question_slug
stringlengths
3
77
title
stringlengths
1
183
slug
stringlengths
12
45
summary
stringlengths
1
160
author
stringlengths
2
30
certification
stringclasses
2 values
created_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
updated_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
hit_count
int64
0
10.6M
has_video
bool
2 classes
content
stringlengths
4
576k
upvotes
int64
0
11.5k
downvotes
int64
0
358
tags
stringlengths
2
193
comments
int64
0
2.56k
longest-non-decreasing-subarray-from-two-arrays
Solving Maximum Length of Non-Decreasing Subsequences using DP
solving-maximum-length-of-non-decreasing-7eey
Finding the Maximum Length of Non-Decreasing Subsequences\n\n## Overview\n\nThis article explains a solution to find the maximum length of a non-decreasing subs
Nikhil-Mhatre
NORMAL
2024-08-17T19:23:30.941659+00:00
2024-08-17T19:23:30.941684+00:00
13
false
# Finding the Maximum Length of Non-Decreasing Subsequences\n\n## Overview\n\nThis article explains a solution to find the maximum length of a non-decreasing subsequence from two lists of integers. The approach uses dynamic programming to handle the problem efficiently.\n\n## Problem Statement\n\nGiven two lists, `nums1` and `nums2`, of the same length, the task is to determine the maximum length of a non-decreasing subsequence that can be formed by choosing elements from either `nums1` or `nums2` while maintaining the order of indices.\n\n## Approach\n\nThe solution uses dynamic programming to keep track of the maximum length of non-decreasing subsequences that end with elements from `nums1` and `nums2`. \n\n### Dynamic Programming Table\n\nWe define a 2D array `dp` where:\n- `dp[i][0]` represents the maximum length of a non-decreasing subsequence ending with `nums1[i]`.\n- `dp[i][1]` represents the maximum length of a non-decreasing subsequence ending with `nums2[i]`.\n\n### Initialization\n\nThe table `dp` is initialized as follows:\n- Each entry in `dp` starts with a value of `1` because a single element alone is a valid non-decreasing subsequence.\n\n### Transition\n\nFor each index `i` from `1` to `n-1`, the table is updated based on the following conditions:\n- **For `dp[i][0]`** (ending with `nums1[i]`):\n - If `nums1[i] >= nums1[i-1]`, then `dp[i][0]` can be extended from `dp[i-1][0]`.\n - If `nums1[i] >= nums2[i-1]`, then `dp[i][0]` can also be extended from `dp[i-1][1]`.\n- **For `dp[i][1]`** (ending with `nums2[i]`):\n - If `nums2[i] >= nums1[i-1]`, then `dp[i][1]` can be extended from `dp[i-1][0]`.\n - If `nums2[i] >= nums2[i-1]`, then `dp[i][1]` can also be extended from `dp[i-1][1]`.\n\nAfter processing each index `i`, the maximum length found so far is updated.\n\n\n# Code\n```\nfrom typing import List\n\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n if not nums1 or not nums2:\n return 0\n n = len(nums1)\n if n == 1:\n return 1\n \n # dp[i][0] - max length of non-decreasing sequence ending with nums1[i]\n # dp[i][1] - max length of non-decreasing sequence ending with nums2[i]\n dp = [[1] * 2 for _ in range(n)]\n maxlen = 1\n \n for i in range(1, n):\n # Check if nums1[i] can continue a sequence ending with nums1[i-1]\n if nums1[i] >= nums1[i-1]:\n dp[i][0] = dp[i-1][0] + 1\n # Check if nums1[i] can continue a sequence ending with nums2[i-1]\n if nums1[i] >= nums2[i-1]:\n dp[i][0] = max(dp[i][0], dp[i-1][1] + 1)\n \n # Check if nums2[i] can continue a sequence ending with nums1[i-1]\n if nums2[i] >= nums1[i-1]:\n dp[i][1] = dp[i-1][0] + 1\n # Check if nums2[i] can continue a sequence ending with nums2[i-1]\n if nums2[i] >= nums2[i-1]:\n dp[i][1] = max(dp[i][1], dp[i-1][1] + 1)\n \n # Update the maximum length found so far\n maxlen = max(maxlen, dp[i][0], dp[i][1])\n \n return maxlen\n\n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
dfs + dp, O(n) time and space
dfs-dp-on-time-and-space-by-hershyz-19se
Code\n\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n\n @cache\n def dfs(index, choice):\n\n
hershyz
NORMAL
2024-07-23T07:02:34.090340+00:00
2024-07-23T07:02:34.090370+00:00
22
false
# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n\n @cache\n def dfs(index, choice):\n\n # base case, we reached the end\n if index == len(nums1) - 1:\n return 1 \n \n # if we were asked to choose nums1[index] at this index\n if choice == 1:\n res = 1\n if nums1[index] <= nums1[index + 1]:\n res = max(res, 1 + dfs(index + 1, 1))\n if nums1[index] <= nums2[index + 1]:\n res = max(res, 1 + dfs(index + 1, 2))\n return res\n\n # if we were asked to choose nums2[index] at this index\n if choice == 2:\n res = 1\n if nums2[index] <= nums1[index + 1]:\n res = max(res, 1 + dfs(index + 1, 1))\n if nums2[index] <= nums2[index + 1]:\n res = max(res, 1 + dfs(index + 1, 2))\n return res\n\n # in either case, the minimum non-decreasing subarray we could get from that point was length 1\n # if the following indices were possible to continue the non-decreasing subarray, we try\n \n # call dfs\n res = 1\n for i in range(len(nums1)):\n res = max(res, dfs(i, 1))\n res = max(res, dfs(i, 2))\n return res\n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
DP. Time O(n). Space O(1)
dp-time-on-space-o1-by-xxxxkav-zh8f
\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n dp1, dp2, ans = 1, 1, 1\n for (prev_n1, n1),
xxxxkav
NORMAL
2024-07-12T21:18:18.629380+00:00
2024-07-12T21:19:16.444950+00:00
20
false
```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n dp1, dp2, ans = 1, 1, 1\n for (prev_n1, n1), (prev_n2, n2) in zip(pairwise(nums1), pairwise(nums2)):\n dp1, dp2 = (max(dp1 if n1 >= prev_n1 else 0, dp2 if n1 >= prev_n2 else 0) + 1, \n max(dp2 if n2 >= prev_n2 else 0, dp1 if n2 >= prev_n1 else 0) + 1) \n ans = max(dp1, dp2, ans)\n return ans \n```
0
0
['Dynamic Programming', 'Python3']
0
longest-non-decreasing-subarray-from-two-arrays
cpp O(1)
cpp-o1-by-deshmukhrao-o283
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
DeshmukhRao
NORMAL
2024-07-12T05:38:37.795715+00:00
2024-07-12T05:38:37.795755+00:00
0
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n int prevCount1 = 1, prevCount2 = 1;\n int maxLen = 1;\n\n for (int i = 1; i < nums1.size(); i++) {\n int currCount1 = 1, currCount2 = 1;\n \n if (nums1[i] >= nums1[i - 1]) {\n currCount1 = max(currCount1, prevCount1 + 1);\n }\n if (nums1[i] >= nums2[i - 1]) {\n currCount1 = max(currCount1, prevCount2 + 1);\n }\n if (nums2[i] >= nums2[i - 1]) {\n currCount2 = max(currCount2, prevCount2 + 1);\n }\n if (nums2[i] >= nums1[i - 1]) {\n currCount2 = max(currCount2, prevCount1 + 1);\n }\n \n maxLen = max(maxLen, max(currCount1, currCount2));\n prevCount1 = currCount1;\n prevCount2 = currCount2;\n }\n \n return maxLen;\n }\n};\n\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
Typescript clean solution
typescript-clean-solution-by-codingtorna-i5yc
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
CodingTornado
NORMAL
2024-07-10T16:21:43.247785+00:00
2024-07-10T16:21:43.247815+00:00
1
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nfunction maxNonDecreasingLength(nums1: number[], nums2: number[]): number {\n let prev1 = 1\n let prev2 = 1\n let max = 1\n for(let i = 1; i < nums1.length; i++){\n // Compute num1\n let use1 = nums1[i] >= nums1[i-1] ? prev1 + 1 : 1\n let use2 = nums1[i] >= nums2[i-1] ? prev2 + 1 : 1\n const curr1 = Math.max(use1, use2)\n\n // Compute num2\n use1 = nums2[i] >= nums1[i-1] ? prev1 + 1 : 1\n use2 = nums2[i] >= nums2[i-1] ? prev2 + 1 : 1\n const curr2 = Math.max(use1, use2)\n prev1 = curr1\n prev2 = curr2\n max = Math.max(max, curr1, curr2)\n }\n return max\n};\n```
0
0
['TypeScript']
0
longest-non-decreasing-subarray-from-two-arrays
Java simple 9 liner - no DP O(1) space; beats 96%
java-simple-9-liner-no-dp-o1-space-beats-c6gv
Intuition\nHave 2 variables l1 and l2 track the length of longest non-decreasing subarray ending at nums1 and nums2 respectively.\n\nAt each index i, we can upd
pathikritbhowmick
NORMAL
2024-06-05T17:51:20.422279+00:00
2024-06-05T17:51:20.422310+00:00
7
false
# Intuition\nHave 2 variables `l1` and `l2` track the length of longest non-decreasing subarray ending at `nums1` and `nums2` respectively.\n\nAt each index `i`, we can update `l1` as follows:\n- If `nums1[i-1] <= nums1[i]` then `l1 + 1` \n- If `nums2[i-1] <= nums1[i]` then `l2 + 1`\n- else `1` (start a new subarray with `nums1[i]`)\n- Take max of all of above\n\nWe can do similar for `l2` and then track the max of `l1` and `l2` as the answer\n\n# Complexity\n- Time complexity: `O(n)`\n\n- Space complexity: `O(1)`\n\n# Code\n```\nimport static java.lang.Math.max;\n\nclass Solution { \n public int maxNonDecreasingLength(int[] nums1, int[] nums2) { \n int l1 = 1, l2 = 1, ans = 1; \n for(int i = 1; i < nums1.length; i++){\n int t11 = nums1[i-1] <= nums1[i] ? l1 + 1 : 1;\n int t12 = nums1[i-1] <= nums2[i] ? l1 + 1 : 1;\n int t21 = nums2[i-1] <= nums1[i] ? l2 + 1 : 1;\n int t22 = nums2[i-1] <= nums2[i] ? l2 + 1 : 1;\n ans = max(ans, max(l1 = max(t11, t21), l2 = max(t12, t22)));\n }\n return ans;\n }\n}\n```
0
0
['Java']
0
longest-non-decreasing-subarray-from-two-arrays
No Kadanes Algo simple DP
no-kadanes-algo-simple-dp-by-deshmukhrao-gwiz
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\nsee solution\n https://youtu.be/vfZ34E7k7MI?feature=shared\n\n# Complexit
DeshmukhRao
NORMAL
2024-05-27T17:17:18.805296+00:00
2024-05-27T17:17:18.805322+00:00
4
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\nsee solution\n https://youtu.be/vfZ34E7k7MI?feature=shared\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n \n vector<int> dp1(nums1.size(),1);\n vector<int> dp2(nums2.size(),1);\n \n for(int i=1;i<nums1.size();i++){\n if(nums1[i]>=nums1[i-1]){\n dp1[i]=max(dp1[i],dp1[i-1]+1);\n }\n if(nums1[i]>=nums2[i-1]){\n dp1[i]=max(dp1[i],dp2[i-1]+1);\n }\n if(nums2[i]>=nums2[i-1]){\n dp2[i]=max(dp2[i],dp2[i-1]+1);\n }\n if(nums2[i]>=nums1[i-1]){\n dp2[i]=max(dp2[i],dp1[i-1]+1);\n }\n }\n \n return max(*max_element(dp1.begin(),dp1.end()),*max_element(dp2.begin(),dp2.end()));\n }\n};\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
Geady Rolling window c++ O(1) memory
geady-rolling-window-c-o1-memory-by-math-fdbt
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
mathpag
NORMAL
2024-05-26T01:20:43.371611+00:00
2024-05-26T01:20:43.371629+00:00
0
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int max_length = 1;\n int l = 0, h = 1;\n int last_max_start = -1;\n int curr = min(nums2[0], nums1[0]);\n while(h < n){\n int next_min = nums1[h];\n int next_max = nums2[h];\n if(next_min > next_max) swap(next_min, next_max);\n if(next_min >= curr){\n last_max_start = -1;\n max_length = max(max_length, h - l + 1);\n curr = next_min;\n } else if(next_max >= curr) {\n if(last_max_start == -1)\n last_max_start = h;\n curr = next_max;\n max_length = max(max_length, h - l + 1);\n } else if( l < last_max_start){\n l = last_max_start;\n curr = min(nums1[last_max_start], nums2[last_max_start]);\n last_max_start = -1;\n h = l + 1;\n continue;\n } else{\n curr = next_min;\n l = h;\n }\n ++h;\n }\n\n return max_length;\n\n\n \n }\n};\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
Easy dp solution
easy-dp-solution-by-liew-li-tclp
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
liew-li
NORMAL
2024-05-23T14:10:49.631729+00:00
2024-05-23T14:10:49.631763+00:00
12
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n/**\n * @param {number[]} nums1\n * @param {number[]} nums2\n * @return {number}\n */\nvar maxNonDecreasingLength = function(nums1, nums2) {\n const N = nums1.length;\n let dp0 = 1;\n let dp1 = 1\n let res = 1;\n for (let i = 1; i < N; ++i) {\n let v0 = 1;\n let v1 = 1;\n if (nums1[i] >= nums1[i - 1]) {\n v0 = 1 + dp0;\n }\n if (nums1[i] >= nums2[i - 1]) {\n v0 = Math.max(v0, dp1 + 1);\n }\n\n if (nums2[i] >= nums1[i - 1]) {\n v1 = 1 + dp0;\n }\n if (nums2[i] >= nums2[i - 1]) {\n v1 = Math.max(v1, 1 + dp1);\n }\n [dp0, dp1] = [v0, v1];\n res = Math.max(res, dp0, dp1);\n }\n return res;\n};\n```
0
0
['JavaScript']
0
longest-non-decreasing-subarray-from-two-arrays
Python 3 - Dynamic Programming + Explanation
python-3-dynamic-programming-explanation-kvry
We need to keep two arrays that constitute the longest path if we choose either nums1 or nums2 for each i in the range(1, n). Rather than storing the actual num
amronagdy
NORMAL
2024-05-12T10:04:39.721688+00:00
2024-05-12T10:04:39.721711+00:00
17
false
