python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
import numpy as np from random import randint, shuffle, choice from random import random as rand import math import logging import torch import torch.utils.data logger = logging.getLogger(__name__) def get_random_word(vocab_words): i = randint(0, len(vocab_words)-1) return vocab_words[i] def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if x[0] is None: batch_tensors.append(None) elif isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def _get_word_split_index(tokens, st, end): split_idx = [] i = st while i < end: if (not tokens[i].startswith('##')) or (i == st): split_idx.append(i) i += 1 split_idx.append(end) return split_idx def _expand_whole_word(tokens, st, end): new_st, new_end = st, end while (new_st >= 0) and tokens[new_st].startswith('##'): new_st -= 1 while (new_end < len(tokens)) and tokens[new_end].startswith('##'): new_end += 1 return new_st, new_end class Pipeline(): """ Pre-process Pipeline Class : callable """ def __init__(self): super().__init__() self.skipgram_prb = None self.skipgram_size = None self.pre_whole_word = None self.mask_whole_word = None self.word_subsample_prb = None self.sp_prob = None self.pieces_dir = None self.vocab_words = None self.pieces_threshold = 10 self.call_count = 0 self.offline_mode = False self.skipgram_size_geo_list = None self.span_same_mask = False def __call__(self, instance): raise NotImplementedError class Preprocess4Seq2seqDecoder(Pipeline): """ Pre-processing steps for pretraining transformer """ def __init__(self, vocab_words, indexer, max_len=512, max_tgt_length=128, mode="s2s", pos_shift=False, source_type_id=0, target_type_id=1, cls_token='[CLS]', sep_token='[SEP]', pad_token='[PAD]'): super().__init__() self.max_len = max_len self.vocab_words = vocab_words # vocabulary (sub)words self.indexer = indexer # function from token to token index self.max_len = max_len self._tril_matrix = torch.tril(torch.ones((max_len, max_len), dtype=torch.long)) self.task_idx = 3 # relax projection layer for different tasks assert mode in ("s2s", "l2r") self.mode = mode self.max_tgt_length = max_tgt_length self.pos_shift = pos_shift self.cls_token = cls_token self.sep_token = sep_token self.pad_token = pad_token self.source_type_id = source_type_id self.target_type_id = target_type_id self.cc = 0 def __call__(self, instance): tokens_a, max_a_len = instance padded_tokens_a = [self.cls_token] + tokens_a + [self.sep_token] assert len(padded_tokens_a) <= max_a_len + 2 if max_a_len + 2 > len(padded_tokens_a): padded_tokens_a += [self.pad_token] * \ (max_a_len + 2 - len(padded_tokens_a)) assert len(padded_tokens_a) == max_a_len + 2 max_len_in_batch = min(self.max_tgt_length + max_a_len + 2, self.max_len) tokens = padded_tokens_a segment_ids = [self.source_type_id] * (len(padded_tokens_a)) \ + [self.target_type_id] * (max_len_in_batch - len(padded_tokens_a)) mask_qkv = None position_ids = [] for i in range(len(tokens_a) + 2): position_ids.append(i) for i in range(len(tokens_a) + 2, max_a_len + 2): position_ids.append(0) for i in range(max_a_len + 2, max_len_in_batch): position_ids.append(i - (max_a_len + 2) + len(tokens_a) + 2) # Token Indexing input_ids = self.indexer(tokens) self.cc += 1 if self.cc < 20: logger.info("Input src = %s" % " ".join(self.vocab_words[tk_id] for tk_id in input_ids)) # Zero Padding input_mask = torch.zeros( max_len_in_batch, max_len_in_batch, dtype=torch.long) if self.mode == "s2s": input_mask[:, :len(tokens_a)+2].fill_(1) else: st, end = 0, len(tokens_a) + 2 input_mask[st:end, st:end].copy_( self._tril_matrix[:end, :end]) input_mask[end:, :len(tokens_a)+2].fill_(1) second_st, second_end = len(padded_tokens_a), max_len_in_batch input_mask[second_st:second_end, second_st:second_end].copy_( self._tril_matrix[:second_end-second_st, :second_end-second_st]) return (input_ids, segment_ids, position_ids, input_mask, mask_qkv, self.task_idx)
data2vec_vision-main
s2s-ft/s2s_ft/s2s_loader.py
import torch import logging from transformers.modeling_utils import cached_path, WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME logger = logging.getLogger(__name__) def get_checkpoint_from_transformer_cache( archive_file, pretrained_model_name_or_path, pretrained_model_archive_map, cache_dir, force_download, proxies, resume_download, ): try: resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download) except EnvironmentError: if pretrained_model_name_or_path in pretrained_model_archive_map: msg = "Couldn't reach server at '{}' to download pretrained weights.".format( archive_file) else: msg = "Model name '{}' was not found in model name list ({}). " \ "We assumed '{}' was a path or url to model weight files named one of {} but " \ "couldn't find any such file at this path or url.".format( pretrained_model_name_or_path, ', '.join(pretrained_model_archive_map.keys()), archive_file, [WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME]) raise EnvironmentError(msg) if resolved_archive_file == archive_file: logger.info("loading weights file {}".format(archive_file)) else: logger.info("loading weights file {} from cache at {}".format( archive_file, resolved_archive_file)) return torch.load(resolved_archive_file, map_location='cpu') def hf_roberta_to_hf_bert(state_dict): logger.info(" * Convert Huggingface RoBERTa format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key == 'roberta.embeddings.position_embeddings.weight': value = value[2:] if key == 'roberta.embeddings.token_type_embeddings.weight': continue if key.startswith('roberta'): key = 'bert.' + key[8:] elif key.startswith('lm_head'): if 'layer_norm' in key or 'dense' in key: key = 'cls.predictions.transform.' + key[8:] else: key = 'cls.predictions.' + key[8:] key = key.replace('layer_norm', 'LayerNorm') new_state_dict[key] = value return new_state_dict def hf_distilbert_to_hf_bert(state_dict): logger.info(" * Convert Huggingface DistilBERT format to Huggingface BERT format * ") new_state_dict = {} for key in state_dict: value = state_dict[key] if key == 'roberta.embeddings.position_embeddings.weight': value = value[2:] if key == 'roberta.embeddings.token_type_embeddings.weight': continue if key.startswith('roberta'): key = 'bert.' + key[8:] elif key.startswith('lm_head'): if 'layer_norm' in key or 'dense' in key: key = 'cls.predictions.transform.' + key[8:] else: key = 'cls.predictions.' + key[8:] key = key.replace('layer_norm', 'LayerNorm') new_state_dict[key] = value return new_state_dict def hf_bert_to_hf_bert(state_dict): # keep no change return state_dict state_dict_convert = { 'bert': hf_bert_to_hf_bert, 'unilm': hf_bert_to_hf_bert, 'minilm': hf_bert_to_hf_bert, 'roberta': hf_roberta_to_hf_bert, 'xlm-roberta': hf_roberta_to_hf_bert, 'distilbert': hf_distilbert_to_hf_bert, }
data2vec_vision-main
s2s-ft/s2s_ft/convert_state_dict.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for UniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'unilm-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm-large-cased-vocab.txt", 'unilm-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm-base-cased-vocab.txt", 'unilm1-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-large-cased-vocab.txt", 'unilm1-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-base-cased-vocab.txt", 'unilm1.2-base-uncased': "https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased-vocab.txt" } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'unilm-large-cased': 512, 'unilm-base-cased': 512, 'unilm1-large-cased': 512, 'unilm1-base-cased': 512, 'unilm1.2-base-uncased': 512, } class UnilmTokenizer(BertTokenizer): r""" Constructs a UnilmTokenizer. :class:`~transformers.UnilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
data2vec_vision-main
s2s-ft/s2s_ft/tokenization_unilm.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ UniLM model configuration """ from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import sys from io import open from transformers.configuration_utils import PretrainedConfig logger = logging.getLogger(__name__) UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP = { 'unilm-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm-large-cased-config.json", 'unilm-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm-base-cased-config.json", 'unilm1-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-large-cased-config.json", 'unilm1-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-base-cased-config.json", 'unilm1.2-base-uncased': "https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased-config.json", } class UnilmConfig(PretrainedConfig): r""" :class:`~transformers.UnilmConfig` is the configuration class to store the configuration of a `UnilmModel`. Arguments: vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `UnilmModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "swish" and "gelu_new" are supported. hidden_dropout_prob: The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `UnilmModel`. initializer_range: The sttdev of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by LayerNorm. """ pretrained_config_archive_map = UNILM_PRETRAINED_CONFIG_ARCHIVE_MAP def __init__(self, vocab_size=28996, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=6, initializer_range=0.02, layer_norm_eps=1e-12, source_type_id=0, target_type_id=1, **kwargs): super(UnilmConfig, self).__init__(**kwargs) if isinstance(vocab_size, str) or (sys.version_info[0] == 2 and isinstance(vocab_size, unicode)): with open(vocab_size, "r", encoding='utf-8') as reader: json_config = json.loads(reader.read()) for key, value in json_config.items(): self.__dict__[key] = value elif isinstance(vocab_size, int): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.source_type_id = source_type_id self.target_type_id = target_type_id else: raise ValueError("First argument must be either a vocabulary size (int)" " or the path to a pretrained model config file (str)")
data2vec_vision-main
s2s-ft/s2s_ft/configuration_unilm.py
from __future__ import absolute_import, division, print_function import logging import os import json import random import glob import torch import tqdm import torch.utils.data logger = logging.getLogger(__name__) class Seq2seqDatasetForBert(torch.utils.data.Dataset): def __init__( self, features, max_source_len, max_target_len, vocab_size, cls_id, sep_id, pad_id, mask_id, random_prob, keep_prob, offset, num_training_instances, span_len=1, span_prob=1.0): self.features = features self.max_source_len = max_source_len self.max_target_len = max_target_len self.offset = offset if offset > 0: logger.info(" **** Set offset %d in Seq2seqDatasetForBert **** ", offset) self.cls_id = cls_id self.sep_id = sep_id self.pad_id = pad_id self.random_prob = random_prob self.keep_prob = keep_prob self.mask_id = mask_id self.vocab_size = vocab_size self.num_training_instances = num_training_instances self.span_len = span_len self.span_prob = span_prob def __len__(self): return int(self.num_training_instances) def __trunk(self, ids, max_len): if len(ids) > max_len - 1: ids = ids[:max_len - 1] ids = ids + [self.sep_id] return ids def __pad(self, ids, max_len): if len(ids) < max_len: return ids + [self.pad_id] * (max_len - len(ids)) else: assert len(ids) == max_len return ids def __getitem__(self, idx): idx = (self.offset + idx) % len(self.features) feature = self.features[idx] source_ids = self.__trunk([self.cls_id] + feature["source_ids"], self.max_source_len) target_ids = self.__trunk(feature["target_ids"], self.max_target_len) pseudo_ids = [] for tk_id in target_ids: p = random.random() if p < self.keep_prob: pseudo_ids.append(tk_id) elif p < self.keep_prob + self.random_prob: pseudo_ids.append(random.randint(0, self.vocab_size - 1)) else: pseudo_ids.append(self.mask_id) num_source_tokens = len(source_ids) num_target_tokens = len(target_ids) source_ids = self.__pad(source_ids, self.max_source_len) target_ids = self.__pad(target_ids, self.max_target_len) pseudo_ids = self.__pad(pseudo_ids, self.max_target_len) if self.span_len > 1: span_ids = [] span_id = 1 while len(span_ids) < num_target_tokens: p = random.random() if p < self.span_prob: span_len = random.randint(2, self.span_len) span_len = min(span_len, num_target_tokens - len(span_ids)) else: span_len = 1 span_ids.extend([span_id] * span_len) span_id += 1 span_ids = self.__pad(span_ids, self.max_target_len) return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, span_ids else: return source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens def batch_list_to_batch_tensors(batch): batch_tensors = [] for x in zip(*batch): if isinstance(x[0], torch.Tensor): batch_tensors.append(torch.stack(x)) else: batch_tensors.append(torch.tensor(x, dtype=torch.long)) return batch_tensors def get_max_epoch_model(output_dir): fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin")) fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin")) if (not fn_model_list) or (not fn_optim_list): return None os.path.basename(output_dir) both_set = set([int(os.path.basename(fn).split('.')[1]) for fn in fn_model_list] ) & set([int(os.path.basename(fn).split('.')[1]) for fn in fn_optim_list]) if both_set: return max(both_set) else: return None def load_and_cache_examples( example_file, tokenizer, local_rank, cached_features_file, shuffle=True): # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank not in [-1, 0]: torch.distributed.barrier() if cached_features_file is not None and os.path.exists(cached_features_file): logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", example_file) examples = [] with open(example_file, mode="r", encoding="utf-8") as reader: for line in reader: examples.append(json.loads(line)) features = [] for example in tqdm.tqdm(examples): if isinstance(example["src"], list): source_tokens = example["src"] target_tokens = example["tgt"] else: source_tokens = tokenizer.tokenize(example["src"]) target_tokens = tokenizer.tokenize(example["tgt"]) features.append({ "source_ids": tokenizer.convert_tokens_to_ids(source_tokens), "target_ids": tokenizer.convert_tokens_to_ids(target_tokens), }) if shuffle: random.shuffle(features) if local_rank in [-1, 0] and cached_features_file is not None: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) # Make sure only the first process in distributed training process the dataset, and the others will use the cache if local_rank == 0: torch.distributed.barrier() return features
data2vec_vision-main
s2s-ft/s2s_ft/utils.py
# coding=utf-8 # The MIT License (MIT) # Copyright (c) Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Tokenization classes for MiniLM.""" from __future__ import absolute_import, division, print_function, unicode_literals import collections import logging import os import unicodedata from io import open from transformers.tokenization_bert import BertTokenizer, whitespace_tokenize logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = {'vocab_file': 'vocab.txt'} PRETRAINED_VOCAB_FILES_MAP = { 'vocab_file': { 'minilm-l12-h384-uncased': "https://unilm.blob.core.windows.net/ckpt/minilm-l12-h384-uncased-vocab.txt", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { 'minilm-l12-h384-uncased': 512, } class MinilmTokenizer(BertTokenizer): r""" Constructs a MinilmTokenizer. :class:`~transformers.MinilmTokenizer` is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting + wordpiece Args: vocab_file: Path to a one-wordpiece-per-line vocabulary file do_lower_case: Whether to lower case the input. Only has an effect when do_wordpiece_only=False do_basic_tokenize: Whether to do basic tokenization before wordpiece. max_len: An artificial maximum length to truncate tokenized sequences to; Effective maximum length is always the minimum of this value (if specified) and the underlying BERT model's sequence length. never_split: List of tokens which will never be split during tokenization. Only has an effect when do_wordpiece_only=False """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES class WhitespaceTokenizer(object): def tokenize(self, text): return whitespace_tokenize(text)
data2vec_vision-main
s2s-ft/s2s_ft/tokenization_minilm.py
from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import os import torch from torch import nn from torch.nn.modules.loss import _Loss import torch.nn.functional as F from transformers.modeling_bert import \ BertPreTrainedModel, BertSelfOutput, BertIntermediate, BertOutput, BertPredictionHeadTransform from transformers.modeling_roberta import ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_distilbert import DISTILBERT_PRETRAINED_MODEL_ARCHIVE_MAP from transformers.modeling_xlm_roberta import XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP from s2s_ft.config import BertForSeq2SeqConfig from s2s_ft.convert_state_dict import get_checkpoint_from_transformer_cache, state_dict_convert logger = logging.getLogger(__name__) BertLayerNorm = torch.nn.LayerNorm UNILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'unilm-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-base-cased.bin", 'unilm-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-large-cased.bin", 'unilm1-base-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-base-cased.bin", 'unilm1-large-cased': "https://unilm.blob.core.windows.net/ckpt/unilm1-large-cased.bin", 'unilm1.2-base-uncased': "https://unilm.blob.core.windows.net/ckpt/unilm1.2-base-uncased.bin" } MINILM_PRETRAINED_MODEL_ARCHIVE_MAP = { 'minilm-l12-h384-uncased': "https://unilm.blob.core.windows.net/ckpt/minilm-l12-h384-uncased.bin", } class BertPreTrainedForSeq2SeqModel(BertPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = BertForSeq2SeqConfig supported_convert_pretrained_model_archive_map = { "bert": BERT_PRETRAINED_MODEL_ARCHIVE_MAP, "roberta": ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "xlm-roberta": XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, "unilm": UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, "minilm": MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, } base_model_prefix = "bert_for_seq2seq" pretrained_model_archive_map = { **ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP, **BERT_PRETRAINED_MODEL_ARCHIVE_MAP, **UNILM_PRETRAINED_MODEL_ARCHIVE_MAP, **MINILM_PRETRAINED_MODEL_ARCHIVE_MAP, } def _init_weights(self, module): """ Initialize the weights """ if isinstance(module, (nn.Linear, nn.Embedding)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, BertLayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() @classmethod def from_pretrained(cls, pretrained_model_name_or_path, reuse_position_embedding=None, *model_args, **kwargs): model_type = kwargs.pop('model_type', None) if model_type is not None and "state_dict" not in kwargs: if model_type in cls.supported_convert_pretrained_model_archive_map: pretrained_model_archive_map = cls.supported_convert_pretrained_model_archive_map[model_type] if pretrained_model_name_or_path in pretrained_model_archive_map: state_dict = get_checkpoint_from_transformer_cache( archive_file=pretrained_model_archive_map[pretrained_model_name_or_path], pretrained_model_name_or_path=pretrained_model_name_or_path, pretrained_model_archive_map=pretrained_model_archive_map, cache_dir=kwargs.get("cache_dir", None), force_download=kwargs.get("force_download", None), proxies=kwargs.get("proxies", None), resume_download=kwargs.get("resume_download", None), ) state_dict = state_dict_convert[model_type](state_dict) kwargs["state_dict"] = state_dict elif os.path.isfile(pretrained_model_name_or_path): kwargs["state_dict"] = torch.load(pretrained_model_name_or_path, map_location='cpu') if kwargs["state_dict"] is None: logger.info("s2s-ft does't support the model !") raise NotImplementedError() config = kwargs["config"] state_dict = kwargs["state_dict"] # initialize new position embeddings (From Microsoft/UniLM) _k = 'bert.embeddings.position_embeddings.weight' # if _k in state_dict and config.max_position_embeddings != state_dict[_k].shape[0]: # logger.info("config.max_position_embeddings != state_dict[bert.embeddings.position_embeddings.weight] ({0} - {1})".format( # config.max_position_embeddings, state_dict[_k].shape[0])) # if config.max_position_embeddings > state_dict[_k].shape[0]: # old_size = state_dict[_k].shape[0] # # state_dict[_k].data = state_dict[_k].data.resize_(config.max_position_embeddings, state_dict[_k].shape[1]) # state_dict[_k].resize_( # config.max_position_embeddings, state_dict[_k].shape[1]) # start = old_size # while start < config.max_position_embeddings: # chunk_size = min( # old_size, config.max_position_embeddings - start) # state_dict[_k].data[start:start+chunk_size, # :].copy_(state_dict[_k].data[:chunk_size, :]) # start += chunk_size # elif config.max_position_embeddings < state_dict[_k].shape[0]: # state_dict[_k].data = state_dict[_k].data[:config.max_position_embeddings, :] _k = 'bert.embeddings.position_embeddings.weight' if _k in state_dict: if config.max_position_embeddings > state_dict[_k].shape[0]: logger.info("Resize > position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_postion_embedding = nn.Parameter(data=new_postion_embedding, requires_grad=True) new_postion_embedding.data.normal_(mean=0.0, std=config.initializer_range) max_range = config.max_position_embeddings if reuse_position_embedding else old_vocab_size shift = 0 while shift < max_range: delta = min(old_vocab_size, max_range - shift) new_postion_embedding.data[shift: shift + delta, :] = state_dict[_k][:delta, :] logger.info(" CP [%d ~ %d] into [%d ~ %d] " % (0, delta, shift, shift + delta)) shift += delta state_dict[_k] = new_postion_embedding.data del new_postion_embedding elif config.max_position_embeddings < state_dict[_k].shape[0]: logger.info("Resize < position embeddings !") old_vocab_size = state_dict[_k].shape[0] new_postion_embedding = state_dict[_k].data.new_tensor(torch.ones( size=(config.max_position_embeddings, state_dict[_k].shape[1])), dtype=torch.float) new_postion_embedding = nn.Parameter(data=new_postion_embedding, requires_grad=True) new_postion_embedding.data.normal_(mean=0.0, std=config.initializer_range) new_postion_embedding.data.copy_(state_dict[_k][:config.max_position_embeddings, :]) state_dict[_k] = new_postion_embedding.data del new_postion_embedding return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) else: self.token_type_embeddings = None # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] device = input_ids.device if input_ids is not None else inputs_embeds.device if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand(input_shape) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings if self.token_type_embeddings: embeddings = embeddings + self.token_type_embeddings(token_type_ids) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = config.output_attentions self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def multi_head_attention(self, query, key, value, attention_mask): query_layer = self.transpose_for_scores(query) key_layer = self.transpose_for_scores(key) value_layer = self.transpose_for_scores(value) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return (context_layer, attention_probs) if self.output_attentions else (context_layer,) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): mixed_query_layer = self.query(hidden_states) if split_lengths: assert not self.output_attentions # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. if encoder_hidden_states is not None: mixed_key_layer = self.key(encoder_hidden_states) mixed_value_layer = self.value(encoder_hidden_states) else: mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) if split_lengths: query_parts = torch.split(mixed_query_layer, split_lengths, dim=1) key_parts = torch.split(mixed_key_layer, split_lengths, dim=1) value_parts = torch.split(mixed_value_layer, split_lengths, dim=1) key = None value = None outputs = [] sum_length = 0 for (query, _key, _value, part_length) in zip(query_parts, key_parts, value_parts, split_lengths): key = _key if key is None else torch.cat((key, _key), dim=1) value = _value if value is None else torch.cat((value, _value), dim=1) sum_length += part_length outputs.append(self.multi_head_attention( query, key, value, attention_mask[:, :, sum_length - part_length: sum_length, :sum_length] )[0]) outputs = (torch.cat(outputs, dim=1), ) else: outputs = self.multi_head_attention( mixed_query_layer, mixed_key_layer, mixed_value_layer, attention_mask) return outputs class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, split_lengths=None): self_outputs = self.self( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, split_lengths=split_lengths) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask=None, split_lengths=None): self_attention_outputs = self.attention( hidden_states, attention_mask, split_lengths=split_lengths) attention_output = self_attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + self_attention_outputs[1:] return outputs class BertEncoder(nn.Module): def __init__(self, config): super(BertEncoder, self).__init__() self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)]) def forward(self, hidden_states, attention_mask=None, split_lengths=None): all_hidden_states = () all_attentions = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, attention_mask, split_lengths=split_lengths) hidden_states = layer_outputs[0] if self.output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states,) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: outputs = outputs + (all_attentions,) return outputs # last-layer hidden state, (all hidden states), (all attentions) class BertModel(BertPreTrainedForSeq2SeqModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the output of the last layer of the model. **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)`` Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during Bert pretraining. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config): super(BertModel, self).__init__(config) self.config = config self.embeddings = BertEmbeddings(config) self.encoder = BertEncoder(config) def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, inputs_embeds=None, split_lengths=None): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, split_lengths=split_lengths) sequence_output = encoder_outputs[0] outputs = (sequence_output, ) + encoder_outputs[1:] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LabelSmoothingLoss(_Loss): """ With label smoothing, KL-divergence between q_{smoothed ground truth prob.}(w) and p_{prob. computed by model}(w) is minimized. """ def __init__(self, label_smoothing=0, tgt_vocab_size=0, ignore_index=0, size_average=None, reduce=None, reduction='mean'): assert 0.0 < label_smoothing <= 1.0 self.ignore_index = ignore_index super(LabelSmoothingLoss, self).__init__( size_average=size_average, reduce=reduce, reduction=reduction) assert label_smoothing > 0 assert tgt_vocab_size > 0 smoothing_value = label_smoothing / (tgt_vocab_size - 2) one_hot = torch.full((tgt_vocab_size,), smoothing_value) one_hot[self.ignore_index] = 0 self.register_buffer('one_hot', one_hot.unsqueeze(0)) self.confidence = 1.0 - label_smoothing self.tgt_vocab_size = tgt_vocab_size def forward(self, output, target): """ output (FloatTensor): batch_size * num_pos * n_classes target (LongTensor): batch_size * num_pos """ assert self.tgt_vocab_size == output.size(2) batch_size, num_pos = target.size(0), target.size(1) output = output.view(-1, self.tgt_vocab_size) target = target.view(-1) model_prob = self.one_hot.float().repeat(target.size(0), 1) model_prob.scatter_(1, target.unsqueeze(1), self.confidence) model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0) return F.kl_div(output, model_prob, reduction='none').view(batch_size, num_pos, -1).sum(2) class BertLMPredictionHead(nn.Module): def __init__(self, config, decoder_weight): super(BertLMPredictionHead, self).__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder_weight = decoder_weight self.bias = nn.Parameter(torch.zeros(config.vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = F.linear(hidden_states, weight=self.decoder_weight, bias=self.bias) return hidden_states class BertOnlyMLMHead(nn.Module): def __init__(self, config, decoder_weight): super(BertOnlyMLMHead, self).__init__() self.predictions = BertLMPredictionHead(config, decoder_weight) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores class BertForSequenceToSequence(BertPreTrainedForSeq2SeqModel): def __init__(self, config): super(BertForSequenceToSequence, self).__init__(config) self.bert = BertModel(config) self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) self.init_weights() self.log_softmax = nn.LogSoftmax() # setattr(config, 'label_smoothing', 0.1) self.source_type_id = config.source_type_id self.target_type_id = config.target_type_id if config.label_smoothing > 0: self.crit_mask_lm_smoothed = LabelSmoothingLoss( config.label_smoothing, config.vocab_size, ignore_index=0, reduction='none') self.crit_mask_lm = None else: self.crit_mask_lm_smoothed = None self.crit_mask_lm = nn.CrossEntropyLoss(reduction='none') @staticmethod def create_mask_and_position_ids(num_tokens, max_len, offset=None): base_position_matrix = torch.arange( 0, max_len, dtype=num_tokens.dtype, device=num_tokens.device).view(1, -1) mask = (base_position_matrix < num_tokens.view(-1, 1)).type_as(num_tokens) if offset is not None: base_position_matrix = base_position_matrix + offset.view(-1, 1) position_ids = base_position_matrix * mask return mask, position_ids @staticmethod def create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids): weight = torch.cat((torch.zeros_like(source_position_ids), target_span_ids, -target_span_ids), dim=1) from_weight = weight.unsqueeze(-1) to_weight = weight.unsqueeze(1) true_tokens = (0 <= to_weight) & (torch.cat((source_mask, target_mask, target_mask), dim=1) == 1).unsqueeze(1) true_tokens_mask = (from_weight >= 0) & true_tokens & (to_weight <= from_weight) pseudo_tokens_mask = (from_weight < 0) & true_tokens & (-to_weight > from_weight) pseudo_tokens_mask = pseudo_tokens_mask | ((from_weight < 0) & (to_weight == from_weight)) return (true_tokens_mask | pseudo_tokens_mask).type_as(source_mask) def forward(self, source_ids, target_ids, pseudo_ids, num_source_tokens, num_target_tokens, target_span_ids=None): source_len = source_ids.size(1) target_len = target_ids.size(1) pseudo_len = pseudo_ids.size(1) assert target_len == pseudo_len assert source_len > 0 and target_len > 0 split_lengths = (source_len, target_len, pseudo_len) input_ids = torch.cat((source_ids, target_ids, pseudo_ids), dim=1) token_type_ids = torch.cat( (torch.ones_like(source_ids) * self.source_type_id, torch.ones_like(target_ids) * self.target_type_id, torch.ones_like(pseudo_ids) * self.target_type_id), dim=1) source_mask, source_position_ids = \ self.create_mask_and_position_ids(num_source_tokens, source_len) target_mask, target_position_ids = \ self.create_mask_and_position_ids(num_target_tokens, target_len, offset=num_source_tokens) position_ids = torch.cat((source_position_ids, target_position_ids, target_position_ids), dim=1) if target_span_ids is None: target_span_ids = target_position_ids attention_mask = self.create_attention_mask(source_mask, target_mask, source_position_ids, target_span_ids) outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, split_lengths=split_lengths) sequence_output = outputs[0] pseudo_sequence_output = sequence_output[:, source_len + target_len:, ] def loss_mask_and_normalize(loss, mask): mask = mask.type_as(loss) loss = loss * mask denominator = torch.sum(mask) + 1e-5 return (loss / denominator).sum() prediction_scores_masked = self.cls(pseudo_sequence_output) if self.crit_mask_lm_smoothed: masked_lm_loss = self.crit_mask_lm_smoothed( F.log_softmax(prediction_scores_masked.float(), dim=-1), target_ids) else: masked_lm_loss = self.crit_mask_lm( prediction_scores_masked.transpose(1, 2).float(), target_ids) pseudo_lm_loss = loss_mask_and_normalize( masked_lm_loss.float(), target_mask) return pseudo_lm_loss
data2vec_vision-main
s2s-ft/s2s_ft/modeling.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import sys from typing import Iterable, Optional import torch from timm.data import Mixup from timm.utils import accuracy, ModelEma import utils def train_class_batch(model, samples, target, criterion, bool_masked_pos=None): outputs = model(samples, bool_masked_pos=bool_masked_pos) loss = criterion(outputs, target) return loss, outputs def get_loss_scale_for_deepspeed(model): optimizer = model.optimizer return optimizer.loss_scale if hasattr(optimizer, "loss_scale") else optimizer.cur_scale def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None, log_writer=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, num_training_steps_per_epoch=None, update_freq=None, masked_position_generator=None): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq if step >= num_training_steps_per_epoch: continue it = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] bool_masked_pos = None if masked_position_generator is not None: bool_masked_pos = torch.tensor([masked_position_generator() for _ in range(samples.size(0))], device=device) samples = samples.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) if loss_scaler is None: samples = samples.half() loss, output = train_class_batch( model, samples, targets, criterion, bool_masked_pos) else: with torch.cuda.amp.autocast(): loss, output = train_class_batch( model, samples, targets, criterion, bool_masked_pos) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value), force=True) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) grad_norm = None loss_scale_value = get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() if mixup_fn is None: class_acc = (output.max(-1)[-1] == targets).float().mean() else: class_acc = None metric_logger.update(loss=loss_value) metric_logger.update(class_acc=class_acc) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(class_acc=class_acc, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device): criterion = torch.nn.CrossEntropyLoss() metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() for batch in metric_logger.log_every(data_loader, 10, header): images = batch[0] target = batch[-1] images = images.to(device, non_blocking=True) target = target.to(device, non_blocking=True) # compute output with torch.cuda.amp.autocast(): output = model(images) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) batch_size = images.shape[0] metric_logger.update(loss=loss.item()) metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) # gather the stats from all processes metric_logger.synchronize_between_processes() print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}' .format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss)) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
data2vec_vision-main
beit/engine_for_finetuning.py
""" Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 Copyright Zhun Zhong & Liang Zheng Hacked together by / Copyright 2020 Ross Wightman Modified by Hangbo Bao, for generating the masked position for visual image transformer """ # -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # Originally inspired by impl at https://github.com/zhunzhong07/Random-Erasing, Apache 2.0 # Copyright Zhun Zhong & Liang Zheng # # Hacked together by / Copyright 2020 Ross Wightman # # Modified by Hangbo Bao, for generating the masked position for visual image transformer # --------------------------------------------------------' import random import math import numpy as np class MaskingGenerator: def __init__( self, input_size, num_masking_patches, min_num_patches=4, max_num_patches=None, min_aspect=0.3, max_aspect=None): if not isinstance(input_size, tuple): input_size = (input_size, ) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.num_masking_patches = num_masking_patches self.min_num_patches = min_num_patches self.max_num_patches = num_masking_patches if max_num_patches is None else max_num_patches max_aspect = max_aspect or 1 / min_aspect self.log_aspect_ratio = (math.log(min_aspect), math.log(max_aspect)) def __repr__(self): repr_str = "Generator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.min_num_patches, self.max_num_patches, self.num_masking_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1]) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for attempt in range(10): target_area = random.uniform(self.min_num_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < self.width and h < self.height: top = random.randint(0, self.height - h) left = random.randint(0, self.width - w) num_masked = mask[top: top + h, left: left + w].sum() # Overlap if 0 < h * w - num_masked <= max_mask_patches: for i in range(top, top + h): for j in range(left, left + w): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self): mask = np.zeros(shape=self.get_shape(), dtype=np.int) mask_count = 0 while mask_count < self.num_masking_patches: max_mask_patches = self.num_masking_patches - mask_count max_mask_patches = min(max_mask_patches, self.max_num_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask
data2vec_vision-main
beit/masking_generator.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on OpenAI DALL-E and lucidrains' DALLE-pytorch code bases # https://github.com/openai/DALL-E # https://github.com/lucidrains/DALLE-pytorch # --------------------------------------------------------' from math import sqrt import os import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange def top_k(logits, thres = 0.5): num_logits = logits.shape[-1] k = max(int((1 - thres) * num_logits), 1) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs def exists(val): return val is not None def default(val, d): return val if exists(val) else d def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner class BasicVAE(nn.Module): def get_codebook_indices(self, images): raise NotImplementedError() def decode(self, img_seq): raise NotImplementedError() def get_codebook_probs(self, img_seq): raise NotImplementedError() def get_image_tokens_size(self): pass def get_image_size(self): pass class ResBlock(nn.Module): def __init__(self, chan_in, hidden_size, chan_out): super().__init__() self.net = nn.Sequential( nn.Conv2d(chan_in, hidden_size, 3, padding=1), nn.ReLU(), nn.Conv2d(hidden_size, hidden_size, 3, padding=1), nn.ReLU(), nn.Conv2d(hidden_size, chan_out, 1) ) def forward(self, x): return self.net(x) + x class DiscreteVAE(BasicVAE): def __init__( self, image_size = 256, num_tokens = 512, codebook_dim = 512, num_layers = 3, hidden_dim = 64, channels = 3, smooth_l1_loss = False, temperature = 0.9, straight_through = False, kl_div_loss_weight = 0. ): super().__init__() # assert log2(image_size).is_integer(), 'image size must be a power of 2' assert num_layers >= 1, 'number of layers must be greater than or equal to 1' self.image_size = image_size self.num_tokens = num_tokens self.num_layers = num_layers self.temperature = temperature self.straight_through = straight_through self.codebook = nn.Embedding(num_tokens, codebook_dim) enc_layers = [] dec_layers = [] enc_in = channels dec_in = codebook_dim for layer_id in range(num_layers): enc_layers.append(nn.Sequential(nn.Conv2d(enc_in, hidden_dim, 4, stride=2, padding=1), nn.ReLU())) enc_layers.append(ResBlock(chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim)) enc_in = hidden_dim dec_layers.append(nn.Sequential(nn.ConvTranspose2d(dec_in, hidden_dim, 4, stride=2, padding=1), nn.ReLU())) dec_layers.append(ResBlock(chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim)) dec_in = hidden_dim enc_layers.append(nn.Conv2d(hidden_dim, num_tokens, 1)) dec_layers.append(nn.Conv2d(hidden_dim, channels, 1)) self.encoder = nn.Sequential(*enc_layers) self.decoder = nn.Sequential(*dec_layers) self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss self.kl_div_loss_weight = kl_div_loss_weight def get_image_size(self): return self.image_size def get_image_tokens_size(self): return self.image_size // 8 @torch.no_grad() @eval_decorator def get_codebook_indices(self, images): logits = self.forward(images, return_logits = True) codebook_indices = logits.argmax(dim = 1) return codebook_indices @torch.no_grad() @eval_decorator def get_codebook_probs(self, images): logits = self.forward(images, return_logits = True) return nn.Softmax(dim=1)(logits) def decode( self, img_seq ): image_embeds = self.codebook(img_seq) b, n, d = image_embeds.shape h = w = int(sqrt(n)) image_embeds = rearrange(image_embeds, 'b (h w) d -> b d h w', h = h, w = w) images = self.decoder(image_embeds) return images def forward( self, img, return_loss = False, return_recons = False, return_logits = False, temp = None ): device, num_tokens, image_size, kl_div_loss_weight = img.device, self.num_tokens, self.image_size, self.kl_div_loss_weight assert img.shape[-1] == image_size and img.shape[-2] == image_size, f'input must have the correct image size {image_size}' logits = self.encoder(img) if return_logits: return logits # return logits for getting hard image indices for DALL-E training temp = default(temp, self.temperature) soft_one_hot = F.gumbel_softmax(logits, tau = temp, dim = 1, hard = self.straight_through) sampled = einsum('b n h w, n d -> b d h w', soft_one_hot, self.codebook.weight) out = self.decoder(sampled) if not return_loss: return out # reconstruction loss recon_loss = self.loss_fn(img, out) # kl divergence logits = rearrange(logits, 'b n h w -> b (h w) n') qy = F.softmax(logits, dim = -1) log_qy = torch.log(qy + 1e-10) log_uniform = torch.log(torch.tensor([1. / num_tokens], device = device)) kl_div = F.kl_div(log_uniform, log_qy, None, None, 'batchmean', log_target = True) loss = recon_loss + (kl_div * kl_div_loss_weight) if not return_recons: return loss return loss, out from dall_e import load_model class Dalle_VAE(BasicVAE): def __init__(self, image_size): super().__init__() self.encoder = None self.decoder = None self.image_size = image_size def load_model(self, model_dir, device): self.encoder = load_model(os.path.join(model_dir, "encoder.pkl"), device) self.decoder = load_model(os.path.join(model_dir, "decoder.pkl"), device) def decode(self, img_seq): bsz = img_seq.size()[0] img_seq = img_seq.view(bsz, self.image_size // 8, self.image_size // 8) z = F.one_hot(img_seq, num_classes=self.encoder.vocab_size).permute(0, 3, 1, 2).float() return self.decoder(z).float() def get_codebook_indices(self, images): z_logits = self.encoder(images) return torch.argmax(z_logits, axis=1) def get_codebook_probs(self, images): z_logits = self.encoder(images) return nn.Softmax(dim=1)(z_logits) def forward(self, img_seq_prob, no_process=False): if no_process: return self.decoder(img_seq_prob.float()).float() else: bsz, seq_len, num_class = img_seq_prob.size() z = img_seq_prob.view(bsz, self.image_size // 8, self.image_size // 8, self.encoder.vocab_size) return self.decoder(z.permute(0, 3, 1, 2).float()).float()
data2vec_vision-main
beit/modeling_discrete_vae.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import torch import torchvision.transforms.functional as F from PIL import Image import warnings import math import random import numpy as np class ToNumpy: def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return np_img class ToTensor: def __init__(self, dtype=torch.float32): self.dtype = dtype def __call__(self, pil_img): np_img = np.array(pil_img, dtype=np.uint8) if np_img.ndim < 3: np_img = np.expand_dims(np_img, axis=-1) np_img = np.rollaxis(np_img, 2) # HWC to CHW return torch.from_numpy(np_img).to(dtype=self.dtype) _pil_interpolation_to_str = { Image.NEAREST: 'PIL.Image.NEAREST', Image.BILINEAR: 'PIL.Image.BILINEAR', Image.BICUBIC: 'PIL.Image.BICUBIC', Image.LANCZOS: 'PIL.Image.LANCZOS', Image.HAMMING: 'PIL.Image.HAMMING', Image.BOX: 'PIL.Image.BOX', } def _pil_interp(method): if method == 'bicubic': return Image.BICUBIC elif method == 'lanczos': return Image.LANCZOS elif method == 'hamming': return Image.HAMMING else: # default bilinear, do we want to allow nearest? return Image.BILINEAR _RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC) class RandomResizedCropAndInterpolationWithTwoPic: """Crop the given PIL Image to random size and aspect ratio with random interpolation. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, second_size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation='bilinear', second_interpolation='lanczos'): if isinstance(size, tuple): self.size = size else: self.size = (size, size) if second_size is not None: if isinstance(second_size, tuple): self.second_size = second_size else: self.second_size = (second_size, second_size) else: self.second_size = None if (scale[0] > scale[1]) or (ratio[0] > ratio[1]): warnings.warn("range should be of kind (min, max)") if interpolation == 'random': self.interpolation = _RANDOM_INTERPOLATION else: self.interpolation = _pil_interp(interpolation) self.second_interpolation = _pil_interp(second_interpolation) if second_interpolation is not None else None self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ area = img.size[0] * img.size[1] for attempt in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback to central crop in_ratio = img.size[0] / img.size[1] if in_ratio < min(ratio): w = img.size[0] h = int(round(w / min(ratio))) elif in_ratio > max(ratio): h = img.size[1] w = int(round(h * max(ratio))) else: # whole image w = img.size[0] h = img.size[1] i = (img.size[1] - h) // 2 j = (img.size[0] - w) // 2 return i, j, h, w def __call__(self, img): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) if isinstance(self.interpolation, (tuple, list)): interpolation = random.choice(self.interpolation) else: interpolation = self.interpolation if self.second_size is None: return F.resized_crop(img, i, j, h, w, self.size, interpolation) else: return F.resized_crop(img, i, j, h, w, self.size, interpolation), \ F.resized_crop(img, i, j, h, w, self.second_size, self.second_interpolation) def __repr__(self): if isinstance(self.interpolation, (tuple, list)): interpolate_str = ' '.join([_pil_interpolation_to_str[x] for x in self.interpolation]) else: interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0}'.format(interpolate_str) if self.second_size is not None: format_string += ', second_size={0}'.format(self.second_size) format_string += ', second_interpolation={0}'.format(_pil_interpolation_to_str[self.second_interpolation]) format_string += ')' return format_string
data2vec_vision-main
beit/transforms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' import math import sys from typing import Iterable import torch import torch.nn as nn import utils def train_one_epoch(model: torch.nn.Module, d_vae: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples, images, bool_masked_pos = batch images = images.to(device, non_blocking=True) samples = samples.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) with torch.no_grad(): input_ids = d_vae.get_codebook_indices(images).flatten(1) bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool) labels = input_ids[bool_masked_pos] with torch.cuda.amp.autocast(): outputs = model(samples, bool_masked_pos=bool_masked_pos, return_all_tokens=False) loss = nn.CrossEntropyLoss()(input=outputs, target=labels) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() mlm_acc = (outputs.max(-1)[1] == labels).float().mean().item() metric_logger.update(mlm_acc=mlm_acc) if log_writer is not None: log_writer.update(mlm_acc=mlm_acc, head="loss") metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
