kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
8,959,201
best_clf.score(train_X, train_y )<save_to_csv>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001 )
Digit Recognizer
8,959,201
test_y = best_clf.predict(test_X) test_ID= titanic_data_test.PassengerId submission = pd.DataFrame({ "PassengerId": test_ID, "Survived": test_y}) submission.to_csv('./gender_submission.csv', index=False )<import_modules>
batch_size = 100 epochs = 30 hist = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
8,959,201
import numpy as np import pandas as pd from catboost import CatBoostClassifier from sklearn.model_selection import train_test_split import re import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import accuracy_score from sklearn.metrics import mean_absolute_error from sklearn.ensemble import RandomForestClassifier from catboost import CatBoostClassifier from sklearn.preprocessing import OneHotEncoder from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.linear_model import LogisticRegression <load_from_csv>
Y_pred_classes = np.argmax(pred,axis = 1) Y_true = np.argmax(Y_val,axis = 1 )
Digit Recognizer
8,959,201
train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.info()<load_from_csv>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
8,959,201
<feature_engineering><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("cnn_mnist_datagen.csv",index=False )
Digit Recognizer
9,246,679
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<prepare_x_and_y>
%matplotlib inline
Digit Recognizer
9,246,679
train_names = train_data[['Name','Age']].dropna().reset_index() train_names['Name'] = train_names['Name'].str.lower() new_date = [] for i in train_names['Name']: d = [" ".join(re.sub(r"[^a-z ]", ' ', str(i)).split())] new_date.append(d) df = pd.DataFrame(new_date, columns = ['Name']) df['Age'] = train_names['Age'] features_train = df['Name'] target_train = df['Age']<feature_engineering>
train = pd.read_csv(".. /input/digit-recognizer/train.csv") test= pd.read_csv(".. /input/digit-recognizer/test.csv")
Digit Recognizer
9,246,679
count_tf_idf = TfidfVectorizer() tf_idf = count_tf_idf.fit_transform(features_train) count_tf_idf_ts = TfidfVectorizer() tf_id_ts = count_tf_idf.transform(features_train )<categorify>
X_train =(train.iloc[:,1:].values ).astype('float32') y_train = train.iloc[:,0].values.astype('int32') X_test = test.values.astype('float32')
Digit Recognizer
9,246,679
clf_t = RandomForestRegressor(random_state=42, criterion='mae' ).fit(count_tf_idf.transform(features_train), target_train )<feature_engineering>
img_rows, img_cols = 28, 28 X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols,1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols,1 )
Digit Recognizer
9,246,679
ind = train_data.loc[train_data['Age'].isnull() ==True].index ddf = train_data.loc[ind, ['Name']] ddf['Name'] = ddf['Name'].str.lower() new_date = [] for i in ddf['Name']: d = [" ".join(re.sub(r"[^a-z ]", ' ', str(i)).split())] new_date.append(d) df = pd.DataFrame(new_date, columns = ['Name']) df.index=ind features_train = df['Name']<predict_on_test>
mean_px = X_train.mean().astype(np.float32) std_px = X_train.std().astype(np.float32) def standardize(x): return(x-mean_px)/std_px X_train = standardize(X_train) X_test = standardize(X_test )
Digit Recognizer
9,246,679
d = round(pd.DataFrame(clf_t.predict(count_tf_idf.transform(features_train)) ,columns=['new_adge'])) d.index=ind d<data_type_conversions>
y_train = to_categorical(y_train) num_classes = y_train.shape[1]
Digit Recognizer
9,246,679
for i in d.index: for a in train_data.index: if i == a: train_data.loc[i,['Age']] = int(d.loc[i,['new_adge']]) train_data['Age'] = train_data['Age'].astype('int') train_data.info()<feature_engineering>
gen = ImageDataGenerator(rotation_range = 10, zoom_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1, shear_range = 0.1 )
Digit Recognizer
9,246,679
ind = test_data.loc[test_data['Age'].isnull() ==True].index ddf = test_data.loc[ind, ['Name']] ddf['Name'] = ddf['Name'].str.lower() new_date = [] for i in ddf['Name']: d = [" ".join(re.sub(r"[^a-z ]", ' ', str(i)).split())] new_date.append(d) df = pd.DataFrame(new_date, columns = ['Name']) df.index=ind features_test = df['Name']<predict_on_test>
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.10, random_state=4) batches = gen.flow(X_train, y_train, batch_size=64) val_batches=gen.flow(X_val, y_val, batch_size=64 )
Digit Recognizer
9,246,679