We need to keep two arrays that constitute the longest path if we choose either `nums1` or `nums2` for each `i` in the `range(1, n)`. Rather than storing the actual numbers chosen, we can just keep track of how long that longest path is, this is what we store in `dp1` and `dp2`, where each represents the length ending at `i` if we choose `nums1[i]` or `nums2[i]` respectively.\n\nWe have to update both `dp` arrays for each `i`, where we ask ourselves: "could we continue the longest decreasing subsequence by staying on the current `nums` (`a` and `b` in the method `__calculate_dp` can represent either `1` or `2`, depending on the way they are passed in to the method), or could we switch over from the other `nums` and form a longer subsequence?".\n\nAt the end of each iteration, we update `max_length` with the new longest path value.\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n n = len(nums1)\n\n # Initialize DP arrays to store the length of the non-decreasing subarray at index i.\n # dp1[i] represents the length ending at i using nums1[i]\n # dp2[i] represents the length ending at i using nums2[i]\n dp1 = [1] * n\n dp2 = [1] * n\n\n max_length = 1\n\n for i in range(1, n):\n Solution.__calculate_dp(nums1, nums2, dp1, dp2, i)\n Solution.__calculate_dp(nums2, nums1, dp2, dp1, i)\n \n max_length = max(max_length, dp1[i], dp2[i])\n\n return max_length\n\n @staticmethod\n def __calculate_dp(\n nums_a: List[int],\n nums_b: List[int],\n dp_a: List[int],\n dp_b: List[int],\n i: int\n ) -> None:\n """\n For each stage of the iteration, at index i we ask ourselves could we continue\n the longest decreasing subsequence by staying on nums_a or switching over from nums_b?\n """\n # If we stay on nums_a, is it still a non-decreasing subarray.\n if nums_a[i] >= nums_a[i - 1]:\n dp_a[i] = dp_a[i - 1] + 1\n\n # If we were to swap over to nums_a from nums_b and have it still form a non-decreasing subarray,\n # would this be a longer subarray than if we had stayed on nums_a?\n if nums_a[i] >= nums_b[i - 1]:\n dp_a[i] = max(dp_a[i], dp_b[i - 1] + 1)\n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
Dynamic programming | Tabulation
dynamic-programming-tabulation-by-rj_999-0wz8
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
rj_9999
NORMAL
2024-05-12T05:06:57.350680+00:00
2024-05-12T05:06:57.350705+00:00
3
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n vector<vector<int>>dp(nums1.size(),vector<int>(2,0));\n dp[0][0]=1;\n dp[0][1]=1;\n for(int i=1;i<nums1.size();i++){\n for(int j=0;j<2;j++){\n if(j==0){\n if(nums1[i]>=nums1[i-1] && nums1[i]>=nums2[i-1])dp[i][0]=max(1+dp[i-1][0],1+dp[i-1][1]);\n else if(nums1[i]>=nums1[i-1] && nums1[i]<nums2[i-1])dp[i][0]=1+dp[i-1][0];\n else if(nums1[i]<nums1[i-1] && nums1[i]>=nums2[i-1])dp[i][0]=1+dp[i-1][1];\n else if(nums1[i]<nums1[i-1] && nums1[i]<nums2[i-1])dp[i][0]=1;\n }\n else if(j==1){\n if(nums2[i]>=nums1[i-1] && nums2[i]>=nums2[i-1])dp[i][1]=max(1+dp[i-1][0],1+dp[i-1][1]);\n else if(nums2[i]>=nums1[i-1] && nums2[i]<nums2[i-1])dp[i][1]=1+dp[i-1][0];\n else if(nums2[i]<nums1[i-1] && nums2[i]>=nums2[i-1])dp[i][1]=1+dp[i-1][1];\n else if(nums2[i]<nums1[i-1] && nums2[i]<nums2[i-1])dp[i][1]=1;\n }\n }\n }\n int ans=0;\n for(int i=0;i<nums1.size();i++){\n for(int j=0;j<2;j++){\n ans=max(ans,dp[i][j]);\n }\n }\n return ans;\n }\n};\n```
0
0
['Array', 'Dynamic Programming', 'C++']
0
longest-non-decreasing-subarray-from-two-arrays
Easy DP
easy-dp-by-nishantd01-m0fn
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
nishantd01
NORMAL
2024-05-10T14:52:06.077519+00:00
2024-05-10T14:52:06.077541+00:00
3
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\nO(2*N), N is size of array\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n vector<vector<int>> dp;\n\n int solve(vector<int>& nums1, vector<int>& nums2, int idx, int arrayNum) {\n if (idx == nums1.size() - 1) {\n return 1;\n }\n\n if(dp[idx][arrayNum] != -1) {\n return dp[idx][arrayNum];\n }\n\n int v1 = nums1[idx];\n if (arrayNum == 1) {\n v1 = nums2[idx];\n }\n\n int nxt1 = nums1[idx + 1];\n int nxt2 = nums2[idx + 1];\n int first = 1;\n int second = 1;\n if (nxt1 >= v1) {\n first = 1 + solve(nums1, nums2, idx + 1, 0);\n }\n\n if (nxt2 >= v1) {\n second = 1 + solve(nums1, nums2, idx + 1, 1);\n }\n\n return dp[idx][arrayNum]=max(first,second);\n }\n\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n dp.resize(nums1.size(),vector<int>(2,-1));\n int maxVal = 1;\n for (int i = 0; i < nums1.size(); i++) {\n int first = solve(nums1, nums2, i, 0);\n int second = solve(nums1, nums2, i, 1);\n maxVal = max(maxVal, max(first, second));\n }\n\n return maxVal;\n }\n};\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
Dayyyyum how did they fit alll dat in O(1) BB ???? o.0
dayyyyum-how-did-they-fit-alll-dat-in-o1-flr3
Intuition\nO(n) Time\nO(1) Space\n\n# Code\n\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n n = len
robert961
NORMAL
2024-04-16T06:29:36.135726+00:00
2024-04-16T06:29:36.135758+00:00
12
false
# Intuition\nO(n) Time\nO(1) Space\n\n# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n n = len(nums1)\n opt1 = opt2 = res = 1\n\n for i in range(1, n):\n o1 = max(opt1+ 1 if nums1[i] >= nums1[i-1] else 1, opt2 + 1 if nums1[i]>= nums2[i-1] else 1)\n o2 = max(opt2+ 1 if nums2[i] >= nums2[i-1] else 1, opt1 + 1 if nums2[i]>= nums1[i-1] else 1)\n opt1, opt2 = o1, o2\n res = max(res, opt1, opt2)\n return res \n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
Python3 DP solution with explanation
python3-dp-solution-with-explanation-by-g1wap
Intuition\n Describe your first thoughts on how to solve this problem. \nThe intuition behind this solution is that whenever our current value is greater than o
WuWei8
NORMAL
2024-04-11T15:52:50.157833+00:00
2024-04-11T15:52:50.157858+00:00
15
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe intuition behind this solution is that whenever our current value is greater than or equal to the previous value, we extend the length of our non-decreasing subarray by 1. If our current value is smaller than the previous value, we need to restart the length count of our subarray by restarting from length 1. Since the smallest length of our array is 1 in this problem, the smallest non-decreasing subarray is 1. \n\nFor each current position i , we need to compare it to the value in the previous position of both arrays nums1 and nums2. This is because at current position, we need to know whether it is better to continue the previous subarray or restart the subarray from current position. \n\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n N = len(nums1)\n res = pre1 = pre2 = 1\n\n def getLen(curArr, i, pre1, pre2):\n cur = 1\n if curArr[i] >= nums1[i - 1]:\n cur = pre1 + 1\n if curArr[i] >= nums2[i - 1]:\n cur = max(cur, pre2 + 1)\n\n return cur\n\n for i in range(1, N):\n tmp = pre1\n pre1 = getLen(nums1, i, pre1, pre2)\n pre2 = getLen(nums2, i, tmp, pre2)\n res = max(res, pre1, pre2)\n #print(f"i = {i} pre1 = {pre1} pre2 = {pre2} res = {res}")\n return res\n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
Python (Simple DP)
python-simple-dp-by-rnotappl-qdpr
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
rnotappl
NORMAL
2024-04-11T12:56:39.956137+00:00
2024-04-11T12:56:39.956190+00:00
10
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1, nums2):\n n = len(nums1)\n\n @lru_cache(None)\n def dfs(i):\n if i == n:\n return 0,0 \n\n mx_1, mx_2 = 1, 1 \n\n if i+1 < n and nums1[i+1] >= nums1[i]:\n mx_1 = max(mx_1,1+dfs(i+1)[0])\n\n if i+1 < n and nums2[i+1] >= nums2[i]:\n mx_2 = max(mx_2,1+dfs(i+1)[1])\n\n if i+1 < n and nums1[i+1] >= nums2[i]:\n mx_2 = max(mx_2,1+dfs(i+1)[0])\n\n if i+1 < n and nums2[i+1] >= nums1[i]:\n mx_1 = max(mx_1,1+dfs(i+1)[1])\n\n return mx_1,mx_2\n\n return max(max([dfs(i)[0] for i in range(n)]),max([dfs(i)[1] for i in range(n)]))\n```
0
0
['Python3']
0
longest-non-decreasing-subarray-from-two-arrays
C++ | easy DP | few lines | O(N)
c-easy-dp-few-lines-on-by-shubhamchandra-4dam
Intuition\n Describe your first thoughts on how to solve this problem. \n\nl1 : length of increasing subsequence ending at nums1 i\nl2 : length of increasing su
shubhamchandra01
NORMAL
2024-04-09T08:12:19.117731+00:00
2024-04-09T08:13:07.028213+00:00
1
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\nl1 : length of increasing subsequence ending at nums1 i\nl2 : length of increasing subsequence ending at nums2 i\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n\t\tint l1 = 1, l2 = 1, ans = 1;\n\t\tint n = nums1.size();\n\t\tfor (int i = 1; i < n; i++) {\n\t\t\tint curL1 = 1, curL2 = 1;\n\t\t\tif (nums1[i - 1] <= nums1[i])\n\t\t\t\tcurL1 = 1 + l1;\n\t\t\tif (nums2[i - 1] <= nums1[i])\n\t\t\t\tcurL1 = max(curL1, 1 + l2);\n\t\t\tif (nums1[i - 1] <= nums2[i]) \n\t\t\t\tcurL2 = 1 + l1;\n\t\t\tif (nums2[i - 1] <= nums2[i]) \n\t\t\t\tcurL2 = max(curL2, 1 + l2);\n\t\t\tl1 = curL1, l2 = curL2;\n\t\t\tans = max({ans, l1, l2});\n\t\t} \n\t\treturn ans;\n }\n};\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
DP solution || Clearly Explained || T/M: 92.7% / 98.6%
dp-solution-clearly-explained-tm-927-986-5yzj
Intuition\n Describe your first thoughts on how to solve this problem. \nWhen initially approaching this problem, consider these key points.\n\n- You can choose
nayajueun
NORMAL
2024-04-07T15:18:02.143743+00:00
2024-04-08T03:17:00.348497+00:00
32
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nWhen initially approaching this problem, consider these key points.\n\n- You can choose from two different arrays at each step.\n- A non-decreasing subarray means each element is equal to or larger than the preceding element.\n- Your choice at index `i` will affect the potential length of the non-decreasing subarray that ends at index `i + 1`.\n\nGiven these, dynamic programming would be the go-to strategy for this problem because in every index, every decision is made based on earlier decisions. Hence, it efficiently navigates through overlapping choices at each step and builds upon smaller, proviously solved protions to find the optimal, to ensure optimal decisions made at every index by reusing earlier calculations.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n## Dynamic programming setup:\n\nState Definition:\n\n- `dp1[i]`: Represents the length of the longest non-decreasing subarray ending at index i when the element from nums1[i] is chosen.\n- `dp2[i]`: Represents the length of the longest non-decreasing subarray ending at index i when the element from nums2[i] is chosen.\n\nBase Case:\n\n- At index `0`, there are no previous elements to compare with, so the longest non-decreasing subarray for both `dp1` and `dp2` is simply the first element itself.\n- `dp1[0] = 1`\n- `dp2[0] = 1`\n\nRecursive relation:\n\nFor each `i`:\n\n1. For `dp1[i]`\n - If `nums1[i]` is non-decreasing with respect to both `nums1[i-1]` and `nums2[i-1]`, then `dp1[i]` is the maximum length of either subarray up to i-1 plus one.\n - If `nums1[i]` is non-decreasing only with respect to `nums1[i-1]`, then `dp1[i]` extends the subarray from `nums1` only.\n - If `nums1[i]` is non-decreasing only with respect to `nums2[i-1]`, then `dp1[i]` extends the subarray from `nums2` only.\n - If `nums1[i]` is not non-decreasing with respect to either, we start a new subarray, so `dp1[i]` is reset to 1.\n\n if nums1[i] >= nums1[i - 1] and nums1[i] >= nums2[i - 1]:\n curr1 = max(prev_curr1 + 1, prev_curr2 + 1)\n elif nums1[i] >= nums1[i - 1]:\n curr1 = prev_curr1 + 1\n elif nums1[i] >= nums2[i - 1]:\n curr1 = prev_curr2 + 1\n else:\n curr1 = 1\n\n2. For `dp2[i]`\n - Similar rules applied.\n\n if nums2[i] >= nums1[i - 1] and nums2[i] >= nums2[i - 1]:\n curr2 = max(prev_curr1 + 1, prev_curr2 + 1)\n elif nums2[i] >= nums2[i - 1]:\n curr2 = prev_curr2 + 1\n elif nums2[i] >= nums1[i - 1]:\n curr2 = prev_curr1 + 1\n else:\n curr2 = 1\n\n# Complexity\n- Time complexity: $$O(n)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$ for space-optimized code as below.\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n # dp1[i] = longest non-decreasing subarray ending at i with nums1[i]\n # dp2[i] = longest non-decreasing subarray ending at i with nums2[i]\n\n n = len(nums1)\n curr1 = 1\n curr2 = 1\n ans = 1\n for i in range(1, n):\n\n prev_curr1 = curr1\n prev_curr2 = curr2\n\n if nums1[i] >= nums1[i - 1] and nums1[i] >= nums2[i - 1]:\n curr1 = max(prev_curr1 + 1, prev_curr2 + 1)\n elif nums1[i] >= nums1[i - 1]:\n curr1 = prev_curr1 + 1\n elif nums1[i] >= nums2[i - 1]:\n curr1 = prev_curr2 + 1\n else:\n curr1 = 1\n \n if nums2[i] >= nums1[i - 1] and nums2[i] >= nums2[i - 1]:\n curr2 = max(prev_curr1 + 1, prev_curr2 + 1)\n elif nums2[i] >= nums2[i - 1]:\n curr2 = prev_curr2 + 1\n elif nums2[i] >= nums1[i - 1]:\n curr2 = prev_curr1 + 1\n else:\n curr2 = 1\n ans = max(ans, curr1, curr2)\n\n return ans\n\n```
0
0
['Dynamic Programming', 'Python', 'Python3']
0
longest-non-decreasing-subarray-from-two-arrays
C++/Python, dynamic programming solution with explanation
cpython-dynamic-programming-solution-wit-x6f2
dp[i][0] is max size of Longest Non-decreasing Subarray when we select nums1[i].\ndp[i][1] is max size of Longest Non-decreasing Subarray when we select nums2[i
shun6096tw
NORMAL
2024-03-11T06:23:14.597381+00:00
2024-03-11T06:23:14.597417+00:00
2
false
