python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tempfile import crypten import crypten.communicator as comm import torch import torch.nn as nn import torch.nn.functional as F from examples.util import NoopContextManager from torchvision import datasets, transforms def run_mpc_autograd_cnn( context_manager=None, num_epochs=3, learning_rate=0.001, batch_size=5, print_freq=5, num_samples=100, ): """ Args: context_manager: used for setting proxy settings during download. """ crypten.init() data_alice, data_bob, train_labels = preprocess_mnist(context_manager) rank = comm.get().get_rank() # assumes at least two parties exist # broadcast dummy data with same shape to remaining parties if rank == 0: x_alice = data_alice else: x_alice = torch.empty(data_alice.size()) if rank == 1: x_bob = data_bob else: x_bob = torch.empty(data_bob.size()) # encrypt x_alice_enc = crypten.cryptensor(x_alice, src=0) x_bob_enc = crypten.cryptensor(x_bob, src=1) # combine feature sets x_combined_enc = crypten.cat([x_alice_enc, x_bob_enc], dim=2) x_combined_enc = x_combined_enc.unsqueeze(1) # reduce training set to num_samples x_reduced = x_combined_enc[:num_samples] y_reduced = train_labels[:num_samples] # encrypt plaintext model model_plaintext = CNN() dummy_input = torch.empty((1, 1, 28, 28)) model = crypten.nn.from_pytorch(model_plaintext, dummy_input) model.train() model.encrypt() # encrypted training train_encrypted( x_reduced, y_reduced, model, num_epochs, learning_rate, batch_size, print_freq ) def train_encrypted( x_encrypted, y_encrypted, encrypted_model, num_epochs, learning_rate, batch_size, print_freq, ): rank = comm.get().get_rank() loss = crypten.nn.MSELoss() num_samples = x_encrypted.size(0) label_eye = torch.eye(2) for epoch in range(num_epochs): last_progress_logged = 0 # only print from rank 0 to avoid duplicates for readability if rank == 0: print(f"Epoch {epoch} in progress:") for j in range(0, num_samples, batch_size): # define the start and end of the training mini-batch start, end = j, min(j + batch_size, num_samples) # switch on autograd for training examples x_train = x_encrypted[start:end] x_train.requires_grad = True y_one_hot = label_eye[y_encrypted[start:end]] y_train = crypten.cryptensor(y_one_hot, requires_grad=True) # perform forward pass: output = encrypted_model(x_train) loss_value = loss(output, y_train) # backprop encrypted_model.zero_grad() loss_value.backward() encrypted_model.update_parameters(learning_rate) # log progress if j + batch_size - last_progress_logged >= print_freq: last_progress_logged += print_freq print(f"Loss {loss_value.get_plain_text().item():.4f}") # compute accuracy every epoch pred = output.get_plain_text().argmax(1) correct = pred.eq(y_encrypted[start:end]) correct_count = correct.sum(0, keepdim=True).float() accuracy = correct_count.mul_(100.0 / output.size(0)) loss_plaintext = loss_value.get_plain_text().item() print( f"Epoch {epoch} completed: " f"Loss {loss_plaintext:.4f} Accuracy {accuracy.item():.2f}" ) def preprocess_mnist(context_manager): if context_manager is None: context_manager = NoopContextManager() with context_manager: # each party gets a unique temp directory with tempfile.TemporaryDirectory() as data_dir: mnist_train = datasets.MNIST(data_dir, download=True, train=True) mnist_test = datasets.MNIST(data_dir, download=True, train=False) # modify labels so all non-zero digits have class label 1 mnist_train.targets[mnist_train.targets != 0] = 1 mnist_test.targets[mnist_test.targets != 0] = 1 mnist_train.targets[mnist_train.targets == 0] = 0 mnist_test.targets[mnist_test.targets == 0] = 0 # compute normalization factors data_all = torch.cat([mnist_train.data, mnist_test.data]).float() data_mean, data_std = data_all.mean(), data_all.std() tensor_mean, tensor_std = data_mean.unsqueeze(0), data_std.unsqueeze(0) # normalize data data_train_norm = transforms.functional.normalize( mnist_train.data.float(), tensor_mean, tensor_std ) # partition features between Alice and Bob data_alice = data_train_norm[:, :, :20] data_bob = data_train_norm[:, :, 20:] train_labels = mnist_train.targets return data_alice, data_bob, train_labels class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=5, padding=0) self.fc1 = nn.Linear(16 * 12 * 12, 100) self.fc2 = nn.Linear(100, 2) def forward(self, x): out = self.conv1(x) out = F.relu(out) out = F.max_pool2d(out, 2) out = out.view(-1, 16 * 12 * 12) out = self.fc1(out) out = F.relu(out) out = self.fc2(out) return out
CrypTen-main
examples/mpc_autograd_cnn/mpc_autograd_cnn.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ To run mpc_autograd_cnn example: $ python examples/mpc_autograd_cnn/launcher.py To run mpc_linear_svm example on AWS EC2 instances: $ python3 scripts/aws_launcher.py \ --ssh_key_file=$HOME/.aws/fair-$USER.pem \ --instances=i-038dd14b9383b9d79,i-08f057b9c03d4a916 \ --aux_files=examples/mpc_autograd_cnn/mpc_autograd_cnn.py \ examples/mpc_autograd_cnn/launcher.py """ import argparse import logging import os from examples.multiprocess_launcher import MultiProcessLauncher parser = argparse.ArgumentParser(description="CrypTen Autograd CNN Training") def validate_world_size(world_size): world_size = int(world_size) if world_size < 2: raise argparse.ArgumentTypeError(f"world_size {world_size} must be > 1") return world_size parser.add_argument( "--world_size", type=validate_world_size, default=2, help="The number of parties to launch. Each party acts as its own process", ) parser.add_argument( "--epochs", default=3, type=int, metavar="N", help="number of total epochs to run" ) parser.add_argument( "--lr", "--learning-rate", default=0.01, type=float, metavar="LR", help="initial learning rate", ) parser.add_argument( "-b", "--batch-size", default=5, type=int, metavar="N", help="mini-batch size (default: 5)", ) parser.add_argument( "--print-freq", "-p", default=5, type=int, metavar="PF", help="print frequency (default: 5)", ) parser.add_argument( "--num-samples", "-n", default=100, type=int, metavar="N", help="num of samples used for training (default: 100)", ) def _run_experiment(args): level = logging.INFO if "RANK" in os.environ and os.environ["RANK"] != "0": level = logging.CRITICAL logging.getLogger().setLevel(level) logging.basicConfig( level=level, format="%(asctime)s - %(process)d - %(name)s - %(levelname)s - %(message)s", ) from mpc_autograd_cnn import run_mpc_autograd_cnn run_mpc_autograd_cnn( num_epochs=args.epochs, learning_rate=args.lr, batch_size=args.batch_size, print_freq=args.print_freq, num_samples=args.num_samples, ) def main(run_experiment): args = parser.parse_args() # run multiprocess by default launcher = MultiProcessLauncher(args.world_size, run_experiment, args) launcher.start() launcher.join() launcher.terminate() if __name__ == "__main__": main(_run_experiment)
CrypTen-main
examples/mpc_autograd_cnn/launcher.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Generate function and model benchmarks To Run: $ python benchmark.py # Only function benchmarks $ python benchmark.py --only-functions $ python benchmark.py --only-functions --world-size 2 # Benchmark functions and all models $ python benchmark.py --advanced-models # Run benchmarks on GPU $ python benchmark.py --device cuda $ python benchmark.py --device cuda --world-size 2 # Run benchmarks on different GPUs for each party $ python benchmark.py --world-size=2 --multi-gpu # Save benchmarks to csv $ python benchmark.py -p ~/Downloads/ """ import argparse import functools import os import timeit from collections import namedtuple import crypten import crypten.communicator as comm import numpy as np import pandas as pd import torch from examples import multiprocess_launcher try: from . import data, models except ImportError: # direct import if relative fails import data import models Runtime = namedtuple("Runtime", "mid q1 q3") def time_me(func=None, n_loops=10): """Decorator returning average runtime in seconds over n_loops Args: func (function): invoked with given args / kwargs n_loops (int): number of times to invoke function for timing Returns: tuple of (time in seconds, inner quartile range, function return value). """ if func is None: return functools.partial(time_me, n_loops=n_loops) @functools.wraps(func) def timing_wrapper(*args, **kwargs): return_val = func(*args, **kwargs) times = [] for _ in range(n_loops): start = timeit.default_timer() func(*args, **kwargs) times.append(timeit.default_timer() - start) mid_runtime = np.quantile(times, 0.5) q1_runtime = np.quantile(times, 0.25) q3_runtime = np.quantile(times, 0.75) runtime = Runtime(mid_runtime, q1_runtime, q3_runtime) return runtime, return_val return timing_wrapper class FuncBenchmarks: """Benchmarks runtime and error of crypten functions against PyTorch Args: tensor_size (int or tuple): size of tensor for benchmarking runtimes """ BINARY = ["add", "sub", "mul", "matmul", "gt", "lt", "eq"] UNARY = [ "sigmoid", "relu", "tanh", "exp", "log", "reciprocal", "cos", "sin", "sum", "mean", "neg", ] LAYERS = ["conv2d"] DOMAIN = torch.arange(start=0.01, end=100, step=0.01) # for exponential, sin, and cos TRUNCATED_DOMAIN = torch.arange(start=0.001, end=10, step=0.001) def __init__(self, tensor_size=(100, 100), device="cpu"): self.device = torch.device(device) self.tensor_size = tensor_size # dataframe for benchmarks self.df = None def __repr__(self): if self.df is not None: return self.df.to_string(index=False, justify="left") return "No Function Benchmarks" @staticmethod @time_me def time_func(x, func, y=None): """Invokes func as a method of x""" if y is None: return getattr(x, func)() if func in {"conv1d", "conv2d"}: if torch.is_tensor(x): return getattr(torch.nn.functional, func)(x, y) return getattr(x, func)(y) return getattr(x, func)(y) def get_runtimes(self): """Returns plain text and crypten runtimes""" x, y = ( torch.rand(self.tensor_size, device=self.device), torch.rand(self.tensor_size, device=self.device), ) x_enc, y_enc = crypten.cryptensor(x), crypten.cryptensor(y) runtimes, runtimes_enc = [], [] for func in FuncBenchmarks.UNARY + FuncBenchmarks.BINARY: second_operand, second_operand_enc = None, None if func in FuncBenchmarks.BINARY: second_operand, second_operand_enc = y, y_enc runtime, _ = FuncBenchmarks.time_func(x, func, y=second_operand) runtimes.append(runtime) runtime_enc, _ = FuncBenchmarks.time_func(x_enc, func, y=second_operand_enc) runtimes_enc.append(runtime_enc) # add layer runtimes runtime_layers, runtime_layers_enc = self.get_layer_runtimes() runtimes.extend(runtime_layers) runtimes_enc.extend(runtime_layers_enc) return runtimes, runtimes_enc def get_layer_runtimes(self): """Returns runtimes for layers""" runtime_layers, runtime_layers_enc = [], [] for layer in FuncBenchmarks.LAYERS: if layer == "conv1d": x, x_enc, y, y_enc = self.random_conv1d_inputs() elif layer == "conv2d": x, x_enc, y, y_enc = self.random_conv2d_inputs() else: raise ValueError(f"{layer} not supported") runtime, _ = FuncBenchmarks.time_func(x, layer, y=y) runtime_enc, _ = FuncBenchmarks.time_func(x_enc, layer, y=y_enc) runtime_layers.append(runtime) runtime_layers_enc.append(runtime_enc) return runtime_layers, runtime_layers_enc def random_conv2d_inputs(self): """Returns random input and weight tensors for 2d convolutions""" filter_size = [size // 10 for size in self.tensor_size] x_conv2d = torch.rand(1, 1, *self.tensor_size, device=self.device) weight2d = torch.rand(1, 1, *filter_size, device=self.device) x_conv2d_enc = crypten.cryptensor(x_conv2d) weight2d_enc = crypten.cryptensor(weight2d) return x_conv2d, x_conv2d_enc, weight2d, weight2d_enc def random_conv1d_inputs(self): """Returns random input and weight tensors for 1d convolutions""" size = self.tensor_size[0] filter_size = size // 10 (x_conv1d,) = torch.rand(1, 1, size, device=self.device) weight1d = torch.rand(1, 1, filter_size, device=self.device) x_conv1d_enc = crypten.cryptensor(x_conv1d) weight1d_enc = crypten.cryptensor(weight1d) return x_conv1d, x_conv1d_enc, weight1d, weight1d_enc @staticmethod def calc_abs_error(ref, out): """Computes total absolute error""" ref, out = ref.cpu(), out.cpu() if ref.dtype == torch.bool: errors = (out != ref).numpy().sum() return errors errors = torch.abs(out - ref).numpy() return errors.sum() @staticmethod def calc_relative_error(ref, out): """Computes average relative error""" ref, out = ref.cpu(), out.cpu() if ref.dtype == torch.bool: errors = (out != ref).numpy().sum() // ref.nelement() return errors errors = torch.abs((out - ref) / ref) # remove inf due to division by tiny numbers errors = errors[errors != float("inf")].numpy() return errors.mean() def call_function_on_domain(self, func): """Call plain text and CrypTen function on given function Uses DOMAIN, TRUNCATED_DOMAIN, or appropriate layer inputs Returns: tuple of (plain text result, encrypted result) """ DOMAIN, TRUNCATED_DOMAIN = ( FuncBenchmarks.DOMAIN, FuncBenchmarks.TRUNCATED_DOMAIN, ) if hasattr(DOMAIN, "to") and hasattr(TRUNCATED_DOMAIN, "to"): DOMAIN, TRUNCATED_DOMAIN = ( DOMAIN.to(device=self.device), TRUNCATED_DOMAIN.to(device=self.device), ) y = torch.rand(DOMAIN.shape, device=self.device) DOMAIN_enc, y_enc = crypten.cryptensor(DOMAIN), crypten.cryptensor(y) TRUNCATED_DOMAIN_enc = crypten.cryptensor(TRUNCATED_DOMAIN) if func in ["exp", "cos", "sin"]: ref, out_enc = ( getattr(TRUNCATED_DOMAIN, func)(), getattr(TRUNCATED_DOMAIN_enc, func)(), ) elif func in FuncBenchmarks.UNARY: ref, out_enc = getattr(DOMAIN, func)(), getattr(DOMAIN_enc, func)() elif func in FuncBenchmarks.LAYERS: ref, out_enc = self._call_layer(func) elif func in FuncBenchmarks.BINARY: ref, out_enc = (getattr(DOMAIN, func)(y), getattr(DOMAIN_enc, func)(y_enc)) else: raise ValueError(f"{func} not supported") return ref, out_enc def get_errors(self): """Computes the total error of approximations""" abs_errors, relative_errors = [], [] functions = FuncBenchmarks.UNARY + FuncBenchmarks.BINARY functions += FuncBenchmarks.LAYERS for func in functions: ref, out_enc = self.call_function_on_domain(func) out = out_enc.get_plain_text() abs_error = FuncBenchmarks.calc_abs_error(ref, out) abs_errors.append(abs_error) relative_error = FuncBenchmarks.calc_relative_error(ref, out) relative_errors.append(relative_error) return abs_errors, relative_errors def _call_layer(self, layer): """Call supported layers""" if layer == "conv1d": x, x_enc, y, y_enc = self.random_conv1d_inputs() elif layer == "conv2d": x, x_enc, y, y_enc = self.random_conv2d_inputs() else: raise ValueError(f"{layer} not supported") ref = getattr(torch.nn.functional, layer)(x, y) out_enc = getattr(x_enc, layer)(y_enc) return ref, out_enc def save(self, path): if self.device.type == "cuda": csv_path = os.path.join(path, "func_benchmarks_cuda.csv") else: csv_path = os.path.join(path, "func_benchmarks.csv") self.df.to_csv(csv_path, index=False) def get_results(self): return self.df def run(self): """Runs and stores benchmarks in self.df""" runtimes, runtimes_enc = self.get_runtimes() abs_errors, relative_errors = self.get_errors() self.df = pd.DataFrame.from_dict( { "function": FuncBenchmarks.UNARY + FuncBenchmarks.BINARY + FuncBenchmarks.LAYERS, "runtime": [r.mid for r in runtimes], "runtime Q1": [r.q1 for r in runtimes], "runtime Q3": [r.q3 for r in runtimes], "runtime crypten": [r.mid for r in runtimes_enc], "runtime crypten Q1": [r.q1 for r in runtimes_enc], "runtime crypten Q3": [r.q3 for r in runtimes_enc], "total abs error": abs_errors, "average relative error": relative_errors, } ) class ModelBenchmarks: """Benchmarks runtime and accuracy of crypten models Models are benchmarked on synthetically generated Gaussian clusters for binary classification. Resnet18 is benchmarks use image data. Args: n_samples (int): number of samples for Gaussian cluster model training n_features (int): number of features for the Gaussian clusters. epochs (int): number of training epochs lr_rate (float): learning rate. """ def __init__(self, device="cpu", advanced_models=False): self.device = torch.device(device) self.df = None self.models = models.MODELS if not advanced_models: self.remove_advanced_models() def __repr__(self): if self.df is not None: return self.df.to_string(index=False, justify="left") return "No Model Benchmarks" def remove_advanced_models(self): """Removes advanced models from instance""" self.models = list(filter(lambda x: not x.advanced, self.models)) @time_me(n_loops=3) def train(self, model, x, y, epochs, lr, loss): """Trains PyTorch model Args: model (PyTorch model): model to be trained x (torch.tensor): inputs y (torch.tensor): targets epochs (int): number of training epochs lr (float): learning rate loss (str): type of loss to use for training Returns: model with update weights """ assert isinstance(model, torch.nn.Module), "must be a PyTorch model" criterion = getattr(torch.nn, loss)() optimizer = torch.optim.SGD(model.parameters(), lr=lr) for _ in range(epochs): model.zero_grad() output = model(x) loss = criterion(output, y) loss.backward() optimizer.step() return model @time_me(n_loops=3) def train_crypten(self, model, x, y, epochs, lr, loss): """Trains crypten encrypted model Args: model (CrypTen model): model to be trained x (crypten.tensor): inputs y (crypten.tensor): targets epochs (int): number of training epochs lr (float): learning rate loss (str): type of loss to use for training Returns: model with update weights """ assert isinstance(model, crypten.nn.Module), "must be a CrypTen model" criterion = getattr(crypten.nn, loss)() for _ in range(epochs): model.zero_grad() output = model(x) loss = criterion(output, y) loss.backward() model.update_parameters(lr) return model def time_training(self): """Returns training time per epoch for plain text and CrypTen""" runtimes = [] runtimes_enc = [] for model in self.models: x, y = model.data.x, model.data.y x, y = x.to(device=self.device), y.to(device=self.device) model_plain = model.plain if hasattr(model_plain, "to"): model_plain = model_plain.to(self.device) runtime, _ = self.train(model_plain, x, y, 1, model.lr, model.loss) runtimes.append(runtime) if model.advanced: y = model.data.y_onehot.to(self.device) x_enc = crypten.cryptensor(x) y_enc = crypten.cryptensor(y) model_crypten = model.crypten if hasattr(model_crypten, "to"): model_crypten = model_crypten.to(self.device) model_enc = model_crypten.encrypt() runtime_enc, _ = self.train_crypten( model_enc, x_enc, y_enc, 1, model.lr, model.loss ) runtimes_enc.append(runtime_enc) return runtimes, runtimes_enc @time_me(n_loops=3) def predict(self, model, x): y = model(x) return y def time_inference(self): """Returns inference time for plain text and CrypTen""" runtimes = [] runtimes_enc = [] for model in self.models: x = model.data.x.to(self.device) model_plain = model.plain if hasattr(model_plain, "to"): model_plain = model_plain.to(self.device) runtime, _ = self.predict(model_plain, x) runtimes.append(runtime) model_crypten = model.crypten if hasattr(model_crypten, "to"): model_crypten = model_crypten.to(self.device) model_enc = model_crypten.encrypt() x_enc = crypten.cryptensor(x) runtime_enc, _ = self.predict(model_enc, x_enc) runtimes_enc.append(runtime_enc) return runtimes, runtimes_enc @staticmethod def calc_accuracy(output, y, threshold=0.5): """Computes percent accuracy Args: output (torch.tensor): model output y (torch.tensor): true label threshold (float): classification threshold Returns (float): percent accuracy """ output, y = output.cpu(), y.cpu() predicted = (output > threshold).float() correct = (predicted == y).sum().float() accuracy = float((correct / y.shape[0]).cpu().numpy()) return accuracy def evaluate(self): """Evaluates accuracy of crypten versus plain text models""" accuracies, accuracies_crypten = [], [] for model in self.models: model_plain = model.plain if hasattr(model_plain, "to"): model_plain = model_plain.to(self.device) x, y = model.data.x, model.data.y x, y = x.to(device=self.device), y.to(device=self.device) _, model_plain = self.train( model_plain, x, y, model.epochs, model.lr, model.loss ) x_test = model.data.x_test.to(device=self.device) y_test = model.data.y_test.to(device=self.device) accuracy = ModelBenchmarks.calc_accuracy(model_plain(x_test), y_test) accuracies.append(accuracy) model_crypten = model.crypten if hasattr(model_crypten, "to"): model_crypten = model_crypten.to(self.device) model_crypten = model_crypten.encrypt() if model.advanced: y = model.data.y_onehot.to(self.device) x_enc = crypten.cryptensor(x) y_enc = crypten.cryptensor(y) _, model_crypten = self.train_crypten( model_crypten, x_enc, y_enc, model.epochs, model.lr, model.loss ) x_test_enc = crypten.cryptensor(x_test) output = model_crypten(x_test_enc).get_plain_text() accuracy = ModelBenchmarks.calc_accuracy(output, y_test) accuracies_crypten.append(accuracy) return accuracies, accuracies_crypten def save(self, path): if self.device.type == "cuda": csv_path = os.path.join(path, "model_benchmarks_cuda.csv") else: csv_path = os.path.join(path, "model_benchmarks.csv") self.df.to_csv(csv_path, index=False) def get_results(self): return self.df def run(self): """Runs and stores benchmarks in self.df""" training_runtimes, training_runtimes_enc = self.time_training() inference_runtimes, inference_runtimes_enc = self.time_inference() accuracies, accuracies_crypten = self.evaluate() model_names = [model.name for model in self.models] training_times_both = training_runtimes + training_runtimes_enc inference_times_both = inference_runtimes + inference_runtimes_enc half_n_rows = len(training_runtimes) self.df = pd.DataFrame.from_dict( { "model": model_names + model_names, "seconds per epoch": [t.mid for t in training_times_both], "seconds per epoch q1": [t.q1 for t in training_times_both], "seconds per epoch q3": [t.q3 for t in training_times_both], "inference time": [t.mid for t in inference_times_both], "inference time q1": [t.q1 for t in inference_times_both], "inference time q3": [t.q3 for t in inference_times_both], "is plain text": [True] * half_n_rows + [False] * half_n_rows, "accuracy": accuracies + accuracies_crypten, } ) self.df = self.df.sort_values(by="model") def get_args(): """Parses command line arguments""" parser = argparse.ArgumentParser(description="Benchmark Functions") parser.add_argument( "--path", "-p", type=str, required=False, default=None, help="path to save function benchmarks", ) parser.add_argument( "--only-functions", "-f", required=False, default=False, action="store_true", help="run only function benchmarks", ) parser.add_argument( "--world-size", "-w", type=int, required=False, default=1, help="world size for number of parties", ) parser.add_argument( "--device", "-d", required=False, default="cpu", help="the device to run the benchmarks", ) parser.add_argument( "--multi-gpu", "-mg", required=False, default=False, action="store_true", help="use different gpu for each party. Will override --device if selected", ) parser.add_argument( "--ttp", "-ttp", required=False, default=False, action="store_true", help="initialize a trusted third party (TTP) as beaver triples' provider, world_size should be greater than 2", ) parser.add_argument( "--advanced-models", required=False, default=False, action="store_true", help="run advanced model (resnet, transformer, etc.) benchmarks", ) args = parser.parse_args() return args def multiprocess_caller(args): """Runs multiparty benchmarks and prints/saves from source 0""" rank = comm.get().get_rank() if args.multi_gpu: assert ( args.world_size >= torch.cuda.device_count() ), f"Got {args.world_size} parties, but only {torch.cuda.device_count()} GPUs found" device = torch.device(f"cuda:{rank}") else: device = torch.device(args.device) benchmarks = [ FuncBenchmarks(device=device), ModelBenchmarks(device=device, advanced_models=args.advanced_models), ] if args.only_functions: benchmarks = [FuncBenchmarks(device=device)] for benchmark in benchmarks: benchmark.run() rank = comm.get().get_rank() if rank == 0: pd.set_option("display.precision", 3) print(benchmark) if args.path: benchmark.save(args.path) def main(): """Runs benchmarks and saves if path is provided""" crypten.init() args = get_args() device = torch.device(args.device) if not hasattr(crypten.nn.Module, "to") or not hasattr(crypten.mpc.MPCTensor, "to"): if device.type == "cuda": print( "GPU computation is not supported for this version of CrypTen, benchmark will be skipped" ) return benchmarks = [ FuncBenchmarks(device=device), ModelBenchmarks(device=device, advanced_models=args.advanced_models), ] if args.only_functions: benchmarks = [FuncBenchmarks(device=device)] if args.world_size > 1: if args.ttp: crypten.mpc.set_default_provider(crypten.mpc.provider.TrustedThirdParty) launcher = multiprocess_launcher.MultiProcessLauncher( args.world_size, multiprocess_caller, fn_args=args ) launcher.start() launcher.join() launcher.terminate() else: pd.set_option("display.precision", 3) for benchmark in benchmarks: benchmark.run() print(benchmark) if args.path: benchmark.save(args.path) if __name__ == "__main__": main()
CrypTen-main
benchmarks/benchmark.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Contains models used for benchmarking """ from dataclasses import dataclass from typing import Any import crypten import torch import torch.nn as nn from torchvision import models try: from . import data except ImportError: # direct import if relative fails import data N_FEATURES = 20 @dataclass class Model: name: str plain: torch.nn.Module crypten: crypten.nn.Module # must contains x, y, x_test, y_test attributes data: Any epochs: int lr: float loss: str advanced: bool class LogisticRegression(torch.nn.Module): def __init__(self, n_features=N_FEATURES): super().__init__() self.linear = torch.nn.Linear(n_features, 1) def forward(self, x): return torch.sigmoid(self.linear(x)) class LogisticRegressionCrypTen(crypten.nn.Module): def __init__(self, n_features=N_FEATURES): super().__init__() self.linear = crypten.nn.Linear(n_features, 1) def forward(self, x): return self.linear(x).sigmoid() class FeedForward(torch.nn.Module): def __init__(self, n_features=N_FEATURES): super().__init__() self.linear1 = torch.nn.Linear(n_features, n_features // 2) self.linear2 = torch.nn.Linear(n_features // 2, n_features // 4) self.linear3 = torch.nn.Linear(n_features // 4, 1) def forward(self, x): out = torch.relu(self.linear1(x)) out = torch.relu(self.linear2(out)) out = torch.sigmoid(self.linear3(out)) return out class FeedForwardCrypTen(crypten.nn.Module): def __init__(self, n_features=N_FEATURES): super().__init__() self.linear1 = crypten.nn.Linear(n_features, n_features // 2) self.linear2 = crypten.nn.Linear(n_features // 2, n_features // 4) self.linear3 = crypten.nn.Linear(n_features // 4, 1) def forward(self, x): out = (self.linear1(x)).relu() out = (self.linear2(out)).relu() out = (self.linear3(out)).sigmoid() return out class ResNet(nn.Module): def __init__(self, n_layers=18): super().__init__() assert n_layers in [18, 34, 50] self.model = getattr(models, "resnet{}".format(n_layers))(pretrained=True) def forward(self, x): return self.model(x) class ResNetCrypTen(crypten.nn.Module): def __init__(self, n_layers=18): super().__init__() assert n_layers in [18, 34, 50] model = getattr(models, "resnet{}".format(n_layers))(pretrained=True) dummy_input = torch.rand([1, 3, 224, 224]) self.model = crypten.nn.from_pytorch(model, dummy_input) def forward(self, x): return self.model(x) MODELS = [ Model( name="logistic regression", plain=LogisticRegression(), crypten=LogisticRegressionCrypTen(), data=data.GaussianClusters(), epochs=50, lr=0.1, loss="BCELoss", advanced=False, ), Model( name="feedforward neural network", plain=FeedForward(), crypten=FeedForwardCrypTen(), data=data.GaussianClusters(), epochs=50, lr=0.1, loss="BCELoss", advanced=False, ), Model( name="resnet18", plain=ResNet(n_layers=18), crypten=ResNetCrypTen(n_layers=18), data=data.Images(), epochs=2, lr=0.1, loss="CrossEntropyLoss", advanced=True, ), Model( name="resnet34", plain=ResNet(n_layers=34), crypten=ResNetCrypTen(n_layers=34), data=data.Images(), epochs=2, lr=0.1, loss="CrossEntropyLoss", advanced=True, ), Model( name="resnet50", plain=ResNet(n_layers=50), crypten=ResNetCrypTen(n_layers=50), data=data.Images(), epochs=2, lr=0.1, loss="CrossEntropyLoss", advanced=True, ), ]
CrypTen-main
benchmarks/models.py
CrypTen-main
benchmarks/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ A script to run historical benchmarks. - writes monthly data to 'dash_app/data/` - example: 'dash_app/data/2019-10-26/func_benchmarks.csv' - example: 'dash_app/data/2019-10-26/model_benchmarks.csv' - overwrite option - script requires ability to 'git clone' To run: python run_historical_benchmarks.py # overwrite existing data directories python run_historical_benchmarks.py --overwrite True """ import argparse import datetime import os import shutil import subprocess from dateutil.relativedelta import relativedelta def parse_args(): """Parses command line arguments""" parser = argparse.ArgumentParser(description="Run Historical Benchmarks") parser.add_argument( "--overwrite", required=False, default=False, action="store_true", help="overwrite existing data directories", ) parser.add_argument( "--cuda-toolkit-version", required=False, default="10.1", help="build pytorch with the corresponding version of cuda-toolkit", ) args = parser.parse_args() return args def get_dates(day=26): """Generate dates to run benchmarks Returns: list of strings in year-month-day format. Example: ["2020-01-26", "2019-12-26"] """ dates = [] today = datetime.date.today() end = datetime.date(2019, 10, day) one_month = relativedelta(months=+1) if today.day >= 26: start = datetime.date(today.year, today.month, day) else: start = datetime.date(today.year, today.month, day) - one_month while start >= end: dates.append(start.strftime("%Y-%m-%d")) start -= one_month return dates args = parse_args() overwrite = args.overwrite cuda_version = "".join(args.cuda_toolkit_version.split(".")) dates = get_dates() PATH = os.getcwd() # clone subprocess.call( "cd /tmp && git clone https://github.com/facebookresearch/CrypTen.git", shell=True ) # create venv subprocess.call("cd /tmp && python3 -m venv .venv", shell=True) venv = "cd /tmp && . .venv/bin/activate && " # install PyTorch subprocess.call( f"{venv} pip3 install onnx==1.6.0 tensorboard pandas sklearn", shell=True ) stable_url = "https://download.pytorch.org/whl/torch_stable.html" pip_torch = f"pip install torch==1.5.1+cu{cuda_version} torchvision==0.6.1+cu{cuda_version} -f https://download.pytorch.org/whl/torch_stable.html" subprocess.call(f"{venv} {pip_torch} -f {stable_url}", shell=True) modes = {"1pc": "", "2pc": "--world-size=2"} for date in dates: path_exists = os.path.exists(f"dash_app/data/{date}/func_benchmarks.csv") if not overwrite and path_exists: continue # checkout closest version before date subprocess.call( f"cd /tmp/CrypTen && " + f"git checkout `git rev-list -n 1 --before='{date} 01:01' master`", shell=True, ) for mode, arg in modes.items(): subprocess.call(venv + "pip3 install CrypTen/.", shell=True) subprocess.call(f"echo Generating {date} Benchmarks for {mode}", shell=True) path = os.path.join(PATH, f"dash_app/data/{date}", mode) subprocess.call(f"mkdir -p {path}", shell=True) subprocess.call( venv + f"cd {PATH} && python3 benchmark.py -p '{path}' {arg}", shell=True ) subprocess.call( venv + f"cd {PATH} && python3 benchmark.py -p '{path}' -d 'cuda' {arg}", shell=True, ) # clean up shutil.rmtree("/tmp/.venv", ignore_errors=True) shutil.rmtree("/tmp/CrypTen", ignore_errors=True)
CrypTen-main
benchmarks/run_historical_benchmarks.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Profiler with snakeviz for probing inference / training call stack Run via Jupyter """ from benchmark import ModelBenchmarks # get_ipython().run_line_magic("load_ext", "snakeviz") model_benchmarks = ModelBenchmarks() # for logistic regression select 0 model = model_benchmarks.MODELS[1] print(model.name) model_crypten = model.crypten(model_benchmarks.n_features).encrypt() # profile training # get_ipython().run_cell_magic( # "snakeviz", "", "\nmodel_benchmarks.train_crypten(model_crypten)" # ) # profile inference x_enc = model_benchmarks.x_enc model_crypten.train = False # get_ipython().run_cell_magic("snakeviz", "", "\n\nmodel_crypten(x_enc)")
CrypTen-main
benchmarks/profiler.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Contains data used for training / testing model benchmarks """ import os from pathlib import Path import crypten import PIL import torch import torch.nn.functional as F from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from torchvision import transforms class GaussianClusters: """Generates Glussian clusters for binary classes""" def __init__(self, n_samples=5000, n_features=20): self.n_samples = n_samples self.n_features = n_features x, x_test, y, y_test = GaussianClusters.generate_data(n_samples, n_features) self.x, self.y = x, y self.x_test, self.y_test = x_test, y_test @staticmethod def generate_data(n_samples, n_features): """Generates Glussian clusters for binary classes Args: n_samples (int): number of samples n_features (int): number of features Returns: torch tensors with inputs and labels """ x, y = make_classification( n_samples=n_samples, n_features=n_features, # by default, 2 features are redundant n_informative=n_features - 2, n_classes=2, ) x = torch.tensor(x).float() y = torch.tensor(y).float().unsqueeze(-1) return train_test_split(x, y) class Images: def __init__(self): self.x = self.preprocess_image() # image net 1k classes class_id = 463 self.y = torch.tensor([class_id]).long() self.y_onehot = F.one_hot(self.y, 1000) self.x_test, self.y_test = self.x, self.y def preprocess_image(self): """Preprocesses sample image""" path = os.path.dirname(os.path.realpath(__file__)) filename = "dog.jpg" input_image = PIL.Image.open(Path(os.path.join(path, filename))) preprocess = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) return input_batch
CrypTen-main
benchmarks/data.py
CrypTen-main
benchmarks/dash_app/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pathlib import dash import dash_core_components as dcc import dash_html_components as html import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go from dash.dependencies import Input, Output from load_data import get_aggregated_data, get_available_dates from plotly.subplots import make_subplots external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # load data using relative data folder PATH = pathlib.Path(__file__).parent DATA_PATH = PATH.joinpath("data").resolve() available_dates = get_available_dates(DATA_PATH) subdirs = ["1pc", "2pc"] func_df, model_df = get_aggregated_data(DATA_PATH, subdirs) colors_discrete = px.colors.qualitative.Set2 template = "simple_white" # Since we're adding callbacks to elements that don't exist in the app.layout, # Dash will raise an exception to warn us that we might be # doing something wrong. # In this case, we're adding the elements through a callback, so we can ignore # the exception. app.config.suppress_callback_exceptions = True app.layout = html.Div( [dcc.Location(id="url", refresh=False), html.Div(id="page-content")] ) index_page = html.Div( children=[ html.Div( [ html.Div( [ html.Img( src=app.get_asset_url("crypten-icon.png"), id="plotly-image", style={ "height": "60px", "width": "auto", "margin-bottom": "25px", }, ) ], className="one-third column", ), html.Div( [ html.Div( [ html.H2("CrypTen", style={"margin-bottom": "0px"}), html.H4("Benchmarks", style={"margin-top": "0px"}), ] ) ], className="one-half column", id="title", ), html.Div( [ html.A( html.Button("Compare Dates", id="learn-more-button"), href="/compare", ) ], className="one-third column", id="button", ), ], id="header", className="row flex-display", style={"margin-bottom": "25px"}, ), dcc.Tabs( [ dcc.Tab(label="1 party", value="1pc"), dcc.Tab(label="2 party", value="2pc"), ], id="benchmark-tabs", value="1pc", ), html.Div( [ dcc.Dropdown( id="select_date", options=[ {"label": date, "value": date} for date in sorted(available_dates) ], value=sorted(available_dates)[-1], ), html.Div( [ html.H3("Functions"), dcc.Markdown( """To reproduce or view assumptions see [benchmarks]( https://github.com/facebookresearch/CrypTen/blob/master/benchmarks/benchmark.py#L68) """ ), html.H5("Runtimes"), dcc.Markdown( """ * function runtimes are averaged over 10 runs using a random tensor of size (100, 100). * `max` and `argmax` are excluded as they take considerably longer. * As of 02/25/2020, `max` / `argmax` take 3min 13s Β± 4.73s """, className="bullets", ), ] ), html.Div( [ html.Div( [dcc.Graph(id="func-runtime-crypten")], className="six columns", ), html.Div( [dcc.Graph(id="func-runtime-crypten-v-plain")], className="six columns", ), ], className="row", ), html.H5("Errors"), dcc.Markdown( """ * function errors are over the domain (0, 100] with step size 0.01 * exp, sin, and cos are over the domain (0, 10) with step size 0.001 """, className="bullets", ), html.Div( [ html.Div( [dcc.Graph(id="func-abs-error")], className="six columns" ), html.Div( [dcc.Graph(id="func-relative-error")], className="six columns", ), ], className="row", ), html.Div( [ html.H3("Models"), dcc.Markdown( """ For model details or to reproduce see [models](https://github.com/facebookresearch/CrypTen/blob/master/benchmarks/models.py) and [training details]( https://github.com/facebookresearch/CrypTen/blob/master/benchmarks/benchmark.py#L293). * trained on Gaussian clusters for binary classification * uses SGD with 5k samples, 20 features, over 20 epochs, and 0.1 learning rate * feedforward has three hidden layers with intermediary RELU and final sigmoid activations * note benchmarks run with world size 1 using CPython """, className="bullets", ), dcc.Dropdown( id="select_comparison", options=[ {"label": comp, "value": comp} for comp in [ "CPU vs GPU", "CPU vs Plaintext", "GPU vs Plaintext", ] ], value="CPU vs GPU", ), html.Div( [ html.Div( [dcc.Graph(id="model-training-time")], className="six columns", ), html.Div( [dcc.Graph(id="model-inference-time")], className="six columns", ), html.Div( [dcc.Graph(id="model-accuracy")], className="six columns", ), ], className="row", ), ] ), ] ), ], id="mainContainer", style={"display": "flex", "flex-direction": "column"}, ) comparison_layout = html.Div( [ html.Div(id="compare"), html.Div( [ html.Div( [ html.Img( src=app.get_asset_url("crypten-icon.png"), id="plotly-image", style={ "height": "60px", "width": "auto", "margin-bottom": "25px", }, ) ], className="one-third column", ), html.Div( [ html.Div( [ html.H2("CrypTen", style={"margin-bottom": "0px"}), html.H4("Benchmarks", style={"margin-top": "0px"}), ] ) ], className="one-half column", id="title", ), html.Div( [ html.A( html.Button("Benchmarks", id="learn-more-button"), href="/" ) ], className="one-third column", id="button", ), ], id="header", className="row flex-display", style={"margin-bottom": "25px"}, ), html.Div( [ html.H6("Previous Date"), dcc.Dropdown( id="start_date", options=[ {"label": date, "value": date} for date in available_dates ], value=sorted(available_dates)[0], ), html.H6("Current Date"), dcc.Dropdown( id="end_date", options=[ {"label": date, "value": date} for date in available_dates ], value=sorted(available_dates)[-1], ), html.Div( [ html.H3("Functions"), dcc.Dropdown( options=[ {"label": func, "value": func} for func in func_df["function"].unique() ], multi=True, value="sigmoid", id="funcs", ), dcc.Markdown( """ * function runtimes are averaged over 10 runs using a random tensor of size (100, 100). * `max` and `argmax` are excluded as they take considerably longer. * As of 02/25/2020, `max` / `argmax` take 3min 13s Β± 4.73s """, className="bullets", ), ] ), html.Div( [ html.Div( [dcc.Graph(id="runtime-diff")], className="six columns" ), html.Div([dcc.Graph(id="error-diff")], className="six columns"), ], className="row", ), html.Div( [ html.Br(), html.Br(), html.Br(), html.H4("Historical"), html.Div( [dcc.Graph(id="runtime-timeseries")], className="six columns", ), html.Div( [dcc.Graph(id="error-timeseries")], className="six columns" ), ], className="row", ), ] ), ] ) @app.callback( Output("func-runtime-crypten", "figure"), [Input("select_date", "value"), Input("benchmark-tabs", "value")], ) def update_runtime_crypten(selected_date, mode): try: filter_df = func_df[func_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] filter_df["runtime in seconds"] = filter_df["runtime crypten"] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="runtime in seconds", y="function", color="device", orientation="h", error_x="runtime crypten error plus", error_x_minus="runtime crypten error minus", color_discrete_sequence=colors_discrete, template=template, title="Crypten", barmode="group", ) fig.update_layout(height=500) return fig @app.callback( Output("func-runtime-crypten-v-plain", "figure"), [Input("select_date", "value"), Input("benchmark-tabs", "value")], ) def update_runtime_crypten_v_plain(selected_date, mode): try: filter_df = func_df[func_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="runtime gap", y="function", color="device", orientation="h", error_x="runtime gap error plus", error_x_minus="runtime gap error minus", color_discrete_sequence=colors_discrete, template=template, title="Crypten vs. Plaintext", barmode="group", ) fig.update_layout(height=500) return fig @app.callback( Output("func-abs-error", "figure"), [Input("select_date", "value"), Input("benchmark-tabs", "value")], ) def update_abs_error(selected_date, mode): try: filter_df = func_df[func_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="total abs error", text="total abs error", color="device", log_x=True, y="function", orientation="h", color_discrete_sequence=colors_discrete, template=template, title="Crypten Absolute Error", barmode="group", ) fig.update_traces(texttemplate="%{text:.1f}", textposition="outside") fig.update_layout(height=500) return fig @app.callback( Output("func-relative-error", "figure"), [Input("select_date", "value"), Input("benchmark-tabs", "value")], ) def update_abs_error(selected_date, mode): try: filter_df = func_df[func_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="average relative error", text="average relative error", y="function", color="device", orientation="h", color_discrete_sequence=colors_discrete, template=template, title="Crypten Relative Error", barmode="group", ) fig.update_traces(texttemplate="%{text:%}", textposition="outside") fig.update_layout(height=500) return fig def process_comparison_options(filter_df, option): color = "type" if option == "CPU vs Plaintext": filter_df = filter_df[filter_df["device"] == "cpu"] filter_df["type"] = np.where( filter_df["is plain text"], "Plain Text", "CrypTen" ) elif option == "GPU vs Plaintext": filter_df = filter_df[filter_df["device"] == "gpu"] if not filter_df.empty: filter_df["type"] = np.where( filter_df["is plain text"], "Plain Text", "CrypTen" ) elif option == "CPU vs GPU": filter_df = filter_df[filter_df["is plain text"] is False] color = "device" return filter_df, color def render_emtpy_figure(): return { "layout": { "xaxis": {"visible": False}, "yaxis": {"visible": False}, "annotations": [ { "text": "No matching data found", "xref": "paper", "yref": "paper", "showarrow": False, "font": {"size": 28}, } ], } } @app.callback( Output("model-training-time", "figure"), [ Input("select_date", "value"), Input("benchmark-tabs", "value"), Input("select_comparison", "value"), ], ) def update_training_time(selected_date, mode, comp_opt): try: filter_df = model_df[model_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] filter_df, color = process_comparison_options(filter_df, comp_opt) except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="seconds per epoch", text="seconds per epoch", y="model", color=color, orientation="h", barmode="group", color_discrete_sequence=colors_discrete, template=template, title="Model Training Time", ) fig.update_layout(xaxis={"range": [0, filter_df["seconds per epoch"].max() * 1.1]}) fig.update_traces(texttemplate="%{text:.2f}", textposition="outside") return fig @app.callback( Output("model-inference-time", "figure"), [ Input("select_date", "value"), Input("benchmark-tabs", "value"), Input("select_comparison", "value"), ], ) def update_training_time(selected_date, mode, comp_opt): try: filter_df = model_df[model_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] filter_df, color = process_comparison_options(filter_df, comp_opt) except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = px.bar( filter_df, x="inference time", text="inference time", y="model", color=color, orientation="h", barmode="group", color_discrete_sequence=colors_discrete, template=template, title="Model Inference Time", ) fig.update_layout( xaxis={"range": [0, filter_df["inference time"].max() * 1.1]}, xaxis_title="inference time in seconds", ) fig.update_traces(texttemplate="%{text:.2f}", textposition="outside") return fig @app.callback( Output("model-accuracy", "figure"), [ Input("select_date", "value"), Input("benchmark-tabs", "value"), Input("select_comparison", "value"), ], ) def update_model_accuracy(selected_date, mode, comp_opt): try: filter_df = model_df[model_df["mode"] == mode] filter_df = filter_df[filter_df["date"] == selected_date] filter_df, color = process_comparison_options(filter_df, comp_opt) except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() return render_emtpy_figure() fig = px.bar( filter_df, x="accuracy", text="accuracy", y="model", color=color, orientation="h", barmode="group", color_discrete_sequence=colors_discrete, template=template, title="Model Accuracy", ) fig.update_layout(xaxis={"range": [0, 1.0]}) fig.update_traces(texttemplate="%{text:%}", textposition="outside") return fig @app.callback( Output("runtime-diff", "figure"), [Input("start_date", "value"), Input("end_date", "value"), Input("funcs", "value")], ) def update_runtime_diff(start_date, end_date, funcs): if type(funcs) is str: funcs = [funcs] try: filter_df = func_df[func_df["mode"] == "1pc"] func_df_cpu = filter_df[filter_df["device"] == "cpu"] start_df = func_df_cpu[func_df_cpu["date"] == start_date] end_df = func_df_cpu[func_df_cpu["date"] == end_date] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = make_subplots( rows=len(funcs), cols=1, specs=[[{"type": "domain"}] for _ in range(len(funcs))] ) for i, func in enumerate(funcs): runtime = end_df[end_df["function"] == func]["runtime crypten"] runtime_prev = start_df[start_df["function"] == func]["runtime crypten"] func_text = func.capitalize() fig.add_trace( go.Indicator( mode="number+delta", value=float(runtime), title={ "text": f"{func_text}<br><span style='font-size:0.8em;color:gray'>" + "runtime in seconds</span><br>" }, delta={ "reference": float(runtime_prev), "relative": True, "increasing": {"color": "#ff4236"}, "decreasing": {"color": "#008000"}, }, ), row=i + 1, col=1, ) fig.update_layout(height=300 * len(funcs)) return fig @app.callback( Output("error-diff", "figure"), [Input("start_date", "value"), Input("end_date", "value"), Input("funcs", "value")], ) def update_error_diff(start_date, end_date, funcs): if type(funcs) is str: funcs = [funcs] try: filter_df = func_df[func_df["mode"] == "1pc"] func_df_cpu = filter_df[filter_df["device"] == "cpu"] start_df = func_df_cpu[func_df_cpu["date"] == start_date] end_df = func_df_cpu[func_df_cpu["date"] == end_date] except KeyError: filter_df = pd.DataFrame() if filter_df.empty: return render_emtpy_figure() fig = make_subplots( rows=len(funcs), cols=1, specs=[[{"type": "domain"}] for _ in range(len(funcs))] ) for i, func in enumerate(funcs): error = end_df[end_df["function"] == func]["total abs error"] error_prev = start_df[start_df["function"] == func]["total abs error"] func_text = func.capitalize() fig.add_trace( go.Indicator( mode="number+delta", value=float(error), title={ "text": f"{func_text}<br><span style='font-size:0.8em;color:gray'>" + "total abs error</span><br>" }, delta={ "reference": float(error_prev), "relative": True, "increasing": {"color": "#ff4236"}, "decreasing": {"color": "#008000"}, }, ), row=i + 1, col=1, ) fig.update_layout(height=300 * len(funcs)) return fig @app.callback(Output("runtime-timeseries", "figure"), [Input("funcs", "value")]) def update_runtime_timeseries(funcs): if type(funcs) is str: funcs = [funcs] try: filtered_df = func_df[func_df["function"].isin(funcs)] filtered_df.sort_values("date", inplace=True) except KeyError: return render_emtpy_figure() fig = px.line( filtered_df, x="date", y="runtime crypten", template=template, color="function" ) return fig @app.callback(Output("error-timeseries", "figure"), [Input("funcs", "value")]) def update_error_timeseries(funcs): if type(funcs) is str: funcs = [funcs] try: filtered_df = func_df[func_df["function"].isin(funcs)] filtered_df.sort_values("date", inplace=True) except KeyError: return render_emtpy_figure() fig = px.line( filtered_df, x="date", y="total abs error", template=template, color="function" ) return fig @app.callback( dash.dependencies.Output("page-content", "children"), [dash.dependencies.Input("url", "pathname")], ) def display_page(pathname): """Routes to page based on URL""" if pathname == "/compare": return comparison_layout else: return index_page if __name__ == "__main__": app.run_server(debug=True)
