sentence1, sentence2], axis=-1) input_mask = tf.ones_like(input_word_ids ).to_tensor() type_cls = tf.zeros_like(cls) type_s1 = tf.zeros_like(sentence1) type_s2 = tf.ones_like(sentence2) input_type_ids = tf.concat( [type_cls, type_s1, type_s2], axis=-1 ).to_tensor() inputs = { 'input_word_ids': input_word_ids.to_tensor() , 'input_mask': input_mask, 'input_type_ids': input_type_ids} return inputs
Contradictory, My Dear Watson
11,164,561
X = train.drop(columns = ['Survived']) y = train['Survived'].astype('int32' )<train_model>
train_input = bert_encode(train.premise.values, train.hypothesis.values, tokenizer )
Contradictory, My Dear Watson
11,164,561
model = RandomForestClassifier(n_estimators = 100, max_depth = 6) model.fit(X, y )<predict_on_test>
def build_model() : bert_encoder = TFXLMRobertaModel.from_pretrained(model_name) input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_mask") input_type_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name="input_type_ids") embedding = bert_encoder([input_word_ids, input_mask, input_type_ids])[0] output = tf.keras.layers.Dense(3, activation='softmax' )(embedding[:,0,:]) model = tf.keras.Model(inputs=[input_word_ids, input_mask, input_type_ids], outputs=output) model.compile(tf.keras.optimizers.Adam(lr=LR), loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model
Contradictory, My Dear Watson
11,164,561
yhat_train = model.predict(X, predict_model = 'CPU') yhat_test = model.predict(test, predict_model = 'CPU' )<count_values>
eas = EarlyStopping(monitor='val_loss', min_delta=0.001, patience=3, verbose=1, mode='min', baseline=None, restore_best_weights=True )
Contradictory, My Dear Watson
11,164,561
print(sum(y == yhat_train)/ len(y))<save_to_csv>
model.fit(train_input, train.label.values, epochs = EPOCHS, verbose = 1, batch_size = BATCH_SIZE, validation_split = 0.2, callbacks = [eas])
Contradictory, My Dear Watson
11,164,561
submission = cudf.DataFrame({'PassengerId': test.PassengerId, 'Survived': yhat_test}) submission.to_csv('submission.csv', index = False )<load_from_csv>
test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv") test_input = bert_encode(test.premise.values, test.hypothesis.values, tokenizer )
Contradictory, My Dear Watson
11,164,561
train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head() <load_from_csv>
predictions = [np.argmax(i)for i in model.predict(test_input)]
Contradictory, My Dear Watson
11,164,561
test_data = pd.read_csv("/kaggle/input/titanic/test.csv") test_data.head(20 )<feature_engineering>
submission = test.id.copy().to_frame() submission['prediction'] = predictions
Contradictory, My Dear Watson
11,164,561
<feature_engineering><EOS>
submission.to_csv("submission.csv", index = False )
Contradictory, My Dear Watson
11,093,125
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<categorify>
os.environ["WANDB_API_KEY"] = "0" !pip uninstall -y transformers !pip install transformers !pip install nlp strategy = None
Contradictory, My Dear Watson
11,093,125
def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age<feature_engineering>
original_train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") original_train = sklearn.utils.shuffle(original_train) original_train = sklearn.utils.shuffle(original_train) validation_ratio = 0.2 nb_valid_examples = max(1, int(len(original_train)* validation_ratio)) original_valid = original_train[:nb_valid_examples] original_train = original_train[nb_valid_examples:]
Contradictory, My Dear Watson
11,093,125
train_data['Age'] = train_data[['Age','Pclass']].apply(impute_age,axis=1 )<feature_engineering>
print(f"original - training: {len(original_train)} examples") original_train.head(10 )
Contradictory, My Dear Watson
11,093,125
test_data['Age'] = test_data[['Age','Pclass']].apply(impute_age,axis=1 )<save_to_csv>
print(f"original - validation: {len(original_valid)} examples") original_valid.head(10 )
Contradictory, My Dear Watson
11,093,125
y = train_data["Survived"] features = ["Pclass","Sex","Age", "Family_tot", "Fare"] X = pd.get_dummies(train_data[features]) X_test = pd.get_dummies(test_data[features]) model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1) model.fit(X, y) predictions = model.predict(X_test) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )<set_options>
original_test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv") print(f"original - test: {len(original_test)} examples") original_test.head(10 )
Contradictory, My Dear Watson
11,093,125
if not sys.warnoptions: warnings.simplefilter("ignore") warnings.filterwarnings("ignore") <compute_test_metric>
mnli = nlp.load_dataset(path='glue', name='mnli' )
Contradictory, My Dear Watson
11,093,125
def RMSLE(pred,actual): return np.sqrt(np.mean(np.power(( np.log(pred+1)-np.log(actual+1)) ,2)) )<load_from_csv>
print(mnli, ' ') print('The split names in MNLI dataset:') for k in mnli: print(' ', k) print(" mnli['train'] is ", type(mnli['train'])) mnli['train']
Contradictory, My Dear Watson
11,093,125
pd.set_option('mode.chained_assignment', None) test = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/test.csv") train = pd.read_csv("/kaggle/input/covid19-global-forecasting-week-3/train.csv") train['Province_State'].fillna('', inplace=True) test['Province_State'].fillna('', inplace=True) train['Date'] = pd.to_datetime(train['Date']) test['Date'] = pd.to_datetime(test['Date']) train = train.sort_values(['Country_Region','Province_State','Date']) test = test.sort_values(['Country_Region','Province_State','Date'] )<feature_engineering>
print('The number of training examples in mnli dataset:', mnli['train'].num_rows) print('The number of validation examples in mnli dataset - part 1:', mnli['validation_matched'].num_rows) print('The number of validation examples in mnli dataset - part 2:', mnli['validation_mismatched'].num_rows, ' ') print('The class names in mnli dataset:', mnli['train'].features['label'].names) print('The feature names in mnli dataset:', list(mnli['train'].features.keys()), ' ') for elt in mnli['train']: print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', mnli['train'].features['label'].names[elt['label']]) print('idx', elt['idx']) print('-' * 80) if elt['idx'] >= 10: break
Contradictory, My Dear Watson
11,093,125