dp[i][0] is max size of Longest Non-decreasing Subarray when we select nums1[i].\ndp[i][1] is max size of Longest Non-decreasing Subarray when we select nums2[i].\n\nAt first,\ndp[0][0] = dp[0][1] = 1, there is only one element in the nums3.\n\nAnd to determine nums3[i],\nand should check if nums1[i] >= nums1[i-1] and nums1[i] >= nums2[i-1],\nalso nums2[i] >= nums1[i-1] and nums2[i] >= nums2[i-1].\n\ndp[i][0] = 1 + max(dp[i-1][0] if nums1[i] >= nums1[i-1] else 0, dp[i-1][1] if nums1[i] >= nums2[i-1] else 0)\ndp[i][1] = 1 + max(dp[i-1][0] if nums2[i] >= nums1[i-1] else 0, dp[i-1][1] if nums2[i] >= nums2[i-1] else 0)\n\ntc is O(n), sc is O(1)\n### python\n```python\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n ans = 0\n dp_0 = dp_1 = 0\n for i, (x, y) in enumerate(zip(nums1, nums2)):\n cur_0 = 1 + max(dp_0 if i and x >= nums1[i-1] else 0, dp_1 if i and x >= nums2[i-1] else 0)\n cur_1 = 1 + max(dp_0 if i and y >= nums1[i-1] else 0, dp_1 if i and y >= nums2[i-1] else 0)\n dp_0, dp_1 = cur_0, cur_1\n ans = max(ans, dp_0, dp_1)\n return ans\n```\n### c++\n```cpp\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n int dp_0 = 1, dp_1 = 1, ans = 1;\n for (int i = 1, cur_0, cur_1; i < nums1.size(); i+=1) {\n cur_0 = 1 + max(nums1[i] >= nums1[i-1]? dp_0:0, nums1[i] >= nums2[i-1]?dp_1:0);\n cur_1 = 1 + max(nums2[i] >= nums1[i-1]? dp_0:0, nums2[i] >= nums2[i-1]?dp_1:0);\n dp_0 = cur_0, dp_1 = cur_1;\n ans = max(ans, max(dp_0, dp_1));\n }\n return ans;\n }\n};\n```
0
0
['Dynamic Programming', 'C', 'Python']
0
longest-non-decreasing-subarray-from-two-arrays
C++ | Easy and Simple
c-easy-and-simple-by-pseudocode_lc-fdxm
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Pseudocode_lc
NORMAL
2024-03-07T15:47:17.209407+00:00
2024-03-07T15:47:17.209438+00:00
1
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n \n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n int n=nums1.size();\n vector<vector<int>> dp(n,vector<int>(2,1));\n int ans=1;\n for(int i=1;i<n;i++){\n if(nums1[i]>=nums1[i-1])dp[i][0]=max(dp[i][0],dp[i-1][0]+1);\n if(nums1[i]>=nums2[i-1])dp[i][0]=max(dp[i][0],dp[i-1][1]+1);\n if(nums2[i]>=nums1[i-1])dp[i][1]=max(dp[i][1],dp[i-1][0]+1);\n if(nums2[i]>=nums2[i-1])dp[i][1]=max(dp[i][1],dp[i-1][1]+1);\nans=max({dp[i][0],dp[i][1],ans});\n }\n return ans;\n }\n};\n```
0
0
['Dynamic Programming', 'C++']
0
longest-non-decreasing-subarray-from-two-arrays
✅ Explained: Only 6 line logic, O(n) time and O(1) space
explained-only-6-line-logic-on-time-and-tvamo
Intuition\n Describe your first thoughts on how to solve this problem. \nSince we\'re dealing with subarrays (not subsequences), we would anyways look at the ex
amartyabh
NORMAL
2024-03-04T20:36:30.819653+00:00
2024-03-04T20:36:30.819676+00:00
3
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nSince we\'re dealing with subarrays (not subsequences), we would anyways look at the exact prev value for length computation. Hence, we can use a variable to keep track of length, instead of maintaining an array.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nAt any index i,\n- lenSoFar1 = length so far till nums1[i - 1]\n- lenSoFar2 = length so far till nums2[i - 1]\n- newLen1 = length so far till nums1[i]\n- newLen2 = length so far till nums2[i]\n\nInitial values of all the above are 1. (since a subarray will have at least 1 element)\n\nCheck if nums1[i] can be placed after nums1[i - 1]. If yes, update newLen1. Then check if nums1[i] can be placed after nums2[i - 1]. If yes, in order to have the maximum length, we need to decide whether to follow nums1[i - 1] or nums2[i - 2]. Therefore, we check if 1 + lenSoFar2 > newLen1, only then we update newLen1. Repeat the same for nums2[i].\n\nThen update maxLen with the maximum of newLen1 and newLen2. Also, update lenSoFar1 and lenSoFar2 before entering the next pass of the for loop.\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(1) excluding input\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maxNonDecreasingLength(vector<int>& nums1, vector<int>& nums2) {\n int n = nums1.size();\n int maxLen = 1;\n int lenSoFar1 = 1, lenSoFar2 = 1;\n\n for (int i = 1; i < n; i++) {\n int newLen1 = 1;\n if (nums1[i] >= nums1[i - 1]) newLen1 = 1 + lenSoFar1;\n if (nums1[i] >= nums2[i - 1] && 1 + lenSoFar2 > newLen1) newLen1 = 1 + lenSoFar2;\n\n int newLen2 = 1;\n if (nums2[i] >= nums2[i - 1]) newLen2 = 1 + lenSoFar2;\n if (nums2[i] >= nums1[i - 1] && 1 + lenSoFar1 > newLen2) newLen2 = 1 + lenSoFar1;\n\n lenSoFar1 = newLen1, lenSoFar2 = newLen2;\n maxLen = max(maxLen, max(lenSoFar1, lenSoFar2));\n }\n\n return maxLen;\n }\n};\n```
0
0
['C++']
0
longest-non-decreasing-subarray-from-two-arrays
Simple Java solution
simple-java-solution-by-varshaagarwal111-r8dn
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
varshaagarwal11193
NORMAL
2024-03-04T16:05:23.862477+00:00
2024-03-04T16:05:23.862506+00:00
8
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\nO(n)\n\n- Space complexity:\nO(n)\n\n# Code\n```\nclass Solution {\n public int maxNonDecreasingLength(int[] nums1, int[] nums2) {\n int n = nums1.length;\n int count1[] = new int[n];\n int count2[] = new int[n];\n count1[n-1]=1;\n count2[n-1]=1;\n int max = 1;\n for(int i=n-2;i>=0;i--) {\n count1[i] = 1;\n count2[i] = 1;\n if(nums1[i]<=nums1[i+1]){\n count1[i]=count1[i+1]+1;\n }\n if(nums1[i]<=nums2[i+1]){\n count1[i]=Math.max(count2[i+1]+1, count1[i]);\n }\n\n if(nums2[i]<=nums1[i+1]){\n count2[i]=count1[i+1]+1;\n }\n if(nums2[i]<=nums2[i+1]){\n count2[i]=Math.max(count2[i+1]+1, count2[i]);\n }\n //System.out.println(count1[i]+" "+count2[i]);\n max = Math.max(max, Math.max(count1[i],count2[i]));\n }\n\n return max;\n }\n}\n```
0
0
['Java']
0
longest-non-decreasing-subarray-from-two-arrays
Easy to read DP: beats 93% and 83%
easy-to-read-dp-beats-93-and-83-by-david-d3lu
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
davidzedong
NORMAL
2024-02-20T17:17:32.879750+00:00
2024-02-20T17:17:32.879773+00:00
47
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: $O(n)$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $O(1)$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n \n n = len(nums1)\n\n rep: int = 1\n\n current1: int = 1\n current2: int = 1\n\n for i in range(1, n):\n \n # update current 1\n cur1_cur1 = current1 + 1 if nums1[i] >= nums1[i-1] else 1\n cur1_cur2 = current2 + 1 if nums1[i] >= nums2[i-1] else 1\n\n # update current 2\n cur2_cur1 = current1 + 1 if nums2[i] >= nums1[i-1] else 1\n cur2_cur2 = current2 + 1 if nums2[i] >= nums2[i-1] else 1\n\n # update rep\n current1 = max(cur1_cur1, cur1_cur2)\n current2 = max(cur2_cur1, cur2_cur2)\n rep = max(max(current1, current2), rep)\n\n return rep\n\n\n \n```
0
0
['Dynamic Programming', 'Python3']
0
longest-non-decreasing-subarray-from-two-arrays
Dynamic Programming Approach
dynamic-programming-approach-by-saitejap-dit6
Intuition\n Describe your first thoughts on how to solve this problem. \nThe intuition behind this problem lies in recognizing that at each position i in the ar
saitejapeddi
NORMAL
2024-02-13T20:25:26.130060+00:00
2024-02-13T20:25:26.130085+00:00
7
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe intuition behind this problem lies in recognizing that at each position i in the arrays, we have a choice: we can either take the value from nums1[i] or nums2[i] for our nums3 array. The goal is to make these choices in such a way that maximizes the length of the longest non-decreasing subarray in nums3. Dynamic programming is suitable here because the decision at each position depends on the decisions made up to that point, and there are overlapping subproblems that can be solved once and reused.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n**Dynamic Programming State Definition:** Define a 2D DP array dp where dp[i][0] represents the length of the longest non-decreasing subarray ending at i using the element from nums1, and dp[i][1] represents the same but using the element from nums2.\n\n**Initialization:** Initialize dp[i][0] and dp[i][1] to 1 for all i, because a single element by itself forms a non-decreasing subarray of length 1.\n\n**Transition:** For each position i from 1 to n - 1, update dp[i][0] and dp[i][1] based on the following conditions:\n\nIf nums1[i] is greater than or equal to both nums1[i-1] and nums2[i-1], then dp[i][0] can be incremented by considering the longest subarray lengths ending at i-1 with elements from both arrays.\n\nSimilarly, update dp[i][1] if nums2[i] is greater than or equal to both nums1[i-1] and nums2[i-1].\n\nThe key is to choose the maximum length possible by considering both previous elements from nums1 and nums2.\n\n**Result:** After filling the DP table, the maximum length of the longest non-decreasing subarray in nums3 is the maximum value in the dp table.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n) - The solution iterates through each element of the arrays nums1 and nums2 exactly once. The decisions at each step are made in constant time, leading to a linear time complexity.\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(n) - The solution utilizes a 2D DP array of size 2n (since there are n positions and for each position, two choices are tracked). Therefore, the space complexity is linear in terms of the input size n.\n\n# Code\n```\nclass Solution(object):\n def maxNonDecreasingLength(self, nums1, nums2):\n """\n :type nums1: List[int]\n :type nums2: List[int]\n :rtype: int\n """\n n = len(nums1)\n # dp[i][0] represents the length of the longest non-decreasing subarray ending with nums1[i]\n # dp[i][1] represents the length of the longest non-decreasing subarray ending with nums2[i]\n dp = [[1 for _ in range(2)] for _ in range(n)]\n \n for i in range(1, n):\n # Update dp for nums1[i]\n if nums1[i] >= nums1[i-1]:\n dp[i][0] = max(dp[i][0], dp[i-1][0] + 1)\n if nums1[i] >= nums2[i-1]:\n dp[i][0] = max(dp[i][0], dp[i-1][1] + 1)\n \n # Update dp for nums2[i]\n if nums2[i] >= nums2[i-1]:\n dp[i][1] = max(dp[i][1], dp[i-1][1] + 1)\n if nums2[i] >= nums1[i-1]:\n dp[i][1] = max(dp[i][1], dp[i-1][0] + 1)\n \n # The maximum length of the longest non-decreasing subarray is the max value in dp\n max_length = max(max(row) for row in dp)\n return max_length\n\n\n\n```
0
0
['Python']
0
longest-non-decreasing-subarray-from-two-arrays
Simple python3 solutions | O(1) memory
simple-python3-solutions-o1-memory-by-ti-2bw1
Complexity\n- Time complexity: O(n)\n Add your time complexity here, e.g. O(n) \n\n- Space complexity: O(1)\n Add your space complexity here, e.g. O(n) \n\n# Co
tigprog
NORMAL
2024-02-09T21:32:42.275318+00:00
2024-02-09T21:36:51.240329+00:00
109
false
# Complexity\n- Time complexity: $$O(n)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n``` python3 []\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n prev_elems = (0, 0)\n prev_lengths = [0, 0]\n \n result = 0\n\n for elems in zip(nums1, nums2):\n current_lengths = [1, 1]\n for i, elem in enumerate(elems):\n for j, prev_elem in enumerate(prev_elems):\n if elem >= prev_elem:\n current_lengths[i] = max(current_lengths[i], prev_lengths[j] + 1)\n \n result = max(result, max(current_lengths))\n\n prev_elems = elems\n prev_lengths = current_lengths\n \n return result\n```\n``` python3 []\n# simpler solution without inner loops\n\nclass Solution:\n def maxNonDecreasingLength(self, nums1: List[int], nums2: List[int]) -> int:\n prev_elems = (0, 0)\n prev_lengths = [0, 0]\n \n result = 0\n\n for a, b in zip(nums1, nums2):\n current_lengths = [1, 1]\n if a >= prev_elems[0]:\n current_lengths[0] = max(current_lengths[0], prev_lengths[0] + 1)\n if a >= prev_elems[1]:\n current_lengths[0] = max(current_lengths[0], prev_lengths[1] + 1)\n if b >= prev_elems[0]:\n current_lengths[1] = max(current_lengths[1], prev_lengths[0] + 1)\n if b >= prev_elems[1]:\n current_lengths[1] = max(current_lengths[1], prev_lengths[1] + 1)\n \n result = max(result, max(current_lengths))\n\n prev_elems = (a, b)\n prev_lengths = current_lengths\n \n return result\n\n```
0
0
['Dynamic Programming', 'Greedy', 'Python3']
1
maximum-difference-between-increasing-elements
121. Best Time to Buy and Sell Stock
121-best-time-to-buy-and-sell-stock-by-v-zz5n
The only difference from 121. Best Time to Buy and Sell Stock is that we need to return -1 if no profit can be made.\n\nC++\ncpp\nint maximumDifference(vector<i
votrubac
NORMAL
2021-09-26T05:24:00.147345+00:00
2021-10-01T18:18:19.936340+00:00
9,426
false
The only difference from [121. Best Time to Buy and Sell Stock](https://leetcode.com/problems/best-time-to-buy-and-sell-stock/) is that we need to return `-1` if no profit can be made.\n\n**C++**\n```cpp\nint maximumDifference(vector<int>& nums) {\n int mn = nums[0], res = -1;\n for (int i = 1; i < nums.size(); ++i) {\n res = max(res, nums[i] - mn);\n mn = min(mn, nums[i]);\n }\n return res == 0 ? -1 : res;\n}\n```
123
6
[]
9
maximum-difference-between-increasing-elements
Python simple one pass solution
python-simple-one-pass-solution-by-tovam-27pk
Python :\n\n\ndef maximumDifference(self, nums: List[int]) -> int:\n\tmaxDiff = -1\n\n\tminNum = nums[0]\n\n\tfor i in range(len(nums)):\n\t\tmaxDiff = max(maxD
TovAm
NORMAL
2021-10-25T19:24:20.611864+00:00
2021-10-25T19:24:20.611896+00:00
4,510
false
**Python :**\n\n```\ndef maximumDifference(self, nums: List[int]) -> int:\n\tmaxDiff = -1\n\n\tminNum = nums[0]\n\n\tfor i in range(len(nums)):\n\t\tmaxDiff = max(maxDiff, nums[i] - minNum)\n\t\tminNum = min(minNum, nums[i])\n\n\treturn maxDiff if maxDiff != 0 else -1\n```\n\n**Like it ? please upvote !**
38
0
['Python', 'Python3']
3
maximum-difference-between-increasing-elements
[Java/Python 3] Time O(n) space O(1) codes w/ brief explanation and a similar problem.
