python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
import torch import numpy as np from torch.nn import Parameter from halp.layers.pool_layer import BitCenterMaxPool2D, BitCenterAvgPool2D from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from unittest import TestCase from halp.utils.utils import set_seed from halp.utils.test_utils import HalpTest from torch.autograd.gradcheck import get_numerical_jacobian, iter_tensors, make_jacobian from halp.layers.bit_center_layer_test import TestBitCenterLayer import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class TestBitCenterPool2DLayer(TestBitCenterLayer): # class TestBitCenterMaxPool2DLayer(TestBitCenterLayer, TestCase): ''' Test the functionality of bit centering conv2d layers ''' def get_config(self, type="grad_check"): config = {} if type == "grad_check": config["n_train_sample"] = 35 config["channel_in"] = 17 config["w_in"] = 24 config["h_in"] = 13 config["kernel_size"] = (2, 2) config["stride"] = None config["padding"] = 0 config["cast_func"] = void_cast_func config["do_double"] = True config["seed"] = 0 config["batch_size"] = 35 elif type == "fw_bw_proc": config["n_train_sample"] = 98 config["channel_in"] = 13 config["w_in"] = 31 config["h_in"] = 17 config["kernel_size"] = (4, 4) config["stride"] = None config["padding"] = 0 config["cast_func"] = single_to_half_det config["do_double"] = False config["seed"] = 0 config["batch_size"] = 33 else: raise Exception("Config type not supported!") return config def check_layer_param_and_cache(self, layer): t_list = [(layer.input_cache, torch.half, False, False), (layer.grad_output_cache, torch.half, False, False)] self.CheckLayerTensorProperty(t_list) self.CheckLayerTensorGradProperty(t_list) def get_input(self, channel_in, w_in, h_in, kernel_size, stride=None, padding=0, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if do_double: input_delta = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) else: input_delta = Parameter( cast_func( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda()), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(), requires_grad=True) return [ input_fp, ], [ input_delta, ] def get_analytical_param_grad(self, layer): # as there is no param in the relu layer, we use empty function return [] def get_numerical_grad(self, layer, input_fp, input_delta, perturb_eps, target=None): grad_list = [] layer.set_mode(do_offset=True) input_final = [ Parameter(x + y, requires_grad=True) for x, y in zip(input_fp, input_delta) ] output_final = layer(*input_final) loss = 0.5 * torch.sum(output_final**2) loss.backward() # use the gradient from 0.5*sum(output**2), this case has output = gradient wrt output num_input_grad = input_final[0].grad grad_list.append(num_input_grad) return output_final, grad_list class TestBitCenterMaxPool2DLayer(TestBitCenterPool2DLayer, TestCase): def prepare_layer(self, channel_in, w_in, h_in, kernel_size, stride=None, padding=0, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): layer = BitCenterMaxPool2D( kernel_size=kernel_size, stride=stride, padding=padding, cast_func=cast_func, n_train_sample=n_train_sample) # Note do_double = setup layer for gradient check, otherwise, it is for checking # the tensor properties, and layer behaviors if do_double: layer.double() layer.cuda() return layer class TestBitCenterAvgPool2DLayer(TestBitCenterPool2DLayer, TestCase): def get_config(self, type="grad_check"): config = {} if type == "grad_check": config["n_train_sample"] = 35 config["channel_in"] = 17 config["w_in"] = 25 config["h_in"] = 14 config["kernel_size"] = (4, 4) config["stride"] = None config["padding"] = 1 config["cast_func"] = void_cast_func config["do_double"] = True config["seed"] = 0 config["batch_size"] = 35 elif type == "fw_bw_proc": config["n_train_sample"] = 98 config["channel_in"] = 13 config["w_in"] = 31 config["h_in"] = 17 config["kernel_size"] = (4, 4) config["stride"] = None config["padding"] = 0 config["cast_func"] = single_to_half_det config["do_double"] = False config["seed"] = 0 config["batch_size"] = 33 else: raise Exception("Config type not supported!") return config def prepare_layer(self, channel_in, w_in, h_in, kernel_size, stride=None, padding=0, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): layer = BitCenterAvgPool2D( kernel_size=kernel_size, stride=stride, padding=padding, cast_func=cast_func, n_train_sample=n_train_sample) # Note do_double = setup layer for gradient check, otherwise, it is for checking # the tensor properties, and layer behaviors if do_double: layer.double() layer.cuda() return layer if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/layers/pool_layer_test.py
import torch import numpy as np import torch.nn.functional as F from torch.nn import Parameter from halp.layers.ele_mult import BitCenterEleMult, bit_center_ele_mult from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from unittest import TestCase from halp.layers.bit_center_layer_test import TestBitCenterNoParamLayer import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class TestBitCenterEleMultLayer(TestBitCenterNoParamLayer, TestCase): def get_config(self, type="grad_check"): config = {} if type == "grad_check": config["n_train_sample"] = 5 config["channel_in"] = 7 config["w_in"] = 4 config["h_in"] = 9 config["cast_func"] = void_cast_func config["do_double"] = True config["seed"] = 0 config["batch_size"] = 5 elif type == "fw_bw_proc": config["n_train_sample"] = 17 config["channel_in"] = 6 config["w_in"] = 3 config["h_in"] = 5 config["cast_func"] = single_to_half_det config["do_double"] = False config["seed"] = 0 config["batch_size"] = 4 else: raise Exception("Config type not supported!") return config def prepare_layer(self, channel_in, w_in, h_in, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): layer = BitCenterEleMult( cast_func=cast_func, n_train_sample=n_train_sample) # Note do_double = setup layer for gradient check, otherwise, it is for checking # the tensor properties, and layer behaviors if do_double: layer.double() layer.cuda() return layer def get_input(self, channel_in, w_in, h_in, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if do_double: input_delta_l = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_fp_l = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_delta_r = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_fp_r = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) else: input_delta_l = Parameter( cast_func( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda()), requires_grad=True) input_fp_l = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(), requires_grad=True) input_delta_r = Parameter( cast_func( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda()), requires_grad=True) input_fp_r = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(), requires_grad=True) return [ input_fp_l, input_fp_r ], [ input_delta_l, input_delta_r ] if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/layers/ele_mult_test.py
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.nn import Parameter import numpy as np from halp.layers.linear_layer import BitCenterLinear, bit_center_linear from torch.autograd import gradcheck from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from unittest import TestCase from halp.utils.test_utils import HalpTest from torch.autograd.gradcheck import get_numerical_jacobian, iter_tensors, make_jacobian import logging import sys import copy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class TestBitCenterLayer(HalpTest): ''' Test the functionality of bit centering linear layers the helper functions implemented here should directy serve for linear style layers such as linear layer conv layer and etc. This template class can benefits parametric layers with one weight param and one bias param. E.g. convolutional layers, linear layers ''' def get_config(self): pass def prepare_layer(self, **kargs): """ this function should generate the layer to be tested and the fp lp input. Need to specify one parameter in this function for different layers. This parameter is self.target_dtype: use None for layers not needing target for forward; use torch.float for regression style problems; use torch.long for regression style problems """ pass def get_analytical_param_grad(self, layer): # this function get the analytical grad with respect to parameters # This function can be very layer specfic. grad_list = [] weight_grad = layer.weight.grad + layer.weight_delta.grad grad_list.append(weight_grad) if layer.bias is not None: bias_grad = layer.bias.grad + layer.bias_delta.grad grad_list.append(bias_grad) return grad_list def get_analytical_grad(self, layer1, input_fp, input_delta, target=None): # this function get the analytical grad with respect to parameters and input # it calls get_analytical_param_grad to get grad wrt to paramters. # the framework in the function is generic to all layers # note we copy the layer in order to make numerical grad func # to properly got the state of the layer, e.g. for batch norm # we need to get num grad func a set of running statistics before # the stat update resulting from the current lp step. layer = copy.deepcopy(layer1) layer.set_mode(do_offset=True) grad_list = [] output_fp = layer(*input_fp) output_fp_copy = output_fp.data.clone() loss_fp = torch.sum(0.5 * output_fp * output_fp) loss_fp.backward() grad_input_fp = copy.deepcopy(layer.input_grad_for_test) layer.set_mode(do_offset=False) output_lp = layer(*input_delta) loss_lp = torch.sum(0.5 * output_lp * output_lp) loss_lp.backward() if layer.input_grad_for_test is not None: grad_input_delta = copy.deepcopy(layer.input_grad_for_test) # as we only have 1 minibatch, we can directly use layer.grad_output_cache if isinstance(grad_input_delta, list) or isinstance( grad_input_delta, tuple): grad_list += [ x + y for x, y in zip(grad_input_fp, grad_input_delta) ] else: input_grad = grad_input_fp + grad_input_delta grad_list.append(input_grad) else: grad_list.append(None) grad_list += self.get_analytical_param_grad(layer) return output_lp + output_fp, grad_list def get_numerical_param_grad(self, layer, input, get_loss, perturb_eps): # this function get the numerical grad with respect to parameters and input # it calls get_analytical_param_grad to get grad wrt to paramters. # the framework in the function is generic to all layers # Note get loss is a function defined in function get_numerical_grad grad_list = [] num_weight_grad = get_numerical_jacobian( get_loss, input, target=layer.weight, eps=perturb_eps) grad_list.append(num_weight_grad) if layer.bias is not None: num_bias_grad = get_numerical_jacobian( get_loss, input, target=layer.bias, eps=perturb_eps) grad_list.append(num_bias_grad) return grad_list def get_numerical_grad(self, layer, input_fp, input_delta, perturb_eps, target=None): # this function get the numerical grad with respect to parameters and input # it calls get_analytical_param_grad to get grad wrt to paramters. # the framework in the function is generic to all layers layer.set_mode(do_offset=True) def get_loss(x): output = layer(*x) return torch.sum(0.5 * output * output) grad_list = [] layer.set_mode(do_offset=True) param_dict = layer.state_dict() # update the offset variable for name, param in layer.named_parameters(): if name.endswith("_delta"): p_offset = param_dict[name.split("_delta")[0]] p_offset.data.add_(param) output_final = layer(*[x + y for x, y in zip(input_fp, input_delta)]) input = [] for i, (x, y) in enumerate(zip(input_fp, input_delta)): input.append(x + y) for x in input: num_input_grad = get_numerical_jacobian( get_loss, input, target=x, eps=perturb_eps) grad_list.append(num_input_grad) grad_list += self.get_numerical_param_grad(layer, input, get_loss, perturb_eps) return output_final, grad_list def test_forward_backward_output(self): # test if backward is synced with forward in double mode # test on a single batch of data, check if the # gradient can give similar numerical loss changes # In this test, we use the quadratic loss, this is because # using this loss, the grad_output decompose directly to offset and delta # in the fp and lp steps perturb_eps = 1e-6 rtol_num_analytical_grad = 1e-3 atol_num_analytical_grad = 1e-6 np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed_all(0) for bias in [True, False]: for i in range(1): config = self.get_config(type="grad_check") config["bias"] = bias config["do_double"] = True config["cast_func"] = void_cast_func config["seed"] = i + 1 layer = self.prepare_layer(**config) input_fp, input_delta = self.get_input(**config) analytical_output, analytical_grads = \ self.get_analytical_grad(layer, input_fp, input_delta) numerical_output, numerical_grads = \ self.get_numerical_grad(layer, input_fp, input_delta, perturb_eps) assert len(analytical_grads) == len(numerical_grads) np.testing.assert_allclose( analytical_output.data.cpu().numpy().ravel(), numerical_output.data.cpu().numpy().ravel(), rtol=rtol_num_analytical_grad) for ana_grad, num_grad in zip(analytical_grads, numerical_grads): if (ana_grad is None) and (num_grad is None): continue np.testing.assert_allclose( ana_grad.data.cpu().numpy().ravel(), num_grad.data.cpu().numpy().ravel(), rtol=rtol_num_analytical_grad, atol=atol_num_analytical_grad * np.max( np.abs(ana_grad.data.cpu().numpy().ravel()))) logger.info(self.__class__.__name__ + " function test passed!") def check_layer_param_and_cache(self, layer): t_list = [(layer.weight, torch.float32, True, True), (layer.bias, torch.float32, True, True), (layer.weight_delta, torch.half, True, True), (layer.bias_delta, torch.half, True, True), (layer.weight_lp, torch.half, True, False), (layer.bias_lp, torch.half, True, False), (layer.input_cache, torch.half, False, False), (layer.grad_output_cache, torch.half, False, False)] self.CheckLayerTensorProperty(t_list) self.CheckLayerTensorGradProperty(t_list) def test_layer_forward_backward_precedures(self): # We test the behavior of layers in a multiple epoch (each with multiple minibatch setting). # Along with this, we will also test the property of tensors # (including param and cache along the way). # check if the behavior of BitCentering linear layer is going as expected for forward # the backward behavior is guaranteed by # bit center linear function test TestBitCenterLinearFuncGradientCheck for use_bias in [True, False]: config = self.get_config(type="fw_bw_proc") config["bias"] = use_bias layer = self.prepare_layer(**config) cast_func = config["cast_func"] n_sample = config["n_train_sample"] minibatch_size = config["batch_size"] n_minibatch = int( np.ceil(config["n_train_sample"] / config["batch_size"])) # test fp mode layer.set_mode(do_offset=True) layer.cuda() input_tensor_list = [] if (cast_func == single_to_half_det) or ( cast_func == single_to_half_stoc): self.check_layer_param_and_cache(layer) for i in range(n_minibatch): start_idx = i * minibatch_size end_idx = min((i + 1) * minibatch_size, n_sample) if i != 0: if isinstance(layer.input_cache, list) or isinstance( layer.input_cache, tuple): input_cache_before = [ x[start_idx:end_idx].clone().numpy() for x in layer.input_cache ] else: input_cache_before = [ layer.input_cache[start_idx:end_idx].clone(). numpy(), ] grad_input_cache_before = layer.grad_output_cache[ start_idx:end_idx].clone().numpy() config["n_train_sample"] = end_idx - start_idx input_fp, _ = self.get_input(**config) output = layer(*input_fp) input_tensor_list.append(input_fp) torch.sum(output).backward() if i != 0: # test grad cache grad_input_cache_after = layer.grad_output_cache[ start_idx:end_idx, :].numpy() assert (grad_input_cache_before == 0).all() assert (grad_input_cache_before != grad_input_cache_after).all() # test input cache if isinstance(layer.input_cache, list) or isinstance( layer.input_cache, tuple): input_cache_after = [ x[start_idx:end_idx].clone().numpy() for x in layer.input_cache ] else: input_cache_after = [ layer.input_cache[start_idx:end_idx].clone(). numpy(), ] def test_input_cache(input_cache_before_list, input_cache_after_list): assert len(input_cache_before_list) == len( input_cache_after_list) for input_cache_before, input_cache_after in \ zip(input_cache_before_list, input_cache_after_list): assert (input_cache_before == 0).all() if input_cache_before.dtype == np.int64: # if cache is long type, there is possibility # that some entries are 0 both before and after # update assert np.sum(input_cache_before != input_cache_after) != 0 else: assert (input_cache_before != input_cache_after).all() test_input_cache(input_cache_before, input_cache_after) # test lp mode layer.set_mode(do_offset=False) if (cast_func == single_to_half_det) or ( cast_func == single_to_half_stoc): self.check_layer_param_and_cache(layer) for i in range(n_minibatch): _, input_delta = self.get_input(**config) output = layer(*input_delta) torch.sum(output).backward() if (cast_func == single_to_half_det) or ( cast_func == single_to_half_stoc): self.check_layer_param_and_cache(layer) logger.info(self.__class__.__name__ + " layer test passed!") class TestBitCenterNoParamLayer(TestBitCenterLayer): ''' Test the functionality of bit centering activation like tanh and sigmoid ''' def get_config(self, type="grad_check"): config = {} if type == "grad_check": config["n_train_sample"] = 5 config["channel_in"] = 7 config["w_in"] = 4 config["h_in"] = 9 config["cast_func"] = void_cast_func config["do_double"] = True config["seed"] = 0 config["batch_size"] = 5 elif type == "fw_bw_proc": config["n_train_sample"] = 17 config["channel_in"] = 6 config["w_in"] = 3 config["h_in"] = 5 config["cast_func"] = single_to_half_det config["do_double"] = False config["seed"] = 0 config["batch_size"] = 4 else: raise Exception("Config type not supported!") return config def check_layer_param_and_cache(self, layer): t_list = [(layer.grad_output_cache, torch.half, False, False)] if isinstance(layer.input_cache, list) or isinstance( layer.input_cache, tuple): t_list += [(x, torch.half, False, False) for x in layer.input_cache] else: t_list += [(layer.input_cache, torch.half, False, False)] self.CheckLayerTensorProperty(t_list) self.CheckLayerTensorGradProperty(t_list) def get_input(self, channel_in, w_in, h_in, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if do_double: input_delta = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) else: input_delta = Parameter( cast_func( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda()), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(), requires_grad=True) return [ input_fp, ], [ input_delta, ] def get_analytical_param_grad(self, layer): # as there is no param in the relu layer, we use empty function return [] def get_numerical_param_grad(self, layer, input, get_loss, perturb_eps): return []
halp-master
halp/layers/bit_center_layer_test.py
import torch import torch.nn as nn from math import floor from torch.nn import Conv2d import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.autograd import Function from torch.autograd import Variable import numpy as np from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from halp.layers.bit_center_layer import BitCenterLayer import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class BitCenterConv2DFunction(Function): """ This class does forward and backward computation for bit center 2D convolution. We document the forward backward computation math here for normal conv2d. The math for bit center Conv2d can be derived by decomposing the input and weights into full precision offset and low precision delta. Given input X in the shape of (b, n_i, w_i, h_i) and filter W in the shape of (n_o, n_i, w_k, h_k) For simplicity we write out the math with 0 padding and stride 1 in the following: we transform the input tensor X to a matrix X_L in the shape of (b, w_o * h_o, n_i * w_k * h_k). W is transformed into W_L in the shape of (n_i * w_k * h_k, n_o). In the forward pass, \tilde{X} = matmul(X_L, W_L), where \tilde{X} is in the shape of (b, w_o * h_o, n_o) In the backward pass, \par L / \par W_L = matmul(X_L^T, \par L / \par \tilde{X}_L) \par L / \par X_L = matmul(\par L / \par \tilde{X}_L, W_L^T) Note here \par L / \par X_L can be directly done using deconv operations We opt to use fold and unfold function to explicitly do \par L / \par W_L = matmul(X_L^T, \par L / \par \tilde{X}_L) because we the current deconv (conv_transpose2d) API has some flexibility issue. Note \par L / \par W_L, and \par L / \par X_L are in the shape of () and () respectively. We need properly reshape to return the gradient """ @staticmethod def forward(ctx, input_delta, input_lp, output_grad_lp, weight_delta, weight_lp, bias_delta=None, bias_lp=None, stride=1, padding=0, dilation=1, groups=1): # suffix lp means the lp version of the offset tensors # suffix delta means the real low precision part of the model representation # output_grad_lp is only for backward function, but we need to keep it in ctx # for backward function to access it. # TODO: extend to accommodate different dilation, groups # assert (stride, padding, dilation, groups) == (1, 0, 1, 1) batch_size = input_lp.size(0) if (dilation != (1, 1)) or (groups != 1): raise Exception( "Dillation and groups are not fully supported yet in bc conv.") kernel_size = list(weight_lp.size()[-2:]) input_size = list(input_lp.size()[-2:]) output_size = [ \ floor((input_size[0] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1), floor((input_size[1] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)] input_lp_unf = F.unfold( input_lp, kernel_size, dilation=dilation, padding=padding, stride=stride) input_delta_unf = F.unfold( input_delta, kernel_size, dilation=dilation, padding=padding, stride=stride) ctx.save_for_backward(input_lp, input_delta, output_grad_lp, weight_lp, weight_delta, bias_lp, bias_delta) ctx.hyperparam = (kernel_size, stride, padding, dilation, groups, input_lp.shape) conv2d = lambda input_unf, weight: \ input_unf.transpose(1, 2).matmul( weight.permute(1, 2, 3, 0).view(-1, weight.size(0))) output = conv2d(input_delta_unf, weight_lp) \ + conv2d(input_lp_unf + input_delta_unf, weight_delta) channel_out = weight_lp.size(0) output = output.transpose(1, 2).view(batch_size, channel_out, *output_size) if bias_delta is not None: output = output + bias_delta.view(1, -1, 1, 1).expand_as(output) return output @staticmethod def backward(ctx, grad_output): ''' In this function, suffix represent the results from torch unfold style im2col op ''' input_lp, input_delta, output_grad_lp, weight_lp, weight_delta, bias_lp, bias_delta = ctx.saved_tensors kernel_size, stride, padding, dilation, groups, input_shape = ctx.hyperparam # get unfolded input input_lp_unf = F.unfold( input_lp, kernel_size, dilation=dilation, padding=padding, stride=stride) input_delta_unf = F.unfold( input_delta, kernel_size, dilation=dilation, padding=padding, stride=stride) batch_size, channel_out, w_out, h_out = list(grad_output.size()) w_in, h_in = input_shape[-2:] channel_in = weight_lp.size(1) kernel_size = weight_lp.size()[-2:] assert channel_out == weight_lp.size(0) # reshape output grad for further computation grad_output_reshape = grad_output.permute(0, 2, 3, 1).view( batch_size, -1, channel_out) output_grad_lp_reshape = output_grad_lp.permute(0, 2, 3, 1).view( batch_size, -1, channel_out) # helper functions for backward computation of bit center conv 2d: # we define these function to get gradient wrt input and weights # in the get_grad_input helper, padding is the padding in the # original convolution (the transpose is the inverse deconvolution op) # the output_padding controls the output when stride > 0. It adds the # ignored rows back to the output of the deconv op; this resolves # disambiguity in the shape of the output of deconv output_padding = [\ w_in - ((w_out - 1) * stride[0] + kernel_size[0] - 2 * padding[0]), h_in - ((h_out - 1) * stride[1] + kernel_size[1] - 2 * padding[1])] get_grad_input = lambda grad_out_reshape, weight: \ F.conv_transpose2d(grad_out_reshape, weight, bias=None, stride=stride, padding=padding, output_padding=output_padding) get_grad_weight = lambda input_unf, grad_output_reshape: \ torch.sum(torch.bmm(input_unf, grad_output_reshape), dim=0) grad_input_lp = None grad_input_delta = \ get_grad_input(grad_output, (weight_lp + weight_delta)) \ + get_grad_input(output_grad_lp, weight_delta) grad_output_grad_lp = None # this dummy to adapt to pytorch API grad_weight_lp = None grad_weight_delta = \ get_grad_weight(input_lp_unf + input_delta_unf, grad_output_reshape) \ + get_grad_weight(input_delta_unf, output_grad_lp_reshape) grad_weight_delta = \ grad_weight_delta.view(channel_in, *kernel_size, channel_out).permute(3, 0, 1, 2) grad_bias_lp = None if (bias_lp is not None) and (bias_delta is not None): grad_bias_delta = grad_output.sum(dim=[0, 2, 3]) else: grad_bias_delta = None grad_stride, grad_padding, grad_dilation, grad_group = None, None, None, None return grad_input_delta, grad_input_lp, grad_output_grad_lp, \ grad_weight_delta, grad_weight_lp, grad_bias_delta, grad_bias_lp, \ grad_stride, grad_padding, grad_dilation, grad_group bit_center_conv2d = BitCenterConv2DFunction.apply class BitCenterConv2D(BitCenterLayer, Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=False, cast_func=void_cast_func, n_train_sample=1): BitCenterLayer.__init__( self, fp_functional=F.conv2d, lp_functional=bit_center_conv2d, bias=bias, cast_func=cast_func, n_train_sample=n_train_sample) Conv2d.__init__( self, in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) # weight_delta is the delta tensor in the algorithm while weight_lp is the cached # lp version of weight offset self.setup_bit_center_vars() self.cuda() self.reset_parameters_bit_center() self.register_backward_hook(self.update_grad_output_cache) def forward_fp(self, input): self.check_or_setup_input_cache(input) output = self.fp_func(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) self.check_or_setup_grad_cache(output) self.update_input_cache(input) return output def forward_lp(self, input): # Need to test do_offset mode whether gradient is updated properly input_lp, grad_output_lp = self.get_input_cache_grad_cache(input) input_delta = input weight_lp = self.weight_lp weight_delta = self.weight_delta bias_lp = self.bias_lp bias_delta = self.bias_delta output = self.lp_func(input_delta, input_lp, grad_output_lp, weight_delta, weight_lp, bias_delta, bias_lp, self.stride, self.padding, self.dilation, self.groups) self.increment_cache_iter(input) return output
halp-master
halp/layers/conv_layer.py
import torch import torch.nn as nn from torch.nn import Tanh import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.autograd import Function import numpy as np from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from halp.layers.bit_center_layer import BitCenterActivation import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class BitCenterSigmoidFunction(Function): @staticmethod def forward(ctx, input_delta, input_lp, grad_output_lp): sig_full = F.sigmoid(input_delta + input_lp) sig_lp = F.sigmoid(input_lp) ctx.save_for_backward(grad_output_lp, sig_full, sig_lp) return sig_full - sig_lp @staticmethod def backward(ctx, grad_output): grad_output_lp, sig_full, sig_lp = ctx.saved_tensors one = torch.tensor([1.0], dtype=grad_output.dtype, device=grad_output.device) grad_input = sig_full * (one - sig_full) * (grad_output_lp + grad_output) \ - sig_lp * (one - sig_lp) * grad_output_lp return grad_input, None, None bit_center_sigmoid = BitCenterSigmoidFunction.apply class BitCenterSigmoid(BitCenterActivation, nn.Sigmoid): def __init__(self, cast_func=void_cast_func, n_train_sample=1): BitCenterActivation.__init__(self, fp_functional=F.sigmoid, lp_functional=bit_center_sigmoid, cast_func=cast_func, n_train_sample=n_train_sample) nn.Sigmoid.__init__(self) self.register_backward_hook(self.update_grad_output_cache)
halp-master
halp/layers/sigmoid_layer.py
import torch import torch.nn as nn from torch.nn import Tanh import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.autograd import Function import numpy as np from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from halp.layers.bit_center_layer import BitCenterActivation import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class BitCenterTanhFunction(Function): @staticmethod def forward(ctx, input_delta, input_lp, grad_output_lp): tanh_full = F.tanh(input_delta + input_lp) tanh_lp = F.tanh(input_lp) ctx.save_for_backward(tanh_full, tanh_lp, grad_output_lp) return tanh_full - tanh_lp @staticmethod def backward(ctx, grad_output): tanh_full, tanh_lp, grad_output_lp = ctx.saved_tensors one = torch.tensor([1.0], dtype=grad_output.dtype, device=grad_output.device) return -(one - tanh_lp**2) * grad_output_lp \ + (one - tanh_full**2) * (grad_output + grad_output_lp), None, None bit_center_tanh = BitCenterTanhFunction.apply class BitCenterTanh(BitCenterActivation, nn.Tanh): def __init__(self, cast_func=void_cast_func, n_train_sample=1): BitCenterActivation.__init__(self, fp_functional=F.tanh, lp_functional=bit_center_tanh, cast_func=cast_func, n_train_sample=n_train_sample) nn.Tanh.__init__(self) self.register_backward_hook(self.update_grad_output_cache)
halp-master
halp/layers/tanh_layer.py
import torch import numpy as np from torch.nn import Parameter from halp.layers.relu_layer import BitCenterReLU, bit_center_relu from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from unittest import TestCase from halp.utils.utils import set_seed from halp.utils.test_utils import HalpTest from torch.autograd.gradcheck import get_numerical_jacobian, iter_tensors, make_jacobian from halp.layers.bit_center_layer_test import TestBitCenterLayer import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class TestBitCenterReLULayer(TestBitCenterLayer, TestCase): ''' Test the functionality of bit centering conv2d layers ''' def get_config(self, type="grad_check"): config = {} if type == "grad_check": config["n_train_sample"] = 35 config["channel_in"] = 17 config["w_in"] = 24 config["h_in"] = 13 config["cast_func"] = void_cast_func config["do_double"] = True config["seed"] = 0 config["batch_size"] = 35 elif type == "fw_bw_proc": config["n_train_sample"] = 98 config["channel_in"] = 13 config["w_in"] = 31 config["h_in"] = 17 config["cast_func"] = single_to_half_det config["do_double"] = False config["seed"] = 0 config["batch_size"] = 33 else: raise Exception("Config type not supported!") return config def prepare_layer(self, channel_in, w_in, h_in, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): layer = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) # Note do_double = setup layer for gradient check, otherwise, it is for checking # the tensor properties, and layer behaviors if do_double: layer.double() layer.cuda() return layer def check_layer_param_and_cache(self, layer): t_list = [(layer.input_cache, torch.half, False, False), (layer.grad_output_cache, torch.half, False, False)] self.CheckLayerTensorProperty(t_list) self.CheckLayerTensorGradProperty(t_list) def get_input(self, channel_in, w_in, h_in, cast_func=void_cast_func, bias=False, do_double=True, seed=0, batch_size=1, n_train_sample=1): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if do_double: input_delta = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda(), requires_grad=True) else: input_delta = Parameter( cast_func( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.double).cuda()), requires_grad=True) input_fp = Parameter( torch.randn( n_train_sample, channel_in, w_in, h_in, dtype=torch.float).cuda(), requires_grad=True) return [ input_fp, ], [ input_delta, ] def get_analytical_param_grad(self, layer): # as there is no param in the relu layer, we use empty function return [] def get_numerical_grad(self, layer, input_fp, input_delta, perturb_eps, target=None): grad_list = [] layer.set_mode(do_offset=True) output_final = layer(*[x + y for x, y in zip(input_fp, input_delta)]) # use the gradient from 0.5*sum(output**2) num_input_grad = output_final.clone() num_input_grad[output_final == 0.0] = 0.0 grad_list.append(num_input_grad) return output_final, grad_list if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/layers/relu_layer_test.py
import torch import numpy as np import copy, logging from torch.autograd import Variable from torch.optim.optimizer import required, Optimizer from torch.optim import SGD from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from halp.optim.bit_center_sgd import BitCenterOptim import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger() class BitCenterSVRG(BitCenterOptim): """ Implementation of bit centering SVRG as the gradient cache is small, we cache gradients on GPU We accumulate full gradient in full precision and then cast it """ def __init__(self, params, params_name, lr=required, momentum=0.0, weight_decay=0.0, n_train_sample=1, cast_func=void_cast_func, minibatch_size=128, T=1): super(BitCenterSVRG, self).__init__( params, params_name, lr, momentum, weight_decay, n_train_sample, cast_func, minibatch_size=minibatch_size, T=T) def setup_single_grad_cache(self, grad_shape, dtype): logger.info("setup fp accum for full grad") cache_shape = grad_shape return torch.Tensor(np.zeros(cache_shape)).type(dtype).cuda() def update_single_grad_cache(self, grad, cache): cache.add_(grad) def get_single_grad_offset(self, cache): # we assume the size of the first dimension is the minibatch size return cache def on_start_fp_steps(self, model): # resetup single precision cache self.setup_grad_cache() model.set_mode(do_offset=True) def on_end_fp_steps(self, model): for key, cache in self.grad_cache.items(): if cache is not None: cache.div_(self.n_minibatch_per_epoch) # turn the cache into half precision self.grad_cache[key] = self.cast_func(cache) model.set_mode(do_offset=True)
halp-master
halp/optim/bit_center_svrg.py
from torch.optim.optimizer import Optimizer, required import torch from torch.autograd import Variable import copy, logging class SVRG(torch.optim.SGD): """Implements stochastic variance reduction gradient descent. Args: params (iterable): iterable of parameters to optimize lr (float): learning rate T (int): number of iterations between the step to take the full grad/save w data_loader (DataLoader): dataloader to use to load training data weight_decay (float, optional): weight decay (L2 penalty) (default: 0) momentum (float, optional): momentum (default: 0) opt (torch.optim): optimizer to baseclass (default: SGD) """ def __init__(self, params, lr=required, T=required, data_loader=required, weight_decay=0.0, momentum=0.0, opt=torch.optim.SGD): defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum) # Choose the baseclass dynamically. self.__class__ = type(self.__class__.__name__, (opt,object), dict(self.__class__.__dict__)) logging.info("Using base optimizer {} in SVRG".format(opt)) super(self.__class__, self).__init__(params, **defaults) if len(self.param_groups) != 1: raise ValueError("SVRG doesn't support per-parameter options " "(parameter groups)") params = self.param_groups[0]['params'] self._params = params self._curr_w = [p.data for p in params] self._prev_w = [p.data.clone() for p in params] # Gradients are lazily allocated and don't exist yet. However, gradients are # the same shape as the weights so we can still allocate buffers here self._curr_grad = [p.data.clone() for p in params] self._prev_grad = [p.data.clone() for p in params] self._full_grad = None self.data_loader = data_loader self.state['t_iters'] = T self.T = T # Needed to trigger full gradient logging.info("Data Loader has {} with batch {}".format(len(self.data_loader), self.data_loader.batch_size)) def __setstate__(self, state): super(self.__class__, self).__setstate__(state) def _zero_grad(self): for p in self._params: if p.grad is not None: p.grad.detach() p.grad.zero_() def _set_weights_grad(self,ws,gs): for idx, p in enumerate(self._params): if ws is not None: p.data = ws[idx] if gs is not None and p.grad is not None: p.grad.data = gs[idx] if (gs is not None) and (p.grad is not None): assert (p.grad.data.data_ptr() == gs[idx].data_ptr()) def step(self, closure): """Performs a single optimization step. Arguments: closure (callable): A closure that reevaluates the model and returns the loss. """ assert len(self.param_groups) == 1 # Calculate full gradient if self.state['t_iters'] == self.T: # Setup the full grad # Reset gradients before accumulating them self._set_weights_grad(None, self._full_grad) self._zero_grad() # Accumulate gradients for i, (data, target) in enumerate(self.data_loader): closure(data, target) # Adjust summed gradients by num_iterations accumulated over # assert(n_iterations == len(self.data_loader)) for p in self._params: if p.grad is not None: p.grad.data /= len(self.data_loader) if self._full_grad is None: self._full_grad = [] for p in self._params: if p.grad is not None: self._full_grad.append(p.grad.data.clone()) else: self._full_grad.append(None) # Copy w to prev_w for p, p0 in zip(self._curr_w, self._prev_w): p0.copy_(p) # Reset t self.state['t_iters'] = 0 # Setup the previous grad self._set_weights_grad(self._prev_w, self._prev_grad) self._zero_grad() closure() # Calculate the current grad. self._set_weights_grad(self._curr_w, self._curr_grad) self._zero_grad() loss = closure() # Adjust the current gradient using the previous gradient and the full gradient. # We have normalized so that these are all comparable. for p, d_p0, fg in zip(self._params, self._prev_grad, self._full_grad): # Adjust gradient in place if p.grad is not None: p.grad.data -= (d_p0 - fg) # Call optimizer update step super(self.__class__, self).step() self.state['t_iters'] += 1 return loss
halp-master
halp/optim/svrg.py
halp-master
halp/optim/__init__.py