data2vec_vision-main
beit/engine_for_pretraining.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import sys from typing import Iterable import torch import torch.nn as nn import torch.nn.functional as F import utils def train_one_epoch(model: torch.nn.Module, model_ema: torch.nn.Module, ema_start_at, target_layers, d_vae: torch.nn.Module, vae_loss_weight: float, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, l1_beta: float = 0.12, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, l2_loss=False): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('loss_cyc', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('loss_beit', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] samples, images, bool_masked_pos = batch images = images.to(device, non_blocking=True) samples = samples.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) with torch.no_grad(): targets = model_ema.module(samples, bool_masked_pos=None, return_all_tokens=True, layer_results=True) fsz = targets[0].size(-1) targets = sum(F.layer_norm(targets[i], (fsz,)) for i in target_layers) / len(target_layers) fsz = targets.size(-1) target_mask = bool_masked_pos.flatten().bool() targets = targets.reshape(-1, fsz)[target_mask] # beit part input_ids = d_vae.get_codebook_indices(images).flatten(1) bool_masked_pos = bool_masked_pos.flatten(1).to(torch.bool) labels = input_ids[bool_masked_pos] with torch.cuda.amp.autocast(): outputs, beit_outputs = model(samples, bool_masked_pos=bool_masked_pos, return_all_tokens=False) outputs = outputs.reshape(-1, fsz) assert outputs.shape == targets.shape if l2_loss: cyc_loss = F.mse_loss(outputs, targets) else: cyc_loss = F.smooth_l1_loss(outputs, targets, beta=l1_beta) # beit part beit_loss = nn.CrossEntropyLoss()(input=beit_outputs, target=labels) # loss = cyc_loss / (vae_loss_weight + 1) + beit_loss * vae_loss_weight / (vae_loss_weight + 1) beit_w = max(1 - (epoch / vae_loss_weight), 0) loss = cyc_loss * (1 - beit_w) + beit_loss * beit_w loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] if it == ema_start_at and ema_start_at > 0: print(f"setting EMA to model params at update {it}") model_ema.set(model) elif it >= ema_start_at: model_ema.update(model) torch.cuda.synchronize() metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) metric_logger.update(loss_cyc=cyc_loss.item()) metric_logger.update(loss_beit=beit_loss.item()) # metric_logger.update(loss_cyc=cyc_loss.item(), head="loss_cyc") # metric_logger.update(loss_beit=beit_loss.item(), head="loss_beit") min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") log_writer.update(loss=cyc_loss.item(), head="loss_cyc") log_writer.update(loss=beit_loss.item(), head="loss_beit") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
data2vec_vision-main
beit/engine_for_cyclical_joint.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import torch import torch.nn as nn from functools import partial from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias from timm.models.registry import register_model from timm.models.layers import trunc_normal_ as __call_trunc_normal_ def trunc_normal_(tensor, mean=0., std=1.): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) __all__ = [ 'beit_base_patch16_224_8k_vocab', 'beit_large_patch16_224_8k_vocab', ] class VisionTransformerForMaskedImageModeling(nn.Module): def __init__(self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(depth)]) self.norm = norm_layer(embed_dim) self.init_std = init_std self.lm_head = nn.Linear(embed_dim, vocab_size) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.init_std) trunc_normal_(self.cls_token, std=self.init_std) trunc_normal_(self.mask_token, std=self.init_std) trunc_normal_(self.lm_head.weight, std=self.init_std) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=self.init_std) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_num_layers(self): return len(self.blocks) def forward_features(self, x, bool_masked_pos): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None for blk in self.blocks: x, _ = blk(x, rel_pos_bias=rel_pos_bias) return self.norm(x) def forward(self, x, bool_masked_pos, return_all_tokens=False): x = self.forward_features(x, bool_masked_pos=bool_masked_pos) x = x[:, 1:] if return_all_tokens: return self.lm_head(x) else: # return the masked tokens return self.lm_head(x[bool_masked_pos]) @register_model def beit_base_patch16_224_8k_vocab(pretrained=False, **kwargs): _ = kwargs.pop("num_classes") model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model @register_model def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs): _ = kwargs.pop("num_classes") model = VisionTransformerForMaskedImageModeling( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load( kwargs["init_ckpt"], map_location="cpu" ) model.load_state_dict(checkpoint["model"]) return model
data2vec_vision-main
beit/modeling_pretrain.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import torch import torch.nn as nn from functools import partial from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias from timm.models.registry import register_model from timm.models.layers import trunc_normal_ as __call_trunc_normal_ def trunc_normal_(tensor, mean=0.0, std=1.0): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) __all__ = [ "beit_base_patch16_224", # 'beit_large_patch16_224_8k_vocab', ] class VisionTransformerForCyclicalTraining(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02, ): super().__init__() self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias( window_size=self.patch_embed.patch_shape, num_heads=num_heads ) else: self.rel_pos_bias = None dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) self.init_std = init_std # self.lm_head = nn.Sequential( # nn.Linear(embed_dim, embed_dim * 2), # nn.GELU(), # nn.Linear(embed_dim * 2, embed_dim), # ) # self.lm_head = nn.Sequential( # nn.Linear(embed_dim, embed_dim), # ) self.lm_head = nn.Linear(embed_dim, embed_dim) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.init_std) trunc_normal_(self.cls_token, std=self.init_std) trunc_normal_(self.mask_token, std=self.init_std) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=self.init_std) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def get_num_layers(self): return len(self.blocks) def forward_features(self, x, bool_masked_pos, layer_results): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) if bool_masked_pos is not None: # replace the masked visual tokens by mask_token w = bool_masked_pos.view(bool_masked_pos.size(0), -1, 1).type_as(mask_token) x = x * (1 - w) + mask_token * w # B x T x C # print(bool_masked_pos.shape) # print(bool_masked_pos.sum((1,2))) # print('x', x.shape) # bool_masked = bool_masked_pos.reshape(bool_masked_pos.size(0), -1).bool() # print('bool_masked', bool_masked.shape) # print('asd1', x[bool_masked].shape) # exit(0) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None z = [] for i, blk in enumerate(self.blocks): x, fc_feature = blk(x, rel_pos_bias=rel_pos_bias) if layer_results == 'end': z.append(x) elif layer_results == 'fc': z.append(fc_feature) return z if layer_results else self.norm(x) def forward(self, x, bool_masked_pos, return_all_tokens=False, layer_results=None): x = self.forward_features( x, bool_masked_pos=bool_masked_pos, layer_results=layer_results ) if layer_results: return [z[:, 1:] for z in x] elif return_all_tokens: x = x[:, 1:] return self.lm_head(x) else: # return the masked tokens x = x[:, 1:] bsz = x.size(0) fsz = x.size(-1) bool_masked_pos = bool_masked_pos.flatten().bool() x = x.reshape(-1, fsz)[bool_masked_pos] return self.lm_head(x) @register_model def beit_base_patch16_224(pretrained=False, **kwargs): # _ = kwargs.pop("num_classes") model = VisionTransformerForCyclicalTraining( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs): # _ = kwargs.pop("num_classes") model = VisionTransformerForCyclicalTraining( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def beit_huge_patch16_224(pretrained=False, **kwargs): # _ = kwargs.pop("num_classes") model = VisionTransformerForCyclicalTraining( patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model # @register_model # def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs): # _ = kwargs.pop("num_classes") # model = VisionTransformerForMaskedImageModeling( # patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, # norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) # model.default_cfg = _cfg() # if pretrained: # checkpoint = torch.load( # kwargs["init_ckpt"], map_location="cpu" # ) # model.load_state_dict(checkpoint["model"]) # return model
data2vec_vision-main
beit/modeling_cyclical.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import os import torch from torchvision import datasets, transforms from timm.data.constants import \ IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from transforms import RandomResizedCropAndInterpolationWithTwoPic from timm.data import create_transform from dall_e.utils import map_pixels from masking_generator import MaskingGenerator from dataset_folder import ImageFolder from PIL import Image class DataAugmentationForBEiT(object): def __init__(self, args): imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if args.aug_level == 0: print(' >>>>>> args.aug_level', args.aug_level) self.common_transform = transforms.Compose([ transforms.CenterCrop(size=args.input_size) ]) elif args.aug_level == 1: print(' >>>>>> args.aug_level', args.aug_level) self.common_transform = transforms.Compose([ transforms.Resize(size=int(args.input_size / .875), interpolation=Image.BICUBIC), transforms.CenterCrop(size=args.input_size) ]) elif args.aug_level == 2: print(' >>>>>> args.aug_level', args.aug_level) self.common_transform = transforms.Compose([ transforms.RandomHorizontalFlip(p=0.5), transforms.Resize(size=int(args.input_size / .875), interpolation=Image.BICUBIC), transforms.CenterCrop(size=args.input_size) ]) elif args.aug_level == 3: print(' >>>>>> args.aug_level', args.aug_level) self.common_transform = transforms.Compose([ transforms.RandomHorizontalFlip(p=0.5), transforms.RandomResizedCrop(size=args.input_size, interpolation=Image.BICUBIC) ]) elif args.aug_level == 4: print(' >>>>>> args.aug_level', args.aug_level) self.common_transform = transforms.Compose([ transforms.ColorJitter(0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(p=0.5), transforms.RandomResizedCrop(size=args.input_size, interpolation=Image.BICUBIC) ]) else: self.common_transform = transforms.Compose([ transforms.ColorJitter(0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(p=0.5), RandomResizedCropAndInterpolationWithTwoPic( size=args.input_size, second_size=getattr(args, 'second_input_size', None), interpolation=args.train_interpolation, second_interpolation=getattr(args, 'second_interpolation', None), ), ]) self.patch_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=torch.tensor(mean), std=torch.tensor(std)) ]) if getattr(args, 'discrete_vae_type', None) is None: self.visual_token_transform = lambda z: z elif args.discrete_vae_type == "dall-e": self.visual_token_transform = transforms.Compose([ transforms.ToTensor(), map_pixels, ]) elif args.discrete_vae_type == "customized": self.visual_token_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD, ), ]) else: raise NotImplementedError() self.masked_position_generator = MaskingGenerator( args.window_size, num_masking_patches=args.num_mask_patches, max_num_patches=args.max_mask_patches_per_block, min_num_patches=args.min_mask_patches_per_block, ) def __call__(self, image): z = self.common_transform(image) if isinstance(z, tuple): for_patches, for_visual_tokens = z return \ self.patch_transform(for_patches), self.visual_token_transform(for_visual_tokens), \ self.masked_position_generator() else: return self.patch_transform(z), self.masked_position_generator() def __repr__(self): repr = "(DataAugmentationForBEiT,\n" repr += " common_transform = %s,\n" % str(self.common_transform) repr += " patch_transform = %s,\n" % str(self.patch_transform) repr += " visual_tokens_transform = %s,\n" % str(self.visual_token_transform) repr += " Masked position generator = %s,\n" % str(self.masked_position_generator) repr += ")" return repr def build_beit_pretraining_dataset(args): transform = DataAugmentationForBEiT(args) print("Data Aug = %s" % str(transform)) return ImageFolder(args.data_path, transform=transform) def build_dataset(is_train, args): transform = build_transform(is_train, args) print("Transform = ") if isinstance(transform, tuple): for trans in transform: print(" - - - - - - - - - - ") for t in trans.transforms: print(t) else: for t in transform.transforms: print(t) print("---------------------------") is_valid_file = None if is_train: file_filter = getattr(args, "data_set_filter_file", None) if file_filter is not None: files = set() with open(file_filter) as ff: for l in ff: files.add(l.rstrip()) is_valid_file = lambda p: os.path.basename(p) in files if args.data_set == 'CIFAR': dataset = datasets.CIFAR100(args.data_path, train=is_train, transform=transform) nb_classes = 100 elif args.data_set == 'IMNET': root = os.path.join(args.data_path, 'train' if is_train else 'val') dataset = datasets.ImageFolder(root, transform=transform, is_valid_file=is_valid_file) nb_classes = 1000 elif args.data_set == "image_folder": root = args.data_path if is_train else args.eval_data_path dataset = ImageFolder(root, transform=transform, is_valid_file=is_valid_file) nb_classes = args.nb_classes assert len(dataset.class_to_idx) == nb_classes else: raise NotImplementedError() assert nb_classes == args.nb_classes, f"{nb_classes} != {args.nb_classes}" print("Number of the class = %d" % args.nb_classes) return dataset, nb_classes def build_transform(is_train, args): resize_im = args.input_size > 32 imagenet_default_mean_and_std = args.imagenet_default_mean_and_std mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=args.input_size, is_training=True, color_jitter=args.color_jitter, auto_augment=args.aa, interpolation=args.train_interpolation, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, mean=mean, std=std, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop( args.input_size, padding=4) return transform t = [] if resize_im: if args.crop_pct is None: if args.input_size < 384: args.crop_pct = 224 / 256 else: args.crop_pct = 1.0 size = int(args.input_size / args.crop_pct) t.append( transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(args.input_size)) t.append(transforms.ToTensor()) t.append(transforms.Normalize(mean, std)) return transforms.Compose(t)
data2vec_vision-main
beit/datasets.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import torch import torch.nn as nn from functools import partial from modeling_finetune import Block, _cfg, PatchEmbed, RelativePositionBias from timm.models.registry import register_model from timm.models.layers import trunc_normal_ as __call_trunc_normal_ def trunc_normal_(tensor, mean=0.0, std=1.0): __call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std) __all__ = [ "beit_base_joint_patch16_224", # 'beit_large_patch16_224_8k_vocab', ] class VisionTransformerForCyclicalJointTraining(nn.Module): def __init__( self, img_size=224, patch_size=16, in_chans=3, vocab_size=8192, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=None, init_values=None, attn_head_dim=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, init_std=0.02, ): super().__init__() self.num_features = ( self.embed_dim ) = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias( window_size=self.patch_embed.patch_shape, num_heads=num_heads ) else: self.rel_pos_bias = None dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, depth) ] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, attn_head_dim=attn_head_dim, ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) self.init_std = init_std self.lm_head = nn.Sequential( nn.Linear(embed_dim, embed_dim * 2), nn.GELU(), nn.Linear(embed_dim * 2, embed_dim), ) self.beit_head = nn.Linear(embed_dim, vocab_size) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=self.init_std) trunc_normal_(self.cls_token, std=self.init_std) trunc_normal_(self.mask_token, std=self.init_std) trunc_normal_(self.beit_head.weight, std=self.init_std) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=self.init_std) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) elif isinstance(m, nn.Conv2d): trunc_normal_(m.weight, std=self.init_std) if m.bias is not None: nn.init.constant_(m.bias, 0) @torch.jit.ignore def no_weight_decay(self): return {"pos_embed", "cls_token"} def get_num_layers(self): return len(self.blocks) def forward_features(self, x, bool_masked_pos, layer_results): x = self.patch_embed(x, bool_masked_pos=bool_masked_pos) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand( batch_size, -1, -1 ) # stole cls_tokens impl from Phil Wang, thanks mask_token = self.mask_token.expand(batch_size, seq_len, -1) if bool_masked_pos is not None: # replace the masked visual tokens by mask_token w = bool_masked_pos.view(bool_masked_pos.size(0), -1, 1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None z = [] for i, blk in enumerate(self.blocks): x, _ = blk(x, rel_pos_bias=rel_pos_bias) if layer_results: z.append(x) return z if layer_results else self.norm(x) def forward(self, x, bool_masked_pos, return_all_tokens=False, layer_results=False): x = self.forward_features( x, bool_masked_pos=bool_masked_pos, layer_results=layer_results ) if layer_results: return [z[:, 1:] for z in x] elif return_all_tokens: x = x[:, 1:] return self.lm_head(x), self.beit_head(x) else: # return the masked tokens x = x[:, 1:] bsz = x.size(0) fsz = x.size(-1) bool_masked_pos = bool_masked_pos.flatten().bool() x = x.reshape(-1, fsz)[bool_masked_pos] return self.lm_head(x), self.beit_head(x) @register_model def beit_base_joint_patch16_224(pretrained=False, **kwargs): _ = kwargs.pop("num_classes") model = VisionTransformerForCyclicalJointTraining( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs ) model.default_cfg = _cfg() if pretrained: checkpoint = torch.load(kwargs["init_ckpt"], map_location="cpu") model.load_state_dict(checkpoint["model"]) return model # @register_model # def beit_large_patch16_224_8k_vocab(pretrained=False, **kwargs): # _ = kwargs.pop("num_classes") # model = VisionTransformerForMaskedImageModeling( # patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, # norm_layer=partial(nn.LayerNorm, eps=1e-6), vocab_size=8192, **kwargs) # model.default_cfg = _cfg() # if pretrained: # checkpoint = torch.load( # kwargs["init_ckpt"], map_location="cpu" # ) # model.load_state_dict(checkpoint["model"]) # return model
data2vec_vision-main
beit/modeling_cyclical_joint.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math import sys from typing import Iterable import torch import torch.nn.functional as F import utils def train_one_epoch(model: torch.nn.Module, model_ema: torch.nn.Module, ema_start_at, decay_init, decay, target_layers, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, loss_scaler, max_norm: float = 0, l1_beta: float = 0.12, log_writer=None, lr_scheduler=None, start_steps=None, lr_schedule_values=None, wd_schedule_values=None, l2_loss=False, layer_results='end', var_w0=0, var_w1=0, var_margin0=0.5, var_margin1=0.5, start_lr_decay_at_step=-1,loss_scale=-1, mask_dropout_prob=-1.0, target_layer_norm_last=True, target_batch_norm=False, target_instance_norm=False,post_target_instance_norm=False,post_target_layer_norm=False): print(' <<<<<<<< layer_results >>>>>>>>', layer_results) print(' <<<<<<<< var_w0, var_w1 >>>>>>>>', var_w0, var_w1) model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('loss_var0', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) # metric_logger.add_meter('loss_var1', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 cur_decay = decay for step, (batch, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): # assign learning rate & weight decay for each step it = start_steps + step # global training iteration if lr_schedule_values is not None or wd_schedule_values is not None: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] if wd_schedule_values is not None and param_group["weight_decay"] > 0: param_group["weight_decay"] = wd_schedule_values[it] if it < ema_start_at: cur_decay = decay_init + it * (decay - decay_init) / ema_start_at samples, bool_masked_pos = batch samples = samples.to(device, non_blocking=True) bool_masked_pos = bool_masked_pos.to(device, non_blocking=True) if mask_dropout_prob > 0: new_mask_tensor = torch.ones_like(bool_masked_pos, dtype=samples.dtype) new_mask_tensor.fill_(1-mask_dropout_prob) bool_new_mask_tensor = torch.bernoulli(new_mask_tensor) bool_masked_pos = torch.logical_and(bool_new_mask_tensor, bool_masked_pos) with torch.no_grad(): targets = model_ema.module(samples, bool_masked_pos=None, return_all_tokens=True, layer_results=layer_results) fsz = targets[0].size(-1) #shape of targets[0] == b x t x dim layer_vals = [targets[i] for i in target_layers] if target_instance_norm or target_batch_norm: layer_vals = [val.permute(0,2,1) for val in layer_vals] # btc => bct if target_batch_norm: layer_vals = [F.batch_norm(val.float(), running_mean=None, running_var=None, training=True) for val in layer_vals] # bct => bct if target_instance_norm: layer_vals = [F.instance_norm(val.float()) for val in layer_vals] # bct => bct if target_instance_norm or target_batch_norm: layer_vals = [val.permute(0,2,1) for val in layer_vals] # bct => btc if target_layer_norm_last: layer_vals = (F.layer_norm(val.float(), (fsz,)) for val in layer_vals) targets = sum(layer_vals) / len(target_layers) if post_target_instance_norm: targets = targets.permute(0,2,1) targets = F.instance_norm(targets.float()) targets = targets.permute(0,2,1) if post_target_layer_norm: targets = F.layer_norm(targets.float(), (fsz,)) fsz = targets.size(-1) target_mask = bool_masked_pos.flatten().bool() targets = targets.reshape(-1, fsz)[target_mask] with torch.cuda.amp.autocast(): outputs = model(samples, bool_masked_pos=bool_masked_pos, return_all_tokens=False) outputs = outputs.float() eps=1e-6 z0 = outputs.reshape(-1, outputs.size(-1)) z0 = torch.sqrt(z0.var(dim=0) + eps) if var_w0 > 0: std_loss0 = torch.sum(F.relu(var_margin0 - z0)) / z0.size(0) else: std_loss0 = 0 # z1 = torch.sqrt(outputs.var(dim=1) + eps) # std_loss1 = torch.sum(F.relu(var_margin1 - z1)) / outputs.size(0) # print(outputs.shape) outputs = outputs.reshape(-1, fsz) assert outputs.shape == targets.shape if l2_loss: loss_cyc = F.mse_loss(outputs, targets) else: loss_cyc = F.smooth_l1_loss(outputs, targets, beta=l1_beta) # loss = loss_cyc + std_loss0 * var_w0 + std_loss1 * var_w1 loss = loss_cyc + std_loss0 * var_w0 if loss_scale!=-1: loss = loss * loss_scale loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value), force=True) sys.exit(1) optimizer.zero_grad() # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order) loss_scale_value = loss_scaler.state_dict()["scale"] # if it == ema_start_at and ema_start_at > 0: # print(f"setting EMA to model params at update {it}") # model_ema.set(model) # elif it >= ema_start_at: # model_ema.update(model) if cur_decay!=1 and (start_lr_decay_at_step==-1 or it<=start_lr_decay_at_step): model_ema._update(model, update_fn=lambda e, m: cur_decay * e + (1. - cur_decay) * m) else: cur_decay=0 torch.cuda.synchronize() metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) metric_logger.update(loss_var0=std_loss0) # metric_logger.update(loss_var1=std_loss1) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) metric_logger.update(cur_decay=cur_decay) if log_writer is not None: log_writer.update(loss=loss_value, head="loss") # log_writer.update(std_loss0=std_loss0.item(), head="std_loss0") # log_writer.update(std_loss1=std_loss1.item(), head="std_loss1") log_writer.update(loss_scale=loss_scale_value, head="opt") log_writer.update(lr=max_lr, head="opt") log_writer.update(min_lr=min_lr, head="opt") log_writer.update(weight_decay=weight_decay_value, head="opt") log_writer.update(grad_norm=grad_norm, head="opt") log_writer.update(cur_decay=cur_decay, head="cur_decay") log_writer.set_step() if lr_scheduler is not None: lr_scheduler.step_update(start_steps + step) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
data2vec_vision-main
beit/engine_for_cyclical.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from timm.utils import ModelEmaV2 from optim_factory import create_optimizer from datasets import build_beit_pretraining_dataset from engine_for_cyclical import train_one_epoch from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate import modeling_cyclical def get_args(): parser = argparse.ArgumentParser("BEiT pre-training script", add_help=False) parser.add_argument("--batch_size", default=64, type=int) parser.add_argument("--epochs", default=300, type=int) parser.add_argument("--save_ckpt_freq", default=10, type=int) # Model parameters parser.add_argument( "--model", default="deit_base_patch16_224", type=str, metavar="MODEL", help="Name of model to train", ) parser.add_argument("--rel_pos_bias", action="store_true") parser.add_argument( "--disable_rel_pos_bias", action="store_false", dest="rel_pos_bias" ) parser.set_defaults(rel_pos_bias=True) parser.add_argument("--abs_pos_emb", action="store_true") parser.set_defaults(abs_pos_emb=False) parser.add_argument( "--layer_scale_init_value", default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale", ) parser.add_argument( "--num_mask_patches", default=75, type=int, help="number of the visual tokens/patches need be masked", ) parser.add_argument("--max_mask_patches_per_block", type=int, default=None) parser.add_argument("--min_mask_patches_per_block", type=int, default=16) parser.add_argument( "--input_size", default=224, type=int, help="images input size for backbone" ) parser.add_argument( "--drop_path", type=float, default=0.1, metavar="PCT", help="Drop path rate (default: 0.1)", ) # Optimizer parameters parser.add_argument( "--opt", default="adamw", type=str, metavar="OPTIMIZER", help='Optimizer (default: "adamw"', ) parser.add_argument( "--opt_eps", default=1e-8, type=float, metavar="EPSILON", help="Optimizer Epsilon (default: 1e-8)", ) parser.add_argument( "--opt_betas", default=None, type=float, nargs="+", metavar="BETA", help="Optimizer Betas (default: None, use opt default)", ) parser.add_argument( "--clip_grad", type=float, default=None, metavar="NORM", help="Clip gradient norm (default: None, no clipping)", ) parser.add_argument( "--momentum", type=float, default=0.9, metavar="M", help="SGD momentum (default: 0.9)", ) parser.add_argument( "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" ) parser.add_argument( "--weight_decay_end", type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""", ) parser.add_argument( "--lr", type=float, default=5e-4, metavar="LR", help="learning rate (default: 5e-4)", ) parser.add_argument( "--warmup_lr", type=float, default=1e-6, metavar="LR", help="warmup learning rate (default: 1e-6)", ) parser.add_argument( "--min_lr", type=float, default=1e-5, metavar="LR", help="lower lr bound for cyclic schedulers that hit 0 (1e-5)", ) parser.add_argument( "--tri_phase_schedule", type=str, default=None, help="string containing a tuple with phase ratios for warmup and decay. e.g. '(0.05,0.15) means 5% warmup, 80% hold, 15% decay", ) parser.add_argument( "--warmup_epochs", type=int, default=5, metavar="N", help="epochs to warmup LR, if scheduler supports", ) parser.add_argument( "--warmup_steps", type=int, default=-1, metavar="N", help="epochs to warmup LR, if scheduler supports", ) # Augmentation parameters parser.add_argument( "--color_jitter", type=float, default=0.4, metavar="PCT", help="Color jitter factor (default: 0.4)", ) parser.add_argument( "--train_interpolation", type=str, default="bicubic", help='Training interpolation (random, bilinear, bicubic default: "bicubic")', ) parser.add_argument("--aug_level", default=-1, type=int) parser.add_argument( "--target_layers", type=str, default="[]", help="target layers (python list)" ) # Dataset parameters parser.add_argument( "--data_path", default="/datasets01/imagenet_full_size/061417/", type=str, help="dataset path", ) parser.add_argument( "--imagenet_default_mean_and_std", default=False, action="store_true" ) parser.add_argument( "--output_dir", default="", help="path where to save, empty for no saving" ) parser.add_argument("--log_dir", default=None, help="path where to tensorboard log") parser.add_argument( "--device", default="cuda", help="device to use for training / testing" ) parser.add_argument("--seed", default=0, type=int) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument("--auto_resume", action="store_true") parser.add_argument("--no_auto_resume", action="store_false", dest="auto_resume") parser.set_defaults(auto_resume=True) parser.add_argument("--ema_decay_init", default=0.999, type=float) parser.add_argument("--ema_decay", default=0.9998, type=float) parser.add_argument("--ema_start_at", default=25000, type=int) parser.add_argument( "--start_epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--num_workers", default=10, type=int) parser.add_argument( "--pin_mem", action="store_true", help="Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.", ) parser.add_argument("--no_pin_mem", action="store_false", dest="pin_mem", help="") parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument( "--world_size", default=1, type=int, help="number of distributed processes" ) parser.add_argument("--local_rank", default=-1, type=int) parser.add_argument("--dist_on_itp", action="store_true") parser.add_argument( "--dist_url", default="env://", help="url used to set up distributed training" ) parser.add_argument("--seed_model", default=None, type=str, help="seed model") parser.add_argument("--model_key", default="model|module", type=str) parser.add_argument("--model_prefix", default="", type=str) parser.add_argument("--l2_loss", default=False, action="store_true") parser.add_argument("--l1_beta", default=0.12, type=float) parser.add_argument("--layer_results", default="end", type=str) parser.add_argument("--var_w0", default=0., type=float) parser.add_argument("--var_w1", default=0., type=float) parser.add_argument("--var_margin0", default=0.5, type=float) parser.add_argument("--var_margin1", default=0.5, type=float) parser.add_argument("--skip_ema_during_lr_decay_for_tri", action="store_true") parser.add_argument("--loss_scale", default=-1, type=float) parser.add_argument("--ema_annealing_till_end", default=False, action="store_true") parser.add_argument("--attn_drop_rate", default=0.0, type=float) parser.add_argument("--mask_dropout_prob", default=-1.0, type=float, help="prob of flipping already masked position to unmasked") #target_layer_norm_last=True, target_batch_norm=False, target_instance_norm=False parser.add_argument("--no_target_layer_norm_last", default=False, action="store_true") parser.add_argument("--target_batch_norm", default=False, action="store_true") parser.add_argument("--target_instance_norm", default=False, action="store_true") parser.add_argument("--post_target_instance_norm", default=False, action="store_true") parser.add_argument("--post_target_layer_norm", default=False, action="store_true") return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, attn_drop_rate=args.attn_drop_rate, ) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = ( args.input_size // patch_size[0], args.input_size // patch_size[1], ) args.patch_size = patch_size if args.seed_model: checkpoint = torch.load(args.seed_model, map_location="cpu") print("Load ckpt from %s" % args.seed_model) checkpoint_model = None for model_key in args.model_key.split("|"): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ["head.weight", "head.bias"]: if ( k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape ): print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * ( dst_patch_shape[1] * 2 - 1 ) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print( "Position interpolate for %s from %dx%d to %dx%d" % (key, src_size, src_size, dst_size, dst_size) ) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind="cubic") all_rel_pos_bias.append( torch.Tensor(f(dx, dy)) .contiguous() .view(-1, 1) .to(rel_pos_bias.device) ) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if "pos_embed" in checkpoint_model: pos_embed_checkpoint = checkpoint_model["pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print( "Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size) ) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape( -1, orig_size, orig_size, embedding_size ).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False, ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model["pos_embed"] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # get dataset dataset_train = build_beit_pretraining_dataset(args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = ( len(dataset_train) // args.batch_size // num_tasks ) print("pre-sampler", num_tasks, global_rank, sampler_rank) sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print("number of params:", n_parameters) model_ema = ModelEmaV2(model, decay=args.ema_decay) print("Using EMA with decay = %.8f" % args.ema_decay) total_batch_size = args.batch_size * utils.get_world_size() print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print( "Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch) ) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=True ) model_without_ddp = model.module optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() start_lr_decay_at_step = -1 if args.tri_phase_schedule is not None: from ast import literal_eval warmup_phase, decay_phase = literal_eval(args.tri_phase_schedule) print("Use tri phase lr schedule!", warmup_phase, decay_phase) lr_schedule_values = utils.tri_phase_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_perc=warmup_phase, decay_perc=decay_phase, ) if args.skip_ema_during_lr_decay_for_tri: start_lr_decay_at_step= (1-decay_phase)*args.epochs*num_training_steps_per_epoch print("ema will be skipped after "+str(start_lr_decay_at_step)+" updates") else: print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch, ) print( "Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)) ) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema, ) from ast import literal_eval target_layers = literal_eval(args.target_layers) assert len(target_layers) > 0 print(f"target layers: {target_layers}") print(f"Start training for {args.epochs} epochs") if args.ema_annealing_till_end: args.ema_start_at = args.epochs * num_training_steps_per_epoch print(f"EMA annealing till the end activated") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, model_ema, args.ema_start_at, args.ema_decay_init, args.ema_decay, target_layers, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, l1_beta=args.l1_beta, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, l2_loss=args.l2_loss, layer_results=args.layer_results, var_w0=args.var_w0, var_w1=args.var_w1, var_margin0=args.var_margin0, var_margin1=args.var_margin1, start_lr_decay_at_step=start_lr_decay_at_step, loss_scale=args.loss_scale, mask_dropout_prob=args.mask_dropout_prob, target_layer_norm_last=not args.no_target_layer_norm_last, target_batch_norm=args.target_batch_norm, target_instance_norm=args.target_instance_norm, post_target_instance_norm=args.post_target_instance_norm, post_target_layer_norm=args.post_target_layer_norm ) if args.output_dir: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, ) log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, "epoch": epoch, "n_parameters": n_parameters, } if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open( os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" ) as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) if __name__ == "__main__": opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
data2vec_vision-main
beit/run_cyclical.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import argparse import datetime import numpy as np import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.data.mixup import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import ModelEma from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner from datasets import build_dataset from engine_for_finetuning import train_one_epoch, evaluate from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate import modeling_finetune def get_args(): parser = argparse.ArgumentParser('BEiT fine-tuning and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=30, type=int) parser.add_argument('--update_freq', default=1, type=int) parser.add_argument('--save_ckpt_freq', default=5, type=int) # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', help='Attention dropout rate (default: 0.)') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) parser.add_argument('--model_ema', action='store_true', default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--layer_decay', type=float, default=0.9) parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--model_key', default='model|module', type=str) parser.add_argument('--model_prefix', default='', type=str) parser.add_argument('--init_scale', default=0.001, type=float) parser.add_argument('--use_mean_pooling', action='store_true') parser.set_defaults(use_mean_pooling=True) parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') parser.add_argument('--disable_weight_decay_on_rel_pos_bias', action='store_true', default=False) parser.add_argument('--target_layer', default=-1, type=int, help="target output layer (0-based)") parser.add_argument('--remove_final_norm', action='store_true', dest='remove_final_norm') parser.add_argument('--reinit_final_norm', action='store_true', dest='reinit_final_norm') parser.add_argument('--learn_layer_weights', action='store_true', dest='learn_layer_weights') # supersede `target_layer` parser.add_argument('--layernorm_before_combine', action='store_true', dest='layernorm_before_combine') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=0, type=int, help='number of the classification types') parser.add_argument('--linear_classifier', action='store_true', help='linear classifier') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'], type=str, help='ImageNet dataset path') parser.add_argument('--data_set_filter_file', type=str, default=None, help="path to filter to filter dataset") parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--save_ckpt', action='store_true') parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') parser.set_defaults(save_ckpt=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--enable_deepspeed', action='store_true', default=False) parser.add_argument( "--num_mask_patches", default=0, type=int, help="number of the visual tokens/patches need be masked", ) parser.add_argument("--max_mask_patches_per_block", type=int, default=None) parser.add_argument("--min_mask_patches_per_block", type=int, default=16) known_args, _ = parser.parse_known_args() if known_args.enable_deepspeed: try: import deepspeed from deepspeed import DeepSpeedConfig parser = deepspeed.add_config_arguments(parser) ds_init = deepspeed.initialize except: print("Please 'pip install deepspeed==0.4.0'") exit(0) else: ds_init = None return parser.parse_args(), ds_init def main(args, ds_init): utils.init_distributed_mode(args) if ds_init is not None: utils.create_ds_config(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) if args.disable_eval_during_finetuning: dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, args=args) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: data_loader_val = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, attn_drop_rate=args.attn_drop_rate, drop_block_rate=None, use_mean_pooling=args.use_mean_pooling, init_scale=args.init_scale, use_rel_pos_bias=False, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, linear_classifier=args.linear_classifier, has_masking=args.num_mask_patches > 0, learn_layer_weights=args.learn_layer_weights, layernorm_before_combine=args.layernorm_before_combine, ) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size masked_position_generator = None if args.num_mask_patches > 0: from masking_generator import MaskingGenerator masked_position_generator = MaskingGenerator( args.window_size, num_masking_patches=args.num_mask_patches, max_num_patches=args.max_mask_patches_per_block, min_num_patches=args.min_mask_patches_per_block, ) if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] if args.reinit_final_norm: for k in ['norm.weight', 'norm.bias', 'fc_norm.weight', 'fc_norm.bias']: if k in checkpoint_model: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] if model.use_rel_pos_bias and "rel_pos_bias.relative_position_bias_table" in checkpoint_model: print("Expand the shared relative position embedding to each transformer block. ") num_layers = model.get_num_layers() rel_pos_bias = checkpoint_model["rel_pos_bias.relative_position_bias_table"] for i in range(num_layers): checkpoint_model["blocks.%d.attn.relative_position_bias_table" % i] = rel_pos_bias.clone() checkpoint_model.pop("rel_pos_bias.relative_position_bias_table") all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if 'pos_embed' in checkpoint_model: pos_embed_checkpoint = checkpoint_model['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model['pos_embed'] = new_pos_embed if not args.learn_layer_weights and args.target_layer != -1: print(f"model target layer is {args.target_layer}") model.blocks = model.blocks[:args.target_layer+1] if args.remove_final_norm: print(f"removing final norm by replacing it with Identity") model.norm = None if model.norm is None else nn.Identity() model.fc_norm = None if model.fc_norm is None else nn.Identity() if args.linear_classifier: frozen_params = ( set(n for n, _ in model.named_parameters()) & set(checkpoint_model.keys()) ) for n, p in model.named_parameters(): if n in frozen_params: p.requires_grad_(False) param_names = [n for n, p in model.named_parameters() if p.requires_grad] print(f"Trainable weights: {param_names}") utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # model.load_state_dict(checkpoint_model, strict=False) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() num_training_steps_per_epoch = len(dataset_train) // total_batch_size print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) num_layers = model_without_ddp.get_num_layers() if args.layer_decay < 1.0: assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) skip_weight_decay_list = model.no_weight_decay() if args.disable_weight_decay_on_rel_pos_bias: for i in range(num_layers): skip_weight_decay_list.add("blocks.%d.attn.relative_position_bias_table" % i) if args.enable_deepspeed: loss_scaler = None optimizer_params = get_parameter_groups( model, args.weight_decay, skip_weight_decay_list, assigner.get_layer_id if assigner is not None else None, assigner.get_scale if assigner is not None else None) model, optimizer, _, _ = ds_init( args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, ) print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) assert model.gradient_accumulation_steps() == args.update_freq else: if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp, skip_list=skip_weight_decay_list, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() print("Use step level LR scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") exit(0) print(f"Start training for {args.epochs} epochs") start_time = time.time() max_accuracy = 0.0 for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, masked_position_generator=masked_position_generator, ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None: test_stats = evaluate(data_loader_val, model, device) print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts, ds_init = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts, ds_init)
data2vec_vision-main
beit/run_class_finetuning.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Modified on torchvision code bases # https://github.com/pytorch/vision # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates from torchvision.datasets.vision import VisionDataset from PIL import Image import os import os.path import random from typing import Any, Callable, cast, Dict, List, Optional, Tuple def has_file_allowed_extension(filename: str, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return filename.lower().endswith(extensions) def is_image_file(filename: str) -> bool: """Checks if a file is an allowed image extension. Args: filename (string): path to a file Returns: bool: True if the filename ends with a known image extension """ return has_file_allowed_extension(filename, IMG_EXTENSIONS) def make_dataset( directory: str, class_to_idx: Dict[str, int], extensions: Optional[Tuple[str, ...]] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> List[Tuple[str, int]]: instances = [] directory = os.path.expanduser(directory) both_none = extensions is None and is_valid_file is None both_something = extensions is not None and is_valid_file is not None if both_none or both_something: raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time") if extensions is not None: def is_valid_file(x: str) -> bool: return has_file_allowed_extension(x, cast(Tuple[str, ...], extensions)) is_valid_file = cast(Callable[[str], bool], is_valid_file) for target_class in sorted(class_to_idx.keys()): class_index = class_to_idx[target_class] target_dir = os.path.join(directory, target_class) if not os.path.isdir(target_dir): continue for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = path, class_index instances.append(item) return instances class DatasetFolder(VisionDataset): """A generic data loader where the samples are arranged in this way: :: root/class_x/xxx.ext root/class_x/xxy.ext root/class_x/xxz.ext root/class_y/123.ext root/class_y/nsdf3.ext root/class_y/asd932_.ext Args: root (string): Root directory path. loader (callable): A function to load a sample given its path. extensions (tuple[string]): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. E.g, ``transforms.RandomCrop`` for images. target_transform (callable, optional): A function/transform that takes in the target and transforms it. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset """ def __init__( self, root: str, loader: Callable[[str], Any], extensions: Optional[Tuple[str, ...]] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, is_valid_file: Optional[Callable[[str], bool]] = None, ) -> None: super(DatasetFolder, self).__init__(root, transform=transform, target_transform=target_transform) print("finding classes") classes, class_to_idx = self._find_classes(self.root) print("making dataset") samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) if len(samples) == 0: msg = "Found 0 files in subfolders of: {}\n".format(self.root) if extensions is not None: msg += "Supported extensions are: {}".format(",".join(extensions)) raise RuntimeError(msg) self.loader = loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] print("done initializing dataset folder") def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. Ensures: No class is a subdirectory of another. """ classes = [d.name for d in os.scandir(dir) if d.is_dir()] classes.sort() class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} return classes, class_to_idx def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ while True: try: path, target = self.samples[index] sample = self.loader(path) break except Exception as e: print(e) index = random.randint(0, len(self.samples) - 1) if self.transform is not None: sample = self.transform(sample) if self.target_transform is not None: target = self.target_transform(target) return sample, target def __len__(self) -> int: return len(self.samples) IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path: str) -> Image.Image: # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') # TODO: specify the return type def accimage_loader(path: str) -> Any: import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path: str) -> Any: from torchvision import get_image_backend from shutil import copyfile import os sp = path.split('/') name = sp[-1] base = '/'.join(sp[:-1]) image_cache_str = "image_cache6" # if os.path.exists('/scratch/'+image_cache_str+'/') and not os.access('/scratch/'+image_cache_str+'/', os.R_OK): # image_cache_str = "image_cache3" if not os.path.isdir('/scratch/'+image_cache_str+'/' + base): os.makedirs('/scratch/'+image_cache_str+'/'+ base) if not os.path.exists('/scratch/'+image_cache_str+'/' + path): copyfile(path, '/scratch/'+image_cache_str+'/' + path) path = '/scratch/'+image_cache_str+'/' + path #print('name', name) #print('base', base) #print('path', path) if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) class ImageFolder(DatasetFolder): """A generic data loader where the images are arranged in this way: :: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png Args: root (string): Root directory path. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. loader (callable, optional): A function to load an image given its path. is_valid_file (callable, optional): A function that takes path of an Image file and check if the file is a valid file (used to check of corrupt files) Attributes: classes (list): List of the class names sorted alphabetically. class_to_idx (dict): Dict with items (class_name, class_index). imgs (list): List of (image path, class_index) tuples """ def __init__( self, root: str, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, loader: Callable[[str], Any] = default_loader, is_valid_file: Optional[Callable[[str], bool]] = None, filter: Optional[str] = None ): super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None, transform=transform, target_transform=target_transform, is_valid_file=is_valid_file) self.imgs = self.samples
