kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
9,740,221
dmatrix_train = xgb.DMatrix(X_train_pca, y_train) dmatrix_val = xgb.DMatrix(X_val_pca, y_val) dmatrix_test = xgb.DMatrix(X_test )<train_model>
input_shape = X_train[0].shape
Digit Recognizer
9,740,221
xgb_params = { 'eta': 0.05, 'max_depth': 5, 'subsample': 1.0, 'colsample_bytree': 0.7, 'objective': 'reg:squarederror', 'eval_metric': 'rmse', 'verbosity': 0 } partial_model = xgb.train(xgb_params, dmatrix_train, num_boost_round=1000, evals=[(dmatrix_val, 'val')], early_stopping_rounds=20, verbose_eval=20) num_boost_round = partial_model.best_iteration<train_model>
early_stop = EarlyStopping(monitor = 'val_loss', mode = 'min', verbose = 2, patience = 0 )
Digit Recognizer
9,740,221
model = xgb.train(dict(xgb_params, verbose=1), dmatrix_train, num_boost_round=num_boost_round )<compute_test_metric>
model1 = Sequential() model1.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'valid', activation = 'relu', input_shape = input_shape)) model1.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model1.add(MaxPool2D(pool_size=(2,2))) model1.add(Dropout(0.25)) model1.add(Conv2D(filters = 96, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model1.add(Conv2D(filters = 128, kernel_size =(5,5), padding = 'valid', activation = 'relu')) model1.add(MaxPool2D(pool_size=(3,3))) model1.add(Dropout(0.33)) model1.add(Flatten()) model1.add(Dense(128, activation='relu')) model1.add(Dropout(0.50)) model1.add(Dense(10, activation='softmax'))
Digit Recognizer
9,740,221
predict = np.exp(model.predict(dmatrix_val)) rmsle = np.sqrt(mean_squared_log_error(np.exp(y_val), predict)) print('RMSLE: {:.3f}'.format(rmsle))<split>
model1.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
9,740,221
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=2022) X_test = df_test_encoded<concatenate>
model1.fit(X_train, y_train, epochs = 100, batch_size = 64, verbose = 1, callbacks = [early_stop], shuffle = True )
Digit Recognizer
9,740,221
train_dataset = cb.Pool(X_train, y_train) test_dataset = cb.Pool(X_val, y_val )<choose_model_class>
predictions1 = model1.predict(X_test )
Digit Recognizer
9,740,221
model = cb.CatBoostRegressor(loss_function='RMSE' )<compute_test_metric>
model2 = Sequential() model2.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'valid', activation = 'relu', input_shape = input_shape)) model2.add(MaxPool2D(pool_size=(2,2))) model2.add(Dropout(0.25)) model2.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model2.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model2.add(MaxPool2D(pool_size=(2,2))) model2.add(Dropout(0.33)) model2.add(Conv2D(filters = 128, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model2.add(MaxPool2D(pool_size=(2,2))) model2.add(Dropout(0.4)) model2.add(Flatten()) model2.add(Dense(1024, activation='relu')) model2.add(Dropout(0.50)) model2.add(Dense(10, activation='softmax'))
Digit Recognizer
9,740,221
pred = np.exp(model.predict(X_val)) rmsle = np.sqrt(mean_squared_log_error(np.exp(y_val), pred)) print('RMSLE: {:.3f}'.format(rmsle))<predict_on_test>
model2.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
9,740,221
predict = np.exp(model.predict(X_test)) submission = pd.DataFrame({'id': id_test, 'price_doc': predict}) submission.head()<save_to_csv>
model2.fit(X_train, y_train, epochs = 100, batch_size = 128, verbose = 1, callbacks = [early_stop], shuffle = True )
Digit Recognizer
9,740,221
submission.to_csv('Catboost.csv', index=False )<import_modules>
predictions2 = model1.predict(X_test )
Digit Recognizer
9,740,221
import zipfile<load_pretrained>
model3 = Sequential() model3.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'valid', activation = 'relu', input_shape = input_shape)) model3.add(Conv2D(filters = 32, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model3.add(Dropout(0.25)) model3.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model3.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model3.add(MaxPool2D(pool_size=(2,2))) model3.add(Dropout(0.33)) model3.add(Conv2D(filters = 96, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model3.add(Conv2D(filters = 96, kernel_size =(3,3), padding = 'valid', activation = 'relu')) model3.add(MaxPool2D(pool_size=(2,2))) model3.add(Dropout(0.4)) model3.add(Flatten()) model3.add(Dense(512, activation='relu')) model3.add(Dropout(0.50)) model3.add(Dense(1024, activation='relu')) model3.add(Dropout(0.50)) model3.add(Dense(10, activation='softmax'))
Digit Recognizer
9,740,221
train = zipfile.ZipFile('.. /input/sberbank-russian-housing-market/train.csv.zip', 'r') test = zipfile.ZipFile('.. /input/sberbank-russian-housing-market/test.csv.zip', 'r') macro = zipfile.ZipFile('.. /input/sberbank-russian-housing-market/macro.csv.zip', 'r' )<load_from_csv>
model3.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
9,740,221
train.extract('train.csv') test.extract('test.csv') macro.extract('macro.csv' )<load_from_csv>
model3.fit(X_train, y_train, epochs = 100, batch_size = 128, verbose = 1, callbacks = [early_stop], shuffle = True )
Digit Recognizer
9,740,221
train = pd.read_csv('./train.csv') test = pd.read_csv('./test.csv') macro = pd.read_csv('./macro.csv' )<data_type_conversions>
predictions3 = model1.predict(X_test )
Digit Recognizer
9,740,221
train_mean_life_sq = train['life_sq'].mean() train = train.fillna(value={'life_sq':train_mean_life_sq}) train = train.fillna(value={'floor':3}) train_mean_max_floor = train['max_floor'].mean() train = train.fillna(value={'max_floor':train_mean_max_floor}) train = train.fillna(value={'material':1}) del train['timestamp'], train['id'], train['sub_area']<prepare_x_and_y>
predictions =(predictions1 + predictions2 + predictions3)/3 Predictions = [] for i in range(0, len(predictions)) : Predictions.append(predictions[i].argmax()) id = [] for i in range(1, len(Predictions)+1): id.append(i )
Digit Recognizer
9,740,221
x_train = train.iloc[:, 0:5].copy() y_train = train['price_doc'].copy()<create_dataframe>
output = pd.DataFrame({'ImageId': id, 'Label': Predictions}) output.to_csv('my_submission.csv', index=False) print("Your submission was successfully saved!")