javapython-3-time-on-space-o1-codes-w-br-9r7r
Similar Problem: 121. Best Time to Buy and Sell Stock\n\n----\n\nTraverse input, compare current number to the minimum of the previous ones. then update the max
rock
NORMAL
2021-09-26T04:05:02.543498+00:00
2021-09-26T07:16:36.050711+00:00
5,933
false
**Similar Problem:** [121. Best Time to Buy and Sell Stock](https://leetcode.com/problems/best-time-to-buy-and-sell-stock)\n\n----\n\nTraverse input, compare current number to the minimum of the previous ones. then update the max difference.\n```java\n public int maximumDifference(int[] nums) {\n int diff = -1;\n for (int i = 1, min = nums[0]; i < nums.length; ++i) {\n if (nums[i] > min) {\n diff = Math.max(diff, nums[i] - min);\n }\n min = Math.min(min, nums[i]);\n }\n return diff;\n }\n```\n```python\n def maximumDifference(self, nums: List[int]) -> int:\n diff, mi = -1, math.inf\n for i, n in enumerate(nums):\n if i > 0 and n > mi:\n diff = max(diff, n - mi) \n mi = min(mi, n)\n return diff \n```
34
2
['Java', 'Python3']
7
maximum-difference-between-increasing-elements
Similar to Best Time to Buy and Sell Stock[C++]
similar-to-best-time-to-buy-and-sell-sto-o3xh
\nCredit-Subhanshu Babbar\nclass Solution {\npublic:\n int maximumDifference(vector<int>& prices) {\n int maxPro = 0;\n int minPrice = INT_MAX;\n
ATleastGiveTry
NORMAL
2021-09-26T04:03:28.324577+00:00
2021-12-26T07:14:22.433624+00:00
2,549
false
```\nCredit-Subhanshu Babbar\nclass Solution {\npublic:\n int maximumDifference(vector<int>& prices) {\n int maxPro = 0;\n int minPrice = INT_MAX;\n for(int i = 0; i < prices.size(); i++){\n minPrice = min(minPrice, prices[i]);\n maxPro = max(maxPro, prices[i] - minPrice);\n }\n if(maxPro==0) return -1;\n return maxPro;\n \n }\n};\n```
25
4
['C']
1
maximum-difference-between-increasing-elements
C++ Simple and Short Solution
c-simple-and-short-solution-by-yehudisk-58bx
\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int mn = nums[0], res = 0;\n for (int i = 1; i < nums.size(); i++) {
yehudisk
NORMAL
2021-09-30T08:39:47.461442+00:00
2021-09-30T08:39:47.461470+00:00
1,569
false
```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int mn = nums[0], res = 0;\n for (int i = 1; i < nums.size(); i++) {\n res = max(res, nums[i] - mn);\n mn = min(mn, nums[i]);\n }\n return res == 0 ? -1 : res;\n }\n};\n```\n**Like it? please upvote!**
13
0
['C']
2
maximum-difference-between-increasing-elements
C++ DP
c-dp-by-lzl124631x-b1mt
See my latest update in repo LeetCode\n## Solution 1. Brute force\n\ncpp\n// OJ: https://leetcode.com/problems/maximum-difference-between-increasing-elements/\n
lzl124631x
NORMAL
2021-09-26T05:08:17.718910+00:00
2021-09-26T19:44:02.724696+00:00
983
false
See my latest update in repo [LeetCode](https://github.com/lzl124631x/LeetCode)\n## Solution 1. Brute force\n\n```cpp\n// OJ: https://leetcode.com/problems/maximum-difference-between-increasing-elements/\n// Author: github.com/lzl124631x\n// Time: O(N^2)\n// Space: O(1)\nclass Solution {\npublic:\n int maximumDifference(vector<int>& A) {\n int N = A.size(), ans = -1;\n for (int i = 0; i < N; ++i) {\n for (int j = i + 1; j < N; ++j) {\n if (A[i] < A[j]) ans = max(ans, A[j] - A[i]);\n }\n }\n return ans;\n }\n};\n```\n\n## Solution 2. DP\n\n```cpp\n// OJ: https://leetcode.com/problems/maximum-difference-between-increasing-elements/\n// Author: github.com/lzl124631x\n// Time: O(N)\n// Space: O(1)\nclass Solution {\npublic:\n int maximumDifference(vector<int>& A) {\n int N = A.size(), ans = -1, mn = INT_MAX;\n for (int i = 0; i < N; ++i) {\n mn = min(mn, A[i]);\n if (A[i] > mn) ans = max(ans, A[i] - mn);\n }\n return ans;\n }\n};\n```
9
2
[]
1
maximum-difference-between-increasing-elements
Concise Java, 6 lines, O(n) time, O(1) space
concise-java-6-lines-on-time-o1-space-by-xq32
Do what the problem says. Keep track of index i such as a[i] = min of a[0...j]\n```java\n public int maximumDifference(int[] a) {\n int r = -1, i = 0;\n
climberig
NORMAL
2021-09-26T04:29:11.177474+00:00
2021-09-26T04:55:11.931181+00:00
852
false
Do what the problem says. Keep track of index ```i``` such as ```a[i] = min of a[0...j]```\n```java\n public int maximumDifference(int[] a) {\n int r = -1, i = 0;\n for (int j = 1; j < a.length; j++)\n if (a[i] < a[j])\n r = Math.max(r, a[j] - a[i]);\n else i = j;\n return r;\n }
9
1
[]
0
maximum-difference-between-increasing-elements
✅☑️ Beats 100% || Easiest Possible Solution || Beginner friendly
beats-100-easiest-possible-solution-begi-wknx
image.png\n\n# Intuition\nIterating through the list:\n\nFor each element i in the input list nums, the code checks whether i is less than or equal to the curre
sumit4199
NORMAL
2024-04-02T06:57:17.724863+00:00
2024-04-02T07:02:07.604369+00:00
842
false
image.png\n![image.png](https://assets.leetcode.com/users/images/2a4eb526-9837-4315-8eb9-935119db8c00_1712041220.9211383.png)\n# Intuition\n**Iterating through the list:**\n\nFor each element i in the input list nums, the code checks whether i is less than or equal to the current minimum value minn.\n\nIf i is less than or equal to minn, it updates minn to i, effectively updating the minimum value seen so far.\n\nIf i is greater than minn, it calculates the difference between i and minn and checks if it is greater than the current maximum difference diff. If it is, diff is updated to this new maximum difference.\n\n\n# Complexity\n- Time complexity: O(N)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# PYTHON 3\n```\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n minn = 1e9\n diff = -1\n for i in nums:\n if i <= minn:\n minn = i\n else:\n diff = max(diff,i-minn)\n return diff\n```\n\n# JAVA\n```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int minn = Integer.MAX_VALUE;\n int diff = -1;\n for (int i : nums) {\n if (i <= minn) {\n minn = i;\n } else {\n diff = Math.max(diff, i - minn);\n }\n }\n return diff;\n }\n}\n```\n\n# CPP\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int minn = 1e9;\n int diff = -1;\n for (int i : nums) {\n if (i <= minn) {\n minn = i;\n } else {\n diff = max(diff, i - minn);\n }\n }\n return diff;\n }\n};\n
8
0
['Array', 'Math', 'Two Pointers', 'Python', 'C++', 'Java', 'Python3']
2
maximum-difference-between-increasing-elements
Javascript O(n) Solution
javascript-on-solution-by-ashish1323-usym
Brute Force 0(n^2)\n\nvar maximumDifference = function(nums) {\n var diff=-1\n for(let i=0;i<nums.length;i++){\n for(let j=i+1;j<nums.length;j++){\
Ashish1323
NORMAL
2021-09-26T06:41:57.647286+00:00
2021-09-26T06:41:57.647334+00:00
1,039
false
# Brute Force 0(n^2)\n```\nvar maximumDifference = function(nums) {\n var diff=-1\n for(let i=0;i<nums.length;i++){\n for(let j=i+1;j<nums.length;j++){\n if (nums[j]> nums[i]) diff=Math.max(nums[j]-nums[i],diff)\n }\n }\n return diff\n};\n```\n# DP 0(n)\n```\nvar maximumDifference = function(nums) {\n var min=Infinity\n var diff=-1\n for(i=0;i<nums.length;i++){\n min = Math.min(min,nums[i])\n diff=Math.max(diff,nums[i]-min)\n }\n return diff==0 ? -1 : diff\n};\n```\n\n\n
8
0
['Dynamic Programming', 'JavaScript']
1
maximum-difference-between-increasing-elements
Java | Easy Solution | 100 ms
java-easy-solution-100-ms-by-vrinda-mitt-ct6k
\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int diff = -1;\n \n for(int i=1; i<nums.le
vrinda-mittal
NORMAL
2022-06-29T07:17:55.539222+00:00
2022-06-29T07:17:55.539260+00:00
582
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int diff = -1;\n \n for(int i=1; i<nums.length; i++){\n if(nums[i] > min){\n diff = Math.max(diff, nums[i]-min);\n }else{\n min = nums[i];\n }\n }\n \n return diff;\n }\n}\n```
7
0
['Java']
1
maximum-difference-between-increasing-elements
[C++] : O(n) Time + O(1) space solution : Based on prefix minimum approach with explanation
c-on-time-o1-space-solution-based-on-pre-sr3q
INTIUTION\nVery staightforward idea -> to maximize the difference, we need to consider the minimum possible number till that point from start and max possible n
akshatsahu100
NORMAL
2021-10-08T16:53:23.058788+00:00
2021-10-08T16:53:47.670315+00:00
560
false
# **INTIUTION**\nVery staightforward idea -> to maximize the difference, we need to consider the minimum possible number till that point from start and max possible number from the end, right?\n\n# **IMPLEMENTATION**\nWe can maintain a global ans which we will keep maximizing as we move forward.\nWe will maintain a minimum variable which keep tracks on what minimum value has been encountered so far. \nAt every point while iteratng, we can check the difference of the value at that index with the minimum we have found till now and update the global answer we recieved so far.\n\n# **COMPLEXITY ANALYSIS**\n**Time Complexity** : O(n) // only one traversal has been made\n**Space Complexity**: O(1) // no additional space allocated (only 2 variables)\n\n\n# **WORKING CODE**\n\n```\nint maximumDifference(vector<int>& nums) {\n \n int premin = INT_MAX, ans = 0;\n \n for(int i = 0; i < nums.size(); i++){\n premin = min(premin, nums[i]);\n ans = max(ans, nums[i] - premin);\n }\n \n return ans == 0 ? -1 : ans; // if ans == 0 means we got no valid answer (decreasing array)\n }\n```\n\nPlease upvote if its of any help..\nCHEERS!!\nHappy Coding Guys...
7
1
['C', 'Prefix Sum']
1
maximum-difference-between-increasing-elements
Best Java Solution O(n) : 0ms
best-java-solution-on-0ms-by-rohan_21s-2lz8
Initiate & Declare min as the minimum integer possible.\n2. Traverse the array nums using either for-each loop or general for loop.\n3. Update min using Math.
rohan_21s
NORMAL
2021-11-09T08:55:26.781334+00:00
2021-11-09T08:55:26.781363+00:00
731
false
1. Initiate & Declare ```min``` as the minimum integer possible.\n2. Traverse the array ```nums``` using either ```for-each``` loop or general ```for``` loop.\n3. Update ```min``` using ```Math.min()``` comparing the ``` current element``` with the previous ```min```.\n4. Update ```maxDiff``` using ```Math.max()``` comparing (the difference of ``` current element``` and ```min``` ) with ```min```.\n5. If ```maxDiff == 0```, that means no such i and j exists, return -1.\n6. Else return maximum difference i.e ```maxDiff```.\n```\n public int maximumDifference(int[] nums) {\n int maxDiff = 0;\n int min = Integer.MAX_VALUE;\n \n for(int element : nums){\n min = Math.min(element,min);\n maxDiff = Math.max(element-min,maxDiff);\n }\n if(maxDiff == 0)\n return -1;\n\n return maxDiff;\n }\n```
6
0
[]
0
maximum-difference-between-increasing-elements
[Python3] prefix min
python3-prefix-min-by-ye15-dpfx
Please check out this commit for solutions of weekly 260. \n\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n ans = -1 \n
ye15
NORMAL
2021-09-26T04:04:33.258105+00:00
2021-09-27T19:16:42.482187+00:00
1,146
false
Please check out this [commit](https://github.com/gaosanyong/leetcode/commit/fa0bb65b4cb428452e2b4192ad53e56393b8fb8d) for solutions of weekly 260. \n```\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n ans = -1 \n prefix = inf\n for i, x in enumerate(nums): \n if i and x > prefix: ans = max(ans, x - prefix)\n prefix = min(prefix, x)\n return ans \n```
6
0
['Python3']
0
maximum-difference-between-increasing-elements
Simple and Efficient In O(n) time
simple-and-efficient-in-on-time-by-coder-3jr6
\n Describe your first thoughts on how to solve this problem. \n\n# Approach\nIn this we take difference with the minimum element found. We keep track of minimu
CoDer__01
NORMAL
2023-01-01T16:58:33.979479+00:00
2023-01-01T16:58:33.979519+00:00
1,098
false
\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\nIn this we take difference with the minimum element found. We keep track of minimum element and maximum difference. And at each iteration we keep updating. And difference can be negative if the first element is largest so in that case we return -1.<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:**O(n)**\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int maximumDifference(int[] arr) {\n int arr_size=arr.length;\n int max_diff = arr[1] - arr[0];\n\t\tint min_element = arr[0];\n\t\tint i;\n\t\tfor (i = 1; i < arr_size; i++)\n\t\t{\n\t\t\tif (arr[i] - min_element > max_diff)\n\t\t\t\tmax_diff = arr[i] - min_element;\n\t\t\tif (arr[i] < min_element)\n\t\t\t\tmin_element = arr[i];\n\t\t}\n\t\tif (max_diff>0)\n return max_diff; \n else\n return -1;\n }\n}\n```
5
0
['Java']
2
maximum-difference-between-increasing-elements
Java Solution in O(n) time complexity
java-solution-in-on-time-complexity-by-a-009a
\nclass Solution {\n public int maximumDifference(int[] nums) {\n if(nums.length < 2)\n return -1;\n int result = Integer.MIN_VALUE;
akshatmathur23
NORMAL
2022-06-23T19:52:52.426929+00:00
2022-06-23T19:52:52.426969+00:00
1,036
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n if(nums.length < 2)\n return -1;\n int result = Integer.MIN_VALUE;\n int minValue = nums[0];\n for(int i = 1; i < nums.length; i++) {\n if(nums[i] > minValue)\n result = Math.max(result, nums[i] - minValue);\n minValue = Math.min(minValue, nums[i]);\n }\n return result == Integer.MIN_VALUE ? -1 : result; \n }\n}\n```\nTime Complexity: O(n)\nSpace Complexity: O(1)\n\nGuy\'s if you find this solution helpful \uD83D\uDE0A, PLEASE do UPVOTE.
5
0
['Java']
0
maximum-difference-between-increasing-elements
Best Solution|| Similar to Best time to buy & sell a stock|| 0 ms|| O(n) complexity
best-solution-similar-to-best-time-to-bu-zz2q
image.png\n\n\n## Intuition\nThe problem is to find the maximum difference between any two elements in an array nums such that the second element appears after
aanyasharma2408
NORMAL
2024-04-30T09:22:36.337719+00:00
2024-04-30T09:22:36.337743+00:00
465
false
image.png\n![image.png](https://assets.leetcode.com/users/images/6cb28897-672a-4437-8153-f63733893fee_1714468793.3310163.png)\n\n## Intuition\nThe problem is to find the maximum difference between any two elements in an array `nums` such that the second element appears after the first. This can be approached by iterating through the array and keeping track of the minimum element encountered so far (`current_element`) and the maximum difference (`max_difference`) found.\n\n## Approach\n1. Initialize `current_element` to be the first element of the array `nums` and `max_difference` to `0`.\n2. Iterate through the array `nums` starting from the second element.\n3. For each element `nums[i]`:\n - Update `current_element` to be the minimum of `current_element` and `nums[i]`.\n - Calculate the difference `nums[i] - current_element`.\n - Update `max_difference` to be the maximum of `max_difference` and the calculated difference.\n4. After iterating through the array, if `max_difference` is still `0`, return `-1` indicating that no valid difference was found. Otherwise, return `max_difference` as the maximum difference found.\n\n## Complexity\n- Time Complexity: The algorithm has a time complexity of \\(O(n)\\), where \\(n\\) is the number of elements in the `nums` array. This is because we perform a single pass through the array to update `current_element` and `max_difference`.\n- Space Complexity: The algorithm has a space complexity of \\(O(1)\\) since we only use a constant amount of extra space for the `current_element` and `max_difference` variables, regardless of the size of the input array `nums`.\n\n```java\nclass Solution {\n public int maximumDifference(int[] nums) {\n int current_element = nums[0];\n int max_difference = 0;\n \n for (int i = 0; i < nums.length; i++) {\n if (nums[i] < current_element) {\n current_element = nums[i];\n }\n if (nums[i] - current_element > max_difference) {\n max_difference = nums[i] - current_element;\n }\n }\n \n if (max_difference == 0) {\n return -1; // Return -1 if no valid difference was found\n } else {\n return max_difference; // Return the maximum difference found\n }\n }\n}\n```\n\nThis solution efficiently computes the maximum difference between any two elements in the array `nums` based on the defined constraints and returns the result accordingly. The algorithm ensures optimal time and space complexity by utilizing a single pass through the array with constant space usage.
