kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
9,568,647
def RMSLE(y_train,y_pred): return np.sqrt(mean_squared_log_error(y_train, y_pred))<load_from_csv>
learn.save('stage-2' )
Digit Recognizer
9,568,647
test_df=pd.read_csv('.. /input/bike-sharing-demand/test.csv') test_df_copy=test_df.copy()<rename_columns>
learn.load('stage-2');
Digit Recognizer
9,568,647
test_df=test_df.rename(columns={col_names[5]: "Temperature(C)",col_names[6]:"Dew Temperature(C)",col_names[7]: "humidity(%)", col_names[8]:"Wind Speed(m/s)" } )<data_type_conversions>
interp = ClassificationInterpretation.from_learner(learn )
Digit Recognizer
9,568,647
test_df=convert_date(test_df )<feature_engineering>
losses,idxs = interp.top_losses()
Digit Recognizer
9,568,647
cond1 = test_df['workingday']=='Yes' cond2 = test_df['hour'].isin([7,8,9,17,18,19]) cond3 = test_df['hour'].isin([10,11,12,13,14,15,16]) cond4 = test_df['hour'].isin([0,1,2,3,4,5,6,20,21,22,23]) conditions =[~cond1,cond1&cond2,cond1&cond3,cond1&cond4] vals = ['No','High','Medium','Low'] test_df['Map demand'] = np.select(conditions,vals )<drop_column>
class_score, y = learn.get_preds(DatasetType.Test )
Digit Recognizer
9,568,647
test_df=test_df.drop(['datetime',],axis=1) <concatenate>
probabilities = class_score[0].tolist() [f"{index}: {probabilities[index]}" for index in range(len(probabilities)) ]
Digit Recognizer
9,568,647
test_df=additional(test_df )<drop_column>
class_score = np.argmax(class_score, axis=1 )
Digit Recognizer
9,568,647
test_df = rolling_mean(test_df,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) test_df = shifting(test_df,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) test_df = shifting_1(test_df,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) test_df = shifting_2(test_df,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) test_df=test_df.fillna(test_df.mean() )<feature_engineering>
INPUT = Path(".. /input/digit-recognizer") TEST = Path(".. /test" )
Digit Recognizer
9,568,647
test_cat_transformed=conv_cat_features(test_df )<init_hyperparams>
ImageId = [os.path.splitext(path)[0] for path in os.listdir(images_test)] ImageId = [int(path)for path in ImageId] ImageId = [ID+1 for ID in ImageId]
Digit Recognizer
9,568,647
<train_on_grid><EOS>
submission = pd.DataFrame({ "ImageId": ImageId, "Label": class_score }) submission.to_csv("submission.csv", index=False) display(submission.head(3)) display(submission.tail(3))
Digit Recognizer
10,774,499
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<create_dataframe>
%reload_ext autoreload %autoreload 2 %matplotlib inline
Digit Recognizer
10,774,499
X_train=X.copy() X_test=test_cat_transformed.copy()<create_dataframe>
warnings.simplefilter('ignore' )
Digit Recognizer
10,774,499
X_train_cat = X_train.copy() X_test_cat = X_test.copy()<choose_model_class>
from fastai import * from fastai.vision import * import torchvision.models
Digit Recognizer
10,774,499
xgb_v = XGBRegressor( objective='count:poisson',random_state=42) xgb= XGBRegressor( objective='count:poisson',random_state=42, subsample= 0.83, n_estimators= 3000, min_child_weight= 16, max_depth= 5, learning_rate= 0.055, gamma= 1, colsample_bytree= 0.5) catboost_v=CatBoostRegressor(objective='Poisson',iterations=4000,l2_leaf_reg=1,learning_rate=0.054 , silent = True) catboosttrial=CatBoostRegressor(objective='Poisson',iterations=4000,l2_leaf_reg=1,learning_rate=0.054,silent=True) xgb_models={ "XGB_vanella":xgb_v, "XGB_mod" : xgb } cat_models ={ "Catbbost_mod" :catboosttrial, "Catboost_Vanilla" :catboost_v}<compute_train_metric>
import os from pathlib import Path import pandas as pd
Digit Recognizer
10,774,499
columns = ['Classifier', 'RMSLE'] df_scores_cat = pd.DataFrame(columns=columns) for name, model in cat_models.items() : model.fit(X_train_cat, y) Y_predicted = model.predict(X_train_cat) rmsle = np.sqrt(mean_squared_log_error(y, Y_predicted)) df_row = pd.DataFrame([[name, rmsle]], columns=columns) df_scores_cat = df_scores_cat.append(df_row, ignore_index=True )<compute_train_metric>
train_df = pd.read_csv(INPUT/"train.csv") train_df.head(3 )
Digit Recognizer
10,774,499
columns = ['Classifier', 'RMSLE'] df_scores_xgb = pd.DataFrame(columns=columns) for name, model in xgb_models.items() : model.fit(X_train, y) Y_predicted = model.predict(X_train) rmsle = np.sqrt(mean_squared_log_error(y, Y_predicted)) df_row = pd.DataFrame([[name, rmsle]], columns=columns) df_scores_xgb = df_scores_xgb.append(df_row, ignore_index=True )<sort_values>
test_df = pd.read_csv(INPUT/"test.csv") test_df.head(3 )
Digit Recognizer
10,774,499
df_scores_cat.sort_values(by=['RMSLE'] )<sort_values>
TRAIN = Path(".. /train") TEST = Path(".. /test" )
Digit Recognizer
10,774,499
df_scores_xgb.sort_values(by=['RMSLE'] )<predict_on_test>
def saveDigit(digit, filepath): digit = digit.reshape(28,28) digit = digit.astype(np.uint8) img = Image.fromarray(digit) img.save(filepath )