feature_day = [1,20,50,100,200,500,1000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:,'Number day from ' + str(day)+ ' case'] = 0 if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0): fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)) : if(data['Date'].iloc[i] > fromday): day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day)+ ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique() : for province in train[(train['Country_Region'] == country)]['Province_State'].unique() : df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day,reverse = True): feature_use = 'Number day from ' + str(day)+ ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if(X_train[X_train[feature_use] > 0].shape[0] >= 20): break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = ExponentialSmoothing(adjusted_y_train_confirmed, trend = 'additive' ).fit() y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0) model = ExponentialSmoothing(adjusted_y_train_fatalities, trend = 'additive' ).fit() y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left') df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0 df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0 df_val_1 = df_val.copy()<feature_engineering>
mnli_train_df = pd.DataFrame(mnli['train']) mnli_valid_1_df = pd.DataFrame(mnli['validation_matched']) mnli_valid_2_df = pd.DataFrame(mnli['validation_mismatched']) mnli_train_df = mnli_train_df[['premise', 'hypothesis', 'label']] mnli_valid_1_df = mnli_valid_1_df[['premise', 'hypothesis', 'label']] mnli_valid_2_df = mnli_valid_2_df[['premise', 'hypothesis', 'label']] mnli_train_df['lang_abv'] = 'en' mnli_valid_1_df['lang_abv'] = 'en' mnli_valid_2_df['lang_abv'] = 'en'
Contradictory, My Dear Watson
11,093,125
feature_day = [1,20,50,100,200,500,1000] def CreateInput(data): feature = [] for day in feature_day: data.loc[:,'Number day from ' + str(day)+ ' case'] = 0 if(train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].count() > 0): fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['ConfirmedCases'] < day)]['Date'].max() else: fromday = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].min() for i in range(0, len(data)) : if(data['Date'].iloc[i] > fromday): day_denta = data['Date'].iloc[i] - fromday data['Number day from ' + str(day)+ ' case'].iloc[i] = day_denta.days feature = feature + ['Number day from ' + str(day)+ ' case'] return data[feature] pred_data_all = pd.DataFrame() for country in train['Country_Region'].unique() : for province in train[(train['Country_Region'] == country)]['Province_State'].unique() : df_train = train[(train['Country_Region'] == country)&(train['Province_State'] == province)] df_test = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] X_train = CreateInput(df_train) y_train_confirmed = df_train['ConfirmedCases'].ravel() y_train_fatalities = df_train['Fatalities'].ravel() X_pred = CreateInput(df_test) for day in sorted(feature_day,reverse = True): feature_use = 'Number day from ' + str(day)+ ' case' idx = X_train[X_train[feature_use] == 0].shape[0] if(X_train[X_train[feature_use] > 0].shape[0] >= 20): break adjusted_X_train = X_train[idx:][feature_use].values.reshape(-1, 1) adjusted_y_train_confirmed = y_train_confirmed[idx:] adjusted_y_train_fatalities = y_train_fatalities[idx:] idx = X_pred[X_pred[feature_use] == 0].shape[0] adjusted_X_pred = X_pred[idx:][feature_use].values.reshape(-1, 1) pred_data = test[(test['Country_Region'] == country)&(test['Province_State'] == province)] max_train_date = train[(train['Country_Region'] == country)&(train['Province_State'] == province)]['Date'].max() min_test_date = pred_data['Date'].min() model = SARIMAX(adjusted_y_train_confirmed, order=(1,1,0), measurement_error=True ).fit(disp=False) y_hat_confirmed = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_confirmed = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['ConfirmedCases'].values y_hat_confirmed = np.concatenate(( y_train_confirmed,y_hat_confirmed), axis = 0) model = SARIMAX(adjusted_y_train_fatalities, order=(1,1,0), measurement_error=True ).fit(disp=False) y_hat_fatalities = model.forecast(pred_data[pred_data['Date'] > max_train_date].shape[0]) y_train_fatalities = train[(train['Country_Region'] == country)&(train['Province_State'] == province)&(train['Date'] >= min_test_date)]['Fatalities'].values y_hat_fatalities = np.concatenate(( y_train_fatalities,y_hat_fatalities), axis = 0) pred_data['ConfirmedCases_hat'] = y_hat_confirmed pred_data['Fatalities_hat'] = y_hat_fatalities pred_data_all = pred_data_all.append(pred_data) df_val = pd.merge(pred_data_all,train[['Date','Country_Region','Province_State','ConfirmedCases','Fatalities']],on=['Date','Country_Region','Province_State'], how='left') df_val.loc[df_val['Fatalities_hat'] < 0,'Fatalities_hat'] = 0 df_val.loc[df_val['ConfirmedCases_hat'] < 0,'ConfirmedCases_hat'] = 0 df_val_2 = df_val.copy()<compute_test_metric>
snli = nlp.load_dataset(path='snli') print('The number of training examples in snli dataset:', snli['train'].num_rows) print('The number of validation examples in snli dataset:', snli['validation'].num_rows, ' ') print('The class names in snli dataset:', snli['train'].features['label'].names) print('The feature names in snli dataset:', list(snli['train'].features.keys()), ' ') for idx, elt in enumerate(snli['train']): print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', snli['train'].features['label'].names[elt['label']]) print('-' * 80) if idx >= 10: break
Contradictory, My Dear Watson
11,093,125
method_list = ['Exponential Smoothing','SARIMA'] method_val = [df_val_1,df_val_2] for i in range(0,2): df_val = method_val[i] method_score = [method_list[i]] + [RMSLE(df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases'].values,df_val[(df_val['ConfirmedCases'].isnull() == False)]['ConfirmedCases_hat'].values)] + [RMSLE(df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities'].values,df_val[(df_val['Fatalities'].isnull() == False)]['Fatalities_hat'].values)] print(method_score )<save_to_csv>
snli_train_df = pd.DataFrame(snli['train']) snli_valid_df = pd.DataFrame(snli['validation']) snli_train_df = snli_train_df[['premise', 'hypothesis', 'label']] snli_valid_df = snli_valid_df[['premise', 'hypothesis', 'label']] snli_train_df['lang_abv'] = 'en' snli_valid_df['lang_abv'] = 'en'
