python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from http.client import RemoteDisconnected import json import numpy as np import torch import torch.nn.functional as F from torch import nn class NBLoss(torch.nn.Module): def __init__(self): super(NBLoss, self).__init__() def forward(self, mu, y, theta, eps=1e-8): """Negative binomial negative log-likelihood. It assumes targets `y` with n rows and d columns, but estimates `yhat` with n rows and 2d columns. The columns 0:d of `yhat` contain estimated means, the columns d:2*d of `yhat` contain estimated variances. This module assumes that the estimated mean and inverse dispersion are positive---for numerical stability, it is recommended that the minimum estimated variance is greater than a small number (1e-3). Parameters ---------- yhat: Tensor Torch Tensor of reeconstructed data. y: Tensor Torch Tensor of ground truth data. eps: Float numerical stability constant. """ if theta.ndimension() == 1: # In this case, we reshape theta for broadcasting theta = theta.view(1, theta.size(0)) log_theta_mu_eps = torch.log(theta + mu + eps) res = ( theta * (torch.log(theta + eps) - log_theta_mu_eps) + y * (torch.log(mu + eps) - log_theta_mu_eps) + torch.lgamma(y + theta) - torch.lgamma(theta) - torch.lgamma(y + 1) ) res = _nan2inf(res) return -torch.mean(res) def _nan2inf(x): return torch.where(torch.isnan(x), torch.zeros_like(x) + np.inf, x) class MLP(torch.nn.Module): """ A multilayer perceptron with ReLU activations and optional BatchNorm. """ def __init__(self, sizes, batch_norm=True, last_layer_act="linear"): super(MLP, self).__init__() layers = [] for s in range(len(sizes) - 1): layers += [ torch.nn.Linear(sizes[s], sizes[s + 1]), torch.nn.BatchNorm1d(sizes[s + 1]) if batch_norm and s < len(sizes) - 2 else None, torch.nn.ReLU(), ] layers = [l for l in layers if l is not None][:-1] self.activation = last_layer_act if self.activation == "linear": pass elif self.activation == "ReLU": self.relu = torch.nn.ReLU() else: raise ValueError("last_layer_act must be one of 'linear' or 'ReLU'") self.network = torch.nn.Sequential(*layers) def forward(self, x): if self.activation == "ReLU": x = self.network(x) dim = x.size(1) // 2 return torch.cat((self.relu(x[:, :dim]), x[:, dim:]), dim=1) return self.network(x) class GeneralizedSigmoid(torch.nn.Module): """ Sigmoid, log-sigmoid or linear functions for encoding dose-response for drug perurbations. """ def __init__(self, dim, device, nonlin="sigmoid"): """Sigmoid modeling of continuous variable. Params ------ nonlin : str (default: logsigm) One of logsigm, sigm. """ super(GeneralizedSigmoid, self).__init__() self.nonlin = nonlin self.beta = torch.nn.Parameter( torch.ones(1, dim, device=device), requires_grad=True ) self.bias = torch.nn.Parameter( torch.zeros(1, dim, device=device), requires_grad=True ) def forward(self, x): if self.nonlin == "logsigm": c0 = self.bias.sigmoid() return (torch.log1p(x) * self.beta + self.bias).sigmoid() - c0 elif self.nonlin == "sigm": c0 = self.bias.sigmoid() return (x * self.beta + self.bias).sigmoid() - c0 else: return x def one_drug(self, x, i): if self.nonlin == "logsigm": c0 = self.bias[0][i].sigmoid() return (torch.log1p(x) * self.beta[0][i] + self.bias[0][i]).sigmoid() - c0 elif self.nonlin == "sigm": c0 = self.bias[0][i].sigmoid() return (x * self.beta[0][i] + self.bias[0][i]).sigmoid() - c0 else: return x class CPA(torch.nn.Module): """ Our main module, the CPA autoencoder """ def __init__( self, num_genes, num_drugs, num_covariates, device="cuda", seed=0, patience=5, loss_ae="gauss", doser_type="mlp", decoder_activation="linear", hparams="", ): super(CPA, self).