Digit Recognizer
10,774,499
y_cat_pred=catboosttrial.predict(X_test_cat )<predict_on_test>
for index, row in train_df.iterrows() : label,digit = row[0], row[1:] folder = TRAIN/str(label) filename = f"{index}.jpg" filepath = folder/filename digit = digit.values saveDigit(digit, filepath )
Digit Recognizer
10,774,499
y_xgb_pred=xgb.predict(X_test )<data_type_conversions>
for index, digit in test_df.iterrows() : folder = TEST filename = f"{index}.jpg" filepath = folder/filename digit = digit.values saveDigit(digit, filepath )
Digit Recognizer
10,774,499
<data_type_conversions>
tfms = get_transforms(do_flip=False )
Digit Recognizer
10,774,499
test_df_copy['count'] = y_cat_pred.astype('int' )<filter>
data = ImageDataBunch.from_folder( path = TRAIN, test = TEST, valid_pct = 0.2, bs = 256, size = 28, num_workers = 5, ds_tfms = tfms ).normalize(mnist_stats )
Digit Recognizer
10,774,499
test_df_copy[test_df_copy["workingday"]=='No']<save_to_csv>
resnet_learn = Learner(data, torchvision.models.resnet50(pretrained=True), metrics=[error_rate, accuracy, top_k_accuracy], model_dir="/tmp/models", callback_fns=ShowGraph) googlenet_learn = Learner(data, torchvision.models.googlenet(pretrained=True), metrics=[error_rate, accuracy, top_k_accuracy], model_dir="/tmp/models", callback_fns=ShowGraph) resnext_learn = Learner(data, torchvision.models.resnext50_32x4d(pretrained=True), metrics=[error_rate, accuracy, top_k_accuracy], model_dir="/tmp/models", callback_fns=ShowGraph) wideres_learn = Learner(data, torchvision.models.wide_resnet50_2(pretrained=True), metrics=[error_rate, accuracy, top_k_accuracy], model_dir="/tmp/models", callback_fns=ShowGraph) mobilenet_learn = Learner(data, torchvision.models.mobilenet_v2(pretrained=True), metrics=[error_rate, accuracy, top_k_accuracy], model_dir="/tmp/models", callback_fns=ShowGraph )
Digit Recognizer
10,774,499
test_df_copy[['datetime','count']].to_csv("submissions1.csv",index=False )<load_from_csv>
model = [resnet_learn, googlenet_learn, resnext_learn, wideres_learn, mobilenet_learn]
Digit Recognizer
10,774,499
data_path = '/kaggle/input/bike-sharing-demand/' train = pd.read_csv(data_path + 'train.csv') test = pd.read_csv(data_path + 'test.csv') submission = pd.read_csv(data_path + 'sampleSubmission.csv' )<filter>
for learn in model: learn.lr_find() learn.recorder.plot(suggestion=True )
Digit Recognizer
10,774,499
train = train[train['weather'] != 4]<concatenate>
resnet_learn.fit_one_cycle(10 )
Digit Recognizer
10,774,499
all_data = pd.concat([train, test], ignore_index=True) all_data<feature_engineering>
googlenet_learn.fit_one_cycle(10 )
Digit Recognizer
10,774,499
all_data['date'] = all_data['datetime'].apply(lambda x: x.split() [0]) all_data['year'] = all_data['datetime'].apply(lambda x: x.split() [0].split('-')[0]) all_data['month'] = all_data['datetime'].apply(lambda x: x.split() [0].split('-')[1]) all_data['hour'] = all_data['datetime'].apply(lambda x: x.split() [1].split(':')[0]) all_data["weekday"] = all_data['date'].apply(lambda dateString : datetime.strptime(dateString,"%Y-%m-%d" ).weekday() )<drop_column>
resnext_learn.fit_one_cycle(10 )
Digit Recognizer
10,774,499
drop_features = ['casual', 'registered', 'datetime', 'date', 'windspeed', 'month'] all_data = all_data.drop(drop_features, axis=1 )<prepare_x_and_y>
wideres_learn.fit_one_cycle(10 )
Digit Recognizer
10,774,499
X_train = all_data[~pd.isnull(all_data['count'])] X_test = all_data[pd.isnull(all_data['count'])] X_train = X_train.drop(['count'], axis=1) X_test = X_test.drop(['count'], axis=1) y = train['count']<compute_test_metric>
mobilenet_learn.fit_one_cycle(10 )
Digit Recognizer
10,774,499
def rmsle(y_true, y_pred, convertExp=True): if convertExp: y_true = np.exp(y_true) y_pred = np.exp(y_pred) log_true = np.nan_to_num(np.array([np.log(y+1)for y in y_true])) log_pred = np.nan_to_num(np.array([np.log(y+1)for y in y_pred])) output = np.sqrt(np.mean(( log_true - log_pred)**2)) return output<choose_model_class>
ImageId = [int(os.path.splitext(path)[0])+1 for path in os.listdir(TEST)]
Digit Recognizer
10,774,499
<train_on_grid><EOS>
model_name = ['resnet', 'googlenet', 'resnext', 'wideres', 'mobilenet'] i = 0 for learn in model: class_score, y = learn.get_preds(DatasetType.Test) class_score = np.argmax(class_score, axis=1) submission = pd.DataFrame({"ImageId": ImageId,"Label": class_score}) submission.to_csv("submission_"+str(model_name[i])+".csv", index=False) i += 1
Digit Recognizer
11,245,893
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<train_on_grid>
!pip install git+https://github.com/keras-team/keras-tuner.git -q
Digit Recognizer
11,245,893
log_y = np.log1p(y) gridsearch_ridge_model.fit(X_train, log_y )<find_best_params>
def load_train(path): data = pd.read_csv(path) y = data["label"] x = data.drop(labels=["label"], axis=1 ).values.reshape(-1, 28, 28, 1) return x, y def load_test(path): data = pd.read_csv(path) x = data.values.reshape(-1, 28, 28, 1) return x x_train, y_train = load_train(".. /input/digit-recognizer/train.csv") x_test = load_test(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