Contradictory, My Dear Watson
11,093,125
df_val = df_val_2 submission = df_val[['ForecastId','ConfirmedCases_hat','Fatalities_hat']] submission.columns = ['ForecastId','ConfirmedCases','Fatalities'] submission.to_csv('submission.csv', index=False) submission<set_options>
xnli = nlp.load_dataset(path='xnli') print('The number of validation examples in xnli dataset:', xnli['validation'].num_rows, ' ') print('The class names in xnli dataset:', xnli['validation'].features['label'].names) print('The feature names in xnli dataset:', list(xnli['validation'].features.keys()), ' ') for idx, elt in enumerate(xnli['validation']): print('premise:', elt['premise']) print('hypothesis:', elt['hypothesis']) print('label:', elt['label']) print('label name:', xnli['validation'].features['label'].names[elt['label']]) print('-' * 80) if idx >= 3: break
Contradictory, My Dear Watson
11,093,125
<load_from_csv><EOS>
buffer = { 'premise': [], 'hypothesis': [], 'label': [], 'lang_abv': [] } for x in xnli['validation']: label = x['label'] for idx, lang in enumerate(x['hypothesis']['language']): hypothesis = x['hypothesis']['translation'][idx] premise = x['premise'][lang] buffer['premise'].append(premise) buffer['hypothesis'].append(hypothesis) buffer['label'].append(label) buffer['lang_abv'].append(lang) xnli_valid_df = pd.DataFrame(buffer) xnli_valid_df = xnli_valid_df[['premise', 'hypothesis', 'label', 'lang_abv']]
Contradictory, My Dear Watson
10,974,778
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<drop_column>
!pip install transformers==3.0.2 !pip install nlp
Contradictory, My Dear Watson
10,974,778
df = df.drop(["Name","Ticket"], axis=1 )<filter>
mnli = load_dataset(path='glue', name='mnli')
Contradictory, My Dear Watson
10,974,778
missing_columns = df.columns[df.isnull().any() ] df.isnull().sum(axis=0 ).loc[missing_columns]<drop_column>
xnli = pd.read_csv('.. /input/xnli-organized/xnli_df.csv') xnli = xnli.rename(columns = {'Unnamed: 0': 'lang_abv', '0' : 'premise', '1': 'hypothesis', '0.1': 'label' }) xnli.head()
Contradictory, My Dear Watson
10,974,778
df = df.drop(["Cabin"], axis=1 )<load_from_csv>
train_df = pd.read_csv('.. /input/contradictory-my-dear-watson/train.csv') print('Traning Data, the size of the dataset is: {} '.format(train_df.shape)) test_df = pd.read_csv('.. /input/contradictory-my-dear-watson/test.csv' )
Contradictory, My Dear Watson
10,974,778
test_data = pd.read_csv("/kaggle/input/titanic/test.csv") X_test = test_data.copy() X_test = X_test.drop(["Name","Ticket","Cabin","PassengerId"], axis=1) X_test.head()<categorify>
train_df = pd.concat([train_df, xnli, mnli_df]) train_df = train_df[train_df['label'] != -1] mnli_df = None snli_df = None print('the shape of the whole DF to be used is: ' + str(train_df.shape))
Contradictory, My Dear Watson
10,974,778
y = df.Survived X = df.drop(['Survived'], axis=1) numerical_cols = [cname for cname in X if X[cname].dtype in ['int64', 'float64']] categorical_cols = [cname for cname in X if X[cname].dtype == "object"] numerical_transformer = SimpleImputer(strategy='mean') categorical_transformer = Pipeline(steps=[ ('imputer', SimpleImputer(strategy='most_frequent')) , ('onehot', OneHotEncoder(handle_unknown='ignore', sparse=False)) ]) preprocessor_temp = ColumnTransformer( transformers=[ ('num', numerical_transformer, numerical_cols), ('cat', categorical_transformer, categorical_cols) ]) preprocessor = Pipeline(steps=[ ('preprocessor_temp', preprocessor_temp), ('scaler', StandardScaler())]) preprocessor.fit(X )<filter>
train_df = train_df[train_df.duplicated() == False] print('the shape of the whole DF to be used is: ' + str(train_df.shape))
Contradictory, My Dear Watson
10,974,778
X.iloc[0,:]<normalization>
np.random.seed(123) max_len = 50 Bert_model = "bert-large-uncased" Bert_tokenizer = BertTokenizer.from_pretrained(Bert_model) def tokeniZer(dataset,tokenizer): encoded_list = [] type_id_list = np.zeros(( dataset.shape[0], max_len)) mask_list = np.zeros(( dataset.shape[0], max_len)) for i in range(dataset.shape[0]): datapoint = '[CLS] ' + dataset['premise'][i] + ' [SEP]' + dataset['hypothesis'][i] + ' [SEP]' datapoint = tokenizer.tokenize(datapoint) datapoint = tokenizer.convert_tokens_to_ids(datapoint) encoded_list.append(datapoint) encoded_list = pad_sequences(encoded_list, maxlen = max_len, padding = 'post') for i in range(encoded_list.shape[0]): flag = 0 a = encoded_list[i] for j in range(len(a)) : if flag == 0: type_id_list[i,j] = 0 else: type_id_list[i,j] = 1 if encoded_list[i,j] == 102: flag = 1 if encoded_list[i,j] == 0: mask_list[i,j] = 0 else: mask_list[i,j] = 1 return encoded_list,mask_list,type_id_list
Contradictory, My Dear Watson
10,974,778
dim_trans = preprocessor.transform(X ).shape[1] preprocessor.transform(X)[0,:]<train_on_grid>
def mish(x): return x*tanh(softplus(x)) get_custom_objects() ["mish"] = Activation(mish )
Contradictory, My Dear Watson
10,974,778
params_knn = {"kNN__n_neighbors": np.arange(3,10), "kNN__weights":["uniform", "distance"]} kNN = KNeighborsClassifier() pipe = Pipeline(steps=[('preprocessor', preprocessor),('kNN', kNN)]) knnpipe = GridSearchCV(pipe, params_knn, n_jobs=-1) knnpipe.fit(X, y) print("Best parameter(CV score=%0.3f):" % knnpipe.best_score_) print(knnpipe.best_params_) print() print("Accuracy training set %0.3f" % accuracy_score(y, knnpipe.predict(X)) )<train_on_grid>
tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu )
Contradictory, My Dear Watson
10,974,778
params_logit = {"logit__penalty": ["l1","l2"], "logit__C":np.arange(0.5,1.5,0.1)} logit = LogisticRegression() pipe = Pipeline(steps=[('preprocessor', preprocessor),('logit', logit)]) logitpipe = GridSearchCV(pipe, params_logit, n_jobs=-1) logitpipe.fit(X, y) print("Best parameter(CV score=%0.3f):" % logitpipe.best_score_) print(logitpipe.best_params_) print() print("Accuracy training set %0.3f" % accuracy_score(y, logitpipe.predict(X)) )<train_on_grid>