import torch import torch.nn as nn import numpy as np from halp.utils.test_utils import HalpTest from halp.optim.bit_center_sgd import BitCenterSGD from halp.optim.bit_center_svrg import BitCenterSVRG from unittest import TestCase from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from copy import deepcopy def GetAllParameterStates(optimizer): param_dict = dict() for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): param_dict[p_name] = p.clone() return param_dict def GetAllGradOffset(optimizer): grad_offset_dict = dict() for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): if p_name.endswith("_delta"): cache = optimizer.grad_cache[p_name.split("_delta")[0]] # note the offset in cache is only correctly fetched if this function # is called before lp_step grad_offset = optimizer.get_single_grad_offset(cache) grad_offset_dict[p_name] = grad_offset.clone() return grad_offset_dict class TestBitCenterOptim(HalpTest): @staticmethod def FuncTestCacheProperty(model, optimizer): pass def test_CacheProperty(self): n_train_sample = np.random.randint(low=100, high=1000) minibatch_size = np.random.randint(low=9, high=n_train_sample // 10) model = self.GetMultipleLayerLinearModel( n_layer=3, n_train_sample=n_train_sample) optimizer = self.GetOptimizer( model, lr=0.5, weight_decay=0, n_train_sample=n_train_sample, minibatch_size=minibatch_size) for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): cache = optimizer.grad_cache[p_name] self.FuncTestCacheProperty(p, p_name, cache, optimizer) print(self.__class__, " cache property test passed!") @staticmethod def FuncTestCacheUpdate(cache_before, cache_after, is_first_update=False, is_last_update=False): pass def FuncTestLPStep(self, optimizer, param_dict_prev, grad_offset_dict, is_first_update=False, is_last_update=False): for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): p_prev = param_dict_prev[p_name] if p_name.endswith("_delta"): if is_first_update: assert (p_prev.cpu().detach().numpy() == 0.0).all() new_p = param_dict_prev[p_name] \ - torch.Tensor(np.array(param_group["lr"])).half().cuda() * p.grad \ - grad_offset_dict[p_name].cuda() # atol is selected to not asserting on denormal values for half precision # rtol test at least if the values are in neighbor positions # in the of the float point grid, we require a bit stricter with # a factor of 2.0 if not is_last_update: # Note here we are asserting on the delta variables. # As the delta variables are cleared before this test, # we can not asssert on the last iteration. np.testing.assert_allclose( new_p.cpu().detach().numpy(), p.cpu().detach().numpy(), atol=6.2e-5, rtol=1.0 / 1024.0 / 2.0) elif p_name.endswith("_lp"): if is_last_update: assert not (p_prev.cpu().detach().numpy() == p.cpu().detach(). numpy()).all() else: assert (p_prev.cpu().detach().numpy() == p.cpu().detach(). numpy()).all() else: # this branch check the offset variables if is_last_update: assert not (p_prev.cpu().detach().numpy() == p.cpu(). detach().numpy()).all() else: assert (p_prev.cpu().detach().numpy() == p.cpu(). detach().numpy()).all() def FuncTestFPStep(self, optimizer, param_dict_prev): for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): p_prev = param_dict_prev[p_name] assert (p_prev.cpu().detach().numpy() == p.cpu().detach(). numpy()).all() def test_Step(self): """ test grad cache is udpated properly: test the involved grad got generated for fp step, we test in 3 consecutive epochs to make sure step_fp is updating the cache properly for lp step, we test: first iter clears delta; last iter adds back to offset; in normal iterations, only delta is property is updated. """ n_train_sample = np.random.randint(low=100, high=1000) minibatch_size = np.random.randint(low=9, high=n_train_sample // 10) model = self.GetMultipleLayerLinearModel( n_layer=3, n_train_sample=n_train_sample) optimizer = self.GetOptimizer( model, lr=0.0005, weight_decay=0, n_train_sample=n_train_sample, minibatch_size=minibatch_size) n_minibatch = int(np.ceil(n_train_sample / float(minibatch_size))) for k in range(3): # do fp loops for i in range(n_minibatch): if i == 0: optimizer.on_start_fp_steps(model) start_idx = i * minibatch_size end_idx = min((i + 1) * minibatch_size, n_train_sample) fw_input = torch.Tensor( np.random.randn(end_idx - start_idx, model.n_feat_in[0])).cuda() fw_label = torch.Tensor( np.random.randn(end_idx - start_idx, 1)).cuda() loss = model.forward(fw_input, fw_label) loss.backward() # get the grad cache before fp step cache_list_before_update = \ self.GetUpdatedCache(minibatch_idx=i, optimizer=optimizer) param_dict_before_update = \ GetAllParameterStates(optimizer) optimizer.step_fp() # get the grad cache after fp step cache_list_after_update = \ self.GetUpdatedCache(minibatch_idx=i, optimizer=optimizer) self.FuncTestFPStep(optimizer, param_dict_before_update) # test if the cache is properly maintained for cache_before, cache_after in \ zip(cache_list_before_update, cache_list_after_update): is_first_update = (i == 0) self.FuncTestCacheUpdate( cache_before, cache_after, is_first_update=is_first_update) if i == n_minibatch - 1: optimizer.on_end_fp_steps(model) # do lp loops for i in range(n_minibatch): if i == 0: optimizer.on_start_lp_steps(model) start_idx = i * minibatch_size end_idx = min((i + 1) * minibatch_size, n_train_sample) fw_input = optimizer.cast_func( torch.Tensor( np.random.randn(end_idx - start_idx, model.n_feat_in[0])).cuda()) fw_label = optimizer.cast_func( torch.Tensor(np.random.randn(end_idx - start_idx, 1)).cuda()) loss = model.forward(fw_input, fw_label) loss.backward() # get param state before update steps param_dict_before_update = \ GetAllParameterStates(optimizer) grad_offset_dict = GetAllGradOffset(optimizer) optimizer.step_lp() is_first_update = False is_last_update = False if i == 0: is_first_update = True if i == n_minibatch - 1: is_last_update = True if i == n_minibatch - 1: optimizer.on_end_lp_steps(model) # test update procedures self.FuncTestLPStep(optimizer, param_dict_before_update, grad_offset_dict, is_first_update, is_last_update) class TestBitCenterSGD(TestBitCenterOptim, TestCase): @staticmethod def GetOptimizer(model, lr, weight_decay=0.0, n_train_sample=128, cast_func=single_to_half_det, minibatch_size=128): params = [x[1] for x in model.named_parameters()] names = [x[0] for x in model.named_parameters()] return BitCenterSGD( params, names, lr, n_train_sample=n_train_sample, cast_func=cast_func, minibatch_size=minibatch_size) def FuncTestCacheProperty(self, param, name, cache, optimizer): if (cache is None): assert (not param.requires_grad) \ or (name.endswith("_lp")) \ or (name.endswith("_delta")) else: assert list(param.shape) == list(cache.shape[1:]) assert cache.size(0) == optimizer.n_minibatch_per_epoch assert (not name.endswith("_lp")) and (not name.endswith("_delta")) # assert on GPU and not require_grad t_list = [(cache, torch.float16, False, False)] self.CheckLayerTensorProperty(t_list) @staticmethod def GetUpdatedCache(minibatch_idx, optimizer): cache_list = [] for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): cache = optimizer.grad_cache[p_name] if cache is not None: # print("check idx ", minibatch_idx, cache.size(), cache.cuda()[minibatch_idx]) cache_list.append(cache[minibatch_idx].clone()) return cache_list @staticmethod def FuncTestCacheUpdate(cache_before, cache_after, is_first_update=False, is_last_update=False): if (cache_before is None) and (cache_after is None): return assert (cache_before.cpu().numpy() == 0).all() class TestBitCenterSVRG(TestBitCenterOptim, TestCase): @staticmethod def GetOptimizer(model, lr, weight_decay=0.0, n_train_sample=128, cast_func=single_to_half_det, minibatch_size=128): params = [x[1] for x in model.named_parameters()] names = [x[0] for x in model.named_parameters()] return BitCenterSVRG( params, names, lr, n_train_sample=n_train_sample, cast_func=cast_func, minibatch_size=minibatch_size) def FuncTestCacheProperty(self, param, name, cache, optimizer): if cache is None: assert (not param.requires_grad) \ or (name.endswith("_lp")) \ or (name.endswith("_delta")) else: assert list(param.shape) == list(cache.shape) assert (not name.endswith("_lp")) and (not name.endswith("_delta")) # assert on GPU and not require_grad t_list = [(cache, [torch.float16, torch.float32], True, False)] self.CheckLayerTensorProperty(t_list) @staticmethod def GetUpdatedCache(minibatch_idx, optimizer): cache_list = [] for param_group in optimizer.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): cache = optimizer.grad_cache[p_name] if cache is not None: cache_list.append(cache.clone()) return cache_list @staticmethod def FuncTestCacheUpdate(cache_before, cache_after, is_first_update=False, is_last_update=False): if (cache_before is None) and (cache_after is None): return assert not ( cache_before.cpu().numpy() == cache_after.cpu().numpy()).all() if is_first_update: assert (cache_before.cpu().numpy() == 0).all() if __name__ == "__main__": print(torch.__version__) unittest.mian()
halp-master
halp/optim/bit_center_optim_test.py
import torch import numpy as np import copy, logging from torch.autograd import Variable from torch.optim.optimizer import required, Optimizer from torch.optim import SGD from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from halp.utils.utils import get_recur_attr import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') class BitCenterOptim(SGD): """ The base class for bit center optimizer: bit center SGD, bit center SVRG """ def __init__(self, params, params_name, lr=required, momentum=0.0, weight_decay=0.0, n_train_sample=128, cast_func=void_cast_func, minibatch_size=128, T=1): """ The base class for bit centering style optimizers The bit centering optimizer can be used with calling step_fp for compute offset and with calling step_lp for compute delta. The non bit centering version of the same update rule can be implemented only using step_fp for updates. """ defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay) super(BitCenterOptim, self).__init__(params, **defaults) if len(self.param_groups) != 1: logger.error( "Bit centering optimizers doesn't support per-parameter options " "(parameter groups)") raise ValueError("Bit centering optimizers doesn't support per-parameter options " \ "(parameter groups)") self.param_groups[0]['params_name'] = params_name self.n_train_sample = n_train_sample self.n_minibatch_per_epoch = int( np.floor((self.n_train_sample - 1) // float(minibatch_size)) + 1) self.cast_func = cast_func self.step_iter = 0 # this is a iter for step_lp function self.cache_iter = 0 # this is a iter for updating the gradient cache self.setup_grad_cache() self.T = T def setup_single_grad_cache(self, grad_shape, dtype): # we assume the size of the first dimension is the minibatch size pass def setup_grad_cache(self): self.grad_cache = dict() for group in self.param_groups: for p, p_name in zip(group["params"], group["params_name"]): if (not p.requires_grad) \ or (p_name.endswith("_lp")) \ or (p_name.endswith("_delta")): self.grad_cache[p_name] = None continue grad_shape = list(p.size()) cache = self.setup_single_grad_cache(grad_shape, dtype=p.dtype) self.grad_cache[p_name] = cache logger.info(p_name + " cache setup.") self.cache_iter = 0 def update_single_grad_cache(self, grad, cache): pass def update_grad_cache(self): # TODO: need to sanity check when whole dataset size is not divided by the minibatch # to make sure the data idx in each minibatch is the same between the fp pass and lp pass for param_group in self.param_groups: weight_decay = param_group["weight_decay"] for p, p_name in zip(param_group["params"], param_group["params_name"]): cache = self.grad_cache[p_name] if cache is None: continue if weight_decay != 0.0: p.grad.data.add_(weight_decay, p.data) self.update_single_grad_cache(p.grad * param_group["lr"], cache) def get_single_grad_offset(self, cache, cache_iter=0): # cache iter is useful for bit centering SGD to retrieve gradient offset pass def get_named_delta_parameters(self, only_requires_grad=True): """ if only_requires_grad, it would not return params that does not require gradient, including running statistics of batchnorm layers """ named_parameters = [] for param_group in self.param_groups: for p, p_name in zip(param_group["params"], param_group["params_name"]): if not p_name.endswith("_delta") or (only_requires_grad and (not p.requires_grad)): continue named_parameters.append((p_name, p)) return named_parameters def step_lp(self): for param_group in self.param_groups: lr = param_group["lr"] weight_decay = param_group["weight_decay"] momentum = param_group["momentum"] named_delta_parameters = self.get_named_delta_parameters() for p_name, p in named_delta_parameters: cache = self.grad_cache[p_name.split("_delta")[0]] grad_offset = self.get_single_grad_offset(cache) if weight_decay != 0.0: p.grad.data.add_(weight_decay, p.data) if (momentum is not None) and (momentum != 0.0): param_state = self.state[p] if "momentum_buffer" not in param_state: param_state["momentum_buffer"] = torch.zeros_like( p.data) buf = param_state["momentum_buffer"] buf.mul_(momentum).add_(lr * p.grad.data) else: buf = lr * p.grad.data if p.is_cuda: buf.add_(grad_offset.cuda()) else: buf.add_(grad_offset) p.data.add_(-buf) self.step_iter = (self.step_iter + 1) % self.n_minibatch_per_epoch def step_fp(self): # update all the blobs as usual, the uninvolved blobs has 0 gradient so effectively it is not updated # during the entire training self.update_grad_cache() self.cache_iter = (self.cache_iter + 1) % self.n_minibatch_per_epoch def update_offset_vars(self): # we need to update both the parameters requiring gradient # and those which does not, e.g the running statistics in batch norm named_delta_parameters = self.get_named_delta_parameters(only_requires_grad=False) for p_name, p in named_delta_parameters: # update the offset variable and its lp version corr_found = False for param_offset_group in self.param_groups: for p_offset, p_offset_name in zip( param_offset_group["params"], param_offset_group["params_name"]): if p_offset_name == p_name.split("_delta")[0]: p_offset.data.add_(p.data.type(p_offset.dtype)) corr_found = True # update the offset lp variable lp_corr_found = False for param_offset_lp_group in self.param_groups: for p_offset_lp, p_offset_lp_name in zip( param_offset_group["params"], param_offset_group["params_name"]): if p_offset_lp_name == p_name.split( "_delta")[0] + "_lp": p_offset_lp.data.copy_(p_offset) lp_corr_found = True if corr_found == False or lp_corr_found == False: logger.error("Can not find offset var for ", p_name) raise Exception("Can not find offset var for ", p_name) def clear_cache(self): for cache in self.grad_cache.values(): if cache is None: continue if not cache.is_cuda: cache.copy_(self.cast_func(torch.zeros(cache.size())).cpu()) else: cache.zero_() def reset_delta_vars(self): named_delta_parameters = self.get_named_delta_parameters(only_requires_grad=False) for p_name, p in named_delta_parameters: p.data.zero_() # note we set the mode of model using the following # helpers. After each specific fp or lp phase, # we set model back to do_offset=True as the defaut # statues def on_start_lp_steps(self, model): self.reset_delta_vars() model.set_mode(do_offset=False) def on_end_lp_steps(self, model): self.update_offset_vars() self.reset_delta_vars() model.set_mode(do_offset=True) def on_start_fp_steps(self, model): self.clear_cache() model.set_mode(do_offset=True) def on_end_fp_steps(self, model): # pass model.set_mode(do_offset=True) def step(self): raise Exception( "This function is not suppose to be called. Please use step_lp or step_fp" ) class BitCenterSGD(BitCenterOptim): """ Implementation of bit centering SGD """ def __init__(self, params, params_name, lr=required, momentum=0.0, weight_decay=0.0, n_train_sample=128, cast_func=void_cast_func, minibatch_size=128, T=1): super(BitCenterSGD, self).__init__( params, params_name, lr, momentum, weight_decay, n_train_sample, cast_func, minibatch_size=minibatch_size, T=T) def setup_single_grad_cache(self, grad_shape, dtype): cache_shape = [self.n_minibatch_per_epoch] + grad_shape return self.cast_func(torch.Tensor(np.zeros(cache_shape)).type(dtype).cpu()).cpu() def update_single_grad_cache(self, grad, cache): # the input grad is actually grad * lr in function update_grad_cache cache[self.cache_iter].copy_(grad) def get_single_grad_offset(self, cache): # we assume the size of the first dimension is the minibatch size return cache[self.step_iter]
halp-master
halp/optim/bit_center_sgd.py
import torch import torch.nn as nn from torch.autograd import Variable import numpy as np from torch.autograd import gradcheck from halp.layers.bit_center_layer import BitCenterModule, BitCenterModuleList from halp.layers.linear_layer import BitCenterLinear from halp.utils.utils import void_cast_func, single_to_half_det, single_to_half_stoc from unittest import TestCase from halp.utils.utils import get_recur_attr class HalpTest(object): def CheckLayerTensorProperty(self, t_list): # each element of t_list is a tuple containing (t, dtype, is_cuda) def CheckSingleTensor(t, dtype, is_cuda, requires_grad): if isinstance(dtype, list): assert t.dtype in dtype else: assert t.dtype == dtype if isinstance(is_cuda, list): assert t.is_cuda in is_cuda else: assert t.is_cuda == is_cuda if isinstance(requires_grad, list): assert t.requires_grad in requires_grad else: assert t.requires_grad == requires_grad for i, (t, dtype, is_cuda, requires_grad) in enumerate(t_list): if t is None: continue CheckSingleTensor(t, dtype, is_cuda, requires_grad) def CheckLayerTensorGradProperty(self, t_list): # each element of t_list is a tuple containing (t, dtype, is_cuda) # We check if the gradient is of the right type and in the right device def CheckSingleTensorGrad(t, dtype, is_cuda, requires_grad): assert t.grad.dtype == dtype assert t.grad.is_cuda == is_cuda for i, (t, dtype, is_cuda, requires_grad) in enumerate(t_list): if (t is None) or (t.grad is None): continue CheckSingleTensorGrad(t, dtype, is_cuda, requires_grad) @staticmethod def GetMultipleLayerLinearModel(n_layer, n_train_sample): class Net(BitCenterModule): def __init__(self, n_layer, n_feat_in, final_dim, n_train_sample): # super(Net, self).__init__() BitCenterModule.__init__(self) self.layers = BitCenterModuleList([]) n_feat_in = np.hstack((n_feat_in, final_dim)) for i in range(n_layer): self.layers.append( BitCenterLinear( n_feat_in[i], n_feat_in[i + 1], cast_func=single_to_half_det, n_train_sample=n_train_sample, bias=True)) self.loss = torch.nn.MSELoss() self.n_feat_in = n_feat_in def forward(self, input, label): fw_input = input for layer in self.layers: fw_input = layer(fw_input) return self.loss.forward(fw_input, label) n_feat_in = np.random.randint(low=10, high=100, size=(n_layer, )) final_dim = 1 net = Net(n_layer, n_feat_in, final_dim, n_train_sample=n_train_sample) return net
halp-master
halp/utils/test_utils.py
import torch import numpy as np import logging import sys import math from halp.optim.bit_center_sgd import BitCenterOptim, BitCenterSGD from halp.optim.bit_center_svrg import BitCenterSVRG from halp.optim.svrg import SVRG from halp.utils.utils import get_recur_attr logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') from copy import deepcopy from halp.models.resnet import ResNet import time # this function can load a normal model to a bc model def load_param_to_model(model, state_dict, to_bc_model=False, args=None): state_dict = deepcopy(state_dict) for name, ref_param in state_dict.items(): model_param = get_recur_attr(model, name.split(".")) ref_param = state_dict[name] model_param.data.copy_(ref_param.data) if to_bc_model and name + "_lp" in model.state_dict().keys(): # if this is a bit centering based model, we need # to update its lp copy of the fp offset model_param_lp = get_recur_attr(model, (name + "_lp").split(".")) model_param_lp.data.copy_(model.cast_func(ref_param.data)) logger.info("loaded model parameter " + name) # this is mostly for loading the momentum terms def load_state_to_optimizer(optimizer, model, state_dict, to_bc_opt=False, args=None): ref_state_dict = deepcopy(state_dict) opt_state_dict = optimizer.state_dict() assert len(optimizer.param_groups ) == 1 # we currently only consider 1 param group case lr_after_ckpt = optimizer.param_groups[0]["lr"] load_cnt = 0 if to_bc_opt: for name, param in optimizer.get_named_delta_parameters( only_requires_grad=True): ref_name = name.split("_delta")[0] if ref_name not in ref_state_dict.keys(): continue # note the definition of momentum in bc and normal sgd is different # in bc optimizer momentum includes lr as a factor already, # while normal sgd optimizer does not. ref_state_dict[ref_name]["momentum_buffer"].mul_(lr_after_ckpt) dtype = param.dtype optimizer.state[param] = ref_state_dict[ref_name] optimizer.state[param]["momentum_buffer"] = model.cast_func( optimizer.state[param]["momentum_buffer"]).type(dtype) load_cnt += 1 logger.info("opt param state loaded for " + name) else: for name, param in model.named_parameters(): ref_name = name if ref_name not in ref_state_dict.keys(): continue dtype = param.dtype optimizer.state[param] = ref_state_dict[ref_name] optimizer.state[param]["momentum_buffer"] = model.cast_func( optimizer.state[param]["momentum_buffer"]).type(dtype) load_cnt += 1 logger.info("opt param state loaded for " + name) logger.info("loaded opt param state for " + str(load_cnt) + " params.") def get_named_opt_param_state(model, optimizer): # when constructing the optimizers, we have forced the order # of parameters in the same way. opt_state_dict = {} for name, param in model.named_parameters(): opt_state_dict[name] = optimizer.state[param] return opt_state_dict class StepLRScheduler(object): def __init__(self, optimizer, step_epoch=(1, 2), step_fac=0.1): self.optimizer = optimizer self.step_epoch = step_epoch self.step_fac = step_fac self.do_save = False def turn_on(self): self.do_save = True def check_and_step(self, epoch_id, iter_id, train_dataloader): if self.do_save and (epoch_id in self.step_epoch) and (iter_id == 0): for group in self.optimizer.param_groups: group["lr"] *= self.step_fac if iter_id == 0: for group in self.optimizer.param_groups: logger.info("lr at epoch " + str(epoch_id) + " " + str(group["lr"])) class ModelSaver(object): def __init__(self, optimizer, model, step_epoch=[1, 2], save_path="./"): self.optimizer = optimizer self.model = model self.step_epoch = step_epoch self.save_path = save_path self.do_save = False def turn_on(self): self.do_save = True def check_and_save(self, epoch_id, iter_id, train_dataloader): if self.do_save and (epoch_id in self.step_epoch) and (iter_id == 0): torch.save( self.model.state_dict(), self.save_path + "/model_e_" + str(epoch_id) + "_i_" + str(iter_id)) # get the param state, e.g. momentum for saving opt_param_state = get_named_opt_param_state( self.model, self.optimizer) # also save the current learning rate assert len(self.optimizer.param_groups) == 1 opt_param_state["lr_at_ckpt"] = self.optimizer.param_groups[0][ "lr"] torch.save( opt_param_state, self.save_path + "/opt_e_" + str(epoch_id) + "_i_" + str(iter_id)) logger.info("model saved at epoch " + str(epoch_id)) def get_grad_norm(optimizer, model): """ note this function only supports a single learning rate in the optimizer This is because the gradient offset is actually the lr * grad offset. We need to recover it here Note this should be used before step function of the optimizers. However, it should be used after the step function of fp/lp SVRG. This is because the fp/lp SVRG optimizer add the weight decay automatically to the gradient variables """ norm = 0.0 weight_decay = optimizer.param_groups[0]["weight_decay"] lr = optimizer.param_groups[0]["lr"] if isinstance(optimizer, BitCenterOptim): named_delta_parameters = optimizer.get_named_delta_parameters() for p_name, p in named_delta_parameters: # note we need to make sure this function is properly used # as the optimizer's get_single_grad_offset is used and it # depends on the internal functions of the optimizer. # generally, use this function after the .backward() call. if not p.requires_grad: raise Exception(p_name + " does not require gradient!") cache = optimizer.grad_cache[p_name.split("_delta")[0]] grad_offset = optimizer.get_single_grad_offset(cache) grad_delta = p.grad.data # note the optimizer has already add delta part of decay to grad variable norm += torch.sum((grad_delta.type(torch.FloatTensor) \ + weight_decay * p.data.type(torch.FloatTensor) \ + grad_offset.type(torch.FloatTensor) / lr)**2).item() else: if optimizer.__class__.__name__ == "SVRG": for p_name, p in model.named_parameters(): if p.requires_grad: # note the optimizer has already add weight decay to grad variable norm += torch.sum(p.grad.data.type(torch.FloatTensor) **2).item() else: for p_name, p in model.named_parameters(): if p.requires_grad: norm += torch.sum((p.grad.data.type(torch.FloatTensor) \ + weight_decay * p.data.type(torch.FloatTensor)) **2).item() return math.sqrt(norm) def remove_dummy_classes(pred, Y): # we assume pred is numpy array while Y is pytorch Tensor. # note Y always contains dummy classes while pred does not always. pred = pred.ravel() Y = Y.view(-1) if pred.size == Y.numel(): pred = pred[Y.data.cpu().numpy() != -1] Y = Y[Y != -1] return pred, Y def evaluate_acc(model, val_loader, use_cuda=True, dtype="fp", args=None): model.eval() correct_cnt = 0 sample_cnt = 0 cross_entropy_accum = 0.0 for i, (X, Y) in enumerate(val_loader): if use_cuda: X, Y = X.cuda(), Y.cuda() if dtype == "lp" and (X.dtype != torch.long): X = model.cast_func(X) if args.double_debug and (X.dtype != torch.long): X = X.double() pred, output = model.predict(X) output = output[Y.view(-1) != -1] pred, Y = remove_dummy_classes(pred, Y) assert pred.shape == Y.data.cpu().numpy().shape correct_cnt += np.sum(pred == Y.data.cpu().numpy()) cross_entropy_accum += model.criterion( output, Y).data.cpu().numpy() * X.shape[0] sample_cnt += pred.size logger.info( "Test metric acc: " + str(correct_cnt / float(sample_cnt)) + " loss: " + str(cross_entropy_accum / float(sample_cnt) + 0.5 * model.reg_lambda * model.get_trainable_param_squared_norm())) return (correct_cnt / float(sample_cnt), cross_entropy_accum / float(sample_cnt)) def train_non_bit_center_optimizer(model, optimizer, train_loader, val_loader, n_epochs, eval_func=evaluate_acc, use_cuda=True, dtype='fp', args=None): train_loss_list = [] eval_metric_list = [] logging.info("using training function for non bit center optimizers") if optimizer.T is not None: logging.info("optimizer T=" + str(optimizer.T)) for epoch_id in range(n_epochs): model.train() for i, (X, Y) in enumerate(train_loader): optimizer.model_saver.check_and_save(epoch_id, i, train_loader) optimizer.lr_scheduler.check_and_step(epoch_id, i, train_loader) if use_cuda: X, Y = X.cuda(), Y.cuda() if dtype == "lp" and (X.dtype != torch.long): X = optimizer.cast_func(X) if dtype == "bc": raise Exception("This function can only run non-bc optimizers") optimizer.zero_grad() if args.double_debug and (X.dtype != torch.long): X = X.double() train_loss = model(X, Y) train_pred = model.output.data.cpu().numpy().argmax(axis=1) # we use Y_dup to make sure the closure function use the # Y with the original shape train_pred, Y_dup = remove_dummy_classes(train_pred, Y.clone()) train_acc = np.sum(train_pred == Y_dup.data.cpu().numpy()) / float( Y_dup.size(0)) train_loss.backward() if optimizer.__class__.__name__ == "SVRG": def svrg_closure(data=X, target=Y): if use_cuda: data = data.cuda() target = target.cuda() if dtype == "lp" and (data.dtype != torch.long): data = optimizer.cast_func(data) if dtype == "bc": raise Exception( "This function can only run non-bc optimizers") if args.double_debug and (data.dtype != torch.long): data = data.double() if isinstance(model, ResNet) and (not args.resnet_fine_tune): # for fine tune situation, the batch norm layer # is protected by set to eval mode in the forward # function already. model.fix_running_stat() loss = model(data, target) if isinstance(model, ResNet) and (not args.resnet_fine_tune): model.free_running_stat() loss.backward() return loss optimizer.step(svrg_closure) grad_norm = get_grad_norm(optimizer, model) else: grad_norm = get_grad_norm(optimizer, model) optimizer.step() param_norm = model.get_trainable_param_squared_norm() train_loss_list.append(train_loss.item() + 0.5 * model.reg_lambda * param_norm) logger.info("train loss epoch: " + str(epoch_id) + " iter: " + str(i) + " loss: " + str(train_loss_list[-1]) + " grad_norm: " + str(grad_norm) + " acc: " + str(train_acc) + " regularizer: " + str(0.5 * model.reg_lambda * param_norm)) logger.info("Finished train epoch " + str(epoch_id)) model.eval() eval_metric_list.append(eval_func(model, val_loader, use_cuda, dtype, args)) return train_loss_list, eval_metric_list def train_bit_center_optimizer(model, optimizer, train_loader, val_loader, n_epochs, eval_func=evaluate_acc, use_cuda=True, dtype="bc", args=None): train_loss_list = [] eval_metric_list = [] T = optimizer.T total_iter = 0 logging.info("using training function for bit center optimizers") logging.info("optimizer T=" + str(optimizer.T)) for epoch_id in range(n_epochs): model.train() for i, (X, Y) in enumerate(train_loader): if total_iter % T == 0: optimizer.on_start_fp_steps(model) for j, (X_fp, Y_fp) in enumerate(train_loader): optimizer.zero_grad() if use_cuda: X_fp, Y_fp = X_fp.cuda(), Y_fp.cuda() if args.double_debug and (X_fp.dtype != torch.long): X_fp = X_fp.double() loss_fp = model(X_fp, Y_fp) loss_fp.backward() optimizer.step_fp() optimizer.on_end_fp_steps(model) optimizer.on_start_lp_steps(model) if use_cuda: X, Y = X.cuda(), Y.cuda() # note here X is the input delta. It is suppose to be zero. if dtype != "bc": raise Exception( "This training function does not support dtype other than bc" ) optimizer.zero_grad() if model.on_site_compute: # in on site mode we need to calculate the offsets on site # as the delta is not added to offset variable yet, this is # equivalent to compute gradient for input/output at the fixed # offset model value. As optimizer step is not called, the offset # gradients wrt parameters are also not affected. if args.double_debug and (X.dtype != torch.long): X = X.double() model.set_mode(do_offset=True) fp_loss = model(X, Y) fp_loss.backward() model.set_mode(do_offset=False) optimizer.zero_grad() if X.dtype != torch.long: X = optimizer.cast_func(X) X.zero_() if args.double_debug and (X.dtype != torch.long): X = X.double() train_loss = model(X, Y) train_pred = model.output.data.cpu().numpy().argmax(axis=1) train_pred, Y = remove_dummy_classes(train_pred, Y) train_acc = np.sum(train_pred == Y.data.cpu().numpy()) / float( Y.size(0)) train_loss.backward() if model.on_site_compute: # get faster iteration without grad norm grad_norm = 0 else: grad_norm = get_grad_norm(optimizer, model) optimizer.step_lp() if total_iter % T == T - 1: optimizer.on_end_lp_steps(model) total_iter += 1 param_norm = model.get_trainable_param_squared_norm() train_loss_list.append(train_loss.item() + 0.5 * model.reg_lambda * param_norm) logger.info("train loss epoch: " + str(epoch_id) + " iter: " + str(i) + " loss: " + str(train_loss_list[-1]) + " grad_norm: " + str(grad_norm) + " acc: " + str(train_acc) + " regularizer: " + str(0.5 * model.reg_lambda * param_norm)) logger.info("Finished train epoch " + str(epoch_id)) model.eval() optimizer.on_start_fp_steps(model) eval_metric_list.append( eval_func(model, val_loader, use_cuda, dtype=dtype, args=args)) optimizer.on_end_fp_steps(model) return train_loss_list, eval_metric_list
halp-master
halp/utils/train_utils.py
halp-master
halp/utils/__init__.py
import nltk from nltk.stem import PorterStemmer import numpy as np import sys, os import torch from halp.utils.utils import set_seed from halp.utils.utils import DOUBLE_PREC_DEBUG_EPOCH_LEN, LP_DEBUG_EPOCH_LEN from torch.utils.data.dataset import Dataset import _pickle as cp import logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') DOWNLOAD_PATH = "../datasets/nltk/" nltk.data.path.append(DOWNLOAD_PATH) def download_postag_dataset(download_path): nltk.download('conll2000', download_dir=DOWNLOAD_PATH) nltk.download('universal_tagset', download_dir=DOWNLOAD_PATH) def get_dict(sentences): ps = PorterStemmer() tags = set([tag for sentence in sentences for _, tag in sentence]) words = set( [ps.stem(w) for sentence in sentences for w, _ in sentence]) tag_dict = {} word_dict = {} assert type(tags) == set assert type(words) == set for i, tag in enumerate(tags): tag_dict[tag] = i for i, word in enumerate(words): word_dict[word] = i return tag_dict, word_dict def process_conll2000_data(data_path=DOWNLOAD_PATH + "/conll2000/processed/"): os.makedirs(data_path, exist_ok=True) set_seed(0) ps = PorterStemmer() logger.info("Start processing dataset") train_sentences = nltk.corpus.conll2000.tagged_sents( "train.txt", tagset='universal') test_sentences = nltk.corpus.conll2000.tagged_sents( "test.txt", tagset='universal') tag_dict, word_dict = get_dict(train_sentences + test_sentences) train_sentences= [[(ps.stem(word[0]), word[1]) for word in sentence] for sentence in train_sentences] test_sentences= [[(ps.stem(word[0]), word[1]) for word in sentence] for sentence in test_sentences] with open(data_path + "trainset", "wb") as f: cp.dump(train_sentences, f) with open(data_path + "testset", "wb") as f: cp.dump(test_sentences, f) with open(data_path + "tag_dict", "wb") as f: cp.dump(tag_dict, f) with open(data_path + "word_dict", "wb") as f: cp.dump(word_dict, f) logger.info("Processing dataset done.") class TaggingDataset(Dataset): def __init__(self, sentences, tag_dict, word_dict): self.tag_dict, self.word_dict = tag_dict, word_dict self.words = [[self.word_dict[word] for word, _ in sentence] for sentence in sentences] self.tags = [[self.tag_dict[tag] for _, tag in sentence] for sentence in sentences] self.length = [len(x) for x in self.words] self.max_seq_length = max(self.length) logger.info("max seq length in dataset: " + str(self.max_seq_length)) # inflate the first example to make sure we # allocate enough memory for the bc layer cache self.words[0] = self.words[0] + [0] * (self.max_seq_length - len(self.words[0])) self.tags[0] = self.tags[0] + [-1] * (self.max_seq_length - len(self.tags[0])) assert len(self.words) == len(self.tags) assert len(self.words[-1]) == len(self.tags[-1]) def __getitem__(self, index): return self.words[index], self.tags[index] def __len__(self): return len(self.words) def collate_fn(data): words, tags = zip(*data) lengths = [len(x) for x in words] X = torch.zeros(len(words), max(lengths)).long() Y = -torch.ones(len(tags), max(lengths)).long() for i, (word_seq, tag_seq) in enumerate(zip(words, tags)): length = lengths[i] X[i, :length] = torch.LongTensor(word_seq) Y[i, :length] = torch.LongTensor(tag_seq) return X, Y def get_conll2000_data_loader(data_path=DOWNLOAD_PATH + "/conll2000/processed/", args=None): ''' conll2000 has 8936 train sample ''' with open(data_path + "trainset", "rb") as f: train_sentences = cp.load(f)[:8928] # to have even number of steps in each epoch for fractional epoch T runs with open(data_path + "testset", "rb") as f: test_sentences = cp.load(f) with open(data_path + "tag_dict", "rb") as f: tag_dict = cp.load(f) with open(data_path + "word_dict", "rb") as f: word_dict = cp.load(f) max_seq_length = 271 # this maximum length works for conll 2000 num_embeddings = len(word_dict) assert len(tag_dict) == args.n_classes print(len(train_sentences)) if args.double_debug: train_sentences = train_sentences[:(args.batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] test_sentences = test_sentences[:(args.batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] elif args.float_debug: train_sentences = train_sentences[:(args.batch_size * LP_DEBUG_EPOCH_LEN)] test_sentences = test_sentences[:(args.batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] train_set = TaggingDataset(train_sentences, tag_dict, word_dict) test_set = TaggingDataset(test_sentences, tag_dict, word_dict) train_data_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn) test_data_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn) return train_data_loader, test_data_loader, None, len(train_set), max_seq_length, num_embeddings if __name__ == "__main__": download_postag_dataset(DOWNLOAD_PATH) process_conll2000_data()
halp-master
halp/utils/postag_data_utils.py
import gzip import os from os import path import numpy as np import torch import sys if sys.version_info.major < 3: import urllib else: import urllib.request as request from halp.utils.utils import LP_DEBUG_EPOCH_LEN, DOUBLE_PREC_DEBUG_EPOCH_LEN DATASET_DIR = 'datasets/' MNIST_FILES = ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"] def download_file(url, local_path): dir_path = path.dirname(local_path) if not path.exists(dir_path): print("Creating the directory '%s' ..." % dir_path) os.makedirs(dir_path) print("Downloading from '%s' ..." % url) if sys.version_info.major < 3: urllib.URLopener().retrieve(url, local_path) else: request.urlretrieve(url, local_path) def download_mnist(local_path): url_root = "http://yann.lecun.com/exdb/mnist/" for f_name in MNIST_FILES: f_path = os.path.join(local_path, f_name) if not path.exists(f_path): download_file(url_root + f_name, f_path) def one_hot(x, n): if type(x) == list: x = np.array(x) x = x.flatten() o_h = np.zeros((len(x), n)) o_h[np.arange(len(x)), x] = 1 return o_h def load_mnist(ntrain=60000, ntest=10000, onehot=True): data_dir = os.path.join(DATASET_DIR, 'mnist/') if not path.exists(data_dir): download_mnist(data_dir) else: # check all files checks = [path.exists(os.path.join(data_dir, f)) for f in MNIST_FILES] if not np.all(checks): download_mnist(data_dir) with gzip.open(os.path.join(data_dir, 'train-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trX = loaded[16:].reshape((60000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) trY = loaded[8:].reshape((60000)) with gzip.open(os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teX = loaded[16:].reshape((10000, 28 * 28)).astype(float) with gzip.open(os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')) as fd: buf = fd.read() loaded = np.frombuffer(buf, dtype=np.uint8) teY = loaded[8:].reshape((10000)) trX /= 255. teX /= 255. trX = trX[:ntrain] trY = trY[:ntrain] teX = teX[:ntest] teY = teY[:ntest] if onehot: trY = one_hot(trY, 10) teY = one_hot(teY, 10) else: trY = np.asarray(trY) teY = np.asarray(teY) return trX, teX, trY, teY def get_mnist_data_loader(onehot=False, batch_size=1, args=None): LP_DEBUG = args.float_debug DOUBLE_PREC_DEBUG = args.double_debug X_train, X_val, Y_train, Y_val = load_mnist(onehot=False) X_train, X_val = torch.FloatTensor(X_train), torch.FloatTensor(X_val) Y_train, Y_val = torch.LongTensor(Y_train), torch.LongTensor(Y_val) if LP_DEBUG: X_train = X_train[:(batch_size * LP_DEBUG_EPOCH_LEN)] X_val = X_val[:(batch_size * LP_DEBUG_EPOCH_LEN)] Y_train = Y_train[:(batch_size * LP_DEBUG_EPOCH_LEN)] Y_val = Y_val[:(batch_size * LP_DEBUG_EPOCH_LEN)] elif DOUBLE_PREC_DEBUG: X_train = X_train[:(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] X_val = X_val[:(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] Y_train = Y_train[:(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] Y_val = Y_val[:(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)] train_data = \ torch.utils.data.TensorDataset(X_train, Y_train) train_loader = torch.utils.data.DataLoader( train_data, batch_size=batch_size, shuffle=False) val_data = \ torch.utils.data.TensorDataset(X_val, Y_val) val_loader = torch.utils.data.DataLoader( val_data, batch_size=batch_size, shuffle=False) input_shape = (batch_size,) + X_train.shape[1:] args.T = len(train_loader) return train_loader, val_loader, input_shape, X_train.shape[0]
halp-master
halp/utils/mnist_data_utils.py
import torch import numpy as np import ctypes from unittest import TestCase import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') # DOUBLE_PREC_DEBUG = False DOUBLE_PREC_DEBUG_EPOCH_LEN = 3 # LP_DEBUG = False LP_DEBUG_EPOCH_LEN = 3 def single_to_half_det(tensor): return tensor.half() def single_to_half_stoc(tensor): if tensor.dtype == torch.half: return tensor.clone() assert tensor.dtype == torch.float value = tensor.data.clone().cpu().numpy().astype(np.float32) value = np.ascontiguousarray(value) value_shape = value.shape value_ptr = value.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) value_int = np.ctypeslib.as_array(value_ptr, shape=value_shape) sign_before = np.bitwise_and( value_int, np.array(int("0x80000000", 16)).astype(np.int32)) mantissa_rand = np.random.randint( low=0, high=int("0x80000000", 16), size=value.shape, dtype=np.int32) # only keeping the last 13 bit mantissa as random bit seq mantissa_rand = np.bitwise_and( mantissa_rand, np.array(int("0x00001FFF", 16)).astype(np.int32)) value_int += mantissa_rand sign_after = np.bitwise_and( value_int, np.array(int("0x80000000", 16)).astype(np.int32)) # if exponent is larger than the max range for fp32 # we saturate at the largest value for fp32. # This is very unlikely to happen pos_overflow = np.logical_and(sign_before == 0, sign_after != 0) neg_overflow = np.logical_and(sign_before != 0, sign_after == 0) # add the random addition, and then round towards 0 to achieve the stochastic rounding assert value_int.flags["C_CONTIGUOUS"] value_stoc = np.bitwise_and( value_int, np.array(int("0xFFFFE000", 16)).astype(np.int32)) value_ptr_stoc = value_stoc.ctypes.data_as(ctypes.POINTER(ctypes.c_float)) value_lp = np.ctypeslib.as_array(value_ptr_stoc, shape=value_shape) value_lp = value_lp.astype(np.float16) # deal with the saturation on fp16 value_lp[value_lp == np.inf] = np.finfo(dtype=np.float16).max value_lp[value_lp == -np.inf] = np.finfo(dtype=np.float16).min value_lp[pos_overflow] = np.finfo(dtype=np.float16).max value_lp[neg_overflow] = np.finfo(dtype=np.float16).min output = torch.HalfTensor(value_lp) if tensor.is_cuda: output = output.cuda() return output def void_cast_func(tensor): return tensor.clone() def get_recur_attr(obj, attr_str_list): if len(attr_str_list) == 0: return obj else: sub_obj = getattr(obj, attr_str_list[0]) return get_recur_attr(sub_obj, attr_str_list[1:]) def void_func(): pass def set_seed(seed): np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) def copy_layer_weights(layer_old, layer_new): layer_new.weight.data.copy_(layer_old.weight) if hasattr(layer_new, "bias") and hasattr(layer_old, "bias") and (layer_new.bias is not None): layer_new.bias.data.copy_(layer_old.bias) # copy bn stats if hasattr(layer_new, 'running_mean'): layer_new.running_mean.data.copy_(layer_old.running_mean) if hasattr(layer_new, 'running_var'): layer_new.running_var.data.copy_(layer_old.running_var) return layer_new def copy_model_weights(model_old, model_new): # model old is the native pytorch model, while the model_new is a model using our implementation for name, param in model_old.named_parameters(): if name not in model_new.state_dict().keys(): continue old_param = get_recur_attr(model_old, name.split(".")) new_param = get_recur_attr(model_new, name.split(".")) new_param.data.copy_(old_param.data) def copy_module_weights(module_old, module_new): for name, param in module_new.named_parameters(): old_param = get_recur_attr(module_old, name.split(".")) new_param = get_recur_attr(module_new, name.split(".")) new_param.data.copy_(old_param.data) return module_new class UtilityTest(TestCase): def test_single_to_half_stoc(self): # assert overflow in single precision level is properly handled np.random.seed(1) t = np.ones((1000, 1000)) * np.finfo(dtype=np.float32).max t_out = single_to_half_stoc(torch.FloatTensor(t)) assert (t_out.cpu().numpy() == np.finfo(dtype=np.float16).max).all() t = np.ones((1000, 1000)) * np.finfo(dtype=np.float32).min t_out = single_to_half_stoc(torch.FloatTensor(t)) assert (t_out.cpu().numpy() == np.finfo(dtype=np.float16).min).all() # assert overflow in half precsision level is property handled t = np.ones((1000, 1000)) * np.finfo(dtype=np.float16).max + 1.0 t_out = single_to_half_stoc(torch.FloatTensor(t)) assert (t_out.cpu().numpy() == np.finfo(dtype=np.float16).max).all() t = np.ones((1000, 1000)) * np.finfo(dtype=np.float16).min - 1.0 t_out = single_to_half_stoc(torch.FloatTensor(t)) assert (t_out.cpu().numpy() == np.finfo(dtype=np.float16).min).all() # assert the probability to the left and right side # present the right ratio np.random.seed(2) cubic_size = 100 n_trial = 1000 t_np = np.random.randn(*[cubic_size, cubic_size]).astype(np.float32) t = torch.FloatTensor(t_np) res = np.zeros((n_trial, cubic_size, cubic_size)).astype(np.float16) for i in range(n_trial): output = single_to_half_stoc(t) assert output.dtype == torch.float16 res[i, :, :] = output.cpu().numpy() for i in range(cubic_size): for j in range(cubic_size): assert np.unique(res[:, i, j]).size <= 2 if np.unique(res[:, i, j]).size == 2: upper = np.max(np.unique(res[:, i, j])) lower = np.min(np.unique(res[:, i, j])) orig = t_np[i, j] upper_cnt = np.sum(res[:, i, j] == upper) lower_cnt = np.sum(res[:, i, j] == lower) ratio_cnt = float(upper_cnt) / float(lower_cnt) ratio_val = (orig - lower) / (upper - orig) # we use a very loose ratio error to test here # so that it is unlikely to fail due to # extreme samples. Finer grain confirmation can be done using # the following two print. if ratio_cnt >= 2: assert ratio_val > 1 elif ratio_cnt < 0.5: assert ratio_val < 1 logger.info("stochastic rounding test passed!") def test_single_to_half_det(self): pass if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/utils/utils.py