data2vec_vision-main
beit/dataset_folder.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from optim_factory import create_optimizer from datasets import build_beit_pretraining_dataset from engine_for_pretraining import train_one_epoch from utils import NativeScalerWithGradNormCount as NativeScaler import utils import modeling_pretrain def get_args(): parser = argparse.ArgumentParser('BEiT pre-training script', add_help=False) parser.add_argument('--batch_size', default=64, type=int) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--save_ckpt_freq', default=10, type=int) parser.add_argument("--discrete_vae_weight_path", type=str) parser.add_argument("--discrete_vae_type", type=str, default="dall-e") # Model parameters parser.add_argument('--model', default='deit_base_patch16_224', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--rel_pos_bias', action='store_true') parser.add_argument('--disable_rel_pos_bias', action='store_false', dest='rel_pos_bias') parser.set_defaults(rel_pos_bias=True) parser.add_argument('--abs_pos_emb', action='store_true') parser.set_defaults(abs_pos_emb=False) parser.add_argument('--layer_scale_init_value', default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale") parser.add_argument('--num_mask_patches', default=75, type=int, help='number of the visual tokens/patches need be masked') parser.add_argument('--max_mask_patches_per_block', type=int, default=None) parser.add_argument('--min_mask_patches_per_block', type=int, default=16) parser.add_argument('--input_size', default=224, type=int, help='images input size for backbone') parser.add_argument('--second_input_size', default=112, type=int, help='images input size for discrete vae') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""") parser.add_argument('--lr', type=float, default=5e-4, metavar='LR', help='learning rate (default: 5e-4)') parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate (default: 1e-6)') parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='epochs to warmup LR, if scheduler supports') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') parser.add_argument('--second_interpolation', type=str, default='lanczos', help='Interpolation for discrete vae (random, bilinear, bicubic default: "lanczos")') # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--imagenet_default_mean_and_std', default=False, action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', action='store_true') parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') parser.set_defaults(auto_resume=True) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem', help='') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--aug_level', default=-100, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) args.patch_size = patch_size # get dataset dataset_train = build_beit_pretraining_dataset(args) # prepare discrete vae d_vae = utils.create_d_vae( weight_path=args.discrete_vae_weight_path, d_vae_type=args.discrete_vae_type, device=device, image_size=args.second_input_size) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks print("pre-sampler", num_tasks, global_rank, sampler_rank) sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * utils.get_world_size() print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch)) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp) loss_scaler = NativeScaler() print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, d_vae, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, ) if args.output_dir: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
data2vec_vision-main
beit/run_beit_pretraining.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import io import os import math import time import json from collections import defaultdict, deque import datetime import numpy as np from timm.utils import get_state_dict from pathlib import Path import torch import torch.distributed as dist from torch._six import inf from modeling_discrete_vae import Dalle_VAE, DiscreteVAE from tensorboardX import SummaryWriter class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class TensorboardLogger(object): def __init__(self, log_dir): self.writer = SummaryWriter(logdir=log_dir) self.step = 0 def set_step(self, step=None): if step is not None: self.step = step else: self.step += 1 def update(self, head='scalar', step=None, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step) def flush(self): self.writer.flush() def _load_checkpoint_for_ema(model_ema, checkpoint): """ Workaround for ModelEma._load_checkpoint to accept an already-loaded object """ if hasattr(model_ema, "module"): model_ema.module.load_state_dict(checkpoint['model_ema']) else: mem_file = io.BytesIO() torch.save(checkpoint, mem_file) mem_file.seek(0) model_ema._load_checkpoint(mem_file) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and 'SLURM_NODEID' not in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and 'SLURM_NODEID' in os.environ: # args.rank = int(os.environ["RANK"]) # print(os.environ) gpus_per_node = torch.cuda.device_count() node_id = int(os.environ.get("SLURM_NODEID")) args.rank = int(os.environ["RANK"]) + node_id * gpus_per_node args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: os.environ['RANK'] = os.environ['SLURM_PROCID'] args.rank = int(os.environ['SLURM_PROCID']) os.environ['LOCAL_RANK'] = str(args.rank % torch.cuda.device_count()) args.gpu = args.rank % torch.cuda.device_count() print("utils.py SLURM_PROCID in os.environ") print("args.rank "+str(args.rank)) print("args.gpu "+str(args.gpu)) print("args.world_size "+str(args.world_size)) print("SLURM_NTASKS "+str(os.environ['SLURM_NTASKS'])) assert int(args.world_size) == int(os.environ['SLURM_NTASKS']) os.environ['WORLD_SIZE'] = str(args.world_size) else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}, world_size {}'.format( args.rank, args.dist_url, args.gpu, args.world_size), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # torch.distributed.init_process_group(backend=args.dist_backend, init_method='env://') setup_for_distributed(args.rank == 0) def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=''): local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split('|'): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print("Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys)) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format( model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print("Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys)) if len(error_msgs) > 0: print('\n'.join(error_msgs)) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def tri_phase_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_perc=0.05, decay_perc=0.05, start_warmup_value=0): assert warmup_perc + decay_perc <= 1 total_updates = int(epochs * niter_per_ep) warmup_iters = int(warmup_perc * total_updates) decay_iters = int(decay_perc * total_updates) hold_iters = total_updates - warmup_iters - decay_iters print("Set warmup steps = %d" % warmup_iters) if warmup_iters > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) else: warmup_schedule = np.array([]) if hold_iters > 0: hold_schedule = np.full(hold_iters, base_value) else: hold_schedule = np.array([]) if decay_iters > 0: decay_schedule = np.linspace(base_value, final_value, decay_iters) else: decay_schedule = np.array([]) schedule = np.concatenate((warmup_schedule, hold_schedule, decay_schedule)) assert len(schedule) == epochs * niter_per_ep, \ f"e: {epochs}, it: {niter_per_ep}, tot: {epochs*niter_per_ep}, " \ f"w: {warmup_iters}, h: {hold_iters}, d: {decay_iters}, len: {len(schedule)}" return schedule def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } if model_ema is not None: to_save['model_ema'] = get_state_dict(model_ema) save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} if model_ema is not None: client_state['model_ema'] = get_state_dict(model_ema) model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None): output_dir = Path(args.output_dir) if loss_scaler is not None: # torch.amp if args.auto_resume and len(args.resume) == 0: import glob all_checkpoints = glob.glob(os.path.join(glob.escape(output_dir), 'checkpoint-*.pth')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) print(output_dir, latest_ckpt, all_checkpoints) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) print("Auto resume checkpoint: %s" % args.resume) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint and not getattr(args, "reset_resume", False): # and len(getattr(args, "seed_model", '') or []) == 0: optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if hasattr(args, 'model_ema') and args.model_ema: _load_checkpoint_for_ema(model_ema, checkpoint['model_ema']) if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") else: # deepspeed, only support '--auto_resume'. if args.auto_resume: import glob all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*')) latest_ckpt = -1 for ckpt in all_checkpoints: t = ckpt.split('-')[-1].split('.')[0] if t.isdigit(): latest_ckpt = max(int(t), latest_ckpt) if latest_ckpt >= 0: args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt) print("Auto resume checkpoint: %d" % latest_ckpt) _, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt) args.start_epoch = client_states['epoch'] + 1 if model_ema is not None: if args.model_ema: _load_checkpoint_for_ema(model_ema, client_states['model_ema']) def create_d_vae(weight_path, d_vae_type, image_size, device): if d_vae_type == "dall-e": return get_dalle_vae(weight_path, image_size, device) elif d_vae_type == "customized": return get_d_vae(weight_path, image_size, device) else: raise NotImplementedError() def get_dalle_vae(weight_path, image_size, device): vae = Dalle_VAE(image_size) vae.load_model(model_dir=weight_path, device=device) return vae def get_d_vae(weight_path, image_size, device): NUM_TOKENS = 8192 NUM_LAYERS = 3 EMB_DIM = 512 HID_DIM = 256 state_dict = torch.load(os.path.join(weight_path, "pytorch_model.bin"), map_location="cpu")["weights"] model = DiscreteVAE( image_size=image_size, num_layers=NUM_LAYERS, num_tokens=NUM_TOKENS, codebook_dim=EMB_DIM, hidden_dim=HID_DIM, ).to(device) model.load_state_dict(state_dict) return model def create_ds_config(args): args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json") with open(args.deepspeed_config, mode="w") as writer: ds_config = { "train_batch_size": args.batch_size * args.update_freq * get_world_size(), "train_micro_batch_size_per_gpu": args.batch_size, "steps_per_print": 1000, "optimizer": { "type": "Adam", "adam_w_mode": True, "params": { "lr": args.lr, "weight_decay": args.weight_decay, "bias_correction": True, "betas": [ 0.9, 0.999 ], "eps": 1e-8 } }, "fp16": { "enabled": True, "loss_scale": 0, "initial_scale_power": 7, "loss_scale_window": 128 } } writer.write(json.dumps(ds_config, indent=2))
data2vec_vision-main
beit/utils.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, DINO and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import argparse import datetime import numpy as np import time import torch import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.models import create_model from timm.utils import ModelEmaV2 from optim_factory import create_optimizer from datasets import build_beit_pretraining_dataset from engine_for_cyclical_joint import train_one_epoch from utils import NativeScalerWithGradNormCount as NativeScaler import utils from scipy import interpolate import modeling_cyclical_joint def get_args(): parser = argparse.ArgumentParser("BEiT pre-training script", add_help=False) parser.add_argument("--batch_size", default=64, type=int) parser.add_argument("--epochs", default=300, type=int) parser.add_argument("--save_ckpt_freq", default=10, type=int) # Model parameters parser.add_argument( "--model", default="deit_base_patch16_224", type=str, metavar="MODEL", help="Name of model to train", ) parser.add_argument("--rel_pos_bias", action="store_true") parser.add_argument( "--disable_rel_pos_bias", action="store_false", dest="rel_pos_bias" ) parser.set_defaults(rel_pos_bias=True) parser.add_argument("--abs_pos_emb", action="store_true") parser.set_defaults(abs_pos_emb=False) parser.add_argument( "--layer_scale_init_value", default=0.1, type=float, help="0.1 for base, 1e-5 for large. set 0 to disable layer scale", ) parser.add_argument( "--num_mask_patches", default=75, type=int, help="number of the visual tokens/patches need be masked", ) parser.add_argument("--max_mask_patches_per_block", type=int, default=None) parser.add_argument("--min_mask_patches_per_block", type=int, default=16) parser.add_argument( "--input_size", default=224, type=int, help="images input size for backbone" ) # added for vae parser.add_argument('--second_input_size', default=112, type=int, help='images input size for discrete vae') parser.add_argument('--second_interpolation', type=str, default='lanczos', help='Interpolation for discrete vae (random, bilinear, bicubic default: "lanczos")') parser.add_argument("--discrete_vae_weight_path", type=str) parser.add_argument("--discrete_vae_type", type=str, default="dall-e") parser.add_argument("--vae_loss_weight", default=1., type=float) parser.add_argument( "--drop_path", type=float, default=0.1, metavar="PCT", help="Drop path rate (default: 0.1)", ) # Optimizer parameters parser.add_argument( "--opt", default="adamw", type=str, metavar="OPTIMIZER", help='Optimizer (default: "adamw"', ) parser.add_argument( "--opt_eps", default=1e-8, type=float, metavar="EPSILON", help="Optimizer Epsilon (default: 1e-8)", ) parser.add_argument( "--opt_betas", default=None, type=float, nargs="+", metavar="BETA", help="Optimizer Betas (default: None, use opt default)", ) parser.add_argument( "--clip_grad", type=float, default=None, metavar="NORM", help="Clip gradient norm (default: None, no clipping)", ) parser.add_argument( "--momentum", type=float, default=0.9, metavar="M", help="SGD momentum (default: 0.9)", ) parser.add_argument( "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" ) parser.add_argument( "--weight_decay_end", type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD. (Set the same value with args.weight_decay to keep weight decay no change)""", ) parser.add_argument( "--lr", type=float, default=5e-4, metavar="LR", help="learning rate (default: 5e-4)", ) parser.add_argument( "--warmup_lr", type=float, default=1e-6, metavar="LR", help="warmup learning rate (default: 1e-6)", ) parser.add_argument( "--min_lr", type=float, default=1e-5, metavar="LR", help="lower lr bound for cyclic schedulers that hit 0 (1e-5)", ) parser.add_argument( "--tri_phase_schedule", type=str, default=None, help="string containing a tuple with phase ratios for warmup and decay. e.g. '(0.05,0.15) means 5% warmup, 80% hold, 15% decay", ) parser.add_argument( "--warmup_epochs", type=int, default=5, metavar="N", help="epochs to warmup LR, if scheduler supports", ) parser.add_argument( "--warmup_steps", type=int, default=-1, metavar="N", help="epochs to warmup LR, if scheduler supports", ) # Augmentation parameters parser.add_argument( "--color_jitter", type=float, default=0.4, metavar="PCT", help="Color jitter factor (default: 0.4)", ) parser.add_argument( "--train_interpolation", type=str, default="bicubic", help='Training interpolation (random, bilinear, bicubic default: "bicubic")', ) parser.add_argument( "--target_layers", type=str, default="[]", help="target layers (python list)" ) # Dataset parameters parser.add_argument( "--data_path", default="/datasets01/imagenet_full_size/061417/", type=str, help="dataset path", ) parser.add_argument( "--imagenet_default_mean_and_std", default=False, action="store_true" ) parser.add_argument( "--output_dir", default="", help="path where to save, empty for no saving" ) parser.add_argument("--log_dir", default=None, help="path where to tensorboard log") parser.add_argument( "--device", default="cuda", help="device to use for training / testing" ) parser.add_argument("--seed", default=0, type=int) parser.add_argument("--resume", default="", help="resume from checkpoint") parser.add_argument("--auto_resume", action="store_true") parser.add_argument("--no_auto_resume", action="store_false", dest="auto_resume") parser.set_defaults(auto_resume=True) parser.add_argument("--ema_decay", default=0.9998, type=float) parser.add_argument("--ema_start_at", default=25000, type=int) parser.add_argument( "--start_epoch", default=0, type=int, metavar="N", help="start epoch" ) parser.add_argument("--num_workers", default=10, type=int) parser.add_argument( "--pin_mem", action="store_true", help="Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.", ) parser.add_argument("--no_pin_mem", action="store_false", dest="pin_mem", help="") parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument( "--world_size", default=1, type=int, help="number of distributed processes" ) parser.add_argument("--local_rank", default=-1, type=int) parser.add_argument("--dist_on_itp", action="store_true") parser.add_argument( "--dist_url", default="env://", help="url used to set up distributed training" ) parser.add_argument("--seed_model", default=None, type=str, help="seed model") parser.add_argument("--model_key", default="model|module", type=str) parser.add_argument("--model_prefix", default="", type=str) parser.add_argument("--l2_loss", default=False, action="store_true") parser.add_argument("--l1_beta", default=0.12, type=float) return parser.parse_args() def get_model(args): print(f"Creating model: {args.model}") model = create_model( args.model, pretrained=False, drop_path_rate=args.drop_path, drop_block_rate=None, use_shared_rel_pos_bias=args.rel_pos_bias, use_abs_pos_emb=args.abs_pos_emb, init_values=args.layer_scale_init_value, ) return model def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) # random.seed(seed) cudnn.benchmark = True model = get_model(args) patch_size = model.patch_embed.patch_size print("Patch size = %s" % str(patch_size)) args.window_size = ( args.input_size // patch_size[0], args.input_size // patch_size[1], ) args.patch_size = patch_size if args.seed_model: checkpoint = torch.load(args.seed_model, map_location="cpu") print("Load ckpt from %s" % args.seed_model) checkpoint_model = None for model_key in args.model_key.split("|"): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ["head.weight", "head.bias"]: if ( k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape ): print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * ( dst_patch_shape[1] * 2 - 1 ) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: print( "Position interpolate for %s from %dx%d to %dx%d" % (key, src_size, src_size, dst_size, dst_size) ) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.090307: # q = 1.090307 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) print("Original positions = %s" % str(x)) print("Target positions = %s" % str(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind="cubic") all_rel_pos_bias.append( torch.Tensor(f(dx, dy)) .contiguous() .view(-1, 1) .to(rel_pos_bias.device) ) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) checkpoint_model[key] = new_rel_pos_bias # interpolate position embedding if "pos_embed" in checkpoint_model: pos_embed_checkpoint = checkpoint_model["pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print( "Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size) ) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape( -1, orig_size, orig_size, embedding_size ).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False, ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) checkpoint_model["pos_embed"] = new_pos_embed utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) # get dataset dataset_train = build_beit_pretraining_dataset(args) # prepare discrete vae d_vae = utils.create_d_vae( weight_path=args.discrete_vae_weight_path, d_vae_type=args.discrete_vae_type, device=device, image_size=args.second_input_size) if True: # args.distributed: num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_rank = global_rank num_training_steps_per_epoch = ( len(dataset_train) // args.batch_size // num_tasks ) print("pre-sampler", num_tasks, global_rank, sampler_rank) sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print("number of params:", n_parameters) model_ema = ModelEmaV2(model, decay=args.ema_decay) print("Using EMA with decay = %.8f" % args.ema_decay) total_batch_size = args.batch_size * utils.get_world_size() print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Number of training steps = %d" % num_training_steps_per_epoch) print( "Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch) ) if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=True ) model_without_ddp = model.module optimizer = create_optimizer(args, model_without_ddp) loss_scaler = NativeScaler() if args.tri_phase_schedule is not None: from ast import literal_eval warmup_phase, decay_phase = literal_eval(args.tri_phase_schedule) print("Use tri phase lr schedule!", warmup_phase, decay_phase) lr_schedule_values = utils.tri_phase_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_perc=warmup_phase, decay_perc=decay_phase, ) else: print("Use step level LR & WD scheduler!") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch, ) print( "Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)) ) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema, ) from ast import literal_eval target_layers = literal_eval(args.target_layers) assert len(target_layers) > 0 print(f"target layers: {target_layers}") print(f"Start training for {args.epochs} epochs") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch) train_stats = train_one_epoch( model, model_ema, args.ema_start_at, target_layers, d_vae, args.vae_loss_weight, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, l1_beta=args.l1_beta, log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, l2_loss=args.l2_loss ) if args.output_dir: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, ) log_stats = { **{f"train_{k}": v for k, v in train_stats.items()}, "epoch": epoch, "n_parameters": n_parameters, } if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open( os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" ) as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("Training time {}".format(total_time_str)) if __name__ == "__main__": opts = get_args() if opts.output_dir: Path(opts.output_dir).mkdir(parents=True, exist_ok=True) main(opts)
data2vec_vision-main
beit/run_cyclical_joint.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm and DeiT code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # Copyright (c) Meta Platforms, Inc. and affiliates import math from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from timm.models.registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) fc_feature = self.drop_path(self.mlp(self.norm2(x))) x = x + fc_feature else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) fc_feature = self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) x = x + fc_feature return x, fc_feature class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class VisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, use_mean_pooling=True, init_scale=0.001, linear_classifier=False, has_masking=False, learn_layer_weights=False, layernorm_before_combine=False): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if has_masking: self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) self.use_mean_pooling = use_mean_pooling self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim, elementwise_affine=not linear_classifier) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) if has_masking: trunc_normal_(self.mask_token, std=.02) trunc_normal_(self.head.weight, std=.02) self.apply(self._init_weights) self.fix_init_weight() self.learn_layer_weights = learn_layer_weights self.layernorm_before_combine = layernorm_before_combine if learn_layer_weights: self.layer_log_weights = nn.Parameter(torch.zeros(depth,)) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): if m.bias is not None: nn.init.constant_(m.bias, 0) if m.weight is not None: nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, bool_masked_pos=None): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks if bool_masked_pos is not None and self.training: mask_token = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.view(bool_masked_pos.size(0), -1, 1).type_as(mask_token) x = x * (1 - w) + mask_token * w x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None layer_xs = [] for blk in self.blocks: x, _ = blk(x, rel_pos_bias=rel_pos_bias) # B x T x C layer_xs.append(x) if self.learn_layer_weights: layer_xs = [ layer_x.mean(1) if self.use_mean_pooling else layer_x[:, 0] for layer_x in layer_xs ] layer_xs = [ F.layer_norm(layer_x.float(), layer_x.shape[-1:]) if self.layernorm_before_combine else layer_x for layer_x in layer_xs ] weights = self.layer_log_weights.softmax(-1) return F.linear(torch.stack(layer_xs, -1), weights) else: x = self.norm(x) if self.fc_norm is not None: t = x[:, 1:, :] return self.fc_norm(t.mean(1)) else: return x[:, 0] def forward(self, x, bool_masked_pos=None): x = self.forward_features(x, bool_masked_pos) x = self.head(x) return x @register_model def beit_base_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_base_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_224(pretrained=False, **kwargs): model = VisionTransformer( patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_384(pretrained=False, **kwargs): model = VisionTransformer( img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model @register_model def beit_large_patch16_512(pretrained=False, **kwargs): model = VisionTransformer( img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) model.default_cfg = _cfg() return model
data2vec_vision-main
beit/modeling_finetune.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # --------------------------------------------------------' import torch from torch import optim as optim from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam # from timm.optim.novograd import NovoGrad from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP import json try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("cls_token", "mask_token", "pos_embed"): return 0 elif var_name.startswith("patch_embed"): return 0 elif var_name.startswith("rel_pos_bias"): return num_max_layer - 1 elif var_name.startswith("blocks"): layer_id = int(var_name.split('.')[1]) return layer_id + 1 else: return num_max_layer - 1 class LayerDecayValueAssigner(object): def __init__(self, values): self.values = values def get_scale(self, layer_id): return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_vit(var_name, len(self.values)) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay if weight_decay and filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" raise ValueError if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
data2vec_vision-main
beit/optim_factory.py
import attr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from functools import partial from dall_e.utils import Conv2d @attr.s(eq=False, repr=False) class DecoderBlock(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0) n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1) device: torch.device = attr.ib(default=None) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() self.n_hid = self.n_out // 4 self.post_gain = 1 / (self.n_layers ** 2) make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity() self.res_path = nn.Sequential(OrderedDict([ ('relu_1', nn.ReLU()), ('conv_1', make_conv(self.n_in, self.n_hid, 1)), ('relu_2', nn.ReLU()), ('conv_2', make_conv(self.n_hid, self.n_hid, 3)), ('relu_3', nn.ReLU()), ('conv_3', make_conv(self.n_hid, self.n_hid, 3)), ('relu_4', nn.ReLU()), ('conv_4', make_conv(self.n_hid, self.n_out, 3)),])) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) @attr.s(eq=False, repr=False) class Decoder(nn.Module): group_count: int = 4 n_init: int = attr.ib(default=128, validator=lambda i, a, x: x >= 8) n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64) n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1) output_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1) vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) use_mixed_precision: bool = attr.ib(default=True) def __attrs_post_init__(self) -> None: super().__init__() blk_range = range(self.n_blk_per_group) n_layers = self.group_count * self.n_blk_per_group make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) make_blk = partial(DecoderBlock, n_layers=n_layers, device=self.device, requires_grad=self.requires_grad) self.blocks = nn.Sequential(OrderedDict([ ('input', make_conv(self.vocab_size, self.n_init, 1, use_float16=False)), ('group_1', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(self.n_init if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_2', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(8 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_3', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range], ('upsample', nn.Upsample(scale_factor=2, mode='nearest')), ]))), ('group_4', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 1 * self.n_hid, 1 * self.n_hid)) for i in blk_range], ]))), ('output', nn.Sequential(OrderedDict([ ('relu', nn.ReLU()), ('conv', make_conv(1 * self.n_hid, 2 * self.output_channels, 1)), ]))), ])) def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError(f'input shape {x.shape} is not 4d') if x.shape[1] != self.vocab_size: raise ValueError(f'input has {x.shape[1]} channels but model built for {self.vocab_size}') if x.dtype != torch.float32: raise ValueError('input must have dtype torch.float32') return self.blocks(x)
data2vec_vision-main
beit/dall_e/decoder.py
import io, requests import torch import torch.nn as nn from dall_e.encoder import Encoder from dall_e.decoder import Decoder from dall_e.utils import map_pixels, unmap_pixels def load_model(path: str, device: torch.device = None) -> nn.Module: if path.startswith('http://') or path.startswith('https://'): resp = requests.get(path) resp.raise_for_status() with io.BytesIO(resp.content) as buf: return torch.load(buf, map_location=device) else: with open(path, 'rb') as f: return torch.load(f, map_location=device)
data2vec_vision-main
beit/dall_e/__init__.py
import attr import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from collections import OrderedDict from functools import partial from dall_e.utils import Conv2d @attr.s(eq=False, repr=False) class EncoderBlock(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 4 ==0) n_layers: int = attr.ib(validator=lambda i, a, x: x >= 1) device: torch.device = attr.ib(default=None) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() self.n_hid = self.n_out // 4 self.post_gain = 1 / (self.n_layers ** 2) make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) self.id_path = make_conv(self.n_in, self.n_out, 1) if self.n_in != self.n_out else nn.Identity() self.res_path = nn.Sequential(OrderedDict([ ('relu_1', nn.ReLU()), ('conv_1', make_conv(self.n_in, self.n_hid, 3)), ('relu_2', nn.ReLU()), ('conv_2', make_conv(self.n_hid, self.n_hid, 3)), ('relu_3', nn.ReLU()), ('conv_3', make_conv(self.n_hid, self.n_hid, 3)), ('relu_4', nn.ReLU()), ('conv_4', make_conv(self.n_hid, self.n_out, 1)),])) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) @attr.s(eq=False, repr=False) class Encoder(nn.Module): group_count: int = 4 n_hid: int = attr.ib(default=256, validator=lambda i, a, x: x >= 64) n_blk_per_group: int = attr.ib(default=2, validator=lambda i, a, x: x >= 1) input_channels: int = attr.ib(default=3, validator=lambda i, a, x: x >= 1) vocab_size: int = attr.ib(default=8192, validator=lambda i, a, x: x >= 512) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) use_mixed_precision: bool = attr.ib(default=True) def __attrs_post_init__(self) -> None: super().__init__() blk_range = range(self.n_blk_per_group) n_layers = self.group_count * self.n_blk_per_group make_conv = partial(Conv2d, device=self.device, requires_grad=self.requires_grad) make_blk = partial(EncoderBlock, n_layers=n_layers, device=self.device, requires_grad=self.requires_grad) self.blocks = nn.Sequential(OrderedDict([ ('input', make_conv(self.input_channels, 1 * self.n_hid, 7)), ('group_1', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(1 * self.n_hid, 1 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_2', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(1 * self.n_hid if i == 0 else 2 * self.n_hid, 2 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_3', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(2 * self.n_hid if i == 0 else 4 * self.n_hid, 4 * self.n_hid)) for i in blk_range], ('pool', nn.MaxPool2d(kernel_size=2)), ]))), ('group_4', nn.Sequential(OrderedDict([ *[(f'block_{i + 1}', make_blk(4 * self.n_hid if i == 0 else 8 * self.n_hid, 8 * self.n_hid)) for i in blk_range], ]))), ('output', nn.Sequential(OrderedDict([ ('relu', nn.ReLU()), ('conv', make_conv(8 * self.n_hid, self.vocab_size, 1, use_float16=False)), ]))), ])) def forward(self, x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError(f'input shape {x.shape} is not 4d') if x.shape[1] != self.input_channels: raise ValueError(f'input has {x.shape[1]} channels but model built for {self.input_channels}') if x.dtype != torch.float32: raise ValueError('input must have dtype torch.float32') return self.blocks(x)
data2vec_vision-main
beit/dall_e/encoder.py
import attr import math import torch import torch.nn as nn import torch.nn.functional as F logit_laplace_eps: float = 0.1 @attr.s(eq=False) class Conv2d(nn.Module): n_in: int = attr.ib(validator=lambda i, a, x: x >= 1) n_out: int = attr.ib(validator=lambda i, a, x: x >= 1) kw: int = attr.ib(validator=lambda i, a, x: x >= 1 and x % 2 == 1) use_float16: bool = attr.ib(default=True) device: torch.device = attr.ib(default=torch.device('cpu')) requires_grad: bool = attr.ib(default=False) def __attrs_post_init__(self) -> None: super().__init__() w = torch.empty((self.n_out, self.n_in, self.kw, self.kw), dtype=torch.float32, device=self.device, requires_grad=self.requires_grad) w.normal_(std=1 / math.sqrt(self.n_in * self.kw ** 2)) b = torch.zeros((self.n_out,), dtype=torch.float32, device=self.device, requires_grad=self.requires_grad) self.w, self.b = nn.Parameter(w), nn.Parameter(b) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.use_float16 and 'cuda' in self.w.device.type: if x.dtype != torch.float16: x = x.half() w, b = self.w.half(), self.b.half() else: if x.dtype != torch.float32: x = x.float() w, b = self.w, self.b return F.conv2d(x, w, b, padding=(self.kw - 1) // 2) def map_pixels(x: torch.Tensor) -> torch.Tensor: if x.dtype != torch.float: raise ValueError('expected input to have type float') return (1 - 2 * logit_laplace_eps) * x + logit_laplace_eps def unmap_pixels(x: torch.Tensor) -> torch.Tensor: if len(x.shape) != 4: raise ValueError('expected input to be 4d') if x.dtype != torch.float: raise ValueError('expected input to have type float') return torch.clamp((x - logit_laplace_eps) / (1 - 2 * logit_laplace_eps), 0, 1)
data2vec_vision-main
beit/dall_e/utils.py
import argparse import os import mmcv import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmcv.utils import DictAction from mmseg.apis import multi_gpu_test, single_gpu_test from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor from backbone import beit def parse_args(): parser = argparse.ArgumentParser( description='mmseg test (and eval) a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--aug-test', action='store_true', help='Use Flip and Multi scale aug') parser.add_argument('--out', help='output result file in pickle format') parser.add_argument( '--format-only', action='store_true', help='Format the output results without perform evaluation. It is' 'useful when you want to format the result to a specific format and ' 'submit it to the test server') parser.add_argument( '--eval', type=str, nargs='+', help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' ' for generic datasets, and "cityscapes" for Cityscapes') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument( '--show-dir', help='directory where painted images will be saved') parser.add_argument( '--gpu-collect', action='store_true', help='whether to use gpu to collect results.') parser.add_argument( '--tmpdir', help='tmp directory used for collecting results from multiple ' 'workers, available when gpu_collect is not specified') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.eval or args.format_only or args.show \ or args.show_dir, \ ('Please specify at least one operation (save/eval/format/show the ' 'results / save the results) with the argument "--out", "--eval"' ', "--format-only", "--show" or "--show-dir"') if args.eval and args.format_only: raise ValueError('--eval and --format_only cannot be both specified') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') cfg = mmcv.Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True if args.aug_test: # hard code index cfg.data.test.pipeline[1].img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 ] cfg.data.test.pipeline[1].flip = True cfg.model.pretrained = None cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') model.CLASSES = checkpoint['meta']['CLASSES'] model.PALETTE = checkpoint['meta']['PALETTE'] efficient_test = False if args.eval_options is not None: efficient_test = args.eval_options.get('efficient_test', False) if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show, args.show_dir, efficient_test) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect, efficient_test) rank, _ = get_dist_info() if rank == 0: if args.out: print(f'\nwriting results to {args.out}') mmcv.dump(outputs, args.out) kwargs = {} if args.eval_options is None else args.eval_options if args.format_only: dataset.format_results(outputs, **kwargs) if args.eval: dataset.evaluate(outputs, args.eval, **kwargs) if __name__ == '__main__': main()
data2vec_vision-main
beit/semantic_segmentation/tools/test.py
import argparse import copy import os import os.path as osp import time import mmcv import mmcv_custom import torch from mmcv.runner import init_dist from mmcv.utils import Config, DictAction, get_git_hash from mmseg import __version__ from mmseg.apis import set_random_seed from mmcv_custom import train_segmentor from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.utils import collect_env, get_root_logger from backbone import beit def parse_args(): parser = argparse.ArgumentParser(description='Train a segmentor') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument( '--load-from', help='the checkpoint file to load weights from') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='custom options') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.options is not None: cfg.merge_from_dict(args.options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.load_from is not None: cfg.load_from = args.load_from if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, deterministic: ' f'{args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_segmentor( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) logger.info(model) datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmseg version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmseg_version=f'{__version__}+{get_git_hash()[:7]}', config=cfg.pretty_text, CLASSES=datasets[0].CLASSES, PALETTE=datasets[0].PALETTE) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_segmentor( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()
data2vec_vision-main
beit/semantic_segmentation/tools/train.py
import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_for_vit(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.patch_embed"): return 0 elif var_name.startswith("backbone.blocks"): layer_id = int(var_name.split('.')[2]) return layer_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') print("Build LayerDecayOptimizerConstructor %f - %d" % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay layer_id = get_num_layer_for_vit(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py
import random import warnings import numpy as np import torch from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import build_optimizer, build_runner from mmseg.core import DistEvalHook, EvalHook from mmseg.datasets import build_dataloader, build_dataset from mmseg.utils import get_root_logger try: import apex except: print('apex is not installed') def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def train_segmentor(model, dataset, cfg, distributed=False, validate=False, timestamp=None, meta=None): """Launch segmentor training.""" logger = get_root_logger(cfg.log_level) # prepare data loaders dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] data_loaders = [ build_dataloader( ds, cfg.data.samples_per_gpu, cfg.data.workers_per_gpu, # cfg.gpus will be ignored if distributed len(cfg.gpu_ids), dist=distributed, seed=cfg.seed, drop_last=True) for ds in dataset ] # build optimizer optimizer = build_optimizer(model, cfg.optimizer) # use apex fp16 optimizer if cfg.optimizer_config.get("type", None) and cfg.optimizer_config["type"] == "DistOptimizerHook": if cfg.optimizer_config.get("use_fp16", False): model, optimizer = apex.amp.initialize( model.cuda(), optimizer, opt_level="O1") for m in model.modules(): if hasattr(m, "fp16_enabled"): m.fp16_enabled = True # put model on gpus if distributed: find_unused_parameters = cfg.get('find_unused_parameters', False) # Sets the `find_unused_parameters` parameter in # torch.nn.parallel.DistributedDataParallel model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False, find_unused_parameters=find_unused_parameters) else: model = MMDataParallel( model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) if cfg.get('runner') is None: cfg.runner = {'type': 'IterBasedRunner', 'max_iters': cfg.total_iters} warnings.warn( 'config is now expected to have a `runner` section, ' 'please set `runner` in your config.', UserWarning) runner = build_runner( cfg.runner, default_args=dict( model=model, batch_processor=None, optimizer=optimizer, work_dir=cfg.work_dir, logger=logger, meta=meta)) # register hooks runner.register_training_hooks(cfg.lr_config, cfg.optimizer_config, cfg.checkpoint_config, cfg.log_config, cfg.get('momentum_config', None)) # an ugly walkaround to make the .log and .log.json filenames the same runner.timestamp = timestamp # register eval hooks if validate: val_dataset = build_dataset(cfg.data.val, dict(test_mode=True)) val_dataloader = build_dataloader( val_dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) eval_cfg = cfg.get('evaluation', {}) eval_cfg['by_epoch'] = 'IterBasedRunner' not in cfg.runner['type'] eval_hook = DistEvalHook if distributed else EvalHook runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) if cfg.resume_from: runner.resume(cfg.resume_from) elif cfg.load_from: runner.load_checkpoint(cfg.load_from) runner.run(data_loaders, cfg.workflow)
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/train_api.py
import mmcv import numpy as np from mmseg.datasets.builder import PIPELINES @PIPELINES.register_module() class SETR_Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio range and multiply it with the image scale. - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, crop_size=None, setr_multi_scale=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] # assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.crop_size = crop_size self.setr_multi_scale = setr_multi_scale @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.setr_multi_scale: if min(results['scale']) < self.crop_size[0]: new_short = self.crop_size[0] else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale( results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize( results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale( results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize( results[key], results['scale'], interpolation='nearest') results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/resize_transform.py