def create_BERT(random_seed): tf.random.set_seed(random_seed) with tpu_strategy.scope() : transformer_encoder = TFAutoModel.from_pretrained(Bert_model) input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_layer") input_masks = Input(shape =(max_len,), dtype = tf.int32, name = 'input_mask') input_type_id = Input(shape =(max_len,), dtype = tf.int32, name = 'input_type_id') sequence_output = transformer_encoder([input_ids, input_masks, input_type_id])[0] cls_token = sequence_output[:, 0, :] output_layer = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=[input_ids, input_masks, input_type_id], outputs = output_layer) model.summary() model.compile(Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model
Contradictory, My Dear Watson
10,974,778
params_svm = {"svm__kernel": ["linear","poly","rbf"], "svm__C":np.arange(0.5,1.5,0.1)} svm = SVC() pipe = Pipeline(steps=[('preprocessor', preprocessor),('svm', svm)]) svmpipe = GridSearchCV(pipe, params_svm, n_jobs=-1) svmpipe.fit(X, y) print("Best parameter(CV score=%0.3f):" % svmpipe.best_score_) print(svmpipe.best_params_) print() print("Accuracy training set %0.3f" % accuracy_score(y, svmpipe.predict(X)) )<train_model>
callbacks = [tf.keras.callbacks.EarlyStopping(patience = 2, monitor = 'val_loss', \ restore_best_weights = True, mode = 'min')] shuffled_data = shuffle(train_df ).reset_index(drop = True) train_df = None batch_size = 128
Contradictory, My Dear Watson
10,974,778
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state = 1) preprocessor.fit(X_train) X_train = preprocessor.transform(X_train) X_valid = preprocessor.transform(X_valid) network = Sequential([ Dense(16, activation='relu', input_shape=(dim_trans,)) , Dense(16, activation='relu'), Dense(1, activation='sigmoid'), ]) network.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=1, patience=10) mc = ModelCheckpoint('best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True) history = network.fit(X_train, y_train, epochs=1000, verbose=1, validation_data=(X_valid,y_valid), callbacks=[es, mc]) saved_model = load_model('best_model.h5') print("Accuracy training set %0.3f" % accuracy_score(y, saved_model.predict(preprocessor.transform(X)) >0.5))<train_model>
XLM_model = "jplu/tf-xlm-roberta-large" xlm_tokenizer = AutoTokenizer.from_pretrained(XLM_model) X_train_ids, X_train_masks, _ = tokeniZer(shuffled_data,xlm_tokenizer )
Contradictory, My Dear Watson
10,974,778
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state = 1) preprocessor.fit(X_train) X_train = preprocessor.transform(X_train) X_valid = preprocessor.transform(X_valid) xgb = XGBClassifier(n_estimators=1000, learning_rate=0.05, n_jobs=-1) xgb.fit(X_train, y_train, early_stopping_rounds=5, eval_set=[(X_valid, y_valid)], verbose=True) print("Accuracy training set %0.3f" % accuracy_score(y, xgb.predict(preprocessor.transform(X),ntree_limit=xgb.best_ntree_limit)) )<save_to_csv>
def create_xlm(transformer_layer, random_seed, learning_rate = 1e-5): tf.keras.backend.clear_session() tf.random.set_seed(random_seed) with tpu_strategy.scope() : input_ids = Input(shape =(max_len,), dtype = tf.int32) input_masks = Input(shape =(max_len,), dtype = tf.int32) roberta = TFAutoModel.from_pretrained(transformer_layer) roberta = roberta([input_ids, input_masks])[0] out = GlobalAveragePooling1D()(roberta) out = Dense(3, activation = 'softmax' )(out) model = Model(inputs = [input_ids, input_masks], outputs = out) model.compile( optimizer = Adam(lr = learning_rate), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) model.summary() return model Xlm = create_xlm(XLM_model ,123443334, 1e-5 )
Contradictory, My Dear Watson
10,974,778
predictions = xgb.predict(preprocessor.transform(X_test),ntree_limit=xgb.best_ntree_limit) output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!" )<import_modules>
history_xlm = Xlm.fit([X_train_ids, X_train_masks], shuffled_data['label'], batch_size = batch_size, validation_split = 0.2, epochs = 39, callbacks = callbacks )
Contradictory, My Dear Watson
10,974,778
<load_from_csv><EOS>
input_ids_test_xml, input_masks_test_xml, _ = tokeniZer(test_df, xlm_tokenizer) predictions_xlm = Xlm.predict([input_ids_test_xml, input_masks_test_xml]) predictions = predictions_xlm final = np.argmax(predictions, axis = 1) submission = pd.DataFrame() submission['id'] = test_df['id'] submission['prediction'] = final.astype(np.int32) submission.to_csv('submission.csv', index = False )
Contradictory, My Dear Watson
11,037,852
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<prepare_x_and_y>
!pip install --quiet googletrans warnings.filterwarnings('ignore') print("Currently using Tensorflow version " + tf.__version__ )
Contradictory, My Dear Watson
11,037,852
y_train = train.iloc[:, 1].values<drop_column>
SEED = 34 def seed_everything(seed): os.environ['PYTHONHASHSEED']=str(seed) tf.random.set_seed(seed) np.random.seed(seed) random.seed(seed) seed_everything(SEED )
Contradictory, My Dear Watson
11,037,852
extra_eda_cols = ['SibSp', 'Parch', 'Family_Size', 'Fare_Range', 'Alone'] train = train.drop(extra_eda_cols, axis = 1, inplace = False) train.head()<drop_column>
DEVICE = 'TPU' if DEVICE == "TPU": print("connecting to TPU...") try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.master()) except ValueError: print("Could not connect to TPU") tpu = None if tpu: try: print("initializing TPU...") tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print("TPU initialized") except _: print("failed to initialize TPU") else: DEVICE = "GPU" if DEVICE != "TPU": print("Using default strategy for CPU and single GPU") strategy = tf.distribute.get_strategy() if DEVICE == "GPU": print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) AUTO = tf.data.experimental.AUTOTUNE REPLICAS = strategy.num_replicas_in_sync print(f'REPLICAS: {REPLICAS}') BATCH_SIZE = 16 * REPLICAS
Contradictory, My Dear Watson
11,037,852
extra_cols = ['PassengerId', 'Name', 'Ticket', 'Fare', 'Cabin'] train = train.drop(extra_cols, axis = 1, inplace = False) train.head()<drop_column>
train = pd.read_csv(".. /input/contradictory-my-dear-watson/train.csv") test = pd.read_csv(".. /input/contradictory-my-dear-watson/test.csv") print(f'Train shape: {train.shape}') train.head()
Contradictory, My Dear Watson
11,037,852
x_train = train.drop('Survived', axis = 1, inplace = False) print(x_train )<count_missing_values>
print(f"Premise: {train['premise'].values[0]}") print(f"Hypothesis: {train['hypothesis'].values[0]}") print(f"Label: {train['label'].values[0]}" )
Contradictory, My Dear Watson