4
0
['Array', 'Math', 'Java']
0
maximum-difference-between-increasing-elements
C++ | 0 ms | Beats 100% | O(n) | Step By Step Explained 🚀
c-0-ms-beats-100-on-step-by-step-explain-tg78
Intuition\n Describe your first thoughts on how to solve this problem. \nThe algorithm uses two pointers, or positions, in the array to compare elements effecti
DJwhoCODES_5
NORMAL
2024-03-31T18:27:15.559783+00:00
2024-03-31T18:27:15.559815+00:00
367
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe algorithm uses two pointers, or positions, in the array to compare elements effectively. We decided to use two pointers because it helps us easily check each pair of adjacent elements in the array. This approach simplifies the process of finding the maximum difference between two elements by systematically examining each possible pair.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n1. Initialization:\nn = nums.size(): Get the size of the input vector nums.\nCheck if the size of the array is less than 2. If so, it means there are not enough elements in the array to find a difference, so return -1.\n2. Variables Initialization:\nmaxDiff = -1: Initialize the variable maxDiff to store the maximum difference between two elements.\nleft = 0, right = 1: Initialize two pointers left and right pointing to the first and second elements of the array, respectively.\n3. Iterating through the Array:\n- Start a while loop iterating over the array elements starting from the second element (right = 1) until reaching the end of the array.\n- Inside the loop, compare the element at index left with the element at index right.\n- - If nums[left] < nums[right], it means the element at right is larger than the element at left. Calculate the difference (nums[right] - nums[left]) and update maxDiff if this difference is greater than the current maxDiff.\n- - Increment right to move to the next element.\n- - If nums[left] >= nums[right], it means the element at right is not greater than the element at left, so update left to right and move right to the next element.\n- - This is done, as values from left to right are increasing(that is why we were able to calculate the difference). So, any value between left and right will be greater than the value from nums[left] so left is updated to right.\n4. Return Result:\nOnce the loop completes, return the value of maxDiff, which represents the maximum difference found between two elements in the array where the larger element comes after the smaller element.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nThe time complexity of this algorithm is O(n), where n is the size of the input array nums, because it iterates through the array only once.\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nThe space complexity is O(1), because the algorithm uses only a constant amount of extra space for storing variables irrespective of the size of the input array.\n\n# Code\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int n = nums.size();\n if (n < 2)\n return -1;\n\n int maxDiff = -1;\n int left = 0, right = 1;\n\n while (right < n) {\n if (nums[left] < nums[right]) {\n maxDiff = max(maxDiff, nums[right] - nums[left]);\n right++;\n } else {\n left = right;\n right++;\n }\n }\n\n return maxDiff;\n }\n};\n```
4
0
['Array', 'C++']
0
maximum-difference-between-increasing-elements
Easyy
easyy-by-arunvinod9497-3usg
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
arunvinod9497
NORMAL
2023-11-16T04:32:38.098345+00:00
2023-11-16T04:32:38.098369+00:00
371
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n/**\n * @param {number[]} nums\n * @return {number}\n */\nvar maximumDifference = function(nums) {\n\n let num=0;\n for(let i=0; i<nums.length;i++){\n for(let j= i+1; j<nums.length;j++){\n if(nums[j]>nums[i]){\n diff = nums[j]- nums[i];\n if(diff>num){\n num = diff;\n }\n }\n }\n }\n return num? num : -1;\n};\n```
4
0
['JavaScript']
1
maximum-difference-between-increasing-elements
🏆🔥✅O(N) Solution🏆🔥✅
on-solution-by-manohar_001-2un3
\uD83D\uDE09Don\'t just watch & move away, also give an Upvote.\uD83D\uDE09\n\n# Complexity\n- Time complexity: O(n)\n Add your time complexity here, e.g. O(n)
Manohar_001
NORMAL
2023-10-01T11:33:58.056797+00:00
2023-10-01T11:33:58.056828+00:00
370
false
# \uD83D\uDE09Don\'t just watch & move away, also give an Upvote.\uD83D\uDE09\n\n# Complexity\n- Time complexity: $$O(n)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int ans = 0;\n int minEle = nums[0];\n\n for(auto i=1; i<size(nums); i++)\n {\n minEle = min(minEle, nums[i]);\n ans = max(ans, nums[i]-minEle);\n }\n\n<!-- \u2705Well before returning answer don\'t forget to UPVOTE.\u2705 -->\n return ans == 0 ? -1:ans;\n }\n};\n```\n![Leetcode Upvote.gif](https://assets.leetcode.com/users/images/8e4077f0-a213-42ca-ba23-630e76c3a3e9_1696160030.190374.gif)\n
4
0
['C', 'Python', 'C++', 'Java', 'JavaScript']
1
maximum-difference-between-increasing-elements
JavaScript O(n) solution (Runtime: 58 ms, faster than 98.91% submissions)
javascript-on-solution-runtime-58-ms-fas-4aw0
\nvar maximumDifference = function (nums) {\n let max = 0\n let minNum = nums[0]\n for (let i = 1; i < nums.length; i++) {\n let guess = nums[i]
norbekov
NORMAL
2022-07-26T13:27:55.585694+00:00
2022-07-26T13:31:26.657287+00:00
386
false
```\nvar maximumDifference = function (nums) {\n let max = 0\n let minNum = nums[0]\n for (let i = 1; i < nums.length; i++) {\n let guess = nums[i] - minNum\n if (guess > max) {\n max = guess\n }\n if (minNum > nums[i]) {\n minNum = nums[i]\n }\n }\n return max || -1\n};\n```
4
0
['JavaScript']
1
maximum-difference-between-increasing-elements
C++ Very Simple Approach || O(N) time || single iteration
c-very-simple-approach-on-time-single-it-q78x
\t\tint ans = 0,mini = nums[0],diff =0;\n for(int i=1;i<nums.size(); i++)\n {\n int a = nums[i];\n mini = min(a,mini);\n
anilsuthar
NORMAL
2022-07-20T10:08:00.838649+00:00
2022-07-20T10:08:00.838695+00:00
696
false
\t\tint ans = 0,mini = nums[0],diff =0;\n for(int i=1;i<nums.size(); i++)\n {\n int a = nums[i];\n mini = min(a,mini);\n diff = a-mini;\n ans = max(ans,diff);\n }\n if(ans<=0)return -1;\n return ans;\n\t\t\n\t\t\n\t\t\n****upvote if you find it helpfull****
4
0
['Array', 'C']
1
maximum-difference-between-increasing-elements
Java Simple Solution || 100% O(n)
java-simple-solution-100-on-by-shubhamkh-h2cq
\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min=nums[0];\n int ans=-1;\n for(int i:nums){\n if(i<mi
shubhamkhatri474
NORMAL
2022-04-10T11:31:22.542052+00:00
2022-04-10T11:31:22.542096+00:00
381
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min=nums[0];\n int ans=-1;\n for(int i:nums){\n if(i<min)\n min=i;\n if(i>min)\n ans=Math.max(ans,i-min);\n }\n return ans;\n }\n}\n```\n\n**Please UpVote!!**
4
0
['Java']
0
maximum-difference-between-increasing-elements
2016. Maximum Difference Between Increasing Elements
2016-maximum-difference-between-increasi-o5gi
int ans=0;\n int min=nums[0];\n for(int i=1;inums[i])\n min=nums[i];\n if(ans<(nums[i]-min))\n ans=nums[i
suyash_23
NORMAL
2022-01-20T06:59:49.566064+00:00
2022-01-21T17:43:46.372124+00:00
567
false
int ans=0;\n int min=nums[0];\n for(int i=1;i<nums.size();i++)\n {\n if(min>nums[i])\n min=nums[i];\n if(ans<(nums[i]-min))\n ans=nums[i]-min;\n }\n if(ans==0)\n return -1;\n return ans;
4
0
['Array', 'C']
0
maximum-difference-between-increasing-elements
Python3 || easy to understand || O(n)
python3-easy-to-understand-on-by-anilcho-le93
\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n mn,mx=float(\'inf\'),-1\n for i in range(len(nums)):\n mn
Anilchouhan181
NORMAL
2022-01-18T06:15:56.226251+00:00
2022-01-18T06:15:56.226290+00:00
697
false
```\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n mn,mx=float(\'inf\'),-1\n for i in range(len(nums)):\n mn=min(mn,nums[i])\n mx=max(mx,nums[i]-mn)\n if mx==0: return -1\n return mx\n```
4
0
['Python3']
3
maximum-difference-between-increasing-elements
c++(0ms 100%) greedy
c0ms-100-greedy-by-zx007pi-o4vr
Runtime: 0 ms, faster than 100.00% of C++ online submissions for Maximum Difference Between Increasing Elements.\nMemory Usage: 8.3 MB, less than 42.76% of C++
zx007pi
NORMAL
2021-10-03T07:42:54.141833+00:00
2021-10-03T07:43:23.016353+00:00
645
false
Runtime: 0 ms, faster than 100.00% of C++ online submissions for Maximum Difference Between Increasing Elements.\nMemory Usage: 8.3 MB, less than 42.76% of C++ online submissions for Maximum Difference Between Increasing Elements.\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int mini = nums[0], ans = -1;\n \n for(int i = 0; i != nums.size(); i++)\n if(nums[i] > mini) ans = max(ans, nums[i] - mini);\n else mini = min(nums[i], mini);\n \n return ans;\n }\n};\n```
4
0
['C', 'C++']
0
maximum-difference-between-increasing-elements
[Python3] Easiest O(n), O(1) space
python3-easiest-on-o1-space-by-shaad94-bh83
\n def maximumDifference(self, nums: List[int]) -> int:\n minimal = nums[0]\n\t\t# assign result as -1\n res = -1\n for n in nums[1:]:\n
shaad94
NORMAL
2021-09-26T07:41:13.522562+00:00
2021-09-26T07:44:06.639067+00:00
414
false
```\n def maximumDifference(self, nums: List[int]) -> int:\n minimal = nums[0]\n\t\t# assign result as -1\n res = -1\n for n in nums[1:]:\n\t\t # if current number is less than our minimal assign it to minimal\n if n <= minimal:\n minimal = n\n else:\n\t\t\t # if current number was not minimal check if difference would be bigger than we have\n res = max(res, n-minimal)\n return res\n```
4
0
[]
0
maximum-difference-between-increasing-elements
C++ || PREFIX SUM || EASY SOLUTION
c-prefix-sum-easy-solution-by-vineet_rao-em7c
\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int n=nums.size();\n int ans=INT_MIN;\n vector<int> right(n);
VineetKumar2023
NORMAL
2021-09-26T04:02:38.219140+00:00
2021-09-26T04:02:38.219168+00:00
299
false
```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int n=nums.size();\n int ans=INT_MIN;\n vector<int> right(n);\n right[n-1]=nums[n-1];\n for(int i=n-2;i>=0;i--)\n right[i]=max(right[i+1],nums[i]);\n for(int i=0;i<n-1;i++)\n {\n int x=right[i+1]-nums[i];\n if(x>0)\n {\n ans=max(ans,x);\n }\n }\n if(ans==INT_MIN)\n return -1;\n return ans;\n }\n};\n```
4
0
['C', 'Prefix Sum']
0
maximum-difference-between-increasing-elements
Simple python single pass solution
simple-python-single-pass-solution-by-sh-nz24
IntuitionWe need to track the smallest element and maxDifferenceApproachTravese throught the array and keep track of minimumElement and maximum difference.Compl
shubhagarwal539
NORMAL
2024-08-17T08:10:10.840099+00:00
2025-02-12T15:13:12.585451+00:00
214
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> We need to track the smallest element and maxDifference # Approach <!-- Describe your approach to solving the problem. --> Travese throught the array and keep track of minimumElement and maximum difference. # Complexity - Time complexity: $$O(n)$$ <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: $$O(1)$$ <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 class Solution: def maximumDifference(self, nums: List[int]) -> int: # Initialize the minimum value as the first element of the array minVal = nums[0] # Initialize the maximum difference to -1 (default value if no valid difference is found) maxDiff = -1 # Iterate through the list to find the maximum difference for num in nums: if num > minVal: # Calculate the difference between the current number and the minimum value seen so far diff = num - minVal # Update maxDiff if the new difference is larger maxDiff = max(maxDiff, diff) else: # Update minVal if a smaller number is encountered minVal = num # Return the maximum difference found (or -1 if no valid difference exists) return maxDiff ```
3
0
['Python3']
1
maximum-difference-between-increasing-elements
0ms | Beats 100% | Tricky
0ms-beats-100-tricky-by-orewa_abhi-jwe3
Explanation\nIn the code\n# Complexity\n- Time complexity:\nO(n)\n- Space complexity:\nO(1)\n\n# Code\n\nclass Solution {\npublic:\n int maximumDifference(ve
Orewa_Abhi
NORMAL
2024-02-21T05:07:50.533352+00:00
2024-02-21T05:07:50.533390+00:00
289
false
# Explanation\nIn the code\n# Complexity\n- Time complexity:\n$$O(n)$$\n- Space complexity:\n$$O(1)$$\n\n# Code\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n // store the minimum value while traversing\n int mn = INT_MAX;\n // for default the answer is -1, incase of descending order\n int ans = -1;\n for(int i : nums)\n {\n // if we find any element lesser than mn, change mn\n if(mn > i)\n {\n mn = i;\n }\n // if the element is greater, make sure ith and jth index arent same\n else\n {\n if(mn != i)\n ans = max(ans, i-mn);\n }\n }\n return ans;\n \n }\n};\n```
3
0
['C++']
0
maximum-difference-between-increasing-elements
Maximum Difference Between Increasing Elements Solution in C++
maximum-difference-between-increasing-el-b4iu
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
The_Kunal_Singh
NORMAL
2023-05-01T04:36:21.164367+00:00
2023-05-01T04:36:21.164401+00:00
767
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nO(1)\n# Code\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int i=0, j, max=-1;\n for(j=1 ; j<nums.size() ; j++)\n {\n if(nums[i]<nums[j] && (nums[j]-nums[i])>max)\n {\n max = nums[j]-nums[i];\n }\n else if(nums[i]>=nums[j])\n {\n i = j;\n }\n }\n return max;\n }\n};\n```\n![upvote new.jpg](https://assets.leetcode.com/users/images/1e09db02-0cc7-4c76-8fb2-8eb2189c501f_1682915776.1077867.jpeg)\n
3
0
['C++']
0
maximum-difference-between-increasing-elements
Greedy approch solution -->c++
greedy-approch-solution-c-by-sharma_hars-g6gi
class Solution {\npublic:\n int maximumDifference(vector& nums) \n {\n int minidx=INT_MAX;\n int ans=INT_MIN;\n for(int i=0;i<nums.si
sharma_harsh_glb
NORMAL
2022-09-27T06:37:51.128387+00:00
2022-09-27T06:37:51.128426+00:00
874
false
class Solution {\npublic:\n int maximumDifference(vector<int>& nums) \n {\n int minidx=INT_MAX;\n int ans=INT_MIN;\n for(int i=0;i<nums.size();i++)\n {\n minidx=min(nums[i],minidx);\n ans=max(ans,nums[i]-minidx);\n }\n if(ans==0)\n return -1;\n return ans;\n }\n\t//it is similiar to https://leetcode.com/problems/best-time-to-buy-and-sell-stock/?envType=study-plan&id=level-1//\n};
3