import torch import torchvision import torchvision.transforms as transforms import numpy as np from halp.utils.utils import LP_DEBUG_EPOCH_LEN, DOUBLE_PREC_DEBUG_EPOCH_LEN import sys import logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') def get_cifar10_data_loader(batch_size=128, args=None): print('==> Preparing data..') LP_DEBUG = args.float_debug DOUBLE_PREC_DEBUG = args.double_debug transform_train = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) if DOUBLE_PREC_DEBUG: trainset = torch.utils.data.Subset(trainset, np.arange(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)) elif LP_DEBUG: trainset = torch.utils.data.Subset(trainset, np.arange(batch_size * LP_DEBUG_EPOCH_LEN)) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False, num_workers=1) args.T = len(trainloader) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) test_batch_size = 100 if DOUBLE_PREC_DEBUG: testset = torch.utils.data.Subset(testset, np.arange(batch_size * DOUBLE_PREC_DEBUG_EPOCH_LEN)) test_batch_size = args.batch_size elif LP_DEBUG: testset = torch.utils.data.Subset(testset, np.arange(batch_size * LP_DEBUG_EPOCH_LEN)) test_batch_size = args.batch_size testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=False, num_workers=1) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') input_shape = (batch_size, 3, 32, 32) return trainloader, testloader, input_shape, len(trainset)
halp-master
halp/utils/cifar_data_utils.py
import torch import numpy as np from torch.autograd import Variable # from halp.utils.test_utils import assert_model_grad_equal from halp.utils.utils import get_recur_attr from halp.utils.utils import single_to_half_det, single_to_half_stoc, void_cast_func from halp.utils.utils import copy_model_weights, set_seed from halp.utils.test_utils import HalpTest class BitCenterModelTest(HalpTest): """ Test whether it gives the same fw bw output given the same input In this test, we compare to the original LeNet implementation We test with a epoch with 2 minibatches, we compare the output between fp32 model and fp32 bc model """ def get_config(self): pass def get_models(self, n_minibatch, batch_size, n_class): pass def get_inputs(self, n_minibatch, batch_size, n_class): pass def assert_model_grad_equal(self, model1, model2, model2_is_bc=False): # we assume all model1's params can be found in model2 for name, param in model1.named_parameters(): if name.endswith("_lp") or name.endswith("_delta"): continue if name not in model2.state_dict().keys(): continue old_param = get_recur_attr(model1, name.split(".")) new_param = get_recur_attr(model2, name.split(".")) if old_param.requires_grad and new_param.requires_grad: if model2_is_bc: new_param_delta = get_recur_attr(model2, (name + "_delta").split(".")) np.testing.assert_allclose(old_param.grad.data.cpu().numpy(), new_param.grad.data.cpu().numpy() + new_param_delta.grad.data.cpu().numpy()) else: np.testing.assert_allclose(old_param.grad.data.cpu().numpy(), new_param.grad.data.cpu().numpy()) def test_fw_bw_output(self): set_seed(0) config = self.get_config() native_model, fp_model, lp_model, bc_model = self.get_models(**config) x_list, y_list = self.get_inputs(**config) # check fp forward criterion = torch.nn.CrossEntropyLoss() # for native model bc_model.set_mode(do_offset=True) n_minibatch = config["n_minibatch"] for i in range(n_minibatch): output_native = native_model(x_list[i]) loss_native = criterion(output_native, y_list[i]).detach() loss_fp = fp_model(x_list[i], y_list[i]).detach() loss_lp = lp_model(x_list[i], y_list[i]).detach() loss_bc = bc_model(x_list[i], y_list[i]) loss_bc.backward() self.check_layer_status(bc_model, do_offset=True) # print("fp loss ", loss_native.item(), loss_fp.item(), loss_lp.item(), loss_bc.item()) np.testing.assert_allclose( np.array(loss_native.item()), np.array(loss_fp.item())) np.testing.assert_allclose( np.array(loss_fp.item()), np.array(loss_lp.item())) np.testing.assert_allclose( np.array(loss_lp.item()), np.array(loss_bc.item())) bc_model.set_mode(do_offset=False) for i in range(n_minibatch): output_native = native_model(x_list[i]) loss_native = criterion(output_native, y_list[i]) loss_native.backward() loss_fp = fp_model(x_list[i], y_list[i]) loss_fp.backward() loss_lp = lp_model(x_list[i], y_list[i]) loss_lp.backward() self.check_layer_status(bc_model, do_offset=False) loss_bc = bc_model(torch.zeros_like(x_list[i]), y_list[i]) self.check_layer_status(bc_model, do_offset=False) loss_bc.backward() np.testing.assert_allclose( np.array(loss_native.item()), np.array(loss_fp.item())) np.testing.assert_allclose( np.array(loss_fp.item()), np.array(loss_lp.item())) np.testing.assert_allclose( np.array(loss_lp.item()), np.array(loss_bc.item())) if i == n_minibatch - 1: # we only test the gradient for the last minibatch because the gradient offset # changes across minibatch self.assert_model_grad_equal(native_model, fp_model) self.assert_model_grad_equal(fp_model, lp_model) self.assert_model_grad_equal(lp_model, bc_model, model2_is_bc=True) if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/models/model_test.py
halp-master
halp/models/__init__.py
import torch import numpy as np from torch.autograd import Variable from halp.utils.utils import single_to_half_det, single_to_half_stoc, void_cast_func from halp.utils.utils import copy_model_weights, set_seed from unittest import TestCase from halp.utils.test_utils import HalpTest from halp.models.lenet import LeNet_PyTorch, LeNet from halp.models.model_test import BitCenterModelTest class LeNetTest(BitCenterModelTest, TestCase): def get_config(self): config = {} config["batch_size"] = 5 config["n_minibatch"] = 6 config["n_class"] = 10 return config def get_models(self, n_minibatch, batch_size, n_class): n_train_sample = batch_size * n_minibatch native_model = LeNet_PyTorch().cuda().double() fp_model = LeNet( cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="fp").cuda().double() copy_model_weights(native_model, fp_model) lp_model = LeNet( cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="lp").cuda().double() copy_model_weights(native_model, lp_model) bc_model = LeNet( cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="bc").double() copy_model_weights(native_model, bc_model) return native_model, fp_model, lp_model, bc_model def get_inputs(self, n_minibatch, batch_size, n_class): x_list = [] y_list = [] for i in range(n_minibatch): x_list.append( torch.nn.Parameter( torch.randn(batch_size, 3, 32, 32, dtype=torch.float).cuda(), requires_grad=True).cuda().double()) y_list.append(torch.LongTensor(batch_size).random_(n_class).cuda()) return x_list, y_list def check_layer_status(self, bc_model, do_offset=True): assert bc_model.conv1.do_offset == do_offset assert bc_model.relu1.do_offset == do_offset assert bc_model.max_pool1.do_offset == do_offset assert bc_model.conv2.do_offset == do_offset assert bc_model.relu2.do_offset == do_offset assert bc_model.max_pool2.do_offset == do_offset assert bc_model.fc1.do_offset == do_offset assert bc_model.relu3.do_offset == do_offset assert bc_model.fc2.do_offset == do_offset assert bc_model.relu4.do_offset == do_offset assert bc_model.fc3.do_offset == do_offset assert bc_model.criterion.do_offset == do_offset if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/models/lenet_test.py
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from halp.utils.utils import single_to_half_det, single_to_half_stoc, copy_layer_weights from halp.utils.utils import void_cast_func, get_recur_attr from halp.layers.bit_center_layer import BitCenterModule from halp.layers.linear_layer import BitCenterLinear from halp.layers.cross_entropy import BitCenterCrossEntropy from halp.layers.conv_layer import BitCenterConv2D from halp.layers.relu_layer import BitCenterReLU from halp.layers.pool_layer import BitCenterMaxPool2D class LeNet_PyTorch(nn.Module): def __init__(self): super(LeNet_PyTorch, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return out class LeNet(BitCenterModule): def __init__(self, reg_lambda=0.0, dtype="bc", cast_func=void_cast_func, n_train_sample=1): super(LeNet, self).__init__() self.cast_func = cast_func self.n_train_sample = n_train_sample self.reg_lambda = reg_lambda self.dtype = dtype # setup layers self.conv1 = BitCenterConv2D( in_channels=3, out_channels=6, kernel_size=(5, 5), bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.relu1 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.max_pool1 = BitCenterMaxPool2D( kernel_size=(2, 2), cast_func=cast_func, n_train_sample=n_train_sample) self.conv2 = BitCenterConv2D( in_channels=6, out_channels=16, kernel_size=(5, 5), bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.relu2 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.max_pool2 = BitCenterMaxPool2D( kernel_size=(2, 2), cast_func=cast_func, n_train_sample=n_train_sample) self.fc1 = BitCenterLinear( in_features=16 * 5 * 5, out_features=120, bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.relu3 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.fc2 = BitCenterLinear( in_features=120, out_features=84, bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.relu4 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.fc3 = BitCenterLinear( in_features=84, out_features=10, bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.criterion = BitCenterCrossEntropy( cast_func=cast_func, n_train_sample=n_train_sample) if dtype == "bc": pass elif (dtype == "fp") or (dtype == "lp"): self.conv1 = copy_layer_weights(self.conv1, nn.Conv2d(3, 6, 5)) self.conv2 = copy_layer_weights(self.conv2, nn.Conv2d(6, 16, 5)) self.fc1 = copy_layer_weights(self.fc1, nn.Linear(16 * 5 * 5, 120)) self.fc2 = copy_layer_weights(self.fc2, nn.Linear(120, 84)) self.fc3 = copy_layer_weights(self.fc3, nn.Linear(84, 10)) self.relu1 = nn.ReLU() self.relu2 = nn.ReLU() self.relu3 = nn.ReLU() self.relu4 = nn.ReLU() self.max_pool1 = nn.MaxPool2d(kernel_size=2) self.max_pool2 = nn.MaxPool2d(kernel_size=2) self.criterion = nn.CrossEntropyLoss(size_average=True) if dtype == "lp": if self.cast_func == void_cast_func: pass else: for child in self.children(): child.half() else: raise Exception(dtype + " is not supported in LeNet!") def forward(self, x, y, test=False): out = self.relu1(self.conv1(x)) out = self.max_pool1(out) out = self.relu2(self.conv2(out)) out = self.max_pool2(out) out = out.view(out.size(0), -1) out = self.relu3(self.fc1(out)) out = self.relu4(self.fc2(out)) out = self.fc3(out) self.output = out if test: return out else: self.loss = self.criterion(out, y) if isinstance(self.criterion, BitCenterCrossEntropy) \ and self.criterion.do_offset == False: self.output = self.output + self.criterion.input_lp return self.loss def check_layer_status(self, do_offset=True): assert self.conv1.do_offset == do_offset assert self.relu1.do_offset == do_offset assert self.max_pool1.do_offset == do_offset assert self.conv2.do_offset == do_offset assert self.relu2.do_offset == do_offset assert self.max_pool2.do_offset == do_offset assert self.fc1.do_offset == do_offset assert self.relu3.do_offset == do_offset assert self.fc2.do_offset == do_offset assert self.relu4.do_offset == do_offset assert self.fc3.do_offset == do_offset assert self.criterion.do_offset == do_offset def predict(self, x): output = self.forward(x, y=None, test=True) pred = output.data.cpu().numpy().argmax(axis=1) return pred, output
halp-master
halp/models/lenet.py
import torch import numpy as np from torch.autograd import Variable import halp.utils.utils from halp.utils.utils import single_to_half_det, single_to_half_stoc from halp.models.logistic_regression import LogisticRegression from unittest import TestCase class LeNetTest(TestCase): def test_logistic_regression_grad(self): n_sample = 4 n_dim = 3 n_class = 4 X = Variable(torch.DoubleTensor(np.random.normal(size=(n_sample, n_dim) ) ) ) Y = Variable(torch.LongTensor(np.array([0, 1, 3, 2] ) ) ) regressor = LogisticRegression(input_dim=n_dim, n_class=n_class, reg_lambda=100.0, dtype="fp") regressor.double() loss1 = regressor.forward(X, Y) loss_diff = 0.0 move = 1e-9 loss1.backward() for w in regressor.parameters(): loss_diff += torch.sum(w.grad.data * move) for w in regressor.parameters(): w.data += move loss2 = regressor.forward(X, Y) assert np.abs((loss2.item() - loss1.item() ) - loss_diff) < 1e-9 print("logistic regression gradient test done!") if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/models/logistic_regression_test.py
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from halp.utils.utils import single_to_half_det, single_to_half_stoc from halp.utils.utils import copy_layer_weights, copy_module_weights from halp.utils.utils import void_cast_func, get_recur_attr from halp.layers.bit_center_layer import BitCenterModule from halp.layers.bit_center_layer import BitCenterSequential from halp.layers.linear_layer import BitCenterLinear from halp.layers.cross_entropy import BitCenterCrossEntropy from halp.layers.conv_layer import BitCenterConv2D from halp.layers.relu_layer import BitCenterReLU from halp.layers.pool_layer import BitCenterAvgPool2D from halp.layers.batch_norm_layer import BitCenterBatchNorm2D import sys import logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d( in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes)) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet_PyTorch(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet_PyTorch, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d( 3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out class BitCenterBasicBlock(BitCenterModule): expansion = 1 def __init__(self, in_planes, planes, stride=1, cast_func=void_cast_func, n_train_sample=1): super(BitCenterBasicBlock, self).__init__() self.conv1 = BitCenterConv2D( in_planes, planes, kernel_size=(3, 3), stride=stride, padding=1, bias=False, cast_func=cast_func, n_train_sample=n_train_sample) self.bn1 = BitCenterBatchNorm2D( planes, cast_func=cast_func, n_train_sample=n_train_sample) self.relu1 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.conv2 = BitCenterConv2D( planes, planes, kernel_size=(3, 3), stride=1, padding=1, bias=False, cast_func=cast_func, n_train_sample=n_train_sample) self.bn2 = BitCenterBatchNorm2D( planes, cast_func=cast_func, n_train_sample=n_train_sample) self.relu2 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.shortcut = BitCenterSequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = BitCenterSequential( BitCenterConv2D( in_planes, self.expansion * planes, kernel_size=(1, 1), stride=stride, bias=False, cast_func=cast_func, n_train_sample=n_train_sample), BitCenterBatchNorm2D( self.expansion * planes, cast_func=cast_func, n_train_sample=n_train_sample)) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out += self.shortcut(x) out = self.relu2(out) return out class ResNet(BitCenterModule): def __init__(self, block, num_blocks, num_classes=10, reg_lambda=0.0, dtype="bc", fine_tune=False, cast_func=void_cast_func, n_train_sample=1): super(ResNet, self).__init__() self.in_planes = 64 self.reg_lambda = reg_lambda self.dtype = dtype self.fine_tune = fine_tune self.cast_func = cast_func self.n_train_sample = n_train_sample self.conv1 = BitCenterConv2D( 3, 64, kernel_size=(3, 3), stride=1, padding=1, bias=False, cast_func=cast_func, n_train_sample=n_train_sample) self.bn1 = BitCenterBatchNorm2D( 64, cast_func=cast_func, n_train_sample=n_train_sample) self.relu1 = BitCenterReLU( cast_func=cast_func, n_train_sample=n_train_sample) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = BitCenterAvgPool2D( kernel_size=(4, 4), cast_func=cast_func, n_train_sample=n_train_sample) self.linear = BitCenterLinear( 512 * block.expansion, num_classes, bias=True, cast_func=cast_func, n_train_sample=n_train_sample) self.criterion = BitCenterCrossEntropy( cast_func=cast_func, n_train_sample=n_train_sample) if dtype == "bc" and not self.fine_tune: pass elif (dtype == "fp") or (dtype == "lp") or (self.fine_tune): # for fp and lp models, we use the origianl pytorch modules # reset initial inplanes self.in_planes = 64 self.conv1 = copy_module_weights( self.conv1, nn.Conv2d( 3, self.in_planes, kernel_size=3, stride=1, padding=1, bias=False)) self.bn1 = copy_module_weights(self.bn1, nn.BatchNorm2d(64)) self.relu1 = copy_module_weights(self.relu1, nn.ReLU()) self.layer1 = copy_module_weights( self.layer1, ResNet_PyTorch._make_layer( self, BasicBlock, 64, num_blocks[0], stride=1)) self.layer2 = copy_module_weights( self.layer2, ResNet_PyTorch._make_layer( self, BasicBlock, 128, num_blocks[1], stride=2)) self.layer3 = copy_module_weights( self.layer3, ResNet_PyTorch._make_layer( self, BasicBlock, 256, num_blocks[2], stride=2)) self.layer4 = copy_module_weights( self.layer4, ResNet_PyTorch._make_layer( self, BasicBlock, 512, num_blocks[3], stride=2)) self.avg_pool = copy_module_weights( self.avg_pool, nn.AvgPool2d(kernel_size=(4, 4))) if self.fine_tune: if self.cast_func == void_cast_func: # this branch is only for test purpose pass else: for module_name, child in self.named_children(): if module_name not in ["linear.", "criterion."]: child.half() # turn off gradient for the rest of the models for name, param in self.named_parameters(): if not (name.startswith("linear.") or name.startswith("criterion.")): param.requires_grad = False if dtype != "bc": self.linear = copy_module_weights( self.linear, nn.Linear(512 * BasicBlock.expansion, num_classes)) self.criterion = copy_module_weights( self.criterion, nn.CrossEntropyLoss(size_average=True)) if dtype == "lp": if self.cast_func == void_cast_func: pass else: for child in self.children(): child.half() else: raise Exception(dtype + " is not supported in LeNet!") for name, param in self.named_parameters(): logger.info("Resnet check requires grad " + name + " " + str(param.requires_grad) + " " + str(param.size())) def setup_swap_bn_running_stat_swap(self): self.running_stat = {} self.running_stat_swap = {} for name, param in self.state_dict().items(): if (".running_mean" in name) or (".running_var" in name): assert param.requires_grad == False self.running_stat[name] = param.data # as the value of the swap does not matter, we set the to 1. self.running_stat_swap[name] = torch.ones_like(param) assert self.running_stat[name].data_ptr() != self.running_stat_swap[name].data_ptr() def set_running_stat_param(self, stat_dict): for name, param in self.state_dict().items(): if (".running_mean" in name) or (".running_var" in name): assert param.requires_grad == False stat = get_recur_attr(self, name.split(".")) if stat.is_cuda: stat.data = stat_dict[name].type(stat.dtype).cuda() else: stat.data = stat_dict[name].type(stat.dtype).cpu() def fix_running_stat(self): # protect the running stat from being updated for multiple # times in each iterations. This is because the SVRG optimizer # call closure for 3 times, each can update the running statistics # this is only used for lp anf fp model, not for bc model. # for the case of fine tuning, we don't use this function. # We set to eval mode for training in the forward function assert self.dtype != "bc" and not self.fine_tune # as the running stat memory is changing all the time, # every time we swap on dummy stat, we need to save # the original stat self.setup_swap_bn_running_stat_swap() self.set_running_stat_param(self.running_stat_swap) def free_running_stat(self): assert self.dtype != "bc" and not self.fine_tune self.set_running_stat_param(self.running_stat) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append( block(self.in_planes, planes, stride, self.cast_func, self.n_train_sample)) self.in_planes = planes * block.expansion return BitCenterSequential(*layers) def set_bn_mode(self, module, do_eval=True): for name, child in module.named_children(): if not isinstance(child, nn.BatchNorm2d): self.set_bn_mode(child, do_eval=do_eval) else: child.eval() def forward(self, x, y, test=False): if self.fine_tune: # sync the input type with the layer param type x = x.type(self.conv1.weight.dtype) self.set_bn_mode(self, do_eval=True) out = self.relu1(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) # if in fine tune lp step mode, the delta are always # 0 as the lower layers output are fixed, as a consequence # of the lower layers being fixed. if self.fine_tune: if self.dtype == "bc" and self.do_offset == False: out = torch.zeros_like(out) out = self.cast_func(out) else: out = out.type(self.linear.weight.dtype) out = self.linear(out) self.output = out if test: return out else: self.loss = self.criterion(out, y) if isinstance(self.criterion, BitCenterCrossEntropy) \ and self.criterion.do_offset == False: # this is for the case where we want to get full output # in the do_offset = False mode. self.output = self.output + self.criterion.input_lp return self.loss def predict(self, x): output = self.forward(x, y=None, test=True) pred = output.data.cpu().numpy().argmax(axis=1) return pred, output def ResNet18(reg_lambda, cast_func, n_train_sample, dtype, fine_tune, num_classes=10): return ResNet( BitCenterBasicBlock, [2, 2, 2, 2], reg_lambda=reg_lambda, cast_func=cast_func, n_train_sample=n_train_sample, dtype=dtype, fine_tune=fine_tune, num_classes=num_classes)
halp-master
halp/models/resnet.py
import torch import numpy as np from torch.autograd import Variable from halp.utils.utils import single_to_half_det, single_to_half_stoc, void_cast_func from halp.layers.bit_center_layer import BitCenterModule from halp.layers.linear_layer import BitCenterLinear from halp.layers.cross_entropy import BitCenterCrossEntropy class LogisticRegression(BitCenterModule): def __init__(self, input_dim, n_class, reg_lambda, dtype="bc", cast_func=void_cast_func, n_train_sample=1): super(LogisticRegression, self).__init__() self.input_dim = input_dim self.n_class = n_class self.reg_lambda = reg_lambda self.linear = \ BitCenterLinear(self.input_dim, out_features=self.n_class, cast_func=cast_func, n_train_sample=n_train_sample) self.criterion = \ BitCenterCrossEntropy(cast_func=cast_func, n_train_sample=n_train_sample) self.cast_func = cast_func if dtype == "bc": pass elif (dtype == "fp") or (dtype == "lp"): # we use the copied weights to guarantee same initialization # across different dtype when using the same random seed linear_tmp = self.linear self.linear = torch.nn.Linear(self.input_dim, out_features=self.n_class) self.criterion = torch.nn.CrossEntropyLoss(size_average=True) self.linear.weight.data.copy_(linear_tmp.weight) self.linear.bias.data.copy_(linear_tmp.bias) if dtype == "lp": if self.cast_func == void_cast_func: pass else: self.linear.half() self.criterion.half() else: raise Exception("dtype not supported") self.dtype = dtype def forward(self, x, y, test=False): if len(list(x.size())) != 2: x = x.view(x.size(0), -1) self.output = self.linear(x) if len(list(y.size() ) ) == 2: y = y.squeeze() if test: return self.output else: self.loss = self.criterion(self.output, y) if isinstance(self.criterion, BitCenterCrossEntropy) \ and self.criterion.do_offset == False: self.output = self.output + self.criterion.input_lp return self.loss def predict(self, x): if len(list(x.size())) != 2: x = x.view(x.size(0), -1) output = self.linear(x) if isinstance(self.linear, BitCenterLinear): assert self.linear.do_offset == True pred = output.data.cpu().numpy().argmax(axis=1) return pred, output
halp-master
halp/models/logistic_regression.py
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.autograd import Variable from halp.utils.utils import single_to_half_det, single_to_half_stoc from halp.utils.utils import copy_layer_weights, copy_module_weights from halp.utils.utils import void_cast_func, get_recur_attr from halp.layers.bit_center_layer import BitCenterModule, BitCenterModuleList from halp.layers.linear_layer import BitCenterLinear from halp.layers.cross_entropy import BitCenterCrossEntropy from halp.layers.sigmoid_layer import BitCenterSigmoid from halp.layers.tanh_layer import BitCenterTanh from halp.layers.embedding import BitCenterEmbedding from halp.layers.ele_mult import BitCenterEleMult import sys import logging logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') class BitCenterLSTMCell(BitCenterModule, nn.LSTMCell): ''' Implementation of the LSTM cell ''' def __init__(self, input_size, hidden_size, bias=True, cast_func=void_cast_func, n_train_sample=1): BitCenterModule.__init__(self) self.input_size = input_size self.hidden_size = hidden_size self.bias = bias self.cast_func = cast_func self.n_train_sample = n_train_sample # we process the input and last hidden state in a batch for the 4 gates self.input_linear = BitCenterLinear( input_size, hidden_size * 4, bias=self.bias, cast_func=cast_func, n_train_sample=n_train_sample) self.hidden_linear = BitCenterLinear( hidden_size, hidden_size * 4, bias=self.bias, cast_func=cast_func, n_train_sample=n_train_sample) # sync the parameter name with the standard parameters self.weight_ih = Parameter(self.input_linear.weight.clone(), requires_grad=True) self.weight_hh = Parameter(self.hidden_linear.weight.clone(), requires_grad=True) self.weight_ih_lp = Parameter(self.input_linear.weight_lp.clone(), requires_grad=True) self.weight_hh_lp = Parameter(self.hidden_linear.weight_lp.clone(), requires_grad=True) self.weight_ih_delta = Parameter(self.input_linear.weight_delta.clone(), requires_grad=True) self.weight_hh_delta = Parameter(self.hidden_linear.weight_delta.clone(), requires_grad=True) self.input_linear.weight = self.weight_ih self.hidden_linear.weight = self.weight_hh self.input_linear.weight_lp = self.weight_ih_lp self.hidden_linear.weight_lp = self.weight_hh_lp self.input_linear.weight_delta = self.weight_ih_delta self.hidden_linear.weight_delta = self.weight_hh_delta if self.bias: self.bias_ih = Parameter(self.input_linear.bias.clone(), requires_grad=True) self.bias_hh = Parameter(self.hidden_linear.bias.clone(), requires_grad=True) self.bias_ih_lp = Parameter(self.input_linear.bias_lp.clone(), requires_grad=True) self.bias_hh_lp = Parameter(self.hidden_linear.bias_lp.clone(), requires_grad=True) self.bias_ih_delta = Parameter(self.input_linear.bias_delta.clone(), requires_grad=True) self.bias_hh_delta = Parameter(self.hidden_linear.bias_delta.clone(), requires_grad=True) self.input_linear.bias = self.bias_ih self.hidden_linear.bias = self.bias_hh self.input_linear.bias_lp = self.bias_ih_lp self.hidden_linear.bias_lp = self.bias_hh_lp self.input_linear.bias_delta = self.bias_ih_delta self.hidden_linear.bias_delta = self.bias_hh_delta # for the naming of the symbols like i, f, g, o, please refer to # https://pytorch.org/docs/stable/nn.html#torch.nn.LSTMCell self.i_activation = BitCenterSigmoid( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.f_activation = BitCenterSigmoid( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.g_activation = BitCenterTanh( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.o_activation = BitCenterSigmoid( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.f_c_mult = BitCenterEleMult( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.i_g_mult = BitCenterEleMult( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.c_prime_activation = BitCenterTanh( cast_func=self.cast_func, n_train_sample=self.n_train_sample) self.o_c_prime_mult = BitCenterEleMult( cast_func=self.cast_func, n_train_sample=self.n_train_sample) def forward(self, x, state): h, c = state trans_input = self.input_linear(x) trans_hidden = self.hidden_linear(h) out = trans_input + trans_hidden i = self.i_activation(out[:, 0:self.hidden_size]) f = self.f_activation(out[:, self.hidden_size:(2 * self.hidden_size)]) g = self.g_activation( out[:, (2 * self.hidden_size):(3 * self.hidden_size)]) o = self.o_activation(out[:, 3 * self.hidden_size:]) c_prime = self.f_c_mult(f, c) + self.i_g_mult(i, g) c_prime_act = self.c_prime_activation(c_prime) h_prime = self.o_c_prime_mult(o, c_prime_act) return (h_prime, c_prime) def copy_lstm_cell_weights(src, tar): # source is bitcenter LSTM cell, tar is the conventional tar_state_dict = tar.state_dict() for name_src, p_src in src.named_parameters(): if name_src in tar_state_dict.keys(): tar_state_dict[name_src].data.copy_(p_src.data) return tar def copy_lstm_weights_to_lstm_cell(src, tar): tar.weight_ih.data.copy_(src.weight_ih_l0) tar.weight_hh.data.copy_(src.weight_hh_l0) tar.bias_ih.data.copy_(src.bias_ih_l0) tar.bias_hh.data.copy_(src.bias_hh_l0) return tar class LSTMTagger(nn.Module): def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size): super(LSTMTagger, self).__init__() self.hidden_dim = hidden_dim self.embedding = nn.Embedding(vocab_size, embedding_dim) # The LSTM takes word embeddings as inputs, and outputs hidden states # with dimensionality hidden_dim. self.lstm = nn.LSTM(embedding_dim, hidden_dim) # The linear layer that maps from hidden state space to tag space self.linear = nn.Linear(hidden_dim, tagset_size) def init_hidden(self, sentence): # Before we've done anything, we dont have any hidden state. # Refer to the Pytorch documentation to see exactly # why they have this dimensionality. # The axes semantics are (num_layers, minibatch_size, hidden_dim) batch_size = sentence.size(1) return (torch.zeros(1, batch_size, self.hidden_dim, dtype=self.embedding.weight.dtype, device=self.embedding.weight.device), torch.zeros(1, batch_size, self.hidden_dim, dtype=self.embedding.weight.dtype, device=self.embedding.weight.device)) def forward(self, sentence): self.hidden = self.init_hidden(sentence) embeds = self.embedding(sentence) lstm_out, self.hidden = self.lstm(embeds, self.hidden) tag_space = self.linear(lstm_out.view(-1, self.hidden_dim)) return tag_space class BitCenterLSTMTagger(BitCenterModule): def __init__(self, num_embeddings, embedding_dim, hidden_size, cast_func=void_cast_func, n_classes=10, n_train_sample=1, seq_length=1, reg_lambda=0.0, dtype="bc"): BitCenterModule.__init__(self) self.cast_func = cast_func self.n_train_sample = n_train_sample self.n_classes = n_classes self.dtype = dtype self.reg_lambda = reg_lambda self.seq_length = seq_length # this is the maximum length the model can handle self.do_offset = True self.embedding = BitCenterEmbedding( num_embeddings=num_embeddings, embedding_dim=embedding_dim, cast_func=cast_func, n_train_sample=n_train_sample) self.lstm_cell = BitCenterModuleList([]) # we use multiple lstm cells to easily # utilize the caching features of each cell for seq of length > 1 for i in range(seq_length): self.lstm_cell.append( BitCenterLSTMCell( input_size=embedding_dim, hidden_size=hidden_size, bias=True, cast_func=cast_func, n_train_sample=n_train_sample)) # note here we need to make n_train_sample = n sample * seq length # this is because BitCenterLinear can only process 2D input. We need # to set n_train_sample like this to make sure the cache is in the # right shape. self.linear = BitCenterLinear( in_features=hidden_size, out_features=n_classes, bias=True, cast_func=cast_func, n_train_sample=n_train_sample * self.seq_length) self.criterion = BitCenterCrossEntropy( cast_func=cast_func, n_train_sample=n_train_sample * self.seq_length) if dtype == "bc": pass elif (dtype == "fp") or (dtype == "lp"): self.embedding = copy_layer_weights( self.embedding, nn.Embedding( num_embeddings=num_embeddings, embedding_dim=embedding_dim)) for i in range(seq_length): self.lstm_cell[i] = copy_lstm_cell_weights( self.lstm_cell[i], nn.LSTMCell( embedding_dim, hidden_size, bias=self.lstm_cell[i].bias)) self.linear = copy_layer_weights( self.linear, nn.Linear(in_features=hidden_size, out_features=n_classes)) self.criterion = nn.CrossEntropyLoss(size_average=True) if dtype == "lp": if self.cast_func == void_cast_func: pass else: for child in self.children(): child.half() else: raise Exception(dtype + " is not supported in LeNet!") # all lstm cells using the same set of parameter tensors self.unify_lstm_cell_param() def unify_lstm_cell_param(self): for i in range(1, len(self.lstm_cell)): self.lstm_cell[i].weight_ih = self.lstm_cell[0].weight_ih self.lstm_cell[i].weight_hh = self.lstm_cell[0].weight_hh if self.dtype == "bc": self.lstm_cell[i].weight_ih_lp = self.lstm_cell[0].weight_ih_lp self.lstm_cell[i].weight_hh_lp = self.lstm_cell[0].weight_hh_lp self.lstm_cell[i].weight_ih_delta = self.lstm_cell[0].weight_ih_delta self.lstm_cell[i].weight_hh_delta = self.lstm_cell[0].weight_hh_delta self.lstm_cell[i].input_linear.weight = self.lstm_cell[0].weight_ih self.lstm_cell[i].hidden_linear.weight = self.lstm_cell[0].weight_hh self.lstm_cell[i].input_linear.weight_lp = self.lstm_cell[0].weight_ih_lp self.lstm_cell[i].hidden_linear.weight_lp = self.lstm_cell[0].weight_hh_lp self.lstm_cell[i].input_linear.weight_delta = self.lstm_cell[0].weight_ih_delta self.lstm_cell[i].hidden_linear.weight_delta = self.lstm_cell[0].weight_hh_delta if self.lstm_cell[i].bias: self.lstm_cell[i].bias_ih = self.lstm_cell[0].bias_ih self.lstm_cell[i].bias_hh = self.lstm_cell[0].bias_hh if self.dtype == "bc": self.lstm_cell[i].bias_ih_lp = self.lstm_cell[0].bias_ih_lp self.lstm_cell[i].bias_hh_lp = self.lstm_cell[0].bias_hh_lp self.lstm_cell[i].bias_ih_delta = self.lstm_cell[0].bias_ih_delta self.lstm_cell[i].bias_hh_delta = self.lstm_cell[0].bias_hh_delta self.lstm_cell[i].input_linear.bias = self.lstm_cell[0].bias_ih self.lstm_cell[i].hidden_linear.bias = self.lstm_cell[0].bias_hh self.lstm_cell[i].input_linear.bias_lp = self.lstm_cell[0].bias_ih_lp self.lstm_cell[i].hidden_linear.bias_lp = self.lstm_cell[0].bias_hh_lp self.lstm_cell[i].input_linear.bias_delta = self.lstm_cell[0].bias_ih_delta self.lstm_cell[i].hidden_linear.bias_delta = self.lstm_cell[0].bias_hh_delta def init_hidden(self, x): # Before we've done anything, we dont have any hidden state. # Refer to the Pytorch documentation to see exactly # why they have this dimensionality. # The axes semantics are (num_layers, minibatch_size, hidden_dim) batch_size = x.size(1) if self.do_offset: dtype = self.embedding.weight.dtype device = self.embedding.weight.device else: dtype = self.embedding.weight_delta.dtype device = self.embedding.weight_delta.device hidden_dim = self.lstm_cell[0].hidden_size return (torch.zeros(batch_size, hidden_dim, dtype=dtype, device=device), torch.zeros(batch_size, hidden_dim, dtype=dtype, device=device)) def forward(self, x, y, test=False): # we assume the first dimension corresponds to steps # The second dimension corresponds to sample index x = x.type(torch.long) (h, c) = self.init_hidden(x) out = self.embedding(x) h_list = [] # note seq_length is the maximum seq length in the dataset for i in range(out.size(0)): state = self.lstm_cell[i](out[i], (h, c)) h, c = state h_list.append(h) h_seq = torch.stack(h_list, dim=0) h_seq = h_seq.view(-1, h.size(-1)) if test: out = self.linear(h_seq) self.output = out return out else: y = y.view(-1) h_seq = h_seq[y != -1] y = y[y != -1] out = self.linear(h_seq) self.output = out self.loss = self.criterion(out, y) if isinstance(self.criterion, BitCenterCrossEntropy) \ and self.criterion.do_offset == False: self.output = self.output + self.criterion.input_lp return self.loss def predict(self, x): output = self.forward(x, y=None, test=True) pred = output.data.cpu().numpy().argmax(axis=1) return pred, output def LSTM(num_embeddings, cast_func=void_cast_func, n_train_sample=1, seq_length=1, reg_lambda=0.0, dtype="bc"): return BitCenterLSTMTagger( num_embeddings=num_embeddings, embedding_dim=32, hidden_size=64, cast_func=cast_func, n_classes=12, n_train_sample=n_train_sample, seq_length=seq_length, reg_lambda=reg_lambda, dtype=dtype)
halp-master
halp/models/lstm.py
import torch import numpy as np from torch.autograd import Variable # from halp.utils.test_utils import assert_model_grad_equal from halp.utils.utils import single_to_half_det, single_to_half_stoc, void_cast_func from halp.utils.utils import copy_model_weights, set_seed, get_recur_attr from unittest import TestCase from halp.utils.test_utils import HalpTest from halp.models.resnet import ResNet, ResNet_PyTorch from halp.models.resnet import BasicBlock, BitCenterBasicBlock from halp.models.model_test import BitCenterModelTest from halp.models.lstm import BitCenterLSTMTagger, LSTMTagger from halp.models.lstm import copy_lstm_cell_weights from halp.models.lstm import copy_lstm_weights_to_lstm_cell class LSTMTaggerTest(BitCenterModelTest, TestCase): """ Test the bit centering LSTM tagger """ def get_config(self): config = {} config["batch_size"] = 25 config["n_minibatch"] = 1 config["n_classes"] = 10 config["embedding_dim"] = 15 config["num_embeddings"] = 20 config["hidden_dim"] = 5 config["seq_length"] = 5 return config def get_models(self, n_minibatch, batch_size, n_classes, embedding_dim, num_embeddings, hidden_dim, seq_length): n_train_sample = batch_size * n_minibatch native_model = LSTMTagger( embedding_dim=embedding_dim, hidden_dim=hidden_dim, vocab_size=num_embeddings, tagset_size=n_classes).cuda().double() fp_model = BitCenterLSTMTagger( num_embeddings=num_embeddings, embedding_dim=embedding_dim, hidden_size=hidden_dim, cast_func=void_cast_func, n_train_sample=n_train_sample, seq_length=seq_length, n_classes=n_classes, dtype="fp").cuda().double() copy_model_weights(native_model, fp_model) copy_lstm_weights_to_lstm_cell(native_model.lstm, fp_model.lstm_cell[0]) lp_model = BitCenterLSTMTagger( num_embeddings=num_embeddings, embedding_dim=embedding_dim, hidden_size=hidden_dim, cast_func=void_cast_func, n_train_sample=n_train_sample, seq_length=seq_length, n_classes=n_classes, dtype="lp").cuda().double() copy_model_weights(native_model, lp_model) copy_lstm_weights_to_lstm_cell(native_model.lstm, lp_model.lstm_cell[0]) bc_model = BitCenterLSTMTagger( num_embeddings=num_embeddings, embedding_dim=embedding_dim, hidden_size=hidden_dim, cast_func=void_cast_func, n_train_sample=n_train_sample, seq_length=seq_length, n_classes=n_classes, dtype="bc").double() copy_model_weights(native_model, bc_model) copy_lstm_weights_to_lstm_cell(native_model.lstm, bc_model.lstm_cell[0]) return native_model, fp_model, lp_model, bc_model def get_inputs(self, n_minibatch, batch_size, n_classes, embedding_dim, num_embeddings, hidden_dim, seq_length): x_list = [] y_list = [] for i in range(n_minibatch): x_list.append( torch.nn.Parameter( torch.LongTensor(seq_length, batch_size).random_(num_embeddings), requires_grad=False).cuda()) y_list.append(torch.LongTensor(seq_length*batch_size).random_(n_classes).cuda()) return x_list, y_list def check_layer_status(self, bc_model, do_offset=True): assert bc_model.embedding.do_offset == do_offset for i in range(bc_model.seq_length): assert bc_model.lstm_cell[i].input_linear.do_offset == do_offset assert bc_model.lstm_cell[i].hidden_linear.do_offset == do_offset assert bc_model.lstm_cell[i].hidden_linear.do_offset == do_offset assert bc_model.lstm_cell[i].hidden_linear.do_offset == do_offset assert bc_model.lstm_cell[i].i_activation.do_offset == do_offset assert bc_model.lstm_cell[i].f_activation.do_offset == do_offset assert bc_model.lstm_cell[i].g_activation.do_offset == do_offset assert bc_model.lstm_cell[i].o_activation.do_offset == do_offset assert bc_model.lstm_cell[i].f_c_mult.do_offset == do_offset assert bc_model.lstm_cell[i].i_g_mult.do_offset == do_offset assert bc_model.lstm_cell[i].c_prime_activation.do_offset == do_offset assert bc_model.lstm_cell[i].o_c_prime_mult.do_offset == do_offset assert bc_model.linear.do_offset == do_offset assert bc_model.criterion.do_offset == do_offset def assert_model_grad_equal(self, model1, model2, model2_is_bc=False): # we assume all model1's params can be found in model2 for name, param in model1.named_parameters(): if name.endswith("_lp") or name.endswith("_delta"): continue old_param = get_recur_attr(model1, name.split(".")) if name not in model2.state_dict().keys(): # this is for asserting the same gradient from native model and our model. # in the native model we have lstm while in our model, we only have lstm cell if "ih_l0" in name: name = name.replace("ih_l0", "ih").replace("lstm.", "lstm_cell.0.") elif "hh_l0" in name: name = name.replace("hh_l0", "hh").replace("lstm.", "lstm_cell.0.") else: continue new_param = get_recur_attr(model2, name.split(".")) if old_param.requires_grad and new_param.requires_grad: if model2_is_bc: new_param_delta = get_recur_attr(model2, (name + "_delta").split(".")) np.testing.assert_allclose(old_param.grad.data.cpu().numpy(), new_param.grad.data.cpu().numpy() + new_param_delta.grad.data.cpu().numpy()) else: np.testing.assert_allclose(old_param.grad.data.cpu().numpy(), new_param.grad.data.cpu().numpy())
halp-master
halp/models/lstm_test.py
import torch import numpy as np from torch.autograd import Variable # from halp.utils.test_utils import assert_model_grad_equal from halp.utils.utils import single_to_half_det, single_to_half_stoc, void_cast_func from halp.utils.utils import copy_model_weights, set_seed, get_recur_attr from unittest import TestCase from halp.utils.test_utils import HalpTest from halp.models.resnet import ResNet, ResNet_PyTorch from halp.models.resnet import BasicBlock, BitCenterBasicBlock from halp.models.model_test import BitCenterModelTest class LeNetTest(BitCenterModelTest, TestCase): def get_config(self): config = {} config["batch_size"] = 5 config["n_minibatch"] = 6 config["n_class"] = 10 return config def get_models(self, n_minibatch, batch_size, n_class): n_train_sample = batch_size * n_minibatch native_model = ResNet_PyTorch(BasicBlock, [2,2,2,2]).cuda().double() fp_model = ResNet( BitCenterBasicBlock, [2,2,2,2], cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="fp").cuda().double() copy_model_weights(native_model, fp_model) lp_model = ResNet( BitCenterBasicBlock, [2,2,2,2], cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="lp").cuda().double() copy_model_weights(native_model, lp_model) bc_model = ResNet( BitCenterBasicBlock, [2,2,2,2], cast_func=void_cast_func, n_train_sample=n_train_sample, dtype="bc").double() copy_model_weights(native_model, bc_model) return native_model, fp_model, lp_model, bc_model def get_inputs(self, n_minibatch, batch_size, n_class): x_list = [] y_list = [] for i in range(n_minibatch): x_list.append( torch.nn.Parameter( torch.randn(batch_size, 3, 32, 32, dtype=torch.float).cuda(), requires_grad=True).cuda().double()) y_list.append(torch.LongTensor(batch_size).random_(n_class).cuda()) return x_list, y_list def check_layer_status(self, bc_model, do_offset=True): assert bc_model.conv1.do_offset == do_offset assert bc_model.bn1.do_offset == do_offset assert bc_model.relu1.do_offset == do_offset for layer_idx in range(4): for block_idx in range(2): layer_name = "layer"+str(layer_idx + 1)+"."+str(block_idx) layer = get_recur_attr(bc_model, (layer_name + ".conv1").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".bn1").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".relu1").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".conv2").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".bn2").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".relu2").split(".")) assert layer.do_offset == do_offset if layer_idx != 0 and block_idx == 0: layer = get_recur_attr(bc_model, (layer_name + ".shortcut.0").split(".")) assert layer.do_offset == do_offset layer = get_recur_attr(bc_model, (layer_name + ".shortcut.1").split(".")) assert layer.do_offset == do_offset assert bc_model.avg_pool.do_offset == do_offset assert bc_model.linear.do_offset == do_offset assert bc_model.criterion.do_offset == do_offset if __name__ == "__main__": print(torch.__version__) unittest.main()