11,037,852
train.isnull().sum()<count_missing_values>
print(f"Premise: {train['premise'].values[1]}") print(f"Hypothesis: {train['hypothesis'].values[1]}") print(f"Label: {train['label'].values[1]}" )
Contradictory, My Dear Watson
11,037,852
train.isnull().sum()<categorify>
def back_translate(sequence, PROB = 1): languages = ['en', 'fr', 'th', 'tr', 'ur', 'ru', 'bg', 'de', 'ar', 'zh-cn', 'hi', 'sw', 'vi', 'es', 'el'] translator = Translator() org_lang = translator.detect(sequence ).lang random_lang = np.random.choice([lang for lang in languages if lang is not org_lang]) if org_lang in languages: translated = translator.translate(sequence, dest = random_lang ).text translated_back = translator.translate(translated, dest = org_lang ).text if np.random.uniform(0, 1)<= PROB: output_sequence = translated_back else: output_sequence = sequence else: output_sequence = sequence return output_sequence for i in range(5): output = back_translate('I genuinely have no idea what the output of this sequence of words will be') print(output )
Contradictory, My Dear Watson
11,037,852
imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer.fit(x_train[['Age']]) x_train[['Age']]= imputer.transform(x_train[['Age']]) imputers = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imputers.fit(x_train[['Embarked']]) x_train[['Embarked']]= imputers.transform(x_train[['Embarked']] )<count_missing_values>
train_aug = pd.read_csv('.. /input/contradictorywatsontwicetranslatedaug/translation_aug_train.csv') train_aug.head()
Contradictory, My Dear Watson
11,037,852
x_train.isnull().sum().any()<categorify>
train_twice_aug = pd.read_csv('.. /input/contradictorywatsontwicetranslatedaug/twice_translated_aug_train.csv') train_twice_aug.head()
Contradictory, My Dear Watson
11,037,852
label_encoder = preprocessing.LabelEncoder() x_train['Sex']= label_encoder.fit_transform(x_train['Sex']) x_train['Embarked']= label_encoder.fit_transform(x_train['Embarked'] )<normalization>
train_vi = pd.read_csv(".. /input/contradictorytranslatedtrain/train_vi.csv") train_hi = pd.read_csv(".. /input/contradictorytranslatedtrain/train_hi.csv") train_bg = pd.read_csv(".. /input/contradictorytranslatedtrain/train_bg.csv" )
Contradictory, My Dear Watson
11,037,852
sc = StandardScaler() x_train = sc.fit_transform(x_train )<count_missing_values>
!pip install --quiet transformers roberta_base = "jplu/tf-xlm-roberta-base" roberta_large = 'jplu/tf-xlm-roberta-large'
Contradictory, My Dear Watson
11,037,852
test.isnull().sum().any()<categorify>
test_bt = pd.read_csv('.. /input/contradictorywatsontwicetranslatedaug/translation_aug_test.csv') test_bt_twice = pd.read_csv('.. /input/contradictorywatsontwicetranslatedaug/translation_aug_test.csv' )
Contradictory, My Dear Watson
11,037,852
imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer.fit(test[['Age']]) test[['Age']]= imputer.transform(test[['Age']]) imputers = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imputers.fit(test[['Embarked']]) test[['Embarked']]= imputers.transform(test[['Embarked']] )<drop_column>
TOKENIZER = AutoTokenizer.from_pretrained(roberta_large) def to_tf_dataset(dataset, max_len, repeat = False, shuffle = False, labeled = True, batch_size = BATCH_SIZE): dataset_text = dataset[['premise', 'hypothesis']].values.tolist() dataset_enc = TOKENIZER.batch_encode_plus(dataset_text, pad_to_max_length = True, max_length = max_len) if labeled: tf_dataset = tf.data.Dataset.from_tensor_slices(( dataset_enc['input_ids'], dataset['label'])) else: tf_dataset = tf.data.Dataset.from_tensor_slices(( dataset_enc['input_ids'])) if repeat: tf_dataset = tf_dataset.repeat() if shuffle: tf_dataset = tf_dataset.shuffle(2048) opt = tf.data.Options() opt.experimental_deterministic = False tf_dataset = tf_dataset.with_options(opt) tf_dataset = tf_dataset.batch(batch_size) tf_dataset = tf_dataset.prefetch(AUTO) return tf_dataset
Contradictory, My Dear Watson
11,037,852
extra_cols_test = ['PassengerId', 'Name', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin'] test = test.drop(extra_cols_test, axis = 1, inplace = False) test.head()<categorify>
LR_START = 1e-6 LR_MAX = 1e-6 * 8 LR_MIN = 1e-6 LR_RAMPUP_EPOCHS = 2 LR_SUSTAIN_EPOCHS = 0 LR_DECAY =.8 def lrfn_step(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr = LR_MAX * LR_DECAY**(( epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)//2) return lr def lrfn_smooth(epoch): if epoch < LR_RAMPUP_EPOCHS: lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS: lr = LR_MAX else: lr =(LR_MAX - LR_MIN)* LR_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN return lr lr_callback_step = tf.keras.callbacks.LearningRateScheduler(lrfn_step, verbose = True) lr_callback_smooth = tf.keras.callbacks.LearningRateScheduler(lrfn_smooth, verbose = True) rng = [i for i in range(25)] y1 = [lrfn_step(x)for x in rng] y2 = [lrfn_smooth(x)for x in rng] fix, ax = plt.subplots(1,2, figsize =(15, 5)) ax[0].plot(rng, y1) ax[1].plot(rng, y2) plt.tight_layout() print("Learning rate schedule for step schedule: {:.3g} to {:.3g} to {:.3g}".format(y1[0], max(y1), y1[-1])) print("Learning rate schedule for smooth schedule: {:.3g} to {:.3g} to {:.3g}".format(y2[0], max(y2), y2[-1]))
Contradictory, My Dear Watson
11,037,852
label_encoder = preprocessing.LabelEncoder() test['Sex']= label_encoder.fit_transform(test['Sex']) test['Embarked']= label_encoder.fit_transform(test['Embarked'] )<normalization>
def build_model(transformer_layer, max_len, learning_rate): with strategy.scope() : input_ids = tf.keras.Input(shape =(max_len,), dtype = tf.int32) roberta = TFAutoModel.from_pretrained(transformer_layer) roberta = roberta(input_ids)[0] out = roberta[:, 0, :] out = tf.keras.layers.Dense(3, activation = 'softmax' )(out) model = tf.keras.Model(inputs = input_ids, outputs = out) model.compile( optimizer = tf.keras.optimizers.Adam(lr = learning_rate), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) return model
Contradictory, My Dear Watson
11,037,852
sc_x = StandardScaler() test = sc_x.fit_transform(test )<train_model>