# Copyright (c) Open-MMLab. All rights reserved. import io import os import os.path as osp import pkgutil import time import warnings from collections import OrderedDict from importlib import import_module from tempfile import TemporaryDirectory import torch import torchvision from torch.optim import Optimizer from torch.utils import model_zoo from torch.nn import functional as F import mmcv from mmcv.fileio import FileClient from mmcv.fileio import load as load_file from mmcv.parallel import is_module_wrapper from mmcv.utils import mkdir_or_exist from mmcv.runner import get_dist_info from scipy import interpolate import numpy as np import math ENV_MMCV_HOME = 'MMCV_HOME' ENV_XDG_CACHE_HOME = 'XDG_CACHE_HOME' DEFAULT_CACHE_DIR = '~/.cache' def _get_mmcv_home(): mmcv_home = os.path.expanduser( os.getenv( ENV_MMCV_HOME, os.path.join( os.getenv(ENV_XDG_CACHE_HOME, DEFAULT_CACHE_DIR), 'mmcv'))) mkdir_or_exist(mmcv_home) return mmcv_home def load_state_dict(module, state_dict, strict=False, logger=None): """Load state_dict to a module. This method is modified from :meth:`torch.nn.Module.load_state_dict`. Default value for ``strict`` is set to ``False`` and the message for param mismatch will be shown even if strict is False. Args: module (Module): Module that receives the state_dict. state_dict (OrderedDict): Weights. strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``False``. logger (:obj:`logging.Logger`, optional): Logger to log the error message. If not specified, print function will be used. """ unexpected_keys = [] all_missing_keys = [] err_msg = [] metadata = getattr(state_dict, '_metadata', None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata # use _load_from_state_dict to enable checkpoint version control def load(module, prefix=''): # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module local_metadata = {} if metadata is None else metadata.get( prefix[:-1], {}) module._load_from_state_dict(state_dict, prefix, local_metadata, True, all_missing_keys, unexpected_keys, err_msg) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + '.') load(module) load = None # break load->load reference cycle # ignore "num_batches_tracked" of BN layers missing_keys = [ key for key in all_missing_keys if 'num_batches_tracked' not in key ] if unexpected_keys: err_msg.append('unexpected key in source ' f'state_dict: {", ".join(unexpected_keys)}\n') if missing_keys: err_msg.append( f'missing keys in source state_dict: {", ".join(missing_keys)}\n') rank, _ = get_dist_info() if len(err_msg) > 0 and rank == 0: err_msg.insert( 0, 'The model and loaded state dict do not match exactly\n') err_msg = '\n'.join(err_msg) if strict: raise RuntimeError(err_msg) elif logger is not None: logger.warning(err_msg) else: print(err_msg) def load_url_dist(url, model_dir=None, map_location="cpu"): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: checkpoint = model_zoo.load_url(url, model_dir=model_dir, map_location=map_location) return checkpoint def load_pavimodel_dist(model_path, map_location=None): """In distributed setting, this function only download checkpoint at local rank 0.""" try: from pavi import modelcloud except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) if rank == 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load(downloaded_file, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: model = modelcloud.get(model_path) with TemporaryDirectory() as tmp_dir: downloaded_file = osp.join(tmp_dir, model.name) model.download(downloaded_file) checkpoint = torch.load( downloaded_file, map_location=map_location) return checkpoint def load_fileclient_dist(filename, backend, map_location): """In distributed setting, this function only download checkpoint at local rank 0.""" rank, world_size = get_dist_info() rank = int(os.environ.get('LOCAL_RANK', rank)) allowed_backends = ['ceph'] if backend not in allowed_backends: raise ValueError(f'Load from Backend {backend} is not supported.') if rank == 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) if world_size > 1: torch.distributed.barrier() if rank > 0: fileclient = FileClient(backend=backend) buffer = io.BytesIO(fileclient.get(filename)) checkpoint = torch.load(buffer, map_location=map_location) return checkpoint def get_torchvision_models(): model_urls = dict() for _, name, ispkg in pkgutil.walk_packages(torchvision.models.__path__): if ispkg: continue _zoo = import_module(f'torchvision.models.{name}') if hasattr(_zoo, 'model_urls'): _urls = getattr(_zoo, 'model_urls') model_urls.update(_urls) return model_urls def get_external_models(): mmcv_home = _get_mmcv_home() default_json_path = osp.join(mmcv.__path__[0], 'model_zoo/open_mmlab.json') default_urls = load_file(default_json_path) assert isinstance(default_urls, dict) external_json_path = osp.join(mmcv_home, 'open_mmlab.json') if osp.exists(external_json_path): external_urls = load_file(external_json_path) assert isinstance(external_urls, dict) default_urls.update(external_urls) return default_urls def get_mmcls_models(): mmcls_json_path = osp.join(mmcv.__path__[0], 'model_zoo/mmcls.json') mmcls_urls = load_file(mmcls_json_path) return mmcls_urls def get_deprecated_model_names(): deprecate_json_path = osp.join(mmcv.__path__[0], 'model_zoo/deprecated.json') deprecate_urls = load_file(deprecate_json_path) assert isinstance(deprecate_urls, dict) return deprecate_urls def _process_mmcls_checkpoint(checkpoint): state_dict = checkpoint['state_dict'] new_state_dict = OrderedDict() for k, v in state_dict.items(): if k.startswith('backbone.'): new_state_dict[k[9:]] = v new_checkpoint = dict(state_dict=new_state_dict) return new_checkpoint def _load_checkpoint(filename, map_location=None): """Load checkpoint from somewhere (modelzoo, file, url). Args: filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str | None): Same as :func:`torch.load`. Default: None. Returns: dict | OrderedDict: The loaded checkpoint. It can be either an OrderedDict storing model weights or a dict containing other information, which depends on the checkpoint. """ if filename.startswith('modelzoo://'): warnings.warn('The URL scheme of "modelzoo://" is deprecated, please ' 'use "torchvision://" instead') model_urls = get_torchvision_models() model_name = filename[11:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('torchvision://'): model_urls = get_torchvision_models() model_name = filename[14:] checkpoint = load_url_dist(model_urls[model_name]) elif filename.startswith('open-mmlab://'): model_urls = get_external_models() model_name = filename[13:] deprecated_urls = get_deprecated_model_names() if model_name in deprecated_urls: warnings.warn(f'open-mmlab://{model_name} is deprecated in favor ' f'of open-mmlab://{deprecated_urls[model_name]}') model_name = deprecated_urls[model_name] model_url = model_urls[model_name] # check if is url if model_url.startswith(('http://', 'https://')): checkpoint = load_url_dist(model_url) else: filename = osp.join(_get_mmcv_home(), model_url) if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) elif filename.startswith('mmcls://'): model_urls = get_mmcls_models() model_name = filename[8:] checkpoint = load_url_dist(model_urls[model_name]) checkpoint = _process_mmcls_checkpoint(checkpoint) elif filename.startswith(('http://', 'https://')): checkpoint = load_url_dist(filename) elif filename.startswith('pavi://'): model_path = filename[7:] checkpoint = load_pavimodel_dist(model_path, map_location=map_location) elif filename.startswith('s3://'): checkpoint = load_fileclient_dist( filename, backend='ceph', map_location=map_location) else: if not osp.isfile(filename): raise IOError(f'{filename} is not a checkpoint file') checkpoint = torch.load(filename, map_location=map_location) return checkpoint def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def load_checkpoint(model, filename, map_location='cpu', strict=False, logger=None): """Load checkpoint from a file or URI. Args: model (Module): Module to load checkpoint. filename (str): Accept local filepath, URL, ``torchvision://xxx``, ``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for details. map_location (str): Same as :func:`torch.load`. strict (bool): Whether to allow different params for the model and checkpoint. logger (:mod:`logging.Logger` or None): The logger for error message. Returns: dict or OrderedDict: The loaded checkpoint. """ checkpoint = _load_checkpoint(filename, map_location) # OrderedDict is a subclass of dict if not isinstance(checkpoint, dict): raise RuntimeError( f'No state_dict found in checkpoint file {filename}') # get state_dict from checkpoint if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] elif 'module' in checkpoint: state_dict = checkpoint['module'] else: state_dict = checkpoint # strip prefix of state_dict if list(state_dict.keys())[0].startswith('module.'): state_dict = {k[7:]: v for k, v in state_dict.items()} # for MoBY, load model of online branch if sorted(list(state_dict.keys()))[0].startswith('encoder'): state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')} # reshape absolute position embedding for Swin if state_dict.get('absolute_pos_embed') is not None: absolute_pos_embed = state_dict['absolute_pos_embed'] N1, L, C1 = absolute_pos_embed.size() N2, C2, H, W = model.absolute_pos_embed.size() if N1 != N2 or C1 != C2 or L != H*W: logger.warning("Error in loading absolute_pos_embed, pass") else: state_dict['absolute_pos_embed'] = absolute_pos_embed.view(N2, H, W, C2).permute(0, 3, 1, 2) rank, _ = get_dist_info() all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: state_dict.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = state_dict[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: if rank == 0: print("Position interpolate for %s from %dx%d to %dx%d" % ( key, src_size, src_size, dst_size, dst_size)) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): return a * (1.0 - r ** n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: q = (left + right) / 2.0 gp = geometric_progression(1, q, src_size // 2) if gp > dst_size // 2: right = q else: left = q # if q > 1.13492: # q = 1.13492 dis = [] cur = 1 for i in range(src_size // 2): dis.append(cur) cur += q ** (i + 1) r_ids = [-_ for _ in reversed(dis)] x = r_ids + [0] + dis y = r_ids + [0] + dis t = dst_size // 2.0 dx = np.arange(-t, t + 0.1, 1.0) dy = np.arange(-t, t + 0.1, 1.0) if rank == 0: print("x = {}".format(x)) print("dx = {}".format(dx)) all_rel_pos_bias = [] for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() f = interpolate.interp2d(x, y, z, kind='cubic') all_rel_pos_bias.append( torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) state_dict[key] = new_rel_pos_bias if 'pos_embed' in state_dict: pos_embed_checkpoint = state_dict['pos_embed'] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.patch_embed.num_patches num_extra_tokens = model.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding new_size = int(num_patches ** 0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: if rank == 0: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] # only the position tokens are interpolated pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) state_dict['pos_embed'] = new_pos_embed # interpolate position bias table if needed relative_position_bias_table_keys = [k for k in state_dict.keys() if "relative_position_bias_table" in k] for table_key in relative_position_bias_table_keys: table_pretrained = state_dict[table_key] table_current = model.state_dict()[table_key] L1, nH1 = table_pretrained.size() L2, nH2 = table_current.size() if nH1 != nH2: logger.warning(f"Error in loading {table_key}, pass") else: if L1 != L2: S1 = int(L1 ** 0.5) S2 = int(L2 ** 0.5) table_pretrained_resized = F.interpolate( table_pretrained.permute(1, 0).view(1, nH1, S1, S1), size=(S2, S2), mode='bicubic') state_dict[table_key] = table_pretrained_resized.view(nH2, L2).permute(1, 0) # load state_dict load_state_dict(model, state_dict, strict, logger) return checkpoint def weights_to_cpu(state_dict): """Copy a model state_dict to cpu. Args: state_dict (OrderedDict): Model weights on GPU. Returns: OrderedDict: Model weights on GPU. """ state_dict_cpu = OrderedDict() for key, val in state_dict.items(): state_dict_cpu[key] = val.cpu() return state_dict_cpu def _save_to_state_dict(module, destination, prefix, keep_vars): """Saves module state to `destination` dictionary. This method is modified from :meth:`torch.nn.Module._save_to_state_dict`. Args: module (nn.Module): The module to generate state_dict. destination (dict): A dict where state will be stored. prefix (str): The prefix for parameters and buffers used in this module. """ for name, param in module._parameters.items(): if param is not None: destination[prefix + name] = param if keep_vars else param.detach() for name, buf in module._buffers.items(): # remove check of _non_persistent_buffers_set to allow nn.BatchNorm2d if buf is not None: destination[prefix + name] = buf if keep_vars else buf.detach() def get_state_dict(module, destination=None, prefix='', keep_vars=False): """Returns a dictionary containing a whole state of the module. Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. This method is modified from :meth:`torch.nn.Module.state_dict` to recursively check parallel module in case that the model has a complicated structure, e.g., nn.Module(nn.Module(DDP)). Args: module (nn.Module): The module to generate state_dict. destination (OrderedDict): Returned dict for the state of the module. prefix (str): Prefix of the key. keep_vars (bool): Whether to keep the variable property of the parameters. Default: False. Returns: dict: A dictionary containing a whole state of the module. """ # recursively check parallel module in case that the model has a # complicated structure, e.g., nn.Module(nn.Module(DDP)) if is_module_wrapper(module): module = module.module # below is the same as torch.nn.Module.state_dict() if destination is None: destination = OrderedDict() destination._metadata = OrderedDict() destination._metadata[prefix[:-1]] = local_metadata = dict( version=module._version) _save_to_state_dict(module, destination, prefix, keep_vars) for name, child in module._modules.items(): if child is not None: get_state_dict( child, destination, prefix + name + '.', keep_vars=keep_vars) for hook in module._state_dict_hooks.values(): hook_result = hook(module, destination, prefix, local_metadata) if hook_result is not None: destination = hook_result return destination def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 3 fields: ``meta``, ``state_dict`` and ``optimizer``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/checkpoint.py
# -*- coding: utf-8 -*- from .checkpoint import load_checkpoint from .layer_decay_optimizer_constructor import LayerDecayOptimizerConstructor from .resize_transform import SETR_Resize from .apex_runner.optimizer import DistOptimizerHook from .train_api import train_segmentor __all__ = ['load_checkpoint', 'LayerDecayOptimizerConstructor', 'SETR_Resize', 'DistOptimizerHook', 'train_segmentor']
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/__init__.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import platform import shutil import torch from torch.optim import Optimizer import mmcv from mmcv.runner import RUNNERS, IterBasedRunner from .checkpoint import save_checkpoint try: import apex except: print('apex is not installed') @RUNNERS.register_module() class IterBasedRunnerAmp(IterBasedRunner): """Iteration-based Runner with AMP support. This runner train models iteration by iteration. """ def save_checkpoint(self, out_dir, filename_tmpl='iter_{}.pth', meta=None, save_optimizer=True, create_symlink=False): """Save checkpoint to file. Args: out_dir (str): Directory to save checkpoint files. filename_tmpl (str, optional): Checkpoint file template. Defaults to 'iter_{}.pth'. meta (dict, optional): Metadata to be saved in checkpoint. Defaults to None. save_optimizer (bool, optional): Whether save optimizer. Defaults to True. create_symlink (bool, optional): Whether create symlink to the latest checkpoint file. Defaults to True. """ if meta is None: meta = dict(iter=self.iter + 1, epoch=self.epoch + 1) elif isinstance(meta, dict): meta.update(iter=self.iter + 1, epoch=self.epoch + 1) else: raise TypeError( f'meta should be a dict or None, but got {type(meta)}') if self.meta is not None: meta.update(self.meta) filename = filename_tmpl.format(self.iter + 1) filepath = osp.join(out_dir, filename) optimizer = self.optimizer if save_optimizer else None save_checkpoint(self.model, filepath, optimizer=optimizer, meta=meta) # in some environments, `os.symlink` is not supported, you may need to # set `create_symlink` to False # if create_symlink: # dst_file = osp.join(out_dir, 'latest.pth') # if platform.system() != 'Windows': # mmcv.symlink(filename, dst_file) # else: # shutil.copy(filepath, dst_file) def resume(self, checkpoint, resume_optimizer=True, map_location='default'): if map_location == 'default': if torch.cuda.is_available(): device_id = torch.cuda.current_device() checkpoint = self.load_checkpoint( checkpoint, map_location=lambda storage, loc: storage.cuda(device_id)) else: checkpoint = self.load_checkpoint(checkpoint) else: checkpoint = self.load_checkpoint( checkpoint, map_location=map_location) self._epoch = checkpoint['meta']['epoch'] self._iter = checkpoint['meta']['iter'] self._inner_iter = checkpoint['meta']['iter'] if 'optimizer' in checkpoint and resume_optimizer: if isinstance(self.optimizer, Optimizer): self.optimizer.load_state_dict(checkpoint['optimizer']) elif isinstance(self.optimizer, dict): for k in self.optimizer.keys(): self.optimizer[k].load_state_dict( checkpoint['optimizer'][k]) else: raise TypeError( 'Optimizer should be dict or torch.optim.Optimizer ' f'but got {type(self.optimizer)}') if 'amp' in checkpoint: apex.amp.load_state_dict(checkpoint['amp']) self.logger.info('load amp state dict') self.logger.info(f'resumed from epoch: {self.epoch}, iter {self.iter}')
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/apex_runner/apex_iter_based_runner.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/apex_runner/checkpoint.py
# Copyright (c) Open-MMLab. All rights reserved. from .checkpoint import save_checkpoint from .apex_iter_based_runner import IterBasedRunnerAmp __all__ = [ 'save_checkpoint', 'IterBasedRunnerAmp', ]
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/apex_runner/__init__.py
from mmcv.runner import OptimizerHook, HOOKS try: import apex except: print('apex is not installed') @HOOKS.register_module() class DistOptimizerHook(OptimizerHook): """Optimizer hook for distributed training.""" def __init__(self, update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.update_interval = update_interval self.use_fp16 = use_fp16 def before_run(self, runner): runner.optimizer.zero_grad() def after_train_iter(self, runner): runner.outputs['loss'] /= self.update_interval if self.use_fp16: with apex.amp.scale_loss(runner.outputs['loss'], runner.optimizer) as scaled_loss: scaled_loss.backward() else: runner.outputs['loss'].backward() if self.every_n_iters(runner, self.update_interval): if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.optimizer.step() runner.optimizer.zero_grad()
data2vec_vision-main
beit/semantic_segmentation/mmcv_custom/apex_runner/optimizer.py
# yapf:disable log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] cudnn_benchmark = True
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/default_runtime.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2560, 640), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/datasets/ade20k_640x640.py
# dataset settings dataset_type = 'ADE20KDataset' data_root = 'data/ade/ADEChallengeData2016' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', reduce_zero_label=True), dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='RandomFlip', prob=0.5), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir='images/training', ann_dir='annotations/training', pipeline=train_pipeline), val=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline), test=dict( type=dataset_type, data_root=data_root, img_dir='images/validation', ann_dir='annotations/validation', pipeline=test_pipeline))
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/datasets/ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='XCiT', patch_size=16, embed_dim=384, depth=12, num_heads=8, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=True, use_rel_pos_bias=False, ), decode_head=dict( type='UPerHead', in_channels=[384, 384, 384, 384], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/models/upernet_beit.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=160000) checkpoint_config = dict(by_epoch=False, interval=16000) evaluation = dict(interval=16000, metric='mIoU')
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/schedules/schedule_160k.py
# optimizer optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005) optimizer_config = dict() # learning policy lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False) # runtime settings runner = dict(type='IterBasedRunner', max_iters=320000) checkpoint_config = dict(by_epoch=False, interval=32000) evaluation = dict(interval=32000, metric='mIoU')
data2vec_vision-main
beit/semantic_segmentation/configs/_base_/schedules/schedule_320k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_320k.py' ] # We set samples_per_gpu to 1 and optimizer_config.update_interval to 2, the total update step keep 160k. crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=3000, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=1) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 # We set samples_per_gpu to 1 and optimizer_config.update_interval to 2, the total update step keep 160k. fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=2, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_640_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data = dict(samples_per_gpu=2) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_512_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='BEiT', img_size=512, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data = dict(samples_per_gpu=2) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (512, 512) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2048, 512), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_512_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline), samples_per_gpu=2, ) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_320k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=1e-6, drop_path_rate=0.2, out_indices=[7, 11, 15, 23], ), decode_head=dict( in_channels=[1024, 1024, 1024, 1024], num_classes=150, channels=1024, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=2e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=24, layer_decay_rate=0.95)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=3000, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=1) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) crop_size = (640, 640) # test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)) find_unused_parameters = True test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(2560, 640), img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=True, transforms=[ dict(type='SETR_Resize', keep_ratio=True, crop_size=crop_size, setr_multi_scale=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=2, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_large_24_640_slide_160k_ade20k_ms.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' _base_ = [ '../../_base_/models/upernet_beit.py', '../../_base_/datasets/ade20k_640x640.py', '../../_base_/default_runtime.py', '../../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='BEiT', img_size=640, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, use_abs_pos_emb=False, use_rel_pos_bias=True, init_values=0.1, drop_path_rate=0.1, out_indices=[3, 5, 7, 11] ), decode_head=dict( in_channels=[768, 768, 768, 768], num_classes=150, channels=768, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)) ) # AdamW optimizer, no weight decay for position embedding & layer norm in backbone # optimizer = dict(_delete_=True, type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01, # paramwise_cfg=dict(custom_keys={'absolute_pos_embed': dict(decay_mult=0.), # 'relative_position_bias_table': dict(decay_mult=0.), # 'norm': dict(decay_mult=0.)})) optimizer = dict(_delete_=True, type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05, constructor='LayerDecayOptimizerConstructor', paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
data2vec_vision-main
beit/semantic_segmentation/configs/beit/upernet/upernet_beit_base_12_640_slide_160k_ade20k.py
# -------------------------------------------------------- # BEIT: BERT Pre-Training of Image Transformers (https://arxiv.org/abs/2106.08254) # Github source: https://github.com/microsoft/unilm/tree/master/beit # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # By Hangbo Bao # Based on timm, mmseg, setr, xcit and swin code bases # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/fudan-zvg/SETR # https://github.com/facebookresearch/xcit/ # https://github.com/microsoft/Swin-Transformer # --------------------------------------------------------' import math import torch from functools import partial import torch.nn as nn import torch.nn.functional as F from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from mmcv_custom import load_checkpoint from mmseg.utils import get_root_logger from mmseg.models.builder import BACKBONES class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.0) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, rel_pos_bias=None): B, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if rel_pos_bias is not None: attn = attn + rel_pos_bias attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if init_values is not None: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None def forward(self, x, rel_pos_bias=None): if self.gamma_1 is None: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) Hp, Wp = x.shape[2], x.shape[3] x = x.flatten(2).transpose(1, 2) return x, (Hp, Wp) class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) # trunc_normal_(self.relative_position_bias_table, std=.02) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww @BACKBONES.register_module() class BEiT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, init_values=None, use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, out_indices=[3, 5, 7, 11]): super().__init__() norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models if hybrid_backbone is not None: self.patch_embed = HybridEmbed( hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) else: self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.out_indices = out_indices self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)]) if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.out_indices = out_indices if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) self.apply(self._init_weights) self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): B, C, H, W = x.shape x, (Hp, Wp) = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None features = [] for i, blk in enumerate(self.blocks): x = blk(x, rel_pos_bias=rel_pos_bias) if i in self.out_indices: xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) return tuple(features) def forward(self, x): x = self.forward_features(x) return x
data2vec_vision-main
beit/semantic_segmentation/backbone/beit.py
#!/usr/bin/env python3 import torch from setuptools import find_packages, setup torch_ver = [int(x) for x in torch.__version__.split(".")[:2]] assert torch_ver >= [1, 4], "Requires PyTorch >= 1.4" setup( name="layoutlm", version="0.0", author="Yiheng Xu", url="https://github.com/microsoft/unilm/tree/master/layoutlm", description="LayoutLM", packages=find_packages(exclude=("configs", "tests")), python_requires=">=3.6", install_requires=[ "transformers==2.9.0", "tensorboardX==2.0", "lxml==4.5.1", "seqeval==0.0.12", "Pillow==7.1.2", ], extras_require={ "dev": ["flake8==3.8.2", "isort==4.3.21", "black==19.10b0", "pre-commit==2.4.0"] }, )
data2vec_vision-main
layoutlm/deprecated/setup.py
# coding=utf-8 from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForSequenceClassification, BertTokenizerFast, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, get_linear_schedule_with_warmup, ) from layoutlm import LayoutlmConfig, LayoutlmForSequenceClassification from layoutlm.data.rvl_cdip import CdipProcessor, load_and_cache_examples try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, LayoutlmConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForSequenceClassification, BertTokenizerFast), "roberta": (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), "layoutlm": (LayoutlmConfig, LayoutlmForSequenceClassification, BertTokenizerFast), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def simple_accuracy(preds, labels): return (preds == labels).mean() def train(args, train_dataset, model, tokenizer): # noqa C901 """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(comment="_" + os.path.basename(args.output_dir)) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = ( RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) ) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size ) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = ( args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 ) else: t_total = ( len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs ) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level ) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info( " Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size ) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm( train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0] ) for step, batch in enumerate(epoch_iterator): model.train() if args.model_type != "layoutlm": batch = batch[:4] batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } if args.model_type == "layoutlm": inputs["bbox"] = batch[4] inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "layoutlm"] else None ) # RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[ 0 ] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm ) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if ( args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0 ): # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, "val") for key, value in results.items(): tb_writer.add_scalar( "eval_{}".format(key), value, global_step ) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar( "loss", (tr_loss - logging_loss) / args.logging_steps, global_step, ) logging_loss = tr_loss if ( args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0 ): # Save model checkpoint output_dir = os.path.join( args.output_dir, "checkpoint-{}".format(global_step) ) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) tokenizer.save_pretrained(output_dir) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, mode, prefix=""): results = {} eval_dataset = load_and_cache_examples(args, tokenizer, mode=mode) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size ) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() if args.model_type != "layoutlm": batch = batch[:4] batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = { "input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3], } if args.model_type == "layoutlm": inputs["bbox"] = batch[4] inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "layoutlm"] else None ) # RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append( out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0 ) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=1) result = {"acc": simple_accuracy(preds=preds, labels=out_label_ids)} results.update(result) output_eval_file = os.path.join( args.output_dir, prefix, "{}_results.txt".format(mode) ) with open(output_eval_file, "w") as writer: logger.info("***** {} results {} *****".format(mode, prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) output_eval_file = os.path.join( args.output_dir, prefix, "{}_compare.txt".format(mode) ) with open(output_eval_file, "w") as writer: for p, l in zip(preds, out_label_ids): writer.write("%s %s\n" % (p, l)) return results def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) ## Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--do_train", action="store_true", help="Whether to run training." ) parser.add_argument( "--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--do_test", action="store_true", help="Whether to run test on the test set." ) parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight deay if we apply some." ) parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer." ) parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm." ) parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps." ) parser.add_argument( "--logging_steps", type=int, default=50, help="Log every X updates steps." ) parser.add_argument( "--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--no_cuda", action="store_true", help="Avoid using CUDA when available" ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization" ) parser.add_argument( "--tpu", action="store_true", help="Whether to run on the TPU defined in the environment variables", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank", ) parser.add_argument( "--server_ip", type=str, default="", help="For distant debugging." ) parser.add_argument( "--server_port", type=str, default="", help="For distant debugging." ) args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True ) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device( "cuda:0" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) if torch.cuda.is_available(): torch.cuda.set_device(device) args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) processor = CdipProcessor() label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, mode="train") global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case ) model.to(args.device) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case ) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True) ) ) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN ) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = ( checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 and args.eval_all_checkpoints else "" ) model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, mode="val", prefix=prefix) result = dict( ("val_" + k + "_{}".format(global_step), v) for k, v in result.items() ) results.update(result) if args.do_test and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case ) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True) ) ) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN ) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = ( checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 and args.eval_all_checkpoints else "" ) model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, mode="test", prefix=prefix) result = dict( ("test_" + k + "_{}".format(global_step), v) for k, v in result.items() ) results.update(result) return results if __name__ == "__main__": main()
data2vec_vision-main
layoutlm/deprecated/examples/classification/run_classification.py
import argparse import json import os from PIL import Image from transformers import AutoTokenizer def bbox_string(box, width, length): return ( str(int(1000 * (box[0] / width))) + " " + str(int(1000 * (box[1] / length))) + " " + str(int(1000 * (box[2] / width))) + " " + str(int(1000 * (box[3] / length))) ) def actual_bbox_string(box, width, length): return ( str(box[0]) + " " + str(box[1]) + " " + str(box[2]) + " " + str(box[3]) + "\t" + str(width) + " " + str(length) ) def convert(args): with open( os.path.join(args.output_dir, args.data_split + ".txt.tmp"), "w", encoding="utf8", ) as fw, open( os.path.join(args.output_dir, args.data_split + "_box.txt.tmp"), "w", encoding="utf8", ) as fbw, open( os.path.join(args.output_dir, args.data_split + "_image.txt.tmp"), "w", encoding="utf8", ) as fiw: for file in os.listdir(args.data_dir): file_path = os.path.join(args.data_dir, file) with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = file_path.replace("annotations", "images") image_path = image_path.replace("json", "png") file_name = os.path.basename(image_path) image = Image.open(image_path) width, length = image.size for item in data["form"]: words, label = item["words"], item["label"] words = [w for w in words if w["text"].strip() != ""] if len(words) == 0: continue if label == "other": for w in words: fw.write(w["text"] + "\tO\n") fbw.write( w["text"] + "\t" + bbox_string(w["box"], width, length) + "\n" ) fiw.write( w["text"] + "\t" + actual_bbox_string(w["box"], width, length) + "\t" + file_name + "\n" ) else: if len(words) == 1: fw.write(words[0]["text"] + "\tS-" + label.upper() + "\n") fbw.write( words[0]["text"] + "\t" + bbox_string(words[0]["box"], width, length) + "\n" ) fiw.write( words[0]["text"] + "\t" + actual_bbox_string(words[0]["box"], width, length) + "\t" + file_name + "\n" ) else: fw.write(words[0]["text"] + "\tB-" + label.upper() + "\n") fbw.write( words[0]["text"] + "\t" + bbox_string(words[0]["box"], width, length) + "\n" ) fiw.write( words[0]["text"] + "\t" + actual_bbox_string(words[0]["box"], width, length) + "\t" + file_name + "\n" ) for w in words[1:-1]: fw.write(w["text"] + "\tI-" + label.upper() + "\n") fbw.write( w["text"] + "\t" + bbox_string(w["box"], width, length) + "\n" ) fiw.write( w["text"] + "\t" + actual_bbox_string(w["box"], width, length) + "\t" + file_name + "\n" ) fw.write(words[-1]["text"] + "\tE-" + label.upper() + "\n") fbw.write( words[-1]["text"] + "\t" + bbox_string(words[-1]["box"], width, length) + "\n" ) fiw.write( words[-1]["text"] + "\t" + actual_bbox_string(words[-1]["box"], width, length) + "\t" + file_name + "\n" ) fw.write("\n") fbw.write("\n") fiw.write("\n") def seg_file(file_path, tokenizer, max_len): subword_len_counter = 0 output_path = file_path[:-4] with open(file_path, "r", encoding="utf8") as f_p, open( output_path, "w", encoding="utf8" ) as fw_p: for line in f_p: line = line.rstrip() if not line: fw_p.write(line + "\n") subword_len_counter = 0 continue token = line.split("\t")[0] current_subwords_len = len(tokenizer.tokenize(token)) # Token contains strange control characters like \x96 or \x95 # Just filter out the complete line if current_subwords_len == 0: continue if (subword_len_counter + current_subwords_len) > max_len: fw_p.write("\n" + line + "\n") subword_len_counter = current_subwords_len continue subword_len_counter += current_subwords_len fw_p.write(line + "\n") def seg(args): tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, do_lower_case=True ) seg_file( os.path.join(args.output_dir, args.data_split + ".txt.tmp"), tokenizer, args.max_len, ) seg_file( os.path.join(args.output_dir, args.data_split + "_box.txt.tmp"), tokenizer, args.max_len, ) seg_file( os.path.join(args.output_dir, args.data_split + "_image.txt.tmp"), tokenizer, args.max_len, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--data_dir", type=str, default="data/training_data/annotations" ) parser.add_argument("--data_split", type=str, default="train") parser.add_argument("--output_dir", type=str, default="data") parser.add_argument("--model_name_or_path", type=str, default="bert-base-uncased") parser.add_argument("--max_len", type=int, default=510) args = parser.parse_args() convert(args) seg(args)
data2vec_vision-main
layoutlm/deprecated/examples/seq_labeling/preprocess.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta). """ from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import shutil import numpy as np import torch from seqeval.metrics import ( classification_report, f1_score, precision_score, recall_score, ) from tensorboardX import SummaryWriter from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForTokenClassification, BertTokenizer, RobertaConfig, RobertaForTokenClassification, RobertaTokenizer, get_linear_schedule_with_warmup, ) from layoutlm import FunsdDataset, LayoutlmConfig, LayoutlmForTokenClassification logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, LayoutlmConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForTokenClassification, BertTokenizer), "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer), "layoutlm": (LayoutlmConfig, LayoutlmForTokenClassification, BertTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def collate_fn(data): batch = [i for i in zip(*data)] for i in range(len(batch)): if i < len(batch) - 2: batch[i] = torch.stack(batch[i], 0) return tuple(batch) def get_labels(path): with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels def train( # noqa C901 args, train_dataset, model, tokenizer, labels, pad_token_label_id ): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter(logdir="runs/" + os.path.basename(args.output_dir)) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = ( RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) ) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=None, ) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = ( args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 ) else: t_total = ( len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs ) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": args.weight_decay, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon ) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) if args.fp16: try: from apex import amp except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level ) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True, ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info( " Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size ) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: epoch_iterator = tqdm( train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0] ) for step, batch in enumerate(epoch_iterator): model.train() inputs = { "input_ids": batch[0].to(args.device), "attention_mask": batch[1].to(args.device), "labels": batch[3].to(args.device), } if args.model_type in ["layoutlm"]: inputs["bbox"] = batch[4].to(args.device) inputs["token_type_ids"] = ( batch[2].to(args.device) if args.model_type in ["bert", "layoutlm"] else None ) # RoBERTa don"t use segment_ids outputs = model(**inputs) # model outputs are always tuple in pytorch-transformers (see doc) loss = outputs[0] if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.max_grad_norm ) else: torch.nn.utils.clip_grad_norm_( model.parameters(), args.max_grad_norm ) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if ( args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0 ): # Log metrics if ( args.local_rank in [-1, 0] and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results, _ = evaluate( args, model, tokenizer, labels, pad_token_label_id, mode="dev", ) for key, value in results.items(): tb_writer.add_scalar( "eval_{}".format(key), value, global_step ) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar( "loss", (tr_loss - logging_loss) / args.logging_steps, global_step, ) logging_loss = tr_loss if ( args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0 ): # Save model checkpoint output_dir = os.path.join( args.output_dir, "checkpoint-{}".format(global_step) ) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): eval_dataset = FunsdDataset(args, tokenizer, labels, pad_token_label_id, mode=mode) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader( eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=None, ) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): with torch.no_grad(): inputs = { "input_ids": batch[0].to(args.device), "attention_mask": batch[1].to(args.device), "labels": batch[3].to(args.device), } if args.model_type in ["layoutlm"]: inputs["bbox"] = batch[4].to(args.device) inputs["token_type_ids"] = ( batch[2].to(args.device) if args.model_type in ["bert", "layoutlm"] else None ) # RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = ( tmp_eval_loss.mean() ) # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append( out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0 ) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } report = classification_report(out_label_list, preds_list) logger.info("\n" + report) logger.info("***** Eval results %s *****", prefix) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list def main(): # noqa C901 parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) ## Other parameters parser.add_argument( "--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=512, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--do_train", action="store_true", help="Whether to run training." ) parser.add_argument( "--do_eval", action="store_true", help="Whether to run eval on the dev set." ) parser.add_argument( "--do_predict", action="store_true", help="Whether to run predictions on the test set.", ) parser.add_argument( "--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.", ) parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some." ) parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer." ) parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm." ) parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps." ) parser.add_argument( "--logging_steps", type=int, default=50, help="Log every X updates steps." ) parser.add_argument( "--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.", ) parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( "--no_cuda", action="store_true", help="Avoid using CUDA when available" ) parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument( "--seed", type=int, default=42, help="random seed for initialization" ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument( "--local_rank", type=int, default=-1, help="For distributed training: local_rank", ) parser.add_argument( "--server_ip", type=str, default="", help="For distant debugging." ) parser.add_argument( "--server_port", type=str, default="", help="For distant debugging." ) args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train ): if not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) else: if args.local_rank in [-1, 0]: shutil.rmtree(args.output_dir) if not os.path.exists(args.output_dir) and (args.do_eval or args.do_predict): raise ValueError( "Output directory ({}) does not exist. Please train and save the model before inference stage.".format( args.output_dir ) ) if ( not os.path.exists(args.output_dir) and args.do_train and args.local_rank in [-1, 0] ): os.makedirs(args.output_dir) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach( address=(args.server_ip, args.server_port), redirect_output=True ) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( filename=os.path.join(args.output_dir, "train.log") if args.local_rank in [-1, 0] else None, format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed set_seed(args) labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = FunsdDataset( args, tokenizer, labels, pad_token_label_id, mode="train" ) global_step, tr_loss = train( args, train_dataset, model, tokenizer, labels, pad_token_label_id ) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case ) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True) ) ) logging.getLogger("pytorch_transformers.modeling_utils").setLevel( logging.WARN ) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result, _ = evaluate( args, model, tokenizer, labels, pad_token_label_id, mode="test", prefix=global_step, ) if global_step: result = {"{}_{}".format(global_step, k): v for k, v in result.items()} results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.model_name_or_path, do_lower_case=args.do_lower_case ) model = model_class.from_pretrained(args.output_dir) model.to(args.device) result, predictions = evaluate( args, model, tokenizer, labels, pad_token_label_id, mode="test" ) # Save results output_test_results_file = os.path.join(args.output_dir, "test_results.txt") with open(output_test_results_file, "w") as writer: for key in sorted(result.keys()): writer.write("{} = {}\n".format(key, str(result[key]))) # Save predictions output_test_predictions_file = os.path.join( args.output_dir, "test_predictions.txt" ) with open(output_test_predictions_file, "w", encoding="utf8") as writer: with open( os.path.join(args.data_dir, "test.txt"), "r", encoding="utf8" ) as f: example_id = 0 for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(line) if not predictions[example_id]: example_id += 1 elif predictions[example_id]: output_line = ( line.split()[0] + " " + predictions[example_id].pop(0) + "\n" ) writer.write(output_line) else: logger.warning( "Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0], ) return results if __name__ == "__main__": main()