11,245,893
print('최적 파라미터 :', gridsearch_ridge_model.best_params_ )<compute_train_metric>
def augment_images(x, hp): use_rotation = hp.Boolean('use_rotation') if use_rotation: x = layers.experimental.preprocessing.RandomRotation( hp.Float('rotation_factor', min_value=0.05, max_value=0.2) )(x) use_zoom = hp.Boolean('use_zoom') if use_zoom: x = layers.experimental.preprocessing.RandomZoom( hp.Float('use_zoom', min_value=0.05, max_value=0.2) )(x) return x def make_model(hp): inputs = keras.Input(shape=(28, 28, 1)) x = layers.experimental.preprocessing.Rescaling(1./ 255 )(inputs) x = layers.experimental.preprocessing.Resizing(64, 64 )(x) x = augment_images(x, hp) num_block = hp.Int('num_block', min_value=2, max_value=5, step=1) num_filters = hp.Int('num_filters', min_value=32, max_value=128, step=32) for i in range(num_block): x = layers.Conv2D( num_filters, kernel_size=3, activation='relu', padding='same' )(x) x = layers.Conv2D( num_filters, kernel_size=3, activation='relu', padding='same' )(x) x = layers.MaxPooling2D(2 )(x) reduction_type = hp.Choice('reduction_type', ['flatten', 'avg']) if reduction_type == 'flatten': x = layers.Flatten()(x) else: x = layers.GlobalAveragePooling2D()(x) x = layers.Dense( units=hp.Int('num_dense_units', min_value=32, max_value=512, step=32), activation='relu' )(x) x = layers.Dropout( hp.Float('dense_dropout', min_value=0., max_value=0.7) )(x) outputs = layers.Dense(10 )(x) model = keras.Model(inputs, outputs) learning_rate = hp.Float('learning_rate', min_value=3e-4, max_value=3e-3) optimizer = keras.optimizers.Adam(learning_rate=1e-3) model.compile(loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=optimizer, metrics=[keras.metrics.SparseCategoricalAccuracy(name='acc')]) model.summary() return model
Digit Recognizer
11,245,893
preds = gridsearch_ridge_model.best_estimator_.predict(X_train) print(f'릿지 회귀 RMSLE 값 : {rmsle(log_y, preds, True):.4f}' )<choose_model_class>
tuner = kt.tuners.RandomSearch( make_model, objective='val_acc', max_trials=100, overwrite=True) callbacks=[keras.callbacks.EarlyStopping(monitor='val_acc', mode='max', patience=3, baseline=0.9)] tuner.search(x_train, y_train, validation_split=0.2, callbacks=callbacks, verbose=1, epochs=100 )
Digit Recognizer
11,245,893
lasso_model = Lasso() lasso_alpha = 1/np.array([0.1, 1, 2, 3, 4, 10, 30, 100, 200, 300, 400, 800, 900, 1000]) lasso_params = {'max_iter':[3000], 'alpha':lasso_alpha} gridsearch_lasso_model = GridSearchCV(estimator=lasso_model, param_grid=lasso_params, scoring=rmsle_scorer, cv=5) log_y = np.log1p(y) gridsearch_lasso_model.fit(X_train, log_y) print('최적 파라미터 :', gridsearch_lasso_model.best_params_ )<compute_train_metric>
best_hp = tuner.get_best_hyperparameters() [0] model = make_model(best_hp) history = model.fit(x_train, y_train, validation_split=0.2, epochs=50 )
Digit Recognizer
11,245,893
preds = gridsearch_lasso_model.best_estimator_.predict(X_train) print(f'라쏘 회귀 RMSLE 값 : {rmsle(log_y, preds, True):.4f}' )<choose_model_class>
val_acc_per_epoch = history.history['val_acc'] best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1 model = make_model(best_hp) model.fit(x_train, y_train, epochs=best_epoch )
Digit Recognizer
11,245,893
<compute_train_metric><EOS>
predictions = model.predict(x_test) submission = pd.DataFrame({"ImageId": list(range(1, len(predictions)+ 1)) , "Label": np.argmax(predictions, axis=-1)}) submission.to_csv("submission.csv", index=False )
Digit Recognizer
5,866,910
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<save_to_csv>
%matplotlib inline
Digit Recognizer
5,866,910
submission['count'] = np.exp(randomforest_preds) submission.to_csv('submission.csv', index=False )<import_modules>
base_set = pd.read_csv('.. /input/digit-recognizer/train.csv' )
Digit Recognizer
5,866,910
import os import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from xgboost import XGBRegressor from sklearn.metrics import mean_squared_log_error from sklearn.model_selection import GridSearchCV from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import HistGradientBoostingRegressor <load_from_csv>
label_column = 'label' X = base_set.drop(columns=[label_column] ).values Y = base_set[label_column]
Digit Recognizer
5,866,910
df=pd.read_csv('.. /input/bike-sharing-demand/train.csv') test=pd.read_csv('.. /input/bike-sharing-demand/test.csv') <count_missing_values>
X = X / 255 def reshape_data(np_array): return np_array.reshape(len(np_array), 28, 28, 1) X = reshape_data(X )
Digit Recognizer
5,866,910
df.isnull().sum()<feature_engineering>
Y = to_categorical(Y, 10 )
Digit Recognizer
5,866,910