d = round(pd.DataFrame(clf_t.predict(count_tf_idf.transform(features_test)) ,columns=['new_adge'])) d.index=ind for i in d.index: for a in test_data.index: if i == a: test_data.loc[i,['Age']] = int(d.loc[i,['new_adge']]) test_data['Age'] = test_data['Age'].astype('int') test_data.info()<filter>
model = Sequential() model.add(Conv2D(64, kernel_size=(3, 3), activation='relu', input_shape=(img_rows, img_cols, 1))) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64, kernel_size=(3, 3), strides=1, activation='relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation='softmax'))
Digit Recognizer
9,246,679
train_data.loc[5,['Age']]<count_values>
model.compile(loss=keras.losses.categorical_crossentropy, optimizer='adam', metrics=['accuracy'] )
Digit Recognizer
9,246,679
train_data['Embarked'].value_counts()<feature_engineering>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy', patience=3, verbose=1, factor=0.5, min_lr=0.00001) history=model.fit_generator(generator=batches, steps_per_epoch=batches.n, epochs=3, validation_data=val_batches, validation_steps=val_batches.n, callbacks=[learning_rate_reduction])
Digit Recognizer
9,246,679
train_data['Embarked'] = train_data['Embarked'].fillna('S') train_data.info()<categorify>
predictions = model.predict_classes(X_test, verbose=0) submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": predictions}) submissions.to_csv("submission.csv", index=False, header=True )
Digit Recognizer
6,958,423
train_data['Sex'] = pd.get_dummies(train_data['Sex']) train_data<data_type_conversions>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') x_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
Digit Recognizer
6,958,423
train_data['Sex'] = train_data['Sex'].astype('int') train_data.info()<categorify>
import matplotlib.pyplot as plt import tensorflow as tf import cv2 from collections import deque import numpy as np
Digit Recognizer
6,958,423
test_data['Sex'] = pd.get_dummies(test_data['Sex']) test_data['Sex'] = test_data['Sex'].astype('int') test_data<categorify>
y_train = train['label'] x_train = train.drop(labels = ['label'], axis=1 )
Digit Recognizer
6,958,423
one_hot = pd.get_dummies(train_data['Embarked'],drop_first=True) train_data = train_data.drop('Embarked',axis = 1) train_data = train_data.join(one_hot) train_data<categorify>
x_train = x_train.values.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.values.reshape(x_test.shape[0], 28, 28, 1 )
Digit Recognizer
6,958,423
one_hot = pd.get_dummies(test_data['Embarked'],drop_first=True) test_data = test_data.drop('Embarked',axis = 1) test_data = test_data.join(one_hot) test_data<count_duplicates>
input_shape =(28, 28, 1)
Digit Recognizer
6,958,423
len(train_data.loc[train_data['Ticket'].duplicated() ==True][['Ticket','Cabin']].sort_values('Ticket'))<feature_engineering>
x_train = x_train.astype('float32') x_test = x_test.astype('float32' )
Digit Recognizer
6,958,423
train_data['Name'] = train_data['Name'].str.lower() <feature_engineering>
x_train /= 255 x_test /= 255
Digit Recognizer
6,958,423
<categorify>
from keras.models import Sequential from keras.layers import Dense, Conv2D, Dropout, Flatten, MaxPooling2D
Digit Recognizer
6,958,423
<drop_column>
model = Sequential() model.add(Conv2D(256, kernel_size=(5, 5), activation='relu', input_shape=input_shape)) model.add(Conv2D(128, kernel_size=(5, 5), activation='relu')) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(100, activation=tf.nn.relu)) model.add(Dropout(0.2)) model.add(Dense(10, activation=tf.nn.softmax))
Digit Recognizer
6,958,423
test_data['Name'] = test_data['Name'].str.lower() <filter>
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
6,958,423
train_data.loc[(train_data['Ticket']=='S.O.C.14879')]<filter>
model.fit(x=x_train,y=y_train,epochs=150, verbose = 1 )
Digit Recognizer
6,958,423
train_data.loc[train_data['Cabin'].isnull() ==False]<create_dataframe>
pred = model.predict(x_test) results = np.argmax(pred,axis = 1) results = pd.Series(results,name = 'Label' )
Digit Recognizer
6,958,423
<feature_engineering><EOS>
sub = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) sub.to_csv("cnn_best_model.csv",index=False )
Digit Recognizer
1,639,629
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<create_dataframe>
final_models = {"keras1":"", "keras2":""}
Digit Recognizer
1,639,629
<feature_engineering>