Digit Recognizer
10,977,592
del test['id'], test['timestamp'], test['sub_area'] test_mean_life_sq = test['life_sq'].mean() test = test.fillna(value={'life_sq':test_mean_life_sq} )<prepare_x_and_y>
import tensorflow as tf from tensorflow import keras import matplotlib.pyplot as plt import matplotlib.cm as cm
Digit Recognizer
10,977,592
x_test = test.iloc[:, 0:5].copy()<choose_model_class>
train_data_raw = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test_data_raw = pd.read_csv('/kaggle/input/digit-recognizer/test.csv') print('train_data_shape: ' + str(train_data_raw.shape)) print('test_data_shape: ' + str(test_data_raw.shape))
Digit Recognizer
10,977,592
model = BaggingRegressor(xgb.XGBRegressor(colsample_bytree=0.4, learning_rate=0.03, max_depth=6, min_child_weight=1.5, n_estimators=390, reg_alpha=0.75, reg_lambda=0.45, subsample=0.6, seed=42, tree_method='gpu_hist', gpu_id=0 ), n_estimators=50 )<train_model>
def pre_process_data(dataset, has_label=True): if has_label: data = dataset.iloc[:,1:].values else: data = dataset.iloc[:,:].values data = data.astype(np.float) data = np.multiply(data, 1.0 / 255.0) data = data.reshape(data.shape[:1] +(28, 28, 1)) return data train_images = pre_process_data(train_data_raw) print(train_images.shape) print(train_images )
Digit Recognizer
10,977,592
k = model.fit(x_train, y_train )<predict_on_test>
def pre_process_labels(data): labels_flat = data.iloc[:,0].values.ravel() num_classes = np.unique(labels_flat ).shape[0] num_labels = labels_flat.shape[0] index_offset = np.arange(num_labels)* num_classes labels_one_hot = np.zeros(( num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_flat.ravel() ] = 1 return labels_one_hot.astype(np.uint8) train_labels = pre_process_labels(train_data_raw) print(train_labels.shape) print(train_labels )
Digit Recognizer
10,977,592
preds = model.predict(x_test )<save_to_csv>
def fit(train_images, train_labels, config): NUM_EPOCHS = config['NUM_EPOCHS'] BATCH_SIZE = config['BATCH_SIZE'] LEARNING_RATE = config['LEARNING_RATE'] DROPOUT_RATE = config['DROPOUT_RATE'] NETWORK_WIDTH = config['NETWORK_WIDTH'] initializer = tf.keras.initializers.GlorotNormal() model = keras.models.Sequential([ keras.layers.Conv2D(32,kernel_size=(3, 3),activation='swish',kernel_initializer=initializer, input_shape=(28,28,1), use_bias=True), keras.layers.Conv2D(32,kernel_size=(3,3), activation='swish',kernel_initializer=initializer, use_bias=True), keras.layers.MaxPooling2D(pool_size=(2,2)) , keras.layers.Dropout(DROPOUT_RATE), keras.layers.Conv2D(64,(3, 3),activation='swish', padding='same', use_bias=True), keras.layers.MaxPooling2D(pool_size=(2,2)) , keras.layers.Dropout(DROPOUT_RATE), keras.layers.Conv2D(512,(3, 3),activation='swish', padding='same', use_bias=True), keras.layers.MaxPooling2D(pool_size=(2,2)) , keras.layers.Dropout(DROPOUT_RATE), keras.layers.Conv2D(256,(2, 2),activation='swish', padding='same', use_bias=True), keras.layers.MaxPooling2D(pool_size=(2,2)) , keras.layers.Dropout(DROPOUT_RATE), keras.layers.Flatten() , keras.layers.Dense(128,activation='swish', kernel_regularizer =tf.keras.regularizers.l1(l=0.01)) , keras.layers.Dropout(DROPOUT_RATE), keras.layers.Dense(10, activation=tf.nn.softmax), ]) opt = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE) loss = tf.keras.losses.CategoricalCrossentropy() model.compile( optimizer=opt, loss=loss, metrics=['accuracy'] ) val_size = int(train_images.shape[0] * 0.2) val_images = train_images[:val_size,:, :] val_labels = train_labels[:val_size,:] train_images = train_images[val_size:,:, :] train_labels = train_labels[val_size:,:] hist = model.fit( x=train_images, y=train_labels, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE, validation_steps=10, validation_data=(val_images, val_labels), verbose=1 ) show_history(hist) loss, acc = model.evaluate(val_images, val_labels) return model, loss, acc
Digit Recognizer
10,977,592
submission = pd.DataFrame({'id':test1['id'],'price_doc':preds}) submission.to_csv('./submission.csv', index=False )<import_modules>
config = { 'BATCH_SIZE': 128, 'LEARNING_RATE': 0.001, 'DROPOUT_RATE': 0.4, 'NUM_EPOCHS': 50, 'NETWORK_WIDTH': 512 } model, loss, acc = fit(train_images, train_labels, config) print('Accuracy: ' + str(acc * 100)+ '%' )
Digit Recognizer
10,977,592
import os import datetime import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt<load_from_csv>
predictions = model.predict(test_data )
Digit Recognizer
10,977,592
train = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv') test = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv') train.head()<data_type_conversions>
submissions=pd.DataFrame({"ImageId": list(range(1,len(predictions)+1)) , "Label": np.argmax(predictions, axis=1)}) submissions.to_csv("my_submissions.csv", index=False, header=True )
Digit Recognizer
10,951,671
train['datetime'] = pd.to_datetime(train['datetime']) test['datetime'] = pd.to_datetime(test['datetime']) train.head()<feature_engineering>
train_url = '/kaggle/input/digit-recognizer/train.csv' test_url = '/kaggle/input/digit-recognizer/test.csv' train = pd.read_csv(train_url) test = pd.read_csv(test_url )