CrypTen-main
benchmarks/dash_app/app.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import pandas as pd def get_aggregated_data(base_dir, subdirs): """Aggregate dataframe for model and func benchmarks assumining directory is structured as DATA_PATH |_2020-02-20 |_subdir1 |_func_benchmarks.csv |_model_benchmarks.csv |_func_benchmarks_cuda.csv (optional) |_model_benchmarks_cuda.csv (optional) |_subdir2 ... Args: base_dir (pathlib.path): path containing month subdirectories subdirs (list): a list of all subdirectories to aggreagate dataframes from Returns: tuple of pd.DataFrames containing func and model benchmarks with dates """ available_dates = get_available_dates(base_dir) func_df, model_df = pd.DataFrame(), pd.DataFrame() for subdir in subdirs: func_df_cpu, model_df_cpu = read_subdir(base_dir, available_dates, subdir) func_df_gpu, model_df_gpu = read_subdir( base_dir, available_dates, subdir, cuda=True ) tmp_func_df = pd.concat([func_df_cpu, func_df_gpu]) tmp_model_df = pd.concat([model_df_cpu, model_df_gpu]) tmp_func_df["mode"] = subdir tmp_model_df["mode"] = subdir func_df = func_df.append(tmp_func_df) model_df = model_df.append(tmp_model_df) return func_df, model_df def load_df(path, cuda=False): """Load dataframe for model and func benchmarks assumining directory is structured as path |_func_benchmarks.csv |_model_benchmarks.csv |_func_benchmarks_cuda.csv (optional) |_model_benchmarks_cuda.csv (optional) Args: path (str): path containing model and func benchmarks cuda (bool) : if set to true, read the corresponding func and model benchmarks for cuda Returns: tuple of pd.DataFrames containing func and model benchmarks with dates """ postfix = "_cuda" if cuda else "" func_path = os.path.join(path, f"func_benchmarks{postfix}.csv") model_path = os.path.join(path, f"model_benchmarks{postfix}.csv") func_df, model_df = pd.DataFrame(), pd.DataFrame() if os.path.exists(func_path): func_df = pd.read_csv(func_path) if os.path.exists(model_path): model_df = pd.read_csv(model_path) return func_df, model_df def read_subdir(base_dir, dates, subdir="", cuda=False): """Builds dataframe for model and func benchmarks assuming directory is structured as DATA_PATH |_2020-02-20 |_subdir |_func_benchmarks.csv |_model_benchmarks.csv |_func_benchmarks_cuda.csv (optional) |_model_benchmarks_cuda.csv (optional) Args: base_dir (pathlib.path): path containing month subdirectories dates (list of str): containing dates / subdirectories available subdir (str) : string indicating the name of the sub directory to read enchmarks from cuda (bool) : if set to true, read the corresponding func and model benchmarks for cuda Returns: tuple of pd.DataFrames containing func and model benchmarks with dates """ func_df, model_df = pd.DataFrame(), pd.DataFrame() device = "gpu" if cuda else "cpu" for date in dates: path = os.path.join(base_dir, date, subdir) tmp_func_df, tmp_model_df = load_df(path, cuda=cuda) set_metadata(tmp_func_df, date, device) set_metadata(tmp_model_df, date, device) func_df = func_df.append(tmp_func_df) model_df = model_df.append(tmp_model_df) if not func_df.empty: func_df = compute_runtime_gap(func_df) func_df = add_error_bars(func_df) return func_df, model_df def get_available_dates(data_dir): """Returns list of available dates in DATA_PATH directory""" available_dates = [] for sub_dir in os.listdir(data_dir): if os.path.isdir(os.path.join(data_dir, sub_dir)): available_dates.append(sub_dir) return available_dates def set_metadata(df, date, device): """Set the device and date attribute for the dataframe""" df["date"] = date df["device"] = device def compute_runtime_gap(func_df): """Computes runtime gap between CrypTen and Plain Text""" func_df["runtime gap"] = func_df["runtime crypten"] / func_df["runtime"] func_df["runtime gap Q1"] = func_df["runtime crypten Q1"] / func_df["runtime"] func_df["runtime gap Q3"] = func_df["runtime crypten Q3"] / func_df["runtime"] return func_df def add_error_bars(func_df): """Adds error bars for plotting based on Q1 and Q3""" columns = ["runtime crypten", "runtime gap"] for col in columns: func_df = calc_error_bar(func_df, col) return func_df def calc_error_bar(df, column_name): """Adds error plus and minus for plotting""" error_plus = df[column_name + " Q3"] - df[column_name] error_minus = df[column_name] - df[column_name + " Q1"] df[column_name + " error plus"] = error_plus df[column_name + " error minus"] = error_minus return df
CrypTen-main
benchmarks/dash_app/load_data.py
CrypTen-main
configs/__init__.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import subprocess import uuid from argparse import ArgumentParser, REMAINDER """ Wrapper to launch MPC scripts as multiple processes. """ def main(): args = parse_args() # set PyTorch distributed related environmental variables current_env = os.environ.copy() current_env["WORLD_SIZE"] = str(args.world_size) processes = [] # Use random file so multiple jobs can be run simultaneously INIT_METHOD = "file:///tmp/crypten-rendezvous-{}".format(uuid.uuid1()) for rank in range(0, args.world_size): # each process's rank current_env["RANK"] = str(rank) current_env["RENDEZVOUS"] = INIT_METHOD # spawn the processes cmd = [args.training_script] + args.training_script_args process = subprocess.Popen(cmd, env=current_env) processes.append(process) for process in processes: process.wait() if process.returncode != 0: raise subprocess.CalledProcessError( returncode=process.returncode, cmd=process.args ) def parse_args(): """ Helper function parsing the command line options """ parser = ArgumentParser( description="PyTorch distributed training launch " "helper utilty that will spawn up " "parties for MPC scripts" ) # Optional arguments for the launch helper parser.add_argument( "--world_size", type=int, default=1, help="The number of parties to launch." "Each party acts as its own process", ) # positional parser.add_argument( "training_script", type=str, help="The full path to the single GPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script", ) # rest from the training program parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() if __name__ == "__main__": main()
CrypTen-main
scripts/distributed_launcher.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This file is a tool to run MPC distributed training over AWS. To run distributed training, first multiple AWS instances needs to be created with a public AMI "Deep Learning AMI (Ubuntu) Version 24.0": $ aws ec2 run-instances \ --image-id ami-0ddba16a97b1dcda5 \ --count 2 \ --instance-type t2.micro \ --key-name fair-$USER \ --tag-specifications "ResourceType=instance,Tags=[{Key=fair-user,Value=$USER}]" Two EC2 instances will be created by the command line shown above. Assume the ids of the two instances created are i-068681e808235a851 and i-0d7ebacfe1e3f28eb. Next, pytorch and crypten must be properly installed on every instance. Then the following command lines can run the mpc_linear_svm example on the two EC2 instances created above: $ python3 crypten/scripts/aws_launcher.py \ --SSH_keys=/home/$USER/.aws/fair-$USER.pem \ --instances=i-038dd14b9383b9d79,i-08f057b9c03d4a916 \ --aux_files=crypten/examples/mpc_linear_svm/mpc_linear_svm.py \ crypten/examples/mpc_linear_svm/launcher.py \ --features 50 \ --examples 100 \ --epochs 50 \ --lr 0.5 \ --skip_plaintext If you want to train with AWS instances located at multiple regions, then you would need to provide ssh_key_file for each instance: $ python3 crypten/scripts/aws_launcher.py \ --regions=us-east-1,us-west-1 \ --SSH_keys=/home/$USER/.aws/east.pem,/home/$USER/.aws/west.pem \ --instances=i-038dd14b9383b9d79,i-08f057b9c03d4a916 \ --aux_files=crypten/examples/mpc_linear_svm/mpc_linear_svm.py \ crypten/examples/mpc_linear_svm/launcher.py \ --features 50 \ --examples 100 \ --epochs 50 \ --lr 0.5 \ --skip_plaintext """ import concurrent.futures import configparser import os import sys import time import uuid import warnings from argparse import ArgumentParser, REMAINDER from pathlib import Path import boto3 import paramiko def get_instances(ec2, instance_ids): instances = list( ec2.instances.filter(Filters=[{"Name": "instance-id", "Values": instance_ids}]) ) return instances def connect_to_instance(instance, keypath, username, http_proxy=None): print(f"Connecting to {instance.id}...") ip_address = instance.public_ip_address if http_proxy: # paramiko.ProxyCommand does not do string substitution for %h %p, # so 'nc --proxy-type http --proxy fwdproxy:8080 %h %p' would not work! proxy = paramiko.ProxyCommand( f"nc --proxy-type http --proxy {http_proxy} {ip_address} {22}" ) proxy.settimeout(300) client = paramiko.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) retries = 20 while retries > 0: try: client.connect( ip_address, username=username, key_filename=keypath, timeout=10, sock=proxy if http_proxy else None, ) print(f"Connected to {instance.id}") break except Exception as e: print(f"Exception: {e} Retrying...") retries -= 1 time.sleep(10) return client def add_prefix_each_line(prefix, str): lines = [f"{prefix}{line}" for line in str.split("\n")] return "\n".join(lines) def run_command(instance, client, cmd, environment=None, inputs=None): stdin, stdout, stderr = client.exec_command( cmd, get_pty=True, environment=environment ) if inputs: for inp in inputs: stdin.write(inp) def read_lines(fin, fout, line_head): line = "" while not fin.channel.exit_status_ready(): line += fin.read(1).decode("utf8") if line.endswith("\n"): print(f"{line_head}{line[:-1]}", file=fout) line = "" if line: # print what remains in line buffer, in case fout does not # end with '\n' print(f"{line_head}{line[:-1]}", file=fout) with concurrent.futures.ThreadPoolExecutor(max_workers=2) as printer: printer.submit(read_lines, stdout, sys.stdout, f"[{instance} STDOUT] ") printer.submit(read_lines, stderr, sys.stderr, f"[{instance} STDERR] ") def upload_file(instance_id, client, localpath, remotepath): ftp_client = client.open_sftp() print(f"Uploading `{localpath}` to {instance_id}...") ftp_client.put(localpath, remotepath) ftp_client.close() print(f"`{localpath}` uploaded to {instance_id}.") def main(): args = parse_args() cf = configparser.ConfigParser() cf.read(args.credentials) warnings.filterwarnings( "ignore", category=ResourceWarning, message="unclosed.*<ssl.SSLSocket.*>" ) regions = args.regions.split(",") instance_ids = args.instances.split(",") ssh_key_files = args.ssh_key_file.split(",") instances = [] if len(regions) > 1: print("Multiple regions detected") assert len(instance_ids) == len( ssh_key_files ), "{} instance ids are provided, but {} SSH keys found.".format( len(instance_ids), len(ssh_key_files) ) assert len(instance_ids) == len( regions ), "{} instance ids are provided, but {} regions found.".format( len(instance_ids), len(regions) ) for i, region in enumerate(regions): session = boto3.session.Session( aws_access_key_id=cf["default"]["aws_access_key_id"], aws_secret_access_key=cf["default"]["aws_secret_access_key"], region_name=region, ) ec2 = session.resource("ec2") instance = get_instances(ec2, [instance_ids[i]]) instances += instance else: session = boto3.session.Session( aws_access_key_id=cf["default"]["aws_access_key_id"], aws_secret_access_key=cf["default"]["aws_secret_access_key"], region_name=regions[0], ) ec2 = session.resource("ec2") instances = get_instances(ec2, instance_ids) assert ( len(ssh_key_files) == 1 ), "1 region is detected, but {} SSH keys found.".format(len(ssh_key_files)) ssh_key_files = [ssh_key_files[0] for _ in range(len(instances))] assert len(instance_ids) == len( instances ), "{} instance ids are provided, but {} found.".format( len(instance_ids), len(instances) ) # Only print the public IP addresses of the instances. # Then do nothing else and return. if args.only_show_instance_ips: for instance in instances: print(instance.public_ip_address) return world_size = len(instances) print(f"Running world size {world_size} with instances: {instances}") master_instance = instances[0] # Key: instance id; value: paramiko.SSHClient object. client_dict = {} for i, instance in enumerate(instances): client = connect_to_instance( instance, ssh_key_files[i], args.ssh_user, args.http_proxy ) client_dict[instance.id] = client assert os.path.exists( args.training_script ), f"File `{args.training_script}` does not exist" file_paths = args.aux_files.split(",") if args.aux_files else [] for local_path in file_paths: assert os.path.exists(local_path), f"File `{local_path}` does not exist" remote_dir = f"aws-launcher-tmp-{uuid.uuid1()}" script_basename = os.path.basename(args.training_script) remote_script = os.path.join(remote_dir, script_basename) # Upload files to all instances concurrently. with concurrent.futures.ThreadPoolExecutor(max_workers=8) as uploaders: for instance_id, client in client_dict.items(): run_command(instance_id, client, f"mkdir -p {remote_dir}") uploaders.submit( upload_file, instance_id, client, args.training_script, remote_script ) for local_path in file_paths: uploaders.submit( upload_file, instance_id, client, local_path, os.path.join(remote_dir, os.path.basename(local_path)), ) for instance_id, client in client_dict.items(): run_command(instance_id, client, f"chmod +x {remote_script}") run_command(instance_id, client, f"ls -al {remote_dir}") environment = { "WORLD_SIZE": str(world_size), "RENDEZVOUS": "env://", "MASTER_ADDR": master_instance.private_ip_address, "MASTER_PORT": str(args.master_port), } with concurrent.futures.ThreadPoolExecutor(max_workers=world_size) as executor: rank = 0 for instance_id, client in client_dict.items(): environment["RANK"] = str(rank) # TODO: Although paramiko.SSHClient.exec_command() can accept # an argument `environment`, it seems not to take effect in # practice. It might because "Servers may silently reject # some environment variables" according to paramiko document. # As a workaround, here all environment variables are explicitly # exported. environment_cmd = "; ".join( [f"export {key}={value}" for (key, value) in environment.items()] ) prepare_cmd = f"{args.prepare_cmd}; " if args.prepare_cmd else "" cmd = "{}; {} {} {} {}".format( environment_cmd, f"cd {remote_dir} ;", prepare_cmd, f"./{script_basename}", " ".join(args.training_script_args), ) print(f"Run command: {cmd}") executor.submit(run_command, instance_id, client, cmd, environment) rank += 1 # Cleanup temp dir. for instance_id, client in client_dict.items(): run_command(instance_id, client, f"rm -rf {remote_dir}") client.close() def parse_args(): """ Helper function parsing the command line options """ parser = ArgumentParser( description="PyTorch distributed training launch " "helper utilty that will spawn up " "parties for MPC scripts on AWS" ) parser.add_argument( "--credentials", type=str, default=f"{Path.home()}/.aws/credentials", help="Credentials used to access AWS", ) parser.add_argument( "--only_show_instance_ips", action="store_true", default=False, help="Only show public IPs of the given instances." "No other actions will be done", ) parser.add_argument("--regions", type=str, default="us-west-2", help="AWS Region") parser.add_argument( "--instances", type=str, required=True, help="The comma-separated ids of AWS instances", ) parser.add_argument( "--master_port", type=int, default=29500, help="The port used by master instance " "for distributed training", ) parser.add_argument( "--ssh_key_file", type=str, required=True, help="Path to the RSA private key file " "used for instance authentication", ) parser.add_argument( "--ssh_user", type=str, default="ubuntu", help="The username to ssh to AWS instance", ) parser.add_argument( "--http_proxy", type=str, default=None, help="If not none, use the http proxy specified " "(e.g., fwdproxy:8080) to ssh to AWS instance", ) parser.add_argument( "--aux_files", type=str, default=None, help="The comma-separated paths of additional files " " that need to be transferred to AWS instances. " "If more than one file needs to be transferred, " "the basename of any two files can not be the " "same.", ) parser.add_argument( "--prepare_cmd", type=str, default="", help="The command to run before running distribute " "training for prepare purpose, e.g., setup " "environment, extract data files, etc.", ) # positional parser.add_argument( "training_script", type=str, help="The full path to the single machine training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script", ) # rest from the training program parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() if __name__ == "__main__": main()
CrypTen-main
scripts/aws_launcher.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import os import torch from torchvision import datasets, transforms def _get_norm_mnist(dir, reduced=None, binary=False): """Downloads and normalizes mnist""" mnist_train = datasets.MNIST(dir, download=True, train=True) mnist_test = datasets.MNIST(dir, download=True, train=False) # compute normalization factors data_all = torch.cat([mnist_train.data, mnist_test.data]).float() data_mean, data_std = data_all.mean(), data_all.std() tensor_mean, tensor_std = data_mean.unsqueeze(0), data_std.unsqueeze(0) # normalize mnist_train_norm = transforms.functional.normalize( mnist_train.data.float(), tensor_mean, tensor_std ) mnist_test_norm = transforms.functional.normalize( mnist_test.data.float(), tensor_mean, tensor_std ) # change all nonzero labels to 1 if binary classification required if binary: mnist_train.targets[mnist_train.targets != 0] = 1 mnist_test.targets[mnist_test.targets != 0] = 1 # create a reduced dataset if required if reduced is not None: mnist_norm = (mnist_train_norm[:reduced], mnist_test_norm[:reduced]) mnist_labels = (mnist_train.targets[:reduced], mnist_test.targets[:reduced]) else: mnist_norm = (mnist_train_norm, mnist_test_norm) mnist_labels = (mnist_train.targets, mnist_test.targets) return mnist_norm, mnist_labels def split_features( split=0.5, dir="/tmp", party1="alice", party2="bob", reduced=None, binary=False ): """Splits features between Party 1 and Party 2""" mnist_norm, mnist_labels = _get_norm_mnist(dir, reduced, binary) mnist_train_norm, mnist_test_norm = mnist_norm mnist_train_labels, mnist_test_labels = mnist_labels num_features = mnist_train_norm.shape[1] split_point = int(split * num_features) party1_train = mnist_train_norm[:, :, :split_point] party2_train = mnist_train_norm[:, :, split_point:] party1_test = mnist_test_norm[:, :, :split_point] party2_test = mnist_test_norm[:, :, split_point:] torch.save(party1_train, os.path.join(dir, party1 + "_train.pth")) torch.save(party2_train, os.path.join(dir, party2 + "_train.pth")) torch.save(party1_test, os.path.join(dir, party1 + "_test.pth")) torch.save(party2_test, os.path.join(dir, party2 + "_test.pth")) torch.save(mnist_train_labels, os.path.join(dir, "train_labels.pth")) torch.save(mnist_test_labels, os.path.join(dir, "test_labels.pth")) def split_observations( split=0.5, dir="/tmp", party1="alice", party2="bob", reduced=None, binary=False ): """Splits observations between Party 1 and Party 2""" mnist_norm, mnist_labels = _get_norm_mnist(dir, reduced, binary) mnist_train_norm, mnist_test_norm = mnist_norm mnist_train_labels, mnist_test_labels = mnist_labels num_train_obs = mnist_train_norm.shape[0] obs_train_split = int(split * num_train_obs) num_test_obs = mnist_test_norm.shape[0] obs_test_split = int(split * num_test_obs) party1_train = mnist_train_norm[:obs_train_split, :, :] party2_train = mnist_train_norm[obs_train_split:, :, :] party1_test = mnist_test_norm[:obs_test_split, :, :] party2_test = mnist_test_norm[obs_test_split:, :, :] torch.save(party1_train, os.path.join(dir, party1 + "_train.pth")) torch.save(party2_train, os.path.join(dir, party2 + "_train.pth")) torch.save(party1_test, os.path.join(dir, party1 + "_test.pth")) torch.save(party2_test, os.path.join(dir, party2 + "_test.pth")) party1_train_labels = mnist_train_labels[:obs_train_split] party1_test_labels = mnist_test_labels[:obs_test_split] party2_train_labels = mnist_train_labels[obs_train_split:] party2_test_labels = mnist_test_labels[obs_test_split:] torch.save(party1_train_labels, os.path.join(dir, party1 + "_train_labels.pth")) torch.save(party1_test_labels, os.path.join(dir, party1 + "_test_labels.pth")) torch.save(party2_train_labels, os.path.join(dir, party2 + "_train_labels.pth")) torch.save(party2_test_labels, os.path.join(dir, party2 + "_test_labels.pth")) def split_features_v_labels( dir="/tmp", party1="alice", party2="bob", reduced=None, binary=False ): """Gives Party 1 features and Party 2 labels""" mnist_norm, mnist_labels = _get_norm_mnist(dir, reduced, binary) mnist_train_norm, mnist_test_norm = mnist_norm mnist_train_labels, mnist_test_labels = mnist_labels torch.save(mnist_train_norm, os.path.join(dir, party1 + "_train.pth")) torch.save(mnist_test_norm, os.path.join(dir, party1 + "_test.pth")) torch.save(mnist_train_labels, os.path.join(dir, party2 + "_train_labels.pth")) torch.save(mnist_test_labels, os.path.join(dir, party2 + "_test_labels.pth")) def split_train_v_test( dir="/tmp", party1="alice", party2="bob", reduced=None, binary=False ): """Gives Party 1 training data and Party 2 the test data""" mnist_norm, mnist_labels = _get_norm_mnist(dir, reduced, binary) mnist_train_norm, mnist_test_norm = mnist_norm mnist_train_labels, mnist_test_labels = mnist_labels torch.save(mnist_train_norm, os.path.join(dir, party1 + "_train.pth")) torch.save(mnist_test_norm, os.path.join(dir, party2 + "_test.pth")) torch.save(mnist_train_labels, os.path.join(dir, party1 + "_train_labels.pth")) torch.save(mnist_test_labels, os.path.join(dir, party2 + "_test_labels.pth")) def main(): parser = argparse.ArgumentParser("Split data for use in Tutorials") parser.add_argument( "--option", type=str, choices={"features", "data", "features_v_labels", "train_v_test"}, ) parser.add_argument("--ratio", type=float, default=0.72) parser.add_argument("--name_party1", type=str, default="alice") parser.add_argument("--name_party2", type=str, default="bob") parser.add_argument("--dest", type=str, default="/tmp") parser.add_argument("--reduced", type=int, default=None) parser.add_argument("--binary", action="store_true") args = parser.parse_args() if args.option == "features": split_features( split=args.ratio, dir=args.dest, party1=args.name_party1, party2=args.name_party2, reduced=args.reduced, binary=args.binary, ) elif args.option == "data": split_observations( split=args.ratio, dir=args.dest, party1=args.name_party1, party2=args.name_party2, reduced=args.reduced, binary=args.binary, ) elif args.option == "features_v_labels": split_features_v_labels( dir=args.dest, party1=args.name_party1, party2=args.name_party2, reduced=args.reduced, binary=args.binary, ) elif args.option == "train_v_test": split_train_v_test( dir=args.dest, party1=args.name_party1, party2=args.name_party2, reduced=args.reduced, binary=args.binary, ) else: raise ValueError("Invalid split option") if __name__ == "__main__": main()
CrypTen-main
tutorials/mnist_utils.py
#! /usr/bin/env python import sys if len(sys.argv) != 4: print 'Wrong number of arguments' print 'USAGE: ./compute_stats_helper.py $label_tsvfile $prediction_tsvfile $confidence' exit(1) label_filename = sys.argv[1] pred_filename = sys.argv[2] confidence = float(sys.argv[3]) # read label filename labels = {} id2labeler = {} labelers = set() with open(label_filename) as f: for i, line in enumerate(f): line = line.split('\t') relationid = line[0].lower().strip() is_correct = line[1].lower().strip() labeler = line[2].strip() id2labeler[relationid] = labeler if labeler not in labelers: labelers.add(labeler) if is_correct == 't': labels[relationid] = True elif is_correct == 'f': labels[relationid] = False # read predictions predictions = {} with open(pred_filename) as f: for i, line in enumerate(f): line = line.split('\t') relationid = line[0].lower().strip() expectation = float(line[1].strip()) predictions[relationid] = expectation # Evaluate number of true/false positives/negative true_positives_total = 0 true_negatives_total = 0 false_positives_total = 0 false_negatives_total = 0 # evaluate number of true/false positives/negatives per labeler labeler2FP = {} labeler2TP = {} labeler2FN = {} labeler2TN = {} for labeler in labelers: labeler2FP[labeler] = 0 labeler2TP[labeler] = 0 labeler2FN[labeler] = 0 labeler2TN[labeler] = 0 # Count for label_id in labels: # if the labeled mention is in the prediction set if label_id in predictions: if labels[label_id] and predictions[label_id] >= confidence: true_positives_total += 1 labeler2TP[id2labeler[label_id]] += 1 elif (not labels[label_id]) and predictions[label_id] >= confidence: false_positives_total += 1 labeler2FP[id2labeler[label_id]] += 1 elif labels[label_id] and not predictions[label_id] >= confidence: false_negatives_total += 1 labeler2FN[id2labeler[label_id]] += 1 else: true_negatives_total += 1 labeler2TN[id2labeler[label_id]] += 1 # if the labeled mention is not in the prediction set (was ruled out) else: if labels[label_id]: # was true but rejected false_negatives_total += 1 labeler2FN[id2labeler[label_id]] += 1 else: true_negatives_total += 1 labeler2TN[id2labeler[label_id]] += 1 # Print the total ones print '##### SUMMARY #####' print 'True positives:\t'+str(true_positives_total) print 'True negatives:\t'+str(true_negatives_total) print 'False positives:\t'+str(false_positives_total) print 'False negatives:\t'+str(false_negatives_total) print '\n' # compute precision, recall and F1 precision = float(true_positives_total)/float(true_positives_total+false_positives_total) recall = float(true_positives_total)/float(true_positives_total+false_negatives_total) F1_score = 2*precision*recall / (precision+recall) print 'Precision:\t'+str(precision) print 'Recall:\t'+str(recall) print 'F1 score:\t'+str(F1_score) print '\n' # Now do the same for every labeler for labeler in labelers: print '##### '+labeler+' #####' print 'True positives:\t'+str(labeler2TP[labeler]) print 'True negatives:\t'+str(labeler2TN[labeler]) print 'False positives:\t'+str(labeler2FP[labeler]) print 'False negatives:\t'+str(labeler2FN[labeler]) print '\n' # test for precision for robustness if labeler2TP[labeler] + labeler2FP[labeler] > 0: precision = float(labeler2TP[labeler])/float(labeler2TP[labeler]+labeler2FP[labeler]) else: precision = 'N/A (not enough examples)' # test for recall for robustness if labeler2TP[labeler] + labeler2FN[labeler] > 0: recall = float(labeler2TP[labeler])/float(labeler2TP[labeler]+labeler2FN[labeler]) else: recall = 'N/A (not enough examples)' # test for F1 for robustness if (labeler2TP[labeler] + labeler2FP[labeler] > 0) and (labeler2TP[labeler] + labeler2FN[labeler] > 0) and precision+recall > 0 : F1_score = 2*precision*recall / (precision+recall) else: F1_score = 'N/A (not enough examples)' print 'Precision:\t'+str(precision) print 'Recall:\t'+str(recall) print 'F1 score:\t'+str(F1_score) print '\n'
dd-genomics-master
results_log/compute_stats_helper.py
import ddext from ddext import SD def init(): ddext.input('doc_id', 'text') ddext.input('sent_id', 'int') ddext.input('words', 'text[]') ddext.input('lemmas', 'text[]') ddext.input('poses', 'text[]') ddext.input('ners', 'text[]') ddext.returns('doc_id', 'text') ddext.returns('sent_id', 'int') ddext.returns('wordidxs', 'int[]') ddext.returns('mention_id', 'text') ddext.returns('type', 'text') ddext.returns('entity', 'text') ddext.returns('words', 'text[]') ddext.returns('is_correct', 'boolean') def run(doc_id, sent_id, words, lemmas, poses, ners): # TODO: currently we match only gene symbols and not phrases; consider matching phrases. if 'genes' in SD: genes = SD['genes'] else: import os APP_HOME = os.environ['GDD_HOME'] all_names = set() dup_names = set() all_synonyms = {} dup_synonyms = set() en_words = set([x.strip().lower() for x in open('%s/onto/dicts/english_words.tsv' % APP_HOME)]) gene_english = set([x.strip().lower() for x in open('%s/onto/manual/gene_english.tsv' % APP_HOME)]) gene_bigrams = set([x.strip().lower() for x in open('%s/onto/manual/gene_bigrams.tsv' % APP_HOME)]) gene_noisy = set([x.strip().lower() for x in open('%s/onto/manual/gene_noisy.tsv' % APP_HOME)]) gene_exclude = set([x.strip().lower() for x in open('%s/onto/manual/gene_exclude.tsv' % APP_HOME)]) SD['english'] = en_words for line in open('%s/onto/data/genes.tsv' % APP_HOME): #plpy.info(line) name, synonyms, full_names = line.strip(' \r\n').split('\t') synonyms = set(x.strip() for x in synonyms.split('|')) synonyms.discard(name) synonyms.discard('') full_names = set(x.strip() for x in full_names.split('|')) if name in all_names: dup_names.add(name) else: all_names.add(name) for s in synonyms: if s in all_synonyms: # we assign the synonym to the first name dup_synonyms.add(s) else: all_synonyms[s] = name plpy.info('===== DUPLICATE GENE NAMES') plpy.info('\n'.join(sorted(dup_names))) plpy.info('===== DUPLICATE GENE SYNONYMS') plpy.info(sorted(dup_synonyms)) all_names -= gene_exclude all_synonyms = {s: n for s, n in all_synonyms.iteritems() if s not in all_names and s not in gene_exclude} genes = { 'names': all_names, 'synonyms': all_synonyms, 'names_lower': {x.lower(): x for x in all_names}, 'synonyms_lower': {x.lower(): y for x, y in all_synonyms.iteritems()}, 'exact_lower': set(x.lower() for x in gene_english | gene_bigrams | gene_noisy), } SD['genes'] = genes for i in xrange(len(words)): word = words[i] if len(word) == 1: continue iword = word.lower() match_type = None if word in genes['names']: match_type = 'NAME' entity = word elif word in genes['synonyms']: match_type = 'SYN' entity = genes['synonyms'][word] else: if iword in genes['exact_lower']: continue elif iword in genes['names_lower']: match_type = 'iNAME' entity = genes['names_lower'][iword] elif iword in genes['synonyms_lower']: match_type = 'iSYN' entity = genes['synonyms_lower'][iword] else: continue truth = True # a two-letter capital word if len(word) == 2 and word.isupper() and word.isalpha(): has_pub_date = 'DATE' in ners and 'NUMBER' in ners # is or right next to a person/organization word for j in xrange(max(0, i - 1), min(i + 2, len(words))): if has_pub_date and ners[j] in ('PERSON', 'ORGANIZATION'): truth = False break else: truth = None mid = '%s_%s_%d_1' % (doc_id, sent_id, i) yield doc_id, sent_id, [i], mid, match_type, entity, [word], truth
dd-genomics-master
xapp/code/gene_mentions.py
import ddext from ddext import SD def init(): ddext.input('doc_id', 'text') ddext.input('sent_id', 'int') ddext.input('words', 'text[]') ddext.input('lemmas', 'text[]') ddext.input('poses', 'text[]') ddext.input('ners', 'text[]') ddext.returns('doc_id', 'text') ddext.returns('sent_id', 'int') ddext.returns('wordidxs', 'int[]') ddext.returns('mention_id', 'text') ddext.returns('type', 'text') ddext.returns('entity', 'text') ddext.returns('words', 'text[]') ddext.returns('is_correct', 'boolean') def run(doc_id, sent_id, words, lemmas, poses, ners): if 'diseases' in SD: trie = SD['trie'] diseases = SD['diseases'] diseases_bad = SD['diseases_bad'] genes = SD['genes'] delim_re = SD['delim_re'] else: import os APP_HOME = os.environ['GDD_HOME'] import re diseases = {} all_diseases = [x.strip().split('\t', 1) for x in open('%s/onto/data/all_diseases.tsv' % APP_HOME)] diseases_en = set([x.strip() for x in open('%s/onto/data/all_diseases_en.tsv' % APP_HOME)]) diseases_en_good = set([x.strip() for x in open('%s/onto/manual/disease_en_good.tsv' % APP_HOME)]) diseases_bad = set([x.strip() for x in open('%s/onto/manual/disease_bad.tsv' % APP_HOME)]) SD['diseases_bad'] = diseases_bad diseases_exclude = diseases_bad | diseases_en - diseases_en_good delim_re = re.compile('[^\w-]+') # NOTE: this also removes apostrophe SD['delim_re'] = delim_re diseases_norm = {} trie = {} # special key '$' means terminal nodes for phrase, ids in all_diseases: if phrase in diseases_exclude: continue diseases[phrase] = ids phrase_norm = delim_re.sub(' ', phrase).strip() # print phrase_norm tokens = phrase_norm.split() node = trie for w in tokens: if w not in node: node[w] = {} node = node[w] if '$' not in node: node['$'] = [] node['$'].append((ids, phrase)) if phrase_norm not in diseases_norm: diseases_norm[phrase_norm] = ids else: diseases_norm[phrase_norm] = '|'.join(sorted(set(ids.split('|')) | set(diseases_norm[phrase_norm].split('|')))) SD['diseases'] = diseases SD['trie'] = trie genes = set() for line in open('%s/onto/data/genes.tsv' % APP_HOME): #plpy.info(line) name, synonyms, full_names = line.strip(' \r\n').split('\t') synonyms = set(synonyms.split('|')) genes.add(name.lower()) for s in synonyms: genes.add(s.lower()) SD['genes'] = genes # TODO: currently we do ignore-case exact match for single words; consider stemming. # TODO: currently we do exact phrase matches; consider emitting partial matches. for i in xrange(len(words)): word = words[i] iword = word.lower() # single-token mention if iword in diseases: truth = True mtype = 'ONE' # http://www.ncbi.nlm.nih.gov/pubmed/23271346 # SCs for Stem Cells # HFs for hair follicles if word[-1] == 's' and word[:-1].isupper(): truth = False mtype = 'PLURAL' elif iword in genes: truth = None mtype = 'GSYM' entity = iword mid = '%s_%s_%d_1' % (doc_id, sent_id, i) yield doc_id, sent_id, [i], mid, mtype, entity, [word], truth # multi-token mentions node = trie depth = 0 for j in xrange(i, len(words)): word = words[j] iword = word.lower() sword = delim_re.sub(' ', iword).strip() if not sword: if j == i: break continue if sword in node: node = node[sword] depth += 1 if '$' in node and depth > 1: for k, (ids, phrase) in enumerate(node['$']): if phrase in diseases_bad: continue entity = phrase mid = '%s_%s_%d_%d' % (doc_id, sent_id, i, j - i + 1) if len(node['$']) > 1: mid += '~' + str(k + 1) wordids = range(i, j + 1) yield doc_id, sent_id, wordids, mid, 'PHRASE', entity, words[i: j + 1], True else: break
dd-genomics-master
xapp/code/pheno_mentions.py
import ddext def init(): ddext.input('doc_id', 'text') ddext.input('sent_id', 'int') ddext.input('words', 'text[]') ddext.input('lemmas', 'text[]') ddext.input('poses', 'text[]') ddext.input('ners', 'text[]') ddext.input('dep_paths', 'text[]') ddext.input('dep_parents', 'int[]') ddext.input('wordidxs', 'int[]') ddext.input('relation_id', 'text') ddext.input('wordidxs_1', 'int[]') ddext.input('wordidxs_2', 'int[]') ddext.returns('doc_id', 'text') ddext.returns('relation_id', 'text') ddext.returns('feature', 'text') def run(doc_id, sent_id, words, lemmas, poses, ners, dep_paths, dep_parents, wordidxs, relation_id, wordidxs_1, wordidxs_2): try: import ddlib except: import os DD_HOME = os.environ['DEEPDIVE_HOME'] from sys import path path.append('%s/ddlib' % DD_HOME) import ddlib obj = dict() obj['lemma'] = [] obj['words'] = [] obj['ner'] = [] obj['pos'] = [] obj['dep_graph'] = [] for i in xrange(len(words)): obj['lemma'].append(lemmas[i]) obj['words'].append(words[i]) obj['ner'].append(ners[i]) obj['pos'].append(poses[i]) obj['dep_graph'].append( str(int(dep_parents[i])) + "\t" + dep_paths[i] + "\t" + str(i)) word_obj_list = ddlib.unpack_words( obj, lemma='lemma', pos='pos', ner='ner', words='words', dep_graph='dep_graph') gene_span = ddlib.get_span(wordidxs_1[0], len(wordidxs_1)) pheno_span = ddlib.get_span(wordidxs_2[0], len(wordidxs_2)) features = set() for feature in ddlib.get_generic_features_relation(word_obj_list, gene_span, pheno_span): features.add(feature) for feature in features: yield doc_id, relation_id, feature
dd-genomics-master
xapp/code/pair_features.py
import ddext from ddext import SD def init(): ddext.input('doc_id', 'text') ddext.input('sent_id_1', 'int') ddext.input('mention_id_1', 'text') ddext.input('wordidxs_1', 'int[]') ddext.input('words_1', 'text[]') ddext.input('entity_1', 'text') ddext.input('type_1', 'text') ddext.input('correct_1', 'boolean') ddext.input('sent_id_2', 'int') ddext.input('mention_id_2', 'text') ddext.input('wordidxs_2', 'int[]') ddext.input('words_2', 'text[]') ddext.input('entity_2', 'text') ddext.input('type_2', 'text') ddext.input('correct_2', 'boolean') ddext.returns('doc_id', 'text') ddext.returns('sent_id_1', 'int') ddext.returns('sent_id_2', 'int') ddext.returns('relation_id', 'text') ddext.returns('type', 'text') ddext.returns('mention_id_1', 'text') ddext.returns('mention_id_2', 'text') ddext.returns('wordidxs_1', 'int[]') ddext.returns('wordidxs_2', 'int[]') ddext.returns('words_1', 'text[]') ddext.returns('words_2', 'text[]') ddext.returns('entity_1', 'text') ddext.returns('entity_2', 'text') ddext.returns('is_correct', 'boolean') def run(doc_id, sent_id_1, mention_id_1, wordidxs_1, words_1, entity_1, mtype_1, correct_1, sent_id_2, mention_id_2, wordidxs_2, words_2, entity_2, mtype_2, correct_2): if 'pos_pairs' in SD: pos_pairs = SD['pos_pairs'] else: import os APP_HOME = os.environ['GDD_HOME'] pos_pairs = set() gpheno = [x.strip().split('\t') for x in open('%s/onto/data/hpo_phenotype_genes.tsv' % APP_HOME)] gdisease = [x.strip().split('\t') for x in open('%s/onto/data/hpo_disease_genes.tsv' % APP_HOME)] for pheno, gene in gpheno + gdisease: pos_pairs.add((gene, pheno)) SD['pos_pairs'] = pos_pairs rid = '%s_%s_g%s_p%s' % (doc_id, sent_id_1, '%d:%d' % (wordidxs_1[0], wordidxs_1[-1]), '%d:%d' % (wordidxs_2[0], wordidxs_2[-1]), ) truth = None if correct_1 and correct_2: gene = entity_1 for pheno in entity_2.split()[0].split('|'): if (gene, pheno) in pos_pairs: truth = True elif correct_1 is False or correct_2 is False: truth = False yield (doc_id, sent_id_1, sent_id_2, rid, None, mention_id_1, mention_id_2, wordidxs_1, wordidxs_2, words_1, words_2, entity_1, entity_2, truth )
dd-genomics-master
xapp/code/gene_pheno_pairs.py