train_data = pd.read_csv(".. /input/train.csv") x_train_all = np.array(train_data.drop(["label"], axis=1)) print(x_train_all[0][x_train_all[0] > 0]) x_train_all = x_train_all/255 x_train_all = stretch_image(x_train_all) y_train_all = np.array(train_data["label"]) idx_all = range(x_train_all.shape[0]) if 1==2: bad_data_idx = [28290, 16301,14101,15065, 6389,7764,28611,20954,2316, 37056, 37887, 36569, 40257] plot_bad_data(x_train_all[bad_data_idx], y_train_all[bad_data_idx]) x_train_all = np.delete(x_train_all, bad_data_idx, axis=0) y_train_all = np.delete(y_train_all, bad_data_idx) idx_all = np.delete(idx_all, bad_data_idx) y_train_all = keras.utils.to_categorical(y_train_all, num_classes=10) x_train, x_valid, y_train, y_valid, idx_train, idx_valid = skm.train_test_split(x_train_all, y_train_all,idx_all, test_size=0.2) test_data = pd.read_csv(".. /input/test.csv") x_test = np.array(test_data) x_test = x_test/255 x_test = stretch_image(x_test)
Digit Recognizer
1,639,629
<define_search_space>
datagen = keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, featurewise_std_normalization=False, rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.1, horizontal_flip=False, shear_range=0.2) datagen.fit(x_train.reshape(-1,28,28,1))
Digit Recognizer
1,639,629
train_data.loc[[128,699,715,75]]<drop_column>
learning_rate_reduction = keras.callbacks.ReduceLROnPlateau(monitor='acc', patience=1, verbose=1, factor=0.5, min_lr=0.000001 )
Digit Recognizer
1,639,629
train_data = train_data.drop('PassengerId',axis=1) dt = train_data <filter>
def tensorflow_keras_model(x_train, y_train, x_valid, y_valid, num_classes,\ num_epochs, learning_rate): keras_model = keras.models.Sequential() keras_model.add(keras.layers.Conv2D(filters=32,kernel_size=(6,6),strides=(1,1), \ padding="same",input_shape=(28,28,1))) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.MaxPool2D(strides=(2,2), padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Conv2D(filters=64,kernel_size=(6,6),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.MaxPool2D(strides=(2,2), padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Flatten()) keras_model.add(keras.layers.Dense(units=1024)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Dense(units=num_classes)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('softmax')) opt = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) keras_model.compile(optimizer=opt,loss="categorical_crossentropy", metrics=["accuracy"]) keras_model.fit(x_train.reshape(-1,28,28,1), y_train, epochs=num_epochs, callbacks=[learning_rate_reduction]) final_models["keras1"] = keras_model keras_model.save("Model_MNIST_Keras_Lenet.h5") cur_y_pred = keras_model.predict(x_valid.reshape(-1,28,28,1)) y_valid_argmax = np.argmax(y_valid, 1) y_pred_argmax = np.argmax(cur_y_pred, 1) y_correct = np.equal(y_valid_argmax, y_pred_argmax) acc = y_correct.sum() /y_pred_argmax.shape[0] return cur_y_pred, acc, y_valid_argmax,y_pred_argmax
Digit Recognizer
1,639,629
<drop_column>
def tensorflow_keras_model_2(x_train, y_train, x_valid, y_valid, num_classes,\ num_epochs, learning_rate): keras_model = keras.models.Sequential() keras_model.add(keras.layers.Conv2D(filters=32,kernel_size=(3,3),strides=(1,1), \ padding="same",activation='relu', input_shape=(28,28,1))) keras_model.add(keras.layers.Conv2D(filters=32,kernel_size=(3,3),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Conv2D(filters=32,kernel_size=(5,5),strides=(2,2), \ padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Conv2D(filters=64,kernel_size=(3,3),strides=(1,1), \ padding="same",activation='relu',input_shape=(28,28,1))) keras_model.add(keras.layers.Conv2D(filters=64,kernel_size=(3,3),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Conv2D(filters=64,kernel_size=(5,5),strides=(2,2), \ padding="same")) keras_model.add(keras.layers.Dropout(rate=0.050)) keras_model.add(keras.layers.Conv2D(filters=128,kernel_size=(3,3),strides=(1,1), \ padding="same",activation='relu')) keras_model.add(keras.layers.Conv2D(filters=128,kernel_size=(3,3),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Conv2D(filters=128,kernel_size=(5,5),strides=(2,2), \ padding="same")) keras_model.add(keras.layers.Dropout(rate=0.075)) keras_model.add(keras.layers.Flatten()) keras_model.add(keras.layers.Dense(units=1024)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Dropout(rate=0.100)) keras_model.add(keras.layers.Dense(units=128)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Dropout(rate=0.100)) keras_model.add(keras.layers.Dense(units=num_classes)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('softmax')) opt = keras.optimizers.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-08, decay=0.0) keras_model.compile(optimizer=opt,loss="categorical_crossentropy", metrics=["accuracy"]) keras_model.fit_generator(datagen.flow(x_train.reshape(-1,28,28,1), y_train, batch_size=32),steps_per_epoch=len(x_train)/ 32, \ epochs=num_epochs, callbacks=[learning_rate_reduction]) final_models["keras2"] = keras_model keras_model.save("Model_MNIST_Keras_Resnet.h5") cur_y_pred = keras_model.predict(x_valid.reshape(-1,28,28,1)) y_valid_argmax = np.argmax(y_valid, 1) y_pred_argmax = np.argmax(cur_y_pred, 1) y_correct = np.equal(y_valid_argmax, y_pred_argmax) acc = y_correct.sum() /y_pred_argmax.shape[0] return cur_y_pred, acc, y_valid_argmax,y_pred_argmax , keras_model