df['Date_time'] = df['datetime'].astype('datetime64[ns]') df['Year']=df.Date_time.dt.year df['Month']=df.Date_time.dt.month df['Day']=df.Date_time.dt.day df['Hour']=df.Date_time.dt.hour test['Date_time'] = test['datetime'].astype('datetime64[ns]') test['Year']=test.Date_time.dt.year test['Month']=test.Date_time.dt.month test['Day']=test.Date_time.dt.day test['Hour']=test.Date_time.dt.hour<count_values>
train_to_valtest_ratio =.32 validate_to_test_ratio =.5 (X_train, X_validation_and_test, Y_train, Y_validation_and_test)= train_test_split(X, Y, test_size=train_to_valtest_ratio) (X_validation, X_test, Y_validation, Y_test)= train_test_split(X_validation_and_test, Y_validation_and_test, test_size=validate_to_test_ratio )
Digit Recognizer
5,866,910
for i in df.columns: print(i) print(df[i].value_counts().sum) print("***********************************************" )<feature_engineering>
model = Sequential([ Conv2D(64, kernel_size=3, padding='same', activation='relu', input_shape=X.shape[1:]), Conv2D(64, kernel_size=3, padding='same', activation='relu'), Conv2D(128, kernel_size=3, padding='same', activation='relu'), MaxPooling2D(pool_size=2), Conv2D(128, kernel_size=3, padding='same', activation='relu'), Conv2D(192, kernel_size=3, padding='same', activation='relu'), MaxPooling2D(pool_size=2), Conv2D(192, kernel_size=5, padding='same', activation='relu'), MaxPooling2D(pool_size=2, padding='same'), Dropout(0.25), Flatten() , Dense(256, activation='relu'), Dropout(0.5), Dense(10, activation='softmax') ]) model.summary()
Digit Recognizer
5,866,910
df = df.drop(columns=['holiday']) test = test.drop(columns=['holiday']) df['windspeed']=df['windspeed'].replace(0,df['windspeed'].median()) test['windspeed']=test['windspeed'].replace(0,test['windspeed'].median()) df['weekday'] = 0 for ind in df.index: df['weekday'][ind]= calendar.weekday(df['Year'][ind], df['Month'][ind] , df['Day'][ind]) test['weekday'] = 0 for ind in test.index: test['weekday'][ind]= calendar.weekday(test['Year'][ind], test['Month'][ind] , test['Day'][ind]) df['is_night'] = 0 df.loc[(df['Hour'] < 6)|(df['Hour'] > 20), 'is_night'] = 1 test['is_night'] = 0 test.loc[(test['Hour'] < 6)|(test['Hour'] > 20), 'is_night'] = 1 df["weekend"] = df["weekday"].apply(lambda x: 1 if x == 5 or x == 6 else 0) test["weekend"] = test["weekday"].apply(lambda x: 1 if x == 5 or x == 6 else 0) df["day_cos"] = np.cos(( df['Hour'])*(2 * np.pi / 24)) df["day_sin"] = np.sin(( df['Hour'])*(2 * np.pi / 24)) df["month_cos"] = np.cos(( df['Month'])*(2 * np.pi / 12)) df["month_sin"] = np.sin(( df['Month'])*(2 * np.pi / 12)) df["weekday_sin"] = np.sin(( df['weekday'])*(2 * np.pi / 7)) df["weekday_cos"] = np.cos(( df['weekday'])*(2 * np.pi / 7)) test["day_cos"] = np.cos(( test['Hour'])*(2 * np.pi / 24)) test["day_sin"] = np.sin(( test['Hour'])*(2 * np.pi / 24)) test["month_cos"] = np.cos(( test['Month'])*(2 * np.pi / 12)) test["month_sin"] = np.sin(( test['Month'])*(2 * np.pi / 12)) test["weekday_sin"] = np.sin(( test['weekday'])*(2 * np.pi / 7)) test["weekday_cos"] = np.cos(( test['weekday'])*(2 * np.pi / 7)) Q1_windspeed = df['windspeed'].quantile(0.25) Q3_windspeed = df['windspeed'].quantile(0.75) IQR1 = Q3_windspeed - Q1_windspeed Q1_causal = df['casual'].quantile(0.25) Q3_causal = df['casual'].quantile(0.75) IQR2 = Q3_causal - Q1_causal Q1_registered = df['registered'].quantile(0.25) Q3_registered = df['registered'].quantile(0.75) IQR3 = Q3_registered - Q1_registered df.loc[df.windspeed > 16.997900, 'windspeed'] = np.nan df['windspeed'].fillna(1.5*IQR1,inplace=True) df.loc[df.casual > 49.000000, 'casual'] = np.nan df['casual'].fillna(1.5*IQR2,inplace=True) df.loc[df.registered >222.000000, 'registered'] = np.nan df['registered'].fillna(1.5*IQR3,inplace=True )<prepare_x_and_y>
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
5,866,910
train_df, val_df = train_test_split(df, test_size=0.2, random_state=42,shuffle=True) X_train = train_df.drop(columns=['count']) y_train = train_df['count'] X_val = val_df.drop(columns=['count']) y_val = val_df['count'] print(list(train_df.columns))<drop_column>
reduce_learning_reducer = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.3, min_lr=0.00001) early_stopper = EarlyStopping(monitor = 'val_loss', min_delta = 1e-10, patience = 10, verbose = 1, restore_best_weights = True) training_result = model.fit(X_train, Y_train, batch_size=96, epochs=150, validation_data=(X_validation, Y_validation), callbacks=[reduce_learning_reducer, early_stopper] )
Digit Recognizer
5,866,910
X_train = X_train [['weekend','is_night','weekday','temp','season', 'workingday', 'weather','humidity', 'windspeed','Year', 'Month', 'Day', 'Hour']] X_val = X_val [list(X_train.columns)] X_test = test[list(X_train.columns)]<compute_train_metric>
test_result = model.test_on_batch(X_test, Y_test) test_result
Digit Recognizer
5,866,910