halp-master
halp/models/resnet_test.py
import copy import argparse import math import numpy as np import torch torch.backends.cudnn.deterministic=True import torch.nn as nn import torch.utils.data from torch.optim import SGD import halp from halp.optim.bit_center_sgd import BitCenterSGD from halp.optim.bit_center_svrg import BitCenterSVRG from halp.optim.svrg import SVRG from halp.models.logistic_regression import LogisticRegression from halp.models.lenet import LeNet from halp.models.resnet import ResNet18 from halp.models.lstm import LSTM from halp.utils.mnist_data_utils import get_mnist_data_loader from halp.utils.cifar_data_utils import get_cifar10_data_loader from halp.utils.postag_data_utils import get_conll2000_data_loader from halp.utils import utils from halp.utils.utils import void_cast_func from halp.utils.utils import single_to_half_det, single_to_half_stoc from halp.utils.train_utils import evaluate_acc from halp.utils.train_utils import train_non_bit_center_optimizer from halp.utils.train_utils import train_bit_center_optimizer from halp.utils.train_utils import StepLRScheduler, ModelSaver from halp.utils.train_utils import load_param_to_model, load_state_to_optimizer import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) logger = logging.getLogger('') import time parser = argparse.ArgumentParser() parser.add_argument("-T", action="store", default=1, type=int, help="T parameter for SVRG type algorithms.") parser.add_argument("-e", "--n-epochs", action="store", default=10, type=int, help="Number of epochs to run for") parser.add_argument("-bs", "--batch-size", action="store", default=100, type=int, help="Batch size.") parser.add_argument("-a", "--alpha", action="store", default=0.01, type=float, help="Learning Rate") parser.add_argument("-m", "--momentum", default=0.0, type=float, help="momentum value for Polyak's momentum algorithm") parser.add_argument("-s", "--seed", action="store", default=42, type=int, help="Random seed.") parser.add_argument("-c", "--n-classes", action="store", default=10, type=int, help="Number of classes for classification.") parser.add_argument("--solver", action="store", default="sgd", type=str, choices=["sgd", "svrg", "lp-sgd", "lp-svrg", "bc-sgd", "bc-svrg"], help="Solver/optimization algorithm.") parser.add_argument("--reg", type=float, default=0.0, help="L2 regularizer strength") parser.add_argument("--cuda", action="store_true", help="currently pytorch only support store true.") parser.add_argument("--rounding", default="near", type=str, choices=["near", "stoc", "void"], help="Support nearest (near) and stochastic (stoc) rounding.") parser.add_argument("--dataset", default="mnist", type=str, choices=["mnist", "cifar10", "conll2000"], help="The dataset to train on.") parser.add_argument("--model", default="logreg", type=str, choices=["logreg", "lenet", "resnet", "lstm"], help="The model used on the given dataset.") parser.add_argument("--resnet-save-ckpt", action="store_true", help="save check points for resnet18") parser.add_argument("--resnet-save-ckpt-path", type=str, default="./", help="path to save resnet18 check points") parser.add_argument("--resnet-load-ckpt", action="store_true", help="load check points for resnet18") parser.add_argument("--resnet-load-ckpt-epoch-id", type=int, default=0, help="warm start using a checkpoint saved at this epoch id") parser.add_argument("--resnet-fine-tune", action="store_true", help="fine tune the last linear layer of resnet") parser.add_argument("--float-debug", action="store_true", help="using single precision to do debug and test") parser.add_argument("--double-debug", action="store_true", help="using double precision to do debug and test") parser.add_argument("--on-site-compute", action="store_true", help="use on site fp compute to avoid host memory caching") args = parser.parse_args() utils.set_seed(args.seed) if args.dataset == "mnist": train_loader, val_loader, input_shape, n_train_sample = get_mnist_data_loader( onehot=False, batch_size=args.batch_size, args=args) elif args.dataset == "cifar10": train_loader, val_loader, input_shape, n_train_sample = get_cifar10_data_loader( batch_size=args.batch_size, args=args) elif args.dataset == "conll2000": train_loader, val_loader, input_shape, n_train_sample, max_seq_length, num_embeddings = \ get_conll2000_data_loader(args=args) else: raise Exception(args.dataset + " not supported.") if args.rounding == "near": args.cast_func = single_to_half_det elif args.rounding == "stoc": args.cast_func = single_to_half_stoc elif args.rounding == "void": args.cast_func = void_cast_func else: raise Exception("The rounding method is not supported!") # set test and debug flag assert not (args.float_debug and args.double_debug) if args.double_debug: assert args.cast_func == void_cast_func args.T = len(train_loader) elif args.float_debug: assert args.cast_func == single_to_half_det args.T = len(train_loader) print("dataset stats: n_batch, batch_size, T ", len(train_loader), args.batch_size, args.T) if len(train_loader) % args.T != 0: raise Exception("Currently not supporting settings other than T = epoch_len/n") # determine the dtype if args.solver.startswith("bc-"): args.dtype = "bc" elif args.solver.startswith("lp-"): args.dtype = "lp" else: args.dtype = "fp" # note reg_lambda is dummy here, the regularizer is handled by the optimizer if args.model == "logreg": model = LogisticRegression( input_dim=input_shape[1], n_class=args.n_classes, reg_lambda=args.reg, dtype=args.dtype, cast_func=args.cast_func, n_train_sample=n_train_sample) elif args.model == "lenet": model = LeNet( reg_lambda=args.reg, cast_func=args.cast_func, n_train_sample=n_train_sample, dtype=args.dtype) elif args.model == "resnet": model = ResNet18( reg_lambda=args.reg, cast_func=args.cast_func, n_train_sample=n_train_sample, dtype=args.dtype, fine_tune=args.resnet_fine_tune, num_classes=args.n_classes) elif args.model == "lstm": model = LSTM( num_embeddings=num_embeddings, cast_func=args.cast_func, seq_length=max_seq_length, n_train_sample=n_train_sample, dtype=args.dtype, reg_lambda=args.reg) else: raise Exception(args.model + " is currently not supported!") if args.cuda: # note as the cache are set up in the first foward pass # the location of the cache is not controled by the cuda() here model.cuda() if args.double_debug: model.double() # set on set compute flag recursively for all the modules if args.on_site_compute: model.set_on_site_compute(True) # setup optimizer if args.resnet_fine_tune: if args.model != "resnet": raise Exception("currently only resnet model support fine-tune mode") params_name = [] params = [] for x, y in model.named_parameters(): if x.startswith("linear") or x.startswith("criterion"): params_name.append(x) params.append(y) else: params_name = [x for x, y in model.named_parameters()] params = [y for x, y in model.named_parameters()] logger.info("Params list: ") for name, p in zip(params_name, params): logger.info(name + " " + str(p.dtype)) if (args.solver == "sgd") or (args.solver == "lp-sgd"): optimizer = SGD( params=params, lr=args.alpha, momentum=args.momentum, weight_decay=args.reg) optimizer.cast_func = args.cast_func optimizer.T = None elif (args.solver == "svrg") or (args.solver == "lp-svrg"): optimizer = SVRG( params=params, lr=args.alpha, momentum=args.momentum, weight_decay=args.reg, T=args.T, data_loader=train_loader) optimizer.cast_func = args.cast_func elif args.solver == "bc-sgd": optimizer = BitCenterSGD( params=params, params_name=params_name, lr=args.alpha, momentum=args.momentum, weight_decay=args.reg, n_train_sample=n_train_sample, cast_func=args.cast_func, minibatch_size=args.batch_size, T=args.T) elif args.solver == "bc-svrg": optimizer = BitCenterSVRG( params=params, params_name=params_name, lr=args.alpha, momentum=args.momentum, weight_decay=args.reg, n_train_sample=n_train_sample, cast_func=args.cast_func, minibatch_size=args.batch_size, T=args.T) else: raise Exception(args.solver + " is an unsupported optimizer.") # for warm start experiments for resnet. # the scheduler and the saver is only working when it is turn_on() optimizer.lr_scheduler = StepLRScheduler( optimizer, step_epoch=[150, 250], step_fac=0.1) # specify the epochs where to save check points save_step_epochs = np.array([1, 300]) optimizer.model_saver = ModelSaver( optimizer, model, step_epoch=save_step_epochs, save_path=args.resnet_save_ckpt_path) if args.resnet_save_ckpt: if args.model != "resnet": raise Exception("Check point saving mode is only designed for resnet experiments") if args.solver != "sgd" and args.solver != "lp-sgd": raise Exception("Check point saving mode is only designed for fp and lp-sgd optimizer") assert args.n_epochs == 350 assert args.alpha == 0.1 optimizer.lr_scheduler.turn_on() optimizer.model_saver.turn_on() logger.info("model saver and lr scheduler saved") if args.resnet_load_ckpt: assert args.resnet_save_ckpt == False model_ckpt = args.resnet_save_ckpt_path + "/model_e_" + str(args.resnet_load_ckpt_epoch_id) + "_i_0" opt_ckpt = args.resnet_save_ckpt_path + "/opt_e_" + str(args.resnet_load_ckpt_epoch_id) + "_i_0" model_state_dict = torch.load(model_ckpt) opt_state_dict = torch.load(opt_ckpt) load_param_to_model(model, model_state_dict, to_bc_model=("bc-" in args.solver), args=args) load_state_to_optimizer(optimizer, model, opt_state_dict, to_bc_opt=("bc-" in args.solver), args=args) logger.info("model and optimizer loaded from " + model_ckpt) try: print("regularizer ", model.reg_lambda, optimizer.weight_decay) except: for param_group in optimizer.param_groups: assert len(optimizer.param_groups) == 1 print("regularizer ", param_group["weight_decay"]) start_time = time.time() # run training procedure logger.info("optimizer " + optimizer.__class__.__name__) logger.info("model " + model.__class__.__name__) logger.info("optimizer rounding func " + optimizer.cast_func.__name__) logger.info("model rounding func " + model.cast_func.__name__) model.print_module_types() if (args.solver == "bc-sgd") or (args.solver == "bc-svrg"): train_loss = train_bit_center_optimizer( model=model, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, n_epochs=args.n_epochs, use_cuda=args.cuda, dtype=args.dtype, args=args) else: train_loss = train_non_bit_center_optimizer( model=model, optimizer=optimizer, train_loader=train_loader, val_loader=val_loader, n_epochs=args.n_epochs, use_cuda=args.cuda, dtype=args.dtype, args=args) end_time = time.time() print("Elapsed training time: ", end_time - start_time) logger.info("Cross check model property: Params list: ") for name, p in zip(params_name, params): logger.info(name + " " + str(p.dtype))
halp-master
halp/exp_script/run_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import platform import re import sys from glob import glob from pybind11.setup_helpers import build_ext, Pybind11Extension from setuptools import find_packages, setup REQUIRED_MAJOR = 3 REQUIRED_MINOR = 7 INSTALL_REQUIRES = [ "arviz>=0.12.1", "astor>=0.7.1", "black==22.3.0", "botorch>=0.5.1", "gpytorch>=1.3.0, <1.9.0", "graphviz>=0.17", "netCDF4<=1.5.8; python_version<'3.8'", "numpy>=1.18.1", "pandas>=0.24.2", "plotly>=2.2.1", "scipy>=0.16", "statsmodels>=0.12.0", "torch>=1.9.0, <2.0", "tqdm>=4.46.0", "typing-extensions>=3.10", "xarray>=0.16.0", ] TEST_REQUIRES = ["pytest>=7.0.0", "pytest-cov"] TUTORIALS_REQUIRES = [ "bokeh", "cma", "ipywidgets", "jupyter", "lxml>=4.9", "matplotlib", "mdformat", "mdformat-myst", "scikit-learn>=1.0.0", "seaborn", "tabulate", "torchvision", ] DEV_REQUIRES = ( TEST_REQUIRES + TUTORIALS_REQUIRES + [ "flake8==4.0.1", "libcst==0.4.1", "nbval", "sphinx==4.2.0", "sphinx-autodoc-typehints", "sphinx_rtd_theme", "toml>=0.10.2", # `black` is included in `INSTALL_REQUIRES` above. "ufmt==1.3.2", "usort==1.0.2", ] ) if platform.system() == "Windows": CPP_COMPILE_ARGS = [ "/WX", "/permissive-", "/std:c++20", # Ignore utils.h(365) warning C4244 conversion from '__int64' to 'int'. "/wd4244", ] else: CPP_COMPILE_ARGS = ["-std=c++2a", "-Werror"] # Check for python version if sys.version_info < (REQUIRED_MAJOR, REQUIRED_MINOR): error = ( "Your version of python ({major}.{minor}) is too old. You need " "python >= {required_major}.{required_minor}." ).format( major=sys.version_info.major, minor=sys.version_info.minor, required_minor=REQUIRED_MINOR, required_major=REQUIRED_MAJOR, ) sys.exit(error) # get version string from module current_dir = os.path.dirname(os.path.abspath(__file__)) init_file = os.path.join(current_dir, "src", "beanmachine", "__init__.py") version_regexp = r"__version__ = ['\"]([^'\"]*)['\"]" with open(init_file, "r") as f: version = re.search(version_regexp, f.read(), re.M).group(1) # read in README.md as the long description with open("README.md", "r") as fh: long_description = fh.read() # Use absolute path to the src directory INCLUDE_DIRS = [os.path.join(current_dir, "src")] # check if we're installing in a conda environment if "CONDA_PREFIX" in os.environ: conda_inc = "Library/include" if platform.system() == "Windows" else "include" conda_include_dir = os.path.join(os.environ["CONDA_PREFIX"], conda_inc) INCLUDE_DIRS.extend([conda_include_dir, os.path.join(conda_include_dir, "eigen3")]) INCLUDE_DIRS.extend([conda_include_dir, os.path.join(conda_include_dir, "boost")]) if sys.platform.startswith("linux"): INCLUDE_DIRS.extend( [ "/usr/include", "/usr/include/eigen3", "/usr/include/boost169/", "/usr/include/x86_64-linux-gnu", ] ) elif sys.platform.startswith("darwin"): # MacOS dependencies installed through HomeBrew INCLUDE_DIRS.extend( glob("/usr/local/Cellar/eigen/*/include/eigen3") + glob("/usr/local/Cellar/boost/*/include") ) # Add range-v3 'include' directory to configuration RANGE_V3_INCLUDE_DIR_CANDIDATES = [ c for c in [os.environ.get("RANGE_V3_INCLUDE_DIR")] if c is not None ] if sys.platform.startswith("linux"): RANGE_V3_INCLUDE_DIR_CANDIDATES.extend( [ os.path.join(current_dir, "vcpkg/packages/range-v3_x64-linux/include"), "/usr/include/range-v3", ] ) elif sys.platform.startswith("darwin"): RANGE_V3_INCLUDE_DIR_CANDIDATES.extend( [ os.path.join(current_dir, "vcpkg/packages/range-v3_x64-osx/include"), *glob("/usr/local/Cellar/range-v3/*/include"), # Homebrew ] ) elif platform.system() == "Windows": RANGE_V3_INCLUDE_DIR_CANDIDATES.extend( [ os.path.join(current_dir, "vcpkg/packages/range-v3_x86-windows/include"), # The following option was observed being used on GitHub Actions runner: "C:/vcpkg/packages/range-v3_x86-windows/include", ] ) print( "Checking directories for range-v3 'include':\n", "\n".join(RANGE_V3_INCLUDE_DIR_CANDIDATES), ) selected_range_v3_include_dirs = [ candidate for candidate in RANGE_V3_INCLUDE_DIR_CANDIDATES if os.path.isdir(candidate) ] print( "Existing candidate directories for range-v3 'include':\n", "\n".join(selected_range_v3_include_dirs), ) if len(selected_range_v3_include_dirs) == 0: if os.environ.get("RANGE_V3_INCLUDE_DIR"): message = ( "Could not find 'include' directory for range-v3 library dependency " + f"either at {os.environ.get('RANGE_V3_INCLUDE_DIR')}\n" + "as indicated in environment variable RANGE_V3_INCLUDE_DIR, " + "nor in some other common locations.\n" + "Please make sure library is installed (see README.md) and " + "set RANGE_V3_INCLUDE_DIR environment variable to the right directory." ) else: message = ( "Could not find 'include' directory for range-v3 library dependency " + "in some common locations.\n" + "Please make sure library is installed (see README.md). " + "You can also manually indicate the correct 'include' directory by " + "setting the environment variable RANGE_V3_INCLUDE_DIR environment " + "variable to the right directory." ) message += "Here are the directories we checked:\n " + "\n".join( RANGE_V3_INCLUDE_DIR_CANDIDATES ) sys.exit(message) else: print( "Using the following directory for range-v3 'include':\n", selected_range_v3_include_dirs[0], ) INCLUDE_DIRS.append(selected_range_v3_include_dirs[0]) setup( name="beanmachine", version=version, description="Probabilistic Programming Language for Bayesian Inference", author="Meta Platforms, Inc.", license="MIT", url="https://beanmachine.org", project_urls={ "Documentation": "https://beanmachine.org", "Source": "https://github.com/facebookresearch/beanmachine", }, keywords=[ "Probabilistic Programming Language", "Bayesian Inference", "Statistical Modeling", "MCMC", "Variational Inference", "PyTorch", ], classifiers=[ "Development Status :: 3 - Alpha", "Programming Language :: Python :: 3 :: Only", "License :: OSI Approved :: MIT License", "Topic :: Scientific/Engineering", "Intended Audience :: Science/Research", "Intended Audience :: Developers", ], long_description=long_description, long_description_content_type="text/markdown", python_requires=">={}.{}".format(REQUIRED_MAJOR, REQUIRED_MINOR), install_requires=INSTALL_REQUIRES, packages=find_packages("src"), package_dir={"": "src"}, package_data={"beanmachine/ppl": ["py.typed"]}, ext_modules=[ Pybind11Extension( name="beanmachine.graph", sources=sorted( set(glob("src/beanmachine/graph/**/*.cpp", recursive=True)) - set(glob("src/beanmachine/graph/**/*_test.cpp", recursive=True)) ), include_dirs=INCLUDE_DIRS, extra_compile_args=CPP_COMPILE_ARGS, ) ], cmdclass={"build_ext": build_ext}, extras_require={ "dev": DEV_REQUIRES, "test": TEST_REQUIRES, "tutorials": TUTORIALS_REQUIRES, }, )
beanmachine-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # -- Project information ----------------------------------------------------- project = "Bean Machine" copyright = "2022, Meta Platforms, Inc." author = "Meta Platforms, Inc." # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.napoleon"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" master_doc = "index" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = []
beanmachine-main
website/sphinx/conf.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json import re import shutil import uuid import warnings from pathlib import Path from typing import Any, Dict, List, Tuple, Union import mdformat # @manual=fbsource//third-party/pypi/mdformat:mdformat import nbformat import pandas as pd from lxml import etree # pyre-ignore from nbformat.notebooknode import NotebookNode try: from libfb.py.fbcode_root import get_fbcode_dir # pyre-ignore except ImportError: SCRIPTS_DIR = Path(__file__).parent.resolve() LIB_DIR = SCRIPTS_DIR.parent.parent.resolve() else: LIB_DIR = (Path(get_fbcode_dir()) / "beanmachine").resolve() WEBSITE_DIR = LIB_DIR.joinpath("website") DOCS_DIR = LIB_DIR.joinpath("docs") OVERVIEW_DIR = DOCS_DIR.joinpath("overview") TUTORIALS_DIR = OVERVIEW_DIR.joinpath("tutorials") # Data display priority. Below lists the priority for displaying data from cell outputs. # Cells can output many different items, and some will output a fallback display, e.g. # text/plain if text/html is not working. The below priorities help ensure the output in # the MDX file shows the best representation of the cell output. priorities = [ "text/markdown", "image/png", # matplotlib output. "application/vnd.jupyter.widget-view+json", # tqdm progress bars. "application/vnd.bokehjs_load.v0+json", # Bokeh loading output. "application/vnd.bokehjs_exec.v0+json", # Bokeh `show` outputs. "application/vnd.plotly.v1+json", # Plotly "text/html", "stream", "text/plain", ] def load_nb_metadata() -> Dict[str, Dict[str, str]]: """ Load the metadata and list of notebooks that are to be converted to MDX. Args: None Returns: Dict[str, Dict[str, str]]: A dictionary of metadata needed to convert notebooks to MDX. Only those notebooks that are listed in the `tutorials.json` file will be included in the Docusaurus MDX output. """ tutorials_json_path = WEBSITE_DIR.joinpath("tutorials.json") with tutorials_json_path.open("r") as f: tutorials_data = json.load(f) return tutorials_data def load_notebook(path: Path) -> NotebookNode: """ Load the given notebook into memory. Args: path (Path): Path to the Jupyter notebook. Returns: NotebookNode: `nbformat` object, which contains all the notebook cells in it. """ with path.open("r") as f: nb_str = f.read() nb = nbformat.reads(nb_str, nbformat.NO_CONVERT) return nb def create_folders(path: Path) -> Tuple[str, Path]: """ Create asset folders for the tutorial. Args: path (Path): Path to the Jupyter notebook. Returns: Tuple[str, Path]: Returns a tuple with the filename to use for the MDX file and the path for the MDX assets folder. """ tutorial_folder_name = path.stem filename = "".join([token.title() for token in tutorial_folder_name.split("_")]) tutorial_folder = TUTORIALS_DIR.joinpath(tutorial_folder_name) assets_folder = tutorial_folder / "assets" img_folder = assets_folder / "img" plot_data_folder = assets_folder / "plot_data" if not tutorial_folder.exists(): tutorial_folder.mkdir(parents=True, exist_ok=True) if not img_folder.exists(): img_folder.mkdir(parents=True, exist_ok=True) if not plot_data_folder.exists(): plot_data_folder.mkdir(parents=True, exist_ok=True) return filename, assets_folder def create_frontmatter(path: Path, nb_metadata: Dict[str, Dict[str, str]]) -> str: """ Create frontmatter for the resulting MDX file. The frontmatter is the data between the `---` lines in an MDX file. Args: path (Path): Path to the Jupyter notebook. nb_metadata (Dict[str, Dict[str, str]]): The metadata associated with the given notebook. Metadata is defined in the `tutorials.json` file. Returns: str: MDX formatted frontmatter. """ # Add the frontmatter to the MDX string. This is the part between the `---` lines # that define the tutorial sidebar_label information. frontmatter_delimiter = ["---"] frontmatter = [ f"{key}: {value}" for key, value in nb_metadata.get( path.stem, { "title": "", "sidebar_label": "", "path": "", "nb_path": "", "github": "", "colab": "", }, ).items() ] frontmatter = "\n".join(frontmatter_delimiter + frontmatter + frontmatter_delimiter) mdx = mdformat.text(frontmatter, options={"wrap": 88}, extensions={"myst"}) return f"{mdx}\n" def create_imports() -> str: """ Create the imports needed for displaying buttons, and interactive plots in MDX. Returns: str: MDX formatted imports. """ link_btn = "../../../../website/src/components/LinkButtons.jsx" cell_out = "../../../../website/src/components/CellOutput.jsx" plot_out = "../../../../website/src/components/Plotting.jsx" imports = f'import LinkButtons from "{link_btn}";\n' imports += f'import CellOutput from "{cell_out}";\n' imports += f'import {{BokehFigure, PlotlyFigure}} from "{plot_out}";\n' return f"{imports}\n" def create_buttons( nb_metadata: Dict[str, Dict[str, str]], tutorial_folder_name: str, ) -> str: """ Create buttons that link to Colab and GitHub for the tutorial. Args: nb_metadata (Dict[str, Dict[str, str]]): Metadata for the tutorial. tutorial_folder_name (str): The name of the tutorial folder where the MDX converted files exist. This is typically just the name of the Jupyter notebook file. Returns: str: MDX formatted buttons. """ github_url = nb_metadata[tutorial_folder_name]["github"] colab_url = nb_metadata[tutorial_folder_name]["colab"] return f'<LinkButtons\n githubUrl="{github_url}"\n colabUrl="{colab_url}"\n/>\n\n' def handle_images_found_in_markdown( markdown: str, new_img_dir: Path, lib_dir: Path, ) -> str: """ Update image paths in the Markdown, and copy the image to the docs location. The pattern we search for in the Markdown is ``![alt-text](path/to/image.png "title")`` with two groups: - group 1 = path/to/image.png - group 2 = "title" The first group (the path to the image from the original notebook) will be replaced with ``assets/img/{name}`` where the name is `image.png` from the example above. The original image will also be copied to the new location ``{new_img_dir}/assets/img/{name}``, which can be directly read into the MDX file. Args: markdown (str): Markdown where we look for Markdown flavored images. new_img_dir (Path): Path where images are copied to for display in the MDX file. lib_dir (Path): The location for the Bean Machine repo. Returns: str: The original Markdown with new paths for images. """ markdown_image_pattern = re.compile(r"""!\[[^\]]*\]\((.*?)(?=\"|\))(\".*\")?\)""") searches = list(re.finditer(markdown_image_pattern, markdown)) # Return the given Markdown if no images are found. if not searches: return markdown # Convert the given Markdown to a list so we can delete the old path with the new # standard path. markdown_list = list(markdown) for search in searches: # Find the old image path and replace it with the new one. old_path, _ = search.groups() start = 0 end = 0 search = re.search(old_path, markdown) if search is not None: start, end = search.span() old_path = Path(old_path) name = old_path.name.strip() new_path = f"assets/img/{name}" del markdown_list[start:end] markdown_list.insert(start, new_path) # Copy the original image to the new location. if old_path.exists(): old_img_path = old_path else: # Here we assume the original image exists in the same directory as the # notebook, which should be in the tutorials folder of the library. old_img_path = (lib_dir / "tutorials" / old_path).resolve() new_img_path = str(new_img_dir / name) shutil.copy(str(old_img_path), new_img_path) return "".join(markdown_list) def transform_style_attributes(markdown: str) -> str: """ Convert HTML style attributes to something React can consume. Args: markdown (str): Markdown where we look for HTML style attributes. Returns: str: The original Markdown with new React style attributes. """ # Finds all instances of `style="attr: value; ..."`. token = "style=" pattern = re.compile(f"""{token}["'`]([^"]*)["'`]""") found_patterns = re.findall(pattern, markdown) if not found_patterns: return markdown for found_pattern in found_patterns: # Step 1: splits "attr: value; ..." to # ["attr: value", ..."]. step1 = [token.strip() for token in found_pattern.split(";") if token] # Step 2: splits ["attr: value", ...] to # [["attr", "value"], ...]. step2 = [[token.strip() for token in tokens.split(":")] for tokens in step1] # Step 3: converts [["attr", "value"], ...] to # '{"attr": "value", ...}'. step3 = json.dumps(dict(step2)) # Step 4 wraps the JSON object in {}, so we end up with a string of the form; # '{{"attr": "value", ...}}'. step4 = f"{{{step3}}}" # Step 5 replaces the old style data with the React style data, and clean the # string for inclusion in the final Markdown. markdown = markdown.replace(found_pattern, step4) markdown = markdown.replace('"{{', "{{").replace('}}"', "}}") return markdown def handle_markdown_cell( cell: NotebookNode, new_img_dir: Path, lib_dir: Path, ) -> str: """ Handle the given Jupyter Markdown cell and convert it to MDX. Args: cell (NotebookNode): Jupyter Markdown cell object. new_img_dir (Path): Path where images are copied to for display in the Markdown cell. lib_dir (Path): The location for the Bean Machine library. Returns: str: Transformed Markdown object suitable for inclusion in MDX. """ markdown = cell["source"] # Update image paths in the Markdown and copy them to the Markdown tutorials folder. markdown = handle_images_found_in_markdown(markdown, new_img_dir, lib_dir) # We will attempt to handle inline style attributes written in HTML by converting # them to something React can consume. markdown = transform_style_attributes(markdown) # Remove any HTML comments from the Markdown. They are fine to keep in the # notebooks, but are not really useful in the MDX. markdown = re.sub("(<!--.*?-->)", "", markdown, flags=re.DOTALL) mdx = mdformat.text(markdown, options={"wrap": 88}, extensions={"myst"}) return f"{mdx}\n" def handle_cell_input(cell: NotebookNode, language: str) -> str: """ Create a Markdown cell block using the given cell source, and the language. The given language will determine cell input syntax styles. Docusaurus uses Prism as the syntax highlighter, https://prismjs.com. See the Docusaurus documentation for more information on code blocks https://docusaurus.io/docs/markdown-features/code-blocks. Args: cell (NotebookNode): A notebook cell. language (str): Language specifier for syntax highlighting. Returns: str: Code block formatted Markdown string. """ cell_source = cell.get("source", "") return f"```{language}\n{cell_source}\n```\n\n" def transform_bokeh_json(json_data: Dict[str, Any]) -> Dict[str, Any]: """ Transform Bokeh JSON found in a cell output to something BokehJS can consume. Args: json_data (Dict[str, Any]): JSON data found in a notebook's cell output that is for Bokeh. Returns: Dict[str, Any]: Reorganized JSON output for BokehJS. """ key = list(json_data.keys())[0] data = json_data[key] json_tx = {} json_tx["target_id"] = key json_tx["root_id"] = data["roots"]["root_ids"][0] json_tx["doc"] = { "defs": data["defs"], "roots": data["roots"], "title": data["title"], "version": data["version"], } json_tx["version"] = data["version"] return json_tx def handle_bokeh( values: List[Dict[str, Union[int, str, NotebookNode]]], plot_data_folder: Path, ) -> List[Tuple[int, str]]: """ Convert Bokeh `show` outputs and Applications to MDX. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. plot_data_folder (Path): Path to the folder where plot data should be stored. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = int(value["index"]) data = str(value["data"]) app_flag = data.startswith("<!DOCTYPE html>") json_data = {} # Handle Bokeh `show` outputs. if not app_flag: # Parse the JavaScript for the Bokeh JSON data. The BokehJS output is # standardized, so we can make the following assumption for finding the # right spot to for the JSON data. Also, this is pure JavaScript so # parsing it with lxml is not an option. json_string = list( filter( lambda line: line.startswith("const docs_json = "), [line.strip() for line in data.splitlines() if line], ), )[0] # Ignore the `const` definition and the ending `;` from the line. json_string = json_string[len("const docs_json = ") : -1] json_data = json.loads(json_string) # Handle Bokeh Applications. if app_flag: # Bokeh Application objects are rendered in the notebook as HTML. This # HTML is saved in the output cell, which we parse below using lxml and # xpaths. doc = etree.HTML(data) # pyre-ignore scripts = doc.xpath("//body/script[@type='application/json']") script = scripts[0] script = "".join(script.itertext()) # Unescape characters. If we skip this step, then the JSON read in by # the React BokehFigure object will error in the browser. script = script.replace("&amp;", "&") script = script.replace("&lt;", "<") script = script.replace("&gt;", ">") script = script.replace("&quot;", '"') script = script.replace("&#x27;", "'") script = script.replace("&#x60;", "`") json_data = json.loads(script) # Shuffle the data so we can save it in a format BokehJS will be able to # consume later. js = transform_bokeh_json(json_data) file_name = js["target_id"] # Save the Bokeh JSON data to disk. It will be read by React when loaded in # Docusaurus. file_path = plot_data_folder / f"{file_name}.json" with file_path.open("w") as f: json.dump(js, f, indent=2) # Add the Bokeh figure to the MDX output. path_to_data = f"./assets/plot_data/{file_name}.json" output.append( (index, f"<BokehFigure data={{require('{path_to_data}')}} />\n\n"), ) return output def handle_image( values: List[Dict[str, Union[int, str, NotebookNode]]], ) -> List[Tuple[int, str]]: """ Convert embedded images to string MDX can consume. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = value["index"] mime_type = value["mime_type"] img = value["data"] output.append((index, f"![](data:image/{mime_type};base64,{img})\n\n")) return output def handle_markdown( values: List[Dict[str, Union[int, str, NotebookNode]]], ) -> List[Tuple[int, str]]: """ Convert and format Markdown for MDX. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = int(value["index"]) markdown = str(value["data"]) markdown = mdformat.text(markdown, options={"wrap": 88}, extensions={"myst"}) output.append((index, f"{markdown}\n\n")) return output def handle_pandas( values: List[Dict[str, Union[int, str, NotebookNode]]], ) -> List[Tuple[int, str]]: """ Handle how to display pandas DataFrames. There is a scoped style tag in the DataFrame output that uses the class name `dataframe` to style the output. We will use this token to determine if a pandas DataFrame is being displayed. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = int(value["index"]) data = str(value["data"]) df = pd.read_html(data, flavor="lxml") # NOTE: The return is a list of dataframes and we only care about the first # one. md_df = df[0] for column in md_df.columns: if column.startswith("Unnamed"): md_df.rename(columns={column: ""}, inplace=True) # Remove the index if it is just a range, and output to markdown. mdx = "" if isinstance(md_df.index, pd.RangeIndex): # Ignore FutureWarning: 'showindex' is deprecated. with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=FutureWarning) mdx = md_df.to_markdown(showindex=False) elif not isinstance(md_df.index, pd.RangeIndex): mdx = md_df.to_markdown() output.append((index, f"\n{mdx}\n\n")) return output def handle_plain( values: List[Dict[str, Union[int, str, NotebookNode]]], ) -> List[Tuple[int, str]]: """ Handle how to plain cell output should be displayed in MDX. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = int(value["index"]) data = str(value["data"]) data = [line.strip() for line in data.splitlines() if line] data = [datum for datum in data if datum] if data: data = "\n".join([line for line in str(value["data"]).splitlines() if line]) output.append( (index, f"<CellOutput>\n{{\n `{data}`\n}}\n</CellOutput>\n\n"), ) return output def handle_plotly( values: List[Dict[str, Union[int, str, NotebookNode]]], plot_data_folder: Path, ) -> List[Tuple[int, str]]: """ Convert Plotly outputs to MDX. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. plot_data_folder (Path): Path to the folder where plot data should be stored. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = [] for value in values: index = value["index"] data = value["data"] file_name = str(uuid.uuid4()) file_path = plot_data_folder / f"{file_name}.json" path_to_data = f"./assets/plot_data/{file_name}.json" output.append( (index, f"<PlotlyFigure data={{require('{path_to_data}')}} />\n\n"), ) with file_path.open("w") as f: json.dump(data, f, indent=2) return output def handle_tqdm( values: List[Dict[str, Union[int, str, NotebookNode]]], ) -> List[Tuple[int, str]]: """ Handle the output of tqdm. tqdm will be displayed as separate CellOutput React components if we do not aggregate them all into a single CellOutput object, which is what this method does. Args: values (List[Dict[str, Union[int, str, NotebookNode]]]): Bokeh tagged cell outputs. Returns: List[Tuple[int, str]]: A list of tuples, where the first entry in the tuple is the index where the output occurred from the cell, and the second entry of the tuple is the MDX formatted string. """ output = sorted(values, key=lambda item: item["index"]) index = int(output[0]["index"]) md = "\n".join([str(item["data"]) for item in output if item["data"]]) return [(index, f"<CellOutput>\n{{\n `{md}`\n}}\n</CellOutput>\n\n")] CELL_OUTPUTS_TO_PROCESS = Dict[ str, List[Dict[str, Union[int, str, NotebookNode]]], ] def aggregate_mdx( cell_outputs_to_process: CELL_OUTPUTS_TO_PROCESS, plot_data_folder: Path, ) -> str: """ Aggregate the `cell_outputs_to_process` into MDX. Args: cell_outputs_to_process (CELL_OUTPUTS_TO_PROCESS): A dictionary of cell outputs that need further processing. plot_data_folder (Path): Path to where plot data should be stored for the tutorial. Returns: str: MDX formatted string. """ processed_mdx = [] for key, values in cell_outputs_to_process.items(): if not values: continue if key == "bokeh": processed_mdx.extend(handle_bokeh(values, plot_data_folder)) if key == "image": processed_mdx.extend(handle_image(values)) if key == "markdown": processed_mdx.extend(handle_markdown(values)) if key == "pandas": processed_mdx.extend(handle_pandas(values)) if key == "plain": processed_mdx.extend(handle_plain(values)) if key == "plotly": processed_mdx.extend(handle_plotly(values, plot_data_folder)) if key == "tqdm": processed_mdx.extend(handle_tqdm(values)) # Ensure the same ordering of the MDX happens as was found in the original cell # output. processed_mdx = sorted(processed_mdx, key=lambda item: item[0]) mdx = "\n".join([item[1] for item in processed_mdx]) return mdx def prioritize_dtypes( cell_outputs: List[NotebookNode], ) -> Tuple[List[List[str]], List[bool]]: """ Prioritize cell output data types. Args: cell_outputs (List[NotebookNode]): A list of cell outputs. Returns: Tuple[List[List[str]], List[bool]]: Return two items in the tuple; the first is a list of prioritized data types and the second is a list boolean values associated with the cell output having Plotly information in it or not. """ cell_output_dtypes = [ list(cell_output["data"].keys()) if "data" in cell_output else [cell_output["output_type"]] for cell_output in cell_outputs ] prioritized_cell_output_dtypes = [ sorted( set(dtypes).intersection(set(priorities)), key=lambda dtype: priorities.index(dtype), ) for dtypes in cell_output_dtypes ] prioritized_cell_output_dtypes = [ [str(item) for item in items] for items in prioritized_cell_output_dtypes ] plotly_flags = [ any(["plotly" in output for output in outputs]) for outputs in cell_output_dtypes ] return prioritized_cell_output_dtypes, plotly_flags def aggregate_bokeh( prioritized_data_dtype: str, cell_output: NotebookNode, data: NotebookNode, cell_outputs_to_process: CELL_OUTPUTS_TO_PROCESS, i: int, ) -> None: """ Aggregate Bokeh cell outputs. Args: prioritized_data_dtype (str): The prioritized cell output data type. cell_output (NotebookNode): The actual cell output from the notebook. data (NotebookNode): The data of the cell output. cell_outputs_to_process (CELL_OUTPUTS_TO_PROCESS): Dictionary containing aggregated cell output objects. i (int): Index for the cell output in the list of cell output objects. Returns: None: Does not return anything, instead adds values to the cell_outputs_to_process if applicable. """ if prioritized_data_dtype == "application/vnd.bokehjs_load.v0+json": pass # Bokeh `show` outputs. if prioritized_data_dtype == "application/vnd.bokehjs_exec.v0+json": data = cell_output["data"]["application/javascript"] cell_outputs_to_process["bokeh"].append({"index": i, "data": data}) # Bokeh applications. if prioritized_data_dtype == "text/html" and "Bokeh Application" in data: cell_outputs_to_process["bokeh"].append({"index": i, "data": data}) def aggregate_images_and_plotly( prioritized_data_dtype: str, cell_output: NotebookNode, data: NotebookNode, plotly_flags: List[bool], cell_outputs_to_process: CELL_OUTPUTS_TO_PROCESS, i: int, ) -> None: """ Aggregates images or Plotly cell outputs into an appropriate bucket. Args: prioritized_data_dtype (str): The prioritized cell output data type. cell_output (NotebookNode): The actual cell output from the notebook. data (NotebookNode): The data of the cell output. plotly_flags (List[bool]): True if a Plotly plot was found in the cell outputs else False. cell_outputs_to_process (CELL_OUTPUTS_TO_PROCESS): Dictionary containing aggregated cell output objects. i (int): Index for the cell output in the list of cell output objects. Returns: None: Does not return anything, instead adds values to the cell_outputs_to_process if applicable. """ if prioritized_data_dtype.startswith("image"): if not plotly_flags[i]: cell_outputs_to_process["image"].append( {"index": i, "data": data, "mime_type": prioritized_data_dtype}, ) # Plotly outputs a static image, but we can use the JSON in the cell # output to create interactive plots using a React component. if plotly_flags[i]: data = cell_output["data"]["application/vnd.plotly.v1+json"] cell_outputs_to_process["plotly"].append({"index": i, "data": data}) def aggregate_plain_output( prioritized_data_dtype: str, cell_output: NotebookNode, data: NotebookNode, cell_outputs_to_process: CELL_OUTPUTS_TO_PROCESS, i: int, ) -> None: """ Aggregate plain text cell outputs together. Args: prioritized_data_dtype (str): The prioritized cell output data type. cell_output (NotebookNode): The actual cell output from the notebook. data (NotebookNode): The data of the cell output. cell_outputs_to_process (CELL_OUTPUTS_TO_PROCESS): Dictionary containing aggregated cell output objects. i (int): Index for the cell output in the list of cell output objects. Returns: None: Does not return anything, instead adds values to the cell_outputs_to_process if applicable. """ # Ignore error outputs. if "name" in cell_output and cell_output["name"] == "stderr": pass # Ignore matplotlib legend text output. if prioritized_data_dtype == "text/plain" and "matplotlib" in data: pass cell_outputs_to_process["plain"].append({"index": i, "data": data}) def aggregate_output_types(cell_outputs: List[NotebookNode]) -> CELL_OUTPUTS_TO_PROCESS: """ Aggregate cell outputs into a dictionary for further processing. Args: cell_outputs (List[NotebookNode]): List of cell outputs. Returns: CELL_OUTPUTS_TO_PROCESS: Dictionary containing aggregated cell output objects. """ # We will use the below cell output data types for prioritizing the output shown in # the MDX file. prioritized_cell_output_dtypes, plotly_flags = prioritize_dtypes(cell_outputs) cell_outputs_to_process = { "bokeh": [], "image": [], "markdown": [], "pandas": [], "plain": [], "plotly": [], "tqdm": [], } for i, cell_output in enumerate(cell_outputs): prioritized_data_dtype = prioritized_cell_output_dtypes[i][0] # If there is no `data` key in the cell_output, then it may be an error that # needs to be handled. Even if it is not an error, the data is stored in a # different key if no `data` key is found. data = ( cell_output["data"][prioritized_data_dtype] if "data" in cell_output else cell_output["text"] ) bokeh_check = "bokeh" in prioritized_data_dtype or ( prioritized_data_dtype == "text/html" and "Bokeh Application" in data ) if bokeh_check: aggregate_bokeh( prioritized_data_dtype, cell_output, data, cell_outputs_to_process, i, ) image_check = prioritized_data_dtype.startswith("image") if image_check: aggregate_images_and_plotly( prioritized_data_dtype, cell_output, data, plotly_flags, cell_outputs_to_process, i, ) plain_check = prioritized_data_dtype in ["text/plain", "stream"] if plain_check: aggregate_plain_output( prioritized_data_dtype, cell_output, data, cell_outputs_to_process, i, ) if prioritized_data_dtype == "text/markdown": cell_outputs_to_process["markdown"].append({"index": i, "data": data}) if "dataframe" in data: cell_outputs_to_process["pandas"].append({"index": i, "data": data}) if prioritized_data_dtype == "application/vnd.jupyter.widget-view+json": data = cell_output["data"]["text/plain"] cell_outputs_to_process["tqdm"].append({"index": i, "data": data}) return cell_outputs_to_process def handle_cell_outputs(cell: NotebookNode, plot_data_folder: Path) -> str: """ Handle cell outputs and convert to MDX. Args: cell (NotebookNode): The cell where the outputs need converting. plot_data_folder (Path): Path to the folder where plot data should be stored. Returns: str: MDX formatted cell output. """ mdx = "" # Return an empty string if there are no actual cell outputs. cell_outputs = cell.get("outputs", []) if not cell_outputs: return mdx # We will loop over all cell outputs and bucket them into the appropriate key in the # dictionary below for further processing. Doing it in this way helps aggregate like # outputs together e.g. tqdm outputs. cell_outputs_to_process = aggregate_output_types(cell_outputs) # Now we process all aggregated cell outputs into a single output for the type. md = aggregate_mdx(cell_outputs_to_process, plot_data_folder) return md def handle_code_cell(cell: NotebookNode, plot_data_folder: Path) -> str: """ Handle code cells in Jupyter notebooks and convert them to MDX. Args: cell (NotebookNode): A Jupyter notebook cell that contains code. plot_data_folder (Path): Path to the folder where plot data should be stored. Returns: str: MDX formatted code cell. """ cell_input_mdx = handle_cell_input(cell, "python") cell_output_mdx = handle_cell_outputs(cell, plot_data_folder) return cell_input_mdx + cell_output_mdx def transform_notebook(path: Path) -> str: """ Transform a notebook located at the given path into MDX. Args: path (Path): Path to the Jupyter notebook tutorial. Returns: str: MDX formatted string. """ filename, assets_folder = create_folders(path) img_folder = assets_folder / "img" plot_data_folder = assets_folder / "plot_data" save_folder = assets_folder.joinpath("..").resolve() nb = load_notebook(path) nb_metadata = load_nb_metadata() mdx = "" mdx += create_frontmatter(path, nb_metadata) mdx += create_imports() mdx += create_buttons(nb_metadata, path.stem) for cell in nb["cells"]: cell_type = cell["cell_type"] # Handle a Markdown cell. if cell_type == "markdown": mdx += handle_markdown_cell(cell, img_folder, LIB_DIR) # Handle a code cell. if cell_type == "code": mdx += handle_code_cell(cell, plot_data_folder) # Write the MDX file to disk. save_path = save_folder / f"{filename}.mdx" with save_path.open("w") as f: f.write(mdx) # Return the string for debugging purposes. return mdx if __name__ == "__main__": tutorials_metadata = load_nb_metadata() print("--------------------------------------------") print("Converting tutorial notebooks into mdx files") print("--------------------------------------------") for _, value in tutorials_metadata.items(): path = (LIB_DIR / value["nb_path"]).resolve() print(f"{path.stem}") mdx = transform_notebook(path) print("")
beanmachine-main
website/scripts/convert_ipynb_to_mdx.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch.distributions as dist from torch import tensor class ToplevelSmokeTest(unittest.TestCase): def test_toplevel_package_imports(self): # these decorators should execute without error @bm.random_variable def foo(i): return dist.Bernoulli(0.5) @bm.functional def foo_sum(n): return sum(foo(i) for i in range(n)) @bm.random_variable def bar(): return dist.Normal(0, 1) # exercise invocation from top-level package directly # Compositional Inference samples = bm.CompositionalInference().infer( [foo_sum(3)], {foo(0): tensor(0.0)}, 100, 1 ) bm.Diagnostics(samples) # NUTS samples = bm.SingleSiteNoUTurnSampler().infer( [bar()], {foo(0): tensor(0.0)}, 100, 1, num_adaptive_samples=100 ) bm.Diagnostics(samples)
beanmachine-main
tests/ppl/smoke_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import pytest import torch.distributions as dist @pytest.fixture(autouse=True) def fix_random_seed(): """Fix the random state for every test in the test suite.""" bm.seed(0) @pytest.fixture(autouse=True) def disable_torch_distribution_validation(): """Disables validation of Torch distribution arguments.""" dist.Distribution.set_default_validate_args(False)
beanmachine-main
tests/ppl/conftest.py
beanmachine-main
tests/ppl/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import pytest import torch from beanmachine.ppl.experimental.torch_jit_backend import get_backend, TorchJITBackend from ..inference.inference_test import SampleModel def test_get_backend(): with pytest.warns( UserWarning, match="The support of TorchInductor is experimental" ): # test if switching to inductor triggers the warning backend = get_backend(nnc_compile=False, experimental_inductor_compile=True) assert backend is TorchJITBackend.INDUCTOR backend = get_backend(nnc_compile=True, experimental_inductor_compile=False) assert backend is TorchJITBackend.NNC backend = get_backend(nnc_compile=False, experimental_inductor_compile=False) assert backend is TorchJITBackend.NONE @pytest.mark.skip(reason="The CPU backend of TorchInductor isn't working in fbcode yet") def test_inductor_compile(): model = SampleModel() queries = [model.foo()] observations = {model.bar(): torch.tensor(0.5)} num_samples = 30 num_chains = 2 # verify that Inductor can run through samples = bm.GlobalNoUTurnSampler(experimental_inductor_compile=True).infer( queries, observations, num_samples, num_adaptive_samples=num_samples, num_chains=num_chains, ) # sanity check: make sure that the samples are valid assert not torch.isnan(samples[model.foo()]).any()
beanmachine-main
tests/ppl/experimental/torch_jit_backend_test.py
beanmachine-main
tests/ppl/experimental/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, DimensionalRule, Operator, SplitRule, ) @pytest.fixture def grow_dim(): return 1 @pytest.fixture def grow_val(): return 2.1 def test_dimensional_rule_addition(grow_dim, grow_val): lax_rule = SplitRule( grow_dim=grow_dim, grow_val=grow_val + 10, operator=Operator.le ) existing_dimensional_rule = DimensionalRule( grow_dim=grow_dim, min_val=grow_val - 20, max_val=grow_val ) assert ( existing_dimensional_rule.max_val == existing_dimensional_rule.add_rule(lax_rule).max_val ) assert ( existing_dimensional_rule.min_val == existing_dimensional_rule.add_rule(lax_rule).min_val ) restrictive_rule_le = SplitRule( grow_dim=grow_dim, grow_val=grow_val - 10, operator=Operator.le ) assert ( existing_dimensional_rule.max_val > existing_dimensional_rule.add_rule(restrictive_rule_le).max_val ) assert ( existing_dimensional_rule.min_val == existing_dimensional_rule.add_rule(restrictive_rule_le).min_val ) restrictive_rule_gt = SplitRule( grow_dim=grow_dim, grow_val=grow_val - 10, operator=Operator.gt ) assert ( existing_dimensional_rule.max_val == existing_dimensional_rule.add_rule(restrictive_rule_gt).max_val ) assert ( existing_dimensional_rule.min_val < existing_dimensional_rule.add_rule(restrictive_rule_gt).min_val ) @pytest.fixture def all_dims(): return [0, 2] @pytest.fixture def all_split_rules(all_dims): all_rules = [] for dim in all_dims: all_rules.append(SplitRule(grow_dim=dim, grow_val=5, operator=Operator.le)) return all_rules @pytest.fixture def X(): return torch.Tensor([[1.0, 3.0, 7.0], [-1.1, 100, 5]]) def test_composite_rules(all_dims, all_split_rules, X): composite_rule = CompositeRules(all_dims=all_dims, all_split_rules=all_split_rules) X_cond = X[composite_rule.condition_on_rules(X)] for dim in all_dims: assert torch.all(X_cond[:, dim] > composite_rule.dimensional_rules[dim].min_val) assert torch.all( X_cond[:, dim] <= composite_rule.dimensional_rules[dim].max_val ) invalid_split_rule = SplitRule( grow_dim=max(all_dims) + 1, grow_val=12, operator=Operator.le ) with pytest.raises(ValueError): _ = composite_rule.add_rule(invalid_split_rule) valid_split_rule = SplitRule( grow_dim=max(all_dims), grow_val=1000.0, operator=Operator.gt ) valid_new_composite_rule = composite_rule.add_rule(valid_split_rule) assert valid_new_composite_rule.most_recent_split_rule() == valid_split_rule
beanmachine-main
tests/ppl/experimental/bart/bart_split_rule_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.scalar_samplers import ( NoiseStandardDeviation, ) @pytest.fixture def X(): return torch.Tensor([[3.0, 1.0], [4.0, 1.0], [1.5, 1.0], [-1.0, 1.0]]) @pytest.fixture def residual(X): return X * 0.1 @pytest.fixture def sigma(): return NoiseStandardDeviation(prior_concentration=0.1, prior_rate=0.2) def test_sigma_sampling(sigma, X, residual): prev_val = sigma.val sample = sigma.sample(X=X, residual=residual) assert not prev_val == sigma.val assert sigma.val == sample
beanmachine-main
tests/ppl/experimental/bart/bart_scalar_sampler_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.exceptions import ( GrowError, PruneError, ) from beanmachine.ppl.experimental.causal_inference.models.bart.mutation import ( GrowMutation, PruneMutation, ) from beanmachine.ppl.experimental.causal_inference.models.bart.node import ( LeafNode, SplitNode, ) from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, Operator, SplitRule, ) from beanmachine.ppl.experimental.causal_inference.models.bart.tree import Tree @pytest.fixture def X(): return torch.Tensor( [[3.0], [4.0], [1.5], [-1.0]] ) # only r1 containing all positive entries is growable @pytest.fixture def l1_non_growable(): return LeafNode( depth=1, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[SplitRule(grow_dim=0, grow_val=0, operator=Operator.le)], ), val=-10, ) @pytest.fixture def l2_non_growable(): return LeafNode( depth=2, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[ SplitRule(grow_dim=0, grow_val=1.5, operator=Operator.le), SplitRule(grow_dim=0, grow_val=0, operator=Operator.gt), ], ), val=15, ) @pytest.fixture def r2_growable(): return LeafNode( depth=2, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[ SplitRule(grow_dim=0, grow_val=1.5, operator=Operator.gt), SplitRule(grow_dim=0, grow_val=0, operator=Operator.gt), ], ), val=15, ) @pytest.fixture def r1_grown(r2_growable, l2_non_growable): return SplitNode( depth=1, left_child=l2_non_growable, right_child=r2_growable, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[SplitRule(grow_dim=0, grow_val=0, operator=Operator.gt)], ), ) @pytest.fixture def root(l1_non_growable, r1_grown): return SplitNode( depth=0, left_child=l1_non_growable, right_child=r1_grown, composite_rules=CompositeRules(all_dims=[0]), ) @pytest.fixture def tree(root, r1_grown, l1_non_growable, r2_growable, l2_non_growable): """ root_node /\ (x1 <= 0)l1 r1 (x1 > 0) / \ (x1 <= 1.5) l2 r2 (x1 > 1.5) The tree is made such that all positive input gets a positive prediciton and vice-versa. """ tree_ = Tree(nodes=[root, l1_non_growable, r1_grown, l2_non_growable, r2_growable]) return tree_ def test_num_nodes(tree): assert tree.num_nodes() == 5 def test_leaf_split_nodes(tree): for node in tree.split_nodes(): assert isinstance(node, SplitNode) for node in tree.split_nodes(): assert isinstance(node, SplitNode) def test_prunable_split_nodes(tree): for node in tree.prunable_split_nodes(): assert isinstance(node.left_child, LeafNode) assert isinstance(node.left_child, LeafNode) assert len(tree.prunable_split_nodes()) == tree.num_prunable_split_nodes() def test_growable_leaves(tree, r2_growable, l1_non_growable, X): assert tree.num_growable_leaf_nodes(X) == 1 growable_leaves = tree.growable_leaf_nodes(X) assert len(tree.growable_leaf_nodes(X)) == len(growable_leaves) assert r2_growable in growable_leaves assert l1_non_growable not in growable_leaves assert l2_non_growable not in growable_leaves def test_prediction(tree, X): for x1 in X: x1 = x1.reshape(1, 1) assert float(x1) * tree.predict(x1) >= 0 def test_mutate_prune(tree, root, l1_non_growable, r1_grown): old_tree_len = tree.num_nodes() pruned_r1 = SplitNode.prune_node(r1_grown) # pruning an internal node with pytest.raises(PruneError): _ = PruneMutation(old_node=root, new_node=l1_non_growable) mutation = PruneMutation(old_node=r1_grown, new_node=pruned_r1) tree.mutate(mutation) assert tree.num_nodes() == old_tree_len - 2 def test_mutate_grow(tree, r2_growable): old_tree_len = tree.num_nodes() l3 = LeafNode( depth=3, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[SplitRule(grow_dim=0, grow_val=3, operator=Operator.le)], ), val=15, ) r3 = LeafNode( depth=3, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[SplitRule(grow_dim=0, grow_val=1.5, operator=Operator.gt)], ), val=15, ) r2_grown = SplitNode( depth=2, left_child=l3, right_child=r3, composite_rules=CompositeRules( all_dims=[0], all_split_rules=[SplitRule(grow_dim=0, grow_val=1.5, operator=Operator.gt)], ), ) # growing an internal node with pytest.raises(GrowError): _ = GrowMutation(old_node=r2_grown, new_node=r2_growable) mutation = GrowMutation(old_node=r2_growable, new_node=r2_grown) tree.mutate(mutation) assert tree.num_nodes() == old_tree_len + 2
beanmachine-main
tests/ppl/experimental/bart/bart_tree_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from copy import deepcopy import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.exceptions import ( PruneError, ) from beanmachine.ppl.experimental.causal_inference.models.bart.node import ( BaseNode, LeafNode, SplitNode, ) from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, Operator, SplitRule, ) @pytest.fixture def composite_rule(): all_rules = [] all_dims = [0, 1, 2] for dim in all_dims: all_rules.append(SplitRule(grow_dim=dim, grow_val=0, operator=Operator.le)) composite_rule = CompositeRules(all_dims=all_dims, all_split_rules=all_rules) return composite_rule @pytest.fixture def left_rule(): return SplitRule(grow_dim=0, grow_val=-0.5, operator=Operator.le) @pytest.fixture def right_rule(): return SplitRule(grow_dim=0, grow_val=-0.5, operator=Operator.gt) @pytest.fixture def all_pass_composite_rule(): all_rules = [] all_dims = [0, 1, 2] for dim in all_dims: all_rules.append( SplitRule(grow_dim=dim, grow_val=float("inf"), operator=Operator.le) ) composite_rule = CompositeRules(all_dims=all_dims, all_split_rules=all_rules) return composite_rule @pytest.fixture def X(): return torch.Tensor([[1.0, 3.0, 7.0], [-1.1, -1, -5]]) def test_conditioning(X, composite_rule): base_node = BaseNode(depth=0, composite_rules=composite_rule) assert torch.all( base_node.data_in_node(X) == X[composite_rule.condition_on_rules(X)] ) def test_leaf_node_prediction(composite_rule): val = 10 leaf_node = LeafNode(composite_rules=composite_rule, depth=0, val=val) assert leaf_node.predict() == val @pytest.fixture def leaf_node(composite_rule): return LeafNode(composite_rules=composite_rule, depth=0) @pytest.fixture def loose_leaf(all_pass_composite_rule): return LeafNode(composite_rules=all_pass_composite_rule, depth=0) def test_growable_dims(leaf_node, loose_leaf, X): assert leaf_node.get_num_growable_dims(X) == 0 # only one row of X passes the test assert loose_leaf.get_num_growable_dims(X) == X.shape[-1] # everything passes assert len(loose_leaf.get_growable_dims(X)) == loose_leaf.get_num_growable_dims(X) def test_is_grow(leaf_node, loose_leaf, X): assert not leaf_node.is_growable(X) # no splittable_dims. Cannot grow. assert loose_leaf.is_growable(X) def test_grow_node(leaf_node, left_rule, right_rule, X): grown_leaf = LeafNode.grow_node( leaf_node, left_rule=left_rule, right_rule=right_rule ) assert isinstance(grown_leaf, SplitNode) assert grown_leaf.left_child is not None assert grown_leaf.right_child is not None assert grown_leaf.most_recent_rule() == left_rule def test_prune_node(leaf_node, composite_rule): split_node = SplitNode( left_child=leaf_node, right_child=deepcopy(leaf_node), depth=1, composite_rules=composite_rule, ) grandfather_node = SplitNode( left_child=leaf_node, right_child=split_node, depth=0, composite_rules=composite_rule, ) assert split_node.is_prunable() assert not grandfather_node.is_prunable() assert isinstance(SplitNode.prune_node(split_node), LeafNode) with pytest.raises(PruneError): SplitNode.prune_node(grandfather_node) def test_partition_of_split(loose_leaf, X): grow_val = X[0, 0] growable_vals = loose_leaf.get_growable_vals(X=X, grow_dim=0) assert torch.isclose( torch.tensor( [loose_leaf.get_partition_of_split(X=X, grow_dim=0, grow_val=grow_val)] ), torch.mean( (growable_vals == grow_val.item()).to(torch.float), dtype=torch.float ), )
beanmachine-main
tests/ppl/experimental/bart/bart_node_test.py
beanmachine-main
tests/ppl/experimental/bart/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.exceptions import ( PruneError, ) from beanmachine.ppl.experimental.causal_inference.models.bart.grow_prune_tree_proposer import ( GrowPruneTreeProposer, MutationKind, ) from beanmachine.ppl.experimental.causal_inference.models.bart.node import ( LeafNode, SplitNode, ) from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, Operator, SplitRule, ) from beanmachine.ppl.experimental.causal_inference.models.bart.tree import Tree @pytest.fixture(autouse=True) def seed(): torch.manual_seed(5) @pytest.fixture def X(): return torch.Tensor([[3.0, 1.0], [4.0, 1.0], [1.5, 1.0], [-1.0, 1.0]]) @pytest.fixture def root_node(X): return SplitNode( depth=0, composite_rules=CompositeRules(all_dims=list(range(X.shape[-1]))), ) @pytest.fixture def single_node_tree(X): leaf_root = LeafNode( depth=0, composite_rules=CompositeRules(all_dims=list(range(X.shape[-1]))), ) tree_ = Tree(nodes=[leaf_root]) return tree_ @pytest.fixture def r1_growable(X): return LeafNode( depth=1, composite_rules=CompositeRules( all_dims=list(range(X.shape[-1])), all_split_rules=[SplitRule(grow_dim=0, grow_val=0, operator=Operator.gt)], ), val=-10, ) @pytest.fixture def l1_non_growable(X): return LeafNode( depth=1, composite_rules=CompositeRules( all_dims=list(range(X.shape[-1])), all_split_rules=[SplitRule(grow_dim=0, grow_val=0, operator=Operator.le)], ), val=-10, ) @pytest.fixture def single_layer_tree(root_node, r1_growable, l1_non_growable): """ root_node /\ (x1 <= 0)l1 r1 (x1 > 0) The tree is made such that all positive input gets a positive prediciton and vice-versa. """ root_node._left_child = l1_non_growable root_node._right_child = r1_growable tree_ = Tree(nodes=[root_node, l1_non_growable, r1_growable]) return tree_ @pytest.fixture def l2_non_growable(X): return LeafNode( depth=2, composite_rules=CompositeRules( all_dims=list(range(X.shape[-1])), all_split_rules=[SplitRule(grow_dim=0, grow_val=3, operator=Operator.le)], ), val=-10, ) @pytest.fixture def r2_growable(X): return LeafNode( depth=1, composite_rules=CompositeRules( all_dims=list(range(X.shape[-1])), all_split_rules=[SplitRule(grow_dim=0, grow_val=0, operator=Operator.gt)], ), val=-10, ) @pytest.fixture def r1_grown(X): return SplitNode( depth=1, composite_rules=CompositeRules( all_dims=list(range(X.shape[-1])), all_split_rules=[SplitRule(grow_dim=0, grow_val=3, operator=Operator.gt)], ), ) @pytest.fixture def double_layer_tree( root_node, r1_grown, l1_non_growable, r2_growable, l2_non_growable ): """ root_node /\ (x1 <= 0)l1 r1 (x1 > 0) /\ (<=3)l2 r2 (>3) """ root_node._left_child = l1_non_growable root_node._right_child = r1_grown r1_grown._left_child = l2_non_growable r1_grown._right_child = r2_growable tree_ = Tree( nodes=[root_node, l1_non_growable, r1_grown, l2_non_growable, r2_growable] ) return tree_ @pytest.fixture def proposer(): return GrowPruneTreeProposer() def test_new_mutation(proposer, single_node_tree, X): assert proposer._get_new_mutation(X=X, tree=single_node_tree) == MutationKind.grow def test_select_root_to_grow(proposer, single_node_tree, X): assert ( proposer._select_leaf_to_grow(single_node_tree, X) == single_node_tree._nodes[0] ) def test_select_leaf_to_grow(proposer, single_layer_tree, X, r1_growable): assert proposer._select_leaf_to_grow(single_layer_tree, X) == r1_growable def test_select_dim_to_grow(proposer, single_node_tree, X): assert proposer._select_grow_dim(leaf_to_grow=single_node_tree._nodes[0], X=X) == 0 def test_select_node_to_prune(proposer, single_node_tree, double_layer_tree, r1_grown): assert proposer._select_split_node_to_prune(tree=double_layer_tree) == r1_grown with pytest.raises(PruneError): _ = proposer._select_split_node_to_prune(tree=single_node_tree) def test_propose(proposer, single_node_tree, X): proposed_tree = proposer.propose( tree=single_node_tree, X=X, partial_residual=torch.zeros(X.shape[0], 1), alpha=0.5, beta=0.5, sigma_val=0.01, leaf_mean_prior_scale=1, ) assert isinstance(proposed_tree, Tree) assert abs(proposed_tree.num_nodes() - single_node_tree.num_nodes()) in [ 0, 2, ] # 2: grow or prune, 0 for no change
beanmachine-main
tests/ppl/experimental/bart/bart_tree_proposer_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.bart_model import ( LeafMean, ) from beanmachine.ppl.experimental.causal_inference.models.bart.grow_from_root_tree_proposer import ( GrowFromRootTreeProposer, SortedInvariants, ) from beanmachine.ppl.experimental.causal_inference.models.bart.node import LeafNode from beanmachine.ppl.experimental.causal_inference.models.bart.split_rule import ( CompositeRules, ) @pytest.fixture(autouse=True) def seed(): torch.manual_seed(5) @pytest.fixture def gfr_proposer(): gfr = GrowFromRootTreeProposer() gfr.num_cuts = 2 gfr.num_null_cuts = 1 return gfr @pytest.fixture def X(): return torch.Tensor([[3.0, 1.0], [4.0, 1.0], [1.5, 1.0], [-1.0, 1.0]]) @pytest.fixture def w(X): num_vars = X.shape[-1] weights = torch.Tensor([1 / num_vars for _ in range(num_vars - 1)]) return weights def test_sample_variables(gfr_proposer, w): num_vars_to_sample = max(len(w) - 1, 1) assert ( len(gfr_proposer._sample_variables(num_vars_to_sample, w)) == num_vars_to_sample ) impossible_num_vars_to_sample = len(w) + 1 assert len(gfr_proposer._sample_variables(impossible_num_vars_to_sample, w)) == len( w ) def test_presort(gfr_proposer, X): O_ = gfr_proposer._presort(X) num_observations, num_dims = X.shape for inp_dim in range(num_dims): for obs in range(1, num_observations): assert X[O_[inp_dim, obs - 1], inp_dim] <= X[O_[inp_dim, obs], inp_dim] def test_get_uniq_elems(gfr_proposer, X): O_ = gfr_proposer._presort(X) uniq_vals, val_counts = gfr_proposer._get_uniq_elems(X=X, O_=O_) num_observations, num_dims = X.shape for inp_dim in range(num_dims): dim_val_counts = val_counts[inp_dim] assert sum(dim_val_counts.values()) == num_observations for id_, uniq_val in enumerate(uniq_vals[inp_dim]): assert dim_val_counts[uniq_val] > 0 if id_ > 0: assert uniq_val >= uniq_vals[inp_dim][id_ - 1] assert set(uniq_vals[inp_dim]) == {_.item() for _ in X[:, inp_dim]} @pytest.fixture def invariants(gfr_proposer, X): O_ = gfr_proposer._presort(X) uniq_vals, val_counts = gfr_proposer._get_uniq_elems(X=X, O_=O_) return SortedInvariants(O_=O_, uniq_vals=uniq_vals, val_counts=val_counts) def test_select_cutpoints(gfr_proposer, X, invariants): num_observations, num_dims = X.shape cutpoints = gfr_proposer._select_cutpoints( candidate_dims=list(range(num_dims)), uniq_vals=invariants.uniq_vals ) num_dim_cuts = 0 for point_id, point in enumerate(cutpoints): assert ( point.cut_val < invariants.uniq_vals[point.dim][-1] ) # no degenerate splits if point_id > 0 and cutpoints[point_id - 1].dim == point.dim: assert cutpoints[point_id - 1].cut_val < point.cut_val num_dim_cuts += 1 elif point_id > 0 and cutpoints[point_id - 1].dim != point.dim: assert num_dim_cuts <= gfr_proposer.num_cuts num_dim_cuts = 0 else: num_dim_cuts += 1 @pytest.fixture def partial_residual(X): return torch.ones((len(X), 1)) * 0.2 @pytest.fixture def sigma_val(): return 0.1 @pytest.fixture def leaf_sampler(): return LeafMean(prior_loc=0.0, prior_scale=0.1) @pytest.fixture def current_node(X): return LeafNode( depth=0, val=0.1, composite_rules=CompositeRules(all_dims=list(range(X.shape[-1]))), ) @pytest.fixture def alpha(): return 0.95 @pytest.fixture def beta(): return 1.25 @pytest.fixture def cut_points(gfr_proposer, invariants): num_dims = invariants.O_.shape[0] return gfr_proposer._select_cutpoints( candidate_dims=list(range(num_dims)), uniq_vals=invariants.uniq_vals ) def test_sample_cut_point( gfr_proposer, X, invariants, cut_points, partial_residual, sigma_val, leaf_sampler, current_node, alpha, beta, ): num_observations, num_dims = X.shape num_trials = 10 all_sampled_cutpoints = [] for _ in range(num_trials): all_sampled_cutpoints.append( gfr_proposer._sample_cut_point( candidate_cut_points=cut_points, partial_residual=partial_residual, invariants=invariants, sigma_val=sigma_val, leaf_sampler=leaf_sampler, current_node=current_node, alpha=alpha, beta=beta, ) ) for point in all_sampled_cutpoints: if point is not None: assert point in cut_points def test_sift( gfr_proposer, X, invariants, cut_points, partial_residual, sigma_val, leaf_sampler, current_node, alpha, beta, ): cut_point = gfr_proposer._sample_cut_point( candidate_cut_points=cut_points, partial_residual=partial_residual, invariants=invariants, sigma_val=sigma_val, leaf_sampler=leaf_sampler, current_node=current_node, alpha=alpha, beta=beta, ) left_invariants, right_invariants = gfr_proposer._sift( X=X, cut_point=cut_point, invariants=invariants ) assert ( invariants.O_.shape[0] == left_invariants.O_.shape[0] and invariants.O_.shape[0] == right_invariants.O_.shape[0] ) # num dims shouldnt change assert ( invariants.O_.shape[1] == left_invariants.O_.shape[1] + right_invariants.O_.shape[1] ) for dim in range(invariants.O_.shape[0]): assert set(invariants.uniq_vals[dim]) == set( left_invariants.uniq_vals[dim] ).union(set(right_invariants.uniq_vals[dim])) for val in invariants.uniq_vals[dim]: assert ( invariants.val_counts[dim][val] == left_invariants.val_counts[dim][val] + right_invariants.val_counts[dim][val] ) def test_propose( X, invariants, cut_points, partial_residual, sigma_val, leaf_sampler, current_node, alpha, beta, w, ): proposer = GrowFromRootTreeProposer() tree_, variable_counts = proposer.propose( X=X, partial_residual=partial_residual, m=X.shape[-1], w=w, sigma_val=sigma_val, leaf_sampler=leaf_sampler, alpha=alpha, beta=beta, root_node=current_node, num_cuts=2, num_null_cuts=1, ) all_leaves = tree_.leaf_nodes() assert len(all_leaves) > 0 if len(all_leaves) > 0: assert sum(variable_counts) > 0 assert tree_.predict(X).shape == partial_residual.shape
beanmachine-main
tests/ppl/experimental/bart/xbart_grow_from_root_proposer_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch from beanmachine.ppl.experimental.causal_inference.models.bart.bart_model import ( BART, XBART, ) @pytest.fixture def X(): return torch.Tensor([[3.0, 1.0], [4.0, 1.0], [1.5, 1.0], [-1.0, 1.0]]) @pytest.fixture def y(X): return X[:, 0] + X[:, 1] @pytest.fixture def bart(X, y): return BART(num_trees=1).fit(X=X, y=y, num_burn=1, num_samples=39) @pytest.fixture def X_test(): return torch.Tensor([[3.1, 2.5]]) @pytest.fixture def y_test(X_test): return X_test[:, 0] + X_test[:, 1] def test_predict(X_test, y_test, bart): y_pred = bart.predict(X_test) assert len(X_test) == len(y_pred) assert len(y_test) == len(y_pred) def test_predict_with_quantiles_bart(X_test, bart): quantiles = torch.Tensor([0.5]) y_pred, qvals = bart.predict_with_quantiles(X_test, quantiles=quantiles) posterior_samples = bart.get_posterior_predictive_samples(X_test) # median for even number of samples is not unique assert (1 - bart.num_samples % 2) or torch.all( torch.median(posterior_samples, dim=1)[0] == qvals ) @pytest.fixture def xbart(X, y): return XBART(num_trees=1).fit(X=X, y=y, num_burn=1, num_samples=9) def test_predict_xbart(X_test, y_test, xbart): y_pred = xbart.predict(X_test) assert len(X_test) == len(y_pred) assert len(y_test) == len(y_pred) def test_predict_with_quantiles_xbart(X_test, xbart): quantiles = torch.Tensor([0.5]) y_pred, qvals = xbart.predict_with_quantiles(X_test, quantiles=quantiles) posterior_samples = xbart.get_posterior_predictive_samples(X_test) # median for even number of samples is not unique assert (1 - xbart.num_samples % 2) or torch.all( torch.median(posterior_samples, dim=1)[0] == qvals )
beanmachine-main
tests/ppl/experimental/bart/bart_model_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist from beanmachine.ppl.experimental.gp import ( bm_sample_from_prior, make_prior_random_variables, ) from beanmachine.ppl.experimental.gp.models import BoTorchGP, SimpleGP from botorch.posteriors.gpytorch import GPyTorchPosterior from gpytorch import kernels, likelihoods from gpytorch.means import ConstantMean from gpytorch.priors import GammaPrior, UniformPrior class ModelTest(unittest.TestCase): def setUp(self): x = torch.randn(3, 1) y = torch.randn(3) mean = ConstantMean(constant_prior=UniformPrior(-1, 1)) kernel = kernels.MaternKernel(lengthscale_prior=GammaPrior(0.5, 0.5)) lik = likelihoods.GaussianLikelihood() self.model = SimpleGP(x, y, mean, kernel, lik) self.bo_model = BoTorchGP(x, y, mean, kernel, lik) self.name_to_rv = make_prior_random_variables(self.model) @bm.random_variable def y(): sampled_model = bm_sample_from_prior( self.model.to_pyro_random_module(), self.name_to_rv, ) return sampled_model.likelihood(sampled_model(x)) self.y = y def test_infer(self): self.model.train() bm.GlobalNoUTurnSampler().infer( list(self.name_to_rv.values()), {}, num_samples=2, num_chains=1 ) def test_load_and_predict(self): self.model.eval() d = { "kernel.lengthscale_prior": torch.ones(1), "mean.mean_prior": torch.tensor(1.0), } self.model.bm_load_samples(d) assert self.model.kernel.lengthscale.item() == 1.0 assert isinstance(self.model(torch.randn(3, 1)), dist.MultivariateNormal) def test_posterior(self): self.bo_model.eval() d = { "kernel.lengthscale_prior": torch.ones(1), "mean.mean_prior": torch.tensor(1.0), } self.bo_model.bm_load_samples(d) assert isinstance(self.bo_model.posterior(torch.randn(3, 1)), GPyTorchPosterior) obs_noise = torch.ones(1, 1) mvn = self.bo_model.posterior(torch.randn(3, 1), obs_noise) assert isinstance(mvn, GPyTorchPosterior)
beanmachine-main
tests/ppl/experimental/gp/models_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import unittest import beanmachine.ppl as bm import gpytorch import torch from beanmachine.ppl.experimental.gp import ( bm_sample_from_prior, make_prior_random_variables, ) from beanmachine.ppl.experimental.gp.models import SimpleGP from gpytorch import likelihoods from gpytorch.distributions import MultivariateNormal from gpytorch.kernels import PeriodicKernel, ScaleKernel from gpytorch.priors import UniformPrior class Regression(SimpleGP): def __init__(self, x_train, y_train, kernel, likelihood, *args, **kwargs): mean = gpytorch.means.ConstantMean() super().__init__(x_train, y_train, mean, kernel, likelihood) def forward(self, data): if data.dim() > 2: data_shape = data.shape[1] else: data_shape = data.shape[0] jitter = torch.eye(data_shape, data_shape) for _ in range(data.dim() - 1): jitter = jitter.unsqueeze(0) mean = self.mean(data) cov = self.kernel(data) + jitter if cov.dim() > mean.dim() + 1: cov = cov.squeeze(0) return MultivariateNormal(mean, cov) class InferenceTests(unittest.TestCase): def test_simple_regression(self): torch.manual_seed(1) n_samples = 100 x_train = torch.linspace(0, 1, 10) y_train = torch.sin(x_train * (2 * math.pi)) kernel = ScaleKernel( base_kernel=PeriodicKernel( period_length_prior=UniformPrior(0.5, 1.5), lengthscale_prior=UniformPrior(0.01, 1.5), ), outputscale_prior=UniformPrior(0.01, 2.0), ) likelihood = likelihoods.GaussianLikelihood() likelihood.noise = 1e-4 gp = Regression(x_train, y_train, kernel, likelihood) name_to_rv = make_prior_random_variables(gp) @bm.random_variable def y(): sampled_model = bm_sample_from_prior(gp.to_pyro_random_module(), name_to_rv) return sampled_model.likelihood(sampled_model(x_train)) queries = list(name_to_rv.values()) obs = {y(): y_train} samples = bm.GlobalNoUTurnSampler(nnc_compile=False).infer( queries, obs, n_samples, num_chains=1 ) # get predictives x_test = torch.linspace(0, 1, 21).unsqueeze(-1) y_test = torch.sin(x_test * (2 * math.pi)).squeeze(0) gp.eval() s = samples.get_chain(0) lengthscale_samples = s[name_to_rv["kernel.base_kernel.lengthscale_prior"]] outputscale_samples = s[name_to_rv["kernel.outputscale_prior"]] period_length_samples = s[name_to_rv["kernel.base_kernel.period_length_prior"]] gp.pyro_load_from_samples( { "kernel.outputscale_prior": outputscale_samples, "kernel.base_kernel.lengthscale_prior": lengthscale_samples, "kernel.base_kernel.period_length_prior": period_length_samples, } ) expanded_x_test = x_test.unsqueeze(0).repeat(n_samples, 1, 1) output = gp.likelihood(gp(expanded_x_test.detach())) assert ( (y_test.squeeze() - output.mean.squeeze().mean(0)).abs().mean() < 1.0 ).item()
beanmachine-main
tests/ppl/experimental/gp/inference_test.py
beanmachine-main
tests/ppl/experimental/gp/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch.distributions as dist from beanmachine.ppl.world.utils import get_default_transforms, initialize_value def test_get_default_transforms(): bernoulli = dist.Bernoulli(0.1) transforms = get_default_transforms(bernoulli) assert dist.transforms.identity_transform == transforms normal = dist.Normal(0, 1) transforms = get_default_transforms(normal) assert dist.transforms.identity_transform == transforms gamma = dist.Gamma(1, 1) transforms = get_default_transforms(gamma) assert transforms.bijective def test_initialize_value(): distribution = dist.Normal(0, 1) value = initialize_value(distribution) assert value.item() == pytest.approx(0, abs=1e-5) first_sample = initialize_value(distribution, True) second_sample = initialize_value(distribution, True) assert first_sample.item() != second_sample.item()
beanmachine-main
tests/ppl/world/utils_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch import torch.distributions as dist from beanmachine.ppl.world import World class SampleModel: @bm.random_variable def foo(self): return dist.Uniform(0.0, 1.0) @bm.random_variable def bar(self): return dist.Normal(self.foo(), 1.0) class DiscreteModel: @bm.random_variable def foo(self): return dist.Categorical(torch.ones(3)) @bm.random_variable def bar(self): return dist.Normal(self.foo().float(), torch.tensor(1.0)) class DynamicModel: @bm.random_variable def foo(self): return dist.Bernoulli(0.5) @bm.random_variable def bar(self, i: int): return dist.Normal(0.0, 1.0) @bm.random_variable def baz(self): mu = self.bar(int(self.foo())) return dist.Normal(mu, 1.0) class ChangeSupportModel: @bm.random_variable def foo(self): return dist.Bernoulli(0.3) @bm.random_variable def bar(self): if self.foo(): return dist.Categorical(logits=torch.rand((3,))) else: return dist.Normal(0.0, 1.0) @bm.random_variable def baz(self): return dist.Bernoulli(self.foo()) def test_basic_operations(): model = SampleModel() observations = {model.bar(): torch.rand(())} world = World(observations=observations) assert world.observations == observations assert len(world.latent_nodes) == 0 assert len(world) == 0 with world: model.bar() # this will add bar() and its parent foo() to world assert len(world) == 2 assert model.bar() in world assert world.latent_nodes == {model.foo()} # edge connection assert model.foo() in world.get_variable(model.bar()).parents assert model.bar() in world.get_variable(model.foo()).children assert len(world.get_variable(model.bar()).children) == 0 assert len(world.get_variable(model.foo()).parents) == 0 assert world.get_variable(model.foo()).value == world.call(model.foo()) def test_initialization(): model = SampleModel() with World(): val1 = model.bar() with World(): val2 = model.bar() assert val1 != val2 def test_log_prob(): model = SampleModel() world1 = World(observations={model.foo(): torch.tensor(0.0)}) world1.call(model.bar()) log_prob1 = world1.log_prob() # set to a value with extremely small probability world2 = world1.replace({model.bar(): torch.tensor(100.0)}) log_prob2 = world2.log_prob() assert log_prob1 > log_prob2 def test_enumerate(): model = DiscreteModel() world = World(observations={model.bar(): torch.tensor(0.0)}) with world: model.bar() assert (torch.tensor([0.0, 1.0, 2.0]) == world.enumerate_node(model.foo())).all() def test_change_parents(): model = DynamicModel() world = World(initialize_fn=lambda d: torch.zeros_like(d.sample())) with world: model.baz() assert model.foo() in world.get_variable(model.baz()).parents assert model.bar(0) in world.get_variable(model.baz()).parents assert model.bar(1) not in world.get_variable(model.baz()).parents assert model.baz() in world.get_variable(model.bar(0)).children world2 = world.replace({model.foo(): torch.tensor(1.0)}) assert model.bar(0) not in world2.get_variable(model.baz()).parents assert model.bar(1) in world2.get_variable(model.baz()).parents assert model.baz() in world2.get_variable(model.bar(1)).children assert model.baz() not in world2.get_variable(model.bar(0)).children def test_distribution_and_log_prob_update(): model = ChangeSupportModel() with World(observations={model.baz(): torch.tensor(1.0)}) as world: model.bar() model.baz() world = world.replace({model.foo(): torch.tensor(0.0)}) world2 = world.replace({model.foo(): torch.tensor(1.0)}) bar_var = world.get_variable(model.bar()) assert isinstance(bar_var.distribution, dist.Normal) bar_var2 = world2.get_variable(model.bar()) assert isinstance(bar_var2.distribution, dist.Categorical) # verify that the children's log prob is recomputed when foo gets updated baz_var = world.get_variable(model.baz()) # Bernoulli(0.0) baz_var2 = world2.get_variable(model.baz()) # Bernoulli(1.0) # recall that baz() is observed to be 1.0 assert baz_var.log_prob < baz_var2.log_prob
beanmachine-main
tests/ppl/world/world_test.py
beanmachine-main
tests/ppl/world/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import torch.distributions as dist from beanmachine.ppl.world.initialize_fn import init_from_prior, init_to_uniform @pytest.mark.parametrize("init_fn", [init_from_prior, init_to_uniform]) @pytest.mark.parametrize( "distribution", [ dist.Uniform(0.0, 1.0), dist.Normal(0.0, 1.0).expand((3,)), dist.Bernoulli(0.5), dist.Exponential(1.0), dist.Dirichlet(torch.tensor([0.5, 0.5])), dist.Categorical(logits=torch.randn(5, 10)), dist.Bernoulli(0.5).expand((3, 5, 7)), dist.Poisson(rate=2.0), ], ) def test_initialize_validness(init_fn, distribution): value = init_fn(distribution) # make sure values are initialize within the constraint assert torch.all(distribution.support.check(value)) assert not torch.any(torch.isnan(distribution.log_prob(value))) assert value.size() == distribution.sample().size()
beanmachine-main
tests/ppl/world/initialize_fn_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pytest import torch import torch.distributions as dist from beanmachine.ppl.world.variable import Variable def test_log_prob(): var1 = Variable(value=torch.zeros(3), distribution=dist.Bernoulli(0.8)) # verify that the cached property `log_prob` is recomputed when we replace the # fields of a Variable var2 = var1.replace(value=torch.ones(3)) assert var1.log_prob.sum() < var2.log_prob.sum() var3 = var1.replace(distribution=dist.Normal(0.0, 1.0)) assert var1.log_prob.sum() < var3.log_prob.sum() # Expects an error here because support doesn't match var4 = var1.replace(distribution=dist.Categorical(logits=torch.rand(2, 4))) with pytest.raises(RuntimeError): var4.log_prob var5 = Variable( value=torch.tensor(10).double(), distribution=dist.Uniform( torch.tensor(0.0).double(), torch.tensor(1.0).double() ), ) # Check that the log prob has the right dtype assert var5.log_prob.dtype == torch.double assert torch.isinf(var5.log_prob) var6 = var5.replace(value=torch.tensor(1)) assert torch.isinf(var6.log_prob)
beanmachine-main
tests/ppl/world/variable_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import torch from beanmachine.ppl.utils import tensorops class TensorOpsTest(unittest.TestCase): def test_gradients(self) -> None: for type_ in [torch.float32, torch.float64]: x = torch.randn(3, requires_grad=True, dtype=type_) prec = torch.Tensor([[1, 0.1, 0], [0.1, 2, 0.5], [0, 0.5, 3]]).to(type_) mu = torch.randn(3, dtype=type_) # first gradient is `-(x - mu) @ prec`, second gradient is `- prec` f = -(x - mu) @ prec @ (x - mu) / 2 grad, hess = tensorops.gradients(f, x) self.assertTrue(grad.allclose(-(x - mu) @ prec)) self.assertTrue(hess.allclose(-prec)) self.assertEqual(grad.dtype, type_, "gradient dtype must match input") self.assertEqual(hess.dtype, type_, "hessian dtype must match input") def test_simplex_gradients(self) -> None: for type_ in [torch.float32, torch.float64]: x = torch.randn(3, requires_grad=True, dtype=type_) prec = torch.Tensor([[1, 0.1, 0], [0.1, 2, 0.5], [0, 0.5, 3]]).to(type_) prec_diag = torch.Tensor([1.0, 1.9, 3.0]).to(type_) mu = torch.randn(3, dtype=type_) # first gradient is `-(x - mu) @ prec`, second gradient is `- prec` f = -(x - mu) @ prec @ (x - mu) / 2 grad, hess = tensorops.simplex_gradients(f, x) self.assertTrue(grad.allclose(-(x - mu) @ prec)) self.assertTrue(hess.allclose(-prec_diag)) self.assertEqual(grad.dtype, type_, "gradient dtype must match input") self.assertEqual(hess.dtype, type_, "hessian dtype must match input") def test_halfspace_gradients(self) -> None: for type_ in [torch.float32, torch.float64]: x = torch.randn(3, requires_grad=True, dtype=type_) prec = torch.Tensor([[1, 0.1, 0], [0.1, 2, 0.5], [0, 0.5, 3]]).to(type_) prec_diag = torch.Tensor([1.0, 2.0, 3.0]).to(type_) mu = torch.randn(3, dtype=type_) # first gradient is `-(x - mu) @ prec`, second gradient is `- prec` f = -(x - mu) @ prec @ (x - mu) / 2 grad, hess = tensorops.halfspace_gradients(f, x) self.assertTrue(grad.allclose(-(x - mu) @ prec)) self.assertTrue(hess.allclose(-prec_diag)) self.assertEqual(grad.dtype, type_, "gradient dtype must match input") self.assertEqual(hess.dtype, type_, "hessian dtype must match input") def test_gradients_negative(self) -> None: # output must have one element x = torch.randn(3, requires_grad=True) with self.assertRaises(ValueError) as cm: tensorops.gradients(2 * x, x) self.assertTrue( "output tensor must have exactly one element" in str(cm.exception) )
beanmachine-main
tests/ppl/utils/tensorops_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from beanmachine.ppl.utils.set_of_tensors import SetOfTensors from torch import tensor class SetOfTensorsTest(unittest.TestCase): def test_set_of_tensors_1(self) -> None: self.maxDiff = None # Show that we deduplicate these tensors. t = [ tensor(1.0), tensor([]), tensor([1.0]), tensor([1.0, 2.0]), tensor([1.0, 2.0, 3.0, 4.0]), tensor([[1.0]]), tensor([[1.0], [2.0]]), tensor([[1.0, 2.0]]), tensor([[1.0, 2.0], [3.0, 4.0]]), tensor(1.0), tensor([]), tensor([1.0]), tensor([1.0, 2.0]), tensor([1.0, 2.0, 3.0, 4.0]), tensor([[1.0]]), tensor([[1.0], [2.0]]), tensor([[1.0, 2.0]]), tensor([[1.0, 2.0], [3.0, 4.0]]), ] s = SetOfTensors(t) self.assertEqual(9, len(s)) observed = str(s) expected = """ tensor(1.) tensor([1., 2., 3., 4.]) tensor([1., 2.]) tensor([1.]) tensor([[1., 2.], [3., 4.]]) tensor([[1., 2.]]) tensor([[1.], [2.]]) tensor([[1.]]) tensor([])""" self.assertEqual(expected.strip(), observed.strip())
beanmachine-main
tests/ppl/utils/set_of_tensors_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from beanmachine.ppl.utils.multidictionary import MultiDictionary class MultiDictionaryTest(unittest.TestCase): def test_multidictionary(self) -> None: d = MultiDictionary() d.add(1, "alpha") d.add(1, "bravo") d.add(2, "charlie") d.add(2, "delta") self.assertEqual(2, len(d)) self.assertEqual(2, len(d[1])) self.assertEqual(2, len(d[2])) self.assertEqual(0, len(d[3])) self.assertTrue("alpha" in d[1]) self.assertTrue("alpha" not in d[2]) expected = """ {1:{alpha, bravo} 2:{charlie, delta}}""" self.assertEqual(expected.strip(), str(d).strip())
beanmachine-main
tests/ppl/utils/multidictionary_test.py
beanmachine-main
tests/ppl/utils/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for Graph from graph.py""" import unittest from beanmachine.ppl.utils.graph import Graph class SimpleNode(object): name: str label: int def __init__(self, name: str, label: int): self.name = name self.label = label class GraphTest(unittest.TestCase): def test_graph(self) -> None: self.maxDiff = None """Tests for Graph from graph.py""" g: Graph[str] = Graph(str, str) p1 = g.with_plate() p1.with_edge("a1", "a2").with_edge("a2", "a3") p2 = p1.with_plate() p2.with_edge("a0", "a1").with_edge("a3", "a0") p3 = g.with_plate() p3.with_edge("b0", "b1").with_edge("b1", "b2").with_edge("b2", "b3") p3.with_edge("b2", "a3").with_edge("a1", "b3") g.with_edge("start", "a0").with_edge("start", "b0") g.with_edge("a3", "end").with_edge("b3", "end") observed = g.to_dot() expected = """ digraph "graph" { a0; a1; a2; a3; b0; b1; b2; b3; end; start; a0 -> a1; a1 -> a2; a1 -> b3; a2 -> a3; a3 -> a0; a3 -> end; b0 -> b1; b1 -> b2; b2 -> a3; b2 -> b3; b3 -> end; start -> a0; start -> b0; subgraph cluster__0 { a1; a2; a3; subgraph cluster__0_0 { a0; } } subgraph cluster__1 { b0; b1; b2; b3; } } """ self.assertEqual(observed.strip(), expected.strip()) def test_isomorphism(self) -> None: self.maxDiff = None # a1 b1 c1 # | | # a2 b2 # / \ / \ # a5 s3 b5 # | # s4 # # a1 and b1 are isomorphic, a1 and c1 are not a1 = SimpleNode("a1", 1) b1 = SimpleNode("b1", 1) c1 = SimpleNode("c1", 1) a2 = SimpleNode("a2", 2) a5 = SimpleNode("a5", 5) b2 = SimpleNode("b2", 2) b5 = SimpleNode("b5", 5) s3 = SimpleNode("s3", 3) s4 = SimpleNode("s4", 4) g: Graph[SimpleNode] = Graph( lambda x: x.name, lambda x: str(x.label), lambda x: str(x.label) ) g = g.with_edge(a1, a2).with_edge(a2, a5).with_edge(a2, s3) g = g.with_edge(b1, b2).with_edge(b2, s3).with_edge(b2, b5) g = g.with_edge(s3, s4) g = g.with_node(c1) self.assertTrue(g.are_dags_isomorphic(a1, b1)) self.assertTrue(g.are_dags_isomorphic(a2, b2)) self.assertFalse(g.are_dags_isomorphic(a1, c1)) self.assertFalse(g.are_dags_isomorphic(a1, b2)) reachable = ",".join(sorted(str(n.label) for n in g.reachable(b2))) self.assertEqual(reachable, "2,3,4,5") g.merge_isomorphic(a2, b2) # After merging b2 into a2: # a1 b1 c1 # \ / # a2 # / | \ # a5 s3 b5 # | # s4 observed = g.to_dot() expected = """ digraph "graph" { a1[label=1]; a2[label=2]; a5[label=5]; b1[label=1]; b5[label=5]; c1[label=1]; s3[label=3]; s4[label=4]; a1 -> a2; a2 -> a5; a2 -> b5; a2 -> s3; b1 -> a2; s3 -> s4; } """ self.assertEqual(observed.strip(), expected.strip()) def test_merge(self) -> None: self.maxDiff = None # s1 # / | \ # a2 b2 c2 # / \ / \ / \ # a3 a4 b3 b4 # | | # a5 b5 # # The three "2" nodes are isomorphic. s1 = SimpleNode("s1", 1) a2 = SimpleNode("a2", 2) b2 = SimpleNode("b2", 2) c2 = SimpleNode("c2", 2) a3 = SimpleNode("a3", 3) a4 = SimpleNode("a4", 4) b3 = SimpleNode("b3", 3) b4 = SimpleNode("b4", 4) a5 = SimpleNode("a5", 5) b5 = SimpleNode("b5", 5) g: Graph[SimpleNode] = Graph( lambda x: x.name, lambda x: str(x.label), lambda x: str(x.label) ) g = g.with_edge(s1, a2).with_edge(s1, b2).with_edge(s1, c2) g = g.with_edge(a2, a3).with_edge(a2, a4).with_edge(b2, a4) g = g.with_edge(b2, b3).with_edge(c2, b3).with_edge(c2, b4) g = g.with_edge(a4, a5).with_edge(b4, b5) observed = g.to_dot() expected = """ digraph "graph" { a2[label=2]; a3[label=3]; a4[label=4]; a5[label=5]; b2[label=2]; b3[label=3]; b4[label=4]; b5[label=5]; c2[label=2]; s1[label=1]; a2 -> a3; a2 -> a4; a4 -> a5; b2 -> a4; b2 -> b3; b4 -> b5; c2 -> b3; c2 -> b4; s1 -> a2; s1 -> b2; s1 -> c2; } """ self.assertEqual(observed.strip(), expected.strip()) g.merge_isomorphic_many([a2, b2, c2]) observed = g.to_dot() # s1 # | # a2 # / | | \ # a3 a4 b3 b4 # | | # a5 b5 expected = """ digraph "graph" { a2[label=2]; a3[label=3]; a4[label=4]; a5[label=5]; b3[label=3]; b4[label=4]; b5[label=5]; s1[label=1]; a2 -> a3; a2 -> a4; a2 -> b3; a2 -> b4; a4 -> a5; b4 -> b5; s1 -> a2; } """ self.assertEqual(observed.strip(), expected.strip()) g.merge_isomorphic_children(a2) # s1 # | # a2 # / \ # a3 a4 # / \ # a5 b5 # Note that the isomorphic 5 nodes are not recursively merged. observed = g.to_dot() expected = """ digraph "graph" { a2[label=2]; a3[label=3]; a4[label=4]; a5[label=5]; b5[label=5]; s1[label=1]; a2 -> a3; a2 -> a4; a4 -> a5; a4 -> b5; s1 -> a2; } """ self.assertEqual(observed.strip(), expected.strip())
beanmachine-main
tests/ppl/utils/graph_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for item_counter.py""" import unittest from beanmachine.ppl.utils.item_counter import ItemCounter class ItemCounterTest(unittest.TestCase): def test_item_counter(self) -> None: i = ItemCounter() self.assertTrue("a" not in i.items) self.assertTrue("b" not in i.items) i.add_item("a") i.add_item("a") i.add_item("b") i.add_item("b") self.assertEqual(i.items["a"], 2) self.assertEqual(i.items["b"], 2) i.remove_item("b") i.remove_item("a") i.remove_item("a") self.assertTrue("a" not in i.items) self.assertEqual(i.items["b"], 1)
beanmachine-main
tests/ppl/utils/item_counter_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for print_tree from treeprinter.py""" import unittest from beanmachine.ppl.utils.treeprinter import print_tree class TreePrinterTest(unittest.TestCase): def test_print_tree(self) -> None: """Tests for print_tree from treeprinter.py""" d = {"foo": 2, "bar": {"blah": [2, 3, {"abc": (6, 7, (5, 5, 6))}]}} observed = print_tree(d, unicode=False) expected = """dict +-foo | +-2 +-bar +-blah +-2 +-3 +-dict +-abc +-6 +-7 +-tuple +-5 +-5 +-6 """ self.assertEqual(observed, expected)
beanmachine-main
tests/ppl/utils/treeprinter_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for memoize.py""" import unittest from beanmachine.ppl.utils.memoize import memoize count1 = 0 def fib(n): global count1 count1 = count1 + 1 return 1 if n <= 1 else fib(n - 1) + fib(n - 2) count2 = 0 @memoize def fib_mem(n): global count2 count2 = count2 + 1 return 1 if n <= 1 else fib_mem(n - 1) + fib_mem(n - 2) class MemoizeTest(unittest.TestCase): """Tests for memoize.py""" def test_memoize(self) -> None: """Tests for memoize.py""" global count1 global count2 f10 = fib(10) self.assertEqual(f10, 89) self.assertEqual(count1, 177) f10 = fib_mem(10) self.assertEqual(f10, 89) self.assertEqual(count2, 11)
beanmachine-main
tests/ppl/utils/memoize_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for partition functions from equivalence.py""" import unittest from typing import Any, Iterable from beanmachine.ppl.utils.equivalence import partition_by_kernel, partition_by_relation def _brace(s: str) -> str: return "{" + s + "}" def _comma(s: Iterable[str]) -> str: return ",".join(s) def _set_str(items: Iterable[Any]) -> str: return _brace(_comma(sorted({str(item) for item in items}))) def _set_set_str(results: Iterable[Any]) -> str: return _set_str([_set_str(eqv) for eqv in results]) class PartitionTest(unittest.TestCase): def test_partition_(self) -> None: """Tests for partition_kernel from equivalence.py""" def three_kernel(x: int) -> int: return (x % 3 + 3) % 3 def three_relation(x: int, y: int) -> bool: return (x - y) % 3 == 0 expected = """{{-1,-4,-7,2,5,8},{-2,-5,-8,1,4,7},{-3,-6,-9,0,3,6,9}}""" s = set(range(-9, 10)) observed1 = _set_set_str(partition_by_relation(s, three_relation)) observed2 = _set_set_str(partition_by_kernel(s, three_kernel)) self.assertEqual(observed1, expected) self.assertEqual(observed2, expected)
beanmachine-main
tests/ppl/utils/equivalence_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for print_graph from dotbuilder.py""" import unittest from typing import Any, Dict from beanmachine.ppl.utils.dotbuilder import DotBuilder, print_graph class GraphPrinterTest(unittest.TestCase): def test_print_tree(self) -> None: """Tests for print_graph from dotbuilder.py""" bar = {"blah": [2, 3, {"abc": (6, 7, (5, 5, 6))}]} d: Dict[Any, Any] = {"foo": 2, "bar1": bar, "bar2": bar} d["self"] = d # type: ignore observed = print_graph([d]) expected = """ digraph "graph" { N0[label=dict]; N10[label=5]; N1[label=2]; N2[label=dict]; N3[label=list]; N4[label=3]; N5[label=dict]; N6[label=tuple]; N7[label=6]; N8[label=7]; N9[label=tuple]; N0 -> N0[label=self]; N0 -> N1[label=foo]; N0 -> N2[label=bar1]; N0 -> N2[label=bar2]; N2 -> N3[label=blah]; N3 -> N1[label=0]; N3 -> N4[label=1]; N3 -> N5[label=2]; N5 -> N6[label=abc]; N6 -> N7[label=0]; N6 -> N8[label=1]; N6 -> N9[label=2]; N9 -> N10[label=0]; N9 -> N10[label=1]; N9 -> N7[label=2]; } """ self.assertEqual(observed.strip(), expected.strip()) def test_builder(self) -> None: self.maxDiff = None db = DotBuilder("my_graph") db.with_comment("comment") db.start_subgraph("my_subgraph", True) db.with_label("graph_label") db.with_node("A1", "A") db.with_node("A2", "A") db.with_edge("A1", "A2", "edge_label") db.end_subgraph() observed = str(db) expected = """ digraph my_graph { // comment subgraph cluster_my_subgraph { label=graph_label A1[label=A]; A2[label=A]; A1 -> A2[label=edge_label]; } } """ self.assertEqual(observed.strip(), expected.strip())
beanmachine-main
tests/ppl/utils/dotbuilder_test.py
beanmachine-main
tests/ppl/testlib/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Tests for hypothesis_testing.py""" import unittest from beanmachine.ppl.testlib.hypothesis_testing import ( inverse_chi2_cdf, inverse_normal_cdf, mean_equality_hypothesis_confidence_interval, mean_equality_hypothesis_test, variance_equality_hypothesis_confidence_interval, variance_equality_hypothesis_test, ) from torch import tensor class HypothesisTestingTest(unittest.TestCase): def test_hypothesis_test_inverse_normal_cdf(self) -> None: """Minimal test for inverse normal CDF used to calculate z values""" # Check that the median has the probability we expect median = inverse_normal_cdf(0.5) self.assertEqual( median, 0.0, msg="Unexpected value for median of normal distribution" ) # Record and check the values we get for z_0.01 expected_z_one_percent = -2.3263478740408408 observed_z_one_percent = inverse_normal_cdf(0.01) self.assertEqual( observed_z_one_percent, expected_z_one_percent, msg="Expected value for z_0.01", ) # Record and check the values we get for z_0.99 expected_z_99_percent = 2.3263478740408408 observed_z_99_percent = inverse_normal_cdf(1 - 0.01) self.assertEqual( observed_z_99_percent, expected_z_99_percent, msg="Expected value for z_0.99", ) # Record and check the values we get for z_0.005 expected_z_half_percent = -2.575829303548901 observed_z_half_percent = inverse_normal_cdf(0.005) self.assertEqual( observed_z_half_percent, expected_z_half_percent, msg="Expected value for z_0.005", ) # This example shows why 1-p can be problematic # Compare this value to -expected_z_half_percent expected_z_995_thousandths = 2.5758293035489004 observed_z_995_thousandths = inverse_normal_cdf(0.995) self.assertTrue( not (expected_z_995_thousandths == -expected_z_half_percent), msg="Numerical z_p is usually not exactly -z_(1-p)", ) self.assertEqual( observed_z_995_thousandths, expected_z_995_thousandths, msg="Expected value for z_0.005", ) def test_hypothesis_test_mean(self) -> None: """Minimal test for mean equality hypothesis test""" sample_mean = tensor(10) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.01 observed_result = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, p_value ) self.assertFalse(observed_result, msg="Mean is not within confidence interval") sample_mean = tensor(0) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.01 observed_result = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, p_value ) self.assertTrue(observed_result, msg="Mean is not within confidence interval") # This test case is at the edge of acceptable. # It should pass because of the = in <= in the # mean_equality_hypothesis_test method expected_z_995_thousandths = 2.5758293035489004 sample_mean = tensor(expected_z_995_thousandths) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.01 observed_result = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, p_value ) self.assertTrue(observed_result, msg="Mean is not within confidence interval") # The following two tests are pushing the edge case around what # should be acceptable to the test. It is strange that the one # slighly larger than the alpha value does not fail. # TODO: Investigate and explain why this passes when it should be # just outside the acceptable boundary. expected_z_995_thousandths = 2.5758293035489004 sample_mean = tensor(expected_z_995_thousandths * 1.00000001) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.01 observed_result = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, p_value ) self.assertTrue(observed_result, msg="Mean is not within confidence interval") # This one, with bigger multiplierf, finally returns False expected_z_995_thousandths = 2.5758293035489004 sample_mean = tensor(expected_z_995_thousandths * 1.0000001) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.01 observed_result = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, p_value ) self.assertFalse(observed_result, msg="Mean is not within confidence interval") def test_confidence_interval_mean(self) -> None: """Minimal test for mean confidence interval""" sample_mean = tensor(2) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.05 lower_bound, upper_bound = mean_equality_hypothesis_confidence_interval( true_mean, true_std, sample_size, p_value ) observed_result = lower_bound <= sample_mean <= upper_bound self.assertFalse(observed_result, msg="Mean is not within confidence interval") sample_mean = tensor(1.95) true_mean = tensor(0) true_std = tensor(1) sample_size = tensor(1) p_value = 0.05 lower_bound, upper_bound = mean_equality_hypothesis_confidence_interval( true_mean, true_std, sample_size, p_value ) observed_result = lower_bound <= sample_mean <= upper_bound self.assertTrue(observed_result, msg="Mean is not within confidence interval") def test_hypothesis_test_inverse_chi2_cdf(self) -> None: """Minimal test for inverse chi-squared CDF used to calculate chi2 values""" # Check that the median has the probability we expect # A rule of thumb for chi2 is that median is df-0.7 # in this test we pick a more specific value from test run median = inverse_chi2_cdf(100, 0.5) self.assertEqual( median, 99.33412923598846, msg="Unexpected value for median of chi square distribution", ) # Record and check the values we get for chi2_0.01 # From C.M. Thompson tables from 1941, we expect 70.0648 # more specific value reflects results from test run # NB: Test run appears to contradict least significant # digit in table the table cited above, but not if we take # into account p used for lookup in distribution # is 0.990, which suggests only on 4 digits are valid. expected_chi2_one_percent = 70.06489492539978 observed_chi2_one_percent = inverse_chi2_cdf(100, 0.01) self.assertEqual( observed_chi2_one_percent, expected_chi2_one_percent, msg="Unexpected value for chi2_0.01", ) # Record and check the values we get for chi2_0.99 # Table above predicts 135.807 expected_chi2_99_percent = 135.80672317102676 observed_chi2_99_percent = inverse_chi2_cdf(100, 1 - 0.01) self.assertEqual( observed_chi2_99_percent, expected_chi2_99_percent, msg="Unexpected value for chi2_0.99", ) # Record and check the values we get for chi2_0.005 # Table above predicts 67.3276 expected_chi2_half_percent = 67.32756330547916 observed_chi2_half_percent = inverse_chi2_cdf(100, 0.005) self.assertEqual( observed_chi2_half_percent, expected_chi2_half_percent, msg="Unexpected value for chi2_0.005", ) def test_hypothesis_test_variance(self) -> None: """Minimal test for variance equality hypothesis test""" # Based on solved example in Scheaffer & McClave, 1986, Pg 300 sample_std = tensor(0.0003) ** 0.5 true_std = tensor(0.0002) ** 0.5 degrees_of_freedom = tensor(9) alpha = 0.05 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertTrue(observed_result, msg="Variance is within confidence interval") sample_std = tensor(0.002) ** 0.5 true_std = tensor(0.0002) ** 0.5 degrees_of_freedom = tensor(9) alpha = 0.05 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertFalse( observed_result, msg="Variance is not within confidence interval" ) # Based on lookup of chi-squared table values # The interval for chi-square at p=0.1 split over both distribution ends is # approximately [77.9, 124.3] # First, we check the lower bound sample_std = tensor(78.0 / 100.0) ** 0.5 true_std = tensor(1.0) degrees_of_freedom = tensor(100) alpha = 0.1 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertTrue(observed_result, msg="Variance is within confidence interval") sample_std = tensor(77.0 / 100.0) ** 0.5 true_std = tensor(1.0) degrees_of_freedom = tensor(100) alpha = 0.1 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertFalse( observed_result, msg="Variance is not within confidence interval" ) # Second, we check the upper bound sample_std = tensor(124.0 / 100.0) ** 0.5 true_std = tensor(1.0) degrees_of_freedom = tensor(100) alpha = 0.1 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertTrue(observed_result, msg="Variance is within confidence interval") sample_std = tensor(125.0 / 100.0) ** 0.5 true_std = tensor(1.0) degrees_of_freedom = tensor(100) alpha = 0.1 observed_result = variance_equality_hypothesis_test( sample_std, true_std, degrees_of_freedom, alpha ) self.assertFalse( observed_result, msg="Variance is not within confidence interval" ) def test_confidence_interval_variance(self) -> None: """Minimal test for variance confidence interval""" true_std = tensor(1.0) degrees_of_freedom = tensor(100) alpha = 0.05 observed_interval = variance_equality_hypothesis_confidence_interval( true_std, degrees_of_freedom, alpha ) observed_lower, observed_upper = observed_interval expected_std_lower1 = tensor(0.86) expected_std_lower2 = tensor(0.87) expected_std_upper1 = tensor(1.13) expected_std_upper2 = tensor(1.14) self.assertLessEqual(expected_std_lower1, observed_lower, "Lower bound too low") self.assertLessEqual( observed_lower, expected_std_lower2, "Lower bound too high" ) self.assertLessEqual(expected_std_upper1, observed_upper, "Upper bound too low") self.assertLessEqual( observed_upper, expected_std_upper2, "Upper bound too high" )
beanmachine-main
tests/ppl/testlib/hypothesis_testing_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pickle import unittest import warnings import beanmachine.ppl as bm import torch import torch.distributions as dist import torch.utils._pytree as pytree @bm.random_variable def foo(): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) class RVIdentifierTest(unittest.TestCase): class SampleModel: @staticmethod @bm.random_variable def foo(): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) @bm.random_variable def bar(self, sigma: float): return dist.Normal(self.foo(), torch.tensor(sigma)) @bm.random_variable def baz(self): return dist.Normal(self.foo(), self.bar(1.0)) class SampleModelWithEq: @bm.random_variable def foo(self): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) def __eq__(self, other): return isinstance(other, RVIdentifierTest.SampleModelWithEq) class SampleModelWithIndex: @bm.random_variable def foo(self, u: int): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) def test_indexed_model_rv_identifier(self): model = self.SampleModelWithIndex() # RVs indexed using primitives should not show a user warning with warnings.catch_warnings(): warnings.simplefilter("error") model.foo(1) with self.assertWarns(UserWarning) as context: model.foo(torch.tensor(1)) self.assertEqual( "PyTorch tensors are hashed by memory address instead of value. " "Therefore, it is not recommended to use tensors as indices of random variables.", str(context.warning), msg="RVs indexed using tensor should show the correct user warning", ) def test_pickle_unbound_rv_identifier(self): original_foo_key = foo() foo_bytes = pickle.dumps(foo()) reloaded_foo_key = pickle.loads(foo_bytes) # reloaded RVIdentifier should be equivalent to the original copy self.assertEqual(original_foo_key, reloaded_foo_key) self.assertEqual(reloaded_foo_key, foo()) # In fact, when unpickling, it will recover the reference to the decorated # function self.assertIs(reloaded_foo_key.wrapper, foo) # ^ this requires the function to be available when unpickling def test_pickle_rv_with_same_name(self): rv_bytes = pickle.dumps((foo(), self.SampleModel.foo())) foo_key_1, foo_key_2 = pickle.loads(rv_bytes) self.assertEqual(foo(), foo_key_1) self.assertEqual(self.SampleModel.foo(), foo_key_2) # the two 'foo' functions with same name are not equivalent self.assertNotEqual(foo_key_1, foo_key_2) def test_pickle_bound_rv_identifier(self): model = self.SampleModel() bar_key = model.bar(3.0) # we should dump the model and RVIdentifier together if we want to recover the # reference model_and_rv_bytes = pickle.dumps((model, bar_key)) reloaded_model, reloaded_bar_key = pickle.loads(model_and_rv_bytes) # We should be able to use the reloaded model to generate new RVIdentifier that # are equivalent to the unpickled ones self.assertEqual(reloaded_model.bar(3.0), reloaded_bar_key) # However, notice that the reloaded model is a copy of the original model with # the same value, so unless __eq__ is defined on the model, Python will compare # object by address (so the reloaded model & identifier are not equal to the # original ones) self.assertNotEqual(reloaded_model, model) self.assertNotEqual(bar_key, reloaded_bar_key) def test_pickle_bound_rv_in_model_with_eq_operator(self): model = self.SampleModelWithEq() foo_key = model.foo() model_and_rv_bytes = pickle.dumps((model, foo_key)) reloaded_model, reloaded_foo_key = pickle.loads(model_and_rv_bytes) self.assertEqual(reloaded_model, model) self.assertEqual(foo_key, reloaded_foo_key) self.assertEqual(model.foo(), reloaded_foo_key) # Though instead of defining __eq__ and maintain multiple copies of the model, # it might be better to just use the unpickled model in a new session, i.e. del model # mock the case where model is not defined in the new session yet model, bar_key = pickle.loads(model_and_rv_bytes) self.assertEqual(model.foo(), foo_key) # For global scope random variables, the definition of functions have to be # available when unpickling. Similarly, for class cope random variables, the # definition of class also needs to be available. def test_pickle_multiple_models(self): model1 = self.SampleModel() model2 = self.SampleModel() self.assertNotEqual(model1.baz(), model2.baz()) rv_set = {model1.baz(), model2.baz(), model2.bar(1.5)} # the following will be similar to how serialized_bytes = pickle.dumps( {"model1": model1, "model2": model2, "values_to_keep": rv_set} ) # notice that we can also dump the two models separately as long as they don't # cross reference each other # delete current variables and "start a new session" del model1 del model2 del rv_set restored_state = pickle.loads(serialized_bytes) model1 = restored_state.get("model1") model2 = restored_state.get("model2") rv_set = restored_state.get("values_to_keep") self.assertNotEqual(model1.baz(), model2.baz()) self.assertIn(model1.baz(), rv_set) self.assertIn(model2.baz(), rv_set) self.assertNotIn(model1.bar(1.5), rv_set) self.assertIn(model2.bar(1.5), rv_set) def test_sorting_rv_identifier(self): model = self.SampleModel() observations = { model.foo(): torch.tensor(1.0), model.bar(0.5): torch.tensor(1.0), model.baz(): torch.tensor(1.0), } # make sure the following doesn't raise sorted(observations.keys()) pytree.tree_flatten(observations)
beanmachine-main
tests/ppl/model/rv_identifier_test.py
beanmachine-main
tests/ppl/model/__init__.py
beanmachine-main
tests/ppl/diagnostics/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Dict import beanmachine.ppl as bm import beanmachine.ppl.diagnostics.common_statistics as common_statistics import numpy as np import pandas as pd import torch import torch.distributions as dist from beanmachine.ppl.diagnostics.diagnostics import Diagnostics from statsmodels.tsa.stattools import acf diri_dis = dist.Dirichlet( torch.tensor([[1.0, 2.0, 3.0], [2.0, 1.0, 3.0], [2.0, 3.0, 1.0]]) ) beta_dis = dist.Beta(torch.tensor([1.0, 2.0, 3.0]), torch.tensor([9.0, 8.0, 7.0])) normal_dis = dist.Normal(torch.tensor([0.0, 1.0, 2.0]), torch.tensor([0.5, 1.0, 1.5])) @bm.random_variable def diri(i, j): return diri_dis @bm.random_variable def beta(i): return beta_dis @bm.random_variable def normal(): return normal_dis @bm.random_variable def foo(): return dist.Normal(0, 1) @bm.random_variable def bar(): return dist.Normal(torch.randn(3, 1, 2), torch.ones(3, 1, 2)) def dist_summary_stats() -> Dict[str, torch.tensor]: exact_mean = { "beta": beta_dis.mean.reshape(-1), "diri": diri_dis.mean.reshape(-1), "normal": normal_dis.mean.reshape(-1), } exact_std = { "beta": torch.sqrt(beta_dis.variance.reshape(-1)), "diri": torch.sqrt(diri_dis.variance.reshape(-1)), "normal": torch.sqrt(normal_dis.variance.reshape(-1)), } exact_CI_2_5 = {"normal": normal_dis.mean - 1.96 * torch.sqrt(normal_dis.variance)} exact_CI_50 = {"normal": normal_dis.mean} exact_CI_97_5 = {"normal": normal_dis.mean + 1.96 * torch.sqrt(normal_dis.variance)} exact_stats = { "avg": exact_mean, "std": exact_std, "2.5%": exact_CI_2_5, "50%": exact_CI_50, "97.5%": exact_CI_97_5, } return exact_stats class DiagnosticsTest(unittest.TestCase): def test_basic_diagnostics(self): def _inference_evaulation(summary: pd.DataFrame): exact_stats = dist_summary_stats() for col in summary.columns: if not (col in exact_stats): continue for dis, res in exact_stats[col].items(): query_res = summary.loc[summary.index.str.contains(f"^{dis}")] for i, val in enumerate(query_res[col].values): self.assertAlmostEqual( val, res[i].item(), msg=f"query {query_res.index[i]} for {col}", delta=0.5, ) def _test_plot_object(diag, query, query_samples): plot_object = diag.plot([query]) trace_object = diag.trace([query]) index = 0 num_samples = query_samples[0].numel() # test the trace plot over the first chain of beta(0) for i in range(num_samples): assert all( a == b for a, b in zip( plot_object[0]["data"][index]["y"], query_samples[:, i] ) ), f"plot object for {diag._stringify_query(query)} is not correct" assert all( a == b for a, b in zip( trace_object[0]["data"][index]["y"], query_samples[:, i] ) ), f"trace object for {diag._stringify_query(query)} {i} is not correct" index += 2 def _test_autocorr_object(diag, query, query_samples): autocorr_object = diag.autocorr([query]) index = 0 num_samples = query_samples[0].numel() # test the autocorr results over the first chain of beta(0) for i in range(num_samples): expected_acf = acf( query_samples[:, i].detach().numpy(), True, nlags=num_samples - 1, fft=False, ) for ns in range(num_samples): self.assertAlmostEqual( autocorr_object[0]["data"][index]["y"][ns], expected_acf[ns], msg=f"autocorr data for {diag._stringify_query(query)}\ is not correct", delta=0.3, ) index += 1 np.random.seed(123) torch.manual_seed(123) mh = bm.SingleSiteAncestralMetropolisHastings() query_list = [beta(0), diri(1, 5), normal()] num_chains = 2 samples = mh.infer(query_list, {}, 200, num_chains) out_df = Diagnostics(samples).summary() _inference_evaulation(out_df) out_df = Diagnostics(samples).summary([diri(1, 5), beta(0)]) _inference_evaulation(out_df) out_df = Diagnostics(samples).summary(query_list=[diri(1, 5)], chain=1) _inference_evaulation(out_df) self.assertRaises(ValueError, Diagnostics(samples).summary, [diri(1, 3)]) self.assertRaises(ValueError, Diagnostics(samples).summary, [diri(1, 5), foo()]) query = beta(0) query_samples = samples[query][0] _test_plot_object(Diagnostics(samples), query, query_samples) _test_autocorr_object(Diagnostics(samples), query, query_samples) def test_r_hat_one_chain(self): mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([normal()], {}, 5, 1) diagnostics = Diagnostics(samples) with self.assertWarns(UserWarning): results = diagnostics.split_r_hat([normal()]) self.assertTrue(results.empty) def test_r_hat_column(self): mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([normal()], {}, 5, 2) diagnostics = Diagnostics(samples) out_df = diagnostics.summary() self.assertTrue("r_hat" in out_df.columns) out_df = diagnostics.summary(chain=0) self.assertTrue("r_hat" not in out_df.columns) def test_r_hat_no_column(self): mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([normal()], {}, 5, 1) out_df = Diagnostics(samples).summary() self.assertTrue("r_hat" not in out_df.columns) def test_r_hat(self): samples = torch.tensor([[0.0, 1.0, 2.0, 3.0], [4.0, 5.0, 6.0, 7.0]]) self.assertAlmostEqual(common_statistics.r_hat(samples), 2.3558, delta=0.001) self.assertAlmostEqual( common_statistics.split_r_hat(samples), 3.7193, delta=0.001 ) def test_r_hat_additional_dimension(self): samples = torch.tensor( [ [[0.0, 2.0], [2.0, 4.0], [4.0, 8.0], [6.0, 0.0]], [[8.0, 12.0], [10.0, 6.0], [12.0, 1.0], [14.0, 2.0]], [[16.0, -5.0], [18.0, 4.0], [20.0, 2.0], [22.0, 4.0]], ] ) dim1, dim2 = common_statistics.r_hat(samples) self.assertAlmostEqual(dim1, 3.2171, delta=0.001) self.assertAlmostEqual(dim2, 0.9849, delta=0.001) dim1, dim2 = common_statistics.split_r_hat(samples) self.assertAlmostEqual(dim1, 5.3385, delta=0.001) self.assertAlmostEqual(dim2, 1.0687, delta=0.001) def test_effective_sample_size(self): samples = torch.tensor( [[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]], dtype=torch.double ) n_eff = common_statistics.effective_sample_size(samples) self.assertAlmostEqual(n_eff, 2.6114, delta=0.001) def test_effective_sample_size_additional_dimension(self): samples = torch.tensor( [ [[0.0, 2.0], [2.0, 4.0], [4.0, 8.0], [6.0, 0.0]], [[8.0, 12.0], [10.0, 6.0], [12.0, 1.0], [14.0, 2.0]], [[16.0, -5.0], [18.0, 4.0], [20.0, 2.0], [22.0, 4.0]], ] ) dim1, dim2 = common_statistics.effective_sample_size(samples) self.assertAlmostEqual(dim1, 1.9605, delta=0.001) self.assertAlmostEqual(dim2, 15.1438, delta=0.001) def test_effective_sample_size_columns(self): mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([normal()], {}, 5, 2) out_df = Diagnostics(samples).summary() self.assertTrue("n_eff" in out_df.columns) def test_singleton_dims(self): mh = bm.SingleSiteAncestralMetropolisHastings() obs = {bar(): torch.ones(3, 1, 2)} samples = mh.infer([bar()], obs, 5, 2) diagnostics = Diagnostics(samples) out_df = diagnostics.summary() self.assertTrue("r_hat" in out_df.columns)
beanmachine-main
tests/ppl/diagnostics/diagnostics_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteNewtonianMonteCarloConjugateTest( unittest.TestCase, AbstractConjugateTests ): # TODO: Decrease the num_samples; num_samples>=2000 to get n_eff>=30 is # unreasonable. It currently fails for num_samples=1000 because because # hessian (for transform proposer) is extremely close to 0 def test_beta_binomial_conjugate_run(self): nw = bm.SingleSiteNewtonianMonteCarlo() self.beta_binomial_conjugate_run(nw, num_samples=2000) def test_gamma_gamma_conjugate_run(self): nw_transform = bm.SingleSiteNewtonianMonteCarlo() self.gamma_gamma_conjugate_run(nw_transform, num_samples=200) def test_gamma_normal_conjugate_run(self): nw = bm.SingleSiteNewtonianMonteCarlo() self.gamma_normal_conjugate_run(nw, num_samples=600) def test_normal_normal_conjugate_run(self): nw = bm.SingleSiteNewtonianMonteCarlo() self.normal_normal_conjugate_run(nw, num_samples=500) def test_dirichlet_categorical_conjugate_run(self): nw = bm.SingleSiteNewtonianMonteCarlo() self.dirichlet_categorical_conjugate_run(nw, num_samples=2000)
beanmachine-main
tests/ppl/inference/single_site_newtonian_monte_carlo_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pickle import unittest import beanmachine.ppl as bm import numpy as np import torch import torch.distributions as dist import xarray as xr from beanmachine.ppl.inference.monte_carlo_samples import merge_dicts, MonteCarloSamples class MonteCarloSamplesTest(unittest.TestCase): class SampleModel(object): @bm.random_variable def foo(self): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) @bm.random_variable def bar(self): return dist.Normal(self.foo(), torch.tensor(1.0)) def test_default_four_chains(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() mcs = mh.infer([foo_key], {}, 10) self.assertEqual(mcs[foo_key].shape, torch.zeros(4, 10).shape) self.assertEqual(mcs.get_variable(foo_key).shape, torch.zeros(4, 10).shape) self.assertEqual(mcs.get_chain(3)[foo_key].shape, torch.zeros(10).shape) self.assertEqual(mcs.num_chains, 4) self.assertCountEqual(mcs.keys(), [foo_key]) mcs = mh.infer([foo_key], {}, 7, num_adaptive_samples=3) self.assertEqual(mcs.num_adaptive_samples, 3) self.assertEqual(mcs[foo_key].shape, torch.zeros(4, 7).shape) self.assertEqual(mcs.get_variable(foo_key).shape, torch.zeros(4, 7).shape) self.assertEqual( mcs.get_variable(foo_key, True).shape, torch.zeros(4, 10).shape ) self.assertEqual(mcs.get_chain(3)[foo_key].shape, torch.zeros(7).shape) self.assertEqual(mcs.num_chains, 4) self.assertCountEqual(mcs.keys(), [foo_key]) def test_one_chain(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() bar_key = model.bar() mcs = mh.infer([foo_key, bar_key], {}, 10, 1) self.assertEqual(mcs[foo_key].shape, torch.zeros(1, 10).shape) self.assertEqual(mcs.get_variable(foo_key).shape, torch.zeros(1, 10).shape) self.assertEqual(mcs.get_chain()[foo_key].shape, torch.zeros(10).shape) self.assertEqual(mcs.num_chains, 1) self.assertCountEqual(mcs.keys(), [foo_key, bar_key]) mcs = mh.infer([foo_key, bar_key], {}, 7, 1, num_adaptive_samples=3) self.assertEqual(mcs.num_adaptive_samples, 3) self.assertEqual(mcs[foo_key].shape, torch.zeros(1, 7).shape) self.assertEqual(mcs.get_variable(foo_key).shape, torch.zeros(1, 7).shape) self.assertEqual( mcs.get_variable(foo_key, True).shape, torch.zeros(1, 10).shape ) self.assertEqual(mcs.get_chain()[foo_key].shape, torch.zeros(7).shape) self.assertEqual(mcs.num_chains, 1) self.assertCountEqual(mcs.keys(), [foo_key, bar_key]) def test_chain_exceptions(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() mcs = mh.infer([foo_key], {}, 10) with self.assertRaisesRegex(IndexError, r"Please specify a valid chain"): mcs.get_chain(-1) with self.assertRaisesRegex(IndexError, r"Please specify a valid chain"): mcs.get_chain(4) with self.assertRaisesRegex( ValueError, r"The current MonteCarloSamples object has already" r" been restricted to a single chain", ): one_chain = mcs.get_chain() one_chain.get_chain() def test_num_adaptive_samples(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() mcs = mh.infer([foo_key], {}, 10, num_adaptive_samples=3) self.assertEqual(mcs[foo_key].shape, torch.zeros(4, 10).shape) self.assertEqual(mcs.get_variable(foo_key).shape, torch.zeros(4, 10).shape) self.assertEqual( mcs.get_variable(foo_key, include_adapt_steps=True).shape, torch.zeros(4, 13).shape, ) self.assertEqual(mcs.get_num_samples(), 10) self.assertEqual(mcs.get_num_samples(include_adapt_steps=True), 13) def test_dump_and_restore_samples(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() samples = mh.infer([foo_key], {}, num_samples=10, num_chains=2) self.assertEqual(samples[foo_key].shape, (2, 10)) dumped = pickle.dumps((model, samples)) # delete local variables and pretend that we are starting from a new session del model del mh del foo_key del samples # reload from dumped bytes reloaded_model, reloaded_samples = pickle.loads(dumped) # check the values still exist and have the correct shape self.assertEqual(reloaded_samples[reloaded_model.foo()].shape, (2, 10)) def test_get_rv_with_default(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() samples = mh.infer([foo_key], {}, num_samples=10, num_chains=2) self.assertIn(model.foo(), samples) self.assertIsInstance(samples.get(model.foo()), torch.Tensor) self.assertIsNone(samples.get(model.bar())) self.assertEqual(samples.get(model.foo(), chain=0).shape, (10,)) def test_merge_dicts(self): model = self.SampleModel() chain_lists = [{model.foo(): torch.rand(3)}, {model.foo(): torch.rand(3)}] rv_dict = merge_dicts(chain_lists) self.assertIn(model.foo(), rv_dict) self.assertEqual(rv_dict.get(model.foo()).shape, (2, 3)) chain_lists.append({model.bar(): torch.rand(3)}) with self.assertRaises(ValueError): merge_dicts(chain_lists) def test_type_conversion(self): model = self.SampleModel() samples = MonteCarloSamples( [{model.foo(): torch.rand(5), model.bar(): torch.rand(5)}], num_adaptive_samples=3, ) xr_dataset = samples.to_xarray() self.assertIsInstance(xr_dataset, xr.Dataset) self.assertIn(model.foo(), xr_dataset) assert np.allclose(samples[model.bar()].numpy(), xr_dataset[model.bar()]) xr_dataset = samples.to_xarray(include_adapt_steps=True) self.assertEqual(xr_dataset[model.foo()].shape, (1, 5)) inference_data = samples.to_inference_data() self.assertIn(model.foo(), inference_data.posterior) def test_get_variable(self): model = self.SampleModel() samples = MonteCarloSamples( [{model.foo(): torch.arange(10)}], num_adaptive_samples=3 ).get_chain(0) self.assertTrue( torch.all(samples.get_variable(model.foo()) == torch.arange(3, 10)) ) self.assertTrue( torch.all(samples.get_variable(model.foo(), True) == torch.arange(10)) ) def test_get_log_likehoods(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() bar_key = model.bar() mcs = mh.infer( [foo_key], {bar_key: torch.tensor(4.0)}, num_samples=5, num_chains=2, ) self.assertTrue(hasattr(mcs, "log_likelihoods")) self.assertIn(bar_key, mcs.log_likelihoods) self.assertTrue(hasattr(mcs, "adaptive_log_likelihoods")) self.assertIn(bar_key, mcs.adaptive_log_likelihoods) self.assertEqual( mcs.get_log_likelihoods(bar_key).shape, torch.zeros(2, 5).shape ) mcs = mcs.get_chain(0) self.assertEqual(mcs.get_log_likelihoods(bar_key).shape, torch.zeros(5).shape) mcs = mh.infer( [foo_key], {bar_key: torch.tensor(4.0)}, num_samples=5, num_chains=2, num_adaptive_samples=3, ) self.assertEqual( mcs.get_log_likelihoods(bar_key).shape, torch.zeros(2, 5).shape ) self.assertEqual( mcs.adaptive_log_likelihoods[bar_key].shape, torch.zeros(2, 3).shape ) self.assertEqual( mcs.get_chain(0).get_log_likelihoods(bar_key).shape, torch.zeros(5).shape ) self.assertEqual( mcs.get_log_likelihoods(bar_key, True).shape, torch.zeros(2, 8).shape ) self.assertEqual( mcs.get_chain(0).adaptive_log_likelihoods[bar_key].shape, torch.zeros(1, 3).shape, ) def test_thinning(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([model.foo()], {}, num_samples=20, num_chains=1) self.assertEqual(samples.get(model.foo(), chain=0).shape, (20,)) self.assertEqual(samples.get(model.foo(), chain=0, thinning=4).shape, (5,)) def test_add_group(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([model.foo()], {}, num_samples=20, num_chains=1) bar_samples = MonteCarloSamples(samples.samples, default_namespace="bar") bar_samples.add_groups(samples) self.assertEqual(samples.observations, bar_samples.observations) self.assertEqual(samples.log_likelihoods, bar_samples.log_likelihoods) self.assertIn("posterior", bar_samples.namespaces) def test_to_inference_data(self): model = self.SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() samples = mh.infer([model.foo()], {}, num_samples=10, num_chains=1) az_xarray = samples.to_inference_data() self.assertNotIn("warmup_posterior", az_xarray) samples = mh.infer( [model.foo()], {}, num_samples=10, num_adaptive_samples=2, num_chains=1 ) az_xarray = samples.to_inference_data(include_adapt_steps=True) self.assertIn("warmup_posterior", az_xarray)
beanmachine-main
tests/ppl/inference/monte_carlo_samples_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteUniformMetropolisHastingsConjugateTest( unittest.TestCase, AbstractConjugateTests ): def setUp(self): self.mh = bm.SingleSiteUniformMetropolisHastings() def test_beta_binomial_conjugate_run(self): self.beta_binomial_conjugate_run(self.mh) def test_gamma_gamma_conjugate_run(self): self.gamma_gamma_conjugate_run(self.mh, random_seed=123) def test_gamma_normal_conjugate_run(self): self.gamma_normal_conjugate_run(self.mh, num_samples=7500) def test_normal_normal_conjugate_run(self): self.normal_normal_conjugate_run(self.mh, num_samples=5000) def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run(self.mh, num_samples=5000)
beanmachine-main
tests/ppl/inference/single_site_uniform_mh_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteAdaptiveRandomWalkConjugateTest( unittest.TestCase, AbstractConjugateTests ): def setUp(self): self.mh = bm.SingleSiteRandomWalk(step_size=5.0) def test_beta_binomial_conjugate_run(self): self.mh = bm.SingleSiteRandomWalk(step_size=1.0) self.beta_binomial_conjugate_run( self.mh, num_samples=3000, num_adaptive_samples=1600 ) @unittest.skip("Known to fail. Investigating in T77865889.") def test_gamma_gamma_conjugate_run(self): self.mh = bm.SingleSiteRandomWalk(step_size=3.0) self.gamma_gamma_conjugate_run( self.mh, num_samples=5000, num_adaptive_samples=7000 ) def test_gamma_normal_conjugate_run(self): self.mh = bm.SingleSiteRandomWalk(step_size=5.0) self.gamma_normal_conjugate_run( self.mh, num_samples=6000, num_adaptive_samples=5000 ) @unittest.skip("Known to fail. Investigating in T77865889.") def test_normal_normal_conjugate_run(self): self.normal_normal_conjugate_run( self.mh, num_samples=2000, num_adaptive_samples=2000 ) @unittest.skip("Known to fail. Investigating in T77865889.") def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run( self.mh, num_samples=2000, num_adaptive_samples=2000 )
beanmachine-main
tests/ppl/inference/single_site_random_walk_adaptive_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch import torch.distributions as dist class SampleModel: @bm.random_variable def foo(self): return dist.Normal(torch.tensor(0.0), torch.tensor(1.0)) @bm.random_variable def bar(self): return dist.Normal(self.foo(), torch.tensor(1.0)) class ReproducibleModel: @bm.random_variable def K_minus_one(self): return dist.Poisson(rate=2.0) @bm.functional def K(self): return self.K_minus_one() + 1 @bm.random_variable def mu(self): return dist.Normal(0, 1) def test_single_site_ancestral_mh(): model = SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() foo_key = model.foo() bar_key = model.bar() sampler = mh.sampler( [model.foo()], {model.bar(): torch.tensor(0.0)}, num_samples=10 ) for world in sampler: assert foo_key in world assert bar_key in world assert foo_key in world.get_variable(bar_key).parents assert bar_key in world.get_variable(foo_key).children def test_single_site_ancestral_mh_reproducible_results(): model = ReproducibleModel() mh = bm.SingleSiteAncestralMetropolisHastings() queries = [model.mu()] observations = {} torch.manual_seed(42) samples = mh.infer(queries, observations, num_samples=5, num_chains=1) run_1 = samples.get_variable(model.mu()).clone() torch.manual_seed(42) samples = mh.infer(queries, observations, num_samples=5, num_chains=1) run_2 = samples.get_variable(model.mu()).clone() assert run_1.allclose(run_2) torch.manual_seed(43) samples = mh.infer(queries, observations, num_samples=5, num_chains=1) run_3 = samples.get_variable(model.mu()).clone() assert not run_1.allclose(run_3)
beanmachine-main
tests/ppl/inference/single_site_ancestral_mh_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteNoUTurnConjugateTest(unittest.TestCase, AbstractConjugateTests): def setUp(self): self.nuts = bm.SingleSiteNoUTurnSampler() def test_beta_binomial_conjugate_run(self): self.beta_binomial_conjugate_run( self.nuts, num_samples=300, num_adaptive_samples=300 ) def test_gamma_gamma_conjugate_run(self): self.gamma_gamma_conjugate_run( self.nuts, num_samples=300, num_adaptive_samples=300 ) def test_gamma_normal_conjugate_run(self): self.gamma_normal_conjugate_run( self.nuts, num_samples=300, num_adaptive_samples=300 ) def test_normal_normal_conjugate_run(self): self.normal_normal_conjugate_run( self.nuts, num_samples=300, num_adaptive_samples=300 ) def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run( self.nuts, num_samples=300, num_adaptive_samples=300 )
beanmachine-main
tests/ppl/inference/single_site_no_u_turn_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch import torch.distributions as dist @bm.random_variable def foo(): return dist.Normal(0.0, 1.0) def test_set_random_seed(): def sample_with_seed(seed): bm.seed(seed) return bm.SingleSiteAncestralMetropolisHastings().infer( [foo()], {}, num_samples=20, num_chains=1 ) samples1 = sample_with_seed(123) samples2 = sample_with_seed(123) assert torch.allclose(samples1[foo()], samples2[foo()]) def test_detach_samples(): """Test to ensure samples are detached from torch computation graphs.""" queries = [foo()] samples = bm.SingleSiteAncestralMetropolisHastings().infer( queries=queries, observations={}, num_samples=20, num_chains=1, ) rv_data = samples[foo()] idata = samples.to_inference_data() assert hasattr(rv_data, "detach") assert not hasattr(idata["posterior"][foo()], "detach")
beanmachine-main
tests/ppl/inference/utils_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist class SampleModel: @bm.random_variable def foo(self): return dist.Normal(0.0, 1.0) @bm.random_variable def bar(self): return dist.Normal(self.foo(), 1.0) @pytest.mark.parametrize( "algorithm", [ bm.GlobalNoUTurnSampler(nnc_compile=True), bm.GlobalHamiltonianMonteCarlo(trajectory_length=1.0, nnc_compile=True), ], ) def test_nnc_compile(algorithm): model = SampleModel() queries = [model.foo()] observations = {model.bar(): torch.tensor(0.5)} num_samples = 30 num_chains = 2 with warnings.catch_warnings(): warnings.simplefilter("ignore") # verify that NNC can run through samples = algorithm.infer( queries, observations, num_samples, num_adaptive_samples=num_samples, num_chains=num_chains, ) # sanity check: make sure that the samples are valid assert not torch.isnan(samples[model.foo()]).any()
beanmachine-main
tests/ppl/inference/nnc_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import sys import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.base_proposer import BaseProposer from beanmachine.ppl.world import init_from_prior, World class SampleModel: @bm.random_variable def foo(self): return dist.Normal(0.0, 1.0) @bm.random_variable def bar(self): return dist.Normal(self.foo(), 1.0) @bm.functional def baz(self): return self.bar() * 2.0 class SampleDoubleModel: @bm.random_variable def foo(self): return dist.Normal(torch.tensor(0.0).double(), torch.tensor(1.0).double()) @bm.random_variable def bar(self): return dist.Normal(self.foo(), torch.tensor(1.0).double()) @pytest.mark.parametrize("multiprocess", [False, True]) def test_inference(multiprocess): if multiprocess and sys.platform.startswith("win"): pytest.skip( "Windows does not support fork-based multiprocessing (which is necessary " "for running parallel inference within pytest." ) model = SampleModel() mh = bm.SingleSiteAncestralMetropolisHastings() queries = [model.foo(), model.baz()] observations = {model.bar(): torch.tensor(0.5)} num_samples = 30 num_chains = 2 samples = mh.infer( queries, observations, num_samples, num_adaptive_samples=num_samples, num_chains=num_chains, run_in_parallel=multiprocess, mp_context="fork", ) assert model.foo() in samples assert isinstance(samples[model.foo()], torch.Tensor) assert samples[model.foo()].shape == (num_chains, num_samples) assert samples.get_num_samples(include_adapt_steps=True) == num_samples * 2 # make sure that the RNG state for each chain is different assert not torch.equal( samples.get_chain(0)[model.foo()], samples.get_chain(1)[model.foo()] ) def test_get_proposers(): world = World() model = SampleModel() world.call(model.bar()) nuts = bm.GlobalNoUTurnSampler() proposers = nuts.get_proposers(world, world.latent_nodes, 10) assert all(isinstance(proposer, BaseProposer) for proposer in proposers) def test_initialize_world(): model = SampleModel() world = World.initialize_world([model.bar()], {}) assert model.foo() in world assert model.bar() in world def test_initialize_from_prior(): model = SampleModel() queries = [model.foo()] samples_from_prior = [] for _ in range(10000): world = World.initialize_world(queries, {}, initialize_fn=init_from_prior) val = world.get(model.foo()) samples_from_prior.append(val.item()) assert samples_from_prior[0] != samples_from_prior[1] assert math.isclose(sum(samples_from_prior) / 10000.0, 0.0, abs_tol=1e-2) def test_initialization_resampling(): mh = bm.SingleSiteAncestralMetropolisHastings() @bm.random_variable def foo(): return dist.Uniform(3.0, 5.0) # verify that the method re-sample as expected retries = 0 def init_after_three_tries(d: dist.Distribution): nonlocal retries retries += 1 return torch.tensor(float("nan")) if retries < 3 else d.sample() sampler = mh.sampler( [foo()], {}, num_samples=10, initialize_fn=init_after_three_tries ) for world in sampler: assert not torch.isinf(world.log_prob()) and not torch.isnan(world.log_prob()) # an extreme case where the init value is always out of the support def init_to_zero(d: dist.Distribution): return torch.zeros_like(d.sample()) with pytest.raises(ValueError, match="Cannot find a valid initialization"): mh.infer([foo()], {}, num_samples=10, initialize_fn=init_to_zero) @pytest.mark.parametrize( "algorithm", [ bm.GlobalNoUTurnSampler(full_mass_matrix=False), bm.GlobalNoUTurnSampler(full_mass_matrix=True), bm.GlobalHamiltonianMonteCarlo(trajectory_length=1.0), bm.SingleSiteAncestralMetropolisHastings(), bm.SingleSiteNewtonianMonteCarlo(), bm.SingleSiteUniformMetropolisHastings(), ], ) def test_inference_with_double_dtype(algorithm): model = SampleDoubleModel() queries = [model.foo()] bar_val = torch.tensor(0.5).double() # make sure that the inference can run successfully samples = algorithm.infer( queries, {model.bar(): bar_val}, num_samples=20, num_chains=1, ) assert samples[model.foo()].dtype == bar_val.dtype
beanmachine-main
tests/ppl/inference/inference_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist class SingleSiteUniformMetropolisHastingsTest(unittest.TestCase): class SampleBernoulliModel(object): @bm.random_variable def foo(self): return dist.Beta(torch.tensor(2.0), torch.tensor(2.0)) @bm.random_variable def bar(self): return dist.Bernoulli(self.foo()) class SampleCategoricalModel(object): @bm.random_variable def foo(self): return dist.Dirichlet(torch.tensor([0.5, 0.5])) @bm.random_variable def bar(self): return dist.Categorical(self.foo()) def test_single_site_uniform_mh_with_bernoulli(self): model = self.SampleBernoulliModel() mh = bm.SingleSiteUniformMetropolisHastings() foo_key = model.foo() bar_key = model.bar() sampler = mh.sampler([foo_key], {bar_key: torch.tensor(0.0)}, num_samples=5) for world in sampler: self.assertTrue(foo_key in world) self.assertTrue(bar_key in world) self.assertTrue(foo_key in world.get_variable(bar_key).parents) self.assertTrue(bar_key in world.get_variable(foo_key).children) def test_single_site_uniform_mh_with_categorical(self): model = self.SampleCategoricalModel() mh = bm.SingleSiteUniformMetropolisHastings() foo_key = model.foo() bar_key = model.bar() sampler = mh.sampler([foo_key], {bar_key: torch.tensor(0.0)}, num_samples=5) for world in sampler: self.assertTrue(foo_key in world) self.assertTrue(bar_key in world) self.assertTrue(foo_key in world.get_variable(bar_key).parents) self.assertTrue(bar_key in world.get_variable(foo_key).children)
beanmachine-main
tests/ppl/inference/single_site_uniform_mh_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools from typing import Optional import beanmachine.ppl as bm import numpy import pytest import scipy.stats import torch import torch.distributions as dist from beanmachine.ppl.inference.vi import ADVI, MAP, VariationalInfer from beanmachine.ppl.inference.vi.gradient_estimator import monte_carlo_approximate_sf from beanmachine.ppl.inference.vi.variational_world import VariationalWorld from beanmachine.ppl.world import init_from_prior, RVDict from torch import optim from torch.distributions import constraints from torch.distributions.utils import _standard_normal cpu_device = torch.device("cpu") class NealsFunnel(dist.Distribution): """ Neal's funnel. p(x,y) = N(y|0,3) N(x|0,exp(y/2)) """ support = constraints.real def __init__(self, validate_args=None): d = 2 batch_shape, event_shape = torch.Size([]), (d,) super(NealsFunnel, self).__init__( batch_shape, event_shape, validate_args=validate_args ) def rsample(self, sample_shape=None): if not sample_shape: sample_shape = torch.Size((1,)) eps = _standard_normal( (sample_shape[0], 2), dtype=torch.float, device=torch.device("cpu") ) z = torch.zeros(eps.shape) z[..., 1] = torch.tensor(3.0) * eps[..., 1] z[..., 0] = torch.exp(z[..., 1] / 2.0) * eps[..., 0] return z def log_prob(self, value): if self._validate_args: self._validate_sample(value) x = value[..., 0] y = value[..., 1] log_prob = dist.Normal(0, 3).log_prob(y) log_prob += dist.Normal(0, torch.exp(y / 2)).log_prob(x) return log_prob class BayesianRobustLinearRegression: def __init__(self, n, d): self.n = n self.d = d self.X_train = torch.randn(n, d) self.beta_truth = torch.randn(d + 1, 1) noise = dist.StudentT(df=4.0).sample((n, 1)) self.y_train = ( torch.cat((self.X_train, torch.ones(n, 1)), -1).mm(self.beta_truth) + noise ) @bm.random_variable def beta(self): return dist.Independent( dist.StudentT(df=4.0 * torch.ones(self.d + 1)), 1, ) @bm.random_variable def X(self): return dist.Normal(0, 1) # dummy @bm.random_variable def y(self): X_with_ones = torch.cat((self.X(), torch.ones(self.X().shape[0], 1)), -1) b = self.beta().squeeze() if b.dim() == 1: b = b.unsqueeze(0) mu = X_with_ones.mm(b.T) return dist.Independent( dist.StudentT(df=4.0, loc=mu, scale=1), 1, ) class NormalNormal: def __init__( self, mean_0: float = 0.0, variance_0: float = 1.0, variance_x: float = 1.0, device: Optional[torch.device] = cpu_device, ): self.device = device self.mean_0 = mean_0 self.variance_0 = variance_0 self.variance_x = variance_x @bm.random_variable def mu(self): return dist.Normal( torch.zeros(1).to(self.device), 10 * torch.ones(1).to(self.device) ) @bm.random_variable def x(self, i): return dist.Normal(self.mu(), torch.ones(1).to(self.device)) def conjugate_posterior(self, observations: RVDict) -> torch.dist: # Normal-Normal conjugate prior formula (https://en.wikipedia.org/wiki/Conjugate_prior#When_likelihood_function_is_a_continuous_distribution) expected_variance = 1 / ( (1 / self.variance_0) + (sum(observations.values()) / self.variance_x) ) expected_std = numpy.sqrt(expected_variance) expected_mean = expected_variance * ( (self.mean_0 / self.variance_0) + (sum(observations.values()) / self.variance_x) ) return dist.Normal(expected_mean, expected_std) class LogScaleNormal: @bm.param def phi(self): return torch.zeros(2) # mean, log std @bm.random_variable def q_mu(self): params = self.phi() return dist.Normal(params[0], params[1].exp()) class BinaryGaussianMixture: @bm.random_variable def h(self, i): return dist.Bernoulli(0.5) @bm.random_variable def x(self, i): return dist.Normal(self.h(i).float(), 0.1) class TestAutoGuide: @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_can_use_functionals(self, auto_guide_inference): test_rv = bm.random_variable(lambda: dist.Normal(0, 1)) test_functional = bm.functional(lambda: test_rv() ** 2) auto_guide = auto_guide_inference( queries=[test_rv(), test_functional()], observations={}, ) world = auto_guide.infer(num_steps=10) assert world.call(test_functional()) is not None @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_neals_funnel(self, auto_guide_inference): nf = bm.random_variable(NealsFunnel) auto_guide = auto_guide_inference( queries=[nf()], observations={}, optimizer=lambda params: torch.optim.Adam(params, lr=1e-1), ) world = auto_guide.infer( num_steps=100, ) if auto_guide_inference == ADVI: # compare 1D marginals of empirical distributions using 2-sample K-S test nf_samples = NealsFunnel().sample((20,)).squeeze().numpy() vi_samples = ( world.get_guide_distribution(nf()) .sample((20,)) .detach() .squeeze() .numpy() ) assert ( scipy.stats.ks_2samp(nf_samples[:, 0], vi_samples[:, 0]).pvalue >= 0.05 ) assert ( scipy.stats.ks_2samp(nf_samples[:, 1], vi_samples[:, 1]).pvalue >= 0.05 ) else: vi_samples = world.get_guide_distribution(nf()).v.detach().squeeze().numpy() map_truth = [0, -4.5] assert numpy.isclose(map_truth, vi_samples, atol=0.05).all().item() @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_normal_normal(self, auto_guide_inference): model = NormalNormal() auto_guide = auto_guide_inference( queries=[model.mu()], observations={ model.x(1): torch.tensor(9.0), model.x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e0), ) world = auto_guide.infer( num_steps=100, ) mu_approx = world.get_guide_distribution(model.mu()) sample_mean = mu_approx.sample((100,)).mean() assert sample_mean > 5.0 if auto_guide_inference == ADVI: sample_var = mu_approx.sample((100,)).var() assert sample_var > 0.1 @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_brlr(self, auto_guide_inference): brlr = BayesianRobustLinearRegression(n=100, d=7) auto_guide = auto_guide_inference( queries=[brlr.beta()], observations={ brlr.X(): brlr.X_train, brlr.y(): brlr.y_train, }, optimizer=lambda params: torch.optim.Adam(params, lr=1e-1), ) world = auto_guide.infer( num_steps=100, ) beta_samples = world.get_guide_distribution(brlr.beta()).sample((100,)) for i in range(beta_samples.shape[1]): assert torch.norm(beta_samples[:, i].mean() - brlr.beta_truth[i]) < 0.2 @pytest.mark.parametrize( "auto_guide_inference, expected", [(ADVI, 1.0), (MAP, 0.0)] ) def test_constrained_positive_reals(self, auto_guide_inference, expected): exp = dist.Exponential(torch.tensor([1.0])) positive_rv = bm.random_variable(lambda: exp) auto_guide = auto_guide_inference(queries=[positive_rv()], observations={}) world = auto_guide.infer(num_steps=100) assert ( abs( world.get_guide_distribution(positive_rv()).sample((100,)).mean().item() - expected ) <= 0.2 ) @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_constrained_interval(self, auto_guide_inference): beta = dist.Beta(torch.tensor([1.0]), torch.tensor([1.0])) interval_rv = bm.random_variable(lambda: beta) auto_guide = auto_guide_inference( queries=[interval_rv()], observations={}, ) world = auto_guide.infer(num_steps=100) assert ( abs( world.get_guide_distribution(interval_rv()).sample((100,)).mean().item() - beta.mean ) <= 0.2 ) @pytest.mark.parametrize("auto_guide_inference", [ADVI, MAP]) def test_dirichlet(self, auto_guide_inference): dirichlet = dist.Dirichlet(2 * torch.ones(2)) alpha = bm.random_variable(lambda: dirichlet) auto_guide = auto_guide_inference([alpha()], {}) world = auto_guide.infer(num_steps=100) map_truth = torch.tensor([0.5, 0.5]) vi_estimate = world.get_guide_distribution(alpha()).sample((100,)).mean(dim=0) assert vi_estimate.isclose(map_truth, atol=0.1).all().item() class TestStochasticVariationalInfer: @pytest.fixture(autouse=True) def set_seed(self): bm.seed(41) def test_normal_normal_guide(self): normal_normal_model = NormalNormal() log_scale_normal_model = LogScaleNormal() world = VariationalInfer( queries_to_guides={normal_normal_model.mu(): log_scale_normal_model.q_mu()}, observations={ normal_normal_model.x(1): torch.tensor(9.0), normal_normal_model.x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e0), ).infer( num_steps=100, ) mu_approx = world.get_variable(log_scale_normal_model.q_mu()).distribution sample_mean = mu_approx.sample((100, 1)).mean() assert sample_mean > 5.0 sample_var = mu_approx.sample((100, 1)).var() assert sample_var > 0.1 def test_normal_normal_guide_step(self): normal_normal_model = NormalNormal() log_scale_normal_model = LogScaleNormal() # 100 steps, each 1 iteration world = VariationalInfer( queries_to_guides={ normal_normal_model.mu(): log_scale_normal_model.q_mu(), }, observations={ normal_normal_model.x(1): torch.tensor(9.0), normal_normal_model.x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e0), ).infer(num_steps=100) mu_approx = world.get_variable(log_scale_normal_model.q_mu()).distribution sample_mean = mu_approx.sample((100, 1)).mean() assert sample_mean > 5.0 sample_var = mu_approx.sample((100, 1)).var() assert sample_var > 0.1 def test_conditional_guide(self): @bm.random_variable def mu(): return dist.Normal(torch.zeros(1), torch.ones(1)) @bm.random_variable def alpha(): return dist.Normal(torch.zeros(1), torch.ones(1)) @bm.random_variable def x(i): return dist.Normal(mu() + alpha(), torch.ones(1)) @bm.param def phi_mu(): return torch.zeros(2) # mean, log std @bm.random_variable def q_mu(): params = phi_mu() return dist.Normal(params[0] - alpha(), params[1].exp()) @bm.param def phi_alpha(): return torch.zeros(2) # mean, log std @bm.random_variable def q_alpha(): params = phi_alpha() return dist.Normal(params[0], params[1].exp()) world = VariationalInfer( queries_to_guides={ mu(): q_mu(), alpha(): q_alpha(), }, observations={ x(1): torch.tensor(9.0), x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e0), ).infer( num_steps=100, ) vi = VariationalInfer( queries_to_guides={ mu(): q_mu(), alpha(): q_alpha(), }, observations={ x(1): torch.tensor(9.0), x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e-1), ) vi.infer(num_steps=100) world = VariationalWorld( params=vi.params, observations={ **{alpha(): torch.tensor(10.0)}, **vi.observations, }, ) mu_approx, _ = world._run_node(q_mu()) sample_mean_alpha_10 = mu_approx.sample((100, 1)).mean() world = VariationalWorld( params=vi.params, observations={ **{alpha(): torch.tensor(-10.0)}, **vi.observations, }, ) mu_approx, _ = world._run_node(q_mu()) sample_mean_alpha_neg_10 = mu_approx.sample((100, 1)).mean() assert sample_mean_alpha_neg_10 > sample_mean_alpha_10 def test_discrete_mixture(self): model = BinaryGaussianMixture() N = 10 with bm.world.World.initialize_world( itertools.chain.from_iterable([model.x(i), model.h(i)] for i in range(N)), initialize_fn=init_from_prior, ): data = torch.tensor([[model.x(i), model.h(i)] for i in range(N)]) @bm.param def phi(i): return torch.tensor(0.5, requires_grad=True) @bm.random_variable def q_h(i): return dist.Bernoulli(logits=phi(i)) vi = VariationalInfer( queries_to_guides={model.h(i): q_h(i) for i in range(N)}, observations={model.x(i): data[i, 0] for i in range(N)}, optimizer=lambda p: optim.Adam(p, lr=5e-1), ) world = vi.infer( num_steps=30, num_samples=50, mc_approx=monte_carlo_approximate_sf ) accuracy = ( ( ( torch.stack( [ world.get_guide_distribution(model.h(i)).probs for i in range(N) ] ) > 0.5 ) == data[:, 1] ) .float() .mean() ) assert accuracy.float().item() > 0.80 def test_logistic_regression(self): n, d = 500, 2 X = torch.randn(n, d) W = torch.randn(d) @bm.random_variable def y(): return dist.Independent( dist.Bernoulli(probs=torch.sigmoid(X @ W)), 1, ) @bm.param def w(): return torch.randn(d) @bm.random_variable def q_y(): weights = w() data = X p = torch.sigmoid(data @ weights) return dist.Independent( dist.Bernoulli(probs=p), 1, ) world = VariationalInfer( queries_to_guides={y(): q_y()}, observations={}, optimizer=lambda params: torch.optim.Adam(params, lr=3e-2), ).infer( num_steps=4000, num_samples=1, # NOTE: since y/q_y are discrete and not reparameterizable, we must # use the score function estimator mc_approx=monte_carlo_approximate_sf, ) l2_error = (world.get_param(w()) - W).norm() assert l2_error < 0.5 def test_subsample(self): # mu ~ N(0, 10) and x | mu ~ N(mu, 1) num_total = 3 normal_normal_model = NormalNormal(mean_0=1, variance_0=100, variance_x=1) log_scale_normal_model = LogScaleNormal() total_observations = { normal_normal_model.x(i): torch.tensor(1.0) for i in range(num_total) } expected_mean = normal_normal_model.conjugate_posterior(total_observations).mean expected_stddev = normal_normal_model.conjugate_posterior( total_observations ).stddev for num_samples in range(1, num_total): world = VariationalInfer( queries_to_guides={ normal_normal_model.mu(): log_scale_normal_model.q_mu(), }, observations={ normal_normal_model.x(i): torch.tensor(1.0) for i in range(num_samples) }, optimizer=lambda params: torch.optim.Adam(params, lr=5e-2), ).infer( num_steps=50, subsample_factor=num_samples / num_total, num_samples=10, ) mu_approx = world.get_guide_distribution(normal_normal_model.mu()) assert (mu_approx.mean - expected_mean).norm() < 0.05 assert (mu_approx.stddev - expected_stddev).norm() < 0.05 def test_subsample_fail(self): # mu ~ N(0, 10) and x | mu ~ N(mu, 1) num_total = 3 normal_normal_model = NormalNormal(mean_0=1, variance_0=100, variance_x=1) log_scale_normal_model = LogScaleNormal() total_observations = { normal_normal_model.x(i): torch.tensor(1.0) for i in range(num_total) } expected_mean = normal_normal_model.conjugate_posterior(total_observations).mean expected_stddev = normal_normal_model.conjugate_posterior( total_observations ).stddev for num_samples in range(1, num_total): world = VariationalInfer( queries_to_guides={ normal_normal_model.mu(): log_scale_normal_model.q_mu(), }, observations={ normal_normal_model.x(i): torch.tensor(1.0) for i in range(num_samples) }, optimizer=lambda params: torch.optim.Adam(params, lr=5e-2), ).infer( num_steps=50, subsample_factor=1.0, num_samples=10, ) mu_approx = world.get_guide_distribution(normal_normal_model.mu()) assert (mu_approx.mean - expected_mean).norm() > 0.05 or ( mu_approx.stddev - expected_stddev ).norm() > 0.05
beanmachine-main
tests/ppl/inference/vi_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist from beanmachine.ppl.inference.vi import VariationalInfer cpu_device = torch.device("cpu") class NormalNormal: def __init__(self, device: Optional[torch.device] = cpu_device): self.device = device @bm.random_variable def mu(self): return dist.Normal( torch.zeros(1).to(self.device), 10 * torch.ones(1).to(self.device) ) @bm.random_variable def x(self, i): return dist.Normal(self.mu(), torch.ones(1).to(self.device)) @pytest.mark.skipif( not torch.cuda.is_available(), reason="requires GPU access to train the model" ) def test_normal_normal_guide_step_gpu(): device = torch.device("cuda:0") model = NormalNormal(device=device) @bm.param def phi(): return torch.zeros(2).to(device) # mean, log std @bm.random_variable def q_mu(): params = phi() return dist.Normal(params[0], params[1].exp()) world = VariationalInfer( queries_to_guides={model.mu(): q_mu()}, observations={ model.x(1): torch.tensor(9.0), model.x(2): torch.tensor(10.0), }, optimizer=lambda params: torch.optim.Adam(params, lr=1e-1), device=device, ).infer( num_steps=1000, ) mu_approx = world.get_variable(q_mu()).distribution assert (mu_approx.mean - 9.6).norm() < 1.0 assert (mu_approx.stddev - 0.7).norm() < 0.3
beanmachine-main
tests/ppl/inference/vi_gpu_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist from beanmachine.ppl.examples.conjugate_models import ( BetaBinomialModel, CategoricalDirichletModel, GammaNormalModel, NormalNormalModel, ) # A distribution which apparently takes values on the full number line, # but in reality it only returns zero when sampled from. class RealSupportDist(dist.Distribution): has_enumerate_support = False support = dist.constraints.real has_rsample = True arg_constraints = {} # Ancestral sampling will only return zero. def rsample(self, sample_shape): return torch.zeros(sample_shape) # Not a properly defined PDF on the full support, but allows MCMC to explore. def log_prob(self, value): return torch.zeros(value.shape) # A distribution which apparently takes values on the non-negative number line, # but in reality it only returns 1 when sampled from. class HalfRealSupportDist(dist.Distribution): has_enumerate_support = False support = dist.constraints.greater_than(lower_bound=0.0) has_rsample = True arg_constraints = {} # Ancestral sampling will only return one. def rsample(self, sample_shape): return torch.ones(sample_shape) # Not a properly defined PDF on the full support, but allows MCMC to explore. def log_prob(self, value): return torch.zeros(value.shape) # A distribution which apparently takes values on an interval of the number line, # but in reality it only returns 1 when sampled from. class IntervalRealSupportDist(dist.Distribution): has_enumerate_support = False support = dist.constraints.interval(lower_bound=2.0, upper_bound=20.0) has_rsample = True arg_constraints = {} # Ancestral sampling will only return zero. def rsample(self, sample_shape): return 3 * torch.ones(sample_shape) # Not a properly defined PDF on the full support, but allows MCMC to explore. def log_prob(self, value): return torch.zeros(value.shape) # A distribution which apparently takes values on the non-negative integers, # but in reality it only returns zero when sampled from. class IntegerSupportDist(dist.Distribution): has_enumerate_support = False support = dist.constraints.integer_interval(0.0, 100.0) has_rsample = True arg_constraints = {} # Ancestral sampling will only return zero. def rsample(self, sample_shape): return torch.zeros(sample_shape) # Not a properly defined PDF on the full support, but allows MCMC to explore. def log_prob(self, value): return torch.zeros(value.shape) class SingleSiteRandomWalkTest(unittest.TestCase): """ These tests test for the control flow which branches based on node_distribution.support """ class RealSupportModel(object): @bm.random_variable def p(self): return RealSupportDist() @bm.random_variable def q(self): return dist.Normal(self.p(), torch.tensor(1.0)) class HalfRealSupportModel(object): @bm.random_variable def p(self): return HalfRealSupportDist() @bm.random_variable def q(self): return dist.Normal(self.p(), torch.tensor(1.0)) class IntervalRealSupportModel(object): def __init__(self): self.lower_bound = IntervalRealSupportDist().support.lower_bound self.upper_bound = IntervalRealSupportDist().support.upper_bound @bm.random_variable def p(self): return IntervalRealSupportDist() @bm.random_variable def q(self): return dist.Normal(self.p(), torch.tensor(1.0)) class IntegerSupportModel(object): @bm.random_variable def p(self): return IntegerSupportDist() @bm.random_variable def q(self): return dist.Normal(self.p(), torch.tensor(1.0)) def test_single_site_random_walk_full_support(self): model = self.RealSupportModel() mh = bm.SingleSiteRandomWalk() p_key = model.p() queries = [p_key] observations = {model.q(): torch.tensor(1.0)} predictions = mh.infer(queries, observations, 100) predictions = predictions.get_chain()[p_key] """ If the ancestral sampler is used, then every sample drawn from the chain will be 0. This is by true by the construction of the rsample function. Conversely, normal noise != 0 w.p. 1, giving some sample which != 0. For RealSupportModel, we expect the RW sampler to be used. """ self.assertIn(False, [0 == pred for pred in predictions]) def test_single_site_random_walk_half_support(self): model = self.HalfRealSupportModel() mh = bm.SingleSiteRandomWalk() p_key = model.p() queries = [p_key] observations = {model.q(): torch.tensor(100.0)} predictions = mh.infer(queries, observations, 100) predictions = predictions.get_chain()[p_key] # Discard the first sample, it may not be drawn from the node's distribution predictions = predictions[1:] """ If the ancestral sampler is used, then every sample drawn from the chain will be 1. This is by true by the construction of the rsample function. If RW is correctly reached by control flow, then rsample will draw from a Gamma distribution. """ self.assertIn(False, [pred == 1 for pred in predictions]) def test_single_site_random_walk_interval_support(self): lower_bound = IntervalRealSupportDist().support.lower_bound upper_bound = IntervalRealSupportDist().support.upper_bound # Test for a single item of evidence def inner_fnc(evidence: float): model = self.IntervalRealSupportModel() mh = bm.SingleSiteRandomWalk() p_key = model.p() queries = [p_key] observations = {model.q(): evidence.detach().clone()} predictions = mh.infer(queries, observations, 20) predictions = predictions.get_chain()[p_key] """ All generated samples should remain in the correct support if the transform is computed properly """ self.assertNotIn( False, [lower_bound <= pred <= upper_bound for pred in predictions] ) # We're mostly interested in the boundary cases evidences = torch.cat( ( torch.linspace(lower_bound + 0.1, lower_bound + 1, 4), torch.linspace(upper_bound - 1, upper_bound - 0.1, 4), ) ) for e in evidences: inner_fnc(e) """ Adaptive """ def test_single_site_adaptive_random_walk(self): model = NormalNormalModel( mu=torch.tensor(0.0), std=torch.tensor(1.0), sigma=torch.ones(1) ) mh = bm.SingleSiteRandomWalk(step_size=4) p_key = model.normal_p() queries = [p_key] observations = {model.normal(): torch.tensor(100.0)} predictions = mh.infer(queries, observations, 100, num_adaptive_samples=30) predictions = predictions.get_chain()[p_key] self.assertIn(True, [45 < pred < 55 for pred in predictions]) """ These tests test for quick approximate convergence in conjugate models. """ def test_single_site_random_walk_rate(self): model = NormalNormalModel( mu=torch.zeros(1), std=torch.ones(1), sigma=torch.ones(1) ) mh = bm.SingleSiteRandomWalk(step_size=10) p_key = model.normal_p() queries = [p_key] observations = {model.normal(): torch.tensor(100.0)} predictions = mh.infer(queries, observations, 100) predictions = predictions.get_chain()[p_key] self.assertIn(True, [45 < pred < 55 for pred in predictions]) def test_single_site_random_walk_rate_vector(self): model = NormalNormalModel( mu=torch.zeros(2), std=torch.ones(2), sigma=torch.ones(2) ) mh = bm.SingleSiteRandomWalk(step_size=10) p_key = model.normal_p() queries = [p_key] observations = {model.normal(): torch.tensor([100.0, -100.0])} predictions = mh.infer(queries, observations, 100) predictions = predictions.get_chain()[p_key] self.assertIn(True, [45 < pred[0] < 55 for pred in predictions]) self.assertIn(True, [-55 < pred[1] < -45 for pred in predictions]) def test_single_site_random_walk_half_support_rate(self): model = GammaNormalModel( shape=torch.ones(1), rate=torch.ones(1), mu=torch.ones(1) ) mh = bm.SingleSiteRandomWalk(step_size=4.0) p_key = model.gamma() queries = [p_key] observations = {model.normal(): torch.tensor([100.0])} predictions = mh.infer(queries, observations, 100) predictions = predictions.get_chain()[p_key] """ Our single piece of evidence is the observed value 100. 100 is a very large observation w.r.t our model of mu = 1. This implies that the normal distirubtion has very high variance, so samples from the Gamma distribution will have very small values in expectation. For RWMH with large step size, we expect to see this in < 100 steps. """ self.assertIn(True, [pred < 0.01 for pred in predictions]) def test_single_site_random_walk_interval_support_rate(self): model = BetaBinomialModel( alpha=torch.ones(1) * 2.0, beta=torch.ones(1), n=torch.ones(1) * 10.0 ) mh = bm.SingleSiteRandomWalk(step_size=0.3) p_key = model.theta() queries = [p_key] observations = {model.x(): torch.tensor([10.0])} predictions = mh.infer(queries, observations, 50) predictions = predictions.get_chain()[p_key] """ Our single piece of evidence is the observed value 10. This is a large observation w.r.t our model . This implies that the Binomial distirubtion has very large parameter p, so samples from the Beta distribution will have similarly large values in expectation. For RWMH with small step size, we expect to accept enough proposals to reach this value in < 50 steps. """ self.assertIn(True, [pred > 0.9 for pred in predictions]) def test_single_site_random_walk_simplex_support_rate(self): model = CategoricalDirichletModel(alpha=torch.tensor([1.0, 10.0])) mh = bm.SingleSiteRandomWalk(step_size=1.0) p_key = model.dirichlet() queries = [p_key] observations = {model.categorical(): torch.tensor([1.0, 1.0, 1.0])} predictions = mh.infer(queries, observations, 50) predictions = predictions.get_chain()[p_key] """ Our single piece of evidence is the observed value 1. This is a large observation w.r.t the simplex, which has interval [0,1]. Based on our model, we expect that this evidence is drawn from category 1 rather than category 0. So pred[0] << pred[1] typically. """ self.assertIn(True, [pred[0] < 0.1 for pred in predictions])
beanmachine-main
tests/ppl/inference/single_site_random_walk_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist class IntegrationTest(unittest.TestCase): class LogisticRegressionModel(object): @bm.random_variable def theta_0(self): return dist.Normal(0.0, 1.0) @bm.random_variable def theta_1(self): return dist.Normal(0.0, torch.ones(3)) @bm.random_variable def y(self, X): logits = (X * self.theta_1() + self.theta_0()).sum(-1) return dist.Bernoulli(logits=logits) def test_logistic_regression(self): torch.manual_seed(1) true_coefs = torch.tensor([1.0, 2.0, 3.0]) true_intercept = torch.tensor(1.0) X = torch.randn(3000, 3) Y = dist.Bernoulli(logits=(X * true_coefs + true_intercept).sum(-1)).sample() model = self.LogisticRegressionModel() nw = bm.SingleSiteNewtonianMonteCarlo() samples_nw = nw.infer( queries=[model.theta_1(), model.theta_0()], observations={model.y(X): Y}, num_samples=1000, num_chains=1, ) coefs_mean = samples_nw[model.theta_1()].view(-1, 3).mean(0) intercept_mean = samples_nw[model.theta_0()].view(-1).mean(0) self.assertTrue(torch.isclose(coefs_mean, true_coefs, atol=0.15).all()) self.assertTrue(torch.isclose(intercept_mean, true_intercept, atol=0.15).all())
beanmachine-main
tests/ppl/inference/inference_integration_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import Counter from unittest.mock import patch import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.nuts_proposer import NUTSProposer from beanmachine.ppl.inference.proposer.sequential_proposer import SequentialProposer from beanmachine.ppl.inference.proposer.single_site_ancestral_proposer import ( SingleSiteAncestralProposer, ) from beanmachine.ppl.inference.proposer.single_site_uniform_proposer import ( SingleSiteUniformProposer, ) from beanmachine.ppl.world import World class SampleModel: @bm.random_variable def foo(self, i: int): return dist.Beta(2.0, 2.0) @bm.random_variable def bar(self, i: int): return dist.Bernoulli(self.foo(i)) @bm.random_variable def baz(self): return dist.Normal(self.bar(0) + self.bar(1), 1.0) class ChangingSupportSameShapeModel: # the support of `component` is changing, but (because we indexed alpha # by k) all random_variables have the same shape @bm.random_variable def K(self): return dist.Poisson(rate=2.0) @bm.random_variable def alpha(self, k): return dist.Dirichlet(torch.ones(k)) @bm.random_variable def component(self, i): alpha = self.alpha(self.K().int().item() + 2) return dist.Categorical(alpha) class ChangingShapeModel: # here since we did not index alpha, its shape in each world is changing @bm.random_variable def K(self): return dist.Poisson(rate=2.0) @bm.random_variable def alpha(self): return dist.Dirichlet(torch.ones(self.K().int().item() + 2)) @bm.random_variable def component(self, i): return dist.Categorical(self.alpha()) def test_inference_config(): model = SampleModel() nuts = bm.GlobalNoUTurnSampler() compositional = bm.CompositionalInference({model.foo: nuts}) queries = [model.foo(0), model.foo(1)] observations = {model.baz(): torch.tensor(2.0)} # verify that inference can run without error compositional.infer(queries, observations, num_chains=1, num_samples=10) # verify that proposers are spawned correctly world = World.initialize_world(queries, observations) with patch.object(nuts, "get_proposers", wraps=nuts.get_proposers) as mock: proposers = compositional.get_proposers( world, target_rvs=world.latent_nodes, num_adaptive_sample=0 ) # NUTS should receive {foo(0), foo(1)} as its target rvs mock.assert_called_once_with(world, {model.foo(0), model.foo(1)}, 0) # there should be one NUTS proposer for both foo(0) and foo(1), one ancestral MH # proposer for bar(0), and another ancestral MH proposer for bar(1) assert len(proposers) == 3 # TODO: find a way to validate the proposer instead of relying on the order of # return value assert isinstance(proposers[0], NUTSProposer) assert proposers[0]._target_rvs == {model.foo(0), model.foo(1)} # the rest of nodes are updated by default proposers (uniform proposer for bernoulli) assert isinstance(proposers[1], SingleSiteUniformProposer) assert isinstance(proposers[2], SingleSiteUniformProposer) assert {proposers[1].node, proposers[2].node} == {model.bar(0), model.bar(1)} # test overriding default kwarg compositional = bm.CompositionalInference( { model.foo: bm.GlobalNoUTurnSampler(), ...: bm.SingleSiteAncestralMetropolisHastings(), } ) compositional.infer(queries, observations, num_chains=1, num_samples=2) world = World.initialize_world(queries, observations) proposers = compositional.get_proposers( world, target_rvs=world.latent_nodes, num_adaptive_sample=0 ) assert isinstance(proposers[0], NUTSProposer) assert isinstance(proposers[1], SingleSiteAncestralProposer) assert isinstance(proposers[2], SingleSiteAncestralProposer) assert {proposers[1].node, proposers[2].node} == {model.bar(0), model.bar(1)} def test_config_inference_with_tuple_of_rv(): model = SampleModel() nuts = bm.GlobalNoUTurnSampler() compositional = bm.CompositionalInference({(model.foo, model.baz): nuts}) world = World.initialize_world([model.baz()], {}) with patch.object(nuts, "get_proposers", wraps=nuts.get_proposers) as mock: compositional.get_proposers( world, target_rvs=world.latent_nodes, num_adaptive_sample=10 ) # NUTS should receive {foo(0), foo(1), model.baz()} as its target rvs mock.assert_called_once_with( world, {model.foo(0), model.foo(1), model.baz()}, 10 ) def test_config_inference_with_tuple_of_inference(): model = SampleModel() compositional = bm.CompositionalInference( { (model.foo, model.bar): ( bm.SingleSiteAncestralMetropolisHastings(), bm.SingleSiteUniformMetropolisHastings(), ), model.baz: bm.GlobalNoUTurnSampler(), } ) # verify that inference can run without error compositional.infer([model.baz()], {}, num_chains=1, num_samples=10) # examine the proposer types world = World.initialize_world([model.baz()], {}) proposers = compositional.get_proposers( world, target_rvs=world.latent_nodes, num_adaptive_sample=10 ) assert len(proposers) == 2 sequential_proposer = proposers[int(isinstance(proposers[0], NUTSProposer))] assert isinstance(sequential_proposer, SequentialProposer) assert len(sequential_proposer.proposers) == 4 proposer_count = Counter(map(type, sequential_proposer.proposers)) assert proposer_count[SingleSiteAncestralProposer] == 2 def test_nested_compositional_inference(): model = SampleModel() ancestral_mh = bm.SingleSiteAncestralMetropolisHastings() compositional = bm.CompositionalInference( { (model.foo, model.bar): bm.CompositionalInference( { model.foo: bm.GlobalNoUTurnSampler(), # this ancestral mh class is never going to be invoked model.baz: ancestral_mh, } ) } ) with patch.object( ancestral_mh, "get_proposers", wraps=ancestral_mh.get_proposers ) as mock: # verify that inference can run without error compositional.infer([model.baz()], {}, num_chains=1, num_samples=10) # the ancestral_mh instance shouldn't been invoked at all mock.assert_not_called() def test_block_inference_with_default_algorithm(): model = SampleModel() # block foo and baz together, but uses the default inference compositional = bm.CompositionalInference({(model.foo, model.bar, model.baz): ...}) # make sure that things can run without failure queries = [model.baz()] observations = {} compositional.infer(queries, observations, num_chains=1, num_samples=10) # check to see if proposers are indeed blocked together world = World.initialize_world(queries, observations) proposers = compositional.get_proposers(world, world.latent_nodes, 0) assert len(proposers) == 1 assert isinstance(proposers[0], SequentialProposer) @pytest.mark.xfail( raises=RuntimeError, reason="Need to redesign how change in support is being handled in block inference", ) def test_block_inference_changing_support(): model = ChangingSupportSameShapeModel() queries = [model.K()] + [model.component(j) for j in range(3)] compositional = bm.CompositionalInference( { (model.K, model.component): bm.SingleSiteAncestralMetropolisHastings(), ...: bm.SingleSiteNewtonianMonteCarlo(), }, ) sampler = compositional.sampler(queries, {}, num_samples=10, num_adaptive_samples=5) old_world = next(sampler) for world in sampler: # this should run without failing # since it's actually possible to sample two identical values, we need # to check for tensor identity if world[model.K()] is not old_world[model.K()]: # if one of the node in a block is updated, the rest of the nodes should # also been updated for i in range(3): assert world[model.component(i)] is not old_world[model.component(i)] else: # just as a sanity check to show that the tensor identity check is doing # what we expected assert world[model.component(0)] is old_world[model.component(0)] old_world = world # disable NNC because changing support => non-static model compositional = bm.CompositionalInference( {(model.K, model.component): bm.SingleSiteAncestralMetropolisHastings()}, nnc_compile=False, ) sampler = compositional.sampler(queries, {}) with pytest.raises(KeyError): world = next(sampler) # since the support of poisson is all natural numbers, it's possible that we # sample a new alue of K that's 1 greater than current one.... K_val = world.call(model.K()) new_world = world.replace({model.K(): K_val + 1}) # Since NUTS only supports static model, this is going to raise an error # TODO: this error is thrown in hmc_utils when fetching # transforms but should be checked earlier in the model sampler.send(new_world) def test_block_inference_changing_shape(): model = ChangingShapeModel() queries = [model.K()] + [model.component(j) for j in range(3)] # disable NNC because changing shape => non-static model compositional = bm.CompositionalInference(nnc_compile=False) # cannot perform inference since the shape of alpha can change if the value # of K changes with pytest.raises(RuntimeError): compositional.infer(queries, {}, num_samples=10, num_chains=1) def test_default_num_adaptive_samples(): model = SampleModel() num_samples = 100 compositional = bm.CompositionalInference( { model.bar: bm.SingleSiteAncestralMetropolisHastings(), ...: bm.SingleSiteRandomWalk(), } ) # none of the method in compositional requires adaptation, so default to 0 assert compositional._get_default_num_adaptive_samples(num_samples) == 0 compositional = bm.CompositionalInference( { model.foo: bm.GlobalNoUTurnSampler(), model.bar: bm.SingleSiteAncestralMetropolisHastings(), } ) # default to num_samples // 2 due to NUTS' default assert ( compositional._get_default_num_adaptive_samples(num_samples) == num_samples // 2 )
beanmachine-main
tests/ppl/inference/compositional_infer_test.py
beanmachine-main
tests/ppl/inference/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import torch import torch.distributions as dist class SampleModel: @bm.random_variable def foo(self): return dist.Normal(0.0, 1.0) @bm.random_variable def bar(self): return dist.Normal(self.foo(), 1.0) def test_sampler(): model = SampleModel() nuts = bm.GlobalNoUTurnSampler() queries = [model.foo()] observations = {model.bar(): torch.tensor(0.5)} num_samples = 10 sampler = nuts.sampler(queries, observations, num_samples, num_adaptive_samples=0) worlds = list(sampler) assert len(worlds) == num_samples for world in worlds: assert model.foo() in world with world: assert isinstance(model.foo(), torch.Tensor) def test_two_samplers(): model = SampleModel() queries = [model.foo()] observations = {model.bar(): torch.tensor(0.5)} nuts_sampler = bm.GlobalNoUTurnSampler().sampler(queries, observations) hmc_sampler = bm.GlobalHamiltonianMonteCarlo(1.0).sampler(queries, observations) world = next(nuts_sampler) # it's possible to use multiple sampler interchangably to update the worlds (or # in general, pass a new world to sampler and continue inference with existing # hyperparameters) for _ in range(3): world = hmc_sampler.send(world) world = nuts_sampler.send(world) assert model.foo() in world assert model.bar() in world
beanmachine-main
tests/ppl/inference/sampler_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteRandomWalkConjugateTest(unittest.TestCase, AbstractConjugateTests): def setUp(self): self.mh = bm.SingleSiteRandomWalk(step_size=1.0) def test_beta_binomial_conjugate_run(self): mh = bm.SingleSiteRandomWalk(step_size=0.3) self.beta_binomial_conjugate_run(mh, num_samples=5000) def test_gamma_gamma_conjugate_run(self): self.gamma_gamma_conjugate_run(self.mh, num_samples=10000) def test_gamma_normal_conjugate_run(self): self.gamma_normal_conjugate_run(self.mh, num_samples=10000) def test_normal_normal_conjugate_run(self): mh = bm.SingleSiteRandomWalk(step_size=1.5) self.normal_normal_conjugate_run(mh, num_samples=1000) def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run(self.mh, num_samples=10000)
beanmachine-main
tests/ppl/inference/single_site_random_walk_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist @bm.random_variable def f(): return 123 # BAD, needs to be a distribution @bm.random_variable def g(n): pass @bm.functional def h(): return 123 # BAD; needs to be a tensor @bm.random_variable def flip(): return dist.Bernoulli(0.5) class ErrorDist(torch.distributions.Distribution): arg_constraints = {} support = torch.distributions.constraints.real def __init__(self): self.counter = 0 super().__init__() def sample(self): self.counter += 1 if self.counter == 20: # throw error torch.linalg.cholesky(torch.zeros(3, 3)) return torch.randn(1) def log_prob(self, value): self.counter += 1 if self.counter == 5: torch.linalg.cholesky(torch.zeros(3, 3)) return -(value**2) @bm.random_variable def bad(): return ErrorDist() def test_inference_error_reporting(): mh = bm.SingleSiteAncestralMetropolisHastings() with pytest.raises(TypeError) as ex: mh.infer(None, {}, 10) assert ( str(ex.value) == "Parameter 'queries' is required to be a list but is of type NoneType." ) with pytest.raises(TypeError) as ex: mh.infer([], 123, 10) assert ( str(ex.value) == "Parameter 'observations' is required to be a dictionary but is of type int." ) # Should be f(): with pytest.raises(TypeError) as ex: mh.infer([f], {}, 10) assert ( str(ex.value) == "A query is required to be a random variable but is of type function." ) # Should be f(): with pytest.raises(TypeError) as ex: mh.infer([f()], {f: torch.tensor(True)}, 10) assert ( str(ex.value) == "An observation is required to be a random variable but is of type function." ) # Should be a tensor with pytest.raises(TypeError) as ex: mh.infer([f()], {f(): 123.0}, 10) assert ( str(ex.value) == "An observed value is required to be a tensor but is of type float." ) # You can't make inferences on rv-of-rv with pytest.raises(TypeError) as ex: mh.infer([g(f())], {}, 10) assert str(ex.value) == "The arguments to a query must not be random variables." # You can't make inferences on rv-of-rv with pytest.raises(TypeError) as ex: mh.infer([f()], {g(f()): torch.tensor(123)}, 10) assert ( str(ex.value) == "The arguments to an observation must not be random variables." ) # SSAMH requires that observations must be of random variables, not # functionals with pytest.raises(TypeError) as ex: mh.infer([f()], {h(): torch.tensor(123)}, 10) assert ( str(ex.value) == "An observation must observe a random_variable, not a functional." ) # A functional is required to return a tensor. with pytest.raises(TypeError) as ex: mh.infer([h()], {}, 10) assert str(ex.value) == "The value returned by a queried function must be a tensor." # A random_variable is required to return a distribution with pytest.raises(TypeError) as ex: mh.infer([f()], {}, 10) assert str(ex.value) == "A random_variable is required to return a distribution." # The lookup key to the samples object is required to be an RVID. with pytest.raises(TypeError) as ex: mh.infer([flip()], {}, 10)[flip] assert ( str(ex.value) == "The key is required to be a random variable but is of type function." ) def test_handle_cholesky_error(): mh = bm.SingleSiteAncestralMetropolisHastings() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning samples = mh.infer([bad()], {}, 20, num_chains=1) # Verify that the warning is triggered assert len(w) == 1 assert "Proposal rejected" in str(w[-1]) # Verify that the inference finishes with the right number of samples assert samples[bad()].shape == (1, 20, 1) def test_cholesky_error_nuts_adaptation(): nuts = bm.SingleSiteNoUTurnSampler() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning samples = nuts.infer([bad()], {}, 20, num_chains=1, num_adaptive_samples=30) # Verify that the warning is triggered assert len(w) == 1 assert "Numerical error" in str(w[-1]) # Verify that the inference finishes with the right number of samples assert samples[bad()].shape == (1, 20, 1)
beanmachine-main
tests/ppl/inference/inference_error_reporting_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist class PredictiveTest(unittest.TestCase): @bm.random_variable def prior(self): return dist.Uniform(torch.tensor(0.0), torch.tensor(1.0)) @bm.random_variable def likelihood(self): return dist.Bernoulli(self.prior()) @bm.random_variable def likelihood_i(self, i): return dist.Bernoulli(self.prior()) @bm.random_variable def prior_1(self): return dist.Uniform(torch.tensor([0.0]), torch.tensor([1.0])) @bm.random_variable def likelihood_1(self): return dist.Bernoulli(self.prior_1()) @bm.random_variable def likelihood_dynamic(self, i): if self.likelihood_i(i).item() > 0: return dist.Normal(torch.zeros(1), torch.ones(1)) else: return dist.Normal(5.0 * torch.ones(1), torch.ones(1)) @bm.random_variable def prior_2(self): return dist.Uniform(torch.zeros(1, 2), torch.ones(1, 2)) @bm.random_variable def likelihood_2(self, i): return dist.Bernoulli(self.prior_2()) @bm.random_variable def likelihood_2_vec(self, i): return dist.Bernoulli(self.prior_2()) @bm.random_variable def likelihood_reg(self, x): return dist.Normal(self.prior() * x, torch.tensor(1.0)) def test_prior_predictive(self): queries = [self.prior(), self.likelihood()] predictives = bm.simulate(queries, num_samples=10) assert predictives[self.prior()].shape == (1, 10) assert predictives[self.likelihood()].shape == (1, 10) def test_posterior_predictive(self): obs = { self.likelihood_i(0): torch.tensor(1.0), self.likelihood_i(1): torch.tensor(0.0), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior()].shape == (2, 10) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=True) assert predictives[self.likelihood_i(0)].shape == (2, 10) assert predictives[self.likelihood_i(1)].shape == (2, 10) def test_posterior_predictive_seq(self): obs = { self.likelihood_i(0): torch.tensor(1.0), self.likelihood_i(1): torch.tensor(0.0), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior()].shape == (2, 10) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=False) assert predictives[self.likelihood_i(0)].shape == (2, 10) assert predictives[self.likelihood_i(1)].shape == (2, 10) def test_predictive_dynamic(self): obs = { self.likelihood_dynamic(0): torch.tensor([0.9]), self.likelihood_dynamic(1): torch.tensor([4.9]), } # only query one of the variables post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior()].shape == (2, 10) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=False) assert predictives[self.likelihood_dynamic(0)].shape == (2, 10) assert predictives[self.likelihood_dynamic(1)].shape == (2, 10) def test_predictive_data(self): x = torch.randn(4) y = torch.randn(4) + 2.0 obs = {self.likelihood_reg(x): y} post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior()].shape == (2, 10) test_x = torch.randn(4, 1, 1) test_query = self.likelihood_reg(test_x) predictives = bm.simulate([test_query], post_samples, vectorized=True) assert predictives[test_query].shape == (4, 2, 10) def test_posterior_predictive_1d(self): obs = {self.likelihood_1(): torch.tensor([1.0])} post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior_1()], obs, num_samples=10, num_chains=1 ) assert post_samples[self.prior_1()].shape == (1, 10, 1) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=True) y = predictives[self.likelihood_1()].shape assert y == (1, 10, 1) def test_multi_chain_infer_predictive_2d(self): torch.manual_seed(10) obs = { self.likelihood_2(0): torch.tensor([[1.0, 1.0]]), self.likelihood_2(1): torch.tensor([[0.0, 1.0]]), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior_2()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior_2()].shape == (2, 10, 1, 2) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=True) predictive_0 = predictives[self.likelihood_2(0)] predictive_1 = predictives[self.likelihood_2(1)] assert predictive_0.shape == (2, 10, 1, 2) assert predictive_1.shape == (2, 10, 1, 2) assert (predictive_1 - predictive_0).sum().item() != 0 def test_empirical(self): obs = { self.likelihood_i(0): torch.tensor(1.0), self.likelihood_i(1): torch.tensor(0.0), self.likelihood_i(2): torch.tensor(0.0), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=4 ) empirical = bm.empirical([self.prior()], post_samples, num_samples=26) assert empirical[self.prior()].shape == (1, 26) predictives = bm.simulate(list(obs.keys()), post_samples, vectorized=True) empirical = bm.empirical(list(obs.keys()), predictives, num_samples=27) assert len(empirical) == 3 assert empirical[self.likelihood_i(0)].shape == (1, 27) assert empirical[self.likelihood_i(1)].shape == (1, 27) def test_return_inference_data(self): torch.manual_seed(10) obs = { self.likelihood_2(0): torch.tensor([[1.0, 1.0]]), self.likelihood_2(1): torch.tensor([[0.0, 1.0]]), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior_2()], obs, num_samples=10, num_chains=2 ) assert post_samples[self.prior_2()].shape == (2, 10, 1, 2) predictives = bm.simulate( list(obs.keys()), post_samples, vectorized=True, ).to_inference_data() assert "posterior" in predictives assert "observed_data" in predictives assert "log_likelihood" in predictives assert "posterior_predictive" in predictives assert predictives.posterior_predictive[self.likelihood_2(0)].shape == ( 2, 10, 1, 2, ) assert predictives.posterior_predictive[self.likelihood_2(1)].shape == ( 2, 10, 1, 2, ) def test_posterior_dict(self): obs = { self.likelihood_i(0): torch.tensor(1.0), self.likelihood_i(1): torch.tensor(0.0), } posterior = {self.prior(): torch.tensor([0.5, 0.5])} predictives_dict = bm.simulate(list(obs.keys()), posterior) assert predictives_dict[self.likelihood_i(0)].shape == (1, 2) assert predictives_dict[self.likelihood_i(1)].shape == (1, 2) def test_posterior_dict_predictive(self): obs = { self.likelihood_i(0): torch.tensor(1.0), self.likelihood_i(1): torch.tensor(0.0), } post_samples = bm.SingleSiteAncestralMetropolisHastings().infer( [self.prior()], obs, num_samples=10, num_chains=1 ) assert post_samples[self.prior()].shape == (1, 10) post_samples_dict = dict(post_samples) predictives_dict = bm.simulate(list(obs.keys()), post_samples_dict) assert predictives_dict[self.likelihood_i(0)].shape == (1, 10) assert predictives_dict[self.likelihood_i(1)].shape == (1, 10)
beanmachine-main
tests/ppl/inference/predictive_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from sys import float_info import torch.distributions as dist from beanmachine.ppl.testlib.hypothesis_testing import ( inverse_normal_cdf, mean_equality_hypothesis_confidence_interval, mean_equality_hypothesis_test, ) from numpy import sqrt from torch import manual_seed, mean, tensor class HypothesisTestingTest(unittest.TestCase): """This class tests the hypothesis test codes.""" # Uniformly distributed random numbers def random(self, min_bound, max_bound): # TODO: Consider replacing with: (max_bound - min_bound) * torch.rand(size) + min_bound # where size = (max_bound+min_bound).size() return dist.uniform.Uniform(min_bound, max_bound).sample() # Determining the range of floating point values we will explore def float_exponent_range(self, safety_factor=10): """Provided exponents for range of floating point numbers we are willing to test. The parameter safety_factor should always be greater than 1, and is used to avoid pressing extreme values.""" exp_min = float_info.min_10_exp / safety_factor exp_max = float_info.max_10_exp / safety_factor return exp_min, exp_max # Determining the range of distribution of means and stds we will explore def random_mean_and_std(self, exp_min, exp_max): """Generates a mean and std from a `reasonable` range of possible test values. Please note that this generator is by no means `exhaustive`. The purpose of the method is to simply provide a based set of values for checking our basic hypothesis tests.""" exp_mean = self.random(exp_min, exp_max) exp_std = exp_mean + self.random(-3, 3) true_mean = self.random(-1, 1) * 10**exp_mean true_std = self.random(0, 1) * 10**exp_std return true_mean, true_std # Main procedure for testing the hypothesis test # It works by checking the significance level (alpha) semantics # of the mean equality hypothesis test. def run_mean_equality_hypothesis_test_on_synthetic_samples( self, samples, sample_size, alpha, random_seed=42 ): """Generates as many samples as provided by the parameter of that name, and performs the mean_equality_hypothesis_test on each of these samples. Since we use the mean and standard devaiation of the distribution, which are known, the hypothesis test *should* faile at a rate fo alpha. In order for this to be checked, we return the observed_alpha rate. In addition, we check that the hypothesis_test to confidence_interval methods are consistent, and return a count of any potential discrepancies between them.""" manual_seed(random_seed) accepted_test = 0 exp_min, exp_max = self.float_exponent_range() for _ in range(0, samples): true_mean, true_std = self.random_mean_and_std(exp_min, exp_max) d = dist.normal.Normal(loc=true_mean, scale=true_std) sample_size = tensor([sample_size]) r = d.sample(sample_size) sample_mean = mean(r) # Record hypothesis_test_behavior for this single sample accept_test = mean_equality_hypothesis_test( sample_mean, true_mean, true_std, sample_size, alpha ) if accept_test: accepted_test += 1 # Compare hypothesis_test to confidence_interval lower_bound, upper_bound = mean_equality_hypothesis_confidence_interval( true_mean, true_std, sample_size, alpha ) below_upper = (lower_bound <= sample_mean).all() above_lower = (sample_mean <= upper_bound).all() accept_interval = below_upper and above_lower # accept_interval = min(lower_bound <= sample_mean <= upper_bound).item() self.assertFalse( accept_test and not accept_interval, "Interval can be too small" ) self.assertFalse( accept_interval and not accept_test, "Interval can be too big" ) observed_alpha = 1 - accepted_test / samples return observed_alpha # Test function for the hypothesis test. Normal operation is to # take no arguments. Auditing can be done by changing the random_seed. # An audit would pass if the test returns False for only an alpha # fraction of the random_seeds on average. Since this is a stochastic # correctness criteria, we use alpha_meta for this (meta-)test. def test_mean_equality_hypothesis_test( self, runs=1000, samples=100, alpha=0.01, alpha_meta=0.01, random_seed=42 ): """Check that the hypothesis tests are working as expected, that is, their promised alpha is about the same as the rate at which they fail. The idea here is that we run a series of checks, and treat this as a binomial distribution. Note, the alpha_meta for this test should not be confused with the alpha of the individual tests. Yes, this method is using hypothesis testing to test our hypothesis testing method. We call this a meta-test. Note: 1) We do the meta-test multiple times (runs) 2) Each meta-test is a Bernoulli trial. The probability of failure should be exactly alpha. 3) We check that the total runs of the meta-test have an observed failure rate that is equal to alpha. We do this by checking that it falls within the alpha_meta CI. """ observed_alphas = [ self.run_mean_equality_hypothesis_test_on_synthetic_samples( samples=samples, sample_size=100, alpha=alpha, random_seed=(random_seed + i) * i, ) for i in range(0, runs) ] # Meta-test true_mean = alpha # For binomial meta-test distribution true_std = sqrt(alpha * (1 - alpha)) bound = inverse_normal_cdf(1 - alpha_meta / 2) binomial_results = [ -bound <= (observed_alpha - true_mean) * sqrt(samples) / true_std <= bound for observed_alpha in observed_alphas ] # Notice that the meta-tests gives us a series of booleans. How do we interpret # those? That's what we need the meta-meta-test # Meta-meta-test. true_mean = ( 1 - alpha_meta ) # So, we'll use alpha_meta for both the meta- and meta-meta- test true_std = sqrt(alpha_meta * (1 - alpha_meta)) observed_mean = sum(binomial_results) / runs bound = inverse_normal_cdf( 1 - alpha_meta / 2 ) # Yes, this is the same as for meta-test meta_meta_test = ( -bound <= (observed_mean - true_mean) * sqrt(runs) / true_std <= bound ) message = str( ( "true_mean = " + str(true_mean) + ", " + " observed_mean = " + str(observed_mean) + ", " + "adjusted_bound = " + str(bound * true_std / sqrt(runs)), ) ) self.assertTrue( meta_meta_test, "Unable to confirm significance level (alpha) semantics: " + message, )
beanmachine-main
tests/ppl/inference/hypothesis_testing_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm import torch import torch.distributions as dist from beanmachine.ppl.inference import SingleSiteNewtonianMonteCarlo from beanmachine.ppl.inference.proposer.nmc import ( SingleSiteHalfSpaceNMCProposer, SingleSiteRealSpaceNMCProposer, SingleSiteSimplexSpaceNMCProposer, ) from beanmachine.ppl.world.utils import BetaDimensionTransform from beanmachine.ppl.world.world import World from torch import tensor class SingleSiteNewtonianMonteCarloTest(unittest.TestCase): class SampleNormalModel: @bm.random_variable def foo(self): return dist.Normal(tensor(2.0), tensor(2.0)) @bm.random_variable def bar(self): return dist.Normal(self.foo(), torch.tensor(1.0)) class SampleTransformModel: @bm.random_variable def realspace(self): return dist.Normal(tensor(0.0), tensor(1.0)) @bm.random_variable def halfspace(self): return dist.Gamma(tensor(2.0), tensor(2.0)) @bm.random_variable def simplex(self): return dist.Dirichlet(tensor([0.1, 0.9])) @bm.random_variable def interval(self): return dist.Uniform(tensor(1.0), tensor(3.0)) @bm.random_variable def beta(self): return dist.Beta(tensor(1.0), tensor(1.0)) class SampleShapeModel: @bm.random_variable def realspace(self): return dist.Normal(torch.zeros(2, 4), tensor(1.0)) @bm.random_variable def halfspace(self): return dist.Gamma(torch.zeros(1, 2, 4) + tensor(2.0), tensor(2.0)) @bm.random_variable def simplex(self): return dist.Dirichlet(tensor([0.1, 0.9])) @bm.random_variable def interval(self): return dist.Uniform(tensor(1.0), tensor(3.0)) @bm.random_variable def beta(self): return dist.Beta(tensor([1.0, 2.0, 3.0]), tensor([1.0, 2.0, 3.0])) class SampleIndependentShapeModel: @bm.random_variable def realspace(self): return dist.Independent(dist.Normal(torch.zeros(2, 4), tensor(1.0)), 1) @bm.random_variable def halfspace(self): return dist.Independent( dist.Gamma(torch.zeros(1, 2, 4) + tensor(2.0), tensor(2.0)), 1 ) @bm.random_variable def simplex(self): return dist.Independent(dist.Dirichlet(tensor([[0.1, 0.9], [0.1, 0.9]])), 1) @bm.random_variable def interval(self): return dist.Independent( dist.Uniform(tensor([1.0, 1.0]), tensor([3.0, 3.0])), 1 ) @bm.random_variable def beta(self): return dist.Independent( dist.Beta(tensor([1.0, 2.0, 3.0]), tensor([1.0, 2.0, 3.0])), 1 ) class SampleStudentTModel: @bm.random_variable def x(self): return dist.StudentT(df=2.0) def test_single_site_newtonian_monte_carlo_student_t(self): model = self.SampleStudentTModel() samples = ( bm.SingleSiteNewtonianMonteCarlo() .infer( queries=[model.x()], observations={}, num_samples=1_000, num_chains=1, ) .get_chain(0)[model.x()] ) self.assertTrue((samples.abs() > 2.0).any()) def test_single_site_newtonian_monte_carlo_no_transform(self): model = self.SampleTransformModel() nw = bm.SingleSiteNewtonianMonteCarlo() real_key = model.realspace() half_key = model.halfspace() simplex_key = model.simplex() interval_key = model.interval() beta_key = model.beta() queries = [ model.realspace(), model.halfspace(), model.simplex(), model.interval(), model.beta(), ] observations = {} world = World.initialize_world(queries, observations) self.assertTrue(real_key in world) self.assertTrue(half_key in world) self.assertTrue(simplex_key in world) self.assertTrue(interval_key in world) self.assertTrue(beta_key in world) # trigger proposer initialization nw.get_proposers(world, world.latent_nodes, 0) # test that resulting shapes of proposed values are correct proposer = nw._proposers[real_key] proposed_value = proposer.propose(world)[0][real_key] self.assertIsInstance( proposer, SingleSiteRealSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([])) proposer = nw._proposers[half_key] proposed_value = proposer.propose(world)[0][half_key] self.assertIsInstance( proposer, SingleSiteHalfSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([])) proposer = nw._proposers[simplex_key] proposed_value = proposer.propose(world)[0][simplex_key] self.assertIsInstance( proposer, SingleSiteSimplexSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.zeros(2).shape) proposer = nw._proposers[interval_key] proposed_value = proposer.propose(world)[0][interval_key] self.assertEqual(proposed_value.shape, torch.Size([])) proposer = nw._proposers[beta_key] proposed_value = proposer.propose(world)[0][beta_key] self.assertIsInstance(proposer, SingleSiteSimplexSpaceNMCProposer) self.assertEqual(proposed_value.shape, torch.Size([])) self.assertEqual( proposer._transform, BetaDimensionTransform(), ) def test_single_site_newtonian_monte_carlo_transform_shape(self): model = self.SampleShapeModel() nw = SingleSiteNewtonianMonteCarlo() real_key = model.realspace() half_key = model.halfspace() simplex_key = model.simplex() interval_key = model.interval() beta_key = model.beta() queries = [ model.realspace(), model.halfspace(), model.simplex(), model.interval(), model.beta(), ] observations = {} world = World.initialize_world(queries, observations) self.assertTrue(real_key in world) self.assertTrue(half_key in world) self.assertTrue(simplex_key in world) self.assertTrue(interval_key in world) self.assertTrue(beta_key in world) # trigger proposer initialization nw.get_proposers(world, world.latent_nodes, 0) # test that resulting shapes of proposed values are correct proposer = nw._proposers[real_key] proposed_value = proposer.propose(world)[0][real_key] self.assertEqual(proposed_value.shape, torch.Size([2, 4])) proposer = nw._proposers[half_key] proposed_value = proposer.propose(world)[0][half_key] self.assertEqual(proposed_value.shape, torch.Size([1, 2, 4])) proposer = nw._proposers[simplex_key] proposed_value = proposer.propose(world)[0][simplex_key] self.assertEqual(proposed_value.shape, torch.Size([2])) proposer = nw._proposers[interval_key] proposed_value = proposer.propose(world)[0][interval_key] self.assertEqual(proposed_value.shape, torch.Size([])) proposer = nw._proposers[beta_key] proposed_value = proposer.propose(world)[0][beta_key] self.assertEqual(proposed_value.shape, torch.Size([3])) def test_single_site_newtonian_monte_carlo_no_transform_independent_shape(self): model = self.SampleIndependentShapeModel() nw = bm.SingleSiteNewtonianMonteCarlo() real_key = model.realspace() half_key = model.halfspace() simplex_key = model.simplex() interval_key = model.interval() beta_key = model.beta() queries = [ real_key, half_key, simplex_key, interval_key, beta_key, ] observations = {} world = World.initialize_world(queries, observations) # trigger proposer initialization nw.get_proposers(world, world.latent_nodes, 0) # test that resulting shapes of proposed values are correct proposer = nw._proposers[real_key] proposed_value = proposer.propose(world)[0][real_key] self.assertIsInstance( proposer, SingleSiteRealSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([2, 4])) proposer = nw._proposers[half_key] proposed_value = proposer.propose(world)[0][half_key] self.assertIsInstance( proposer, SingleSiteHalfSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([1, 2, 4])) proposer = nw._proposers[simplex_key] proposed_value = proposer.propose(world)[0][simplex_key] self.assertIsInstance( proposer, SingleSiteSimplexSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([2, 2])) proposer = nw._proposers[interval_key] proposed_value = proposer.propose(world)[0][interval_key] self.assertEqual(proposed_value.shape, torch.Size([2])) proposer = nw._proposers[beta_key] proposed_value = proposer.propose(world)[0][beta_key] self.assertIsInstance( proposer, SingleSiteSimplexSpaceNMCProposer, ) self.assertEqual(proposed_value.shape, torch.Size([3]))
beanmachine-main
tests/ppl/inference/single_site_newtonian_monte_carlo_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteHamiltonianMonteCarloConjugateTest( unittest.TestCase, AbstractConjugateTests ): def test_beta_binomial_conjugate_run(self): hmc = bm.SingleSiteHamiltonianMonteCarlo(0.5, 0.05) self.beta_binomial_conjugate_run(hmc, num_samples=500, num_adaptive_samples=500) def test_gamma_gamma_conjugate_run(self): hmc = bm.SingleSiteHamiltonianMonteCarlo(0.5, 0.05) self.gamma_gamma_conjugate_run(hmc, num_samples=500, num_adaptive_samples=500) def test_gamma_normal_conjugate_run(self): hmc = bm.SingleSiteHamiltonianMonteCarlo(0.5, 0.05) self.gamma_normal_conjugate_run(hmc, num_samples=500, num_adaptive_samples=500) def test_normal_normal_conjugate_run(self): hmc = bm.SingleSiteHamiltonianMonteCarlo(1.0, 0.05) self.normal_normal_conjugate_run(hmc, num_samples=500, num_adaptive_samples=500) @unittest.skip("Known to fail. Investigating in T77865889.") def test_dirichlet_categorical_conjugate_run(self): hmc = bm.SingleSiteHamiltonianMonteCarlo(0.1, 0.01) self.dirichlet_categorical_conjugate_run( hmc, num_samples=500, num_adaptive_samples=500 )
beanmachine-main
tests/ppl/inference/single_site_hamiltonian_monte_carlo_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest import beanmachine.ppl as bm from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class SingleSiteAncestralMetropolisHastingsConjugateTest( unittest.TestCase, AbstractConjugateTests ): def setUp(self): self.mh = bm.SingleSiteAncestralMetropolisHastings() def test_beta_binomial_conjugate_run(self): self.beta_binomial_conjugate_run(self.mh) def test_gamma_gamma_conjugate_run(self): self.gamma_gamma_conjugate_run(self.mh, random_seed=123) def test_gamma_normal_conjugate_run(self): self.gamma_normal_conjugate_run(self.mh, num_samples=20000) def test_normal_normal_conjugate_run(self): self.normal_normal_conjugate_run(self.mh, num_samples=5000) def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run(self.mh, num_samples=10000)
beanmachine-main
tests/ppl/inference/single_site_ancestral_mh_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import unittest from beanmachine.ppl.inference.compositional_infer import CompositionalInference from beanmachine.ppl.testlib.abstract_conjugate import AbstractConjugateTests class CompositionalInferenceConjugateTest(unittest.TestCase, AbstractConjugateTests): def setUp(self): self.mh = CompositionalInference() def test_beta_binomial_conjugate_run(self): self.beta_binomial_conjugate_run(self.mh) def test_gamma_gamma_conjugate_run(self): self.gamma_gamma_conjugate_run(self.mh) def test_gamma_normal_conjugate_run(self): self.gamma_normal_conjugate_run(self.mh) def test_normal_normal_conjugate_run(self): self.normal_normal_conjugate_run(self.mh) def test_dirichlet_categorical_conjugate_run(self): self.dirichlet_categorical_conjugate_run(self.mh)
beanmachine-main
tests/ppl/inference/compositional_infer_conjugate_test_nightly.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.hmc_proposer import HMCProposer from beanmachine.ppl.world import World @bm.random_variable def foo(): return dist.Uniform(0.0, 1.0) @bm.random_variable def bar(): return dist.Normal(foo(), 1.0) @pytest.fixture def world(): w = World() w.call(bar()) return w @pytest.fixture def hmc(world): hmc_proposer = HMCProposer(world, world.latent_nodes, 10, trajectory_length=1.0) return hmc_proposer def test_potential_grads(hmc): pe, pe_grad = hmc._potential_grads(hmc._positions) assert isinstance(pe, torch.Tensor) assert pe.numel() == 1 assert isinstance(pe_grad, torch.Tensor) assert pe_grad.shape == hmc._positions.shape def test_kinetic_grads(hmc): momentums = hmc._initialize_momentums(hmc._positions) ke = hmc._kinetic_energy(momentums, hmc._mass_inv) assert isinstance(ke, torch.Tensor) assert ke.numel() == 1 ke_grad = hmc._kinetic_grads(momentums, hmc._mass_inv) assert isinstance(ke_grad, torch.Tensor) assert ke_grad.shape == hmc._positions.shape def test_leapfrog_step(hmc): step_size = torch.tensor(0.0) momentums = hmc._initialize_momentums(hmc._positions) new_positions, new_momentums, pe, pe_grad = hmc._leapfrog_step( hmc._positions, momentums, step_size, hmc._mass_inv ) assert torch.allclose(momentums, new_momentums) assert torch.allclose(hmc._positions, new_positions) @pytest.mark.parametrize( # forcing the step_size to be 0 for HMC/ NUTS "algorithm", [ bm.GlobalNoUTurnSampler(initial_step_size=0.0), bm.GlobalHamiltonianMonteCarlo(trajectory_length=1.0, initial_step_size=0.0), ], ) def test_step_size_exception(algorithm): queries = [foo()] observations = {bar(): torch.tensor(0.5)} with pytest.raises(ValueError): algorithm.infer( queries, observations, num_samples=20, num_chains=1, )
beanmachine-main
tests/ppl/inference/proposer/hmc_proposer_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Unit test for NormalEig class""" import unittest import torch from beanmachine.ppl.inference.proposer.normal_eig import NormalEig from torch.distributions.multivariate_normal import MultivariateNormal class NormalEigTest(unittest.TestCase): def test_normal_eig(self) -> None: covar = torch.Tensor([[1, 0.1, 0], [0.1, 2, 0.5], [0, 0.5, 3]]) evals, evecs = torch.linalg.eigh(covar) mean = torch.Tensor([1.0, 3.5, -1.2]) # we want to test that both distributions are identical ref_dist = MultivariateNormal(mean, covar) test_dist = NormalEig(mean, evals, evecs) # density at the mean should be equal self.assertAlmostEqual( ref_dist.log_prob(mean).item(), test_dist.log_prob(mean).item(), 2 ) # density at a random sample should also be equal val = test_dist.sample() self.assertEqual(val.shape, torch.Size([3])) self.assertAlmostEqual( ref_dist.log_prob(val).item(), test_dist.log_prob(val).item(), 2 ) # test that the empirical mean is correct emp_mean = sum(test_dist.sample() for _ in range(10000)) / 10000 self.assertTrue(((mean - emp_mean).abs() < 0.1).all()) # test that the empirical covariance is correct def outerprod(x): return torch.ger(x, x) emp_covar = ( sum(outerprod(test_dist.sample() - mean) for _ in range(2000)) / 2000 ) self.assertTrue(((covar - emp_covar).abs() < 0.2).all())
beanmachine-main
tests/ppl/inference/proposer/normal_eig_test.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from beanmachine.ppl.inference.proposer.utils import DictToVecConverter def test_dict_to_vec_conversion(): d = {"a": torch.ones((2, 5)), "b": torch.rand(5), "c": torch.tensor(3.0)} converter = DictToVecConverter(example_dict=d) v = converter.to_vec(d) assert len(v) == 16 # 2x5 + 5 + 1 # applying exp on the flatten tensor is equivalent to applying it to each # of the tensor in the dictionary d_exp = converter.to_dict(torch.exp(v)) for key in d: assert torch.allclose(torch.exp(d[key]), d_exp[key])
beanmachine-main
tests/ppl/inference/proposer/utils_test.py
beanmachine-main
tests/ppl/inference/proposer/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import beanmachine.ppl as bm import pytest import torch import torch.distributions as dist from beanmachine.ppl.inference.proposer.nuts_proposer import ( _Tree, _TreeArgs, _TreeNode, NUTSProposer, ) from beanmachine.ppl.world import World @bm.random_variable def foo(): return dist.Beta(2.0, 2.0) @bm.random_variable def bar(): return dist.Bernoulli(foo()) @pytest.fixture def nuts(): world = World(observations={bar(): torch.tensor(0.8)}) world.call(bar()) nuts_proposer = NUTSProposer(world, world.latent_nodes, 10) return nuts_proposer @pytest.fixture def tree_node(nuts): momentums = nuts._initialize_momentums(nuts._positions) return _TreeNode( positions=nuts._positions, momentums=momentums, pe_grad=nuts._pe_grad ) @pytest.fixture def tree_args(tree_node, nuts): initial_energy = nuts._hamiltonian( nuts._positions, tree_node.momentums, nuts._mass_inv, nuts._pe, ) return _TreeArgs( log_slice=-initial_energy, direction=torch.tensor(1), step_size=nuts.step_size, initial_energy=initial_energy, mass_inv=nuts._mass_inv, ) def test_base_tree(tree_node, tree_args, nuts): nuts._multinomial_sampling = False tree_args = tree_args._replace( log_slice=torch.log1p(-torch.rand(())) - tree_args.initial_energy ) tree = nuts._build_tree_base_case(root=tree_node, args=tree_args) assert isinstance(tree, _Tree) assert torch.isclose(tree.log_weight, torch.tensor(float("-inf"))) or torch.isclose( tree.log_weight, torch.tensor(0.0) ) assert tree.left == tree.right def test_base_tree_multinomial(tree_node, tree_args, nuts): tree = nuts._build_tree_base_case(root=tree_node, args=tree_args) assert isinstance(tree, _Tree) # in multinomial sampling, trees are weighted by their accept prob assert torch.isclose( torch.clamp(tree.log_weight.exp(), max=1.0), tree.sum_accept_prob ) def test_build_tree(tree_node, tree_args, nuts): tree_depth = 3 tree = nuts._build_tree(root=tree_node, tree_depth=tree_depth, args=tree_args) assert isinstance(tree, _Tree) assert tree.turned_or_diverged or (tree.left is not tree.right) assert tree.turned_or_diverged or tree.num_proposals == 2**tree_depth
beanmachine-main
tests/ppl/inference/proposer/nuts_proposer_test.py