LR_RATE = 1e-5 EPOCHS = 10 FOLDS = 4 MAX_LEN = 85 STEPS_PER_EPOCH = len(train)// BATCH_SIZE TTA = 3 VERBOSE = 2 preds = np.zeros(( len(test), 3)) preds_tta = np.zeros(( len(test), 3)) skf = KFold(n_splits=FOLDS,shuffle=True,random_state=SEED) for fold,(train_index,val_index)in enumerate(skf.split(train)) : if DEVICE=='TPU': if tpu: tf.tpu.experimental.initialize_tpu_system(tpu) K.clear_session() model = build_model(roberta_large, max_len = MAX_LEN, learning_rate = LR_RATE) sv = tf.keras.callbacks.ModelCheckpoint(f'fold-{fold}.h5', monitor = 'val_loss', verbose = 0, save_best_only = True, save_weights_only = True, mode = 'min') train_ds = to_tf_dataset(train.loc[train_index], labeled = True, shuffle = True, repeat = True, max_len = MAX_LEN) val_ds = to_tf_dataset(train.loc[val_index], labeled = True, shuffle = False, repeat = False, max_len = MAX_LEN) print(' print('Training...'); print('') history = model.fit(train_ds, validation_data = val_ds, callbacks = [sv], epochs = EPOCHS, steps_per_epoch = STEPS_PER_EPOCH, verbose = VERBOSE); print('') print('Loading best model...') model.load_weights(f'fold-{fold}.h5') print('Predicting validation with TTA...') val_df = train.loc[val_index] val_df_bt = train_aug.loc[val_index] val_df_bt_twice = train_twice_aug.loc[val_index] val_tta1 = to_tf_dataset(val_df, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) val_tta2 = to_tf_dataset(val_df_bt, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) val_tta3 = to_tf_dataset(val_df_bt_twice, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) val_pred1 = model.predict(val_tta1, verbose = VERBOSE) val_pred2 = model.predict(val_tta2, verbose = VERBOSE) val_pred3 = model.predict(val_tta3, verbose = VERBOSE) val_preds =(val_pred1 + val_pred2 + val_pred3)/ TTA print(f"Without TTA: {accuracy_score(val_pred1.argmax(axis = 1), val_df['label'])}") print(f"With TTA: {accuracy_score(val_preds.argmax(axis = 1), val_df['label'])}") print('') print('Predicting OOF with TTA...') test_tta1 = to_tf_dataset(test, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) test_tta2 = to_tf_dataset(test_bt, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) test_tta3 = to_tf_dataset(test_bt_twice, shuffle = False, labeled = False, repeat = False, max_len = MAX_LEN) pred1 = model.predict(test_tta1, verbose = VERBOSE) pred2 = model.predict(test_tta2, verbose = VERBOSE) pred3 = model.predict(test_tta3, verbose = VERBOSE) preds_tta +=(pred1 + pred2 + pred3)/ TTA / FOLDS preds += pred1 / FOLDS os.remove(f"/kaggle/working/fold-{fold}.h5") del model ; z = gc.collect()
Contradictory, My Dear Watson
11,037,852
classifier = LogisticRegression(random_state = 0) classifier.fit(x_train, y_train )<predict_on_test>
USE_TTA = False
Contradictory, My Dear Watson
11,037,852
y_pred = classifier.predict(test) acc_Tree = cross_val_score(classifier, x_train, y_train, cv=10, scoring='accuracy' ).mean() acc_Tree<train_model>
if USE_TTA: submission = pd.DataFrame() submission['id'] = test['id'] submission['prediction'] = preds_tta.argmax(axis = 1) else: submission = pd.DataFrame() submission['id'] = test['id'] submission['prediction'] = preds.argmax(axis = 1) submission.head()
Contradictory, My Dear Watson
11,037,852
<predict_on_test><EOS>
submission.to_csv('submission.csv', index = False) print('Submission saved' )
Contradictory, My Dear Watson
11,038,328
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<choose_model_class>
import os import numpy as np import pandas as pd from kaggle_datasets import KaggleDatasets from sklearn.model_selection import train_test_split import tensorflow as tf from tensorflow.keras.layers import Dense, Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint import transformers from transformers import TFAutoModel, AutoTokenizer from tqdm.notebook import tqdm import plotly.express as px
Contradictory, My Dear Watson
11,038,328
classifier = DecisionTreeClassifier() classifier.fit(x_train, y_train) y_pred = classifier.predict(test )<predict_on_test>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
11,038,328
y_pred = classifier.predict(test) acc_Tree = cross_val_score(classifier, x_train, y_train, cv=10, scoring='accuracy' ).mean() acc_Tree<train_model>
n_epochs = 250 max_len = 80 batch_size = 16 * strategy.num_replicas_in_sync
Contradictory, My Dear Watson
11,038,328
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) classifier.fit(x_train, y_train )<predict_on_test>
train = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/train.csv') test = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/test.csv') submission = pd.read_csv('/kaggle/input/contradictory-my-dear-watson/sample_submission.csv' )
Contradictory, My Dear Watson
11,038,328
y_pred = classifier.predict(test) acc_Tree = cross_val_score(classifier, x_train, y_train, cv=10, scoring='accuracy' ).mean() acc_Tree<predict_on_test>
tokenizer = AutoTokenizer.from_pretrained('jplu/tf-xlm-roberta-large' )
Contradictory, My Dear Watson
11,038,328
classifier = SVC() classifier.fit(x_train, y_train) y_pred = classifier.predict(test )<predict_on_test>
train_text = train[['premise', 'hypothesis']].values.tolist() test_text = test[['premise', 'hypothesis']].values.tolist() train_encoded = tokenizer.batch_encode_plus( train_text, pad_to_max_length=True, max_length=max_len ) test_encoded = tokenizer.batch_encode_plus( test_text, pad_to_max_length=True, max_length=max_len )
Contradictory, My Dear Watson
11,038,328
y_pred = classifier.predict(test) acc_Tree = cross_val_score(classifier, x_train, y_train, cv=10, scoring='accuracy' ).mean() acc_Tree<prepare_output>
x_train, x_valid, y_train, y_valid = train_test_split( train_encoded['input_ids'], train.label.values, test_size=0.20, random_state=2020 ) x_test = test_encoded['input_ids']
Contradictory, My Dear Watson
11,038,328
accuracy = {'Model' : ['Logistic Regression', 'K- Nearest Neighbor', 'SVC', 'Decision Tree', 'Random Forest'], 'Accuracy' : [0.7890, 0.8047, 0.8226, 0.7935, 0.8037] } all_cross_val_scores = pd.DataFrame(accuracy, columns = ['Model', 'Accuracy']) all_cross_val_scores.head()<save_to_csv>
auto = tf.data.experimental.AUTOTUNE train_dataset =( tf.data.Dataset .from_tensor_slices(( x_train, y_train)) .repeat() .shuffle(2048) .batch(batch_size) .prefetch(auto) ) valid_dataset =( tf.data.Dataset .from_tensor_slices(( x_valid, y_valid)) .batch(batch_size) .cache() .prefetch(auto) ) test_dataset =( tf.data.Dataset .from_tensor_slices(x_test) .batch(batch_size) )