0
[]
0
maximum-difference-between-increasing-elements
100% Faster || Easy explanation
100-faster-easy-explanation-by-pratiktar-i7m4
Runtime: 0 ms, faster than 100.00% of Java online submissions\nMemory Usage: 41.4 MB, less than 96.55% of Java online submissions\n\n\nHere we are travesing thr
pratiktarale258
NORMAL
2022-09-05T09:40:11.403868+00:00
2022-09-05T09:40:11.403918+00:00
1,104
false
Runtime: 0 ms, faster than 100.00% of Java online submissions\nMemory Usage: 41.4 MB, less than 96.55% of Java online submissions\n\n\nHere we are travesing through array only once,\nwhile doing so we are performing 2 operations,\n1st:- finding minimum in an array,\n2nd:- finding max value of (current value-minimum value we found till now)\n\nif statement in code ensures that we wont subtract current number when it is being stored as min.\n\n\n\n public int maximumDifference(int[] nums) {\n int minn=nums[0];\n int maxn=-1;\n for(int i=0;i<nums.length;i++){\n \n if(minn>=nums[i]) //1st Part\n minn=nums[i];\n else {if(maxn<nums[i]-minn) //2nd Part\n maxn=nums[i]-minn;\n }\n }return maxn;\n }\n\n\n\nsame code can also be written as shown below using Math.max and Math.min functions.\n\n\n public int maximumDifference(int[] nums) {\n int minn=nums[0];\n int maxn=-1;\n for(int i=0;i<nums.length;i++){\n \n\t\t\tminn=Math.min(minn,nums[i]);\n if(minn<nums[i])\n maxn=Math.max(maxn,nums[i]-minn);\n \n\t\t\t}return maxn;\n }\n
3
0
['Java']
2
maximum-difference-between-increasing-elements
Java: short, easy to read, faster than 100%
java-short-easy-to-read-faster-than-100-v3lwc
\npublic int maximumDifference(int[] nums) {\n int min = Integer.MAX_VALUE;\n int maxGain = 0;\n for (int num:nums){\n if (n
gneginskiy
NORMAL
2022-07-20T02:49:19.528742+00:00
2022-07-20T02:50:11.653351+00:00
141
false
```\npublic int maximumDifference(int[] nums) {\n int min = Integer.MAX_VALUE;\n int maxGain = 0;\n for (int num:nums){\n if (num<min) min=num;\n else if(maxGain<num-min) maxGain=num-min;\n }\n return maxGain==0?-1:maxGain;\n}\n```
3
0
[]
0
maximum-difference-between-increasing-elements
Brother of Best Time to Buy and Sell Stocks
brother-of-best-time-to-buy-and-sell-sto-ynj0
Intuition and Approach:-\n\nThis is exactly the Best time to buy and sell stocks problem. Here\'s the solution to that problem- https://leetcode.com/problems/be
Predator_2K40
NORMAL
2022-06-12T07:08:54.094530+00:00
2022-06-12T07:09:31.644066+00:00
281
false
**Intuition and Approach:-**\n\nThis is exactly the ```Best time to buy and sell stocks``` problem. Here\'s the solution to that problem- https://leetcode.com/problems/best-time-to-buy-and-sell-stock/discuss/2140907/my-concise-java-on-solution\nHere, we only have to initiate max as -1, in case of a decreasing array.\n\n**Code:-**\n\n```\n public int maximumDifference(int[] nums) \n {\n int max=-1,lastindex=0;\n for (int i = 1; i < nums.length; i++)\n {\n if (nums[i]>nums[lastindex])\n max=Math.max(max,nums[i]-nums[lastindex]);\n else\n lastindex=i;\n }\n return max;\n }\n```\t
3
0
['Array', 'Java']
0
maximum-difference-between-increasing-elements
Simple python solution
simple-python-solution-by-trpaslik-l69z
Here is what I did:\n\npython\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n curmin = nums[0]\n diff = 0\n fo
trpaslik
NORMAL
2022-06-06T14:45:19.270850+00:00
2022-06-06T14:45:19.270890+00:00
533
false
Here is what I did:\n\n```python\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n curmin = nums[0]\n diff = 0\n for num in nums:\n diff = max(diff, num - curmin)\n curmin = min(curmin, num)\n return diff or -1\n```\n
3
0
['Python']
0
maximum-difference-between-increasing-elements
Python 🐍 easy, explained with comments || O(n) Time O(1) space || Beats 91%
python-easy-explained-with-comments-on-t-d0lx
The brute force solution would be iterating through the array and assuming current element is the minimum and finding the difference between the max element tow
dc_devesh7
NORMAL
2022-05-24T16:13:26.924477+00:00
2022-05-24T16:13:26.924524+00:00
711
false
The brute force solution would be iterating through the array and assuming current element is the minimum and finding the difference between the max element towards right the side and current element and then updating the max_difference accordingly. \nTo optimize this approach, I stored the current minimum in a variable and iterated through every element assuming it is the local maxima. The time complexity is therefore reduced to O(n) as each element is iterated only once.\n\n```\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n curr_min = nums[0]\n ans = 0\n \n for i in nums:\n if i < curr_min:\n curr_min = i\n \n ans = max(ans, i-curr_min)\n \n return -1 if ans == 0 else ans \n```
3
0
['Array', 'Dynamic Programming', 'Python', 'Python3']
0
maximum-difference-between-increasing-elements
2 Approaches to solve the problem- Using stack and general method
2-approaches-to-solve-the-problem-using-oo8po
By Using stack \n class Solution {\npublic:\n int maximumDifference(vector& nums) {\n int ans = -1;\n stack st;\n st.push(nums[0]);\n
priyesh_raj_singh
NORMAL
2022-03-12T13:18:33.835763+00:00
2022-03-12T13:21:29.570334+00:00
114
false
1. By Using stack \n class Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int ans = -1;\n stack<int> st;\n st.push(nums[0]);\n int diff = 0;\n for(int i = 1 ; i<nums.size() ; i++){\n if(nums[i]>st.top()){\n diff = nums[i]-st.top();\n ans = max(ans , diff);\n }\n else{\n st.pop();\n st.push(nums[i]);\n }\n }\n return ans; \n }\n};\n\n2. Generalize approach - by taking first element of nums as the minimum and proceed accordingly-\n\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n \n int mn=nums[0];\n int ans=-1;\n \n for(int i=1;i<nums.size();i++){\n if(nums[i]<mn)\n mn=nums[i];\n ans=max(ans,nums[i]-mn);\n }\n if(ans==0)\n ans=-1;\n return ans;\n }\n};\n
3
0
[]
0
maximum-difference-between-increasing-elements
Python3 solution | O(n) faster than 99%
python3-solution-on-faster-than-99-by-fl-ouo6
\'\'\'\n\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n my_max = -1\n min_here = math.inf # the minimum element unti
FlorinnC1
NORMAL
2021-09-28T20:43:48.598886+00:00
2021-09-28T20:43:48.598927+00:00
508
false
\'\'\'\n```\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n my_max = -1\n min_here = math.inf # the minimum element until i-th position\n for i in range(len(nums)):\n if min_here > nums[i]:\n min_here = nums[i]\n dif = nums[i] - min_here \n if my_max < dif and dif != 0: # the difference mustn\'t be 0 because nums[i] < nums[j] so they can\'t be equals\n my_max = dif\n return my_max\n```\nIf you like it, please upvote!^^\n\'\'\'
3
1
['Python', 'Python3']
0
maximum-difference-between-increasing-elements
C++ || Peak Valley || Explanation
c-peak-valley-explanation-by-aayushme-o64p
\nPeak Valley Concept\nEg [7,1,5,4]\n\n \n7\n \\ 5\n \\ / \\\n 1 4\n\n \nimin keep track ofvalley and imax keep track of difference of
aayushme
NORMAL
2021-09-26T04:02:00.000231+00:00
2021-09-26T04:03:41.028198+00:00
344
false
\n**Peak Valley Concept**\nEg `[7,1,5,4]`\n\n ```\n7\n \\ 5\n \\ / \\\n 1 4\n```\n \n`imin` keep track of` valley` and `imax` keep track of difference of `current_element-valley`\nThe answer will be difference of [5-1]\n\n```\nint maximumDifference(vector<int>& nums) {\n int imin=INT_MAX,imax=-1;\n for(int i=0;i<nums.size();i++){\n if(nums[i]<imin){\n imin=nums[i];\n }\n else{\n imax=max(imax,nums[i]-imin);\n }\n }\n return imax==0?-1:imax;\n}\n```
3
0
[]
1
maximum-difference-between-increasing-elements
Easiest Solution with simple approach beats 100%
easiest-solution-with-simple-approach-be-3bf4
Code
pawanps55
NORMAL
2025-01-08T08:17:11.374438+00:00
2025-01-08T08:17:11.374438+00:00
237
false
# Code ```cpp [] class Solution { public: int maximumDifference(vector<int>& nums) { int minValue = nums[0]; int maxDifference = -1; for (int i = 1; i < nums.size(); i++) { if (nums[i] > minValue) { maxDifference = max(maxDifference, nums[i] - minValue); } else { minValue = nums[i]; } } return maxDifference; } }; ```
2
0
['C++']
0
maximum-difference-between-increasing-elements
Solution in C
solution-in-c-by-akcyyix0sj-5a9f
Code
vickyy234
NORMAL
2025-01-05T06:51:36.293872+00:00
2025-01-05T06:51:36.293872+00:00
85
false
# Code ```c [] int maximumDifference(int* nums, int numsSize) { int ans = -1; int min = nums[0]; for (int i = 1; i < numsSize; i++) { if (nums[i] < min) min = nums[i]; else { if (ans < nums[i] - min && min != nums[i]) ans = nums[i] - min; } } return ans; } ```
2
0
['C']
0
maximum-difference-between-increasing-elements
Simple C solution
simple-c-solution-by-tharunkumarsenthilk-eiyo
Intuition\nIdea is to find the smallest element and then find the element with which it has more difference.\n\n# Approach\n when the numsSize is below 2 , whic
TharunkumarSenthilkumar
NORMAL
2024-08-01T06:40:03.405953+00:00
2024-08-01T06:40:03.405973+00:00
47
false
# Intuition\nIdea is to find the smallest element and then find the element with which it has more difference.\n\n# Approach\n* when the `numsSize` is below 2 , which means there are no sufficient number of elements, so `return -1`\n* Initialise `minVal` to first digit `nums[0]`, `maxDiff` to `-1`\n* Iterate through the `nums` array. \n * if a number greater than `minVal` is found then find the difference between thise two numbers and store the value in `diff` variable.\n * if `diff` is greater than `maxDiff` then replace the value in `maxDiff` by `diff`\n * else if `nums[i]` is less tha n `minVal` then replace value in `minVal` with `nums[i]`\n* return `maxDiff`\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n#include <limits.h>\n\nint maximumDifference(int* nums, int numsSize) {\n if (numsSize < 2) return -1;\n\n int minVal = nums[0];\n int maxDiff = -1;\n\n for (int i = 1; i < numsSize; i++) {\n if (nums[i] > minVal) {\n int diff = nums[i] - minVal;\n if (diff > maxDiff) {\n maxDiff = diff;\n }\n }\n if (nums[i] < minVal) {\n minVal = nums[i];\n }\n }\n\n return maxDiff;\n}\n\n```
2
0
['C']
0
maximum-difference-between-increasing-elements
Maximum Difference Between Increasing Elements || JAVA || Easiest Approach 🔥✅
maximum-difference-between-increasing-el-ef10
Code\n\nclass Solution {\n public int maximumDifference(int[] nums) {\n int max=0;\n for(int i=0;i<nums.length;i++)\n {\n for(int j=i+1;j<num
lohithmr494
NORMAL
2024-05-08T17:11:38.872479+00:00
2024-05-08T17:11:38.872503+00:00
106
false
# Code\n```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int max=0;\n for(int i=0;i<nums.length;i++)\n {\n for(int j=i+1;j<nums.length;j++)\n {\n max=Math.max(max,nums[j]-nums[i]);\n }\n }\n return max>0?max:-1; \n }\n}\n```
2
0
['Array', 'Java']
0
maximum-difference-between-increasing-elements
Easiest Solutions in C++ / Python3 / Java / C# / Python / C / Go - beats 100%
easiest-solutions-in-c-python3-java-c-py-xmc4
Intuition\n\n\n\n\n\n Describe your first thoughts on how to solve this problem. \nC++ []\nclass Solution {\npublic:\n int maximumDifference(vector<int>& num
Edwards310
NORMAL
2024-04-05T01:21:04.428942+00:00
2024-04-05T01:21:04.428976+00:00
78
false
# Intuition\n![0ehh83fsnh811.jpg](https://assets.leetcode.com/users/images/e5d1a69a-2826-41c4-b24c-7bb97a93bd0b_1712279860.8320851.jpeg)\n\n![Screenshot 2024-04-05 064409.png](https://assets.leetcode.com/users/images/a1fe0b5b-218d-470d-a99c-a68f0a780293_1712279755.1649346.png)\n![Screenshot 2024-04-05 064401.png](https://assets.leetcode.com/users/images/04b1fed3-d858-49e1-8851-3f2cbfb5bb8e_1712279760.7696466.png)\n![Screenshot 2024-04-05 064048.png](https://assets.leetcode.com/users/images/1a8d21b6-4aa7-4439-88c1-b62844c2ecef_1712279765.9882593.png)\n<!-- Describe your first thoughts on how to solve this problem. -->\n```C++ []\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int maxi = -1;\n for (int i = 0; i < nums.size() - 1; i++) {\n for (int j = i + 1; j < nums.size(); ++j)\n if (nums[i] < nums[j])\n maxi = max(maxi, nums[j] - nums[i]);\n }\n return maxi;\n }\n};\n```\n```python3 []\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n maxi = -1\n for i in range(len(nums) - 1):\n for j in range(i + 1, len(nums)):\n if nums[i] < nums[j]:\n maxi = max(maxi, nums[j] - nums[i])\n return maxi\n```\n```C# []\npublic class Solution {\n public int MaximumDifference(int[] nums) {\n int l = 0, r = 1, res = Int32.MinValue;\n while (r < nums.Length) {\n if (nums[r] > nums[l]) {\n res = Math.Max(res, nums[r] - nums[l]);\n r++;\n } else {\n l = r++;\n };\n }\n return (res == Int32.MinValue ? -1 : res);\n }\n}\n```\n```java []\nclass Solution {\n public int maximumDifference(int[] nums) {\n int l = 0, r = 1, res = Integer.MIN_VALUE;\n while (r < nums.length) {\n if (nums[r] > nums[l]) {\n res = Math.max(res, nums[r] - nums[l]);\n r++;\n } else {\n l = r++;\n };\n }\n return (res == Integer.MIN_VALUE ? -1 : res);\n }\n}\n```\n```python []\nclass Solution(object):\n def maximumDifference(self, nums):\n """\n :type nums: List[int]\n :rtype: int\n """\n buy = nums[0]\n profit = -1\n for i, num in enumerate(nums):\n if i == 0:\n continue\n current_profit = num - buy\n if buy < num:\n profit = max(current_profit, profit)\n else:\n buy = num\n return profit\n```\n```C []\nint maximumDifference(int* nums, int numsSize) {\n int l = 0, r = 1, res = INT_MIN;\n while (r < numsSize) {\n if (nums[r] > nums[l]) {\n res = fmax(res, nums[r] - nums[l]);\n r++;\n } else {\n l = r++;\n };\n }\n return (res == INT_MIN ? -1 : res);\n}\n```\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n O(nlogn)\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n O(1)\n# Code\n```\npublic class Solution {\n public int MaximumDifference(int[] nums) {\n int l = 0, r = 1, res = Int32.MinValue;\n while (r < nums.Length) {\n if (nums[r] > nums[l]) {\n res = Math.Max(res, nums[r] - nums[l]);\n r++;\n } else {\n l = r++;\n };\n }\n return (res == Int32.MinValue ? -1 : res);\n }\n}\n```\n# Thanks for viewing .. keep supporting me . Please upvote\n![th.jpeg](https://assets.leetcode.com/users/images/0ea618b2-bd34-4831-80c5-47743b49f705_1712280048.1561732.jpeg)\n
2
0
['Array', 'C', 'Python', 'C++', 'Java', 'Python3', 'C#']
0
maximum-difference-between-increasing-elements
possible in this way also..