Digit Recognizer
1,639,629
train_data = train_data.drop('Cabin',axis=1) test_data = test_data.drop('Cabin',axis=1 )<split>
model2_list = [] num_model = 12 def exec_tensorflow_keras_model_2() : num_epochs = 30 learning_rate=0.00001 num_rows, num_features, num_classes = x_train.shape[0], x_train.shape[1], 10 for imodel in range(num_model): final_pred_base_model, acc,y_valid_argmax,y_pred_argmax, keras_model = \ tensorflow_keras_model_2(x_train, y_train, x_valid, y_valid, num_classes, num_epochs, learning_rate) model2_list.append(keras_model) print("Num Epoch:", num_epochs, " Accuracy:", acc) plot_y_true_vs_y_pred(x_valid, y_valid_argmax.reshape(len(y_valid)) , y_pred_argmax.reshape(len(y_valid)) , idx_valid )
Digit Recognizer
1,639,629
train, test = train_test_split(train_data, test_size=0.33, random_state=42) features_train = train.drop(['Survived'],axis=1) target_train = train['Survived'] features_test = test.drop(['Survived'],axis=1) target_test = test['Survived']<train_model>
def tensorflow_keras_model_3(x_train, y_train, x_valid, y_valid, num_classes,\ num_epochs, learning_rate): keras_model = keras.models.Sequential() keras_model.add(keras.layers.Conv2D(filters=6,kernel_size=(6,6),strides=(1,1), \ padding="same",input_shape=(28,28,1))) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.MaxPool2D(strides=(2,2), padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Conv2D(filters=16,kernel_size=(6,6),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.MaxPool2D(strides=(2,2), padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Conv2D(filters=120,kernel_size=(6,6),strides=(1,1), \ padding="same")) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.MaxPool2D(strides=(2,2), padding="same")) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Flatten()) keras_model.add(keras.layers.Dense(units=120)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Dense(units=120)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('relu')) keras_model.add(keras.layers.Dropout(rate=0.05)) keras_model.add(keras.layers.Dense(units=num_classes)) keras_model.add(keras.layers.BatchNormalization()) keras_model.add(keras.layers.Activation('softmax')) opt = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) keras_model.compile(optimizer=opt,loss="categorical_crossentropy", metrics=["accuracy"]) keras_model.fit(x_train.reshape(-1,28,28,1), y_train, epochs=num_epochs, callbacks=[learning_rate_reduction]) final_models["keras1"] = keras_model keras_model.save("Model_MNIST_Keras_Lenet.h5") cur_y_pred = keras_model.predict(x_valid.reshape(-1,28,28,1)) y_valid_argmax = np.argmax(y_valid, 1) y_pred_argmax = np.argmax(cur_y_pred, 1) y_correct = np.equal(y_valid_argmax, y_pred_argmax) acc = y_correct.sum() /y_pred_argmax.shape[0] return cur_y_pred, acc, y_valid_argmax,y_pred_argmax
Digit Recognizer
1,639,629
model = CatBoostClassifier(iterations=200, depth=9,learning_rate=0.05,l2_leaf_reg=10,random_seed=42, loss_function='Logloss',grow_policy='Lossguide', max_leaves=39, verbose=True,eval_metric='Accuracy',nan_mode='Min',cat_features=['Pclass','Sex','Q','S']) model.fit(features_train, target_train,text_features=['Ticket','Name'], plot=True,eval_set=(features_test,target_test),verbose=False) print(accuracy_score(model.predict(features_train),target_train)) print(accuracy_score(model.predict(features_test),target_test))<drop_column>
model2 = final_models["keras2"] x_valid = x_valid.reshape(-1,28,28,1) y_pred_valid2 = np.zeros(( x_valid.shape[0],10)) for imodel in range(num_model): y_pred_valid2 = y_pred_valid2 + model2_list[imodel].predict(x_valid) y_pred_valid = y_pred_valid2 y_pred_valid_final = np.argmax(y_pred_valid, axis=1) y_correct = np.equal(y_pred_valid_final, np.argmax(y_valid, axis=1)) acc_final = y_correct.sum() /y_valid.shape[0] print(acc_final )
Digit Recognizer
1,639,629
test_data = test_data.drop('PassengerId',axis=1) dt = test_data test_data<save_to_csv>
x_test = x_test.reshape(-1,28,28,1) y_pred_test2 = np.zeros(( x_test.shape[0],10)) for imodel in range(num_model): y_pred_test2 = y_pred_test2 + model2_list[imodel].predict(x_test)
Digit Recognizer
1,639,629