Digit Recognizer
10,951,671
def split_datetime(df): df['year'] = df['datetime'].apply(lambda t: t.year) df['month'] = df['datetime'].apply(lambda t: t.month) df['day'] = df['datetime'].apply(lambda t: t.day) df['dayofweek'] = df['datetime'].apply(lambda t: t.dayofweek) df['hour'] = df['datetime'].apply(lambda t: t.hour) df = df.drop(['datetime'], axis=1) return df<string_transform>
X = train.drop('label', axis=1 ).astype('float32') y = train['label'] X_sub = test.astype('float32' )
Digit Recognizer
10,951,671
test = split_datetime(test) train = split_datetime(train) train = train.drop(['casual', 'registered'], axis=1) train.head()<feature_engineering>
from sklearn.model_selection import train_test_split import tensorflow.keras as keras from keras import Sequential,layers,callbacks,preprocessing
Digit Recognizer
10,951,671
train['count'] = np.log1p(train['count'] )<filter>
X = X.values.reshape(-1,28,28,1) X_sub = X_sub.values.reshape(-1,28,28,1) y = keras.utils.to_categorical(y, 10) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=7, shuffle=True )
Digit Recognizer
10,951,671
train = train[np.abs(train['count']-train['count'].mean())<=(3*train['count'].std())]<drop_column>
def spatial_cnn() : model = Sequential([ layers.experimental.preprocessing.Rescaling(scale=1.0/255.0, input_shape=(28,28,1)) , layers.Conv2D(32,(3,3), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(32,(3,3), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(32,(5,5),(2,2), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(64,(3,3), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(64,(3,3), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(64,(5,5),(2,2), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Conv2D(128,(3,3), activation='relu', padding='same'), layers.BatchNormalization() , layers.SpatialDropout2D(0.25), layers.Flatten() , layers.Dense(300, activation="relu"), layers.BatchNormalization() , layers.Dropout(0.4), layers.Dense(10, activation='softmax')], name='spatial_cnn') model.compile(optimizer='adam', loss='categorical_crossentropy', metrics='accuracy') model.summary() return model model = spatial_cnn()
Digit Recognizer
10,951,671
drop_idx = train[(train['atemp'] > 20)&(train['atemp'] < 40)&(train['temp'] > 10)&(train['temp'] < 20)].index train = train.drop(drop_idx )<normalization>
train_datagen = preprocessing.image.ImageDataGenerator(rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1) train_datagen.fit(X_train )
Digit Recognizer
10,951,671
def scaling(df): scaler = MinMaxScaler() num_cols = ['temp', 'atemp', 'humidity', 'windspeed'] df[num_cols] = scaler.fit_transform(df[num_cols]) return df<normalization>
batch_size = 64 epochs = 45 steps = X_train.shape[0]//batch_size history = dict() flow = train_datagen.flow(X_train, y_train, batch_size=batch_size, shuffle=True) changed = False class cbs(callbacks.Callback): def on_epoch_end(self, epoch, logs): global changed if logs['val_loss']<=0.0205 and not changed: changed = True print(" Changing LR ") global reduce_lr reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.05, patience=2, min_lr=1.0e-10) reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1.0e-10) early_stop = callbacks.EarlyStopping(monitor="val_loss", patience=10, mode="auto") model_hist = model.fit_generator(flow, validation_data=(X_test, y_test), verbose=1, shuffle=True, steps_per_epoch=steps, epochs=epochs, callbacks=[cbs() , reduce_lr, early_stop] )
Digit Recognizer
10,951,671
train = scaling(train) test = scaling(test )<split>
preds_sub = pd.DataFrame(data={"ImageId":list(range(1,X_sub.shape[0]+1)) ,"Label":(model.predict_classes(X_sub)) } ).astype(int )
Digit Recognizer
10,951,671
X_train, X_test, y_train, y_test = train_test_split(train.drop(['count'], axis=1), train['count'], test_size=0.3 )<compute_test_metric>
preds_sub.to_csv("DigitRecog.csv", index=False, header=True )
Digit Recognizer
10,953,526
def rmsle(y, pred): log_y = np.log1p(y) log_pred = np.log1p(pred) squared_error =(log_y - log_pred)** 2 rmsle = np.sqrt(np.mean(squared_error)) return rmsle<import_modules>
%matplotlib inline np.random.seed(2)
Digit Recognizer
10,953,526
from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from xgboost import XGBRegressor from lightgbm import LGBMRegressor from sklearn.model_selection import GridSearchCV<train_on_grid>
trainv = pd.read_csv(".. /input/digit-recognizer/train.csv") testv = pd.read_csv(".. /input/digit-recognizer/test.csv" )
Digit Recognizer
10,953,526
def evaluate(reg_cls, params=None): reg = reg_cls() if params: reg = GridSearchCV(reg, param_grid=params, refit=True) reg.fit(X_train, y_train) pred = reg.predict(X_test) y_test_exp = np.expm1(y_test) pred_exp = np.expm1(pred) print(' ', reg_cls) if params: print(reg.best_params_) reg = reg.best_estimator_ print(rmsle(y_test_exp, pred_exp)) return reg, pred_exp<find_best_params>
Y_train = trainv["label"] X_train = trainv.drop(labels = ["label"],axis = 1)
Digit Recognizer
10,953,526