import ddext def init(): ddext.input('doc_id', 'text') ddext.input('sent_id', 'int') ddext.input('words', 'text[]') ddext.input('lemmas', 'text[]') ddext.input('poses', 'text[]') ddext.input('ners', 'text[]') ddext.input('dep_paths', 'text[]') ddext.input('dep_parents', 'int[]') ddext.input('mention_id', 'text') ddext.input('wordidxs', 'int[]') ddext.returns('doc_id', 'text') ddext.returns('mention_id', 'text') ddext.returns('feature', 'text') def run(doc_id, sent_id, words, lemmas, poses, ners, dep_paths, dep_parents, mention_id, wordidxs): try: import ddlib except: import os DD_HOME = os.environ['DEEPDIVE_HOME'] from sys import path path.append('%s/ddlib' % DD_HOME) import ddlib def unpack_(begin_char_offsets, end_char_offsets, words, lemmas, poses, ners, dep_parents, dep_paths): wordobjs = [] for i in range(0, len(words)): wordobjs.append(ddlib.Word( begin_char_offset=None, end_char_offset=None, word=words[i], lemma=lemmas[i], pos=poses[i], ner='', # NER is noisy on medical docs dep_par=dep_parents[i], dep_label=dep_paths[i])) return wordobjs begin_char_offsets = None end_char_offsets = None sentence = unpack_(begin_char_offsets, end_char_offsets, words, lemmas, poses, ners, dep_parents, dep_paths) span = ddlib.Span(begin_word_id=wordidxs[0], length=len(wordidxs)) for feature in ddlib.get_generic_features_mention(sentence, span): yield doc_id, mention_id, feature
dd-genomics-master
xapp/code/mention_features.py
#!/usr/bin/env python import sys if len(sys.argv) != 2: print 'Wrong number of arguments' print 'USAGE: ./compute_stats_helper.py $label_tsvfile $prediction_tsvfile $confidence' exit(1) old_labels_fn = sys.argv[1] with open(old_labels_fn) as f: for i, line in enumerate(f): line = line.split('\t') doc_id = line[0].strip() section_id = line[1].strip() sentence_id = line[2].strip() gene_idx = line[3].strip().strip('{}') pheno_idx = line[4].strip().strip('{}') pheno_idx = pheno_idx.split(',') pheno_idx_form = '-'.join(pheno_idx) relation_id = [doc_id, section_id, sentence_id, gene_idx, doc_id, section_id, sentence_id, pheno_idx_form] relation_id = '_'.join(relation_id) is_correct = line[5].strip() labeler = line[6].split('_')[0] print relation_id+'\t'+is_correct+'\t'+labeler
dd-genomics-master
labeling/convert_old_gp_labels.py
#!/usr/bin/env python import json import sys import os.path # get the labeling version number version = 0 # in case the file doesn't exist if os.path.exists('version_labeling'): with open('version_labeling') as f: for i, line in enumerate(f): if i == 0: version = line[0].strip() else: print 'version_labeling file doesn\'t exist' print 'setting version to 0' if __name__ == "__main__": tags_file = sys.argv[1] labeler = sys.argv[2] with open(tags_file) as t: results = json.load(t) for key in results['by_key']: if 'is_correct' in results['by_key'][key]: rv = results['by_key'][key]['is_correct'] is_correct = None if rv == True: is_correct = 't' if rv == False: is_correct = 'f' print '%s\t%s\t%s\t%s' % (key, is_correct, labeler,version)
dd-genomics-master
labeling/extract_gene_labels_from_json.py
#! /usr/bin/env python import json import sys import os.path # get the labeling version number version = 0 # in case the file doesn't exist if os.path.exists('version_labeling'): with open('version_labeling') as f: for i, line in enumerate(f): if i == 0: version = line[0].strip() else: print 'version_labeling file doesn\'t exist' print 'setting version to 0' if __name__ == "__main__": tags_file = sys.argv[1] labeler = sys.argv[2] with open(tags_file) as t: results = json.load(t) for key in results['by_key']: if 'is_correct' in results['by_key'][key]: rv = results['by_key'][key]['is_correct'] type_value = None if u'Association' in results['by_key'][key] and results['by_key'][key]['Association'] == True: type_value = None rv = False elif u'Causation' in results['by_key'][key] and results['by_key'][key]['Causation']: type_value = 'causation' elif u'association' in results['by_key'][key] and results['by_key'][key]['association'] == True: type_value = None rv = False elif u'causation' in results['by_key'][key] and results['by_key'][key]['causation'] == True: type_value = 'causation' is_correct = None if rv == True: is_correct = 't' if rv == False: is_correct = 'f' if is_correct == 't': if type_value is not None: print '%s\t%s\t%s\t%s' % (key, is_correct, labeler, version) elif is_correct == 'f': print '%s\t%s\t%s\t%s' % (key, is_correct, labeler, version)
dd-genomics-master
labeling/extract_genepheno_causation_labels_from_json.py
#!/usr/bin/env python import json import sys import os.path # get the labeling version number version = 0 # in case the file doesn't exist if os.path.exists('version_labeling'): with open('version_labeling') as f: for i, line in enumerate(f): if i == 0: version = line[0].strip() else: print 'version_labeling file doesn\'t exist' print 'setting version to 0' if __name__ == "__main__": tags_file = sys.argv[1] labeler = sys.argv[2] with open(tags_file) as t: results = json.load(t) for key in results['by_key']: if 'is_correct' in results['by_key'][key]: rv = results['by_key'][key]['is_correct'] is_correct = None if rv == True: is_correct = 't' if rv == False: is_correct = 'f' print '%s\t%s\t%s\t%s' % (key, is_correct, labeler,version)
dd-genomics-master
labeling/extract_pheno_labels_from_json.py
#!/usr/bin/env python import sys if len(sys.argv) != 2: print 'Wrong number of arguments' print 'USAGE: ./compute_stats_helper.py $label_tsvfile $prediction_tsvfile $confidence' exit(1) old_labels_fn = sys.argv[1] with open(old_labels_fn) as f: for i, line in enumerate(f): line = line.split('\t') doc_id = line[0].strip() section_id = line[1].strip() sentence_id = line[2].strip() gene_idx = line[3].strip().strip('{}') pheno_idx = line[4].strip().strip('{}') pheno_idx = pheno_idx.split(',') pheno_idx_form = '-'.join(pheno_idx) relation_id = [doc_id, section_id, sentence_id, gene_idx, doc_id, section_id, sentence_id, pheno_idx_form] relation_id = '_'.join(relation_id) is_correct = line[5].strip() labeler = line[6].split('_')[0] print relation_id+'\t'+is_correct+'\t'+labeler
dd-genomics-master
labeling/convert_old_g_labels.py
#! /usr/bin/env python import json import sys import os.path # get the labeling version number version = 0 # in case the file doesn't exist if os.path.exists('version_labeling'): with open('version_labeling') as f: for i, line in enumerate(f): if i == 0: version = line[0].strip() else: print 'version_labeling file doesn\'t exist' print 'setting version to 0' if __name__ == "__main__": tags_file = sys.argv[1] labeler = sys.argv[2] with open(tags_file) as t: results = json.load(t) for key in results['by_key']: if 'is_correct' in results['by_key'][key]: rv = results['by_key'][key]['is_correct'] type_value = None if u'Causation' in results['by_key'][key] and results['by_key'][key]['Causation'] == True: type_value = None rv = False elif u'Association' in results['by_key'][key] and results['by_key'][key]['Association']: type_value = 'association' elif u'causation' in results['by_key'][key] and results['by_key'][key]['causation'] == True: type_value = None rv = False elif u'association' in results['by_key'][key] and results['by_key'][key]['association'] == True: type_value = 'association' is_correct = None if rv == True: is_correct = 't' if rv == False: is_correct = 'f' if is_correct == 't': if type_value is not None: print '%s\t%s\t%s\t%s' % (key, is_correct, labeler, version) elif is_correct == 'f': print '%s\t%s\t%s\t%s' % (key, is_correct, labeler, version)
dd-genomics-master
labeling/extract_genepheno_association_labels_from_json.py
#!/usr/bin/env python import extractor_util as util from collections import namedtuple import os import ddlib import config import sys import re parser = util.RowParser([ ('relation_id', 'text'), ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('gene_mention_id', 'text'), ('gene_wordidxs', 'int[]'), ('pheno_mention_id', 'text'), ('pheno_wordidxs', 'int[]'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]')]) fr = config.GENE_PHENO['F'] Feature = namedtuple('Feature', ['doc_id', 'section_id', 'relation_id', 'name']) bad_features = ['STARTS_WITH_CAPITAL_.*', 'NGRAM_1_\[to\]', 'NGRAM_1_\[a\]','NGRAM_1_\[and\]', 'NGRAM_1_\[in\]', 'IS_INVERTED', 'NGRAM_1_\[or\]', 'NGRAM_1_\[be\]', 'NGRAM_1_\[with\]', 'NGRAM_1_\[have\]', 'NER_SEQ_\[[O ]*\]$', 'W_NER_L_1_R_1_[\[\]O_]*$', 'LENGTHS_[0_1]', 'W_NER_L_[0-9]_R_[0-9]_[\[\] O_]*$', 'LENGTHS_\[[0-9]_[0-9]\]', 'NGRAM_2_\[have be\]', 'NGRAM_1_\[_\]', 'NGRAM_1_\[for\]', 'NGRAM_1_\[cause\]', 'KW_IND_\[cause\]', 'NGRAM_1_\[responsible\]', 'INV_KW_IND_\[inheritance\]', 'NGRAM_1_\[patient\]', 'KW_IND_\[mutation\]', 'NGRAM_2_\[cause of\]', 'NGRAM_1_\[result\]', 'NGRAM_2_\[result in\]', 'NGRAM_2_\[to cause\]', 'NER_SEQ_.*', 'NGRAM_1_\[of\]', 'NGRAM_2_\[as a\]', 'NGRAM_1_\[as\]', 'KW_IND_.*', 'IN_DICT_.*' ] inv_bad_features = [] for f in bad_features: inv_bad_features.append('INV_' + f) bad_features.extend(inv_bad_features) def create_ners_between(gene_wordidxs, pheno_wordidxs, ners): if gene_wordidxs[0] < pheno_wordidxs[0]: start = max(gene_wordidxs) + 1 end = min(pheno_wordidxs) - 1 else: start = max(pheno_wordidxs) + 1 end = min(gene_wordidxs) - 1 prefix = 'NERS_BETWEEN_' nonnull_ners = [] for i in xrange(start, end + 1): ner = ners[i] if ner != 'O': nonnull_ners.append('[' + ner + ']') rv = prefix + '_'.join(nonnull_ners) return [rv] non_alnum = re.compile('[\W_]+') def take_feature(feat): take = True for bad_feature_pattern in bad_features: # warning, match matches only from start of string if re.match(bad_feature_pattern, feat): take = False break return take def get_sublists(lst, min_len): for length in xrange(min_len, len(lst)): for i in xrange(len(lst) - length + 1): yield lst[i:i + length] def get_my_window_features(row, l, r, prefix): if r - l > 0: words = [row.words[i].lower() for i in xrange(l, r+1)] lemmas = [row.lemmas[i] for i in xrange(l, r+1)] #ners = [row.ners[i] for i in xrange(l, r+1)] for sublist in get_sublists(words, 2): yield prefix + 'WORD_[' + '_'.join(sublist) + ']' for sublist in get_sublists(lemmas, 2): yield prefix + 'LEMMA_[' + '_'.join(sublist) + ']' #for sublist in get_sublists(ners): # yield left + 'NER_[' + '_'.join(sublist) + ']' def get_features_around(row, wordidxs, prefix): l1 = max(0, min(wordidxs) - 4) r1 = max(0, min(wordidxs) - 1) for feat in get_my_window_features(row, l1, r1, prefix + 'L_'): yield feat l2 = min(len(row.words) - 1, max(wordidxs) + 1) r2 = min(len(row.words) - 1, max(wordidxs) + 4) for feat in get_my_window_features(row, l2, r2, prefix + 'R_'): yield feat def get_cross_features_in(row, wordidxs1, wordidxs2, prefix): if max(wordidxs1) <= min(wordidxs2): l_wordidxs = wordidxs1 r_wordidxs = wordidxs2 else: l_wordidxs = wordidxs2 r_wordidxs = wordidxs1 l = max(l_wordidxs) + 1 r = min(r_wordidxs) - 1 for i in xrange(l+1, r): words1 = [row.words[j].lower() for j in xrange(l, i)] lemmas1 = [row.lemmas[j] for j in xrange(l, i)] words2 = [row.words[j].lower() for j in xrange(i, r+1)] lemmas2 = [row.lemmas[j] for j in xrange(i, r+1)] for sublist1 in get_sublists(words1, 1): for sublist2 in get_sublists(words2, 1): yield prefix + 'WORD_[' + '_'.join(sublist1) + ']_[' + '_'.join(sublist2) + ']' for sublist1 in get_sublists(lemmas1, 1): for sublist2 in get_sublists(lemmas2, 1): yield prefix + 'LEMMA_[' + '_'.join(sublist1) + ']_[' + '_'.join(sublist2) + ']' def get_custom_features(row, dds): phrase = ' '.join(row.words) lemma_phrase = ' '.join(row.lemmas) global_sentence_patterns = fr['global-sent-words'] for p in global_sentence_patterns: if re.findall(p, phrase) or re.findall(p, lemma_phrase): yield 'GLOB_SENT_PATTERN_%s' % (non_alnum.sub('_', p)) for feat in get_features_around(row, row.gene_wordidxs, 'GENE_'): yield feat for feat in get_features_around(row, row.pheno_wordidxs, 'PHENO_'): yield feat # for feat in get_cross_features_in(row, row.gene_wordidxs, row.pheno_wordidxs, 'CROSS_'): # yield feat def get_features_for_candidate(row): """Extract features for candidate mention- both generic ones from ddlib & custom features""" features = [] f = Feature(doc_id=row.doc_id, section_id=row.section_id, relation_id=row.relation_id, name=None) dds = util.create_ddlib_sentence(row) # (1) GENERIC FEATURES from ddlib gene_span = ddlib.Span(begin_word_id=row.gene_wordidxs[0], length=len(row.gene_wordidxs)) pheno_span = ddlib.Span(begin_word_id=row.pheno_wordidxs[0], length=len(row.pheno_wordidxs)) for feat in ddlib.get_generic_features_relation(dds, gene_span, pheno_span): if take_feature(feat): features.append(f._replace(name=feat)) features.extend([f._replace(name=feat) for feat in get_custom_features(row, dds)]) # these seem to be hurting (?) # start_span = ddlib.Span(begin_word_id=0, length=4) # for feat in ddlib.get_generic_features_mention(dds, start_span, length_bin_size=2): # features.append(f._replace(name='START_SENT_%s' % feat)) # WITH these custom features, I get a little LESS precision and a little MORE recall (!) # features += [f._replace(name=feat) for feat in create_ners_between(row.gene_wordidxs, row.pheno_wordidxs, row.ners)] return features # Helper for loading in manually defined keywords onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) if __name__ == '__main__': ddlib.load_dictionary_map(fr['synonyms']) util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_candidate)
dd-genomics-master
code/genepheno_extract_features.py
#!/usr/bin/env python import extractor_util as util from collections import namedtuple import os import sys import ddlib import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('mention_id', 'text'), ('mention_wordidxs', 'int[]')]) OPTS = config.VARIANT['F'] def get_features_for_candidate(row): """Extract features for candidate mention- both generic ones from ddlib & custom features""" features = [] dds = util.create_ddlib_sentence(row) # (1) GENERIC FEATURES from ddlib span = ddlib.Span(begin_word_id=row.mention_wordidxs[0], length=len(row.mention_wordidxs)) features += [(row.doc_id, row.section_id, row.mention_id, feat) \ for feat in ddlib.get_generic_features_mention(dds, span)] # (2) Add the closest verb by raw distance if OPTS.get('closest-verb'): verb_idxs = [i for i,p in enumerate(row.poses) if p.startswith("VB")] if len(verb_idxs) > 0: dists = filter(lambda d : d[0] > 0, \ [(min([abs(i-j) for j in row.mention_wordidxs]), i) for i in verb_idxs]) if len(dists) > 0: verb = row.lemmas[min(dists)[1]] features.append((row.doc_id, row.section_id, row.mention_id, 'NEAREST_VERB_[%s]' % (verb,))) return features # Load in manually defined keywords onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) if __name__ == '__main__': # XXX TODO Johannes: let's look into keywords for variants, maybe # if OPTS.get('sentence-kws'): # ddlib.load_dictionary(onto_path('manual/pheno_sentence_keywords.tsv'), dict_id='pheno_kws') util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_candidate)
dd-genomics-master
code/variant_extract_features.py
import collections import extractor_util as util import data_util as dutil import dep_util as deps import random import re import sys # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('relation_id', 'text'), ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('gene_mention_id', 'text'), ('gene_name', 'text'), ('gene_wordidxs', 'int[]'), ('gene_is_correct', 'boolean'), ('pheno_mention_id', 'text'), ('pheno_entity', 'text'), ('pheno_wordidxs', 'int[]'), ('pheno_is_correct', 'boolean'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]')]) # This defines the output Relation object Relation = collections.namedtuple('Relation', [ 'dd_id', 'relation_id', 'doc_id', 'section_id', 'sent_id', 'gene_mention_id', 'gene_name', 'gene_wordidxs', 'pheno_mention_id', 'pheno_entity', 'pheno_wordidxs', 'is_correct', 'relation_supertype', 'relation_subtype']) HPO_DAG = dutil.read_hpo_dag() def replace_opts(opts, replaceList): ret = {} for name in opts: strings = opts[name] for (pattern, subst) in replaceList: if name.endswith('rgx'): subst = re.escape(subst) strings = [s.replace(pattern, subst) for s in strings] ret[name] = strings return ret def read_supervision(): """Reads genepheno supervision data (from charite).""" supervision_pairs = set() with open('%s/onto/manual/charite_supervision.tsv' % util.APP_HOME) as f: for line in f: hpo_id, gene_name = line.strip().split('\t') if hpo_id in HPO_DAG.edges: hpo_ids = [hpo_id] + [parent for parent in HPO_DAG.edges[hpo_id]] else: hpo_ids = [hpo_id] for h in hpo_ids: supervision_pairs.add((h, gene_name)) return supervision_pairs # count_g_or_p_false_none = 0 # count_adjacent_false_none = 0 CACHE = {} def gp_between(gene_wordidxs, pheno_wordidxs, ners): if gene_wordidxs[0] < pheno_wordidxs[0]: start = max(gene_wordidxs) + 1 end = min(pheno_wordidxs) - 1 else: start = max(pheno_wordidxs) + 1 end = min(gene_wordidxs) - 1 found_g = False found_p = False for i in xrange(start, end+1): ner = ners[i] if ner == 'NERGENE': found_g = True if ner == 'NERPHENO': found_p = True return found_g and found_p charite_pos = 0 between_neg = 0 def config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, \ lemma_phrase, between_phrase_lemmas, dep_dag, \ dep_path_between, gene_wordidxs, charite_pairs, charite_allowed, VALS, SR): global charite_pos global between_neg if SR.get('phrases-in-between'): opts = SR['phrases-in-between'] orig_opts = opts.copy() opts = replace_opts(opts, [('{{G}}', gene), ('{{P}}', pheno)]) for name, val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(between_phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: return r._replace(is_correct=val, relation_supertype='PHRASE_BETWEEN_%s' % name, relation_subtype=non_alnum.sub('_', match)) match = util.rgx_mult_search(between_phrase_lemmas, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: return r._replace(is_correct=val, relation_supertype='PHRASE_BETWEEN_%s' % name, relation_subtype=non_alnum.sub('_', match)) if SR.get('phrases-in-sent'): opts = SR['phrases-in-sent'] orig_opts = opts.copy() opts = replace_opts(opts, [('{{G}}', gene), ('{{P}}', pheno)]) for name, val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: return r._replace(is_correct=val, relation_supertype='PHRASE_%s' % name, relation_subtype=non_alnum.sub('_', match)) match = util.rgx_mult_search(lemma_phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: return r._replace(is_correct=val, relation_supertype='PHRASE_%s' % name, relation_subtype=non_alnum.sub('_', match)) if SR.get('primary-verb-modifiers') and dep_dag: opts = SR['primary-verb-modifiers'] if dep_path_between: verbs_between = [i for i in dep_path_between if row.poses[i].startswith("VB")] if len(verbs_between) > 0: for name, val in VALS: mod_words = [i for i, x in enumerate(row.lemmas) if x in opts[name]] mod_words += [i for i, x in enumerate(row.dep_paths) if x in opts['%s-dep-tag' % name]] d = dep_dag.path_len_sets(verbs_between, mod_words) if d and d < opts['max-dist'] + 1: subtype = 'ModWords: ' + ' '.join([str(m) for m in mod_words]) + ', VerbsBetween: ' + ' '.join([str(m) for m in verbs_between]) + ', d: ' + str(d) return r._replace(is_correct=val, relation_supertype='PRIMARY_VB_MOD_%s' % name, relation_subtype=non_alnum.sub('_', subtype)) if SR.get('dep-lemma-connectors') and dep_dag: opts = SR['dep-lemma-connectors'] for name, val in VALS: if dep_path_between: connectors = [i for i, x in enumerate(row.lemmas) \ if i in dep_path_between and x in opts[name]] if len(connectors) > 0: return r._replace(is_correct=val, relation_supertype='DEP_LEMMA_CONNECT_%s' % name, relation_subtype=non_alnum.sub('_', ' '.join([str(x) for x in connectors]))) if SR.get('dep-lemma-neighbors') and dep_dag: opts = SR['dep-lemma-neighbors'] for name, val in VALS: for entity in ['g', 'p']: lemmas = [i for i, x in enumerate(row.lemmas) if x in opts['%s-%s' % (name, entity)]] d = dep_dag.path_len_sets(gene_wordidxs, lemmas) if d and d < opts['max-dist'] + 1: subtype = ' '.join([str(l) for l in lemmas]) + ', d: ' + str(d) return r._replace(is_correct=val, relation_supertype='DEP_LEMMA_NB_%s_%s' % (name, entity), relation_subtype=non_alnum.sub('_', subtype)) if ('neg', False) in VALS: if gp_between(row.gene_wordidxs, row.pheno_wordidxs, row.ners): return r._replace(is_correct=False, relation_supertype='NEG_GP_BETWEEN') if charite_allowed: if SR.get('charite-all-pos-words'): opts = SR['charite-all-pos-words'] match = util.rgx_mult_search(phrase + ' ' + lemma_phrase, [], opts, [], opts, flags=re.I) if match and (pheno_entity, gene_name) in charite_pairs: if not gp_between(row.gene_wordidxs, row.pheno_wordidxs, row.ners): charite_pos += 1 return r._replace(is_correct=True, relation_supertype='CHARITE_SUP_WORDS', relation_subtype=non_alnum.sub('_', match)) else: return r._replace(is_correct=False, relation_supertype='CHARITE_NEG_GP_BETWEEN', relation_subtype=non_alnum.sub('_', match)) return None non_alnum = re.compile('[\W_]+') def create_supervised_relation(row, superv_diff, SR, HF, charite_pairs, charite_allowed): """ Given a Row object with a sentence and several gene and pheno objects, create and supervise a Relation output object for the ith gene and jth pheno objects Note: outputs a list for convenience Also includes an input for d = pos - neg supervision count, for neg supervision """ gene_mention_id = row.gene_mention_id gene_name = row.gene_name gene_wordidxs = row.gene_wordidxs gene_is_correct = row.gene_is_correct pheno_mention_id = row.pheno_mention_id pheno_entity = row.pheno_entity pheno_wordidxs = row.pheno_wordidxs pheno_is_correct = row.pheno_is_correct gene = row.gene_name pheno = ' '.join([row.words[i] for i in row.pheno_wordidxs]) sv_synonyms = SR['sv_synonyms'] phrase = ' '.join(row.words) lemma_phrase = ' '.join(row.lemmas) b = sorted([gene_wordidxs[0], gene_wordidxs[-1], pheno_wordidxs[0], pheno_wordidxs[-1]])[1:-1] assert b[0] + 1 < len(row.words), str((b[0] + 1, len(row.words), row.doc_id, row.section_id, row.sent_id, str(row.words))) assert b[1] < len(row.words), str((b[1], len(row.words), row.doc_id, row.section_id, row.sent_id, str(row.words))) between_phrase = ' '.join(row.words[i] for i in range(b[0] + 1, b[1])) between_phrase_lemmas = ' '.join(row.lemmas[i] for i in range(b[0] + 1, b[1])) # Create a dependencies DAG for the sentence dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words, max_path_len=HF['max-dep-path-dist']) relation_id = '%s_%s' % (gene_mention_id, pheno_mention_id) r = Relation(None, relation_id, row.doc_id, row.section_id, row.sent_id, gene_mention_id, gene_name, \ gene_wordidxs, pheno_mention_id, pheno_entity, pheno_wordidxs, None, None, None) path_len_sets = dep_dag.path_len_sets(gene_wordidxs, pheno_wordidxs) if not path_len_sets: if SR.get('bad-dep-paths'): return r._replace(is_correct=False, relation_supertype='BAD_OR_NO_DEP_PATH') else: return None dep_path_between = frozenset(dep_dag.min_path_sets(gene_wordidxs, pheno_wordidxs)) if dep_dag else None # distant supervision rules & hyperparameters # NOTE: see config.py for all documentation & values # global count_g_or_p_false_none # global count_adjacent_false_none if SR.get('g-or-p-false'): opts = SR['g-or-p-false'] # The following line looks like it was written by a prosimian, but it is actually correct. # Do not mess with the logic unless you know what you're doing. # (Consider that Boolean variables can and will take the value ``None'' in this language.) """The above comment might be necessary for a Eukaryota, otherwise hopefully the below is self-explanatory""" if gene_is_correct == False or pheno_is_correct == False: if random.random() < opts['diff'] * superv_diff or random.random() < opts['rand']: return r._replace(is_correct=False, relation_supertype='G_ANDOR_P_FALSE', relation_subtype='gene_is_correct: %s, pheno_is_correct: %s' % (gene_is_correct, pheno_is_correct)) else: # count_g_or_p_false_none += 1 return None if SR.get('adjacent-false'): if re.search(r'[a-z]{3,}', between_phrase, flags=re.I) is None: if random.random() < 0.5 * superv_diff or random.random() < 0.01: st = non_alnum.sub('_', between_phrase) return r._replace(is_correct=False, relation_supertype='G_P_ADJACENT', relation_subtype=st) else: # count_adjacent_false_none += 1 return None gene_name = row.gene_name VALS = [('neg', False)] rv = config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, \ lemma_phrase, between_phrase_lemmas, dep_dag, \ dep_path_between, gene_wordidxs, charite_pairs, charite_allowed, VALS, SR) if rv is not None: return rv VALS = [('pos', True)] rv = config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, \ lemma_phrase, between_phrase_lemmas, dep_dag, \ dep_path_between, gene_wordidxs, charite_pairs, charite_allowed, VALS, SR) if rv is not None: return rv # Return GP relation object return r def supervise(supervision_rules, hard_filters, charite_allowed): # print >> sys.stderr, supervision_rules # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... pos_count = 0 neg_count = 0 # load in static data CACHE['example-trees'] = {} if charite_allowed: CHARITE_PAIRS = read_supervision() else: CHARITE_PAIRS = [] for line in sys.stdin: row = parser.parse_tsv_row(line) relation = create_supervised_relation(row, superv_diff=pos_count - neg_count, SR=supervision_rules, HF=hard_filters, charite_pairs=CHARITE_PAIRS, charite_allowed=charite_allowed) if relation: if relation.is_correct == True: pos_count += 1 elif relation.is_correct == False: neg_count += 1 util.print_tsv_output(relation) # sys.stderr.write('count_g_or_p_false_none: %s\n' % count_g_or_p_false_none) # sys.stderr.write('count_adjacent_false_none: %s\n' % count_adjacent_false_none)
dd-genomics-master
code/genepheno_supervision_util.py
# -*- coding: utf-8 -*- # CONFIG # The master configuration file for candidate extraction, distant supervision and feature # extraction hyperparameters / configurations import sys import copy if sys.version_info < (2, 7): assert False, "Need Python version 2.7 at least" BOOL_VALS = [('neg', False), ('pos', True)] GENE_ACRONYMS = { 'vals' : BOOL_VALS, # # Features 'F' : { }, 'HF' : {}, 'SR' : { 'levenshtein_cutoff' : 0.2 } } NON_GENE_ACRONYMS = { 'vals' : BOOL_VALS, # # Features 'F' : { }, 'HF' : {}, 'SR' : { 'levenshtein_cutoff' : 0.2, 'short-words': { 'the', 'and', 'or', 'at', 'in', 'see', 'as', 'an', 'data', 'for', 'not', 'our', 'ie', 'to', 'eg', 'one', 'age', 'on', 'center', 'right', 'left', 'from', 'based', 'total', 'via', 'but', 'resp', 'no' }, 'manual-pairs' : { ('FRAXA') : ['fragile X'], ('IL1', 'IL2', 'IL3', 'IL4', 'IL5', 'EL1', 'EL2', 'EL3', 'EL4', 'EL5') : [ 'intracellular loop', 'extracellular loop'], ('CNF') : ['Finnish type'], ('SRN1') : ['nephrotic', 'segmental'], ('C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'L1', 'L2', 'L3', 'L4', 'L5', 'S1', 'S2', 'S3', 'S4', 'S5') : ['vertebrae', 'spine', 'fusion', 'spina'], ('LCA10') : ['congenital amaurosis'], ('AR-JP') : [ 'parkinsonism' ], ('OCRL') : [ 'oculocerebrorenal syndrome of Lowe' ], ('PPD') : ['pallidopyramidal degeneration'], ('HDR') : ['sensorineural deafness']} } } PHENO_ACRONYMS = { 'vals' : BOOL_VALS, # # Features 'F' : { }, 'HF' : {}, 'SR' : { 'bad-pheno-names': ['MIM'], 'difflib.pheno_cutoff' : 0.8, 'short-words': { 'the', 'and', 'or', 'at', 'in', 'see', 'as', 'an', 'data', 'for', 'not', 'our', 'ie', 'to', 'eg', 'one', 'age', 'on', 'center', 'right', 'left', 'from', 'based', 'total', 'via', 'but', 'resp', 'no' }, 'rand-negs': True }, } # ## GENE GENE = { 'vals' : BOOL_VALS, # # Hard Filters (for candidate extraction) 'HF' : { # Restricting the ENSEMBL mapping types we consider # Types: CANONICAL_SYMBOL, NONCANONICAL_SYMBOL, REFSEQ 'ensembl-mapping-types' : ['CANONICAL_SYMBOL', 'NONCANONICAL_SYMBOL', 'ENSEMBL_ID', 'REFSEQ'], 'min-word-len': { 'CANONICAL_SYMBOL' : 2, 'NONCANONICAL_SYMBOL' : 3, 'ENSEMBL_ID' : 3, 'REFSEQ' : 3 }, 'require-one-letter': True }, # # Supervision Rules 'SR' : { # Label some P mentions based on the toks / phrases that follow 'bad-genes': ['^ANOVA', '^MRI$', '^CO2$', '^gamma$', '^spatial$', '^tau$', '^Men$', \ '^ghrelin$', '^MIM$', '^NHS$', '^STD$', '^hole$', '^SDS$', '^p[0-9][0-9]$', '^FTDP-17$', '^activin$', '^cbl[A-Z]$', '^LQT[0-9]*$'], 'manual-bad' : { ('FRAXA') : ['fragile X'], ('IL1', 'IL2', 'IL3', 'IL4', 'IL5', 'EL1', 'EL2', 'EL3', 'EL4', 'EL5') : [ 'intracellular loop', 'extracellular loop'], ('GAA', 'AAA', 'AAG', 'GTA', 'AGA', 'ACT', 'TGT', 'ACT', 'GCG', 'GCA', 'GCT', 'CAT', 'CGA', 'AGT', 'ACG', 'GAT', 'GAA', 'AGT', 'CAC', 'AAT', 'TAT', 'TGC') : ['repeat', 'triplet'], ('TG', 'CG', 'AC', 'GA', 'GC', 'CT', 'TC') : ['repeat'], ('CNF') : ['Finnish type'], ('C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'L1', 'L2', 'L3', 'L4', 'L5', 'S1', 'S2', 'S3', 'S4', 'S5') : ['vertebrae', 'spine', 'fusion', 'spina'], ('LCA10') : ['congenital amaurosis'], ('GAN') : [ 'primer' ], ('AR-JP') : [ 'parkinsonism' ], ('SRN1') : ['nephrotic', 'segmental'], ('OCA1') : ['oculocutaneous albinism'], ('PPD') : ['pallidopyramidal degeneration']}, 'post-neighbor-match' : { # 'pos' : ['_ mutation', 'mutation', '_ mutations', 'mutations', 'mutant', \ # 'mutants', 'gene', 'exon', 'residue', 'residues', 'coding', \ # 'isoform', 'isoforms', 'deletion', 'mRNA', 'homozyous'], 'pos': ['gene'], 'neg' : ['+', 'pathway', 'inhibitor', 'inhibitors', 'cell', 'cells', 'syndrome', 'domain'], 'pos-rgx' : [], # can't copy the lt-equal sign from anywhere now, it should be down there as well 'neg-rgx' : [r'cell(s|\slines?)', '< \d+', '<= \d+', 'β‰₯ \d+', '> \d+', '>= \d+'] }, 'pre-neighbor-match' : { 'pos' : ['gene', 'mutations in'], 'neg' : ['encoding'], 'pos-rgx': [], 'neg-rgx': [] }, 'neighbor-match': { 'pos' : ['mutations'], 'neg' : ['protein'], 'pos-rgx': [], 'neg-rgx': [] }, 'phrases-in-sent': { 'pos' : [], 'neg' : ['serum', 'level', 'elevated', 'plasma', 'accumulate', 'accumulation', 'deposition'], 'pos-rgx': [], 'neg-rgx': [] }, 'pubmed-paper-genes-true' : True, 'complicated-gene-names-true': True, # all canonical and noncanonical 'all-symbols-true': False, 'all-canonical-true': True, 'rand-negs': True }, # # Features 'F' : { } } # ## VARIANT VARIANT = { 'vals' : BOOL_VALS, 'HF' : {}, 'SR' : {}, 'F' : {} } # ## GENE-VARIANT GENE_VARIANT = { 'vals' : BOOL_VALS, 'HF' : {} } # ## PHENO PHENO = { 'vals' : BOOL_VALS, # # Hard Filters (for candidate extraction) 'HF' : { # Maximum n-gram length to consider 'max-len' : 8, # Minimum word length to consider as a non-stopword 'min-word-len' : 3, # Do not extract mentions which contain these toks- e.g. split on these 'split-list' : [',', ';'], # Also split on above a certain number of consecutive stopwords 'split-max-stops' : 2, # Consider permuted matches to HPO words 'permuted' : True, # Consider exact matches with one ommited *interior* word 'omitted-interior' : True, 'rand-negs' : True, 'disallowed-phrases' : ['cancer', 'carcinoma'] }, # # Supervision Rules 'SR' : { 'bad-pheno-names': [], 'bad-phenos': ['HP:0001677', 'HP:0002092', 'HP:0100753', 'HP:0002511'], # Label some P mentions based on the toks / phrases that follow 'post-match' : { 'pos' : [], 'neg' : [], 'pos-rgx' : [], 'neg-rgx' : [r'cell(s|\slines?)'] }, # Supervise with MeSH- optionally consider more specific terms also true (recommended) 'mesh-supervise' : True, 'mesh-specific-true' : True, # Subsample exact matches which are also english words 'exact-english-word' : { 'p' : 0.1 }, # Get random negative examples which are phrases of consecutive non-stopwords w certain # POS tags 'rand-negs' : { 'pos-tag-rgx' : r'NN.?|JJ.?' } }, # # Features 'F' : { # Add the closest verb by raw distance 'closest-verb' : True, # Incorporate user keyword dictionaries via DDLIB 'sentence-kws' : True } } # ## GENE-PHENO GENE_PHENO = { # # Hard Filters (for candidate extraction) 'HF' : { # Upper-bound the max min-dependency-path length between G and P 'max-dep-path-dist' : 20, }, 'vals' : BOOL_VALS, 'SR': { # Whether to include GP pairs with no or long dep path links as neg. supervision (vs. skip) 'bad-dep-paths' : False, # Subsample GP pairs where G and/or P is neg. example as neg. GP supervision 'g-or-p-false' : {'diff' : 0, 'rand' : 0}, # Supervise G adjacent to P as false 'adjacent-false' : True, # Supervise as T/F based on phrases (exact or regex) only between the G and P mentions 'phrases-in-between' : False, # Try to find the verb connecting the G and P, and supervise based on modifiers # (e.g. negation, etc) of this verb 'primary-verb-modifiers' : { 'max-dist' : 1, 'pos' : [], 'neg' : [ # 'might' ], 'pos-dep-tag' : [], 'neg-dep-tag' : ['neg'] }, # Supervise GP pairs as T/F based on dependency-path neighbor lemmas of G and P 'dep-lemma-neighbors' : { 'max-dist' : 1, 'pos-g' : [], 'pos-p' : [], 'neg-g' : ['express', 'expression', 'coexpression', 'coexpress', 'co-expression', 'co-express', 'overexpress', 'overexpression', 'over-expression', 'over-express', 'somatic', 'infection', 'interacts', 'regulate', 'up-regulate', 'upregulate', 'down-regulate', 'downregulate', 'production', 'product', 'increased', 'increase', 'increas', 'exclude', 'inclusion', ], 'neg-p' : ['without', 'except'] }, # Label T all GP pairs in Charite dataset (and that haven't already been labeled T/F) 'charite-all-pos-words': ['(disrupt|mutat|delet|duplicat|truncat|SNP).*(caus|responsible for)', '{{P}}.*secondary to.*{{G}}', 'identified.*(mutat|delet|duplicat|truncat|SNP).*{{G}}.*{{P}}', 'mutations.*{{G}}.*reported.*{{P}}', 'identified.*{{G}}.*(mutat|delet|duplicat|truncat|SNP).*{{P}}', '{{P}}.*result.*from.*{{G}}', '{{P}}.*caused by.*{{G}}', '{{G}}.*result.*in.*{{P}}', '{{G}}.*presenting.*{{P}}', '{{G}}.*characterized.*by{{P}}', '{{G}}.*patients.*with.*{{P}}', '{{P}}.*due to.*{{G}}'], # Supervise GP pairs based on words (e.g. esp verbs) on the min dep path connecting them 'dep-lemma-connectors' : { 'pos' : [], 'neg' : [] }, 'phrases-in-sent' : { 'pos' : [], 'neg' : ['possible association', 'to investigate', 'could reveal', 'to determine', 'could not determine', 'unclear', 'hypothesize', 'to evaluate', 'plasma', 'expression', 'to detect', 'mouse', 'mice', 'to find out', 'inconclusive', 'further analysis', 'but not', #'deficiency', 'activity', 'unravel', 'fish', 'sheep', 'cattle', 'dachshund', 'plant', 'algorithm', 'odds ratio', ], 'pos-rgx' : [], 'neg-rgx' : [ '{{P}}.*not.*cause.*{{G}}', '{{G}}.*not.*cause.*{{P}}', '\?\s*$', 'to determine', 'to evaluate', 'to investigate', 'we investigated', 'we examined', 'were examined', 'to examine', 'to test', 'to clarify', 'we requested', 'to study', 'indicating that', 'analysis.*was performed', '\d+ h ', 'to assess', '^\s*here we define', 'whether', 'unlikely.*{{G}}.*{{P}}', '{{P}}.*not due to.*{{G}}', '{{G}}.*unlikely.*cause.*{{P}}', '{{P}}.*unlikely.*cause.*{{G}}', '{{G}}.*excluded.*cause.*{{P}}', '{{P}}.*excluded.*cause.*{{G}}', '{{G}}.*can.*mimic.*{{P}}', '{{G}}.*linked to.*{{P}}', 'attracted.*interest', '{{P}}.*, while.*{{G}}', '{{P}}.*, whereas.*{{G}}', '{{G}}.*, while.*{{P}}', '{{G}}.*, whereas.*{{P}}', '{{G}}.*proposed.*{{P}}', 'target', '{{G}}.*to determine.*{{P}}', '{{G}}.*caus.*deregulation.*{{P}}', '{{P}}.*caus.*deregulation.*{{G}}', 'dysregulation of.*{{G}}', '{{G}}.*modifier of.*gene.*{{P}}', '{{G}}.*except.*{{P}}', '{{G}}.*excluded.*cause.*{{P}}', '{{G}}.*should.*considered.*{{P}}', '{{G}} deficiency', 'upregulation of.*{{G}}', 'without {{P}}', ] }, 'example-sentences': { 'pos': [], 'neg': [] }, 'sv_synonyms': {'disease': set(['disease', 'disorder']), 'mutation': set(['mutat', 'polymorphism', 'delet', 'duplicat', 'truncat', 'SNP']), 'patient': set(['case', 'patient', 'subject', 'family', 'boy', 'girl']), 'present': set(['present', 'display', 'characterize']), 'mut_type': set(['nonsense', 'missense', 'frameshift']), 'identify': set(['identify', 'report', 'find', 'detect']), 'cause': set(['caus', 'result']), 'inheritance': set(['recessive', 'dominant'])}, }, # # Features 'F' : { 'synonyms': {'disease': set(['disease', 'disorder']), 'mutation': set(['mutation', 'missense', 'polymorphism', 'deletion', 'duplication', 'truncation', 'SNP', 'frameshift', 'nonsense']), 'patient': set(['case', 'patient', 'subject', 'family', 'boy', 'girl']), 'present': set(['present', 'display', 'characterize']), 'mut_type': set(['nonsense', 'missense', 'frameshift']), 'identify': set(['identify', 'report', 'find', 'detect']), 'cause': set(['cause', 'result']), 'inheritance': set(['recessive', 'dominant'])}, 'global-sent-words' : ['to determine', 'to evaluate', 'to investigate', 'we investigated', 'we examined', 'were examined', 'to examine', 'to test', 'to clarify', 'we requested', 'to study', 'fish', 'sheep', 'cattle', 'dachshund', 'plant', 'mice', 'mouse', 'but not', ], }, } CAUSATION_SR = { 'example-sentences': { 'pos': [('onto/manual/true_causation_sentences1.tsv', 18), ('onto/manual/true_causation_sentences2.tsv', 27)], 'neg': [] }, # Supervise as T/F based on phrases (exact or regex) anywhere in sentence 'phrases-in-sent' : { 'pos' : [], 'neg' : [ # 'risk', 'variance', 'gwas', 'association study', 'possible association', 'to investigate', 'could reveal', 'to determine', 'unclear', 'hypothesize', 'to evaluate', 'plasma', 'expression', 'to detect', 'to find out', 'inconclusive', 'further analysis', 'association', ], 'pos-rgx' : ['(disrupt|expan.*repeat|mutat|delet|duplicat|truncat|SNP|polymorphism).*{{G}}.*cause.*{{P}}', '(disrupt|expan.*repeat|mutat|delet|duplicat|truncat|SNP|polymorphism).*{{G}}.*(in|described).*patient.*{{P}}', '{{G}}.*(in|described).*patient.*(expan.*repeat|mutat|delet|duplicat|truncat|SNP|polymorphism).*{{P}}', '{{G}}.*present with.*{{P}}.*', '(single nucleotide polymorphisms|SNPs) in {{G}}.*cause.*{{P}}', '(mutation|deletion).*{{G}}.*described.*patients.*{{P}}', '{{P}}.*secondary to.*{{G}}', 'identified.*mutations.*{{G}}.*{{P}}', 'mutations.*{{G}}.*reported.*{{P}}', 'identified.*{{G}}.*mutations.*{{P}}', '{{P}}.*consequence of.*{{G}}', '{{P}}.*caused by.*{{G}}', '{{P}}.*result.*from.*{{G}}', '{{P}}.*caused by.*{{G}}', '{{G}}.*result.*in.*{{P}}', '{{G}}.*cause.*of.*{{P}}', ], 'neg-rgx' : [ '{{G}}.*associated.*{{P}}', '{{P}}.*associated.*{{G}}', 'associated.*{{G}}.*with.*{{P}}', 'associated with.*{{P}}'], }, # Supervise GP pairs based on words (e.g. esp verbs) on the min dep path connecting them 'dep-lemma-connectors' : { 'pos': [], 'neg' : [] }, } def extend(map1, map2): rv = {} for item in map1: value = map1[item] if isinstance(value, dict): if item in map2: rv[item] = extend(map1[item], map2[item]) else: rv[item] = map1[item] else: rv[item] = map1[item] if item in map2: for v in map2[item]: if v not in rv[item]: rv[item].append(v) return rv GENE_PHENO_CAUSATION = copy.deepcopy(GENE_PHENO) GENE_PHENO_CAUSATION['SR'] = extend(GENE_PHENO_CAUSATION['SR'], CAUSATION_SR) # ## GENE-VARIANT-PHENO GENE_VARIANT_PHENO = { # # Hard Filters (for candidate extraction) 'HF' : { # Upper-bound the max min-dependency-path length between G and P 'max-dep-path-dist' : 10, # Only consider the closest GP pairs for duplicate GP pairs 'take-best-only-dups' : False, # Only consider the closest GP pairs by dep-path distance such that all G,P are covered 'take-best-only' : False }, # # Supervision Rules 'SR' : { # Subsample GP pairs where G and/or P is neg. example as neg. GP supervision 'gv-or-p-false' : {'diff' : 0, 'rand' : 0.01}, # Supervise with ClinVar 'clinvar-sup' : True }, # # Features 'F' : {} }
dd-genomics-master
code/config.py
#!/usr/bin/env python import extractor_util as util from collections import namedtuple import os import sys import ddlib parser = util.RowParser([ ('relation_id', 'text'), ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('genevar_mention_id', 'text'), ('genevar_wordidxs', 'int[]'), ('pheno_mention_id', 'text'), ('pheno_wordidxs', 'int[]'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]')]) Feature = namedtuple('Feature', ['doc_id', 'section_id', 'relation_id', 'name']) def get_features_for_candidate(row): """Extract features for candidate mention- both generic ones from ddlib & custom features""" features = [] f = Feature(doc_id=row.doc_id, section_id=row.section_id, relation_id=row.relation_id, name=None) dds = util.create_ddlib_sentence(row) # (1) GENERIC FEATURES from ddlib genevar_span = ddlib.Span(begin_word_id=row.genevar_wordidxs[0], length=len(row.genevar_wordidxs)) pheno_span = ddlib.Span(begin_word_id=row.pheno_wordidxs[0], length=len(row.pheno_wordidxs)) features += [f._replace(name=feat) \ for feat in ddlib.get_generic_features_relation(dds, genevar_span, pheno_span)] return features if __name__ == '__main__': util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_candidate)
dd-genomics-master
code/variantpheno_extract_features.py