RegModel=XGBRegressor(learning_rate = 0.07,max_depth = 10, alpha = 6, n_estimators = 350) y_train = np.log(train_df['count']+1) RegModel.fit(X_train,y_train) train_predict=RegModel.predict(X_train) train_predict=np.exp(train_predict) Error1= np.sqrt(mean_squared_log_error(np.exp(y_train), train_predict)) print('RMSLE Training:' + str(Error1)) predict= RegModel.predict(X_val) predict=np.exp(predict) Error= np.sqrt(mean_squared_log_error(y_val , predict)) print('RMSLE Validation:' + str(Error))<save_to_csv>
score = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1] )
Digit Recognizer
5,866,910
y_test_predicted = RegModel.predict(X_test) y_test_predicted=np.exp(y_test_predicted) test['count'] = y_test_predicted.astype(int) test[['datetime', 'count']].to_csv('/kaggle/working/submission.csv', index=False) <set_options>
benchmark = pd.read_csv('.. /input/digit-recognizer/test.csv') benchmark = benchmark / 255 benchmark = reshape_data(benchmark.values )
Digit Recognizer
5,866,910
%matplotlib inline<load_from_csv>
prediction = model.predict(benchmark )
Digit Recognizer
5,866,910
train = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv' )<drop_column>
submission = pd.DataFrame({ 'ImageId': [i + 1 for i in range(len(benchmark)) ], 'Label': [values.argmax() for values in prediction] }) submission.head()
Digit Recognizer
5,866,910
train.drop(['casual', 'registered'], axis=1, inplace=True )<data_type_conversions>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
5,866,910
train['datetime'] = pd.to_datetime(train['datetime'], errors='coerce') test['datetime'] = pd.to_datetime(test['datetime'], errors='coerce') <define_variables>
submission.to_csv('submission.csv', index=False )
Digit Recognizer
8,212,338
categorical_cols=['season','holiday','workingday','weather'] numerical_cols=['temp','atemp','humidity','windspeed'] label='count'<feature_engineering>
sample_submission = pd.read_csv(".. /input/digit-recognizer/sample_submission.csv") test = pd.read_csv(".. /input/digit-recognizer/test.csv") train = pd.read_csv(".. /input/digit-recognizer/train.csv" )
Digit Recognizer
8,212,338
train['Month'] = train['datetime'].dt.month test['Month'] = test['datetime'].dt.month train['Year'] = train['datetime'].dt.year test['Year'] = test['datetime'].dt.year train['WeekDay'] = train['datetime'].dt.weekday test['WeekDay'] = test['datetime'].dt.weekday train['Hour'] = train['datetime'].dt.hour test['Hour'] = test['datetime'].dt.hour<categorify>
x = np.ndarray(shape =(train.values.shape[0], 28, 28, 1)) x_label = np.ndarray(shape = train.values.shape[0]) i = 0 for img in train.values: x[i, :, :, 0] = np.reshape(img[1:],(28, 28)) /255 x_label[i] = img[0] i += 1
Digit Recognizer
8,212,338
def encodetime(train,test,col,label): d3=train[[col,label]].groupby(col ).mean() d3.sort_values(by='count',ascending=False) plt.scatter(x=d3.index,y=d3['count']) plt.xlabel(col) d3=d3.sort_values(by='count') d3['w']=np.arange(train[col].nunique()) dic=dict(zip(d3.index,d3['w'])) train[col]=train[col].map(dic) test[col]=test[col].map(dic )<categorify>
rot_gen = ImageDataGenerator(rotation_range = 25, width_shift_range = 3, height_shift_range = 3, brightness_range = [0.65, 1.5], shear_range = 15, zoom_range = 0.15) x_aug = rot_gen.flow(x, batch_size=1 )
Digit Recognizer
8,212,338
encodetime(train,test,'Year',label )<categorify>
Digit Recognizer
8,212,338
encodetime(train,test,'Month',label) <categorify>
x_train, x_test, y_train, y_test = train_test_split(x, x_label, test_size=0.2, random_state=42 )
Digit Recognizer
8,212,338
encodetime(train,test,'Hour',label) <categorify>
Y_train = ks.utils.to_categorical(y_train) Y_test = ks.utils.to_categorical(y_test )
Digit Recognizer
8,212,338
encodetime(train,test,'WeekDay',label) <feature_engineering>
new = rot_gen.flow(x_train, Y_train, batch_size = 10 )
Digit Recognizer
8,212,338
features=['holiday', 'workingday', 'weather', 'temp', 'atemp', 'Hour'] def lag(data,features, shift): for feature in features: data['lag_'+str(shift)+'_'+feature] = data[feature].shift(shift )<create_dataframe>
for i in range(10): print(np.argmax(lbl[i]))
Digit Recognizer
8,212,338
<count_missing_values>
aug = rot_gen.flow(x_train, Y_train, batch_size = 40) x_train_aug = np.ndarray(shape =(x_train.shape[0]*41, 28, 28, 1)) Y_train_aug = np.ndarray(shape =(Y_train.shape[0]*41, 10)) x_train_aug[: x_train.shape[0], :, :, :] = x_train Y_train_aug[: x_train.shape[0], :] = Y_train for i in range(x_train.shape[0] - 1): nn = aug.next() x_train_aug[x_train.shape[0] + i*40: x_train.shape[0] +(i + 1)*40, :, :, :] = nn[0]/255 Y_train_aug[x_train.shape[0] + i*40: x_train.shape[0] +(i + 1)*40, :] = nn[1]
Digit Recognizer
8,212,338
train.isnull().sum()<count_missing_values>
class makestats(Callback): def on_epoch_end(self, batch, logs=None): if batch % 5 == 0 and batch != 0: YY_test = np.argmax(Y_test, axis=1) y_pred = model.predict(x_test) print(classification_report(YY_test, np.argmax(y_pred, axis = 1))) print(confusion_matrix(( YY_test), y_pred.argmax(axis=1)) )
Digit Recognizer
8,212,338
train.isnull().sum()<train_model>