submission=pd.DataFrame(model.predict(test_data),columns=['Survived']) submission['PassengerId'] = hui submission.Survived = submission.Survived.astype(int) filename = 'Titanic Predictions1.csv' submission.to_csv(filename,index=False) print('Saved file: ' + filename )<load_from_csv>
y_pred_test = y_pred_test2 y_pred_test_final = np.argmax(y_pred_test, axis=1)
Digit Recognizer
1,639,629
train = pd.read_csv("/kaggle/input/titanic/train.csv") test = pd.read_csv("/kaggle/input/titanic/test.csv") print(train.shape) train.head()<count_missing_values>
dictionary_data = {"ImageId":np.arange(1, x_test.shape[0]+1), "Label":y_pred_test_final} df_final = pd.DataFrame(dictionary_data) df_final.to_csv("submission.csv", index=False )
Digit Recognizer
4,859,372
train.isnull().sum()<drop_column>
train = pd.read_csv(".. /input/train.csv") print(train.shape) train.head()
Digit Recognizer
4,859,372
train = train.drop(["Cabin"],axis = 1) print(train.shape) train.head()<count_missing_values>
test= pd.read_csv(".. /input/test.csv") print(test.shape) test.head()
Digit Recognizer
4,859,372
train.isnull().sum()<count_missing_values>
Y_train = train["label"] X_train = train.drop(labels = ["label"],axis = 1 )
Digit Recognizer
4,859,372
train.isnull().sum()<categorify>
X_train = X_train / 255.0 test = test / 255.0 print("x_train shape: ",X_train.shape) print("test shape: ",test.shape )
Digit Recognizer
4,859,372
train['Embarked'].fillna(method = 'backfill', inplace = True )<data_type_conversions>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
4,859,372
train['Age'].fillna(train['Age'].median() , inplace = True )<count_missing_values>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=2) print("x_train shape",X_train.shape) print("x_test shape",X_val.shape) print("y_train shape",Y_train.shape) print("y_test shape",Y_val.shape )
Digit Recognizer
4,859,372
train.isnull().sum()<count_missing_values>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
4,859,372
train.isnull().sum()<data_type_conversions>
optimizer = RMSprop(lr=0.001,rho=0.9, epsilon=1e-08, decay=0.0 )
Digit Recognizer
4,859,372
def str_to_cat(training_df): for p,q in training_df.items() : if is_string_dtype(q): training_df[p] = q.astype('category' ).cat.as_ordered() return training_df<categorify>
model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
4,859,372
def mydf_to_nums(training_df, feature, null_status): if not is_numeric_dtype(feature): training_df[null_status] = feature.cat.codes + 1 def mydf_imputer(training_df, feature, null_status, null_table): if is_numeric_dtype(feature): if pd.isnull(feature ).sum() or(null_status in null_table): filler = null_table[null_status] if null_status in null_table else feature.median() training_df[null_status] = feature.fillna(filler) null_table[null_status] = filler return null_table def mydf_preprocessor(training_df, null_table): if null_table is None: null_table = dict() for p,q in training_df.items() : null_table = mydf_imputer(training_df, q, p, null_table) for p,q in training_df.items() : mydf_to_nums(training_df, q, p) training_df = pd.get_dummies(training_df, dummy_na = True) res = [training_df, null_table] return res<categorify>
epochs = 20 batch_size = 378
Digit Recognizer
4,859,372
train = str_to_cat(train) train_df,my_table = mydf_preprocessor(train,null_table = None) print(train_df.shape) train_df.head()<count_duplicates>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
4,859,372
train.duplicated().sum()<count_missing_values>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), steps_per_epoch=X_train.shape[0] // batch_size )
Digit Recognizer
4,859,372
test.isnull().sum()<count_missing_values>
results = model.predict(test) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label" )
Digit Recognizer
4,859,372
<drop_column><EOS>
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1) submission.to_csv("submission.csv",index=False )
Digit Recognizer
14,651,554
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<data_type_conversions>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from keras.layers import Dropout, Dense, Conv2D, AveragePooling2D, Flatten, MaxPooling2D from keras.models import Sequential, load_model from sklearn.metrics import accuracy_score
Digit Recognizer
14,651,554
test['Age'].fillna(test['Age'].median() , inplace = True )<feature_engineering>
train_data = pd.read_csv('.. /input/digit-recognizer/train.csv') prediction = pd.read_csv('.. /input/digit-recognizer/test.csv') submission1 = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' )
Digit Recognizer
14,651,554