Contradictory, My Dear Watson
11,038,328
test_df = pd.read_csv('.. /input/titanic/test.csv') submission = pd.DataFrame({ 'PassengerId': test_df['PassengerId'], 'Survived': y_pred }) submission.to_csv('titanic_prediction.csv', index=False) print('File Saved' )<import_modules>
with strategy.scope() : transformer_encoder = TFAutoModel.from_pretrained('jplu/tf-xlm-roberta-large') input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer_encoder(input_ids)[0] cls_token = sequence_output[:, 0, :] out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-3), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) model.summary()
Contradictory, My Dear Watson
11,038,328
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns<load_from_csv>
n_steps = len(x_train)// batch_size train_history = model.fit( train_dataset, steps_per_epoch=n_steps, validation_data=valid_dataset, epochs=n_epochs )
Contradictory, My Dear Watson
11,038,328
train = pd.read_csv('.. /input/titanic/train.csv') train.head()<define_variables>
test_preds = model.predict(test_dataset, verbose=1) submission['prediction'] = test_preds.argmax(axis=1 )
Contradictory, My Dear Watson
11,038,328
<feature_engineering><EOS>
submission.to_csv('submission.csv', index=False)
Contradictory, My Dear Watson
11,008,485
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<split>
plt.style.use('fivethirtyeight') warnings.filterwarnings('ignore')
Contradictory, My Dear Watson
11,008,485
mask =(train[target] == 1) t_result = [] for num in numerical: t_stat, p_val = ttest_ind(( train[mask])[num], (train[~mask])[num], equal_var = True, nan_policy = 'omit') t_result.append({ 'group_1' : 'Survived', 'group_2' : 'Died', 'variable' : num, 't_stat' : t_stat, 'p_value' : p_val }) t_result = pd.DataFrame(t_result )<feature_engineering>
df_train=pd.read_csv(os.path.join(path,"train.csv")) df_test=pd.read_csv(os.path.join(path,"test.csv"))
Contradictory, My Dear Watson
11,008,485
def get_titles(data): title_re = re.compile(r'(?:^.+),(\w+)') titles = [] for name in data['Name']: titles.append(title_re.findall(name)[0]) data['Title'] = titles for i, title in enumerate(data['Title']): if title in ['Miss', 'Ms', 'Mlle', 'Mrs', 'Mme']: cat = 'Mrs_Ms' elif title in ['Mr', 'Don']: cat = 'Mr' elif title in ['Master']: cat = 'Master' else: cat = 'Honorable' data.loc[i, 'Title'] = cat<create_dataframe>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) print('Running on TPU ', tpu.master()) except ValueError: strategy = tf.distribute.get_strategy() print("REPLICAS: ", strategy.num_replicas_in_sync )
Contradictory, My Dear Watson
11,008,485
chi2_result = [] for cat in categorical: crosstab = pd.crosstab(train[cat], train[target]) chi2_stat, p_val, dof, ex = chi2_contingency(crosstab) chi2_result.append({ 'var_1' : cat, 'var_2' : target, 'chi2' : chi2_stat, 'dof' : dof, 'p_value' : p_val }) chi2_result = pd.DataFrame(chi2_result )<count_missing_values>
MODEL = 'jplu/tf-xlm-roberta-large' EPOCHS = 10 MAX_LEN = 96 BATCH_SIZE= 16 * strategy.num_replicas_in_sync AUTO = tf.data.experimental.AUTOTUNE tokenizer = AutoTokenizer.from_pretrained(MODEL )
Contradictory, My Dear Watson
11,008,485
train.isnull().sum()<count_missing_values>
def quick_encode(df,maxlen=100): values = df[['premise','hypothesis']].values.tolist() tokens=tokenizer.batch_encode_plus(values,max_length=maxlen,pad_to_max_length=True) return np.array(tokens['input_ids']) x_train = quick_encode(df_train) x_test = quick_encode(df_test) y_train = df_train.label.values
Contradictory, My Dear Watson
11,008,485
train.isnull().sum()<prepare_x_and_y>
def create_dist_dataset(X, y,val,batch_size= BATCH_SIZE): dataset = tf.data.Dataset.from_tensor_slices(( X,y)).shuffle(len(X)) if not val: dataset = dataset.repeat().batch(batch_size ).prefetch(AUTO) else: dataset = dataset.batch(batch_size ).prefetch(AUTO) return dataset test_dataset =( tf.data.Dataset .from_tensor_slices(( x_test)) .batch(BATCH_SIZE) )
Contradictory, My Dear Watson
11,008,485
X = train.copy() y = X.pop(target )<prepare_x_and_y>
def build_model(transformer,max_len): input_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_ids") sequence_output = transformer(input_ids)[0] cls_token = sequence_output[:, 0, :] cls_token = Dropout(0.4 )(cls_token) cls_token = Dense(32,activation='relu' )(cls_token) cls_token = Dropout(0.4 )(cls_token) out = Dense(3, activation='softmax' )(cls_token) model = Model(inputs=input_ids, outputs=out) model.compile( Adam(lr=1e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) return model
Contradictory, My Dear Watson
11,008,485
median_imputer = SimpleImputer(strategy = 'median') mode_imputer = SimpleImputer(strategy = 'most_frequent') missing_transformer = ColumnTransformer([('num', median_imputer, numerical), ('cat', mode_imputer, categorical)]) missing_transformer.fit(X) X_imp = pd.DataFrame(missing_transformer.transform(X)) X_imp.columns = numerical + categorical X.drop(numerical + categorical, axis = 1, inplace = True) X = pd.concat([X, X_imp], axis = 1 )<categorify>
pred_test=np.zeros(( df_test.shape[0],3)) skf = StratifiedKFold(n_splits=5,shuffle=True,random_state=777) val_score=[] history=[] for fold,(train_ind,valid_ind)in enumerate(skf.split(x_train,y_train)) : if fold < 4: print("fold",fold+1) tf.tpu.experimental.initialize_tpu_system(tpu) train_data = create_dist_dataset(x_train[train_ind],y_train[train_ind],val=False) valid_data = create_dist_dataset(x_train[valid_ind],y_train[valid_ind],val=True) Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"roberta_base.h5", monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='min') with strategy.scope() : transformer_layer = TFAutoModel.from_pretrained(MODEL) model = build_model(transformer_layer, max_len=MAX_LEN) n_steps = len(train_ind)//BATCH_SIZE print("training model {} ".format(fold+1)) train_history = model.fit( train_data, steps_per_epoch=n_steps, validation_data=valid_data, epochs=EPOCHS,callbacks=[Checkpoint],verbose=1) print("Loading model...") model.load_weights(f"roberta_base.h5") print("fold {} validation accuracy {}".format(fold+1,np.mean(train_history.history['val_accuracy']))) print("fold {} validation loss {}".format(fold+1,np.mean(train_history.history['val_loss']))) history.append(train_history) val_score.append(np.mean(train_history.history['val_accuracy'])) print('predict on test.... ') preds=model.predict(test_dataset,verbose=1) pred_test+=preds/4
Contradictory, My Dear Watson
11,008,485
ordinal_encoder = OrdinalEncoder() X_enc = pd.DataFrame(ordinal_encoder.fit_transform(X[categorical])) X_enc.columns = categorical X.drop(categorical, axis = 1, inplace = True) X = pd.concat([X, X_enc], axis = 1) X = pd.get_dummies(X, columns = categorical, dtype = np.int64, drop_first = True )<compute_train_metric>
submission = pd.read_csv(os.path.join(path,'sample_submission.csv')) submission['prediction'] = np.argmax(pred_test,axis=1) submission.head()
Contradictory, My Dear Watson
11,008,485
<split><EOS>
submission.to_csv('submission.csv',index=False )
Contradictory, My Dear Watson
10,966,859
<SOS> metric: categorizationaccuracy Kaggle data source: contradictory,-my-dear-watson<define_variables>
try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver() print('Running on TPU ', tpu.cluster_spec().as_dict() ['worker']) except ValueError: tpu = None if tpu: tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.experimental.TPUStrategy(tpu) else: strategy = tf.distribute.get_strategy()
Contradictory, My Dear Watson
10,966,859
features = ['Title_2.0', 'Sex_1.0', 'Fare']<import_modules>
!pip install nlp !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py !python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev
Contradictory, My Dear Watson
10,966,859
clfs = { 'tree' : DecisionTreeClassifier() , 'rf' : RandomForestClassifier() , 'extra' : ExtraTreesClassifier() , 'grad' : GradientBoostingClassifier() , }<find_best_model_class>
%%time %autosave 60 os.environ['XLA_USE_BF16'] = "1" os.environ['XLA_TENSOR_ALLOCATOR_MAXSIZE'] = '100000000' gc.enable() XLMRobertaTokenizer, XLMRobertaModel, get_cosine_schedule_with_warmup) warnings.filterwarnings("ignore") print('PYTORCH:', xv.__torch_gitrev__) print('XLA:', xv.__xla_gitrev__ )
Contradictory, My Dear Watson
10,966,859
clf_result = [] for model_name, model in clfs.items() : model.fit(X_train[features], y_train) preds = model.predict(X_test[features]) cv_score = cross_val_score(model, X_train[features], y_train, scoring = 'accuracy', cv = 5) clf_result.append({ 'model' : model_name, 'mean acc' : cv_score.mean() , 'std acc' : cv_score.std() }) clf_result = pd.DataFrame(clf_result )<train_on_grid>
train = pd.read_csv('.. /input/contradictory-my-dear-watson/train.csv') test = pd.read_csv('.. /input/contradictory-my-dear-watson/test.csv') sample_submission = pd.read_csv('.. /input/contradictory-my-dear-watson/sample_submission.csv' )
Contradictory, My Dear Watson
10,966,859
params = { 'n_estimators' : [50, 100, 150, 200], 'learning_rate' : [0.01, 0.03, 0.05, 0.07, 0.1, 0.3], 'subsample' : [0.4, 0.45, 0.5, 0.55, 0.7], 'max_features' : ['auto', 'sqrt'], 'n_iter_no_change' : [0, 5, 10], 'max_depth' : [2, 3, 4], } base_clf = GradientBoostingClassifier(criterion = 'mse', validation_fraction = 0.25, random_state = 0) grid_search = RandomizedSearchCV(base_clf, params, scoring = 'accuracy', random_state = 0, n_iter = 40) grid_search.fit(X_train[features], y_train) print('40 random searches complete' )<create_dataframe>
TRAIN_BATCH_SIZE = 16 VALID_BATCH_SIZE = 16 EPOCHS = 4 MAX_LEN = 80 LR = 2e-5 * xm.xrt_world_size() METRICS_DEBUG = True tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large' )
Contradictory, My Dear Watson
10,966,859
grid_search_result = pd.DataFrame(grid_search.cv_results_) grid_search_result.loc[grid_search_result['rank_test_score'] < 5].sort_values('rank_test_score' )<choose_model_class>
mnli = nlp.load_dataset(path='glue', name='mnli', split='train[:5%]') xnli = nlp.load_dataset(path='xnli') xnli = nlp.concatenate_datasets([xnli['test'], xnli['validation']]) snli = nlp.load_dataset(path='snli', split='train[:5%]' )
Contradictory, My Dear Watson
10,966,859
clf_1 = GradientBoostingClassifier(n_estimators = 200, subsample = 0.45, max_features = 'auto', criterion = 'mse', n_iter_no_change = 10, learning_rate = 0.03, validation_fraction = 0.25, max_depth = 3, random_state = 0) clf_2 = GradientBoostingClassifier(n_estimators = 50, subsample = 0.7, max_features = 'sqrt', criterion = 'mse', n_iter_no_change = 10, learning_rate = 0.03, validation_fraction = 0.25, max_depth = 4, random_state = 0) clf_3 = GradientBoostingClassifier(n_estimators = 150, subsample = 0.7, max_features = 'auto', criterion = 'mse', n_iter_no_change = 5, learning_rate = 0.1, validation_fraction = 0.25, max_depth = 2, random_state = 0 )<choose_model_class>
def convert_to_features(batch): input_pairs = list(zip(batch['premise'], batch['hypothesis'])) encodings = tokenizer.batch_encode_plus(input_pairs, add_special_tokens=True, pad_to_max_length=True, max_length=MAX_LEN, truncation=True, return_attention_mask=True, return_token_type_ids=True) return encodings
Contradictory, My Dear Watson
10,966,859
final_clf = GradientBoostingClassifier(n_estimators = 150, subsample = 0.5, max_features = 'auto', criterion = 'mse', n_iter_no_change = 5, learning_rate = 0.07, validation_fraction = 0.25, max_depth = 3, random_state = 0) plot_learning_curve(final_clf )<train_model>
def preprocess_xnli(example): premise_output = [] hypothesis_output = [] label_output = [] for prem, hyp, lab in zip(example['premise'], example['hypothesis'], example["label"]): label = lab langs = hyp['language'] translations = hyp['translation'] hypothesis = {k: v for k, v in zip(langs, translations)} for lang in prem: if lang in hypothesis: premise_output += [prem[lang]] hypothesis_output += [hypothesis[lang]] label_output += [label] return {'premise':premise_output, 'hypothesis':hypothesis_output, 'label':label_output}
Contradictory, My Dear Watson
10,966,859
final_clf.fit(X_train[features], y_train) preds = final_clf.predict(X_val[features]) print('Number of estimators after early stopping: {}'.format(final_clf.n_estimators_)) print('Accuracy: {}'.format(accuracy_score(preds, y_val))) print('F1: {}'.format(f1_score(preds, y_val)) )<load_from_csv>
mnli_encoded = mnli.map(convert_to_features, batched=True, remove_columns=['idx', 'premise', 'hypothesis']) mnli_encoded.set_format("torch", columns=['attention_mask', 'input_ids', 'token_type_ids', 'label'] )
Contradictory, My Dear Watson