inputA = Input(shape =(28, 28, 1)) x = Conv2D(32, kernel_size=(5, 5), strides=(1), activation='relu', padding = 'same' )(inputA) x = MaxPooling2D(pool_size=(2, 2), strides=(2))(x) x = Dropout(0.3 )(x) x = Conv2D(64,(5, 5), activation='relu' )(x) x = MaxPooling2D(pool_size=(2, 2))(x) x = Dropout(0.3 )(x) x = Flatten()(x) x = Dense(1000, activation='relu' )(x) x = Dropout(0.3 )(x) z = Dense(500, activation="relu" )(x) x = Dropout(0.3 )(x) z = Dense(10, activation="softmax" )(z) model = Model(inputs=inputA, outputs=z) epochs = 40 lrate = 0.0003 decay = lrate/epochs sgd = SGD(lr=lrate, momentum=0.9, decay=decay, nesterov=False) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'] )
Digit Recognizer
8,212,338
train.fillna(-1, inplace=True) test.fillna(-1, inplace=True )<split>
model.fit(x_train_aug, Y_train_aug, validation_data=(x_test, Y_test), verbose = 1, epochs=epochs, batch_size=32, callbacks = [history, makestats() ] )
Digit Recognizer
8,212,338
X = train.drop(['count','datetime'],axis=1) xtest = test.drop(['datetime'],axis=1) y = train['count'] tss = TimeSeriesSplit(n_splits = 5) for train_index, test_index in tss.split(X): X_train, X_valid = X.iloc[train_index, :], X.iloc[test_index,:] y_train, y_valid = y.iloc[train_index], y.iloc[test_index]<split>
TEST = np.ndarray(shape =(test.values.shape[0], 28, 28, 1)) i = 0 for img in test.values: TEST[i, :, :, 0] = np.reshape(img,(28, 28)) /255 i += 1
Digit Recognizer
8,212,338
xt,xv,yt,yv=train_test_split(X,y,test_size=0.2,random_state=0 )<train_model>
y_pred = model.predict(TEST )
Digit Recognizer
8,212,338
def mk_model_xgb(xt,xv,yt,yv,func1,func2,lr=1,min_child_weight =25,colsample_bytree = 0.8,md=None): model =XGBRegressor(colsample_bytree = colsample_bytree, learning_rate = lr,min_child_weight =min_child_weight, max_depth=md) ytt=yt.apply(func1) model.fit(xt,ytt) ypt=np.apply_along_axis(func2,arr=model.predict(xt),axis=0) ypv=np.apply_along_axis(func2,arr=model.predict(xv),axis=0) print('training r2:',r2_score(yt,ypt)) print('Validation r2:',r2_score(yv,ypv)) print('training rmsle:',np.sqrt(msle(yt,ypt))) print('validation rmsle:',np.sqrt(msle(yv,ypv))) return model<train_model>
preds = [] for yy in y_pred: preds.append(np.argmax(yy))
Digit Recognizer
8,212,338
_=mk_model_xgb(X_train,X_valid,y_train,y_valid,func1=trans,func2=rev_trans,lr=0.2,min_child_weight =20,colsample_bytree = 0.8,md=20 )<split>
out_file = open("predictions.csv", "w") out_file.write("ImageId,Label ") for i in range(len(preds)) : out_file.write(str(i+1)+ "," + str(int(preds[i])) + " ") out_file.close()
Digit Recognizer
11,142,293
_=mk_model_xgb(xt,xv,yt,yv,func1=trans,func2=rev_trans,lr=0.2,min_child_weight =20,colsample_bytree = 0.8,md=20 )<train_model>
%matplotlib inline
Digit Recognizer
11,142,293
model=XGBRegressor(colsample_bytree = 0.8, learning_rate = 0.2,min_child_weight =20, max_depth=20 ).fit(X,y.apply(trans)) <predict_on_test>
mnist_train = pd.read_csv(".. /input/digit-recognizer/train.csv") mnist_test = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
11,142,293
log_y_pred = model.predict(xtest )<concatenate>
mnist_train_data = mnist_train.loc[:, "pixel0":] mnist_train_label = mnist_train.loc[:, "label"] mnist_train_data = mnist_train_data/255.0 mnist_test = mnist_test/255.0
Digit Recognizer
11,142,293
yp=np.apply_along_axis(rev_trans,arr=log_y_pred,axis=0) yp = np.round(yp )<prepare_output>
nclasses = mnist_train_label.max() - mnist_train_label.min() + 1 mnist_train_label = np_utils.to_categorical(mnist_train_label, num_classes = nclasses) print("Shape of y_train after encoding: ", mnist_train_label.shape )
Digit Recognizer
11,142,293
submission = test[['datetime']].copy() submission['count'] = yp submission.head()<save_to_csv>
x_train=mnist_train_data x_test=mnist_test_arr y_train=mnist_train_label x_train.shape
Digit Recognizer
11,142,293
submission.to_csv('/kaggle/working/submission.csv', index=False )<import_modules>
x_val=x_train[33600:] x=x_train[:33600] y_val= y_train[33600:] y=y_train[:33600] y.shape
Digit Recognizer
11,142,293
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.compose import ColumnTransformer from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.feature_selection import VarianceThreshold from sklearn.linear_model import ElasticNet import matplotlib.pyplot as plt from sklearn.preprocessing import QuantileTransformer, quantile_transform from sklearn.compose import TransformedTargetRegressor from sklearn.linear_model import RidgeCV from sklearn.compose import ColumnTransformer import xgboost from sklearn.metrics import mean_squared_log_error<feature_engineering>
from tensorflow.keras.preprocessing.image import ImageDataGenerator
Digit Recognizer
11,142,293
def trans(x,l1=0.3,l2=0): if l1!=0: return(( x+l2)**l1-1)/l1 else: return np.log(x+l2) def rev_trans(x,l1=0.3,l2=0): return(x*l1+1)**(1/l1)-l2 <load_from_csv>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(x )
Digit Recognizer