class_fares = test.groupby('Pclass')['Fare'].median() test['median_fare'] = test['Pclass'].apply(lambda x: class_fares[x]) test['Fare'].fillna(test['median_fare'], inplace = True,) del test['median_fare']<count_missing_values>
train_data.isnull().sum().sum()
Digit Recognizer
14,651,554
test.isnull().sum()<count_missing_values>
train_data, test_data = train_test_split(train_data, stratify=train_data["label"], test_size = 0.20) train_data, cv_data = train_test_split(train_data, stratify=train_data["label"], test_size = 0.25) train_data.shape, test_data.shape, cv_data.shape
Digit Recognizer
14,651,554
test.isnull().sum()<concatenate>
train_y = train_data['label'] train_x = train_data.drop(columns = ['label']) cv_y = cv_data['label'] cv_x = cv_data.drop(columns = ['label']) test_y = test_data['label'] test_x = test_data.drop(columns = ['label'] )
Digit Recognizer
14,651,554
test = str_to_cat(test) test,my_table = mydf_preprocessor(test,null_table = None) print(test.shape) test.head(5 )<count_duplicates>
train_x = np.array(train_x) train_x = train_x.reshape(25200, 28, 28, 1) train_y = np.array(pd.get_dummies(train_y)) cv_x = np.array(cv_x) cv_x = cv_x.reshape(8400, 28, 28, 1) cv_y = np.array(pd.get_dummies(cv_y)) test_x = np.array(test_x) test_x = test_x.reshape(8400, 28, 28, 1 )
Digit Recognizer
14,651,554
test.duplicated().sum()<drop_column>
prediction.isnull().sum().sum()
Digit Recognizer
14,651,554
train = train.drop('Name', axis = 1) test = test.drop(columns=['Name'], axis = 1 )<categorify>
prediction = np.array(prediction) prediction = prediction.reshape(28000, 28, 28, 1 )
Digit Recognizer
14,651,554
X_train = train.drop('Survived', axis=1) X_train = pd.get_dummies(X_train,columns=['Embarked','Pclass']) Y_train = train['Survived'] print(X_train.shape,Y_train.shape )<normalization>
def model() : model = Sequential() model.add(Conv2D(32,kernel_size=3,activation='relu',input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(32,kernel_size=5,strides=2,padding='same',activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Conv2D(64,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64,kernel_size=3,activation='relu')) model.add(BatchNormalization()) model.add(Conv2D(64,kernel_size=5,strides=2,padding='same',activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(BatchNormalization()) model.add(Dropout(0.4)) model.add(Dense(10, activation='softmax')) return model model = model() model.summary()
Digit Recognizer
14,651,554
scaler = StandardScaler().fit(X_train) scaled_X = scaler.transform(X_train) print(scaled_X )<categorify>
model.compile(loss = 'categorical_crossentropy', optimizer = "adam", metrics = ["accuracy"]) hist = model.fit(train_x, train_y, validation_data=(cv_x, cv_y), epochs = 40 )
Digit Recognizer
14,651,554
x_test = pd.get_dummies(test,columns=['Embarked','Pclass'] )<normalization>
log_frame = pd.DataFrame(columns = ["Epoch", "Train_Loss", "Train_Accuracy", "CV_Loss", "CV_Accuracy"]) log_frame["Epoch"] = epoch_number log_frame["Train_Loss"] = train_loss log_frame["Train_Accuracy"] = train_acc log_frame["CV_Loss"] = val_loss log_frame["CV_Accuracy"] = val_acc log_frame
Digit Recognizer
14,651,554
sc = StandardScaler().fit(x_test) sc_X = sc.transform(x_test) print(sc_X )<train_model>
test_predict = model.predict(test_x )
Digit Recognizer
14,651,554
model_1 = RandomForestClassifier(n_jobs = -1, n_estimators = 10, bootstrap = True) model_1.fit(scaled_X,Y_train )<predict_on_test>
l = [] for i in range(test_predict.shape[0]): j = test_predict[i].argmax() l.append(j) test_predict = pd.DataFrame(l )
Digit Recognizer
14,651,554
pred = model_1.predict(scaled_X )<train_on_grid>
acc = accuracy_score(test_y, l)* 100 acc
Digit Recognizer
14,651,554
parameters = {'n_estimators': [20, 50, 60, 80, 90, 100, 120, 150, 200], 'max_features': ["auto", "sqrt", "log2"]} rfc = RandomForestClassifier(random_state = 1) cls = GridSearchCV(estimator = rfc, param_grid = parameters) cls.fit(scaled_X, Y_train) cls.best_params_<train_model>
prediction_predict = model.predict(prediction )
Digit Recognizer
14,651,554
model_2 = RandomForestClassifier(n_estimators=80, max_features="auto") model_2.fit(scaled_X, Y_train) y_pred = model_2.predict(sc_X )<save_to_csv>
l = [] for i in range(prediction_predict.shape[0]): j = prediction_predict[i].argmax() l.append(j) submission2 = pd.DataFrame(l) submission2 = submission2.rename(columns = {0 : 'Label'} )
Digit Recognizer
14,651,554
sub_df = pd.DataFrame({'PassengerId' : test["PassengerId"],'Survived' : y_pred}) submission = sub_df.to_csv('submission.csv',index=False )<set_options>
submission1.drop(columns = ['Label'], inplace = True) submission = pd.concat([submission1, submission2], axis = 1 )