lr_reg, pred_lr = evaluate(LinearRegression) rg_reg, pred_rg = evaluate(Ridge) ls_reg, pred_ls = evaluate(Lasso) rf_reg, pred_rf = evaluate(RandomForestRegressor) gb_reg, pred_gb = evaluate(GradientBoostingRegressor) xg_reg, pred_xg = evaluate(XGBRegressor) lg_reg, pred_lg = evaluate(LGBMRegressor) params = {'n_estimators': [100*i for i in range(1, 6)]} xg_reg, pred_xg = evaluate(XGBRegressor, params) lg_reg, pred_lg = evaluate(LGBMRegressor, params )<compute_test_metric>
X_train = X_train / 255.0 testv = testv / 255.0
Digit Recognizer
10,953,526
feature_importances(xg_reg )<load_from_csv>
Y_train = to_categorical(Y_train, num_classes = 10 )
Digit Recognizer
10,953,526
submission = pd.read_csv('.. /input/bike-sharing-demand/sampleSubmission.csv') submission<predict_on_test>
X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size = 0.1, random_state=3 )
Digit Recognizer
10,953,526
pred = lg_reg.predict(test) pred_exp = np.expm1(pred) print(pred_exp )<feature_engineering>
model = Sequential() model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu', input_shape =(28,28,1))) model.add(Conv2D(filters = 32, kernel_size =(5,5),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2))) model.add(Dropout(0.25)) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu')) model.add(MaxPool2D(pool_size=(2,2), strides=(2,2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation = "relu")) model.add(Dropout(0.5)) model.add(Dense(10, activation = "softmax"))
Digit Recognizer
10,953,526
submission.loc[:, 'count'] = pred_exp submission<save_to_csv>
optimizer = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"] )
Digit Recognizer
10,953,526
submission.to_csv('submission.csv', index=False )<save_to_csv>
learning_rate_reduction = ReduceLROnPlateau(monitor='val_acc', patience=3, verbose=1, factor=0.5, min_lr=0.00001) epochs = 25 batch_size = 86
Digit Recognizer
10,953,526
submission.to_csv('submission.csv', index=False )<import_modules>
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=10, zoom_range = 0.1, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=False, vertical_flip=False) datagen.fit(X_train )
Digit Recognizer
10,953,526
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns<load_from_csv>
history = model.fit_generator(datagen.flow(X_train,Y_train, batch_size=batch_size), epochs = epochs, validation_data =(X_val,Y_val), verbose = 2, steps_per_epoch=X_train.shape[0] // batch_size , callbacks=[learning_rate_reduction] )
Digit Recognizer
10,953,526
train = pd.read_csv('/kaggle/input/bike-sharing-demand/train.csv', parse_dates=['datetime']) test = pd.read_csv('/kaggle/input/bike-sharing-demand/test.csv', parse_dates=['datetime']) sub = pd.read_csv('/kaggle/input/bike-sharing-demand/sampleSubmission.csv' )<create_dataframe>
results = model.predict(testv) results = np.argmax(results,axis = 1) results = pd.Series(results,name="Label")
Digit Recognizer
10,953,526
new_tr = train.copy() new_test = test.copy()<feature_engineering>
sample_submission = pd.read_csv('.. /input/digit-recognizer/sample_submission.csv') sample_submission["Label"]=results sample_submission.to_csv("submission.csv", index=False )
Digit Recognizer
10,695,343
new_tr['year'] = new_tr['datetime'].dt.year new_tr['month'] = new_tr['datetime'].dt.month new_tr['day'] = new_tr['datetime'].dt.day new_tr['hour'] = new_tr['datetime'].dt.hour new_tr['minute'] = new_tr['datetime'].dt.minute new_tr['second'] = new_tr['datetime'].dt.second new_tr['dayofweek'] = new_tr['datetime'].dt.dayofweek<feature_engineering>
import pandas as pd import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm import cv2 as cv import random from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split import tensorflow.keras from tensorflow.keras.models import Sequential, load_model, Model from tensorflow.keras import layers from tensorflow.keras.optimizers import Adam, SGD, RMSprop from tensorflow.keras.metrics import Precision, Recall, AUC from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping
Digit Recognizer
10,695,343
new_test['year'] = new_test['datetime'].dt.year new_test['month'] = new_test['datetime'].dt.month new_test['day'] = new_test['datetime'].dt.day new_test['hour'] = new_test['datetime'].dt.hour new_test['minute'] = new_test['datetime'].dt.minute new_test['second'] = new_test['datetime'].dt.second new_test['dayofweek'] = new_test['datetime'].dt.dayofweek<define_variables>
train_df = pd.read_csv('.. /input/digit-recognizer/train.csv') test_df = pd.read_csv('.. /input/digit-recognizer/test.csv') train_df.head()
Digit Recognizer
10,695,343
feature_names = [ 'season', 'holiday', 'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed', "year", "hour", "dayofweek"]<import_modules>
%%time samples, columns = train_df.shape X = np.zeros(( samples,28,28,1)) y_true = np.zeros(( samples,1)) for sample in tqdm(range(samples)) : X[sample,:,:,:] = train_df.iloc[sample,1:columns].values.reshape(28,28,1 ).astype('float32') y_true[sample,0] = train_df.iloc[sample,0]
Digit Recognizer
10,695,343
from lightgbm import LGBMRegressor from sklearn.model_selection import train_test_split<feature_engineering>