#!/usr/bin/env python # -*- coding: utf-8 -*- import collections import extractor_util as util import data_util as dutil import random import re import os import sys import string import config import dep_util as deps # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]')]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'entity', 'variant_type', 'ivsNum', 'pos', 'posPlus', 'fromPos', 'toPos', 'seq', 'fromSeq', 'toSeq', 'words', 'is_correct']) ### CANDIDATE EXTRACTION ### HF = config.VARIANT['HF'] ### VARIANT ### a = r'[cgrnm]' i = r'IVS' b = r'ATCGatcgu' s1 = r'0-9\_\.\:' s2 = r'\/>\?\(\)\[\]\;\:\*\_\-\+0-9' s3 = r'\/><\?\(\)\[\]\;\:\*\_\-\+0-9' b1 = r'[%s]' % b bs1 = r'[%s%s]' % (b,s1) bs2 = r'[%s %s]' % (b,s2) bs3 = r'[%s %s]' % (b,s3) c1 = r'(inv|del|ins|dup|tri|qua|con|delins|indel)' c2 = r'(del|ins|dup|tri|qua|con|delins|indel)' c3 = r'([Ii]nv|[Dd]el|[Ii]ns|[Dd]up|[Tt]ri|[Qq]ua|[Cc]on|[Dd]elins|[Ii]ndel|fsX|fsx|fs)' p = r'CISQMNPKDTFAGHLRWVEYX' ps2 = r'[%s %s]' % (p, s2) ps3 = r'[%s %s]' % (p, s3) d = '[ATCGRYUatgc]' aa_long_to_short = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} aa_camel = {} for aa in aa_long_to_short: aa_camel[aa[0] + aa[1].lower() + aa[2].lower()] = aa_long_to_short[aa] aal = '(' + '|'.join([x for x in aa_long_to_short] + [x for x in aa_camel]) + ')' # regexes from tmVar paper # See Table 3 in http://bioinformatics.oxfordjournals.org/content/early/2013/04/04/bioinformatics.btt156.full.pdf def comp_gv_rgx(): # A bit silly, but copy from pdf wasn't working, and this format is simple to copy & debug... # regexes correspond to gene ('g') or protein ('p') variants GV_RGXS = [ (r'(%s\.%s+%s%s*)' % (a,bs3,c1,bs1), 'g'), (r'(IVS%s+%s%s*)' % (bs3,c2,bs1), 'g'), (r'((%s\.|%s)%s+)' % (a,i,bs2), 'g'), (r'((%s\.)?%s[0-9]+%s)' % (a,b1,b1), 'g'), (r'([0-9]+%s%s*)' % (c2,b1), 'g'), (r'([p]\.%s+%s%s*)' % (ps3,c3,ps3), 'p'), (r'([p]\.%s+)' % ps2, 'p'), (r'([p]\.[A-Z][a-z]{0,2}[\W\-]{0,1}[0-9]+[\W\-]{0,1}([A-Z][a-z]{0,2}|(fs|fsx|fsX)))', 'p')] # Just return as one giant regex for now return [gvr[0] for gvr in GV_RGXS] def extract_candidate_mentions(row, gv_rgxs): mentions = [] covered = [] for i,word in enumerate(row.words): if i in covered: continue for gv_rgx in gv_rgxs: gv_rgx = '^(%s)$' % gv_rgx if re.match(r'[cngrmp]\.|IVS.*', word): for j in reversed(range(i+1, min(i+7, len(row.words)))): words = row.words[i:j] if re.match(gv_rgx, ''.join(words), flags=re.I): mentions.append(Mention( dd_id=None, doc_id=row.doc_id, section_id=row.section_id, sent_id=row.sent_id, wordidxs=range(i,j), mention_id='%s_%s_%s_%s_%s_GV' % (row.doc_id, row.section_id, row.sent_id, i, j), mention_supertype='GV_RGX_MATCH_%d' % (j - i), mention_subtype=gv_rgx.replace('|', '/').replace('\\', '/'), entity=''.join(words), variant_type=None, ivsNum=None, pos=None, posPlus=None, fromPos=None, toPos=None, seq=None, fromSeq=None, toSeq=None, words=words, is_correct=True)) covered.extend(range(i,j)) break else: continue break return mentions def extract_relative_coords(mention): m = re.match(r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), mention.entity) if m: if mention.entity.startswith('c.'): vtype = 'coding_range_mut' elif mention.entity.startswith('g.'): vtype = 'gene_range_mut' elif mention.entity.startswith('r.'): vtype = 'RNA_range_mut' elif mention.entity.startswith('n.'): vtype = 'noncoding_range_mut' elif mention.entity.startswith('m.'): vtype = 'mitochondrial_range_mut' else: vtype = 'DNA_range_mut' % mtype fromPos = m.group(2) toPos = m.group(4) fromSeq = m.group(6) toSeq = m.group(7) mention = mention._replace(variant_type = vtype, fromPos = fromPos, toPos = toPos, posPlus = m.group(5), fromSeq = fromSeq, toSeq = toSeq) return mention m = re.match(r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))?([\+\-\*][0-9]+)?(%s)(%s+)?' % (c3, d), mention.entity) if m: mtype = m.group(6) if mention.entity.startswith('c.'): vtype = 'coding_%s' % mtype elif mention.entity.startswith('g.'): vtype = 'gene_%s' % mtype elif mention.entity.startswith('r.'): vtype = 'RNA_%s' % mtype elif mention.entity.startswith('n.'): vtype = 'noncoding_%s' % mtype elif mention.entity.startswith('m.'): vtype = 'mitochondrial_%s' % mtype else: vtype = 'DNA_%s' % mtype fromPos = m.group(2) toPos = m.group(4) seq = m.group(8) if seq: seq = seq.upper() if toPos is not None and m.group(3) != '': mention = mention._replace(variant_type = vtype, fromPos = fromPos, toPos = toPos, posPlus = m.group(5), seq = seq) else: mention = mention._replace(variant_type = vtype, pos = fromPos, posPlus = m.group(5), seq = seq) return mention m = re.match(r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), mention.entity) if m: if mention.entity.startswith('c.'): vtype = 'coding_SNP' if mention.entity.startswith('g.'): vtype = 'gene_SNP' if mention.entity.startswith('r.'): vtype = 'RNA_SNP' if mention.entity.startswith('n.'): vtype = 'noncoding_SNP' if mention.entity.startswith('m.'): vtype = 'mitochondrial_SNP' mention = mention._replace(variant_type = vtype, pos = m.group(1), posPlus = m.group(2), fromSeq = m.group(3).upper(), toSeq = m.group(4).upper()) return mention m = re.match(r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)' % (d), mention.entity) if m: if mention.entity.startswith('c.'): vtype = 'coding_SNP_from_U' if mention.entity.startswith('g.'): vtype = 'gene_SNP_from_U' if mention.entity.startswith('r.'): vtype = 'RNA_SNP_from_U' if mention.entity.startswith('n.'): vtype = 'noncoding_SNP_from_U' if mention.entity.startswith('m.'): vtype = 'mitochondrial_SNP_from_U' mention = mention._replace(variant_type = vtype, pos = m.group(1), posPlus = m.group(2), fromSeq = 'U', toSeq = m.group(3).upper()) return mention m = re.match(r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s)-*[>/β†’](%s)' % (d, d), mention.entity) if m: vtype = 'IVS_SNP' ivsNum = m.group(1) mention = mention._replace(variant_type = vtype, ivsNum = ivsNum, posPlus = m.group(2), fromSeq = m.group(3).upper(), toSeq = m.group(4).upper()) return mention m = re.match(r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s?)(%s+)' % (c3, d), mention.entity) if m: mtype = m.group(3) if mtype == '' or mtype is None: mtype = 'mutation' vtype = 'IVS_%s_from_U' % mtype ivsNum = m.group(1) toSeq = m.group(5) if toSeq: toSeq = toSeq.upper() mention = mention._replace(variant_type = vtype, ivsNum = ivsNum, posPlus = m.group(2), fromSeq = 'U', toSeq = toSeq) return mention m = re.match(r'^p\.(([%s])|%s)([0-9]+)(([%s])|%s)' % (p, aal, p, aal), mention.entity) if m: fromSeq = m.group(1) if fromSeq.upper() in aa_long_to_short: fromSeq = aa_long_to_short[fromSeq.upper()] toSeq = m.group(5) if toSeq.upper() in aa_long_to_short: toSeq = aa_long_to_short[toSeq.upper()] mention = mention._replace(variant_type = 'protein_SAP', pos = m.group(4), fromSeq = fromSeq, toSeq = toSeq) return mention m = re.match(r'^p\.(([%s])|%s)([0-9]+)[_]+(([%s])|%s)([0-9]+)(%s)' % (p, aal, p, aal, c3), mention.entity) if m: fromSeq = m.group(1) toSeq = m.group(5) fromPos = m.group(4) toPos = m.group(8) mtype = m.group(9) if fromSeq.upper() in aa_long_to_short: fromSeq = aa_long_to_short[fromSeq.upper()] if toSeq.upper() in aa_long_to_short: toSeq = aa_long_to_short[toSeq.upper()] mention = mention._replace(variant_type = 'protein_%s' % mtype, fromSeq = fromSeq, toSeq = toSeq, fromPos = fromPos, toPos = toPos) return mention m = re.match(r'^p\.(([%s])|%s)([0-9]+)(%s)' % (p, aal, c3), mention.entity) if m: seq = m.group(1) mtype = m.group(5) if seq.upper() in aa_long_to_short: seq = aa_long_to_short[seq.upper()] mention = mention._replace(variant_type = 'protein_%s_mut' % mtype, pos = m.group(3), seq = seq) return mention m = re.match(r'^(%s)([0-9]+)(%s)' % (d, d), mention.entity) if m: mention = mention._replace(variant_type = 'DNA_SNP', pos = m.group(2), fromSeq = m.group(1), toSeq = m.group(3)) return mention return mention if __name__ == '__main__': GV_RGXs = comp_gv_rgx() for line in sys.stdin: row = parser.parse_tsv_row(line) # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # Find candidate mentions & supervise mentions_without_coords = extract_candidate_mentions(row, GV_RGXs) mentions = [] for mention_without_coords in mentions_without_coords: mention = extract_relative_coords(mention_without_coords) mentions.append(mention) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/variant_extract_candidates.py
#!/usr/bin/env python import collections import extractor_util as util import re import sys CACHE = dict() # Cache results of disk I/O # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text'), ('dep_paths', 'text'), ('dep_parents', 'text'), ('gene_wordidxs', 'int[][]'), ('gene_supertypes', 'text[]'), ('pheno_wordidxs', 'int[][]'), ('pheno_supertypes', 'text[]')]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'doc_id', 'section_id', 'sent_id', 'words', 'words_ner', 'lemmas', 'lemmas_ner', 'poses', 'ners', 'dep_paths', 'dep_parents']) def create_ners(row): m = Mention(row.doc_id, row.section_id, row.sent_id, '|^|'.join(row.words), None, \ '|^|'.join(row.lemmas), None, row.poses, None, row.dep_paths, \ row.dep_parents) words_ner = [word for word in row.words] lemmas_ner = [lemma for lemma in row.lemmas] ners = ['O' for _ in xrange(len(row.words))] for i, wordidxs in enumerate(row.pheno_wordidxs): pheno_supertype = row.pheno_supertypes[i] if re.findall('RAND_NEG', pheno_supertype) or \ re.findall('BAD', pheno_supertype) or pheno_supertype == 'O': continue ners[wordidxs[0]] = 'NERPHENO' for wordidx in wordidxs: words_ner[wordidx] = 'NERPHENO' lemmas_ner[wordidx] = 'nerpheno' for i, wordidxs in enumerate(row.gene_wordidxs): gene_supertype = row.gene_supertypes[i] if gene_supertype == 'BAD_GENE' or gene_supertype == 'MANUAL_BAD' or gene_supertype == 'RAND_WORD_NOT_GENE_SYMBOL' \ or gene_supertype == 'ABBREVIATION' or gene_supertype == 'ALL_UPPER_NOT_GENE_SYMBOL' or gene_supertype == 'O': continue ners[wordidxs[0]] = 'NERGENE' for wordidx in wordidxs: if words_ner[wordidx] != 'NERPHENO': words_ner[wordidx] = 'NERGENE' lemmas_ner[wordidx] = 'nergene' return m._replace(ners='|^|'.join(ners), words_ner='|^|'.join(words_ner), lemmas_ner='|^|'.join(lemmas_ner)) if __name__ == '__main__': # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... pos_count = 0 neg_count = 0 for line in sys.stdin: row = parser.parse_tsv_row(line) out_row = create_ners(row) util.print_tsv_output(out_row)
dd-genomics-master
code/sentences_input_ner_extraction.py
"""Miscellaneous shared tools for maniuplating data used in the UDFs""" from collections import defaultdict, namedtuple import extractor_util as util import os import re import sys APP_HOME = os.environ['GDD_HOME'] onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) class Dag: """Class representing a directed acyclic graph.""" def __init__(self, nodes, edges): self.nodes = nodes self.node_set = set(nodes) self.edges = edges # edges is dict mapping child to list of parents self._has_child_memoizer = defaultdict(dict) def has_child(self, parent, child): """Check if child is a child of parent.""" if child not in self.node_set: raise ValueError('"%s" not in the DAG.' % child) if parent not in self.node_set: raise ValueError('"%s" not in the DAG.' % parent) if child == parent: return True if child in self._has_child_memoizer[parent]: return self._has_child_memoizer[parent][child] for node in self.edges[child]: if self.has_child(parent, node): self._has_child_memoizer[parent][child] = True return True self._has_child_memoizer[parent][child] = False return False def read_hpo_dag(): with open('%s/onto/data/hpo_phenotypes.tsv' % APP_HOME) as f: nodes = [] edges = {} for line in f: toks = line.strip(' \r\n').split('\t') child = toks[0] nodes.append(child) parents_str = toks[5] if parents_str: edges[child] = parents_str.split('|') else: edges[child] = [] return Dag(nodes, edges) def get_hpo_phenos(hpo_dag, parent='HP:0000118', exclude_parents=['HP:0002664', 'HP:0002527', 'HP:0012125']): """Get only the children of 'Phenotypic Abnormality' (HP:0000118), excluding all children of neoplasm (0002664) and falls (0002527) and prostate cancer(HP:0012125). Now also excluding coronary artery disease, alzheimer's and pulmonary artery hypertension, and schizophrenia""" return [hpo_term for hpo_term in hpo_dag.nodes if (hpo_dag.has_child(parent, hpo_term) and all([not hpo_dag.has_child(p, hpo_term) for p in exclude_parents]))] def read_hpo_synonyms(idx=2): syn_dict = dict() with open('%s/onto/data/hpo_phenotypes.tsv' % APP_HOME) as f: for line in f: toks = line.strip(' \r\n').split('\t') node = toks[0] syn_str = toks[idx] syn_dict[node] = syn_str.split('|') return syn_dict def load_hgvs_to_hpo(): hgvs_to_hpo = defaultdict(set) with open(onto_path('data/hgvs_to_hpo.tsv'), 'rb') as f: for line in f: hgvs_id, hpo_id = line.strip().split('\t') hgvs_to_hpo[hgvs_id].update(hpo_id) return hgvs_to_hpo def load_pmid_to_hpo(): """Load map from Pubmed ID to HPO term (via MeSH)""" pmid_to_hpo = defaultdict(set) # XXX HACK Johannes. TODO. Get rid of this file, load the full table into the database with open(onto_path('data/hpo_to_pmid_via_mesh_with_doi.tsv')) as f: for line in f: hpo_id, pmid = line.strip().split('\t') pmid_to_hpo[pmid].add(hpo_id) return pmid_to_hpo def get_pubmed_id_for_doc(doc_id): """Because our doc_id is currently just the PMID, and we intend to KEEP it this way, return the doc_id here""" return doc_id def read_doi_to_pmid(): """Reads map from DOI to PMID, for PLoS docuemnts.""" doi_to_pmid = dict() with open('%s/onto/data/plos_doi_to_pmid.tsv' % APP_HOME) as f: for line in f: doi, pmid = line.strip().split('\t') doi_to_pmid[doi] = pmid return doi_to_pmid def gene_symbol_to_ensembl_id_map(): """Maps a gene symbol from CHARITE -> ensembl ID""" with open('%s/onto/data/ensembl_genes.tsv' % util.APP_HOME) as f: eid_map = defaultdict(set) for line in f: eid_canonical, gene_name, mapping_type = line.rstrip('\n').split('\t') eid = eid_canonical.split(':')[0] canonical_name = eid_canonical.split(':')[1] eid_map[gene_name].add((eid, canonical_name, mapping_type)) # XXX HACK Johannes: Maybe we shouldn't decide on case sensitivity in this helper method (?) # if mapping_type == 'CANONICAL_SYMBOL': # eid_map[gene_name.lower()].add((eid, canonical_name, mapping_type)) return eid_map def get_parents(bottom_id, dag, root_id='HP:0000118'): if bottom_id == root_id: return set([bottom_id]) rv = set() if bottom_id in dag.edges: for parent in dag.edges[bottom_id]: rv |= get_parents(parent, dag) rv.add(bottom_id) return rv
dd-genomics-master
code/data_util.py
#!/usr/bin/env python from collections import namedtuple import extractor_util as util import os import sys import ddlib import re import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('mention_id', 'text'), ('mention_type', 'text'), ('short_wordidxs', 'int[]'), ('long_wordidxs', 'int[]')]) Feature = namedtuple('Feature', ['doc_id', 'section_id', 'mention_id', 'name']) def get_features_for_row(row): OPTS = config.NON_GENE_ACRONYMS['F'] features = [] f = Feature(doc_id=row.doc_id, section_id=row.section_id, mention_id=row.mention_id, name=None) # (1) Get generic ddlib features sentence = util.create_ddlib_sentence(row) allWordIdxs = row.short_wordidxs + row.long_wordidxs start = min(allWordIdxs) length = max(allWordIdxs) - start span = ddlib.Span(begin_word_id=start, length=length) generic_features = [f._replace(name=feat) for feat in ddlib.get_generic_features_mention(sentence, span)] # Optionally filter out some generic features if OPTS.get('exclude_generic'): generic_features = filter(lambda feat : not feat.startswith(tuple(OPTS['exclude_generic'])), generic_features) features += generic_features return features if __name__ == '__main__': util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_row)
dd-genomics-master
code/non_gene_acronyms_extract_features.py
#!/usr/bin/env python '''Link abbreviations to their full names Based on A Simple Algorithm for Identifying Abbreviations Definitions in Biomedical Text A. Schwartz and M. Hearst Biocomputing, 2003, pp 451-462. # License: GNU General Public License, see http://www.clips.ua.ac.be/~vincent/scripts/LICENSE.txt ''' __author__ = 'Vincent Van Asch, Johannes Birgmeier' import re def get_candidates(sentence): rv = [] if '-LRB-' in sentence: # XXX HACK (?) Johannes # The original version checks some sentence properties here first: # balanced parentheses and that the first paren is a left one # We don't care that much since we only admit one-word abbrevs close_idx = -1 while 1: # Look for parenOpen parenthesis try: open_idx = close_idx + 1 + sentence[close_idx + 1:].index('-LRB-') except ValueError: break close_idx = open_idx + 2 # XXX HACK (?) Johannes # The original version picks up acronyms that include parentheses and multiple words. # Since there are no such gene abbreviations, such words won't be confused for being # genes anyways, so I just stop after the first word in the parenthesis start = open_idx + 1 stop = start + 1 if start >= len(sentence): break abbrev = sentence[start] if conditions(abbrev): rv.append((start, stop, abbrev)) return rv def conditions(string): if re.match('([A-Za-z]\. ?){2,}', string.lstrip()): return True if len(string) < 2 or len(string) > 10: return False if len(string.split()) > 2: return False if not re.search('[A-Za-z]', string): return False if not string[0].isalnum(): return False return True def get_def((start_abbrev, stop_abbrev, abbrev), sentence, stop_last_abbrev): ':type candidate: (int, int, list[str])' ':type sentence: list[str]' start_tokens = stop_last_abbrev + 1 # Take the tokens in front of the candidate tokens = [word.lower() for word in sentence[start_tokens:start_abbrev - 1]] # the char that we are looking for key = abbrev[0].lower() if len(tokens) == 0: raise ValueError('[SUP] Not enough keys') # Count the number of tokens that start with the same character as the # candidate first_chars = [t[0] for t in tokens if len(t) > 0] def_freq = first_chars.count(key) candidate_freq = abbrev.lower().count(key) # Look for the list of tokens in front of candidate that # have a sufficient number of tokens starting with key if candidate_freq <= def_freq: # we should at least have a good number of starts count = 0 start = 0 start_idx = len(first_chars) - 1 while count < candidate_freq: if abs(start) > len(first_chars): raise ValueError('not found') start -= 1 # Look up key in the definition try: start_idx = first_chars.index(key, len(first_chars) + start) except ValueError: pass # Count the number of keys in definition count = first_chars[start_idx:].count(key) # We found enough keys in the definition so return the definition as a # definition candidate string = sentence[start_idx + start_tokens:start_abbrev - 1] rv = (start_idx + start_tokens, start_abbrev - 1, string) return rv else: raise ValueError( '[SUP] Not enough keys') def def_selection((start_def, stop_def, definition), (start_abbrev, stop_abbrev, abbrev)): if abbrev.lower() in [word.lower() for word in definition]: raise ValueError('[SUP] Abbrv = full word of def') def_str = ' '.join(definition) if len(def_str) < len(abbrev): raise ValueError('[SUP] Abbrv longer than def') s_idx = -1 l_word_idx = -1 l_char_idx = -1 stop_def = -1 # find all except the first char of the abbreviation while 1: assert s_idx < 0 assert s_idx >= -len(abbrev), (s_idx, abbrev) short_char = abbrev[s_idx].lower() if len(definition) == 0: raise ValueError('[SUP] definition candidate is empty') assert -l_word_idx <= len(definition), (definition, l_word_idx, len(definition)) if len(definition[l_word_idx]) == 0: l_char_idx = -1 l_word_idx -= 1 if -l_word_idx >= (len(definition) + 1): raise ValueError('[SUP] Abbrv not in def') continue assert l_word_idx < 0 assert -l_word_idx <= len(definition), (len(definition), l_word_idx) assert l_char_idx < 0 assert -l_char_idx <= len(definition[l_word_idx]), (len(definition[l_word_idx]), l_char_idx) long_char = definition[l_word_idx][l_char_idx].lower() if short_char == long_char: if stop_def == -1: stop_def = start_def + len(definition) + l_word_idx + 1 s_idx -= 1 if (l_char_idx == -1 * len(definition[l_word_idx])): l_char_idx = -1 l_word_idx -= 1 else: l_char_idx -= 1 if -l_word_idx >= (len(definition) + 1): raise ValueError('[SUP] Abbrv not in def') if -s_idx == len(abbrev): break; # find the first char of the abbreviation as the first char of a word while 1: if len(definition[l_word_idx]) == 0: l_word_idx -= 1 if -l_word_idx >= (len(definition) + 1): raise ValueError('[SUP] Abbrv not in def') assert s_idx == -1 * len(abbrev) short_char = abbrev[s_idx].lower() long_char = definition[l_word_idx][0].lower() if short_char == long_char: break; l_word_idx -= 1 if -l_word_idx >= (len(definition) + 1): raise ValueError('[SUP] Abbrv not in def') definition = definition[len(definition) + l_word_idx:stop_def] tokens = len(definition) length = len(abbrev) if tokens > min([length + 5, length * 2]): raise ValueError('[SUP] length constraint violation') # Do not return definitions that contain unbalanced parentheses if definition.count('-LRB-') != definition.count('-RRB-'): raise ValueError( '[SUP] Unbalanced paren in def') return (start_def, stop_def, definition) def getabbreviations(sentence, abbrev_index=None): rv = [] try: if not abbrev_index: abbrevs = get_candidates(sentence) else: if conditions(sentence[abbrev_index]): abbrevs = [(abbrev_index, abbrev_index+1, sentence[abbrev_index])] else: abbrevs = [] except ValueError, e: # sys.stderr.write('Abbreviation detection: omitting sentence\n') # sys.stderr.write('Reason: %s\n' % e.args[0]) return rv last_stop_abbrev = -1 for abbrev in abbrevs: try: definition = get_def(abbrev, sentence, last_stop_abbrev) # sys.stderr.write(abbrev[2] + '=' + str(definition) + '\n') except ValueError, e: # sys.stderr.write('Omitting abbreviation candidate %s\n' % abbrev[2]) # sys.stderr.write('Reason: %s\n' % e.args[0]) if e.args[0].startswith('[SUP]'): start_fake_def = max(abbrev[0] - 2 - len(abbrev[2]), 0) stop_fake_def = abbrev[0] - 2 rv.append((False, abbrev, (start_fake_def, stop_fake_def, sentence[start_fake_def:stop_fake_def]), e.args[0])) else: try: definition = def_selection(definition, abbrev) except ValueError, e: # sys.stderr.write('Omitting abbreviation candidate %s\n' % abbrev[2]) # sys.stderr.write('Reason: %s\n' % e.args[0]) if e.args[0].startswith('[SUP]'): start_fake_def = max(abbrev[0] - 2 - len(abbrev[2]), 0) stop_fake_def = abbrev[1] - 2 rv.append((False, abbrev, (start_fake_def, stop_fake_def, sentence[start_fake_def:stop_fake_def]), e.args[0])) else: rv.append((True, abbrev, definition, '')) last_stop_abbrev = abbrev[1] return rv
dd-genomics-master
code/abbreviations.py
#! /usr/bin/env python import collections import extractor_util as util import data_util as dutil import dep_util as deps import random import re import sys import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('relation_id', 'text'), ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('gene_mention_id', 'text'), ('gene_name', 'text'), ('gene_wordidxs', 'int[]'), ('gene_is_correct', 'boolean'), ('pheno_mention_id', 'text'), ('pheno_entity', 'text'), ('pheno_wordidxs', 'int[]'), ('pheno_is_correct', 'boolean'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]')]) # This defines the output Relation object Feature = collections.namedtuple('Feature', ['doc_id', 'section_id', 'relation_id', 'name']) HPO_DAG = dutil.read_hpo_dag() def replace_opts(opts, replaceList): ret = {} for name in opts: strings = opts[name] for (pattern, subst) in replaceList: if name.endswith('rgx'): subst = re.escape(subst) strings = [s.replace(pattern, subst) for s in strings] ret[name] = strings return ret CACHE = {} def gp_between(gene_wordidxs, pheno_wordidxs, ners): if gene_wordidxs[0] < pheno_wordidxs[0]: start = max(gene_wordidxs) + 1 end = min(pheno_wordidxs) - 1 else: start = max(pheno_wordidxs) + 1 end = min(gene_wordidxs) - 1 found_g = False found_p = False for i in xrange(start, end+1): ner = ners[i] if ner == 'NERGENE': found_g = True if ner == 'NERPHENO': found_p = True return found_g and found_p def config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, lemma_phrase, between_phrase_lemmas, dep_dag, dep_path_between, gene_wordidxs, VALS, SR): if SR.get('phrases-in-between'): opts = SR['phrases-in-between'] orig_opts = opts.copy() opts = replace_opts(opts, [('{{G}}', gene), ('{{P}}', pheno)]) for name, val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(between_phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: yield r._replace(name='PHRASE_BETWEEN_%s_%s' % (name, non_alnum.sub('_', match))) match = util.rgx_mult_search(between_phrase_lemmas, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: yield r._replace(name='PHRASE_BETWEEN_%s_%s' % (name, non_alnum.sub('_', match))) if SR.get('phrases-in-sent'): opts = SR['phrases-in-sent'] orig_opts = opts.copy() opts = replace_opts(opts, [('{{G}}', gene), ('{{P}}', pheno)]) for name, val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: yield r._replace(name='PHRASE_%s_%s' % (name, non_alnum.sub('_', match))) match = util.rgx_mult_search(lemma_phrase, opts[name], opts['%s-rgx' % name], orig_opts[name], orig_opts['%s-rgx' % name], flags=re.I) if match: yield r._replace(name='PHRASE_%s_%s' % (name, non_alnum.sub('_', match))) if SR.get('primary-verb-modifiers') and dep_dag: opts = SR['primary-verb-modifiers'] if dep_path_between: verbs_between = [i for i in dep_path_between if row.poses[i].startswith("VB")] if len(verbs_between) > 0: for name, val in VALS: mod_words = [i for i, x in enumerate(row.lemmas) if x in opts[name]] mod_words += [i for i, x in enumerate(row.dep_paths) if x in opts['%s-dep-tag' % name]] d = dep_dag.path_len_sets(verbs_between, mod_words) if d and d < opts['max-dist'] + 1: subtype = 'ModWords: ' + ' '.join([str(m) for m in mod_words]) + ', VerbsBetween: ' + ' '.join([str(m) for m in verbs_between]) + ', d: ' + str(d) yield r._replace(name='PRIMARY_VB_MOD_%s_%s' % (name, non_alnum.sub('_', subtype))) if SR.get('dep-lemma-connectors') and dep_dag: opts = SR['dep-lemma-connectors'] for name, val in VALS: if dep_path_between: connectors = [i for i, x in enumerate(row.lemmas) \ if i in dep_path_between and x in opts[name]] if len(connectors) > 0: yield r._replace(name='DEP_LEMMA_CONNECT_%s_%s' % (name, non_alnum.sub('_', ' '.join([str(x) for x in connectors])))) if SR.get('dep-lemma-neighbors') and dep_dag: opts = SR['dep-lemma-neighbors'] for name, val in VALS: for entity in ['g', 'p']: lemmas = [i for i, x in enumerate(row.lemmas) if x in opts['%s-%s' % (name, entity)]] d = dep_dag.path_len_sets(gene_wordidxs, lemmas) if d and d < opts['max-dist'] + 1: subtype = ' '.join([str(l) for l in lemmas]) + ', d: ' + str(d) yield r._replace(name='DEP_LEMMA_NB_%s_%s_%s' % (name, entity, non_alnum.sub('_', subtype))) if ('neg', False) in VALS: if gp_between(row.gene_wordidxs, row.pheno_wordidxs, row.ners): yield r._replace(name='NEG_GP_BETWEEN') yield r._replace(name='DEFAULT_FEATURE') non_alnum = re.compile('[\W_]+') def create_supervised_relation(row, SR, HF): gene_wordidxs = row.gene_wordidxs gene_is_correct = row.gene_is_correct pheno_entity = row.pheno_entity pheno_wordidxs = row.pheno_wordidxs pheno_is_correct = row.pheno_is_correct gene = row.gene_name pheno = ' '.join([row.words[i] for i in row.pheno_wordidxs]) phrase = ' '.join(row.words) lemma_phrase = ' '.join(row.lemmas) b = sorted([gene_wordidxs[0], gene_wordidxs[-1], pheno_wordidxs[0], pheno_wordidxs[-1]])[1:-1] assert b[0] + 1 < len(row.words), str((b[0] + 1, len(row.words), row.doc_id, row.section_id, row.sent_id, str(row.words))) assert b[1] < len(row.words), str((b[1], len(row.words), row.doc_id, row.section_id, row.sent_id, str(row.words))) between_phrase = ' '.join(row.words[i] for i in range(b[0] + 1, b[1])) between_phrase_lemmas = ' '.join(row.lemmas[i] for i in range(b[0] + 1, b[1])) dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words, max_path_len=HF['max-dep-path-dist']) r = Feature(row.doc_id, row.section_id, row.relation_id, None) path_len_sets = dep_dag.path_len_sets(gene_wordidxs, pheno_wordidxs) if not path_len_sets: if SR.get('bad-dep-paths'): yield r._replace(name='BAD_OR_NO_DEP_PATH') dep_path_between = dep_dag.min_path_sets(gene_wordidxs, pheno_wordidxs) if dep_dag else None if SR.get('g-or-p-false'): if gene_is_correct == False or pheno_is_correct == False: yield r._replace(name='G_ANDOR_P_FALSE_%s_%s' % (str(gene_is_correct), str(pheno_is_correct))) if SR.get('adjacent-false'): if re.search(r'[a-z]{3,}', between_phrase, flags=re.I) is None: st = non_alnum.sub('_', between_phrase) yield r._replace(name='G_P_ADJACENT_%s' % st) gene_name = row.gene_name VALS = [('neg', False)] for rv in config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, \ lemma_phrase, between_phrase_lemmas, dep_dag, \ dep_path_between, gene_wordidxs, VALS, SR): yield rv VALS = [('pos', True)] for rv in config_supervise(r, row, pheno_entity, gene_name, gene, pheno, phrase, between_phrase, \ lemma_phrase, between_phrase_lemmas, dep_dag, \ dep_path_between, gene_wordidxs, VALS, SR): yield rv def featurize(supervision_rules, hard_filters): for line in sys.stdin: row = parser.parse_tsv_row(line) for rv in create_supervised_relation(row, SR=supervision_rules, HF=hard_filters): util.print_tsv_output(rv) if __name__ == '__main__': sr = config.GENE_PHENO_CAUSATION['SR'] hf = config.GENE_PHENO_CAUSATION['HF'] featurize(sr, hf)
dd-genomics-master
code/genepheno_extract_features2.py
#!/usr/bin/env python from collections import defaultdict, namedtuple import sys import re import os import random from itertools import chain import extractor_util as util import data_util as dutil import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('pa_abbrevs', 'text[]'), ('pheno_entities', 'text[]'), ('pa_section_ids', 'text[]'), ('pa_sent_ids', 'int[]')]) ExpandedRow = namedtuple('ExpandedRow', [ 'doc_id', 'section_id', 'sent_id', 'words', 'lemmas', 'poses', 'ners', 'pa_abbrev', 'pheno_entity', 'pa_section_id', 'pa_sent_id']) # This defines the output Mention object Mention = namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'entity', 'words', 'is_correct']) def expand_array_rows(array_row): for i, pa_abbrev in enumerate(array_row.pa_abbrevs): row = ExpandedRow(doc_id = array_row.doc_id, section_id = array_row.section_id, sent_id = array_row.sent_id, words = array_row.words, lemmas = array_row.lemmas, poses = array_row.poses, ners = array_row.ners, pa_abbrev = pa_abbrev, pheno_entity = array_row.pheno_entities[i], pa_section_id = array_row.pa_section_ids[i], pa_sent_id = array_row.pa_sent_ids[i]) yield row ### CANDIDATE EXTRACTION ### SR = config.PHENO_ACRONYMS['SR'] def extract_candidate_mentions(row): """Extracts candidate phenotype mentions from an input row object""" mentions = [] for i, word in enumerate(row.words): if word == row.pa_abbrev: mention_id = '%s_%s_%d_%d' % \ (row.doc_id, \ row.section_id, \ row.sent_id, \ i) subtype = '%s_%s_%d_%s' % (row.doc_id, row.pa_section_id, row.pa_sent_id, row.pa_abbrev) m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i], mention_id, "ABBREV", subtype, row.pheno_entity, [word], True) mentions.append(m) return mentions def generate_rand_negatives(row, pos, neg): mentions = [] for i, word in enumerate(row.words): if neg >= pos: break if word == row.pa_abbrev: continue if word.isupper() and word.strip() != '-LRB-' and word.strip() != '-RRB-': mention_id = '%s_%s_%d_%d' % \ (row.doc_id, \ row.section_id, \ row.sent_id, \ i) subtype = '%s_%s_%d_%s' % (row.doc_id, row.pa_section_id, row.pa_sent_id, row.pa_abbrev) m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i], mention_id, 'ABBREV_RAND_NEG', subtype, None, [word], False) neg += 1 return mentions if __name__ == '__main__': onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) pos = 0 neg = 0 # Read TSV data in as Row objects for line in sys.stdin: array_row = parser.parse_tsv_row(line) abbrevs = set() for row in expand_array_rows(array_row): if row.pa_abbrev in abbrevs: continue abbrevs.add(row.pa_abbrev) # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # find candidate mentions & supervise mentions = extract_candidate_mentions(row) pos += len(mentions) if SR.get('rand-negs'): negs = generate_rand_negatives(row, pos, neg) neg += len(negs) mentions.extend(negs) # print output for mention in mentions: util.print_tsv_output(mention) #!/usr/bin/env python
dd-genomics-master
code/pheno_acronyms_to_mentions.py
#!/usr/bin/env python import collections import extractor_util as util import data_util as dutil import dep_util as deps import os import random import re import sys import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('gene_mention_id', 'text'), ('gene_name', 'text'), ('gene_wordidxs', 'int[]'), ('gene_is_correct', 'boolean'), ('pheno_mention_id', 'text'), ('pheno_entity', 'text'), ('pheno_wordidxs', 'int[]'), ('pheno_is_correct', 'boolean')]) # This defines the output Relation object Relation = collections.namedtuple('Relation', [ 'dd_id', 'relation_id', 'doc_id', 'section_id', 'sent_id', 'gene_mention_id', 'gene_name', 'gene_wordidxs', 'gene_is_correct', 'pheno_mention_id', 'pheno_entity', 'pheno_wordidxs', 'pheno_is_correct']) ### CANDIDATE EXTRACTION ### def extract_candidate_relations(row): """ Given a row object having a sentence and some associated N gene and M phenotype mention candidates, pick a subset of the N*M possible gene-phenotype relations to return as candidate relations """ HF = config.GENE_PHENO['HF'] relations = [] # Create a dependencies DAG for the sentence dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words, max_path_len=HF['max-dep-path-dist']) # Go through the G-P pairs in the sentence, which are passed in serialized format pairs = [] rid = '%s_%s' % (row.gene_mention_id, row.pheno_mention_id) r = Relation(None, rid, row.doc_id, row.section_id, row.sent_id, \ row.gene_mention_id, row.gene_name, \ row.gene_wordidxs, row.gene_is_correct, \ row.pheno_mention_id, row.pheno_entity, \ row.pheno_wordidxs, row.pheno_is_correct) # Do not consider overlapping mention pairs if len(set(r.gene_wordidxs).intersection(r.pheno_wordidxs)) > 0: return [] # Get the min path length between any of the g / p phrase words d = dep_dag.path_len_sets(r.gene_wordidxs, r.pheno_wordidxs) if d is not None: if d > HF['max-dep-path-dist']: return [] return [r] if __name__ == '__main__': for line in sys.stdin: row = parser.parse_tsv_row(line) # find candidate mentions relations = extract_candidate_relations(row) # print output for relation in relations: util.print_tsv_output(relation)
dd-genomics-master
code/genepheno_extract_candidates.py
#!/usr/bin/env python import collections import os import sys import abbreviations import config import extractor_util as util import levenshtein CACHE = dict() # Cache results of disk I/O # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('gene_wordidx_array', 'int[]')]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'short_wordidxs', 'long_wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'abbrev_word', 'definition_words', 'is_correct']) ### CANDIDATE EXTRACTION ### # HF = config.NON_GENE_ACRONYMS['HF'] SR = config.NON_GENE_ACRONYMS['SR'] def contains_sublist(lst, sublst): if len(lst) < len(sublst): return False, None n = len(sublst) for i in xrange(len(lst) - n + 1): if sublst == lst[i:i+n]: return True, (i,i+n) return False, None def detect_manual(words, gene_idx): gene_name = words[gene_idx] manual_pairs = SR['manual-pairs'] rv = [] for names in manual_pairs: definitions = manual_pairs[names] if gene_name in names: for definition in definitions: def_lst = [d.lower() for d in definition.split(' ')] contains, def_boundaries = contains_sublist([w.lower() for w in words], def_lst) if contains: # print >>sys.stderr, (contains, def_boundaries, def_lst) def_start, def_stop = def_boundaries definition = words[def_start:def_stop] abbrev = gene_name abbrev_start = gene_idx abbrev_stop = gene_idx + 1 rv.append(((abbrev_start, abbrev_stop, abbrev), (def_start, def_stop, definition))) return rv def extract_candidate_mentions(row, pos_count, neg_count): mentions = [] if abbreviations.conditions(row.words[row.gene_wordidx]): for (is_correct, abbrev, definition, detector_message) in abbreviations.getabbreviations(row.words, abbrev_index=row.gene_wordidx): m = create_supervised_mention(row, is_correct, abbrev, definition, detector_message, pos_count, neg_count) if m: mentions.append(m) for (abbrev, definition) in detect_manual(row.words, row.gene_wordidx): m = create_supervised_mention(row, True, abbrev, definition, 'MANUAL', pos_count, neg_count) if m: mentions.append(m) return mentions ### DISTANT SUPERVISION ### VALS = config.NON_GENE_ACRONYMS['vals'] def create_supervised_mention(row, is_correct, (start_abbrev, stop_abbrev, abbrev), (start_definition, stop_definition, definition), detector_message, pos_count, neg_count): assert stop_abbrev == start_abbrev + 1 mid = '%s_%s_%s_%s' % (row.doc_id, row.section_id, row.sent_id, start_abbrev) gene_to_full_name = CACHE['gene_to_full_name'] include = None if is_correct: # JB: super ugly, who cards if detector_message == 'MANUAL': m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i for i in xrange(start_abbrev, stop_abbrev + 1)], [i for i in xrange(start_definition, stop_definition + 1)], mid, 'MANUAL', None, abbrev, definition, is_correct); return m supertype = 'TRUE_DETECTOR' subtype = None elif is_correct is False: supertype = 'FALSE_DETECTOR' subtype = detector_message else: supertype = 'DETECTOR_OMITTED_SENTENCE' subtype = None include = False # print >>sys.stderr, supertype if is_correct and include is not False: if abbrev in gene_to_full_name: full_gene_name = gene_to_full_name[abbrev] ld = levenshtein.levenshtein(full_gene_name.lower(), ' '.join(definition).lower()) fgl = len(full_gene_name) dl = len(' '.join(definition)) if dl >= fgl*0.75 and dl <= fgl*1.25 and float(ld) \ / len(' '.join(definition)) <= SR['levenshtein_cutoff']: is_correct = False supertype = 'FALSE_DEFINITION_IS_GENE_FULL' # print >>sys.stderr, supertype subtype = full_gene_name + '; LD=' + str(ld) include = False if include is not False and is_correct and len(definition) == 1 and definition[0] in gene_to_full_name: is_correct = False supertype = 'FALSE_DEFINITION_IS_GENE_ABBREV' # print >>sys.stderr, supertype subtype = None if include is not False and is_correct and abbrev in SR['short-words']: is_correct = False supertype = 'FALSE_SHORT_WORD' # print >>sys.stderr, supertype subtype = None # print >>sys.stderr, (include, is_correct, neg_count, pos_count) if include is True or (include is not False and is_correct is True or (is_correct is False and neg_count < pos_count)): # we're never gonna do inference here, so why all this shit m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i for i in xrange(start_abbrev, stop_abbrev + 1)], [i for i in xrange(start_definition, stop_definition + 1)], mid, supertype, subtype, abbrev, definition, is_correct); else: m = None return m def read_gene_to_full_name(): rv = {} with open(onto_path('data/gene_names.tsv')) as f: for line in f: parts = line.split('\t') assert len(parts) == 2, parts geneAbbrev = parts[0].strip() geneFullName = parts[1].strip() ':type geneFullName: str' geneFullName = geneFullName.replace('(', '-LRB-') geneFullName = geneFullName.replace(')', '-RRB-') assert geneAbbrev not in rv, geneAbbrev rv[geneAbbrev] = geneFullName return rv if __name__ == '__main__': # load static data onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) CACHE['gene_to_full_name'] = read_gene_to_full_name() # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... pos_count = 0 neg_count = 0 for line in sys.stdin: row = parser.parse_tsv_row(line) #Specific to ddlog, add two conditions that are not possible directly in the sql query. row.gene_wordidx = row.gene_wordidx_array[0] # print >> sys.stderr, 'patate' # print >> sys.stderr, row if '-LRB-' not in row.words[row.gene_wordidx - 1]: continue # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # Find candidate mentions & supervise mentions = extract_candidate_mentions(row, pos_count, neg_count) pos_count += len([m for m in mentions if m.is_correct]) neg_count += len([m for m in mentions if m.is_correct is False]) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/non_gene_acronyms_extract_candidates.py
#! /usr/bin/env python import collections import extractor_util as eutil import sys from dep_alignment.alignment_util import row_to_canonical_match_tree, DepParentsCycleException, OverlappingCandidatesException, RootException from dep_alignment.multi_dep_alignment import MultiDepAlignment import os import random import time # This defines the Row object that we read in to the extractor parser = eutil.RowParser([ ('relation_id', 'text'), ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('gene_mention_id', 'text'), ('gene_name', 'text'), ('gene_wordidxs', 'int[]'), ('gene_is_correct', 'boolean'), ('pheno_mention_id', 'text'), ('pheno_entity', 'text'), ('pheno_wordidxs', 'int[]'), ('pheno_is_correct', 'boolean'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('ners', 'text')]) ds_parser = eutil.RowParser([ ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('gene_wordidxs', 'int[]'), ('pheno_wordidxs', 'int[]')]) # This defines the output Relation object Relation = collections.namedtuple('Relation', [ 'dd_id', 'relation_id', 'doc_id', 'section_id', 'sent_id', 'gene_mention_id', 'gene_name', 'gene_wordidxs', 'pheno_mention_id', 'pheno_entity', 'pheno_wordidxs', 'is_correct', 'relation_supertype', 'relation_subtype', 'features', 'matching_scores', 'rescores']) def read_candidate(row): gene_mention_id = row.gene_mention_id gene_name = row.gene_name gene_wordidxs = row.gene_wordidxs pheno_mention_id = row.pheno_mention_id pheno_entity = row.pheno_entity pheno_wordidxs = row.pheno_wordidxs relation_id = '%s_%s' % (gene_mention_id, pheno_mention_id) r = Relation(None, relation_id, row.doc_id, row.section_id, row.sent_id, gene_mention_id, gene_name, \ gene_wordidxs, pheno_mention_id, pheno_entity, pheno_wordidxs, None, None, None, [], None, None) return r def get_example_tree(example_sentences_filename, synonyms): app_home = os.environ['APP_HOME'] match_trees = [] with open(app_home + '/' + example_sentences_filename) as f: for line in f: row = ds_parser.parse_tsv_row(line) try: match_trees.append(row_to_canonical_match_tree(row, [row.gene_wordidxs, row.pheno_wordidxs])) except (DepParentsCycleException, OverlappingCandidatesException, RootException): continue mt_root1, match_tree1 = match_trees[0] for mt_root0, match_tree0 in match_trees[1:]: mda = MultiDepAlignment(mt_root0, match_tree0, mt_root1, match_tree1, 2, synonyms) mt_root1, match_tree1 = mda.get_match_tree() return mt_root1, match_tree1 def print_example_tree(example_sentences_filename, synonyms): app_home = os.environ['APP_HOME'] match_trees = [] with open(app_home + '/' + example_sentences_filename) as f: for line in f: row = ds_parser.parse_tsv_row(line) try: match_trees.append(row_to_canonical_match_tree(row, [row.gene_wordidxs, row.pheno_wordidxs])) except (DepParentsCycleException, OverlappingCandidatesException, RootException): continue mt_root1, match_tree1 = match_trees[0] for mt_root0, match_tree0 in match_trees[1:]: mda = MultiDepAlignment(mt_root0, match_tree0, mt_root1, match_tree1, 2, synonyms) mt_root1, match_tree1 = mda.get_match_tree() mda.print_match_tree(sys.stderr) def get_score(genepheno_row, example_tree_root, example_tree, synonyms, rescores): row = genepheno_row try: mt_root2, match_tree2 = row_to_canonical_match_tree(row, [row.gene_wordidxs, row.pheno_wordidxs]) assert len(match_tree2) <= len(row.words) + 1, (len(row.words), len(match_tree2), row.words, match_tree2) except (DepParentsCycleException, OverlappingCandidatesException, RootException): return -1, -1 mda = MultiDepAlignment(example_tree_root, example_tree, mt_root2, match_tree2, 2, synonyms) score1 = mda.overall_score() score2 = mda.rescore(rescores) return score1, score2 if __name__ == '__main__': app_home = os.environ['APP_HOME'] match_trees = [] with open(app_home + '/match_paths/match_paths%d.txt' % random.randint(0, 100000), 'a') as match_path_file: with open(app_home + '/true_causation_sentences1.tsv') as f: for line in f: row = ds_parser.parse_tsv_row(line) try: match_trees.append(row_to_canonical_match_tree(row, [row.gene_wordidxs, row.pheno_wordidxs])) except (DepParentsCycleException, OverlappingCandidatesException, RootException): continue mt_root1, match_tree1 = match_trees[0] for mt_root0, match_tree0 in match_trees[1:]: # for i, mc in enumerate(match_tree1): # print >>sys.stderr, str(i+1) + ": " + str(mc) mda = MultiDepAlignment(mt_root0, match_tree0, mt_root1, match_tree1, 2, \ [set(['disease', 'disorder']), \ set(['mutation', 'variant', 'allele', 'polymorphism']), \ set(['case', 'patient', 'subject', 'family', 'boy', 'girl']), \ set(['present', 'display', 'characterize']), \ set(['nonsense', 'missense', 'frameshift']), \ set(['identify', 'report', 'find', 'detect']), \ set(['cause', 'associate', 'link', 'lead']), set(['mutation', 'inhibition']), \ set(['recessive', 'dominant'])]) mt_root1, match_tree1 = mda.get_match_tree() # mt_root1, match_tree1 = match_trees[0] mda.print_match_tree(match_path_file) lc = 0 start_time = time.time() for line in sys.stdin: lc += 1 row = parser.parse_tsv_row(line) if row.gene_is_correct == False or row.pheno_is_correct == False: continue try: mt_root2, match_tree2 = row_to_canonical_match_tree(row, [row.gene_wordidxs, row.pheno_wordidxs]) assert len(match_tree2) <= len(row.words) + 1, (len(row.words), len(match_tree2), row.words, match_tree2) except (DepParentsCycleException, OverlappingCandidatesException, RootException): continue matching_scores = [] rescores = [] # for (mt_root1, match_tree1) in match_trees: mda = MultiDepAlignment(mt_root1, match_tree1, mt_root2, match_tree2, 2, \ [set(['disease', 'disorder']), \ set(['mutation', 'variant', 'allele', 'polymorphism', \ 'SNP', 'truncation', 'deletion', 'duplication']), \ set(['case', 'patient']), \ set(['identify', 'report', 'find', 'detect']), \ set(['cause', 'associate', 'link', 'lead', 'result']), set(['mutation', 'inhibition', 'deficiency'])]) # mda.print_matched_lemmas(match_path_file) print >>match_path_file, ' '.join(row.words) mda.print_match_tree(match_path_file) score1 = mda.overall_score() score2 = mda.rescore([(set(['cause', 'lead', 'result']), set(['associate', 'link']), -50), (set(['mutation']), set(['inhibition', 'deficiency']), -50)]) r = read_candidate(row) matching_scores.append(int(score1)) rescores.append(int(score1 + score2)) # end for eutil.print_tsv_output(r._replace(matching_scores=matching_scores, rescores=rescores)) end_time = time.time() if lc != 0: print >>sys.stderr, "Number of lines: %d, time per line: %f seconds" % (lc, (end_time - start_time) / (float(lc)))