Digit Recognizer
14,651,554
sns.set(style="ticks", context="talk") warnings.filterwarnings('ignore' )<load_from_csv>
t = prediction.reshape(28000, 28, 28) plt.imshow(t[2222]) print(" The label predicted is ", submission["Label"][2222] )
Digit Recognizer
14,651,554
<feature_engineering><EOS>
submission.to_csv('./submission.csv',index=False )
Digit Recognizer
1,515,892
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<filter>
%matplotlib inline
Digit Recognizer
1,515,892
data[data['Fare'].isna() ]<sort_values>
train, test = pd.read_csv(".. /input/train.csv"), pd.read_csv(".. /input/test.csv" )
Digit Recognizer
1,515,892
data_corr = data.corr().abs().unstack().sort_values(kind = "quicksort", ascending = False ).reset_index() data_corr.loc[data_corr['level_0'] == 'Fare']<categorify>
train['label'].value_counts()
Digit Recognizer
1,515,892
data['Fare'] = data['Fare'].fillna(data.groupby(['Pclass'])['Fare'].transform('median'))<count_missing_values>
train_pixels, test_pixels = train.iloc[:,1:].values.astype('float32'), test.values.astype('float32') train_labels = train.iloc[:,0].values.astype('int32') train_labels = train_labels.reshape(-1, 1) print(f'train_pixels shape = {train_pixels.shape}') print(f'test_pixels shape = {test_pixels.shape}') print(f'train_labels shape = {train_labels.shape}' )
Digit Recognizer
1,515,892
data.isna().sum()<feature_engineering>
train_pixels, test_pixels = train_pixels.reshape(-1, 28, 28, 1), test_pixels.reshape(-1, 28, 28, 1) print(f'train_pixels shape = {train_pixels.shape}') print(f'test_pixels shape = {test_pixels.shape}' )
Digit Recognizer
1,515,892
data['Title'] = data.Name.apply(lambda x: re.search('([A-Z][a-z]+)\.', x ).group(1)) data['Title'].unique()<count_values>
train_pixels, test_pixels = train_pixels / 255.0, test_pixels / 255.0
Digit Recognizer
1,515,892
data['Title'].value_counts(normalize = True ).round(3 )<count_missing_values>
train_labels = to_categorical(train_labels, num_classes = 10) print(f'train_labels shape = {train_labels.shape}') train_labels
Digit Recognizer
1,515,892
data['Age'].isna().sum()<filter>
train_pixels, val_pixels, train_labels, val_labels = train_test_split(train_pixels, train_labels, test_size = 0.1, random_state=None) train_pixels.shape, train_labels.shape, val_pixels.shape, val_labels.shape, test_pixels.shape
Digit Recognizer
1,515,892
data[data['Age'] < 1]<feature_engineering>
m_train = train_pixels.shape[0] m_val = val_pixels.shape[0] m_test = test_pixels.shape[0] n_x = test.shape[1] n_y = train_labels.shape[1] print(f" m_train = {m_train} / m_val = {m_val} / m_test = {m_test} / n_x = {n_x} / n_y = {n_y}" )
Digit Recognizer
1,515,892
data.loc[data['Age'] < 1, 'Age'] = None data['Age'].isna().sum()<sort_values>
datagen = ImageDataGenerator( rotation_range = 10, zoom_range = 0.1, shear_range = 0.1, width_shift_range = 0.1, height_shift_range = 0.1 )
Digit Recognizer
1,515,892
data_corr = data.corr().abs().unstack().sort_values(kind = "quicksort", ascending = False ).reset_index() data_corr.loc[data_corr['level_0'] == 'Age']<data_type_conversions>
model = Sequential() model.add(Conv2D(filters=6, kernel_size=5, padding='Same', input_shape=(28,28,1))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=2, strides=2)) model.add(Conv2D(filters=16, kernel_size=5)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPool2D(pool_size=2, strides=2)) model.add(Flatten()) model.add(Dense(120)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Dense(84)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.25)) model.add(Dense(10)) model.add(BatchNormalization()) model.add(Activation('softmax')) model.compile(optimizer=Adam(lr=1e-3), loss='categorical_crossentropy', metrics=['accuracy']) lr_decay = ReduceLROnPlateau(monitor='loss', patience=1, verbose=1, factor=0.5, min_lr=1e-7) History = model.fit(train_pixels, train_labels, epochs=40, validation_data=(val_pixels, val_labels), callbacks=[lr_decay], verbose=1) train_loss, train_acc = model.evaluate(train_pixels, train_labels) val_loss, val_acc = model.evaluate(val_pixels, val_labels) print(f'model: train accuracy = {round(train_acc * 100, 4)}%') print(f'model: val accuracy = {round(val_acc * 100, 4)}%') print(f'model: val error = {round(( 1 - val_acc)* m_val)} examples')
Digit Recognizer
1,515,892
<sort_values><EOS>
predictions = model.predict_classes(test_pixels) submission = pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label" : predictions}) submission.to_csv("submission.csv", index=False, header=True) submission.head()
Digit Recognizer
6,485,130