possible-in-this-way-also-by-sanal123-zfuv
Intuition\nThe function uses two nested loops to compare each element with all subsequent elements. \n\n# Approach\n Describe your approach to solving the probl
sanal123
NORMAL
2023-11-16T04:06:07.081240+00:00
2023-11-16T04:06:07.081270+00:00
320
false
# Intuition\nThe function uses two nested loops to compare each element with all subsequent elements. \n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n$$O(n^2)$$\n\n- Space complexity:\n$$O(n^2)$$\n\n# Code\n```\n/**\n * @param {number[]} nums\n * @return {number}\n */\nvar maximumDifference = function(nums) {\n let a=[];\n for(let i=0;i<nums.length;i++){\n for(let j=i+1;j<nums.length;j++){\n if(nums[i]<nums[j]){\n a.push(nums[j]-nums[i]);\n }\n }\n }\n \n let b=Math.max(...a);\n\n if(b==-Infinity){\n return -1;\n }else{\n return b;\n }\n \n\n};\n```
2
0
['JavaScript']
1
maximum-difference-between-increasing-elements
Python Elegant & Short | 1 pass
python-elegant-short-1-pass-by-kyrylo-kt-6oxy
\nfrom sys import maxsize\nfrom typing import List\n\n\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n curr_min = maxsize\n
Kyrylo-Ktl
NORMAL
2023-03-11T18:10:06.505558+00:00
2023-03-11T18:10:06.505614+00:00
1,184
false
```\nfrom sys import maxsize\nfrom typing import List\n\n\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n curr_min = maxsize\n max_diff = -1\n\n for num in nums:\n max_diff = max(max_diff, num - curr_min)\n curr_min = min(curr_min, num)\n\n return max_diff or -1\n\n```
2
0
['Python', 'Python3']
2
maximum-difference-between-increasing-elements
Sweet
sweet-by-nisaacdz-uewx
Complexity\n- Time complexity: O(n)\n Add your time complexity here, e.g. O(n) \n\n- Space complexity: O(1)\n Add your space complexity here, e.g. O(n) \n\n# Co
nisaacdz
NORMAL
2023-01-28T11:52:28.846960+00:00
2023-01-28T11:52:28.847019+00:00
123
false
# Complexity\n- Time complexity: $$O(n)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(1)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```Java []\nclass Solution {\n public int maximumDifference(int[] nums) {\n int diff = Integer.MIN_VALUE, num = nums[0];\n for(int i = 1; i < nums.length; i++) {\n if (nums[i] > num) {\n diff = Math.max(diff, nums[i] - num);\n }\n\n num = Math.min(num, nums[i]);\n }\n return diff == Integer.MIN_VALUE ? -1 : diff;\n }\n}\n```
2
0
['Java']
0
maximum-difference-between-increasing-elements
JAVA | | ThinkSimple (100% Efficiency)--;
java-thinksimple-100-efficiency-by-vasan-px9a
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Vasanth_Kumar_29_19
NORMAL
2023-01-17T06:28:53.704419+00:00
2023-01-17T06:28:53.704492+00:00
513
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int max=0,min=nums[0];\n for(int i=1;i<nums.length;i++){\n if(nums[i]>min){\n int d=nums[i]-min;\n max=Math.max(d,max);\n }\n min=Math.min(min,nums[i]);\n }\n if(max>0)\n return max;\n return -1;\n }\n}\n```
2
0
['Java']
0
maximum-difference-between-increasing-elements
Easy Java Solution
easy-java-solution-by-fish12345-revz
\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int result = -1;\n for (int i = 1; i<nums.length;
fish12345
NORMAL
2022-12-04T23:42:02.848454+00:00
2022-12-04T23:42:02.848491+00:00
990
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int result = -1;\n for (int i = 1; i<nums.length; i++)\n {\n if (nums[i] > min)\n result = Math.max(result, nums[i] - min);\n else\n min = Math.min(min, nums[i]);\n }\n \n return result;\n }\n}\n```
2
0
['Java']
1
maximum-difference-between-increasing-elements
[JAVA] Easy to understand java solution.
java-easy-to-understand-java-solution-by-gw6r
Complexity\n- Time complexity O(n)\n\n- Space complexity: O(1)\n\n# Code\n\nclass Solution {\n public int maximumDifference(int[] nums) {\n int res=0;
mihirbajpai
NORMAL
2022-11-27T10:14:26.447181+00:00
2022-11-27T10:14:26.447223+00:00
1,612
false
# Complexity\n- Time complexity $$O(n)$$\n\n- Space complexity: $$O(1)$$\n\n# Code\n```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int res=0;\n int min=nums[0];\n for(int i=1; i<nums.length; i++){\n res=Math.max(res, nums[i]-min);\n min=Math.min(min, nums[i]);\n }\n if(res==0) return -1;\n return res;\n }\n}\n```
2
0
['Array', 'Java']
0
maximum-difference-between-increasing-elements
C++ solution easy to understand
c-solution-easy-to-understand-by-abdelna-jxmp
\n# Code\n\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int diff = -1;\n for(int i=0;i<nums.size();i++){\n
abdelnaby1
NORMAL
2022-10-15T16:19:34.841867+00:00
2022-10-15T16:19:34.841902+00:00
1,232
false
\n# Code\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int diff = -1;\n for(int i=0;i<nums.size();i++){\n int j = i + 1;\n while(j < nums.size() && nums[i] < nums[j]){\n if(nums[j] - nums[i] > diff){\n // cout<<diff<<" ";\n cout<<nums[j]-nums[i];\n diff = nums[j]-nums[i];\n }\n j++;\n }\n }\n return diff;\n }\n\n};\n```
2
0
['C++']
1
maximum-difference-between-increasing-elements
100% FASTER || EASY TO UNDERSTAND [JAVA CODE]
100-faster-easy-to-understand-java-code-7leen
\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int diff = -1;\n \n for(int i=1; i<nums.le
priyankan_23
NORMAL
2022-09-04T19:25:01.004555+00:00
2022-09-04T19:25:01.004578+00:00
473
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = nums[0];\n int diff = -1;\n \n for(int i=1; i<nums.length; i++){\n if(nums[i] > min){\n int d=nums[i]-min;\n diff = Math.max(diff, d);\n }else{\n min = nums[i];\n }\n }\n \n return diff;\n }\n}\n```
2
0
[]
0
maximum-difference-between-increasing-elements
JAVA - Simple and easy to understand || TC- O(n) || SC - O(1)
java-simple-and-easy-to-understand-tc-on-050o
Approach - According to the question we are required to find the maximum difference between the adjacent elements .The answer will be the maximum difference out
Kunal_pratap
NORMAL
2022-08-30T07:17:14.271051+00:00
2022-11-06T05:10:53.197446+00:00
243
false
**Approach** - According to the question we are required to find the maximum difference between the adjacent elements .The answer will be the maximum difference out of all differences calculated .\nNow it is very obvious to think that maximum difference can only be possible if we find the maximum element lying ahead of any element ,so we start from end.\nWe take a max variable and initialize it to last element and start the loop from second last position.\n\n**Our plan is to maintain a max value which will be the greatest among all elements that are to the right side of that element so that we don\'t need to traverse every time to find the max element and hence the maximum difference,we can directly subtract the max value from the element and get the difference.**\nAlso we store that difference in a diff variable initialized to zero. As we want to get the maximum difference we don\'t update it everytime when we find the difference , rather we do it only when we get a difference that is greater than previously calculated differences .\nIn this way we find the maximum difference using a single loop in **TC - O(N)** and **SC -O(1)**\n\n\n\n```\nCode block\n```\n\n public int maximumDifference(int[] arr) \n\t{\n int max=arr[arr.length-1] , diff=-1;\n for(int i=arr.length-2;i>=0;i--)\n {\n if(max>arr[i])\n diff=Math.max(diff,max-arr[i]);\n else\n max=arr[i];\n\t\t\t\t// update max if we find a element greater than it.\n }\n return diff;\n }\n\n\n\n**Please upvote if u find it helpful and worth reading**
2
0
['Java']
0
maximum-difference-between-increasing-elements
[Python3] Straightforward O(n) no extra space w comments
python3-straightforward-on-no-extra-spac-agfh
```py\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n output = -1\n low = 10**9 # Set because of question constraints
connorthecrowe
NORMAL
2022-08-29T21:02:26.952492+00:00
2022-08-29T21:02:26.952534+00:00
577
false
```py\nclass Solution:\n def maximumDifference(self, nums: List[int]) -> int:\n output = -1\n low = 10**9 # Set because of question constraints\n \n for i in range(len(nums)):\n # If we come across a new lowest number, keep track of it\n low = min(low, nums[i])\n \n # If the current number is greater than our lowest - and if their difference is greater than\n # the largest distance seen yet, save this distance\n if nums[i] > low: output = max(output, nums[i] - low)\n return output
2
0
['Python', 'Python3']
0
maximum-difference-between-increasing-elements
C++| Easy-Explanation | O(N)
c-easy-explanation-on-by-modisanskar5-5adn
Logic\n\n- We will keep track of difference at each index(res) and the minimum value(min_Ele).\n\n- We will be updating the res with max difference and min_Ele
modisanskar5
NORMAL
2022-07-08T13:23:36.927499+00:00
2022-07-08T13:23:36.927606+00:00
481
false
## Logic\n\n- We will keep track of **difference at each index**(res) and the **minimum value**(min_Ele).\n\n- We will be updating the res with max difference and min_Ele with the smallest element.\n\n- The condition that *j>i* and *nums[j]>nums[i]* is satisfied by above two points.\n\n## Implementation\n```\nint maximumDifference(vector<int> &nums)\n{\n int res = nums[1] - nums[0];\n // Initializing the difference\n int min_Ele = nums[0];\n // Minimum Elemeng at each iteration\n for (int i = 1; i < nums.size(); i++)\n {\n res = max(res, nums[i] - min_Ele);\n // Updating the difference\n min_Ele = min(nums[i], min_Ele);\n // Updating the minimum element\n }\n return res <= 0 ? -1 : res;\n}\n```\n- TC - O(N)\n**Thank You!** for reading . Do upvote \uD83D\uDC4Dif you like the explanation if there is any scope of improvement do mention it in comments\uD83D\uDE01.
2
0
['Array', 'C', 'C++']
0
maximum-difference-between-increasing-elements
cpp soln
cpp-soln-by-sejalrai-kcfd
int maximumDifference(vector& nums) {\n vector v;\n for(int i=0;i<nums.size();i++)\n {\n for(int j=i+1;jnums[i])\n v.push_back(nu
sejalrai
NORMAL
2022-01-27T10:38:22.663962+00:00
2022-01-27T10:38:22.663989+00:00
255
false
int maximumDifference(vector<int>& nums) {\n vector<int> v;\n for(int i=0;i<nums.size();i++)\n {\n for(int j=i+1;j<nums.size();j++)\n {\n if(nums[j]>nums[i])\n v.push_back(nums[j]-nums[i]);\n }\n }\n sort(v.begin(),v.end());\n \n if(v.size()==0)\n return -1;\n else\n return v[v.size()-1];\n }\n};
2
0
['C++']
0
maximum-difference-between-increasing-elements
[C++] Clear understanding of Best time to buy and sell stocks
c-clear-understanding-of-best-time-to-bu-td71
\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int ans = 0;\n int prev = nums[0];\n for(int i=1;i<nums.size(
sanjana-302
NORMAL
2021-12-10T14:22:00.745142+00:00
2021-12-10T14:22:00.745170+00:00
140
false
```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int ans = 0;\n int prev = nums[0];\n for(int i=1;i<nums.size();i++){\n prev = min(prev,nums[i]);\n ans = max(ans,nums[i] - prev);\n }\n return ans==0?-1:ans;\n }\n};\n```\nThe problem statement is a classified explanation of Best Time Buy and Sell Stock.