dd-genomics-master
code/genepheno_sv_new.py
#! /usr/bin/env python import sys import config import genepheno_supervision_util as sv if __name__ == '__main__': sr = config.GENE_PHENO_CAUSATION['SR'] hf = config.GENE_PHENO_CAUSATION['HF'] sv.supervise(sr, hf, charite_allowed=True)
dd-genomics-master
code/genepheno_causation_supervision.py
#! /usr/bin/env python import sys import config import genepheno_supervision_util as sv if __name__ == '__main__': sr = config.GENE_PHENO_CAUSATION['SR'] hf = config.GENE_PHENO_CAUSATION['HF'] sv.supervise(sr, hf, charite_allowed=False)
dd-genomics-master
code/genepheno_causation_supervision_no_charite.py
#!/usr/bin/env python from collections import defaultdict, namedtuple import sys import re import os import random from itertools import chain import extractor_util as util import data_util as dutil import config onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]')]) # This defines the output Mention object Mention = namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'entity', 'words', 'is_correct']) ### CANDIDATE EXTRACTION ### HF = config.PHENO['HF'] SR = config.PHENO['SR'] def enrich_phenos(rows): ret = [] for row in rows: hpoid, phrase, entry_type = [x.strip() for x in row] ret.append([hpoid, phrase, entry_type]) new_pheno = '' if phrase.lower().startswith('abnormality of the'): new_pheno = (phrase[len('abnormality of the ') + 1:]).strip() if phrase.lower().startswith('abnormality of'): new_pheno = (phrase[len('abnormality of') + 1:]).strip() if phrase.lower().startswith('abnormal'): new_pheno = (phrase[len('abnormal') + 1:]).strip() if len(new_pheno) > 0: if len(new_pheno.split()) > 1: ret.append([hpoid, new_pheno, 'MORPHED']) aplasias = ['abnormality', 'abnormalities', 'physiology', \ 'morphology', 'dysplasia', 'hypoplasia', 'aplasia', \ 'hyperplasia'] next_pheno = new_pheno for aplasia in aplasias: if new_pheno.endswith(aplasia): next_pheno = (new_pheno[:-len(aplasia)]).strip() for aplasia in aplasias: ret.append([hpoid, next_pheno + ' ' + aplasia, 'MORPHED']) new_ret = [] for row in ret: hpoid, pheno, entry_type = [x.strip() for x in row] words = pheno.split() for word in words: # just assuming that only one slash occurs per line if '/' in word: nword = [] nword.append(word.split('/')[0]) nword.append(word.split('/')[1]) new_pheno = pheno.replace(word, nword[0]) new_pheno = pheno.replace(word, nword[1]) new_ret.append([hpoid, new_pheno, 'SLASHED']) ret = ret + new_ret return ret def load_pheno_terms(): phenos = {} pheno_sets = {} """ Load phenotypes (as phrases + as frozensets to allow permutations) Output a dict with pheno phrases as keys, and a dict with pheno sets as keys """ # [See onto/prep_pheno_terms.py] # Note: for now, we don't distinguish between lemmatized / exact rows = [line.split('\t') for line in open(onto_path('manual/pheno_terms.tsv'), 'rb')] rows = enrich_phenos(rows) for row in rows: hpoid, phrase, entry_type = [x.strip() for x in row] if hpoid in hpo_phenos: if phrase in phenos: phenos[phrase].append((hpoid, entry_type)) else: phenos[phrase] = [(hpoid, entry_type)] phrase_bow = frozenset(phrase.split()) if phrase_bow in pheno_sets: pheno_sets[phrase_bow].append((hpoid, entry_type)) else: pheno_sets[phrase_bow] = [(hpoid, entry_type)] return phenos, pheno_sets allowed_diseases = [line.strip() for line in open(onto_path('manual/allowed_omim_ps.tsv'))] def load_disease_terms(): diseases = {} disease_sets = {} rows = [line.split('\t') for line in open(onto_path('manual/disease_terms.tsv'), 'rb')] for row in rows: omimid, phrase, entry_type = [x.strip() for x in row] if omimid in allowed_diseases: if phrase in diseases: diseases[phrase].append((omimid, entry_type)) else: diseases[phrase] = [(omimid, entry_type)] phrase_bow = frozenset(phrase.split()) if phrase_bow in disease_sets: disease_sets[phrase_bow].append((omimid, entry_type)) else: disease_sets[phrase_bow] = [(omimid, entry_type)] return diseases, disease_sets def keep_word(w): return (w.lower() not in STOPWORDS and len(w) > HF['min-word-len'] - 1) def extract_candidate_mentions(row, terms, term_sets): """Extracts candidate phenotype mentions from an input row object""" mentions = [] # First we initialize a list of indices which we 'split' on, # i.e. if a window intersects with any of these indices we skip past it split_indices = set() # split on certain characters / words e.g. commas split_indices.update([i for i,w in enumerate(row.words) if w in HF['split-list']]) # split on segments of more than M consecutive skip words seq = [] for i,w in enumerate(row.words): if not keep_word(w): seq.append(i) else: if len(seq) > HF['split-max-stops']: split_indices.update(seq) seq = [] # Next, pass a window of size n (dec.) over the sentence looking for candidate mentions for n in reversed(range(1, min(len(row.words), HF['max-len'])+1)): for i in range(len(row.words)-n+1): wordidxs = range(i,i+n) words = [re.sub(r'\W+', ' ', w.lower()) for w in row.words[i:i+n]] lemmas = [re.sub(r'\W+', ' ', w.lower()) for w in row.lemmas[i:i+n]] # skip this window if it intersects with the split set if not split_indices.isdisjoint(wordidxs): continue # skip this window if it is sub-optimal: e.g. starts with a skip word, etc. if not all(map(keep_word, [words[0], lemmas[0], words[-1], lemmas[-1]])): continue # Note: we filter stop words coordinated between word and lemma lists # (i.e. if lemmatized version of a word is stop word, it should be stop word too) # This also keeps these filtered lists in sync! ws, lws = zip(*[(words[k], lemmas[k]) for k in range(n) if keep_word(words[k]) and keep_word(lemmas[k])]) # (1) Check for exact match (including exact match of lemmatized / stop words removed) # If found add to split list so as not to consider subset phrases p, lp = map(' '.join, [ws, lws]) if p in terms or lp in terms: entities = terms[p] if p in terms else terms[lp] for (entity, entry_type) in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, entry_type + '_EXACT')) split_indices.update(wordidxs) continue # (2) Check for permuted match # Note: avoid repeated words here! if HF['permuted']: ps, lps = map(frozenset, [ws, lws]) if (len(ps)==len(ws) and ps in term_sets) or (len(lps)==len(lws) and lps in term_sets): entities = term_sets[ps] if ps in term_sets else term_sets[lps] for (entity, entry_type) in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, entry_type + '_PERM')) continue # (3) Check for an exact match with one ommitted (interior) word/lemma # Note: only consider ommiting non-stop words! if HF['omitted-interior']: if len(ws) > 2: for omit in range(1, len(ws)-1): p, lp = [' '.join([w for i,w in enumerate(x) if i != omit]) for x in [ws, lws]] if p in terms or lp in terms: entities = terms[p] if p in terms else terms[lp] for (entity, entry_type) in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, entry_type + '_OMIT_%s' % omit)) return mentions ### DISTANT SUPERVISION ### VALS = config.PHENO['vals'] def create_supervised_mention(row, idxs, entity=None, mention_supertype=None, mention_subtype=None): """Given a Row object consisting of a sentence, create & supervise a Mention output object""" words = [row.words[i] for i in idxs] idxs_strs = [str(i) for i in idxs] mid = '%s_%s_%s_%s' % (row.doc_id, row.section_id, row.sent_id, '-'.join(idxs_strs)) m = Mention(None, row.doc_id, row.section_id, row.sent_id, idxs, mid, mention_supertype, mention_subtype, entity, words, None) if SR.get('post-match'): opts = SR['post-match'] phrase_post = " ".join(row.words[idxs[-1]:]) for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(phrase_post, opts[name], opts['%s-rgx' % name], opts[name], opts['%s-rgx' % name], flags=re.I) if match: return m._replace(is_correct=val, mention_supertype='%s_POST_MATCH_%s_%s' % (mention_supertype, name, val), mention_subtype=match) if SR.get('bad-pheno-names'): if ' '.join(words) in SR['bad-pheno-names']: return m._replace(is_correct=False, mention_supertype='%s_BAD_PHENO_NAME' % mention_supertype) if SR.get('bad-phenos'): if entity in SR['bad-phenos']: return m._replace(is_correct=False, mention_supertype='%s_BAD_PHENO_ENTITY' % mention_supertype) if SR.get('mesh-supervise'): pubmed_id = dutil.get_pubmed_id_for_doc(row.doc_id) if pubmed_id and pubmed_id in PMID_TO_HPO: if entity in PMID_TO_HPO[pubmed_id]: return m._replace(is_correct=True, mention_supertype='%s_MESH_SUPERV' % mention_supertype, mention_subtype=str(pubmed_id) + ' ::: ' + str(entity)) # If this is more specific than MeSH term, also consider true. elif SR.get('mesh-specific-true') and entity in hpo_dag.node_set: for parent in PMID_TO_HPO[pubmed_id]: if hpo_dag.has_child(parent, entity): return m._replace(is_correct=True, mention_supertype='%s_MESH_CHILD_SUPERV' % mention_supertype, mention_subtype=str(parent) + ' -> ' + str(entity)) phrase = " ".join(words).lower() if mention_supertype == 'EXACT': if SR.get('exact-english-word') and \ len(words) == 1 and phrase in ENGLISH_WORDS and random.random() < SR['exact-english-word']['p']: return m._replace(is_correct=True, mention_supertype='%s_EXACT_AND_ENGLISH_WORD' % mention_supertype, mention_subtype=phrase) else: return m._replace(is_correct=True, mention_supertype='%s_NON_EXACT_AND_ENGLISH_WORD' % mention_supertype, mention_subtype=phrase) # Else default to existing values / NULL return m ### RANDOM NEGATIVE SUPERVISION ### def generate_rand_negatives(s, candidates): """Generate some negative examples in 1:1 ratio with positive examples""" negs = [] n_negs = len([c for c in candidates if c.is_correct]) if n_negs == 0: return negs # pick random noun / adj phrases which do not overlap with candidate mentions covered = set(chain.from_iterable([m.wordidxs for m in candidates])) idxs = set([i for i in range(len(s.words)) if re.match(SR['rand-negs']['pos-tag-rgx'], s.poses[i])]) for i in range(n_negs): x = sorted(list(idxs - covered)) if len(x) == 0: break ridxs = [random.randint(0, len(x)-1)] while random.random() > 0.5: j = ridxs[-1] if j + 1 < len(x) and x[j+1] == x[j] + 1: ridxs.append(j+1) else: break wordidxs = [x[j] for j in ridxs] mtype = 'RAND_NEG' wordidxs_strs = [str(i) for i in wordidxs] mid = '%s_%s_%s_%s' % (s.doc_id, s.section_id, str(s.sent_id), '-'.join(wordidxs_strs)) negs.append( Mention(dd_id=None, doc_id=s.doc_id, section_id=s.section_id, sent_id=s.sent_id, wordidxs=wordidxs, mention_id=mid, mention_supertype=mtype, mention_subtype=None, entity=None, words=[s.words[i] for i in wordidxs], is_correct=False)) for i in wordidxs: covered.add(i) return negs if __name__ == '__main__': # Load static dictionaries # TODO: any simple ways to speed this up? STOPWORDS = frozenset([w.strip() for w in open(onto_path('manual/stopwords.tsv'), 'rb')]) ENGLISH_WORDS = frozenset([w.strip() for w in open(onto_path('data/english_words.tsv'), 'rb')]) hpo_dag = dutil.read_hpo_dag() hpo_phenos = set(dutil.get_hpo_phenos(hpo_dag)) if SR.get('mesh-supervise'): # unnecessary and hope it will never be used again --- our doc id is the pmid currently # DOI_TO_PMID = dutil.read_doi_to_pmid() PMID_TO_HPO = dutil.load_pmid_to_hpo() PHENOS, PHENO_SETS = load_pheno_terms() DISEASES, DISEASE_SETS = load_disease_terms() # Read TSV data in as Row objects for line in sys.stdin: row = parser.parse_tsv_row(line) # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # find candidate mentions & supervise disease_mentions = extract_candidate_mentions(row, DISEASES, DISEASE_SETS) pheno_mentions = extract_candidate_mentions(row, PHENOS, PHENO_SETS) dwi = [d.wordidxs for d in disease_mentions] pheno_mentions_2 = [] for p in pheno_mentions: if p.wordidxs not in dwi: pheno_mentions_2.append(p) mentions = disease_mentions + pheno_mentions_2 if SR.get('rand-negs'): mentions += generate_rand_negatives(row, mentions) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/pheno_extract_candidates.py
#!/usr/bin/env python import collections import extractor_util as util import data_util as dutil import random import re import os import sys import string import config import dep_util as deps CACHE = dict() # Cache results of disk I/O # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]')]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'mapping_type', 'mention_supertype', 'mention_subtype', 'gene_name', 'words', 'is_correct']) ### CANDIDATE EXTRACTION ### HF = config.GENE['HF'] SR = config.GENE['SR'] def read_pubmed_to_genes(): """NCBI provides a list of articles (PMIDs) that discuss a particular gene (Entrez IDs). These provide a nice positive distant supervision set, as mentions of a gene name in an article about that gene are likely to be true mentions. This returns a dictionary that maps from Pubmed ID to a set of ENSEMBL genes mentioned in that article. """ pubmed_to_genes = collections.defaultdict(set) with open('%s/onto/data/pmid_to_ensembl.tsv' % util.APP_HOME) as f: for line in f: pubmed,gene = line.rstrip('\n').split('\t') pubmed_to_genes[pubmed].add(gene) return pubmed_to_genes def select_mapping_type(mapping_types): mapping_order = HF['ensembl-mapping-types'] for m in mapping_order: if m in mapping_types: return m assert False, ','.join(mapping_types) def extract_candidate_mentions(row): gene_name_to_genes = CACHE['gene_name_to_genes'] mentions = [] for i, word in enumerate(row.words): if HF['require-one-letter']: if not re.match(r'.*[a-zA-Z].*', word): continue if (word in gene_name_to_genes): matches = gene_name_to_genes[word] mapping_types = set() for (eid, canonical_name, mapping_type) in matches: mapping_types.add(mapping_type) mapping_type = select_mapping_type(mapping_types) if len(word) >= HF['min-word-len'][mapping_type]: m = create_supervised_mention(row, i, gene_name=word, mapping_type=mapping_type) if m: mentions.append(m) return mentions def contains_sublist(lst, sublst): if len(lst) < len(sublst): return False, None n = len(sublst) for i in xrange(len(lst) - n + 1): if sublst == lst[i:i+n]: return True, (i,i+n) return False, None def detect_manual(gene_name, words): manual_pairs = SR['manual-bad'] for names in manual_pairs: definitions = manual_pairs[names] if gene_name in names: for definition in definitions: def_lst = [d.lower() for d in definition.split(' ')] contains, def_boundaries = contains_sublist([w.lower() for w in words], def_lst) if contains: def_start, def_stop = def_boundaries definition = words[def_start:def_stop] return ' '.join(definition) return None ### DISTANT SUPERVISION ### VALS = config.GENE['vals'] def create_supervised_mention(row, i, gene_name=None, mapping_type=None, mention_supertype=None, mention_subtype=None): """Given a Row object consisting of a sentence, create & supervise a Mention output object""" word = row.words[i] mid = '%s_%s_%s_%s' % (row.doc_id, row.section_id, row.sent_id, i) m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i], mid, mapping_type, mention_supertype, mention_subtype, gene_name, [word], None) dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words) phrase = ' '.join(row.words) lemma_phrase = ' '.join(row.lemmas) if SR.get('post-neighbor-match') and i < len(row.words) - 1: opts = SR['post-neighbor-match'] post_neighbor = row.words[i+1] for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(post_neighbor, opts[name], opts['%s-rgx' % name], opts[name], opts['%s-rgx' % name], flags=re.I) if match: return m._replace(is_correct=val, mention_supertype='POST_MATCH_%s_%s' % (name, val), mention_subtype=match) if SR.get('bad-genes'): if i > 0: prev_word = row.words[i-1] else: prev_word = '' if i < len(row.words) - 1: next_word = row.words[i+1] else: next_word = '' if next_word != 'gene' and prev_word != 'gene': for bad_gene in SR['bad-genes']: if re.search(bad_gene, gene_name): return m._replace(is_correct=False, mention_supertype='BAD_GENE') if SR.get('manual-bad'): detected = detect_manual(gene_name, row.words) if detected is not None: return m._replace(is_correct=False, mention_supertype='MANUAL_BAD', mention_subtype=detected) if SR.get('pre-neighbor-match') and i > 0: opts = SR['pre-neighbor-match'] pre_neighbor = row.words[i-1] for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(pre_neighbor, opts[name], opts['%s-rgx' % name], opts[name], opts['%s-rgx' % name], flags=re.I) if match: return m._replace(is_correct=val, mention_supertype='PRE_NEIGHBOR_MATCH_%s_%s' % (name, val), mention_subtype=match) if SR.get('phrases-in-sent'): opts = SR['phrases-in-sent'] for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(phrase + ' ' + lemma_phrase, opts[name], opts['%s-rgx' % name], opts[name], opts['%s-rgx' % name], flags=re.I) if match: # backslashes cause postgres errors in postgres 9 return m._replace(is_correct=val, mention_supertype='PHRASE_%s' % name, mention_subtype=match.replace('\\', '/')) ## DS RULE: matches from papers that NCBI annotates as being about the mentioned gene are likely true. if SR['pubmed-paper-genes-true']: pubmed_to_genes = CACHE['pubmed_to_genes'] pmid = dutil.get_pubmed_id_for_doc(row.doc_id) if pmid and gene_name: for (mention_ensembl_id, canonical_name, mapping_type) in CACHE['gene_name_to_genes'][gene_name]: if mention_ensembl_id in pubmed_to_genes.get(pmid, {}): return m._replace(is_correct=True, mention_supertype='%s_NCBI_ANNOTATION_TRUE' % mention_supertype, mention_subtype=mention_ensembl_id) break ## DS RULE: Genes on the gene list with complicated names are probably good for exact matches. if SR['complicated-gene-names-true']: if m.mapping_type in HF['ensembl-mapping-types']: if re.match(r'[a-zA-Z]{3}[a-zA-Z]*\d+\w*', word): return m._replace(is_correct=True, mention_supertype='COMPLICATED_GENE_NAME') if SR['all-canonical-true']: if m.mapping_type == 'CANONICAL_SYMBOL': return m._replace(is_correct=True, mention_supertype='%s_ALL_TRUE' % m.mention_supertype) if SR['all-symbols-true']: if m.mapping_type in HF['ensembl-mapping-types']: return m._replace(is_correct=True, mention_supertype='%s_ALL_TRUE' % m.mention_supertype) if SR.get('neighbor-match'): opts = SR['neighbor-match'] for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: for neighbor_idx in dep_dag.neighbors(i): neighbor = row.words[neighbor_idx] match = util.rgx_mult_search(neighbor, opts[name], opts['%s-rgx' % name], opts[name], opts['%s-rgx' % name], flags=re.I) if match: return m._replace(is_correct=val, mention_supertype='NEIGHBOR_MATCH_%s_%s' % (name, val), mention_subtype='Neighbor: ' + neighbor + ', match: ' + match) return m def get_negative_mentions(row, mentions, d, per_row_max=2): """Generate random / pseudo-random negative examples, trying to keep set approx. balanced""" negs = [] if d < 0: return negs existing_mention_idxs = [m.wordidxs[0] for m in mentions] for i, word in enumerate(row.words): if len(negs) > d or len(negs) > per_row_max: return negs # skip if an existing mention if i in existing_mention_idxs: continue # Make a template mention object- will have mention_id opt with gene_name appended mid = '%s_%s_%d_%s' % (row.doc_id, row.section_id, row.sent_id, i) m = Mention(dd_id=None, doc_id=row.doc_id, section_id=row.section_id, sent_id=row.sent_id, wordidxs=[i], mention_id=mid, mapping_type=None, mention_supertype="RANDOM_NEGATIVE",mention_subtype=None, gene_name=None, words=[word], is_correct=None) # Non-match all uppercase negative supervision if word==word.upper() and len(word)>2 and word.isalnum() and not unicode(word).isnumeric(): if random.random() < 0.01*d: negs.append(m._replace(mention_supertype='ALL_UPPER_NOT_GENE_SYMBOL', is_correct=False)) # Random negative supervision elif random.random() < 0.005*d: negs.append(m._replace(mention_supertype='RAND_WORD_NOT_GENE_SYMBOL', is_correct=False)) return negs if __name__ == '__main__': # load static data CACHE['gene_name_to_genes'] = dutil.gene_symbol_to_ensembl_id_map() CACHE['pubmed_to_genes'] = read_pubmed_to_genes() # unnecessary currently b/c our doc id is the pmid, thankfully # CACHE['doi_to_pmid'] = dutil.read_doi_to_pmid() # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... pos_count = 0 neg_count = 0 for line in sys.stdin: row = parser.parse_tsv_row(line) # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # Find candidate mentions & supervise mentions = extract_candidate_mentions(row) pos_count += len([m for m in mentions if m.is_correct]) neg_count += len([m for m in mentions if m.is_correct is False]) # add negative supervision if pos_count > neg_count and SR['rand-negs']: negs = get_negative_mentions(row, mentions, pos_count - neg_count) neg_count += len(negs) mentions += negs # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/gene_extract_candidates.py
#!/usr/bin/env python import extractor_util as util import os import ddlib import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('mention_id', 'text'), ('mention_wordidxs', 'int[]')]) OPTS = config.PHENO['F'] def get_features_for_candidate(row): """Extract features for candidate mention- both generic ones from ddlib & custom features""" features = [] dds = util.create_ddlib_sentence(row) # (1) GENERIC FEATURES from ddlib span = ddlib.Span(begin_word_id=row.mention_wordidxs[0], length=len(row.mention_wordidxs)) features += [(row.doc_id, row.section_id, row.mention_id, feat) \ for feat in ddlib.get_generic_features_mention(dds, span)] # (2) Add the closest verb by raw distance if OPTS.get('closest-verb'): verb_idxs = [i for i,p in enumerate(row.poses) if p.startswith("VB")] if len(verb_idxs) > 0: dists = filter(lambda d : d[0] > 0, \ [(min([abs(i-j) for j in row.mention_wordidxs]), i) for i in verb_idxs]) if len(dists) > 0: verb = row.lemmas[min(dists)[1]] features.append((row.doc_id, row.section_id, row.mention_id, 'NEAREST_VERB_[%s]' % (verb,))) return features # Load in manually defined keywords onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) if __name__ == '__main__': if OPTS.get('sentence-kws'): ddlib.load_dictionary(onto_path('manual/pheno_sentence_keywords.tsv'), dict_id='pheno_kws') util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_candidate)
dd-genomics-master
code/pheno_extract_features.py
#!/usr/bin/env python import collections import extractor_util as util import data_util as dutil import dep_util as deps import os import random import re import sys import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('gene_section_id', 'text'), ('gene_sent_id', 'int'), ('variant_section_id', 'text'), ('variant_sent_id', 'int'), ('gene_words', 'text[]'), ('gene_lemmas', 'text[]'), ('gene_poses', 'text[]'), ('gene_dep_paths', 'text[]'), ('gene_dep_parents', 'int[]'), ('variant_words', 'text[]'), ('variant_lemmas', 'text[]'), ('variant_poses', 'text[]'), ('variant_dep_paths', 'text[]'), ('variant_dep_parents', 'int[]'), ('gene_mention_ids', 'text[]'), ('gene_names', 'text[]'), ('gene_wordidxs', 'int[][]'), ('gene_is_corrects', 'boolean[]'), ('variant_mention_ids', 'text[]'), ('variant_entities', 'text[]'), ('variant_wordidxs', 'int[][]'), ('variant_is_corrects', 'boolean[]')]) # This defines the output Relation object Relation = collections.namedtuple('Relation', [ 'dd_id', 'relation_id', 'doc_id', 'gene_section_id', 'gene_sent_id', 'variant_section_id', 'variant_sent_id', 'gene_mention_id', 'gene_name', 'gene_wordidxs', 'gene_is_correct', 'variant_mention_id', 'variant_entity', 'variant_wordidxs', 'variant_is_correct', 'is_correct', 'relation_supertype', 'relation_subtype']) ### CANDIDATE EXTRACTION ### def extract_candidate_relations(row): # HF = config.GENE_VARIANT['HF'] relations = [] # dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words, max_path_len=HF['max-dep-path-dist']) for i,gid in enumerate(row.gene_mention_ids): for j,pid in enumerate(row.variant_mention_ids): r = create_relation(row, i, j) relations.append(r) return relations def create_relation(row, i, j): gene_mention_id = row.gene_mention_ids[i] gene_name = row.gene_names[i] gene_wordidxs = row.gene_wordidxs[i] gene_is_correct = row.gene_is_corrects[i] variant_mention_id = row.variant_mention_ids[j] variant_entity = row.variant_entities[j] variant_wordidxs = row.variant_wordidxs[j] variant_is_correct = row.variant_is_corrects[j] # XXX HACK Johannes: Just set every possible variant-gene pair to true for the moment is_correct = True supertype = 'DEFAULT_EVERYTHING_TRUE' subtype = None relation_id = '%s_%s' % (gene_mention_id, variant_mention_id) r = Relation(None, relation_id, row.doc_id, row.gene_section_id, \ row.gene_sent_id, row.variant_section_id, row.variant_sent_id, \ gene_mention_id, gene_name, gene_wordidxs, \ gene_is_correct, variant_mention_id, variant_entity, \ variant_wordidxs, variant_is_correct, is_correct, supertype, subtype) return r if __name__ == '__main__': for line in sys.stdin: row = parser.parse_tsv_row(line) # find candidate mentions relations = extract_candidate_relations(row) # print output for relation in relations: util.print_tsv_output(relation)
dd-genomics-master
code/genevariant_extract_candidates.py
#!/usr/bin/env python import collections import os import sys import abbreviations import config import extractor_util as util import levenshtein import data_util as dutil CACHE = dict() # Cache results of disk I/O # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('wordidxs', 'int[]'), ('mention_ids', 'text[]'), ('supertypes', 'text[]'), ('subtypes', 'text[]'), ('entities', 'text[]'), ('words', 'text[]'), ('is_corrects', 'boolean[]'),]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'supertype', 'subtype', 'entity', 'words', 'is_correct']) hpo_dag = dutil.read_hpo_dag() def pheno_is_child_of(child_entity, parent_entity): child_parent_ids = dutil.get_parents(child_entity, hpo_dag) return parent_entity in child_parent_ids def filter_phenos(row): doc_id = None section_id = None sent_id = None wordidxs = None words = None cands = [] for i in xrange(len(row.mention_ids)): if doc_id is None: doc_id = row.doc_id assert doc_id == row.doc_id if section_id is None: section_id = row.section_id assert section_id == row.section_id if sent_id is None: sent_id = row.sent_id assert sent_id == row.sent_id if wordidxs is None: wordidxs = row.wordidxs assert wordidxs == row.wordidxs if words is None: words = row.words assert words == row.words mention_id = row.mention_ids[i] supertype = row.supertypes[i] subtype = row.subtypes[i] entity = row.entities[i] is_correct = row.is_corrects[i] current_pheno = Mention(None, doc_id, section_id, sent_id, wordidxs, mention_id, supertype, subtype, entity, words, is_correct) found = False for i in xrange(len(cands)): cand = cands[i] if pheno_is_child_of(cand.entity, current_pheno.entity): found = True break if pheno_is_child_of(current_pheno.entity, cand.entity): cands[i] = current_pheno found = True break if not found: cands.append(current_pheno) return cands if __name__ == '__main__': onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... for line in sys.stdin: row = parser.parse_tsv_row(line) # Find candidate mentions & supervise mentions = filter_phenos(row) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/pheno_mentions_remove_super_dag_phenos.py
#! /usr/bin/env python import config import sys if __name__ == "__main__": disallowed_phrases = config.PHENO['HF']['disallowed-phrases'] for line in sys.stdin: take = True for dp in disallowed_phrases: if dp in line.lower(): take = False break if take: sys.stdout.write(line)
dd-genomics-master
code/create_allowed_diseases_list.py
"""Miscellaneous shared tools for extractors.""" import os import re import sys import ddlib import traceback FIX_DEP_PARENTS = True def rgx_comp(strings=[], rgxs=[]): r = r'|'.join(re.escape(w) for w in strings) if len(rgxs) > 0: if len(strings) > 0: r += r'|' r += r'(' + r')|('.join(rgxs) + r')' return r # XXX HACK Johannes: Catching regex exceptions and then continuing is not the nicest way # but ever since I had a single regex error in the middle of a 5-hour run and the whole extractor failed # I'd rather have the thing continue with a wrong value at the single position ... def rgx_mult_search(phrase, strings, rgxs, orig_strings, orig_rgxs, flags=re.I): for i, s in enumerate(strings): try: regex = re.escape(s) if re.search(regex, phrase, flags): return orig_strings[i] except Exception: traceback.print_exc() print regex for i, s in enumerate(rgxs): try: regex = s if re.search(regex, phrase, flags): return orig_rgxs[i] except Exception: traceback.print_exc() print regex return None # HACK[Alex]: this is probably justified but a bit hackey still... def skip_row(row): """ Filter sentences dynamically which we want to skip for now uniformly across all extractors NOTE: could do this as preprocessing step but since this is a bit of a hack should be more transparent... Assumes Row object has words, poses attributes """ # Hack[Alex]: upper limit for sentences, specifically to deal w preprocessing errors if len(row.words) > 90: return True # Require that there is a verb in the sentence try: if not any(pos.startswith("VB") for pos in row.poses): return True except AttributeError: pass # Filter out by certain specific identifying tokens exclude_strings = ['http://', 'https://'] exclude_patterns = ['\w+\.(com|org|edu|gov)'] for ex in [re.escape(s) for s in exclude_strings] + exclude_patterns: for word in row.words: assert isinstance(ex, basestring), str(ex) assert isinstance(word, basestring), str(row.words) + '\n' + str(row.lemmas) + '\n' + str(word) if re.search(ex, word, re.I | re.S): return True return False APP_HOME = os.environ['GDD_HOME'] def print_error(err_string): """Function to write to stderr""" sys.stderr.write("ERROR[UDF]: " + str(err_string) + "\n") def tsv_string_to_list(s, func=lambda x : x, sep='|^|'): """Convert a TSV string from the sentences_input table to a list, optionally applying a fn to each element""" if s.strip() == "": return [] # Auto-detect separator if re.search(r'^\{|\}$', s): split = re.split(r'\s*,\s*', re.sub(r'^\{\s*|\s*\}$', '', s)) else: split = s.split(sep) # split and apply function return [func(x) for x in split] def tsv_string_to_listoflists(s, func=lambda x : x, sep1='|^|', sep2='|~|'): """Convert a TSV string from sentences_input table to a list of lists""" return tsv_string_to_list(s, func=lambda x : tsv_string_to_list(x, func=func, sep=sep1), sep=sep2) class Row: def __str__(self): return '<Row(' + ', '.join("%s=%s" % x for x in self.__dict__.iteritems()) + ')>' def __repr__(self): return str(self) def bool_parser(b): b = b.strip() if b == 't': return True elif b == 'f': return False elif b == 'NULL' or b == '\\N': return None else: raise Exception("Unrecognized bool type in RowParser:bool_parser: %s" % b) # NOTE: array_to_string doesn't work well for bools! Just pass psql array out! RP_PARSERS = { 'text' : lambda x : str(x.replace('\n', ' ')), 'text[]' : lambda x : tsv_string_to_list(x.replace('\n', ' ')), 'int' : lambda x : int(x.strip()), 'int[]' : lambda x : tsv_string_to_list(x, func=lambda x: int(x.strip())), 'int[][]' : lambda x : tsv_string_to_listoflists(x, func=lambda x: int(x.strip())), 'boolean' : lambda x : bool_parser(x), 'boolean[]' : lambda x : tsv_string_to_list(x, func=bool_parser) } class RowParser: """ Initialized with a list of duples (field_name, field_type)- see RP_PARSERS dict Is a factory for simple Row class parsed from e.g. tsv input lines """ def __init__(self, fields): self.fields = fields def parse_tsv_row(self, line): row = Row() cols = line.split('\t') for i, col in enumerate(cols): field_name, field_type = self.fields[i] if RP_PARSERS.has_key(field_type): val = RP_PARSERS[field_type](col) if FIX_DEP_PARENTS: if field_name == 'dep_parents' and field_type == 'int[]': for i in xrange(0, len(val)): val[i] -= 1 else: raise Exception("Unsupported type %s for RowParser class- please add.") setattr(row, field_name, val) return row def create_ddlib_sentence(row): """Create a list of ddlib.Word objects from input row.""" sentence = [] for i, word in enumerate(row.words): sentence.append(ddlib.Word( begin_char_offset=None, end_char_offset=None, word=word, lemma=row.lemmas[i], pos=row.poses[i], ner=row.ners[i], dep_par=row.dep_parents[i], dep_label=row.dep_paths[i])) return sentence def pg_array_escape(tok): """ Escape a string that's meant to be in a Postgres array. We double-quote the string and escape backslashes and double-quotes. """ return '"%s"' % str(tok).replace('\\', '\\\\').replace('"', '\\\\"') def list_to_pg_array(l): """Convert a list to a string that PostgreSQL's COPY FROM understands.""" return '{%s}' % ','.join(pg_array_escape(x) for x in l) def print_tsv_output(out_record): """Print a tuple as output of TSV extractor.""" values = [] for x in out_record: if isinstance(x, list) or isinstance(x, tuple): cur_val = list_to_pg_array(x) elif x is None: cur_val = '\N' else: cur_val = x values.append(cur_val) print '\t'.join(str(x) for x in values) def run_main_tsv(row_parser, row_fn): """ Runs through lines in sys.stdin, applying row_fn(row_parser(line)) Assumes that this outputs a list of rows, which get printed out in tsv format Has standard error handling for malformed rows- optimally row_fn returns object with pretty print """ for line in sys.stdin: for line_out in row_fn(row_parser(line)): print_tsv_output(line_out)
dd-genomics-master
code/extractor_util.py
''' Created on Aug 5, 2015 @author: jbirgmei ''' # from wikipedia. let's hope it works def levenshtein(s1, s2): if len(s1) < len(s2): return levenshtein(s2, s1) # len(s1) >= len(s2) if len(s2) == 0: return len(s1) previous_row = range(len(s2) + 1) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer deletions = current_row[j] + 1 # than s2 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] if __name__ == "__main__": print levenshtein("asdf", "assdf") print levenshtein("asdf", "asdf") print levenshtein("asdf", "qwer")
dd-genomics-master
code/levenshtein.py
#! /usr/bin/env python from data_util import get_hpo_phenos, get_parents, read_hpo_dag, read_hpo_synonyms if __name__ == "__main__": hpo_dag = read_hpo_dag() names = read_hpo_synonyms(1) synonyms = read_hpo_synonyms() allowed_phenos = set(get_hpo_phenos(hpo_dag)) for hpo_id in allowed_phenos.copy(): parent_ids = get_parents(hpo_id, hpo_dag) # includes the original hpo_id assert hpo_id in parent_ids if 'HP:0000118' not in parent_ids: sys.stderr.write('"{0}": not a phenotypic abnormality\n'.format(hpo_id.strip())) continue parent_ids.remove('HP:0000118') for parent_id in parent_ids: allowed_phenos.add(parent_id) for hpo_id in allowed_phenos: print "%s\t%s\t%s" % (hpo_id, '|^|'.join(names[hpo_id]), '|^|'.join(synonyms[hpo_id]))
dd-genomics-master
code/create_allowed_phenos_list.py
from collections import defaultdict # TODO: handle negations (neg, advmod + neg word) specially! # See: http://nlp.stanford.edu/software/dependencies_manual.pdf MAX_PATH_LEN = 100 class DepPathDAG: def __init__(self, dep_parents, dep_paths, words, max_path_len=None, no_count_tags=('conj',), no_count_words=('_','*',)): self.max_path_len = max_path_len self.no_count_tags = tuple(no_count_tags) self.no_count_words = no_count_words self.words = words self.edges = defaultdict(list) self.edge_labels = {} for i,dp in enumerate(dep_parents): if dp >= 0: self.edges[i].append(dp) self.edges[dp].append(i) self.edge_labels[(i,dp)] = dep_paths[i] self.edge_labels[(dp,i)] = dep_paths[i] def _path_len(self, path): """Get the length of a list of nodes, skipping counting of certain dep path types""" l = 1 for i in range(len(path)-1): if self.edge_labels[(path[i], path[i+1])].startswith(self.no_count_tags): continue if self.words[i] in self.no_count_words: continue l += 1 return l def min_path(self, i, j, path=None): if path is None: path = [] if self.max_path_len and len(path) > self.max_path_len: return None min_path_len = MAX_PATH_LEN min_path = None for node in self.edges[i]: if node in path: continue elif node == j: return [j] else: p = self.min_path(node, j, path+[i]) if p and self._path_len(p) < min_path_len: min_path = [node] + p min_path_len = self._path_len(min_path) return min_path def min_path_sets(self, idx, jdx): """Return the minimum path between the closest members of two sets of indexes""" min_path_len = None min_path = None if len(idx) == 0 or len(jdx) == 0: return min_path for i in idx: for j in jdx: p = self.min_path(i,j) l = self._path_len(p) if p else None if l and (min_path_len is None or l < min_path_len): min_path_len = l min_path = p return min_path def path_len(self, i, j): """Get the 'path length' i.e. the length of the min path between i and j""" min_path = self.min_path(i, j) return self._path_len(min_path) if min_path else None def path_len_sets(self, idx, jdx): """Return the path length (length of minimum path) between the closest members of two sets of indexes""" min_path = self.min_path_sets(idx,jdx) return self._path_len(min_path) if min_path else None def neighbors(self, idx): """Return the indices or neighboring words (0-indexed return value)""" rv = [] for i in xrange(0, len(self.edges)): if idx in self.edges[i]: rv.append(i) return rv
dd-genomics-master
code/dep_util.py
#! /usr/bin/env python import dep_util import extractor_util as util import sys # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'text'), ('dep_parents', 'int[]'), ('dep_paths', 'text[]'), ('words', 'text[]')]) if __name__ == "__main__": for line in sys.stdin: row = parser.parse_tsv_row(line) dpd = dep_util.DepPathDAG(row.dep_parents, row.dep_paths, row.words) for i in xrange(0, len(row.words)): sys.stderr.write(str((i, row.words[i], dpd.neighbors(i), [row.words[i] for i in dpd.neighbors(i)])) + '\n')
dd-genomics-master
code/test_nlp.py
#!/usr/bin/env python import collections import os import sys import abbreviations import config import extractor_util as util import levenshtein CACHE = dict() # Cache results of disk I/O # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('pheno_wordidxs', 'int[]'), ('entity', 'text')]) # This defines the output Mention object Mention = collections.namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'short_wordidxs', 'long_wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'abbrev_word', 'definition_words', 'entity', 'is_correct']) ### CANDIDATE EXTRACTION ### # HF = config.PHENO_ACRONYMS['HF'] SR = config.PHENO_ACRONYMS['SR'] def extract_candidate_mentions(row, pos_count, neg_count): mentions = [] if max(row.pheno_wordidxs) + 2 < len(row.words) and len(row.words[max(row.pheno_wordidxs) + 2]) > 0: for (is_correct, abbrev, definition, detector_message) in abbreviations.getabbreviations(row.words, abbrev_index=max(row.pheno_wordidxs) + 2): m = create_supervised_mention(row, is_correct, abbrev, definition, detector_message, pos_count, neg_count) if m: mentions.append(m) return mentions ### DISTANT SUPERVISION ### VALS = config.PHENO_ACRONYMS['vals'] def create_supervised_mention(row, is_correct, (start_abbrev, stop_abbrev, abbrev), (start_definition, stop_definition, definition), detector_message, pos_count, neg_count): assert stop_abbrev == start_abbrev + 1 mid = '%s_%s_%s_%s' % (row.doc_id, row.section_id, row.sent_id, start_abbrev) include = None if is_correct: supertype = 'TRUE_DETECTOR' subtype = None elif is_correct is False: supertype = 'FALSE_DETECTOR' subtype = detector_message else: supertype = 'DETECTOR_OMITTED_SENTENCE' subtype = None include = False if include is not False and is_correct and abbrev.islower(): is_correct = False supertype = 'FALSE_ALL_LOWERCASE' subtype = None if include is not False and is_correct and abbrev in SR['short-words']: is_correct = False supertype = 'FALSE_SHORT_WORD' subtype = None if include is not False and is_correct and abbrev in SR['bad-pheno-names']: is_correct = False supertype = 'FALSE_BAD_PHENO_NAME' subtype = None if include is True or (include is not False and (is_correct is True or (is_correct is False and neg_count < pos_count))): m = Mention(None, row.doc_id, row.section_id, row.sent_id, [i for i in xrange(start_abbrev, stop_abbrev + 1)], [i for i in xrange(start_definition, stop_definition + 1)], mid, supertype, subtype, abbrev, definition, row.entity.strip(), is_correct); else: m = None return m if __name__ == '__main__': # load static data onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) # generate the mentions, while trying to keep the supervision approx. balanced # print out right away so we don't bloat memory... pos_count = 0 neg_count = 0 for line in sys.stdin: row = parser.parse_tsv_row(line) try: if '-LRB-' not in row.words[row.pheno_wordidxs[len(row.pheno_wordidxs)-1] + 1]: continue except: pass #print >> sys.stderr, 'error in condition for extractor pheno_acronyms extract candidates' # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # Find candidate mentions & supervise mentions = extract_candidate_mentions(row, pos_count, neg_count) pos_count += len([m for m in mentions if m.is_correct]) neg_count += len([m for m in mentions if m.is_correct is False]) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
code/pheno_acronyms_extract_candidates.py
#!/usr/bin/env python from collections import namedtuple import extractor_util as util import os import sys import ddlib import re import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('mention_id', 'text'), ('mention_type', 'text'), ('short_wordidxs', 'int[]'), ('long_wordidxs', 'int[]')]) Feature = namedtuple('Feature', ['doc_id', 'section_id', 'mention_id', 'name']) def get_features_for_row(row): OPTS = config.PHENO_ACRONYMS['F'] features = [] f = Feature(doc_id=row.doc_id, section_id=row.section_id, mention_id=row.mention_id, name=None) # (1) Get generic ddlib features sentence = util.create_ddlib_sentence(row) allWordIdxs = row.short_wordidxs + row.long_wordidxs start = min(allWordIdxs) length = max(allWordIdxs) - start span = ddlib.Span(begin_word_id=start, length=length) assert len(span) > 0, row assert start+length < len(row.words), (start+length, len(row.words), row) generic_features = [f._replace(name=feat) for feat in ddlib.get_generic_features_mention(sentence, span)] # Optionally filter out some generic features if OPTS.get('exclude_generic'): generic_features = filter(lambda feat : not feat.startswith(tuple(OPTS['exclude_generic'])), generic_features) features += generic_features return features if __name__ == '__main__': util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_row)
dd-genomics-master
code/pheno_acronyms_extract_features.py
#!/usr/bin/env python from collections import namedtuple import extractor_util as util import ddlib import re # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('mention_id', 'text'), ('mention_type', 'text'), ('mention_wordidxs', 'int[]')]) Feature = namedtuple('Feature', ['doc_id', 'section_id', 'mention_id', 'name']) ENSEMBL_TYPES = ['NONCANONICAL', 'CANONICAL', 'REFSEQ'] def get_custom_features(row): gene_word = row.words[row.mention_wordidxs[0]] if re.match('^[ATGCN]{1,5}$', gene_word): yield 'GENE_ONLY_BASES' def get_features_for_row(row): #OPTS = config.GENE['F'] features = [] f = Feature(doc_id=row.doc_id, section_id=row.section_id, mention_id=row.mention_id, name=None) # (1) Get generic ddlib features sentence = util.create_ddlib_sentence(row) span = ddlib.Span(begin_word_id=row.mention_wordidxs[0], length=len(row.mention_wordidxs)) generic_features = [f._replace(name=feat) for feat in ddlib.get_generic_features_mention(sentence, span)] features += generic_features features += [f._replace(name=feat) for feat in get_custom_features(row)] # (2) Include gene type as a feature # Note: including this as feature creates massive overfitting, for obvious reasons # We need neg supervision of canonical & noncanonical symbols, then can / should try adding this feature """ for t in ENSEMBL_TYPES: if re.search(re.escape(t), row.mention_type, flags=re.I): features.append(f._replace(name='GENE_TYPE[%s]' % t)) break """ return features if __name__ == '__main__': util.run_main_tsv(row_parser=parser.parse_tsv_row, row_fn=get_features_for_row)
dd-genomics-master
code/gene_extract_features.py
#!/usr/bin/env python import collections import extractor_util as util import data_util as dutil import dep_util as deps import os import random import re import sys import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('dep_paths', 'text[]'), ('dep_parents', 'int[]'), ('genevar_mention_ids', 'text[]'), ('genevar_entities', 'text[]'), ('genevar_wordidxs', 'int[][]'), ('genevar_is_corrects', 'boolean[]'), ('pheno_mention_ids', 'text[]'), ('pheno_entities', 'text[]'), ('pheno_wordidxs', 'int[][]'), ('pheno_is_corrects', 'boolean[]')]) # This defines the output Relation object Relation = collections.namedtuple('Relation', [ 'dd_id', 'relation_id', 'doc_id', 'section_id', 'sent_id', 'genevar_mention_id', 'genevar_entity', 'genevar_wordidxs', 'genevar_is_correct', 'pheno_mention_id', 'pheno_entity', 'pheno_wordidxs', 'pheno_is_correct', 'is_correct', 'supertype', 'subtype']) ### CANDIDATE EXTRACTION ### def extract_candidate_relations(row): """ Given a row object having a sentence and some associated N genevar and M phenotype mention candidates, pick a subset of the N*M possible genevar-phenotype relations to return as candidate relations """ HF = config.GENE_VARIANT_PHENO['HF'] relations = [] # Create a dependencies DAG for the sentence dep_dag = deps.DepPathDAG(row.dep_parents, row.dep_paths, row.words, max_path_len=HF['max-dep-path-dist']) # Create the list of possible G,P pairs with their dependency path distances pairs = [] for i,gid in enumerate(row.genevar_mention_ids): for j,pid in enumerate(row.pheno_mention_ids): # Do not consider overlapping mention pairs if len(set(row.genevar_wordidxs[i]).intersection(row.pheno_wordidxs[j])) > 0: continue # Get the min path length between any of the g / p phrase words l = dep_dag.path_len_sets(row.genevar_wordidxs[i], row.pheno_wordidxs[j]) pairs.append([l, i, j]) # Select which of the pairs will be considered pairs.sort() seen_g = {} seen_p = {} seen_pairs = {} for p in pairs: d, i, j = p # If the same entity occurs several times in a sentence, only take best one if HF.get('take-best-only-dups'): e = '%s_%s' % (row.genevar_entities[i], row.pheno_entities[j]) if e in seen_pairs and d > seen_pairs[e]: continue else: seen_pairs[e] = d # Only take the set of best pairs which still provides coverage of all entities if HF.get('take-best-only'): if (i in seen_g and seen_g[i] < d) or (j in seen_p and seen_p[j] < d): continue seen_g[i] = d seen_p[j] = d r = create_supervised_relation(row, i, j, dep_dag) if r: relations.append(r) return relations def create_supervised_relation(row, i, j, dep_dag=None): """ Given a Row object with a sentence and several genevar and pheno objects, create a supervised Relation output object for the ith genevar and jth pheno objects """ SR = config.GENEVAR_PHENO['SR'] gvid = row.genevar_mention_ids[i] gv_entity = row.genevar_entities[i] gv_wordidxs = row.genevar_wordidxs[i] gv_is_correct = row.genevar_is_corrects[i] pid = row.pheno_mention_ids[j] p_entity = row.pheno_entities[j] p_wordidxs = row.pheno_wordidxs[j] p_is_correct = row.pheno_is_corrects[j] relation_id = '%s_%s' % (gvid, pid) r = Relation(None, relation_id, row.doc_id, row.section_id, row.sent_id, gvid, gv_entity, \ gv_wordidxs, gv_is_correct, pid, p_entity, p_wordidxs, p_is_correct, None, None, None) if SR.get('gv-or-p-false'): opts = SR['gv-or-p-false'] if gv_is_correct == False or p_is_correct == False: if random.random() < opts['rand']: return r._replace(is_correct=False, supertype='GV_ANDOR_P_FALSE', subtype='gv_is_correct: %s, p_is_correct: %s' % (gv_is_correct, p_is_correct)) else: return None if SR.get('clinvar-sup'): if p_entity in CLINVAR_SUP[gv_entity]: return r._replace(is_correct=True, supertype='CLINVAR_SUP') return r if __name__ == '__main__': CLINVAR_SUP = dutil.load_hgvs_to_hpo() for line in sys.stdin: row = parser.parse_tsv_row(line) relations = extract_candidate_relations(row) for relation in relations: util.print_tsv_output(relation)
dd-genomics-master
code/variantpheno_extract_candidates.py
#! /usr/bin/env python # # This file contains the generic features library that is included with ddlib. # # The three functions that a user should want to use are load_dictionary, # get_generic_features_mention, and get_generic_features_relation. # All the rest should be considered more or less private, except perhaps the # get_sentence method, which is actually just a wrapper around unpack_words. # # Matteo, December 2014 # from dd import dep_path_between_words, materialize_span, Span, unpack_words MAX_KW_LENGTH = 3 dictionaries = dict() def load_dictionary(filename, dict_id="", func=lambda x: x): """Load a dictionary to be used for generic features. Returns the id used to identify the dictionary. Args: filename: full path to the dictionary. The dictionary is actually a set of words, one word per line. dict_id: (optional) specify the id to be used to identify the dictionary. By default it is a sequential number. func: (optional) A function to be applied to each row of the file """ if dict_id == "": dict_id = str(len(dictionaries)) with open(filename, 'rt') as dict_file: dictionary = set() for line in dict_file: dictionary.add(func(line.strip())) dictionary = frozenset(dictionary) dictionaries[str(dict_id)] = dictionary return str(dict_id) def load_dictionary_map(synonyms): for key in synonyms: syn = synonyms[key] dictionaries[key] = frozenset(syn) def get_generic_features_mention(sentence, span, length_bin_size=5): """Yield 'generic' features for a mention in a sentence. Args: sentence: a list of Word objects span: a Span namedtuple length_bin_size: the size of the bins for the length feature """ # Mention sequence features (words, lemmas, ners, and poses) for seq_feat in get_seq_features(sentence, span): yield seq_feat # Window (left and right, up to size 3, with combinations) around the # mention for window_feat in get_window_features(sentence, span): yield window_feat # Is (substring of) mention in a dictionary? for dict_indicator_feat in get_dictionary_indicator_features( sentence, span): yield dict_indicator_feat # Dependency path(s) from mention to keyword(s). Various transformations of # the dependency path are done. for (i, j) in get_substring_indices(len(sentence), MAX_KW_LENGTH): if i >= span.begin_word_id and i < span.begin_word_id + span.length: continue if j > span.begin_word_id and j < span.begin_word_id + span.length: continue is_in_dictionary = False for dict_id in dictionaries: if " ".join(map(lambda x: str(x.lemma), sentence[i:j])) in \ dictionaries[dict_id]: is_in_dictionary = True yield "KW_IND_[" + dict_id + "]" break if is_in_dictionary: kw_span = Span(begin_word_id=i, length=j-i) for dep_path_feature in get_min_dep_path_features( sentence, span, kw_span, "KW"): yield dep_path_feature # The mention starts with a capital if sentence[span.begin_word_id].word[0].isupper(): yield "STARTS_WITH_CAPITAL" # Length of the mention length = len(" ".join(materialize_span(sentence, span, lambda x: x.word))) bin_id = length // length_bin_size length_feat = "LENGTH_" + str(bin_id) yield length_feat def get_generic_features_relation(sentence, span1, span2, length_bin_size=5): """Yield 'generic' features for a relation in a sentence. Args: sentence: a list of Word objects span1: the first Span of the relation span2: the second Span of the relation length_bin_size: the size of the bins for the length feature """ # Check whether the order of the spans is inverted. We use this information # to add a prefix to *all* the features. order = sorted([ span1.begin_word_id, span1.begin_word_id + span1.length, span2.begin_word_id, span2.begin_word_id + span2.length]) begin = order[0] betw_begin = order[1] betw_end = order[2] end = order[3] if begin == span2.begin_word_id: inverted = "INV_" yield "IS_INVERTED" else: inverted = "" betw_span = Span(begin_word_id=betw_begin, length=betw_end - betw_begin) covering_span = Span(begin_word_id=begin, length=end - begin) # Words, Lemmas, Ners, and Poses sequence between the mentions for seq_feat in get_seq_features(sentence, betw_span): yield inverted + seq_feat # Window feature (left and right, up to size 3, combined) for window_feat in get_window_features( sentence, covering_span, isolated=False): yield inverted + window_feat # Ngrams of up to size 3 between the mentions for ngram_feat in get_ngram_features(sentence, betw_span): yield inverted + ngram_feat # Indicator features of whether the mentions are in dictionaries found1 = False for feat1 in get_dictionary_indicator_features( sentence, span1, prefix=inverted + "IN_DICT"): found1 = True found2 = False for feat2 in get_dictionary_indicator_features( sentence, span2, prefix=""): found2 = True yield feat1 + feat2 if not found2: yield feat1 + "_[_NONE]" if not found1: for feat2 in get_dictionary_indicator_features( sentence, span2, prefix=""): found2 = True yield inverted + "IN_DICT_[_NONE]" + feat2 # Dependency path (and transformations) between the mention for betw_dep_path_feature in get_min_dep_path_features( sentence, span1, span2, inverted + "BETW"): yield betw_dep_path_feature # Dependency paths (and transformations) between the mentions and keywords for (i, j) in get_substring_indices(len(sentence), MAX_KW_LENGTH): if (i >= begin and i < betw_begin) or (i >= betw_end and i < end): continue if (j > begin and j <= betw_begin) or (j > betw_end and j <= end): continue is_in_dictionary = False for dict_id in dictionaries: if " ".join(map(lambda x: str(x.lemma), sentence[i:j])) in \ dictionaries[dict_id]: is_in_dictionary = True yield inverted + "KW_IND_[" + dict_id + "]" break if is_in_dictionary: kw_span = Span(begin_word_id=i, length=j-i) path1 = get_min_dep_path(sentence, span1, kw_span) lemmas1 = [] labels1 = [] for edge in path1: lemmas1.append(str(edge.word2.lemma)) labels1.append(edge.label) both1 = [] for j in range(len(labels1)): both1.append(labels1[j]) both1.append(lemmas1[j]) both1 = both1[:-1] path2 = get_min_dep_path(sentence, span2, kw_span) lemmas2 = [] labels2 = [] for edge in path2: lemmas2.append(str(edge.word2.lemma)) labels2.append(edge.label) both2 = [] for j in range(len(labels2)): both2.append(labels2[j]) both2.append(lemmas2[j]) both2 = both2[:-1] yield inverted + "KW_[" + " ".join(both1) + "]_[" + \ " ".join(both2) + "]" yield inverted + "KW_L_[" + " ".join(labels1) + "]_[" + \ " ".join(labels2) + "]" for j in range(1, len(both1), 2): for dict_id in dictionaries: if both1[j] in dictionaries[dict_id]: both1[j] = "DICT_" + str(dict_id) break # Picking up the first dictionary we find for j in range(1, len(both2), 2): for dict_id in dictionaries: if both2[j] in dictionaries[dict_id]: both2[j] = "DICT_" + str(dict_id) break # Picking up the first dictionary we find yield inverted + "KW_D_[" + " ".join(both1) + "]_[" + \ " ".join(both2) + "]" # The mentions start with a capital letter first_capital = sentence[span1.begin_word_id].word[0].isupper() second_capital = sentence[span2.begin_word_id].word[0].isupper() capital_feat = inverted + "STARTS_WITH_CAPITAL_[" + str(first_capital) + \ "_" + str(second_capital) + "]" yield capital_feat # The lengths of the mentions first_length = len(" ".join(materialize_span( sentence, span1, lambda x: str(x.word)))) second_length = len(" ".join(materialize_span( sentence, span2, lambda x: str(x.word)))) first_bin_id = first_length // length_bin_size second_bin_id = second_length // length_bin_size length_feat = inverted + "LENGTHS_[" + str(first_bin_id) + "_" + \ str(second_bin_id) + "]" yield length_feat def get_substring_indices(_len, max_substring_len): """Yield the start-end indices for all substrings of a sequence with length _len, up to length max_substring_len""" for start in range(_len): for end in reversed(range(start + 1, min( _len, start + 1 + max_substring_len))): yield (start, end) def get_ngram_features(sentence, span, window=3): """Yields ngram features. These are all substrings of size up to window in the part of the sentence covered by the span. In a typical usage, the span covers the words between two mentions, so this function returns all ngrams of size up to window between the two mentions Args: sentence: a list of Word objects span: the Span identifying the area for generating the substrings window: maximum size of a substring """ for i in range(span.begin_word_id, span.begin_word_id + span.length): for j in range(1, window + 1): if i+j <= span.begin_word_id + span.length: yield "NGRAM_" + str(j) + "_[" + " ".join( map(lambda x: str(x.lemma), sentence[i:i+j])) + "]" def get_min_dep_path(sentence, span1, span2): """Return the shortest dependency path between two Span objects Args: sentence: a list of Word objects span1: the first Span span2: the second Span Returns: a list of DepEdge objects """ min_path = None min_path_length = 200 # ridiculously high number? for i in range(span1.begin_word_id, span1.begin_word_id + span1.length): for j in range( span2.begin_word_id, span2.begin_word_id + span2.length): p = dep_path_between_words(sentence, i, j) if len(p) < min_path_length: min_path = p return min_path def get_min_dep_path_features(sentence, span1, span2, prefix="BETW_"): """Yield the minimum dependency path features between two Span objects. Various variants of the dependency path are yielded: - using both labels and lemmas, - using only labels - using labels and lemmas, but with lemmas replaced by dict_id if the lemma is in a dictionary Args: sentence: a list of Word objects span1: the first Span span2: the second Span prefix: string prepended to all features """ min_path = get_min_dep_path(sentence, span1, span2) if min_path: min_path_lemmas = [] min_path_labels = [] for edge in min_path: min_path_lemmas.append(str(edge.word2.lemma)) min_path_labels.append(str(edge.label)) both = [] for j in range(len(min_path_labels)): both.append(min_path_labels[j]) both.append(min_path_lemmas[j]) both = both[:-1] yield prefix + "_[" + " ".join(both) + "]" yield prefix + "_L_[" + " ".join(min_path_labels) + "]" for j in range(1, len(both), 2): for dict_id in dictionaries: if both[j] in dictionaries[dict_id]: both[j] = "DICT_" + str(dict_id) break # Picking up the first dictionary we find yield prefix + "_D_[" + " ".join(both) + "]" def get_seq_features(sentence, span): """Yield the sequence features in a Span These include: - words sequence in the span - lemmas sequence in the span - NER tags sequence in the span - POS tags sequence in the span Args: sentence: a list of Word objects span: the Span """ word_seq_feat = "WORD_SEQ_[" + " ".join(materialize_span( sentence, span, lambda x: x.word)) + "]" yield word_seq_feat lemma_seq_feat = "LEMMA_SEQ_[" + " ".join(materialize_span( sentence, span, lambda x: str(x.lemma))) + "]" yield lemma_seq_feat ner_seq_feat = "NER_SEQ_[" + " ".join(materialize_span( sentence, span, lambda x: str(x.ner))) + "]" yield ner_seq_feat pos_seq_feat = "POS_SEQ_[" + " ".join(materialize_span( sentence, span, lambda x: str(x.pos))) + "]" yield pos_seq_feat def get_window_features( sentence, span, window=3, combinations=True, isolated=True): """Yield the window features around a Span These are basically the n-grams around the span, up to a window of size 'window' Args: sentence: a list of Word objects span: the span window: the maximum size of the window combinations: Whether to yield features that combine the windows on the left and on the right isolated: Whether to yield features that do not combine the windows on the left and on the right """ span_end_idx = span.begin_word_id + span.length - 1 left_lemmas = [] left_ners = [] right_lemmas = [] right_ners = [] try: for i in range(1, window + 1): lemma = str(sentence[span.begin_word_id - i].lemma) try: float(lemma) lemma = "_NUMBER" except ValueError: pass left_lemmas.append(lemma) left_ners.append(str(sentence[span.begin_word_id - i].ner)) except IndexError: pass left_lemmas.reverse() left_ners.reverse() try: for i in range(1, window + 1): lemma = str(sentence[span_end_idx + i].lemma) try: float(lemma) lemma = "_NUMBER" except ValueError: pass right_lemmas.append(lemma) right_ners.append(str(sentence[span_end_idx + i].ner)) except IndexError: pass if isolated: for i in range(len(left_lemmas)): yield "W_LEFT_" + str(i+1) + "_[" + " ".join(left_lemmas[-i-1:]) + \ "]" yield "W_LEFT_NER_" + str(i+1) + "_[" + " ".join(left_ners[-i-1:]) +\ "]" for i in range(len(right_lemmas)): yield "W_RIGHT_" + str(i+1) + "_[" + " ".join(right_lemmas[:i+1]) +\ "]" yield "W_RIGHT_NER_" + str(i+1) + "_[" + \ " ".join(right_ners[:i+1]) + "]" if combinations: for i in range(len(left_lemmas)): curr_left_lemmas = " ".join(left_lemmas[-i-1:]) try: curr_left_ners = " ".join(left_ners[-i-1:]) except TypeError: new_ners = [] for ner in left_ners[-i-1:]: to_add = ner if not to_add: to_add = "None" new_ners.append(to_add) curr_left_ners = " ".join(new_ners) for j in range(len(right_lemmas)): curr_right_lemmas = " ".join(right_lemmas[:j+1]) try: curr_right_ners = " ".join(right_ners[:j+1]) except TypeError: new_ners = [] for ner in right_ners[:j+1]: to_add = ner if not to_add: to_add = "None" new_ners.append(to_add) curr_right_ners = " ".join(new_ners) yield "W_LEMMA_L_" + str(i+1) + "_R_" + str(j+1) + "_[" + \ curr_left_lemmas + "]_[" + curr_right_lemmas + "]" yield "W_NER_L_" + str(i+1) + "_R_" + str(j+1) + "_[" + \ curr_left_ners + "]_[" + curr_right_ners + "]" def get_dictionary_indicator_features( sentence, span, window=3, prefix="IN_DICT"): """Yield the indicator features for whether a substring of the span is in the dictionaries Args: sentence: a list of Word objects span: the span window: the maximum size of a substring prefix: a string to prepend to all yielded features """ in_dictionaries = set() for i in range(window + 1): for j in range(span.length - i): phrase = " ".join(map(lambda x: str(x.lemma), sentence[j:j+i+1])) for dict_id in dictionaries: if phrase in dictionaries[dict_id]: in_dictionaries.add(dict_id) for dict_id in in_dictionaries: yield prefix + "_[" + str(dict_id) + "]" # yield prefix + "_JOIN_[" + " ".join( # map(lambda x: str(x), sorted(in_dictionaries))) + "]" def dep_graph_parser_parenthesis(edge_str): """Given a string representing a dependency edge in the 'parenthesis' format, return a tuple of (parent_index, edge_label, child_index). Args: edge_str: a string representation of an edge in the dependency tree, in the format edge_label(parent_word-parent_index, child_word-child_index) Returns: tuple of (parent_index, edge_label, child_index) """ tokens = edge_str.split("(") label = tokens[0] tokens = tokens[1].split(", ") parent = int(tokens[0].split("-")[-1]) - 1 child = int(",".join(tokens[1:]).split("-")[-1][:-1]) - 1 return (parent, label, child) def dep_graph_parser_triplet(edge_str): """Given a string representing a dependency edge in the 'triplet' format, return a tuple of (parent_index, edge_label, child_index). Args: edge_str: a string representation of an edge in the dependency tree in the format "parent_index\tlabel\child_index" Returns: tuple of (parent_index, edge_label, child_index) """ parent, label, child = edge_str.split() # input edge used 1-based indexing return (int(parent) - 1, label, int(child) - 1) def dep_transform_parenthesis_to_triplet(edge_str): """Transform an edge representation from the parenthesis format to the triplet format""" parent, label, child = dep_graph_parser_parenthesis(edge_str) return "\t".join((str(parent + 1), label, str(child + 1))) def dep_transform_triplet_to_parenthesis(edge_str, parent_word, child_word): """Transform an edge representation from the triplet format to the parenthesis format""" parent, label, child = dep_graph_parser_triplet(edge_str) return label + "(" + parent_word + "-" + str(parent + 1) + ", " + \ child_word + "-" + str(child + 1) + ")" def dep_transform_test(): """Test the transformation functions for the various dependency paths formats""" test = "a(b-1, c-2)" transf = dep_transform_parenthesis_to_triplet(test) assert transf == "1\ta\t2" transf_back = dep_transform_triplet_to_parenthesis(transf, "b", "c") assert transf_back == test print("success") def get_span(span_begin, span_length): """Return a Span object Args: span_begin: the index the Span begins at span_length: the length of the span """ return Span(begin_word_id=span_begin, length=span_length) def get_sentence( begin_char_offsets, end_char_offsets, words, lemmas, poses, dependencies, ners, dep_format_parser=dep_graph_parser_parenthesis): """Return a list of Word objects representing a sentence. This is effectively a wrapper around unpack_words, but with a less cumbersome interface. Args: begin_char_offsets: a list representing the beginning character offset for each word in the sentence end_char_offsets: a list representing the end character offset for each word in the sentence words: a list of the words in the sentence lemmas: a list of the lemmas of the words in the sentence poses: a list of the POS tags of the words in the sentence dependencies: a list of the dependency path edges for the sentence ners: a list of the NER tags of the words in the sentence dep_format_parse: a function that takes as only argument an element of dependencies (i.e., a dependency path edge) and returns a 3-tuple (parent_index, label, child_index) representing the edge. Look at the code for dep_graph_parser_parenthesis and dep_graph_parser_triplet for examples. """ obj = dict() obj['lemma'] = lemmas obj['words'] = words obj['ner'] = ners obj['pos'] = poses obj['dep_graph'] = dependencies obj['ch_of_beg'] = begin_char_offsets obj['ch_of_end'] = end_char_offsets # list of Word objects word_obj_list = unpack_words( obj, character_offset_begin='ch_of_beg', character_offset_end='ch_of_end', lemma='lemma', pos='pos', ner='ner', words='words', dep_graph='dep_graph', dep_graph_parser=dep_format_parser) return word_obj_list
dd-genomics-master
code/ddlib/gen_feats.py
from collections import namedtuple,OrderedDict import re import sys from inspect import isgeneratorfunction,getargspec import csv from StringIO import StringIO def print_error(err_string): """Function to write to stderr""" sys.stderr.write("ERROR[UDF]: " + str(err_string) + "\n") BOOL_PARSER = { 't' : True, 'f' : False, 'NULL' : None, '\\N' : None } TYPE_PARSERS = { 'text' : lambda x : str(x.replace('\n', ' ')), 'int' : lambda x : int(x.strip()), 'float' : lambda x : float(x.strip()), 'boolean' : lambda x : BOOL_PARSER(x.lower().strip()) } def parse_pgtsv_element(s, t, sep='|^|', sep2='|~|', d=0): """ Parse an element in psql-compatible tsv format, i.e. {-format arrays based on provided type and type-parser dictionary """ # Quoting only will occur within a psql array with strings quoted = (len(s) > 1 and s[0] == '"' and s[-1] == '"') if quoted and d > 0: if t == 'text': s = s[1:-1] else: raise Exception("Type mismatch with quoted array element:\n%s" % s) elif quoted and t != 'text': raise Exception("Type mismatch with quoted array element:\n%s" % s) # Interpret nulls correctly according to postgres convention # Note for arrays: {,} --> NULLS, {"",""} --> empty strings if s == '\\N': return None elif len(s) == 0 and (t != 'text' or (d > 0 and not quoted)): return None # Handle lists recursively elif '[]' in t: if s[0] == '{' and s[-1] == '}': split = list(csv.reader(StringIO(s[1:-1])))[0] else: split = s.split(sep) return [parse_pgtsv_element(ss, t[:-2], sep=sep2, d=d+1) for ss in split] # Else parse using parser else: try: parser = TYPE_PARSERS[t] except KeyError: raise Exception("Unsupported type: %s" % t) return parser(s) class Row: def __str__(self): return '<Row(' + ', '.join("%s=%s" % x for x in self.__dict__.iteritems()) + ')>' def __repr__(self): return str(self) def _asdict(self): return self.__dict__ class PGTSVParser: """ Initialized with a list of duples (field_name, field_type) Is a factory for simple Row class Parsed from Postgres-style TSV input lines """ def __init__(self, fields): self.fields = fields def parse_line(self, line): row = Row() attribs = line.rstrip().split('\t') if len(attribs) != len(self.fields): raise ValueError("Expected %(num_rows_declared)d attributes, but found %(num_rows_found)d in input row:\n%(row)s" % dict( num_rows_declared=len(self.fields), num_rows_found=len(attribs), row=row, )) for i,attrib in enumerate(attribs): field_name, field_type = self.fields[i] setattr(row, field_name, parse_pgtsv_element(attrib, field_type)) return row def parse_stdin(self): for line in sys.stdin: yield self.parse_line(line) TYPE_CHECKERS = { 'text' : lambda x : type(x) == str, 'int' : lambda x : type(x) == int, 'float' : lambda x : type(x) == float, 'boolean' : lambda x : type(x) == bool } def print_pgtsv_element(x, n, t, d=0): """Checks element x against type string t, then prints in PG-TSV format if a match""" # Handle NULLs first if x is None: if d == 0: return '\N' else: return '' # Handle lists recursively if '[]' in t: if not hasattr(x, '__iter__'): raise ValueError("Mismatch between array type and non-iterable in output row:\n%s" % x) else: return '{%s}' % ','.join(print_pgtsv_element(e, n, t[:-2], d=d+1) for e in x) # Else check type & print, hanlding special case of string in array try: checker = TYPE_CHECKERS[t] except KeyError: raise Exception("Unsupported type: %s" % t) if not checker(x): raise Exception("Output column '%(name)s' of type %(declared_type)s has incorrect value of %(value_type)s: '%(value)s'" % dict( name=n, declared_type=t, value_type=type(x), value=x, )) if d > 0 and t == 'text': return '"%s"' % str(tok).replace('\\', '\\\\').replace('"', '\\\\"') else: return str(x) class PGTSVPrinter: """ Initialized with a list of type strings Prints out Postgres-format TSV output lines """ def __init__(self, fields): self.fields = fields def write(self, out): if len(out) != len(self.fields): raise ValueError("Expected %(num_rows_declared)d attributes, but found %(num_rows_found)d in output row:\n%(row)s" % dict( num_rows_declared=len(self.fields), num_rows_found=len(out), row=out, )) else: print '\t'.join(print_pgtsv_element(x, n, t) for x,(n,t) in zip(out, self.fields)) # how to get types specified as default values of a function def format_from_args_defaults_of(aFunctionOrFormat): if hasattr(aFunctionOrFormat, '__call__'): # TODO in Python3, support types in function annotations (PEP 3107: https://www.python.org/dev/peps/pep-3107/) spec = getargspec(aFunctionOrFormat) return zip(spec.args, spec.defaults) else: return aFunctionOrFormat ## function decorators to be used directly in UDF implementations # decorators for input and output formats def format_decorator(attrName): def decorator(*name_type_pairs, **name_type_dict): """ When a function is decorated with this (e.g., @returns(...) or @over(...) preceding the def line), the pairs of column name and type given as arguments are kept as the function's attribute to supply other decorators, such as @tsv_extractor, with information for deciding how to parse the input lines or format the output lines. """ # check single argument case with a function or dict if len(name_type_pairs) == 1: if hasattr(name_type_pairs[0], '__call__'): name_type_pairs = format_from_args_defaults_of(name_type_pairs[0]) elif type(name_type_pairs[0]) in [dict, OrderedDict]: name_type_pairs = name_type_pairs[0] # XXX @over(collection.OrderedDict(foo="type", bar="type", ...)) doesn't work # as Python forgets the order when calling with keyword argument binding. # merge dictionaries name_type_pairs = list(name_type_pairs) + name_type_dict.items() def decorate(f): setattr(f, attrName, name_type_pairs) return f return decorate return decorator over = format_decorator("input_format") returns = format_decorator("output_format") # decorators that initiate the main extractor loop def tsv_extractor(generator): """ When a generator function is decorated with this (i.e., @tsv_extractor preceding the def line), standard input is parsed as Postgres-style TSV (PGTSV) input rows, the function is applied to generate output rows, and then checks that each line of this generator is in the output format before printing back as PGTSV rows. """ # Expects the input and output formats to have been decorated with @over and @returns try: # @over has precedence over default values of function arguments input_format = generator.input_format except AttributeError: input_format = format_from_args_defaults_of(generator) try: output_format = generator.output_format # also support function argument defaults for output_format for symmetry output_format = format_from_args_defaults_of(output_format) except AttributeError: raise ValueError("The function must be decorated with @returns") # TODO or maybe just skip type checking if @returns isn't present? # Check generator function if not isgeneratorfunction(generator): raise ValueError("The function must be a *generator*, i.e., use yield not return") # Create the input parser parser = PGTSVParser(input_format) # Create the output parser printer = PGTSVPrinter(output_format) for row in parser.parse_stdin(): for out_row in generator(**row._asdict()): printer.write(out_row)
dd-genomics-master
code/ddlib/util.py
from dd import * from gen_feats import * from util import *
dd-genomics-master
code/ddlib/__init__.py
import sys import collections Word = collections.namedtuple('Word', ['begin_char_offset', 'end_char_offset', 'word', 'lemma', 'pos', 'ner', 'dep_par', 'dep_label']) Span = collections.namedtuple('Span', ['begin_word_id', 'length']) Sequence = collections.namedtuple('Sequence', ['is_inversed', 'elements']) DepEdge = collections.namedtuple('DepEdge', ['word1', 'word2', 'label', 'is_bottom_up']) def unpack_words(input_dict, character_offset_begin=None, character_offset_end=None, lemma=None, pos=None, ner = None, words = None, dep_graph = None, dep_graph_parser = lambda x: x.split('\t')): """Return a list of Word objects representing a sentence """ array_character_offset_begin = input_dict[character_offset_begin] if character_offset_begin != None else () array_character_offset_end = input_dict[character_offset_end] if character_offset_end != None else () array_lemma = input_dict[lemma] if lemma != None else () array_pos = input_dict[pos] if pos != None else () array_ner = input_dict[ner] if ner != None else () array_words = input_dict[words] if words != None else () dep_graph = input_dict[dep_graph] if dep_graph != None else () dep_tree = {} for path in dep_graph: (parent, label, child) = dep_graph_parser(path) parent, child = int(parent), int(child) dep_tree[child] = {"parent":parent, "label":label} if parent not in dep_tree: dep_tree[parent] = {"parent":-1, "label":"ROOT"} ziped_tags = map(None, array_character_offset_begin, array_character_offset_end, array_lemma, array_pos, array_ner, array_words) wordobjs = [] for i in range(0,len(ziped_tags)): if i not in dep_tree : dep_tree[i] = {"parent":-1, "label":"ROOT"} wordobjs.append(Word(begin_char_offset=ziped_tags[i][0], end_char_offset=ziped_tags[i][1], lemma=ziped_tags[i][2], pos=ziped_tags[i][3], ner=ziped_tags[i][4], word=ziped_tags[i][5],dep_par=dep_tree[i]["parent"], dep_label=dep_tree[i]["label"])) return wordobjs def log(obj): """Print the string form of an object to STDERR. Args: obj: The object that the user wants to log to STDERR. """ sys.stderr.write(obj.__str__() + "\n") def materialize_span(words, span, func=lambda x:x): """Given a sequence of objects and a span, return the subsequence that corresponds to the span. Args: words: A sequence of objects. span: A Span namedtuple func: Optional function that will be applied to each element in the result subsequence. """ return map(func, words[span.begin_word_id:(span.begin_word_id+span.length)]) def _fe_seq_between_words(words, begin_idx, end_idx, func=lambda x:x): if begin_idx < end_idx: return Sequence(elements=map(func, words[begin_idx+1:end_idx]), is_inversed=False) else: return Sequence(elements=map(func, words[end_idx+1:begin_idx]), is_inversed=True) def tokens_between_spans(words, span1, span2, func=lambda x:x): """Given a sequence of objects and two spans, return the subsequence that is between these spans. Args: words: A sequence of objects. span1: A Span namedtuple span2: A Span namedtuple func: Optional function that will be applied to each element in the result subsequence. Returns: A Sequence namedtuple between these two spans. The "is_inversed" label is set to be True if span1 is *AFTER* span 2. """ if span1.begin_word_id < span2.begin_word_id: return _fe_seq_between_words(words, span1.begin_word_id+span1.length-1, span2.begin_word_id, func) else: return _fe_seq_between_words(words, span1.begin_word_id, span2.begin_word_id+span2.length-1, func) def _path_to_root(words, word_idx): rs = [] c_word_idx = word_idx covered_indexes = set() while True: if c_word_idx in covered_indexes: break rs.append(words[c_word_idx]) covered_indexes.add(c_word_idx) if words[c_word_idx].dep_par == -1 or words[c_word_idx].dep_par == c_word_idx: break c_word_idx = words[c_word_idx].dep_par return rs def dep_path_between_words(words, begin_idx, end_idx): """Given a sequence of Word objects and two indices, return the sequence of Edges corresponding to the dependency path between these two words. Args: words: A sequence of Word objects. span1: A word index span2: A word index Returns: An Array of Edge objects, each of which corresponds to one edge on the dependency path. """ path_to_root1 = _path_to_root(words, begin_idx) path_to_root2 = _path_to_root(words, end_idx) common = set(path_to_root1) & set(path_to_root2) #if len(common) == 0: # raise Exception('Dep Path Must be Wrong: No Common Element Between Word %d & %d.' % (begin_idx, end_idx)) path = [] for word in path_to_root1: if word in common: break path.append(DepEdge(word1=word, word2=words[word.dep_par], label=word.dep_label, is_bottom_up=True)) path_right = [] for word in path_to_root2: if word in common: break path_right.append(DepEdge(word1=words[word.dep_par], word2=word, label=word.dep_label, is_bottom_up=False)) for e in reversed(path_right): path.append(e) return path
dd-genomics-master
code/ddlib/dd.py
import dependencies import sys def index_of_sublist(subl, l): for i in range(len(l) - len(subl) + 1): if subl == l[i:i + len(subl)]: return i def intersects(a1, a2): for i in a1: if i in a2: return True return False def acyclic(a): return len(a) == len(set(a)) def create_sentence_index(row): sentence = { 'words' : row.words, 'lemmas' : row.lemmas, 'poses' : row.poses, 'dep_paths' : row.dep_paths, 'dep_parents' : [ p-1 for p in row.dep_parents] } parents, children = dependencies.build_indexes(sentence) index = { 'sentence': sentence, 'parents': parents, 'children': children } return index def supervise(m, mention_parts, sentence_index, pos_phrases, neg_phrases, pos_patterns, neg_patterns, dicts): labeling = None sentence = sentence_index['sentence'] parents = sentence_index['parents'] children = sentence_index['children'] pos_patterns = [ p.split(' ') for p in pos_patterns ] neg_patterns = [ p.split(' ') for p in neg_patterns ] for p in neg_phrases: start = index_of_sublist(p, sentence['words']) if start is not None: labeling = False for p in pos_phrases: start = index_of_sublist(p, sentence['words']) if start is not None: labeling = True for p in neg_patterns: if dependencies.match(sentence, p, mention_parts, parents, children, dicts): labeling = False if labeling is None: for p in pos_patterns: matches = dependencies.match(sentence, p, mention_parts, parents, children, dicts) if matches: print >>sys.stderr, 'pos matches: %s in %s' % (str(matches), str(sentence['words'])) labeling = True return m._replace(is_correct=labeling) def featurize(m, mention_parts, sentence_index, feature_patterns, bad_features, dicts): feature_patterns = [ p.split(' ') for p in feature_patterns ] sentence = sentence_index['sentence'] parents = sentence_index['parents'] children = sentence_index['children'] flat_mention_parts = [i for sublist in mention_parts for i in sublist] feature_set = set() # find dependency path that covers wordidxs, lemmatize # feature = '' # for i in m.wordidxs: # m.features.append(sentence['lemmas'][i]) # for p in parents[i]: # path, parent = p # if parent in m.wordidxs: # feature = feature + sentence['lemmas'][i] + '<-' + path + '-' + sentence['lemmas'][parent] + '|||' # if feature != '': # m.features.append(feature) feature_prefix = '' for i in flat_mention_parts: for c in children[i]: path, child = c if path == 'neg': feature_prefix = 'NEGATED' # for i in m.wordidxs: # for c in children[i]: # path, child = c # if path == 'neg': # feature_set.add('NEGATED') # for i in m.wordidxs: # if sentence['poses'][i] == 'NNS': # feature_set.add('PLURAL') # for i in m.wordidxs: # for p in parents[i]: # path, parent = p # if sentence['poses'][parent] == 'NNS': # feature_set.add('MOD_PLURAL') def get_actual_dep_from_match(pattern, j, ma): # determine the edge edge_pattern = pattern[2 * j + 1] if edge_pattern[:2] == '<-': # print(str(ma[j]), file=sys.stderr) # print(str(parents[ma[j]]), file=sys.stderr) dep = '<-' + parents[ma[j]][0][0] + '-' elif edge_pattern[len(edge_pattern) - 2:] == '->': dep = '-' + parents[ma[j + 1]][0][0] + '->' elif edge_pattern == '_': dep = '_' else: print >> sys.stderr, 'ERROR: Unknown edge pattern' return dep # pattern = '__ <-prep_like- __ -nsubj-> __'.split(' ') # for pattern in feature_patterns: # for i in m.wordidxs: # matches = [] # dependencies.match_i(sentence, i, pattern, parents, children, matches, [], dicts) # for ma in matches: # #feature = '__' + pattern[1] # feature = sentence['lemmas'][ma[0]] + get_actual_dep_from_match(pattern, 0, ma) # j = 1 # while j < len(ma): # feature = feature + sentence['lemmas'][ma[j]] # if 2*j + 1 < len(pattern): # dep = get_actual_dep_from_match(pattern, 0, ma) # feature = feature + dep # j = j+1 # m.features.append(feature) # pattern = '__ <-prep_like- __ -nsubj-> __'.split(' ') for pattern in feature_patterns: matches = dependencies.match(sentence, pattern, mention_parts, parents, children, dicts) for ma in matches: if acyclic(ma): # feature = '__' + pattern[1] feature = sentence['lemmas'][ma[0]] + ' ' + get_actual_dep_from_match(pattern, 0, ma) j = 1 while j < len(ma): feature = feature + ' ' + sentence['lemmas'][ma[j]] if 2 * j + 1 < len(pattern): dep = get_actual_dep_from_match(pattern, j, ma) feature = feature + ' ' + dep j = j + 1 feature_set.add(feature) for f in feature_set: if f in bad_features: continue m.features.append(feature_prefix + '_' + f) return m
dd-genomics-master
code/util/clf_util.py
###################################################################################### # LATTICE - MEMEX plugins for latticelib # # latticelib is an extraction framework to allow quickly building extractors by # specifying minimal target-specific code (candidate generation patterns and # supervision rules). It has a set of pre-built featurization code that covers # a lot of Memex flag extractors. The goal is to make it more general, # powerful, fast to run and easy to use. # # This file contains Memex-specific components for latticelib. # # For sample usage, see: # udf/util/test/latticelib/module.py # udf/extract_underage.py # ###################################################################################### # Default dictionaries tailored for Memex. Will function in addition to the # one in latticelib default_dicts = { 'short_words': [ 'the', 'and', 'or', 'at', 'in', 'see', 'as', 'an', 'data', 'for', 'not', 'our', 'ie', 'to', 'eg', 'one', 'age', 'on', 'center', 'right', 'left', 'from', 'based', 'total', 'via', 'but', 'resp', 'no', ], 'intensifiers': [ 'very', 'really', 'extremely', 'exceptionally', 'incredibly', 'unusually', 'remarkably', 'particularly', 'absolutely', 'completely', 'quite', 'definitely', 'too', ], 'pos_certainty': [ 'likely', 'possibly', 'definitely', 'absolutely', 'certainly', ], 'modal': [ 'will', 'would', 'may', 'might', ], 'mutation': [ 'mutation', 'variant', 'allele', 'deletion', 'duplication', 'truncation', ], 'levels': [ 'serum', 'level', 'elevated', 'plasma', ] 'expression': [ 'express', 'expression', 'coexpression', 'coexpress', 'co-expression', 'co-express', 'overexpress', 'overexpression', 'over-expression', 'over-express', 'production', 'product', 'increased', 'increase', 'increas', ] }
dd-genomics-master
code/util/memex.py
dd-genomics-master
code/util/__init__.py
#! /usr/bin/python -m trace --trace --file /dev/stderr ###################################################################################### # LATTICE - Util functions for working with dependencies # # Usage: # Start by preparing a list of dep_patterns, eg. "he <-nsubj- buy" # # sentence is an object that contains dep_paths, dep_parents, lemmas. # # parents, children = build_indexes(sentence) # matches = [] # # for p in dep_patterns: # match(sentence, p, parents, children, matches) # # Each m in in maches is a list of the word ids that matched the pattern. # ###################################################################################### import sys import re def build_indexes(sentence): l = len(sentence['dep_paths']) parents = [] children = [] for i in range(0, l): parents.append([]) children.append([]) for i in range(0, l): p = sentence['dep_parents'][i] t = sentence['dep_paths'][i] children[p].append([t, i]) parents[i].append([t, p]) return [parents, children] def match(sentence, path_arr, mention_parts, parents, children, dicts = {}): matches = [] for i in range(0, len(sentence['words'])): match_i(sentence, i, path_arr, mention_parts, parents, children, matches, [], dicts) return matches def token_match(sentence, i, pw, mention_parts, dicts): #w = sentence['words'][i].lower() w = sentence['lemmas'][i].lower() t = pw.split('|') #print(dicts, file=sys.stderr) #print('.... checking ' + pw) for s in t: pair = s.split(':') p = re.compile('cand\[(\d)\]') m = p.match(pair[0]) if m: cand_num = int(m.group(1)) cand_wordidxs = mention_parts[cand_num] if i in cand_wordidxs: return True elif pair[0] == 'dic': if not pair[1] in dicts: print >>sys.stderr, 'ERROR: Dictionary ' + pair[1] + ' not found' return False if not w in dicts[pair[1]]: return False elif pair[0] == 'pos': if not pair[1] == sentence['poses'][i]: return False elif pair[0] == 'reg': if not re.match(pair[1], w): return False else: print >>sys.stderr, 'ERROR: Predicate ' + pair[0] + ' unknown' return False return True def match_i(sentence, i, path_arr, mention_parts, parents, children, matches, matched_prefix = [], dicts = {}): assert len(path_arr) > 0, str(path_arr) #w = sentence['lemmas'][i].lower() #if len(path_arr) == 0: # nothing to match anymore #matches.append(matched_prefix) #return True pw = path_arr[0] # __ is a wildcard matching every word matched = False if pw == '__': matched = True elif pw.startswith('[') and pw.endswith(']') and token_match(sentence, i, pw[1:-1], mention_parts, dicts): matched = True elif sentence['lemmas'][i].lower() == pw: matched = True if not matched: return False #if pw != '__' and w != pw: # return matched_prefix.append(i) if len(path_arr) == 1: matches.append(matched_prefix) return True # match dep pd = path_arr[1] found = False if pd[:2] == '<-': # left is child dep_type = pd[2:-1] for p in parents[i]: #print(w + '\t<-' + p[0] + '-\t' + str(p[1]) + '\t' + sentence.words[p[1]].lemma, file=sys.stderr) if p[0] == dep_type or dep_type == '__': if match_i(sentence, p[1], path_arr[2:], mention_parts, parents, children, matches, list(matched_prefix), dicts): found = True elif pd[len(pd)-2:] == '->': # left is parent dep_type = pd[1:-2] for c in children[i]: #print(w + '\t-' + c[0] + '->\t' + str(c[1]) + '\t' + sentence.words[c[1]].lemma, file=sys.stderr) if c[0] == dep_type or dep_type == '__': if match_i(sentence, c[1], path_arr[2:], mention_parts, parents, children, matches, list(matched_prefix), dicts): found = True elif pd == '_': if i+1 < len(sentence['lemmas']): if match_i(sentence, i+1, path_arr[2:], mention_parts, parents, children, matches, list(matched_prefix), dicts): found = True return found def enclosing_range(wordidxs): m = wordidxs if len(m) == 1: m_from = m[0] m_to = m[0] + 1 else: if m[0] < m[1]: m_from = m[0] m_to = m[len(m)-1] + 1 else: m_from = m[len(m)-1] m_to = m[0]+1 return [ m_from, m_to ]
dd-genomics-master
code/util/dependencies.py
dd-genomics-master
code/dep_alignment/__init__.py
#! /usr/bin/env python def rc_to_match_tree(mixin, sent, cands, node, children, rv=None): if rv is None: rv = [] assert False, "TODO this method unfolds DAGS into trees, don't use it or fix it first" mc = MatchCell(1) rv.append(mc) index = len(rv) for i, cand in enumerate(cands): if node == cand: mc.cands = [i] break mc.lemmas = [mixin.get_lemma(sent, node)] mc.words = [mixin.get_word(sent, node)] mc.match_type = 'single_match' mc.pos_tags = [mixin.get_pos_tag(sent, node)] for c in children[node]: if c == 0: continue c_index, _ = rc_to_match_tree(mixin, sent, cands, c, children, rv) mc.children.append(c_index) if not mc.children: mc.children.append(0) return index, rv def sent_to_match_tree(sent, cands): m = AlignmentMixin() root = m.find_root(sent['dependencies']) children = m.find_children(sent) return rc_to_match_tree(m, sent, cands, root, children) class OverlappingCandidatesException(Exception): pass def canonicalize_row(words, lemmas, poses, dep_paths, dep_parents, cands): for i, cand_series1 in enumerate(cands): for j, cand_series2 in enumerate(cands): if i == j: continue if len(set(cand_series1).intersection(set(cand_series2))) != 0: raise OverlappingCandidatesException assert len(words) < 200, words new_indices = [i for i in xrange(len(words))] new_words = [None for _ in xrange(len(words))] new_lemmas = [None for _ in xrange(len(words))] new_poses = [None for _ in xrange(len(words))] new_cands = [] for cand_series in cands: first_cand_index = new_indices[cand_series[0]] offset = len(cand_series) - 1 for i in cand_series: new_indices[i] = first_cand_index for i in xrange(max(cand_series)+1, len(new_indices)): new_indices[i] -= offset cand_series = sorted(list(cand_series)) cand_word_series = [words[i] for i in cand_series] cand_word = '_'.join(cand_word_series) new_words[first_cand_index] = cand_word new_lemmas[first_cand_index] = cand_word.lower() new_poses[first_cand_index] = 'NN' new_cands.append(first_cand_index) for i in xrange(len(words)): if new_indices[i] in new_cands: continue new_words[new_indices[i]] = words[i] new_lemmas[new_indices[i]] = lemmas[i] new_poses[new_indices[i]] = poses[i] new_words = [w for w in new_words if w is not None] new_lemmas = [l for l in new_lemmas if l is not None] new_poses = [p for p in new_poses if p is not None] assert len(new_words) <= len(words) + 1 new_dep_parents_paths = [set() for _ in xrange(len(new_words))] for i, parent in enumerate(dep_parents): if new_indices[i] == new_indices[parent]: # within candidate pass else: new_dep_parents_paths[new_indices[i]].add((new_indices[parent], dep_paths[i])) new_dep_parents = [] new_dep_paths = [] for parent_paths in new_dep_parents_paths: no_minus_one_paths = [p for p in parent_paths if p[0] != -1] if len(no_minus_one_paths) > 0: new_dep_parents.append([p[0] for p in no_minus_one_paths]) new_dep_paths.append([p[1] for p in no_minus_one_paths]) else: new_dep_parents.append([-1]) new_dep_paths.append(['']) return new_words, new_lemmas, new_poses, new_dep_paths, new_dep_parents, new_cands def parts_to_match_tree(words, lemmas, poses, children, node, cands, rv=None, folded=None): if rv is None: rv = [] if folded is None: folded = {} if node in folded: assert node != 0 return folded[node], rv mc = MatchCell(1) rv.append(mc) index = len(rv) for i, cand in enumerate(cands): if node == cand: mc.cands = [i] break mc.lemmas = [lemmas[node-1]] mc.words = [words[node-1]] mc.match_type = 'single_match' mc.pos_tags = [poses[node-1]] assert node not in folded, (node, folded) folded[node] = index for c in children[node]: assert c != node if c == 0: continue c_index, _ = parts_to_match_tree(words, lemmas, poses, children, c, cands, rv, folded) if c_index not in mc.children: mc.children.append(c_index) if not mc.children: mc.children.append(0) return index, rv def parents_to_children(dep_parents): children = [[] for _ in xrange(len(dep_parents) + 1)] for node, parents in enumerate(dep_parents): for p in parents: if p != -1: assert p+1 < len(children), (p, len(children), dep_parents) children[p+1].append(node+1) for i, c in enumerate(children): if i == 0: continue if not c: c.append(0) return children class RootException(Exception): pass def parents_find_root(dep_parents): roots = [] for i, parents in enumerate(dep_parents): if parents != [-1]: continue if not [p for p in dep_parents if (i in p)]: continue roots.append(i+1) if len(roots) != 1: raise RootException("have != 1 roots (%s) in sentence" % str(roots)) return roots[0] class DepParentsCycleException(Exception): pass def incoming(node, children): rv = [] for i, c in enumerate(children): if node in c: rv.append(i) return rv def acyclic(children): children = [set(c) for c in children] l = [] q = [] for node in xrange(len(children)): if not incoming(node, children): q.append(node) while q: n = q[0] q = q[1:] l.append(n) for m in children[n]: incom = incoming(m, children) if incom == [n]: q.append(m) children[n].clear() for c in children: if c: return False return True def row_to_canonical_match_tree(row, in_cands): words, lemmas, poses, dep_paths, dep_parents = row.words, row.lemmas, row.poses, row.dep_paths, row.dep_parents words, lemmas, poses, dep_paths, dep_parents, cands = canonicalize_row(words, lemmas, poses, dep_paths, dep_parents, in_cands) # we are converting from 0 to 1-based now cands = [c+1 for c in cands] children = parents_to_children(dep_parents) # takes 0-based, returns 1-based if not acyclic(children): raise DepParentsCycleException() root = parents_find_root(dep_parents) # takes 0-based, returns 1-based return parts_to_match_tree(words, lemmas, poses, children, root, cands) class MatchCell: def __init__(self, size): self.size = size self.match_type = [None for _ in xrange(size)] self.pos_tags = [None for _ in xrange(size)] self.words = [None for _ in xrange(size)] self.lemmas = [None for _ in xrange(size)] self.cands = [None for _ in xrange(size)] self.children = [] def __repr__(self): return '[%s,%s,%s,%s,%s,%s,%s]' % (str(self.size), \ str(self.match_type), \ str(self.pos_tags), \ str(self.words), \ str(self.lemmas), \ str(self.cands), \ str(self.children)) class AlignmentMixin: def find_root(self, dep): for d in dep: if d[1].lower() == "root-0": d2split = d[2].split('-') return int(d2split[len(d2split) - 1]) assert False def find_children(self, sent): dep = sent['dependencies'] rv = [ set() for i in xrange(len(sent['words']) + 1)] for d in dep: d1split = d[1].split('-') from_index = int(d1split[len(d1split) - 1]) d2split = d[2].split('-') to_index = int(d2split[len(d2split) - 1]) rv[from_index].add(to_index) assert to_index <= len(sent['words']) for i, c in enumerate(rv): if len(c) == 0: rv[i].add(0) return rv def in_dicts(self, w1, w2, dicts): for d in dicts: if w1 in d and w2 in d: return True return False def get_word(self, sent, node): return sent['words'][node - 1][0] def get_lemma(self, sent, node): return sent['words'][node - 1][1]["Lemma"] def get_pos_tag(self, sent, node): # HACK Johannes: take only first letter of POS tag for matching return sent['words'][node - 1][1]["PartOfSpeech"][0]
dd-genomics-master
code/dep_alignment/alignment_util.py
#! /usr/bin/env python import numpy as np from alignment_util import AlignmentMixin, MatchCell import sys import copy class MultiDepAlignment(AlignmentMixin): word_match_score = 5 dict_match_score = 5 lemma_match_score = 5 pos_tag_match_score = -4 skip_score = -3 mismatch_score = -5 cand_match_score = 15 short_words = set([',', '.', '-lrb-', '-rrb-', 'is', 'the', 'of', 'for', \ 'with', 'on', 'to', 'from', 'in', 'a', 'an', 'at', 'and', 'by', 'be', 'we']) def __init__(self, mt_root1, match_tree1, mt_root2, match_tree2, num_cands, dicts): self.match_tree1 = match_tree1 self.match_tree2 = match_tree2 self.dicts = dicts self.num_cands = num_cands self.empty_cell1 = MatchCell(match_tree1[0].size) self.empty_cell2 = MatchCell(match_tree2[0].size) self.score_matrix = np.empty((len(match_tree1) + 1, len(match_tree2) + 1)) self.score_matrix[:] = np.inf self.path_matrix = [[('_', 0) for _ in xrange(len(match_tree2) + 1)] for _ in xrange(len(match_tree1) + 1)] for d in dicts: assert isinstance(d, set) self.mt_root1 = mt_root1 self.mt_root2 = mt_root2 self._h(self.mt_root1, self.mt_root2, forbidden1=set(), forbidden2=set()) def get_match_cell1(self, mt_node1): if mt_node1 == 0: return self.empty_cell1 else: return self.match_tree1[mt_node1 - 1] def get_match_cell2(self, mt_node2): if mt_node2 == 0: return self.empty_cell2 else: return self.match_tree2[mt_node2 - 1] def _match_score(self, mt_node1, mt_node2): mc1 = self.get_match_cell1(mt_node1) mc2 = self.get_match_cell2(mt_node2) sum_score = 0 match_type = '' for i in xrange(len(mc1.words)): for j in xrange(len(mc2.words)): if mc1.words[i] is None and mc2.words[j] is None: match_type += '[gaps%d,%d]' % (i, j) continue if mc1.words[i] is None and mc2.words[j] is not None: sum_score += self.skip_score match_type += '[gap1%d,%d]' % (i, j) continue if mc1.words[i] is not None and mc2.words[j] is None: sum_score += self.skip_score match_type += '[gap2%d,%d]' % (i, j) continue broken = False for k in xrange(self.num_cands): if mc1.cands[i] == k and mc2.cands[j] == k: sum_score += self.cand_match_score match_type += '[cand%d,%d_%d]' % (i, j, k) broken = True break if broken: continue if mc1.pos_tags[i] == mc2.pos_tags[j] \ and mc1.lemmas[i] in self.short_words and mc2.lemmas[j] in self.short_words: match_type += '[short_word%d,%d]' % (i, j) continue if mc1.pos_tags[i] == mc2.pos_tags[j] and mc1.words[i] == mc2.words[j]: match_type += '[word%d,%d]' % (i, j) sum_score += self.word_match_score continue if mc1.pos_tags[i] == mc2.pos_tags[j] and mc1.lemmas[i] == mc2.lemmas[j]: match_type += '[lemma%d,%d]' % (i, j) sum_score += self.lemma_match_score continue if self.in_dicts(mc1.words[i], mc2.words[j], self.dicts): match_type += '[word_dict%d,%d]' % (i, j) sum_score += self.dict_match_score continue if self.in_dicts(mc1.lemmas[i], mc2.lemmas[j], self.dicts): match_type += '[lemma_dict%d,%d]' % (i, j) sum_score += self.dict_match_score continue if mc1.pos_tags[i] == mc2.pos_tags[j]: match_type += '[pos_tags%d,%d]' % (i, j) sum_score += self.pos_tag_match_score continue match_type += '[mis%d,%d]' % (i, j) sum_score += self.mismatch_score return sum_score, match_type + '_match' def _balance_lists(self, lists1, lists2): fake_guy_number = 0 while len(lists1) < len(lists2): new_guy = 'fake_' + str(fake_guy_number) fake_guy_number += 1 lists1[new_guy] = [] for girl in lists2: lists1[new_guy].append((0, girl)) lists2[girl].append((-1000, new_guy)) def _sort_lists(self, lists): for guy in lists: sorted_list = sorted(lists[guy])[::-1] # sort in reverse score order lists[guy] = sorted_list def _stable_marriage(self, men_pref_lists, women_pref_lists): self._balance_lists(men_pref_lists, women_pref_lists) self._balance_lists(women_pref_lists, men_pref_lists) assert len(women_pref_lists) == len(men_pref_lists) self._sort_lists(men_pref_lists) self._sort_lists(women_pref_lists) proposal_order = copy.deepcopy(men_pref_lists) unmatched_guys = set([guy for guy in men_pref_lists]) matching = {} while unmatched_guys: guy = iter(unmatched_guys).next() girl = proposal_order[guy][0][1] proposal_order[guy] = proposal_order[guy][1:] if girl not in matching: unmatched_guys -= set([guy]) matching[girl] = guy else: current_guy = matching[girl] prefer_new_guy = None for (_, m) in women_pref_lists[girl]: if m == current_guy: prefer_new_guy = False break if m == guy: prefer_new_guy = True break assert prefer_new_guy is not None, (current_guy, guy, women_pref_lists[girl]) if prefer_new_guy: unmatched_guys.add(current_guy) unmatched_guys -= set([guy]) matching[girl] = guy else: pass rv = [] assert len(matching) == len(women_pref_lists) matched_guys = set() for girl in matching: guy = matching[girl] assert guy not in matched_guys, (guy, matched_guys) matched_guys.add(guy) if isinstance(guy, int) and isinstance(girl, int): rv.append((guy, girl)) elif isinstance(guy, int) and not isinstance(girl, int): rv.append((guy, None)) elif not isinstance(guy, int) and isinstance(girl, int): rv.append((None, girl)) else: assert False return rv def _match(self, mt_node1, mt_node2, forbidden1, forbidden2): if mt_node1 == 0 and mt_node2 == 0: return 0, 'end', [] if mt_node1 == 0 and mt_node2 != 0: return -1000, 'assert_false', [] if mt_node1 != 0 and mt_node2 == 0: return -1000, 'assert_false', [] mc1 = self.get_match_cell1(mt_node1) c1 = set(mc1.children) assert mt_node1 not in c1, (mt_node1, c1) mc2 = self.get_match_cell2(mt_node2) c2 = set(mc2.children) assert mt_node2 not in c2, (mt_node2, c2) men_pref_lists = {} women_pref_lists = {} for i in c1: men_pref_lists[i] = [] for j in c2: women_pref_lists[j] = [] for i in c1: for j in c2: self._h(i, j, forbidden1, forbidden2) men_pref_lists[i].append((self.score_matrix[i, j], j)) women_pref_lists[j].append((self.score_matrix[i, j], i)) outgoing = self._stable_marriage(men_pref_lists, women_pref_lists) sum_score = 0 for (i, j) in outgoing: assert i is None or i in mc1.children, i assert j is None or j in mc2.children, j # assert False, 'TODO test this! should we use the skip score for unassigned branches?' if i is not None and j is not None: sum_score += self.score_matrix[i, j] elif i is not None or j is not None: sum_score += self.skip_score # HACK Johannes. Do we want to leave out unmatched branches this way? # insert into real_outgoing otherwise # AND DON'T FORGET TO ADAPT CODE DOWNSTAIRS TO NONE NODES # ESPECIALLY IN get_match_tree else: assert False, (i, j) direct_match_score, match_type = self._match_score(mt_node1, mt_node2) # HACK Johannes: Because unmatched branches can be pruned in a multi-way match, this doesn't hold anymore: # assert len([a[0] for a in outgoing if a[0] is not None]) == len(set([a[0] for a in outgoing if a[0] is not None])) # assert len([a[1] for a in outgoing if a[1] is not None]) == len(set([a[1] for a in outgoing if a[1] is not None])) assert len(outgoing) >= min(len(mc1.children), len(mc2.children)) for o1, o2 in outgoing: # assert o1 is not None # assert o2 is not None if o1 is not None: assert mt_node1 != o1, (mt_node1, o1, match_type, mc1.children) if o2 is not None: assert mt_node2 != o2, (mt_node2, o2, match_type, mc2.children) return direct_match_score + sum_score, match_type, outgoing def _skip1(self, mt_node1, mt_node2, forbidden1, forbidden2): if mt_node1 == 0: return -1000, 'assert_false', [] score_list = [] mc1 = self.get_match_cell1(mt_node1) for i in mc1.children: assert i != mt_node1 self._h(i, mt_node2, forbidden1, forbidden2) score_list.append((self.score_matrix[i, mt_node2], i)) score_list = sorted(score_list)[::-1] mc2 = self.get_match_cell2(mt_node2) sum_score = 0 skip_type = '' for j, word in enumerate(mc2.words): if word is not None: skip_type += '[skip%d]' % j sum_score += self.skip_score else: skip_type += '[zero%d]' % j assert score_list[0][1] != mt_node1, str((score_list[0][1], mt_node1)) return sum_score + score_list[0][0], skip_type + '_skip1', [(score_list[0][1], mt_node2)] def _skip2(self, mt_node1, mt_node2, forbidden1, forbidden2): if mt_node2 == 0: return -1000, 'assert_false', [] score_list = [] mc2 = self.get_match_cell2(mt_node2) for j in mc2.children: assert j != mt_node2 self._h(mt_node1, j, forbidden1, forbidden2) score_list.append((self.score_matrix[mt_node1, j], j)) score_list = sorted(score_list)[::-1] mc1 = self.get_match_cell1(mt_node1) sum_score = 0 skip_type = '' for i, word in enumerate(mc1.words): if word is not None: skip_type += '[skip%d]' % i sum_score += self.skip_score else: skip_type += '[zero%d]' % i assert score_list[0][1] != mt_node2, str((mt_node2, score_list[0][1])) return sum_score + score_list[0][0], skip_type + '_skip2', [(mt_node1, score_list[0][1])] def _h(self, mt_node1, mt_node2, forbidden1, forbidden2): forbidden1 = forbidden1.copy() forbidden1.add(mt_node1) forbidden2 = forbidden2.copy() forbidden2.add(mt_node2) if self.score_matrix[mt_node1, mt_node2] != np.inf: return self.score_matrix[mt_node1, mt_node2] m, match_type, cont_match = self._match(mt_node1, mt_node2, forbidden1, forbidden2) assert mt_node1 not in [c[0] for c in cont_match] assert mt_node2 not in [c[1] for c in cont_match] l1, skip_type1, cont_skip1 = self._skip1(mt_node1, mt_node2, forbidden1, forbidden2) assert (mt_node1, mt_node2) not in cont_skip1, (mt_node1, mt_node2, cont_skip1) l2, skip_type2, cont_skip2 = self._skip2(mt_node1, mt_node2, forbidden1, forbidden2) assert (mt_node1, mt_node2) not in cont_skip2, (mt_node1, mt_node2, cont_skip2) score = max([m, l1, l2]) self.score_matrix[mt_node1, mt_node2] = score if score == m: self.path_matrix[mt_node1][mt_node2] = match_type, cont_match for o1, o2 in cont_match: assert o1 is None or o1 not in forbidden1 assert o2 is None or o2 not in forbidden2 elif score == l1: self.path_matrix[mt_node1][mt_node2] = skip_type1, cont_skip1 for o1, _ in cont_skip1: assert o1 not in forbidden1 elif score == l2: self.path_matrix[mt_node1][mt_node2] = skip_type2, cont_skip2 for _, o2 in cont_skip2: assert o2 not in forbidden2 else: assert False def _print_match_tree_recursive(self, stream, match_tree, index, indent): assert 0 < index assert index <= len(match_tree), (index, len(match_tree)) cell = match_tree[index - 1] print >> stream, " " * indent + str(cell) for c in cell.children: if c != 0: self._print_match_tree_recursive(stream, match_tree, c, indent + 4) def print_match_tree(self, stream=sys.stdout): root, match_tree = self.get_match_tree() self._print_match_tree_recursive(stream, match_tree, root, 0) def get_match_tree(self, match_tree=-1, folded=-1, node1=-1, node2=-1, size1=-1, size2=-1, forbidden=-1): if node1 == -1: node1 = self.mt_root1 if node2 == -1: node2 = self.mt_root2 if folded != -1 and (node1, node2) in folded: if folded[(node1, node2)] == 0: return 0, match_tree else: return folded[(node1, node2)], match_tree if match_tree == -1: match_tree = [] if folded == -1: assert len(match_tree) == 0 folded = {} folded[(0, 0)] = 0 folded[(0, None)] = 0 folded[(None, 0)] = 0 if forbidden == -1: forbidden = [] if node1 is not None and node2 is not None: mc1 = self.get_match_cell1(node1) mc2 = self.get_match_cell2(node2) size1 = mc1.size size2 = mc2.size mc = MatchCell(size1 + size2) mc.cands[0:size1] = mc1.cands mc.cands[size1:size1 + size2] = mc2.cands mc.pos_tags[0:size1] = mc1.pos_tags mc.pos_tags[size1:size1 + size2] = mc2.pos_tags mc.words[0:size1] = mc1.words mc.words[size1:size1 + size2] = mc2.words mc.lemmas[0:size1] = mc1.lemmas mc.lemmas[size1:size1 + size2] = mc2.lemmas mc.children = [] instr, succ = self.path_matrix[node1][node2] mc.match_type = instr match_tree.append(mc) index = len(match_tree) folded[(node1, node2)] = index forbidden = [i for i in forbidden] # copying forbidden the old way forbidden.append((node1, node2)) for o1, o2 in succ: assert not instr.endswith('_match') or o1 is None or o1 in mc1.children, (o1, mc1.children) assert not instr.endswith('_match') or o2 is None or o2 in mc2.children, (o2, mc2.children) assert not instr.endswith('_skip2') or o1 == node1 assert not instr.endswith('_skip1') or o2 == node2 assert (o1, o2) not in forbidden, (o1, o2, forbidden) child_root, _ = self.get_match_tree(match_tree=match_tree, folded=folded, \ node1=o1, node2=o2, size1=size1, size2=size2, \ forbidden=forbidden) assert child_root >= 0 mc.children.append(child_root) assert mc.children return index, match_tree elif node1 is None and node2 is not None: mc2 = self.get_match_cell2(node2) assert size1 != -1 assert size2 != -1 mc = MatchCell(size1 + size2) mc.cands[0:size1] = [None for i in xrange(size1)] mc.cands[size1:size1 + size2] = mc2.cands mc.pos_tags[0:size1] = [None for i in xrange(size1)] mc.pos_tags[size1:size1 + size2] = mc2.pos_tags mc.words[0:size1] = [None for i in xrange(size1)] mc.words[size1:size1 + size2] = mc2.words mc.lemmas[0:size1] = [None for i in xrange(size1)] mc.lemmas[size1:size1 + size2] = mc2.lemmas mc.children = [] mc.match_type = 'single2' match_tree.append(mc) index = len(match_tree) folded[(node1, node2)] = index forbidden = [i for i in forbidden] forbidden.append((node1, node2)) for c in mc2.children: child_root, _ = self.get_match_tree(match_tree=match_tree, folded=folded, \ node1=None, node2=c, size1=size1, size2=size2, \ forbidden=forbidden) assert child_root >= 0 mc.children.append(child_root) assert mc.children, (node2, mc2.children) return index, match_tree elif node1 is not None and node2 is None: mc1 = self.get_match_cell1(node1) assert size1 != -1 assert size2 != -1 mc = MatchCell(size1 + size2) mc.cands[0:size1] = mc1.cands mc.cands[size1:size1 + size2] = [None for i in xrange(size2)] mc.pos_tags[0:size1] = mc1.pos_tags mc.pos_tags[size1:size1 + size2] = [None for i in xrange(size2)] mc.words[0:size1] = mc1.words mc.words[size1:size1 + size2] = [None for i in xrange(size2)] mc.lemmas[0:size1] = mc1.lemmas mc.lemmas[size1:size1 + size2] = [None for i in xrange(size2)] mc.children = [] mc.match_type = 'single1' match_tree.append(mc) index = len(match_tree) folded[(node1, node2)] = index forbidden = [i for i in forbidden] forbidden.append((node1, node2)) for c in mc1.children: child_root, _ = self.get_match_tree(match_tree=match_tree, folded=folded, \ node1=c, node2=None, size1=size1, size2=size2, \ forbidden=forbidden) assert child_root >= 0 mc.children.append(child_root) assert mc.children return index, match_tree else: assert False def print_matched_lemmas(self, stream=sys.stdout, node1=-1, node2=-1, folded=-1): if node1 == -1: node1 = self.mt_root1 if node2 == -1: node2 = self.mt_root2 if folded == -1: folded = set() if (node1, node2) in folded or node1 == 0 or node2 == 0: return folded.add((node1, node2)) mc1 = self.get_match_cell1(node1) mc2 = self.get_match_cell2(node2) instr, succ = self.path_matrix[node1][node2] if instr.endswith('_match'): print >> stream, "%s\t%s" % ('\t'.join(mc1.lemmas), '\t'.join(mc2.lemmas)) for (o1, o2) in succ: self.print_matched_lemmas(stream, o1, o2, folded) def overall_score(self): return self.score_matrix[self.mt_root1, self.mt_root2] def rescore(self, unscore_list, folded=-1, node1=-1, node2=-1): if node1 == -1: node1 = self.mt_root1 if node2 == -1: node2 = self.mt_root2 if folded == -1: folded = set() if (node1, node2) in folded or node1 == 0 or node2 == 0 or node1 is None or node2 is None: return 0 folded.add((node1, node2)) mc1 = self.get_match_cell1(node1) mc2 = self.get_match_cell2(node2) lemmas1 = mc1.lemmas lemmas2 = mc2.lemmas instr, succ = self.path_matrix[node1][node2] rv = 0 if instr.endswith('_match'): for s1, s2, penalty in unscore_list: for l1 in s1: for l2 in s2: if l1 in lemmas1 and l2 in lemmas2: rv += penalty for (o1, o2) in succ: rv += self.rescore(unscore_list, folded, o1, o2) return rv
dd-genomics-master
code/dep_alignment/multi_dep_alignment.py
#! /usr/bin/env python import sys import glob import os if __name__ == "__main__": num = 0 if len(sys.argv) != 2: print >>sys.stderr, 'Expecting list of folder names (without preceding numbers) in file as argument' sys.exit(1) with open(sys.argv[1]) as f: for line in f: assert num <= 99, 'Cannot handle more than 100 files (indices 00-99)' filenames = glob.glob(line.strip()) assert len(filenames) <= 1, 'Multiple files of name %s' % line.strip() if filenames: filename = filenames[0] stem = filename else: filenames = glob.glob('[0-9][0-9]-%s' % line.strip()) assert len(filenames) == 1, 'No file with name *-%s' % line.strip() filename = filenames[0] stem = filenames[0][3:] new_filename = '%02d-%s' % (num, stem) if new_filename != filename: print 'Moving %s to %s' % (filename, new_filename) os.rename(filename, new_filename) else: print 'Retaining filename %s' % filename num += 1
dd-genomics-master
snapshot-template/gill-reduced/number_folders.py
#! /usr/bin/env python import sys import re for line in sys.stdin: print re.sub(r'\W+', ' ', line.strip())
dd-genomics-master
onto/replace_non_alpha.py
#! /usr/bin/env python from xml.etree.ElementTree import ElementTree import sys import re def attach_diseases(diseases, excludes): excludes = [set(d.strip().split()) for d in excludes] for line in diseases.split('\n'): names = line.strip().split(';') for name in names: # if 'GLOMERULOSCLEROSIS' in name: # print >> sys.stderr, excludes # print >> sys.stderr, set(re.sub(r'\W+', ' ', name.strip()).split(' ')) if len(name.strip()) > 0 and set(re.sub(r'\W+', ' ', name.strip()).split(' ')) not in excludes: yield re.sub(r'\W+', ' ', name.strip()) if __name__ == "__main__": filename = sys.argv[1] doc = ElementTree(file=filename) e = doc.findall('.//mimNumber')[0] mim_number = e.text names = [] alt_names = [] for e in doc.findall('.//preferredTitle'): names += attach_diseases(e.text, []) for e in doc.findall('.//alternativeTitles'): alt_names += attach_diseases(e.text, names) print "OMIM:%s\t%s\t%s" % (mim_number, '|^|'.join(names), '|^|'.join(alt_names))
dd-genomics-master
onto/parse_diseases.py
#! /usr/bin/env python import sys def main(): fname = sys.argv[1] transcript = None with open(fname) as f: for line in f: if line.startswith('>'): if transcript: print '%s\t{%s}' % (transcript, ','.join(sequence)) transcript = line.strip()[1:].split()[0].split('_')[2] sequence = '' continue sequence += line.strip() print '%s\t{%s}' % (transcript, ','.join(sequence)) if __name__ == "__main__": main()
dd-genomics-master
onto/geneIsoformsToTable.py
#! /usr/bin/env python import sys def main(): fname = sys.argv[1] transcript = None with open(fname) as f: for line in f: if line.startswith('>'): if transcript: print '%s\t{%s}' % (transcript, ','.join(sequence)) transcript = line.strip()[1:] sequence = '' continue sequence += line.strip() print '%s\t{%s}' % (transcript, ','.join(sequence)) if __name__ == "__main__": main()
dd-genomics-master
onto/proteinIsoformsToTable.py
import sys import re disease_to_hpos = {} with open('data/hpo_disease_phenotypes.tsv', 'rb') as f: for line in f.readlines(): source, source_id, name, name2, hpos = line.strip().split('\t') if source == "OMIM": disease_to_hpos[source_id] = hpos.split("|") with open('raw/clinvar.tsv', 'rb') as f: for line in f.readlines(): row = line.strip().split('\t') pheno_ids = row[10] try: hgvs = [n.split(':')[1] for n in (row[18], row[19]) if len(n.strip()) > 0] except IndexError: #sys.stderr.write('\t'.join([row[18], row[19]])+'\n') pass omim_match = re.search(r'OMIM:(\d+),', pheno_ids) if omim_match: omim_id = omim_match.group(1) hpos = disease_to_hpos.get(omim_id) if hpos: for variant in hgvs: for pheno in hpos: print '%s\t%s' % (variant, pheno)
dd-genomics-master
onto/join_clinvar_omim_hpo.py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A constant-space parser for the GeneOntology OBO v1.2 format Version 1.0 """ from collections import defaultdict __author__ = "Uli Koehler" __copyright__ = "Copyright 2013 Uli Koehler" __license__ = "Apache v2.0" def processGOTerm(goTerm): """ In an object representing a GO term, replace single-element lists with their only member. Returns the modified object as a dictionary. """ ret = dict(goTerm) #Input is a defaultdict, might express unexpected behaviour # for key, value in ret.iteritems(): # if len(value) == 1: # ret[key] = value[0] return ret def parseGOOBO(filename): """ Parses a Gene Ontology dump in OBO v1.2 format. Yields each Keyword arguments: filename: The filename to read """ with open(filename, "r") as infile: currentGOTerm = None for line in infile: line = line.strip() if not line: continue #Skip empty if line == "[Term]": if currentGOTerm: yield processGOTerm(currentGOTerm) currentGOTerm = defaultdict(list) elif line == "[Typedef]": #Skip [Typedef sections] currentGOTerm = None else: #Not [Term] #Only process if we're inside a [Term] environment if currentGOTerm is None: continue key, sep, val = line.partition(":") currentGOTerm[key].append(val.strip()) #Add last term if currentGOTerm is not None: yield processGOTerm(currentGOTerm) if __name__ == "__main__": """Print out the number of GO objects in the given GO OBO file""" import argparse parser = argparse.ArgumentParser() parser.add_argument('infile', help='The input file in GO OBO v1.2 format.') args = parser.parse_args() #Iterate over GO terms termCounter = 0 for goTerm in parseGOOBO(args.infile): termCounter += 1 print "Found %d GO terms" % termCounter
dd-genomics-master
onto/obo_parser.py
#! /usr/bin/env python import os APP_HOME = os.environ['GDD_HOME'] import sys sys.path.append('%s/code' % APP_HOME) import data_util as dutil ### ATTENTION!!!! PLEASE PIPE THE OUTPUT OF THIS SCRIPT THROUGH sort | uniq !!! ### ### Doing it within python is a waste of resources. Linux does it much faster. ### def get_parents(bottom_id, dag, root_id='HP:0000118'): if bottom_id == root_id: return set([bottom_id]) rv = set() if bottom_id in dag.edges: for parent in dag.edges[bottom_id]: rv |= get_parents(parent, dag) rv.add(bottom_id) return rv if __name__ == '__main__': hpo_dag = dutil.read_hpo_dag() with open('%s/onto/data/hpo_phenotypes.tsv' % APP_HOME) as f: for line in f: toks = line.strip().split('\t') hpo_id = toks[0] pheno_name = toks[1] parent_ids = get_parents(hpo_id, hpo_dag) # includes the original hpo_id assert hpo_id in parent_ids if 'HP:0000118' not in parent_ids: continue sys.stdout.write(hpo_id + '\t' + pheno_name + '\n') sys.stdout.flush()
dd-genomics-master
onto/load_hpo_abnormalities.py
#! /usr/bin/env python import sys if len(sys.argv) != 4: print >> sys.stderr, "usage: ./blah diseases_file ps_file ps_to_omim_file" sys.exit(1) diseases_filename = sys.argv[1] ps_filename = sys.argv[2] ps_to_omim_filename = sys.argv[3] omim_to_ps = {} ps_alt_names = {} with open(ps_to_omim_filename) as f: for line in f: line = line.strip().split('\t') omim_to_ps[line[1]] = line[0] omim_names = {} omim_alt_names = {} with open(diseases_filename) as f: for line in f: line = line.strip().split('\t') omim_id = line[0] names = line[1] if len(line) >= 3: alt_names = line[2] else: alt_names = '' omim_names[omim_id] = names if omim_id in omim_to_ps: omim_alt_names[omim_id] = '' ps_id = omim_to_ps[omim_id] if ps_id not in ps_alt_names: ps_alt_names[ps_id] = [] if len(alt_names) > 0: ps_alt_names[ps_id].extend(alt_names.split('|^|')) else: omim_alt_names[omim_id] = alt_names ps_names = {} with open(ps_filename) as f: for line in f: line = line.strip().split('\t') ps_names[line[0]] = line[1] with open(diseases_filename, 'w') as f: f.seek(0) for omim_id in omim_names: names = omim_names[omim_id] alt_names = omim_alt_names[omim_id] if alt_names is not None: print >> f, "%s\t%s\t%s" % (omim_id, names, alt_names) else: print >> f, "%s\t%s\t" % (omim_id, names) with open(ps_filename, 'w') as f: f.seek(0) for ps_id in ps_names: name = ps_names[ps_id] if ps_id in ps_alt_names: alt_names = '|^|'.join(ps_alt_names[ps_id]) else: alt_names = '' print >> f, "%s\t%s\t%s" % (ps_id, name, alt_names)
dd-genomics-master
onto/omim_alt_names_to_series.py
#! /usr/bin/env python import os APP_HOME = os.environ['GDD_HOME'] import sys sys.path.append('%s/code' % APP_HOME) import data_util as dutil import argparse ### ATTENTION!!!! PLEASE PIPE THE OUTPUT OF THIS SCRIPT THROUGH sort | uniq !!! ### ### Doing it within python is a waste of resources. Linux does it much faster. ### if __name__ == '__main__': hpo_dag = dutil.read_hpo_dag() parser = argparse.ArgumentParser() parser.add_argument('--only-abnormalities', required=False, action="store_true") args = parser.parse_args() for line in sys.stdin: toks = line.strip().split() hpo_id = toks[0] ensemble_gene = toks[1] parent_ids = dutil.get_parents(hpo_id, hpo_dag) # includes the original hpo_id assert hpo_id in parent_ids if args.only_abnormalities: if 'HP:0000118' not in parent_ids: sys.stderr.write('"{0}": not a phenotypic abnormality\n'.format(hpo_id.strip())) continue parent_ids.remove('HP:0000118') for parent_id in parent_ids: sys.stdout.write('{0}\t{1}\n'.format(parent_id, ensemble_gene)) sys.stdout.flush()
dd-genomics-master
onto/canonicalize_gene_phenotype.py
""" Output fields: id, name, synonyms, related terms, alt IDs, parent, MeSh terms """ import argparse from obo_parser import parseGOOBO if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('infile', help='Input HPO file in OBO v1.2 format.') parser.add_argument('outfile', help='Output TSV file name.') args = parser.parse_args() with open(args.outfile, 'w') as out: for term in parseGOOBO(args.infile): id = term['id'][0] name = term['name'][0] alt_ids = '|'.join(term['alt_id']) if 'alt_id' in term else '' is_a = '|'.join(x.partition(' ')[0] for x in term['is_a']) if 'is_a' in term else '' synonyms = set() related = set() mesh = set() for s in term.get('synonym', []): if ' EXACT [' in s: synonyms.add(s.split(' EXACT [')[0].strip('" ')) else: # RELATED, BROAD, etc. related.add(s.split('" ')[0].strip('"')) for n in term.get('xref', []): if ' ' in n: cur_syn = n.partition(' ')[-1].strip('" ') #synonyms.add(cur_syn) xref_id = n.split(' ')[0] source = xref_id.split(':')[0] if source == 'MeSH': mesh.add(cur_syn) synonyms.discard(name) related.discard(name) synonyms = '|'.join(sorted(synonyms)) if synonyms else '' related = '|'.join(sorted(related)) if related else '' mesh = '|'.join(sorted(mesh)) if mesh else '' out.write('\t'.join([id, name.replace('\t', ' '), synonyms.replace('\t', ' '), related.replace('\t', ' '), alt_ids.replace('\t', ' '), is_a.replace('\t', ' '), mesh.replace('\t', ' ')]) + '\n')
dd-genomics-master
onto/parse_hpo.py
#!/usr/bin/env python import sys import re import os #from nltk.stem.snowball import SnowballStemmer #from nltk.stem import PorterStemmer from nltk.stem import WordNetLemmatizer GDD_HOME = os.environ['GDD_HOME'] # [Alex 4/12/15]: # This script is for preprocessing a dictionary of phenotype phrase - HPO code pairs to be used # primarily in the candidate extraction stage of the phenotype pipeline # Currently we take the list of phenotype names and synonym phrases and normalize (lower case, # lemmatization, stop words removal, etc). Note that we also keep the exact form as well # Choose which lemmatizer / stemmer to use # Based on some rough testing: # - WordNetLemmatizer has an error rate of ~10% wrt lemmatization of raw data in db (this is mostly verbs since we don't use POS tag info, and would be << 10% if only counting unique words) # - SnowballStemmer is much faster but has ~30% error rate # TODO: preprocess using Stanford CoreNLP lemmatizer for exact alignment w raw data? lemmatizer = WordNetLemmatizer() def lemmatize(w): if w.isalpha(): return lemmatizer.lemmatize(w) else: # Things involving non-alphabetic characters, don't try to lemmatize return w STOPWORDS = [w.strip() for w in open('%s/onto/manual/stopwords.tsv' % (GDD_HOME,), 'rb')] def normalize_phrase(p): """Lowercases, removes stop words, and lemmatizes inputted multi-word phrase""" out = [] # split into contiguous alphanumeric segments, lower-case, filter stopwords, lemmatize ws = [re.sub(r'[^a-z0-9]', '', w) for w in p.lower().split()] ws = [w for w in ws if w not in STOPWORDS] ws = [lemmatize(w) for w in ws] out.append(' '.join(ws)) # if there's a comma, try permuting the order (some of these cases ommitted from HPO!) if ',' in p: cs = re.split(r'\s*,\s*', p.strip()) out += normalize_phrase(' '.join(cs[::-1])) return out def load_diseases(filename): out = [] for line in open(filename): row = line.split('\t') omim_ps_id = row[0] names = row[1].split('|^|') alt_names = row[2].split('|^|') forms = [] exact = [] for p in names: if len(p.strip().lower()) > 0 and len(p.strip().split()) > 1: exact.append(p.strip().lower()) forms.append((omim_ps_id, p.strip().lower(), 'EXACT')) for p in alt_names: if len(p.strip().lower()) > 0 and len(p.strip().split()) > 1: exact.append(p.strip().lower()) forms.append((omim_ps_id, p.strip().lower(), 'EXACT')) for p in exact: forms += [(omim_ps_id, np.strip(), 'LEMMA') for np in normalize_phrase(p) if len(np.strip()) > 0 and len(np.strip().split()) > 1] for f in forms: k = f[0] + f[1] if not seen.has_key(k): seen[k] = 1 out.append(f) return out if __name__ == "__main__": out_pheno = [] out_disease = [] seen = {} load_data_tsv = lambda f : [line.split('\t') for line in open('%s/onto/data/%s' % (GDD_HOME, f), 'rb')] for row in load_data_tsv('hpo_phenotypes.tsv'): hpo_id = row[0] exact = [row[1].lower()] if len(row) > 2: exact += [p.strip().lower() for p in row[2].split('|') if len(p.strip()) > 0] forms = [(hpo_id, p, "EXACT") for p in exact] for p in exact: forms += [(hpo_id, np, "LEMMA") for np in normalize_phrase(p) if len(np.strip()) > 0] for f in forms: k = f[0] + f[1] if not seen.has_key(k): seen[k] = 1 out_pheno.append(f) out_disease.extend(load_diseases('%s/onto/manual/phenotypic_series.tsv' % GDD_HOME)) out_disease.extend(load_diseases('%s/onto/manual/diseases.tsv' % GDD_HOME)) with open("%s/onto/manual/pheno_terms.tsv" % (GDD_HOME,), 'w') as f: for o in out_pheno: f.write('\t'.join(o)) f.write('\n') with open("%s/onto/manual/disease_terms.tsv" % (GDD_HOME,), 'w') as f: for o in out_disease: f.write('\t'.join(o)) f.write('\n')
dd-genomics-master
onto/prep_pheno_terms.py
#! /usr/bin/env python import fileinput import sys def getDigits(text): c = '' for i in text: if i.isdigit(): c += i if len(c) > 0: return int(c) return -1 if __name__ == "__main__": for line in fileinput.input(): comps = line.strip().split('\t') if len(comps) == 0: continue elif len(comps) == 6 or len(comps) == 7: text_year = comps[2].strip() pmid = comps[0] source_name = comps[1] issn_global = comps[3] issn_print = comps[4] issn_electronic = comps[5] if len(comps) >= 7: mesh_terms = comps[6] else: mesh_terms = '' if pmid == 'null': continue if text_year == 'null': year = 2100 year_status = 'null' elif text_year.isdigit(): year = int(text_year) year_status = 'ok' else: year = getDigits(text_year) if year < 1850: year = 2100 year_status = 'not ok' else: year_status = 'extracted' else: print line continue print '%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s' % (pmid, source_name, year, text_year, year_status, issn_global, issn_print, issn_electronic, mesh_terms)
dd-genomics-master
parser/md_cleanup.py
import json import os import re import lxml.etree as et class XMLTree: """ A generic tree representation which takes XML as input Includes subroutines for conversion to JSON & for visualization based on js form """ def __init__(self, xml_root): """Calls subroutines to generate JSON form of XML input""" self.root = xml_root def to_str(self): return et.tostring(self.root) def sentence_to_xmltree(sentence_input, prune_root=True): """Transforms a util.SentenceInput object into an XMLTree""" root = sentence_to_xmltree_sub(sentence_input, 0) # Often the return tree will have several roots, where one is the actual root # And the rest are just singletons not included in the dep tree parse... # We optionally remove these singletons and then collapse the root if only one child left if prune_root: for c in root: if len(c) == 0: root.remove(c) if len(root) == 1: root = root.findall("./*")[0] return XMLTree(root) def sentence_to_xmltree_sub(s, rid=0): """Recursive subroutine to construct XML tree from util.SentenceInput object""" i = rid - 1 attrib = {} if i >= 0: for k,v in filter(lambda x : type(x[1]) == list, s._asdict().iteritems()): if v[i] is not None: attrib[singular(k)] = str(v[i]) root = et.Element('node', attrib=attrib) for i,d in enumerate(s.dep_parents): if d == rid: root.append(sentence_to_xmltree_sub(s, i+1)) return root def singular(s): """Get singular form of word s (crudely)""" return re.sub(r'e?s$', '', s, flags=re.I) def html_table_to_xmltree(html): """HTML/XML table to XMLTree object""" node = et.fromstring(re.sub(r'>\s+<', '><', html.strip())) xml = html_table_to_xmltree_sub(node) return XMLTree(xml) def html_table_to_xmltree_sub(node): """ Take the XML/HTML table and convert each word in leaf nodes into its own node Note: Ideally this text would be run through CoreNLP? """ # Split text into Token nodes # NOTE: very basic token splitting here... (to run through CoreNLP?) if node.text is not None: for tok in re.split(r'\s+', node.text): node.append(et.Element('token', attrib={'word':tok})) # Recursively append children for c in node: node.append(html_table_to_xmltree_sub(c)) return node
dd-genomics-master
dsr/tree_structs.py
from collections import namedtuple import re def read_ptsv_element(x): """ Parse an element in psql-compatible tsv format, i.e. {-format arrays Takes a string as input, handles float, int, str vals, and arrays of these types """ if len(x) == 0: return None if x[0] == '{': return map(read_ptsv_element, re.split(r'\"?,\"?', re.sub(r'^\{\"?|\"?\}$', '', x))) for type_fn in [int, float, str]: try: return type_fn(x) except ValueError: pass raise ValueError("Type not recognized.") def read_ptsv(line): """ Parse a line in psql-compatible tsv format I.e. tab-separated with psql {-style arrays """ return map(read_ptsv_element, line.rstrip().split('\t')) SentenceInput = namedtuple('SentenceInput', 'doc_id, sent_id, text, words, lemmas, poses, ners, char_idxs, dep_labels, dep_parents, word_idxs') def load_sentences(f_path): """ Helper fn to load NLP parser output file as SentenceInput objects """ for line in open(f_path, 'rb'): l = read_ptsv(line) yield SentenceInput._make(l + [range(len(l[3]))]) def tag_candidate(root, words, cid): """ Hackey function to tag candidates in xml tree Note for example that this will get messed up if the words comprising the candidate occur elsewhere in the sentence also... """ for word in words: root.findall(".//node[@word='%s']" % word)[0].set('cid', cid)
dd-genomics-master
dsr/treedlib_util.py
from IPython.core.display import display_html, HTML, display_javascript, Javascript import json import os import re import lxml.etree as et class XMLTree: """ A generic tree representation which takes XML as input Includes subroutines for conversion to JSON & for visualization based on js form """ def __init__(self, xml_root): """Calls subroutines to generate JSON form of XML input""" self.root = xml_root self.json = self._to_json(self.root) # create a unique id for e.g. canvas id in notebook self.id = str(abs(hash(self.to_str()))) def _to_json(self, root): js = { 'attrib': dict(root.attrib), 'children': [] } for i,c in enumerate(root): js['children'].append(self._to_json(c)) return js def to_str(self): return et.tostring(self.root) def render_tree(self): """ Renders d3 visualization of the d3 tree, for IPython notebook display Depends on html/js files in vis/ directory, which is assumed to be in same dir... """ # TODO: Make better control over what format / what attributes displayed @ nodes! # HTML html = open('vis/tree-chart.html').read() % self.id display_html(HTML(data=html)) # JS JS_LIBS = ["http://d3js.org/d3.v3.min.js"] js = open('vis/tree-chart.js').read() % (json.dumps(self.json), self.id) display_javascript(Javascript(data=js, lib=JS_LIBS)) def sentence_to_xmltree(sentence_input, prune_root=True): """Transforms a util.SentenceInput object into an XMLTree""" root = sentence_to_xmltree_sub(sentence_input, 0) # Often the return tree will have several roots, where one is the actual root # And the rest are just singletons not included in the dep tree parse... # We optionally remove these singletons and then collapse the root if only one child left if prune_root: for c in root: if len(c) == 0: root.remove(c) if len(root) == 1: root = root.findall("./*")[0] return XMLTree(root) def sentence_to_xmltree_sub(s, rid=0): """Recursive subroutine to construct XML tree from util.SentenceInput object""" i = rid - 1 attrib = {} if i >= 0: for k,v in filter(lambda x : type(x[1]) == list, s._asdict().iteritems()): if v[i] is not None: attrib[singular(k)] = str(v[i]) root = et.Element('node', attrib=attrib) for i,d in enumerate(s.dep_parents): if d == rid: root.append(sentence_to_xmltree_sub(s, i+1)) return root def singular(s): """Get singular form of word s (crudely)""" return re.sub(r'e?s$', '', s, flags=re.I) def html_table_to_xmltree(html): """HTML/XML table to XMLTree object""" node = et.fromstring(re.sub(r'>\s+<', '><', html.strip())) xml = html_table_to_xmltree_sub(node) return XMLTree(xml) def html_table_to_xmltree_sub(node): """ Take the XML/HTML table and convert each word in leaf nodes into its own node Note: Ideally this text would be run through CoreNLP? """ # Split text into Token nodes # NOTE: very basic token splitting here... (to run through CoreNLP?) if node.text is not None: for tok in re.split(r'\s+', node.text): node.append(et.Element('token', attrib={'word':tok})) # Recursively append children for c in node: node.append(html_table_to_xmltree_sub(c)) return node
dd-genomics-master
dsr/tree_structs_ipynb.py
#! /usr/bin/python # -*- coding: utf-8 -*- import json import sys from nltk.stem import WordNetLemmatizer import re from nltk.corpus import stopwords def load_gene_name_to_genes(ensembl_genes_path): ret = {} with open(ensembl_genes_path) as f: for line in f: eid = line.strip().split(':')[0] canonical_name = (line.strip().split(':')[1]).split()[0] name = line.strip().split()[1] mapping_type = line.strip().split()[2] ret[name] = (eid, canonical_name, mapping_type) return ret min_word_len = {'ENSEMBL_ID': 2, 'REFSEQ': 2, 'NONCANONICAL_SYMBL': 4, 'CANONICAL_SYMBOL': 2} bad_genes = ['ANOVA', 'MRI', 'CO2', 'gamma', 'spatial', 'tau', 'Men', 'ghrelin', 'MIM', 'NHS', 'STD', 'hole'] def comp_gene_rgxs(ensembl_genes_path): gene_names = [] gene_name_to_genes = load_gene_name_to_genes(ensembl_genes_path) for name in gene_name_to_genes: if name in bad_genes: continue (eid, canonical_name, mapping_type) = gene_name_to_genes[name] if mapping_type not in ['CANONICAL_SYMBOL', 'NONCANONICAL_SYMBOL']: continue if mapping_type == 'NONCANONICAL_SYMBOL': min_len = 4 else: min_len = 2 if len(name) < min_len: continue if not re.match(r'.*[a-zA-Z].*', name): continue gene_names.append('[\.,_ \(\)]' + name + '[\.,_ \(\)]') return re.compile('(' + '|'.join(gene_names) + ')') def replace_genes(content, genes_rgx): return genes_rgx.sub(' ENSEMBLGENE ', content) a = r'[cgrnm]' i = r'IVS' b = r'ATCGatcgu' s1 = r'0-9\_\.\:' s2 = r'\/>\?\(\)\[\]\;\:\*\_\-\+0-9' s3 = r'\/><\?\(\)\[\]\;\:\*\_\-\+0-9' b1 = r'[%s]' % b bs1 = r'[%s%s]' % (b,s1) bs2 = r'[%s %s]' % (b,s2) bs3 = r'[%s %s]' % (b,s3) c1 = r'(inv|del|ins|dup|tri|qua|con|delins|indel)' c2 = r'(del|ins|dup|tri|qua|con|delins|indel)' c3 = r'([Ii]nv|[Dd]el|[Ii]ns|[Dd]up|[Tt]ri|[Qq]ua|[Cc]on|[Dd]elins|[Ii]ndel|fsX|fsx|fs)' p = r'CISQMNPKDTFAGHLRWVEYX' ps2 = r'[%s %s]' % (p, s2) ps3 = r'[%s %s]' % (p, s3) d = '[ATCGRYUatgc]' aa_long_to_short = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} aa_camel = {} for aa in aa_long_to_short: aa_camel[aa[0] + aa[1].lower() + aa[2].lower()] = aa_long_to_short[aa] aal = '(' + '|'.join([x for x in aa_long_to_short] + [x for x in aa_camel]) + ')' # regexes from tmVar paper # See Table 3 in http://bioinformatics.oxfordjournals.org/content/early/2013/04/04/bioinformatics.btt156.full.pdf def comp_gv_rgxs(): GV_RGXS = [ r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))?([\+\-\*][0-9]+)?(%s)(%s+)?' % (c3, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)' % d, r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s)-*[>/β†’](%s)' % (d, d), r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s?)(%s+)' % (c3, d), r'^p\.(([%s])|%s)([0-9]+)(([%s])|%s)' % (p, aal, p, aal), r'^p\.(([%s])|%s)([0-9]+)[_]+(([%s])|%s)([0-9]+)(%s)' % (p, aal, p, aal, c3), r'^p\.(([%s])|%s)([0-9]+)(%s)' % (p, aal, c3), r'^(%s)([0-9]+)(%s)' % (d, d) ] return re.compile('(' + '|'.join(GV_RGXS) + ')', flags=re.I) gv_rgx = comp_gv_rgxs() def replace_variants(content): return gv_rgx.sub(' GENEVARIANT ', content) lemmatizer = WordNetLemmatizer() def lemmatize(content): return [lemmatizer.lemmatize(s) for s in content] no_alnum = re.compile(r'[\W_ ]+') if __name__ == "__main__": if len(sys.argv) != 4: print >>sys.stderr, "need 3 args: symbol for file (NOT used for stdin), ensembl genes path, output path" sys.exit(1) pubmed = sys.argv[1] ensembl_genes_path = sys.argv[2] out_path = sys.argv[3] gene_rgx = comp_gene_rgxs(ensembl_genes_path) with open(out_path, 'w') as f: ctr = -1 for line in sys.stdin: ctr += 1 if ctr % 500 == 0: print >>sys.stderr, "replacing %d lines in %s " % (ctr, pubmed) item = json.loads(line) pmid = item['doc-id'] content = item['content'] content = replace_genes(content, gene_rgx) content = replace_variants(content) content = [w for w in no_alnum.sub(' ', content).lower().split() if w not in stopwords.words('english')] # content = no_alnum.sub(' ', content).lower() print >>f, "%s\t%s" % (pmid, ' '.join(lemmatize(content)))
dd-genomics-master
document_classifier/classification/lemmatize_gpv_stdin.py
#! /usr/bin/python # -*- coding: utf-8 -*- import json import sys from nltk.stem import WordNetLemmatizer import re from nltk.corpus import stopwords def load_gene_name_to_genes(ensembl_genes_path): ret = {} with open(ensembl_genes_path) as f: for line in f: eid = line.strip().split(':')[0] canonical_name = (line.strip().split(':')[1]).split()[0] name = line.strip().split()[1] mapping_type = line.strip().split()[2] ret[name] = (eid, canonical_name, mapping_type) return ret min_word_len = {'ENSEMBL_ID': 2, 'REFSEQ': 2, 'NONCANONICAL_SYMBL': 4, 'CANONICAL_SYMBOL': 2} bad_genes = ['ANOVA', 'MRI', 'CO2', 'gamma', 'spatial', 'tau', 'Men', 'ghrelin', 'MIM', 'NHS', 'STD', 'hole'] def comp_gene_rgxs(ensembl_genes_path): gene_names = [] gene_name_to_genes = load_gene_name_to_genes(ensembl_genes_path) for name in gene_name_to_genes: if name in bad_genes: continue (eid, canonical_name, mapping_type) = gene_name_to_genes[name] if mapping_type not in ['CANONICAL_SYMBOL', 'NONCANONICAL_SYMBOL']: continue if mapping_type == 'NONCANONICAL_SYMBOL': min_len = 4 else: min_len = 2 if len(name) < min_len: continue if not re.match(r'.*[a-zA-Z].*', name): continue gene_names.append('[\.,_ \(\)]' + name + '[\.,_ \(\)]') return re.compile('(' + '|'.join(gene_names) + ')') def replace_genes(content, genes_rgx): return genes_rgx.sub(' ENSEMBLGENE ', content) a = r'[cgrnm]' i = r'IVS' b = r'ATCGatcgu' s1 = r'0-9\_\.\:' s2 = r'\/>\?\(\)\[\]\;\:\*\_\-\+0-9' s3 = r'\/><\?\(\)\[\]\;\:\*\_\-\+0-9' b1 = r'[%s]' % b bs1 = r'[%s%s]' % (b,s1) bs2 = r'[%s %s]' % (b,s2) bs3 = r'[%s %s]' % (b,s3) c1 = r'(inv|del|ins|dup|tri|qua|con|delins|indel)' c2 = r'(del|ins|dup|tri|qua|con|delins|indel)' c3 = r'([Ii]nv|[Dd]el|[Ii]ns|[Dd]up|[Tt]ri|[Qq]ua|[Cc]on|[Dd]elins|[Ii]ndel|fsX|fsx|fs)' p = r'CISQMNPKDTFAGHLRWVEYX' ps2 = r'[%s %s]' % (p, s2) ps3 = r'[%s %s]' % (p, s3) d = '[ATCGRYUatgc]' aa_long_to_short = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} aa_camel = {} for aa in aa_long_to_short: aa_camel[aa[0] + aa[1].lower() + aa[2].lower()] = aa_long_to_short[aa] aal = '(' + '|'.join([x for x in aa_long_to_short] + [x for x in aa_camel]) + ')' # regexes from tmVar paper # See Table 3 in http://bioinformatics.oxfordjournals.org/content/early/2013/04/04/bioinformatics.btt156.full.pdf def comp_gv_rgxs(): GV_RGXS = [ r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))?([\+\-\*][0-9]+)?(%s)(%s+)?' % (c3, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)' % d, r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s)-*[>/β†’](%s)' % (d, d), r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s?)(%s+)' % (c3, d), r'^p\.(([%s])|%s)([0-9]+)(([%s])|%s)' % (p, aal, p, aal), r'^p\.(([%s])|%s)([0-9]+)[_]+(([%s])|%s)([0-9]+)(%s)' % (p, aal, p, aal, c3), r'^p\.(([%s])|%s)([0-9]+)(%s)' % (p, aal, c3), r'^(%s)([0-9]+)(%s)' % (d, d) ] return re.compile('(' + '|'.join(GV_RGXS) + ')', flags=re.I) gv_rgx = comp_gv_rgxs() def replace_variants(content): return gv_rgx.sub(' GENEVARIANT ', content) lemmatizer = WordNetLemmatizer() def lemmatize(content): return [lemmatizer.lemmatize(s) for s in content] no_alnum = re.compile(r'[\W_ ]+') if __name__ == "__main__": if len(sys.argv) != 4: print >>sys.stderr, "need 4 args: path to the full pubmed json, ensembl genes path, output path" sys.exit(1) pubmed = sys.argv[1] ensembl_genes_path = sys.argv[2] out_path = sys.argv[3] gene_rgx = comp_gene_rgxs(ensembl_genes_path) out = {} with open(pubmed) as f: ctr = -1 for line in f: ctr += 1 if ctr % 500 == 0: print >>sys.stderr, "replacing %d lines in %s " % (ctr, pubmed) item = json.loads(line) pmid = item['doc-id'] content = item['content'] content = replace_genes(content, gene_rgx) content = replace_variants(content) content = [w for w in no_alnum.sub(' ', content).lower().split() if w not in stopwords.words('english')] if pmid in out: out[pmid] += content else: out[pmid] = content print >>sys.stderr, "Printing and lemmatizing" with open(out_path, 'w') as f: ctr = -1 for pmid in out: ctr += 1 if ctr % 500 == 0: print >>sys.stderr, "lemmatizing %d lines in %s " % (ctr, pubmed) print >>f, "%s\t%s" % (pmid, ' '.join(lemmatize(out[pmid])))
dd-genomics-master
document_classifier/classification/lemmatize_gpv.py
#! /usr/bin/python # -*- coding: utf-8 -*- from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import sys from bunch import * import numpy as np import random from sklearn.linear_model import LogisticRegression from nltk.stem import WordNetLemmatizer import re import cPickle def load_unlabeled_docs_processed(data_path): b = Bunch() b.data = [] b.pmids = [] with open(data_path) as f: ctr = -1 for line in f: ctr += 1 if ctr % 100000 == 0: print >>sys.stderr, "counting %d lines" % ctr item = line.strip().split('\t') pmid = item[0] data = item[1] b.pmids.append(pmid) b.data.append(data) return b if __name__ == "__main__": if len(sys.argv) != 3: print >>sys.stderr, "need 2 args: path to all (pubmed) TSV, output path" sys.exit(1) all_path = sys.argv[1] with open('clf.pkl', 'rb') as f: print >>sys.stderr, "Loading classifier for %s" % all_path clf = cPickle.load(f) with open('count_vect.pkl', 'rb') as f: print >>sys.stderr, "Loading count vectorizer for %s" % all_path count_vect = cPickle.load(f) with open('tfidf_transformer.pkl', 'rb') as f: print >>sys.stderr, "Loading tfidf transformer for %s" % all_path tfidf_transformer = cPickle.load(f) print >>sys.stderr, "Loading all docs" docs_new = load_unlabeled_docs_processed(all_path) print >>sys.stderr, "Number of docs: %d" % len(docs_new.data) print >>sys.stderr, "Transforming new docs through count vectorization" X_new_counts = count_vect.transform(docs_new.data) print >>sys.stderr, "Transforming new docs through tf-idf" X_new_tfidf = tfidf_transformer.transform(X_new_counts) print >>sys.stderr, "Predicting over new docs" predicted = clf.predict(X_new_tfidf) print >>sys.stderr, "Printing to %s" % sys.argv[2] with open(sys.argv[2], 'w') as f: for i, value in enumerate(predicted): if value == 1: print >>f, docs_new.pmids[i]
dd-genomics-master
document_classifier/classification/classify.py
#! /usr/bin/env python import sys if __name__ == "__main__": cur_pmid = -1 cur_str = '' for line in sys.stdin: comps = line.strip().split('\t') pmid = int(comps[0]) if pmid == cur_pmid: cur_str += ' ' cur_str += comps[1] else: if cur_pmid != -1: print "%s\t%s" % (cur_pmid, cur_str) cur_pmid = pmid cur_str = comps[1] if cur_pmid != -1: print "%s\t%s" % (cur_pmid, cur_str)
dd-genomics-master
document_classifier/classification/merge_lines.py
#!/usr/bin/env python from collections import defaultdict, namedtuple import sys import re import os import random from itertools import chain import extractor_util as util import data_util as dutil import config # This defines the Row object that we read in to the extractor parser = util.RowParser([ ('doc_id', 'text'), ('section_id', 'text'), ('sent_id', 'int'), ('words', 'text[]'), ('lemmas', 'text[]'), ('poses', 'text[]'), ('ners', 'text[]')]) # This defines the output Mention object Mention = namedtuple('Mention', [ 'dd_id', 'doc_id', 'section_id', 'sent_id', 'wordidxs', 'mention_id', 'mention_supertype', 'mention_subtype', 'entity', 'words', 'is_correct']) ### CANDIDATE EXTRACTION ### HF = config.PHENO['HF'] SR = config.PHENO['SR'] def load_pheno_terms(): phenos = {} pheno_sets = {} """ Load phenotypes (as phrases + as frozensets to allow permutations) Output a dict with pheno phrases as keys, and a dict with pheno sets as keys """ # [See onto/prep_pheno_terms.py] # Note: for now, we don't distinguish between lemmatized / exact rows = [line.split('\t') for line in open(onto_path('data/pheno_terms.tsv'), 'rb')] for row in rows: hpoid, phrase, entry_type = [x.strip() for x in row] if hpoid in hpo_phenos: if phrase in phenos: phenos[phrase].append(hpoid) else: phenos[phrase] = [hpoid] phrase_bow = frozenset(phrase.split()) if phrase_bow in pheno_sets: pheno_sets[phrase_bow].append(hpoid) else: pheno_sets[phrase_bow] = [hpoid] return phenos, pheno_sets def keep_word(w): return (w.lower() not in STOPWORDS and len(w) > HF['min-word-len'] - 1) def extract_candidate_mentions(row): """Extracts candidate phenotype mentions from an input row object""" mentions = [] # First we initialize a list of indices which we 'split' on, # i.e. if a window intersects with any of these indices we skip past it split_indices = set() # split on certain characters / words e.g. commas split_indices.update([i for i,w in enumerate(row.words) if w in HF['split-list']]) # split on segments of more than M consecutive skip words seq = [] for i,w in enumerate(row.words): if not keep_word(w): seq.append(i) else: if len(seq) > HF['split-max-stops']: split_indices.update(seq) seq = [] # Next, pass a window of size n (dec.) over the sentence looking for candidate mentions for n in reversed(range(1, min(len(row.words), HF['max-len'])+1)): for i in range(len(row.words)-n+1): wordidxs = range(i,i+n) words = [w.lower() for w in row.words[i:i+n]] lemmas = [w.lower() for w in row.lemmas[i:i+n]] # skip this window if it intersects with the split set if not split_indices.isdisjoint(wordidxs): continue # skip this window if it is sub-optimal: e.g. starts with a skip word, etc. if not all(map(keep_word, [words[0], lemmas[0], words[-1], lemmas[-1]])): continue # Note: we filter stop words coordinated between word and lemma lists # (i.e. if lemmatized version of a word is stop word, it should be stop word too) # This also keeps these filtered lists in sync! ws, lws = zip(*[(words[k], lemmas[k]) for k in range(n) if keep_word(words[k]) and keep_word(lemmas[k])]) # (1) Check for exact match (including exact match of lemmatized / stop words removed) # If found add to split list so as not to consider subset phrases p, lp = map(' '.join, [ws, lws]) if p in PHENOS or lp in PHENOS: entities = PHENOS[p] if p in PHENOS else PHENOS[lp] for entity in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, 'EXACT')) split_indices.update(wordidxs) continue # (2) Check for permuted match # Note: avoid repeated words here! if HF['permuted']: ps, lps = map(frozenset, [ws, lws]) if (len(ps)==len(ws) and ps in PHENO_SETS) or (len(lps)==len(lws) and lps in PHENO_SETS): entities = PHENO_SETS[ps] if ps in PHENO_SETS else PHENO_SETS[lps] for entity in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, 'PERM')) continue # (3) Check for an exact match with one ommitted (interior) word/lemma # Note: only consider ommiting non-stop words! if HF['omitted-interior']: if len(ws) > 2: for omit in range(1, len(ws)-1): p, lp = [' '.join([w for i,w in enumerate(x) if i != omit]) for x in [ws, lws]] if p in PHENOS or lp in PHENOS: entities = PHENOS[p] if p in PHENOS else PHENOS[lp] for entity in entities: mentions.append(create_supervised_mention(row, wordidxs, entity, 'OMIT_%s' % omit)) return mentions ### DISTANT SUPERVISION ### VALS = config.PHENO['vals'] def create_supervised_mention(row, idxs, entity=None, mention_supertype=None, mention_subtype=None): """Given a Row object consisting of a sentence, create & supervise a Mention output object""" words = [row.words[i] for i in idxs] mid = '%s_%s_%s_%s_%s_%s_%s' % (row.doc_id, row.section_id, row.sent_id, idxs[0], idxs[-1], mention_supertype, entity) m = Mention(None, row.doc_id, row.section_id, row.sent_id, idxs, mid, mention_supertype, mention_subtype, entity, words, None) if SR.get('post-match'): opts = SR['post-match'] phrase_post = " ".join(row.words[idxs[-1]:]) for name,val in VALS: if len(opts[name]) + len(opts['%s-rgx' % name]) > 0: match = util.rgx_mult_search(phrase_post, opts[name], opts['%s-rgx' % name], flags=re.I) if match: return m._replace(is_correct=val, mention_supertype='POST_MATCH_%s_%s' % (name, val), mention_subtype=match) if SR.get('mesh-supervise'): pubmed_id = dutil.get_pubmed_id_for_doc(row.doc_id) if pubmed_id and pubmed_id in PMID_TO_HPO: if entity in PMID_TO_HPO[pubmed_id]: return m._replace(is_correct=True, mention_supertype='%s_MESH_SUPERV' % mention_supertype, mention_subtype=str(pubmed_id) + ' ::: ' + str(entity)) # If this is more specific than MeSH term, also consider true. elif SR.get('mesh-specific-true') and entity in hpo_dag.node_set: for parent in PMID_TO_HPO[pubmed_id]: if hpo_dag.has_child(parent, entity): return m._replace(is_correct=True, mention_supertype='%s_MESH_CHILD_SUPERV' % mention_supertype, mention_subtype=str(parent) + ' -> ' + str(entity)) phrase = " ".join(words).lower() if mention_supertype == 'EXACT': if SR.get('exact-english-word') and \ len(words) == 1 and phrase in ENGLISH_WORDS and random.random() < SR['exact-english-word']['p']: return m._replace(is_correct=True, mention_supertype='EXACT_AND_ENGLISH_WORD', mention_subtype=phrase) else: return m._replace(is_correct=True, mention_supertype='NON_EXACT_AND_ENGLISH_WORD', mention_subtype=phrase) # Else default to existing values / NULL return m ### RANDOM NEGATIVE SUPERVISION ### def generate_rand_negatives(s, candidates): """Generate some negative examples in 1:1 ratio with positive examples""" negs = [] n_negs = len([c for c in candidates if c.is_correct]) if n_negs == 0: return negs # pick random noun / adj phrases which do not overlap with candidate mentions covered = set(chain.from_iterable([m.wordidxs for m in candidates])) idxs = set([i for i in range(len(s.words)) if re.match(SR['rand-negs']['pos-tag-rgx'], s.poses[i])]) for i in range(n_negs): x = sorted(list(idxs - covered)) if len(x) == 0: break ridxs = [random.randint(0, len(x)-1)] while random.random() > 0.5: j = ridxs[-1] if j + 1 < len(x) and x[j+1] == x[j] + 1: ridxs.append(j+1) else: break wordidxs = [x[j] for j in ridxs] mtype = 'RAND_NEG' mid = '%s_%s_%s_%s_%s_%s' % (s.doc_id, s.section_id, s.sent_id, wordidxs[0], wordidxs[-1], mtype) negs.append( Mention(dd_id=None, doc_id=s.doc_id, section_id=s.section_id, sent_id=s.sent_id, wordidxs=wordidxs, mention_id=mid, mention_supertype=mtype, mention_subtype=None, entity=None, words=[s.words[i] for i in wordidxs], is_correct=False)) for i in wordidxs: covered.add(i) return negs if __name__ == '__main__': onto_path = lambda p : '%s/onto/%s' % (os.environ['GDD_HOME'], p) # Load static dictionaries # TODO: any simple ways to speed this up? STOPWORDS = frozenset([w.strip() for w in open(onto_path('manual/stopwords.tsv'), 'rb')]) ENGLISH_WORDS = frozenset([w.strip() for w in open(onto_path('data/english_words.tsv'), 'rb')]) hpo_dag = dutil.read_hpo_dag() hpo_phenos = set(dutil.get_hpo_phenos(hpo_dag)) if SR.get('mesh-supervise'): # unnecessary and hope it will never be used again --- our doc id is the pmid currently # DOI_TO_PMID = dutil.read_doi_to_pmid() PMID_TO_HPO = dutil.load_pmid_to_hpo() PHENOS, PHENO_SETS = load_pheno_terms() # Read TSV data in as Row objects for line in sys.stdin: row = parser.parse_tsv_row(line) # Skip row if sentence doesn't contain a verb, contains URL, etc. if util.skip_row(row): continue # find candidate mentions & supervise mentions = extract_candidate_mentions(row) if SR.get('rand-negs'): mentions += generate_rand_negatives(row, mentions) # print output for mention in mentions: util.print_tsv_output(mention)
dd-genomics-master
document_classifier/classification/pheno_extract_candidates.py
#! /usr/bin/python # -*- coding: utf-8 -*- from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import sys from bunch import * import numpy as np import random from sklearn.linear_model import LogisticRegression from nltk.stem import WordNetLemmatizer import re import cPickle def load_labeled_docs_processed(data_path, neg_factor=None): b = Bunch() b.data = [] b.pmids = [] b.target = [] poss = 0 negs = 0 include_pmids = set() with open(data_path) as f: ctr = -1 for line in f: ctr += 1 if ctr % 100000 == 0: print >>sys.stderr, "counting %d lines" % ctr item = line.strip().split('\t') pmid = item[0] data = item[1] label = int(item[2]) if label == 1 or neg_factor is None or negs <= poss * neg_factor or pmid in include_pmids: include_pmids.add(pmid) b.pmids.append(pmid) b.data.append(data) b.target.append(label) if label == 1: poss += 1 else: negs += 1 return b if __name__ == "__main__": if len(sys.argv) != 2: print >>sys.stderr, "need 1 arg: path to training (pubmed) TSV" sys.exit(1) training_path = sys.argv[1] train_docs = load_labeled_docs_processed(training_path, 1.2) pos_count = np.count_nonzero(train_docs.target) print >>sys.stderr, "Number of positive training examples: %d" % pos_count neg_count = len(train_docs.target) - pos_count print >>sys.stderr, "Number of negative training examples: %d" % neg_count count_vect = CountVectorizer(analyzer='word', ngram_range=(1,1)) print >>sys.stderr, "Count-vectorizing data" X_train_counts = count_vect.fit_transform(train_docs.data) tfidf_transformer = TfidfTransformer() print >>sys.stderr, "Transforming word counts to tf-idf" X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) print >>sys.stderr, "Fitting classifier to data" clf = LogisticRegression(penalty='l2', max_iter=1000) clf.fit(X_train_tfidf, train_docs.target) with open('clf.pkl', 'wb') as f: cPickle.dump(clf, f) with open('count_vect.pkl', 'wb') as f: cPickle.dump(count_vect, f) with open('tfidf_transformer.pkl', 'wb') as f: cPickle.dump(tfidf_transformer, f)
dd-genomics-master
document_classifier/classification/create_classifier.py
#! /usr/bin/python # -*- coding: utf-8 -*- import json import sys import re if __name__ == "__main__": if len(sys.argv) != 2: print >>sys.stderr, "need 2 args: symbol for file (NOT used for stdin), output path" sys.exit(1) pubmed = sys.argv[1] out_path = sys.argv[2] gene_rgx = comp_gene_rgxs(ensembl_genes_path) with open(out_path, 'w') as f: ctr = -1 for line in sys.stdin: ctr += 1 if ctr % 500 == 0: print >>sys.stderr, "replacing %d lines in %s " % (ctr, pubmed) item = json.loads(line) pmid = item['doc-id'] content = item['content'] print "%s\t%s" % (pmid, content)
dd-genomics-master
document_classifier/classification/json_to_tsv.py
#! /usr/bin/python # -*- coding: utf-8 -*- from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer import sys from bunch import * import numpy as np import random from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectFromModel from sklearn.pipeline import Pipeline from sklearn.ensemble import GradientBoostingClassifier from sklearn import metrics from nltk.stem import WordNetLemmatizer import re from nltk.corpus import stopwords from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression from sklearn.decomposition import PCA from sklearn.ensemble import AdaBoostClassifier def load_unlabeled_docs_processed(data_path): b = Bunch() b.data = [] b.pmids = [] with open(data_path) as f: ctr = -1 for line in f: ctr += 1 if ctr % 100000 == 0: print >>sys.stderr, "counting %d lines" % ctr item = line.strip().split('\t') pmid = item[0] data = item[1] b.pmids.append(pmid) b.data.append(data) return b def load_labeled_docs_processed(data_path, neg_factor=None): b = Bunch() b.data = [] b.pmids = [] b.target = [] poss = 0 negs = 0 include_pmids = set() with open(data_path) as f: ctr = -1 for line in f: ctr += 1 if ctr % 100000 == 0: print >>sys.stderr, "counting %d lines" % ctr item = line.strip().split('\t') pmid = item[0] data = item[1] label = int(item[2]) if label == 1 or neg_factor is None or negs <= poss * neg_factor or pmid in include_pmids: include_pmids.add(pmid) b.pmids.append(pmid) b.data.append(data) b.target.append(label) if label == 1: poss += 1 else: negs += 1 return b if __name__ == "__main__": if len(sys.argv) != 4: print >>sys.stderr, "need 3 args: path to training (pubmed) TSV, path to testing (pubmed) TSV, path to random (pubmed) TSV" sys.exit(1) training_path = sys.argv[1] testing_path = sys.argv[2] random_path = sys.argv[3] train_docs = load_labeled_docs_processed(training_path, 1.2) pos_count = np.count_nonzero(train_docs.target) print >>sys.stderr, "Number of positive training examples: %d" % pos_count neg_count = len(train_docs.target) - pos_count print >>sys.stderr, "Number of negative training examples: %d" % neg_count count_vect = CountVectorizer(analyzer='word', ngram_range=(1,1)) print >>sys.stderr, "Count-vectorizing data" X_train_counts = count_vect.fit_transform(train_docs.data) tfidf_transformer = TfidfTransformer() print >>sys.stderr, "Transforming word counts to tf-idf" X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) # print >>sys.stderr, "Converting to dense matrix" # X_train_tfidf_dense = X_train_tfidf.toarray() print >>sys.stderr, "Fitting classifier to data" # clf = MultinomialNB(alpha=1.0).fit(X_train_tfidf, train_docs.target) # poor performance # clf = LogisticRegression().fit(X_train_tfidf, train_docs.target) # better performance but hoping for more # SVMs with kernel too slow # linear SVM like LogReg, but faster # clf = Pipeline([('feature-selection', SelectFromModel(LinearSVC(penalty='l1', dual=False))), # ('classification', GradientBoostingClassifier(n_estimators=100))]) # slow as number of estimators rises; but also 3% precision # clf = Pipeline([('anova', SelectKBest(f_regression, k=5)), ('clf', GradientBoostingClassifier(n_estimators=100))]) # too slow # clf = Pipeline([('feature-selection', SelectFromModel(LinearSVC(penalty='l1', dual=False))), # ('classification', SVC())]) # SVC still too slow # clf = Pipeline([('reduce-dim', PCA(n_components=100)), # ('classification', SVC())]) # SVC (? or PCA??) still too slow # PCA itself is far too slow! --- and apparently it doesn't help: linearsvc + pca 100 + gradient boosting 100 = worse than w/o pca # clf = Pipeline([('feature-selection', SelectFromModel(LinearSVC(penalty='l1', dual=False))), # ('classification', GradientBoostingClassifier(n_estimators=100))]) # this gives the old 3% and quite slow # clf = AdaBoostClassifier(base_estimator=LogisticRegression(solver='sag', max_iter=1000), n_estimators=200) # fitting depends highly on n_estimators. at 100, 0.11 / 0.76 or so clf = LogisticRegression(penalty='l2', max_iter=1000) clf.fit(X_train_tfidf, train_docs.target) print >>sys.stderr, "Loading test set" test_docs = load_labeled_docs_processed(testing_path) pos_count = np.count_nonzero(test_docs.target) print >>sys.stderr, "Number of positive testing examples: %d" % pos_count neg_count = len(test_docs.target) - pos_count print >>sys.stderr, "Number of negative testing examples: %d" % neg_count print >>sys.stderr, "Count-vectorizing test set" X_test_counts = count_vect.transform(test_docs.data) print >>sys.stderr, "Transforming test test to tf-idf" X_test_tfidf = tfidf_transformer.transform(X_test_counts) # print >>sys.stderr, "Converting to dense matrix" # X_test_tfidf_dense = X_test_tfidf.toarray() print >>sys.stderr, "Predicting over test set" predicted = clf.predict(X_test_tfidf) print >>sys.stderr, metrics.classification_report(test_docs.target, predicted, target_names=['uninteresting', 'OMIM']) print >>sys.stderr, "Loading random docs" docs_new = load_unlabeled_docs_processed(random_path) print >>sys.stderr, "Number of new docs: %d" % len(docs_new.data) print >>sys.stderr, "Transforming new docs through count vectorization" X_new_counts = count_vect.transform(docs_new.data) print >>sys.stderr, "Transforming new docs through tf-idf" X_new_tfidf = tfidf_transformer.transform(X_new_counts) # print >>sys.stderr, "Converting to dense matrix" # X_new_tfidf_dense = X_new_tfidf.toarray() print >>sys.stderr, "Predicting over new docs" predicted = clf.predict(X_new_tfidf) for i, value in enumerate(predicted): if value == 1: print("%s\t%s" % (docs_new.pmids[i], docs_new.data[i].decode('utf-8').encode('ascii', 'ignore')))
dd-genomics-master
document_classifier/classification/word_counter.py
#! /usr/bin/python # -*- coding: utf-8 -*- import word_counter import sys import re from bunch import * import numpy as np import random from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords from functools32 import lru_cache from nltk.stem import PorterStemmer def toBunch(mmap): rv = Bunch() rv.data = [] rv.pmids = [] rv.target = [] for pmid in mmap: rv.data.append(mmap[pmid][1]) rv.pmids.append(pmid) rv.target.append(mmap[pmid][0]) rv.target = np.array(rv.target) return rv def lemmatize_select(lemmatize, word): if word.startswith('MeSH_') or word == 'GENEVARIANT' or word == 'ENSEMBLGENE': return word return lemmatize(word) sw = stopwords.words('english') def lemmatize(bunch): print >>sys.stderr, "Lemmatizing data" new_data = [] pattern = re.compile('[\W_]+]') # lemmatizer = WordNetLemmatizer() lemmatizer = PorterStemmer() # lemmatize = lru_cache(maxsize=5000)(lemmatizer.stem) # lemmatize = lemmatizer.stem lemmatize = lambda x : x.lower() ctr = -1 for content in bunch.data: ctr += 1 if ctr % 100 == 0: print >>sys.stderr, "lemmatizing %d lines" % ctr stripped = pattern.sub('', content.strip()) split = stripped.split() new_content = ' '.join([lemmatize_select(lemmatize, s) for s in split if s not in sw]) new_data.append(new_content) bunch.data = new_data return bunch def make_mesh_terms(mesh): no_alnum = re.compile(r'[\W_]+') return ' '.join(['MeSH_' + no_alnum.sub('_', term) for term in mesh.split('|^|')]) def load_gene_name_to_genes(ensembl_genes_path): ret = {} with open(ensembl_genes_path) as f: for line in f: eid = line.strip().split(':')[0] canonical_name = (line.strip().split(':')[1]).split()[0] name = line.strip().split()[1] mapping_type = line.strip().split()[2] ret[name] = (eid, canonical_name, mapping_type) return ret min_word_len = {'ENSEMBL_ID': 2, 'REFSEQ': 2, 'NONCANONICAL_SYMBL': 4, 'CANONICAL_SYMBOL': 2} bad_genes = ['ANOVA', 'MRI', 'CO2', 'gamma', 'spatial', 'tau', 'Men', 'ghrelin', 'MIM', 'NHS', 'STD', 'hole'] def comp_gene_rgx(ensembl_genes_path): print >>sys.stderr, "Computing gene regex" gene_names = [] gene_name_to_genes = load_gene_name_to_genes(ensembl_genes_path) for name in gene_name_to_genes: if name in bad_genes: continue (eid, canonical_name, mapping_type) = gene_name_to_genes[name] if mapping_type not in ['CANONICAL_SYMBOL', 'NONCANONICAL_SYMBOL']: continue if mapping_type == 'NONCANONICAL_SYMBOL': min_len = 4 else: min_len = 2 if len(name) < min_len: continue if not re.match(r'.*[a-zA-Z].*', name): continue gene_names.append('[\.,_ \(\)]' + name + '[\.,_ \(\)]') return re.compile('(' + '|'.join(gene_names) + ')') def replace_genes(content, gene_rgx): return gene_rgx.sub(' ENSEMBLGENE ', content) a = r'[cgrnm]' i = r'IVS' b = r'ATCGatcgu' s1 = r'0-9\_\.\:' s2 = r'\/>\?\(\)\[\]\;\:\*\_\-\+0-9' s3 = r'\/><\?\(\)\[\]\;\:\*\_\-\+0-9' b1 = r'[%s]' % b bs1 = r'[%s%s]' % (b,s1) bs2 = r'[%s %s]' % (b,s2) bs3 = r'[%s %s]' % (b,s3) c1 = r'(inv|del|ins|dup|tri|qua|con|delins|indel)' c2 = r'(del|ins|dup|tri|qua|con|delins|indel)' c3 = r'([Ii]nv|[Dd]el|[Ii]ns|[Dd]up|[Tt]ri|[Qq]ua|[Cc]on|[Dd]elins|[Ii]ndel|fsX|fsx|fs)' p = r'CISQMNPKDTFAGHLRWVEYX' ps2 = r'[%s %s]' % (p, s2) ps3 = r'[%s %s]' % (p, s3) d = '[ATCGRYUatgc]' aa_long_to_short = {'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K', 'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N', 'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W', 'ALA': 'A', 'VAL':'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'} aa_camel = {} for aa in aa_long_to_short: aa_camel[aa[0] + aa[1].lower() + aa[2].lower()] = aa_long_to_short[aa] aal = '(' + '|'.join([x for x in aa_long_to_short] + [x for x in aa_camel]) + ')' # regexes from tmVar paper # See Table 3 in http://bioinformatics.oxfordjournals.org/content/early/2013/04/04/bioinformatics.btt156.full.pdf def comp_gv_rgxs(): print >>sys.stderr, "Computing variants regex" GV_RGXS = [ r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^([cgrnm]\.)?([0-9]+)([_]+([0-9]+))?([\+\-\*][0-9]+)?(%s)(%s+)?' % (c3, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)[->/β†’](%s)' % (d, d), r'^[cgrnm]\.([0-9]+)?([\+\-\*][0-9]+)?(%s)' % d, r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s)-*[>/β†’](%s)' % (d, d), r'^IVS([0-9]*[abcd]?)([\+\-\*][0-9]+)?(%s?)(%s+)' % (c3, d), r'^p\.(([%s])|%s)([0-9]+)(([%s])|%s)' % (p, aal, p, aal), r'^p\.(([%s])|%s)([0-9]+)[_]+(([%s])|%s)([0-9]+)(%s)' % (p, aal, p, aal, c3), r'^p\.(([%s])|%s)([0-9]+)(%s)' % (p, aal, c3), r'^(%s)([0-9]+)(%s)' % (d, d) ] return re.compile('(' + '|'.join(GV_RGXS) + ')', flags=re.I) gv_rgx = comp_gv_rgxs() def replace_variants(content): return gv_rgx.sub(' GENEVARIANT ', content) def load_unlabeled_docs(data_path, gene_rgx): no_alnum = re.compile(r'[\W_ ]+') rv = {} print >>sys.stderr, "Loading JSON data" ctr = -1 with open(data_path) as f: for line in f: ctr += 1 if ctr % 100 == 0: print >>sys.stderr, "counting %d lines" % ctr item = line.strip().split('\t') pmid = item[0] content = item[1] content.replace('\n', ' ') content = replace_genes(content, gene_rgx) content = replace_variants(content) content = no_alnum.sub(' ', content) if len(item) >= 8: mesh_terms = item[7] else: mesh_terms = '' if pmid in rv: rv[pmid] += ' ' + content else: rv[pmid] = content rv[pmid] += ' ' + make_mesh_terms(mesh_terms) b = Bunch() b.data = [] b.pmids = [] for pmid in rv: b.data.append(rv[pmid]) b.pmids.append(pmid) return lemmatize(b) if __name__ == "__main__": if len(sys.argv) != 4: print >>sys.stderr, "need 3 args: path to test pubmed TSV file to lemmatize etc, path to ensembl genes, output filename" sys.exit(1) testing_path = sys.argv[1] ensembl_genes_path = sys.argv[2] output_path = sys.argv[3] global gene_rgx gene_rgx = comp_gene_rgx(ensembl_genes_path) print >>sys.stderr, "Loading test set" test_docs = load_unlabeled_docs(testing_path, gene_rgx) with open(output_path, 'w') as f: for i, pmid in enumerate(test_docs.pmids): print >>f, "%s\t%s" % (pmid, test_docs.data[i])
dd-genomics-master
document_classifier/classification/preprocess_test_data.py
#! /usr/bin/env python # -*- coding: utf-8 -*- import json import sys import re def load_unlabeled_docs(data_path): rv = {} print >>sys.stderr, "Loading JSON data" ctr = -1 with open(data_path) as f: for line in f: ctr += 1 if ctr % 100000 == 0: print >>sys.stderr, "counting %d lines" % ctr item = json.loads(line) pmid = item['doc-id'] content = item['content'] content.replace('\n', ' ') print "%s\t%s" % (pmid, content.encode('ascii', 'ignore')) if __name__ == "__main__": if len(sys.argv) != 2: print >>sys.stderr, "need 1 arg: path to json" sys.exit(1) path = sys.argv[1] load_unlabeled_docs(path)
dd-genomics-master
document_classifier/classification/joined_data/json_to_tsv.py
#! /usr/bin/env python import sys import re if __name__ == "__main__": no_alnum = re.compile(r'[\W_]+') with open(sys.argv[2], 'w') as out_file: with open(sys.argv[1]) as f: for line in f: comps = line.strip().split('\t') pmid = comps[0] journal = comps[1] mesh_terms_string = comps[2] sv = comps[3] text = comps[4] gm = comps[5] pm = comps[6] sentences = text.split('|~^~|') gm_sentences = gm.split('|~^~|') pm_sentences = pm.split('|~^~|') mesh_terms = mesh_terms_string.split('|^|') new_text = 'JOURNAL_' + no_alnum.sub('_', journal).strip() + ' ' + ' '.join(['MeSH_' + no_alnum.sub('_', x).strip() for x in mesh_terms]) + ' ' for i, sentence in enumerate(sentences): words = sentence.split('|^|') if i >= len(gm_sentences): print >>sys.stderr, (pmid, i, gm_sentences) gms_string = gm_sentences[i] pms_string = pm_sentences[i] if gms_string != 'N': gms = gms_string.split('|^+^|') for gm in [int(x) for x in gms]: words[gm] = 'ENSEMBLGENE' if pms_string != 'N': pms = pms_string.split('|^+^|') for pm in [int(x) for x in pms]: words[pm] = 'DETECTEDPHENO' new_text += ' ' + ' '.join(words) print >>out_file, "%s\t%s\t%s" % (pmid, new_text, sv)
dd-genomics-master
document_classifier/classification/processed/genomics_dump_to_processed.py
"""Assess phenotype recall relative to known HPO-PMID map.""" import collections import random import sys sys.path.append('../code') import extractor_util as util import data_util as dutil NUM_ERRORS_TO_SAMPLE = 50 def main(id_file, candidate_file): # Load list of all pubmed IDs in the dataset print >> sys.stderr, 'Loading list of pubmed IDs from doc ID list.' doi_to_pmid = dutil.read_doi_to_pmid() pmids_in_data = set() num_docs = 0 with open(id_file) as f: for line in f: doc_id = line.strip() pmid = dutil.get_pubmed_id_for_doc(doc_id, doi_to_pmid=doi_to_pmid) if pmid: pmids_in_data.add(pmid) num_docs += 1 print >> sys.stderr, '%d/%d documents have PubMed IDs.' % ( len(pmids_in_data), num_docs) # Load map from Pubmed ID to HPO term via MeSH print >> sys.stderr, 'Loading supervision data via MeSH' mesh_supervision = collections.defaultdict(set) with open('%s/onto/data/hpo_to_pmid_via_mesh.tsv' % util.APP_HOME) as f: for line in f: hpo_id, pmid = line.strip().split('\t') if pmid in pmids_in_data: mesh_supervision[pmid].add(hpo_id) # Identify all true pairs from MeSH true_pairs = set() for pmid in pmids_in_data: for hpo in mesh_supervision[pmid]: true_pairs.add((pmid, hpo)) # Load map from Pubmed ID to HPO term based on extracted candidates print >> sys.stderr, 'Loading extracted pheno candidates' candidates = collections.defaultdict(set) with open(candidate_file) as f: for line in f: doc_id, hpo_id = line.strip().split('\t') pmid = dutil.get_pubmed_id_for_doc(doc_id, doi_to_pmid=doi_to_pmid) if pmid: candidates[pmid].add(hpo_id) # Load HPO DAG # We say we found a HPO term if we find either the exact HPO term # or one of its children hpo_dag = dutil.read_hpo_dag() # Determine which true pairs had candidate mentions for them found_pairs = set() missed_pairs = set() for pmid, hpo in true_pairs: found_hpo_ids = candidates[pmid] for cand_hpo in found_hpo_ids: if cand_hpo == '\N': continue if hpo_dag.has_child(hpo, cand_hpo): found_pairs.add((pmid, hpo)) break else: missed_pairs.add((pmid, hpo)) # Compute recall num_true = len(true_pairs) num_found = len(found_pairs) print >> sys.stderr, 'Recall: %d/%d = %g' % ( num_found, num_true, float(num_found) / num_true) # Compute other statistics num_article = len(pmids_in_data) num_annotated = sum(1 for x in pmids_in_data if len(mesh_supervision[x]) > 0) print >> sys.stderr, '%d/%d = %g pubmed articles had HPO annotation' % ( num_annotated, num_article, float(num_annotated) / num_article) # Read in HPO information hpo_info_dict = dict() with open('%s/onto/data/hpo_phenotypes.tsv' % util.APP_HOME) as f: for line in f: toks = line.strip('\r\n').split('\t') hpo_id = toks[0] hpo_info_dict[hpo_id] = toks[0:3] # Sample some error cases missed_sample = random.sample(list(missed_pairs), 100) for pmid, hpo in missed_sample: hpo_info = hpo_info_dict[hpo] pubmed_url = 'http://www.ncbi.nlm.nih.gov/pubmed/%s' % pmid hpo_url = 'www.human-phenotype-ontology.org/hpoweb/showterm?id=%s' % hpo toks = [pubmed_url, hpo_url] + hpo_info print '\t'.join(toks) if __name__ == '__main__': if len(sys.argv) < 3: print >> sys.stderr, 'Usage: %s doc_ids.tsv candidates.tsv' % sys.argv[0] print >> sys.stderr, '' print >> sys.stderr, 'doc_ids.tsv should be list of doc ids' print >> sys.stderr, ' e.g. /lfs/raiders2/0/robinjia/data/genomics_sentences_input_data/50k_doc_ids.tsv' print >> sys.stderr, 'candidates.tsv should have rows doc_id, hpo_id.' print >> sys.stderr, ' e.g. result of SELECT doc_id, entity FROM pheno_mentions' print >> sys.stderr, ' or SELECT doc_id, entity FROM pheno_mentions_is_correct_inference WHERE expectation > 0.9' sys.exit(1) main(*sys.argv[1:])
dd-genomics-master
eval/pheno_recall.py
import collections import random import sys sys.path.append('../code') import extractor_util as util import data_util as dutil HPO_DAG = dutil.read_hpo_dag() def read_supervision(): """Reads genepheno supervision data (from charite).""" supervision_pairs = set() with open('%s/onto/data/hpo_phenotype_genes.tsv' % util.APP_HOME) as f: for line in f: hpo_id, gene_symbol = line.strip().split('\t') # Canonicalize i.e. include all parents of hpo entities hpo_ids = [hpo_id] + [parent for parent in HPO_DAG.edges[hpo_id]] eids = EID_MAP[gene_symbol] for h in hpo_ids: for e in eids: supervision_pairs.add((h,e)) return supervision_pairs supervision_pairs = read_supervision() # TODO: PIPE SQL IN HERE """ SELECT gene_entity pheno_entity FROM genepheno_relations_is_correct_inference WHERE expectation >= 0.9; """ extracted_pairs = [] # TODO to compare / visualize: # (1) overall number new extracted e.g. print len(set(extracted_pairs).difference(supervision_pairs)) # (2) difference in coverage on gene axis e.g. something with set([p[0] for p in extracted_pairs]).difference([p[0] for p in supervision_pairs]) # (3) difference in coverage on pheno axis e.g. something with set([p[1] for p in extracted_pairs]).difference([p[1] for p in supervision_pairs])
dd-genomics-master
eval/omim_coverage.py
#! /usr/bin/env python ''' Created on Aug 3, 2015 @author: jbirgmei ''' import abbreviations if __name__ == '__main__': sentence = 'Scaffold proteins are abundant and essential components of the postsynaptic density -LRB- PSD -RRB- as well as I Hate JavaScript Proteins -LRB- IHJSP -RRB- , and a completely unrelated parenthesis -LRB- THIS -RRB- and a definition that could maybe fit but is way too long -LRB- AA -RRB- .'.split(' ') print abbreviations.getabbreviations(sentence) sentence = 'This sentence certainly contains no parentheses .'.split() print abbreviations.getabbreviations(sentence); sentence = 'This sentence is botched -RRB- asdf -LRB-'.split() print abbreviations.getabbreviations(sentence) sentence = 'This sentence is botched -LRB- IB'.split() print abbreviations.getabbreviations(sentence) sentence = 'While|^|the|^|intestinal|^|stem|^|cells|^|-LRB-|^|ISCs|^|-RRB-|^|are|^|essential|^|for|^|the|^|proliferative|^|aspects|^|of|^|intestinal|^|homeostasis|^|--|^|,|^|the|^|enterocytes|^|-LRB-|^|ECs|^|-RRB-|^|form|^|the|^|first|^|line|^|of|^|defence|^|against|^|pathogens|^|and|^|stressors|^|.'.split('|^|') print abbreviations.getabbreviations(sentence)
dd-genomics-master
archived/test-abbreviations.py