11,142,293
df = pd.read_csv("/kaggle/input/bike-sharing-demand/train.csv" )<feature_engineering>
from keras.optimizers import SGD
Digit Recognizer
11,142,293
df['windspeed'] = np.where(df['windspeed']==0.0,8.9981,df['windspeed'] )<feature_engineering>
model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32,(5,5), activation='relu', input_shape=(x_train.shape[1:])) , tf.keras.layers.Conv2D(32,(5,5), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=(2,2)) , tf.keras.layers.Dropout(0.2), tf.keras.layers.Conv2D(64,(5,5), activation='relu'), tf.keras.layers.Conv2D(64,(5,5), activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=(2,2)) , tf.keras.layers.Dropout(0.2), tf.keras.layers.Flatten() , tf.keras.layers.Dense(2048, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) learning_r= 0.01 weight_decay=1e-6 mometum=0.5 sgd= SGD(lr=learning_r,decay=weight_decay,momentum=mometum, nesterov=True) model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy']) model.summary()
Digit Recognizer
11,142,293
df['humidity'] = np.where(df['humidity']==0.0,8,df['humidity'] )<drop_column>
hist= model.fit(datagen.flow(x,y),epochs=50, validation_data=(x_val,y_val), verbose=1 )
Digit Recognizer
11,142,293
df.drop(columns='temp',inplace = True )<feature_engineering>
p = model.predict(x_test )
Digit Recognizer
11,142,293
df['windspeed'] = np.log(df['windspeed'] )<count_values>
p_t = [] for i in p: p_t.append(np.argmax(i))
Digit Recognizer
11,142,293
<feature_engineering><EOS>
submission = pd.DataFrame({ "ImageId": mnist_test.index+1, "Label": p_t }) submission.to_csv('my_submission.csv', index=False )
Digit Recognizer
11,152,622
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<count_values>
deviceCount = torch.cuda.device_count() print(deviceCount) cuda0 = None if deviceCount > 0: print(torch.cuda.get_device_name(0)) cuda0 = torch.device('cuda:0' )
Digit Recognizer
11,152,622
df['weather'].value_counts()<data_type_conversions>
df = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') print(df.shape) dataset_size = df.shape[0] df.head()
Digit Recognizer
11,152,622
df['datetime'] = pd.to_datetime(df['datetime'] )<feature_engineering>
x = df.drop('label', axis=1) x = x.values.reshape(dataset_size, 1, 28, 28) y = df['label'].values.reshape(dataset_size) df = None
Digit Recognizer
11,152,622
df['Hour'] = df['datetime'].dt.hour df['DayOfWeek'] = df['datetime'].dt.dayofweek df['Year'] = df['datetime'].dt.year df['WeekOfYear'] = df['datetime'].dt.isocalendar().week df['Month'] = df['datetime'].dt.month<feature_engineering>
cross_validation_ratio = 0.05 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=cross_validation_ratio, random_state=93) x = None y = None
Digit Recognizer
11,152,622
hourMonthSeason = df.pivot_table(index=['season','Month','DayOfWeek','Hour'],values = 'count',aggfunc=np.mean ).reset_index() hourMonthSeason['y_SMH'] = hourMonthSeason['count']<merge>
start_time = time.time() def shift_image(image, dx, dy): shifted_image = shift(image, [dy, dx], cval=0, mode="constant") return shifted_image augmented_x = [] augmented_y = [] random.seed(103) percentage_processed = 0 for i in range(len(x_train)) : augmented_x.append(x_train[i].astype(int)) augmented_y.append(y_train[i].astype(int)) for j in range(5): image = x_train[i].reshape(( 28, 28)) x_shift = random.randint(-1, 1) y_shift = random.randint(-1, 1) rotation_deg = float(random.randint(-15, 15)) image = rotate(image, angle=rotation_deg, cval=0, mode="constant", preserve_range=True) image = np.rint(image) image = image.astype(int) image = shift_image(image, x_shift, y_shift) image = x_train[i].reshape(( 1, 28, 28)) augmented_x.append(image) augmented_y.append(y_train[i].astype(int)) if(i+1)/len(x_train)*100 >= percentage_processed+10: print(f'{int(( i+1)/len(x_train)*100):3}% images processed') percentage_processed += 10 train_dataset_size = len(augmented_x) test_dataset_size = len(x_test) x_train = None y_train = None print(f' Duration: {time.time() - start_time:.0f} seconds' )
Digit Recognizer
11,152,622
df = pd.merge(df,hourMonthSeason[['season','Month','DayOfWeek','Hour','y_SMH']],on = ['season','Month','DayOfWeek','Hour'],how = 'left' )<drop_column>
random.seed(93) for i in range(len(augmented_x)) : index = random.randint(0, len(augmented_x)-1) tempx = augmented_x[i] tempy = augmented_y[i] augmented_x[i] = augmented_x[index] augmented_y[i] = augmented_y[index] augmented_x[index] = tempx augmented_y[index] = tempy
Digit Recognizer
11,152,622
X = df.copy() X.drop(columns = ['WeekOfYear','casual', 'count', 'registered','holiday'],inplace = True )<split>
trainingDataset = TensorDataset(x_train, y_train) testDataset = TensorDataset(x_test, y_test) trainloader = DataLoader(trainingDataset, batch_size=512, shuffle=True) testloader = DataLoader(testDataset, batch_size=512, shuffle=False )
Digit Recognizer
11,152,622
