kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,684,407 | data_df_sample_submission = pd.read_csv('.. /input/hpa-single-cell-image-classification/sample_submission.csv')
test_files = os.listdir(".. /input/hpa-single-cell-image-classification/test")
color_list = ["_red.png", "_green.png", "_yellow.png", "_blue.png"]
test_files_names = [re.sub(r'|'.join(map(re.escape, color_list)) , '', elem)for elem in test_files]
test_files_names = list(set(test_files_names))
d = []
for i, file in enumerate(test_files_names):
img = cv2.imread(f".. /input/hpa-single-cell-image-classification/test/{file}_red.png")
height, width, channels = img.shape
d.append({
"ID" : file,
"ImageWidth" : width,
"ImageHeight": height,
"PredictionString" : "0 1 eNoLCAgIMAEABJkBdQ=="
})
if i%50 == 0:
print(i)
df_from_files = pd.DataFrame(d ).sort_values("ID" ).reset_index(drop=True)
assert all(df_from_files == data_df_sample_submission), "Dataframes do not match"<define_variables> | cnn.add(layer = tf.keras.layers.Dense(units = 108, activation='relu')) | Digit Recognizer |
11,684,407 | PATH_TEST = ".. /input/hpa-single-cell-image-classification/test"
MODEL_PATH = ".. /input/models-hpa/"
MODELS_LIST_EFFNET = [
"efficientnet-b4_rgby_lr_0.001_ADAM_steplr_g085_focal1_g1.0_resize640_mediumaug_3.pth",
"efficientnet-b4_rgby_lr_0.0015_ADAM_focal1_g1.0_resize640_10pcTest_HEAVY_AUG_E3_F0.pth",
"efficientnet-b4_rgby_lr_0.001_ADAM_steplr_g085_focal1_g1.0_resize640_mediumaug_E4_F4.pth",
]
MODELS_LIST_RESNEST = [
"resnest101_rgby_lr_0.002_SGD_polyoptim_focal1_g1.0_scheduler_largedataset_resize640_mediumaug_3.pth",
"resnest101_rgby_lr_0.002_SGD_focal1_g1.0_resize640_5pcTest_BS8_E3_F0.pth",
]
MODEL_LABELS_EFF = ".. /input/hpa-tensorflow-models/model_green.06-0.07.h5"
MODEL_LABELS_RN = ".. /input/hpa-tensorflow-models/model_rgb_resnext101.09-0.10.h5"
MODEL_LABELS_VIT = ".. /input/hpa-tensorflow-models/ggg_ViTB16_RedPlat_ADAMW_BCE_EPOCH12-VAL0.0957.h5"
<init_hyperparams> | cnn.add(layer = tf.keras.layers.Dropout(0.5)) | Digit Recognizer |
11,684,407 | class CFG:
debug=False
verbose = False
num_workers=8
model_name_effnet = 'efficientnet-b4'
model_name_resnest = 'resnest101'
size=640
seed=2002
classes = 19
color_mode = "rgby"
resnest = True
effnet = True
extra_model_for_labels = True
extra_model_is_tf = True
only_green_extra_model = True
color_mode_image_level = "rgb"
split = [0.6, 0.4, 0]
size_seg = None
split_image_level = [0.33, 0.33, 0.34, 0]
split_cam_level = [0.5, 0.5]
split_sigmoid_graboost = [0.5, 0.5]
sigmoid_factor = 2.0
sigmoid_move = 0.2
is_demo = len(data_df)==559
if CFG.is_demo:
data_df = data_df[:10]
batch_size_ = 4<normalization> | cnn.add(layer = tf.keras.layers.Dense(units = 108, activation='relu')) | Digit Recognizer |
11,684,407 | Compose, OneOf, Normalize, Resize, RandomResizedCrop, RandomCrop, HorizontalFlip, VerticalFlip,
RandomBrightness, RandomContrast, RandomBrightnessContrast, Rotate, ShiftScaleRotate, Cutout,
IAAAdditiveGaussianNoise, Transpose, HueSaturationValue, CoarseDropout
)
dataset_mean = [0.0994, 0.0466, 0.0606, 0.0879]
dataset_std = [0.1406, 0.0724, 0.1541, 0.1264]
def get_transforms(*, data_type):
if data_type == 'valid':
return Compose([
Resize(CFG.size, CFG.size),
ToTensorV2() ,
])
elif data_type == 'test_green_model':
return Compose([
Resize(600, 600),
])
elif data_type == 'test_green_model_torch':
return Compose([
Resize(CFG.size, CFG.size),
ToTensorV2() ,
] )<load_pretrained> | cnn.add(layer = tf.keras.layers.Dense(units = 10, activation = 'softmax')) | Digit Recognizer |
11,684,407 | def load_RGBY_image(image_id, path, mode="cam", image_size=None):
if mode == "green_model":
green = read_img_scale255(image_id, "green",path, image_size)
stacked_images = np.transpose(np.array([green, green, green]),(1,2,0))
return stacked_images
if mode=="cam":
red = read_img(image_id, "red", path, image_size)
green = read_img(image_id, "green",path, image_size)
blue = read_img(image_id, "blue",path, image_size)
yellow = read_img(image_id, "yellow",path, image_size)
if CFG.color_mode == "rgby":
stacked_images = np.transpose(np.array([red, green, blue,yellow]),(1,2,0))
else:
stacked_images = np.transpose(np.array([red, green, blue]),(1,2,0))
return stacked_images
def read_img(image_id, color, path, image_size=None):
filename = f'{path}/{image_id}_{color}.png'
assert os.path.exists(filename), f'not found {filename}'
img = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
if image_size is not None:
img = cv2.resize(img,(image_size, image_size))
if img.max() > 255:
img_max = img.max()
img =(img/255 ).astype('uint8')
return img
def read_img_scale255(image_id, color, path, image_size=None):
filename = f'{path}/{image_id}_{color}.png'
assert os.path.exists(filename), f'not found {filename}'
img = cv2.imread(filename, cv2.IMREAD_UNCHANGED)
if image_size is not None:
img = cv2.resize(img,(image_size, image_size))
if img.max() > 255:
img_max = img.max()
img =(img/255 ).astype('uint8')/255
return img
def one_hot_embedding(label, classes):
vector = np.zeros(( classes), dtype = np.float32)
if len(label)> 0:
vector[label] = 1.
return vector
class HPADataset_Test(Dataset):
def __init__(self, ids, path=None, transforms=None, mode="cam"):
self.ids = ids
self.transforms = transforms
self.mode = mode
self.path = path
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
_ids = self.ids.iloc[idx]
image = load_RGBY_image(_ids, self.path, self.mode)
if self.transforms:
augmented = self.transforms(image=image)
image = augmented['image']
return image, _ids<categorify> | cnn.compile(optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = ['accuracy'] ) | Digit Recognizer |
11,684,407 | def build_decoder(with_labels=True, target_size=(300, 300), ext='jpg'):
def decode(path):
if CFG.color_mode_image_level == "ggg":
file_bytes = tf.io.read_file(path + "_green.png")
if ext == 'png':
img = tf.image.decode_png(file_bytes, channels=3)
elif ext in ['jpg', 'jpeg']:
img = tf.image.decode_jpeg(file_bytes, channels=3)
else:
raise ValueError("Image extension not supported")
img = tf.cast(img, tf.float32)/ 255.0
img = tf.image.resize(img, target_size)
return img
if CFG.color_mode_image_level == "rgb":
r = tf.io.read_file(path + "_red.png")
g = tf.io.read_file(path + "_green.png")
b = tf.io.read_file(path + "_blue.png")
red = tf.io.decode_png(r, channels=1)
blue = tf.io.decode_png(g, channels=1)
green = tf.io.decode_png(b, channels=1)
red = tf.image.resize(red, target_size)
blue = tf.image.resize(blue, target_size)
green = tf.image.resize(green, target_size)
img = tf.stack([red, green, blue], axis=-1)
img = tf.squeeze(img)
img = tf.image.convert_image_dtype(img, tf.float32)/ 255
return img
def decode_with_labels(path, label):
return decode(path), label
return decode_with_labels if with_labels else decode
def build_augmenter(with_labels=True):
def augment(img):
img = tf.image.random_flip_left_right(img)
img = tf.image.random_flip_up_down(img)
return img
def augment_with_labels(img, label):
return augment(img), label
return augment_with_labels if with_labels else augment
def build_dataset_tf(paths, labels=None, bsize=32, cache=True,
decode_fn=None, augment_fn=None,
augment=True, repeat=True, shuffle=1024, img_size=300,
cache_dir=""):
if cache_dir != "" and cache is True:
os.makedirs(cache_dir, exist_ok=True)
if decode_fn is None:
decode_fn = build_decoder(labels is not None, target_size=(img_size, img_size))
if augment_fn is None:
augment_fn = build_augmenter(labels is not None)
AUTO = tf.data.experimental.AUTOTUNE
slices = paths if labels is None else(paths, labels)
dset = tf.data.Dataset.from_tensor_slices(slices)
dset = dset.map(decode_fn, num_parallel_calls=AUTO)
dset = dset.cache(cache_dir)if cache else dset
dset = dset.map(augment_fn, num_parallel_calls=AUTO)if augment else dset
dset = dset.repeat() if repeat else dset
dset = dset.shuffle(shuffle)if shuffle else dset
dset = dset.batch(bsize ).prefetch(AUTO)
return dset
test_paths = PATH_TEST + "/" + data_df['ID']
test_decoder_600 = build_decoder(with_labels=False, target_size=(600, 600))
test_decoder_384 = build_decoder(with_labels=False, target_size=(384, 384))
CFG.color_mode_image_level = "ggg"
dtest_tf_green_600 = build_dataset_tf(
test_paths, bsize=batch_size_, repeat=False,
shuffle=False, augment=False, cache=False,
decode_fn=test_decoder_600
)
CFG.color_mode_image_level = "rgb"
dtest_tf_rgb_600 = build_dataset_tf(
test_paths, bsize=batch_size_, repeat=False,
shuffle=False, augment=False, cache=False,
decode_fn=test_decoder_600
)
CFG.color_mode_image_level = "ggg"
dtest_tf_ggg_384 = build_dataset_tf(
test_paths, bsize=batch_size_, repeat=False,
shuffle=False, augment=False, cache=False,
decode_fn=test_decoder_384
)<prepare_x_and_y> | model_train = cnn.fit(x = X_train, y = y_train, validation_data =(X_val, y_val), epochs = 25 ) | Digit Recognizer |
11,684,407 | class Yield_Images_Dataset(Dataset):
def __init__(self, csv_file, root=PATH_TEST, transform=None):
self.images_df = csv_file
self.transform = transform
self.root = root
def __len__(self):
return len(self.images_df)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
_id = self.images_df["ID"].iloc[idx]
r = os.path.join(self.root, f'{_id}_red.png')
y = os.path.join(self.root, f'{_id}_yellow.png')
b = os.path.join(self.root, f'{_id}_blue.png')
r = cv2.imread(r, 0)
y = cv2.imread(y, 0)
b = cv2.imread(b, 0)
size = r.shape[0]
if CFG.size_seg == None:
ryb_image = np.stack(( r, y, b), axis=2)/255.
blue_image = b/255.
return blue_image, ryb_image, size, _id
if size != CFG.size_seg:
blue_image = cv2.resize(b,(CFG.size_seg, CFG.size_seg)) /255.
ryb_image = np.stack(( r, y, b), axis=2)
ryb_image = cv2.resize(ryb_image,(CFG.size_seg, CFG.size_seg)) /255.
else:
ryb_image = np.stack(( r, y, b), axis=2)/255.
blue_image = b/255.
return blue_image, ryb_image, size, _id
<set_options> | y_pred = np.argmax(cnn.predict(testing), axis = -1 ) | Digit Recognizer |
11,684,407 |
NUCLEI_MODEL_URL, TWO_CHANNEL_CELL_MODEL_URL)
NORMALIZE = {"mean": [124 / 255, 117 / 255, 104 / 255], "std": [1 /(0.0167 * 255)] * 3}
class CellSegmentator(object):
def __init__(
self,
nuclei_model="./nuclei_model.pth",
cell_model="./cell_model.pth",
model_width_height=None,
device="cuda",
multi_channel_model=True,
return_without_scale_restore=False,
scale_factor=0.25,
padding=False
):
if device != "cuda" and device != "cpu" and "cuda" not in device:
raise ValueError(f"{device} is not a valid device(cuda/cpu)")
if device != "cpu":
try:
assert torch.cuda.is_available()
except AssertionError:
print("No GPU found, using CPU.", file=sys.stderr)
device = "cpu"
self.device = device
if isinstance(nuclei_model, str):
if not os.path.exists(nuclei_model):
print(
f"Could not find {nuclei_model}.Downloading it now",
file=sys.stderr,
)
download_with_url(NUCLEI_MODEL_URL, nuclei_model)
nuclei_model = torch.load(
nuclei_model, map_location=torch.device(self.device)
)
if isinstance(nuclei_model, torch.nn.DataParallel)and device == "cpu":
nuclei_model = nuclei_model.module
self.nuclei_model = nuclei_model.to(self.device)
self.multi_channel_model = multi_channel_model
if isinstance(cell_model, str):
if not os.path.exists(cell_model):
print(
f"Could not find {cell_model}.Downloading it now", file=sys.stderr
)
if self.multi_channel_model:
download_with_url(MULTI_CHANNEL_CELL_MODEL_URL, cell_model)
else:
download_with_url(TWO_CHANNEL_CELL_MODEL_URL, cell_model)
cell_model = torch.load(cell_model, map_location=torch.device(self.device))
self.cell_model = cell_model.to(self.device)
self.model_width_height = model_width_height
self.return_without_scale_restore = return_without_scale_restore
self.scale_factor = scale_factor
self.padding = padding
def _image_conversion(self, images):
microtubule_imgs, er_imgs, nuclei_imgs = images
if self.multi_channel_model:
if not isinstance(er_imgs, list):
raise ValueError("Please speicify the image path(s)for er channels!")
else:
if not er_imgs is None:
raise ValueError(
"second channel should be None for two channel model predition!"