data2vec_vision-main
layoutlm/deprecated/examples/seq_labeling/run_seq_labeling.py
# flake8: noqa from .data.funsd import FunsdDataset from .modeling.layoutlm import ( LayoutlmConfig, LayoutlmForSequenceClassification, LayoutlmForTokenClassification, )
data2vec_vision-main
layoutlm/deprecated/layoutlm/__init__.py
data2vec_vision-main
layoutlm/deprecated/layoutlm/modeling/__init__.py
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import BertConfig, BertModel, BertPreTrainedModel from transformers.modeling_bert import BertLayerNorm logger = logging.getLogger(__name__) LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP = {} LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class LayoutlmConfig(BertConfig): pretrained_config_archive_map = LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP model_type = "bert" def __init__(self, max_2d_position_embeddings=1024, **kwargs): super().__init__(**kwargs) self.max_2d_position_embeddings = max_2d_position_embeddings class LayoutlmEmbeddings(nn.Module): def __init__(self, config): super(LayoutlmEmbeddings, self).__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=0 ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.x_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.y_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.h_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.w_position_embeddings = nn.Embedding( config.max_2d_position_embeddings, config.hidden_size ) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, input_ids, bbox, token_type_ids=None, position_ids=None, inputs_embeds=None, ): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange( seq_length, dtype=torch.long, device=input_ids.device ) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) h_position_embeddings = self.h_position_embeddings( bbox[:, :, 3] - bbox[:, :, 1] ) w_position_embeddings = self.w_position_embeddings( bbox[:, :, 2] - bbox[:, :, 0] ) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = ( words_embeddings + position_embeddings + left_position_embeddings + upper_position_embeddings + right_position_embeddings + lower_position_embeddings + h_position_embeddings + w_position_embeddings + token_type_embeddings ) embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class LayoutlmModel(BertModel): config_class = LayoutlmConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super(LayoutlmModel, self).__init__(config) self.embeddings = LayoutlmEmbeddings(config) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, ): if attention_mask is None: attention_mask = torch.ones_like(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to( dtype=next(self.parameters()).dtype ) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: if head_mask.dim() == 1: head_mask = ( head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) ) head_mask = head_mask.expand( self.config.num_hidden_layers, -1, -1, -1, -1 ) elif head_mask.dim() == 2: head_mask = ( head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) ) # We can specify head_mask for each layer head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings( input_ids, bbox, position_ids=position_ids, token_type_ids=token_type_ids ) encoder_outputs = self.encoder( embedding_output, extended_attention_mask, head_mask=head_mask ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) outputs = (sequence_output, pooled_output) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions) class LayoutlmForTokenClassification(BertPreTrainedModel): config_class = LayoutlmConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = LayoutlmModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): outputs = self.bert( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) outputs = (logits,) + outputs[ 2: ] # add hidden states and attention if they are here if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = labels.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), scores, (hidden_states), (attentions) class LayoutlmForSequenceClassification(BertPreTrainedModel): config_class = LayoutlmConfig pretrained_model_archive_map = LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_MAP base_model_prefix = "bert" def __init__(self, config): super(LayoutlmForSequenceClassification, self).__init__(config) self.num_labels = config.num_labels self.bert = LayoutlmModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, self.config.num_labels) self.init_weights() def forward( self, input_ids, bbox, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): outputs = self.bert( input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) outputs = (logits,) + outputs[ 2: ] # add hidden states and attention if they are here if labels is not None: if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions)
data2vec_vision-main
layoutlm/deprecated/layoutlm/modeling/layoutlm.py
# coding=utf-8 import copy import json import logging import os import re from multiprocessing import Pool import torch from lxml import html from torch.utils.data import TensorDataset from tqdm import tqdm from transformers import DataProcessor logger = logging.getLogger(__name__) def get_text(node): textnodes = node.xpath(".//text()") s = "".join([text for text in textnodes]) return re.sub(r"\s+", " ", s).strip() def get_prop(node, name): title = node.get("title") props = title.split(";") for prop in props: (key, args) = prop.split(None, 1) args = args.strip('"') if key == name: return args return None class DocExample(object): def __init__(self, guid, text_a, text_b=None, bbox=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.bbox = bbox self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class CdipProcessor(DataProcessor): """Processor for the CDIP data set.""" def worker(self, line): file, label = line.split() text, bbox = self.read_hocr_file(self.data_dir, file) return [text, bbox, label] def get_examples(self, data_dir, mode): self.data_dir = data_dir with open(os.path.join(data_dir, "labels", "{}.txt".format(mode))) as f: lines = f.readlines() examples = [] with tqdm(lines, desc="Gettting {} examples".format(mode)) as t, Pool(24) as p: for example in p.imap(self.worker, lines): examples.append(example) t.update() return self._create_examples(examples, mode) def _get_examples(self, data_dir, mode): with open(os.path.join(data_dir, "labels", "{}.txt".format(mode))) as f: lines = [] for line in tqdm(f.readlines(), desc="Gettting {} examples".format(mode)): file, label = line.split() text, bbox = self.read_hocr_file(data_dir, file) lines.append([text, bbox, label]) return self._create_examples(lines, mode) def read_hocr_file(self, data_dir, file): hocr_file = os.path.join(data_dir, "images", file[:-4] + ".xml") text_buffer = [] bbox_buffer = [] try: doc = html.parse(hocr_file) except AssertionError: logger.warning( "%s is empty or its format is unacceptable. Skipped.", hocr_file ) return [], [] for page in doc.xpath("//*[@class='ocr_page']"): page_bbox = [int(x) for x in get_prop(page, "bbox").split()] width, height = page_bbox[2], page_bbox[3] for word in doc.xpath("//*[@class='ocrx_word']"): textnodes = word.xpath(".//text()") s = "".join([text for text in textnodes]) text = re.sub(r"\s+", " ", s).strip() if text: text_buffer.append(text) bbox = [int(x) for x in get_prop(word, "bbox").split()] bbox = [ bbox[0] / width, bbox[1] / height, bbox[2] / width, bbox[3] / height, ] bbox = [int(x * 1000) for x in bbox] bbox_buffer.append(bbox) return text_buffer, bbox_buffer def get_labels(self): return list(map(str, list(range(16)))) def _create_examples(self, lines, mode): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (mode, i) text = line[0] bbox = line[1] label = line[2] examples.append( DocExample(guid=guid, text_a=text, text_b=None, bbox=bbox, label=label) ) return examples class DocFeature(object): def __init__(self, input_ids, bboxes, attention_mask, token_type_ids, label): assert ( 0 <= all(bboxes) <= 1000 ), "Error with input bbox ({}): the coordinate value is not between 0 and 1000".format( bboxes ) self.input_ids = input_ids self.bboxes = bboxes self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" def convert_examples_to_features( examples, tokenizer, max_length=512, label_list=None, pad_on_left=False, pad_token="[PAD]", pad_token_id=0, pad_token_segment_id=0, mask_padding_with_zero=True, ): label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(tqdm(examples)): tokens = [] bboxes = [] if len(example.text_a) == 0: bboxes.append([0, 0, 0, 0]) tokens.append(pad_token) for token, bbox in zip(example.text_a, example.bbox): sub_tokens = tokenizer.tokenize(token) for sub_token in sub_tokens: bboxes.append(bbox) tokens.append(sub_token) tokens = tokens[: max_length - 2] bboxes = bboxes[: max_length - 2] bboxes = [[0, 0, 0, 0]] + bboxes + [[1000, 1000, 1000, 1000]] input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = [tokenizer.cls_token_id] + input_ids + [tokenizer.sep_token_id] token_type_ids = [0] * len(input_ids) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token_id] * padding_length) + input_ids bboxes = ([[0, 0, 0, 0]] * padding_length) + bboxes attention_mask = ( [0 if mask_padding_with_zero else 1] * padding_length ) + attention_mask token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token_id] * padding_length) bboxes = bboxes + ([[0, 0, 0, 0]] * padding_length) attention_mask = attention_mask + ( [0 if mask_padding_with_zero else 1] * padding_length ) token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format( len(input_ids), max_length ) assert len(bboxes) == max_length, "Error with input length {} vs {}".format( len(bboxes), max_length ) assert ( len(attention_mask) == max_length ), "Error with input length {} vs {}".format(len(attention_mask), max_length) assert ( len(token_type_ids) == max_length ), "Error with input length {} vs {}".format(len(token_type_ids), max_length) label = label_map[example.label] if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_ids: %s" % " ".join([str(x) for x in bboxes])) logger.info( "attention_mask: %s" % " ".join([str(x) for x in attention_mask]) ) logger.info( "token_type_ids: %s" % " ".join([str(x) for x in token_type_ids]) ) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( DocFeature( input_ids=input_ids, bboxes=bboxes, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label, ) ) return features def load_and_cache_examples(args, tokenizer, mode="train"): if args.local_rank not in [-1, 0] and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = CdipProcessor() # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() examples = processor.get_examples(args.data_dir, mode) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.pad_token, pad_token_id=tokenizer.pad_token_id, pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_bboxes = torch.tensor([f.bboxes for f in features], dtype=torch.long) all_attention_mask = torch.tensor( [f.attention_mask for f in features], dtype=torch.long ) all_token_type_ids = torch.tensor( [f.token_type_ids for f in features], dtype=torch.long ) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) dataset = TensorDataset( all_input_ids, all_attention_mask, all_token_type_ids, all_labels, all_bboxes ) return dataset if __name__ == "__main__": import argparse from transformers import BertTokenizerFast parser = argparse.ArgumentParser() args = parser.parse_args() args.local_rank = -1 args.data_dir = "data" args.model_name_or_path = "bert-base-uncased" args.max_seq_length = 512 args.model_type = "bert" args.overwrite_cache = True tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") dataset = load_and_cache_examples(args, tokenizer, mode="test") print(len(dataset))
data2vec_vision-main
layoutlm/deprecated/layoutlm/data/rvl_cdip.py
# flake8: noqa from .funsd import FunsdDataset
data2vec_vision-main
layoutlm/deprecated/layoutlm/data/__init__.py
import logging import os import torch from torch.utils.data import Dataset logger = logging.getLogger(__name__) class FunsdDataset(Dataset): def __init__(self, args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and mode == "train": torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache self.features = features # Convert to Tensors and build dataset self.all_input_ids = torch.tensor( [f.input_ids for f in features], dtype=torch.long ) self.all_input_mask = torch.tensor( [f.input_mask for f in features], dtype=torch.long ) self.all_segment_ids = torch.tensor( [f.segment_ids for f in features], dtype=torch.long ) self.all_label_ids = torch.tensor( [f.label_ids for f in features], dtype=torch.long ) self.all_bboxes = torch.tensor([f.boxes for f in features], dtype=torch.long) def __len__(self): return len(self.features) def __getitem__(self, index): return ( self.all_input_ids[index], self.all_input_mask[index], self.all_segment_ids[index], self.all_label_ids[index], self.all_bboxes[index], ) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, guid, words, labels, boxes, actual_bboxes, file_name, page_size): """Constructs a InputExample. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.words = words self.labels = labels self.boxes = boxes self.actual_bboxes = actual_bboxes self.file_name = file_name self.page_size = page_size class InputFeatures(object): """A single set of features of data.""" def __init__( self, input_ids, input_mask, segment_ids, label_ids, boxes, actual_bboxes, file_name, page_size, ): assert ( 0 <= all(boxes) <= 1000 ), "Error with input bbox ({}): the coordinate value is not between 0 and 1000".format( boxes ) self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids self.boxes = boxes self.actual_bboxes = actual_bboxes self.file_name = file_name self.page_size = page_size def read_examples_from_file(data_dir, mode): file_path = os.path.join(data_dir, "{}.txt".format(mode)) box_file_path = os.path.join(data_dir, "{}_box.txt".format(mode)) image_file_path = os.path.join(data_dir, "{}_image.txt".format(mode)) guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f, open( box_file_path, encoding="utf-8" ) as fb, open(image_file_path, encoding="utf-8") as fi: words = [] boxes = [] actual_bboxes = [] file_name = None page_size = None labels = [] for line, bline, iline in zip(f, fb, fi): if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append( InputExample( guid="{}-{}".format(mode, guid_index), words=words, labels=labels, boxes=boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) guid_index += 1 words = [] boxes = [] actual_bboxes = [] file_name = None page_size = None labels = [] else: splits = line.split("\t") bsplits = bline.split("\t") isplits = iline.split("\t") assert len(splits) == 2 assert len(bsplits) == 2 assert len(isplits) == 4 assert splits[0] == bsplits[0] words.append(splits[0]) if len(splits) > 1: labels.append(splits[-1].replace("\n", "")) box = bsplits[-1].replace("\n", "") box = [int(b) for b in box.split()] boxes.append(box) actual_bbox = [int(b) for b in isplits[1].split()] actual_bboxes.append(actual_bbox) page_size = [int(i) for i in isplits[2].split()] file_name = isplits[3].strip() else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append( InputExample( guid="%s-%d".format(mode, guid_index), words=words, labels=labels, boxes=boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) return examples def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, cls_token_box=[0, 0, 0, 0], sep_token_box=[1000, 1000, 1000, 1000], pad_token_box=[0, 0, 0, 0], pad_token_segment_id=0, pad_token_label_id=-1, sequence_a_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): file_name = example.file_name page_size = example.page_size width, height = page_size if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] token_boxes = [] actual_bboxes = [] label_ids = [] for word, label, box, actual_bbox in zip( example.words, example.labels, example.boxes, example.actual_bboxes ): word_tokens = tokenizer.tokenize(word) tokens.extend(word_tokens) token_boxes.extend([box] * len(word_tokens)) actual_bboxes.extend([actual_bbox] * len(word_tokens)) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend( [label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] token_boxes = token_boxes[: (max_seq_length - special_tokens_count)] actual_bboxes = actual_bboxes[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] token_boxes += [sep_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] token_boxes += [sep_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] token_boxes += [cls_token_box] actual_bboxes += [[0, 0, width, height]] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens token_boxes = [cls_token_box] + token_boxes actual_bboxes = [[0, 0, width, height]] + actual_bboxes label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ( [0 if mask_padding_with_zero else 1] * padding_length ) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids token_boxes = ([pad_token_box] * padding_length) + token_boxes else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length token_boxes += [pad_token_box] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length assert len(token_boxes) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) logger.info("boxes: %s", " ".join([str(x) for x in token_boxes])) logger.info("actual_bboxes: %s", " ".join([str(x) for x in actual_bboxes])) features.append( InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids, boxes=token_boxes, actual_bboxes=actual_bboxes, file_name=file_name, page_size=page_size, ) ) return features
data2vec_vision-main
layoutlm/deprecated/layoutlm/data/funsd.py
from setuptools import setup, find_packages setup( name = "adalm", version = "0.0", author = "Microsoft", author_email = "", description = "domain adaptation toolkit", keywords = "domain adaptation with extended vocab", license='Apache', url = "https://github.com/littlefive5/AdaLM", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]), install_requires=['numpy', 'boto3', 'requests', 'tqdm', 'urllib3==1.25.4'], python_requires='>=3.5.0', tests_require=['pytest'], classifiers=[ 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
data2vec_vision-main
adalm/setup.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa).""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import json import numpy as np import torch from seqeval.metrics import f1_score, precision_score, recall_score from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from torch.nn import CrossEntropyLoss try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForTokenClassification, BertTokenizer, DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer, RobertaConfig, RobertaForTokenClassification, RobertaTokenizer, XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer ) from transformers import AdamW, get_linear_schedule_with_warmup from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig, XLMRobertaConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForTokenClassification, BertTokenizer), "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer), "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer), "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer), } TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) if args.warmup_ratio > 0: args.warmup_steps = int(t_total*args.warmup_ratio) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: if args.disable_tqdm: epoch_iterator = train_dataloader else: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'unilm', 'adapterbert'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.max_grad_norm > 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 epoch_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) logger.info(json.dumps({**logs, **{'step': global_step}})) if args.max_steps > 0 and global_step > args.max_steps: if not args.disable_tqdm: epoch_iterator.close() break if args.local_rank in [-1, 0]: logs = {} if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, prefix='epoch-{}'.format(_ + 1)) for key, value in results.items(): eval_key = 'eval_{}'.format(key) logs[eval_key] = value if metric_for_best is None: metric_for_best = key if best_epoch is None or best_performance[metric_for_best] < results[metric_for_best]: best_epoch = 'epoch-{}'.format(_ + 1) best_performance = results loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{'step': global_step}})) # Save model checkpoint output_dir = os.path.join(args.output_dir, 'epoch-{}'.format(_ + 1)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) return global_step, tr_loss / global_step def save_best_result(best_epoch, best_performance, output_dir): best_performance["checkpoint"] = best_epoch with open(os.path.join(output_dir, "best_performance.json"), mode="w") as writer: writer.write(json.dumps(best_performance, indent=2)) def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } logger.info("***** Eval results %s *****", prefix) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) output_file = os.path.join(args.output_dir, "eval_out.txt") with open(output_file, "w+", encoding="utf-8") as f: for line in tqdm(preds_list): line = " ".join(line) + "\n" f.write(line) return results, preds_list def test(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): test_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="test") args.test_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.test_batch_size) if args.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("***** Running Prediction %s *****", prefix) logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", args.test_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(test_dataloader, desc="Prediction"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet","adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) results = { "loss": eval_loss, "precision": precision_score(out_label_list, preds_list), "recall": recall_score(out_label_list, preds_list), "f1": f1_score(out_label_list, preds_list), } print(out_label_list[0]) print(preds_list[0]) out_file = os.path.join(args.output_dir, "predict.txt") logger.info("write results into {}".format(out_file)) output_eval_file = os.path.join(args.output_dir, "predict_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Predict results {} *****".format(prefix)) writer.write(json.dumps(results, indent=2)) logger.info("Result = %s" % json.dumps(results, indent=2)) with open(out_file, "w+", encoding="utf-8") as f: for line in preds_list: line = " ".join(line) + "\n" f.write(line) return results, preds_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, mode=mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default="unilm", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument('--disable_tqdm', action='store_true', help='Disable the tqdm bar. ') ## Other parameters parser.add_argument("--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument( "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." ) parser.add_argument( "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." ) parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_ratio", default=0.1, type=float, help="Linear warmup over warmup_ratio.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--metric_for_choose_best_checkpoint', type=str, default=None, help="Set the metric to choose the best checkpoint") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare CONLL-2003 task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, id2label={str(i): label for i, label in enumerate(labels)}, label2id={label: i for i, label in enumerate(labels)}, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} logger.info("Tokenizer arguments: %s", tokenizer_args) tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path tokenizer = tokenizer_class.from_pretrained( tokenizer_name, cache_dir=args.cache_dir if args.cache_dir else None, **tokenizer_args, ) if not hasattr(config, 'need_pooler') or config.need_pooler is not True: setattr(config, 'need_pooler', True) model = model_class.from_pretrained( args.model_name_or_path, config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train") global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) tokenizer.save_pretrained(args.output_dir) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Evaluation if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None for checkpoint in checkpoints: prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step) if metric_for_best is None: metric_for_best = list(result.keys())[-1] if best_epoch is None: best_epoch = checkpoint best_performance = result else: if best_performance[metric_for_best] < result[metric_for_best]: best_performance = result best_epoch = checkpoint if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) checkpoint = best_epoch checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = test(args, model, tokenizer, labels, pad_token_label_id, mode="test", prefix=global_step) if __name__ == "__main__": main()
data2vec_vision-main
adalm/finetune/run_ner.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Named entity recognition fine-tuning: utilities to work with CoNLL-2003 task. """ import logging import os from tqdm import * logger = logging.getLogger(__name__) class InputExample(object): """A single training/test example for token classification.""" def __init__(self, guid, words, labels=None): """Constructs a InputExample. Args: guid: Unique id for the example. words: list. The words of the sequence. labels: (Optional) list. The labels for each word of the sequence. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.words = words self.labels = labels class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_ids = None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_ids = label_ids def read_examples_from_file(data_dir, mode): file_path = os.path.join(data_dir, "{}.txt".format(mode)) guid_index = 1 examples = [] with open(file_path, encoding="utf-8") as f: for line in f.readlines(): line = line.strip().split("\t") words = line[0].split() labels = line[1].split() assert len(words) == len(labels) guid_index +=1 examples.append(InputExample(guid=guid_index, words=words, labels=labels)) return examples def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, mode="train", ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(tqdm(examples)): if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids) ) return features def get_labels(path): if path: with open(path, "r") as f: labels = f.read().splitlines() if "O" not in labels: labels = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
data2vec_vision-main
adalm/finetune/utils_ner.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa).""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import json import numpy as np import torch from sklearn.metrics import matthews_corrcoef, f1_score from sklearn.metrics import cohen_kappa_score, precision_score, recall_score, precision_recall_fscore_support from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler from torch.nn import CrossEntropyLoss try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForTokenClassification, BertTokenizer, DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer, RobertaConfig, RobertaForTokenClassification, RobertaTokenizer, XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer ) from transformers import AdamW, get_linear_schedule_with_warmup from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file logger = logging.getLogger(__name__) ALL_MODELS = sum( ( tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, RobertaConfig, DistilBertConfig, XLMRobertaConfig) ), (), ) MODEL_CLASSES = { "bert": (BertConfig, BertForTokenClassification, BertTokenizer), "roberta": (RobertaConfig, RobertaForTokenClassification, RobertaTokenizer), "distilbert": (DistilBertConfig, DistilBertForTokenClassification, DistilBertTokenizer), "xlmroberta": (XLMRobertaConfig, XLMRobertaForTokenClassification, XLMRobertaTokenizer), } TOKENIZER_ARGS = ["do_lower_case", "strip_accents", "keep_accents", "use_fast"] def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_f1(prec, rec): return 2*prec*rec/(prec+rec) def token_f1(true, pred, labels): print(true[:30]) print(pred[:30]) print(labels) total_f1 = 0.0 class_scores = zip(labels, precision_score(true,pred,labels,average=None), recall_score(true,pred,labels,average=None)) for label, prec, rec in class_scores: print('Label: %s' %label) if label != 'O': total_f1 += get_f1(prec, rec) print('\tf1 = %f' %get_f1(prec, rec)) print('\tprecision = %f' %prec) print('\trecall = %f' %rec) return total_f1/3 def train(args, train_dataset, model, tokenizer, labels, pad_token_label_id): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) if args.warmup_ratio > 0: args.warmup_steps = int(t_total*args.warmup_ratio) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: if args.disable_tqdm: epoch_iterator = train_dataloader else: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'unilm', 'adapterbert'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.max_grad_norm > 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 epoch_iterator.set_description('Iter (loss=%5.3f) lr=%9.7f' % (loss.item(), scheduler.get_lr()[0])) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) logger.info(json.dumps({**logs, **{'step': global_step}})) if args.max_steps > 0 and global_step > args.max_steps: if not args.disable_tqdm: epoch_iterator.close() break if args.local_rank in [-1, 0]: logs = {} if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, prefix='epoch-{}'.format(_ + 1)) for key, value in results.items(): eval_key = 'eval_{}'.format(key) logs[eval_key] = value if metric_for_best is None: metric_for_best = key if best_epoch is None or best_performance[metric_for_best] < results[metric_for_best]: best_epoch = 'epoch-{}'.format(_ + 1) best_performance = results loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{'step': global_step}})) # Save model checkpoint output_dir = os.path.join(args.output_dir, 'epoch-{}'.format(_ + 1)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) return global_step, tr_loss / global_step def save_best_result(best_epoch, best_performance, output_dir): best_performance["checkpoint"] = best_epoch with open(os.path.join(output_dir, "best_performance.json"), mode="w") as writer: writer.write(json.dumps(best_performance, indent=2)) def evaluate(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): eval_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode=mode) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation %s *****", prefix) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) out_labels = [i for item in out_label_list for i in item] preds_labels = [i for item in preds_list for i in item] results = { "loss": eval_loss, "f1": token_f1(true = out_labels,pred = preds_labels, labels = labels), } logger.info("***** Eval results %s *****", prefix) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) output_file = os.path.join(args.output_dir, "eval_out.txt") with open(output_file, "w+", encoding="utf-8") as f: for line in tqdm(preds_list): line = " ".join(line) + "\n" f.write(line) return results, preds_list def test(args, model, tokenizer, labels, pad_token_label_id, mode, prefix=""): test_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="test") args.test_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) test_sampler = SequentialSampler(test_dataset) if args.local_rank == -1 else DistributedSampler(test_dataset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.test_batch_size) if args.n_gpu > 1: model = torch.nn.DataParallel(model) logger.info("***** Running Prediction %s *****", prefix) logger.info(" Num examples = %d", len(test_dataset)) logger.info(" Batch size = %d", args.test_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None model.eval() for batch in tqdm(test_dataloader, desc="Prediction"): batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if args.model_type != "distilbert": inputs["token_type_ids"] = ( batch[2] if args.model_type in ["bert", "xlnet", "adapterbert"] else None ) # XLM and RoBERTa don"t use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] if args.n_gpu > 1: tmp_eval_loss = tmp_eval_loss.mean() # mean() to average on multi-gpu parallel evaluating eval_loss += tmp_eval_loss.item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs["labels"].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs["labels"].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps preds = np.argmax(preds, axis=2) label_map = {i: label for i, label in enumerate(labels)} out_label_list = [[] for _ in range(out_label_ids.shape[0])] preds_list = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) out_file = os.path.join(args.output_dir, "predict.txt") out_labels = [i for item in out_label_list for i in item] preds_labels = [i for item in preds_list for i in item] results = { "loss": eval_loss, "f1": token_f1(true = out_labels,pred = preds_labels, labels = labels), } print(out_label_list[0]) print(preds_list[0]) logger.info("write results into {}".format(out_file)) output_eval_file = os.path.join(args.output_dir, "predict_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Predict results {} *****".format(prefix)) writer.write(json.dumps(results, indent=2)) logger.info("Result = %s" % json.dumps(results, indent=2)) with open(out_file, "w+", encoding="utf-8") as f: for line in preds_list: line = " ".join(line) + "\n" f.write(line) for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) return results, preds_list def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}".format( mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length) ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) examples = read_examples_from_file(args.data_dir, mode) features = convert_examples_to_features( examples, labels, args.max_seq_length, tokenizer, cls_token_at_end=bool(args.model_type in ["xlnet"]), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0, sep_token=tokenizer.sep_token, sep_token_extra=bool(args.model_type in ["roberta"]), # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 pad_on_left=bool(args.model_type in ["xlnet"]), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0, pad_token_label_id=pad_token_label_id, mode=mode, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long) dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default="unilm", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument('--disable_tqdm', action='store_true', help='Disable the tqdm bar. ') ## Other parameters parser.add_argument("--labels", default="", type=str, help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument( "--keep_accents", action="store_const", const=True, help="Set this flag if model is trained with accents." ) parser.add_argument( "--strip_accents", action="store_const", const=True, help="Set this flag if model is trained without accents." ) parser.add_argument("--use_fast", action="store_const", const=True, help="Set this flag to use fast tokenization.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_ratio", default=0.1, type=float, help="Linear warmup over warmup_ratio.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--metric_for_choose_best_checkpoint', type=str, default=None, help="Set the metric to choose the best checkpoint") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare CONLL-2003 task labels = get_labels(args.labels) num_labels = len(labels) # Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later pad_token_label_id = CrossEntropyLoss().ignore_index # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, id2label={str(i): label for i, label in enumerate(labels)}, label2id={label: i for i, label in enumerate(labels)}, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer_args = {k: v for k, v in vars(args).items() if v is not None and k in TOKENIZER_ARGS} logger.info("Tokenizer arguments: %s", tokenizer_args) tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, **tokenizer_args, ) if not hasattr(config, 'need_pooler') or config.need_pooler is not True: setattr(config, 'need_pooler', True) model = model_class.from_pretrained( args.model_name_or_path, config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode="train") global_step, tr_loss = train(args, train_dataset, model, tokenizer, labels, pad_token_label_id) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) tokenizer.save_pretrained(args.output_dir) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Evaluation if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, **tokenizer_args) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None for checkpoint in checkpoints: prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = evaluate(args, model, tokenizer, labels, pad_token_label_id, mode="dev", prefix=global_step) if metric_for_best is None: metric_for_best = list(result.keys())[-1] if best_epoch is None: best_epoch = checkpoint best_performance = result else: if best_performance[metric_for_best] < result[metric_for_best]: best_performance = result best_epoch = checkpoint if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) checkpoint = best_epoch checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result, _ = test(args, model, tokenizer, labels, pad_token_label_id, mode="test", prefix=global_step) if __name__ == "__main__": main()
data2vec_vision-main
adalm/finetune/run_pico.py
data2vec_vision-main
adalm/finetune/__init__.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa).""" from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import random import json import time import numpy as np import torch from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset) from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm, trange from transformers import (WEIGHTS_NAME, BertConfig, BertForSequenceClassification, BertTokenizer, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer, XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer, ) from transformers import AdamW, get_linear_schedule_with_warmup from nlu_finetune.utils_for_glue import glue_compute_metrics as compute_metrics from nlu_finetune.utils_for_glue import glue_output_modes as output_modes from nlu_finetune.utils_for_glue import glue_processors as processors from nlu_finetune.utils_for_glue import glue_convert_examples_to_features as convert_examples_to_features logger = logging.getLogger(__name__) ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig, DistilBertConfig)), ()) MODEL_CLASSES = { 'bert': (BertConfig, BertForSequenceClassification, BertTokenizer), 'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), 'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer), 'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), 'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), 'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer), 'xlm-roberta': (XLMRobertaConfig, XLMRobertaForSequenceClassification, XLMRobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def train(args, train_dataset, model, tokenizer): """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, num_workers=1) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] warmup_steps = t_total * args.warmup_ratio optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None global_step = 0 tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) set_seed(args) # Added here for reproductibility (even between python 2 and 3) for _ in train_iterator: if args.disable_tqdm: epoch_iterator = train_dataloader else: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): model.train() batch = tuple(t.to(args.device) for t in batch) inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'unilm', 'adapterbert'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.max_grad_norm > 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logs = {} loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) logger.info(json.dumps({**logs, **{'step': global_step}})) if args.max_steps > 0 and global_step > args.max_steps: if not args.disable_tqdm: epoch_iterator.close() break if args.local_rank in [-1, 0]: logs = {} if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer, prefix='epoch-{}'.format(_ + 1)) for key, value in results.items(): eval_key = 'eval_{}'.format(key) logs[eval_key] = value if metric_for_best is None: metric_for_best = key if best_epoch is None or best_performance[metric_for_best] < results[metric_for_best]: best_epoch = 'epoch-{}'.format(_ + 1) best_performance = results loss_scalar = (tr_loss - logging_loss) / args.logging_steps learning_rate_scalar = scheduler.get_lr()[0] logs['learning_rate'] = learning_rate_scalar logs['loss'] = loss_scalar logging_loss = tr_loss for key, value in logs.items(): tb_writer.add_scalar(key, value, global_step) print(json.dumps({**logs, **{'step': global_step}})) # Save model checkpoint output_dir = os.path.join(args.output_dir, 'epoch-{}'.format(_ + 1)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, 'training_args.bin')) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) return global_step, tr_loss / global_step def save_best_result(best_epoch, best_performance, output_dir): best_performance["checkpoint"] = best_epoch with open(os.path.join(output_dir, "best_performance.json"), mode="w") as writer: writer.write(json.dumps(best_performance, indent=2)) def evaluate(args, model, tokenizer, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): cached_dev_file = args.cached_dev_file if cached_dev_file is not None: cached_dev_file = cached_dev_file + '_' + eval_task eval_dataset = load_and_cache_examples( args, eval_task, tokenizer, cached_features_file=cached_dev_file, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None if args.disable_tqdm: epoch_iterator = eval_dataloader else: epoch_iterator = tqdm(eval_dataloader, desc="Evaluating") for batch in epoch_iterator: model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if args.model_type != 'distilbert': inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'adapterbert'] else None # XLM, DistilBERT and RoBERTa don't use segment_ids outputs = model(**inputs) tmp_eval_loss, logits = outputs[:2] eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().cpu().numpy() out_label_ids = inputs['labels'].detach().cpu().numpy() else: preds = np.append(preds, logits.detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) processor = processors[eval_task]() result = compute_metrics(eval_task, preds, out_label_ids,processor.get_labels()[1:]) results[eval_task] = result eval_output_dir = os.path.join(eval_output_dir, prefix) if not os.path.exists(eval_output_dir): os.makedirs(eval_output_dir) output_eval_file = os.path.join(eval_output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) writer.write(json.dumps(result, indent=2)) logger.info("Result = %s" % json.dumps(result, indent=2)) return results def load_and_cache_examples(args, task, tokenizer, cached_features_file=None, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] examples = None if cached_features_file is None: if args.disable_auto_cache and args.local_rank != -1: logger.warning("Please cache the features in DDP mode !") raise RuntimeError() if not args.disable_auto_cache: # Load data features from cache or dataset file cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train', list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task))) if cached_features_file is not None and os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta', 'xlmroberta']: # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) features = convert_examples_to_features(examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, pad_on_left=bool(args.model_type in ['xlnet']), # pad on the left for xlnet pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0, ) if args.local_rank in [-1, 0] and cached_features_file is not None: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.") parser.add_argument("--model_type", default="unilm", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) parser.add_argument("--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--cached_train_file", default=None, type=str, help="Path to cache the train set features. ") parser.add_argument("--cached_dev_file", default=None, type=str, help="Path to cache the dev set features. ") parser.add_argument('--disable_auto_cache', action='store_true', help='Disable the function for automatic cache the training/dev features.') parser.add_argument('--disable_tqdm', action='store_true', help='Disable the tqdm bar. ') ## Other parameters parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--sentencepieces_model_path", default=None, type=str, help="File path to the sentencepieces model, will repleace the default tokenizer and --tokenizer_name. ") parser.add_argument("--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3") parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Rul evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_ratio", default=0.1, type=float, help="Linear warmup over warmup_ratio.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--metric_for_choose_best_checkpoint', type=str, default=None, help="Set the metric to choose the best checkpoint") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None) tokenizer_name = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path tokenizer = tokenizer_class.from_pretrained(tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if not hasattr(config, 'need_pooler') or config.need_pooler is not True: setattr(config, 'need_pooler', True) model = model_class.from_pretrained( args.model_name_or_path, config=config, cache_dir=args.cache_dir if args.cache_dir else None) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples( args, args.task_name, tokenizer, cached_features_file=args.cached_train_file, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) tokenizer.save_pretrained(args.output_dir) # Evaluation if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) metric_for_best = args.metric_for_choose_best_checkpoint best_performance = None best_epoch = None for checkpoint in checkpoints: prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else "" checkpoint_config = config_class.from_pretrained(checkpoint) model = model_class.from_pretrained(checkpoint, config=checkpoint_config) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) if metric_for_best is None: metric_for_best = list(list(result.values())[0].keys())[0] if best_epoch is None: best_epoch = checkpoint best_performance = result else: for eval_task in result: if best_performance[eval_task][metric_for_best] < result[eval_task][metric_for_best]: best_performance[eval_task] = result[eval_task] best_epoch = checkpoint if best_epoch is not None: logger.info(" ***************** Best checkpoint: {}, choosed by {} *****************".format( best_epoch, metric_for_best)) logger.info("Best performance = %s" % json.dumps(best_performance)) save_best_result(best_epoch, best_performance, args.output_dir) if __name__ == "__main__": main()