y_log=trans(df['count']) X_train, X_eval, y_train, y_eval=train_test_split(X, y_log, test_size=0.3, random_state=42 )<choose_model_class>
class ConvolutionalNetwork(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 16, 3, 1) self.conv2 = nn.Conv2d(16, 32, 3, 1) self.fc1 = nn.Linear(5*5*32, 140) self.fc2 = nn.Linear(140, 80) self.fc3 = nn.Linear(80,10) self.dropout1 = nn.Dropout(p=0.5) self.dropout2 = nn.Dropout(p=0.5) self.bn1 = nn.BatchNorm1d(140) self.bn2 = nn.BatchNorm1d(80) self.conv1_bn = nn.BatchNorm2d(16) self.conv2_bn = nn.BatchNorm2d(32) def forward(self, X): X = self.conv1(X) X = self.conv1_bn(X) X = F.relu(X) X = F.max_pool2d(X, 2, 2) X = self.conv2(X) X = self.conv2_bn(X) X = F.relu(X) X = F.max_pool2d(X, 2, 2) X = X.view(-1, 5*5*32) X = self.fc1(X) X = self.bn1(X) X = F.relu(X) X = self.dropout1(X) X = self.fc2(X) X = self.bn2(X) X = F.relu(X) X = self.dropout2(X) X = self.fc3(X) return X
Digit Recognizer
11,152,622
xgb_best = xgboost.XGBRegressor(colsample_bytree= 0.7, learning_rate =0.03, max_depth= 5, min_child_weight= 0.4, n_estimators= 250, nthread= 4, objective= 'reg:linear', silent= 1, subsample= 0.7) xgb_best.fit(X_train,y_train) pred = xgb_best.predict(X_eval) print(r2_score(y_eval,pred)) print(np.sqrt(mean_squared_error(y_eval,pred))) <load_from_csv>
torch.manual_seed(103) torch.cuda.manual_seed(103) model = ConvolutionalNetwork() if cuda0 != None: model.to(cuda0) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters() , lr=0.001) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9) print(model )
Digit Recognizer
11,152,622
df_test = pd.read_csv("/kaggle/input/bike-sharing-demand/test.csv" )<feature_engineering>
start_time = time.time() epochs = 45 train_losses = [] test_losses = [] train_correct = [] test_correct = [] for i in range(epochs): model.train() epoch_start_time = time.time() trn_corr = 0 tst_corr = 0 total = 0 currentLoss = 0 for currentBatch in enumerate(trainloader): bno = currentBatch[0] + 1 x = currentBatch[1][0] y = currentBatch[1][1] y_pred = model(x) loss = criterion(y_pred, y) lambdaParam = torch.tensor(0.05) l2_reg = torch.tensor(0.) if cuda0 != None: lambdaParam = lambdaParam.cuda() l2_reg = l2_reg.cuda() for param in model.parameters() : if cuda0 != None: l2_reg += torch.norm(param ).cuda() else: l2_reg += torch.norm(param) loss += lambdaParam * l2_reg y_pred = F.log_softmax(y_pred, dim=1) predicted = torch.max(y_pred.data, 1)[1] batch_corr =(predicted == y ).sum() trn_corr += batch_corr optimizer.zero_grad() loss.backward() optimizer.step() currentLoss += loss.item() total += len(currentBatch[1][1]) if bno%100 == 0 or bno==1: printStr = f'epoch: {i+1} batch: {bno:3} loss: {loss.item() :10.8f} accuracy: {trn_corr.item() /total*100:6.3f}%' print(printStr) train_losses.append(currentLoss/bno) train_correct.append(trn_corr.item()) currentLoss = 0 model.eval() with torch.no_grad() : for currentBatch in enumerate(testloader): bno = currentBatch[0] + 1 x = currentBatch[1][0] y = currentBatch[1][1] y_pred = model(x) predicted = torch.max(y_pred.data, 1)[1] tst_corr +=(predicted == y ).sum() loss = criterion(y_pred, y) currentLoss += loss.item() test_losses.append(currentLoss/bno) test_correct.append(tst_corr.item()) print('Summary of Epoch {}:'.format(i+1)) print(f'Train Loss: {train_losses[i]:10.8f} Train Accuracy: {train_correct[i]/train_dataset_size*100:6.3f}%') print(f'Test Loss: {test_losses[i]:10.8f} Test Accuracy: {test_correct[i]/test_dataset_size*100:6.3f}%') print(f'Epoch Duration: {time.time() - epoch_start_time:.0f} seconds') print('') scheduler.step() print(f' Duration: {time.time() - start_time:.0f} seconds' )
Digit Recognizer
11,152,622
df_test['windspeed'] = np.where(df_test['windspeed']==0.0,8.9981,df_test['windspeed']) df_test['humidity'] = np.where(df_test['humidity']==0.0,8,df_test['humidity'] )<feature_engineering>
x_test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') x_test = x_test.values.reshape(28000, 1, 28, 28) x_test = torch.FloatTensor(x_test) if cuda0 != None: x_test = x_test.cuda()
Digit Recognizer
11,152,622
df_test.drop(columns='temp',inplace = True) df_test['windspeed'] = np.log(df_test['windspeed']) df_test['weather'] = np.where(df_test['weather']==4,3,df_test['weather'] )<feature_engineering>
with torch.no_grad() : model.eval() y_pred = model(x_test) predictions = torch.max(y_pred.data, 1)[1] predictions = predictions.cpu().detach().numpy() ids = [id+1 for id in range(len(predictions)) ] output = pd.DataFrame({'ImageId': ids, 'Label': predictions} )
Digit Recognizer
11,152,622
<merge><EOS>
output.to_csv('/kaggle/working/my_submission.csv', index=False )
Digit Recognizer
11,129,033
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<drop_column>
%matplotlib inline
Digit Recognizer
11,129,033
X_test = df_test.copy() test_date = X_test['datetime'] X_test.drop(columns = ['WeekOfYear','datetime','holiday'],inplace = True )<drop_column>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer