python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import multiprocessing import os import pdb import sys __all__ = ["set_trace"] _stdin = [None] _stdin_lock = multiprocessing.Lock() try: _stdin_fd = sys.stdin.fileno() except Exception: _stdin_fd = None class MultiprocessingPdb(pdb.Pdb): """A Pdb wrapper that works in a multiprocessing environment. Usage: `from fairseq import pdb; pdb.set_trace()` """ def __init__(self): pdb.Pdb.__init__(self, nosigint=True) def _cmdloop(self): stdin_bak = sys.stdin with _stdin_lock: try: if _stdin_fd is not None: if not _stdin[0]: _stdin[0] = os.fdopen(_stdin_fd) sys.stdin = _stdin[0] self.cmdloop() finally: sys.stdin = stdin_bak def set_trace(): pdb = MultiprocessingPdb() pdb.set_trace(sys._getframe().f_back)
ClassyVision-main
classy_vision/generic/pdb.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import sys def debug_info(type, value, tb): if hasattr(sys, "ps1") or not sys.stderr.isatty(): sys.__excepthook__(type, value, tb) else: import pdb import traceback traceback.print_exception(type, value, tb) print pdb.post_mortem(tb)
ClassyVision-main
classy_vision/generic/debug.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from collections import defaultdict, deque from time import perf_counter from typing import List, Mapping, Optional, Tuple import torch from torch.cuda import Event as CudaEvent class PerfTimer: """ Very simple timing wrapper, with context manager wrapping. Typical usage: with PerfTimer('forward_pass', perf_stats): model.forward(data) # ... with PerfTimer('backward_pass', perf_stats): model.backward(loss) # ... print(perf_stats.report_str()) Note that timer stats accumulate by name, so you can as if resume them by re-using the name. You can also use it without context manager, i.e. via start() / stop() directly. If supplied PerfStats is constructed with use_cuda_events=True (which is default), then Cuda events will be added to correctly track time of async execution of Cuda kernels: with PerfTimer('foobar', perf_stats): some_cpu_work() schedule_some_cuda_work() In example above, the "Host" column will capture elapsed time from the perspective of the Python process, and "CudaEvent" column will capture elapsed time between scheduling of Cuda work (within the PerfTimer scope) and completion of this work, some of which might happen outside the PerfTimer scope. If perf_stats is None, using PerfTimer does nothing. """ def __init__(self, timer_name: str, perf_stats: Optional["PerfStats"]): self.skip: bool = False if perf_stats is None: self.skip = True return self.name: str = timer_name self.elapsed: float = 0.0 self._last_interval: float = 0.0 self._perf_stats: PerfStats = perf_stats self._is_running: bool = False if perf_stats.use_cuda_events(): self._cuda_event_intervals: List[Tuple[CudaEvent, CudaEvent]] = [] def __enter__(self): self.start() return self def __exit__(self, exc_type, exception, traceback): self.stop() if exc_type is None: # Only record timer value if with-context finished without error self.record() return False # re-raise if there was exception def start(self): if self.skip or self._is_running: return self._last_interval = 0.0 self._is_running = True self._start_time: float = perf_counter() if self._perf_stats.use_cuda_events(): self._start_event = torch.cuda.Event(enable_timing=True) self._start_event.record() def stop(self): if self.skip or not self._is_running: return self._last_interval = perf_counter() - self._start_time self.elapsed += self._last_interval if self._perf_stats.use_cuda_events(): # Two cuda events will measure real GPU time within PerfTimer scope: end_event = torch.cuda.Event(enable_timing=True) end_event.record() self._cuda_event_intervals.append((self._start_event, end_event)) self._is_running = False def record(self): if self.skip: return assert not self._is_running self._perf_stats.update_with_timer(self) class PerfMetric: """ Encapsulates numerical tracking of a single metric, with a `.update(value)` API. Under-the-hood this can additionally keep track of sums, (exp.) moving averages, sum of squares (e.g. for stdev), filtered values, etc. """ # Coefficient for exponential moving average (EMA). # Value of 0.1 means last 8 values account for ~50% of weight. EMA_FACTOR = 0.1 def __init__(self): self.last_value: Optional[float] = None self.smoothed_value: Optional[float] = None self.sum_values: float = 0.0 self.num_updates: int = 0 def update(self, value: float): self.last_value = value if self.smoothed_value is None: self.smoothed_value = value else: # TODO (T47970762): correct for initialization bias self.smoothed_value = ( PerfMetric.EMA_FACTOR * value + (1.0 - PerfMetric.EMA_FACTOR) * self.smoothed_value ) self.sum_values += value self.num_updates += 1 def get_avg(self): if self.num_updates == 0: return 0.0 else: return self.sum_values / self.num_updates class PerfStats: """ Accumulate stats (from timers) over many iterations """ MAX_PENDING_TIMERS = 1000 def __init__(self, use_cuda_events=True): self._host_stats: Mapping[str, PerfMetric] = defaultdict(PerfMetric) self._cuda_stats: Mapping[str, PerfMetric] = defaultdict(PerfMetric) if use_cuda_events: if torch.cuda.is_available(): self._cuda_pending_timers = deque(maxlen=PerfStats.MAX_PENDING_TIMERS) else: logging.warning("CUDA unavailable: CUDA events are not logged.") self._cuda_pending_timers = None else: self._cuda_pending_timers = None def update_with_timer(self, timer: PerfTimer): self._host_stats[timer.name].update(timer._last_interval) if self.use_cuda_events(): if len(self._cuda_pending_timers) >= self._cuda_pending_timers.maxlen: logging.error( "Too many pending timers. CudaEvent-based stats will be inaccurate!" ) else: self._cuda_pending_timers.append(timer) self._process_cuda_events() def _process_cuda_events(self): """ Service pending timers. Dequeue timers and aggregate Cuda time intervals, until the first "pending" timer (i.e. dependent on a not-yet-ready cuda event). """ while len(self._cuda_pending_timers) > 0: timer = self._cuda_pending_timers[0] elapsed_cuda = 0.0 for ev_start, ev_end in timer._cuda_event_intervals: if not ev_start.query() or not ev_end.query(): # Cuda events associated with this timer aren't ready yet, # stop servicing the queue. return # Use seconds (instead of ms) for consistency with "host" timers elapsed_cuda += ev_start.elapsed_time(ev_end) / 1000.0 # All time intervals for this timer are now accounted for. # Aggregate stats and pop from pending queue. self._cuda_stats[timer.name].update(elapsed_cuda) self._cuda_pending_timers.popleft() def report_str(self): """ Fancy column-aligned human-readable report. If using Cuda events, calling this invokes cuda.synchronize(), which is needed to capture pending Cuda work in the report. """ if self.use_cuda_events(): torch.cuda.synchronize() self._process_cuda_events() name_width = max(len(k) for k in self._host_stats.keys()) header = ("{:>" + str(name_width + 4) + "s} {:>7s} {:>7s}").format( "Timer", "Host", "CudaEvent" ) row_fmt = "{:>" + str(name_width + 4) + "s}: {:>7.2f} ms {:>7.2f} ms" rows = [] rows.append(header) for name, metric in self._host_stats.items(): rows.append( row_fmt.format( name, metric.get_avg() * 1000.0, self._cuda_stats[name].get_avg() * 1000.0, ) ) return "\n".join(rows) def use_cuda_events(self): return torch.cuda.is_available() and self._cuda_pending_timers is not None def __str__(self): return str((self._host_stats, self._cuda_stats))
ClassyVision-main
classy_vision/generic/perf_stats.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os from classy_vision.generic.util import is_pos_int def add_generic_args(parser): """ Adds generic command-line arguments for convnet training / testing to parser. """ parser.add_argument( "--config_file", type=str, help="path to config file for model", required=True ) parser.add_argument( "--checkpoint_folder", default="", type=str, help="""folder to use for saving checkpoints: epochal checkpoints are stored as model_<epoch>.torch, latest epoch checkpoint is at checkpoint.torch""", ) parser.add_argument( "--checkpoint_load_path", default="", type=str, help="""path to load a checkpoint from, which can be a file or a directory: If the path is a directory, the checkpoint file is assumed to be checkpoint.torch""", ) parser.add_argument( "--pretrained_checkpoint_path", default="", type=str, help="""path to load a pre-trained checkpoints from, which can be a file or a directory: If the path is a directory, the checkpoint file is assumed to be checkpoint.torch. This checkpoint is only used for fine-tuning tasks, and training will not resume from this checkpoint.""", ) parser.add_argument( "--checkpoint_period", default=1, type=int, help="""Checkpoint every x phases (default 1)""", ) parser.add_argument( "--show_progress", default=False, action="store_true", help="shows progress bar during training / testing", ) parser.add_argument( "--skip_tensorboard", default=False, action="store_true", help="do not perform tensorboard visualization", ) parser.add_argument( "--visdom_server", default="", type=str, help="visdom server to use (default None)", ) parser.add_argument( "--visdom_port", default=8097, type=int, help="port of visdom server (default = 8097)", ) parser.add_argument( "--profiler", default=False, action="store_true", help="specify this argument to profile training code", ) parser.add_argument( "--debug", default=False, action="store_true", help="specify this argument for debugging mode", ) parser.add_argument( "--ignore_checkpoint_config", default=False, action="store_true", help="""specify this argument to ignore the compatibility of the config (or lack of config) attached to the checkpoint; this will allow mismatches between the training specified in the config and the actual training of the model""", ) parser.add_argument( "--log_freq", default=5, type=int, help="Logging frequency for LossLrMeterLoggingHook (default 5)", ) parser.add_argument( "--image_backend", default="PIL", type=str, help="torchvision image decoder backend (PIL or accimage). Default PIL", ) parser.add_argument( "--video_backend", default="pyav", type=str, help="torchvision video decoder backend (pyav or video_reader). Default pyav", ) parser.add_argument( "--distributed_backend", default="none", type=str, help="""Distributed backend: either 'none' (for non-distributed runs) or 'ddp' (for distributed runs). Default none.""", ) return parser def check_generic_args(args): """ Perform assertions on generic command-line arguments. """ # check types and values: assert is_pos_int(args.visdom_port), "incorrect visdom port" # create checkpoint folder if it does not exist: if args.checkpoint_folder != "" and not os.path.exists(args.checkpoint_folder): os.makedirs(args.checkpoint_folder, exist_ok=True) assert os.path.exists(args.checkpoint_folder), ( "could not create folder %s" % args.checkpoint_folder ) # when in debugging mode, enter debugger upon error: if args.debug: import sys from classy_vision.generic.debug import debug_info sys.excepthook = debug_info # check visdom server name: if args.visdom_server != "": if args.visdom_server.startswith("https://"): print("WARNING: Visdom does not work over HTTPS.") args.visdom_server = args.visdom_server[8:] if not args.visdom_server.startswith("http://"): args.visdom_server = "http://%s" % args.visdom_server # return input arguments: return args def get_parser(): """ Return a standard command-line parser. """ parser = argparse.ArgumentParser( description="""Start a Classy Vision training job. This can be used for training on your local machine, using CPU or GPU, and for distributed training. This script also supports Tensorboard, Visdom and checkpointing.""" ) parser = add_generic_args(parser) return parser def parse_train_arguments(parser=None): """ Assert and parse the command-line arguments of a given (or default) parser. """ # set input arguments: if parser is None: parser = get_parser() # parse input arguments: args = parser.parse_args() # assertions: args = check_generic_args(args) return args
ClassyVision-main
classy_vision/generic/opts.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import collections.abc as abc import logging import operator from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn from classy_vision.generic.util import ( eval_model, get_batchsize_per_replica, get_model_dummy_input, is_leaf, is_on_gpu, ) from torch.cuda import cudart class ClassyProfilerError(Exception): pass class ClassyProfilerNotImplementedError(ClassyProfilerError): def __init__(self, module: nn.Module): self.module = module super().__init__(f"Profiling not implemented for module: {self.module}") def profile( model: nn.Module, batchsize_per_replica: int = 32, input_shape: Tuple[int] = (3, 224, 224), use_nvprof: bool = False, input_key: Optional[Union[str, List[str]]] = None, ): """ Performs CPU or GPU profiling of the specified model on the specified input. """ # assertions: if use_nvprof: raise ClassyProfilerError("Profiling not supported with nvprof") # FIXME (mannatsingh): in case of use_nvprof, exit() is called at the end # and we do not return a profile. assert is_on_gpu(model), "can only nvprof model that lives on GPU" logging.info("CUDA profiling: Make sure you are running under nvprof!") # input for model: input = get_model_dummy_input( model, input_shape, input_key, batchsize=batchsize_per_replica, non_blocking=False, ) # perform profiling in eval mode with eval_model(model), torch.no_grad(): model(input) # warm up CUDA memory allocator and profiler if use_nvprof: # nvprof profiling (TODO: Can we infer this?) cudart().cudaProfilerStart() model(input) cudart().cudaProfilerStop() exit() # exit gracefully else: # regular profiling with torch.autograd.profiler.profile(use_cuda=True) as profiler: model(input) return profiler def get_shape(x: Union[Tuple, List, Dict]) -> Union[Tuple, List, Dict]: """ Some layer may take/generate tuple/list/dict/list[dict] as input/output in forward function. We recursively query tensor shape. """ if isinstance(x, (list, tuple)): assert len(x) > 0, "x of tuple/list type must have at least one element" return [get_shape(xi) for xi in x] elif isinstance(x, dict): return {k: get_shape(v) for k, v in x.items()} else: assert isinstance(x, torch.Tensor), "x is expected to be a torch tensor" return x.size() def _layer_flops(layer: nn.Module, layer_args: List[Any], y: Any) -> int: """ Computes the number of FLOPs required for a single layer. For common layers, such as Conv1d, the flop compute is implemented in this centralized place. For other layers, if it defines a method to compute flops with the signature below, we will use it to compute flops. Class MyModule(nn.Module): def flops(self, x): ... """ x = layer_args[0] # get layer type: typestr = layer.__repr__() layer_type = typestr[: typestr.find("(")].strip() batchsize_per_replica = get_batchsize_per_replica(x) flops = None # 1D convolution: if layer_type in ["Conv1d"]: # x shape is N x C x W out_w = int( (x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0]) / layer.stride[0] + 1 ) flops = ( batchsize_per_replica * layer.in_channels * layer.out_channels * layer.kernel_size[0] * out_w / layer.groups ) # 2D convolution: elif layer_type in ["Conv2d"]: out_h = int( (x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0]) / layer.stride[0] + 1 ) out_w = int( (x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1]) / layer.stride[1] + 1 ) flops = ( batchsize_per_replica * layer.in_channels * layer.out_channels * layer.kernel_size[0] * layer.kernel_size[1] * out_h * out_w / layer.groups ) # learned group convolution: elif layer_type in ["LearnedGroupConv"]: conv = layer.conv out_h = int( (x.size()[2] + 2 * conv.padding[0] - conv.kernel_size[0]) / conv.stride[0] + 1 ) out_w = int( (x.size()[3] + 2 * conv.padding[1] - conv.kernel_size[1]) / conv.stride[1] + 1 ) count1 = _layer_flops(layer.relu, x) + _layer_flops(layer.norm, x) count2 = ( batchsize_per_replica * conv.in_channels * conv.out_channels * conv.kernel_size[0] * conv.kernel_size[1] * out_h * out_w / layer.condense_factor ) flops = count1 + count2 # non-linearities: elif layer_type in ["ReLU", "ReLU6", "Tanh", "Sigmoid", "Softmax", "SiLU"]: flops = x.numel() # 2D pooling layers: elif layer_type in ["AvgPool2d", "MaxPool2d"]: in_h = x.size()[2] in_w = x.size()[3] if isinstance(layer.kernel_size, int): layer.kernel_size = (layer.kernel_size, layer.kernel_size) kernel_ops = layer.kernel_size[0] * layer.kernel_size[1] out_h = 1 + int( (in_h + 2 * layer.padding - layer.kernel_size[0]) / layer.stride ) out_w = 1 + int( (in_w + 2 * layer.padding - layer.kernel_size[1]) / layer.stride ) flops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops # adaptive avg pool2d # This is approximate and works only for downsampling without padding # based on aten/src/ATen/native/AdaptiveAveragePooling.cpp elif layer_type in ["AdaptiveAvgPool2d"]: in_h = x.size()[2] in_w = x.size()[3] if isinstance(layer.output_size, int): out_h, out_w = layer.output_size, layer.output_size elif len(layer.output_size) == 1: out_h, out_w = layer.output_size[0], layer.output_size[0] else: out_h, out_w = layer.output_size if out_h > in_h or out_w > in_w: raise ClassyProfilerNotImplementedError(layer) batchsize_per_replica = x.size()[0] num_channels = x.size()[1] kh = in_h - out_h + 1 kw = in_w - out_w + 1 kernel_ops = kh * kw flops = batchsize_per_replica * num_channels * out_h * out_w * kernel_ops # linear layer: elif layer_type in ["Linear"]: weight_ops = layer.weight.numel() bias_ops = layer.bias.numel() if layer.bias is not None else 0 flops = ((x.numel() / x.size(-1)) if x.ndim > 2 else x.size(0)) * ( weight_ops + bias_ops ) # batch normalization / layer normalization: elif layer_type in [ "BatchNorm1d", "BatchNorm2d", "BatchNorm3d", "SyncBatchNorm", "LayerNorm", ]: flops = 2 * x.numel() # 3D convolution elif layer_type in ["Conv3d"]: out_t = int( (x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0]) // layer.stride[0] + 1 ) out_h = int( (x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1]) // layer.stride[1] + 1 ) out_w = int( (x.size()[4] + 2 * layer.padding[2] - layer.kernel_size[2]) // layer.stride[2] + 1 ) flops = ( batchsize_per_replica * layer.in_channels * layer.out_channels * layer.kernel_size[0] * layer.kernel_size[1] * layer.kernel_size[2] * out_t * out_h * out_w / layer.groups ) # 3D pooling layers elif layer_type in ["AvgPool3d", "MaxPool3d"]: in_t = x.size()[2] in_h = x.size()[3] in_w = x.size()[4] if isinstance(layer.kernel_size, int): layer.kernel_size = ( layer.kernel_size, layer.kernel_size, layer.kernel_size, ) if isinstance(layer.padding, int): layer.padding = (layer.padding, layer.padding, layer.padding) if isinstance(layer.stride, int): layer.stride = (layer.stride, layer.stride, layer.stride) kernel_ops = layer.kernel_size[0] * layer.kernel_size[1] * layer.kernel_size[2] out_t = 1 + int( (in_t + 2 * layer.padding[0] - layer.kernel_size[0]) / layer.stride[0] ) out_h = 1 + int( (in_h + 2 * layer.padding[1] - layer.kernel_size[1]) / layer.stride[1] ) out_w = 1 + int( (in_w + 2 * layer.padding[2] - layer.kernel_size[2]) / layer.stride[2] ) flops = batchsize_per_replica * x.size()[1] * out_t * out_h * out_w * kernel_ops # adaptive avg pool3d # This is approximate and works only for downsampling without padding # based on aten/src/ATen/native/AdaptiveAveragePooling3d.cpp elif layer_type in ["AdaptiveAvgPool3d"]: in_t = x.size()[2] in_h = x.size()[3] in_w = x.size()[4] out_t = layer.output_size[0] out_h = layer.output_size[1] out_w = layer.output_size[2] if out_t > in_t or out_h > in_h or out_w > in_w: raise ClassyProfilerNotImplementedError(layer) batchsize_per_replica = x.size()[0] num_channels = x.size()[1] kt = in_t - out_t + 1 kh = in_h - out_h + 1 kw = in_w - out_w + 1 kernel_ops = kt * kh * kw flops = ( batchsize_per_replica * num_channels * out_t * out_w * out_h * kernel_ops ) elif layer_type in ["Dropout", "Identity"]: flops = 0 elif hasattr(layer, "flops"): # If the module already defines a method to compute flops with the signature # below, we use it to compute flops # # Class MyModule(nn.Module): # def flops(self, x): # ... # or # # Class MyModule(nn.Module): # def flops(self, x1, x2): # ... flops = layer.flops(*layer_args) if flops is None: raise ClassyProfilerNotImplementedError(layer) message = [ f"module type: {typestr}", f"input size: {get_shape(x)}", f"output size: {get_shape(y)}", f"params(M): {count_params(layer) / 1e6}", f"flops(M): {int(flops) / 1e6}", ] logging.debug("\t".join(message)) return int(flops) def _layer_activations(layer: nn.Module, layer_args: List[Any], out: Any) -> int: """ Computes the number of activations produced by a single layer. Activations are counted only for convolutional and linear layers. To override this behavior, a layer can define a method to compute activations with the signature below, which will be used to compute the activations instead. Class MyModule(nn.Module): def activations(self, out, *layer_args): ... """ typestr = layer.__repr__() if hasattr(layer, "activations"): activations = layer.activations(out, *layer_args) elif isinstance(layer, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)): activations = out.numel() else: return 0 message = [f"module: {typestr}", f"activations: {activations}"] logging.debug("\t".join(message)) return int(activations) def summarize_profiler_info(prof: torch.autograd.profiler.profile) -> str: """ Summarizes the statistics in the specified profiler. """ # create sorted list of times per operator: op2time = {} for item in prof.key_averages(): op2time[item.key] = ( item.cpu_time_total / 1000.0, item.cuda_time_total / 1000.0, ) # to milliseconds op2time = sorted(op2time.items(), key=operator.itemgetter(1), reverse=True) # created string containing information: str = "\n%s\tCPU Time\tCUDA Time\n" % ("Key".rjust(20)) for (key, value) in op2time: str += "%s\t%2.5f ms\t%2.5f ms\n" % (key.rjust(20), value[0], value[1]) return str class ComplexityComputer: def __init__(self, compute_fn: Callable, count_unique: bool): self.compute_fn = compute_fn self.count_unique = count_unique self.count = 0 self.seen_modules = set() def compute( self, layer: nn.Module, layer_args: List[Any], out: Any, module_name: str ): if self.count_unique and module_name in self.seen_modules: return self.count += self.compute_fn(layer, layer_args, out) logging.debug(f"module name: {module_name}, count {self.count}") self.seen_modules.add(module_name) def reset(self): self.count = 0 self.seen_modules.clear() def _patched_computation_module( module: nn.Module, complexity_computer: ComplexityComputer, module_name: str ): """ Patch the module to compute a module's parameters, like FLOPs. Calls compute_fn and passes the results to the complexity computer. """ ty = type(module) typestring = module.__repr__() class ComputeModule(ty): orig_type = ty def _original_forward(self, *args, **kwargs): return ty.forward(self, *args, **kwargs) def forward(self, *args, **kwargs): out = self._original_forward(*args, **kwargs) complexity_computer.compute(self, list(args), out, module_name) return out def __repr__(self): return typestring return ComputeModule def modify_forward( model: nn.Module, complexity_computer: ComplexityComputer, prefix: str = "", patch_attr: str = None, ) -> nn.Module: """ Modify forward pass to measure a module's parameters, like FLOPs. """ # Recursively update all the modules in the model. A module is patched if it # contains the patch_attr (like the flops() function for FLOPs computation) or it is # a leaf. We stop recursing if we patch a module since that module is supposed # to return the results for all its children as well. # Since this recursion can lead to the same module being patched through different # paths, we make sure we only patch un-patched modules. if hasattr(model, "orig_type"): return model if is_leaf(model) or (patch_attr is not None and hasattr(model, patch_attr)): model.__class__ = _patched_computation_module( model, complexity_computer, prefix ) else: for name, child in model.named_children(): modify_forward( child, complexity_computer, prefix=f"{prefix}.{name}", patch_attr=patch_attr, ) return model def restore_forward(model: nn.Module, patch_attr: str = None) -> nn.Module: """ Restore original forward in model. """ for module in model.modules(): if hasattr(module, "orig_type"): # module has been patched; un-patch it module.__class__ = module.orig_type return model def compute_complexity( model: nn.Module, compute_fn: Callable, input_shape: Tuple[int], input_key: Optional[Union[str, List[str]]] = None, patch_attr: str = None, compute_unique: bool = False, ) -> int: """ Compute the complexity of a forward pass. Args: compute_unique: If True, the compexity for a given module is only calculated once. Otherwise, it is counted every time the module is called. TODO(@mannatsingh): We have some assumptions about only modules which are leaves or have patch_attr defined. This should be fixed and generalized if possible. """ # assertions, input, and upvalue in which we will perform the count: assert isinstance(model, nn.Module) if not isinstance(input_shape, abc.Sequence) and not isinstance(input_shape, dict): return None else: input = get_model_dummy_input(model, input_shape, input_key) complexity_computer = ComplexityComputer(compute_fn, compute_unique) # measure FLOPs: modify_forward(model, complexity_computer, patch_attr=patch_attr) try: # compute complexity in eval mode with eval_model(model), torch.no_grad(): model.forward(input) finally: restore_forward(model, patch_attr=patch_attr) return complexity_computer.count def compute_flops( model: nn.Module, input_shape: Tuple[int] = (3, 224, 224), input_key: Optional[Union[str, List[str]]] = None, ) -> int: """ Compute the number of FLOPs needed for a forward pass. """ return compute_complexity( model, _layer_flops, input_shape, input_key, patch_attr="flops", ) def compute_activations( model: nn.Module, input_shape: Tuple[int] = (3, 224, 224), input_key: Optional[Union[str, List[str]]] = None, ) -> int: """ Compute the number of activations created in a forward pass. """ return compute_complexity( model, _layer_activations, input_shape, input_key, patch_attr="activations", ) def count_params(model: nn.Module) -> int: """ Count the number of parameters in a model. """ assert isinstance(model, nn.Module) return sum((parameter.nelement() for parameter in model.parameters()))
ClassyVision-main
classy_vision/generic/profiler.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import io import tempfile from typing import Any, Callable, List, Tuple import torch # Default to GPU 0 _cuda_device_index: int = 0 # Setting _cuda_device_index to -1 internally implies that we should use CPU _CPU_DEVICE_INDEX = -1 _PRIMARY_RANK = 0 def convert_to_distributed_tensor(tensor: torch.Tensor) -> Tuple[torch.Tensor, str]: """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This helper function converts to the correct device and returns the tensor + original device. """ orig_device = "cpu" if not tensor.is_cuda else "gpu" if ( torch.distributed.is_available() and torch.distributed.get_backend() == torch.distributed.Backend.NCCL and not tensor.is_cuda ): tensor = tensor.cuda() return (tensor, orig_device) def convert_to_normal_tensor(tensor: torch.Tensor, orig_device: str) -> torch.Tensor: """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This converts the tensor back to original device. """ if tensor.is_cuda and orig_device == "cpu": tensor = tensor.cpu() return tensor def is_distributed_training_run() -> bool: return ( torch.distributed.is_available() and torch.distributed.is_initialized() and (torch.distributed.get_world_size() > 1) ) def is_primary() -> bool: """ Returns True if this is rank 0 of a distributed training job OR if it is a single trainer job. Otherwise False. """ return get_rank() == _PRIMARY_RANK def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor: """ Wrapper over torch.distributed.all_reduce for performing mean reduction of tensor over all processes. """ return all_reduce_op( tensor, torch.distributed.ReduceOp.SUM, lambda t: t / torch.distributed.get_world_size(), ) def all_reduce_sum(tensor: torch.Tensor) -> torch.Tensor: """ Wrapper over torch.distributed.all_reduce for performing sum reduction of tensor over all processes in both distributed / non-distributed scenarios. """ return all_reduce_op(tensor, torch.distributed.ReduceOp.SUM) def all_reduce_min(tensor: torch.Tensor) -> torch.Tensor: """ Wrapper over torch.distributed.all_reduce for performing min reduction of tensor over all processes in both distributed / non-distributed scenarios. """ return all_reduce_op(tensor, torch.distributed.ReduceOp.MIN) def all_reduce_max(tensor: torch.Tensor) -> torch.Tensor: """ Wrapper over torch.distributed.all_reduce for performing min reduction of tensor over all processes in both distributed / non-distributed scenarios. """ return all_reduce_op(tensor, torch.distributed.ReduceOp.MAX) def all_reduce_op( tensor: torch.Tensor, op: torch.distributed.ReduceOp, after_op_func: Callable[[torch.Tensor], torch.Tensor] = None, ) -> torch.Tensor: """ Wrapper over torch.distributed.all_reduce for performing reduction of tensor over all processes in both distributed / non-distributed scenarios. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.all_reduce(tensor, op) if after_op_func is not None: tensor = after_op_func(tensor) tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def gather_tensors_from_all(tensor: torch.Tensor) -> List[torch.Tensor]: """ Wrapper over torch.distributed.all_gather for performing 'gather' of 'tensor' over all processes in both distributed / non-distributed scenarios. """ if tensor.ndim == 0: # 0 dim tensors cannot be gathered. so unsqueeze tensor = tensor.unsqueeze(0) if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) gathered_tensors = [ torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(gathered_tensors, tensor) gathered_tensors = [ convert_to_normal_tensor(_tensor, orig_device) for _tensor in gathered_tensors ] else: gathered_tensors = [tensor] return gathered_tensors def gather_from_all(tensor: torch.Tensor) -> torch.Tensor: gathered_tensors = gather_tensors_from_all(tensor) gathered_tensor = torch.cat(gathered_tensors, 0) return gathered_tensor def broadcast(tensor: torch.Tensor, src: int = 0) -> torch.Tensor: """ Wrapper over torch.distributed.broadcast for broadcasting a tensor from the source to all processes in both distributed / non-distributed scenarios. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.broadcast(tensor, src) tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def barrier() -> None: """ Wrapper over torch.distributed.barrier, returns without waiting if the distributed process group is not initialized instead of throwing error. """ if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return torch.distributed.barrier() def get_world_size() -> int: """ Simple wrapper for correctly getting worldsize in both distributed / non-distributed settings """ return ( torch.distributed.get_world_size() if torch.distributed.is_available() and torch.distributed.is_initialized() else 1 ) def get_rank() -> int: """ Simple wrapper for correctly getting rank in both distributed / non-distributed settings """ return ( torch.distributed.get_rank() if torch.distributed.is_available() and torch.distributed.is_initialized() else 0 ) def get_primary_rank() -> int: return _PRIMARY_RANK def set_cuda_device_index(idx: int) -> None: global _cuda_device_index _cuda_device_index = idx torch.cuda.set_device(_cuda_device_index) def set_cpu_device() -> None: global _cuda_device_index _cuda_device_index = _CPU_DEVICE_INDEX def get_cuda_device_index() -> int: return _cuda_device_index def init_distributed_data_parallel_model( model: torch.nn.Module, broadcast_buffers: bool = False, find_unused_parameters: bool = True, bucket_cap_mb: int = 25, ) -> torch.nn.parallel.DistributedDataParallel: global _cuda_device_index if _cuda_device_index == _CPU_DEVICE_INDEX: # CPU-only model, don't specify device return torch.nn.parallel.DistributedDataParallel( model, broadcast_buffers=broadcast_buffers, find_unused_parameters=find_unused_parameters, bucket_cap_mb=bucket_cap_mb, ) else: # GPU model return torch.nn.parallel.DistributedDataParallel( model, device_ids=[_cuda_device_index], output_device=_cuda_device_index, broadcast_buffers=broadcast_buffers, find_unused_parameters=find_unused_parameters, bucket_cap_mb=bucket_cap_mb, ) def broadcast_object(obj: Any, src: int = _PRIMARY_RANK, use_disk: bool = True) -> Any: """Broadcast an object from a source to all workers. Args: obj: Object to broadcast, must be serializable src: Source rank for broadcast (default is primary) use_disk: If enabled, removes redundant CPU memory copies by writing to disk """ # Either broadcast from primary to the fleet (default), # or use the src setting as the original rank if get_rank() == src: # Emit data buffer = io.BytesIO() torch.save(obj, buffer) data_view = buffer.getbuffer() length_tensor = torch.LongTensor([len(data_view)]) length_tensor = broadcast(length_tensor, src=src) data_tensor = torch.ByteTensor(data_view) data_tensor = broadcast(data_tensor, src=src) else: # Fetch from the source length_tensor = torch.LongTensor([0]) length_tensor = broadcast(length_tensor, src=src) data_tensor = torch.empty([length_tensor.item()], dtype=torch.uint8) data_tensor = broadcast(data_tensor, src=src) if use_disk: with tempfile.TemporaryFile("r+b") as f: f.write(data_tensor.numpy()) # remove reference to the data tensor and hope that Python garbage # collects it del data_tensor f.seek(0) obj = torch.load(f) else: buffer = io.BytesIO(data_tensor.numpy()) obj = torch.load(buffer) return obj
ClassyVision-main
classy_vision/generic/distributed_util.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .classy_hub_interface import ClassyHubInterface __all__ = ["ClassyHubInterface"]
ClassyVision-main
classy_vision/hub/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Iterator, List, Optional, Union import torch import torch.nn as nn from classy_vision.dataset import ClassyDataset from classy_vision.dataset.image_path_dataset import ImagePathDataset from classy_vision.dataset.transforms import ClassyTransform from classy_vision.dataset.transforms.util import build_field_transform_default_imagenet from classy_vision.models import ClassyModel from classy_vision.tasks import ClassyTask class ClassyHubInterface: """PyTorch Hub interface for classy vision tasks and models. The task is optional, but a model is guaranteed to be present. Do not use the constructor directly, instead Use from_task() or from_model() to instantiate the class. See the examples folder for an example of how to use this class Attributes: task: If present, task that can be used to train the torchhub model model: torchub model """ def __init__( self, task: Optional[ClassyTask] = None, model: Optional[ClassyModel] = None ) -> None: """Constructor for ClassyHubInterface. Only one of task or model can be specified at construction time. If task is specified then task.model is used to populate the model attribute. Do not use the constructor directly, instead use from_task() or from_model() to instantiate the class. Args: task: task that can be used to train torchhub model, task.model is used to populate the model attribute model: torchhub model """ self.task = task if task is None: assert model is not None, "Need to specify a model if task is None" self.model = model else: assert model is None, "Cannot pass a model if task is not None" self.model = task.model @classmethod def from_task(cls, task: ClassyTask) -> "ClassyHubInterface": """Instantiates the ClassyHubInterface from a task. This function returns a hub interface based on a ClassyTask. Args: task: ClassyTask that contains hub model """ return cls(task=task) @classmethod def from_model(cls, model: Union[nn.Module, ClassyModel]) -> "ClassyHubInterface": """Instantiates the ClassyHubInterface from a model. This function returns a hub interface based on a ClassyModel Args: model: torchhub model """ if not isinstance(model, ClassyModel): model = ClassyModel.from_model(model) return cls(model=model) def create_image_dataset( self, batchsize_per_replica: int = 32, shuffle: bool = True, transform: Optional[Union[ClassyTransform, Callable]] = None, num_samples: Optional[int] = None, image_folder: Optional[str] = None, image_files: Optional[List[str]] = None, phase_type: str = "train", ) -> ClassyDataset: """Create a ClassyDataset which reads images from image_paths. See :class:`dataset.ImagePathDataset` for documentation on image_folder and image_files Args: batchsize_per_replica: Minibatch size per replica (i.e. samples per GPU) shuffle: If true, data is shuffled between epochs transform: Transform to apply to sample. If left as None, the dataset's phase_type is used to determine the transform to apply. The transform for the phase_type is searched for in self.task, falling back to imagenet transformations if it is not found there. num_samples: If specified, limits the number of samples returned by the dataset phase_type: String specifying the phase_type, e.g. "train" or "test" """ if transform is None: if self.task is not None and phase_type in self.task.datasets: # use the transform from the dataset for the phase_type dataset = self.task.datasets[phase_type] transform = dataset.transform assert transform is not None, "Cannot infer transform from the task" else: transform = build_field_transform_default_imagenet( config=None, split=phase_type, key_map_transform=None ) return ImagePathDataset( batchsize_per_replica, shuffle, transform, num_samples, image_folder=image_folder, image_files=image_files, ) @staticmethod def get_data_iterator(dataset: ClassyDataset) -> Iterator[Any]: """Returns an iterator that can be used to retrieve training / testing samples. Args: dataset: Dataset to iterate over """ return iter(dataset.iterator()) def train(self) -> None: """Sets the model to train mode and enables torch gradient calculation""" torch.autograd.set_grad_enabled(True) self.model.train() def eval(self) -> None: """Sets the model to eval mode and disables torch gradient calculation""" torch.autograd.set_grad_enabled(False) self.model.eval() def predict(self, sample): """Returns the model's prediction for a sample. Args: sample: Must contain "input" key, model calculates prediction over input. """ output = self.model(sample["input"]) # squeeze the output in case the batch size is 1 return output.squeeze() def extract_features(self, sample): """Calculates feature embeddings of sample. Args: sample: Must contain "input" key, model calculates prediction over input. """ output = self.model.extract_features(sample["input"]) # squeeze the output in case the batch size is 1 return output.squeeze()
ClassyVision-main
classy_vision/hub/classy_hub_interface.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .classy_trainer import ClassyTrainer from .distributed_trainer import DistributedTrainer from .local_trainer import LocalTrainer __all__ = ["ClassyTrainer", "DistributedTrainer", "LocalTrainer"]
ClassyVision-main
classy_vision/trainer/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from classy_vision.generic.distributed_util import barrier from classy_vision.tasks import ClassyTask class ClassyTrainer: """Base class for shared training code. A trainer is responsible for setting up the environment for training, for instance: configuring rendezvous for distributed training, deciding what GPU to use and so on. Trainers also control the outer portion of the training loop, but delegate to the task to decide how exactly to perform inference, compute loss etc. That allows combining tasks with different trainers depending on whether you want to train on your current machine, AWS cluster etc. """ def train(self, task: ClassyTask): """Runs training phases, phases are generated from the config. Args: task: Task to be used in training. It should contain everything that is needed for training """ task.prepare() assert isinstance(task, ClassyTask) # make sure all the workers start training at the same time # this helps catch hangs which would have happened elsewhere barrier() task.on_start() while not task.done_training(): task.on_phase_start() while True: try: task.step() except StopIteration: break task.on_phase_end() task.on_end()
ClassyVision-main
classy_vision/trainer/classy_trainer.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import torch from classy_vision.generic.distributed_util import ( get_rank, get_world_size, set_cpu_device, set_cuda_device_index, ) from .classy_trainer import ClassyTrainer def _init_env_vars(use_gpu: bool): """Function sets up default environment variables for distributed training. Args: use_gpu: If true, set NCCL environment for GPUs """ if "WORLD_SIZE" not in os.environ or "RANK" not in os.environ: os.environ["WORLD_SIZE"] = "1" os.environ["RANK"] = "0" os.environ["LOCAL_RANK"] = "0" if "MASTER_ADDR" not in os.environ or "MASTER_PORT" not in os.environ: os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29500" if use_gpu: # From https://github.com/pytorch/elastic/blob/4175e9ec3ac346b89dab13eeca00e8f00b6daa8f/examples/imagenet/main.py#L156 # noqa B950 # when using NCCL, on failures, surviving nodes will deadlock on NCCL ops # because NCCL uses a spin-lock on the device. Set this env var to enable a # watchdog thread that will destroy stale NCCL communicators, and # asynchronously handle NCCL errors and timed out collectives. os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1" def _init_distributed(use_gpu: bool): """Function perform distributed setup for DDP. Requires the script to be started with torch.distributed.launch script and uses environment variables for node finding. Args: use_gpu: If true, use distributed GPU training, else use CPU """ distributed_world_size = int(os.environ["WORLD_SIZE"]) distributed_rank = int(os.environ["RANK"]) backend = "nccl" if use_gpu else "gloo" torch.distributed.init_process_group( backend=backend, init_method="env://", world_size=distributed_world_size, rank=distributed_rank, ) class DistributedTrainer(ClassyTrainer): """Distributed trainer for using multiple training processes""" def train(self, task): _init_env_vars(task.use_gpu) _init_distributed(task.use_gpu) logging.info( f"Done setting up distributed process_group with rank {get_rank()}" + f", world_size {get_world_size()}" ) local_rank = int(os.environ["LOCAL_RANK"]) if task.use_gpu: logging.info("Using GPU, CUDA device index: {}".format(local_rank)) set_cuda_device_index(local_rank) else: logging.info("Using CPU") set_cpu_device() super().train(task)
ClassyVision-main
classy_vision/trainer/distributed_trainer.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Optional from classy_vision.generic.distributed_util import set_cpu_device, set_cuda_device_index from .classy_trainer import ClassyTrainer class LocalTrainer(ClassyTrainer): """Trainer to be used if you want want use only a single training process.""" def train(self, task): if task.use_gpu: logging.info("Using GPU, CUDA device index: {}".format(0)) set_cuda_device_index(0) else: logging.info("Using CPU") set_cpu_device() super().train(task)
ClassyVision-main
classy_vision/trainer/local_trainer.py
ClassyVision-main
classy_vision/hydra/__init__.py
ClassyVision-main
classy_vision/hydra/conf/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import json,sys,os output_path = 'output/' def json_save(path, obj): with open(path, 'w') as f: json.dump(obj, f) def os_mkdir(path): if not os.path.exists(path): os.mkdir(path) def makePartialJsons(obj): for k in obj['data']: os_mkdir(output_path) output_f = os.path.join(output_path, k+'.json') json_save(output_f, obj['data'][k]) print(k) if __name__=='__main__' and len(sys.argv) > 1: path = sys.argv[1] with open(path, 'r') as f: obj = json.load(f) makePartialJsons(obj)
CoDraw-master
script/preprocess.py
"""A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='torchhalp', version='0.0.1', description='PyTorch implementation of High-Accuracy Low-Precision Training', author= 'Megan Leszczynski', packages=find_packages(), )
torchhalp-master
setup.py
import numpy as np import pytest import torch from torch.autograd import Variable from examples import regression from torchhalp.optim import SVRG from utils import * np.random.seed(0xdeadbeef) #======================================================================================== # SVRG implementations #======================================================================================== def baseline_svrg(x, y, w, lr, n, T=1, K=1, calc_gradient=None): iters = 0 for k in range(K): for idx in range(n): if iters % T == 0: w_prev = w full_grad = calc_gradient(x, y, w, avg=True) xi, yi = x[[idx],:], y[idx:idx+1] w_grad = calc_gradient(xi, yi, w) w_prev_grad = calc_gradient(xi, yi, w_prev) adjusted_grad = w_grad - w_prev_grad + full_grad w = w - (lr*adjusted_grad) iters += 1 return w def pytorch_svrg(x, y, w, lr, T, K=1, n_features=None, n_classes=1): model = regression.utils.build_model(n_features, n_classes, initial_value=w) x = torch.from_numpy(x).float() # linear regression if n_classes == 1: y = torch.from_numpy(y).float().view(-1,1) loss = torch.nn.MSELoss() else: # multiclass logistic y = torch.from_numpy(y).long() loss = torch.nn.CrossEntropyLoss() synth_dataset = regression.utils.SynthDataset(x, y) train_loader = torch.utils.data.DataLoader(synth_dataset) svrg_opt = SVRG(model.parameters(), lr=lr, T=T, data_loader=train_loader) for k in range(K): for i, (data, target) in enumerate(train_loader): def closure(data=data, target=target): data = Variable(data, requires_grad=False) target = Variable(target, requires_grad=False) output = model(data) cost = loss(output, target) cost.backward() return cost svrg_opt.step(closure) w = np.asarray([p.data.numpy() for p in list(model.parameters())]).reshape(n_classes, n_features) return w #======================================================================================== # Tests #======================================================================================== @pytest.mark.parametrize("n_samples,n_features,lr,K,T", [ (1, 1, 1, 1, 1), (1, 4, 0.1, 1, 1), (1, 4, 0.1, 2, 1), (10, 4, 0.1, 1, 1), (10, 10, 0.1, 1, 1), (10, 10, 0.5, 1, 1), (10, 10, 0.5, 2, 1), (1, 1, 1, 1, 2), (1, 4, 0.1, 1, 2), (1, 4, 0.1, 2, 2), (10, 4, 0.1, 1, 2), (10, 10, 0.1, 1, 10), (10, 10, 0.5, 2, 10), (10, 10, 0.1, 1, 20), (10, 10, 0.5, 1, 20), (10, 10, 0.5, 2, 20) ]) def test_linear_regress(n_samples, n_features, lr, K, T): x = np.random.rand(n_samples, n_features) y = np.random.uniform(0,1, size=(n_samples,)) w = np.random.uniform(0, 0.1, (1, n_features)) print "K", K np_value = baseline_svrg(x, y, w, lr, n=n_samples, T=T, K=K, calc_gradient=linear_grad) pytorch_value = pytorch_svrg(x, y, w, lr, T=T, K=K, n_features=n_features) np.testing.assert_allclose(np_value, pytorch_value, rtol=1e-4) @pytest.mark.parametrize("n_samples,n_features,n_classes,lr,K", [ (1, 1, 3, 1, 1), (1, 4, 3, 0.1, 1), (1, 4, 3, 0.1, 2), (2, 4, 3, 0.1, 1), (2, 4, 3, 0.5, 1), (2, 4, 3, 0.5, 2), (2, 4, 4, 0.5, 2), ]) def test_logistic_regress(n_samples, n_features, n_classes, lr, K): x = np.random.rand(n_samples, n_features) y = np.random.randint(0, n_classes, size=(n_samples,)) w = np.random.uniform(0, 0.1, (n_classes, n_features)) np_value = baseline_svrg(x, y, w, lr, n=n_samples, T=n_samples, K=K, calc_gradient=logistic_grad) pytorch_value = pytorch_svrg(x, y, w, lr, T=n_samples, K=K, n_features=n_features, n_classes=n_classes) np.testing.assert_allclose(np_value, pytorch_value, rtol=1e-4)
torchhalp-master
test/test_svrg.py
torchhalp-master
test/__init__.py
import pytest import numpy as np import torch from torch.autograd import Variable from utils import * from torchhalp.optim import HALP from examples import regression np.random.seed(0xdeadbeef) #======================================================================================== # Helpers #======================================================================================== def quantize(vect, b, scale_factor, biased=False): if not biased: random_vect = np.random.uniform(0, 1, size=vect.shape) vect = np.floor((vect/float(scale_factor)) + random_vect) else: vect = np.floor(vect/float(scale_factor) + 0.5) min_value = -1 * (2**(b-1)) max_value = 2**(b-1) - 1 vect = np.clip(vect, min_value, max_value) return vect def dequantize(vect, scale_factor): return vect*scale_factor #======================================================================================== # HALP implementations #======================================================================================== def baseline_halp(x, y, w, lr, b, mu, n, T=1, K=1, calc_gradient=None): s_k = 1.0 # s_k needs an initial value to complete w addition z = np.zeros(w.shape) iters = 0 for k in range(K): for idx in range(n): if iters % T == 0: # Recenter w = w + z # w is full precision g_k = calc_gradient(x, y, w, avg=True) # Rescale s_k = float(np.linalg.norm(g_k)) / (mu * (2**(b-1) - 1)) z = np.zeros(w.shape) xi, yi = x[[idx],:], y[idx:idx+1] z = z - (lr*(calc_gradient(xi, yi, w + z) - calc_gradient(xi, yi, w) + g_k)) z = quantize(z, b, s_k, biased=True) z = dequantize(z, s_k) iters += 1 return w + z def pytorch_halp(x, y, w, lr, b, mu, T=1, K=1, n_features=None, n_classes=1): model = regression.utils.build_model(n_features, n_classes, initial_value=w) x = torch.from_numpy(x).float() # Linear regression if n_classes == 1: y = torch.from_numpy(y).float().view(-1,1) loss = torch.nn.MSELoss() else: # Multiclass logistic y = torch.from_numpy(y).long() loss = torch.nn.CrossEntropyLoss() synth_dataset = regression.utils.SynthDataset(x, y) train_loader = torch.utils.data.DataLoader(synth_dataset) halp_opt = HALP(model.parameters(), lr=lr, T=T, data_loader=train_loader, bits=b, mu=mu, biased=True) for k in range(K): for i, (data, target) in enumerate(train_loader): def closure(data=data, target=target): data = Variable(data, requires_grad=False) target = Variable(target, requires_grad=False) output = model(data) cost = loss(output, target) cost.backward() return cost halp_opt.step(closure) w = np.asarray([p.data.numpy() for p in list(model.parameters())]).reshape(n_classes, n_features) return w #======================================================================================== # Tests #======================================================================================== @pytest.mark.parametrize("n_samples,n_features,lr,K,b,mu,T", [ (1, 1, 1, 1, 8, 1, 1), (1, 4, 0.1, 1, 8, 1, 1), (1, 4, 0.1, 4, 8, 1, 2), (10, 4, 0.1, 1, 8, 1, 10), (10, 4, 0.1, 1, 8, 1, 10), (10, 10, 0.1, 1, 8, 1, 10), (10, 10, 0.5, 1, 8, 1, 10), (10, 10, 0.5, 10, 8, 1, 10), (10, 10, 0.5, 10, 8, 0.1, 10), (10, 10, 0.5, 10, 16, 0.1, 10), (5, 10, 0.5, 10, 16, 1, 5), (10, 4, 0.1, 1, 8, 1, 20), (10, 4, 0.1, 1, 8, 1, 20), (10, 10, 0.1, 1, 8, 1, 20), (10, 10, 0.5, 1, 8, 1, 20), (10, 10, 0.5, 10, 8, 1, 20), (10, 10, 0.5, 10, 8, 0.1, 20), (10, 10, 0.5, 10, 16, 0.1, 20) ]) def test_linear_regress(n_samples, n_features, lr, K, b, mu, T): x = np.random.rand(n_samples, n_features) y = np.random.uniform(0,1, size=(n_samples,)) w = np.random.uniform(0,0.1, (1, n_features)) np_value = baseline_halp(x, y, w, lr, b, mu, n=n_samples, T=T, K=K, calc_gradient=linear_grad) pytorch_value = pytorch_halp(x, y, w, lr, b, mu, T=T, K=K, n_features=n_features) np.testing.assert_allclose(np_value, pytorch_value, rtol=1e-4) @pytest.mark.parametrize("n_samples,n_features,n_classes,lr,K,b,mu", [ (1, 1, 3, 1, 1, 8, 1), (1, 4, 3, 0.1, 1, 8, 1), (1, 4, 3, 0.1, 2, 8, 1), (2, 4, 3, 0.1, 1, 8, 1), (2, 4, 3, 0.5, 1, 8, 1), (2, 4, 3, 0.5, 2, 8, 1), (2, 4, 4, 0.5, 2, 8, 1), (2, 4, 4, 0.5, 2, 8, 0.1), (2, 4, 4, 0.5, 2, 16,0.1), (2, 4, 4, 0.5, 2, 16, 1) ]) def test_logistic_regress(n_samples, n_features, n_classes, lr, K, b, mu): x = np.random.rand(n_samples, n_features) y = np.random.randint(0, n_classes, size=(n_samples,)) w = np.random.uniform(0, 0.1, (n_classes, n_features)) np_value = baseline_halp(x, y, w, lr, b, mu, n=n_samples, T=n_samples, K=K, calc_gradient=logistic_grad) pytorch_value = pytorch_halp(x, y, w, lr, b, mu, T=n_samples, K=K, n_features=n_features, n_classes=n_classes) np.testing.assert_allclose(np_value, pytorch_value, rtol=1e-4)
torchhalp-master
test/test_halp.py
import math import torch import pytest import numpy as np from utils import iter_indices import torchhalp.quantize def check_saturation(m1, scale_factor, bits): min_val = -scale_factor*math.pow(2, bits-1) max_val = scale_factor*(math.pow(2, bits-1) - 1) m2 = m1.clone() for i in iter_indices(m2): m2[i] = max(min_val, min(max_val, m2[i])) np.testing.assert_equal(m1.numpy(), m2.numpy()) def check_quantization(m1, scale_factor, bits): # Test that quantized value is in it's range check_saturation(m1, scale_factor, bits) # Test that quantized value is representable m2 = m1.clone() for i in iter_indices(m2): # Must be an integer in the fixed-point representation m2[i] = round(m2[i] / scale_factor) * scale_factor np.testing.assert_allclose(m1.numpy(), m2.numpy(), rtol=1e-6) @pytest.mark.parametrize("scale_factor,bits", [ (0.05, 8), (5e-5, 16), (5e-9, 32) ]) def test_quantization(scale_factor, bits): # Create a matrix with 100 values randomly uniform within [-15, 15] m1 = torch.rand(100).mul(30).add(-15) m1.quantize_(scale_factor, bits) check_quantization(m1, scale_factor, bits) @pytest.mark.parametrize("scale_factor,bits", [ (0.05, 8), (5e-5, 16), (5e-9, 32) ]) def test_saturation(scale_factor, bits): m1 = torch.rand(100).mul(30).add(-15) # uniform [-15, 15] m1.saturate_(scale_factor, bits) # Test that saturated value is in it's range check_saturation(m1, scale_factor, bits)
torchhalp-master
test/test_quantize.py
import numpy as np from itertools import product def stablesoftmax(x): """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x, axis=1).reshape((-1,1)) exps = np.exp(shiftx) return exps / np.sum(exps, axis=1).reshape(-1,1) def logistic_grad(x, y, w, avg=False): """Compute the gradient for multi-class logistic regression""" xi_dot_w = np.dot(x, w.T) pred = stablesoftmax(xi_dot_w) for i in range(len(x)): pred[i][y[i]] = pred[i][y[i]] - 1 grad = np.dot(pred.T, x) if avg: grad = grad / float(len(x)) return grad def linear_grad(x, y, w, avg=False): """Compute the gradient for linear regression""" xi_dot_w = np.dot(x, w.T) grad = 2*np.dot(xi_dot_w.T - y.T, x) if avg: grad = grad / float(len(x)) return grad # https://github.com/pytorch/pytorch/blob/master/test/common.py def iter_indices(tensor): if tensor.dim() == 0: return range(0) if tensor.dim() == 1: return range(tensor.size(0)) return product(*(range(s) for s in tensor.size()))
torchhalp-master
test/utils.py
torchhalp-master
examples/__init__.py
from utils import build_model, SynthDataset
torchhalp-master
examples/regression/__init__.py
import torch import torch.utils.data as data class SynthDataset(data.Dataset): def __init__(self, data, labels): self.data = data self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): return self.data[idx], self.labels[idx] def build_model(input_dim, output_dim=1, initial_value=None): model = torch.nn.Sequential() module = torch.nn.Linear(input_dim, output_dim, bias=False) if initial_value is not None: module.weight.data = torch.from_numpy(initial_value).type(torch.FloatTensor) model.add_module("linear", module) else: model.add_module("linear", torch.nn.Linear(input_dim, output_dim, bias=False)) return model
torchhalp-master
examples/regression/utils.py
import torch import torch.utils.data as data from torch.autograd import Variable from torch import optim import numpy as np import argparse from sklearn import linear_model, datasets from utils import SynthDataset from torchhalp.optim import SVRG, HALP import matplotlib matplotlib.use('pdf') # uncomment to run on raiders9 import matplotlib.pyplot as plt def parse_args(): parser = argparse.ArgumentParser(description='Linear regression') parser.add_argument('--epochs', type=int, default=10, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default= 0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--T', type=int, default=200, metavar='T', help='how many iterations between taking full gradient') parser.add_argument('--mu', default=4, type=float, help='mu, only used for HALP') parser.add_argument('--bits', '-b', default=8, type=int, help='Number of bits to use, only used for HALP') parser.add_argument('--n', type=int, default=100, metavar='NS', help='number of samples') parser.add_argument('--num-features', type=int, default=5, metavar='F', help='number of features') parser.add_argument('--sgd', action='store_true', help='Runs stochastic gradient descent') parser.add_argument('--svrg', action='store_true', help='Runs SVRG') parser.add_argument('--halp', action='store_true', help='Runs HALP algorithm') parser.add_argument('--all', action='store_true', help='Runs all optimizer algorithms') parser.add_argument('--save_graph', action='store_true', help='Saves a graph of the results.') return parser.parse_args() def add_plot(iters, dist, label, log_y=True, T=None): if log_y: plt.plot = plt.semilogy plt.figure(0) plt.plot(range(iters), dist, label=label) # https://discuss.pytorch.org/t/adaptive-learning-rate/320/23 def step_decay_lr_scheduler(optimizer, epoch, lr_decay=0.1, lr_decay_epoch=7): """Decay learning rate by a factor of lr_decay every lr_decay_epoch epochs""" if epoch % lr_decay_epoch: return for param_group in optimizer.param_groups: param_group['lr'] *= lr_decay def main(): args = parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) np.random.seed(args.seed) n = args.n n_features = args.num_features num_epochs = args.epochs T = args.T # Make synthetic dataset with sklearn X, Y = datasets.make_regression(n_samples=n, n_features=n_features, random_state=0xc0ffee) # Solve for optimal solution w_opt, _, _, _= np.linalg.lstsq(X, Y, rcond=None) # Make dataloader X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).float().view(-1,1) synth_dataset = SynthDataset(X, Y) train_loader = torch.utils.data.DataLoader(synth_dataset, shuffle=True) loss = torch.nn.MSELoss() def build_model(): # Create model model = torch.nn.Sequential() model.add_module("linear", torch.nn.Linear(n_features, 1, bias=False)) model.linear.weight.data.fill_(0.0) if args.cuda: model.cuda() return model def train(optimizer, lr_decay=False): # Training dist_to_optimum = [] iters = 0 for e in range(num_epochs): for i, (data, target) in enumerate(train_loader): # We need to add this function to models when we want to use SVRG or HALP def closure(data=data, target=target): data = Variable(data, requires_grad=False) target = Variable(target, requires_grad=False) if args.cuda: data, target = data.cuda(), target.cuda() output = model(data) cost = loss(output, target) cost.backward() return cost # We need to zero the optimizer for SGD # (already done internally for SVRG and HALP) optimizer.zero_grad() # This is the key line to perform the optimizer step # We don't need to call forward/backward explicitly (in addition to in the closure) # since the optimizer will call the closure optimizer.step(closure) # Performance metric: distance to optimum w = np.asarray([p.data.cpu().numpy() for p in list(model.parameters())]) dist = np.linalg.norm(w-w_opt) dist_to_optimum.append(dist) if iters % n == 0: print("Iteration = %d, Dist_to_opt = %s" % (iters , dist)) iters += 1 if lr_decay: step_decay_lr_scheduler(optimizer, e, lr_decay=0.1, lr_decay_epoch=200) return dist_to_optimum # Optimizer if args.sgd or args.all: model = build_model() opt = optim.SGD(model.parameters(), lr=args.lr) dist = train(opt, lr_decay=False) add_plot(num_epochs*len(train_loader), dist, label='SGD') if args.svrg or args.all: model = build_model() opt = SVRG(model.parameters(), T=T, data_loader=train_loader, lr=args.lr) dist = train(opt) add_plot(num_epochs*len(train_loader), dist, label='SVRG', T=T) if args.halp or args.all: model = build_model() opt = HALP(model.parameters(), T=T, data_loader=train_loader, lr=args.lr, mu=args.mu, bits=args.bits) dist = train(opt) add_plot(num_epochs*len(train_loader), dist, label='HALP', T=T) if args.save_graph: plt.figure(0) plt.ylabel('Distance to Optimum') plt.xlabel('Iterations') plt.legend(loc='best') plt.savefig('results.svg') if __name__ == "__main__": main()
torchhalp-master
examples/regression/main.py
# MIT License # Copyright (c) 2017 liukuang # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # https://github.com/kuangliu/pytorch-cifar '''ResNet in PyTorch. For Pre-activation ResNet, see 'preact_resnet.py'. Reference: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2,2,2,2]) def ResNet34(): return ResNet(BasicBlock, [3,4,6,3]) def ResNet50(): return ResNet(Bottleneck, [3,4,6,3]) def ResNet101(): return ResNet(Bottleneck, [3,4,23,3]) def ResNet152(): return ResNet(Bottleneck, [3,8,36,3]) def test(): net = ResNet18() y = net(Variable(torch.randn(1,3,32,32))) print(y.size()) # test()
torchhalp-master
examples/cifar10/resnet.py
# MIT License # Copyright (c) 2017 liukuang # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # https://github.com/kuangliu/pytorch-cifar '''Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress. ''' import os import sys import time import math import torch.nn as nn import torch.nn.init as init def get_mean_and_std(dataset): '''Compute the mean and std value of dataset.''' dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in dataloader: for i in range(3): mean[i] += inputs[:,i,:,:].mean() std[i] += inputs[:,i,:,:].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) TOTAL_BAR_LENGTH = 65. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % format_time(step_time)) L.append(' | Tot: %s' % format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f
torchhalp-master
examples/cifar10/utils.py
# MIT License # Copyright (c) 2017 liukuang # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # modified from https://github.com/kuangliu/pytorch-cifar to add support for SVRG and HALP '''Train CIFAR10 with PyTorch.''' from __future__ import print_function import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse import csv from resnet import * from utils import progress_bar from torch.autograd import Variable from torchhalp.optim import SVRG, HALP parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=0.1, type=float, help='Learning rate') parser.add_argument('--T', type=int, help='T, only used for SVRG and HALP') parser.add_argument('--mu', default=1, type=float, help='mu, only used for HALP') parser.add_argument('--bits', '-b', default=8, type=int, help='Number of bits to use, only used for HALP') parser.add_argument('--num_epochs', default=1, type=int, help='Number of epochs') parser.add_argument('--opt', default='SGD', type=str, help='Optimizer for training') parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint') parser.add_argument('--progress', action='store_true') args = parser.parse_args() use_cuda = torch.cuda.is_available() best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) # Default to T being 2*size of the dataset if T is not set if args.T is None and (args.opt == 'SVRG' or args.opt == 'HALP'): args.T = 2*len(trainloader) # Number of batches testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/{}'.format(ckpt_tag)) net = checkpoint['net'] best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] + 1 else: print('==> Building model..') net = ResNet18() if use_cuda: net.cuda() net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True criterion = nn.CrossEntropyLoss() # =================================================================== # THIS IS NEW --- need to call SVRG/HALP and pass data_loader and T # and other optional parameters # =================================================================== if args.opt == 'SGD': ckpt_tag = '{}'.format(args.opt) optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) elif args.opt == 'SVRG': ckpt_tag = '{}_T_{}'.format(args.opt, args.T) optimizer = SVRG(net.parameters(), lr=args.lr, weight_decay=5e-4, data_loader=trainloader, T=args.T) elif args.opt == 'HALP': ckpt_tag = '{}_T_{}_mu_{}_b_{}'.format(args.opt, args.T, args.mu, args.bits) optimizer = HALP(net.parameters(), lr=args.lr, weight_decay=5e-4, data_loader=trainloader, T=args.T, mu=args.mu, bits=args.bits) # Training def train(epoch): losses = [] print('\nEpoch: %d' % epoch) net.train() correct = 0 total = 0 for batch_idx, (data, target) in enumerate(trainloader): def closure(data=data, target=target): data = Variable(data, requires_grad=False) target = Variable(target, requires_grad=False) # Need to pass an argument to use cuda or not if use_cuda: data, target = data.cuda(), target.cuda() output = net(data) cost = criterion(output, target) cost.backward() return cost optimizer.zero_grad() loss = optimizer.step(closure) losses.append(loss.data[0]) if args.progress: progress_bar(batch_idx, len(trainloader), 'Loss: %.3f' % (loss.data[0])) return losses def test(epoch): global best_acc net.eval() test_loss = 0 correct = 0 total = 0 accuracies = [] for batch_idx, (inputs, targets) in enumerate(testloader): if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() inputs, targets = Variable(inputs, volatile=True), Variable(targets) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += targets.size(0) correct += predicted.eq(targets.data).cpu().sum() acc = 100.*correct/total if args.progress: progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), acc, correct, total)) # Save checkpoint. if acc > best_acc: print('Saving..') state = { 'net': net.module if use_cuda else net, 'acc': acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, './checkpoint/{}'.format(ckpt_tag)) best_acc = acc accuracies.append(acc) return accuracies # Create folders and files to save metrics if not os.path.isdir('results'): os.mkdir('results') if args.opt == 'SGD': if not os.path.isdir('results/sgd'): os.mkdir('results/sgd') tag = 'results/sgd/ResNet_lr_{}'.format(args.lr) if args.opt == 'SVRG': if not os.path.isdir('results/svrg'): os.mkdir('results/svrg') tag = 'results/svrg/ResNet_lr_{}_T_{}_l2_5e-4'.format(args.lr, args.T) if args.opt == 'HALP': if not os.path.isdir('results/halp'): os.mkdir('results/halp') tag = 'results/halp/ResNet_lr_{}_T{}_mu_{}_b_{}_l2_5e-4'.format(args.lr, args.T, args.mu, args.bits) training_file = '{}_train.csv'.format(tag) test_file = '{}_test.csv'.format(tag) # Remove file since we append to it over training if start_epoch == 0: try: os.remove(training_file) os.remove(test_file) except OSError: pass # Do training for epoch in range(start_epoch, start_epoch+args.num_epochs): training_losses = train(epoch) test_accuracies = test(epoch) # Save metrics with open(training_file, 'a+') as csvfile: csvwriter = csv.writer(csvfile) for row in training_losses: csvwriter.writerow([row]) with open(test_file, 'a+') as csvfile: csvwriter = csv.writer(csvfile) csvwriter.writerow(test_accuracies)
torchhalp-master
examples/cifar10/main.py
import math import torch # Modified from # https://github.com/aaron-xichen/pytorch-playground/blob/master/utee/quant.py def quantize_(input, scale_factor, bits, biased=False): assert bits >= 1, bits bound = math.pow(2.0, bits-1) min_val = - bound max_val = bound - 1 if biased: adj_val = 0.5 else: # Generate tensor of random values from [0,1] adj_val = torch.Tensor(input.size()).type(input.type()).uniform_() rounded = input.div_(scale_factor).add_(adj_val).floor_() clipped_value = rounded.clamp_(min_val, max_val) clipped_value *= scale_factor def saturate_(input, scale_factor, bits): bound = math.pow(2.0, bits-1) min_val = - bound * scale_factor max_val = (bound-1) * scale_factor input.clamp_(min_val, max_val) # Monkey patch torch.Tensor torch.Tensor.quantize_ = quantize_ torch.Tensor.saturate_ = saturate_ torch.cuda.FloatTensor.quantize_ = quantize_ torch.cuda.FloatTensor.saturate_ = saturate_
torchhalp-master
torchhalp/quantize.py
torchhalp-master
torchhalp/__init__.py