data2vec_vision-main
adalm/finetune/run_classifier.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLUE processors and helpers """ import logging import os import csv import sys import copy import json from scipy.stats import pearsonr, spearmanr from sklearn.metrics import matthews_corrcoef, f1_score from sklearn.preprocessing import MultiLabelBinarizer logger = logging.getLogger(__name__) class InputExample(object): """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ def __init__(self, guid, text_a, text_b=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class InputFeatures(object): """ A single set of features of data. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. token_type_ids: Segment token indices to indicate first and second portions of the inputs. label: Label corresponding to the input """ def __init__(self, input_ids, attention_mask=None, token_type_ids=None, label=None): self.input_ids = input_ids self.attention_mask = attention_mask self.token_type_ids = token_type_ids self.label = label def __repr__(self): return str(self.to_json_string()) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r", encoding="utf-8-sig") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if sys.version_info[0] == 2: line = list(unicode(cell, 'utf-8') for cell in line) lines.append(line) return lines @classmethod def _read_json(cls, input_file): with open(input_file, "r", encoding="utf-8-sig") as f: lines = json.loads(f.read()) return lines @classmethod def _read_jsonl(cls, input_file): with open(input_file, "r", encoding="utf-8-sig") as f: lines = f.readlines() return lines def glue_convert_examples_to_features(examples, tokenizer, max_length=512, task=None, label_list=None, output_mode=None, pad_on_left=False, pad_token=0, pad_token_segment_id=0, mask_padding_with_zero=True): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` or ``tf.data.Dataset`` containing the examples. tokenizer: Instance of a tokenizer that will tokenize the examples max_length: Maximum example length task: GLUE task label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method output_mode: String indicating the output mode. Either ``regression`` or ``classification`` pad_on_left: If set to ``True``, the examples will be padded on the left rather than on the right (default) pad_token: Padding token pad_token_segment_id: The segment ID for the padding token (It is usually 0, but can vary such as for XLNet where it is 4) mask_padding_with_zero: If set to ``True``, the attention mask will be filled by ``1`` for actual values and by ``0`` for padded values. If set to ``False``, inverts it (``1`` for padded values, ``0`` for actual values) Returns: If the ``examples`` input is a ``tf.data.Dataset``, will return a ``tf.data.Dataset`` containing the task-specific features. If the input is a list of ``InputExamples``, will return a list of task-specific ``InputFeatures`` which can be fed to the model. """ is_tf_dataset = False if task is not None: processor = glue_processors[task]() if label_list is None: label_list = processor.get_labels() logger.info("Using label list %s for task %s" % (label_list, task)) if output_mode is None: output_mode = glue_output_modes[task] logger.info("Using output mode %s for task %s" % (output_mode, task)) label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index)) if is_tf_dataset: example = processor.get_example_from_tensor_dict(example) example = processor.tfds_map(example) inputs = tokenizer.encode_plus( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, ) input_ids = inputs["input_ids"] if "token_type_ids" in inputs: token_type_ids = inputs["token_type_ids"] else: token_type_ids = [] # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids attention_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + attention_mask if len(token_type_ids) == 0: padding_length = max_length token_type_ids = ([pad_token_segment_id] * padding_length) + token_type_ids else: input_ids = input_ids + ([pad_token] * padding_length) attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) if len(token_type_ids) == 0: padding_length = max_length token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) assert len(input_ids) == max_length, "Error with input length {} vs {}".format(len(input_ids), max_length) assert len(attention_mask) == max_length, "Error with input length {} vs {}".format(len(attention_mask), max_length) assert len(token_type_ids) == max_length, "Error with input length {} vs {}".format(len(token_type_ids), max_length) if output_mode == "classification": label = label_map[example.label] elif output_mode == "regression": label = float(example.label) else: raise KeyError(output_mode) if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_tokens: %s" % " ".join(tokenizer.convert_ids_to_tokens(input_ids))) logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) logger.info("label: %s (id = %d)" % (example.label, label)) features.append( InputFeatures(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=label)) return features class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv"))) return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[3] text_b = line[4] label = line[0] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['premise'].numpy().decode('utf-8'), tensor_dict['hypothesis'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test_matched") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[8] text_b = line[9] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MnliMismatchedProcessor(MnliProcessor): """Processor for the MultiNLI Mismatched data set (GLUE version).""" def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_mismatched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_mismatched.tsv")), "test_mismatched") class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence'].numpy().decode('utf-8'), None, str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, i) text_a = line[3] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class Sst2Processor(DataProcessor): """Processor for the SST-2 data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence'].numpy().decode('utf-8'), None, str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = line[0] label = line[1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples class StsbProcessor(DataProcessor): """Processor for the STS-B data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return [None] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QqpProcessor(DataProcessor): """Processor for the QQP data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['question1'].numpy().decode('utf-8'), tensor_dict['question2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) try: text_a = line[3] text_b = line[4] label = line[5] except IndexError: continue examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class QnliProcessor(DataProcessor): """Processor for the QNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['question'].numpy().decode('utf-8'), tensor_dict['sentence'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev_matched") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class RteProcessor(DataProcessor): """Processor for the RTE data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["entailment", "not_entailment"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class WnliProcessor(DataProcessor): """Processor for the WNLI data set (GLUE version).""" def get_example_from_tensor_dict(self, tensor_dict): """See base class.""" return InputExample(tensor_dict['idx'].numpy(), tensor_dict['sentence1'].numpy().decode('utf-8'), tensor_dict['sentence2'].numpy().decode('utf-8'), str(tensor_dict['label'].numpy())) def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[1] text_b = line[2] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ChemProcessor(DataProcessor): def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["false","CPR:3", "CPR:4", "CPR:5", "CPR:6", "CPR:9"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): guid = "%s-%s" % (set_type, line[0]) text_a = line[1] label = line[-1] examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples class ARCProcessor(DataProcessor): def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") def get_labels(self): """See base class.""" return ["CompareOrContrast", "Background", "Uses", "Motivation", "Extends", "Future"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): line = json.loads(line) guid = "%s-%s" % (set_type, i) text_a = line["text"] label = line["label"] examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples class SCIProcessor(DataProcessor): def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "train.jsonl")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "dev.jsonl")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_jsonl(os.path.join(data_dir, "test.jsonl")), "test") def get_labels(self): """See base class.""" return ["COMPARE","CONJUNCTION","FEATURE-OF","HYPONYM-OF","USED-FOR","EVALUATE-FOR","PART-OF"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): line = json.loads(line) guid = "%s-%s" % (set_type, i) text_a = line["text"] label = line["label"] examples.append( InputExample(guid=guid, text_a=text_a, label=label)) return examples glue_tasks_num_labels = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, "chemprot": 6, "arc": 6, "sci": 7, } glue_processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mnli-mm": MnliMismatchedProcessor, "mrpc": MrpcProcessor, "sst-2": Sst2Processor, "sts-b": StsbProcessor, "qqp": QqpProcessor, "qnli": QnliProcessor, "rte": RteProcessor, "wnli": WnliProcessor, "chemprot": ChemProcessor, "arc": ARCProcessor, "sci": SCIProcessor, } glue_output_modes = { "cola": "classification", "mnli": "classification", "mnli-mm": "classification", "mrpc": "classification", "sst-2": "classification", "sts-b": "regression", "qqp": "classification", "qnli": "classification", "rte": "classification", "wnli": "classification", "chemprot": "classification", "arc": "classification", "sci": "classification", } def simple_accuracy(preds, labels): return (preds == labels).mean() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def acc_and_macro_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds,average="macro") return { "f1": f1, "acc": acc, "acc_and_f1": (acc + f1) / 2, } def acc_and_micro_f1(preds, labels, label_list): acc = simple_accuracy(preds, labels) print(label_list) label_list = [str(i+1) for i in range(len(label_list))] print(label_list) mlb = MultiLabelBinarizer(classes = label_list) labels = labels.tolist() labels = [str(i) for i in labels] print(labels[:20]) labels = mlb.fit_transform(labels) preds = preds.tolist() preds = [str(i) for i in preds] print(preds[:20]) preds = mlb.fit_transform(preds) f1 = f1_score(y_true=labels, y_pred=preds,average="micro") return { "f1": f1, "acc": acc, "f1_macro": f1_score(y_true=labels, y_pred=preds,average="macro"), "acc_and_f1": (acc + f1) / 2, } def pearson_and_spearman(preds, labels): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def glue_compute_metrics(task_name, preds, labels, label_list): assert len(preds) == len(labels) if task_name == "cola": return {"mcc": matthews_corrcoef(labels, preds)} elif task_name == "sst-2": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mrpc": return acc_and_f1(preds, labels) elif task_name == "sts-b": return pearson_and_spearman(preds, labels) elif task_name == "qqp": return acc_and_f1(preds, labels) elif task_name == "mnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mnli-mm": return {"acc": simple_accuracy(preds, labels)} elif task_name == "qnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "rte": return {"acc": simple_accuracy(preds, labels)} elif task_name == "wnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "chemprot": return acc_and_micro_f1(preds, labels, label_list) elif task_name == "arc" or task_name == "sci": return acc_and_macro_f1(preds, labels) else: raise KeyError(task_name)
data2vec_vision-main
adalm/finetune/utils_for_glue.py
from __future__ import absolute_import from __future__ import division from numpy.core.fromnumeric import argsort from text_encoder import SubwordTextEncoder import tokenizer import tempfile import argparse from transformers import BertTokenizer import random import math import numpy as np def merge_output_file_with_bert_vocab(output_filename, bert_vocab, temp_path): writer = open(output_filename, 'w', encoding='utf-8') _set = set() with open(bert_vocab, 'r', encoding='utf-8') as reader: for line in reader: writer.write(line) _set.add(line.strip()) print(temp_path) with open(temp_path, 'r', encoding='utf-8') as reader: for line in reader: if line.strip() not in _set: writer.write(line) writer.close() def build_target_size_vocab(token_counts, reserved_tokens, target_size): min_val = 1 max_val = len(token_counts) // (target_size ** 0.5) encoder = SubwordTextEncoder.build_to_target_size(target_size,token_counts,min_val, max_val, num_iterations=5, reserved_tokens=reserved_tokens, max_subtoken_length=None) fd, temp_vocab = tempfile.mkstemp() encoder.store_to_file(temp_vocab, add_single_quotes=False) return encoder, temp_vocab def compute_language_model(documents, vocab_file): all_tokens = 0 tokenized_documents = [] bert_tokenizer = BertTokenizer(vocab_file ,do_lower_case = True) words = bert_tokenizer.vocab for word in words.keys(): words[word] = 0 for doc in documents: tokens = bert_tokenizer.tokenize(doc) all_tokens += len(tokens) for token in tokens: words[token] +=1 tokenized_documents.append(tokens) for word in words.keys(): words[word] /= all_tokens probs = [] for doc in tokenized_documents: p = 0.0 for token in doc: p += math.log(words[token]) probs.append(p) return np.mean(probs) def vocab_extend(corpus, raw_vocab, output_filename, interval=10000 , threshold = 0.01): """ @description : The function to get the incremental vocabulary for @param : @Returns : """ documents = [] for line in open(corpus, "r",encoding='utf-8'): line = line.replace('\n','') if len(line) < 5: continue documents.append(line) print("docunments: "+str(len(documents))) token_counts = tokenizer.corpus_token_counts( corpus, corpus_max_lines = 4400000, split_on_newlines = True, additional_chars="", do_lower_case=True) lines = open(raw_vocab, 'r', encoding='utf-8').readlines() lines = [s.strip() for s in lines if len(s) > 0] reserved_tokens = lines random.shuffle(documents) origin_size = (len(reserved_tokens) // interval) * interval pre_lm = compute_language_model(documents, raw_vocab) print("origin_size: " + str(origin_size)) print("pre_lm: "+ str(pre_lm)) target_size = origin_size while True: target_size = target_size + interval _, temp_vocab = build_target_size_vocab(token_counts, reserved_tokens, target_size) now_lm = compute_language_model(documents, temp_vocab) print('now_lm: '+ str(now_lm)) delta = (pre_lm - now_lm)/pre_lm print('delta: ' + str(delta)) if delta <= threshold: merge_output_file_with_bert_vocab(output_filename, raw_vocab, temp_vocab) break pre_lm = now_lm vocab_extend('cs_data.txt', 'vocab.txt', 'cs.vocab') def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--corpus", default=None, type=str, required=True, help="the file of the corpus to train the vocabulary.") parser.add_argument("--raw_vocab", default=None, type=str, required=True, help="the path to the file of the origin vocabulary") parser.add_argument("--output_file", default=None, type=str, required=True, help="the output file of the final vocabulary") parser.add_argument('--interval', type=int, default=10000, help="The interval of the vocabulary size.") parser.add_argument('--threshold', type=int, default=10000, help="The final threhold of the P(D)'s increase") args = parser.parse_args() return args def main(): args = get_args() vocab_extend(args.corpus, args.raw_vocab, args.output_file, args.interval, args.threshold) if __name__ == '__main__': main()
data2vec_vision-main
adalm/incr_bpe/vocab_extend.py
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encoders for text data. * TextEncoder: base class * SubwordTextEncoder: invertible """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from itertools import chain import re import time import logging import six from six.moves import range # pylint: disable=redefined-builtin # from tensor2tensor.data_generators import tokenizer logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) # Reserved tokens for things like padding and EOS symbols. PAD = "[PAD]" EOS = "[EOS]" UNK = "[UNK]" CLS = "[CLS]" SEP = "[SEP]" MASK = "[MASK]" RESERVED_TOKENS = [PAD, EOS, UNK, CLS, SEP, MASK] NUM_RESERVED_TOKENS = len(RESERVED_TOKENS) PAD_ID = RESERVED_TOKENS.index(PAD) # Normally 0 EOS_ID = RESERVED_TOKENS.index(EOS) # Normally 1 if six.PY2: RESERVED_TOKENS_BYTES = RESERVED_TOKENS else: RESERVED_TOKENS_BYTES = [bytes(PAD, "ascii"), bytes(EOS, "ascii")] # Regular expression for unescaping token strings. # '\u' is converted to '_' # '\\' is converted to '\' # '\213;' is converted to unichr(213) _UNESCAPE_REGEX = re.compile(r"\\u|\\\\|\\([0-9]+);") _ESCAPE_CHARS = set(u"\\_u;0123456789") _SPECIAL_CHARS = set(u"!\"\'#$%&*()`+,-./:;<=>?@[]^_{}~|") # Unicode utility functions that work with Python 2 and 3 def native_to_unicode(s): if is_unicode(s): return s try: return to_unicode(s) except UnicodeDecodeError: res = to_unicode(s, ignore_errors=True) logger.info("Ignoring Unicode error, outputting: %s" % res) return res def unicode_to_native(s): if six.PY2: return s.encode("utf-8") if is_unicode(s) else s else: return s def is_unicode(s): return isinstance(s, six.text_type) def to_unicode(s, ignore_errors=False): if is_unicode(s): return s error_mode = "ignore" if ignore_errors else "strict" return s.decode("utf-8", errors=error_mode) # def to_unicode_ignore_errors(s): # return to_unicode(s, ignore_errors=True) # def to_unicode_utf8(s): # return unicode(s, "utf-8") if six.PY2 else s.decode("utf-8") # def strip_ids(ids, ids_to_strip): # """Strip ids_to_strip from the end ids.""" # ids = list(ids) # while ids and ids[-1] in ids_to_strip: # ids.pop() # return ids class TextEncoder(object): """Base class for converting from ints to/from human readable strings.""" def __init__(self, num_reserved_ids=NUM_RESERVED_TOKENS): self._num_reserved_ids = num_reserved_ids @property def num_reserved_ids(self): return self._num_reserved_ids # def encode(self, s): # """Transform a human-readable string into a sequence of int ids. # # The ids should be in the range [num_reserved_ids, vocab_size). Ids [0, # num_reserved_ids) are reserved. # # EOS is not appended. # # Args: # s: human-readable string to be converted. # # Returns: # ids: list of integers # """ # return [int(w) + self._num_reserved_ids for w in s.split()] # # def decode(self, ids, strip_extraneous=False): # """Transform a sequence of int ids into a human-readable string. # # EOS is not expected in ids. # # Args: # ids: list of integers to be converted. # strip_extraneous: bool, whether to strip off extraneous tokens # (EOS and PAD). # # Returns: # s: human-readable string. # """ # if strip_extraneous: # ids = strip_ids(ids, list(range(self._num_reserved_ids or 0))) # return " ".join(self.decode_list(ids)) # # def decode_list(self, ids): # """Transform a sequence of int ids into a their string versions. # # This method supports transforming individual input/output ids to their # string versions so that sequence to/from text conversions can be visualized # in a human readable format. # # Args: # ids: list of integers to be converted. # # Returns: # strs: list of human-readable string. # """ # decoded_ids = [] # for id_ in ids: # if 0 <= id_ < self._num_reserved_ids: # decoded_ids.append(RESERVED_TOKENS[int(id_)]) # else: # decoded_ids.append(id_ - self._num_reserved_ids) # return [str(d) for d in decoded_ids] @property def vocab_size(self): raise NotImplementedError() def _escape_token(token, alphabet): """Escape away underscores and OOV characters and append '_'. This allows the token to be expressed as the concatenation of a list of subtokens from the vocabulary. The underscore acts as a sentinel which allows us to invertibly concatenate multiple such lists. Args: token: A unicode string to be escaped. alphabet: A set of all characters in the vocabulary's alphabet. Returns: escaped_token: An escaped unicode string. Raises: ValueError: If the provided token is not unicode. """ if not isinstance(token, six.text_type): raise ValueError("Expected string type for token, got %s" % type(token)) token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u") ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token] return u"".join(ret) + "_" def _my_escape_token(token, alphabet): if not isinstance(token, six.text_type): raise ValueError("Expected string type for token, got %s" % type(token)) token = token.replace(u"\\", u"\\\\").replace(u"_", u"\\u") ret = [c if c in alphabet and c != u"\n" else r"\%d;" % ord(c) for c in token] return "_" + u"".join(ret) # def _unescape_token(escaped_token): # """Inverse of _escape_token(). # # Args: # escaped_token: a unicode string # # Returns: # token: a unicode string # """ # # def match(m): # if m.group(1) is None: # return u"_" if m.group(0) == u"\\u" else u"\\" # # try: # return six.unichr(int(m.group(1))) # except (ValueError, OverflowError) as _: # return u"\u3013" # Unicode for undefined character. # # trimmed = escaped_token[:-1] if escaped_token.endswith("_") else escaped_token # return _UNESCAPE_REGEX.sub(match, trimmed) class SubwordTextEncoder(TextEncoder): """Class for invertibly encoding text using a limited vocabulary. Invertibly encodes a native string as a sequence of subtokens from a limited vocabulary. A SubwordTextEncoder is built from a corpus (so it is tailored to the text in the corpus), and stored to a file. See text_encoder_build_subword.py. It can then be loaded and used to encode/decode any text. Encoding has four phases: 1. Tokenize into a list of tokens. Each token is a unicode string of either all alphanumeric characters or all non-alphanumeric characters. We drop tokens consisting of a single space that are between two alphanumeric tokens. 2. Escape each token. This escapes away special and out-of-vocabulary characters, and makes sure that each token ends with an underscore, and has no other underscores. 3. Represent each escaped token as a the concatenation of a list of subtokens from the limited vocabulary. Subtoken selection is done greedily from beginning to end. That is, we construct the list in order, always picking the longest subtoken in our vocabulary that matches a prefix of the remaining portion of the encoded token. 4. Concatenate these lists. This concatenation is invertible due to the fact that the trailing underscores indicate when one list is finished. """ def __init__(self, filename=None): """Initialize and read from a file, if provided. Args: filename: filename from which to read vocab. If None, do not load a vocab """ self._alphabet = set() # self.filename = filename # if filename is not None: # self._load_from_file(filename) super(SubwordTextEncoder, self).__init__() # def encode(self, s): # """Converts a native string to a list of subtoken ids. # # Args: # s: a native string. # Returns: # a list of integers in the range [0, vocab_size) # """ # return self._tokens_to_subtoken_ids( # tokenizer.encode(native_to_unicode(s))) # # def encode_without_tokenizing(self, token_text): # """Converts string to list of subtoken ids without calling tokenizer. # # This treats `token_text` as a single token and directly converts it # to subtoken ids. This may be useful when the default tokenizer doesn't # do what we want (e.g., when encoding text with tokens composed of lots of # nonalphanumeric characters). It is then up to the caller to make sure that # raw text is consistently converted into tokens. Only use this if you are # sure that `encode` doesn't suit your needs. # # Args: # token_text: A native string representation of a single token. # Returns: # A list of subword token ids; i.e., integers in the range [0, vocab_size). # """ # return self._tokens_to_subtoken_ids([native_to_unicode(token_text)]) # def decode(self, ids, strip_extraneous=False): # """Converts a sequence of subtoken ids to a native string. # # Args: # ids: a list of integers in the range [0, vocab_size) # strip_extraneous: bool, whether to strip off extraneous tokens # (EOS and PAD). # # Returns: # a native string # """ # if strip_extraneous: # ids = strip_ids(ids, list(range(self._num_reserved_ids or 0))) # return unicode_to_native( # tokenizer.decode(self._subtoken_ids_to_tokens(ids))) # def decode_list(self, ids): # return [self._subtoken_id_to_subtoken_string(s) for s in ids] @property def vocab_size(self): """The subtoken vocabulary size.""" return len(self._all_subtoken_strings) # def _tokens_to_subtoken_ids(self, tokens): # """Converts a list of tokens to a list of subtoken ids. # # Args: # tokens: a list of strings. # Returns: # a list of integers in the range [0, vocab_size) # """ # ret = [] # for token in tokens: # ret.extend(self._token_to_subtoken_ids(token)) # return ret # def _token_to_subtoken_ids(self, token): # """Converts token to a list of subtoken ids. # # Args: # token: a string. # Returns: # a list of integers in the range [0, vocab_size) # """ # cache_location = hash(token) % self._cache_size # cache_key, cache_value = self._cache[cache_location] # if cache_key == token: # return cache_value # ret = self._escaped_token_to_subtoken_ids( # _escape_token(token, self._alphabet)) # self._cache[cache_location] = (token, ret) # return ret # def _subtoken_ids_to_tokens(self, subtokens): # """Converts a list of subtoken ids to a list of tokens. # # Args: # subtokens: a list of integers in the range [0, vocab_size) # Returns: # a list of strings. # """ # concatenated = "".join( # [self._subtoken_id_to_subtoken_string(s) for s in subtokens]) # split = concatenated.split("_") # ret = [] # for t in split: # if t: # unescaped = _unescape_token(t + "_") # if unescaped: # ret.append(unescaped) # return ret # def _subtoken_id_to_subtoken_string(self, subtoken): # """Converts a subtoken integer ID to a subtoken string.""" # if 0 <= subtoken < self.vocab_size: # return self._all_subtoken_strings[subtoken] # return u"" def _escaped_token_to_subtoken_strings(self, escaped_token): """Converts an escaped token string to a list of subtoken strings. Args: escaped_token: An escaped token as a unicode string. Returns: A list of subtokens as unicode strings. """ # NOTE: This algorithm is greedy; it won't necessarily produce the "best" # list of subtokens. ret = [] start = 0 token_len = len(escaped_token) while start < token_len: for end in range( min(token_len, start + self._max_subtoken_len), start, -1): subtoken = escaped_token[start:end] if subtoken in self._subtoken_string_to_id: ret.append(subtoken) start = end break else: # Did not break # If there is no possible encoding of the escaped token then one of the # characters in the token is not in the alphabet. This should be # impossible and would be indicative of a bug. assert False, "Token substring not found in subtoken vocabulary." return ret # def _escaped_token_to_subtoken_ids(self, escaped_token): # """Converts an escaped token string to a list of subtoken IDs. # # Args: # escaped_token: An escaped token as a unicode string. # Returns: # A list of subtoken IDs as integers. # """ # return [ # self._subtoken_string_to_id[subtoken] # for subtoken in self._escaped_token_to_subtoken_strings(escaped_token) # ] # @classmethod # def build_from_generator(cls, # generator, # target_size, # max_subtoken_length=None, # reserved_tokens=None): # """Builds a SubwordTextEncoder from the generated text. # # Args: # generator: yields text. # target_size: int, approximate vocabulary size to create. # max_subtoken_length: Maximum length of a subtoken. If this is not set, # then the runtime and memory use of creating the vocab is quadratic in # the length of the longest token. If this is set, then it is instead # O(max_subtoken_length * length of longest token). # reserved_tokens: List of reserved tokens. The global variable # `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this # argument is `None`, it will use `RESERVED_TOKENS`. # # Returns: # SubwordTextEncoder with `vocab_size` approximately `target_size`. # """ # token_counts = collections.defaultdict(int) # for item in generator: # for tok in tokenizer.encode(native_to_unicode(item)): # token_counts[tok] += 1 # encoder = cls.build_to_target_size( # target_size, token_counts, 1, 1e3, # max_subtoken_length=max_subtoken_length, # reserved_tokens=reserved_tokens) # return encoder # @classmethod def build_to_target_size(cls, target_size, token_counts, min_val, max_val, max_subtoken_length=None, reserved_tokens=None, num_iterations=4): """Builds a SubwordTextEncoder that has `vocab_size` near `target_size`. Uses simple recursive binary search to find a minimum token count that most closely matches the `target_size`. Args: target_size: Desired vocab_size to approximate. token_counts: A dictionary of token counts, mapping string to int. min_val: An integer; lower bound for the minimum token count. max_val: An integer; upper bound for the minimum token count. max_subtoken_length: Maximum length of a subtoken. If this is not set, then the runtime and memory use of creating the vocab is quadratic in the length of the longest token. If this is set, then it is instead O(max_subtoken_length * length of longest token). reserved_tokens: List of reserved tokens. The global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this argument is `None`, it will use `RESERVED_TOKENS`. num_iterations: An integer; how many iterations of refinement. Returns: A SubwordTextEncoder instance. Raises: ValueError: If `min_val` is greater than `max_val`. """ if min_val > max_val: raise ValueError("Lower bound for the minimum token count " "is greater than the upper bound.") if target_size < 1: raise ValueError("Target size must be positive.") if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS def bisect(min_val, max_val): """Bisection to find the right size.""" present_count = (max_val + min_val) // 2 logger.info("Trying min_count %d" % present_count) subtokenizer = cls() subtokenizer.build_from_token_counts( token_counts, present_count, num_iterations, max_subtoken_length=max_subtoken_length, reserved_tokens=reserved_tokens) # Being within 1% of the target size is ok. is_ok = abs(subtokenizer.vocab_size - target_size) * 100 < target_size # If min_val == max_val, we can't do any better than this. if is_ok or min_val >= max_val or present_count < 2: return subtokenizer if subtokenizer.vocab_size > target_size: other_subtokenizer = bisect(present_count + 1, max_val) else: other_subtokenizer = bisect(min_val, present_count - 1) if other_subtokenizer is None: return subtokenizer if (abs(other_subtokenizer.vocab_size - target_size) < abs(subtokenizer.vocab_size - target_size)): return other_subtokenizer return subtokenizer return bisect(min_val, max_val) def build_from_token_counts(self, token_counts, min_count, num_iterations=4, reserved_tokens=None, max_subtoken_length=None): """Train a SubwordTextEncoder based on a dictionary of word counts. Args: token_counts: a dictionary of Unicode strings to int. min_count: an integer - discard subtokens with lower counts. num_iterations: an integer. how many iterations of refinement. reserved_tokens: List of reserved tokens. The global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. If this argument is `None`, it will use `RESERVED_TOKENS`. max_subtoken_length: Maximum length of a subtoken. If this is not set, then the runtime and memory use of creating the vocab is quadratic in the length of the longest token. If this is set, then it is instead O(max_subtoken_length * length of longest token). Raises: ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it is not clear what the space is being reserved for, or when it will be filled in. """ # import pudb; pu.db if reserved_tokens is None: reserved_tokens = RESERVED_TOKENS else: # There is not complete freedom in replacing RESERVED_TOKENS. new_reserved_tokens = RESERVED_TOKENS for token in reserved_tokens: if token in new_reserved_tokens: continue new_reserved_tokens.append(token) reserved_tokens = new_reserved_tokens for default, proposed in zip(RESERVED_TOKENS, reserved_tokens): if default != proposed: raise ValueError("RESERVED_TOKENS must be a prefix of " "reserved_tokens.") start_time = time.time() #import pudb; pu.db # Initialize the alphabet. Note, this must include reserved tokens or it can # result in encoding failures. Remove RESERVED_TOKENS. alphabet_tokens = chain(six.iterkeys(token_counts), [native_to_unicode(t) for t in reserved_tokens[len(RESERVED_TOKENS):]]) # all alphabets in tokens self._init_alphabet_from_tokens(alphabet_tokens) # Bootstrap the initial list of subtokens with the characters from the # alphabet plus the escaping characters. self._init_subtokens_from_list(list(self._alphabet), reserved_tokens=reserved_tokens) # We build iteratively. On each iteration, we segment all the words, # then count the resulting potential subtokens, keeping the ones # with high enough counts for our new vocabulary. if min_count < 1: min_count = 1 for i in range(num_iterations): #logger.info("Iteration {0}".format(i)) # Collect all substrings of the encoded token that break along current # subtoken boundaries. subtoken_counts = collections.defaultdict(int) for token, count in six.iteritems(token_counts): iter_start_time = time.time() # escaped_token = _escape_token(token, self._alphabet) # added "_" at the end escaped_token = _my_escape_token(token, self._alphabet) subtokens = self._escaped_token_to_subtoken_strings(escaped_token) # print(escaped_token) # print(subtokens) # excaped_token '_1234' -> subtoknes ['_12', '34'] (ex) # '_1234':100 -> '_', '_1', '_12', '_123', '_1234','3', '34' :+= 100, start = 0 for subtoken in subtokens: last_position = len(escaped_token) + 1 if max_subtoken_length is not None: last_position = min(last_position, start + max_subtoken_length) for end in range(start + 1, last_position): new_subtoken = escaped_token[start:end] subtoken_counts[new_subtoken] += count start += len(subtoken) iter_time_secs = time.time() - iter_start_time if iter_time_secs > 0.1: logger.info(u"Processing token [{0}] took {1} seconds, consider " "setting Text2TextProblem.max_subtoken_length to a " "smaller value.".format(token, iter_time_secs)) # print(len(subtoken_counts)) # Array of sets of candidate subtoken strings, by length. len_to_subtoken_strings = [] for subtoken_string, count in six.iteritems(subtoken_counts): lsub = len(subtoken_string) if count >= min_count: while len(len_to_subtoken_strings) <= lsub: len_to_subtoken_strings.append(set()) len_to_subtoken_strings[lsub].add(subtoken_string) # Consider the candidates longest to shortest, so that if we accept # a longer subtoken string, we can decrement the counts of its prefixes. new_subtoken_strings_with_count = [] for lsub in range(len(len_to_subtoken_strings) - 1, 0, -1): subtoken_strings = len_to_subtoken_strings[lsub] for subtoken_string in subtoken_strings: count = subtoken_counts[subtoken_string] if count >= min_count: # Exclude alphabet tokens here, as they must be included later, # explicitly, regardless of count. if subtoken_string not in self._alphabet: new_subtoken_strings_with_count.append((count, subtoken_string)) for l in range(1, lsub): subtoken_counts[subtoken_string[:l]] -= count # Include the alphabet explicitly to guarantee all strings are encodable. new_subtoken_strings_with_count.extend((subtoken_counts.get(a, 0), a) for a in self._alphabet) new_subtoken_strings_with_count.sort(reverse=True) # Reinitialize to the candidate vocabulary. new_subtoken_strings = [subtoken for _, subtoken in new_subtoken_strings_with_count] if reserved_tokens: # escaped_reserved_tokens = [ # _escape_token(native_to_unicode(t), self._alphabet) # for t in reserved_tokens # ] # new_subtoken_strings = escaped_reserved_tokens + new_subtoken_strings new_subtoken_strings = reserved_tokens + new_subtoken_strings new_subtoken_strings = list(set(new_subtoken_strings)) self._init_subtokens_from_list(new_subtoken_strings) #logger.info("vocab_size = %d" % self.vocab_size) # print("vocab_size = %d" % self.vocab_size) # print(self.vocab_size) self.subtokens_with_counts = new_subtoken_strings_with_count # Frequency of "_" is high. # So remove from current position and add to the last. new_subtoken_strings.remove("_") new_subtoken_strings.insert(len(new_subtoken_strings), "_") oov_list = [] for idx, subtoken in enumerate(new_subtoken_strings): if subtoken.startswith("_") and subtoken != "_": new_subtoken_strings[idx] = subtoken[1:] elif subtoken[0] in self._alphabet and subtoken not in reserved_tokens: new_subtoken_strings[idx] = "##" + subtoken else: oov_list.append(subtoken) new_subtoken_strings.extend(char for char in self._alphabet if char not in new_subtoken_strings) # print(new_subtoken_strings) # print(oov_list) new_subtoken_strings = list(set(new_subtoken_strings)) self._init_subtokens_from_list(new_subtoken_strings) #logger.info("vocab_size = %d" % self.vocab_size) logger.info("total vocab size : {}, {} seconds elapsed ".format(self.vocab_size, time.time() - start_time)) # @property # def all_subtoken_strings(self): # return tuple(self._all_subtoken_strings) # # def dump(self): # """Debugging dump of the current subtoken vocabulary.""" # subtoken_strings = [(i, s) # for s, i in six.iteritems(self._subtoken_string_to_id)] # print(u", ".join(u"{0} : '{1}'".format(i, s) # for i, s in sorted(subtoken_strings))) def _init_subtokens_from_list(self, subtoken_strings, reserved_tokens=None): """Initialize token information from a list of subtoken strings. Args: subtoken_strings: a list of subtokens reserved_tokens: List of reserved tokens. We must have `reserved_tokens` as None or the empty list, or else the global variable `RESERVED_TOKENS` must be a prefix of `reserved_tokens`. Raises: ValueError: if reserved is not 0 or len(RESERVED_TOKENS). In this case, it is not clear what the space is being reserved for, or when it will be filled in. """ if reserved_tokens is None: reserved_tokens = [] if reserved_tokens: self._all_subtoken_strings = reserved_tokens + subtoken_strings else: self._all_subtoken_strings = subtoken_strings # we remember the maximum length of any subtoken to avoid having to # check arbitrarily long strings. self._max_subtoken_len = max([len(s) for s in subtoken_strings]) self._subtoken_string_to_id = { s: i + len(reserved_tokens) for i, s in enumerate(subtoken_strings) if s } # Initialize the cache to empty. self._cache_size = 2 ** 20 self._cache = [(None, None)] * self._cache_size def _init_alphabet_from_tokens(self, tokens): """Initialize alphabet from an iterable of token or subtoken strings.""" # Include all characters from all tokens in the alphabet to guarantee that # any token can be encoded. Additionally, include all escaping characters. self._alphabet = {c for token in tokens for c in token} self._alphabet |= _ESCAPE_CHARS self._alphabet |= _SPECIAL_CHARS # def _load_from_file_object(self, f): # """Load from a file object. # # Args: # f: File object to load vocabulary from # """ # subtoken_strings = [] # for line in f: # s = line.strip() # # Some vocab files wrap words in single quotes, but others don't # if ((s.startswith("'") and s.endswith("'")) or # (s.startswith("\"") and s.endswith("\""))): # s = s[1:-1] # subtoken_strings.append(native_to_unicode(s)) # self._init_subtokens_from_list(subtoken_strings) # self._init_alphabet_from_tokens(subtoken_strings) # # def _load_from_file(self, filename): # """Load from a vocab file.""" # if not tf.gfile.Exists(filename): # raise ValueError("File %s not found" % filename) # with tf.gfile.Open(filename) as f: # self._load_from_file_object(f) def store_to_file(self, filename, add_single_quotes=True): #with tf.gfile.Open(filename, "w") as f: with open(filename, "w") as f: for subtoken_string in self._all_subtoken_strings: if add_single_quotes: f.write("'" + unicode_to_native(subtoken_string) + "'\n") else: f.write(unicode_to_native(subtoken_string) + "\n") def store_to_file_with_counts(self, filename): # with tf.gfile.Open(filename, "w") as f: with open(filename, "w") as f: for subtoken_string, count in self.subtokens_with_counts: f.write(unicode_to_native(subtoken_string + "\t" + str(count)) + "\n")
data2vec_vision-main
adalm/incr_bpe/text_encoder.py
# coding=utf-8 # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple invertible tokenizer. Converts from a unicode string to a list of tokens (represented as Unicode strings). This tokenizer has the following desirable properties: - It is invertible. - Alphanumeric characters are broken away from non-alphanumeric characters. - A single space between words does not produce an extra token. - The full Unicode punctuation and separator set is recognized. The tokenization algorithm is as follows: 1. Split the text into a list of tokens, splitting at every boundary of an alphanumeric character and a non-alphanumeric character. This produces a list which alternates between "alphanumeric tokens" (strings of alphanumeric characters) and "non-alphanumeric tokens" (strings of non-alphanumeric characters). 2. Remove every token consisting of a single space, unless it is the very first or very last token in the list. These tokens are now implied by the fact that there are two adjacent alphanumeric tokens. e.g. u"Dude - that's so cool." -> [u"Dude", u" - ", u"that", u"'", u"s", u"so", u"cool", u"."] """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import sys import unicodedata import six import logging from six.moves import range # pylint: disable=redefined-builtin # from tensor2tensor.utils import mlperf_log import time import glob # Conversion between Unicode and UTF-8, if required (on Python2) _native_to_unicode = (lambda s: s.decode("utf-8")) if six.PY2 else (lambda s: s) logger = logging.getLogger(__name__) # This set contains all letter and number characters. _ALPHANUMERIC_CHAR_SET = set( six.unichr(i) for i in range(sys.maxunicode) if (unicodedata.category(six.unichr(i)).startswith("L") or unicodedata.category(six.unichr(i)).startswith("N") or unicodedata.category(six.unichr(i)).startswith("P"))) # unicodedata.category(six.unichr(i)).startswith("S") def encode(text): """Encode a unicode string as a list of tokens. Args: text: a unicode string Returns: a list of tokens as Unicode strings """ if not text: return [] ret = [] token_start = 0 # Classify each character in the input string is_alnum = [c in _ALPHANUMERIC_CHAR_SET for c in text] add_remaining = False for pos in range(1, len(text)): add_remaining = False if is_alnum[pos] != is_alnum[pos - 1]: if not is_alnum[pos]: token = text[token_start:pos] if token != u" " or token_start == 0: add_remaining = False ret.append(token) else: add_remaining = True token_start = pos final_token = text[token_start:] if text[-1] in _ALPHANUMERIC_CHAR_SET else text[token_start:-1] if add_remaining: ret.append(final_token) # split on punctuation final_tokens = [] for token in ret: splitted_token = _run_split_on_punc(token) final_tokens.extend(splitted_token) return final_tokens def _run_split_on_punc(text, never_split=None): """Splits punctuation on a piece of text.""" if never_split is not None and text in never_split: return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False def decode(tokens): """Decode a list of tokens to a unicode string. Args: tokens: a list of Unicode strings Returns: a unicode string """ token_is_alnum = [t[0] in _ALPHANUMERIC_CHAR_SET for t in tokens] ret = [] for i, token in enumerate(tokens): if i > 0 and token_is_alnum[i - 1] and token_is_alnum[i]: ret.append(u" ") ret.append(token) return "".join(ret) def _read_filepattern(filepattern, max_lines=None, split_on_newlines=True, do_lower_case=False): """Reads files matching a wildcard pattern, yielding the contents. Args: filepattern: A wildcard pattern matching one or more files. max_lines: If set, stop reading after reading this many lines. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. Yields: The contents of the files as lines, if split_on_newlines is True, or the entire contents of each file if False. """ filenames = sorted(glob.glob(filepattern)) print(filenames, 'do lower case:', do_lower_case) lines_read = 0 for filename in filenames: start = time.time() with open(filename) as f: if split_on_newlines: for line in f: if do_lower_case: line = line.lower() yield line.strip() lines_read += 1 if max_lines and lines_read >= max_lines: return if lines_read % 100000 == 0: print("read", lines_read, "lines,", time.time() - start, "secs elapsed") else: if max_lines: doc = [] for line in f: if do_lower_case: line = line.lower() doc.append(line) lines_read += 1 if max_lines and lines_read >= max_lines: yield "".join(doc) return yield "".join(doc) else: yield f.read() print(time.time() - start, "for reading read file :", filename) def corpus_token_counts( text_filepattern, corpus_max_lines, split_on_newlines=True, additional_chars="", do_lower_case=False): """Read the corpus and compute a dictionary of token counts. Args: text_filepattern: A pattern matching one or more files. corpus_max_lines: An integer; maximum total lines to read. split_on_newlines: A boolean. If true, then split files by lines and strip leading and trailing whitespace from each line. Otherwise, treat each file as a single string. additional_chars: A String. Each consisting characters will be treat as normal alphabets so that they will be included in each vocab. Returns: a dictionary mapping token to count. """ if additional_chars: _ALPHANUMERIC_CHAR_SET.add(additional_chars) counts = collections.Counter() for doc in _read_filepattern( text_filepattern, max_lines=corpus_max_lines, split_on_newlines=split_on_newlines, do_lower_case=do_lower_case): counts.update(encode(_native_to_unicode(doc))) print("read all files") return counts def vocab_token_counts(text_filepattern, max_lines, do_lower_case=False): """Read a vocab file and return a dictionary of token counts. Reads a two-column CSV file of tokens and their frequency in a dataset. The tokens are presumed to be generated by encode() or the equivalent. Args: text_filepattern: A pattern matching one or more files. max_lines: An integer; maximum total lines to read. Returns: a dictionary mapping token to count. """ ret = {} for i, line in enumerate( _read_filepattern(text_filepattern, max_lines=max_lines)): if "," not in line: logger.warning("Malformed vocab line #%d '%s'", i, line) continue if do_lower_case: line = line.lower() token, count = line.rsplit(",", 1) ret[_native_to_unicode(token)] = int(count) return ret
data2vec_vision-main