2
0
['C']
1
maximum-difference-between-increasing-elements
JavaScript O(n) solution
javascript-on-solution-by-rangerua-8r0b
\nconst maximumDifference = nums => {\n let res = -1;\n let pointer1 = 0;\n let pointer2 = 1;\n \n while (pointer2 <= nums.length - 1) {\n
rangerua
NORMAL
2021-12-09T22:15:28.095612+00:00
2021-12-09T22:15:28.095660+00:00
328
false
```\nconst maximumDifference = nums => {\n let res = -1;\n let pointer1 = 0;\n let pointer2 = 1;\n \n while (pointer2 <= nums.length - 1) {\n if (nums[pointer1] < nums[pointer2]) {\n res = (nums[pointer2] - nums[pointer1]) > res \n ? nums[pointer2] - nums[pointer1] \n : res;\n } else {\n pointer1 = pointer2;\n }\n \n pointer2++;\n }\n \n return res;\n}\n```
2
0
['Two Pointers', 'JavaScript']
0
maximum-difference-between-increasing-elements
Java O(n) solution
java-on-solution-by-rangerua-zvuv
\npublic int maximumDifference(int[] nums) {\n int result = -1;\n int pointer1 = 0;\n int pointer2 = 1;\n\n while (pointer2 < nums.length) {\n
rangerua
NORMAL
2021-12-08T23:19:37.632644+00:00
2021-12-08T23:19:37.632681+00:00
200
false
```\npublic int maximumDifference(int[] nums) {\n int result = -1;\n int pointer1 = 0;\n int pointer2 = 1;\n\n while (pointer2 < nums.length) {\n int diff = nums[pointer2] - nums[pointer1];\n\n if (diff < 0) {\n pointer1 = pointer2;\n } else if (diff > 0 && diff > result) {\n result = diff;\n }\n\n pointer2++;\n }\n\n return result;\n}\n```
2
0
['Java']
0
maximum-difference-between-increasing-elements
CPP 0ms solution
cpp-0ms-solution-by-ashwinipush-axe4
\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int n = nums.size();\n vector<int> rightmax(n,0);\n rightmax[
ashwinipush
NORMAL
2021-11-21T20:32:38.320659+00:00
2021-11-21T20:32:38.320703+00:00
72
false
```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\n int n = nums.size();\n vector<int> rightmax(n,0);\n rightmax[n-1] = 0;int right = 0;\n for(int i = n-2; i>=0 ; i--)\n {\n rightmax[i] = max(nums[i+1], right);\n right = rightmax[i];\n }\n int ans = 0;\n for(int i = 0 ;i< n ;i++)\n {\n if(nums[i] < rightmax[i])\n ans = max(ans,abs(nums[i] - rightmax[i]));\n }\n if(ans == 0)\n return -1;\n return ans;\n }\n};\n```
2
0
[]
0
maximum-difference-between-increasing-elements
Java Solution - O(n)
java-solution-on-by-komsat-83dp
\npublic int maximumDifference(int[] nums) {\n int maxDiff = 0;\n int minVal = Integer.MAX_VALUE;\n \n for(int i = 0; i < nums.lengt
komsat
NORMAL
2021-10-03T08:19:28.055157+00:00
2021-10-03T08:19:28.055198+00:00
108
false
```\npublic int maximumDifference(int[] nums) {\n int maxDiff = 0;\n int minVal = Integer.MAX_VALUE;\n \n for(int i = 0; i < nums.length; i++) {\n minVal = Math.min(minVal, nums[i]);\n maxDiff = Math.max(maxDiff, nums[i]-minVal);\n }\n \n if(maxDiff == 0)\n return -1;\n \n return maxDiff;\n }\n```
2
0
[]
0
maximum-difference-between-increasing-elements
c++ simple solution || brute force and dp ;)
c-simple-solution-brute-force-and-dp-by-ilt28
1)BRUTE FORCE\n\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\nint ans=0;\nint count=0;\nfor(int i=0 ; i<nums.size() ; i++)\n{\n
mayuresh1377
NORMAL
2021-10-01T14:15:12.409559+00:00
2021-10-02T08:22:55.942436+00:00
146
false
1)BRUTE FORCE\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\nint ans=0;\nint count=0;\nfor(int i=0 ; i<nums.size() ; i++)\n{\n for(int j=i+1 ; j<nums.size() ; j++)\n {\n count=nums[j]-nums[i];\n ans=max(ans, count);\n }\n}\nreturn ans==0?-1:ans;\n }\n};\n```\n2)DYNAMIC PROGRAMMING\n```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& nums) {\nint ans=-1;\nint m=INT_MAX;\nfor(int i=0 ; i<nums.size() ; i++)\n{\n m=min(m , nums[i]);\n if(nums[i]>m) ans=max(ans , nums[i]-m);\n}\n return ans;\n }\n};\n```\n\nfound it helpful ? please upvote ;)
2
1
['Dynamic Programming', 'C']
0
maximum-difference-between-increasing-elements
[JAVA] Easy, Clean and Concise Solution - O(N) - 0ms - Faster than 100%
java-easy-clean-and-concise-solution-on-34cr8
\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = Integer.MAX_VALUE;\n int ans = -1;\n for(int i = 0; i < nums
Dyanjno123
NORMAL
2021-10-01T06:37:14.789012+00:00
2021-10-01T06:37:14.789056+00:00
221
false
```\nclass Solution {\n public int maximumDifference(int[] nums) {\n int min = Integer.MAX_VALUE;\n int ans = -1;\n for(int i = 0; i < nums.length; i++){\n if(nums[i] > min){\n if(nums[i] - min > ans)\n ans = nums[i] - min;\n }else\n min = nums[i];\n }\n return ans;\n }\n}\n```
2
0
['Java']
0
maximum-difference-between-increasing-elements
Rust solution
rust-solution-by-bigmih-ly2a
\nimpl Solution {\n pub fn maximum_difference(nums: Vec<i32>) -> i32 {\n let mut diff = -1;\n let (mut max, mut min) = (nums[0], nums[0]);\n
BigMih
NORMAL
2021-09-28T19:53:33.761786+00:00
2021-09-28T19:53:33.761816+00:00
94
false
```\nimpl Solution {\n pub fn maximum_difference(nums: Vec<i32>) -> i32 {\n let mut diff = -1;\n let (mut max, mut min) = (nums[0], nums[0]);\n for &val in nums[1..].iter() {\n if val < min {\n min = val;\n max = val;\n } else if val > max {\n max = val;\n diff = diff.max(max - min);\n }\n }\n diff\n }\n}\n```
2
0
['Rust']
1
maximum-difference-between-increasing-elements
Java O(n)
java-on-by-vikrant_pc-fo4q
\npublic int maximumDifference(int[] nums) {\n\tint result = -1, min = nums[0];\n\tfor(int i=1;i<nums.length;i++) {\n\t\tif(nums[i] != min) result = Math.max(re
vikrant_pc
NORMAL
2021-09-26T04:17:16.625067+00:00
2021-09-26T04:17:16.625119+00:00
210
false
```\npublic int maximumDifference(int[] nums) {\n\tint result = -1, min = nums[0];\n\tfor(int i=1;i<nums.length;i++) {\n\t\tif(nums[i] != min) result = Math.max(result, nums[i] - min);\n\t\tmin = Math.min(min, nums[i]);\n\t}\n\treturn result;\n}\n```
2
0
[]
1
maximum-difference-between-increasing-elements
C++| O(N^2)
c-on2-by-coder_shubham_24-o8z1
\nclass Solution {\npublic:\n int maximumDifference(vector<int>& a) {\n \n int i,j,ans=0,n=a.size(),f=0;\n \n for(i=0;i<n;i++){\n
Coder_Shubham_24
NORMAL
2021-09-26T04:03:19.342643+00:00
2021-09-26T04:03:19.342681+00:00
163
false
```\nclass Solution {\npublic:\n int maximumDifference(vector<int>& a) {\n \n int i,j,ans=0,n=a.size(),f=0;\n \n for(i=0;i<n;i++){\n for(j=i+1;j<n;j++){\n \n if(a[j]>a[i]){\n f++;\n ans = max(ans, a[j]-a[i]);\n }\n \n }\n }\n \n if(f>0)\n return ans;\n \n return -1;\n }\n};\n```
2
0
[]
0
maximum-difference-between-increasing-elements
Beats 100% || easy || 0ms solution...
beats-100-easy-0ms-solution-by-arun_geor-45b1
IntuitionThe problem requires finding the maximum difference between two elements in the list such that the larger element appears after the smaller element. A
Arun_George_
NORMAL
2025-03-26T15:31:27.566209+00:00
2025-03-26T15:31:27.566209+00:00
196
false
# Intuition The problem requires finding the maximum difference between two elements in the list such that the larger element appears after the smaller element. A naive approach would be to check every pair, but we can optimize by keeping track of the minimum element encountered so far while iterating. ![image.png](https://assets.leetcode.com/users/images/704753bd-5391-4ac5-adb3-2eef22c83931_1743003028.083983.png) # Approach - Initialize `max_diff` as `0` and `min_elem` as the first element of `nums`. - Iterate through `nums`, updating `max_diff` as the maximum difference found so far. - Also, update `min_elem` to keep track of the smallest element encountered so far. - If `max_diff` remains `0`, return `-1` since no valid difference exists. # Complexity - **Time complexity:** $$O(n)$$ Since we only iterate through the list once, the time complexity is linear. - **Space complexity:** $$O(1)$$ We only use a few extra variables, so the space complexity is constant. # Code ```python [] class Solution: def maximumDifference(self, nums: List[int]) -> int: max_diff = 0 min_elem = nums[0] for i in nums: max_diff = max(max_diff, i - min_elem) min_elem = min(min_elem, i) return max_diff if max_diff > 0 else -1 ``` ```c [] int maximumDifference(int nums[], int size) { int max_diff = -1, min_elem = nums[0]; for (int i = 1; i < size; i++) { if (nums[i] > min_elem) { max_diff = (nums[i] - min_elem > max_diff) ? nums[i] - min_elem : max_diff; } if (nums[i] < min_elem) { min_elem = nums[i]; } } return max_diff; } ``` ```C++ [] class Solution { public: int maximumDifference(vector<int>& nums) { int max_diff = -1, min_elem = nums[0]; for (int i = 1; i < nums.size(); i++) { if (nums[i] > min_elem) { max_diff = max(max_diff, nums[i] - min_elem); } min_elem = min(min_elem, nums[i]); } return max_diff; } }; ``` ``` Java [] class Solution { public int maximumDifference(int[] nums) { int max_diff = -1, min_elem = nums[0]; for (int i = 1; i < nums.length; i++) { if (nums[i] > min_elem) { max_diff = Math.max(max_diff, nums[i] - min_elem); } min_elem = Math.min(min_elem, nums[i]); } return max_diff; } } ```
1
0
['Array', 'C', 'Python', 'C++', 'Java', 'Python3']
0
maximum-difference-between-increasing-elements
<<BEAT 100% SOLUTIONS>>
beat-100-solutions-by-dakshesh_vyas123-i6xl
PLEASE UPVOTE MECode
Dakshesh_vyas123
NORMAL
2025-03-22T07:08:40.672099+00:00
2025-03-22T07:08:40.672099+00:00
58
false
# PLEASE UPVOTE ME # Code ```cpp [] class Solution { public: int maximumDifference(vector<int>& nums) { int m=nums[0],ans=-1; for(int i=1;i<nums.size();i++){ if(nums[i]>m) ans=max(ans,(nums[i]-m)); else m=nums[i];} return ans; } }; ```
1
0
['C++']
0
maximum-difference-between-increasing-elements
Bets 100% runtime and memory
bets-100-runtime-and-memory-by-govindsku-1oaf
Quote Everything should be made as simple as possible, but not simpler. Code
govindskumar619
NORMAL
2025-03-12T07:35:05.778325+00:00
2025-03-12T07:35:05.778325+00:00
27
false
> Quote Everything should be made as simple as possible, but not simpler. # Code ```golang [] func maximumDifference(nums []int) int { out:= -1 for i:= 0 ; i< len(nums)-1; i++{ for j:= i+1 ;j< len(nums); j++{ if nums[j]-nums[i]>out && nums[j]-nums[i] != 0{ out=nums[j]-nums[i] } } } return out } ```
1
0
['Go']
0
maximum-difference-between-increasing-elements
EASY SOLUTION IN JAVA
easy-solution-in-java-by-vikram_s_2004-w27t
IntuitionkceApproachIterate Over the Array:Complexity Time complexity: o(N) Space complexity: o(1)Code
VIKRAM_S_2004
NORMAL
2025-02-25T09:31:19.557659+00:00
2025-02-25T09:31:19.557659+00:00
226
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> kce # Approach <!-- Describe your approach to solving the problem. --> Iterate Over the Array: # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> **o(N)** - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> **o(1)** # Code ```java [] class Solution { public int maximumDifference(int[] nums) { int b = Integer.MAX_VALUE; int maxDiff = -1; for(int i = 0; i<nums.length; i++){ if(b < nums[i]){ int p = nums[i] - b; maxDiff = Math.max(maxDiff, p); } else{ b = nums[i]; } } return maxDiff; } } ```
1
0
['Iterator', 'Java']
0
maximum-difference-between-increasing-elements
beat 100% runtime for swift solution
beat-100-runtime-for-swift-solution-by-c-yxte
IntuitionWe are given an array of integers, and we need to find the maximum difference between two elements such that the larger element comes after the smaller
ChocoletEY
NORMAL
2025-02-22T00:19:57.714584+00:00
2025-02-22T00:19:57.714584+00:00
12
false
# Intuition We are given an array of integers, and we need to find the maximum difference between two elements such that the larger element comes after the smaller element. The key idea is to track the minimum value encountered so far as we iterate through the array, and for each element, calculate the difference with this minimum value. We then keep track of the maximum difference found. # Approach 1. Initialize a variable to keep track of the minimum value encountered so far. 2. Initialize a variable to store the maximum difference found. 3. Iterate through the array. For each element: - Update the minimum value if the current element is smaller. - Calculate the difference between the current element and the minimum value. - Update the maximum difference if the calculated difference is greater. 4. Return the maximum difference found. If no valid difference is found (i.e., array elements are non-increasing), return -1. # Complexity - Time complexity: O(n), where n is the number of elements in the array. We only iterate through the array once. - Space complexity: O(1). We are using a constant amount of extra space. # Code ```swift [] class Solution { func maximumDifference(_ nums: [Int]) -> Int { // Initialize the minimum value with the first element var minVal = nums[0] // Initialize the maximum difference with -1 var maxDiff = -1 // Iterate through the array starting from the second element for i in 1..<nums.count { // If the current element is greater than the minimum value, // calculate the difference and update maxDiff if needed if nums[i] > minVal { maxDiff = max(maxDiff, nums[i] - minVal) } else { // Update the minimum value if the current element is smaller minVal = nums[i] } } // Return the maximum difference found or -1 if no valid difference return maxDiff } } ```
1
0
['Swift']
0
maximum-difference-between-increasing-elements
Java Easy Solution
java-easy-solution-by-wojak202611-6up0
IntuitionApproachComplexity Time complexity: Space complexity: Code
wojak202611
NORMAL
2025-02-09T19:17:59.281035+00:00
2025-02-09T19:17:59.281035+00:00
214
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { public int maximumDifference(int[] nums) { int b = Integer.MAX_VALUE; int maxDiff = -1; for(int i = 0; i<nums.length; i++){ if(b < nums[i]){ int p = nums[i] - b; maxDiff = Math.max(maxDiff, p); } else{ b = nums[i]; } } return maxDiff; } } ```
1
0
['Java']
0
maximum-difference-between-increasing-elements
Easy Java Solution beats 100%
easy-java-solution-beats-100-by-chandran-wzc5
IntuitionApproachComplexity Time complexity: Space complexity: Code
Chandranshu31
NORMAL
2025-02-08T06:22:55.207852+00:00
2025-02-08T06:22:55.207852+00:00
139
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ -->O(n) - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ -->O(1) # Code ```java [] class Solution { public int maximumDifference(int[] nums) { int a =Integer.MAX_VALUE; // a variable to track current. same question as buy and sell stock int maxDiff=-1; for(int i=0;i<nums.length;i++){ if(a<nums[i]){ int diff = nums[i]-a; maxDiff= Math.max(diff,maxDiff); } else{ a=nums[i]; } } return maxDiff; } } ```
1
0
['Java']
0
maximum-difference-between-increasing-elements
4MS 🏆 || JAVA ☕
4ms-java-by-galani_jenis-fiws
Code
Galani_jenis
NORMAL
2025-01-23T04:47:23.325484+00:00
2025-01-23T04:47:23.325484+00:00
135
false
# Code ```java [] class Solution { public int maximumDifference(int[] nums) { int ans = -1; for (int i = 0; i < nums.length - 1; i++) { for (int j = i + 1; j < nums.length; j++) { if (ans > (nums[j] - nums[i])) { continue; } else { if (nums[j] > nums[i]) { ans = nums[j] - nums[i]; } } } } return ans; } } ``` ![7b3ed9e7-75a3-497e-85ef-237ed4f4fef7_1735690315.3860667.png](https://assets.leetcode.com/users/images/2d52e620-5103-4211-8f50-fff9faea4148_1737607619.072494.png)
1
0
['Java']
0
maximum-difference-between-increasing-elements
run time 0ms Beat 100%
run-time-0ms-beat-100-by-chandra158-z0kk
IntuitionApproachComplexity Time complexity: O(n) Space complexity: O(1) Code
Chandra158
NORMAL
2025-01-21T12:43:01.371862+00:00
2025-01-21T12:43:01.371862+00:00
109
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: **O(n)** <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: **O(1)** <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int maximumDifference(vector<int>& nums) { int n = nums.size(); int min_element = nums[0]; int max_diff = -1; // Initialize to -1 to indicate no valid pair found for (int i = 1; i < n; i++) { if (nums[i] > min_element) { max_diff = max(max_diff, nums[i] - min_element); } else { min_element = nums[i]; } } return max_diff; } }; ```
1
0
['C++']
0
maximum-difference-between-increasing-elements
Simple C program solution
simple-c-program-solution-by-aswath_1192-hern
IntuitionApproachComplexity Time complexity: Space complexity: Code
Aswath_1192
NORMAL
2025-01-01T16:39:07.735214+00:00
2025-01-01T16:39:07.735214+00:00
47
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```c [] int maximumDifference(int* nums, int numsSize) { int maxd=-1,minval; for(int i=0;i<numsSize-1;i++){ for(int j=i+1;j<numsSize;j++){ if(nums[i]<nums[j]){ minval=nums[j]-nums[i]; if(minval>maxd){ maxd=minval; }} }} return maxd; } ```
1
0
['C']
0