from torch.optim.optimizer import Optimizer, required import torch from torch.autograd import Variable import copy, logging class SVRG(torch.optim.SGD): """Implements stochastic variance reduction gradient descent. Args: params (iterable): iterable of parameters to optimize lr (float): learning rate T (int): number of iterations between the step to take the full grad/save w data_loader (DataLoader): dataloader to use to load training data weight_decay (float, optional): weight decay (L2 penalty) (default: 0) momentum (float, optional): momentum (default: 0) opt (torch.optim): optimizer to baseclass (default: SGD) """ def __init__(self, params, lr=required, T=required, data_loader=required, weight_decay=0.0, momentum=0.0, opt=torch.optim.SGD): defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum) # Choose the baseclass dynamically. self.__class__ = type(self.__class__.__name__, (opt,object), dict(self.__class__.__dict__)) logging.info("Using base optimizer {} in SVRG".format(opt)) super(self.__class__, self).__init__(params, **defaults) if len(self.param_groups) != 1: raise ValueError("SVRG doesn't support per-parameter options " "(parameter groups)") params = self.param_groups[0]['params'] self._params = params self._curr_w = [p.data for p in params] self._prev_w = [p.data.clone() for p in params] # Gradients are lazily allocated and don't exist yet. However, gradients are # the same shape as the weights so we can still allocate buffers here self._curr_grad = [p.data.clone() for p in params] self._prev_grad = [p.data.clone() for p in params] self._full_grad = None self.data_loader = data_loader self.state['t_iters'] = T self.T = T # Needed to trigger full gradient logging.info("Data Loader has {} with batch {}".format(len(self.data_loader), self.data_loader.batch_size)) def __setstate__(self, state): super(self.__class__, self).__setstate__(state) def _zero_grad(self): for p in self._params: if p.grad is not None: p.grad.detach() p.grad.zero_() def _set_weights_grad(self,ws,gs): for idx, p in enumerate(self._params): if ws is not None: p.data = ws[idx] if gs is not None and p.grad is not None: p.grad.data = gs[idx] if p.grad is not None: assert (p.grad.data.data_ptr() == gs[idx].data_ptr()) def step(self, closure): """Performs a single optimization step. Arguments: closure (callable): A closure that reevaluates the model and returns the loss. """ assert len(self.param_groups) == 1 # Calculate full gradient if self.state['t_iters'] == self.T: # Setup the full grad # Reset gradients before accumulating them self._set_weights_grad(None, self._full_grad) self._zero_grad() # Accumulate gradients for i, (data, target) in enumerate(self.data_loader): closure(data, target) # Adjust summed gradients by num_iterations accumulated over # assert(n_iterations == len(self.data_loader)) for p in self._params: if p.grad is not None: p.grad.data /= len(self.data_loader) if self._full_grad is None: self._full_grad = [p.grad.data.clone() for p in self._params] # Copy w to prev_w for p, p0 in zip(self._curr_w, self._prev_w): p0.copy_(p) # Reset t self.state['t_iters'] = 0 # Setup the previous grad self._set_weights_grad(self._prev_w, self._prev_grad) self._zero_grad() closure() # Calculate the current grad. self._set_weights_grad(self._curr_w, self._curr_grad) self._zero_grad() loss = closure() # Adjust the current gradient using the previous gradient and the full gradient. # We have normalized so that these are all comparable. for p, d_p0, fg in zip(self._params, self._prev_grad, self._full_grad): # Adjust gradient in place if p.grad is not None: p.grad.data -= (d_p0 - fg) # Call optimizer update step super(self.__class__, self).step() self.state['t_iters'] += 1 return loss
torchhalp-master
torchhalp/optim/svrg.py
from torch.optim.optimizer import Optimizer, required import torch from torch.autograd import Variable import copy, logging import math import torchhalp.quantize class HALP(torch.optim.SGD): """Implements high-accuracy low-precision algorithm. Args: params (iterable): iterable of parameters to optimize lr (float): learning rate T (int): number of iterations between the step to take the full grad/save w data_loader (DataLoader): dataloader to use to load training data weight_decay (float, optional): weight decay (L2 penalty) (default: 0) momentum (float, optional): momentum (default: 0) opt (torch.optim): optimizer to baseclass (default: SGD) mu (float, optional): mu hyperparameter for HALP algorithm (default: 0.1) bits (int, optional): number of bits to use for offset (default: 8) biased (bool, optional): type of rounding to use for quantization (default: unbiased) """ def __init__(self, params, lr=required, T=required, data_loader=required, weight_decay=0.0, momentum=0.0, opt=torch.optim.SGD, mu=1e-1, bits=8, biased=False): defaults = dict(lr=lr, weight_decay=weight_decay, momentum=momentum) # Choose the baseclass dynamically self.__class__ = type(self.__class__.__name__, (opt,object), dict(self.__class__.__dict__)) logging.info("Using base optimizer {} in HALP".format(opt)) super(self.__class__, self).__init__(params, **defaults) if len(self.param_groups) != 1: raise ValueError("HALP doesn't support per-parameter options " "(parameter groups)") if bits <= 1: raise ValueError("HALP requires > 1 bit.") params = self.param_groups[0]['params'] self._params = params self._curr_w = [p.data for p in params] self._z = [p.data.clone() for p in params] self._prev_w = [p.data.clone() for p in params] # Gradients are lazily allocated and don't exist yet. However, gradients are # the same shape as the weights so we can still allocate buffers here self._curr_grad = [p.data.clone() for p in params] self._prev_grad = [p.data.clone() for p in params] self._full_grad = None self.data_loader = data_loader self.state['t_iters'] = T self.T = T # Needed to trigger full gradient logging.info("Data Loader has {} with batch {}".format(len(self.data_loader), self.data_loader.batch_size)) # Separate scale factor for each layer self._scale_factors = [1 for p in params] self._bits = bits self._mu = mu self._biased = biased def __setstate__(self, state): super(self.__class__, self).__setstate__(state) def _zero_grad(self): for p in self._params: if p.grad is not None: p.grad.detach() p.grad.zero_() def _set_weights_grad(self,ws,gs): """ Set the pointers in params to ws and gs for p.data and p.grad.data respectively. This allows us to avoid copying data in and out of parameters. """ for idx, p in enumerate(self._params): if ws is not None: p.data = ws[idx] if gs is not None and p.grad is not None: p.grad.data = gs[idx] assert (p.grad.data.data_ptr() == gs[idx].data_ptr()) def _rescale(self): """Update scale factors for z.""" div_factor = math.pow(2.0, self._bits-1) - 1 for i, fg in enumerate(self._full_grad): self._scale_factors[i] = fg.norm() / (self._mu * div_factor) def _reset_z(self): """Set z to zero.""" for p in self._z: p.fill_(0) def _recenter(self, ws): """Add the values in self._z to ws.""" for w, z in zip(ws, self._z): w.add_(z) def _compute_full_grad(self, closure): """ Call the closure function to compute the gradient over the entire dataset, and accumulate the gradient into self._full_grad. """ # Set up pointers for the full gradient # Reset gradients before accumulating them self._set_weights_grad(self._prev_w, self._full_grad) self._zero_grad() # Accumulate gradients for i, (data, target) in enumerate(self.data_loader): closure(data, target) # Adjust summed gradients by num_iterations accumulated over # Assumes loss size average argument is true for p in self._params: if p.grad is not None: p.grad.data /= len(self.data_loader) # Since p.grad is dynamically allocated, the pointers to the gradients won't # be set before backward is called the first time if self._full_grad is None: self._full_grad = [p.grad.data.clone() for p in self._params] def step(self, closure): """Performs a single optimization step. Arguments: closure (callable): A closure that reevaluates the model and returns the loss. """ assert len(self.param_groups) == 1 # Calculate full gradient if self.state['t_iters'] == self.T: self._compute_full_grad(closure) self._rescale() self._reset_z() # Reset t self.state['t_iters'] = 0 # Calculate gradient of prev_w self._set_weights_grad(self._prev_w, self._prev_grad) self._zero_grad() closure() # Calculate the current curr_w (which equals prev_w + z) self._set_weights_grad(self._curr_w, self._curr_grad) self._zero_grad() loss = closure() # Adjust the current gradient using the previous gradient and the full gradient. for i, p in enumerate(self._params): # Adjust gradient in-place if p.grad is not None: # gradient_update = curr_grad - prev_grad + full_grad p.grad.data -= (self._prev_grad[i] - self._full_grad[i]) # Set the param pointers to z to update z with step self._set_weights_grad(self._z, None) # Call optimizer update step super(self.__class__, self).step() # Quantize z in place for p, sf in zip(self._z, self._scale_factors): p.quantize_(sf, self._bits, biased=self._biased) # Increment "inner loop" counter self.state['t_iters'] += 1 # Set curr_w to prev_w + z for p, p0 in zip(self._curr_w, self._prev_w): p.copy_(p0) self._recenter(self._curr_w) # Update param pointers to curr_w for user access self._set_weights_grad(self._curr_w, self._curr_grad) # Update prev_w to prev_w + z after the "inner loop" has finished if self.state['t_iters'] == self.T: self._recenter(self._prev_w) return loss
torchhalp-master
torchhalp/optim/halp.py
from svrg import SVRG from halp import HALP
torchhalp-master
torchhalp/optim/__init__.py
import torch import numpy as np import os, sys from sklearn.manifold import Isomap import utils.distortions as dis import utils.load_graph as load_graph module_path = os.path.abspath(os.path.join('./pytorch')) if module_path not in sys.path: sys.path.append(module_path) import graph_helpers as gh from hyperbolic_models import ProductEmbedding from hyperbolic_parameter import RParameter def unwrap(x): if isinstance(x, list) : return [unwrap(u) for u in x] if isinstance(x, tuple): return tuple([unwrap(u) for u in list(x)]) return x.detach().cpu().numpy() def dist_e(u, v): return np.linalg.norm(u-v) def dist_row(x, i): m = x.shape[0] dx = np.zeros([m]) for j in range(m): dx[j] = dist_e(x[i,:], x[j,:]) return dx def dist_matrix(x): m = x.shape[0] rets = np.zeros([m,m]) for i in range(m): rets[i,:] = dist_row(x, i) #print(rets) return rets # load an embedding and a graph and do isomap def run_isomap(emb_name, dataset, r): #emb_name = 'isomap_test/smalltree.E10-1.lr10.emb.final' #dataset = 'data/edges/smalltree.edges' dataset = 'data/edges/' + dataset + '.edges' m = torch.load(emb_name) emb_orig = unwrap(m.E[0].w) # perform the isomap dim reduction embedding = Isomap(n_components=r) emb_transformed = embedding.fit_transform(emb_orig) #print(emb_transformed.shape) num_workers = 1 scale = 1 # compute d_avg G = load_graph.load_graph(dataset) n = G.order() H = gh.build_distance(G, scale, num_workers=int(num_workers) if num_workers is not None else 16) #Hrec = unwrap(m.dist_matrix()) Hrec = dist_matrix(emb_transformed) mc, me, avg_dist, nan_elements = dis.distortion(H, Hrec, n, num_workers) wc_dist = me*mc print("d_avg = ", avg_dist) return avg_dist
hyperbolics-master
iso_comp.py
import glob, os, sys import pandas as pd module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) import iso_comp if __name__ == '__main__': run_name = sys.argv[1] rows = [] for f in sorted(glob.glob(run_name + '/*.emb.final')): line = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0] + ' ' dataset = os.path.splitext(os.path.splitext(line)[0])[0] iso_comp.run_isomap(f, dataset, 2)
hyperbolics-master
run_isomaps.py
import matplotlib as mpl import matplotlib.pyplot as plt import requests import numpy as np import json from scipy.sparse import csr_matrix import networkx as nx from collections import defaultdict import os def make_edge_set(): return ([],([],[])) def add_edge(e, i,j): (v,(row,col)) = e row.append(i) col.append(j) v.append(1) # Build dicts based on properties in Wikidata. Rel_toPIDs ={'airline_hub':'P113', 'lyrics_by':'P676', 'place_of_publication':'P291'} numb_success = 0 failed_requests = [] json_errors = [] empty_results = [] dense_rels = [] for key, val in Rel_toPIDs.items(): curr_query = '''PREFIX wikibase: <http://wikiba.se/ontology#> PREFIX wd: <http://www.wikidata.org/entity/> PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> SELECT ?item ?instance_of WHERE { SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". } OPTIONAL { ?item wdt:%s ?instance_of. } } '''%(val) url = 'https://query.wikidata.org/bigdata/namespace/wdq/sparql' curr_data = requests.get(url, params={'query': curr_query, 'format': 'json'}) print(curr_data.status_code) if curr_data.status_code != 200: print("Failed rel from HTTPS:"+str(key)) failed_requests.append(key) else: try: curr_data = curr_data.json(strict=False) # Write the edgelists and dicts for the rel. rel = key QtoIDs = dict() IDtoQs = dict() e = make_edge_set() counter = 0 triple_count = 0 if 'instance_of' in (curr_data['results']['bindings'][0]): for triple in curr_data['results']['bindings']: instance_of = triple['instance_of']['value'].split("/")[-1] item = triple['item']['value'].split("/")[-1] if item not in QtoIDs.keys(): QtoIDs[item] = counter IDtoQs[counter] = item counter+=1 if instance_of not in QtoIDs.keys(): QtoIDs[instance_of] = counter IDtoQs[counter] = instance_of add_edge(e, QtoIDs[item], QtoIDs[instance_of]) add_edge(e, QtoIDs[instance_of], QtoIDs[item]) triple_count+=1 # Take the largest connected component for the relationship. n = len(QtoIDs) X = csr_matrix(e, shape=(n, n)) G = nx.from_scipy_sparse_matrix(X) Gc = max(nx.connected_component_subgraphs(G), key=len) print(rel) print("Total number of unique entities: "+str(G.number_of_nodes())) print("Total number of nodes in lcc: "+str(Gc.number_of_nodes())) Gc_final = nx.convert_node_labels_to_integers(Gc, ordering="decreasing degree", label_attribute="old_label") if (Gc.number_of_edges()>100*Gc.number_of_nodes()): dense_rels.append(key) #Create the dict for old-id <-> new-id matching for QIDs. RefDict = Gc_final.node IDtoQs_f = dict() QtoIDs_f = dict() for new_idx in RefDict.keys(): old_idx = RefDict[new_idx]['old_label'] curr_Q = IDtoQs[old_idx] IDtoQs_f[new_idx] = curr_Q QtoIDs_f[curr_Q] = new_idx #Write the final edgelist and dump IDstoQs_f dict. nx.write_edgelist(Gc_final, "data/wikidata_edges/"+str(rel)+"_lcc.edges",data=False) json.dump(IDtoQs_f, open("data/wikidata_edges/"+str(rel)+"_IDstoQs.txt","w")) else: empty_results.append(key) except json.decoder.JSONDecodeError: json_errors.append(key) print("Failed HTTP requests:") print(failed_requests) print("JSONDecodeErrors") print(json_errors) print("Empty rels") print(empty_results) print("Dense rels") print(dense_rels)
hyperbolics-master
products/wikidata_relextract.py
import logging, argh import os, sys import networkx as nx import numpy as np # root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # sys.path.insert(0, root_dir) import utils.load_graph as load_graph import utils.vis as vis import utils.distortions as dis import pytorch.graph_helpers as gh def Ka(D, m, b, c, a): if a == m: return 0.0 k = D[a][m]**2 + D[b][c]**2/4.0 - (D[a][b]**2 + D[a][c]**2)/2.0 k /= 2*D[a][m] # print(f'{m}; {b} {c}; {a}: {k}') return k def K(D, n, m, b, c): ks = [Ka(D, m, b, c, a) for a in range(n)] return np.mean(ks) def estimate_curvature(G, D, n): for m in range(n): ks = [] edges = list(G.edges(m)) for i in range(len(edges)): for j in range(b,len(edges)): b = edges[i] c = edges[j] ks.append(K(D, n, b, c)) # TODO turn ks into a cdf return None # TODO: what is the correct normalization wrt n? e.g. make sure it works for d-ary trees def sample_G(G, D, n, n_samples=100): samples = [] _cnt = 0; while _cnt < n_samples: m = np.random.randint(0, n) edges = list(G.edges(m)) # print(f"edges of {m}: {edges}") i = np.random.randint(0, len(edges)) j = np.random.randint(0, len(edges)) b = edges[i][1] c = edges[j][1] # TODO special case for b=c? if b==c: continue a = np.random.randint(0, n) k = Ka(D, m, b, c, a) samples.append(k) # print(k) _cnt += 1 return np.array(samples) def sample_components(n1=5, n2=5): """ Sample dot products of tangent vectors """ a1 = np.random.chisquare(n1-1) # ||x_1||^2 b1 = np.random.chisquare(n1-1) # ||y_1||^2 c1 = 2*np.random.beta((n1-1)/2, (n1-1)/2) - 1 # <x_1,y_1> normalized c1 = a1*b1*c1**2 # <x_1,y_1>^2 a2 = np.random.chisquare(n2-1) # ||x_1||^2 b2 = np.random.chisquare(n2-1) # ||y_1||^2 c2 = 2*np.random.beta((n2-1)/2, (n2-1)/2) - 1 c2 = a2*b2*c2**2 alpha1 = a1*b1 - c1 alpha2 = a2*b2 - c2 beta = a1*b2 + a2*b1 denom = alpha1+alpha2+beta return alpha1/denom, alpha2/denom def sample_K(m1, m2, n1=5, n2=5, n_samples=100): w1s = [] w2s = [] for _ in range(n_samples): w2, w1 = sample_components(n1, n2) w1s.append(w1) w2s.append(w2) # match moments of K1 * w1 + K2 * w2 w1s = np.array(w1s) w2s = np.array(w2s) coefK1 = np.mean(w1s) coefK2 = np.mean(w2s) coefK1K1 = np.mean(w1s**2) # coefficient of K1^2 coefK2K2 = np.mean(w2s**2) coefK1K2 = np.mean(2*w1s*w2s) print("coefs", coefK1, coefK2, coefK1K1, coefK1K2, coefK2K2) # turn into quadratic a K1^2 + b K1 + c = 0 # a = coefK1K1 - coefK1K2*coefK1/coefK2 + coefK2K2*coefK1**2/coefK2**2 # b = coefK1K2*m1/coefK2 - 2*coefK2K2*m1*coefK1/coefK2 # c = coefK2K2*m1**2/coefK2**2 - m2 a = coefK2**2*coefK1K1 - coefK2*coefK1K2*coefK1 + coefK2K2*coefK1**2 b = coefK2 * coefK1K2*m1 - coefK2 * 2*coefK2K2*m1*coefK1 c = coefK2K2*m1**2 - coefK2**2 * m2 print("quadratic", a, b, c) K1_soln1 = (-b + np.sqrt(b**2-4*a*c))/(2*a) K1_soln2 = (-b - np.sqrt(b**2-4*a*c))/(2*a) K2_soln1 = (m1 - coefK1*K1_soln1)/coefK2 K2_soln2 = (m1 - coefK1*K1_soln2)/coefK2 return ((K1_soln1, K2_soln1), (K1_soln2, K2_soln2)) # def match_moments(coefK1, coefK2, coefK12, coefK22, coefK1K2, m1, m2): # @argh.arg('--dataset') def estimate(dataset='data/edges/smalltree.edges', n_samples=100000): G = load_graph.load_graph(dataset) n = G.order() GM = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) num_workers = 16 D = gh.build_distance(G, 1.0, num_workers) # load the whole matrix # n_samples = 100000 n1 = 5 n2 = 5 samples = sample_G(G, D, n, n_samples) # coefs = sample_K(n1, n2, n_samples) print("stats", np.mean(samples), np.std(samples)**2, np.mean(samples**2)) m1 = np.mean(samples) m2 = np.mean(samples**2) solns = sample_K(m1, m2, n1, n2, n_samples) print(solns) if __name__ == '__main__': parser = argh.ArghParser() parser.set_default_command(estimate) parser.dispatch()
hyperbolics-master
products/curv.py
import numpy as np
hyperbolics-master
analysis/load_emb.py
# Baselines using ancestor encoding: import networkx as nx import os, sys import subprocess edges_dir = '../data/edges/' all_files = os.listdir(edges_dir) out = open('./spanning_forest_avgs.txt', 'w') for file in all_files: if os.path.isdir(edges_dir+file): continue print("Working on ", edges_dir+file) G = nx.read_edgelist(edges_dir+file, data=False) # get the forest: G_comps = nx.connected_component_subgraphs(G) n_comps = 0 avg_dists = [] for comp in G_comps: n_comps += 1 comp = nx.convert_node_labels_to_integers(comp) comp_bfs = nx.bfs_tree(comp, 0) dists = nx.shortest_path_length(comp_bfs, 0) tot_dists = sum(dists.values()) avg_dist = tot_dists/comp_bfs.order() avg_dists.append(avg_dist) # that's it for this graph: out.write(file + " ") out.write(str(sum(avg_dists)/n_comps) + "\n") out.write(str(avg_dists) + "\n") out.close()
hyperbolics-master
utils/baselines.py
# library of useful hyperbolic functions import numpy as np # Reflection (circle inversion of x through orthogonal circle centered at a) def isometric_transform(a, x): r2 = np.linalg.norm(a)**2 - (1.0) return r2/np.linalg.norm(x - a)**2 * (x-a) + a # Inversion taking mu to origin def reflect_at_zero(mu,x): a = mu/np.linalg.norm(mu)**2 return isometric_transform(a,x) # Why isn't this in numpy? def acosh(x): return np.log(x + np.sqrt(x**2-1)) # Hyperbolic distance def dist(u,v): z = 2 * np.linalg.norm(u-v)**2 uu = 1. + z/((1-np.linalg.norm(u)**2)*(1-np.linalg.norm(v)**2)) return acosh(uu) # Hyperbolic distance from 0 def hyp_dist_origin(x): return np.log((1+np.linalg.norm(x))/(1-np.linalg.norm(x))) # Scalar multiplication w*x def hyp_scale(w, x): if w == 1: return x else: x_dist = (1+np.linalg.norm(x))/(1-np.linalg.norm(x)) alpha = 1-2/(1+x_dist**w) alpha *= 1/np.linalg.norm(x) return alpha*x # Convex combination (1-w)*x+w*y def hyp_conv_comb(w, x, y): # circle inversion sending x to 0 (xinv, yinv) = (reflect_at_zero(x, x), reflect_at_zero(x, y)) # scale by w pinv = hyp_scale(w, yinv) # reflect back return reflect_at_zero(x, pinv) # Weighted sum w1*x + w2*y def hyp_weighted_sum(w1, w2, x, y): p = hyp_conv_comb(w2 / (w1 + w2), x, y) return hyp_scale(w1 + w2, p)
hyperbolics-master
utils/hyp_functions.py
# This implements the algorithm for finding a good tree embedding from import networkx as nx import scipy.sparse.csgraph as csg import numpy as np import time, argh import data_prep as dp import distortions as dis import load_dist as ld import pickle from joblib import Parallel, delayed import multiprocessing # get the biggest Gromov product in num rows def biggest_row(metric,start,num, r, n): p,q,curr = 0,0,-1 for a in range(start, min(start+num, n)-1): if metric[a] >= 0: for b in range(n): if metric[b] >= 0 and a != b: gpr = gp(dists,a,b,r) if gpr >= curr: p,q,curr = (a,b,gpr) return (p,q,curr) # get a node from G def first_node(G): for node in G.nodes(): return node # helper to run Dijkstra def compute_row(i, adj_mat, uw): return csg.dijkstra(adj_mat, indices=[i], unweighted=uw, directed=False) # the Gromov product distance def gp(dists,x,y,z): dxy = dists[x,y] dxz = dists[x,z] dyz = dists[y,z] return 1/2*(float(dxz+dyz-dxy)) # iterative construction. Requires that nodes are 0...n-1 def construct_tree_i(metric, r, next_label, n): # build list of nodes to remove and re-attach, until we get down to 1 node... removal, partner = np.zeros(n-2), np.zeros(n-2); removal*=-1; metric_shared = np.array(metric) metric_shared[r] = -1 with Parallel(n_jobs=-1) as parallel: idx = 0 while sum(metric_shared>=0)>1: t = time.time() num=100 res = parallel(delayed(biggest_row)(metric_shared, idx*num, num, r, n) for idx in range(int(np.ceil(n/num)))) biggest_rows = np.vstack(res) biggest = np.argmax(biggest_rows[:,2]) p = int(biggest_rows[biggest,0]) q = int(biggest_rows[biggest,1]) if dists[p,r] > dists[q,r]: p,q = q,p removal[idx] = q partner[idx] = p metric_shared[q] = -1 idx += 1 #print("Elapsed = ", time.time()-t) # put in the first node: v = np.argmax(metric_shared) T = nx.Graph() T.add_edge(int(v),int(r),weight=dists[v,r]) idx -= 1 # place the remaining nodes one by one: while idx >= 0: q,p = int(removal[idx]), int(partner[idx]) qr_p = gp(dists,q,r,p) pr_q = gp(dists,p,r,q) pq_r = gp(dists,p,q,r) # get the new weight for the Steiner node and add it in for node in T.neighbors(p): new_weight = max(0,T[p][node]["weight"]-qr_p) T.add_edge(next_label, node, weight=new_weight) # reattach p and q as leaves T.remove_node(p) T.add_edge(next_label, p, weight=qr_p) T.add_edge(q, next_label, weight=pr_q) next_label += 1 idx -= 1 return T @argh.arg("--ds", help="Dataset") def steiner_tree(ds="1"): ds = int(ds) G = dp.load_graph(ds) n = G.order() print("# of vertices is ", n) global dists dists = ld.load_dist_mat("dists/dist_mat"+str(ds)+".p") nv = np.zeros(n) for i in range(n): nv[i] = 1 metric = list(G.nodes()) # root: r = first_node(G) print("Building trees") t = time.time() G_tree = construct_tree_i(metric, r, n, n) print("Done. Elapsed time = ", time.time()-t) n_Steiner = G_tree.order() adj_mat_tree = nx.to_scipy_sparse_matrix(G_tree.to_undirected(), range(n_Steiner)) dist_mat_S_tree = Parallel(n_jobs=20)(delayed(compute_row)(i,adj_mat_tree, False) for i in range(n_Steiner)) dist_mat_S_tree = np.vstack(dist_mat_S_tree) dist_mat_S_tree_n = dist_mat_S_tree[0:n, 0:n] print("Measuring Distortion") t = time.time() t_d_max, t_d_avg, bad = dis.distortion(dists, dist_mat_S_tree_n, n, 2) print("Steiner tree distortion = ", t_d_max, t_d_avg) MAP_S = dis.map_score(dists, dist_mat_S_tree_n, n, 2) print("Steiner tree MAP = ", MAP_S) file = "./trees/tree" + str(ds) + ".p" pickle.dump(G_tree, open(file,"wb")) print("Elapsed time = ", time.time()-t) return G_tree if __name__ == '__main__': _parser = argh.ArghParser() _parser.add_commands([steiner_tree]) _parser.dispatch()
hyperbolics-master
utils/steiner.py
hyperbolics-master
utils/__init__.py
# visualization functions import numpy as np import networkx as nx import os, sys from itertools import product, combinations sys.path.append(os.path.join(os.path.dirname(__file__), '../')) import utils.hyp_functions as hf import torch import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.patches import Circle, Wedge, Polygon from matplotlib.collections import PatchCollection from matplotlib import patches from mpl_toolkits.mplot3d import Axes3D #matplotlib.verbose.set_level("helpful") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # indexing because subplot isn't smart: def get_ax(num_hypers, num_spheres, ax, emb, is_sphere=0): idx = 1 if is_sphere and num_hypers > 0 else 0 if num_hypers > 0 and num_spheres > 0 and num_hypers + num_spheres > 2: if len(ax) > np.maximum(num_hypers, num_spheres): # this means we're in 3d ax_this = ax[idx * np.maximum(num_hypers, num_spheres) + emb] else: ax_this = ax[idx, emb] elif num_hypers == 1 and num_spheres == 1: ax_this = ax[idx] elif num_hypers > 1 or num_spheres > 1: ax_this = ax[emb] else: ax_this = ax return ax_this # convert hyperboloid points (3 dimensions) to Poincare points (2 dimension): def hyperboloid_to_poincare(a): x = np.zeros([2]) for i in range(1, 3): x[i-1] = a[i] / (1.0 + a[0]) return x # collinearity check. if collinear, draw a line and don't attempt curve def collinear(a,b,c): if np.abs(c[0] - b[0]) < .1**4 and np.abs(c[0]-a[0]) < .1**4: return True elif np.abs(c[0] - b[0]) < .1**4 or np.abs(c[0]-a[0]) < .1**4: return False slope1 = np.abs((c[1]-b[1])/(c[0]-b[0])) slope2 = np.abs((c[1]-a[1])/(c[0]-a[0])) if np.abs(slope1 - slope2) < .1**4: return True return False # todo: speed this code up def get_circle_center(a,b,c): m = np.zeros([2,2]) m[0,0] = 2*(c[0]-a[0]) m[0,1] = 2*(c[1]-a[1]) m[1,0] = 2*(c[0]-b[0]) m[1,1] = 2*(c[1]-b[1]) v = np.zeros([2,1]) v[0] = c[0]**2 + c[1]**2 - a[0]**2 - a[1]**2 v[1] = c[0]**2 + c[1]**2 - b[0]**2 - b[1]**2 return (np.linalg.inv(m)@v).flatten() # distance for Euclidean coordinates def euclid_dist(a,b): return np.linalg.norm(a-b) # angles for arc def get_angles(center, a): if abs(a[0] - center[0]) < 0.1**3: if a[1] > center[1] : theta = 90 else: theta = 270 else: theta = np.rad2deg(np.arctan((a[1]-center[1])/(a[0]-center[0]))) # quadrant 3: if (a[0]-center[0]) < 0 and (a[1]-center[1]) < 0: theta += 180 # quadrant 2 if (a[0]-center[0]) < 0 and (a[1]-center[1]) >= 0: theta -= 180 # always use non-negative angles if theta < 0: theta += 360 return theta # draw hyperbolic line: def draw_geodesic(a, b, c, ax, node1=None, node2=None, verbose=False): if verbose: print("Geodesic points are ", a, "\n", b, "\n", c, "\n") is_collinear = False if collinear(a,b,c): is_collinear = True else: cent = get_circle_center(a,b,c) radius = euclid_dist(a, cent) t1 = get_angles(cent, b) t2 = get_angles(cent, a) if verbose: print("\ncenter at ", cent) print("radius is ", radius) print("angles are ", t1, " ", t2) print("dist(a,center) = ", euclid_dist(cent,a)) print("dist(b,center) = ", euclid_dist(cent,b)) print("dist(c,center) = ", euclid_dist(cent,c)) # if the angle is really tiny, a line is a good approximation if is_collinear or (np.abs(t1-t2) < 2): coordsA = "data" coordsB = "data" e = patches.ConnectionPatch(a, b, coordsA, coordsB, linewidth=2) else: if verbose: print("angles are theta_1 = ", t1, " theta_2 = ", t2) if (t2>t1 and t2-t1<180) or (t1>t2 and t1-t2>=180): e = patches.Arc((cent[0], cent[1]), 2*radius, 2*radius, theta1=t1, theta2=t2, linewidth=2, fill=False, zorder=2) else: e = patches.Arc((cent[0], cent[1]), 2*radius, 2*radius, theta1=t2, theta2=t1, linewidth=2, fill=False, zorder=2) ax.add_patch(e) # to draw geodesic between a,b, we need # a third point. easy with inversion def get_third_point(a,b): b0 = hf.reflect_at_zero(a,b) c0 = b0/2.0 c = hf.reflect_at_zero(a,c0) return c def draw_geodesic_on_circle(a, b, ax): lp = 5 # number of points for the mesh d = np.array(b) - np.array(a) vals = np.zeros([3, lp]) for i in range(lp): for j in range(3): vals[j,i] = a[j] + d[j]*(i/(lp-1)) # let's project back to sphere: nrm = vals[0,i]**2 + vals[1,i]**2 + vals[2,i]**2 for j in range(3): vals[j,i] /= np.sqrt(nrm) # draw the geodesic: for i in range(lp-1): ax.plot([vals[0,i], vals[0,i+1]], [vals[1,i], vals[1,i+1]], zs=[vals[2,i], vals[2,i+1]], color='r') # for circle stuff let's just draw the points def draw_points_on_circle(a, node, ax): ax.plot(a[0], a[1], "o", markersize=16) ax.text(a[0] * (1 + 0.05), a[1] * (1 + 0.05) , node, fontsize=12) def draw_points_on_sphere(a, node, ax): ax.scatter(a[0], a[1], a[2], c='b', marker='o', s=32) ax.text(a[0] * (1 + 0.05), a[1] * (1 + 0.05) , a[2] * (1 + 0.05), node, fontsize=12) def draw_points_hyperbolic(a, node, ax): ax.plot(a[0], a[1], "o") ax.text(a[0] * (1 + 0.05), a[1] * (1 + 0.05) , node, fontsize=12) # draw the embedding for a graph # G is the graph, m is the PyTorch hyperbolic model def draw_graph(G, m, fig, ax): num_spheres = np.minimum(len(m.S), 5) num_hypers = np.minimum(len(m.H), 5) sdim = 0 if len(m.S) == 0 else len((m.S[0]).w[0]) for emb in range(num_spheres): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=1) if sdim == 3: spherical_setup_3d(fig, ax_this) else: spherical_setup(fig, ax_this) for emb in range(num_hypers): ax_this_hyp = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=0) hyperbolic_setup(fig, ax_this_hyp) # todo: directly read edge list from csr format Gr = nx.from_scipy_sparse_matrix(G) for edge in Gr.edges(): idx = torch.LongTensor([edge[0], edge[1]]).to(device) for emb in range(num_hypers): a = hyperboloid_to_poincare(((torch.index_select(m.H[emb].w, 0, idx[0])).clone()).detach().cpu().numpy()[0]) b = hyperboloid_to_poincare(((torch.index_select(m.H[emb].w, 0, idx[1])).clone()).detach().cpu().numpy()[0]) ax_this_hyp = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=0) c = get_third_point(a,b) draw_geodesic(a,b,c,ax_this_hyp, edge[0], edge[1]) # let's draw the edges on the sphere; these are geodesics if sdim == 3: for emb in range(num_spheres): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=1) a = ((torch.index_select(m.S[emb].w, 0, idx[0])).clone()).detach().cpu().numpy()[0] b = ((torch.index_select(m.S[emb].w, 0, idx[1])).clone()).detach().cpu().numpy()[0] draw_geodesic_on_circle(a, b, ax_this) for node in Gr.nodes(): idx = torch.LongTensor([int(node)]).to(device) for emb in range(num_spheres): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=1) v = ((torch.index_select(m.S[emb].w, 0, idx)).clone()).detach().cpu().numpy()[0] if sdim == 3: draw_points_on_sphere(v, node, ax_this) else: draw_points_on_circle(v, node, ax_this) for emb in range(num_hypers): ax_this_hyp = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=0) a_hyp = (torch.index_select(m.H[emb].w, 0, idx).clone()).detach().cpu().numpy()[0] a = hyperboloid_to_poincare(a_hyp) draw_points_hyperbolic(a, node, ax_this_hyp) def setup_plot(m, name=None, draw_circle=False): # create plot num_spheres = np.minimum(len(m.S), 5) num_hypers = np.minimum(len(m.H), 5) tot_rows = 2 if num_spheres > 0 and num_hypers > 0 else 1 wid = np.maximum(num_spheres, num_hypers) if num_spheres + num_hypers > 1: fig, axes = plt.subplots(tot_rows, wid, sharey=True, figsize=(wid*10, tot_rows*10)) else: fig, axes = plt.subplots(figsize = (10, 10)) ax = axes matplotlib.rcParams['animation.ffmpeg_args'] = '-report' writer = animation.FFMpegFileWriter(fps=10, metadata=dict(artist='HazyResearch'))#, bitrate=1800) if name is None: name = 'ProductVisualizations.mp4' else: name += '.mp4' writer.setup(fig, name, dpi=108) sdim = 0 if len(m.S) == 0 else len((m.S[0]).w[0]) # need these to all be 3D if sdim == 3: for emb in range(num_spheres): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=1) ax_this.remove() if num_hypers > 0: ax_new = fig.add_subplot(tot_rows, wid, wid+emb+1, projection='3d') elif num_spheres > 1: ax_new = fig.add_subplot(tot_rows, wid, 1+emb, projection='3d') else: ax_new = fig.add_subplot(111, projection='3d') ax = fig.get_axes() if num_hypers == 0 and num_spheres == 1: ax = ax[0] if draw_circle: for emb in range(num_spheres): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=1) if sdim == 3: spherical_setup_3d(fig, ax_this) else: spherical_setup(fig, ax_this) for emb in range(num_hypers): ax_this = get_ax(num_hypers, num_spheres, ax, emb, is_sphere=0) hyperbolic_setup(fig, ax_this) return fig, ax, writer def hyperbolic_setup(fig, ax): # set axes ax.set_ylim([-1.2, 1.2]) ax.set_xlim([-1.2, 1.2]) # draw Poincare disk boundary e = patches.Arc((0,0), 2.0, 2.0, linewidth=2, fill=False, zorder=2) ax.add_patch(e) def spherical_setup(fig, ax): # set axes ax.set_ylim([-1.2, 1.2]) ax.set_xlim([-1.2, 1.2]) # draw circle boundary e = patches.Arc((0,0), 2.0, 2.0, linewidth=1, fill=False, zorder=2) ax.add_patch(e) def spherical_setup_3d(fig, ax): ax.set_ylim([-1.2, 1.2]) ax.set_xlim([-1.2, 1.2]) # draw sphere u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j] x = np.cos(u)*np.sin(v) y = np.sin(u)*np.sin(v) z = np.cos(v) ax.plot_wireframe(x, y, z, color="y") def draw_plot(): plt.show() def clear_plot(): plt.cla()
hyperbolics-master
utils/vis.py
# load the first 3 graphs's distance matrices: import data_prep as dp import load_dist as ld for i in (6,12,13): G = dp.load_graph(i) ld.save_dist_mat(G,"dists/dist_mat"+str(i)+".p")
hyperbolics-master
utils/load_distances.py
import nltk from nltk.corpus import wordnet as wn from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree from scipy.sparse.csgraph import floyd_warshall, connected_components from collections import defaultdict import numpy as np import networkx as nx import json import time from collections import defaultdict def make_edge_set(): return ([],([],[])) def add_edge(e, i,j): (v,(row,col)) = e row.append(i) col.append(j) v.append(1) def add_big_edge(e, i,j): (v,(row,col)) = e row.append(i) col.append(j) v.append(100) def load_wordnet(): d = dict() ID_dict = dict() all_syns = list(wn.all_synsets()) for idx, x in enumerate(all_syns): d[x] = idx ID_dict[idx] = x.name().split('.')[0] n = len(all_syns) e = make_edge_set() for idx, x in enumerate(all_syns): for y in x.hypernyms(): y_idx = d[y] add_edge(e, idx , y_idx) add_edge(e, y_idx, idx) return e, d, ID_dict, all_syns, csr_matrix(e,shape=(n, n)) def load_connected_components(): e, d, ID_dict, all_syns, X = load_wordnet() C = connected_components(X) mat_shape = len(C[1]) prev_comp_idx = 0 print("There are "+str(C[0])+ " connected components.") for num in range(C[0]): begin = time.time() curr_comp = np.array(all_syns)[C[1] == num] print(curr_comp) print(len(curr_comp)) # mat_shape += len(curr_comp) curr_comp_idx = d[curr_comp[0]] if num!=0: add_big_edge(e, prev_comp_idx , curr_comp_idx) add_big_edge(e, curr_comp_idx, prev_comp_idx) prev_comp_idx = curr_comp_idx print(str(num)+"th cc took "+str(time.time()-begin)) wordID_dict = defaultdict(list) for key in d.keys(): for word in key.lemma_names(): if "_" not in word: idx = d[key] wordID_dict[word].append(idx) X2 = csr_matrix(e, shape=(mat_shape, mat_shape)) return (ID_dict, wordID_dict, d, mat_shape, X2) if __name__ == '__main__': ID_dict, wordID_dict, d, n, G = load_connected_components() edges = nx.from_scipy_sparse_matrix(G) print("writing to the file") nx.write_weighted_edgelist(edges, "embeddings/wordnet_all.edges") json.dump(ID_dict,open("embeddings/IDstoWords.txt","w")) json.dump(wordID_dict,open("embeddings/WordstoIDs.txt","w")) with open('embeddings/WordstoIDs.txt', 'r') as inf2: WordstoIDs = eval(inf2.read()) with open('embeddings/wordnet100.emb', 'r') as emb: emb_lines = emb.readlines() emb_lines = emb_lines[1:] vector_dict = dict() for idx, line in enumerate(emb_lines): curr_line = line.split(',')[:-1] vector_dict[int(curr_line[0])] = np.asarray(list(map(np.float64, curr_line[1:]))) #Create the dictionary for final embedding (does simple Euclidean averaging) final_emb = dict() for word in WordstoIDs.keys(): counter = 0 curr_sum = np.zeros(vector_dict[0].shape) for idx in WordstoIDs[word]: curr_sum += vector_dict[idx] counter +=1 final_emb[word] = curr_sum/counter lines = [] for key in final_emb.keys(): curr_line = str(key) + " " + " ".join(list(map(str,final_emb[key]))) lines.append(curr_line) with open('embeddings/wordnet.100d.txt', 'w') as f: f.write('\n'.join(lines))
hyperbolics-master
utils/wordnet_forest_prep.py
# This is to load all of our data import networkx as nx import scipy as sp import numpy as np # from Bio import Phylo # import nltk.corpus as nc # import utils.word_net_prep as wnp def load_graph(opt): if opt == 1: G = nx.read_edgelist("data/facebook_combined.txt") elif opt == 2: G = nx.read_edgelist("data/cithepph.txt") elif opt == 3: G = nx.read_edgelist("data/grqc.edgelist") elif opt == 4: G = nx.read_edgelist("data/wikilinks.tsv") elif opt == 5: G = nx.read_edgelist("data/california.edgelist") elif opt == 6: tree = Phylo.read("data/T92308.nex", "nexus") G = Phylo.to_networkx(tree) G = nx.convert_node_labels_to_integers(G) G = G.to_undirected() elif opt == 7: G = nx.read_edgelist("data/bio-diseasome.mtx") elif opt == 8: G = nx.read_edgelist("data/bio-yeast.mtx") elif opt == 9: G = nx.read_edgelist("data/inf-power.mtx") elif opt == 10: G = nx.read_edgelist("data/web-edu.mtx") elif opt == 11: G = nx.read_edgelist("data/ca-CSphd.mtx") elif opt == 12: G = nx.balanced_tree(3,3) elif opt == 13: G = nx.balanced_tree(2,2) elif opt == 14: (n,C) = wnp.load_big_component() G = nx.Graph(C).to_undirected(); else: assert(False) # take the largest component Gc = max(nx.connected_component_subgraphs(G), key=len) G_comp_unsort = max(nx.connected_component_subgraphs(Gc), key=len) # the connected_component function changes the edge orders, so fix: G_comp_sorted = nx.Graph() G_comp_sorted.add_edges_from(sorted(G_comp_unsort.edges())) G_comp = nx.convert_node_labels_to_integers(G_comp_sorted) return G_comp def save_edges(G, name, data=False): if data: nx.write_weighted_edgelist(G, "data/edges/" + name + ".edges") else: nx.write_edgelist(G, "data/edges/" + name + ".edges", data) def make_wordnet_weights(): (n,C) = wnp.load_big_component() G = nx.Graph(C).to_undirected() Gc = max(nx.connected_component_subgraphs(G), key=len) # 'entity' is 0: G_BFS = nx.bfs_tree(Gc, 0) G_W = nx.Graph() # each edge must be appropriately weighted: curr_nodes = [0] next_nodes = [] depth = 0 while 1: if len(curr_nodes) == 0: if len(next_nodes) == 0: break depth += 1 curr_nodes = next_nodes.copy() next_nodes.clear() node = curr_nodes[0] parent = list(G_BFS.predecessors(node)) if len(parent) > 0: G_W.add_edge(node, parent[0], weight=2**(depth-1)) curr_nodes.remove(node) next_nodes += list(G_BFS.successors(node)) save_edges(G_W, "weighted_wordnet", data=True)
hyperbolics-master
utils/data_prep.py
from nltk.corpus import wordnet as wn from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree from scipy.sparse.csgraph import floyd_warshall, connected_components from collections import defaultdict import numpy as np import networkx as nx # for adding edges in CSR format def make_edge_set(): return ([],([],[])) def add_edge(e, i,j): (v,(row,col)) = e row.append(i) col.append(j) v.append(1) def load_wordnet(): d = dict() all_syns = list(wn.all_synsets('n')) for idx, x in enumerate(all_syns): d[x] = idx n = len(all_syns) e = make_edge_set() for idx, x in enumerate(all_syns): for y in x.hypernyms(): y_idx = d[y] add_edge(e, idx , y_idx) # add_edge(e, y_idx, idx) return csr_matrix(e,shape=(n, n)) def load_big_component(): X = load_wordnet() C = connected_components(X, directed=False) sizes = [0] * C[0] for i in C[1]: sizes[i] += 1 # sizes = np.array(sizes) big_comp_idx = np.argmax(sizes) # print(f"{C[0]} connected components") # print("connected components sizes: ", sizes[sizes > 1]) print(f"big_comp_idx ", big_comp_idx) all_syns = list(wn.all_synsets('n')) comp_0 = np.array(all_syns)[C[1] == big_comp_idx] n_f = len(comp_0) _d = dict() for idx, x in enumerate(comp_0): _d[x] = idx # e_f = make_edge_set() # closure = make_edge_set() e_f = [] closure = [] for idx, x in enumerate(comp_0): for y in x.hypernyms(): y_idx = _d[y] # add_edge(e_f, idx , y_idx) # add_edge(e_f, y_idx, idx) e_f.append((y_idx, idx)) for y in x.closure(lambda z: z.hypernyms()): y_idx = _d[y] # add_edge(closure, idx, y_idx) closure.append((idx, y_idx)) # X2 = csr_matrix(e_f, shape=(n_f,n_f)) G = nx.DiGraph(e_f) G_closure = nx.DiGraph(closure) return (n_f, G, G_closure) if __name__ == '__main__': n, G, G_closure = load_big_component() # edges = nx.from_scipy_sparse_matrix(G) nx.write_edgelist(G, f"data/edges/wordnet2.edges", data=False) nx.write_edgelist(G_closure, f"data/edges/wordnet_closure.edges", data=False)
hyperbolics-master
utils/word_net_prep.py
# distortions.py # python code to compute distortion/MAP import numpy as np import scipy.sparse.csgraph as csg from joblib import Parallel, delayed import multiprocessing import networkx as nx def entry_is_good(h, h_rec): return (not np.isnan(h_rec)) and (not np.isinf(h_rec)) and h_rec != 0 and h != 0 def distortion_entry(h,h_rec,me,mc): avg = abs(h_rec - h)/h if h_rec/h > me: me = h_rec/h if h/h_rec > mc: mc = h/h_rec return (avg,me,mc) def distortion_row(H1, H2, n, row): mc, me, avg, good = 0,0,0,0 for i in range(n): if i != row and entry_is_good(H1[i], H2[i]): (_avg,me,mc) = distortion_entry(H1[i], H2[i],me,mc) good += 1 avg += _avg avg /= good if good > 0 else 1.0 return (mc, me, avg, n-1-good) def distortion(H1, H2, n, jobs): H1, H2 = np.array(H1), np.array(H2) dists = Parallel(n_jobs=jobs)(delayed(distortion_row)(H1[i,:],H2[i,:],n,i) for i in range(n)) dists = np.vstack(dists) mc = max(dists[:,0]) me = max(dists[:,1]) # wc = max(dists[:,0])*max(dists[:,1]) avg = sum(dists[:,2])/n bad = sum(dists[:,3]) return (mc, me, avg, bad) def map_via_edges(G, i, h_rec): neighbors = set(map(int, G.getrow(i).indices)) sorted_dist = np.argsort(h_rec) m = len(neighbors) precs = np.zeros(m) n_correct = 0 j = 0 n = h_rec.size n_idx = np.array(list(neighbors), dtype=np.int) sds = sorted_dist[1:(m+1)] # print(f"{n_idx} {type(n_idx)} {n_idx.dtype}") # print(f"i={i} neighbors={neighbors} {sds} {h_rec[n_idx]} {h_rec[sds]}") # skip yourself, you're always the nearest guy for i in range(1,n): if sorted_dist[i] in neighbors: n_correct += 1 precs[j] = n_correct/float(i) j += 1 if j == m: break return np.sum(precs)/min(n,m) # return np.sum(precs)/j def map_row(H1, H2, n, row, verbose=False): edge_mask = (H1 == 1.0) m = np.sum(edge_mask).astype(int) assert m > 0 if verbose: print(f"\t There are {m} edges for {row} of {n}") d = H2 sorted_dist = np.argsort(d) if verbose: print(f"\t {sorted_dist[0:5]} vs. {np.array(range(n))[edge_mask]}") print(f"\t {d[sorted_dist[0:5]]} vs. {H1[edge_mask]}") precs = np.zeros(m) n_correct = 0 j = 0 # skip yourself, you're always the nearest guy # TODO (A): j is redundant here for i in range(1,n): if edge_mask[sorted_dist[i]]: n_correct += 1 precs[j] = n_correct/float(i) j += 1 if j == m: break return np.sum(precs)/m def map_score(H1, H2, n, jobs): #maps = Parallel(n_jobs=jobs)(delayed(map_row)(H1[i,:],H2[i,:],n,i) for i in range(n)) maps = [map_row(H1[i,:],H2[i,:],n,i) for i in range(n)] return np.sum(maps)/n
hyperbolics-master
utils/distortions.py
# load_dist.py import networkx as nx import numpy as np import pickle import scipy.sparse.csgraph as csg from joblib import Parallel, delayed import multiprocessing #import data_prep as dp import time import torch import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) sys.path.insert(0, parentdir+"/pytorch") import pytorch.hyperbolic_models def compute_row(i, adj_mat): return csg.dijkstra(adj_mat, indices=[i], unweighted=True, directed=False) def save_dist_mat(G, file): n = G.order() print("Number of nodes is ", n) adj_mat = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) t = time.time() num_cores = multiprocessing.cpu_count() dist_mat = Parallel(n_jobs=20)(delayed(compute_row)(i,adj_mat) for i in range(n)) dist_mat = np.vstack(dist_mat) print("Time elapsed = ", time.time()-t) pickle.dump(dist_mat, open(file,"wb")) def load_dist_mat(file): return pickle.load(open(file,"rb")) def unwrap(x): """ Extract the numbers from (sequences of) pytorch tensors """ if isinstance(x, list) : return [unwrap(u) for u in x] if isinstance(x, tuple): return tuple([unwrap(u) for u in list(x)]) return x.detach().cpu().numpy() def load_emb_dm(file): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") m = torch.load(file).to(device) H = unwrap(m.dist_matrix()) return H def get_dist_mat(G, parallelize=True): n = G.order() print("Number of nodes is ", n) adj_mat = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) t = time.time() num_cores = multiprocessing.cpu_count() if parallelize else 1 dist_mat = Parallel(n_jobs=num_cores)(delayed(compute_row)(i,adj_mat) for i in range(n)) dist_mat = np.vstack(dist_mat) print("Time elapsed = ", time.time()-t) return dist_mat
hyperbolics-master
utils/load_dist.py
# This is to load data # the graph needs to be prepared; for example utils.data_prep preprocesses and saves prepared edge lists import networkx as nx # def load_graph(file_name, directed=False): # container = nx.DiGraph() if directed else nx.Graph() # G = nx.read_edgelist(file_name, data=(('weight',float),), create_using=container) # G_comp = nx.convert_node_labels_to_integers(G) # return G_comp def load_graph(file_name, directed=False): G = nx.DiGraph() if directed else nx.Graph() with open(file_name, "r") as f: for line in f: tokens = line.split() u = int(tokens[0]) v = int(tokens[1]) if len(tokens) > 2: w = float(tokens[2]) G.add_edge(u, v, weight=w) else: G.add_edge(u,v) return G
hyperbolics-master
utils/load_graph.py
from __future__ import unicode_literals, print_function, division import os import numpy as np import scipy.sparse.csgraph as csg from joblib import Parallel, delayed import multiprocessing import networkx as nx import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import time import math from io import open import unicodedata import string import re import random import json import mapping_utils as util device = torch.device("cuda" if torch.cuda.is_available() else "cpu") euclidean_embeddings = {} saved_tensors = os.listdir("tree_emb_saved/") indices = [] for file in saved_tensors: idx = int(file.split(".")[0]) indices.append(idx) euclidean_embeddings[idx] = torch.load("tree_emb_saved/"+str(file), map_location=torch.device('cpu')) #Riemannian SGD from torch.optim.optimizer import Optimizer, required spten_t = torch.sparse.FloatTensor def poincare_grad(p, d_p): """ Calculates Riemannian grad from Euclidean grad. Args: p (Tensor): Current point in the ball d_p (Tensor): Euclidean gradient at p """ if d_p.is_sparse: p_sqnorm = torch.sum( p.data[d_p._indices()[0].squeeze()] ** 2, dim=1, keepdim=True ).expand_as(d_p._values()) n_vals = d_p._values() * ((1 - p_sqnorm) ** 2) / 4 d_p = spten_t(d_p._indices(), n_vals, d_p.size()) else: p_sqnorm = torch.sum(p.data ** 2, dim=-1, keepdim=True) d_p = d_p * ((1 - p_sqnorm) ** 2 / 4).expand_as(d_p) return d_p def euclidean_grad(p, d_p): return d_p def retraction(p, d_p, lr): # Gradient clipping. if torch.all(d_p < 1000) and torch.all(d_p>-1000): p.data.add_(-lr, d_p) class RiemannianSGD(Optimizer): r"""Riemannian stochastic gradient descent. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups rgrad (Function): Function to compute the Riemannian gradient from an Euclidean gradient retraction (Function): Function to update the parameters via a retraction of the Riemannian gradient lr (float): learning rate """ def __init__(self, params, lr=required, rgrad=required, retraction=required): defaults = dict(lr=lr, rgrad=rgrad, retraction=retraction) super(RiemannianSGD, self).__init__(params, defaults) def step(self, lr=None): """Performs a single optimization step. Arguments: lr (float, optional): learning rate for the current update. """ loss = None for group in self.param_groups: for p in group['params']: if p.grad is None: continue d_p = p.grad.data if lr is None: lr = group['lr'] d_p = group['rgrad'](p, d_p) group['retraction'](p, d_p, lr) return loss # Does Euclidean to hyperbolic mapping using series of FC layers. # We use ground truth distance matrix for the pair since the distortion for hyperbolic embs are really low. def trainFCHyp(input_matrix, ground_truth, n, mapping, mapping_optimizer): mapping_optimizer.zero_grad() loss = 0 output = mapping(input_matrix.float()) dist_recovered = util.distance_matrix_hyperbolic(output) loss += util.distortion(ground_truth, dist_recovered, n) loss.backward() mapping_optimizer.step() return loss.item() def trainFCIters(mapping, n_epochs=5, n_iters=500, print_every=50, plot_every=100, learning_rate=0.01): start = time.time() plot_losses = [] print_loss_total = 0 plot_loss_total = 0 mapping_optimizer = RiemannianSGD(mapping.parameters(), lr=learning_rate, rgrad=poincare_grad, retraction=retraction) training_pairs = [util.pairfromidx(idx) for idx in range(n_iters)] for i in range(n_epochs): print("Starting epoch "+str(i)) iter=1 for idx in indices: input_matrix = euclidean_embeddings[idx] target_matrix = training_pairs[idx][1] n = training_pairs[idx][2] loss = trainFCHyp(input_matrix, target_matrix, n, mapping, mapping_optimizer) print_loss_total += loss plot_loss_total += loss if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (util.timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 iter+=1 input_size = 10 output_size = 10 mapping = nn.Sequential( nn.Linear(input_size, 50).to(device), nn.ReLU().to(device), nn.Linear(50, output_size).to(device), nn.ReLU().to(device)) trainFCIters(mapping)
hyperbolics-master
scratch/tree_mapping.py
"""This file contains core hyperbolic operations for learning modules.""" import numpy as np import random import os import logging from numpy import linalg as la from numpy import random import torch import torch.nn.functional as F import torch.nn as nn EPS = 1e-15 PROJ_EPS = 1e-5 MAX_TANH_ARG = 15.0 def torch_norm(x): return torch.norm(x, dim=1, keepdim=True) def torch_project_hyp_vec(v, c=1): """Projects the hyperbolic vectors to the inside of the ball.""" # clip_norm = torch.tensor(1-PROJ_EPS) # clipped_v = F.normalize(v, p=2, dim=1)*clip_norm # return clipped_v return v def t_arctanh(v): return 0.5*torch.log((1+v)/(1-v)) def torch_lambda_x(x, c=1): return 2. / (1 - c * torch.dot(x,x)) def torch_dot(x, y): return torch.sum(x * y, dim=1, keepdim=True) def torch_atanh(x): return t_arctanh(torch.min(x, torch.tensor(1. - EPS))) def torch_tanh(x): return torch.tanh(torch.min(torch.max(x, torch.tensor(-MAX_TANH_ARG)), torch.tensor(MAX_TANH_ARG))) def torch_lambda_x(x, c=1): return 2./(1-torch_dot(x,x)) def hyp_add_mob(u, v, c=1): num = (1.0 + 2.0 * c * np.dot(u, v) + c * la.norm(v)**2) * \ u + (1.0 - c * la.norm(u)**2) * v denom = 1.0 + 2.0 * c * np.dot(u, v) + c**2 * la.norm(v)**2 * la.norm(u)**2 return num/denom def torch_hyp_add(u, v, c=1): """Accepts torch tensors u, v and returns their sum in hyperbolic space in tensor format. Radius of the open ball is 1/sqrt(c). """ v = v+torch.tensor(EPS) torch_dot_u_v = 2 * torch_dot(u, v) torch_norm_u_sq = torch_dot(u,u) torch_norm_v_sq = torch_dot(v,v) denominator = 1. + torch_dot_u_v + torch_norm_v_sq * torch_norm_u_sq result = (1. + torch_dot_u_v + torch_norm_v_sq) / denominator * u + (1. - torch_norm_u_sq) / denominator * v return torch_project_hyp_vec(result) #This is our definition which is compatible. def hyp_scale_amb(r, x): """Scales x in hyperbolic space with r using the ambient space approach.""" if r == 1: return x else: x_dist = (1+np.linalg.norm(x))/(1-np.linalg.norm(x)) alpha = 1-2/(1+x_dist**r) alpha *= 1/np.linalg.norm(x) product = alpha*x return product def hyp_scale_exp(r, x): """Scalar mult using exp map approach.""" return exp_map(0, r*log_map(0, x)) def hyp_add(u, v, c=1): num = (1.0 + 2.0 * c * np.dot(u, v) + c * la.norm(v)**2) * \ u + (1.0 - c * la.norm(u)**2) * v denom = 1.0 + 2.0 * c * np.dot(u, v) + c**2 * la.norm(v)**2 * la.norm(u)**2 return num/denom def exp_map(x, v, c=1): term = np.tanh(np.sqrt(c) * 2. / (1 - c * la.norm(x)**2) * la.norm(v) / 2) / (np.sqrt(c) * la.norm(v)) * v return hyp_add_mob(x, term, c) def torch_scale_exp(r, x): """Scalar mult using exp map approach in torch.""" zero = torch.zeros(x.shape) return torch_exp_map(zero, r*torch_log_map(zero, x)) def log_map(x, y, c=1): diff = hyp_add_mob(-x, y, c) lam = 2. / (1 - c * la.norm(x)**2) return 2. / (np.sqrt(c) * lam) * np.arctanh(np.sqrt(c) * la.norm(diff)) / (la.norm(diff)) * diff def torch_exp_map(x, v, c=1): """Exp map for the vector v lying on the tangent space T_xM to the point x in the manifold M.""" v = v + torch.tensor(EPS) norm_v = torch_norm(v) term = (torch_tanh(torch_lambda_x(x, c) * norm_v / 2) / (norm_v)) * v return torch_hyp_add(x, term, c) def torch_log_map_x(x, y, c=1): diff = torch_hyp_add(-x, y, c)+torch.tensor(EPS) norm_diff = torch_norm(diff) lam = torch_lambda_x(x, c) return ( (2 / lam) * torch_atanh(norm_diff) / norm_diff) * diff def torch_exp_map_zero(v, c=1): # v = v + EPS # Perturbe v to avoid dealing with v = 0 v=v+torch.tensor(EPS) norm_v = torch_norm(v) result = torch_tanh(norm_v) / (norm_v) * v return torch_project_hyp_vec(result, c) def torch_log_map_zero(y, c=1): # diff = y + EPS diff = y+torch.tensor(EPS) norm_diff = torch_norm(diff) return torch_atanh(norm_diff) / norm_diff * diff def mv_mul_hyp(M, x, c=1): Mx_norm = la.norm(M.dot(x)) x_norm = la.norm(x) return 1. / np.sqrt(c) * np.tanh(Mx_norm / x_norm * np.arctanh(np.sqrt(c) * x_norm)) / Mx_norm * (M.dot(x)) def torch_mv_mul_hyp(M, x, c=1): x = x + torch.tensor(EPS) Mx = torch.matmul(x, M)+torch.tensor(EPS) MX_norm = torch_norm(Mx) x_norm = torch_norm(x) result = torch_tanh(MX_norm / x_norm * torch_atanh(x_norm)) / MX_norm * Mx return torch_project_hyp_vec(result, c) # x is hyperbolic, u is Euclidean. Computes diag(u) \otimes x. def torch_pointwise_prod(x, u, c=1): x = x+torch.tensor(EPS) Mx = x * u + torch.tensor(EPS) MX_norm = torch_norm(Mx) x_norm = torch_norm(x) result = torch_tanh(MX_norm / x_norm * torch_atanh(x_norm)) / MX_norm * Mx return torch_project_hyp_vec(result, c) def hyp_non_lin(v, activation): logmap = log_map(0, v, 1) return exp_map(v, activation(logmap), 1) def euclidean_softmax(x): """Euclidean softmax.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def hyp_softmax_k(a_k, p_k, x, c=1): #This needs to be done for every class k in number of classes. """Hyperbolic softmax. a_k is a Euclidean and p_k is a hyperbolic parameter.""" minus_p_plus_x = torch_hyp_add(-p_k, x, c) norm_a = torch.norm(a_k) lambda_px = torch_lambda_x(minus_p_plus_x, c) px_dot_a = torch.dot(minus_p_plus_x, a_k/norm_a) return 2 * norm_a * torch.asinh(px_dot_a * lambda_px)
hyperbolics-master
scratch/learning_util.py
from __future__ import unicode_literals, print_function, division import os import numpy as np import scipy.sparse.csgraph as csg from joblib import Parallel, delayed import multiprocessing import networkx as nx import time import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import time import math from io import open import unicodedata import string import re import random import json device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Distortion calculations def acosh(x): return torch.log(x + torch.sqrt(x**2-1)) def dist_h(u,v): z = 2*torch.norm(u-v,2)**2 uu = 1. + torch.div(z,((1-torch.norm(u,2)**2)*(1-torch.norm(v,2)**2))) return acosh(uu) def distance_matrix_euclidean(input): row_n = input.shape[0] mp1 = torch.stack([input]*row_n) mp2 = torch.stack([input]*row_n).transpose(0,1) dist_mat = torch.sum((mp1-mp2)**2,2).squeeze() return dist_mat def distance_matrix_hyperbolic(input): row_n = input.shape[0] dist_mat = torch.zeros(row_n, row_n, device=device) for row in range(row_n): for i in range(row_n): if i != row: dist_mat[row, i] = dist_h(input[row,:], input[i,:]) return dist_mat def entry_is_good(h, h_rec): return (not torch.isnan(h_rec)) and (not torch.isinf(h_rec)) and h_rec != 0 and h != 0 def distortion_entry(h,h_rec): avg = abs(h_rec - h)/h return avg def distortion_row(H1, H2, n, row): avg, good = 0, 0 for i in range(n): if i != row and entry_is_good(H1[i], H2[i]): _avg = distortion_entry(H1[i], H2[i]) good += 1 avg += _avg if good > 0: avg /= good else: avg, good = torch.tensor(0., device=device, requires_grad=True), torch.tensor(0., device=device, requires_grad=True) return (avg, good) def distortion(H1, H2, n, jobs=16): # dists = Parallel(n_jobs=jobs)(delayed(distortion_row)(H1[i,:],H2[i,:],n,i) for i in range(n)) dists = (distortion_row(H1[i,:],H2[i,:],n,i) for i in range(n)) to_stack = [tup[0] for tup in dists] avg = torch.stack(to_stack).sum()/n return avg #Loading the graph and getting the distance matrix. def load_graph(file_name, directed=False): G = nx.DiGraph() if directed else nx.Graph() with open(file_name, "r") as f: for line in f: tokens = line.split() u = int(tokens[0]) v = int(tokens[1]) if len(tokens) > 2: w = float(tokens[2]) G.add_edge(u, v, weight=w) else: G.add_edge(u,v) return G def compute_row(i, adj_mat): return csg.dijkstra(adj_mat, indices=[i], unweighted=True, directed=False) def get_dist_mat(G): n = G.order() adj_mat = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) t = time.time() num_cores = multiprocessing.cpu_count() dist_mat = Parallel(n_jobs=num_cores)(delayed(compute_row)(i,adj_mat) for i in range(n)) dist_mat = np.vstack(dist_mat) return dist_mat def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) def showPlot(points): plt.figure() fig, ax = plt.subplots() loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points) def pairfromidx(idx): G = load_graph("random_trees_edges/"+str(idx)+".edges") target_matrix = get_dist_mat(G) target_tensor = torch.from_numpy(target_matrix).float().to(device) target_tensor.requires_grad = False n = G.order() return ([], target_tensor, n, [])
hyperbolics-master
scratch/mapping_utils.py
import argh import os import subprocess import itertools # ranks = [2,5,10,50,100,200] ranks = [200] def run_comb2(run_name, datasets): os.makedirs(f"{run_name}/comb_dim2", exist_ok=True) params = [] rank = 2 epss = [1.0, 0.1] precision = 8192 for dataset, eps in itertools.product(datasets, epss): # julia comb.jl -d ../data/edges/phylo_tree.edges -e 1.0 -p 256 -s -r 200 -c -m phylo_tree.save -a param = [ '-d', f"data/edges/{dataset}.edges", # '-m', f"data/comb/{dataset}.r{rank}.p{precision}.e{eps}.emb", '-m', f"{run_name}/comb_embeddings/{dataset}.r{rank}.p{precision}.e{eps}.emb", '-p', str(precision), '-e', str(eps), '-r', str(rank) ] params.append(" ".join(param)) cmd = 'julia combinatorial/comb.jl' with open(f"{run_name}/comb.r2.cmds", "w") as cmd_log: cmd_log.writelines('\n'.join(params)) with open(f"{run_name}/comb.r2.log", "w") as log: subprocess.run(" ".join(['parallel', ':::', *[f'"{cmd} {p}"' for p in params]]), shell=True, stdout=log) def run_comb(run_name, datasets, precision=256): os.makedirs(f"{run_name}/comb_embeddings", exist_ok=True) params = [] for dataset, rank in itertools.product(datasets, ranks): # julia comb.jl -d ../data/edges/phylo_tree.edges -e 1.0 -p 256 -s -r 200 -c -m phylo_tree.save -a param = [ '-d', f"data/edges/{dataset}.edges", # '-m', f"data/comb/{dataset}.r{rank}.p{precision}.emb", '-m', f"{run_name}/comb_embeddings/{dataset}.r{rank}.p{precision}.emb", '-p', str(precision), '-e', '1.0', '-r', str(rank), '-a'] if rank > 10: param.append('-c') params.append(" ".join(param)) cmd = 'julia combinatorial/comb.jl' with open(f"{run_name}/comb.p{precision}.cmds", "w") as cmd_log: cmd_log.writelines('\n'.join(params)) with open(f"{run_name}/comb.p{precision}.log", "w") as log: full_cmd = " ".join(['parallel', ':::', *[f'"{cmd} {p}"' for p in params]]) print(full_cmd) subprocess.run(" ".join(['parallel', ':::', *[f'"{cmd} {p}"' for p in params]]), shell=True, stdout=log) def run_pytorch(run_name, datasets, epochs, batch_size, warm_start=False, comb=False): precision = None if warm_start: # run combinatorial code first in double precision precision = 53 if comb: run_comb(run_name, datasets, precision=precision) learning_rate = 5 params = [] # with open(f"{run_name}/pytorch.params", "w") as param_file: # param_file.writelines("\n".join(params)) for dataset, rank in itertools.product(datasets, ranks): log_w = ".w" if warm_start else "" log_name = f"{run_name}/{dataset}{log_w}.r{rank}.log" param = [ f"data/edges/{dataset}.edges", '--log-name', log_name, '--batch-size', str(batch_size), '--epochs', str(epochs), '-r', str(rank), '--checkpoint-freq', '100', '--use-svrg', '-T 0', # '--subsample 2000', '--learning-rate', str(learning_rate)] if warm_start: param += ['--warm-start', f"{run_name}/comb_embeddings/{dataset}.r{rank}.p{precision}.emb"] params.append(" ".join(param)) cmd = " ".join([ 'CUDA_VISIBLE_DEVICES=0', 'python', 'pytorch/pytorch_hyperbolic.py', 'learn' ]) # print(*[f'"{cmd} {p}"' for p in params]) # subprocess.run(['parallel', # ':::', # *[f'"{cmd} {p}"' for p in params] # ], shell=True) parallel_cmd = " ".join(['parallel', ':::', *[f'"{cmd} {p}"' for p in params] ]) print(parallel_cmd) subprocess.run(parallel_cmd, shell=True) @argh.arg("run_name", help="Directory to store the run; will be created if necessary") @argh.arg('-d', "--datasets", nargs='+', type=str, help = "Datasets") @argh.arg("--epochs", help="Number of epochs to run Pytorch optimizer") @argh.arg("--batch-size", help="Batch size") def run(run_name, datasets=[], epochs=5000, batch_size=1024): os.makedirs(run_name, exist_ok=True) # combinatorial high dim # run_comb(run_name, datasets) # 2d combinatorial # run_comb2(run_name, datasets) # pytorch by itself run_pytorch(run_name, datasets, epochs=epochs, batch_size=batch_size, warm_start=False) # pytorch with warmstart run_pytorch(run_name, datasets, epochs=epochs, batch_size=batch_size, warm_start=True, comb=True) if __name__ == '__main__': _parser = argh.ArghParser() # _parser.add_commands([build]) # _parser.dispatch() _parser.set_default_command(run) _parser.dispatch()
hyperbolics-master
scripts/run_exps.py
import nltk from nltk.corpus import wordnet as wn import numpy as np import networkx as nx from scipy.sparse import csr_matrix import json from collections import defaultdict import matplotlib.pyplot as plt def make_edge_set(): return ([],([],[])) def add_edge(e,i,j): (v,(row,col)) = e row.append(i) col.append(j) v.append(1) def get_hyponym_tree(syn,d,e,counter): if syn in d.keys(): syn_idx = d[syn] elif syn not in d.keys(): counter +=1 syn_idx = counter d[syn] = syn_idx curr_list = syn.hyponyms() if len(curr_list) != 0: for hyp in curr_list: if hyp in d.keys(): hyp_idx = d[hyp] elif hyp not in d.keys(): counter +=1 hyp_idx = counter d[hyp] = hyp_idx add_edge(e, syn_idx, hyp_idx) add_edge(e, hyp_idx, syn_idx) e, d, counter = get_hyponym_tree(hyp,d,e,counter) return e, d, counter d = dict() IDtoWord = dict() e = make_edge_set() word = "attribute" immediate_synsets = wn.synsets(word) print(immediate_synsets) counter = 0 num_syns = 0 for syn in immediate_synsets: num_syns += len(syn.hyponyms()) d[syn] = 0 e, d, counter = get_hyponym_tree(syn, d, e, counter) #Get some stats. mat_shape = max(e[1][1]) M = csr_matrix(e, shape=(mat_shape+1, mat_shape+1)) G = nx.from_scipy_sparse_matrix(M) print("Number of edges:") print(len(e[0])) print("Number of nodes:") print(max(e[1][1])) print("Degree of main node:") print(G.degree(0)) print("Degree should be:") print(num_syns) for key, val in d.items(): if val != 0: name = key.name().split('.')[0] IDtoWord[val] = name IDtoWord[0] = word #Save stuff. nx.write_edgelist(G, "data/edges/wn_small.edges",data=False) json.dump(IDtoWord, open("data/edges/wn_small_dict.txt","w")) # nx.draw_networkx(G, with_labels=True) # plt.show()
hyperbolics-master
scripts/wn_small_gen.py
import argh, os from collections import defaultdict #cat run_file.sh | parallel -P 4 "source path.src; bash -c {}" def work_command(run_name, dataset, rank, gpu, batch_size, epochs, scale): run_stem = f"{run_name}/dataset_{dataset}.r={rank}" exec_str = f"CUDA_VISIBLE_DEVICES=\"{gpu}\" python pytorch/pytorch_hyperbolic.py learn {dataset} -s {scale} --model-save-file {run_stem}.model -r {rank} --batch-size {batch_size} --epochs {epochs} --log-name {run_stem}.log" return exec_str def get_scale_dict(col=1, scale_file="scripts/scale_eps_1.txt"): with open(scale_file) as fh: ls = fh.readlines() d = dict() for l in ls: l.strip() k,v = l.strip().split("\t") d[k] = v return d @argh.arg("run_name", help="Director to store the run") @argh.arg("--epochs", help="Number of epochs to run") @argh.arg("--batch-size", help="Batch Size") @argh.arg("--gpus", help="Number of GPUS") @argh.arg("--nParallel", help="Number of Concurrent jobs") def build(run_name, epochs=100, batch_size=16384, gpus=2, nParallel=3): os.mkdir(run_name) scale_dict = get_scale_dict() cmds = defaultdict(list) for dataset in range(1,13): gpu = dataset % gpus for rank in [2,5,10,50,100,200]: cmds[gpu].append(work_command(run_name, dataset, rank, gpu, batch_size, epochs, scale_dict[str(dataset)])) cmd_files = [] for gpu in range(gpus): fname = f"{run_name}/run.{gpu}.cmds" with open(fname,"w") as fh: fh.writelines("\n".join(cmds[gpu])) cmd_files.append(fname) exec_cmd = "\"source path.src; bash -c {}\"" with open(f"{run_name}/drive.sh", "w") as fh: cmds = [] for cmd_f in cmd_files: cmd = f"cat {cmd_f} | parallel --gnu -P {nParallel} {exec_cmd}" cmds.append(cmd) fh.writelines("\n".join(cmds)) with open(f"{run_name}/main.sh", "w") as fh: fh.writelines(f"cat {run_name}/drive.sh | parallel --gnu -P {gpus} {exec_cmd}") if __name__ == '__main__': _parser = argh.ArghParser() _parser.add_commands([build]) _parser.dispatch()
hyperbolics-master
scripts/generate_pytorch.py
import os import subprocess import itertools import random ranks = [10, 20] for file in os.listdir(".\data\hmds-graphs"): file_base = file.split('.')[0] cmd_base = "julia hMDS\hmds-simple.jl" cmd_edges = " -d data\edges\\" + file_base + ".edges" cmd_emb = " -k data\emb\\" + file_base + ".emb" cmd_rank = " -r " cmd_scale = " -t " for rank in ranks: print("Rank = ", rank) for i in range(10): scale = 0.1*(i+1) cmd = cmd_base + cmd_edges + cmd_emb + cmd_rank + str(rank) + cmd_scale + str(scale) #print(cmd) result = subprocess.run(cmd, stdout=subprocess.PIPE, shell=True) res_string = result.stdout.decode('utf-8') res_lines = res_string.splitlines() # grab our values distortion = res_lines[16].split()[5].strip(",") mapval = res_lines[17].split()[2] print("Scale \t", scale, "\t distortion \t", distortion, "\t mAP \t", mapval)
hyperbolics-master
scripts/hmds-runs.py
import sys, os, subprocess import shutil import numpy as np import pandas def comb(edge_file, distance_file, flags): comb_cmd = ['julia', 'combinatorial/comb.jl', '--dataset', edge_file, '--save-distances', distance_file] + flags print(comb_cmd) print() subprocess.run(comb_cmd) def stats(edge_file, distance_file): # Find distance matrix chunks chunk_i = -1 n_ = 0 map_ = 0.0 d_avg_ = 0.0 wc_ = 0.0 files = [] while True: chunk_i += 1 chunk_file = f"{distance_file}.{chunk_i}" chunk_exists = os.path.isfile(chunk_file) if not chunk_exists: break files.append(chunk_file) parallel_stats_cmd = ['parallel', 'python', 'combinatorial/stats.py', edge_file, ':::'] + files print(parallel_stats_cmd) print() print("before subprocess call") subprocess.run(parallel_stats_cmd) stats_file = f"{distance_file}.stats" cat_cmd = ['cat'] + [f+'.stats' for f in files] with open(stats_file, "w") as s: subprocess.run(cat_cmd, stdout=s) _stats = pandas.read_csv(stats_file, header=None, index_col=False).as_matrix() n_ = np.sum(_stats[:,0]) map_ = np.sum(_stats[:,1]) d_avg_ = np.sum(_stats[:,2]) dc_ = np.max(_stats[:,3]) de_ = np.max(_stats[:,4]) print(f"Final MAP = {map_/n_}") print(f"Final d_avg = {d_avg_/n_}, d_wc = {dc_*de_}, d_c = {dc_}, d_e = {de_}") if __name__ == '__main__': dataset = sys.argv[1] stats_dataset = sys.argv[2] flags = sys.argv[3:] os.makedirs(f"distances/{dataset}", exist_ok=True) edge_file = f"data/edges/{dataset}.edges" stats_edge_file = f"data/edges/{stats_dataset}.edges" distance_file = f"distances/{dataset}/{dataset}{''.join(flags)}.dist" comb(edge_file, distance_file, flags) stats(stats_edge_file, distance_file)
hyperbolics-master
scripts/comb_stats.py
import argh, os from collections import defaultdict #cat run_file.sh | parallel -P 4 "source path.src; bash -c {}" def work_command(run_name, dataset, rank, gpu, batch_size, epochs, scale): run_stem = f"{run_name}/dataset_{dataset}.r={rank}" exec_str = f"CUDA_VISIBLE_DEVICES=\"{gpu}\" python pytorch/pytorch_hyperbolic.py learn {dataset} -s {scale} --model-save-file {run_stem}.model -r {rank} --batch-size {batch_size} --epochs {epochs} --log-name {run_stem}.log --print-freq 10" return exec_str def get_scale_dict(scale_file): with open(scale_file) as fh: ls = fh.readlines() d = dict() for l in ls: l.strip() k,v = l.strip().split("\t") d[k] = v return d @argh.arg("run_name", help="Director to store the run") @argh.arg("--epochs", help="Number of epochs to run") @argh.arg("--batch-size", help="Batch Size") @argh.arg("--gpus", help="Number of GPUS") @argh.arg("--nParallel", help="Number of Concurrent jobs") @argh.arg("--scale-file", help="File with dictionary of scalings for datatsets") def build(run_name, epochs=100, batch_size=16384, gpus=2, nParallel=3, scale_file="scripts/scale_eps_1.txt"): os.mkdir(run_name) scale_dict = get_scale_dict(scale_file) cmds = defaultdict(list) for dataset in [12,13,6,7,11]: gpu = dataset % gpus for rank in [2,5,10,50,100,200]: cmds[gpu].append(work_command(run_name, dataset, rank, gpu, batch_size, epochs, scale_dict[str(dataset)])) cmd_files = [] for gpu in range(gpus): fname = f"{run_name}/run.{gpu}.cmds" with open(fname,"w") as fh: fh.writelines("\n".join(cmds[gpu])) cmd_files.append(fname) exec_cmd = "\"source path.src; bash -c {}\"" with open(f"{run_name}/drive.sh", "w") as fh: cmds = [] for cmd_f in cmd_files: cmd = f"cat {cmd_f} | parallel --gnu -P {nParallel} {exec_cmd}" cmds.append(cmd) fh.writelines("\n".join(cmds)) with open(f"{run_name}/main.sh", "w") as fh: fh.writelines(f"cat {run_name}/drive.sh | parallel --gnu -P {gpus} {exec_cmd}") if __name__ == '__main__': _parser = argh.ArghParser() _parser.add_commands([build]) _parser.dispatch()
hyperbolics-master
scripts/generate_pytorch_hp.py
import os import argh import subprocess import itertools import random # ranks = [2,5,10,50,100,200] datasets = [ # "synthetic/sierp-C50-2", # "synthetic/sierp-C5-6", # "synthetic/diamond7" # "synthetic/sierp-K3-8" # "synthetic/tree-20-3" # "smalltree" # "bio-yeast", # 1458 # "web-edu", # 3031 # "grqc", # 4158 # "ca-CSphd", # "facebook_combined", # "inf-power", # 4941 # "california", # 5925 "usca312", "bookend" ] datasets = datasets[:-1] # 100 dimensions models100 = [ #{'dim': 100, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 100, 'euc': 1, 'sdim': 0, 'sph': 0}, #{'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 100, 'sph': 1}, # {'dim': 10, 'hyp': 10, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, # {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 10, 'sph': 10}, #{'dim': 5, 'hyp': 20, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, #{'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 5, 'sph': 20}, #{'dim': 2, 'hyp': 50, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, #{'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 50}, # {'dim': 50, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 50, 'sph': 1}, # {'dim': 5, 'hyp': 10, 'edim': 0, 'euc': 0, 'sdim': 5, 'sph': 10}, # {'dim': 2, 'hyp': 50, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 50}, ] # 20 dimensions models20 = [ {'dim': 20, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 20, 'euc': 1, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 20, 'sph': 1}, {'dim': 10, 'hyp': 2, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 10, 'sph': 2}, {'dim': 2, 'hyp': 10, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 10}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 1, 'sph': 20}, {'dim': 10, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 10, 'sph': 1}, {'dim': 2, 'hyp': 5, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 5}, {'dim': 4, 'hyp': 2, 'edim': 4, 'euc': 1, 'sdim': 4, 'sph': 2}, {'dim': 2, 'hyp': 4, 'edim': 4, 'euc': 1, 'sdim': 2, 'sph': 4}, ] # 10 dimensions models10 = [ {'dim': 10, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 10, 'euc': 1, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 10, 'sph': 1}, {'dim': 5, 'hyp': 2, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 5, 'sph': 2}, {'dim': 2, 'hyp': 5, 'edim': 0, 'euc': 0, 'sdim': 0, 'sph': 0}, {'dim': 0, 'hyp': 0, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 5}, {'dim': 5, 'hyp': 1, 'edim': 0, 'euc': 0, 'sdim': 5, 'sph': 1}, {'dim': 2, 'hyp': 2, 'edim': 2, 'euc': 1, 'sdim': 2, 'sph': 2}, # {'dim': 2, 'hyp': 2, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 3}, # {'dim': 2, 'hyp': 3, 'edim': 0, 'euc': 0, 'sdim': 2, 'sph': 2}, # {'dim': 2, 'hyp': 1, 'edim': 6, 'euc': 1, 'sdim': 2, 'sph': 1}, # {'dim': 8, 'hyp': 1, 'edim': 2, 'euc': 1, 'sdim': 0, 'sph': 0}, # {'dim': 2, 'hyp': 4, 'edim': 2, 'euc': 1, 'sdim': 0, 'sph': 0}, # {'dim': 0, 'hyp': 0, 'edim': 2, 'euc': 1, 'sdim': 8, 'sph': 1}, # {'dim': 0, 'hyp': 0, 'edim': 2, 'euc': 1, 'sdim': 2, 'sph': 4} ] models = models10 #+ models100 # lrs = [30, 100, 300, 1000] # lrs = [10, 20, 40] # lrs = [5, 10, 20] lrs = [.001, .003, .01] burn_ins = [0] # CUDA_VISIBLE_DEVICES=1 python pytorch/pytorch_hyperbolic.py learn data/edges/synthetic/sierp-C50-2.edges --batch-size 65536 -d 50 --hyp 0 --euc 0 --edim 50 --sph 1 --sdim 51 -l 100.0 --epochs 1000 --checkpoint-freq 100 --resample-freq 500 -g --subsample 1024 --riemann --log-name C50-2.S50.log def run_pytorch(run_name, gpus, gpc, epochs, batch_size): params = [] # with open(f"{run_name}/pytorch.params", "w") as param_file: # param_file.writelines("\n".join(params)) stuff = itertools.product(datasets, models, lrs, burn_ins) hparams = list(stuff) random.shuffle(hparams) for dataset, model, lr, burn_in in hparams: # log_w = ".w" if warm_start else "" # log_name = f"{run_name}/{dataset}{log_w}.r{rank}.log" H_name = "" if model['hyp' ]== 0 else f"H{model['dim']}-{model['hyp']}." E_name = "" if model['euc' ]== 0 else f"E{model['edim']}-{model['euc']}." S_name = "" if model['sph' ]== 0 else f"S{model['sdim']}-{model['sph']}." log_name = f"{run_name}/{os.path.basename(dataset)}.{H_name}{E_name}{S_name}lr{lr}" savefile = f"{run_name}/{os.path.basename(dataset)}.{H_name}{E_name}{S_name}lr{lr}" if burn_in > 0: log_name += f".burnin{burn_in}" log_name += ".log" savefile += ".emb" param = [ f"data/edges/{dataset}.edges", '--dim', str(model['dim']), '--hyp', str(model['hyp']), '--edim', str(model['edim']), '--euc', str(model['euc']), '--sdim', str(model['sdim']), '--sph', str(model['sph']), '--model-save-file', savefile, # '--log', '--log-name', log_name, '--batch-size', str(batch_size), '--epochs', str(epochs), '--checkpoint-freq', '100', '--resample-freq', '5000', # '--use-svrg', # '-T 0', '-g', '--subsample 1024', '--riemann', '--learn-scale', # '--logloss', # '--distloss', # '--squareloss', # '--symloss', '--burn-in', str(burn_in), # '--momentum', '0.9', '--learning-rate', str(lr)] params.append(" ".join(param)) cmds = [] for i in range(gpus): header = " ".join([ 'CUDA_VISIBLE_DEVICES='+str(i%gpc), 'python', 'pytorch/pytorch_hyperbolic.py', 'learn' ]) cmds = [f'{header} {p}' for p in params[i::gpus]] with open(f"{run_name}/cmds{i}.sh", "w") as cmd_log: cmd_log.writelines('\n'.join(cmds)) # all_cmds = [f'"{cmd0} {p}"' for p in params[0::2]] \ # + [f'"{cmd1} {p}"' for p in params[1::2]] # parallel_cmd = " ".join(['parallel', # ':::', # *all_cmds # ]) # print(parallel_cmd) # with open(f"{run_name}/cmds.sh", "w") as cmd_log: # cmd_log.writelines('\n'.join(all_cmds)) # subprocess.run(parallel_cmd, shell=True) @argh.arg("run_name", help="Directory to store the run; will be created if necessary") @argh.arg("--gpus", help="Total number of GPUs to use") @argh.arg("--gpc", help="GPUs per machine") # @argh.arg('-d', "--datasets", nargs='+', type=str, help = "Datasets") @argh.arg("--epochs", help="Number of epochs to run Pytorch optimizer") @argh.arg("--batch-size", help="Batch size") def run(run_name, gpus=1, gpc=1, epochs=1000, batch_size=65536): os.makedirs(run_name, exist_ok=True) run_pytorch(run_name, gpus=gpus, gpc=gpc, epochs=epochs, batch_size=batch_size) if __name__ == '__main__': _parser = argh.ArghParser() _parser.set_default_command(run) _parser.dispatch()
hyperbolics-master
scripts/products.py
import glob, os, sys import pandas as pd if __name__ == '__main__': run_name = sys.argv[1] rows = [] for f in sorted(glob.glob(run_name + '/*.stat')): # line = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0] + ' ' # with open(f, "r") as g: # line += g.readline() # rows.append(line) name = os.path.splitext(os.path.splitext(os.path.basename(f))[0])[0] row = pd.read_csv(f, delim_whitespace=True) row.index = [name] rows.append(row) # print(row) # os.remove(f) table = pd.concat(rows) # print(table) print(table.to_string()) # .to_csv(f"{run_name}/{run_name}.stats", ) with open(f"{run_name}/{run_name}.stats", "w") as f: # f.write('\n'.join(lines)) f.write(table.to_string())
hyperbolics-master
scripts/collect_stats.py
import argh, os def work_command(run_name, dataset, rank, scale, prec, tol): run_stem = f"{run_name}/dataset_{dataset}.r={rank}" exec_str = f" julia mds-scale.jl {dataset} {rank} {scale} {prec} {tol} > {run_stem}.log" return exec_str def get_scale_dict(scale_file): with open(scale_file) as fh: ls = fh.readlines() d = dict() for l in ls: l.strip() k,v = l.strip().split("\t") d[k] = v return d @argh.arg("run_name", help="Director to store the run") @argh.arg("--prec", help="Precision") @argh.arg("--max-k", help="Max-k") @argh.arg("--nParallel", help="Parallel") @argh.arg("--scale-file", help="Scale File") def tri(run_name, prec="2048", max_k=200, nParallel=6, scale_file="scripts/scale_eps_1.txt"): os.mkdir(run_name) scale_dict = get_scale_dict(scale_file) cmds = list() for dataset in range(1,13): scale = scale_dict[str(dataset)] cmds.append(f"julia serialize_helper.jl --prec {prec} --max_k {max_k} --scale {scale} {dataset} {run_name}/tri.{dataset}.jld --stats-file {run_name}/tri.{dataset}.stats") fname = f"{run_name}/tri.run.cmds" with open(fname,"w") as fh: fh.writelines("\n".join(cmds)) exec_cmd = "\"source path.src; bash -c {}\"" with open(f"{run_name}/main.sh", "w") as fh: fh.writelines(f"cat {run_name}/tri.run.cmds | parallel --gnu -P {nParallel} {exec_cmd}") @argh.arg("run_name", help="Director to store the run") @argh.arg("--prec", help="Precision") @argh.arg("--tol", help="Tolerance") def build(run_name, prec="2048", tol="100"): os.mkdir(run_name) scale_dict = get_scale_dict() cmds = list() for dataset in range(12,13): for rank in [2,5,10,50,100,200]: cmds.append(work_command(run_name, dataset, rank, scale_dict[str(dataset)], prec, tol)) cmd_files = [] fname = f"{run_name}/run.cmds" with open(fname,"w") as fh: fh.writelines(cmds) cmd_files.append(fname) exec_cmd = "\"source path.src; bash -c {}\"" with open(f"{run_name}/drive.sh", "w") as fh: cmds = [] for cmd_f in cmd_files: cmd = f"cat {cmd_f} | {exec_cmd}" cmds.append(cmd) fh.writelines("\n".join(cmds)) with open(f"{run_name}/main.sh", "w") as fh: fh.writelines(f"cat {run_name}/drive.sh | {exec_cmd}") if __name__ == '__main__': _parser = argh.ArghParser() _parser.add_commands([build, tri]) _parser.dispatch()
hyperbolics-master
scripts/generate_mds.py
# Copy and modified from # # https://github.com/mleszczy/pytorch_optimizers # from torch.optim.optimizer import Optimizer, required import torch import copy, logging from torch.autograd import Variable from hyperbolic_parameter import Hyperbolic_Parameter #TODO(mleszczy): Be able to inherit from different optimizers # NB: Note we choose the baseclass dynamically below. class SVRG(torch.optim.SGD): r"""Implements stochastic variance reduction gradient descent. Args: params (iterable): iterable of parameters to optimize lr (float): learning rate T (int): number of iterations between the step to take the full grad/save w data_loader (DataLoader): dataloader to use to load training data weight_decay (float, optional): weight decay (L2 penalty) (default: 0) Example: .. note:: """ def __init__(self, params, lr=required, T=required, data_loader=required, weight_decay=0.0,opt=torch.optim.SGD): defaults = dict(lr=lr, weight_decay=weight_decay) self.__class__ = type(self.__class__.__name__, (opt,object), dict(self.__class__.__dict__)) logging.info(f"Using base optimizer {opt} in SVRG") super(self.__class__, self).__init__(params, **defaults) if len(self.param_groups) != 1: raise ValueError("SVRG doesn't support per-parameter options " "(parameter groups)") # TODO(mleszczy): Add these to parameter group or state? params = self.param_groups[0]['params'] self._params = params self._curr_w = [p.data for p in params] self._prev_w = [p.data.clone() for p in params] # Gradients are lazily allocated and don't exist yet. However, gradients are # the same shape as the weights so we can still allocate buffers here self._curr_grad = [p.data.clone() for p in params] self._prev_grad = [p.data.clone() for p in params] self._full_grad = None self.data_loader = data_loader if T == 0: T = len(self.data_loader)*3 logging.info(f"SVRG epoch: {T} batches") self.state['t_iters'] = T self._first_call = True self.T = T # Needed to trigger full gradient logging.info(f"Data Loader has {len(self.data_loader)} with batch {self.data_loader.batch_size}") def __setstate__(self, state): super(self.__class__, self).__setstate__(state) def _zero_grad(self): for p in self._params: if p.grad is not None: p.grad.detach() p.grad.zero_() def _set_weights_grad(self,ws,gs): for idx, p in enumerate(self._params): if ws is not None: p.data = ws[idx] if gs is not None and p.grad is not None: p.grad.data = gs[idx] def step(self, closure): """Performs a single optimization step. Arguments: closure (callable): A closure that reevaluates the model and returns the loss. """ assert len(self.param_groups) == 1 # Calculate full gradient if self.state['t_iters'] == self.T or self._first_call: # Reset gradients before accumulating them self._set_weights_grad(None, self._full_grad) self._zero_grad() # Accumulate gradients for i, (data, target) in enumerate(self.data_loader): closure(data, target) # Adjust summed gradients by num_iterations accumulated over # assert(n_iterations == len(self.data_loader)) for p in self._params: if p.grad is not None: p.grad.data /= len(self.data_loader) # As the gradient is lazily allocated, on the first call, # we make a copy. if self._first_call: assert(self._full_grad is None) self._full_grad = [p.grad.data.clone() if p.grad is not None else None for p in self._params] self._first_call = False # Copy w to prev_w for p, p0 in zip(self._curr_w, self._prev_w): p0.copy_(p) # Reset t self.state['t_iters'] = 0 # Setup the previous grad self._set_weights_grad(self._prev_w, self._prev_grad) self._zero_grad() closure() # Calculate the current grad. self._set_weights_grad(self._curr_w, self._curr_grad) self._zero_grad() loss = closure() # Adjust the current gradient using the previous gradient and the full gradient. # We have normalized so that these are all comparable. for p, d_p0, fg in zip(self._params, self._prev_grad, self._full_grad): # Adjust gradient in place if p.grad is not None: # NB: This should be _this_ batch. p.grad.data -= (d_p0 - fg) # Call optimizer update step # TODO: Abstract this away. Hyperbolic_Parameter.correct_metric(self._params) super(self.__class__, self).step() self.state['t_iters'] += 1 return loss
hyperbolics-master
pytorch/svrg.py
import math import numpy as np import torch import copy import logging import os import pickle as cp # eps for numerical stability eps = 1e-6 class YFOptimizer(object): def __init__(self, var_list, lr=0.0001, mu=0.0, clip_thresh=None, weight_decay=0.0, beta=0.999, curv_win_width=20, zero_debias=True, sparsity_debias=False, delta_mu=0.0, auto_clip_fac=None, force_non_inc_step=False, h_max_log_smooth=True, h_min_log_smooth=True, checkpoint_interval=1000, verbose=False, adapt_clip=True, stat_protect_fac=100.0, catastrophic_move_thresh=100.0, use_disk_checkpoint=False, checkpoint_dir='./YF_workspace'): ''' clip thresh is the threshold value on ||lr * gradient|| delta_mu can be place holder/variable/python scalar. They are used for additional momentum in situations such as asynchronous-parallel training. The default is 0.0 for basic usage of the optimizer. Args: lr: python scalar. The initial value of learning rate, we use 1.0 in our paper. mu: python scalar. The initial value of momentum, we use 0.0 in our paper. clip_thresh: python scalar. The manaully-set clipping threshold for tf.clip_by_global_norm. if None, the automatic clipping can be carried out. The automatic clipping feature is parameterized by argument auto_clip_fac. The auto clip feature can be switched off with auto_clip_fac = None beta: python scalar. The smoothing parameter for estimations. sparsity_debias: gradient norm and curvature are biased to larger values when calculated with sparse gradient. This is useful when the model is very sparse, e.g. LSTM with word embedding. For non-sparse CNN, turning it off could slightly accelerate the speed. delta_mu: for extensions. Not necessary in the basic use. force_non_inc_step: in some very rare cases, it is necessary to force ||lr * gradient|| to be not increasing dramatically for stableness after some iterations. In practice, if turned on, we enforce lr * sqrt(smoothed ||grad||^2) to be less than 2x of the minimal value of historical value on smoothed || lr * grad ||. This feature is turned off by default. checkpoint_interval: interval to do checkpointing. For potential recovery from crashing. stat_protect_fac: a loose hard adaptive threshold over ||grad||^2. It is to protect stat from being destropied by exploding gradient. Other features: If you want to manually control the learning rates, self.lr_factor is an interface to the outside, it is an multiplier for the internal learning rate in YellowFin. It is helpful when you want to do additional hand tuning or some decaying scheme to the tuned learning rate in YellowFin. Example on using lr_factor can be found here: https://github.com/JianGoForIt/YellowFin_Pytorch/blob/master/pytorch-cifar/main.py#L109 ''' self._lr = lr self._mu = mu self._lr_t = lr self._mu_t = mu # we convert var_list from generator to list so that # it can be used for multiple times self._var_list = list(var_list) self._clip_thresh = clip_thresh self._auto_clip_fac = auto_clip_fac self._beta = beta self._curv_win_width = curv_win_width self._zero_debias = zero_debias self._sparsity_debias = sparsity_debias self._force_non_inc_step = force_non_inc_step self._optimizer = torch.optim.SGD(self._var_list, lr=self._lr, momentum=self._mu, weight_decay=weight_decay) self._iter = 0 # global states are the statistics self._global_state = {} # for decaying learning rate and etc. self._lr_factor = 1.0 # smoothing options self._h_max_log_smooth = h_max_log_smooth self._h_min_log_smooth = h_min_log_smooth # checkpoint interval self._checkpoint_interval = checkpoint_interval self._verbose = verbose if self._verbose: logging.debug('Verbose mode with debugging info logged.') # clip exploding gradient self._adapt_clip = adapt_clip self._exploding_grad_clip_thresh=1e3 self._exploding_grad_clip_target_value = 1e3 self._stat_protect_fac = stat_protect_fac self._catastrophic_move_thresh = catastrophic_move_thresh self._exploding_grad_detected = False # workspace creation self._use_disk_checkpoint = use_disk_checkpoint self._checkpoint_dir = checkpoint_dir if use_disk_checkpoint: if not os.path.exists(self._checkpoint_dir): os.makedirs(self._checkpoint_dir) self._checkpoint_file = "checkpoint_pid_" + str(os.getpid()) def state_dict(self): # for checkpoint saving sgd_state_dict = self._optimizer.state_dict() # for recover model internally in case of numerical issue model_state_list = [p.data \ for group in self._optimizer.param_groups for p in group['params'] ] global_state = self._global_state lr_factor = self._lr_factor iter = self._iter lr = self._lr mu = self._mu clip_thresh = self._clip_thresh beta = self._beta curv_win_width = self._curv_win_width zero_debias = self._zero_debias h_min = self._h_min h_max = self._h_max return { "sgd_state_dict": sgd_state_dict, "model_state_list": model_state_list, "global_state": global_state, "lr_factor": lr_factor, "iter": iter, "lr": lr, "mu": mu, "clip_thresh": clip_thresh, "beta": beta, "curv_win_width": curv_win_width, "zero_debias": zero_debias, "h_min": h_min, "h_max": h_max } def load_state_dict(self, state_dict): # for checkpoint saving self._optimizer.load_state_dict(state_dict['sgd_state_dict']) # for recover model internally if any numerical issue happens param_id = 0 for group in self._optimizer.param_groups: for p in group["params"]: p.data.copy_(state_dict["model_state_list"][param_id] ) param_id += 1 self._global_state = state_dict['global_state'] self._lr_factor = state_dict['lr_factor'] self._iter = state_dict['iter'] self._lr = state_dict['lr'] self._mu = state_dict['mu'] self._clip_thresh = state_dict['clip_thresh'] self._beta = state_dict['beta'] self._curv_win_width = state_dict['curv_win_width'] self._zero_debias = state_dict['zero_debias'] self._h_min = state_dict["h_min"] self._h_max = state_dict["h_max"] return def load_state_dict_perturb(self, state_dict): # for checkpoint saving self._optimizer.load_state_dict(state_dict['sgd_state_dict']) # for recover model internally if any numerical issue happens param_id = 0 for group in self._optimizer.param_groups: for p in group["params"]: p.data.copy_(state_dict["model_state_list"][param_id] ) p.data += 1e-8 param_id += 1 self._global_state = state_dict['global_state'] self._lr_factor = state_dict['lr_factor'] self._iter = state_dict['iter'] self._lr = state_dict['lr'] self._mu = state_dict['mu'] self._clip_thresh = state_dict['clip_thresh'] self._beta = state_dict['beta'] self._curv_win_width = state_dict['curv_win_width'] self._zero_debias = state_dict['zero_debias'] self._h_min = state_dict["h_min"] self._h_max = state_dict["h_max"] return def set_lr_factor(self, factor): self._lr_factor = factor return def get_lr_factor(self): return self._lr_factor def zero_grad(self): self._optimizer.zero_grad() return def zero_debias_factor(self): return 1.0 - self._beta ** (self._iter + 1) def zero_debias_factor_delay(self, delay): # for exponentially averaged stat which starts at non-zero iter return 1.0 - self._beta ** (self._iter - delay + 1) def curvature_range(self): global_state = self._global_state if self._iter == 0: global_state["curv_win"] = torch.FloatTensor(self._curv_win_width, 1).zero_() curv_win = global_state["curv_win"] grad_norm_squared = self._global_state["grad_norm_squared"] # curv_win[self._iter % self._curv_win_width] = np.log(grad_norm_squared + eps) curv_win[self._iter % self._curv_win_width] = grad_norm_squared valid_end = min(self._curv_win_width, self._iter + 1) # we use running average over log scale, accelerating # h_max / min in the begining to follow the varying trend of curvature. beta = self._beta if self._iter == 0: global_state["h_min_avg"] = 0.0 global_state["h_max_avg"] = 0.0 self._h_min = 0.0 self._h_max = 0.0 if self._h_min_log_smooth: global_state["h_min_avg"] = \ global_state["h_min_avg"] * beta + (1 - beta) * torch.min(np.log(curv_win[:valid_end] + eps) ) else: global_state["h_min_avg"] = \ global_state["h_min_avg"] * beta + (1 - beta) * torch.min(curv_win[:valid_end] ) if self._h_max_log_smooth: global_state["h_max_avg"] = \ global_state["h_max_avg"] * beta + (1 - beta) * torch.max(np.log(curv_win[:valid_end] + eps) ) else: global_state["h_max_avg"] = \ global_state["h_max_avg"] * beta + (1 - beta) * torch.max(curv_win[:valid_end] ) if self._zero_debias: debias_factor = self.zero_debias_factor() if self._h_min_log_smooth: self._h_min = np.exp(global_state["h_min_avg"] / debias_factor) else: self._h_min = global_state["h_min_avg"] / debias_factor if self._h_max_log_smooth: self._h_max = np.exp(global_state["h_max_avg"] / debias_factor) else: self._h_max = global_state["h_max_avg"] / debias_factor else: if self._h_min_log_smooth: self._h_min = np.exp(global_state["h_min_avg"] ) else: self._h_min = global_state["h_min_avg"] if self._h_max_log_smooth: self._h_max = np.exp(global_state["h_max_avg"] ) else: self._h_max = global_state["h_max_avg"] if self._sparsity_debias: self._h_min *= self._sparsity_avg self._h_max *= self._sparsity_avg return def grad_variance(self): global_state = self._global_state beta = self._beta self._grad_var = np.array(0.0, dtype=np.float32) for group_id, group in enumerate(self._optimizer.param_groups): for p_id, p in enumerate(group['params'] ): if p.grad is None: continue grad = p.grad.data state = self._optimizer.state[p] if self._iter == 0: state["grad_avg"] = grad.new().resize_as_(grad).zero_() state["grad_avg_squared"] = 0.0 state["grad_avg"].mul_(beta).add_(1 - beta, grad) self._grad_var += torch.sum(state["grad_avg"] * state["grad_avg"] ) if self._zero_debias: debias_factor = self.zero_debias_factor() else: debias_factor = 1.0 self._grad_var /= -(debias_factor**2) self._grad_var += global_state['grad_norm_squared_avg'] / debias_factor # in case of negative variance: the two term are using different debias factors self._grad_var = max(self._grad_var, eps) if self._sparsity_debias: self._grad_var *= self._sparsity_avg return def dist_to_opt(self): global_state = self._global_state beta = self._beta if self._iter == 0: global_state["grad_norm_avg"] = 0.0 global_state["dist_to_opt_avg"] = 0.0 global_state["grad_norm_avg"] = \ global_state["grad_norm_avg"] * beta + (1 - beta) * math.sqrt(global_state["grad_norm_squared"] ) global_state["dist_to_opt_avg"] = \ global_state["dist_to_opt_avg"] * beta \ + (1 - beta) * global_state["grad_norm_avg"] / (global_state['grad_norm_squared_avg'] + eps) if self._zero_debias: debias_factor = self.zero_debias_factor() self._dist_to_opt = global_state["dist_to_opt_avg"] / debias_factor else: self._dist_to_opt = global_state["dist_to_opt_avg"] if self._sparsity_debias: self._dist_to_opt /= (np.sqrt(self._sparsity_avg) + eps) return def grad_sparsity(self): global_state = self._global_state if self._iter == 0: global_state["sparsity_avg"] = 0.0 non_zero_cnt = 0.0 all_entry_cnt = 0.0 for group in self._optimizer.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data grad_non_zero = grad.nonzero() if grad_non_zero.dim() > 0: non_zero_cnt += grad_non_zero.size()[0] all_entry_cnt += torch.numel(grad) beta = self._beta global_state["sparsity_avg"] = beta * global_state["sparsity_avg"] \ + (1 - beta) * non_zero_cnt / float(all_entry_cnt) self._sparsity_avg = \ global_state["sparsity_avg"] / self.zero_debias_factor() if self._verbose: logging.debug("sparsity %f, sparsity avg %f", non_zero_cnt / float(all_entry_cnt), self._sparsity_avg) return def lr_grad_norm_avg(self): # this is for enforcing lr * grad_norm not # increasing dramatically in case of instability. # Not necessary for basic use. global_state = self._global_state beta = self._beta if "lr_grad_norm_avg" not in global_state: global_state['grad_norm_squared_avg_log'] = 0.0 global_state['grad_norm_squared_avg_log'] = \ global_state['grad_norm_squared_avg_log'] * beta \ + (1 - beta) * np.log(global_state['grad_norm_squared'] + eps) if "lr_grad_norm_avg" not in global_state: global_state["lr_grad_norm_avg"] = \ 0.0 * beta + (1 - beta) * np.log(self._lr * np.sqrt(global_state['grad_norm_squared'] ) + eps) # we monitor the minimal smoothed ||lr * grad|| global_state["lr_grad_norm_avg_min"] = \ np.exp(global_state["lr_grad_norm_avg"] / self.zero_debias_factor() ) else: global_state["lr_grad_norm_avg"] = global_state["lr_grad_norm_avg"] * beta \ + (1 - beta) * np.log(self._lr * np.sqrt(global_state['grad_norm_squared'] ) + eps) global_state["lr_grad_norm_avg_min"] = \ min(global_state["lr_grad_norm_avg_min"], np.exp(global_state["lr_grad_norm_avg"] / self.zero_debias_factor() ) ) def before_apply(self): # compute running average of gradient and norm of gradient beta = self._beta global_state = self._global_state if self._iter == 0: global_state["grad_norm_squared_avg"] = 0.0 global_state["grad_norm_squared"] = 0.0 for group_id, group in enumerate(self._optimizer.param_groups): for p_id, p in enumerate(group['params'] ): if p.grad is None: continue grad = p.grad.data param_grad_norm_squared = torch.sum(grad * grad) global_state['grad_norm_squared'] += param_grad_norm_squared if self._verbose: logging.debug("Iteration %f", self._iter) logging.debug("param grad squared gid %d, pid %d, %f, log scale: %f", group_id, p_id, param_grad_norm_squared, np.log(param_grad_norm_squared + 1e-10) / np.log(10) ) if self._iter >= 1: self._exploding_grad_clip_thresh = self._h_max self._exploding_grad_clip_target_value = np.sqrt(self._h_max) if global_state['grad_norm_squared'] >= self._exploding_grad_clip_thresh: self._exploding_grad_detected = True else: self._exploding_grad_detected = False global_state['grad_norm_squared_avg'] = \ global_state['grad_norm_squared_avg'] * beta + (1 - beta) * global_state['grad_norm_squared'] if self._verbose: logging.debug("overall grad norm squared %f, log scale: %f", global_state['grad_norm_squared'], np.log(global_state['grad_norm_squared'] + 1e-10) / np.log(10)) if self._sparsity_debias: self.grad_sparsity() self.curvature_range() self.grad_variance() self.dist_to_opt() if self._verbose: logging.debug("h_max %f ", self._h_max) logging.debug("h_min %f ", self._h_min) logging.debug("dist %f ", self._dist_to_opt) logging.debug("var %f ", self._grad_var) if self._iter > 0: self.get_mu() self.get_lr() self._lr = beta * self._lr + (1 - beta) * self._lr_t self._mu = beta * self._mu + (1 - beta) * self._mu_t if self._verbose: logging.debug("lr_t %f", self._lr_t) logging.debug("mu_t %f", self._mu_t) logging.debug("lr %f", self._lr) logging.debug("mu %f", self._mu) return def get_lr(self): self._lr_t = (1.0 - math.sqrt(self._mu_t) )**2 / (self._h_min + eps) # slow start of lr to prevent huge lr when there is only a few iteration finished self._lr_t = min(self._lr_t, self._lr_t * (self._iter + 1) / float(10.0 * self._curv_win_width) ) return def get_cubic_root(self): # We have the equation x^2 D^2 + (1-x)^4 * C / h_min^2 # where x = sqrt(mu). # We substitute x, which is sqrt(mu), with x = y + 1. # It gives y^3 + py = q # where p = (D^2 h_min^2)/(2*C) and q = -p. # We use the Vieta's substution to compute the root. # There is only one real solution y (which is in [0, 1] ). # http://mathworld.wolfram.com/VietasSubstitution.html # eps in the numerator is to prevent momentum = 1 in case of zero gradient if np.isnan(self._dist_to_opt) or np.isnan(self._h_min) or np.isnan(self._grad_var) \ or np.isinf(self._dist_to_opt) or np.isinf(self._h_min) or np.isinf(self._grad_var): logging.warning("Input to cubic solver has invalid nan/inf value!") raise Exception("Input to cubic solver has invalid nan/inf value!") p = (self._dist_to_opt + eps)**2 * (self._h_min + eps)**2 / 2 / (self._grad_var + eps) w3 = (-math.sqrt(p**2 + 4.0 / 27.0 * p**3) - p) / 2.0 w = math.copysign(1.0, w3) * math.pow(math.fabs(w3), 1.0/3.0) y = w - p / 3.0 / (w + eps) x = y + 1 if self._verbose: logging.debug("p %f, denominator %f", p, self._grad_var + eps) logging.debug("w3 %f ", w3) logging.debug("y %f, denominator %f", y, w + eps) if np.isnan(x) or np.isinf(x): logging.warning("Output from cubic is invalid nan/inf value!") raise Exception("Output from cubic is invalid nan/inf value!") return x def get_mu(self): root = self.get_cubic_root() dr = max( (self._h_max + eps) / (self._h_min + eps), 1.0 + eps) self._mu_t = max(root**2, ( (np.sqrt(dr) - 1) / (np.sqrt(dr) + 1) )**2 ) return def update_hyper_param(self): for group in self._optimizer.param_groups: group['momentum'] = self._mu_t #group['momentum'] = max(self._mu, self._mu_t) if self._force_non_inc_step == False: group['lr'] = self._lr_t * self._lr_factor # a loose clamping to prevent catastrophically large move. If the move # is too large, we set lr to 0 and only use the momentum to move if self._adapt_clip and (group['lr'] * np.sqrt(self._global_state['grad_norm_squared']) >= self._catastrophic_move_thresh): group['lr'] = self._catastrophic_move_thresh / np.sqrt(self._global_state['grad_norm_squared'] + eps) if self._verbose: logging.warning("clip catastropic move!") elif self._iter > self._curv_win_width: # force to guarantee lr * grad_norm not increasing dramatically. # Not necessary for basic use. Please refer to the comments # in YFOptimizer.__init__ for more details self.lr_grad_norm_avg() debias_factor = self.zero_debias_factor() group['lr'] = min(self._lr * self._lr_factor, 2.0 * self._global_state["lr_grad_norm_avg_min"] \ / (np.sqrt(np.exp(self._global_state['grad_norm_squared_avg_log'] / debias_factor) ) + eps) ) return def auto_clip_thresh(self): # Heuristic to automatically prevent sudden exploding gradient # Not necessary for basic use. return math.sqrt(self._h_max) * self._auto_clip_fac def step(self): # add weight decay for group in self._optimizer.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if group['weight_decay'] != 0: grad = grad.add(group['weight_decay'], p.data) if self._clip_thresh != None: torch.nn.utils.clip_grad_norm(self._var_list, self._clip_thresh) elif (self._iter != 0 and self._auto_clip_fac != None): # do not clip the first iteration torch.nn.utils.clip_grad_norm(self._var_list, self.auto_clip_thresh() ) # loose threshold for preventing exploding gradients from destroying statistics if self._adapt_clip and (self._iter > 1): torch.nn.utils.clip_grad_norm(self._var_list, np.sqrt(self._stat_protect_fac * self._h_max) + eps) try: # before appply self.before_apply() # update learning rate and momentum self.update_hyper_param() # periodically save model and states if self._iter % self._checkpoint_interval == 0: if self._use_disk_checkpoint and os.path.exists(self._checkpoint_dir): checkpoint_path = self._checkpoint_dir + "/" + self._checkpoint_file with open(checkpoint_path, "wb") as f: cp.dump(self.state_dict(), f, protocol=2) else: self._state_checkpoint = copy.deepcopy(self.state_dict() ) # protection from exploding gradient if self._exploding_grad_detected and self._verbose: logging.warning("exploding gradient detected: grad norm detection thresh %f , grad norm %f, grad norm after clip%f", np.sqrt(self._exploding_grad_clip_thresh), np.sqrt(self._global_state['grad_norm_squared'] ), self._exploding_grad_clip_target_value) if self._adapt_clip and self._exploding_grad_detected: # print("exploding gradient detected: grad norm detection thresh ", np.sqrt(self._exploding_grad_clip_thresh), # "grad norm", np.sqrt(self._global_state['grad_norm_squared'] ), # "grad norm after clip ", self._exploding_grad_clip_target_value) torch.nn.utils.clip_grad_norm(self._var_list, self._exploding_grad_clip_target_value + eps) self._optimizer.step() self._iter += 1 except: # load the last checkpoint logging.warning("Numerical issue triggered restore with backup. Resuming from last checkpoint.") if self._use_disk_checkpoint and os.path.exists(self._checkpoint_dir): checkpoint_path = self._checkpoint_dir + "/" + self._checkpoint_file with open(checkpoint_path, "rb") as f: self.load_state_dict_perturb(cp.load(f)) else: self.load_state_dict_perturb(copy.deepcopy(self._state_checkpoint) ) return
hyperbolics-master
pytorch/yellowfin.py
import logging, argh import os, sys import networkx as nx import random import torch from torch import nn from torch.autograd import Variable from torch.utils.data import DataLoader, TensorDataset import matplotlib as mpl if torch.cuda.is_available(): mpl.use('Agg') import matplotlib.pyplot as plt if torch.cuda.is_available(): plt.ioff() import scipy import scipy.sparse.csgraph as csg import pandas import numpy as np, math root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, root_dir) import utils.load_graph as load_graph import utils.vis as vis import utils.distortions as dis import graph_helpers as gh import mds_warmstart from hyperbolic_models import ProductEmbedding from hyperbolic_parameter import RParameter # This describes a hyperbolic optimizer in Pytorch. It requires two modifications: # # * When declaring a parameter, one uses a class called "Hyperbolic # * Parameter". It assumes that the _last_ dimension is in the # * disk. E.g., a tensor of size n x m x d means that you have n x m # * elements of H_D. d >= 2. # # * It inherits from parameter, so you can do anything you want with it (set its value, pass it around). # # * So that you can use any optimizer and get the correction, after the `backward` call but before the `step`, you need to call a function called `hyperbolic_fix`. It will walk the tree, look for the hyperbolic parameters and correct them. # * The step function below can be used pretty generically. device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") seed = 0 np.random.seed(seed) torch.manual_seed(seed) def cu_var(x): if isinstance(x, list) : return [cu_var(u) for u in x] if isinstance(x, tuple): return tuple([cu_var(u) for u in list(x)]) return torch.tensor(x, device=device) def unwrap(x): """ Extract the numbers from (sequences of) pytorch tensors """ if isinstance(x, list) : return [unwrap(u) for u in x] if isinstance(x, tuple): return tuple([unwrap(u) for u in list(x)]) return x.detach().cpu().numpy() # # Dataset extractors # class GraphRowSubSampler(torch.utils.data.Dataset): def __init__(self, G, scale, subsample, weight_fn, Z=None): super(GraphRowSubSampler, self).__init__() self.graph = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) self.n = G.order() self.scale = scale self.subsample = subsample if subsample > 0 else self.n-1 self.val_cache = torch.zeros((self.n,self.subsample), dtype=torch.double) self.idx_cache = torch.LongTensor(self.n,self.subsample,2).zero_() self.w_cache = torch.zeros((self.n, self.subsample), dtype=torch.double) self.cache = set() self.verbose = False self.n_cached = 0 self.Z = Z self.nbr_frac = 1.0 # fill up this proportion of samples with neighbors self.weight_fn = weight_fn logging.info(self) ## initialize up front for i in range(self.n): self.__getitem__(i) ## store total weight self.total_w = torch.sum(self.w_cache) self.max_dist = torch.max(self.val_cache) def __getitem__(self, index): if index not in self.cache: if self.verbose: logging.info(f"Cache miss for {index}") h = gh.djikstra_wrapper( (self.graph, [index]) )[0,:] if self.Z is None else self.Z[index,:] # add in all the edges cur = 0 self.idx_cache[index,:,0] = index neighbors = scipy.sparse.find(self.graph[index,:])[1] for e in neighbors: self.idx_cache[index,cur,1] = int(e) self.val_cache[index,cur] = self.scale*h[e] self.w_cache[index,cur] = self.weight_fn(1.0) cur += 1 if cur >= self.nbr_frac * self.subsample: break scratch = np.array(range(self.n)) np.random.shuffle(scratch) i = 0 while cur < self.subsample and i < self.n: v = scratch[i] if v != index and v not in neighbors: self.idx_cache[index,cur,1] = int(v) self.val_cache[index,cur] = self.scale*h[v] # self.val_cache[index,cur] = 0 self.w_cache[index,cur] = self.weight_fn(h[v]) cur += 1 i += 1 if self.verbose: logging.info(f"\t neighbors={neighbors} {self.idx_cache[index,:,1].numpy().T}") self.cache.add(index) self.n_cached += 1 # if self.n_cached % (max(self.n//20,1)) == 0: logging.info(f"\t Cached {self.n_cached} of {self.n}") # print("GraphRowSubSampler: idx shape ", self.idx_cache[index,:].size()) return (self.idx_cache[index,:], self.val_cache[index,:], self.w_cache[index,:]) def __len__(self): return self.n def __repr__(self): return f"Subsample: {self.n} points with scale {self.scale} subsample={self.subsample}" class GraphRowSampler(torch.utils.data.Dataset): def __init__(self, G, scale, use_cache=True): self.graph = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) self.n = G.order() self.scale = scale self.cache = dict() if use_cache else None def __getitem__(self, index): h = None if self.cache is None or index not in self.cache: h = gh.djikstra_wrapper( (self.graph, [index]) ) if self.cache is not None: self.cache[index] = h #logging.info(f"info {index}") else: h = self.cache[index] #logging.info(f"hit {index}") idx = torch.tensor([ (index, j) for j in range(self.n) if j != index], dtype=torch.long) v = torch.DoubleTensor(h).view(-1)[idx[:,1]] return (idx, v) def __len__(self): return self.n def __repr__(self): return f"DATA: {self.n} points with scale {self.scale}" def collate(ls): x, y = zip(*ls) return torch.cat(x), torch.cat(y) def collate3(ls): x, y, z = zip(*ls) return torch.cat(x), torch.cat(y), torch.cat(z) def build_dataset(G, lazy_generation, sample, subsample, scale, batch_size, weight_fn, num_workers): n = G.order() Z = None logging.info("Building dataset") if subsample is not None and (subsample <= 0 or subsample >= n): subsample = n-1 if lazy_generation: if subsample is not None: z = DataLoader(GraphRowSubSampler(G, scale, subsample, weight_fn), batch_size//subsample, shuffle=True, collate_fn=collate3) else: z = DataLoader(GraphRowSampler(G, scale), batch_size//(n-1), shuffle=True, collate_fn=collate) logging.info("Built Data Sampler") else: Z = gh.build_distance(G, scale, num_workers=int(num_workers) if num_workers is not None else 16) # load the whole matrix logging.info(f"Built distance matrix with {scale} factor") if subsample is not None: z = DataLoader(GraphRowSubSampler(G, scale, subsample, weight_fn, Z=Z), batch_size//subsample, shuffle=True, collate_fn=collate3) else: idx = torch.LongTensor([(i,j) for i in range(n) for j in range(i+1,n)]) Z_sampled = gh.dist_sample_rebuild_pos_neg(Z, sample) if sample < 1 else Z vals = torch.DoubleTensor([Z_sampled[i,j] for i in range(n) for j in range(i+1, n)]) z = DataLoader(TensorDataset(idx,vals), batch_size=batch_size, shuffle=True, pin_memory=torch.cuda.is_available()) # TODO does this not shuffle immediately? logging.info("Built data loader") return Z, z # # DATA Diagnostics # def major_stats(G, n, m, lazy_generation, Z,z, fig, ax, writer, visualize, subsample, n_rows_sampled=256, num_workers=16): m.train(False) if lazy_generation: logging.info(f"\t Computing Major Stats lazily... ") avg, me, mc = 0.0, 0.0, 0.0 good,bad = 0,0 _count = 0 for u in z: index,vs,_ = u v_rec = unwrap(m.dist_idx(index.to(device))) v = vs.cpu().numpy() for i in range(len(v)): if dis.entry_is_good(v[i], v_rec[i]): (_avg,me,mc) = dis.distortion_entry(v[i], v_rec[i], me, mc) avg += _avg good += 1 else: bad += 1 _count += len(v) # if n_rows_sampled*(n-1) <= _count: ss = subsample if subsample is not None else n-1 if _count >= n_rows_sampled*ss: break logging.info(f"\t\t Completed edges={_count} good={good} bad={bad}") avg_dist = avg/good if good > 0 else 0 wc_dist = me*mc nan_elements = bad map_avg = 0.0 # sample for rows shuffled = list(range(n)) np.random.shuffle(shuffled) mm = 0 for i in shuffled[0:n_rows_sampled]: h_rec = unwrap(m.dist_row(i)) map_avg += dis.map_via_edges(G,i, h_rec) mm += 1 mapscore = map_avg/mm else: H = Z Hrec = unwrap(m.dist_matrix()) logging.info("Compare matrices built") mc, me, avg_dist, nan_elements = dis.distortion(H, Hrec, n, num_workers) wc_dist = me*mc mapscore = dis.map_score(scipy.sparse.csr_matrix.todense(G).A, Hrec, n, num_workers) if visualize: num_spheres = np.minimum(len(m.S), 5) num_hypers = np.minimum(len(m.H), 5) for emb in range(num_spheres): ax_this = vis.get_ax(num_hypers, num_spheres, ax, emb, 1) ax_this.cla() for emb in range(num_hypers): ax_this = vis.get_ax(num_hypers, num_spheres, ax, emb, 0) ax_this.cla() text_3d_only = False vis.draw_graph(G,m,fig, ax) if num_hypers > 0: axlabel = vis.get_ax(num_hypers, num_spheres, ax, 0, 0) else: axlabel = vis.get_ax(num_hypers, num_spheres, ax, 0, 1) sdim = 0 if len(m.S) == 0 else len((m.S[0]).w[0]) if sdim == 3: text_3d_only = True if text_3d_only: axlabel.text(-1.00, 1.0, 1.1, "Epoch "+str(m.epoch), fontsize=20) axlabel.text(-1.00, 1.0, 0.8, "MAP "+str(mapscore)[0:5], fontsize=20) else: axlabel.text(0.70, 1.1, "Epoch "+str(m.epoch), fontsize=20) axlabel.text(0.70, 1.0, "MAP "+str(mapscore)[0:5], fontsize=20) writer.grab_frame() logging.info(f"Distortion avg={avg_dist} wc={wc_dist} me={me} mc={mc} nan_elements={nan_elements}") logging.info(f"MAP = {mapscore}") logging.info(f"scale={unwrap(m.scale())}") return avg_dist, wc_dist, me, mc, mapscore @argh.arg("dataset", help="dataset number") # model params @argh.arg("-d", "--dim", help="Dimension to use") @argh.arg("--hyp", help="Number of copies of hyperbolic space") @argh.arg("--edim", help="Euclidean dimension to use") @argh.arg("--euc", help="Number of copies of Euclidean space") @argh.arg("--sdim", help="Spherical dimension to use") @argh.arg("--sph", help="Number of copies of spherical space") @argh.arg("--riemann", help="Use Riemannian metric for product space. Otherwise, use L1 sum") @argh.arg("-s", "--scale", help="Scale factor") @argh.arg("-t", "--tol", help="Tolerances for projection") # optimizers and params @argh.arg("-y", "--use-yellowfin", help="Turn off yellowfin") @argh.arg("--use-adagrad", help="Use adagrad") @argh.arg("--use-svrg", help="Use SVRG") @argh.arg("-T", help="SVRG T parameter") @argh.arg("--use-hmds", help="Use MDS warmstart") @argh.arg("-l", "--learning-rate", help="Learning rate") @argh.arg("--decay-length", help="Number of epochs per lr decay") @argh.arg("--decay-step", help="Size of lr decay") @argh.arg("--momentum", help="Momentum") @argh.arg("--epochs", help="number of steps in optimization") @argh.arg("--burn-in", help="number of epochs to initially train at lower LR") @argh.arg("-x", "--extra-steps", type=int, help="Steps per batch") # data @argh.arg("--num-workers", help="Number of workers for loading. Default is to use all cores") @argh.arg("--batch-size", help="Batch size (number of edges)") @argh.arg("--sample", help="Sample the distance matrix") @argh.arg("-g", "--lazy-generation", help="Use a lazy data generation technique") @argh.arg("--subsample", type=int, help="Number of edges per row to subsample") @argh.arg("--resample-freq", type=int, help="Resample data frequency (expensive)") # logging and saving @argh.arg("--print-freq", help="Print loss this every this number of steps") @argh.arg("--checkpoint-freq", help="Checkpoint Frequency (Expensive)") @argh.arg("--model-save-file", help="Save model file") @argh.arg("--model-load-file", help="Load model file") @argh.arg("-w", "--warm-start", help="Warm start the model with MDS") @argh.arg("--log-name", help="Log to a file") @argh.arg("--log", help="Log to a file (automatic name)") # misc @argh.arg("--learn-scale", help="Learn scale") @argh.arg("--logloss") @argh.arg("--distloss") @argh.arg("--squareloss") @argh.arg("--symloss") @argh.arg("-e", "--exponential-rescale", type=float, help="Exponential Rescale") @argh.arg("--visualize", help="Produce an animation (dimension 2 only)") def learn(dataset, dim=2, hyp=1, edim=1, euc=0, sdim=1, sph=0, scale=1., riemann=False, learning_rate=1e-1, decay_length=1000, decay_step=1.0, momentum=0.0, tol=1e-8, epochs=100, burn_in=0, use_yellowfin=False, use_adagrad=False, resample_freq=1000, print_freq=1, model_save_file=None, model_load_file=None, batch_size=16, num_workers=None, lazy_generation=False, log_name=None, log=False, warm_start=None, learn_scale=False, checkpoint_freq=100, sample=1., subsample=None, logloss=False, distloss=False, squareloss=False, symloss=False, exponential_rescale=None, extra_steps=1, use_svrg=False, T=10, use_hmds=False, visualize=False): # Log configuration formatter = logging.Formatter('%(asctime)s %(message)s') logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt='%FT%T',) if log_name is None and log: log_name = f"{os.path.splitext(dataset)[0]}.H{dim}-{hyp}.E{edim}-{euc}.S{sdim}-{sph}.lr{learning_rate}.log" if log_name is not None: logging.info(f"Logging to {log_name}") log = logging.getLogger() fh = logging.FileHandler(log_name) fh.setFormatter( formatter ) log.addHandler(fh) logging.info(f"Commandline {sys.argv}") if model_save_file is None: logging.warn("No Model Save selected!") G = load_graph.load_graph(dataset) GM = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) # grab scale if warm starting: if warm_start: scale = pandas.read_csv(warm_start, index_col=0).as_matrix()[0, -1] n = G.order() logging.info(f"Loaded Graph {dataset} with {n} nodes scale={scale}") if exponential_rescale is not None: # torch.exp(exponential_rescale * -d) def weight_fn(d): if d <= 2.0: return 5.0 elif d > 4.0: return 0.01 else: return 1.0 else: def weight_fn(d): return 1.0 Z, z = build_dataset(G, lazy_generation, sample, subsample, scale, batch_size, weight_fn, num_workers) if model_load_file is not None: logging.info(f"Loading {model_load_file}...") m = torch.load(model_load_file).to(device) logging.info(f"Loaded scale {unwrap(m.scale())} {torch.sum(m.embedding().data)} {m.epoch}") else: logging.info(f"Creating a fresh model warm_start?={warm_start}") m_init = None if warm_start: # load from DataFrame; assume that the julia combinatorial embedding has been saved ws_data = pandas.read_csv(warm_start, index_col=0).as_matrix() scale = ws_data[0, ws_data.shape[1]-1] m_init = torch.DoubleTensor(ws_data[:,range(ws_data.shape[1]-1)]) elif use_hmds: # m_init = torch.DoubleTensor(mds_warmstart.get_normalized_hyperbolic(mds_warmstart.get_model(dataset,dim,scale)[1])) m_init = torch.DoubleTensor(mds_warmstart.get_model(dataset,dim,scale)[1]) logging.info(f"\t Warmstarting? {warm_start} {m_init.size() if warm_start else None} {G.order()}") initial_scale = z.dataset.max_dist / 3.0 print("MAX DISTANCE", z.dataset.max_dist) print("AVG DISTANCE", torch.mean(z.dataset.val_cache)) initial_scale=0.0 m = ProductEmbedding(G.order(), dim, hyp, edim, euc, sdim, sph, initialize=m_init, learn_scale=learn_scale, initial_scale=initial_scale, logrel_loss=logloss, dist_loss=distloss, square_loss=squareloss, sym_loss=symloss, exponential_rescale=exponential_rescale, riemann=riemann).to(device) m.normalize() m.epoch = 0 logging.info(f"Constructed model with dim={dim} and epochs={m.epoch} isnan={np.any(np.isnan(m.embedding().cpu().data.numpy()))}") if visualize: name = 'animations/' + f"{os.path.split(os.path.splitext(dataset)[0])[1]}.H{dim}-{hyp}.E{edim}-{euc}.S{sdim}-{sph}.lr{learning_rate}.ep{epochs}.seed{seed}" fig, ax, writer = vis.setup_plot(m=m, name=name, draw_circle=True) else: fig = None ax = None writer = None # # Build the Optimizer # # TODO: Redo this in a sensible way!! # per-parameter learning rates exp_params = [p for p in m.embed_params if p.use_exp] learn_params = [p for p in m.embed_params if not p.use_exp] hyp_params = [p for p in m.hyp_params if not p.use_exp] euc_params = [p for p in m.euc_params if not p.use_exp] sph_params = [p for p in m.sph_params if not p.use_exp] scale_params = m.scale_params # model_params = [{'params': m.embed_params}, {'params': m.scale_params, 'lr': 1e-4*learning_rate}] # model_params = [{'params': learn_params}, {'params': m.scale_params, 'lr': 1e-4*learning_rate}] model_params = [{'params': hyp_params}, {'params': euc_params}, {'params': sph_params, 'lr': 0.1*learning_rate}, {'params': m.scale_params, 'lr': 1e-4*learning_rate}] # opt = None if len(model_params) > 0: opt = torch.optim.SGD(model_params, lr=learning_rate/10, momentum=momentum) # opt = torch.optim.SGD(learn_params, lr=learning_rate/10, momentum=momentum) # opt = torch.optim.SGD(model_params, lr=learning_rate/10, momentum=momentum) # exp = None # if len(exp_params) > 0: # exp = torch.optim.SGD(exp_params, lr=1.0) # dummy for zeroing if len(scale_params) > 0: scale_opt = torch.optim.SGD(scale_params, lr=1e-3*learning_rate) scale_decay = torch.optim.lr_scheduler.StepLR(scale_opt, step_size=1, gamma=.99) else: scale_opt = None scale_decay = None lr_burn_in = torch.optim.lr_scheduler.MultiStepLR(opt, milestones=[burn_in], gamma=10) # lr_decay = torch.optim.lr_scheduler.StepLR(opt, decay_length, decay_step) #TODO reconcile multiple LR schedulers if use_yellowfin: from yellowfin import YFOptimizer opt = YFOptimizer(model_params) if use_adagrad: opt = torch.optim.Adagrad(model_params) if use_svrg: from svrg import SVRG base_opt = torch.optim.Adagrad if use_adagrad else torch.optim.SGD opt = SVRG(m.parameters(), lr=learning_rate, T=T, data_loader=z, opt=base_opt) # TODO add ability for SVRG to take parameter groups logging.info(opt) # Log stats from import: when warmstarting, check that it matches Julia's stats logging.info(f"*** Initial Checkpoint. Computing Stats") major_stats(GM,n,m, lazy_generation, Z, z, fig, ax, writer, visualize, subsample) logging.info("*** End Initial Checkpoint\n") # track best stats best_loss = 1.0e10 best_dist = 1.0e10 best_wcdist = 1.0e10 best_map = 0.0 for i in range(m.epoch+1, m.epoch+epochs+1): lr_burn_in.step() # lr_decay.step() # scale_decay.step() # print(scale_opt.param_groups[0]['lr']) # for param_group in opt.param_groups: # print(param_group['lr']) # print(type(opt.param_groups), opt.param_groups) l, n_edges = 0.0, 0.0 # track average loss per edge m.train(True) if use_svrg: for data in z: def closure(data=data, target=None): _data = data if target is None else (data,target) c = m.loss(_data.to(device)) c.backward() return c.data[0] l += opt.step(closure) # Projection m.normalize() else: # scale_opt.zero_grad() for the_step in range(extra_steps): # Accumulate the gradient for u in z: # Zero out the gradients # if opt is not None: opt.zero_grad() # This is handled by the SVRG. # if exp is not None: exp.zero_grad() opt.zero_grad() for p in exp_params: if p.grad is not None: p.grad.detach_() p.grad.zero_() # Compute loss _loss = m.loss(cu_var(u)) _loss.backward() l += _loss.item() * u[0].size(0) # print(weight) n_edges += u[0].size(0) # modify gradients if necessary RParameter.correct_metric(m.parameters()) # step opt.step() for p in exp_params: lr = opt.param_groups[0]['lr'] p.exp(lr) # Projection m.normalize() # scale_opt.step() l /= n_edges # m.epoch refers to num of training epochs finished m.epoch += 1 # Logging code # if l < tol: # logging.info("Found a {l} solution. Done at iteration {i}!") # break if i % print_freq == 0: logging.info(f"{i} loss={l}") if (i <= burn_in and i % (checkpoint_freq/5) == 0) or i % checkpoint_freq == 0: logging.info(f"\n*** Major Checkpoint. Computing Stats and Saving") avg_dist, wc_dist, me, mc, mapscore = major_stats(GM,n,m, True, Z, z, fig, ax, writer, visualize, subsample) best_loss = min(best_loss, l) best_dist = min(best_dist, avg_dist) best_wcdist = min(best_wcdist, wc_dist) best_map = max(best_map, mapscore) if model_save_file is not None: fname = f"{model_save_file}.{m.epoch}" logging.info(f"Saving model into {fname} {torch.sum(m.embedding().data)} ") torch.save(m, fname) logging.info("*** End Major Checkpoint\n") if i % resample_freq == 0: if sample < 1. or subsample is not None: Z, z = build_dataset(G, lazy_generation, sample, subsample, scale, batch_size, weight_fn, num_workers) logging.info(f"final loss={l}") logging.info(f"best loss={best_loss}, distortion={best_dist}, map={best_map}, wc_dist={best_wcdist}") final_dist, final_wc, final_me, final_mc, final_map = major_stats(GM, n, m, lazy_generation, Z,z, fig, ax, writer, False, subsample) if log_name is not None: with open(log_name + '.stat', "w") as f: f.write("Best-loss MAP dist wc Final-loss MAP dist wc me mc\n") f.write(f"{best_loss:10.6f} {best_map:8.4f} {best_dist:8.4f} {best_wcdist:8.4f} {l:10.6f} {final_map:8.4f} {final_dist:8.4f} {final_wc:8.4f} {final_me:8.4f} {final_mc:8.4f}") if visualize: writer.finish() if model_save_file is not None: fname = f"{model_save_file}.final" logging.info(f"Saving model into {fname}-final {torch.sum(m.embedding().data)} {unwrap(m.scale())}") torch.save(m, fname) if __name__ == '__main__': _parser = argh.ArghParser() _parser.add_commands([learn]) _parser.dispatch()
hyperbolics-master
pytorch/pytorch_hyperbolic.py
import utils.data_prep as dp import pytorch.graph_helpers as gh import numpy as np import utils.distortions as dis import utils.load_graph as load_graph import torch, logging from math import sqrt def cudaify(x): return x.cuda() if torch.cuda.is_available() else x def compute_d(u,l,n): if np.min(u) < 0.: print(np.min(u)) print(u) assert(False) b =max(1. + (sum(u)/sqrt(l)*np.linalg.norm(u))**2,1.) alpha = b - np.sqrt(b**2-1.) v = u*(l*(1.-alpha))/sum(u) d = (v+1.)/(1.+alpha) d_min = np.min(d) if d_min < 1: print("\t\t\t Warning: Noisy d_min correction used.") #d/=d_min dv = d - 1 dinv = 1./d t = dinv*np.divide(v-alpha,(1)+alpha) return (d,dv,t) def data_rec(points, scale=1.0): (n,d) = points.shape Z = np.zeros( (n,n) ) for i in range(n): di = 1-np.linalg.norm(points[i,:])**2 for j in range(n): dj = 1-np.linalg.norm(points[j,:])**2 Z[i,j] = np.linalg.norm(points[i,:] - points[j,:])**2/(di*dj) return (Z,np.arccosh(1+2.*Z)/scale) def center_numpy_inplace(tZ,inv_d,v): n = tZ.shape[0] for i in range(n): for j in range(n): tZ[i,j] *= inv_d[i] for i in range(n): for j in range(n): tZ[i,j] *= inv_d[j] for i in range(n): for j in range(n): tZ[i,j] -= (v[i]+v[j]) #mu = np.mean(tZ,1) #for i in range(n): tZ[:,i] -= mu #mu = np.mean(tZ,0) #for i in range(n): tZ[i,:] -= mu def power_method(_A,r,T=5000,tol=1e-14): (n,n) = _A.shape A = cudaify( torch.DoubleTensor(_A) ) x = cudaify( torch.DoubleTensor( np.random.randn(n,r)/r ) ) _eig = cudaify( torch.DoubleTensor(r).zero_() ) for i in range(r): for j in range(T): y = x[:,0:i]@(x[:,0:i].transpose(0,1)@x[:,i]) if i > 0 else 0. x[:,i] = A@x[:,i] - y nx = torch.norm(x[:,i]) x[:,i] /= nx if (abs(_eig[i]) > tol) and (abs(_eig[i] - nx)/_eig[i] < tol): print(f"\teig {i} iteration {j} --> {_eig[i]}") break _eig[i] = nx return (_eig.cpu().numpy(), x.cpu().numpy()) def get_eig(A,r, use_power=False): if use_power: return power_method(A,r) else: e, ev = np.linalg.eigh(A) return e[-r:], ev[:,-r:] def get_model(dataset, max_k, scale = 1.0): #G = dp.load_graph(dataset) G = load_graph.load_graph(dataset) H = gh.build_distance(G,1.0) (n,n) = H.shape Z = (np.cosh(scale*H) -1)/2 # Find Perron vector (d,U)=get_eig(Z,1) idx = np.argmax(d) l0 = d[idx] u = U[:,idx] u = u if u[0] > 0 else -u (d1,dv,v) = compute_d(u,l0,n) inv_d = 1./d1 #Q = (np.eye(n)-np.ones( (n,n)) /n)*np.diag(inv_d) #G = -Q@[email protected]/2 G = Z # This does make a copy. center_numpy_inplace(G, inv_d, v) G /= -2.0 # Recover our points (emb_d, points_d) = get_eig(G,max_k) # good_idx = emb_d > 0 # our_points = np.real(points_d[:,good_idx]@np.diag(np.sqrt(emb_d[good_idx]))) bad_idx = emb_d <= 0 emb_d[bad_idx] = 0 our_points = [email protected](np.sqrt(emb_d)) # Just for evaluation (Z,Hrec) = data_rec(our_points, scale) # np.set_printoptions(threshold=np.nan) # print(f"Distortion Score {dis.distortion(H, Hrec, n, 2)}") # this will get done in the preliminary stats pass: #print(f"Map Score {dis.map_score(H/scale, Hrec, n, 2)}") return (H,our_points) def get_normalized_hyperbolic(model): x = torch.DoubleTensor(model) ds = torch.norm(x,2,1) ds2 = ds**2 # need to find y s.t. \|x\|^2 = \frac{\|y\|^2}{1-\|y\|^2} => \|y\|^2 = \frac{\|x\|^2}{1+\|x\|^2} new_norm = torch.sqrt(ds2/((1+1e-10)*(1.0+ds2)))/ds z = torch.diag(new_norm) @ x logging.info(f"norm_z={torch.max(torch.norm(z,2,1))} min_norm_ds={torch.min(ds)} input={torch.max(torch.norm(x,2,1))} q={np.any(np.isnan(z.numpy()))}") return z
hyperbolics-master
pytorch/mds_warmstart.py
import numpy as np import torch from torch import nn from hyperbolic_parameter import PoincareParameter, EuclideanParameter, SphericalParameter, HyperboloidParameter import logging device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # # Our models # class Hyperbolic_Mean(nn.Module): def __init__(self, d): super(Hyperbolic_Mean, self).__init__() self.w = Hyperbolic_Parameter(sizes=d) def loss(self, y_data): return torch.sum(dist(self.w.repeat(y_data.size(0),1),y_data)**2) def normalize(self): self.w.proj() class Hyperbolic_Lines(nn.Module): def __init__(self, d): super(Hyperbolic_Lines, self).__init__() self.w = Hyperbolic_Parameter(sizes=d) # $$\min_{v} \sum_{j=1}^{n} \mathrm{acosh}\left(1 + d^2_E(L(v), w_j)\right)^2$$ # learn the lines in a zero centered way. def loss(self, y_data): return torch.sum(acosh(1 + line_dist_sq(self.w, y_data))**2) def normalize(self): # we handle this in the line_dist_s return ### Embedding Models # We implement both in pytorch using a custom SGD optimizer. This is used to correct for the hyperbolic variables. # # Here are the basic distance and projection functions. The distance in Poincaré space is: # # $$ d(u,v) = \mathrm{arcosh}\left(1 + 2\frac{\|u-v\|^2}{(1-\|u\|^2)(1-\|v\|^2)}\right)$$ # # We implement a simple projection on the disk as well. #{\displaystyle \operatorname {arcosh} x=\ln \left(x+{\sqrt {x^{2}-1}}\right)} def acosh(x): return torch.log(x + torch.sqrt(x**2-1)) # TODO: probably makes sense to move distance function into the corresponding Parameter type def dist_p(u,v): z = 2*torch.norm(u-v,2,1)**2 uu = 1. + torch.div(z,((1-torch.norm(u,2,1)**2)*(1-torch.norm(v,2,1)**2))) # machine_eps = np.finfo(uu.data.numpy().dtype).eps # problem with cuda tensor # return acosh(torch.clamp(uu, min=1+machine_eps)) return acosh(uu) # def h_proj(x, eps=1e-9): # current_norms = torch.norm(x,2,x.dim() - 1) # mask_idx = current_norms < 1.0 # modified = 1./((1+eps)*current_norms) # modified[mask_idx] = 1.0 # new_size = [1]*current_norms.dim() + [x.size(x.dim()-1)] # modified = modified.unsqueeze(modified.dim()).repeat(*new_size) # return x * modified def dot(x,y): return torch.sum(x * y, -1) def dist_e(u, v): """ Input shape (n, d) """ return torch.norm(u-v, 2, dim=1) def dist_s(u, v, eps=1e-9): uu = SphericalParameter._proj(u) vv = SphericalParameter._proj(v) return torch.acos(torch.clamp(dot(uu, vv), -1+eps, 1-eps)) # Compute the # $$\min_{v} \sum_{j=1}^{n} \mathrm{acosh}\left(1 + d^2_E(L(v), w_j)\right)^2$$ def line_dist_sq(_x,y): norm_x = torch.norm(_x)**(-2) x = _x.repeat(y.size(0),1) return torch.norm(y - torch.diag(dot(x,y)*norm_x)@x,2,1)**2 class ProductEmbedding(nn.Module): def __init__(self, n, hyp_d, hyp_copies=1, euc_d=1, euc_copies=0, sph_d=1, sph_copies=0, project=True, initialize=None, learn_scale=False, initial_scale=0.0, absolute_loss=False, logrel_loss=False, dist_loss=False, square_loss=False, sym_loss=False, exponential_rescale=None, riemann=False): super().__init__() self.n = n self.riemann = riemann # self.H = nn.ModuleList([Embedding(dist_p, PoincareParameter, n, hyp_d, project, initialize, learn_scale, initial_scale) for _ in range(hyp_copies)]) self.H = nn.ModuleList([Embedding(HyperboloidParameter.dist_h, HyperboloidParameter, n, hyp_d, project, initialize, learn_scale, initial_scale) for _ in range(hyp_copies)]) self.E = nn.ModuleList([Embedding(dist_e, EuclideanParameter, n, euc_d, False, initialize, False, initial_scale) for _ in range(euc_copies)]) # self.E = nn.ModuleList([Embedding(dist_e, EuclideanParameter, n, euc_d, False, initialize, learn_scale, initial_scale) for _ in range(euc_copies)]) self.S = nn.ModuleList([Embedding(dist_s, SphericalParameter, n, sph_d, project, initialize, learn_scale, initial_scale) for _ in range(sph_copies)]) self.scale_params = [H.scale_log for H in self.H] \ + [E.scale_log for E in self.E] \ + [S.scale_log for S in self.S] \ if learn_scale else [] self.hyp_params = [H.w for H in self.H] self.euc_params = [E.w for E in self.E] self.sph_params = [S.w for S in self.S] self.embed_params = [H.w for H in self.H] \ + [E.w for E in self.E] \ + [S.w for S in self.S] self.absolute_loss = absolute_loss self.logrel_loss = logrel_loss self.dist_loss = dist_loss self.square_loss = square_loss self.sym_loss = sym_loss abs_str = "absolute" if self.absolute_loss else "relative" self.exponential_rescale = exponential_rescale exp_str = f"Exponential {self.exponential_rescale}" if self.exponential_rescale is not None else "No Rescale" logging.info(f"{abs_str} {exp_str}") def step_rescale( self, values ): y = cudaify( torch.ones( values.size() ).double()/(10*self.n) ) y[torch.lt( values.data, 5)] = 1.0 return Variable(y, requires_grad=False) #return values**(-2) def all_attr(self, fn): H_attr = [fn(H) for H in self.H] E_attr = [fn(E) for E in self.E] S_attr = [fn(S) for S in self.S] return H_attr + E_attr + S_attr def embedding(self): """ Return list of all entries of the embedding(s) """ return torch.cat(self.all_attr(lambda emb: emb.w.view(-1))) # return torch.stack([H.w for H in self.H], dim=0) # return torch.stack(self.all_attr(lambda emb: emb.w), dim=0) # return (torch.stack([H.w for H in self.H], dim=0), torch.stack([H.w for H in self.E], dim=0), torch.stack([H.w for H in self.S], dim=0)) def scale(self): # return [H.scale() for H in self.H] return self.all_attr(lambda emb: emb.scale()) def dist_idx(self, idx): # return sum([H.dist_idx(idx) for H in self.H]) d = self.all_attr(lambda emb: emb.dist_idx(idx)) if self.riemann: return torch.norm(torch.stack(d, 0), 2, dim=0) else: return sum(d) def dist_row(self, i): # return sum([H.dist_row(i) for H in self.H]) d = self.all_attr(lambda emb: emb.dist_row(i)) if self.riemann: return torch.norm(torch.stack(d, 0), 2, dim=0) else: return sum(d) def dist_matrix(self): # return sum([H.dist_matrix() for H in self.H]) d = self.all_attr(lambda emb: emb.dist_matrix()) if self.riemann: return torch.norm(torch.stack(d), 2, dim=0) else: return sum(d) def loss(self, _x): idx, values, w = _x d = self.dist_idx(idx) #term_rescale = torch.exp( 2*(1.-values) ) if self.exponential_rescale else self.step_rescale(values) term_rescale = w if self.absolute_loss: loss = torch.sum( term_rescale*( d - values)**2) elif self.logrel_loss: loss = torch.sum( torch.log((d/values)**2)**2 ) elif self.dist_loss: loss = torch.sum( torch.abs(term_rescale*((d/values) - 1)) ) elif self.square_loss: loss = torch.sum( term_rescale*torch.abs((d/values)**2 - 1) ) else: l1 = torch.sum( term_rescale*((d/values) - 1)**2 ) l2 = torch.sum( term_rescale*((values/d) - 1)**2 ) if self.sym_loss else 0 loss = l1 + l2 return loss / values.size(0) def normalize(self): for H in self.H: H.normalize() for S in self.S: S.normalize() class Embedding(nn.Module): def __init__(self, dist_fn, param_cls, n, d, project=True, initialize=None, learn_scale=False, initial_scale=0.0): super().__init__() self.dist_fn = dist_fn self.n, self.d = n, d self.project = project if initialize is not None: logging.info(f"Initializing {np.any(np.isnan(initialize.numpy()))} {initialize.size()} {(n,d)}") # x = h_proj( 1e-3 * torch.rand(n, d).double() ) if initialize is None else torch.DoubleTensor(initialize[0:n,0:d]) # self.w = Hyperbolic_Parameter(x) # self.w = param_cls(x) self.w = param_cls(data=initialize, sizes=(n,d)) z = torch.tensor([0.0], dtype=torch.double) # init_scale = 1.0 if learn_scale: self.scale_log = nn.Parameter(torch.tensor([initial_scale], dtype=torch.double)) # self.scale_log.register_hook(lambda grad: torch.clamp(grad, -1.0, 1.0)) else: self.scale_log = torch.tensor([initial_scale], dtype=torch.double, device=device) self.learn_scale = learn_scale # self.scale_clamp = 3.0 # logging.info(f"{self} {torch.norm(self.w.data - x)} {x.size()}") logging.info(f"{self} {self.w.size()}") def scale(self): # print(self.scale_log.type(), self.lo_scale.type(), self.hi_scale.type()) # scale = torch.exp(torch.clamp(self.scale_log, -self.thres, self.thres)) # scale = torch.exp(self.scale_log.tanh()*self.scale_clamp) # return torch.sqrt(self.scale_log) scale = torch.exp(self.scale_log) # scale = self.scale_log # scale = scale if self.learn_scale else 1.0 return scale def dist_idx(self, idx): # print("idx shape: ", idx.size(), "values shape: ", values.size()) wi = torch.index_select(self.w, 0, idx[:,0]) wj = torch.index_select(self.w, 0, idx[:,1]) d = self.dist_fn(wi,wj) return d * self.scale() # rescale to the size of the true distances matrix def dist_row(self, i): m = self.w.size(0) return self.dist_fn(self.w[i,:].clone().unsqueeze(0).repeat(m,1), self.w) * self.scale() def dist_matrix(self): m = self.w.size(0) rets = torch.zeros(m, m, dtype=torch.double, device=device) for i in range(m): rets[i,:] = self.dist_row(i) return rets def normalize(self): self.w.proj() # if self.project: # self.w.proj() # print("normalize: scale ", self.scale.data) # print(type(self.scale_log), self.scale_log.type()) # self.scale_log = torch.clamp(self.scale_log, self.lo_scale, self.hi_scale)
hyperbolics-master
pytorch/hyperbolic_models.py
# Should be moved to utility from multiprocessing import Pool import networkx as nx import scipy.sparse.csgraph as csg import logging import numpy as np def djikstra_wrapper( _x ): (mat, x) = _x return csg.dijkstra(mat, indices=x, unweighted=False, directed=False) def build_distance(G, scale, num_workers=None): n = G.order() p = Pool() if num_workers is None else Pool(num_workers) #adj_mat_original = nx.to_scipy_sparse_matrix(G) adj_mat_original = nx.to_scipy_sparse_matrix(G, nodelist=list(range(G.order()))) # Simple chunking nChunks = 128 if num_workers is not None and num_workers > 1 else n if n > nChunks: chunk_size = n//nChunks extra_chunk_size = (n - (n//nChunks)*nChunks) chunks = [ list(range(k*chunk_size, (k+1)*chunk_size)) for k in range(nChunks)] if extra_chunk_size >0: chunks.append(list(range(n-extra_chunk_size, n))) Hs = p.map(djikstra_wrapper, [(adj_mat_original, chunk) for chunk in chunks]) H = np.concatenate(Hs,0) logging.info(f"\tFinal Matrix {H.shape}") else: H = djikstra_wrapper( (adj_mat_original, list(range(n))) ) H *= scale return H def build_distance_hyperbolic(G, scale): return np.cosh(build_distance(G,scale)-1.)/2. def dist_sample_rebuild(dm, alpha): dist_mat = np.copy(dm) n,_ = dist_mat.shape keep_dists = np.random.binomial(1,alpha,(n,n)) # sample matrix: for i in range(n): for j in range(n): dist_mat[i,j] = -1 if keep_dists[i,j] == 0 and i!=j else dist_mat[i,j] # use symmetry first for recovery: for i in range(n): for j in range(i+1,n): if dist_mat[i,j] == -1 and dist_mat[j,i] > 0: dist_mat[i,j] = dist_mat[j,i] if dist_mat[j,i] == -1 and dist_mat[i,j] > 0: dist_mat[j,i] = dist_mat[i,j] # now let's rebuild it with triangle inequality: largest_dist = np.max(dist_mat) for i in range(n): for j in range(i+1,n): # missing distance: if dist_mat[i,j] == -1: dist = largest_dist for k in range(n): if dist_mat[i,k] > 0 and dist_mat[j,k] > 0 and dist_mat[i,k]+dist_mat[j,k] < dist: dist = dist_mat[i,k]+dist_mat[j,k] dist_mat[i,j] = dist dist_mat[j,i] = dist return dist_mat def dist_sample_rebuild_pos_neg(dm, alpha): n,_ = dm.shape dist_mat = -1*np.ones((n,n)) pos_edges = np.argwhere(dm == 1) neg_edges = np.argwhere(dm > 1) num_pos,_ = np.shape(pos_edges) num_neg,_ = np.shape(neg_edges) # balance the sampling rates, if possible sr_pos = min(1,alpha*n*n/(2*num_pos)) sr_neg = min(1,alpha*n*n/(2*num_neg)) keep_pos_edges = np.random.binomial(1, sr_pos, num_pos) keep_neg_edges = np.random.binomial(1, sr_neg, num_neg) logging.info(f"\tPositive edges {num_pos} , negative edges {num_neg}") logging.info(f"\tSampled {sum((keep_pos_edges == 1).astype(int))} positive edges") logging.info(f"\tSampled {sum((keep_neg_edges == 1).astype(int))} negative edges") # sample matrix: for i in range(num_pos): if keep_pos_edges[i] == 1: dist_mat[pos_edges[i][0],pos_edges[i][1]] = 1 for i in range(num_neg): if keep_neg_edges[i] == 1: dist_mat[neg_edges[i][0],neg_edges[i][1]] = dm[neg_edges[i][0], neg_edges[i][1]] # use symmetry first for recovery: for i in range(n): dist_mat[i,i] = 0 for j in range(i+1,n): if dist_mat[i,j] == -1 and dist_mat[j,i] > 0: dist_mat[i,j] = dist_mat[j,i] if dist_mat[j,i] == -1 and dist_mat[i,j] > 0: dist_mat[j,i] = dist_mat[i,j] # now let's rebuild it with triangle inequality: largest_dist = np.max(dist_mat) for i in range(n): for j in range(i+1,n): # missing distance: if dist_mat[i,j] == -1: dist = largest_dist for k in range(n): if dist_mat[i,k] > 0 and dist_mat[j,k] > 0 and dist_mat[i,k]+dist_mat[j,k] < dist: dist = dist_mat[i,k]+dist_mat[j,k] dist_mat[i,j] = dist dist_mat[j,i] = dist return dist_mat
hyperbolics-master
pytorch/graph_helpers.py
import torch from torch import nn from torch.autograd import Variable import logging import numpy as np, math import random def dot(x,y): return torch.sum(x * y, -1) def acosh(x): return torch.log(x + torch.sqrt(x**2-1)) class RParameter(nn.Parameter): def __new__(cls, data=None, requires_grad=True, sizes=None, exp=False): if data is None: assert sizes is not None data = (1e-3 * torch.randn(sizes, dtype=torch.double)).clamp_(min=-3e-3,max=3e-3) #TODO get partial data if too big i.e. data[0:n,0:d] ret = super().__new__(cls, data, requires_grad=requires_grad) # ret.data = data ret.initial_proj() ret.use_exp = exp return ret @staticmethod def _proj(x): raise NotImplemented def proj(self): self.data = self.__class__._proj(self.data.detach()) # print(torch.norm(self.data, dim=-1)) def initial_proj(self): """ Project the initialization of the embedding onto the manifold """ self.proj() def modify_grad_inplace(self): pass @staticmethod def correct_metric(ps): for p in ps: if isinstance(p,RParameter): p.modify_grad_inplace() # TODO can use kwargs instead of pasting defaults class HyperboloidParameter(RParameter): def __new__(cls, data=None, requires_grad=True, sizes=None, exp=True): if sizes is not None: sizes = list(sizes) sizes[-1] += 1 return super().__new__(cls, data, requires_grad, sizes, exp) @staticmethod def dot_h(x,y): return torch.sum(x * y, -1) - 2*x[...,0]*y[...,0] @staticmethod def norm_h(x): assert torch.all(HyperboloidParameter.dot_h(x,x) >= 0), torch.min(HyperboloidParameter.dot_h(x,x)) return torch.sqrt(torch.clamp(HyperboloidParameter.dot_h(x,x), min=0.0)) @staticmethod def dist_h(x,y): # print("before", x, y) # print("before dots", HyperboloidParameter.dot_h(x,x)+1, HyperboloidParameter.dot_h(y,y)+1) # print("after dots", -HyperboloidParameter.dot_h(x,y)) # return acosh(-HyperboloidParameter.dot_h(x,y) - 1e-7) bad = torch.min(-HyperboloidParameter.dot_h(x,y) - 1.0) if bad <= -1e-4: print("bad dist", bad.item()) # assert torch.all(-HyperboloidParameter.dot_h(x,y) >= 1.0 - 1e-4), torch.min(-HyperboloidParameter.dot_h(x,y) - 1.0) # we're dividing by dist_h somewhere so we can't have it be 0, force dp > 1 return acosh(torch.clamp(-HyperboloidParameter.dot_h(x,y), min=(1.0+1e-8))) @staticmethod def _proj(x): """ Project onto hyperboloid """ x_ = torch.tensor(x) x_tail = x_[...,1:] current_norms = torch.norm(x_tail,2,-1) scale = (current_norms/1e7).clamp_(min=1.0) x_tail /= scale.unsqueeze(-1) x_[...,1:] = x_tail x_[...,0] = torch.sqrt(1 + torch.norm(x_tail,2,-1)**2) debug = True if debug: bad = torch.min(-HyperboloidParameter.dot_h(x_,x_)) if bad <= 0.0: print("way off hyperboloid", bad) assert torch.all(-HyperboloidParameter.dot_h(x_,x_) > 0.0), f"way off hyperboloid {torch.min(-HyperboloidParameter.dot_h(x_,x_))}" xxx = x_ / torch.sqrt(torch.clamp(-HyperboloidParameter.dot_h(x_,x_), min=0.0)).unsqueeze(-1) return xxx # return x / (-HyperboloidParameter.norm_h(x)).unsqueeze(-1) def initial_proj(self): """ Project the initialization of the embedding onto the manifold """ self.data[...,0] = torch.sqrt(1 + torch.norm(self.data.detach()[...,1:],2,-1)**2) self.proj() def exp(self, lr): """ Exponential map """ x = self.data.detach() # print("norm", HyperboloidParameter.norm_h(x)) v = -lr * self.grad retract = False if retract: # retraction # print("retract") self.data = x + v else: # print("tangent", HyperboloidParameter.dot_h(x, v)) assert torch.all(1 - torch.isnan(v)) n = self.__class__.norm_h(v).unsqueeze(-1) assert torch.all(1 - torch.isnan(n)) n.clamp_(max=1.0) # e = torch.cosh(n)*x + torch.sinh(n)*v/n mask = torch.abs(n)<1e-7 cosh = torch.cosh(n) cosh[mask] = 1.0 sinh = torch.sinh(n) sinh[mask] = 0.0 n[mask] = 1.0 e = cosh*x + sinh/n*v # assert torch.all(-HyperboloidParameter.dot_h(e,e) >= 0), torch.min(-HyperboloidParameter.dot_h(e,e)) self.data = e self.proj() def modify_grad_inplace(self): """ Convert Euclidean gradient into Riemannian """ self.grad[...,0] *= -1 #print("check data") #print(np.argwhere(torch.isnan(self.data).cpu().numpy())) #print("check grad") #print(np.argwhere(torch.isnan(self.grad).cpu().numpy())) # self.grad += self.__class__.dot_h(self.data, self.grad).unsqueeze(-1) * self.data self.grad -= self.__class__.dot_h(self.data, self.grad).unsqueeze(-1) / HyperboloidParameter.dot_h(self.data, self.data).unsqueeze(-1) * self.data # TODO: # 1. Improve speed up of projection by making operations in place. class PoincareParameter(RParameter): def __new__(cls, data=None, requires_grad=True, sizes=None, check_graph=False): ret = super().__new__(cls, data, requires_grad, sizes) ret.check_graph = check_graph return ret def modify_grad_inplace(self): # d = self.data.dim() w_norm = torch.norm(self.data,2,-1, True) # This is the inverse of the remanian metric, which we need to correct for. hyper_b = (1 - w_norm**2)**2/4 # new_size = tuple([1] * (d - 1) + [self.data.size(d-1)]) # self.grad *= hyper_b.repeat(*new_size) # multiply pointwise self.grad *= hyper_b # multiply pointwise self.grad.clamp_(min=-10000.0, max=10000.0) # We could do the projection here? # NB: THIS IS DEATHLY SLOW. FIX IT if self.check_graph and np.any(np.isnan(self.grad.data.cpu().numpy())): print(np.any(np.isnan(self.data.cpu().numpy()))) print(np.any(np.isnan(self.grad.data.cpu().numpy()))) print(np.any(np.isnan(w_norm.cpu().numpy()))) raise ValueError("NaN During Hyperbolic") @staticmethod def _correct(x, eps=1e-10): current_norms = torch.norm(x,2,x.dim() - 1) mask_idx = current_norms < 1./(1+eps) modified = 1./((1+eps)*current_norms) modified[mask_idx] = 1.0 #new_size = [1]*current_norms.dim() + [x.size(x.dim()-1)] #return modified.unsqueeze(modified.dim()).repeat(*new_size) # return modified.unsqueeze(modified.dim()).expand(x.size()) return modified.unsqueeze(-1) @staticmethod def _proj(x, eps=1e-10): return x * PoincareParameter._correct(x, eps=eps) # def proj(self, eps=1e-10): # self.data = self.__class__._proj(self.data.detach())#PoincareParameter._correct(self.data, eps=eps) def __repr__(self): return 'Hyperbolic parameter containing:' + self.data.__repr__() class SphericalParameter(RParameter): def __new__(cls, data=None, requires_grad=True, sizes=None, exp=True): if sizes is not None: sizes = list(sizes) sizes[-1] += 1 return super().__new__(cls, data, requires_grad, sizes, exp) def modify_grad_inplace(self): """ Convert Euclidean gradient into Riemannian by projecting onto tangent space """ # pass self.grad -= dot(self.data, self.grad).unsqueeze(-1) * self.data def exp(self, lr): x = self.data.detach() v = -lr*self.grad retract = False if retract: # retraction self.data = x + v else: n = torch.norm(v, 2, -1, keepdim=True) mask = torch.abs(n)<1e-7 cos = torch.cos(n) cos[mask] = 1.0 sin = torch.sin(n) sin[mask] = 0.0 n[torch.abs(n)<1e-7] = 1.0 e = cos*x + sin*v/n self.data = e self.proj() @staticmethod def _proj(x): # return x / torch.norm(x, 2, -1).unsqueeze(-1) return x / torch.norm(x, 2, -1, True) # def proj(self): # x = self.data.detach() # self.data = SphericalParameter._proj(x) def initial_proj(self): # pass self.data[...,0] = torch.sqrt(1 - torch.norm(self.data[...,1:],2,-1)**2) class EuclideanParameter(RParameter): def proj(x): pass
hyperbolics-master
pytorch/hyperbolic_parameter.py
import nltk from nltk.corpus import wordnet as wn from scipy.sparse import csr_matrix from scipy.sparse.csgraph import minimum_spanning_tree from scipy.sparse.csgraph import floyd_warshall, connected_components import operator from collections import defaultdict import numpy as np import networkx as nx import json from collections import defaultdict """Script assumes input text is in GloVe format.""" # Some definitions # Reflection (circle inversion of x through orthogonal circle centered at a) def isometric_transform(a, x): r2 = np.linalg.norm(a)**2 - (1.0) return r2/np.linalg.norm(x - a)**2 * (x-a) + a # Inversion taking mu to origin def reflect_at_zero(mu,x): a = mu/np.linalg.norm(mu)**2 return isometric_transform(a,x) def acosh(x): return np.log(x + np.sqrt(x**2-1)) # Hyperbolic distance def dist(u,v): z = 2 * np.linalg.norm(u-v)**2 uu = 1. + z/((1-np.linalg.norm(u)**2)*(1-np.linalg.norm(v)**2)) return acosh(uu) # Hyperbolic distance from 0 def hyp_dist_origin(x): return np.log((1+np.linalg.norm(x))/(1-np.linalg.norm(x))) # Scalar multiplication w*x def hyp_scale(w, x): sgn = (-1.0)**float(w<0) w *= sgn if w == 1: return sgn*x else: x_dist = (1+np.linalg.norm(x))/(1-np.linalg.norm(x)) alpha = 1-2/(1+x_dist**w) alpha *= 1/np.linalg.norm(x) return sgn*alpha*x # Convex combination (1-w)*x+w*y def hyp_conv_comb(w, x, y): # circle inversion sending x to 0 (xinv, yinv) = (reflect_at_zero(x, x), reflect_at_zero(x, y)) # scale by w pinv = hyp_scale(w, yinv) # reflect back return reflect_at_zero(x, pinv) # Weighted sum w1*x + w2*y def hyp_weighted_sum(w1, w2, x, y): p = hyp_conv_comb(w2 / (w1 + w2), x, y) return hyp_scale(w1 + w2, p) vector_dim = 21 file = "wordnet_full.txt" with open(file, 'r') as emb: emb_lines = emb.readlines() relTau = np.float64(emb_lines[0]) emb_lines = emb_lines[1:] emb_dict = dict() IDtoWords = dict() WordstoIDs = dict() for idx, line in enumerate(emb_lines): curr_line = line.split(" ") curr_syn = curr_line[0] emb_dict[curr_syn] = np.asarray(list(map(np.float64, curr_line[1:]))) IDtoWords[idx] = curr_syn WordstoIDs[curr_syn] = idx vocab_size = len(emb_dict) W = np.zeros((vocab_size, vector_dim)) for word, vec in emb_dict.items(): idx = WordstoIDs[word] W[idx,:] = vec # Find the top 10 nearest neighbors to a particular synset for given relationship. e1 = wn.synset('geometry.n.01') vec_e1 = emb_dict[str(e1)] curr_dist = [] for row_idx in range(W.shape[0]): curr_vec = W[row_idx,:] normalized_dist = (dist(curr_vec,vec_e1))/relTau curr_dist.append(normalized_dist) e1_idx = WordstoIDs[str(e1)] curr_dist[e1_idx] = np.Inf curr_closest_indices = np.argsort(curr_dist)[:10] for r_idx in curr_closest_indices: relev_syn = IDtoWords[r_idx] print(relev_syn) # Analogy experiments. e1 = wn.synset('plane_geometry.n.01') e1_idx = WordstoIDs[str(e1)] e2 = wn.synset('geometry.n.01') e2_idx = WordstoIDs[str(e2)] e3 = wn.synset('novelist.n.01') e3_idx = WordstoIDs[str(e3)] vec_e1 = emb_dict[str(e1)] vec_e2 = emb_dict[str(e2)] vec_e3 = emb_dict[str(e3)] vec1_ = hyp_scale(-1, vec_e1) left_sum = hyp_weighted_sum(1, 1, vec_e2, vec1_) vec_search = hyp_weighted_sum(1, 1, left_sum, vec_e3) curr_dist = [] for row_idx in range(W.shape[0]): curr_vec = W[row_idx,:] normalized_dist = (dist(curr_vec, vec_search))/relTau curr_dist.append(normalized_dist) curr_dist[e1_idx] = np.Inf curr_dist[e2_idx] = np.Inf curr_dist[e3_idx] = np.Inf curr_closest_indices = np.argsort(curr_dist)[:10] for r_idx in curr_closest_indices: relev_syn = IDtoWords[r_idx] print(relev_syn)
hyperbolics-master
pytorch/analysis/intrinsic.py
import logging, argh import os, sys import networkx as nx import random import torch from torch import nn from torch.autograd import Variable from torch.utils.data import DataLoader, TensorDataset import matplotlib as mpl if torch.cuda.is_available(): mpl.use('Agg') import matplotlib.pyplot as plt if torch.cuda.is_available(): plt.ioff() import scipy import scipy.sparse.csgraph as csg import pandas import numpy as np, math root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, root_dir) # import utils.load_graph as load_graph # import utils.vis as vis # import utils.distortions as dis # import graph_helpers as gh # import mds_warmstart from hyperbolic_models import ProductEmbedding import json from hyperbolic_parameter import RParameter with open("wn_IDtoSyns.txt") as d: IDtoSyns = json.load(d) m = torch.load("wordnet_full.emb") spherical_embs = [S.w for S in m.S] euclidean_embs = [E.w for E in m.E] hyperbolic_embs = [H.w for H in m.H] hyperbolic_matrix = (hyperbolic_embs[0].cpu()).data.numpy() scale = np.float64(m.scale_params[0].cpu().data.numpy()) print(hyperbolic_matrix) print(scale) #Matching the IDs to entities. final_emb = dict() for i in range(0, hyperbolic_matrix.shape[0]): syn = IDtoSyns[str(i)] vector = hyperbolic_matrix[i] final_emb[syn] = vector lines = ["Scaling factor "+str(scale)] for key in final_emb.keys(): curr_line = str(key) + " " + " ".join(list(map(str,final_emb[key]))) lines.append(curr_line) with open('wordnet_full.txt', 'w') as f: f.write('\n'.join(lines))
hyperbolics-master
pytorch/analysis/postprocess.py
import networkx as nx # wrapper for nx.bfs_tree that keeps weights def get_BFS_tree(G, src): G_BFS = nx.bfs_tree(G, src) for edge in G_BFS.edges(): if G[edge[0]][edge[1]]: G_BFS.add_edge(edge[0], edge[1], weight=G[edge[0]][edge[1]]['weight']) return G_BFS def max_degree(G): max_d = 0; max_node = -1; for deg in G.degree(G.nodes()): if deg[1] > max_d: max_d = deg[1] max_node = deg[0] return [max_node, max_d] # looks at first edge to determine if weighted def is_weighted(G): if len(list(G.edges(data=True))[0][2]): return True return False
hyperbolics-master
combinatorial/graph_util.py
import os import argh import numpy as np import pandas import networkx as nx import scipy.sparse.csgraph as csg from timeit import default_timer as timer from multiprocessing import Pool import utils.load_graph as lg import utils.distortions as dis import graph_util as gu def compute_row_stats(i, n, adj_mat_original, hyp_dist_row, weighted, verbose=False): # the real distances in the graph true_dist_row = csg.dijkstra(adj_mat_original, indices=[i], unweighted=(not weighted), directed=False).squeeze() # true_dist_row = csg.dijkstra(adj_mat_original, indices=[i], unweighted=True, directed=True).squeeze() # print(f"{i}: {true_dist_row}") # row MAP neighbors = adj_mat_original.todense()[i].A1 # print(f"row {i}: ", neighbors) # print("shape", neighbors.shape) row_map = dis.map_row(neighbors, hyp_dist_row, n, i) # distortions: worst cases (contraction, expansion) and average dc, de, avg, _ = dis.distortion_row(true_dist_row, hyp_dist_row, n, i) # dc, de, avg = 0.0, 0.0, 0.0 # print out stats for this row if verbose: print(f"Row {i}, MAP = {curr_map}, distortion = {avg}, d_c = {dc}, d_e = {de}") return (row_map, avg, dc, de) @argh.arg("dataset", help="Dataset to compute stats for") @argh.arg("d_file", help="File with embedded distance matrix") # @argh.arg("-s", "--save", help="File to save final stats to") @argh.arg("-q", "--procs", help="Number of processors to use") @argh.arg("-v", "--verbose", help="Print more detailed stats") def stats(dataset, d_file, procs=1, verbose=False): start = timer() # Load graph G = lg.load_graph(dataset, directed=True) n = G.order() weighted = gu.is_weighted(G) print("G: ", G.edges) adj_mat_original = nx.to_scipy_sparse_matrix(G, range(0,n)) print(f"Finished loading graph. Elapsed time {timer()-start}") # Load distance matrix chunks hyp_dist_df = pandas.read_csv(d_file, index_col=0) loaded = timer() print(f"Finished loading distance matrix. Elapsed time {loaded-start}") rows = hyp_dist_df.index.values hyp_dist_mat = hyp_dist_df.as_matrix() n_ = rows.size _map = np.zeros(n_) _d_avg = np.zeros(n_) _dc = np.zeros(n_) _de = np.zeros(n_) for (i, row) in enumerate(rows): # if row == 0: continue (_map[i], _d_avg[i], _dc[i], _de[i]) = compute_row_stats(row, n, adj_mat_original, hyp_dist_mat[i,:], weighted=weighted, verbose=verbose) map_ = np.sum(_map) d_avg_ = np.sum(_d_avg) dc_ = np.max(_dc) de_ = np.max(_de) if weighted: print("Note: MAP is not well defined for weighted graphs") # Final stats: # n_ -= 1 print(f"MAP = {map_/n_}, d_avg = {d_avg_/n_}, d_wc = {dc_*de_}, d_c = {dc_}, d_e = {de_}") end = timer() print(f"Finished computing stats. Total elapsed time {end-start}") with open(f"{d_file}.stats", "w") as stats_log: stats_log.write(f"{n_},{map_},{d_avg_},{dc_},{de_}\n") print(f"Stats saved to {d_file}.stats") print() if __name__ == '__main__': _parser = argh.ArghParser() _parser.set_default_command(stats) _parser.dispatch()
hyperbolics-master
combinatorial/stats.py
import numpy as np import os filename = 'ha30.txt' # fileout = 'usca312.edges' if __name__ == '__main__': base, ext = os.path.splitext(filename) fileout = f'{base}.edges' D = np.loadtxt(filename) print(D.shape) n = D.shape[0] with open(fileout, 'w') as fout: for i in range(n): for j in range(i+1,n): e = np.minimum(D[i][j], D[j][i]) fout.write(f'{i} {j} {e/1000.}\n')
hyperbolics-master
data/edges/preprocess_dist_matrix.py
import networkx as nx def make_ancestor_closure(G, name=None): G_BFS = nx.bfs_tree(G, 0) G_A = nx.Graph() if name is not None: f = open(name + ".edges", 'w') for node in G_BFS.nodes(): curr = node while len(list(G_BFS.predecessors(curr))): curr = list(G_BFS.predecessors(curr))[0] G_A.add_edge(node, curr) if name is not None: f.write(str(node) + "\t" + str(curr) + "\n") f.close() return G_A def save_edges(G, name, data=False): f = open(name + ".edges", 'w') for edge in G.edges(data=data): if data: f.write(str(edge[0]) + "\t" + str(edge[1]) + "\t" + str(edge[2]['weight']) + "\n") else: f.write(str(edge[0]) + "\t" + str(edge[1]) + "\n") f.close() def make_tree_weights(G, name=None): G_DFS = nx.dfs_tree(G, 0) G_BFS = nx.bfs_tree(G_DFS, 0) G_W = nx.Graph() curr_nodes = [0] next_nodes = [] depth = 0 while 1: if len(curr_nodes) == 0: if len(next_nodes) == 0: break depth += 1 curr_nodes = next_nodes.copy() next_nodes.clear() node = curr_nodes[0] parent = list(G_BFS.predecessors(node)) if len(parent) > 0: G_W.add_edge(node, parent[0], weight=3**(depth-1)) curr_nodes.remove(node) next_nodes += list(G_BFS.successors(node)) if name is not None: save_edges(G_W, name, data=True) return G_W if __name__ == '__main__': G = nx.balanced_tree(2,3) G.add_edge(9,10) make_ancestor_closure(G, 'testclosure') make_tree_weights(G, 'weighted_testanc') nx.write_edgelist(G, 'test.edges', data=False)
hyperbolics-master
data/edges/ancestor_tests.py
import numpy as np import networkx as nx import itertools import argh cycle_nodes = 10 tree = nx.balanced_tree(2, 2) nx.relabel_nodes(tree, {n : n+1 for n in tree.nodes}, copy=False) tree.add_edge(0, 1) tree_nodes = len(tree.nodes()) copies = [] for i in range(cycle_nodes): T = tree.copy() copies.append(nx.relabel_nodes(T, {n : cycle_nodes * n + i for n in T.nodes})) G = nx.compose_all(copies + [nx.cycle_graph(cycle_nodes)]) # G = nx.compose_all(copies) nx.write_edgelist(G, "cycle-tree.edges", data=False)
hyperbolics-master
data/edges/synthetic/cycle-tree.py
import numpy as np import networkx as nx import itertools import argh d = 6 edges = [(0,1), (1,2), (2,3), (3,0)] n = 4 for t in range(d-1): edges2 = [] for u,v in edges: edges2 += [(u, n), (n, v), (v, n+1), (n+1, u)] n += 2 edges = edges2 nx.write_edgelist(nx.Graph(edges), f"diamond{d}.edges", data=False)
hyperbolics-master
data/edges/synthetic/diamond.py
import numpy as np import networkx as nx import sys, os import subprocess # generate some random trees on the same nodes: n = 300 t = 5 g_list = [] for i in range(t): g_list.append(nx.random_tree(n)) # compress the tree: G = nx.Graph() for node in range(n): for tree in range(t): for edge in g_list[tree].edges(node): G.add_edge(edge[0], edge[1]) nx.write_edgelist(G, 'compressed_tree.edges', data=False)
hyperbolics-master
data/edges/synthetic/compressed_tree.py
import numpy as np import networkx as nx import itertools import argh # construct generalized Sierpinski graph # vertices: strings of length d chosen from [n] def construct(n=3, d=2, base='clique'): if base in ['clique', 'K', 'k']: base = 'K' base_graph = list(nx.complete_graph(n).edges) if base in ['cycle', 'C', 'c']: base = 'C' base_graph = list(nx.cycle_graph(n).edges) G = nx.Graph() for t in range(0, d): choices = [list(range(n))]*t for prefix in itertools.product(*choices): # for p in range(n): # for q in range(p): for p,q in base_graph: a = list(prefix) + [p] + [q]*(d-t-1) b = list(prefix) + [q] + [p]*(d-t-1) G.add_edge(tuple(a), tuple(b)) def idx(L, base): if len(L) == 1: return L[0] return L[-1] + base*idx(L[:-1], base) mapping = {L : idx(list(L), n) for L in itertools.product(*([list(range(n))]*d))} G = nx.relabel_nodes(G, mapping, copy=False) nx.write_edgelist(G, f"sierp-{base}{n}-{d}.edges", data=False) if __name__ == '__main__': _parser = argh.ArghParser() _parser.set_default_command(construct) _parser.dispatch()
hyperbolics-master
data/edges/synthetic/sierpinski.py
import numpy as np import os # ----------------------------------------------------------------------------------------------- # Read in proto # ----------------------------------------------------------------------------------------------- solver = 'inputs/caffenet_solver_8_4gpu.prototxt' train_val = 'inputs/caffenet_train_val_8_4gpu.prototxt' cct_path = '/home/software/CaffeConTroll/caffe-ct' # ----------------------------------------------------------------------------------------------- # Parameters # ----------------------------------------------------------------------------------------------- LR_list = [0.0001, 0.0002, 0.0004, 0.0008, 0.0016, 0.0032, 0.0064, 0.0128, 0.0256, 0.0512, 0.1024, 0.2048, 0.4096, 0.8192, 1.6384] # M_list = [0.0, 0.3, 0.6, 0.9] # No staleness M_list = [0.9] B_list = [4,16,64,256] # Do in intervals of highest batch size so it is fair / equal biggest_batch = max(B_list) phase1_num_big_batch_iter = 40 phase1_running_avg = 8 phase2_num_big_batch_iter = 1200 # ----------------------------------------------------------------------------------------------- # Helper functions # ----------------------------------------------------------------------------------------------- def run_experiment(solver, train_val, lr, m, b, num_iter, display, experiment_name): # Make the output directory output_dir = 'outputs/B' + str(b) + '/' + experiment_name + '/experiment_LR' + str(lr) + '_M' + str(m) os.system('mkdir -p ' + output_dir) solver_out_name = output_dir + '/solver.prototxt' train_val_out_name = output_dir + '/train_val.prototxt' # Open the solver solver_out = open(solver_out_name, 'w') solver_in = open(solver) for line in solver_in: if 'momentum:' in line: solver_out.write('momentum: ' + str(m) + "\n") elif 'base_lr:' in line: solver_out.write('base_lr: ' + str(lr) + "\n") elif 'max_iter:' in line: solver_out.write('max_iter: ' + str(num_iter) + "\n") elif 'display:' in line: solver_out.write('display: ' + str(display) + "\n") elif 'net:' in line: solver_out.write('net: \"' + train_val_out_name + "\"\n") else: solver_out.write(line) solver_in.close() solver_out.close() # Open the train_val train_val_out = open(train_val_out_name, 'w') train_val_in = open(train_val) for line in train_val_in: if ' batch_size:' in line: train_val_out.write(' batch_size: ' + str(b) + "\n") else: train_val_out.write(line) train_val_in.close() train_val_out.close() # Run CcT log_out = output_dir + '/log.out' cct_cmd = cct_path + ' train ' + solver_out_name + ' > ' + log_out + ' 2>&1' print cct_cmd os.system(cct_cmd) # Parse that log logfile = open(log_out) acc_lines = [] for line in logfile: if 'PARSE' in line: # PARSE 100 0.1278 0.878 acc_lines.append(float(line.strip().split()[-1])) logfile.close() # Return the accuracies each iter return acc_lines # ----------------------------------------------------------------------------------------------- # Run experiments # ----------------------------------------------------------------------------------------------- for b in B_list: print '--------------------------------------------------------------------------------' print 'Beginning batch size ' + str(b) print '--------------------------------------------------------------------------------' # First round: Run 1 min each LR best_3 = [] acc_to_lr_m = {} for lr in LR_list: for m in M_list: # The # images to process is is the biggest batch times phase1_num_big_batch_iter total_num_imgs_to_process = biggest_batch*phase1_num_big_batch_iter # The # iter is this divided by the batch size num_iter = total_num_imgs_to_process/b # The display freq is biggest_batch / b, i.e. the total # displays will be phase1_num_big_batch_iter display = biggest_batch / b # Run experiment accuracies = run_experiment(solver, train_val, lr, m, b, num_iter, display, 'phase1') assert len(accuracies) == phase1_num_big_batch_iter # Note each list element is a display, i.e. it is biggest_batch images processed final_acc = sum(accuracies[-phase1_running_avg:])/phase1_running_avg print ' Final Acc = ' + str(final_acc) # Check if this is top 3, if so add it if len(best_3) < 3: best_3.append(final_acc) acc_to_lr_m[final_acc] = (lr, m) best_3 = sorted(best_3) elif final_acc > min(best_3): assert min(best_3) == best_3[0] best_3 = best_3[1:] best_3.append(final_acc) acc_to_lr_m[final_acc] = (lr, m) best_3 = sorted(best_3) print ' -> best_3 = ' + str(best_3) # Second round: Pick best 3 learning rates and run longer print '' for k in best_3: print 'Running ' + str(acc_to_lr_m[k]) lr = acc_to_lr_m[k][0] m = acc_to_lr_m[k][1] # The # images to process is is the biggest batch times phase1_num_big_batch_iter total_num_imgs_to_process = biggest_batch*phase2_num_big_batch_iter # The # iter is this divided by the batch size num_iter = total_num_imgs_to_process/b # The display freq is biggest_batch / b, i.e. the total # displays will be phase1_num_big_batch_iter display = biggest_batch / b # Run experiment accuracies = run_experiment(solver, train_val, lr, m, b, num_iter, display, 'phase2')
CaffeConTroll-master
experiments/batch/batch.py
import operator import sys if len(sys.argv) != 2: print 'Usage: >>> python process.py filename' sys.exit(0) total_num_iters = 0 f = open(sys.argv[1]) current_layer = '' layer_to_time = {} for line in f: line = line.strip() if 'BATCH:' in line: total_num_iters += 1 elif 'Time Elapsed' in line: layer_to_time[current_layer].append(float((line.split())[3])) elif 'REPORT' in line: if line not in layer_to_time.keys(): layer_to_time[line] = [] current_layer = line print 'Detailed Profiling Report' print 'Average over ' + str(total_num_iters) + ' iterations' # Make a new dict which maps to the mean only layer_to_mean_time = {} for k in layer_to_time.keys(): time_list = layer_to_time[k] total_sum = sum(time_list) mean = total_sum / total_num_iters layer_to_mean_time[k] = mean # Now print the means sorted sorted_by_mean = sorted(layer_to_mean_time.items(), key=operator.itemgetter(1)) for layer_mean in reversed(sorted_by_mean): print layer_mean[0] + "\t" + str(layer_mean[1]) f.close()
CaffeConTroll-master
tests/process_detailed_profiling.py
import sys import random if len(sys.argv) != 2: print 'Usage: >>> python generate_conv_test.py test_name' sys.exit(0) mB = 4 iD = 3 oD = 8 iR = 127 iC = 127 k = 11 s = 4 p = 2 test_name = sys.argv[1] fname = 'input/conv_forward_in_' + test_name + '.txt' f = open(fname, 'w') print 'Creating ' + fname + '...' for i in range(iR*iC*iD*mB): r = (1-2*random.random())/10 f.write(str(r) + ' ') f.close() fname = 'input/conv_model_' + test_name + '.txt' f = open(fname, 'w') print 'Creating ' + fname + '...' for i in range(k*k*iD*oD): r = (1-2*random.random())/10 f.write(str(r) + ' ') f.close() fname = 'input/conv_bias_in_' + test_name + '.txt' f = open(fname, 'w') print 'Creating ' + fname + '...' for i in range(oD): r = (1-2*random.random())/10 f.write(str(r) + ' ') f.close() fname = 'input/conv_backward_model_' + test_name + '.txt' f = open(fname, 'w') print 'Creating ' + fname + '...' for i in range(k*k*iD*oD): r = (1-2*random.random())/10 f.write(str(r) + ' ') f.close() #fname = 'output/conv_forward_' + test_name + '.txt' #f = open(fname, 'w') #f.close() # #fname = 'output/conv_backward_' + test_name + '.txt' #f = open(fname, 'w') #f.close() # #fname = 'output/conv_bias_' + test_name + '.txt' #f = open(fname, 'w') #f.close() # #fname = 'output/conv_weights_' + test_name + '.txt' #f = open(fname, 'w') #f.close() #
CaffeConTroll-master
tests/generate_conv_test.py
import sys if len(sys.argv) != 2: print 'Usage: >>> python process_perf_test.py filename' sys.exit(0) f = open(sys.argv[1]) test_to_metric_table = {} current_test = '' current_metric = '' for line in f: line = line.strip() if not line: continue if '[ RUN ]' in line: current_test = ( line.split() )[-1] if current_test not in test_to_metric_table.keys(): test_to_metric_table[current_test] = {} elif 'report_' in line: current_metric = line elif 'Time Elapsed' in line: test_to_metric_table[current_test][current_metric] = (line.split())[3] for i,test in enumerate(sorted(list(test_to_metric_table.keys()))): print test for metric in test_to_metric_table[test]: print " " + metric[7:] + "\t" + test_to_metric_table[test][metric]
CaffeConTroll-master
tests/process_perf_test.py
import sys ######################################################## # Small Examples ######################################################## D = [] D.append(['a', 'b', 'c', 'd']) D.append(['e', 'f', 'g', 'h']) D.append(['i', 'j', 'k', 'l']) D.append(['m', 'n', 'o', 'p']) n = 4 k = 2 d = 1 b = 1 o = 1 # First no padding, stride=1 p = 0 s = 1 m = (n + 2*p - k)/s + 1 print 'p = ' + str(p) print 's = ' + str(s) print 'm = ' + str(m) print '' D_lowered = [] for Dl_r in range(m*m*b): D_lowered.append([]) for bi in range(b): for r in range(m): for c in range(m): current_row = [] for Dr in range(k): for Dc in range(k): current_row.append(D[r+Dr][c+Dc]) D_lowered[bi*m*m + r*m + c] = current_row for Dl_r in range(len(D_lowered)): for Dl_c in range(len(D_lowered[Dl_r])): sys.stdout.write(D_lowered[Dl_r][Dl_c]) sys.stdout.write(" & ") sys.stdout.write("\\\\\n") print '' print '' sys.exit(0) # stride=2 p = 0 s = 2 m = (n + 2*p - k)/s + 1 print 'p = ' + str(p) print 's = ' + str(s) print 'm = ' + str(m) print '' D_lowered = [] for Dl_r in range(m*m*b): D_lowered.append([]) for bi in range(b): for r in range(m): for c in range(m): current_row = [] for Dr in range(k): for Dc in range(k): current_row.append(D[r*s+Dr][c*s+Dc]) D_lowered[bi*m*m + r*m + c] = current_row for Dl_r in range(len(D_lowered)): for Dl_c in range(len(D_lowered[Dl_r])): sys.stdout.write(D_lowered[Dl_r][Dl_c]) sys.stdout.write(" & ") sys.stdout.write("\\\\\n") print '' print '' # stride=2, padding 1 p = 1 s = 2 m = (n + 2*p - k)/s + 1 print 'p = ' + str(p) print 's = ' + str(s) print 'm = ' + str(m) print '' D_lowered = [] for Dl_r in range(m*m*b): D_lowered.append([]) for bi in range(b): for r in range(m): for c in range(m): current_row = [] for Dr in range(k): if r*s-p+Dr >= 0 and r*s-p+Dr < len(D): for Dc in range(k): if c*s-p+Dc >= 0 and c*s-p+Dc < len(D[r*s-p+Dr]): current_row.append(D[r*s-p+Dr][c*s-p+Dc]) else: current_row.append('0') else: for Dc in range(k): current_row.append('0') D_lowered[bi*m*m + r*m + c] = current_row for Dl_r in range(len(D_lowered)): for Dl_c in range(len(D_lowered[Dl_r])): sys.stdout.write(D_lowered[Dl_r][Dl_c]) sys.stdout.write(" & ") sys.stdout.write("\\\\\n") print '' print '' # stride=2, padding 1 p = 1 s = 3 m = (n + 2*p - k)/s + 1 print 'p = ' + str(p) print 's = ' + str(s) print 'm = ' + str(m) print '' D_lowered = [] for Dl_r in range(m*m*b): D_lowered.append([]) for bi in range(b): for r in range(m): for c in range(m): current_row = [] for Dr in range(k): if r*s-p+Dr >= 0 and r*s-p+Dr < len(D): for Dc in range(k): if c*s-p+Dc >= 0 and c*s-p+Dc < len(D[r*s-p+Dr]): current_row.append(D[r*s-p+Dr][c*s-p+Dc]) else: current_row.append('0') else: for Dc in range(k): current_row.append('0') D_lowered[bi*m*m + r*m + c] = current_row for Dl_r in range(len(D_lowered)): for Dl_c in range(len(D_lowered[Dl_r])): sys.stdout.write(D_lowered[Dl_r][Dl_c]) sys.stdout.write(" & ") sys.stdout.write("\\\\\n") print '' print '' ######################################################## # Big example ######################################################## D = [] D.append(['a', 'b', 'c', 'd', 'e']) D.append(['f', 'g', 'h', 'i', 'j']) D.append(['k', 'l', 'm', 'n', 'o']) D.append(['p', 'q', 'r', 's', 't']) D.append(['u', 'v', 'w', 'x', 'y']) n = 5 k = 3 d = 1 b = 1 o = 1 # stride=2, padding 2, 5x5 p = 2 s = 2 m = (n + 2*p - k)/s + 1 print 'p = ' + str(p) print 's = ' + str(s) print 'm = ' + str(m) print '' D_lowered = [] for Dl_r in range(m*m*b): D_lowered.append([]) for bi in range(b): for r in range(m): for c in range(m): current_row = [] for Dr in range(k): if r*s-p+Dr >= 0 and r*s-p+Dr < len(D): for Dc in range(k): if c*s-p+Dc >= 0 and c*s-p+Dc < len(D[r*s-p+Dr]): current_row.append(D[r*s-p+Dr][c*s-p+Dc]) else: current_row.append('0') else: for Dc in range(k): current_row.append('0') D_lowered[bi*m*m + r*m + c] = current_row for Dl_r in range(len(D_lowered)): for Dl_c in range(len(D_lowered[Dl_r])): sys.stdout.write(D_lowered[Dl_r][Dl_c]) sys.stdout.write(" & ") sys.stdout.write("\\\\\n") print '' print ''
CaffeConTroll-master
docs/lowering/type_1/pad_stride_example.py
import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.semi_supervised import LabelSpreading from sklearn.linear_model import SGDClassifier class BaselineModel(object): """ A base class for all sklearn-esque baseline methods """ def __init__(self, train_primitive_matrix, val_primitive_matrix, val_ground, train_ground=None, b=0.5): """ Initialize DecisionTree object """ self.model = None self.train_primitive_matrix = train_primitive_matrix self.val_primitive_matrix = val_primitive_matrix self.val_ground = val_ground self.train_ground = train_ground self.b = b def fit(self, model): pass def evaluate(self, input_primitive_matrix=[]): """ Calculate the accuracy and coverage for train and validation sets """ self.val_marginals = self.model.predict_proba(self.val_primitive_matrix)[:,1] if input_primitive_matrix!=[]: self.train_marginals = self.model.predict_proba(input_primitive_matrix)[:,1] else: self.train_marginals = self.model.predict_proba(self.train_primitive_matrix)[:,1] def calculate_accuracy(marginals, b, ground): #TODO: Use b for class imbalance? total = np.shape(np.where(marginals != 0.5))[1] labels = np.sign(2*(marginals - 0.5)) return np.sum(labels == ground)/float(total) def calculate_coverage(marginals, b, ground): #TODO: Use b for class imbalance? total = np.shape(np.where(marginals != 0.5))[1] labels = np.sign(2*(marginals - 0.5)) return total/float(len(labels)) self.val_accuracy = calculate_accuracy(self.val_marginals, self.b, self.val_ground) self.train_accuracy = calculate_accuracy(self.train_marginals, self.b, self.train_ground) self.val_coverage = calculate_coverage(self.val_marginals, self.b, self.val_ground) self.train_coverage = calculate_coverage(self.train_marginals, self.b, self.train_ground) if input_primitive_matrix!=[]: return self.val_accuracy, [], self.val_coverage, [] else: return self.val_accuracy, self.train_accuracy, self.val_coverage, self.train_coverage class BoostClassifier(BaselineModel): """ AdaBoost Implementation """ def fit(self): self.model = AdaBoostClassifier(random_state=0) self.model.fit(self.val_primitive_matrix, self.val_ground) class DecisionTree(BaselineModel): """ DecisionTree Implementation """ def fit(self): self.model = DecisionTreeClassifier(random_state=0) self.model.fit(self.val_primitive_matrix, self.val_ground) class SemiSupervised(BaselineModel): """ LabelSpreading Implementation """ def fit(self): #Need to concatenate labeled and unlabeled data #unlabeled data labels are set to -1 X = np.concatenate((self.val_primitive_matrix, self.train_primitive_matrix)) val_labels = (self.val_ground+1)/2. train_labels = -1.*np.ones(np.shape(self.train_primitive_matrix)[0]) y = np.concatenate((val_labels, train_labels)) self.model = LabelSpreading(kernel='knn') self.model.fit(X, y)
reef-master
baselines/models.py
from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import AdaBoostClassifier
reef-master
baselines/__init__.py
reef-master
data/__init__.py
import numpy as np import scipy import json import sklearn.cross_validation from scipy import sparse from sklearn.feature_extraction.text import CountVectorizer def parse_file(filename): def parse(filename): movies = [] with open(filename) as f: for line in f: obj = json.loads(line) movies.append(obj) return movies f = parse(filename) gt = [] plots = [] idx = [] for i,movie in enumerate(f): genre = movie['Genre'] if 'Action' in genre and 'Romance' in genre: continue elif 'Action' in genre: plots = plots+[movie['Plot']] gt.append(1) idx.append(i) elif 'Romance' in genre: plots = plots+[movie['Plot']] gt.append(-1) idx.append(i) else: continue return np.array(plots), np.array(gt) def split_data(X, plots, y): np.random.seed(1234) num_sample = np.shape(X)[0] num_test = 500 X_test = X[0:num_test,:] X_train = X[num_test:, :] plots_train = plots[num_test:] plots_test = plots[0:num_test] y_test = y[0:num_test] y_train = y[num_test:] # split dev/test test_ratio = 0.2 X_tr, X_te, y_tr, y_te, plots_tr, plots_te = \ sklearn.cross_validation.train_test_split(X_train, y_train, plots_train, test_size = test_ratio) return np.array(X_tr.todense()), np.array(X_te.todense()), np.array(X_test.todense()), \ np.array(y_tr), np.array(y_te), np.array(y_test), plots_tr, plots_te, plots_test class DataLoader(object): """ A class to load in appropriate numpy arrays """ def prune_features(self, val_primitive_matrix, train_primitive_matrix, thresh=0.01): val_sum = np.sum(np.abs(val_primitive_matrix),axis=0) train_sum = np.sum(np.abs(train_primitive_matrix),axis=0) #Only select the indices that fire more than 1% for both datasets train_idx = np.where((train_sum >= thresh*np.shape(train_primitive_matrix)[0]))[0] val_idx = np.where((val_sum >= thresh*np.shape(val_primitive_matrix)[0]))[0] common_idx = list(set(train_idx) & set(val_idx)) return common_idx def load_data(self, dataset, data_path='./data/imdb/'): #Parse Files plots, labels = parse_file(data_path+'budgetandactors.txt') #read_plots('imdb_plots.tsv') #Featurize Plots vectorizer = CountVectorizer(min_df=1, binary=True, \ decode_error='ignore', strip_accents='ascii', ngram_range=(1,2)) X = vectorizer.fit_transform(plots) valid_feats = np.where(np.sum(X,0)> 2)[1] X = X[:,valid_feats] #Split Dataset into Train, Val, Test train_primitive_matrix, val_primitive_matrix, test_primitive_matrix, \ train_ground, val_ground, test_ground, \ train_plots, val_plots, test_plots = split_data(X, plots, labels) #Prune Feature Space common_idx = self.prune_features(val_primitive_matrix, train_primitive_matrix) return train_primitive_matrix[:,common_idx], val_primitive_matrix[:,common_idx], test_primitive_matrix[:,common_idx], \ np.array(train_ground), np.array(val_ground), np.array(test_ground), \ train_plots, val_plots, test_plots
reef-master
data/loader.py
import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.preprocessing.text import Tokenizer #top_words=5000 def lstm_simple(train_text, y_train, test_text, y_test, bs=64, n=3): #Label Processing y_train[y_train == -1] = 0 y_test[y_test == -1] = 0 #Make Tokenizer tokenizer = Tokenizer() tokenizer.fit_on_texts(train_text) tokenizer.fit_on_texts(test_text) X_train = tokenizer.texts_to_sequences(train_text) X_test = tokenizer.texts_to_sequences(test_text) #Make embedding max_sentence_length=500 X_train = sequence.pad_sequences(X_train, maxlen=max_sentence_length) X_test = sequence.pad_sequences(X_test, maxlen=max_sentence_length) embedding_vector_length = 32 vocab_size=len(tokenizer.word_index) + 1 #Model Architecture model = Sequential() model.add(Embedding(vocab_size, embedding_vector_length, input_length=max_sentence_length)) model.add(LSTM(100)) model.add(Dense(1, activation="sigmoid")) #Run the model! model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=n, batch_size=bs) scores = model.evaluate(X_test, y_test, verbose=0) print("Accuracy: %.2f%%" % (scores[1]*100)) y_pred = model.predict(X_test, batch_size=1) y_pred = np.array([x[0] for x in y_pred]) return y_pred
reef-master
lstm/imdb_lstm.py
reef-master
lstm/__init__.py
import numpy as np from scipy import sparse def log_odds(p): """This is the logit function""" return np.log(p / (1.0 - p)) def odds_to_prob(l): """ This is the inverse logit function logit^{-1}: l = \log\frac{p}{1-p} \exp(l) = \frac{p}{1-p} p = \frac{\exp(l)}{1 + \exp(l)} """ return np.exp(l) / (1.0 + np.exp(l)) def sample_data(X, w, n_samples): """ Here we do Gibbs sampling over the decision variables (representing our objects), o_j corresponding to the columns of X The model is just logistic regression, e.g. P(o_j=1 | X_{*,j}; w) = logit^{-1}(w \dot X_{*,j}) This can be calculated exactly, so this is essentially a noisy version of the exact calc... """ N, R = X.shape t = np.zeros(N) f = np.zeros(N) # Take samples of random variables idxs = np.round(np.random.rand(n_samples) * (N-1)).astype(int) ct = np.bincount(idxs) # Estimate probability of correct assignment increment = np.random.rand(n_samples) < odds_to_prob(X[idxs, :].dot(w)) increment_f = -1. * (increment - 1) t[idxs] = increment * ct[idxs] f[idxs] = increment_f * ct[idxs] return t, f def exact_data(X, w, evidence=None): """ We calculate the exact conditional probability of the decision variables in logistic regression; see sample_data """ t = odds_to_prob(X.dot(w)) if evidence is not None: t[evidence > 0.0] = 1.0 t[evidence < 0.0] = 0.0 return t, 1-t def transform_sample_stats(Xt, t, f, Xt_abs=None): """ Here we calculate the expected accuracy of each LF/feature (corresponding to the rows of X) wrt to the distribution of samples S: E_S[ accuracy_i ] = E_(t,f)[ \frac{TP + TN}{TP + FP + TN + FN} ] = \frac{X_{i|x_{ij}>0}*t - X_{i|x_{ij}<0}*f}{t+f} = \frac12\left(\frac{X*(t-f)}{t+f} + 1\right) """ if Xt_abs is None: Xt_abs = sparse_abs(Xt) if sparse.issparse(Xt) else abs(Xt) n_pred = Xt_abs.dot(t+f) m = (1. / (n_pred + 1e-8)) * (Xt.dot(t) - Xt.dot(f)) p_correct = (m + 1) / 2 return p_correct, n_pred class LabelAggregator(object): """LabelAggregator Object that learns the accuracies for the heuristics. Copied from Snorkel v0.4 NaiveBayes Model with minor changes for simplicity""" def __init__(self, bias_term=False): self.w = None self.bias_term = bias_term def train(self, X, n_iter=1000, w0=None, rate=0.01, alpha=0.5, mu=1e-6, \ sample=False, n_samples=100, evidence=None, warm_starts=False, tol=1e-6, verbose=True): """ Perform SGD wrt the weights w * n_iter: Number of steps of SGD * w0: Initial value for weights w * rate: I.e. the SGD step size * alpha: Elastic net penalty mixing parameter (0=ridge, 1=lasso) * mu: Elastic net penalty * sample: Whether to sample or not * n_samples: Number of samples per SGD step * evidence: Ground truth to condition on * warm_starts: * tol: For testing for SGD convergence, i.e. stopping threshold """ self.X_train = X # Set up stuff N, M = X.shape if verbose: print "="*80 print "Training marginals (!= 0.5):\t%s" % N print "Features:\t\t\t%s" % M print "="*80 Xt = X.transpose() Xt_abs = np.abs(Xt) w0 = w0 if w0 is not None else np.ones(M) # Initialize training w = w0.copy() g = np.zeros(M) l = np.zeros(M) g_size = 0 # Gradient descent if verbose: print "Begin training for rate={}, mu={}".format(rate, mu) for step in range(n_iter): # Get the expected LF accuracy t,f = sample_data(X, w, n_samples=n_samples) if sample else exact_data(X, w, evidence) p_correct, n_pred = transform_sample_stats(Xt, t, f, Xt_abs) # Get the "empirical log odds"; NB: this assumes one is correct, clamp is for sampling... l = np.clip(log_odds(p_correct), -10, 10) # SGD step with normalization by the number of samples g0 = (n_pred*(w - l)) / np.sum(n_pred) # Momentum term for faster training g = 0.95*g0 + 0.05*g # Check for convergence wn = np.linalg.norm(w, ord=2) g_size = np.linalg.norm(g, ord=2) if step % 250 == 0 and verbose: print "\tLearning epoch = {}\tGradient mag. = {:.6f}".format(step, g_size) if (wn < 1e-12 or g_size / wn < tol) and step >= 10: if verbose: print "SGD converged for mu={} after {} steps".format(mu, step) break # Update weights w -= rate * g # Apply elastic net penalty w_bias = w[-1] soft = np.abs(w) - mu ridge_pen = (1 + (1-alpha) * mu) # \ell_1 penalty by soft thresholding | \ell_2 penalty w = (np.sign(w)*np.select([soft>0], [soft], default=0)) / ridge_pen # Don't regularize the bias term if self.bias_term: w[-1] = w_bias # SGD did not converge else: if verbose: print "Final gradient magnitude for rate={}, mu={}: {:.3f}".format(rate, mu, g_size) # Return learned weights self.w = w def marginals(self, X): X = X.todense() marginals = odds_to_prob(X.dot(self.w)) return np.array(marginals)[0]
reef-master
program_synthesis/label_aggregator.py
reef-master
program_synthesis/__init__.py
import numpy as np import pandas as pd from sklearn.metrics import f1_score from program_synthesis.synthesizer import Synthesizer from program_synthesis.verifier import Verifier class HeuristicGenerator(object): """ A class to go through the synthesizer-verifier loop """ def __init__(self, train_primitive_matrix, val_primitive_matrix, val_ground, train_ground=None, b=0.5): """ Initialize HeuristicGenerator object b: class prior of most likely class (TODO: use somewhere) beta: threshold to decide whether to abstain or label for heuristics gamma: threshold to decide whether to call a point vague or not """ self.train_primitive_matrix = train_primitive_matrix self.val_primitive_matrix = val_primitive_matrix self.val_ground = val_ground self.train_ground = train_ground self.b = b self.vf = None self.syn = None self.hf = [] self.feat_combos = [] def apply_heuristics(self, heuristics, primitive_matrix, feat_combos, beta_opt): """ Apply given heuristics to given feature matrix X and abstain by beta heuristics: list of pre-trained logistic regression models feat_combos: primitive indices to apply heuristics to beta: best beta value for associated heuristics """ def marginals_to_labels(hf,X,beta): marginals = hf.predict_proba(X)[:,1] labels_cutoff = np.zeros(np.shape(marginals)) labels_cutoff[marginals <= (self.b-beta)] = -1. labels_cutoff[marginals >= (self.b+beta)] = 1. return labels_cutoff L = np.zeros((np.shape(primitive_matrix)[0],len(heuristics))) for i,hf in enumerate(heuristics): L[:,i] = marginals_to_labels(hf,primitive_matrix[:,feat_combos[i]],beta_opt[i]) return L def prune_heuristics(self,heuristics,feat_combos,keep=1): """ Selects the best heuristic based on Jaccard Distance and Reliability Metric keep: number of heuristics to keep from all generated heuristics """ def calculate_jaccard_distance(num_labeled_total, num_labeled_L): scores = np.zeros(np.shape(num_labeled_L)[1]) for i in range(np.shape(num_labeled_L)[1]): scores[i] = np.sum(np.minimum(num_labeled_L[:,i],num_labeled_total))/np.sum(np.maximum(num_labeled_L[:,i],num_labeled_total)) return 1-scores L_val = np.array([]) L_train = np.array([]) beta_opt = np.array([]) max_cardinality = len(heuristics) for i in range(max_cardinality): #Note that the LFs are being applied to the entire val set though they were developed on a subset... beta_opt_temp = self.syn.find_optimal_beta(heuristics[i], self.val_primitive_matrix, feat_combos[i], self.val_ground) L_temp_val = self.apply_heuristics(heuristics[i], self.val_primitive_matrix, feat_combos[i], beta_opt_temp) L_temp_train = self.apply_heuristics(heuristics[i], self.train_primitive_matrix, feat_combos[i], beta_opt_temp) beta_opt = np.append(beta_opt, beta_opt_temp) if i == 0: L_val = np.append(L_val, L_temp_val) #converts to 1D array automatically L_val = np.reshape(L_val,np.shape(L_temp_val)) L_train = np.append(L_train, L_temp_train) #converts to 1D array automatically L_train = np.reshape(L_train,np.shape(L_temp_train)) else: L_val = np.concatenate((L_val, L_temp_val), axis=1) L_train = np.concatenate((L_train, L_temp_train), axis=1) #Use F1 trade-off for reliability acc_cov_scores = [f1_score(self.val_ground, L_val[:,i], average='micro') for i in range(np.shape(L_val)[1])] acc_cov_scores = np.nan_to_num(acc_cov_scores) if self.vf != None: #Calculate Jaccard score for diversity train_num_labeled = np.sum(np.abs(self.vf.L_train.T), axis=0) jaccard_scores = calculate_jaccard_distance(train_num_labeled,np.abs(L_train)) else: jaccard_scores = np.ones(np.shape(acc_cov_scores)) #Weighting the two scores to find best heuristic combined_scores = 0.5*acc_cov_scores + 0.5*jaccard_scores sort_idx = np.argsort(combined_scores)[::-1][0:keep] return sort_idx def run_synthesizer(self, max_cardinality=1, idx=None, keep=1, model='lr'): """ Generates Synthesizer object and saves all generated heuristics max_cardinality: max number of features candidate programs take as input idx: indices of validation set to fit programs over keep: number of heuristics to pass to verifier model: train logistic regression ('lr') or decision tree ('dt') """ if idx == None: primitive_matrix = self.val_primitive_matrix ground = self.val_ground else: primitive_matrix = self.val_primitive_matrix[idx,:] ground = self.val_ground[idx] #Generate all possible heuristics self.syn = Synthesizer(primitive_matrix, ground, b=self.b) #Un-flatten indices def index(a, inp): i = 0 remainder = 0 while inp >= 0: remainder = inp inp -= len(a[i]) i+=1 try: return a[i-1][remainder] #TODO: CHECK THIS REMAINDER THING WTF IS HAPPENING except: import pdb; pdb.set_trace() #Select keep best heuristics from generated heuristics hf, feat_combos = self.syn.generate_heuristics(model, max_cardinality) sort_idx = self.prune_heuristics(hf,feat_combos, keep) for i in sort_idx: self.hf.append(index(hf,i)) self.feat_combos.append(index(feat_combos,i)) #create appended L matrices for validation and train set beta_opt = self.syn.find_optimal_beta(self.hf, self.val_primitive_matrix, self.feat_combos, self.val_ground) self.L_val = self.apply_heuristics(self.hf, self.val_primitive_matrix, self.feat_combos, beta_opt) self.L_train = self.apply_heuristics(self.hf, self.train_primitive_matrix, self.feat_combos, beta_opt) def run_verifier(self): """ Generates Verifier object and saves marginals """ ###THIS IS WHERE THE SNORKEL FLAG IS SET!!!! self.vf = Verifier(self.L_train, self.L_val, self.val_ground, has_snorkel=False) self.vf.train_gen_model() self.vf.assign_marginals() def gamma_optimizer(self,marginals): """ Returns the best gamma parameter for abstain threshold given marginals marginals: confidences for data from a single heuristic """ m = len(self.hf) gamma = 0.5-(1/(m**(3/2.))) return gamma def find_feedback(self): """ Finds vague points according to gamma parameter self.gamma: confidence past 0.5 that relates to a vague or incorrect point """ #TODO: flag for re-classifying incorrect points #incorrect_idx = self.vf.find_incorrect_points(b=self.b) gamma_opt = self.gamma_optimizer(self.vf.val_marginals) #gamma_opt = self.gamma vague_idx = self.vf.find_vague_points(b=self.b, gamma=gamma_opt) incorrect_idx = vague_idx self.feedback_idx = list(set(list(np.concatenate((vague_idx,incorrect_idx))))) def evaluate(self): """ Calculate the accuracy and coverage for train and validation sets """ self.val_marginals = self.vf.val_marginals self.train_marginals = self.vf.train_marginals def calculate_accuracy(marginals, b, ground): total = np.shape(np.where(marginals != 0.5))[1] labels = np.sign(2*(marginals - 0.5)) return np.sum(labels == ground)/float(total) def calculate_coverage(marginals, b, ground): total = np.shape(np.where(marginals != 0.5))[1] labels = np.sign(2*(marginals - 0.5)) return total/float(len(labels)) self.val_accuracy = calculate_accuracy(self.val_marginals, self.b, self.val_ground) self.train_accuracy = calculate_accuracy(self.train_marginals, self.b, self.train_ground) self.val_coverage = calculate_coverage(self.val_marginals, self.b, self.val_ground) self.train_coverage = calculate_coverage(self.train_marginals, self.b, self.train_ground) return self.val_accuracy, self.train_accuracy, self.val_coverage, self.train_coverage def heuristic_stats(self): '''For each heuristic, we want the following: - idx of the features it relies on - if dt, then the thresholds? ''' def calculate_accuracy(marginals, b, ground): total = np.shape(np.where(marginals != 0.5))[1] labels = np.sign(2*(marginals - 0.5)) return np.sum(labels == ground)/float(total) def calculate_coverage(marginals, b, ground): total = np.shape(np.where(marginals != 0))[1] labels = marginals return total/float(len(labels)) stats_table = np.zeros((len(self.hf),6)) for i in range(len(self.hf)): stats_table[i,0] = int(self.feat_combos[i][0]) try: stats_table[i,1] = int(self.feat_combos[i][1]) except: stats_table[i,1] = -1. stats_table[i,2] = calculate_accuracy(self.L_val[:,i], self.b, self.val_ground) stats_table[i,3] = calculate_accuracy(self.L_train[:,i], self.b, self.train_ground) stats_table[i,4] = calculate_coverage(self.L_val[:,i], self.b, self.val_ground) stats_table[i,5] = calculate_coverage(self.L_train[:,i], self.b, self.train_ground) #Make table column_headers = ['Feat 1', 'Feat 2', 'Val Acc', 'Train Acc', 'Val Cov', 'Train Cov'] pandas_stats_table = pd.DataFrame(stats_table, columns=column_headers) return pandas_stats_table
reef-master
program_synthesis/heuristic_generator.py
import numpy as np import itertools from sklearn.metrics import f1_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier class Synthesizer(object): """ A class to synthesize heuristics from primitives and validation labels """ def __init__(self, primitive_matrix, val_ground,b=0.5): """ Initialize Synthesizer object b: class prior of most likely class beta: threshold to decide whether to abstain or label for heuristics """ self.val_primitive_matrix = primitive_matrix self.val_ground = val_ground self.p = np.shape(self.val_primitive_matrix)[1] self.b=b def generate_feature_combinations(self, cardinality=1): """ Create a list of primitive index combinations for given cardinality max_cardinality: max number of features each heuristic operates over """ primitive_idx = range(self.p) feature_combinations = [] for comb in itertools.combinations(primitive_idx, cardinality): feature_combinations.append(comb) return feature_combinations def fit_function(self, comb, model): """ Fits a single logistic regression or decision tree model comb: feature combination to fit model over model: fit logistic regression or a decision tree """ X = self.val_primitive_matrix[:,comb] if np.shape(X)[0] == 1: X = X.reshape(-1,1) # fit decision tree or logistic regression or knn if model == 'dt': dt = DecisionTreeClassifier(max_depth=len(comb)) dt.fit(X,self.val_ground) return dt elif model == 'lr': lr = LogisticRegression() lr.fit(X,self.val_ground) return lr elif model == 'nn': nn = KNeighborsClassifier(algorithm='kd_tree') nn.fit(X,self.val_ground) return nn def generate_heuristics(self, model, max_cardinality=1): """ Generates heuristics over given feature cardinality model: fit logistic regression or a decision tree max_cardinality: max number of features each heuristic operates over """ #have to make a dictionary?? or feature combinations here? or list of arrays? feature_combinations_final = [] heuristics_final = [] for cardinality in range(1, max_cardinality+1): feature_combinations = self.generate_feature_combinations(cardinality) heuristics = [] for i,comb in enumerate(feature_combinations): heuristics.append(self.fit_function(comb, model)) feature_combinations_final.append(feature_combinations) heuristics_final.append(heuristics) return heuristics_final, feature_combinations_final def beta_optimizer(self,marginals, ground): """ Returns the best beta parameter for abstain threshold given marginals Uses F1 score that maximizes the F1 score marginals: confidences for data from a single heuristic """ #Set the range of beta params #0.25 instead of 0.0 as a min makes controls coverage better beta_params = np.linspace(0.25,0.45,10) f1 = [] for beta in beta_params: labels_cutoff = np.zeros(np.shape(marginals)) labels_cutoff[marginals <= (self.b-beta)] = -1. labels_cutoff[marginals >= (self.b+beta)] = 1. f1.append(f1_score(ground, labels_cutoff, average='weighted')) f1 = np.nan_to_num(f1) return beta_params[np.argsort(np.array(f1))[-1]] def find_optimal_beta(self, heuristics, X, feat_combos, ground): """ Returns optimal beta for given heuristics heuristics: list of pre-trained logistic regression models X: primitive matrix feat_combos: feature indices to apply heuristics to ground: ground truth associated with X data """ beta_opt = [] for i,hf in enumerate(heuristics): marginals = hf.predict_proba(X[:,feat_combos[i]])[:,1] labels_cutoff = np.zeros(np.shape(marginals)) beta_opt.append((self.beta_optimizer(marginals, ground))) return beta_opt
reef-master
program_synthesis/synthesizer.py
import numpy as np from scipy import sparse from label_aggregator import LabelAggregator def odds_to_prob(l): """ This is the inverse logit function logit^{-1}: l = \log\frac{p}{1-p} \exp(l) = \frac{p}{1-p} p = \frac{\exp(l)}{1 + \exp(l)} """ return np.exp(l) / (1.0 + np.exp(l)) class Verifier(object): """ A class for the Snorkel Model Verifier """ def __init__(self, L_train, L_val, val_ground, has_snorkel=True): self.L_train = L_train.astype(int) self.L_val = L_val.astype(int) self.val_ground = val_ground self.has_snorkel = has_snorkel if self.has_snorkel: from snorkel.learning import GenerativeModel from snorkel.learning import RandomSearch from snorkel.learning.structure import DependencySelector def train_gen_model(self,deps=False,grid_search=False): """ Calls appropriate generative model """ if self.has_snorkel: #TODO: GridSearch from snorkel.learning import GenerativeModel from snorkel.learning import RandomSearch from snorkel.learning.structure import DependencySelector gen_model = GenerativeModel() gen_model.train(self.L_train, epochs=100, decay=0.001 ** (1.0 / 100), step_size=0.005, reg_param=1.0) else: gen_model = LabelAggregator() gen_model.train(self.L_train, rate=1e-3, mu=1e-6, verbose=False) self.gen_model = gen_model def assign_marginals(self): """ Assigns probabilistic labels for train and val sets """ self.train_marginals = self.gen_model.marginals(sparse.csr_matrix(self.L_train)) self.val_marginals = self.gen_model.marginals(sparse.csr_matrix(self.L_val)) #print 'Learned Accuracies: ', odds_to_prob(self.gen_model.w) def find_vague_points(self,gamma=0.1,b=0.5): """ Find val set indices where marginals are within thresh of b """ val_idx = np.where(np.abs(self.val_marginals-b) <= gamma) return val_idx[0] def find_incorrect_points(self,b=0.5): """ Find val set indices where marginals are incorrect """ val_labels = 2*(self.val_marginals > b)-1 val_idx = np.where(val_labels != self.val_ground) return val_idx[0]
reef-master
program_synthesis/verifier.py
import ray from database import Database, save_results_to_es from utils.experiment_utils import * # from experiment_driver import map_runstats_to_modelpath import pickle import os import json from utils.metadata_utils import append_experiment_metadata ray.init(address="auto") datasets = ["agnews"] encoders = ["rnn", "distilbert", "t5", "electra"] elastic_config_file = "./elasticsearch_config.yaml" paths_to_dataset = { "agnews": "/experiments/ludwig-bench-textclassification/data/agnews_1.0/processed/agnews.csv" } def main(): elastic_config = None elastic_config = load_yaml(elastic_config_file) exp_info = [] for dataset in datasets: for enc in encoders: path_to_stats_file = f"/experiments/ludwig-bench-textclassification/experiment-outputs/{dataset}_{enc}/{dataset}_{enc}_hyperopt_results.pkl" path_to_output_dir = f"/experiments/ludwig-bench-textclassification/experiment-outputs/{dataset}_{enc}/" path_to_model_config = f"/experiments/ludwig-bench-textclassification/experiment-configs/config_{dataset}_{enc}.yaml" model_config = load_yaml(path_to_model_config) path_to_dataset = paths_to_dataset[dataset] experiment_attr = { "model_config": copy.deepcopy(model_config), "dataset_path": path_to_dataset, "top_n_trials": None, "model_name": f"config_{dataset}_{enc}", "output_dir": path_to_output_dir, "encoder": enc, "dataset": dataset, "elastic_config": elastic_config, } hyperopt_results = pickle.load(open(path_to_stats_file, "rb")) exp_info.append((experiment_attr, hyperopt_results)) outputs = ray.get( [ save_results_to_es.remote(info[0], info[1], "ray") for info in exp_info ] ) if __name__ == "__main__": main()
ludwig-benchmarking-toolkit-main
upload_to_db.py
import os PATH_HERE = os.path.abspath(os.path.dirname(__file__)) ENCODER_CONFIG_DIR = os.path.join(PATH_HERE, "model-configs") # EXPERIMENT_CONFIGS_DIR = '/experiments/ludwig-bench-textclassification/experiment-configs' EXPERIMENT_CONFIGS_DIR = os.path.join(PATH_HERE, "hyperopt-experiment-configs") DATASET_CACHE_DIR = os.path.join(PATH_HERE,"datasets") ENERGY_LOGGING_DIR = os.path.join(PATH_HERE, "energy_logging") ENCODER_HYPEROPT_FILENAMES = { "bert": "bert_hyperopt.yaml", "rnn": "rnn_hyperopt.yaml", "distilbert": "distilbert_hyperopt.yaml", "electra": "electra_hyperopt.yaml", "roberta": "roberta_hyperopt.yaml", "stacked_parallel_cnn": "stackedparallelcnn_hyperopt.yaml", "t5": "t5_hyperopt.yaml", "resnet" : "resnet_hyperopt.yaml", "stacked_cnn" : "stackedcnn_hyperopt.yaml" } ENCODER_FILE_LIST = ENCODER_HYPEROPT_FILENAMES.values() DATASETS_LIST = None CONFIG_TEMPLATE_FILE = "./experiment-templates/task_template.yaml" DATASET_METADATA_FILE = "./experiment-templates/dataset_metadata.yaml" HYPEROPT_CONFIG_FILE = "./experiment-templates/hyperopt_config.yaml" EXPERIMENT_OUTPUT_DIR = "./experiment-outputs" PATH_TO_PRETRAINED_EMBEDDINGS = None RUNTIME_ENV = "local"
ludwig-benchmarking-toolkit-main
globals.py
import copy import json import logging import os import ray import socket from elasticsearch import Elasticsearch from lbt.utils.experiment_utils import ( format_fields_float, get_model_ckpt_paths, hash_dict, substitute_dict_parameters, ) # from utils.metadata_utils import append_experiment_metadata from lbt.metrics import get_experiment_metadata hostname = socket.gethostbyname(socket.gethostname()) # TODO: ASN --> DECOUPLE BUILDING ES DOCUMENT W/SAVING @ray.remote(num_cpus=0, resources={f"node:{hostname}": 0.001}) def save_results_to_es( experiment_attr: dict, hyperopt_results: list, tune_executor: str, top_n_trials: int = None, reupload=False, num_gpus=0, ): elastic_config = experiment_attr["elastic_config"] es_db = Database( elastic_config["host"], (elastic_config["username"], elastic_config["password"]), elastic_config["username"], elastic_config["index"], ) # save top_n model configs to elastic if top_n_trials is not None and len(hyperopt_results) > top_n_trials: hyperopt_results = hyperopt_results[0:top_n_trials] hyperopt_run_data = get_model_ckpt_paths( hyperopt_results, experiment_attr["output_dir"], executor=tune_executor ) sampled_params = {} # ensures that all numerical values are of type float format_fields_float(hyperopt_results) for run in hyperopt_run_data: new_config = substitute_dict_parameters( copy.deepcopy(experiment_attr["model_config"]), parameters=run["hyperopt_results"]["parameters"], ) del new_config["hyperopt"] # do some accounting of duplicate hyperparam configs (this count will # be added to the dict which will be hashed for the elastic document # id param_hash = hash_dict(run["hyperopt_results"]["parameters"]) if param_hash in sampled_params: sampled_params[param_hash] += 1 else: sampled_params[param_hash] = 1 document = { "hyperopt_results": run["hyperopt_results"], "model_path": run["model_path"], } try: get_experiment_metadata( document, model_path=run["model_path"], data_path=experiment_attr["dataset_path"], run_stats=run, num_gpus=num_gpus, ) except: pass formatted_document = es_db.format_document( document, encoder=experiment_attr["encoder"], dataset=experiment_attr["dataset"], config=experiment_attr["model_config"], ) formatted_document["sampled_run_config"] = new_config ds = experiment_attr["dataset"] enc = experiment_attr["encoder"] # doc_key = run["hyperopt_results"]["eval_stats"] trial_count = sampled_params[param_hash] doc_key = copy.deepcopy(new_config) doc_key["trial"] = trial_count try: es_db.upload_document(hash_dict(doc_key), formatted_document) logging.info(f"{ds} x {enc}" f"uploaded to elastic.") except: logging.warning( f"error uploading" f"{ds} x {enc}" f"to elastic..." ) return 1 class Database: def __init__(self, host, http_auth, user_id, index): self.host = host self.http_auth = http_auth self.user_id = user_id self.index = index self._initialize_db() self._create_index(self.index) def _initialize_db(self): self.es_connection = Elasticsearch( [self.host], http_auth=self.http_auth ) def _create_index(self, index_name: str): mapping = { "mappings": { "_doc": { "properties": {"sampled_run_config": {"type": "nested"}} } } } self.es_connection.indices.create( index=index_name, body=mapping, include_type_name=True, ignore=400 ) def upload_document(self, id, document): self.es_connection.index(index=self.index, id=id, body=document) def remove_document(self, id): self.es_connection.delete(index=self.index, id=id) def document_exists(self, id): return self.es_connection.exists(index=self.index, id=id) def search(self, query, size=1000): return self.es_connection.search( index=self.index, body=query, size=size ) def upload_document_from_outputdir( self, dir_path, encoder, dataset, ): hyperopt_stats = json.load( open(os.path.join(dir_path, "hyperopt_statistics.json"), "rb"), parse_int=float, ) formatted_document = self.format_document( hyperopt_stats, encoder, dataset ) self.es_connection.index( index=self.index, id=hash_dict(hyperopt_stats["hyperopt_config"]), body=formatted_document, ) def format_document(self, document, encoder, dataset, config=None): formatted_document = { "user_id": self.user_id, "encoder": encoder, "dataset": dataset, } formatted_document.update(document) if config is not None: formatted_document.update({"hyperopt_exp_config": config}) return formatted_document
ludwig-benchmarking-toolkit-main
database.py
import argparse import datetime import logging import ray import globals from lbt.utils.experiment_utils import set_globals, load_yaml from lbt.experiments import ( run_experiments, reproduce_experiment, download_data, ) from lbt.datasets import DATASET_REGISTRY from lbt.experiments import ( run_experiments, reproduce_experiment, download_data, ) import lbt.build_def_files from lbt.build_def_files import build_config_files logging.basicConfig( format=logging.basicConfig( format="[\N{books} LUDWIG-BENCHMARKING-TOOLKIT \N{books}] => %(levelname)s::%(message)s", level=logging.DEBUG, ), level=logging.DEBUG, ) def main(): parser = argparse.ArgumentParser( description="Ludwig Benchmarking Toolkit experiment driver script", ) parser.add_argument( "-hcd", "--hyperopt_config_dir", help="directory to save all model config", type=str, default=globals.EXPERIMENT_CONFIGS_DIR, ) parser.add_argument( "--resume_existing_exp", help="resume a previously stopped experiment", type=bool, default=False, ) parser.add_argument( "-eod", "--experiment_output_dir", help="directory to save hyperopt runs", type=str, default=globals.EXPERIMENT_OUTPUT_DIR, ) parser.add_argument( "--datasets", help="list of datasets to run experiemnts on", nargs="+", choices=list(DATASET_REGISTRY.keys()), default=None, required=True, ) parser.add_argument( "-re", "--run_environment", help="environment in which experiment will be run", choices=["local", "gcp"], default="local", ) parser.add_argument( "-esc", "--elasticsearch_config", help="path to elastic db config file", type=str, default=None, ) parser.add_argument( "-dcd", "--dataset_cache_dir", help="path to cache downloaded datasets", type=str, default=globals.DATASET_CACHE_DIR, ) # list of encoders to run hyperopt search over : # default is 23 ludwig encoders parser.add_argument( "-mel", "--custom_model_list", help="list of encoders to run hyperopt experiments on. \ The default setting is to use all 23 Ludwig encoders", nargs="+", choices=[ "all", "bert", "rnn", "stacked_parallel_cnn", "roberta", "distilbert", "electra", "resnet", "stacked_cnn", "t5", ], default="all", ) parser.add_argument( "-topn", "--top_n_trials", help="top n trials to save model performance for.", type=int, default=None, ) parser.add_argument( "-reproduce", "--experiment_to_reproduce", help="path to LBT experiment config to reproduce and experiment", type=str, default=None, ) args = parser.parse_args() set_globals(args) data_file_paths = download_data(args.dataset_cache_dir, args.datasets) logging.info("Datasets succesfully downloaded...") config_files = build_config_files() logging.info("Experiment configuration files built...") elastic_config = None if args.elasticsearch_config is not None: elastic_config = load_yaml(args.elasticsearch_config) experiment_config = None if args.experiment_to_reproduce is not None: experiment_config = load_yaml(args.experiment_to_reproduce) if args.run_environment == "gcp": ray.init(address="auto") if experiment_config: reproduce_experiment( model=args.custom_model_list[0], dataset=args.datasets[0], data_file_paths=data_file_paths, experiment_to_replicate=args.experiment_to_reproduce, run_environment=args.run_environment, ) else: run_experiments( data_file_paths, config_files, top_n_trials=args.top_n_trials, elastic_config=elastic_config, run_environment=args.run_environment, resume_existing_exp=args.resume_existing_exp, ) if __name__ == "__main__": main()
ludwig-benchmarking-toolkit-main
experiment_driver.py
__version__ = "0.3.0.post1"
ludwig-benchmarking-toolkit-main
lbt/__init__.py