adalm/incr_bpe/tokenizer.py
#-*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from text_encoder import SubwordTextEncoder import tokenizer import os import tempfile import tensorflow as tf tf.flags.DEFINE_string('output_filename', '/tmp/my.subword_text_encoder', 'where to store the SubwordTextEncoder') tf.flags.DEFINE_string('corpus_filepattern', '', 'Corpus of one or more text files') tf.flags.DEFINE_string('vocab_filepattern', '', 'One or more vocabulary files ' '(one word per line as "word,count")') tf.flags.DEFINE_integer('min_count', 5, 'Minimum subtoken count in corpus') tf.flags.DEFINE_integer('vocab_size', 30000, 'The final vocab size. It will produce a vocab with a near vocab size') tf.flags.DEFINE_integer('corpus_max_lines', None, 'How many lines of corpus to read') tf.flags.DEFINE_integer('num_iterations', 5, 'Number of iterations') tf.flags.DEFINE_bool('split_on_newlines', True, 'Break corpus into lines.') tf.flags.DEFINE_string('additional_chars', "", 'Set special characters to be included in vocab. ex : "~", "/".') tf.flags.DEFINE_integer('max_subtoken_length', None, 'Max subtoken length') tf.flags.DEFINE_string('raw_vocab', None, 'Raw bert vovab file') tf.flags.DEFINE_bool('do_lower_case', False, 'Whether or not to lowercase the input corpus') FLAGS = tf.flags.FLAGS def merge_output_file_with_bert_vocab(output_filename, bert_vocab, temp_path): writer = open(output_filename, 'w', encoding='utf-8') _set = set() with open(bert_vocab, 'r', encoding='utf-8') as reader: for line in reader: writer.write(line) _set.add(line.strip()) print(temp_path) with open(temp_path, 'r', encoding='utf-8') as reader: for line in reader: if line.strip() not in _set: writer.write(line) writer.close() # os.remove(temp_path) def main(unused_argv): if FLAGS.corpus_filepattern and FLAGS.vocab_filepattern: raise ValueError( 'Must only provide one of --corpus_filepattern or --vocab_filepattern') elif FLAGS.corpus_filepattern: token_counts = tokenizer.corpus_token_counts( FLAGS.corpus_filepattern, FLAGS.corpus_max_lines, split_on_newlines=FLAGS.split_on_newlines, additional_chars=FLAGS.additional_chars, do_lower_case=FLAGS.do_lower_case) elif FLAGS.vocab_filepattern: token_counts = tokenizer.vocab_token_counts(FLAGS.vocab_filepattern, FLAGS.corpus_max_lines, FLAGS.do_lower_case) else: raise ValueError( 'Must provide one of --corpus_filepattern or --vocab_filepattern') reserved_tokens = None if FLAGS.raw_vocab: lines = open(FLAGS.raw_vocab, 'r', encoding='utf-8').readlines() lines = [s.strip() for s in lines if len(s) > 0] reserved_tokens = lines print(len(token_counts)) print(len(reserved_tokens)) target_size = FLAGS.vocab_size if target_size <= len(reserved_tokens): raise ValueError("The vocab_size must be larger than the origin vocab's size ") if target_size >= len(token_counts): raise ValueError("The vocab_size is too large. Please set it smaller or prepare more corpus.") min_val = 1 max_val = len(token_counts) // (target_size ** 0.5) fd, temp_path = tempfile.mkstemp() encoder = SubwordTextEncoder.build_to_target_size(target_size,token_counts,min_val, max_val, num_iterations=FLAGS.num_iterations, reserved_tokens=reserved_tokens, max_subtoken_length=FLAGS.max_subtoken_length) # encoder = SubwordTextEncoder() # encoder.build_from_token_counts(token_counts, FLAGS.min_count, # FLAGS.num_iterations, reserved_tokens=reserved_tokens, max_subtoken_length=FLAGS.max_subtoken_length) encoder.store_to_file(temp_path, add_single_quotes=False) merge_output_file_with_bert_vocab(FLAGS.output_filename, FLAGS.raw_vocab, temp_path) if __name__ == '__main__': tf.app.run()
data2vec_vision-main
adalm/incr_bpe/subword_builder.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import logging from typing import List, Optional import numpy as np from base import BaseModel from stats import DirichletMultinomial, DirichletPrior, NormalInverseGammaNormal logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class ClaraGibbs(BaseModel): def __init__( self, burn_in: int = 1000, num_samples: int = 1000, sample_lag: int = 1, theta_scale: Optional[float] = None, theta_mean: Optional[List[float]] = None, psi_scale: Optional[List[float]] = None, psi_mean: Optional[List[List[float]]] = None, ): super().__init__("ClaraGibbs") self.burn_in = burn_in self.num_samples = num_samples self.sample_lag = sample_lag self.theta_scale = theta_scale self.theta_mean = theta_mean self.psi_scale = psi_scale self.psi_mean = psi_mean def _increment( self, z: int, item_ratings: List[int], item_labelers: List[int], item_scores: Optional[List[List[float]]] = None, ): self.theta.increment(z) for j in range(len(item_ratings)): self.psi[item_labelers[j]][z].increment(item_ratings[j]) if item_scores is not None: for c in range(self.C): self.phi[c][z].add_observation(item_scores[c][z], False) def _decrement( self, z: int, item_ratings: List[int], item_labelers: List[int], item_scores: Optional[List[List[float]]] = None, ): self.theta.decrement(z) for j in range(len(item_ratings)): self.psi[item_labelers[j]][z].decrement(item_ratings[j]) if item_scores is not None: for c in range(self.C): self.phi[c][z].remove_observation(item_scores[c][z], False) def _sample( self, item_ratings: List[int], item_labelers: List[int], item_scores: Optional[List[List[float]]] = None, ): probs = np.array([self.theta.get_posterior_prob(r) for r in range(self.R)]) for k in range(self.R): for j in range(len(item_ratings)): labeler = item_labelers[j] rating = item_ratings[j] probs[k] *= self.psi[labeler][k].get_posterior_prob(rating) if item_scores is not None: for c in range(self.C): probs[k] *= self.phi[c][k].get_posterior_prob(item_scores[c][k]) norm_probs = probs / np.sum(probs) return np.random.choice(self.R, p=norm_probs) def _update_gaussians(self): for c in range(self.C): for r in range(self.R): self.phi[c][r].estimate_parameters() def _get_log_likelihood(self) -> float: llh = 0.0 llh += self.theta.get_log_likelihood() for l_psi in self.psi: for r_psi in l_psi: llh += r_psi.get_log_likelihood() if self.C > 0: for c_phi in self.phi: for r_phi in c_phi: llh += r_phi.get_log_likelihood() return llh def _get_priors( self, ratings: np.array, labelers: np.array, scores: Optional[np.array] = None ): logger.info("Getting priors ...") # theta if self.theta_scale is None: self.theta_scale = 1.0 logger.info(f" theta_scale = {self.theta_scale}") if self.theta_mean is None: flatten_ratings = np.hstack(ratings) obs_ratings, obs_counts = np.unique(flatten_ratings, return_counts=True) theta_counts = np.zeros(self.R, dtype=float) for i in range(len(obs_ratings)): theta_counts[obs_ratings[i]] = 1.0 + obs_counts[i] self.theta_mean = theta_counts / np.sum(theta_counts) logger.info(f" theta_mean = {self.theta_mean}") theta_prior = DirichletPrior.from_scale_mean(self.theta_scale, self.theta_mean) logger.info(f" theta_prior = {theta_prior}") # psi if self.psi_scale is None: self.psi_scale = [1.0] * self.R logger.info(f" psi_scale = {self.psi_scale}") if self.psi_mean is None: diag_value = 0.75 off_diag_value = (1.0 - diag_value) / (self.R - 1) self.psi_mean = np.zeros((self.R, self.R), dtype=float) for r in range(self.R): for o in range(self.R): self.psi_mean[r][o] = diag_value if r == o else off_diag_value logger.info(f" psi_mean = {self.psi_mean.tolist()}") psi_prior = [ DirichletPrior.from_scale_mean(self.psi_scale[r], self.psi_mean[r]) for r in range(self.R) ] logger.info(f" psi_prior = {psi_prior}") # phi phi_prior = None if scores is not None: phi_prior = [[None for r in range(self.R)] for c in range(self.C)] logger.info(f" phi_prior = {phi_prior}") return theta_prior, psi_prior, phi_prior def _init( self, ratings: np.array, labelers: np.array, true_ratings: np.array, scores: Optional[np.array] = None, ): logger.info("Initializing ...") N = len(ratings) # process priors theta_prior, psi_prior, phi_prior = self._get_priors(ratings, labelers, scores) self.theta = DirichletMultinomial(prior=theta_prior) self.psi: List[List[DirichletMultinomial]] = [ [DirichletMultinomial(psi_prior[r]) for r in range(self.R)] for j in range(self.A) ] if scores is not None: self.phi: List[List[NormalInverseGammaNormal]] = [ [NormalInverseGammaNormal(phi_prior[c][r]) for r in range(self.R)] for c in range(self.C) ] # initialize assignments self.zs = np.empty(N, dtype=int) for n in range(N): if true_ratings[n] == -1: (values, counts) = np.unique(ratings[n], return_counts=True) z = values[np.argmax(counts)] else: z = true_ratings[n] self._increment( z=z, item_ratings=ratings[n], item_labelers=labelers[n], item_scores=None if scores is None else scores[n].tolist(), ) self.zs[n] = z # update Gaussians if self.C > 0: self._update_gaussians() self._log_status() def _log_status(self): logger.info(f" llh = {self._get_log_likelihood()}") logger.info(f" theta = {self.theta}") for l in range(self.A): for r in range(self.R): logger.info(f" psi[{l}][{r}] = {self.psi[l][r]}") if self.C != 0: for c in range(self.C): for r in range(self.R): logger.info(f" phi[{c}][{r}] = {self.phi[c][r]}") def _iterate( self, ratings: np.array, labelers: np.array, true_ratings: np.array, scores: Optional[np.array] = None, ): logger.info("Sampling ...") N = len(ratings) max_iters = self.burn_in + self.num_samples * self.sample_lag num_logs = 10 log_step = (int)(max_iters / num_logs) indices = np.array(range(N)) for iter in range(max_iters): n_changes = 0 np.random.shuffle(indices) for n in indices: self._decrement( z=self.zs[n], item_ratings=ratings[n], item_labelers=labelers[n], item_scores=None if scores is None else scores[n].tolist(), ) z = self._sample( item_ratings=ratings[n], item_labelers=labelers[n], item_scores=None if scores is None else scores[n].tolist(), ) if self.zs[n] != z: n_changes += 1 self.zs[n] = z self._increment( z=self.zs[n], item_ratings=ratings[n], item_labelers=labelers[n], item_scores=None if scores is None else scores[n].tolist(), ) if self.C > 0: self._update_gaussians() # collect samples is_stored = iter >= self.burn_in and iter % self.sample_lag == 0 if is_stored: self.theta.add_posterior_estimate() for l_psi in self.psi: for r_psi in l_psi: r_psi.add_posterior_estimate() if iter % log_step == 0: logger.info(f" Iter {iter} / {max_iters}") logger.info(f" n_changes = {n_changes} / {N}") self._log_status() logger.info(f"Done sampling!") def fit( self, R: int, # num. unique ratings A: int, # num. unique labelers ratings: np.array, labelers: Optional[np.array] = None, scores: Optional[np.array] = None, # (N x C x R)-shaped array true_ratings: Optional[np.array] = None, ): logger.info("Fitting ...") N = len(ratings) self.R = R self.A = A self.C = 0 if scores is None else scores.shape[1] logger.info(f" N = {N}") logger.info(f" R = {self.R}") logger.info(f" A = {self.A}") logger.info(f" C = {self.C}") # standardize observed variables if labelers is None: # use a single confusion matrix if None labelers = np.array( [np.zeros(len(ratings[n]), dtype=int) for n in range(N)] ) if true_ratings is None: true_ratings = np.repeat(-1, N) # initialize latent variables self._init(ratings, labelers, true_ratings, scores) # sample self._iterate(ratings, labelers, true_ratings, scores) def predict(self, **kwargs): pass def get_prevalence(self): mean_est, ci_est = self.theta.summarize_posterior_estimate() return {"mean": mean_est, "ci": ci_est} def get_confusion_matrix(self, labeler_id: int): labeler_psi = self.psi[labeler_id] estimates = [] for r in range(self.R): mean_est, ci_est = labeler_psi[r].summarize_posterior_estimate() estimates.append({"mean": mean_est, "ci": ci_est}) return estimates
clara-main
gibbs.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import logging import math from collections import defaultdict from typing import Dict, Generic, List, Optional, TypeVar import numpy as np from scipy.special import loggamma from scipy.stats import norm logger = logging.getLogger(__name__) T = TypeVar("T") class Counter(Generic[T]): def __init__(self) -> None: self.counts: Dict[T, int] = defaultdict(int) self.count_sum: int = 0 def __repr__(self): return f"counts: {dict(self.counts)}. count_sum = {self.count_sum}." def increment(self, observation: T) -> None: self.counts[observation] += 1 self.count_sum += 1 def decrement(self, observation: T) -> None: if observation not in self.counts or self.counts[observation] < 1: raise RuntimeError( f"Trying to decrement {observation}, but was never observed" ) self.counts[observation] -= 1 self.count_sum -= 1 def get_count(self, observation: T) -> int: return self.counts[observation] def get_count_sum(self) -> int: return self.count_sum class DirichletPrior: def __init__(self, dimension: int, scale: float, mean_vals: List[float]) -> None: self.dimension = dimension self.scale = scale self.mean_vals = mean_vals self.vals = [self.scale * mean_val for mean_val in self.mean_vals] self._validate() def __repr__(self): return ( f"dimension = {self.dimension}. " f"scale = {self.scale}. " f"mean = {self.mean_vals}." ) @classmethod def from_dim_scale(cls, dimension: int, scale: float) -> "DirichletPrior": prior = cls(dimension, scale, mean_vals=[(1.0 / dimension)] * dimension) return prior @classmethod def from_scale_mean(cls, scale: float, mean_vals: List[float]) -> "DirichletPrior": prior = cls(len(mean_vals), scale, mean_vals=mean_vals) return prior def _validate(self): if abs(sum(self.mean_vals) - 1.0) > 1e-6: raise RuntimeError(f"Invalid DirichletPrior {self.mean_vals}") class DirichletMultinomial: def __init__(self, prior: DirichletPrior, data: Counter = None) -> None: self.prior: DirichletPrior = prior self.data: Counter = data if data is not None else Counter() self.posteriors: List[List[float]] = [] def __repr__(self): return ( f"prior: {self.prior}. data: {self.data}. " f"posterior: {self.get_posterior_dist()}" ) @classmethod def from_prior(cls, prior) -> "DirichletMultinomial": return DirichletMultinomial(prior) @classmethod def from_dim_alpha(cls, dim, alpha) -> "DirichletMultinomial": prior = DirichletPrior.from_dim_scale(dim, alpha) return DirichletMultinomial(prior) @classmethod def from_scale_mean(cls, scale, mean) -> "DirichletMultinomial": prior = DirichletPrior.from_scale_mean(scale, mean) return DirichletMultinomial(prior) def add_posterior_estimate(self) -> None: self.posteriors.append(self.get_posterior_dist()) def summarize_posterior_estimate(self, lb: float = 2.5, ub: float = 97.5): mean_est = np.mean(self.posteriors, axis=0) ci_est = np.percentile(self.posteriors, [lb, ub], axis=0) return mean_est.tolist(), ci_est.tolist() def increment(self, observation: int) -> None: self.data.increment(observation) def decrement(self, observation: int) -> None: self.data.decrement(observation) def get_posterior_count(self, observation: int) -> float: return self.prior.vals[observation] + self.data.get_count(observation) def get_posterior_parameter(self) -> List[float]: return [ self.get_posterior_count(observation) for observation in range(self.prior.dimension) ] def get_posterior_count_sum(self) -> float: return self.prior.scale + self.data.get_count_sum() def get_posterior_prob(self, observation: int) -> float: return self.get_posterior_count(observation) / self.get_posterior_count_sum() def get_posterior_dist(self) -> List[float]: return [ self.get_posterior_prob(observation) for observation in range(self.prior.dimension) ] def sample_from_posterior(self) -> List[float]: return np.random.dirichlet(self.get_posterior_parameter()).tolist() def get_log_likelihood(self) -> float: llh = loggamma(self.prior.scale) for i_dim in range(self.prior.dimension): prior_val = self.prior.vals[i_dim] llh -= loggamma(prior_val) llh += loggamma(prior_val + self.data.get_count(i_dim)) llh -= loggamma(self.prior.scale + self.data.get_count_sum()) return llh class NormalInverseGammaPrior: __slots__ = ["mu", "sigma", "alpha", "beta"] def __init__(self, mu: float, sigma: float, alpha: float, beta: float) -> None: self.mu = mu self.sigma = sigma self.alpha = alpha self.beta = beta def __repr__(self): return ( f"mu = {self.mu}. sigma = {self.sigma}. " f"alpha = {self.alpha}. beta = {self.beta}." ) @classmethod def from_hyperparameter( cls, mu: float, sigma: float, alpha: float, beta: float ) -> "NormalInverseGammaPrior": prior = cls(mu, sigma, alpha, beta) return prior class Normal: def __init__(self) -> None: self.observations: List[float] = [] self.count = 0 self.sum = 0.0 self.sum_squared = 0.0 def __repr__(self): return ( f"count = {self.count}. sum = {self.sum}. " f"sum_squared = {self.sum_squared}" ) def add_observation(self, observation: float) -> None: self.observations.append(observation) self.count += 1 self.sum += observation self.sum_squared += observation * observation def remove_observation(self, observation: float) -> None: self.observations.remove(observation) self.count -= 1 self.sum -= observation self.sum_squared -= observation * observation def get_count(self) -> int: return self.count def get_sum(self) -> float: return self.sum def get_sum_squared(self) -> float: return self.sum_squared class NormalInverseGammaNormal: def __init__( self, prior: NormalInverseGammaPrior = None, # MLE if prior is None data: Normal = None, ) -> None: self.prior: NormalInverseGammaPrior = prior self.data: Normal = data if data is not None else Normal() self.mean: float = 0.0 self.variance: float = 0.0 if data is not None: self.estimate_parameters() def __repr__(self): return ( f"prior: {self.prior}. data: {self.data}. " f"mean: {self.mean}. variance: {self.variance}" ) @classmethod def from_prior_hyperparameters( cls, mu, sigma, alpha, beta ) -> "NormalInverseGammaNormal": prior = NormalInverseGammaPrior.from_hyperparameter(mu, sigma, alpha, beta) return NormalInverseGammaNormal(prior) def add_observation(self, observation: float, estimate: bool = True) -> None: self.data.add_observation(observation) if estimate: self.estimate_parameters() def remove_observation(self, observation: float, estimate: bool = True) -> None: self.data.remove_observation(observation) if estimate: self.estimate_parameters() def estimate_parameters(self) -> None: # MLE self.mean = self.data.sum / self.data.count self.variance = ( self.data.sum_squared - self.data.count * self.mean * self.mean ) / (self.data.count - 1) def get_posterior_log_prob(self, observation: float) -> float: return norm.logpdf(observation, self.mean, math.sqrt(self.variance)) def get_posterior_prob(self, observation: float) -> float: return norm.pdf(observation, self.mean, math.sqrt(self.variance)) def get_log_likelihood(self) -> float: return sum(self.get_posterior_log_prob(x) for x in self.data.observations)
clara-main
stats.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import pandas as pd logger = logging.getLogger(__name__) def generate_score( true_ratings: np.array, score_means: np.array, score_stdvs: np.array ): num_items = len(true_ratings) num_ones = np.sum(true_ratings) num_zeros = num_items - num_ones logger.info(f"num_items = {num_items}") logger.info(f"num_ones = {num_ones}") logger.info(f"num_zeros = {num_zeros}") logger.info(f"score_means = {score_means}") logger.info(f"score_stdvs = {score_stdvs}") score_zeros = np.random.normal(score_means[0], score_stdvs[0], num_zeros) score_ones = np.random.normal(score_means[1], score_stdvs[1], num_ones) df = pd.DataFrame({"true_rating": true_ratings.tolist()}) df["score"] = 0 df["score"] = df["score"].astype(float) df.loc[df.true_rating == 0, "score"] = score_zeros df.loc[df.true_rating == 1, "score"] = score_ones scores = np.empty((num_items, 2), dtype=float) scores[:, 1] = np.exp(df["score"]) / (1 + np.exp(df["score"])) scores[:, 0] = 1.0 - scores[:, 1] return scores def generate_dataset_tiebreaking( dataset_id: int, theta: np.array, psi: np.array, num_items: int ) -> pd.DataFrame: """ Function to generate one dataset for a particular dataset_id which has - 2 labels for each item where these labels agree, and 3 labels if there is a disagreement - one single confusion matrix Args: dataset_id: a numeric id for this dataset theta: the true prevalence psi: the true confusion matrix shared by all labelers num_items: number of items in the dataset """ # Set dataset_ids and item ids to be {dataset_id}_{item_num} ids = ["{}_{}".format(str(dataset_id), str(x)) for x in range(num_items)] dids = [str(dataset_id) for i in range(num_items)] # Randomly choose item labels and set labelers to be the same for each dataset_id ys = np.random.choice(len(theta), size=num_items, p=theta) # For each item generate random labels based on the psi confusion matrix ratings = [] labelers = [] for i in range(num_items): item_rating = np.random.choice(len(theta), size=3, p=psi[ys[i]]) if item_rating[0] == item_rating[1]: ratings.append([item_rating[0], item_rating[1]]) else: ratings.append(list(item_rating)) labelers.append([dataset_id] * len(ratings[i])) data = [dids, ids, labelers, ratings, ys.tolist()] columns = ["dataset", "id", "labelers", "ratings", "true_rating"] df = pd.DataFrame(data=data).transpose() df.columns = columns return df def generate_dataset_tiebreaking_with_scores( dataset_id: int, theta: np.array, psi: np.array, num_items: int ) -> pd.DataFrame: df = generate_dataset_tiebreaking(dataset_id, theta, psi, num_items) C = 2 # number of classifiers R = 2 # binary labels scores = np.empty((num_items, C, R), dtype=float) # generate classifiers cores scores[:, 0, :] = generate_score( true_ratings=df.true_rating, score_means=np.array([-4, 4]), score_stdvs=np.array([1, 1]), ) scores[:, 1, :] = generate_score( true_ratings=df.true_rating, score_means=np.array([-1, 1]), score_stdvs=np.array([1, 1]), ) logger.info(f"scores.shape = {scores.shape}") df["scores"] = scores.tolist() return df def generate_labeler_confusion_matrix(num_labelers: int, psi_mean: np.array, psi_std: np.array): ''' Function to generate a seperate confusion matrix for each labeler Args: num_labelers: number of different confusion matrix psi_mean: mean value of true positive rate and true negative rate psi_std: standard deviation of true positive rate and true negative rate Return: a list of 2x2 confusion matrix with length equals to num_labelers ''' num_classes = 2 psi = np.zeros((num_labelers, num_classes, num_classes), dtype=float) for i in range(num_labelers): for j in range(0, num_classes): # Generate true positive/negative probability between 0.5 and 1.0 psi[i][j][j] = min( max(np.random.normal(psi_mean[j], psi_std[j]), 0.5), 1.0) # Fill in false positive/negative value as needed for k in range(num_classes): if j != k: psi[i][j][k] = 1.0 - psi[i][j][j] return psi def generate_dataset_tiebreaking_different_labeler_cm( dataset_id: int, theta: np.array, psi: np.array, num_items: int ) -> pd.DataFrame: """ Function to generate one dataset for a particular dataset_id which has - 2 labels for each item where these labels agree, and 3 labels if there is a disagreement - a list of confusion matrix Args: dataset_id: a numeric id for this dataset theta: the true prevalence psi: the list of 2x2 confusion matrix for different labelers num_items: number of items in the dataset """ num_labelers = len(psi) if num_labelers < 3: raise Exception("Sorry, number of labelers need to be larger than 3!") # set dataset_ids and item ids to be {dataset_id}_{item_num} ids = ["{}_{}".format(str(dataset_id), str(x)) for x in range(num_items)] dids = [str(dataset_id) for i in range(num_items)] # randomly choose item labels and set labelers to be the same for each dataset_id ys = np.random.choice(len(theta), size=num_items, p=theta) item_ratings_all = [] labelers_all = [] for i in range(num_items): # randomly select labelers for each item labelers = np.random.choice(range(0, num_labelers), size=3, replace=False) item_ratings = [] for j in range(3): labeler = labelers[j] rating = np.random.choice(len(theta), p=psi[labeler][ys[i]]) item_ratings.append(rating) if item_ratings[0] == item_ratings[1]: item_ratings_all.append([item_ratings[0], item_ratings[1]]) labelers_all.append([labelers[0], labelers[1]]) else: item_ratings_all.append(item_ratings) labelers_all.append(labelers) data = [dids, ids, labelers_all, item_ratings_all, ys.tolist()] columns = ["dataset", "id", "labelers", "ratings", "true_rating"] df = pd.DataFrame(data=data).transpose() df.columns = columns return df
clara-main
simulator.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. from abc import ABC, abstractmethod class BaseModel(ABC): def __init__(self, name: str, **kwargs): self.name = name @abstractmethod def fit(self, **kwargs): pass @abstractmethod def predict(self, **kwargs): pass
clara-main
base.py
from collections import defaultdict from typing import Dict, List, NamedTuple import numpy as np import pandas as pd def generate_common_cm(L: int, h: float, gamma: float) -> np.ndarray: """ Generates the L x L common confusion matrix using the heterogeneity factor, h and the lower bound on accuracy, gamma. The first L/2 labels map to the first decision, while the remaining L/2 labels map to the second decision. We generate the common error matrix M_error, and then mix it with the identify matrix using gamma. When h = 0, every row of M_error is [1, 1, ..., 1] normalized. When h = 1, every row of M_error is [1*1, 2*2, ..., L/2 * L/2, 1*1, 2*2, ..., L/2*L/2] noramlized. For any h in between, we simply take a convex combination of the two. For example: suppose that L = 4 and gamma = 0.8. Then: no_heterogeneity = [0.25, 0.25, 0.25, 0.25] max_heterogeneity = [0.1, 0.4, 0.1, 0.4] """ no_heterogeneity = np.ones(int(L)) no_heterogeneity = no_heterogeneity / sum(no_heterogeneity) max_heterogeneity = np.array( [x**1.5 for x in range(1, int(L / 2) + 1)] + [x**1.5 for x in range(1, int(L / 2) + 1)] ) max_heterogeneity = max_heterogeneity / sum(max_heterogeneity) M_error_row = no_heterogeneity * (1 - h) + max_heterogeneity * h M_error = np.array([M_error_row for _ in range(L)]) return np.array(gamma * np.identity(L) + (1 - gamma) * M_error) def generate_random_matrix_with_lb(L: int, gamma: float) -> np.ndarray: M = np.random.rand(L, L) M = M / M.sum(axis=1)[:, np.newaxis] return np.array(gamma * np.identity(L) + (1 - gamma) * M) def generate_reviewer_cm( a: float, # a = 0 is the first reviewer, a = 1 is the last. L: int, # size of confusion matrix gamma: float, # lower bound on diagonal entries ) -> np.ndarray: """ For each of the A reviewers, their confusion matrix is diagonal with uniform off-diagonal entries with mean equal to mean_acc. """ mean_acc = gamma * (1 - a) + 1 * a accuracy = [ np.random.uniform(mean_acc - 0.1, min(1, mean_acc + 0.1)) for _ in range(L) ] matrix = [] for idx in range(L): # constructing each row of the matrix row = [ (1 - accuracy[idx]) / (L - 1) for _ in range(L) ] # non-diagonal entries are uniform row[idx] = accuracy[idx] # diagonal entry given by matrix.append(row) return np.array(matrix) def generate_data( L: int, # Number of labels I: int, # Number of items A: int, # Number of reviewers M_final: List[np.ndarray], # LxL confusion matrix for each of the A reviewers. label_to_decision: Dict[str, str], # map from labels to decision num_reviews_per_content=3, # number of reviews to draw for each of the I items ): data = defaultdict(list) for _ in range(I): y = np.random.choice( range(L), ) reviews = [] labels = [] labels_binary = [] for _ in range(num_reviews_per_content): reviewer = np.random.choice(range(A)) rating = np.random.choice(range(L), p=M_final[reviewer][y]) reviews.append(str(reviewer)) labels.append(str(rating)) labels_binary.append(label_to_decision[str(rating)]) data["labelers"].append(reviews) data["ratings"].append(labels) data["ratings_binary"].append(labels_binary) data["first_rating_binary"].append(labels_binary[0]) data["true_label"].append(y) data["true_decision"].append(label_to_decision[str(y)]) data["first_decision_correct"].append( labels_binary[0] == label_to_decision[str(y)] ) return pd.DataFrame(data) class SimulationDataInstance(NamedTuple): df_train: pd.DataFrame df_test: pd.DataFrame decision_to_ratings_map: Dict[str, List[str]] common_confusion: np.ndarray reviewer_confusions: List[np.ndarray] def generate_simulation_data( I: int, # number of items L: int, # number of labels, the first int(L/2) map to decision A and the remaining to decision B. A: int, # number of annotators/reviewers gamma: float, # lower bound on the any reviewer's accuracy h: float, # heterogeneity factor, how different L/2 labels in each decision vary in terms of reliability mixing_factor: float, # weight between individual CM and population CM ) -> SimulationDataInstance: assert ( L % 2 == 0 ), "L must be even so it can be partioned into two equal sets of decisions" M_common = generate_common_cm(L, h, gamma) M_final = [] for a in range(A): M_personal = generate_reviewer_cm((float(a) + 1) / (A + 1), L, gamma) M_final.append(M_personal * mixing_factor + M_common * (1 - mixing_factor)) labels_to_decisions = {str(i): "A" if i < L / 2 else "B" for i in range(L)} decision_to_ratings_map = { "A": [str(i) for i in range(L) if i < L / 2], "B": [str(i) for i in range(L) if i >= L / 2], } train_data = generate_data(L, I, A, M_final, labels_to_decisions, 3) test_data = generate_data(L, max(I, 20000), A, M_final, labels_to_decisions, 3) return SimulationDataInstance( df_train=train_data, df_test=test_data, decision_to_ratings_map=decision_to_ratings_map, common_confusion=M_common, reviewer_confusions=M_final, )
clara-main
mapping-aware-model/simulator.py
stan_code=""" data { int<lower=1> A; // number of annotators int<lower=2> K; // number of categories int<lower=1> N; // number of annotations int<lower=1> I; // number of items int<lower=1> L; // total number of flat labels (L in the overleaf) int<lower=1> D[K]; // number of ratings for each decision (D_k in the overleaf) int<lower=1> D_max; // max number of ratings for any decision (not in overleaf, implementation only) // the label decision of the l-th flat label int<lower=1, upper=K> c[L]; // the index within the label decision of the l-th flat label int<lower=1, upper=D_max> ell[L]; // the item the n-th annotation belongs to int<lower=1, upper=I> ii[N]; // the annotator which produced the n-th annotation int<lower=1, upper=A> aa[N]; // the flat index of the label of the n-th annotation int<lower=1, upper=L> x[N]; vector<lower=0>[K] alpha; // class prevalence prior // weight for each item vector<lower=0>[I] weights; // lower bound on the diagonal of the decision confusion matrix real<lower=0.5, upper=1.0> gamma; } parameters { simplex[K] theta; // prevalence in the categories vector<lower=0, upper=1>[K] psi_diag_unconstrained[A]; simplex[K-1] psi_cond_error[A, K]; // shared parameters across all reviewers simplex[D_max] eta[K]; vector<lower=1, upper=gamma/(1-gamma)>[D_max] rho[K, K]; } transformed parameters { // shared parameters vector[D_max] log_pi[K, K]; vector<lower=0>[D_max] pi_unnormalized[K, K]; // per reviewer decision confusion matrix (K by K) vector[K] log_psi_diag[A]; vector[K] log1m_psi_diag[A]; vector[K-1] log_psi_cond_error[A, K]; vector[K] log_psi[A, K]; // rectangular confusion matrix (K by L) vector[L] log_psi_rectangular[A, K]; vector[K] log_item_probs[I]; // constructing log_psi (K x K) - copied from CLARAStanConstrainedConfusion for (a in 1:A) { for (i in 1:K) { log_psi_diag[a, i] = log(gamma + (1 - gamma) * psi_diag_unconstrained[a, i]); } } log1m_psi_diag = log1m_exp(log_psi_diag); log_psi_cond_error = log(psi_cond_error); for (a in 1:A) { for (i in 1:K) { log_psi[a, i, i] = log_psi_diag[a, i]; for (j in 1:(i-1)) { log_psi[a, i, j] = log1m_psi_diag[a, i] + log_psi_cond_error[a, i, j]; } for (j in (i+1):K) { log_psi[a, i, j] = log1m_psi_diag[a, i] + log_psi_cond_error[a, i, j-1]; } } } // construct beta from eta and rho for (k_true in 1:K) { for (k_predicted in 1:K) { for (l in 1:D[k_predicted]) { if (k_true == k_predicted) { pi_unnormalized[k_true, k_predicted, l] = eta[k_predicted, l]; } else { pi_unnormalized[k_true, k_predicted, l] = eta[k_predicted, l] * rho[k_true, k_predicted, l]; } } for (l in (D[k_predicted] + 1):D_max) { pi_unnormalized[k_true, k_predicted, l] = 0.000001; } log_pi[k_true, k_predicted] = log(pi_unnormalized[k_true, k_predicted] / sum(pi_unnormalized[k_true, k_predicted]) ); } } // constructing log_psi_rectangular (K x L) for (a in 1:A) { for (k in 1:K) { for (l in 1:L) { log_psi_rectangular[a, k, l] = log_psi[a, k, c[l]] + log_pi[k, c[l], ell[l]]; } } } for (i in 1:I) { for (k in 1:K) { log_item_probs[i, k] = log(theta[k]); } } for (n in 1:N) { for (k in 1:K) { log_item_probs[ii[n], k] = log_item_probs[ii[n], k] + log_psi_rectangular[aa[n], k, x[n]]; } } } model { theta ~ dirichlet(alpha); for (a in 1:A) { for (k in 1:K) { psi_diag_unconstrained[a, k] ~ beta(5, 5); psi_cond_error[a, k] ~ dirichlet(rep_vector(1, K-1)); } } for (k_true in 1:K) { eta[k_true] ~ dirichlet(append_row(rep_vector(10, D[k_true]), rep_vector(0.001, D_max-D[k_true]))); for (k_predicted in 1:K) { for (l in 1:D_max) { rho[k_true, k_predicted, l] ~ uniform(1, gamma/(1-gamma)); } } } for (i in 1:I) { target += weights[i] * log_sum_exp(log_item_probs[i]); } } generated quantities { vector[K] item_probs[I]; // the true class distribution of each item for(i in 1:I) item_probs[i] = softmax(log_item_probs[i]); } """
clara-main
mapping-aware-model/mapping_aware_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import os from utils import file_tqdm logging.basicConfig(level=logging.INFO) def convert(ast): increase_by = {} # count of how many idx to increase the new idx by: # each time there is a value node cur = 0 for i, node in enumerate(ast): increase_by[i] = cur if "value" in node: cur += 1 new_dp = [] for i, node in enumerate(ast): inc = increase_by[i] if "value" in node: child = [i + inc + 1] if "children" in node: child += [n + increase_by[n] for n in node["children"]] new_dp.append({"type": node["type"], "children": child}) new_dp.append({"value": node["value"]}) else: if "children" in node: node["children"] = [n + increase_by[n] for n in node["children"]] new_dp.append(node) # sanity check children = [] for node in new_dp: if "children" in node: children += node["children"] assert len(children) == len(set(children)) return new_dp def main(): parser = argparse.ArgumentParser(description="Generate datapoints from AST") parser.add_argument("--input_fp", "-i", help="Filepath with the ASTs to be parsed") parser.add_argument( "--out_fp", "-o", default="/tmp/new_trees.json", help="Filepath with the output dps", ) args = parser.parse_args() if os.path.exists(args.out_fp): os.remove(args.out_fp) logging.info("Loading asts from: {}".format(args.input_fp)) with open(args.input_fp, "r") as f, open(args.out_fp, "w") as fout: for line in file_tqdm(f): dp = json.loads(line.strip()) print(json.dumps(convert(dp)), file=fout) logging.info("Wrote dps to: {}".format(args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
generate_new_trees.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import pickle from collections import Counter from utils import file_tqdm, get_dfs logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" def get_value(line, input_type): if input_type == "ast": return get_dfs(line) elif input_type == "leaf": return get_dfs(line, only_leaf=True) elif input_type == "source_code": return line[0] def main(): parser = argparse.ArgumentParser(description="Create vocab for py150 dataset") parser.add_argument("--n_vocab", "-n", type=int, default=100000) parser.add_argument("--input_fp", "-i") parser.add_argument("--out_fp", "-o", default="/tmp/vocab.pkl") parser.add_argument( "--input_type", "-t", choices=["ast", "leaf", "source_code"], help="Where to get the input from (all AST nodes, leaf nodes, or source code", ) args = parser.parse_args() logging.info("Reading from: {}".format(args.input_fp)) logging.info("Input type: {}".format(args.input_type)) vocab = Counter() with open(args.input_fp, "r") as f: for line in file_tqdm(f): vocab.update(get_value(json.loads(line.strip()), args.input_type)) vocab_to_keep = [i[0] for i in vocab.most_common(args.n_vocab)] top_total = sum(i[1] for i in vocab.most_common(args.n_vocab)) total = sum(vocab.values()) logging.info("Total # of vocab: {}".format(len(vocab))) logging.info( "Using {} top vocab covers: {:.2f}% of the entire dataset".format( args.n_vocab, 100 * top_total / total ) ) logging.info("Top 10 most common vocab:") for v, i in vocab.most_common(10): print(v, i) # add unk and pad tokens vocab_to_keep.append(UNK) vocab_to_keep.append(PAD) logging.info("Added {} and {}".format(UNK, PAD)) # dump vocab to file with open(args.out_fp, "wb") as fout: pickle.dump(vocab_to_keep, fout) logging.info("Wrote {} vocab to: {}".format(len(vocab_to_keep), args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
generate_vocab.py
#!/usr/bin/env python3 # Copyright (c) 2019 OpenAI, HugginFace Inc. team. and TaeHwan Jung # Copyright (c) Facebook, Inc. and its affiliates. # ---------------------------------------------------------------------------- # MIT LICENSE # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ---------------------------------------------------------------------------- """ Transformer model is adapted from: https://github.com/graykode/gpt-2-Pytorch (Commit: 46ae886391a94c6683be438269252c4afd5ba762) Original Paper and repository here: https://github.com/openai/gpt-2 RNN implementation is adapted from: https://github.com/pytorch/examples/tree/master/word_language_model """ import copy import math import torch import torch.nn as nn def gelu(x): return ( 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) ) class PathLSTM(nn.Module): def __init__(self, vocab_size, n_embd): super(PathLSTM, self).__init__() self.embedding = nn.Embedding(vocab_size, n_embd) self.LSTM = nn.LSTM(n_embd, n_embd, batch_first=True) def forward(self, paths): embed = self.embedding(paths) # bs, max_len, max_path_len, n_embd batch_size, bag_size, path_len, n_embd = embed.shape _, (h_n, _) = self.LSTM(embed.view(batch_size * bag_size, path_len, n_embd)) return h_n.permute((1, 0, 2)).view((batch_size, bag_size, -1)) class LayerNorm(nn.Module): def __init__(self, hidden_size, std_eps=1e-6): """Construct a layernorm module in the TF style. """ super(LayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.std_eps = std_eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).std(-1, keepdim=True) x = (x - u) / (s + self.std_eps) return self.weight * x + self.bias class Attention(nn.Module): def __init__( self, nx, n_ctx, n_head, scale=False ): super(Attention, self).__init__() n_state = nx # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % n_head == 0 self.register_buffer( "bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx) ) self.n_head = n_head self.split_size = n_state self.scale = scale self.c_attn = nn.Linear(nx, n_state * 3) self.c_proj = nn.Linear(nx, n_state) def _attn(self, q, k, v): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) nd, ns = w.size(-2), w.size(-1) b = self.bias[:, :, ns - nd : ns, :ns] w = w * b - 1e10 * (1 - b) w = nn.Softmax(dim=-1)(w) return torch.matmul(w, v) def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states if k: return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length) else: return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def forward(self, x): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) # self attention component a = self._attn(query, key, value) a = self.merge_heads(a) a = self.c_proj(a) return a class MLP(nn.Module): def __init__(self, n_state, n_embd): super(MLP, self).__init__() self.c_fc = nn.Linear(n_embd, n_state) self.c_proj = nn.Linear(n_state, n_embd) self.act = gelu def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return h2 class Block(nn.Module): def __init__( self, n_ctx, n_head, n_embd, layer_norm_epsilon, scale=False, ): super(Block, self).__init__() self.ln_1 = LayerNorm(n_embd, std_eps=layer_norm_epsilon) self.attn = Attention( n_embd, n_ctx, n_head, scale ) self.ln_2 = LayerNorm(n_embd, std_eps=layer_norm_epsilon) self.mlp = MLP(4 * n_embd, n_embd) def forward(self, x): a = self.attn(self.ln_1(x)) x = x + a m = self.mlp(self.ln_2(x)) x = x + m return x class GPT2Model(nn.Module): def __init__( self, vocab_size, n_layer, n_embd, n_ctx, n_head, layer_norm_epsilon, root_paths, ): super(GPT2Model, self).__init__() self.n_layer = n_layer self.n_embd = n_embd self.n_vocab = vocab_size self.wte = nn.Embedding(vocab_size, n_embd) if root_paths: self.path_lstm = PathLSTM(vocab_size, n_embd) block = Block( n_ctx, n_head, n_embd, layer_norm_epsilon, scale=True, ) self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(n_layer)]) self.ln_f = LayerNorm(n_embd, std_eps=layer_norm_epsilon) def forward(self, input_ids, paths=None): input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) inputs_embeds = self.wte(input_ids) path_embeds = self.path_lstm(paths) if paths is not None else 0 hidden_states = inputs_embeds + path_embeds for block in self.h: hidden_states = block(hidden_states) hidden_states = self.ln_f(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) return hidden_states.view(*output_shape) class GPT2LMHead(nn.Module): def __init__(self, model_embeddings_weights, n_embd): super(GPT2LMHead, self).__init__() self.n_embd = n_embd self.set_embeddings_weights(model_embeddings_weights) def set_embeddings_weights(self, model_embeddings_weights): embed_shape = model_embeddings_weights.shape self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False) self.decoder.weight = model_embeddings_weights # Tied weights def forward(self, hidden_state): lm_logits = self.decoder(hidden_state) return lm_logits class TransformerModel(nn.Module): def __init__( self, vocab_size, loss_fn, n_layer, n_embd, n_ctx, n_head, layer_norm_epsilon, root_paths=False, ): super(TransformerModel, self).__init__() self.transformer = GPT2Model( vocab_size, n_layer, n_embd, n_ctx, n_head, layer_norm_epsilon, root_paths, ) self.lm_head = GPT2LMHead(self.transformer.wte.weight, n_embd) self.loss_fn = loss_fn def reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward( self, x, y, ext=None, paths=None, return_loss=False ): hidden_states = self.transformer(x, paths) y_pred = self.lm_head(hidden_states) if not return_loss: return y_pred # ext contains a list of idx of where to take the loss from # we linearize it first ids = [] max_len = y.size(-1) for i, ext_i in enumerate(ext): ids += [i * max_len + j for j in range(ext_i, max_len)] loss = self.loss_fn(y_pred.view(-1, y_pred.size(-1))[ids], y.view(-1)[ids]) return loss # base RNN model class LSTMModel(torch.nn.Module): def __init__(self, vocab_size, n_embd, loss_fn, n_ctx): super(LSTMModel, self).__init__() self.embedding = nn.Embedding(vocab_size, n_embd) self.lstm = nn.LSTM(n_embd, n_embd, num_layers=1, dropout=0.5, batch_first=True) self.decoder = nn.Linear(n_embd, vocab_size) self.loss_fn = loss_fn self.half_ctx = int(n_ctx / 2) def reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward( self, x, y, ext=None, paths=None, return_loss=False ): embed = self.embedding(x) # bs, max_len, n_embd self.lstm.flatten_parameters() lstm_out, _ = self.lstm(embed) # bs, max_len, n_embd y_pred = self.decoder(lstm_out) # bs, max_len, vocab_size if not return_loss: return y_pred # ext contains a list of idx of where to take the loss from # we linearize it first ids = [] max_len = y.size(-1) for i, ext_i in enumerate(ext): ids += [i * max_len + j for j in range(ext_i, max_len)] loss = self.loss_fn(y_pred.view(-1, y_pred.size(-1))[ids], y.view(-1)[ids]) return loss
code-prediction-transformer-main
model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging import os import pickle import torch import utils logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" class BaseSetup(object): def __init__( self, base_dir, fp, ids_fp, max_vocab=100000, mode="train" ): super().__init__() if mode not in {"train", "test"}: raise Exception("Mode must be either train or test") self.mode = mode self.fp = fp self.max_vocab = max_vocab # get all the relevant filepaths self.filepaths = { "vocab": os.path.join(base_dir, "vocab.pkl"), "metrics": os.path.join(base_dir, "{}_metrics.txt".format(mode)), "conv": os.path.join(base_dir, "{}_converted.txt".format(mode)), } self._add_extra_filepaths(base_dir) logging.info("Writing metrics to: {}".format(self.filepaths["metrics"])) # filter dataset filtered_fp = self._filter_dataset() # set up vocab self.vocab = self._create_vocab() # convert if not os.path.exists(self.filepaths["conv"]): with open(filtered_fp, "r") as fin, open( self.filepaths["conv"], "w" ) as fout: for line in utils.file_tqdm(fin): line = json.loads(line.strip()) print(json.dumps(self.vocab.convert(line)), file=fout) logging.info( "Converted dataset to idx and saved to: {}".format( self.filepaths["conv"] ) ) # return dataset self.dataset = self._create_dataset(self.filepaths["conv"], ids_fp) logging.info("Loaded dataset from {}".format(self.filepaths["conv"])) def return_data(self): return self.vocab, self.dataset, self.filepaths["metrics"] def _add_extra_filepaths(self, base_dir): return def _filter_dataset(self): return self.fp def _create_vocab(self): raise NotImplementedError("method must be implemented by a subclass.") def _create_dataset(self, fp, ids_fp): raise NotImplementedError("method must be implemented by a subclass.") class BaseVocab(object): def __init__(self, vocab_fp): super().__init__() self.unk_token = UNK self.pad_token = PAD self.pad_idx = None self.unk_idx = None if not os.path.exists(vocab_fp): raise Exception("Get the vocab from generate_vocab.py") with open(vocab_fp, "rb") as fin: self.idx2vocab = pickle.load(fin) logging.info("Loaded vocab from: {}".format(vocab_fp)) self.vocab2idx = {token: i for i, token in enumerate(self.idx2vocab)} self.unk_idx = self.vocab2idx[self.unk_token] self.pad_idx = self.vocab2idx[self.pad_token] logging.info("Vocab size: {}".format(len(self.idx2vocab))) def __len__(self): return len(self.idx2vocab) def convert(self, line): raise NotImplementedError("method must be implemented by a subclass.") class BaseDataset(torch.utils.data.Dataset): def __init__(self, fp, ids_fp): super().__init__() self.fp = fp self.ids_fp = ids_fp self._line_pos_dp = list(utils.line_positions(fp)) self._line_pos_ids = list(utils.line_positions(ids_fp)) assert (len(self._line_pos_dp) == len(self._line_pos_ids)) def __len__(self): return len(self._line_pos_dp) def __getitem__(self, idx): line_pos = self._line_pos_dp[idx] with open(self.fp) as f: f.seek(line_pos) dp_line = f.readline().strip() line_pos = self._line_pos_ids[idx] with open(self.ids_fp) as f: f.seek(line_pos) ids_line = f.readline().strip() return (json.loads(dp_line), json.loads(ids_line)) @staticmethod def collate(seqs, pad_idx=None): raise NotImplementedError("method must be implemented by a subclass.")