values = train_df.label label_encoder = LabelEncoder() integer_encoded = label_encoder.fit_transform(values) print('The original output labels', values) onehot_encoder = OneHotEncoder(sparse=False) integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) onehot_encoded = onehot_encoder.fit_transform(integer_encoded) samples, classes = onehot_encoded.shape print("Number of vectors:", samples, " Number of neurons / length of vector:", classes )
Digit Recognizer
10,695,343
new_tr['log_count'] = np.log1p(new_tr['count'] )<split>
y = onehot_encoded
Digit Recognizer
10,695,343
X = new_tr[feature_names] y = new_tr['log_count'] X_test_last = new_test[feature_names] X_train, X_test, y_train, y_test = train_test_split(X, y )<choose_model_class>
%%time def standard_norm(img): return(img - np.mean(img)) /np.std(img) norm_X = np.zeros(( samples,28,28,1)) for sample in tqdm(range(samples)) : norm_X[sample,:,:,:] = standard_norm(X[sample,:,:,:] ).reshape(28,28,1)
Digit Recognizer
10,695,343
model_lgbm = LGBMRegressor()<train_model>
def METRICS() : metrics = ['accuracy', Precision(name='precision'), Recall(name='recall'), AUC(name='AUC')] return metrics model = Sequential() model.add(layers.Input(shape=(28, 28, 1))) model.add(layers.Conv2D(32,(3,3), padding = 'same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D(pool_size =(2, 2))) model.add(layers.Conv2D(64,(3,3), padding = 'same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.MaxPooling2D(pool_size =(2, 2))) model.add(layers.Conv2D(128,(3,3), padding = 'same', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dense(classes,activation='softmax', name = 'output_layer')) model.compile(Adam(lr = 0.00100005134), metrics= METRICS() , loss = 'categorical_crossentropy') model.summary()
Digit Recognizer
10,695,343
model_lgbm.fit(X_train, y_train )<compute_test_metric>
def split_data(X,Y): return train_test_split(X, Y, test_size=0.2, random_state=42) def train_model(model, X, Y, epochs, bs): X_train, X_val, y_train, y_val = split_data(X,Y) STEP_SIZE_TRAIN = X_train.shape[0]//bs + 1 STEP_SIZE_VAL = X_val.shape[0]//bs + 1 es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=5) train_history = model.fit(X_train, y_train, steps_per_epoch = STEP_SIZE_TRAIN, validation_data =(X_val,y_val), validation_steps = STEP_SIZE_VAL, epochs = epochs, shuffle = True, ) return train_history, model
Digit Recognizer
10,695,343
model_lgbm.score(X_test, y_test )<choose_model_class>
epochs, bs = 20, 32 train_hist, final_model = train_model(model, norm_X, y, epochs, bs )
Digit Recognizer
10,695,343
model_random = RandomForestRegressor()<train_model>
%%time samples, columns = test_df.shape X_test = np.zeros(( samples,28,28,1)) X_norm_test = np.zeros(( samples,28,28,1)) for sample in tqdm(range(samples)) : X_test[sample,:,:,:] = test_df.iloc[sample,:].values.reshape(28,28,1 ).astype('float32') X_norm_test[sample,:,:,:] = standard_norm(X_test[sample,:,:].reshape(28,28,1))
Digit Recognizer
10,695,343
model_random.fit(X_train, y_train )<compute_test_metric>
class MNIST_CAM: def __init__(self, img): self.resize_width, self.resize_height, _ = img.shape def standard_norm(self, img): return(( img - np.mean(img)) /np.std(img)) def feature_model(self, model): return Model(inputs = model.layers[0].input, outputs = model.layers[-3].output) def weight_tensor(self, model): final_outputs = model.layers[-1] return final_outputs.get_weights() [0] def predict_class(self, model, X): prob_vec = model.predict(X) return np.argmax(prob_vec[0]) def generate_CAM(self, model, img): norm_img = self.standard_norm(img) Fmap_model = self.feature_model(model) Wtensor = self.weight_tensor(model) feature_map = Fmap_model.predict(norm_img.reshape(1,28,28,1)) label = self.predict_class(model, norm_img.reshape(1,28,28,1)) CAM = feature_map.dot(Wtensor[:,label])[0,:,:] return cv.resize(CAM, (self.resize_width, self.resize_height), interpolation = cv.INTER_CUBIC), label def generate_probvec(self, model, img): X = self.standard_norm(img) prob_vec = model.predict(X.reshape(1,28,28,1)) return prob_vec
Digit Recognizer
10,695,343
model_random.score(X_test, y_test )<compute_train_metric>
final_model.predict(X_norm_test[0,:,:,:].reshape(1,28,28,1))
Digit Recognizer
10,695,343
scores = cross_val_score(model_random, X_test, y_test) print("{} 교차 검증 점수 : {}".format(model_random,scores))<import_modules>
y_test,test_Ids = np.zeros(( samples,1)) , np.zeros(( samples,1)) for sample in tqdm(range(samples)) : y_test[sample,0] = np.argmax(final_model.predict(X_norm_test[sample,:,:,:].reshape(1,28,28,1))) test_Ids[sample,0] = int(sample+1 )
Digit Recognizer
10,695,343
from sklearn.model_selection import LeaveOneOut, cross_val_score, KFold<choose_model_class>
label_df, pred_df = pd.DataFrame(test_Ids), pd.DataFrame(y_test) sub_df = pd.concat([label_df, pred_df], axis = 1) sub_df.iloc[:,:] = sub_df.iloc[:,:].astype('int') sub_df.columns = ['ImageId', 'Label'] sub_df.head()
Digit Recognizer
10,695,343
<import_modules><EOS>
sub_df.to_csv('sample_submission.csv', index=False )
Digit Recognizer
10,932,097