)
if not isinstance(microtubule_imgs, list):
raise ValueError("The microtubule images should be a list")
if not isinstance(nuclei_imgs, list):
raise ValueError("The microtubule images should be a list")
if er_imgs:
if not len(microtubule_imgs)== len(er_imgs)== len(nuclei_imgs):
raise ValueError("The lists of images needs to be the same length")
else:
if not len(microtubule_imgs)== len(nuclei_imgs):
raise ValueError("The lists of images needs to be the same length")
if not all(isinstance(item, np.ndarray)for item in microtubule_imgs):
microtubule_imgs = [
os.path.expanduser(item)for _, item in enumerate(microtubule_imgs)
]
nuclei_imgs = [
os.path.expanduser(item)for _, item in enumerate(nuclei_imgs)
]
microtubule_imgs = list(
map(lambda item: imageio.imread(item), microtubule_imgs)
)
nuclei_imgs = list(map(lambda item: imageio.imread(item), nuclei_imgs))
if er_imgs:
er_imgs = [os.path.expanduser(item)for _, item in enumerate(er_imgs)]
er_imgs = list(map(lambda item: imageio.imread(item), er_imgs))
if not er_imgs:
er_imgs = [
np.zeros(item.shape, dtype=item.dtype)
for _, item in enumerate(microtubule_imgs)
]
cell_imgs = list(
map(
lambda item: np.dstack(( item[0], item[1], item[2])) ,
list(zip(microtubule_imgs, er_imgs, nuclei_imgs)) ,
)
)
return cell_imgs
def _pad(self, image):
rows, cols = image.shape[:2]
self.scaled_shape = rows, cols
img_pad= cv2.copyMakeBorder(
image,
32,
(32 - rows % 32),
32,
(32 - cols % 32),
cv2.BORDER_REFLECT,
)
return img_pad
def pred_nuclei(self, images):
def _preprocess(images):
if isinstance(images[0], str):
raise NotImplementedError('Currently the model requires images as numpy arrays, not paths.')
self.target_shapes = [image.shape for image in images]
if self.model_width_height:
images = np.array([transform.resize(image,(self.model_width_height,self.model_width_height))
for image in images])
else:
images = [transform.rescale(image, self.scale_factor)for image in images]
if self.padding:
images = [self._pad(image)for image in images]
nuc_images = np.array([np.dstack(( image[..., 2], image[..., 2], image[..., 2])) if len(image.shape)>= 3
else np.dstack(( image, image, image)) for image in images])
nuc_images = nuc_images.transpose([0, 3, 1, 2])
return nuc_images
def _segment_helper(imgs):
with torch.no_grad() :
mean = torch.as_tensor(NORMALIZE["mean"], device=self.device)
std = torch.as_tensor(NORMALIZE["std"], device=self.device)
imgs = torch.tensor(imgs ).float()
imgs = imgs.to(self.device)
imgs = imgs.sub_(mean[:, None, None] ).div_(std[:, None, None])
imgs = self.nuclei_model(imgs)
imgs = F.softmax(imgs, dim=1)
return imgs
preprocessed_imgs = _preprocess(images)
predictions = _segment_helper(preprocessed_imgs)
predictions = predictions.to("cpu" ).numpy()
predictions = [self._restore_scaling(util.img_as_ubyte(pred), target_shape)
for pred, target_shape in zip(predictions, self.target_shapes)]
return predictions
def _restore_scaling(self, n_prediction, target_shape):
n_prediction = n_prediction.transpose([1, 2, 0])
if self.padding:
n_prediction = n_prediction[
32 : 32 + self.scaled_shape[0], 32 : 32 + self.scaled_shape[1],...
]
n_prediction[..., 0] = 0
if not self.return_without_scale_restore:
n_prediction = cv2.resize(
n_prediction,
(target_shape[0], target_shape[1]),
interpolation=cv2.INTER_AREA,
)
return n_prediction
def pred_cells(self, images, precombined=False):
def _preprocess(images):
self.target_shapes = [image.shape for image in images]
for image in images:
if not len(image.shape)== 3:
raise ValueError("image should has 3 channels")
if self.model_width_height:
images = np.array([transform.resize(image,(self.model_width_height,self.model_width_height))
for image in images])
else:
images = np.array([transform.rescale(image, self.scale_factor, multichannel=True)for image in images])
if self.padding:
images = np.array([self._pad(image)for image in images])
cell_images = images.transpose([0, 3, 1, 2])
return cell_images
def _segment_helper(imgs):
with torch.no_grad() :
mean = torch.as_tensor(NORMALIZE["mean"], device=self.device)
std = torch.as_tensor(NORMALIZE["std"], device=self.device)
imgs = torch.tensor(imgs ).float()
imgs = imgs.to(self.device)
imgs = imgs.sub_(mean[:, None, None] ).div_(std[:, None, None])
imgs = self.cell_model(imgs)
imgs = F.softmax(imgs, dim=1)
return imgs
if not precombined:
images = self._image_conversion(images)
preprocessed_imgs = _preprocess(images)
predictions = _segment_helper(preprocessed_imgs)
predictions = predictions.to("cpu" ).numpy()
predictions = [self._restore_scaling(util.img_as_ubyte(pred), target_shape)
for pred, target_shape in zip(predictions, self.target_shapes)]
return predictions<define_variables> | predictions = pd.DataFrame({"ImageId" : list(range(1, len(y_pred)+1)) ,
"Label" : y_pred} ) | Digit Recognizer |
11,684,407 | <define_variables><EOS> | predictions.to_csv('predictions.csv', index = False ) | Digit Recognizer |
11,590,103 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<choose_model_class> | import pandas as pd
import numpy as np
import tensorflow as tf | Digit Recognizer |
11,590,103 | NUC_MODEL = ".. /input/hpacellsegmentatormodelweights/dpn_unet_nuclei_v1.pth"
CELL_MODEL = ".. /input/hpacellsegmentatormodelweights/dpn_unet_cell_3ch_v1.pth"
segmentator_even_faster = CellSegmentator(
NUC_MODEL,
CELL_MODEL,
device="cuda",
multi_channel_model=True,
padding=True,
return_without_scale_restore=True
)<create_dataframe> | train=pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
print("Training Dataset Shape:",train.shape)
train.head() | Digit Recognizer |
11,590,103 | yield_ims_1728 = Yield_Images_Dataset(predict_df_1728)
yield_ims_2048 = Yield_Images_Dataset(predict_df_2048)
yield_ims_3072 = Yield_Images_Dataset(predict_df_3072)
yield_ims_4096 = Yield_Images_Dataset(predict_df_4096)
dataloader_ims_seg_1728 = DataLoader(yield_ims_1728, batch_size=24,
shuffle=False, num_workers=0)
dataloader_ims_seg_2048 = DataLoader(yield_ims_2048, batch_size=12,
shuffle=False, num_workers=0)
dataloader_ims_seg_3072 = DataLoader(yield_ims_3072, batch_size=3,
shuffle=False, num_workers=0)
dataloader_ims_seg_4096 = DataLoader(yield_ims_4096, batch_size=3,
shuffle=False, num_workers=0)
dataloaders_all_sizes = [dataloader_ims_seg_1728, dataloader_ims_seg_2048, dataloader_ims_seg_3072, dataloader_ims_seg_4096]
start_time = time.time()
even_faster_outputs = []
output_ids = []
batch_size = 24
sizes_list = []
im_proc = 0
for i, dataloader_ims_seg in enumerate(dataloaders_all_sizes):
print(f"GETTING IMAGE SIZES: {IMAGE_SIZES[i]}, BATCHES: {len(dataloader_ims_seg)}")
print
for blue_images, ryb_images, sizes, _ids in dataloader_ims_seg:
print(f"SEGMENT COUNT: {im_proc}")
blue_batch = blue_images.numpy()
ryb_batch = ryb_images.numpy()
nuc_segmentations = segmentator_even_faster.pred_nuclei(blue_batch)
cell_segmentations = segmentator_even_faster.pred_cells(ryb_batch, precombined=True)
for data_id, nuc_seg, cell_seg, size in zip(_ids, nuc_segmentations, cell_segmentations, sizes):
_, cell = utils.label_cell(nuc_seg, cell_seg)
even_faster_outputs.append(np.ubyte(cell))
output_ids.append(data_id)
sizes_list.append(size.numpy())
im_proc += len(_ids)
del dataloader_ims_seg
print(time.time() - start_time)
cell_masks_df = pd.DataFrame(list(zip(output_ids, even_faster_outputs,sizes_list)) ,
columns=["ID", "mask", "ori_size"] )<drop_column> | test=pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
print('Test Dataset Shape:',test.shape)
test.head() | Digit Recognizer |
11,590,103 | cell_masks_df = cell_masks_df.set_index('ID')
cell_masks_df = cell_masks_df.reindex(index=data_df['ID'])
cell_masks_df = cell_masks_df.reset_index()<set_options> | x=x.reshape(-1,28,28,1)
test=test.values.reshape(-1,28,28,1)
x=x/255
test=test/255
y=to_categorical(y ) | Digit Recognizer |
11,590,103 | del sizes_list
del even_faster_outputs
del output_ids
del segmentator_even_faster
del yield_ims_1728
del yield_ims_2048
del yield_ims_3072
del yield_ims_4096
del dataloader_ims_seg_1728
del dataloader_ims_seg_2048
del dataloader_ims_seg_3072
del dataloader_ims_seg_4096
del dataloaders_all_sizes
libc = ctypes.CDLL("libc.so.6")
libc.malloc_trim(0)
gc.collect()
torch.cuda.empty_cache()
torch.cuda.empty_cache()<set_options> | train_datagen=ImageDataGenerator(
rotation_range=10,
width_shift_range=0.2,
height_shift_range=0.2,
zoom_range=0.2,
fill_mode='nearest'
) | Digit Recognizer |
11,590,103 | libc = ctypes.CDLL("libc.so.6")
libc.malloc_trim(0)
gc.collect()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()<prepare_x_and_y> | ensem=10
model=[0]*ensem
for i in range(ensem):
model[i]=Sequential()
model[i].add(Conv2D(filters=32,kernel_size=(3,3),padding='same',activation='relu',input_shape=(28,28,1)))
model[i].add(BatchNormalization())
model[i].add(Conv2D(filters=32,kernel_size=(3,3),padding='same',activation='relu'))
model[i].add(BatchNormalization())
model[i].add(Conv2D(filters=32,kernel_size=(3,3),padding='same',activation='relu'))
model[i].add(BatchNormalization())
model[i].add(MaxPool2D(2,2))
model[i].add(Dropout(0.2))
model[i].add(Conv2D(filters=64,kernel_size=(3,3),padding='same',activation='relu'))
model[i].add(BatchNormalization())
model[i].add(Conv2D(filters=64,kernel_size=(3,3),padding='same',activation='relu'))
model[i].add(BatchNormalization())
model[i].add(Conv2D(filters=64,kernel_size=(3,3),padding='same',activation='relu'))
model[i].add(BatchNormalization())
model[i].add(MaxPool2D(2,2))
model[i].add(Dropout(0.2))
model[i].add(GlobalAveragePooling2D())
model[i].add(Dense(128,activation='relu'))
model[i].add(Dropout(0.2))
model[i].add(Dense(10,activation='softmax'))
model[i].compile(loss='categorical_crossentropy',metrics=['accuracy'],optimizer='adam' ) | Digit Recognizer |
11,590,103 | X_test = data_df["ID"]<train_model> | callback=tf.keras.callbacks.EarlyStopping(monitor='accuracy',min_delta=0,patience=5,mode='auto',restore_best_weights=True,verbose=0)
lrs=tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x, verbose=0)
history=[0]*ensem
for i in range(ensem):
train_x,valid_x,train_y,valid_y=train_test_split(x,y,test_size=0.2)
history[i]=model[i].fit_generator(train_datagen.flow(train_x,train_y,batch_size=128),
epochs=100,
steps_per_epoch=train_x.shape[0]//128,
verbose=0,
validation_data=(valid_x,valid_y),
validation_steps=valid_x.shape[0]//128,
callbacks=[callback,lrs])
print('Model {}: Epochs=100, Train_Accuracy:{}, Val_Accuracy:{}'.format(i+1,max(history[i].history['accuracy']),max(history[i].history['val_accuracy'])) ) | Digit Recognizer |
11,590,103 | <create_dataframe><EOS> | prediction=np.zeros(( test.shape[0],10))
for i in range(ensem):
prediction=prediction+model[i].predict(test)
prediction=np.argmax(prediction,axis = 1)
prediction=pd.Series(prediction,name="Label")
submission = pd.concat([pd.Series(range(1,28001),name="ImageId"),prediction],axis=1)
submission.to_csv("digit_recognizer.csv",index=False ) | Digit Recognizer |
11,517,111 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options> | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import tensorflow as tf
from kerastuner import HyperModel
from kerastuner.tuners import RandomSearch
from tensorflow.python.keras.callbacks import ModelCheckpoint
import seaborn as sns
from pylab import rcParams
from sklearn.metrics import confusion_matrix | Digit Recognizer |
11,517,111 | def swish(x, beta=1.0):
return x * torch.sigmoid(beta*x)
def get_all_cams(batch_cam_scaled, model, scales, ims_per_batch):
bs = ims_per_batch