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<groupby>
%reload_ext autoreload %autoreload 2 %matplotlib inline
Digit Recognizer
6,485,130
data[['Pclass', 'Embarked', 'Survived']].groupby(['Pclass', 'Embarked'] ).mean().round(2 )<feature_engineering>
print(torch.cuda.is_available() , torch.backends.cudnn.enabled )
Digit Recognizer
6,485,130
print('Pclass: ', data[data['Cabin_group'] == 'T']['Pclass'].values) data.loc[data['Cabin'] == 'T', 'Cabin_group'] = 'A'<groupby>
train_df = pd.read_csv(INPUT/"train.csv") train_df.head(3 )
Digit Recognizer
6,485,130
data[['Cabin_group', 'Pclass', 'Survived']].groupby(['Cabin_group', 'Pclass'] ).mean().round(2 )<categorify>
test_df = pd.read_csv(INPUT/"test.csv") test_df.head(3 )
Digit Recognizer
6,485,130
data['Sex_int'] = data['Sex'].replace({'male': 1, 'female': 0}) data['Embarked_int'] = data['Embarked'].replace({'S': 0, 'C': 1, 'Q':2}) data['Title_int'] = data['Title'].replace({'Mr': 0, 'Mrs': 1, 'Miss':2, 'Master':3, 'Special':4}) data['age_group_int'] = data['age_group'].replace({'Adults': 0, 'Middle age': 1, 'Infants':2, 'Adolescents':3, 'Preschool':4, 'Children':5, 'Seniors':6}) data['Cabin_group_int'] = data['Cabin_group'].replace({'unkown': 0, 'ABC': 1, 'DE':2, 'FG':3} )<filter>
TRAIN = Path(".. /train") TEST = Path(".. /test" )
Digit Recognizer
6,485,130
data = data.loc[:,~data.columns.str.endswith('_int')]<data_type_conversions>
sorted(os.listdir(TRAIN))
Digit Recognizer
6,485,130
dummy_features = ['Sex' , 'Pclass' , 'Embarked' , 'Cabin_group' , 'Title' , 'age_group' ] for col in dummy_features: data[col] = data[col].astype(object) drop_features = ['PassengerId', 'Ticket', 'Name', 'Cabin' ,'small_family_size' ,'Alone' ,'SibSp' ,'Parch' ,'Age' ] data = pd.concat([data, pd.get_dummies(data[dummy_features], drop_first = True)], axis = 1, sort = False) data.drop(columns = data[dummy_features], inplace = True) data.drop(columns = data[drop_features], inplace = True) data.tail()<correct_missing_values>
if os.path.isdir(TRAIN): print('Train directory has been created') else: print('Train directory creation failed.') if os.path.isdir(TEST): print('Test directory has been created') else: print('Test directory creation failed.' )
Digit Recognizer
6,485,130
train.dropna(inplace = True) test.dropna(inplace = True )<split>
from PIL import Image
Digit Recognizer
6,485,130
y = train['Survived'] x = train.drop(columns = target) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 42 , stratify = y )<train_on_grid>
def pix2img(pix_data, filepath): img_mat = pix_data.reshape(28,28) img_mat = img_mat.astype(np.uint8()) img_dat = Image.fromarray(img_mat) img_dat.save(filepath)
Digit Recognizer
6,485,130
RF = ensemble.RandomForestClassifier() params = { 'n_estimators':[n for n in range(100, 250, 50)] ,'max_depth':[n for n in range(3, 8)] ,'min_samples_leaf': [n for n in range(3, 6, 1)] ,'max_features' : [None] ,'random_state' : [42] } RF_model = GridSearchCV(RF, param_grid = params, cv = 5, n_jobs = -1 ).fit(x_train, y_train) print("Best Hyper Parameters:",RF_model.best_params_) RF_probs = RF_model.predict_proba(x_test) RF_probs = RF_probs[:, 1] RF_auc = roc_auc_score(y_test, RF_probs) print('AUC: %.3f' % RF_auc) RF_predictions = RF_model.predict(x_test ).astype(int) RF_accuracy = accuracy_score(y_test, RF_predictions) print("RF accuracy: %.3f" % RF_accuracy) print("RF Recall: " + '%.3f' % recall_score(y_test, RF_predictions)) print("RF Precission: " + '%.3f' % precision_score(y_test, RF_predictions)) print("RF cohen_kappa_score: %.3f" % cohen_kappa_score(y_test, RF_predictions)) plt.figure(figsize =(8, 6)) RF_fpr, RF_tpr, RF_thresholds = roc_curve(y_test, RF_probs) plt.plot([0, 1], [0, 1], linestyle = '--') plt.plot(RF_fpr, RF_tpr, color = 'tab:green') plt.show()<predict_on_test>
tfms = get_transforms(do_flip = False)
Digit Recognizer
6,485,130
data['churn_proba'] = RF_model.best_estimator_.predict_proba(data[x.columns])[:,1]<save_to_csv>
print('test : ',TEST) print('train: ', TRAIN) print(type(TEST))
Digit Recognizer
6,485,130
predict_RF = RF_model.predict(test ).astype(int) submit_RF = pd.DataFrame({'PassengerId': testing['PassengerId'], 'Survived': predict_RF}) filename_RF = 'Titanic Prediction RF.csv' submit_RF.to_csv(filename_RF,index=False) print('Saved file: ' + filename_RF )<load_from_csv>
data = ImageDataBunch.from_folder( path =(".. /train"), test =(".. /test"), valid_pct = 0.1, bs = 256, size = 28, num_workers = 0, ds_tfms = tfms )
Digit Recognizer
6,485,130
train_data = pd.read_csv("/kaggle/input/titanic/train.csv") train_data.head()<load_from_csv>
data.normalize(imagenet_stats)
Digit Recognizer