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<compute_train_metric>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import torch import torch.nn as nn from torchvision import transforms, models from torch.utils.data import DataLoader, Dataset from torch.autograd import Variable from torch import nn, optim from torch.optim import lr_scheduler import torch.nn.functional as F import os
Digit Recognizer
10,932,097
def model_val(model_name, model_obj): now_time = time.time() model_obj.fit(X_train, y_train) scores = cross_val_score(model_obj, X_test, y_test, cv=5, scoring='neg_mean_squared_error') avg_score = np.abs(scores.mean()) print("MSE 평균 : ", avg_score) pro_time = time.time() - now_time print("수행 시간 : {0:.3f}".format(pro_time)) print("{} Score : {}".format(model_name, avg_score)) return avg_score, pro_time<define_variables>
WORKING_FOLDER = "/kaggle/input/digit-recognizer" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device )
Digit Recognizer
10,932,097
model_list = ["RandomForestRegressor", "xgb_basic", "lightgbm-model1", "lightgbm-model2"] exe_model = [] model_score = [] model_time = []<find_best_params>
train_csv_df = pd.read_csv(os.path.join(WORKING_FOLDER, "train.csv")) print(train_csv_df.label.head()) print(train_csv_df.info() )
Digit Recognizer
10,932,097
m_name = model_list[0] if m_name not in exe_model: model = RandomForestRegressor(random_state=30) mse_score, p_time = model_val(m_name, model) exe_model.append(m_name) model_score.append(mse_score) model_time.append(p_time) else: print(f"{m_name} 이미 실행 완료" )<import_modules>
n_feat_cols = 28 * 28 class MNIST_Dataset(Dataset): def __init__(self, dataframe, transform = transforms.Compose([ transforms.ToPILImage() , transforms.RandomAffine(degrees=20, translate=(0.1, 0.1)) , transforms.ToTensor() , transforms.Normalize(mean=(0.5,), std=(0.5,)) ])) : df = dataframe if len(df.columns)== n_feat_cols: self.X = df.values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = None else: self.X = df.iloc[:,1:].values.reshape(( -1,28,28)).astype(np.uint8)[:,:,:,None] self.y = torch.from_numpy(df.iloc[:,0].values) self.transform = transform def __len__(self): return len(self.X) def __getitem__(self, idx): if self.y is not None: return self.transform(self.X[idx]), self.y[idx] else: return self.transform(self.X[idx])
Digit Recognizer
10,932,097
from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import AdaBoostRegressor<choose_model_class>
class MNIST_ResNet(ResNet): def __init__(self): super(MNIST_ResNet, self ).__init__(BasicBlock, [2, 2, 2, 2], num_classes=10) self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=1, padding=3,bias=False) model = MNIST_ResNet() model = model.to(device)
Digit Recognizer
10,932,097
xg_reg = xgb.XGBRegressor(objective ='reg:linear', colsample_bytree = 0.3, learning_rate = 0.1, max_depth = 3, alpha = 0.1, n_estimators = 1000) mse_score, p_time = model_val('xgb_basic', xg_reg) exe_model.append('xgb_basic') model_score.append(mse_score) model_time.append(p_time )<choose_model_class>
train_csv_labels = train_csv_df.iloc[:,0].values batch_size = 256 train_full_dataset = MNIST_Dataset(train_csv_df) train_full_loader = torch.utils.data.DataLoader(dataset=train_full_dataset, batch_size=batch_size, shuffle=True)
Digit Recognizer
10,932,097
m_lgbm1 = lgb.LGBMRegressor() mse_score, p_time = model_val('lightgbm-model1', m_lgbm1) exe_model.append('lightgbm-model1') model_score.append(mse_score) model_time.append(p_time )<init_hyperparams>
epochs = 50 steps = 0 print_every = 132 train_losses, val_losses = [], [] step_size = 10 base_lr = 0.01 optimizer = optim.Adam(model.parameters() , lr=base_lr) criterion = nn.CrossEntropyLoss() exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=0.1) print("Training...") for e in range(epochs): print("Epoch ", e) running_loss = 0 for images, labels in train_full_loader: images = images.to(device) labels = labels.to(device) steps += 1 optimizer.zero_grad() log_ps = model(images) loss = criterion(log_ps, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: train_losses.append(running_loss/len(train_full_loader)) print("Epoch: {}/{}.. ".format(e+1, epochs), "Training Loss: {:.3f}.. ".format(train_losses[-1]) ) exp_lr_scheduler.step()
Digit Recognizer
10,932,097
hyperparameters = {'boosting_type': 'gbdt', 'colsample_bytree': 0.7250136792694301, 'is_unbalance': False, 'learning_rate': 0.013227664889528229, 'min_child_samples': 20, 'num_leaves': 56, 'reg_alpha': 0.7543896477745794, 'reg_lambda': 0.07152751159655985, 'subsample_for_bin': 240000, 'subsample': 0.5233384321711397, 'n_estimators': 2000} m_lgbm2 = lgb.LGBMRegressor(**hyperparameters) mse_score, p_time = model_val('lightgbm-model2', m_lgbm2) exe_model.append('lightgbm-model2') model_score.append(mse_score) model_time.append(p_time )<train_model>
test_csv_df = pd.read_csv(os.path.join(WORKING_FOLDER, "test.csv")) batch_size = 256 test_dataset = MNIST_Dataset(test_csv_df) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False )
Digit Recognizer
10,932,097
print(exe_model) print(model_score) print(model_time )<define_variables>
submission = [['ImageId', 'Label']] with torch.no_grad() : model.eval() image_id = 1 for images in test_loader: images = images.to(device) log_ps = model(images) ps = torch.exp(log_ps) top_p, top_class = ps.topk(1, dim=1) for prediction in top_class: submission.append([image_id, prediction.item() ]) image_id += 1
Digit Recognizer
10,932,097
<init_hyperparams><EOS>
submission_df = pd.DataFrame(submission) submission_df.columns = submission_df.iloc[0] submission_df = submission_df.drop(0, axis=0) submission_df.to_csv("submission.csv", index=False )
Digit Recognizer
10,938,950
<SOS> metric: categorizationaccuracy Kaggle data source: digit-recognizer<set_options>
%matplotlib inline
Digit Recognizer
10,938,950
%matplotlib inline pd.set_option("display.max_columns", 100) def fxn() : warnings.warn("deprecated", DeprecationWarning) with warnings.catch_warnings() : warnings.simplefilter("ignore") fxn() <load_from_csv>
X = pd.read_csv('.. /input/digit-recognizer/train.csv') X_test = pd.read_csv('.. /input/digit-recognizer/test.csv') X.shape, X_test.shape
Digit Recognizer
10,938,950
data=pd.read_csv('.. /input/bike-sharing-demand/train.csv') <rename_columns>
X_train = X.drop(['label'],1) Y_train = X['label'] X_train.shape
Digit Recognizer
10,938,950
data=data.rename(columns={col_names[5]: "Temperature(C)",col_names[6]:"Dew Temperature(C)",col_names[7]: "humidity(%)", col_names[8]:"Wind Speed(m/s)",col_names[11]:"Number of rented bikes" } )<count_missing_values>
X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train = X_train/255 X_test = X_test/255 X_train = X_train.reshape(-1, 28, 28, 1) X_test = X_test.reshape(-1,28 ,28, 1) X_train.shape, X_test.shape
Digit Recognizer
10,938,950
data.isna().sum()<feature_engineering>
Y_train= tf.keras.utils.to_categorical(Y_train, 10) Y_train.shape
Digit Recognizer
10,938,950
def convert_date(df): df['datetime'] = pd.to_datetime(df['datetime']) df['month'] = df['datetime'].dt.month df['hour'] = df['datetime'].dt.hour df['weekday'] = df['datetime'].dt.dayofweek df["day"]=df["datetime"].dt.day df["year"]=df["datetime"].dt.year df['dayofweek'] = df['datetime'].dt.dayofweek df['month_start'] = df['datetime'].dt.is_month_start df['woy'] = df['datetime'].dt.isocalendar().week.astype(int) return df<data_type_conversions>
x_train, val_x, y_train, val_y = train_test_split(X_train, Y_train, test_size=0.20 )
Digit Recognizer
10,938,950
data=convert_date(data )<create_dataframe>
datagen = ImageDataGenerator(zoom_range = 0.1, height_shift_range = 0.1, width_shift_range = 0.1, rotation_range = 15 )
Digit Recognizer
10,938,950
df1VizSeasons=pd.DataFrame(data.groupby('season' ).sum() ['Number of rented bikes'].sort_values(ascending=False)) df1VizSeasons.style.background_gradient(cmap=sns.light_palette("red", as_cmap=True))<create_dataframe>
es = EarlyStopping(monitor='loss', patience=12) filepath="/kaggle/working/bestmodel.h5" md = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min' )
Digit Recognizer
10,938,950
df1VizDays=pd.DataFrame(data.groupby('dayofweek' ).sum() ['Number of rented bikes'].sort_values(ascending=False)) df1VizDays.style.background_gradient(cmap=sns.light_palette("red", as_cmap=True))<drop_column>
epochs = 30 num_classes = 10 batch_size = 128 input_shape =(28, 28, 1) adam = tf.keras.optimizers.Adam(0.001 )
Digit Recognizer
10,938,950
def drop_cols(df): df=df.drop(['datetime','casual','registered'],axis=1) return df<drop_column>
i = Input(shape=input_shape) x = Conv2D(32,(3, 3), strides=2, activation='relu' )(i) x = Conv2D(64,(3, 3), strides=2, activation='relu' )(x) x = Flatten()(x) x = Dropout(0.2 )(x) x = Dense(1024, activation='relu' )(x) x = Dropout(0.2 )(x) x = Dense(K, activation='softmax' )(x) model = Model(i, x) model.summary()
Digit Recognizer
10,938,950
data=drop_cols(data )<define_variables>
model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy'] )
Digit Recognizer
10,938,950
features_plot=['Number of rented bikes', 'Temperature(C)', 'humidity(%)', 'Wind Speed(m/s)', 'Dew Temperature(C)', ]<define_variables>
History = model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), epochs = epochs, validation_data =(val_x, val_y), callbacks = [es,md], shuffle = True )
Digit Recognizer
10,938,950
def find_skewed_boundaries(df, variable, distance): IQR = df[variable].quantile(0.75)- df[variable].quantile(0.25) lower_boundary = df[variable].quantile(0.25)-(IQR * distance) upper_boundary = df[variable].quantile(0.75)+(IQR * distance) return upper_boundary, lower_boundary<feature_engineering>
pred = model1.predict(X_test) pred_class = np.argmax(pred,axis=1)
Digit Recognizer
10,938,950
def additional(df): df['ideal'] = df[['Temperature(C)', 'Wind Speed(m/s)']].apply(lambda x:(0, 1)[x['Temperature(C)'] > 27 and x['Wind Speed(m/s)'] < 30], axis = 1) df['sticky'] = df[['humidity(%)', 'workingday']].apply(lambda x:(0, 1)[x['workingday'] == 1 and x['humidity(%)'] >= 60], axis = 1) df["windchill"]=13.12+0.6215*df['Temperature(C)']-11.37*(df['Wind Speed(m/s)']*3.6)**0.16+0.3965*df['Temperature(C)'] \ *(df['Wind Speed(m/s)']*3.6)**0.16 df['newweather']=17.3+df['Temperature(C)']-0.11*df['humidity(%)']+0.34*df['Wind Speed(m/s)'] df['hour_sin'] = np.sin(2 * np.pi * df['hour']/23.0) df['hour_cos'] = np.cos(2 * np.pi * df['hour']/23.0) df['month_sin'] = np.sin(2 * np.pi * df['month']/12) df['month_cos'] = np.cos(2 * np.pi * df['month']/12) df['log_wind']=np.log1p(df['Wind Speed(m/s)']) df['log_hum']=np.log1p(df['humidity(%)']) return df<feature_engineering>