code-prediction-transformer-main
dataset.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import multiprocessing as mp from tqdm import tqdm def line_positions(file_path): with open(file_path) as f: while True: pos = f.tell() if f.readline(): yield pos else: break def get_number_of_lines(fobj): nol = sum(1 for _ in fobj) fobj.seek(0) return nol def file_tqdm(f): return tqdm(f, total=get_number_of_lines(f)) def parallelize(iterable, f, f_args=(), worker_init=None, n_cores=None): if n_cores == 1: return _mp_iterate_over(f, iterable, f_args) if n_cores is None: n_cores = int(mp.cpu_count()) lst = list(iterable) chunksize = math.ceil(len(lst) / n_cores) with mp.Pool(processes=n_cores, initializer=worker_init) as pool: jobs = [ pool.apply_async( _mp_iterate_over, (f, lst[i * chunksize : (i + 1) * chunksize], f_args) ) for i in range(n_cores) ] multiple_results = [job.get() for job in jobs] results = flatten(multiple_results) return results def _mp_iterate_over(f, lst, f_args): return [f(x, *f_args) for x in lst] def flatten(list_of_lists): return [x for xs in list_of_lists for x in xs] ######################################################################## # generating dataset utils def get_dfs(ast, only_leaf=False): dp = [] for node in ast: if "value" in node: dp.append(node["value"]) else: if not only_leaf: dp.append(node["type"]) return dp def separate_dps(ast, max_len): """ Handles training / evaluation on long ASTs by splitting them into smaller ASTs of length max_len, with a sliding window of max_len / 2. Example: for an AST ast with length 1700, and max_len = 1000, the output will be: [[ast[0:1000], 0], [ast[500:1500], 1000], [ast[700:1700], 1500]] Input: ast : List[Dictionary] List of nodes in pre-order traversal. max_len : int Output: aug_asts : List[List[List, int]] List of (ast, beginning idx of unseen nodes) """ half_len = int(max_len / 2) if len(ast) <= max_len: return [[ast, 0]] aug_asts = [[ast[:max_len], 0]] i = half_len while i < len(ast) - max_len: aug_asts.append([ast[i : i + max_len], half_len]) i += half_len idx = max_len - (len(ast) - (i + half_len)) aug_asts.append([ast[-max_len:], idx]) return aug_asts def get_ancestors(ast): ancestors = {0: []} node2parent = {0: 0} for i, node in enumerate(ast): if "children" in node: for child in node["children"]: node2parent[child] = i ancestors[i] = [i] + ancestors[node2parent[i]] return ancestors def get_terminal_nodes(ast): terminal_nodes = [i for i, node in enumerate(ast) if "children" not in node] return terminal_nodes def tokenize(s): pattern = re.compile(r"(?<!^)(?=[A-Z])") tokenized = pattern.sub("_", s).lower().split("_") return list(filter(None, tokenized))[:5]
code-prediction-transformer-main
utils.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging from functools import partial from typing import Set import torch torch.manual_seed(0) logging.getLogger().setLevel(logging.INFO) def prepare_data(batch, device): x = batch["input_seq"].to(device) y = batch["target_seq"].to(device) ext = batch["extended"] rel = batch["rel_mask"].to(device) if "rel_mask" in batch else None child = batch["child_mask"].to(device) if "child_mask" in batch else None paths = batch["root_paths"].to(device) if "root_paths" in batch else None return x, y, ext, rel, child, paths def build_dataloader(dataset, batch_size, collate_fn, train_split=0.90): train_len = int(train_split * len(dataset)) train_dataset, val_dataset = torch.utils.data.random_split( dataset, lengths=([train_len, len(dataset) - train_len]) ) logging.info("Batch size: {}".format(batch_size)) logging.info( "Train / val split ({}%): {} / {}".format( 100 * train_split, len(train_dataset), len(val_dataset) ) ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=16, shuffle=True, drop_last=True, pin_memory=False, ) logging.info("len(train_dataloader) = {}".format(len(train_dataloader))) val_dataloader = torch.utils.data.DataLoader( val_dataset, batch_size=int(batch_size / 4), collate_fn=collate_fn, num_workers=16, shuffle=True, drop_last=True, pin_memory=False, ) logging.info("len(val_dataloader) = {}".format(len(val_dataloader))) return train_dataloader, val_dataloader def build_test_dataloader(test_dataset, batch_size, collate_fn): test_dataloader = torch.utils.data.DataLoader( test_dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=16, shuffle=False, drop_last=True, pin_memory=True, ) logging.info("len(test_dataloader) = {}".format(len(test_dataloader))) return test_dataloader def build_metrics(loss_fn, unk_idx_set: Set[int], pad_idx, ids_str): from ignite.metrics import Loss, TopKCategoricalAccuracy def strip(out, id_str="all"): if id_str != "all": ids = out[id_str] y_pred = out["y_pred"][ids] y = out["y"][ids] else: y_pred = out["y_pred"] y = out["y"] idx = y != pad_idx return y_pred[idx], y[idx] def topk_trans(id_str): def wrapped(out): y_pred, y = strip(out, id_str) for idx in unk_idx_set: # non-existing tokens y[y == idx] = -2 return y_pred, y return wrapped def topk_ex_unk_trans(id_str): def wrapped(out): y_pred, y = strip(out, id_str) idx_tensor = torch.ones(y.shape, dtype=torch.bool) for idx in unk_idx_set: idx_tensor[y == idx] = False return y_pred[idx_tensor], y[idx_tensor] return wrapped def loss_trans(): def wrapped(out): return strip(out) return wrapped metrics = {"_loss": Loss(loss_fn, loss_trans())} for id_str in ["attr_ids", "leaf_ids"] + ["all"]: # reporting metrics for attr and leaf only metrics["{}_acc".format(id_str)] = TopKCategoricalAccuracy( 1, topk_trans(id_str) ) return metrics def build_evaluator(model, metrics, metrics_fp, device, pad_idx): from ignite.contrib.handlers import ProgressBar from ignite.engine import Engine, Events @Engine @torch.no_grad() def evaluator(engine, batch): model.eval() x, y, ext, rel, child, paths = prepare_data(batch, device) y_pred = model(x, y, ext, rel, child, paths) # here we pad out the indices that have been evaluated before for i, ext_i in enumerate(ext): y[i][:ext_i] = pad_idx res = {"y_pred": y_pred.view(-1, y_pred.size(-1)), "y": y.view(-1)} res.update(batch["ids"]) return res for name, metric in metrics.items(): metric.attach(evaluator, name) ProgressBar(bar_format="").attach(evaluator, metric_names=[]) @evaluator.on(Events.COMPLETED) def log_val_metrics(engine): metrics = engine.state.metrics metrics = {name: "{:.4f}".format(num) for name, num in metrics.items()} # mrr metrics_str = json.dumps(metrics, indent=2, sort_keys=True) logging.info("val metrics: {}".format(metrics_str)) with open(metrics_fp, "a") as fout: fout.write(metrics_str) fout.write("\n") return evaluator def build_trainer( model, loss_fn, optimizer, train_dataloader, val_dataloader, run_dir, validator, device, score_fn=lambda engine: engine.state.metrics["all_acc"], ): from ignite.contrib.handlers import ProgressBar from ignite.engine import Engine, Events from ignite.handlers import EarlyStopping, ModelCheckpoint, TerminateOnNan from ignite.metrics import RunningAverage @Engine def trainer(engine, batch): model.train() x, y, ext, rel, child, paths = prepare_data(batch, device) loss = model(x, y, ext, rel, child, paths, return_loss=True) loss = loss.sum() optimizer.zero_grad() loss.backward() optimizer.step() return {"batchloss": loss.item()} # # validation first # @trainer.on(Events.STARTED) # def validate(engine): # validator.run(val_dataloader) RunningAverage(output_transform=lambda out: out["batchloss"]).attach( trainer, "batchloss" ) ProgressBar(bar_format="").attach(trainer, metric_names=["batchloss"]) # store the model before validation pre_model_handler = ModelCheckpoint( dirname=run_dir, filename_prefix="pre", n_saved=100, # save all bests save_interval=1, require_empty=False, ) trainer.add_event_handler( Events.EPOCH_COMPLETED, pre_model_handler, {"model": model} ) # validation @trainer.on(Events.EPOCH_COMPLETED) def validate(engine): validator.run(val_dataloader) # terminate on NaN trainer.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan()) # store the best model best_model_handler = ModelCheckpoint( dirname=run_dir, filename_prefix="best", n_saved=100, # save all bests score_name="val_acc", score_function=score_fn, require_empty=False, ) validator.add_event_handler(Events.COMPLETED, best_model_handler, {"model": model}) # Early stopping es_handler = EarlyStopping(patience=5, score_function=score_fn, trainer=trainer) validator.add_event_handler(Events.COMPLETED, es_handler) return trainer def train( model, vocab, dataset, metrics_fp, loss_fn, lr, run_dir, batch_size, max_epochs, device, ids_str, ): collate_fn = partial(dataset.collate, pad_idx=vocab.pad_idx) train_dataloader, val_dataloader = build_dataloader( dataset, batch_size=batch_size, collate_fn=collate_fn ) metrics = build_metrics(loss_fn, vocab.unk_idx_set, vocab.pad_idx, ids_str) # run the trainer and validator validator = build_evaluator( model=model, metrics=metrics, metrics_fp=metrics_fp, device=device, pad_idx=vocab.pad_idx, ) trainer = build_trainer( model=model, loss_fn=loss_fn, optimizer=torch.optim.Adam(model.parameters(), lr=lr), train_dataloader=train_dataloader, val_dataloader=val_dataloader, run_dir=run_dir, validator=validator, device=device, ) trainer.run(train_dataloader, max_epochs=max_epochs) def eval_model( model, vocab, test_dataset, metrics_fp, loss_fn, batch_size, device, ids_str ): collate_fn = partial(test_dataset.collate, pad_idx=vocab.pad_idx) test_dataloader = build_test_dataloader( test_dataset, batch_size=batch_size, collate_fn=collate_fn ) metrics = build_metrics(loss_fn, vocab.unk_idx_set, vocab.pad_idx, ids_str) # run the evaluator evaluator = build_evaluator( model=model, metrics=metrics, metrics_fp=metrics_fp, device=device, pad_idx=vocab.pad_idx, ) evaluator.run(test_dataloader)
code-prediction-transformer-main
train.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import LSTMModel import Dataset, Vocab import json import os import torch import argparse import logging def predict_with_seq(seq, converted=False, ): rel = None if not converted: seq = vocab.convert([seq, 0]) # [data, ext] is the format expected seqs = [[seq, {}]] # the {} is a mapping of attr/leaf locations, not needed here batch = Dataset.collate(seqs, pad_idx) x = batch["input_seq"] y = batch["target_seq"] ext = batch["extended"] y_pred = model(x, y, ext, rel=rel, return_loss=False) return y_pred.squeeze() def get_top_pred(pred, k=10, print_results=True): softmax = torch.nn.Softmax() top_perc, top_idx = torch.topk(softmax(pred), k) top_perc = top_perc.tolist() top_tokens = [vocab.idx2vocab[i] for i in top_idx] if print_results: print('Top {} predictions:'.format(k)) for i, (perc, token) in enumerate(zip(top_perc, top_tokens)): print('{}) {:<12} ({:.2f}%)'.format(i + 1, token, 100 * perc)) return top_perc, top_tokens def predict_next(input_seq, k=10, print_results=False): y_pred = predict_with_seq(input_seq + ['<pad_token>']) top_perc, top_tokens = get_top_pred(y_pred[-1], k, print_results) return top_perc, top_tokens def demo_sequence(input_seq): print(' '.join(input_seq)) top_perc, top_tokens = predict_next(input_seq, print_results=True) def demo_datapoint(data, dp_raw, idxs, converted=False, print_results=True): k = 10 # predict for the whole sequence in one shot y_pred = predict_with_seq(data, converted) for i in idxs: context = dp_raw[max(0, i-5): i] target = dp_raw[i] print('Context: {}'.format('<before>...' + ' '.join(context))) print('Target : {}'.format(target)) top_perc, top_tokens = get_top_pred(y_pred[i-1], k, print_results) rank = top_tokens.index(target) if target in top_tokens else -2 print('Rank : {}'.format(rank + 1)) print() def parse_args(): parser = argparse.ArgumentParser(description="Demo for a trained model") parser.add_argument("--base_dir", "-b", default="/tmp/gpt2") parser.add_argument("--model_fp", "-m", default="rnn.pth", help="Relative fp to best_model") parser.add_argument("--vocab_fp", "-v", default="vocab.pkl", help="Relative fp to vocab pkl") parser.add_argument("--dps_fp", help="Test filepath with raw data points") parser.add_argument("--conv_fp", help="Test filepath with converted data points") parser.add_argument( "--ids_fp", help="Filepath with the ids that describe locations of various attrs/leaf/etc" ) args = parser.parse_args() logging.info("Base dir: {}".format(args.base_dir)) return args def main(): global vocab global model global pad_idx args = parse_args() base_dir = args.base_dir model_fp = os.path.join(base_dir, args.model_fp) vocab = Vocab(os.path.join(base_dir, args.vocab_fp)) pad_idx = vocab.pad_idx loss_fn = torch.nn.CrossEntropyLoss(ignore_index=vocab.pad_idx) n_ctx=100 model = LSTMModel( vocab_size=len(vocab), n_embd=300, loss_fn=loss_fn, n_ctx=n_ctx, ) print('Created {} model!'.format(model_fp)) # load model new_checkpoint = {} checkpoint = torch.load(model_fp, map_location=torch.device('cpu')) for name, weights in checkpoint.items(): name = name.replace('module.', '') new_checkpoint[name] = weights del checkpoint model.load_state_dict(new_checkpoint) model.eval() print('Loaded model from:', model_fp) # 1. Try prediction with some made up sequence input_seq = ['with', 'open', '(', 'raw_fp', ',', '"r"', ')', 'as', 'fin', ':', 'data_raw', '=', '[', 'json', '.', ] demo_sequence(input_seq) demo_sequence(input_seq + ['loads']) # 2. Prediction on a sample from our dataset # read dataset if (args.dps_fp is not None): raw_fp = os.path.join(base_dir, args.dps_fp) with open(raw_fp, 'r') as fin: data_raw = [json.loads(line) for line in fin.readlines()] print('Read {} datapoints!'.format(len(data_raw))) # TODO make these random dp_i = 231 idx = 50 print('Raw data point [data, ext] = ', data_raw[dp_i]) dp_raw = data_raw[dp_i][0] # data_raw[dp_i][1] is an ext, we don't need it demo_datapoint(dp_raw, dp_raw, {idx}, converted=False) else: return # we can also predict from pred-converted data points if (args.conv_fp is not None): conv_fp = os.path.join(base_dir, args.conv_fp) with open(conv_fp, 'r') as fin: data_conv = [json.loads(line) for line in fin.readlines()] print('Converted data point [data, ext] = ', data_conv[dp_i]) demo_datapoint(data_conv[dp_i], dp_raw, {idx}, converted=True) # let's focus on the attrs in this data point if (args.ids_fp is not None): ids_fp = os.path.join(base_dir, args.ids_fp) with open(ids_fp, 'r') as fin: data_ids = [json.loads(line) for line in fin.readlines()] print('Datapoint:\n{} .... <continued>'.format(' '.join(dp_raw[:100]))) print('# of value predictions:') for name, lst in data_ids[dp_i].items(): print('{}: {}'.format(name, len(lst))) attrs = data_ids[dp_i]["attr_ids"] demo_datapoint(dp_raw, dp_raw, attrs, converted=False, print_results=False) if __name__ == "__main__": main()
code-prediction-transformer-main
demo.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import pickle import re from collections import Counter from utils import get_terminal_nodes, file_tqdm, tokenize logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" PLACEHOLDER = "<placeholder_token>" def get_value(line, vocab_type): if vocab_type == "token": return get_dfs(line) elif vocab_type == "subtoken": lst = [] for node in get_terminal_nodes(line): lst += tokenize(node) return lst elif vocab_type == "output": return get_terminal_nodes(line) def main(): parser = argparse.ArgumentParser( description="Create vocab for code2seq model for py150 dataset" ) parser.add_argument("--n_vocab", "-n", type=int, default=100000) parser.add_argument("--input_fp", "-i") parser.add_argument("--out_fp", "-o", default="/tmp/vocab.pkl") parser.add_argument( "--vocab_type", "-v", choices=["token", "subtoken", "output"], help="What type of vocab to get", ) args = parser.parse_args() logging.info("Reading from: {}".format(args.input_fp)) logging.info("Vocab type: {}".format(args.vocab_type)) vocab = Counter() with open(args.input_fp, "r") as f: for line in file_tqdm(f): vocab.update(get_value(json.loads(line.strip()), args.vocab_type)) vocab_to_keep = [i[0] for i in vocab.most_common(args.n_vocab)] top_total = sum(i[1] for i in vocab.most_common(args.n_vocab)) total = sum(vocab.values()) logging.info("Total # of vocab: {}".format(len(vocab))) logging.info( "Using {} top vocab covers: {:.2f}% of the entire dataset".format( args.n_vocab, 100 * top_total / total ) ) logging.info("Top 10 most common vocab:") for v, i in vocab.most_common(10): print(v, i) # add unk and pad tokens vocab_to_keep.append(UNK) vocab_to_keep.append(PAD) vocab_to_keep.append(PLACEHOLDER) logging.info("Added {} and {} and {}".format(UNK, PAD, PLACEHOLDER)) # dump vocab to file with open(args.out_fp, "wb") as fout: pickle.dump(vocab_to_keep, fout) logging.info("Wrote {} vocab to: {}".format(len(vocab_to_keep), args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
code2seq/generate_vocab.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging import torch import utils logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" PLACEHOLDER = "<placeholder_token>" class Dataset(torch.utils.data.Dataset): def __init__(self, fp): super().__init__() self.fp = fp self._line_pos_dp = list(utils.line_positions(fp)) def __len__(self): return len(self._line_pos_dp) def __getitem__(self, idx): line_pos = self._line_pos_dp[idx] with open(self.fp) as f: f.seek(line_pos) dp_line = json.loads(f.readline().strip()) return dp_line @staticmethod def collate(batch, token_pad_idx, subtoken_pad_idx): def combine(seqs, max_len, max_path_len, pad_idx): if not seqs: return torch.ones((max_len, max_path_len)).long() * pad_idx paths = [] for path in seqs: paths.append(path + [pad_idx] * (max_path_len - len(path))) len_pad = torch.ones((max_len - len(paths), max_path_len)).long() return torch.cat((torch.tensor(paths), len_pad)) max_len = max(len(i[1]) for i in batch) max_start_len = max( max([len(start) for start in seq[1]], default=0) for seq in batch ) max_path_len = max( max([len(path) for path in seq[2]], default=0) for seq in batch ) max_end_len = max( max([len(start) for start in seq[3]], default=0) for seq in batch ) all_targets = [] all_starts = [] all_paths = [] all_ends = [] for (target, starts, paths, ends) in batch: all_targets.append(target) starts = combine(starts, max_len, max_start_len, subtoken_pad_idx) paths = combine(paths, max_len, max_path_len, token_pad_idx) ends = combine(ends, max_len, max_end_len, subtoken_pad_idx) all_starts.append(starts) all_ends.append(ends) all_paths.append(paths) results = { "targets": torch.tensor(all_targets), "starts": torch.stack(all_starts), "paths": torch.stack(all_paths), "ends": torch.stack(all_ends), } return results
code-prediction-transformer-main
code2seq/dataset.py
import argparse import json import os import pickle import random import re from collections import defaultdict from itertools import chain, combinations, product from utils import get_ancestors, get_terminal_nodes, parallelize, tokenize from tqdm import tqdm PLACEHOLDER = "<placeholder_token>" UNK = "<unk_token>" def get_leaf_nodes(ast, id_type): # get ids for special leaf types: attr, num, name, param if id_type == "attr": types_ = {"attr"} elif id_type == "num": types_ = {"Num"} elif id_type == "name": types_ = {"NameLoad", "NameStore"} elif id_type == "param": types_ = {"NameParam"} nodes = [] for i, node in enumerate(ast): if "type" in node and node["type"] in types_: nodes.append(i + 1) return nodes def get_value(d): return d["value"] if "value" in d else d["type"] def extract_paths(ast, max_length): def dfs(i): node = ast[i] if "children" not in node: full_paths = [] half_paths = [[i]] else: children = node["children"] child_to_full_paths, child_to_half_paths = zip( *(dfs(child_id) for child_id in children) ) full_paths = list(chain.from_iterable(child_to_full_paths)) for i_child in range(len(children) - 1): for j_child in range(i_child + 1, len(children)): i_child_half_paths = child_to_half_paths[i_child] j_child_half_paths = child_to_half_paths[j_child] for i_half_path, j_half_path in product( i_child_half_paths, j_child_half_paths ): path_len = len(i_half_path) + len(j_half_path) + 1 if path_len > max_length: continue path = list(chain(i_half_path, [i], reversed(j_half_path))) full_paths.append(path) half_paths = [ half_path + [i] for half_path in chain.from_iterable(child_to_half_paths) if len(half_path) + 1 < max_length ] return full_paths, half_paths return dfs(0)[0] def get_all_paths(ast, id_type, max_path_len, max_num_paths): if id_type == "leaves": nodes = get_terminal_nodes(ast) else: nodes = get_leaf_nodes(ast, id_type) if not nodes: return [] all_paths = extract_paths(ast, max_path_len) ast_values = [get_value(i) for i in ast] terminal_words = [get_value(ast[i]) for i in get_terminal_nodes(ast)] tokenized_words = {word: tokenize(word) for word in terminal_words} node_to_path_idx = {i: [] for i in range(len(ast))} for i, path in enumerate(all_paths): node_to_path_idx[path[-1]].append(i) dps = [] paths_to_choose_from = [] prev_node = 0 for node in nodes: for j in range(prev_node, node): paths_to_choose_from += [ all_paths[path_i] for path_i in node_to_path_idx[j] ] prev_node = node paths_to_here = [all_paths[path_i] for path_i in node_to_path_idx[node]] if len(paths_to_choose_from) + len(paths_to_here) <= max_num_paths: paths = paths_to_choose_from.copy() + paths_to_here else: if len(paths_to_here) > max_num_paths: paths = random.sample(paths_to_here, max_num_paths) else: paths = paths_to_here + random.sample( paths_to_choose_from, max_num_paths - len(paths_to_here) ) # convert to vocab target = ast_values[node] paths = [ [ast_values[i] if i != node else PLACEHOLDER for i in p] for p in paths ] lefts = [tokenized_words[p[0]] for p in paths] rights = [ tokenized_words[p[-1]] if p[-1] != PLACEHOLDER else [PLACEHOLDER] for p in paths ] dps.append([target, lefts, paths, rights]) return dps def get_word2idx(out_fp): with open(out_fp, "rb") as fin: vocab = pickle.load(fin) word2idx = {word: i for i, word in enumerate(vocab)} word2idx = defaultdict(lambda: word2idx[UNK], word2idx) print("Read vocab from: {}".format(out_fp)) return word2idx def main(): parser = argparse.ArgumentParser( description="Generate terminal to terminal paths from AST" ) parser.add_argument("--ast_fp", "-a", help="Filepath with the ASTs to be parsed") parser.add_argument( "--out_fp", "-o", default="/tmp/dps.txt", help="Filepath for the output dps" ) parser.add_argument("--max_path_len", type=int, default=9, help="Max path len.") parser.add_argument("--max_num_paths", type=int, default=200) parser.add_argument("--base_dir", "-b", type=str) parser.add_argument( "id_type", choices=["attr", "num", "name", "param", "leaves"], default="attr", help="Which ids to generate. Default = attr", ) args = parser.parse_args() print("Max path len: {}".format(args.max_path_len)) print("Max num paths: {}".format(args.max_num_paths)) print("Writing to {}".format(args.out_fp)) # read the vocabs base_dir = args.base_dir token_vocab = get_word2idx(os.path.join(base_dir, "token_vocab.pkl")) subtoken_vocab = get_word2idx(os.path.join(base_dir, "subtoken_vocab.pkl")) output_vocab = get_word2idx(os.path.join(base_dir, "output_vocab.pkl")) data = [] i = 0 c = 0 with open(args.ast_fp, "r") as f, open(args.out_fp, "w") as fout: for _ in range(20): i += 1 print("Starting {} / 50".format(i)) for _ in range(5000): dp = json.loads(f.readline().strip()) if len(dp) <= 1: continue data.append(dp) print(" > Finished reading: {}".format(len(data))) for ast in tqdm(data): dp = get_all_paths(ast, args.id_type, args.max_path_len, args.max_num_paths) for target, lefts, paths, rights in dp: target = output_vocab[target] lefts = [[subtoken_vocab[t] for t in lst] for lst in lefts] paths = [[token_vocab[t] for t in lst] for lst in paths] rights = [[subtoken_vocab[t] for t in lst] for lst in rights] json.dump([target, lefts, paths, rights], fout) fout.write("\n") c += 1 data = [] print(" > Finished writing to file") print("Wrote {} datapoints to {}".format(c, args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
code2seq/generate_data.py
#!/usr/bin/env python3 # Copyright (c) 2019 Technion # Copyright (c) Facebook, Inc. and its affiliates. # ---------------------------------------------------------------------------- # MIT License # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ---------------------------------------------------------------------------- """ Code2seq model is adapted from: https://github.com/tech-srl/code2seq """ import torch import torch.nn as nn import torch.nn.functional as F class EmbeddingAttentionLayer(nn.Module): def __init__(self, dim: int) -> None: super().__init__() self.dim = dim self.attention = torch.randn(1, dim) self.attention = nn.Parameter(self.attention) def compute_weights(self, embedded: torch.Tensor) -> torch.Tensor: unnormalized_weights = embedded.matmul(self.attention.t()) attention_weights = F.softmax(unnormalized_weights, dim=1) return attention_weights def forward(self, embedded: torch.Tensor) -> torch.Tensor: attention_weights = self.compute_weights(embedded) weighted = torch.bmm(attention_weights.transpose(1, 2), embedded) return weighted class Code2SeqModel(nn.Module): def __init__( self, token_vocab_size: int, subtoken_vocab_size: int, output_vocab_size: int, token_pad_idx: int, subtoken_pad_idx: int, loss_fn: nn.Module, n_embd: int = 128, rnn_dropout: float = 0.5, embed_dropout: float = 0.25, ): super().__init__() self.subtoken_embedding = nn.Embedding( subtoken_vocab_size, n_embd, padding_idx=subtoken_pad_idx ) self.node_embedding = nn.Embedding( token_vocab_size, n_embd, padding_idx=token_pad_idx ) self.path_lstm = nn.LSTM( n_embd, n_embd, bidirectional=True, dropout=rnn_dropout, batch_first=True ) self.combined_layer = nn.Linear(n_embd * 4, n_embd) self.dropout = nn.Dropout(embed_dropout) self.attn_layer = EmbeddingAttentionLayer(n_embd) self.out_layer = nn.Linear(n_embd, output_vocab_size) self.loss_fn = loss_fn def reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def embed_paths(self, paths): path_tokens_embedded = self.node_embedding(paths) batch_size, bag_size, path_len, _ = path_tokens_embedded.shape path_tokens_embedded = path_tokens_embedded.view( (batch_size * bag_size, path_len, -1) ) out, (h, c) = self.path_lstm(path_tokens_embedded) paths_embedded = h.permute((1, 0, 2)).reshape(batch_size, bag_size, -1) return paths_embedded def embed_subtokens(self, subtokens): tokens_embedded = self.subtoken_embedding(subtokens) return tokens_embedded.sum(2) def forward(self, starts, paths, ends, targets, return_loss=False): # embed individual parts starts_embedded = self.embed_subtokens(starts) paths_embedded = self.embed_paths(paths) ends_embedded = self.embed_subtokens(ends) # combine by concacenating combined_embedded = torch.cat( (starts_embedded, paths_embedded, ends_embedded), dim=2 ) combined_embedded = self.dropout(combined_embedded) combined_embedded = torch.tanh(self.combined_layer(combined_embedded)) # combine paths by simple attention code_embedded = self.attn_layer(combined_embedded).squeeze() y_pred = self.out_layer(code_embedded) if not return_loss: return y_pred return self.loss_fn(y_pred, targets)
code-prediction-transformer-main
code2seq/code2seq_model.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from dataset.dataset import BaseDataset, BaseSetup, BaseVocab class Setup(BaseSetup): def _create_vocab(self): return Vocab(self.filepaths["vocab"]) def _create_dataset(self, fp, ids_fp): return Dataset(fp, ids_fp) class Vocab(BaseVocab): def convert(self, line): dp, ext = line dp_conv = [ self.vocab2idx[token] if token in self.vocab2idx else self.unk_idx for token in dp ] return [dp_conv, ext] class Dataset(BaseDataset): @staticmethod def collate(seqs, pad_idx): max_len = max(len(seq[0][0]) for seq in seqs) max_len = max(max_len, 2) input_seqs = [] target_seqs = [] extended = [] ids = {name: [] for name in seqs[0][1].keys()} for i, ((seq, ext), ids_lst) in enumerate(seqs): padding = [pad_idx] * (max_len - len(seq)) input_seqs.append(seq[:-1] + padding) target_seqs.append(seq[1:] + padding) extended.append(ext) for name, lst in ids_lst.items(): ids[name] += [j - 1 + (max_len - 1) * i for j in lst] return { "input_seq": torch.tensor(input_seqs), "target_seq": torch.tensor(target_seqs), "extended": torch.tensor(extended), "ids": ids, }
code-prediction-transformer-main
models/path_trans_variation/dataset.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import os from utils import file_tqdm, get_dfs, separate_dps logging.basicConfig(level=logging.INFO) def get_leaf_info(ast): leaf_tokens = [] leaf_ids = [] for i, node in enumerate(ast): if "value" in node: leaf_ids.append(i) leaf_tokens.append(node["value"]) return leaf_tokens, leaf_ids def get_dps(ast, max_len): leaf_tokens, leaf_ids = get_leaf_info(ast) if len(leaf_tokens) <= max_len: return [[leaf_tokens, 0]], [leaf_ids] half_len = int(max_len / 2) aug_tokens = [[leaf_tokens[:max_len], 0]] aug_leaf_ids = [leaf_ids[:max_len]] i = half_len while i < len(leaf_tokens) - max_len: aug_tokens.append([leaf_tokens[i : i + max_len], half_len]) aug_leaf_ids.append(leaf_ids[i : i + max_len]) i += half_len idx = max_len - (len(leaf_tokens) - (i + half_len)) aug_tokens.append([leaf_tokens[-max_len:], idx]) aug_leaf_ids.append(leaf_ids[-max_len:]) return aug_tokens, aug_leaf_ids def main(): parser = argparse.ArgumentParser(description="Generate datapoints from AST") parser.add_argument("--ast_fp", "-a", help="Filepath with the ASTs to be parsed") parser.add_argument( "--n_ctx", "-c", type=int, default=1000, help="Number of contexts for each dp" ) parser.add_argument( "--out_fp", "-o", default="/tmp/dps.txt", help="Filepath with the output dps" ) args = parser.parse_args() if os.path.exists(args.out_fp): os.remove(args.out_fp) logging.info("Writing dps to: {}".format(args.out_fp)) num_dps = 0 with open(args.ast_fp, "r") as f, open(args.out_fp, "w") as fout: for line in file_tqdm(f): dp = json.loads(line.strip()) aug_tokens, aug_leaf_ids = get_dps(dp, args.n_ctx) for (tokens, ext), leaf in zip(aug_tokens, aug_leaf_ids): if len(tokens) > 1: json.dump([tokens, ext], fp=fout) fout.write("\n") num_dps += 1 logging.info("Wrote {} datapoints to {}".format(num_dps, args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
models/path_trans_variation/generate_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import pickle import re from collections import Counter from utils import get_terminal_nodes, file_tqdm, tokenize logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" PLACEHOLDER = "<placeholder_token>" def get_value(line, vocab_type): if vocab_type == "token": return get_dfs(line) elif vocab_type == "subtoken": lst = [] for node in get_terminal_nodes(line): lst += tokenize(node) return lst elif vocab_type == "output": return get_terminal_nodes(line) def main(): parser = argparse.ArgumentParser( description="Create vocab for code2seq model for py150 dataset" ) parser.add_argument("--n_vocab", "-n", type=int, default=100000) parser.add_argument("--input_fp", "-i") parser.add_argument("--out_fp", "-o", default="/tmp/vocab.pkl") parser.add_argument( "--vocab_type", "-v", choices=["token", "subtoken", "output"], help="What type of vocab to get", ) args = parser.parse_args() logging.info("Reading from: {}".format(args.input_fp)) logging.info("Vocab type: {}".format(args.vocab_type)) vocab = Counter() with open(args.input_fp, "r") as f: for line in file_tqdm(f): vocab.update(get_value(json.loads(line.strip()), args.vocab_type)) vocab_to_keep = [i[0] for i in vocab.most_common(args.n_vocab)] top_total = sum(i[1] for i in vocab.most_common(args.n_vocab)) total = sum(vocab.values()) logging.info("Total # of vocab: {}".format(len(vocab))) logging.info( "Using {} top vocab covers: {:.2f}% of the entire dataset".format( args.n_vocab, 100 * top_total / total ) ) logging.info("Top 10 most common vocab:") for v, i in vocab.most_common(10): print(v, i) # add unk and pad tokens vocab_to_keep.append(UNK) vocab_to_keep.append(PAD) vocab_to_keep.append(PLACEHOLDER) logging.info("Added {} and {} and {}".format(UNK, PAD, PLACEHOLDER)) # dump vocab to file with open(args.out_fp, "wb") as fout: pickle.dump(vocab_to_keep, fout) logging.info("Wrote {} vocab to: {}".format(len(vocab_to_keep), args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
models/code2seq/generate_vocab.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json import logging import torch import utils logging.basicConfig(level=logging.INFO) UNK = "<unk_token>" PAD = "<pad_token>" PLACEHOLDER = "<placeholder_token>" class Dataset(torch.utils.data.Dataset): def __init__(self, fp): super().__init__() self.fp = fp self._line_pos_dp = list(utils.line_positions(fp)) def __len__(self): return len(self._line_pos_dp) def __getitem__(self, idx): line_pos = self._line_pos_dp[idx] with open(self.fp) as f: f.seek(line_pos) dp_line = json.loads(f.readline().strip()) return dp_line @staticmethod def collate(batch, token_pad_idx, subtoken_pad_idx): def combine(seqs, max_len, max_path_len, pad_idx): if not seqs: return torch.ones((max_len, max_path_len)).long() * pad_idx paths = [] for path in seqs: paths.append(path + [pad_idx] * (max_path_len - len(path))) len_pad = torch.ones((max_len - len(paths), max_path_len)).long() return torch.cat((torch.tensor(paths), len_pad)) max_len = max(len(i[1]) for i in batch) max_start_len = max( max([len(start) for start in seq[1]], default=0) for seq in batch ) max_path_len = max( max([len(path) for path in seq[2]], default=0) for seq in batch ) max_end_len = max( max([len(start) for start in seq[3]], default=0) for seq in batch ) all_targets = [] all_starts = [] all_paths = [] all_ends = [] for (target, starts, paths, ends) in batch: all_targets.append(target) starts = combine(starts, max_len, max_start_len, subtoken_pad_idx) paths = combine(paths, max_len, max_path_len, token_pad_idx) ends = combine(ends, max_len, max_end_len, subtoken_pad_idx) all_starts.append(starts) all_ends.append(ends) all_paths.append(paths) results = { "targets": torch.tensor(all_targets), "starts": torch.stack(all_starts), "paths": torch.stack(all_paths), "ends": torch.stack(all_ends), } return results
code-prediction-transformer-main
models/code2seq/dataset.py
import argparse import json import os import pickle import random import re from collections import defaultdict from itertools import chain, combinations, product from utils import get_ancestors, get_terminal_nodes, parallelize, tokenize from tqdm import tqdm PLACEHOLDER = "<placeholder_token>" UNK = "<unk_token>" def get_leaf_nodes(ast, id_type): # get ids for special leaf types: attr, num, name, param if id_type == "attr": types_ = {"attr"}: elif id_type == "num": types_ = {"Num"} elif id_type == "name": types_ = {"NameLoad", "NameStore"} elif id_type == "param": types_ = {"NameParam"} nodes = [] for i, node in enumerate(ast): if "type" in node and node["type"] in types_: nodes.append(i + 1) return nodes def get_value(d): return d["value"] if "value" in d else d["type"] def extract_paths(ast, max_length): def dfs(i): node = ast[i] if "children" not in node: full_paths = [] half_paths = [[i]] else: children = node["children"] child_to_full_paths, child_to_half_paths = zip( *(dfs(child_id) for child_id in children) ) full_paths = list(chain.from_iterable(child_to_full_paths)) for i_child in range(len(children) - 1): for j_child in range(i_child + 1, len(children)): i_child_half_paths = child_to_half_paths[i_child] j_child_half_paths = child_to_half_paths[j_child] for i_half_path, j_half_path in product( i_child_half_paths, j_child_half_paths ): path_len = len(i_half_path) + len(j_half_path) + 1 if path_len > max_length: continue path = list(chain(i_half_path, [i], reversed(j_half_path))) full_paths.append(path) half_paths = [ half_path + [i] for half_path in chain.from_iterable(child_to_half_paths) if len(half_path) + 1 < max_length ] return full_paths, half_paths return dfs(0)[0] def get_all_paths(ast, id_type, max_path_len, max_num_paths): if id_type == "leaves": nodes = get_terminal_nodes(ast) else: nodes = get_leaf_nodes(ast, id_type) if not nodes: return [] all_paths = extract_paths(ast, max_path_len) ast_values = [get_value(i) for i in ast] terminal_words = [get_value(ast[i]) for i in get_terminal_nodes(ast)] tokenized_words = {word: tokenize(word) for word in terminal_words} node_to_path_idx = {i: [] for i in range(len(ast))} for i, path in enumerate(all_paths): node_to_path_idx[path[-1]].append(i) dps = [] paths_to_choose_from = [] prev_node = 0 for node in nodes: for j in range(prev_node, node): paths_to_choose_from += [ all_paths[path_i] for path_i in node_to_path_idx[j] ] prev_node = node paths_to_here = [all_paths[path_i] for path_i in node_to_path_idx[node]] if len(paths_to_choose_from) + len(paths_to_here) <= max_num_paths: paths = paths_to_choose_from.copy() + paths_to_here else: if len(paths_to_here) > max_num_paths: paths = random.sample(paths_to_here, max_num_paths) else: paths = paths_to_here + random.sample( paths_to_choose_from, max_num_paths - len(paths_to_here) ) # convert to vocab target = ast_values[node] paths = [ [ast_values[i] if i != node else PLACEHOLDER for i in p] for p in paths ] lefts = [tokenized_words[p[0]] for p in paths] rights = [ tokenized_words[p[-1]] if p[-1] != PLACEHOLDER else [PLACEHOLDER] for p in paths ] dps.append([target, lefts, paths, rights]) return dps def get_word2idx(out_fp): with open(out_fp, "rb") as fin: vocab = pickle.load(fin) word2idx = {word: i for i, word in enumerate(vocab)} word2idx = defaultdict(lambda: word2idx[UNK], word2idx) print("Read vocab from: {}".format(out_fp)) return word2idx def main(): parser = argparse.ArgumentParser( description="Generate terminal to terminal paths from AST" ) parser.add_argument("--ast_fp", "-a", help="Filepath with the ASTs to be parsed") parser.add_argument( "--out_fp", "-o", default="/tmp/dps.txt", help="Filepath for the output dps" ) parser.add_argument("--max_path_len", type=int, default=9, help="Max path len.") parser.add_argument("--max_num_paths", type=int, default=200) parser.add_argument("--base_dir", "-b", type=str) parser.add_argument( "id_type", choices=["attr", "num", "name", "param", "leaves"], default="attr", help="Which ids to generate. Default = attr", ) args = parser.parse_args() print("Max path len: {}".format(args.max_path_len)) print("Max num paths: {}".format(args.max_num_paths)) print("Writing to {}".format(args.out_fp)) # read the vocabs base_dir = args.base_dir token_vocab = get_word2idx(os.path.join(base_dir, "token_vocab.pkl")) subtoken_vocab = get_word2idx(os.path.join(base_dir, "subtoken_vocab.pkl")) output_vocab = get_word2idx(os.path.join(base_dir, "output_vocab.pkl")) data = [] i = 0 c = 0 with open(args.ast_fp, "r") as f, open(args.out_fp, "w") as fout: for _ in range(20): i += 1 print("Starting {} / 50".format(i)) for _ in range(5000): dp = json.loads(f.readline().strip()) if len(dp) <= 1: continue data.append(dp) print(" > Finished reading: {}".format(len(data))) for ast in tqdm(data): dp = get_all_paths(ast, args.id_type, args.max_path_len, args.max_num_paths) for target, lefts, paths, rights in dp: target = output_vocab[target] lefts = [[subtoken_vocab[t] for t in lst] for lst in lefts] paths = [[token_vocab[t] for t in lst] for lst in paths] rights = [[subtoken_vocab[t] for t in lst] for lst in rights] json.dump([target, lefts, paths, rights], fout) fout.write("\n") c += 1 data = [] print(" > Finished writing to file") print("Wrote {} datapoints to {}".format(c, args.out_fp)) if __name__ == "__main__": main()
code-prediction-transformer-main
models/code2seq/generate_data.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from dataset.dataset import BaseDataset, BaseSetup, BaseVocab class Setup(BaseSetup): def _create_vocab(self): return Vocab(self.filepaths["vocab"]) def _create_dataset(self, fp, ids_fp): return Dataset(fp, ids_fp) class Vocab(BaseVocab): def convert(self, line): dp, ext = line dp_conv = [ self.vocab2idx[token] if token in self.vocab2idx else self.unk_idx for token in dp ] return [dp_conv, ext] class Dataset(BaseDataset): @staticmethod def collate(seqs, pad_idx): max_len = max(len(seq[0][0]) for seq in seqs) max_len = max(max_len, 2) input_seqs = [] target_seqs = [] extended = [] ids = {name: [] for name in seqs[0][1].keys()} for i, ((seq, ext), ids_lst) in enumerate(seqs): padding = [pad_idx] * (max_len - len(seq)) input_seqs.append(seq[:-1] + padding) target_seqs.append(seq[1:] + padding) extended.append(ext) for name, lst in ids_lst.items(): ids[name] += [j - 1 + (max_len - 1) * i for j in lst] return { "input_seq": torch.tensor(input_seqs), "target_seq": torch.tensor(target_seqs), "extended": torch.tensor(extended), "ids": ids, }
code-prediction-transformer-main
models/seq/dataset.py