with torch.no_grad() :
ori_w, ori_h = CFG.size, CFG.size
strided_up_size =(CFG.size, CFG.size)
all_scale_cams = torch.from_numpy(np.zeros(( bs, len(scales), 19, CFG.size, CFG.size)) ).cuda()
all_scale_preds = torch.from_numpy(np.zeros(( bs, len(scales), 19)) ).cuda()
num_channels = 4
for i, images in enumerate(batch_cam_scaled):
with torch.cuda.amp.autocast() :
logits, features = model(images, with_cam=True)
features = swish(features)
logits = logits.reshape(bs*4//bs//4, 4, bs, 19 ).mean(1 ).view(bs*4//4, 19)
all_scale_preds[:, i, :] = logits
features = torch.cat([features[0:bs], features[bs:bs*2].flip(2), features[bs*2:bs*3].flip(3), torch.flip(features[bs*3:bs*4],(3,2)) ])
size_feats = features.shape[-1]
features = features.reshape(bs*4//bs//4, 4, bs, 19, size_feats, size_feats ).sum(1 ).view(bs*4//4, 19, size_feats, size_feats)
cams = F.interpolate(features,(CFG.size, CFG.size), mode='bicubic', align_corners=False)
all_scale_cams[:, i, :, :, :] = cams
all_logits = np.sum(all_scale_preds.detach().cpu().numpy() , axis=1)
all_cams = np.sum(all_scale_cams.detach().cpu().numpy() , axis=1)
print("CAMS DONE")
return {"hr_cams": all_cams, "logits" : all_logits}
<define_variables> | rcParams['figure.figsize'] = 15, 15
NUM_CLASSES = 10
INPUT_SHAPE =(28, 28, 1 ) | Digit Recognizer |
11,517,111 | label_names = [
'0-Nucleoplasm',
'1-Nuclear membrane',
'2-Nucleoli',
'3-Nucleoli fibrillar center',
'4-Nuclear speckles',
'5-Nuclear bodies',
'6-Endoplasmic reticulum',
'7-Golgi apparatus',
'8-Intermediate filaments',
'9-Actin filaments',
'10-Microtubules',
'11-Mitotic spindle',
'12-Centrosome',
'13-Plasma membrane',
'14-Mitochondria',
'15-Aggresome',
'16-Cytosol',
'17-Vesicles + cytosolic patterns',
'18-Negative'
]<categorify> | train = pd.read_csv('.. /input/digit-recognizer/train.csv')
test = pd.read_csv('.. /input/digit-recognizer/test.csv')
X = train.iloc[:, 1:]
y = train.iloc[:, 0] | Digit Recognizer |
11,517,111 | def encode_binary_mask(mask: np.ndarray)-> t.Text:
if mask.dtype != np.bool:
raise ValueError(
"encode_binary_mask expects a binary mask, received dtype == %s" %
mask.dtype)
mask = np.squeeze(mask)
if len(mask.shape)!= 2:
raise ValueError(
"encode_binary_mask expects a 2d mask, received shape == %s" %
mask.shape)
mask_to_encode = mask.reshape(mask.shape[0], mask.shape[1], 1)
mask_to_encode = mask_to_encode.astype(np.uint8)
mask_to_encode = np.asfortranarray(mask_to_encode)
encoded_mask = coco_mask.encode(mask_to_encode)[0]["counts"]
binary_str = zlib.compress(encoded_mask, zlib.Z_BEST_COMPRESSION)
base64_str = base64.b64encode(binary_str)
return base64_str
def get_all_encoded_cells(mask):
print(mask.shape)
cell_masks = []
for i in range(1, np.max(mask)+1):
enc_mask = encode_binary_mask(( mask == i))
cell_masks.append(enc_mask)
return cell_masks<normalization> | X /= 256
test /= 256
X = X.values.reshape(( -1,)+ INPUT_SHAPE)
test = test.values.reshape(( -1,)+ INPUT_SHAPE ) | Digit Recognizer |
11,517,111 | def resize_mask(mask):
resized_mask = resize_full_mask(mask, CFG.size)
cell_masks = []
for i in range(1, np.max(mask)+1):
cell_masks.append(( resized_mask == i))
return cell_masks
def resize_full_mask(mask, size):
resized_mask = cv2.resize(mask,(size,size),interpolation=cv2.INTER_NEAREST_EXACT)
return resized_mask
<categorify> | class CNNHyperModel(HyperModel):
def __init__(self, input_shape, num_classes):
self.input_shape = input_shape
self.num_classes = num_classes
def build(self, hp):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(8, 3, padding='same', dilation_rate=(3, 3), \
activation='relu', input_shape=self.input_shape))
model.add(tf.keras.layers.Conv2D(16, 3, padding='same', \
activation='relu'))
max_or_avg =hp.Int(
'max_or_avg',
min_value=1,
max_value=2,
step=1,
default=1)
three = hp.Fixed('three', 3)
model.add(tf.keras.layers.AvgPool2D(pool_size=max_or_avg, name=f'first_avg_pool_{max_or_avg}'))
model.add(tf.keras.layers.MaxPool2D(pool_size=three - max_or_avg))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Conv2D(32, 3, padding='same', dilation_rate=(3, 3), \
activation='relu'))
model.add(tf.keras.layers.Conv2D(64, 3, padding='same', \
activation='relu'))
model.add(tf.keras.layers.AvgPool2D(pool_size=max_or_avg, name=f'second_avg_pool_{max_or_avg}'))
model.add(tf.keras.layers.MaxPool2D(pool_size=three - max_or_avg))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Flatten())
drop_rate = hp.Float('dropout',
min_value=0.3,
max_value=0.7,
default=0.3,
step=0.2,
)
model.add(tf.keras.layers.Dropout(rate=drop_rate,
name=f'drop{drop_rate}'))
units=hp.Int('units',
min_value=28,
max_value=4*28,
step=28,
default=28
)
model.add(tf.keras.layers.Dense(
units=units,
name=f'Dense{units}',
activation='relu'
))
model.add(tf.keras.layers.Dense(self.num_classes))
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
return model | Digit Recognizer |
11,517,111 | def get_pred_string(mask_probas, cell_masks_fullsize_enc):
assert len(mask_probas)== len(cell_masks_fullsize_enc), "Probas have different length than masks"
string = ""
for enc_mask, mask_proba in zip(cell_masks_fullsize_enc, mask_probas):
for cls, proba in enumerate(mask_proba):
string += str(cls)+ " " + str(proba)+ " " + enc_mask.decode("utf-8")+ " "
return string<load_pretrained> | hypermodel = CNNHyperModel(input_shape=INPUT_SHAPE, num_classes=NUM_CLASSES)
tuner = RandomSearch(
hypermodel,
objective='val_accuracy',
max_trials=24,
executions_per_trial=1,
directory='./random_search',
project_name='MNIST'
)
tuner.search_space_summary() | Digit Recognizer |
11,517,111 | PATH_SCALER_GRADBOOST = ".. /input/scaler-and-gradboost"
scaler_resnest0 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/scaler_resnest0.pkl", 'rb'))
scaler_resnest1 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/scaler_resnest1.pkl", 'rb'))
scaler_effnet0 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/scaler_effnet0.pkl", 'rb'))
scaler_effnet1 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/scaler_effnet1.pkl", 'rb'))
scaler_effnet2 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/scaler_effnet2.pkl", 'rb'))
model_gradboost_resnest0 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/GradientBoostingRegressor_resnest0.pkl", 'rb'))
model_gradboost_resnest1 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/GradientBoostingRegressor_resnest1.pkl", 'rb'))
model_gradboost_effnet0 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/GradientBoostingRegressor_effnet0.pkl", 'rb'))
model_gradboost_effnet1 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/GradientBoostingRegressor_effnet1.pkl", 'rb'))
model_gradboost_effnet2 = pickle.load(open(f"{PATH_SCALER_GRADBOOST}/GradientBoostingRegressor_effnet2.pkl", 'rb'))
def get_prob_from_cams_masks(cams, masks, labels, labels_from_labelmodel, verbose=True, typ=None):
print(f"GETTING MODEL {typ}")
if typ=="resnest0":
scaler = scaler_resnest0
model_gradboost = model_gradboost_resnest0
if typ=="resnest1":
scaler = scaler_resnest1
model_gradboost = model_gradboost_resnest1
if typ=="resnest2":
scaler = scaler_resnest1
model_gradboost = model_gradboost_resnest1
if typ=="effnet0":
scaler = scaler_effnet0
model_gradboost = model_gradboost_effnet0
if typ=="effnet1":
scaler = scaler_effnet1
model_gradboost = model_gradboost_effnet1
if typ=="effnet2":
scaler = scaler_effnet2
model_gradboost = model_gradboost_effnet2
if typ=="effnet3":
scaler = scaler_effnet2
model_gradboost = model_gradboost_effnet2
masks_probas = np.zeros(( len(masks), 19))
for i, mask in enumerate(masks):
for label, cam in enumerate(cams):
cam_by_mask = np.multiply(mask, cam)
cam_mask_product = np.multiply(cam_by_mask, labels[label])
masks_probas[i, label] = np.sum(cam_mask_product)
if verbose:
print(f"MASK: {i} PROB-RAW: {masks_probas[i, :]}")
print("--------------------------------------")
std_scaler = preprocessing.RobustScaler().fit(masks_probas.reshape(-1, 1))
for i, mask in enumerate(masks):
std_scaled = std_scaler.transform(masks_probas[i, :].reshape(-1, 1)) [:,0]
model_scaled = scaler.transform(masks_probas[i, :].reshape(-1, 1)) [:,0]
if verbose:
print(f"MASK: {i} STD-Scaled: {std_scaled}")
print(f"MASK: {i} Model-Scaled: {model_scaled}")
print("--------------------------------------")
sigmoid_probas = sigmoid_factor(std_scaled, factor=CFG.sigmoid_factor, move=CFG.sigmoid_move)
gradboost_probas = model_gradboost.predict(model_scaled.reshape(-1, 1))
if verbose:
print(f"MASK: {i} PROB-SIGMOID: {sigmoid_probas}")
print(f"MASK: {i} PROB-GradBoost: {gradboost_probas}")
print("--------------------------------------")
if CFG.extra_model_for_labels:
masks_probas[i, :] = sigmoid_probas*CFG.split_sigmoid_graboost[0] + gradboost_probas*CFG.split_sigmoid_graboost[1]
masks_probas[i, :] = CFG.split[0] * masks_probas[i, :] + CFG.split[1] * labels_from_labelmodel + CFG.split[2] * labels
if verbose:
print(f"MASK: {i} PROB-WITH-LABELMODEL: {masks_probas[i, :]}")
return masks_probas<import_modules> | X_train_val, X_test, y_train_val, y_test = train_test_split(X, y, test_size=1/7 ) | Digit Recognizer |
11,517,111 | class Classifier_EffNet(nn.Module, ABC_Model):
def __init__(self, backbone, num_classes=19):
super(Classifier_EffNet, self ).__init__()
self.enet = EfficientNet.from_name(backbone, num_classes=num_classes, in_channels=3, include_top=False)
dict_sizes = {
'efficientnet-b0' : 1280,
'efficientnet-b1' : 1280,
'efficientnet-b2' : 1408,
'efficientnet-b3' : 1536,
'efficientnet-b4' : 1792,
'efficientnet-b5' : 2048
}
size_conv2d = dict_sizes[backbone]
self.classifier = nn.Conv2d(size_conv2d, num_classes, 1, bias=False)
self.num_classes = num_classes
self.initialize([self.classifier])
def forward(self, x, with_cam=False):
x = self.enet.extract_features(x)
if with_cam:
features = self.classifier(x)
logits = self.global_average_pooling_2d(features)
return logits, features
else:
x = self.global_average_pooling_2d(x, keepdims=True)
logits = self.classifier(x ).view(-1, self.num_classes)
return logits
class Classifier_EffNet_GREEN(nn.Module, ABC_Model):
def __init__(self, backbone, num_classes=19):
super(Classifier_EffNet_GREEN, self ).__init__()
self.enet = EfficientNet.from_name(backbone, num_classes=num_classes, in_channels=3, include_top=False)
dict_sizes = {
'efficientnet-b0' : 1280,
'efficientnet-b1' : 1280,
'efficientnet-b2' : 1408,
'efficientnet-b3' : 1536,
'efficientnet-b4' : 1792,
'efficientnet-b5' : 2048,
'efficientnet-b7' : 2560,
}
self.dense = nn.Linear(dict_sizes[backbone],19)
self.initialize([self.dense])
def forward(self, x, with_cam=False):
x = self.enet.extract_features(x)
x = self.global_average_pooling_2d(x)
logits = self.dense(x)
return logits
class FixedBatchNorm(nn.BatchNorm2d):
def forward(self, x):
return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias, training=False, eps=self.eps)
def group_norm(features):
return nn.GroupNorm(4, features)
class Backbone(nn.Module, ABC_Model):
def __init__(self, model_name, num_classes=20, mode='fix', segmentation=False):
super().__init__()
self.mode = mode
if self.mode == 'fix':
self.norm_fn = FixedBatchNorm
else:
self.norm_fn = nn.BatchNorm2d
if 'resnet' in model_name:
self.model = resnet.ResNet(resnet.Bottleneck, resnet.layers_dic[model_name], strides=(2, 2, 2, 1), batch_norm_fn=self.norm_fn)
state_dict = model_zoo.load_url(resnet.urls_dic[model_name])
state_dict.pop('fc.weight')
state_dict.pop('fc.bias')
self.model.load_state_dict(state_dict)
else:
if segmentation:
dilation, dilated = 4, True
else:
dilation, dilated = 2, False
self.model = eval("resnest." + model_name )(pretrained=False, dilated=dilated, dilation=dilation, norm_layer=self.norm_fn)
del self.model.avgpool
del self.model.fc
self.stage1 = nn.Sequential(self.model.conv1,
self.model.bn1,
self.model.relu,
self.model.maxpool)
self.stage2 = nn.Sequential(self.model.layer1)
self.stage3 = nn.Sequential(self.model.layer2)
self.stage4 = nn.Sequential(self.model.layer3)
self.stage5 = nn.Sequential(self.model.layer4)
class Classifier(Backbone):
def __init__(self, model_name, num_classes=20, mode='fix'):
super().__init__(model_name, num_classes, mode)
self.classifier = nn.Conv2d(2048, num_classes, 1, bias=False)
self.num_classes = num_classes
self.initialize([self.classifier])
def forward(self, x, with_cam=False):
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.stage5(x)
if with_cam:
features = self.classifier(x)
logits = self.global_average_pooling_2d(features)
return logits, features
else:
x = self.global_average_pooling_2d(x, keepdims=True)
logits = self.classifier(x ).view(-1, self.num_classes)
return logits<split> | search_results = tuner.search(X_train_val, y_train_val,
epochs=10, validation_split=1/6,
batch_size=100 ) | Digit Recognizer |
11,517,111 | def get_separate_labels(ims, model, model_for_labels_state, ims_per_batch, verbose=False):
bs = ims_per_batch
model.load_state_dict(model_for_labels_state["model_state_dict"])
with torch.no_grad() :
image_batch = copy.deepcopy(ims)
image_batch = image_batch.float()
image_batch_augs_fl2 = image_batch.flip(2)
image_batch_augs_fl3 = image_batch.flip(3)
image_batch_augs_fl32 = torch.flip(image_batch,(3,2))
images = torch.cat([image_batch, image_batch_augs_fl2, image_batch_augs_fl3, image_batch_augs_fl32], dim=0)
images = images.cuda()
print(images.shape)
with torch.cuda.amp.autocast() :
logits = model(images, with_cam=True)
logits = logits.reshape(bs*4//bs//4, 4, bs, 19 ).mean(1 ).view(bs*4//4, 19)
labels = torch.sigmoid(logits)
if verbose:
print("LABELS FROM LABELS MODEL TORCH")
print(labels)
return labels.cpu().numpy()
def get_separate_labels_tf(ims, model, verbose=False, name=None):
bs = ims_per_batch
image_batch = copy.deepcopy(ims)
image_batch_fl_lr = tf.image.flip_left_right(image_batch)
image_batch_fl_up = tf.image.flip_up_down(image_batch)
image_batch_fl_up_lr = tf.image.flip_up_down(image_batch_fl_lr)
ims = tf.concat([image_batch, image_batch_fl_lr, image_batch_fl_up, image_batch_fl_up_lr], axis=0)
labels = model.predict(ims, verbose=1)
labels = labels.reshape(bs*4//bs//4, 4, bs, 19 ).mean(1)
if verbose:
print(f"LABELS FROM LABELS MODEL {name}")
print(labels)
return labels[0]
<set_options> | best_model = tuner.get_best_models(num_models=1)[0]
best_model.summary()
print(best_model.evaluate(X_test, y_test)) | Digit Recognizer |
11,517,111 | sys.path.append(".. /input/faustomorales-vitkeras/vit_keras/")
CONFIG_B = {
"dropout": 0.1,
"mlp_dim": 3072,
"num_heads": 12,
"num_layers": 12,
"hidden_size": 768,
}
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, *args, num_heads=12, mlp_dim=3072, dropout=0.1, **kwargs):
super().__init__(*args, **kwargs)
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.dropout = dropout
def build(self, input_shape):
self.att = MultiHeadSelfAttention(
num_heads=self.num_heads,
name="MultiHeadDotProductAttention_1",
)
self.mlpblock = tf.keras.Sequential(
[
tf.keras.layers.Dense(
self.mlp_dim,
activation="linear",
name=f"{self.name}/Dense_0",
),
tf.keras.layers.Lambda(
lambda x: tf.keras.activations.gelu(x, approximate=False)
)
if hasattr(tf.keras.activations, "gelu")
else tf.keras.layers.Lambda(
lambda x: tfa.activations.gelu(x, approximate=False)
),
tf.keras.layers.Dropout(self.dropout),
tf.keras.layers.Dense(input_shape[-1], name=f"{self.name}/Dense_1"),
tf.keras.layers.Dropout(self.dropout),
],
name="MlpBlock_3",
)
self.layernorm1 = tf.keras.layers.LayerNormalization(
epsilon=1e-6, name="LayerNorm_0"
)
self.layernorm2 = tf.keras.layers.LayerNormalization(
epsilon=1e-6, name="LayerNorm_2"
)
self.dropout = tf.keras.layers.Dropout(self.dropout)
def call(self, inputs, training):
x = self.layernorm1(inputs)
x, weights = self.att(x)
x = self.dropout(x, training=training)
x = x + inputs
y = self.layernorm2(x)
y = self.mlpblock(y)
return x + y, weights
class MultiHeadSelfAttention(tf.keras.layers.Layer):
def __init__(self, *args, num_heads=12, **kwargs):
super().__init__(*args, **kwargs)
self.num_heads = num_heads
def build(self, input_shape):
hidden_size = input_shape[-1]
num_heads = self.num_heads
if hidden_size % num_heads != 0:
raise ValueError(
f"embedding dimension = {hidden_size} should be divisible by number of heads = {num_heads}"
)
self.hidden_size = hidden_size
self.projection_dim = hidden_size // num_heads
self.query_dense = tf.keras.layers.Dense(hidden_size, name="query")
self.key_dense = tf.keras.layers.Dense(hidden_size, name="key")
self.value_dense = tf.keras.layers.Dense(hidden_size, name="value")
self.combine_heads = tf.keras.layers.Dense(hidden_size, name="out")
def attention(self, query, key, value):
score = tf.matmul(query, key, transpose_b=True)
dim_key = tf.cast(tf.shape(key)[-1], score.dtype)
scaled_score = score / tf.math.sqrt(dim_key)
weights = tf.nn.softmax(scaled_score, axis=-1)
output = tf.matmul(weights, value)
return output, weights
def separate_heads(self, x, batch_size):
x = tf.reshape(x,(batch_size, -1, self.num_heads, self.projection_dim))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs):
batch_size = tf.shape(inputs)[0]
query = self.query_dense(inputs)
key = self.key_dense(inputs)
value = self.value_dense(inputs)
query = self.separate_heads(query, batch_size)
key = self.separate_heads(key, batch_size)
value = self.separate_heads(value, batch_size)
attention, weights = self.attention(query, key, value)
attention = tf.transpose(attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(attention,(batch_size, -1, self.hidden_size))
output = self.combine_heads(concat_attention)
return output, weights
<train_on_grid> | def schedule(epoch, lr):
return 10**(-(epoch//10)-3)
lr_schedule = tf.keras.callbacks.LearningRateScheduler(schedule, verbose=1)
cb_checkpointer_val = ModelCheckpoint(filepath = '.. /working/best_val.hdf5',
monitor = 'val_accuracy',
save_best_only = True,
mode = 'auto' ) | Digit Recognizer |
11,517,111 | if CFG.resnest:
model_resnest = Classifier(CFG.model_name_resnest, CFG.classes, mode="normal")
if CFG.color_mode == "rgby":
weight = model_resnest.model.conv1[0].weight.clone()
model_resnest.model.conv1[0] = nn.Conv2d(4, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
with torch.no_grad() :
model_resnest.model.conv1[0].weight[:, :3] = weight
model_resnest.model.conv1[0].weight[:, 3] = model_resnest.model.conv1[0].weight[:, 0]
model_resnest.to(device)
model_resnest.eval()
model_states_resnet = [torch.load(MODEL_PATH + f"{model}")for model in MODELS_LIST_RESNEST]
if CFG.effnet:
model_effnet = Classifier_EffNet(CFG.model_name_effnet)
if CFG.color_mode == "rgby":
model_effnet.enet._conv_stem.in_channels = 4
model_effnet.enet._conv_stem.weight = torch.nn.Parameter(torch.cat([model_effnet.enet._conv_stem.weight, model_effnet.enet._conv_stem.weight[:, 0:1, :, :]], axis=1))
model_effnet.to(device)
model_effnet.eval()
model_states_effnet = [torch.load(MODEL_PATH + f"{model}")for model in MODELS_LIST_EFFNET]
if CFG.extra_model_for_labels:
if CFG.extra_model_is_tf:
model_green_eff = tf.keras.models.load_model(MODEL_LABELS_EFF)
model_green_rn = tf.keras.models.load_model(MODEL_LABELS_RN)
model_green_vit = tf.keras.models.load_model(MODEL_LABELS_VIT, custom_objects={
'ClassToken': layers.ClassToken,
'AddPositionEmbs' : layers.AddPositionEmbs,
'TransformerBlock' : TransformerBlock,
'MultiHeadSelfAttention' : MultiHeadSelfAttention})
else:
model_for_labels_state = torch.load(MODEL_LABELS)
model_green = Classifier_EffNet_GREEN("efficientnet-b7")
model_green.to(device)
model_green.eval()
dl_test = DataLoader(test_data, batch_size=batch_size_, shuffle=False, num_workers=0)
<define_variables> | X_train, X_val, y_train, y_val = train_test_split(X_train_val,
y_train_val,
test_size=1/6 ) | Digit Recognizer |
11,517,111 | def inference_one_batch(batch_cam, batch_ids_cam, batch_seg, ims_per_batch, batch_eff_tf=None, batch_rn_tf_600=None, batch_vit_tf_384=None, show_image=True, show_seg=True, verbose=True):
batch_ids_seg = tuple(batch_seg["ID"])
print(batch_ids_cam)
print(batch_ids_seg)
assert batch_ids_cam == batch_ids_seg, "IDS OF SEGMENTATION AND CAMS DONT MATCH"
print(f"GETTING {ims_per_batch} CELL MASKS")
cell_mask_list = batch_seg["mask"]
cell_mask_sizes = batch_seg["ori_size"]
cell_masks_full_size = []
for e,(mask, size)in enumerate(zip(cell_mask_list, cell_mask_sizes)) :
cell_masks_full_size.append(resize_full_mask(mask,size))
res_cell_masks = [resize_mask(cell_mask)for cell_mask in cell_mask_list]
if show_seg:
show_seg_cells(batch_cam, res_cell_masks, batch_ids_seg, batch_cam)
del cell_mask_list
cell_masks_fullsize_enc_list = []
for cell_mask in cell_masks_full_size:
cell_masks_fullsize_enc = get_all_encoded_cells(cell_mask)
cell_masks_fullsize_enc_list.append(cell_masks_fullsize_enc)
del cell_masks_full_size
print(f"ENCODED {len(cell_masks_fullsize_enc_list)} CELL MASKS")
labels_model_eff = get_separate_labels_tf(batch_eff_tf, model_green_eff, verbose=verbose, name=MODEL_LABELS_EFF)
labels_model_rn = get_separate_labels_tf(batch_rn_tf_600, model_green_rn, verbose=verbose, name=MODEL_LABELS_RN)
labels_model_vit = get_separate_labels_tf(batch_vit_tf_384, model_green_vit, verbose=verbose, name=MODEL_LABELS_VIT)
labels_model = labels_model_eff*CFG.split_image_level[0] + labels_model_rn*CFG.split_image_level[1] + labels_model_vit*CFG.split_image_level[2]
print("LABELS FROM LABEL MODEL")
print(labels_model)
print("RESIZE IMAGES")
batch_cam_scaled = []
scales = [1.0, 1.3, 1.6]
st = time.time()
for i, scale in enumerate(scales):
image_batch_pil = torch.from_numpy(np.zeros(( ims_per_batch, 4, round(CFG.size*scale), round(CFG.size*scale))))
image_batch = copy.deepcopy(batch_cam)
for j, im in enumerate(image_batch):
im = ToPILImage()(im)
im = im.resize(( round(CFG.size*scale), round(CFG.size*scale)) , resample=PIL.Image.BICUBIC)
im = torchvision.transforms.functional.to_tensor(im)*255
image_batch_pil[j] = im
image_batch_resized = image_batch_pil.float()
image_batch_augs_fl2 = image_batch_resized.flip(2)
image_batch_augs_fl3 = image_batch_resized.flip(3)
image_batch_augs_fl32 = torch.flip(image_batch_resized,(3,2))
images = torch.cat([image_batch_resized, image_batch_augs_fl2, image_batch_augs_fl3, image_batch_augs_fl32], dim=0)
images = images.cuda()
batch_cam_scaled.append(images)
print(f"TIME FOR RESIZING WITH PIL {time.time() - st}")
if CFG.resnest:
print("GETTING CAMS AND PREDS RESNEST")
mask_probas_resnest_folds = []
folds_resnest = len(MODELS_LIST_RESNEST)
all_ims_resnest = []
time_spent_mask_probas = []
for f, model_state_rn in enumerate(model_states_resnet):
all_hr_cams, sig_labels = get_hrcams_vis(batch_cam_scaled, show_image, model_resnest, model_state_rn, scales, ims_per_batch)
mask_probas_resnest_batches = []
print(f"GETTING MASKS PROBAS FOLD {f}")
for b,(cams, mask, sig_label, label_model)in enumerate(zip(all_hr_cams, res_cell_masks, sig_labels, labels_model)) :
print(f"GETTING MASKS PROBAS BATCH {b}")
mask_probas_resnest = get_prob_from_cams_masks(cams, mask, sig_label, label_model, verbose, typ=f"resnest{f}")
if verbose:
print(mask_probas_resnest)
mask_probas_resnest_batches.append(mask_probas_resnest)
mask_probas_resnest_folds.append(mask_probas_resnest_batches)
for b in range(ims_per_batch):
all_ims_resnest.append(np.mean(np.array([mask_probas_resnest_folds[i][b] for i in range(folds_resnest)]), axis=0))
if CFG.effnet:
print("GETTING CAMS AND PREDS EFFICIENTNET")
mask_probas_effnet_folds = []
folds_effnet = len(MODELS_LIST_EFFNET)
all_ims_effnet = []
time_spent_mask_probas = []
for f, model_state_eff in enumerate(model_states_effnet):
all_hr_cams, sig_labels = get_hrcams_vis(batch_cam_scaled, show_image, model_effnet, model_state_eff, scales, ims_per_batch)
mask_probas_effnet_batches = []
print(f"GETTING MASKS PROBAS FOLD {f}")
for b,(cams, mask, sig_label, label_model)in enumerate(zip(all_hr_cams, res_cell_masks, sig_labels, labels_model)) :
print(f"GETTING MASKS PROBAS BATCH {b}")
s_t = time.time()
mask_probas_effnet = get_prob_from_cams_masks(cams, mask, sig_label, label_model, verbose, typ=f"effnet{f}")
if verbose:
print(mask_probas_effnet)
mask_probas_effnet_batches.append(mask_probas_effnet)
mask_probas_effnet_folds.append(mask_probas_effnet_batches)
for b in range(ims_per_batch):
all_ims_effnet.append(np.mean(np.array([mask_probas_effnet_folds[i][b] for i in range(folds_effnet)]), axis=0))
if CFG.resnest and CFG.effnet:
mask_probas = CFG.split_cam_level[0]*np.array(all_ims_effnet)+ CFG.split_cam_level[1]*np.array(all_ims_resnest)
elif CFG.resnest and not CFG.effnet:
mask_probas = all_ims_resnest
elif CFG.effnet and not CFG.resnest:
mask_probas = all_ims_effnet
if verbose:
print(mask_probas)
return batch_ids_cam, sizes, cell_masks_fullsize_enc_list, mask_probas<set_options> | fit_history = best_model.fit(X_train, y_train, epochs=40, batch_size=100,
validation_data=(X_val, y_val),
callbacks = [lr_schedule, cb_checkpointer_val] ) | Digit Recognizer |
11,517,111 | libc = ctypes.CDLL("libc.so.6")
libc.malloc_trim(0)
gc.collect()
gc.collect()
gc.collect()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()<define_variables> | best_model.load_weights('./best_val.hdf5')
best_model.evaluate(X_test, y_test ) | Digit Recognizer |
11,517,111 | if CFG.is_demo:
index = 0
batch0, ids0 = next(itertools.islice(dl_test, index, None))
if CFG.extra_model_is_tf:
batch_tf_green = next(itertools.islice(dtest_tf_green_600, index, None))
batch_tf_rgb_600 = next(itertools.islice(dtest_tf_rgb_600, index, None))
batch_tf_rgb_384 = next(itertools.islice(dtest_tf_ggg_384, index, None))
print(batch_tf_green.shape)
print(batch_tf_rgb_600.shape)
print(batch_tf_rgb_384.shape)
<split> | cb_checkpointer = ModelCheckpoint(filepath = '.. /working/best.hdf5',
monitor = 'accuracy',
save_best_only = True,
mode = 'auto' ) | Digit Recognizer |
11,517,111 | df = pd.DataFrame(columns=["image_id", "pred"])
i = 0
start_time = time.time()
ims_done = 0
for i,(( batch_cam, batch_ids_cam),(batch_tf_green_600),(batch_tf_rgb_600),(batch_tf_ggg_384)) in enumerate(zip(dl_test, dtest_tf_green_600, dtest_tf_rgb_600, dtest_tf_ggg_384)) :
ims_per_batch = len(batch_ids_cam)
batch_seg = cell_masks_df[i*batch_size_ : i*batch_size_ + batch_size_]
ids, sizes, cell_masks_fullsize_enc_list, probas = inference_one_batch(batch_cam, batch_ids_cam, batch_seg, ims_per_batch, batch_eff_tf=batch_tf_green_600, batch_rn_tf_600=batch_tf_rgb_600, batch_vit_tf_384=batch_tf_ggg_384, show_image=False, show_seg=False, verbose=False)
for id, proba, cell_mask_enc in zip(ids, probas, cell_masks_fullsize_enc_list):
pred_string = get_pred_string(proba, cell_mask_enc)
d = {"image_id":id, "pred": pred_string}
df = df.append(d, ignore_index=True)
ims_done += ims_per_batch
print(f"---{ims_done} IMAGES DONE---")
torch.cuda.empty_cache()
gc.collect()
print("--- %s seconds ---" %(time.time() - start_time))
<merge> | final_fit_history = best_model.fit(X, y, epochs=40, batch_size=100,
callbacks = [lr_schedule, cb_checkpointer] ) | Digit Recognizer |
11,517,111 | sub = pd.merge(
data_df,
df,
how="left",
left_on='ID',
right_on='image_id',
)
def isNaN(num):
return num != num
for i, row in sub.iterrows() :
if isNaN(row['pred']): continue
sub.PredictionString.loc[i] = row['pred']
<save_to_csv> | best_model.load_weights('./best.hdf5' ) | Digit Recognizer |
11,517,111 | if all(df_from_files == data_df_sample_submission):
sub.to_csv("submission.csv",index=False)
<install_modules> | best_model.evaluate(X, y ) | Digit Recognizer |
11,517,111 | !pip install.. /input/kerasapplications/keras-team-keras-applications-3b180cb -f./ --no-index -q
!pip install.. /input/efficientnet/efficientnet-1.1.0/ -f./ --no-index -q<feature_engineering> | pred = pd.DataFrame({'ImageId' : np.arange(test.shape[0])+ 1,
'Label': best_model.predict(test ).argmax(axis=-1)})
pred.to_csv('pred.csv', index=False)
pred | Digit Recognizer |
11,226,330 | os.environ['SM_FRAMEWORK'] = 'tf.keras'
<load_pretrained> | pip install livelossplot | Digit Recognizer |
11,226,330 | MODEL_PATH = '.. /input/train-fpn-segmentation-model-no-43/'
with open(MODEL_PATH+'hparams.json')as json_file:
hparams = json.load(json_file)
hparams<normalization> | %matplotlib inline
| Digit Recognizer |
11,226,330 | IMG_SIZE = hparams['IMG_SIZE']
SCALE_FACTOR = hparams['SCALE_FACTOR']
K_SPLITS = hparams['K_SPLITS']
def read_tif_file(fname):
img = io.imread(fname)
img = np.squeeze(img)
if img.shape[0] == 3:
img = img.swapaxes(0,1)
img = img.swapaxes(1,2)
return img
def map_img2file(fname):
img = read_tif_file(fname)
dims = np.array(img.shape)
ch = 1 if len(dims)== 2 else dims[2]
for i in range(ch):
f = np.memmap('img{}.dat'.format(i), dtype=np.uint8, mode='w+', shape=(dims[0], dims[1]))
f[:] = img[:,:,i] if ch > 1 else img[:,:]
del f
return dims
def get_patch_from_file(dims, pos, psize):
ch = 1 if len(dims)== 2 else dims[2]
patch = np.zeros([psize[0], psize[1]], dtype=np.uint8)if ch == 1 else np.zeros([psize[0], psize[1], ch], dtype=np.uint8)
for i in range(ch):
f = np.memmap('img{}.dat'.format(i), dtype=np.uint8, mode='r', shape=(dims[0], dims[1]))
p = f[pos[0]:pos[0]+psize[0], pos[1]:pos[1]+psize[1]]
crop = p.shape
if ch == 1:
patch[0:p.shape[0], 0:p.shape[1]] = p
else:
patch[0:p.shape[0], 0:p.shape[1],i] = p
del f
return patch, crop<categorify> | train_set = pd.read_csv('/kaggle/input/digit-recognizer/train.csv')
test_set = pd.read_csv('/kaggle/input/digit-recognizer/test.csv')
img_col = 28
img_row = 28 | Digit Recognizer |
11,226,330 | def rle_encode_less_memory(img):
pixels = img.T.flatten()
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs )<feature_engineering> | X_train_df = train_set.drop(['label'],axis = 1)
y_train_df = train_set['label']
X_test_df = test_set
X_tr = np.asarray(X_train_df)/255
y_tr = np.asarray(y_train_df)
X_te = np.asarray(X_test_df)/255
print(type(X_tr))
print(X_tr.shape)
print(X_te.shape)
| Digit Recognizer |
11,226,330 | def create_TTA_batch(img):
if len(img.shape)< 4:
img = np.expand_dims(img, 0)
batch=np.zeros(( img.shape[0]*8,img.shape[1],img.shape[2],img.shape[3]), dtype=np.float32)
for i in range(img.shape[0]):
orig = tf.keras.preprocessing.image.img_to_array(img[i,:,:,:])/255.
batch[i*8,:,:,:] = orig
batch[i*8+1,:,:,:] = np.rot90(orig, axes=(0, 1), k=1)
batch[i*8+2,:,:,:] = np.rot90(orig, axes=(0, 1), k=2)
batch[i*8+3,:,:,:] = np.rot90(orig, axes=(0, 1), k=3)
orig = orig[:, ::-1]
batch[i*8+4,:,:,:] = orig
batch[i*8+5,:,:,:] = np.rot90(orig, axes=(0, 1), k=1)
batch[i*8+6,:,:,:] = np.rot90(orig, axes=(0, 1), k=2)
batch[i*8+7,:,:,:] = np.rot90(orig, axes=(0, 1), k=3)
return batch
def mask_TTA(masks):
batch=np.zeros(( masks.shape[0],masks.shape[1],masks.shape[2],masks.shape[3]), dtype=np.float32)
for i in range(masks.shape[0]//8):
batch[i*8,:,:,:] = masks[i*8]
batch[i*8+1,:,:,:] = np.rot90(masks[i*8+1], axes=(0, 1), k=3)
batch[i*8+2,:,:,:] = np.rot90(masks[i*8+2], axes=(0, 1), k=2)
batch[i*8+3,:,:,:] = np.rot90(masks[i*8+3], axes=(0, 1), k=1)
batch[i*8+4,:,:,:] = masks[i*8+4][:, ::-1]
batch[i*8+5,:,:,:] = np.rot90(masks[i*8+5], axes=(0, 1), k=3)[:, ::-1]
batch[i*8+6,:,:,:] = np.rot90(masks[i*8+6], axes=(0, 1), k=2)[:, ::-1]
batch[i*8+7,:,:,:] = np.rot90(masks[i*8+7], axes=(0, 1), k=1)[:, ::-1]
return(batch )<save_to_csv> | train_set['label'].value_counts().sort_index() | Digit Recognizer |
11,226,330 | MEANING_OF_LIFE = 42
MEANING_OF_LIFE_REV = int(str(MEANING_OF_LIFE)[::-1])
PATH = '.. /input/hubmap-kidney-segmentation/test/'
filelist = glob.glob(PATH+'*.tiff')
if len(filelist)== 5:
filelist = filelist[:1]
SUB_FILE = './submission.csv'
with open(SUB_FILE, 'w')as f:
f.write("id,predicted
")
MODELS = [MODEL_PATH+'FPN-model-2']
s_th = MEANING_OF_LIFE+K_SPLITS
p_th = IMG_SIZE*IMG_SIZE//32
size = int(IMG_SIZE * SCALE_FACTOR)
OVERLAP = size//2
STEP = size-OVERLAP
for file in filelist:
fid = file.replace('\','.' ).replace('/','.' ).split('.')[-2]
print(fid)
dims = map_img2file(file)
pmask = np.zeros(dims[:2], dtype=np.uint8)
x_shft, y_shft = 0,0
if fid == 'afa5e8098':
x_shft, y_shft = MEANING_OF_LIFE, MEANING_OF_LIFE_REV
for modl in range(len(MODELS)) :
print(MODELS[modl])
mname = MODELS[modl]
with open(mname+'.json', 'r')as m:
lm = m.read()
model = model_from_json(lm)
model.load_weights(mname+'.h5')
for x in range(( dims[0]-OVERLAP-x_shft)//STEP + min(1,(dims[0]-OVERLAP-x_shft)% STEP)) :
for y in range(( dims[1]-OVERLAP-y_shft)//STEP + min(1,(dims[1]-OVERLAP-y_shft)% STEP)) :
tile, crop = get_patch_from_file(dims, [x*STEP+x_shft, y*STEP+y_shft], [size,size])
patch = cv2.resize(tile,
dsize=(IMG_SIZE, IMG_SIZE),
interpolation = cv2.INTER_AREA)
_, s, _ = cv2.split(cv2.cvtColor(patch, cv2.COLOR_BGR2HSV))
if(s>s_th ).sum() > p_th:
batch = create_TTA_batch(patch)
preds = model.predict(batch)
pred = mask_TTA(preds)
mask = np.rint(np.sum(pred, axis=0))
pint =cv2.resize(mask.astype(int), dsize=(size, size), interpolation = cv2.INTER_NEAREST)
pmask[x*STEP:x*STEP+crop[0], y*STEP:y*STEP+crop[1]] += pint[0:crop[0], 0:crop[1]].astype(np.uint8)
pmask = pmask >= MEANING_OF_LIFE_REV - K_SPLITS
with open(SUB_FILE, 'a')as f:
f.write("{},".format(fid))
f.write(rle_encode_less_memory(pmask))
f.write("
" )<set_options> | X_train_f = X_tr.reshape(42000,img_col,img_row,1)
X_test_f= X_te.reshape(28000,img_col,img_row,1)
y_train_f = to_categorical(y_tr)
y_train_f.shape[1] | Digit Recognizer |
11,226,330 | %rm -f *.dat<import_modules> | model = Sequential()
model.add(Conv2D(64,(4,4),padding = 'valid', input_shape=(28,28,1)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128,(2,2),padding = 'same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128,(2,2),padding = 'same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(256))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.1))
model.add(Dense(128))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(64))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dense(10 , activation = 'softmax')) | Digit Recognizer |
11,226,330 |
<save_to_csv> | init_lr = 1e-2
decay_steps = 150
alpha = 1e-5
beta = 1e-8
num_periods=4
lin_cos_dec1 = tf.keras.experimental.LinearCosineDecay(init_lr,
decay_steps,
num_periods=num_periods, alpha=alpha,
beta=beta, name='LinCosDec 1' ) | Digit Recognizer |
11,226,330 | submit_file = '.. /input/hubmaplocal/FrogUnetR34_ASPP_AttDecode_final_thr0.4.csv'
submission = pd.read_csv(submit_file, index_col='id')
sample_sub = pd.read_csv('.. /input/hubmap-kidney-segmentation/sample_submission.csv', index_col='id')
pub_ids = submission.index.values
predictions = submission.values
sample_sub.loc[pub_ids] = predictions
sample_sub.to_csv('submission.csv')
print('done!')
print(sample_sub )<install_modules> | opt = Adam(lr=0.00005)
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
model.summary() | Digit Recognizer |
11,226,330 | !pip install.. /input/packages/pretrainedmodels-0.7.4-py3-none-any.whl
!pip install.. /input/segmentationmodelspytorch/segmentation_models/timm-0.1.20-py3-none-any.whl
!pip install.. /input/packages/efficientnet_pytorch-0.6.3-py2.py3-none-any.whl
!pip install.. /input/segmentationmodelspytorch/segmentation_models/segmentation_models_pytorch-0.1.2-py3-none-any.whl
clear_output()<install_modules> | epochs = 150
batch_size = 64
X_train, X_val, y_train, y_val = train_test_split(X_train_f, y_train_f, test_size=0.3 , random_state = 5)
image_gen = ImageDataGenerator(rotation_range = 25 ,shear_range = 0.25,zoom_range = [1.25,0.75],width_shift_range= 0.1,height_shift_range=0.1)
image_gen2 = ImageDataGenerator()
train_batches = image_gen.flow(X_train,y_train,batch_size = batch_size)
val_batches =image_gen2.flow(X_val,y_val,batch_size = batch_size ) | Digit Recognizer |
11,226,330 | !pip install git+https://github.com/qubvel/segmentation_models.pytorch<load_from_csv> | steps_per_epoch = train_batches.n//train_batches.batch_size
validation_steps = val_batches.n//val_batches.batch_size
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.75,patience=3, min_lr=0.00001, mode='auto',verbose=1)
callbacks = [PlotLossesKerasTF() , reduce_lr] | Digit Recognizer |
11,226,330 | sample_submission = pd.read_csv('.. /input/hubmap-kidney-segmentation/sample_submission.csv')
sample_submission = sample_submission.set_index('id')
seed = 1015
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def rle_encode_less_memory(img):
pixels = img.T.flatten()
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs)
test_files = sample_submission.index.tolist()<import_modules> | history=model.fit_generator(generator=train_batches, steps_per_epoch = steps_per_epoch, epochs=epochs,
validation_data=val_batches, validation_steps=validation_steps , callbacks=callbacks ) | Digit Recognizer |
11,226,330 | <choose_model_class><EOS> | predictions = model.predict_classes(X_test_f, verbose=0)
submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) ,
"Label": predictions})
submissions.to_csv("mysub5.csv", index=False, header=True ) | Digit Recognizer |
11,492,746 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<load_pretrained> | activations, regularizers, Sequential
, utils, callbacks, optimizers
)
Flatten, Dense, BatchNormalization
, Activation, Dropout, Conv2D, MaxPool2D
) | Digit Recognizer |
11,492,746 | PATH = ".. /input/hubmap-models2/"
model_names = [
"1_unet-timm-effb7_0.9509_epoch_28.pth",
"2_unet-timm-effb7_0.9488_epoch_28.pth",
"3_unet-timm-effb7_0.9503_epoch_29.pth",
"4_unet-timm-effb7_0.9500_epoch_28.pth",
"5_unet-timm-effb7_0.9518_epoch_27.pth",
]
models = []
for model_name in model_names:
models.append(torch.load(PATH + model_name, map_location= 'cpu'))<define_variables> | BASEPATH = '.. /input/digit-recognizer/'
def reload(df='train.csv', msg=True, path=BASEPATH):
o = pd.read_csv(BASEPATH + df)
print(f'{df} loaded!')
return o
train = reload()
y_train = train.label.copy()
y_train = utils.to_categorical(y_train, 10)
X_train = train.drop(columns='label')
def preprocess(df):
df = df / 256.0
df = df.values.reshape(-1, 28, 28, 1)
return df
X_train = preprocess(X_train)
test = reload('test.csv')
X_test = preprocess(test ) | Digit Recognizer |
11,492,746 | sz = 512
test_path = '.. /input/hubmap-kidney-segmentation/test/'
for step, person_idx in enumerate(test_files):
print(f'load {step+1}/{len(test_files)} data...')
img = tiff.imread(test_path + person_idx + '.tiff' ).squeeze()
if img.shape[0] == 3:
img = img.transpose(1,2,0)
predict_mask_l1 = np.zeros(( img.shape[0], img.shape[1]), dtype = bool)
landscape =img.shape[0]// 512
portrait = img.shape[1]// 512
sz = 512
print('predict mask...')
for x in tqdm(range(landscape)) :
for y in range(portrait):
start_x =(512)* x
end_x =(1024)+ start_x
start_y =(512)* y
end_y =(1024)+ start_y
if x == landscape-1:
start_x = img.shape[0] - 1024
end_x = img.shape[0]
if y == portrait-1:
start_y = img.shape[1] - 1024
end_y = img.shape[1]
sample_img = img[start_x : end_x, start_y : end_y,:]
sample_img = cv2.resize(sample_img,(sz,sz),interpolation = cv2.INTER_AREA)/256
sample_img = torch.cuda.FloatTensor(sample_img.transpose([2,0,1])[np.newaxis,...])
sample_pred = np.zeros([512,512])
for model in models:
sample_pred += model.predict(sample_img ).cpu().numpy() [0,0,:,:]
sample_pred = sample_pred/len(models)
sample_pred = cv2.resize(sample_pred,(1024,1024),interpolation = cv2.INTER_NEAREST)
sample_pred = np.where(sample_pred > 0.3, True, False ).astype(bool)
predict_mask_l1[start_x + 256 : end_x - 256, start_y + 256 : end_y - 256] = sample_pred[256:256 + 512,256:256 + 512]
del sample_img
del sample_pred
gc.collect()
predict_mask_l1 = predict_mask_l1.astype(np.uint8)
contours, hierarchy = cv2.findContours(predict_mask_l1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
predict_mask_l2 = np.zeros(( img.shape[0], img.shape[1]), dtype = bool)
for cont in tqdm(contours):
center_y, center_x = cont.mean(axis = 0 ).round(0 ).astype(int)[0]
left_x = int(center_x - 512)
top_y = int(center_y - 512)
if left_x < 0:
left_x = 0
elif left_x + 1024 > img.shape[0]:
left_x = img.shape[0] - 1024
if top_y < 0:
top_y = 0
elif top_y + 1024 > img.shape[1]:
top_y = img.shape[1] - 1024
sample_img_l2 = img[left_x : left_x + 1024, top_y : top_y+ 1024,:]
sample_img_l2 = cv2.resize(sample_img_l2,(sz,sz),interpolation = cv2.INTER_AREA)/256
sample_img_l2 = torch.cuda.FloatTensor(sample_img_l2.transpose([2,0,1])[np.newaxis,...])
sample_pred_l2 = np.zeros([512,512])
for model in models:
sample_pred_l2 += model.predict(sample_img_l2 ).cpu().numpy() [0,0,:,:]
sample_pred_l2 = sample_pred_l2/len(models)
sample_pred_l2 = cv2.resize(sample_pred_l2,(1024,1024),interpolation = cv2.INTER_NEAREST)
sample_pred_l2 = np.where(sample_pred_l2 > 0.5, True, False ).astype(np.uint8)
contours_l2, hierarchy = cv2.findContours(sample_pred_l2,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
if len(contours_l2)< 1:
print('no contour')
continue
for cont_l2 in contours_l2:
min_y, min_x = cont_l2.min(axis = 0 ).round(0 ).astype(int)[0]
max_y, max_x = cont_l2.max(axis = 0 ).round(0 ).astype(int)[0]
if(min_x < 512)and(max_x > 512):
if(min_y < 512)and(max_y > 512):
sample_mask_l2 = np.zeros(sample_pred_l2.shape,
dtype = np.uint8)
sample_center = cv2.drawContours(sample_mask_l2,
[cont_l2],
0,
(255, 255, 255),
-1)
predict_mask_l2[left_x : left_x + 1024,
top_y : top_y+ 1024] =\
np.logical_or(predict_mask_l2[left_x : left_x + 1024,
top_y : top_y+ 1024],
sample_center)
del predict_mask_l1
del img
gc.collect()
print('convert mask to rle
')
predict_rle = rle_encode_less_memory(predict_mask_l2)
sample_submission.loc[person_idx,'predicted'] = predict_rle
del predict_rle
del predict_mask_l2
gc.collect()
sample_submission = sample_submission.reset_index()
sample_submission.to_csv('/kaggle/working/submission.csv',index=False )<install_modules> | l1 = 0
l2 = 0.01
ini_lr = 0.001
val_size = 0.3
batch_size = 30
activation = 'relu'
if activation == 'selu':
initializer = 'lecun_normal'
elif activation in ['relu', 'elu']:
initializer = 'he_normal'
else:
initializer = 'glorot_normal'
sched_lr_val_acc = True
decay_rate = 0.97
X_tr, X_val, y_tr, y_val = train_test_split(
X_train, y_train, test_size=val_size, random_state=713)
n_train_val_samples = X_tr.shape[0]
n_train_samples = X_tr.shape[0] + X_val.shape[0]
def generate_tfdata(X, y=None, batch_size=batch_size
, shuffle_repeat=True):
if y is None:
data = Dataset.from_tensor_slices(( X,))
else:
data = Dataset.from_tensor_slices(( X, y))
if shuffle_repeat:
data = data.shuffle(10000, 713, reshuffle_each_iteration=True ).repeat()
if batch_size:
data = data.batch(batch_size)
return data.prefetch(1)
tr_set = generate_tfdata(X_tr, y_tr)
val_set = generate_tfdata(X_val, y_val, shuffle_repeat=False)
train_set = generate_tfdata(X_train, y_train)
test_set = generate_tfdata(X_test, shuffle_repeat=False ) | Digit Recognizer |
11,492,746 | !pip install.. /input/keras-applications/Keras_Applications-1.0.8/ -f./ --no-index
!pip install.. /input/image-classifiers/image_classifiers-1.0.0/ -f./ --no-index
!pip install.. /input/efficientnet-1-0-0/efficientnet-1.0.0/ -f./ --no-index
!pip install.. /input/segmentation-models/segmentation_models-1.0.1/ -f./ --no-index<define_variables> | def get_regularizer(l1=l1, l2=l2):
return regularizers.l1_l2(l1=l1, l2=l2)
def get_optimizer(lr=ini_lr, beta_1=0.9, beta_2=0.999
, decay_rate=decay_rate
, n_samples=n_train_samples, batch_size=batch_size):
if sched_lr_val_acc == False:
lr = optimizers.schedules.ExponentialDecay(
lr
, decay_steps = n_samples // batch_size // 2
, decay_rate = decay_rate
)
return optimizers.Adam(lr, beta_1=beta_1, beta_2=beta_2)
def get_callbacks(es_params=['val_loss', 1e-3, 15]
, lr_params=['val_accuracy', 0.001, 5]):
cb = []
cb.append(callbacks.EarlyStopping(
monitor=es_params[0], min_delta=es_params[1], patience=es_params[2]
, verbose=1, restore_best_weights=True
))
if sched_lr_val_acc:
cb.append(callbacks.ReduceLROnPlateau(
monitor=lr_params[0], factor=0.5, patience=lr_params[2]
, min_delta=lr_params[1], min_lr=ini_lr*0.1**5
))
cb.append(callbacks.TerminateOnNaN())
return cb
DefaultConv2D = partial(Conv2D
, kernel_size=3
, strides=1
, activation=activation
, kernel_initializer=initializer
, padding='SAME')
DefaultMaxPool2D = partial(MaxPool2D
, pool_size=2
, strides=2)
DefaultDense = partial(Dense
, activation=activation
, kernel_initializer=initializer
, kernel_regularizer=get_regularizer())
def get_model(compiling=True, n_samples=n_train_samples, batch_size=batch_size
, activation=activation, initializer=initializer, p=0.5):
model = Sequential(
[DefaultConv2D(filters=32, kernel_size=5, input_shape=(28,28,1))
, BatchNormalization()
, DefaultMaxPool2D()
, DefaultConv2D(filters=64)
, BatchNormalization()
, DefaultConv2D(filters=64)
, BatchNormalization()
, DefaultMaxPool2D()
, DefaultConv2D(filters=128)
, BatchNormalization()
, DefaultConv2D(filters=128)
, BatchNormalization()
, DefaultMaxPool2D()
, Flatten()
, DefaultDense(units=64)
, Dropout(p)
, DefaultDense(units=32)
, Dropout(p)
, Dense(units=10, activation='softmax')
]
)
optimizer = get_optimizer(n_samples=n_samples, batch_size=batch_size)
if compiling:
opt = get_optimizer()
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
return model | Digit Recognizer |
11,492,746 | %env SM_FRAMEWORK=tf.keras<set_options> | verbose = 1
model = get_model(n_samples=n_train_val_samples)
print(model.summary())
epochs = 100
cb = get_callbacks()
history = model.fit(tr_set, epochs = epochs
, steps_per_epoch = n_train_val_samples // batch_size
, validation_data = val_set
, callbacks = cb
, verbose = verbose ) | Digit Recognizer |
11,492,746 | warnings.filterwarnings('ignore')
print('tensorflow version:', tf.__version__)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
gpu_devices = tf.config.experimental.list_physical_devices('GPU')
if gpu_devices:
for gpu_device in gpu_devices:
print('device available:', gpu_device)
pd.set_option('display.max_columns', None )<define_variables> | y_pred = model.predict(test_set)
y_pred = np.argmax(y_pred, axis=1)
submission = reload('sample_submission.csv')
submission['Label'] = y_pred
submission.to_csv('submission.csv', index=False ) | Digit Recognizer |
11,499,669 | TEST = True
KAGGLE = True
MDLS_FOLDS = {'v39': [0, 2, 3, 4]}
if KAGGLE:
DATA_PATH = '.. /input/hubmap-kidney-segmentation'
MDLS_PATHS = {ver: f'.. /input/kidney-models-{ver}'
for ver, _ in MDLS_FOLDS.items() }
else:
DATA_PATH = './data2'
MDLS_PATHS = {ver: f'./models_{ver}'
for ver, _ in MDLS_FOLDS.items() }
THRESHOLD =.35
VOTERS = 1
TTAS = [0, 1]
EXPAND = 4
MIN_OVERLAP = 1 / 16
IDNT = rasterio.Affine(1, 0, 0, 0, 1, 0)
STRATEGY = tf.distribute.get_strategy()
SUB_PATH = f'{DATA_PATH}/test' if TEST else f'{DATA_PATH}/train'
start_time = time.time()<load_pretrained> | train, test = pd.read_csv('.. /input/digit-recognizer/train.csv'), \
pd.read_csv('.. /input/digit-recognizer/test.csv')
train.head() | Digit Recognizer |
11,499,669 | params_dict = {}
for ver, _ in MDLS_FOLDS.items() :
with open(f'{MDLS_PATHS[ver]}/params.json')as file:
params_dict[ver] = json.load(file)
for ver, params in params_dict.items() :
print('version:', ver, '| loaded params:', params, '
' )<categorify> | y_train = train['label']
x_train, x_test = train.iloc[:,1:], test | Digit Recognizer |
11,499,669 | def enc2mask(encs, shape):
img = np.zeros(shape[0] * shape[1], dtype=np.uint8)
for m, enc in enumerate(encs):
if isinstance(enc, np.float)and np.isnan(enc): continue
s = enc.split()
for i in range(len(s)// 2):
start = int(s[2 * i])- 1
length = int(s[2 * i + 1])
img[start : start + length] = 1 + m
return img.reshape(shape ).T
def rle_encode_less_memory(img):
pixels = img.T.flatten()
pixels[0] = 0
pixels[-1] = 0
runs = np.where(pixels[1:] != pixels[:-1])[0] + 2
runs[1::2] -= runs[::2]
return ' '.join(str(x)for x in runs )<compute_test_metric> | x_train, x_test = x_train / 255., x_test / 255.
x_train, x_test = x_train.values.reshape(-1,28,28,1),\
x_test.values.reshape(-1,28,28,1 ) | Digit Recognizer |
11,499,669 | def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return(2 * intersection + smooth)/(K.sum(y_true_f)+ K.sum(y_pred_f)+ smooth)
def dice_loss(y_true, y_pred, smooth=1):
return(1 - dice_coef(y_true, y_pred, smooth))
def bce_dice_loss(y_true, y_pred):
return params['bce_weight'] * binary_crossentropy(y_true, y_pred)+ \
(1 - params['bce_weight'])* dice_loss(y_true, y_pred)
def get_model(backbone, input_shape, path,
loss_type='bce_dice', umodel='unet',
classes=1, lr=.001):
if backbone == 'efficientnetb0':
weights = f'{path}/efficientnet-b0_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'
elif backbone == 'efficientnetb1':
weights = f'{path}/efficientnet-b1_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'
elif backbone == 'efficientnetb2':
weights = f'{path}/efficientnet-b2_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'
elif backbone == 'efficientnetb3':
weights = f'{path}/efficientnet-b3_weights_tf_dim_ordering_tf_kernels_autoaugment_notop.h5'
elif backbone == 'resnet34':
weights = f'{path}/resnet34_imagenet_1000_no_top.h5'
else:
raise AttributeError('mode parameter error')
with STRATEGY.scope() :
if loss_type == 'bce_dice':
loss = bce_dice_loss
elif loss_type == 'bce_jaccard_loss':
loss = bce_jaccard_loss
else:
raise AttributeError('loss mode parameter error')
if umodel == 'unet':
model = Unet(backbone_name=backbone, encoder_weights=weights,
input_shape=input_shape,
classes=classes, activation='sigmoid')
elif umodel == 'fpn':
model = FPN(backbone_name=backbone, encoder_weights=weights,
input_shape=input_shape,
classes=classes, activation='sigmoid')
elif umodel == 'link':
model = Linknet(backbone_name=backbone, encoder_weights=weights,
input_shape=input_shape,
classes=classes, activation='sigmoid')
else:
raise AttributeError('umodel mode parameter error')
model.compile(
optimizer=tfa.optimizers.Lookahead(
tf.keras.optimizers.Adam(learning_rate=lr)
),
loss=loss,
metrics=[dice_coef]
)
return model<categorify> | y_train = to_categorical(y_train, num_classes=10 ) | Digit Recognizer |
11,499,669 | def make_grid(shape, window=256, min_overlap=32):
x, y = shape
nx = x //(window - min_overlap)+ 1
x1 = np.linspace(0, x, num=nx, endpoint=False, dtype=np.int64)
x1[-1] = x - window
x2 =(x1 + window ).clip(0, x)
ny = y //(window - min_overlap)+ 1
y1 = np.linspace(0, y, num=ny, endpoint=False, dtype=np.int64)
y1[-1] = y - window
y2 =(y1 + window ).clip(0, y)
slices = np.zeros(( nx, ny, 4), dtype=np.int64)
for i in range(nx):
for j in range(ny):
slices[i, j] = x1[i], x2[i], y1[j], y2[j]
return slices.reshape(nx * ny, 4)
def flip(img, axis=0):
if axis == 1:
return img[::-1, :, ]
elif axis == 2:
return img[:, ::-1, ]
elif axis == 3:
return img[::-1, ::-1, ]
else:
return img<define_variables> |
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(filters=32, kernel_size=(5,5), \
activation='relu', input_shape=(28,28,1)) ,
tf.keras.layers.MaxPooling2D(pool_size=(2,2)) ,
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=64, kernel_size=(3,3), \
activation='relu', input_shape=(28,28,1)) ,
tf.keras.layers.BatchNormalization() ,
tf.keras.layers.Conv2D(filters=128, kernel_size=(3,3), \
activation='relu', input_shape=(28,28,1)) ,
tf.keras.layers.Dropout (.4),
tf.keras.layers.MaxPooling2D(pool_size=(2,2), strides=(2,2)) ,
tf.keras.layers.Flatten() ,
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dropout (.4),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
model.summary() | Digit Recognizer |
11,499,669 | img_files = [x for x in os.listdir(SUB_PATH)if '.tiff' in x]
print('images idxs:', img_files )<create_dataframe> |
num_epochs = 50
history = model.fit(x_train, y_train,
epochs=num_epochs,
callbacks=[
tf.keras.callbacks.EarlyStopping(monitor='loss', patience=6),
tf.keras.callbacks.ReduceLROnPlateau(monitor='loss', patience=4)
],
validation_split=0.2,
verbose=0 ) | Digit Recognizer |
11,499,669 | df_sub = pd.DataFrame(subm ).T
df_sub<save_to_csv> | scores = model.evaluate(x_train, y_train, batch_size=32)
print(f'Loss: {scores[0]} Accuracy: {scores[1]}' ) | Digit Recognizer |
11,499,669 | df_sub.to_csv('submission.csv', index=False )<set_options> | y_predicted = model.predict(x_test)
y_test_labels = np.argmax(y_predicted, axis=1 ) | Digit Recognizer |
11,499,669 | color = sns.color_palette()
%matplotlib inline
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 50 )<load_from_csv> | x_test_ids = [(i + 1)for i in range(x_test.shape[0])] | Digit Recognizer |
11,499,669 | <feature_engineering><EOS> | results = pd.DataFrame({
'ImageId': x_test_ids,
'Label': y_test_labels
})
results.to_csv('submission.csv', index=False ) | Digit Recognizer |
11,088,069 | <SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<filter> | DEVICE = "TPU"
SEED = 8080
FOLDS = 5
FOLD_WEIGHTS = [1./FOLDS]*FOLDS
BATCH_SIZE = 256
EPOCHS = 5000
MONITOR = "val_loss"
MONITOR_MODE = "min"
ES_PATIENCE = 5
LR_PATIENCE = 0
LR_FACTOR = 0.5
EFF_NET = 3
EFF_NET_WEIGHTS = 'noisy-student'
LABEL_SMOOTHING = 0.1
VERBOSE = 1 | Digit Recognizer |
11,088,069 | df_train[(df_train['floor'])== 33]<drop_column> | !pip install -q efficientnet >> /dev/null | Digit Recognizer |
11,088,069 | df_train.drop(df_train.index[7457], inplace=True )<data_type_conversions> | import numpy as np
import pandas as pd
from tqdm import tqdm
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow.keras.backend as K
import efficientnet.tfkeras as efn
from sklearn.model_selection import KFold
from keras.preprocessing.image import ImageDataGenerator | Digit Recognizer |
11,088,069 | df_train['year'] = df_train['timestamp'].apply(lambda x: x[:4] ).astype(int)
df_train['month'] = df_train['timestamp'].apply(lambda x: x[5:7] ).astype(int)
df_test['year'] = df_test['timestamp'].apply(lambda x: x[:4] ).astype(int)
df_test['month'] = df_test['timestamp'].apply(lambda x: x[5:7] ).astype(int )<sort_values> | if DEVICE == "TPU":
print("connecting to TPU...")
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
print("Could not connect to TPU")
tpu = None
if tpu:
try:
print("initializing TPU...")
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
print("TPU initialized")
except _:
print("failed to initialize TPU")
else:
DEVICE = "GPU"
if DEVICE != "TPU":
print("Using default strategy for CPU and single GPU")
strategy = tf.distribute.get_strategy()
if DEVICE == "GPU":
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
AUTO = tf.data.experimental.AUTOTUNE
REPLICAS = strategy.num_replicas_in_sync
print(f'REPLICAS: {REPLICAS}' ) | Digit Recognizer |
11,088,069 | missingValues = df_train.columns[df_train.isnull().any() ].tolist()
pd.isnull(df_train[missingValues] ).sum().sort_values(ascending=False )<define_variables> | train = pd.read_csv("/kaggle/input/digit-recognizer/train.csv")
train.describe() | Digit Recognizer |
11,088,069 | cols_fillna_mode = ['floor',
'product_type',
'num_room',
'state',
'hospital_beds_raion',
'build_count_brick',
'build_count_monolith',
'green_part_2000']
cols_fillna_mean = ['life_sq',
'metro_min_walk',
'metro_km_walk',
'railroad_station_walk_km',
'railroad_station_walk_min',
'cafe_sum_1500_min_price_avg',
'cafe_sum_1500_max_price_avg',
'cafe_avg_price_1500',
'cafe_sum_2000_max_price_avg',
'cafe_avg_price_2000']<categorify> | X = train.drop(labels=['label'], axis=1)
X = X.astype('float32')
X = X / 255
X = X.values.reshape(X.shape[0],28,28,1)
X = np.pad(X,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant')
X = np.squeeze(X, axis=-1)
X = stacked_img = np.stack(( X,)*3, axis=-1)
X.shape | Digit Recognizer |
11,088,069 | for col in cols_fillna_mode:
df_train[col].fillna(df_train[col].mode().iloc[0],inplace=True)
df_test[col].fillna(df_train[col].mode().iloc[0],inplace=True)
for col in cols_fillna_mean:
df_train[col].fillna(df_train[col].mean() ,inplace=True)
df_test[col].fillna(df_train[col].mean() ,inplace=True )<define_variables> | y = train['label'].values.astype('float32')
y = tf.keras.utils.to_categorical(y, 10)
y | Digit Recognizer |
11,088,069 | numerical_features = df_train.dtypes[df_train.dtypes != "object"].index
categorical_features = df_train.dtypes[df_train.dtypes == "object"].index
print("Кол-во количественных признаков: ", len(numerical_features))
print("Кол-во категориальных признаков: ", len(categorical_features))<sort_values> | test = pd.read_csv("/kaggle/input/digit-recognizer/test.csv")
test.describe() | Digit Recognizer |
11,088,069 | df_train.isna().sum().sort_values(ascending=False )<drop_column> | X_test = test.astype('float32')
X_test = X_test / 255
X_test = X_test.values.reshape(X_test.shape[0],28,28,1)
X_test = np.pad(X_test,(( 0,0),(2,2),(2,2),(0,0)) , mode='constant')
X_test = np.squeeze(X_test, axis=-1)
X_test = stacked_img = np.stack(( X_test,)*3, axis=-1)
X_test.shape | Digit Recognizer |
11,088,069 | df_train.drop(['id', 'price_doc', 'timestamp'], axis=1, inplace=True)
id_test = df_test['id']
df_test.drop(['id', 'timestamp'], axis=1, inplace=True )<define_variables> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False
) | Digit Recognizer |
11,088,069 | numerical_features = df_train.dtypes[df_train.dtypes != "object"].index
categorical_features = df_train.dtypes[df_train.dtypes == "object"].index
print("Кол-во количественных признаков: ", len(numerical_features))
print("Кол-во категориальных признаков: ", len(categorical_features))<categorify> | eff_nets = [
efn.EfficientNetB0,
efn.EfficientNetB1,
efn.EfficientNetB2,
efn.EfficientNetB3,
efn.EfficientNetB4,
efn.EfficientNetB5,
efn.EfficientNetB6,
efn.EfficientNetB7,
efn.EfficientNetL2,
]
def build_model() :
inp = tf.keras.layers.Input(shape=(X.shape[1], X.shape[2], X.shape[3]))
oup = eff_nets[EFF_NET](
input_shape=(X.shape[1], X.shape[2], X.shape[3]),
weights=EFF_NET_WEIGHTS,
include_top=False,
)(inp)
oup = tf.keras.layers.GlobalAveragePooling2D()(oup)
oup = tf.keras.layers.Dense(512, activation='linear' )(oup)
oup = tf.keras.layers.Activation('relu' )(oup)
oup = tf.keras.layers.Dropout(0.5 )(oup)
oup = tf.keras.layers.Dense(10, activation='linear' )(oup)
oup = tf.keras.layers.Activation('softmax' )(oup)
model = tf.keras.Model(inputs=[inp], outputs=[oup])
loss = tf.keras.losses.CategoricalCrossentropy(
from_logits=False,
label_smoothing=LABEL_SMOOTHING,
)
opt = tf.keras.optimizers.Nadam(learning_rate=3e-4)
model.compile(optimizer=opt,loss=loss,metrics=['acc'])
return model
build_model().summary() | Digit Recognizer |
11,088,069 | encoder = OneHotEncoder(handle_unknown='error')
encoder_cols_train = pd.DataFrame(encoder.fit_transform(df_train[categorical_features] ).toarray())
encoder_cols_test = pd.DataFrame(encoder.transform(df_test[categorical_features] ).toarray() )<categorify> | %%time
oof = np.zeros(( X.shape[0], y.shape[1]))
preds = np.zeros(( X_test.shape[0], y.shape[1]))
skf = KFold(n_splits=FOLDS,shuffle=True,random_state=SEED)
for fold,(idxT,idxV)in enumerate(skf.split(X)) :
if DEVICE=='TPU':
if tpu: tf.tpu.experimental.initialize_tpu_system(tpu)
print('
print('
print('
K.clear_session()
with strategy.scope() :
model = build_model()
weights_filename='fold-%i.h5'%fold
sv = tf.keras.callbacks.ModelCheckpoint(
weights_filename, monitor=MONITOR, verbose=VERBOSE, save_best_only=True,
save_weights_only=True, mode=MONITOR_MODE, save_freq='epoch')
lrr = tf.keras.callbacks.ReduceLROnPlateau(
monitor=MONITOR,
factor=LR_FACTOR,
patience=LR_PATIENCE,
verbose=VERBOSE,
mode=MONITOR_MODE
)
es = tf.keras.callbacks.EarlyStopping(
monitor=MONITOR,
patience=ES_PATIENCE,
verbose=VERBOSE,
mode=MONITOR_MODE,
)
print('Generating train data...')
i = 0
datagen.fit(X[idxT])
steps = 2 *(X[idxT].shape[0] // BATCH_SIZE)
X_train = None
y_train = None
with tqdm(total=steps)as pbar:
for arr in datagen.flow(X[idxT], y[idxT], batch_size=BATCH_SIZE):
if X_train is None:
X_train = arr[0]
y_train = arr[1]
else:
X_train = np.concatenate(( X_train, arr[0]))
y_train = np.concatenate(( y_train, arr[1]))
i += 1
pbar.update(1)
if i >= steps:
break
print('Training...')
history = model.fit(
X_train,
y_train,
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks = [
sv,
lrr,
es,
],
validation_data=(
X[idxV], y[idxV]
),
verbose=VERBOSE,
)
print('Loading best model...')
model.load_weights('fold-%i.h5'%fold)
print('Predicting OOF...')
oof[idxV,] = model.predict([X[idxV]],verbose=VERBOSE)
print('Predicting Test...')
preds +=(model.predict([X_test], verbose=VERBOSE)* FOLD_WEIGHTS[fold])
acc_sum = 0
for k in idxV:
if np.argmax(oof[k])== np.argmax(y[k]):
acc_sum += 1
print('>>>> FOLD {} Accuracy = {:.4f}%'.format(fold+1,acc_sum/len(idxV)*100))
print() | Digit Recognizer |
11,088,069 | encoder_cols_train.columns = encoder.get_feature_names(categorical_features)
encoder_cols_test.columns = encoder.get_feature_names(categorical_features)
encoder_cols_train.index = df_train.index
encoder_cols_test.index = df_test.index<drop_column> | final_predictions = pd.Series(np.argmax(preds, axis=1), name="Label")
submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),final_predictions], axis=1)
submission.to_csv("submission.csv",index=False)
submission.head() | Digit Recognizer |
11,040,563 | num_df_train = df_train.drop(categorical_features, axis=1)
num_df_test = df_test.drop(categorical_features, axis=1 )<categorify> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
11,040,563 | df_train_encoded = pd.concat([num_df_train, encoder_cols_train], axis=1)
df_test_encoded = pd.concat([num_df_test, encoder_cols_test], axis=1)
print("Train dataset shape:", df_train_encoded.shape)
print("Test dataset shape:", df_test_encoded.shape )<sort_values> | ( x_train1, y_train1),(x_test1, y_test1)= mnist.load_data()
train1 = np.concatenate([x_train1, x_test1], axis=0)
y_train1 = np.concatenate([y_train1, y_test1], axis=0)
Y_train1 = y_train1
X_train1 = train1.reshape(-1, 28*28 ) | Digit Recognizer |
11,040,563 | df_train_encoded.median().sort_values(ascending=False )<train_model> | X_train = X_train / 255.0
test = test / 255.0
X_train1 = X_train1 / 255.0 | Digit Recognizer |
11,040,563 | X = df_train_encoded.drop(['price_doc_log'], axis=1)
y = df_train_encoded['price_doc_log']
print("X shape:", X.shape)
print("y shape:", y.shape )<split> | X_train = np.concatenate(( X_train.values, X_train1))
Y_train = np.concatenate(( Y_train, Y_train1)) | Digit Recognizer |
11,040,563 | X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=2022)
X_test = df_test_encoded<predict_on_test> | Y_train = to_categorical(Y_train, num_classes = 10 ) | Digit Recognizer |
11,040,563 | tree = DecisionTreeRegressor(random_state=2022, max_depth=5, min_samples_split=20)
tree.fit(X_train, y_train)
tree_predictions_log = tree.predict(X_val)
tree_predictions = np.exp(tree_predictions_log )<compute_test_metric> | random_seed = 2 | Digit Recognizer |
11,040,563 | print('RMSLE:', np.sqrt(mean_squared_log_error(np.exp(y_val), tree_predictions)) )<predict_on_test> | X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=random_seed ) | Digit Recognizer |
11,040,563 | predict = np.exp(tree.predict(X_test))
submission = pd.DataFrame({'id': id_test, 'price_doc': predict})
submission.head()<save_to_csv> |
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(5,5),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation = "softmax"))
model.summary() | Digit Recognizer |
11,040,563 | submission.to_csv('DecisionTree.csv', index=False )<prepare_x_and_y> | optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0 ) | Digit Recognizer |
11,040,563 | dmatrix_train = xgb.DMatrix(X_train, y_train)
dmatrix_val = xgb.DMatrix(X_val, y_val)
dmatrix_test = xgb.DMatrix(X_test )<train_model> | model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] ) | Digit Recognizer |
11,040,563 | xgb_params = {
'eta': 0.05,
'max_depth': 5,
'subsample': 1.0,
'colsample_bytree': 0.7,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'verbosity': 0
}
partial_model = xgb.train(xgb_params, dmatrix_train, num_boost_round=1000, evals=[(dmatrix_val, 'val')],
early_stopping_rounds=20, verbose_eval=20)
num_boost_round = partial_model.best_iteration<train_model> | learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001 ) | Digit Recognizer |
11,040,563 | model = xgb.train(dict(xgb_params, verbose=1), dmatrix_train, num_boost_round=num_boost_round )<predict_on_test> | epochs = 50
batch_size = 32 | Digit Recognizer |
11,040,563 | predict = np.exp(model.predict(dmatrix_val))
print('RMSLE:', np.sqrt(mean_squared_log_error(np.exp(y_val), predict)) )<predict_on_test> | Digit Recognizer |
|
11,040,563 | ylog_pred = model.predict(dmatrix_test)
y_pred = np.exp(ylog_pred)
submission = pd.DataFrame({'id': id_test, 'price_doc': y_pred})
submission.head()<save_to_csv> | datagen = ImageDataGenerator(
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
zca_whitening=False,
rotation_range=10,
zoom_range = 0.1,
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=False,
vertical_flip=False)
datagen.fit(X_train ) | Digit Recognizer |
11,040,563 | submission.to_csv("XGB_new_clear_submission.csv", index=False )<prepare_x_and_y> |
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size),
epochs = epochs, validation_data =(X_val,Y_val),
verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size
, callbacks=[learning_rate_reduction] ) | Digit Recognizer |
11,040,563 | dmatrix_train = xgb.DMatrix(X_train, y_train)
dmatrix_test = xgb.DMatrix(X_test )<init_hyperparams> | results = model.predict(test)
results = np.argmax(results,axis = 1)
results = pd.Series(results,name="Label" ) | Digit Recognizer |
11,040,563 | xgb_params = {
'eta': 0.05,
'max_depth': 5,
'subsample': 0.7,
'colsample_bytree': 0.7,
'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'verbosity': 0
}<compute_train_metric> | submission = pd.concat([pd.Series(range(1,28001),name = "ImageId"),results],axis = 1)
submission.to_csv("cnn_mnist_submission.csv",index=False ) | Digit Recognizer |
9,740,221 | cv_output = xgb.cv(xgb_params,
dmatrix_train,
num_boost_round=1000,
early_stopping_rounds=20,
verbose_eval=50,
show_stdv=False)
num_boost_rounds = len(cv_output )<train_model> | import matplotlib.pyplot as plt | Digit Recognizer |
9,740,221 | model = xgb.train(dict(xgb_params, verbose=1), dmatrix_train, num_boost_round=num_boost_rounds )<predict_on_test> | train = pd.read_csv(".. /input/digit-recognizer/train.csv")
test = pd.read_csv(".. /input/digit-recognizer/test.csv" ) | Digit Recognizer |
9,740,221 | predict = np.exp(model.predict(dmatrix_test))
submission = pd.DataFrame({'id': id_test, 'price_doc': predict})
submission.head()<save_to_csv> | sample_submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv' ) | Digit Recognizer |
9,740,221 | submission.to_csv('XGB_CV.csv', index=False )<split> | X_train = train.drop(['label'], axis = 1)
y_train = train['label']
X_test = test
X_train = X_train / 255.0
X_test = X_test / 255.0 | Digit Recognizer |
9,740,221 | X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=2022)
X_test = df_test_encoded<categorify> | X_train=X_train.values
X_test=X_test.values
test=test.values
X_train=X_train.reshape(X_train.shape[0], 28, 28, 1)
X_test=X_test.reshape(X_test.shape[0], 28, 28, 1)
test=test.reshape(test.shape[0] , 28 , 28 , 1 ) | Digit Recognizer |
9,740,221 | pca = PCA(n_components=20 ).fit(X_train)
X_train_pca=pca.transform(X_train)
X_val_pca=pca.transform(X_val )<prepare_x_and_y> | import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import EarlyStopping | Digit Recognizer |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.