submissions=pd.DataFrame({"ImageId": list(range(1,len(pred_class)+1)) , "Label": pred_class}) submissions.to_csv("submissions.csv", index=False, header=True) submissions
Digit Recognizer
9,568,647
cond1 = data['workingday']== 'Yes' cond2 = data['hour'].isin([7,8,9,17,18,19]) cond3 = data['hour'].isin([10,11,12,13,14,15,16]) cond4 = data['hour'].isin([0,1,2,3,4,5,6,20,21,22,23]) conditions =[~cond1,cond1&cond2,cond1&cond3,cond1&cond4] vals = ['No','High','Medium','Low'] data['Map demand'] = np.select(conditions,vals) <categorify>
import os from pathlib import Path from PIL import Image
Digit Recognizer
9,568,647
data=additional(data )<filter>
train = pd.read_csv('/kaggle/input/digit-recognizer/train.csv') test = pd.read_csv('/kaggle/input/digit-recognizer/test.csv' )
Digit Recognizer
9,568,647
cat_features = data.columns[data.dtypes=='object'] cat_features=list(cat_features) cat_features<count_values>
def create_image_from_row(digit, dest_path): mat = digit.reshape(28,28) mat = mat.astype(np.uint8) img = Image.fromarray(mat) img.save(dest_path )
Digit Recognizer
9,568,647
def count_category(name): print(name) print(data[name].value_counts()) print("-------------------------------------------------") for i in cat_features: count_category(i )<groupby>
for index, row in train.iterrows() : label,digit = row[0], row[1:] directory = images_train/str(label) filename = f"{index}.jpg" dest_path = directory/filename digit = digit.values create_image_from_row(digit, dest_path )
Digit Recognizer
9,568,647
count_bikes_by_hour = data.groupby("hour")["Number of rented bikes"].sum() print(count_bikes_by_hour )<groupby>
for index, row in test.iterrows() : filename = f"{index}.jpg" dest_path = images_test/filename digit = row.values create_image_from_row(digit, dest_path )
Digit Recognizer
9,568,647
count_bikes_by_Holiday = data.groupby("holiday")["Number of rented bikes"].sum() print(count_bikes_by_Holiday )<groupby>
print('A few samples of the training images.') displayTrainingData()
Digit Recognizer
9,568,647
count_bikes_by_funcday = data.groupby("workingday")["Number of rented bikes"].sum() print(count_bikes_by_funcday )<groupby>
from fastai.vision import *
Digit Recognizer
9,568,647
count_bikes_by_Season = data.groupby("season")["Number of rented bikes"].sum() print(count_bikes_by_Season )<feature_engineering>
data = ImageDataBunch.from_folder(images, train='train', test='test', valid_pct=0.2, bs=32, ds_tfms=get_transforms() , size=224, num_workers=4 ).normalize(imagenet_stats )
Digit Recognizer
9,568,647
def rolling_mean(df,cols,window=3): for col in cols: new_col = col+'_rolled' df[new_col] = df[col].rolling(window=window ).mean() return df <drop_column>
data.show_batch(rows=3, figsize=(7,8))
Digit Recognizer
9,568,647
data = rolling_mean(data,['Temperature(C)','Wind Speed(m/s)', 'humidity(%)','weather']) <categorify>
data.classes, data.c, len(data.train_ds), len(data.valid_ds )
Digit Recognizer
9,568,647
def shifting(df,cols): for col in cols: new_col = col+'_shifted' df[new_col] = df[col].shift(periods=-1) return df data = shifting(data,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) def shifting_1(df,cols): for col in cols: new_col = col+'_shifted1' df[new_col] = df[col].shift(periods=-2) return df data = shifting_1(data,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)']) def shifting_2(df,cols): for col in cols: new_col = col+'_shifted2' df[new_col] = df[col].shift(periods=-3) return df data = shifting_2(data,['Temperature(C)','Wind Speed(m/s)','weather', 'humidity(%)'] )<data_type_conversions>
learn = cnn_learner(data, models.resnet18, metrics=error_rate )
Digit Recognizer
9,568,647
data=data.fillna(data.mean() )<categorify>
learn.fit_one_cycle(4 )
Digit Recognizer
9,568,647
def conv_cat_features(df): df['holiday'].replace({"No Holiday":1, "Holiday":0}, inplace=True) df['workingday'].replace({"Yes":1, "No":0}, inplace=True) data_cat_transformed = pd.get_dummies(df, drop_first=True) return data_cat_transformed<categorify>
learn.save('stage-1' )
Digit Recognizer
9,568,647
data_cat_transformed=conv_cat_features(data) print("{} total features after one-hot encoding.".format(len(data_cat_transformed.columns))) print(data_cat_transformed.columns )<split>
learn.lr_find()
Digit Recognizer
9,568,647
X = data_cat_transformed.drop('Number of rented bikes', axis=1) y = data_cat_transformed['Number of rented bikes'] def custom_train_valid_split(data, cutoff_day=15): train = data[data['day'] <= cutoff_day] valid = data[data['day'] > cutoff_day] return train,valid train,valid = custom_train_valid_split(data, cutoff_day=15) train_idx = train.index valid_idx = valid.index myCViterator = [] myCViterator.append(( train_idx, valid_idx))<compute_test_metric>
learn.fit_one_cycle(2, max_lr=slice(3e-5,3e-3))
Digit Recognizer