__init__() # set generic attributes self.num_genes = num_genes self.num_drugs = num_drugs self.num_covariates = num_covariates self.device = device self.seed = seed self.loss_ae = loss_ae # early-stopping self.patience = patience self.best_score = -1e3 self.patience_trials = 0 # set hyperparameters self.set_hparams_(hparams) # set models self.encoder = MLP( [num_genes] + [self.hparams["autoencoder_width"]] * self.hparams["autoencoder_depth"] + [self.hparams["dim"]] ) self.decoder = MLP( [self.hparams["dim"]] + [self.hparams["autoencoder_width"]] * self.hparams["autoencoder_depth"] + [num_genes * 2], last_layer_act=decoder_activation, ) self.adversary_drugs = MLP( [self.hparams["dim"]] + [self.hparams["adversary_width"]] * self.hparams["adversary_depth"] + [num_drugs] ) self.loss_adversary_drugs = torch.nn.BCEWithLogitsLoss() self.doser_type = doser_type if doser_type == "mlp": self.dosers = torch.nn.ModuleList() for _ in range(num_drugs): self.dosers.append( MLP( [1] + [self.hparams["dosers_width"]] * self.hparams["dosers_depth"] + [1], batch_norm=False, ) ) else: self.dosers = GeneralizedSigmoid(num_drugs, self.device, nonlin=doser_type) if self.num_covariates == [0]: pass else: assert 0 not in self.num_covariates self.adversary_covariates = [] self.loss_adversary_covariates = [] self.covariates_embeddings = ( [] ) # TODO: Continue with checking that dict assignment is possible via covaraites names and if dict are possible to use in optimisation for num_covariate in self.num_covariates: self.adversary_covariates.append( MLP( [self.hparams["dim"]] + [self.hparams["adversary_width"]] * self.hparams["adversary_depth"] + [num_covariate] ) ) self.loss_adversary_covariates.append(torch.nn.CrossEntropyLoss()) self.covariates_embeddings.append( torch.nn.Embedding(num_covariate, self.hparams["dim"]) ) self.covariates_embeddings = torch.nn.Sequential( *self.covariates_embeddings ) self.drug_embeddings = torch.nn.Embedding(self.num_drugs, self.hparams["dim"]) # losses if self.loss_ae == "nb": self.loss_autoencoder = NBLoss() elif self.loss_ae == 'gauss': self.loss_autoencoder = nn.GaussianNLLLoss() self.iteration = 0 self.to(self.device) # optimizers has_drugs = self.num_drugs > 0 has_covariates = self.num_covariates[0] > 0 get_params = lambda model, cond: list(model.parameters()) if cond else [] _parameters = ( get_params(self.encoder, True) + get_params(self.decoder, True) + get_params(self.drug_embeddings, has_drugs) ) for emb in self.covariates_embeddings: _parameters.extend(get_params(emb, has_covariates)) self.optimizer_autoencoder = torch.optim.Adam( _parameters, lr=self.hparams["autoencoder_lr"], weight_decay=self.hparams["autoencoder_wd"], ) _parameters = get_params(self.adversary_drugs, has_drugs) for adv in self.adversary_covariates: _parameters.extend(get_params(adv, has_covariates)) self.optimizer_adversaries = torch.optim.Adam( _parameters, lr=self.hparams["adversary_lr"], weight_decay=self.hparams["adversary_wd"], ) if has_drugs: self.optimizer_dosers = torch.optim.Adam( self.dosers.parameters(), lr=self.hparams["dosers_lr"], weight_decay=self.hparams["dosers_wd"], ) # learning rate schedulers self.scheduler_autoencoder = torch.optim.lr_scheduler.StepLR( self.optimizer_autoencoder, step_size=self.hparams["step_size_lr"] ) self.scheduler_adversary = torch.optim.lr_scheduler.StepLR( self.optimizer_adversaries, step_size=self.hparams["step_size_lr"] ) if has_drugs: self.scheduler_dosers = torch.optim.lr_scheduler.StepLR( self.optimizer_dosers, step_size=self.hparams["step_size_lr"] ) self.history = {"epoch": [], "stats_epoch": []} def set_hparams_(self, hparams): """ Set hyper-parameters to default values or values fixed by user for those hyper-parameters specified in the JSON string `hparams`. """ self.hparams = { "dim": 128, "dosers_width": 128, "dosers_depth": 2, "dosers_lr": 4e-3, "dosers_wd": 1e-7, "autoencoder_width": 128, "autoencoder_depth": 3, "adversary_width": 64, "adversary_depth": 2, "reg_adversary": 60, "penalty_adversary": 60, "autoencoder_lr": 3e-4, "adversary_lr": 3e-4, "autoencoder_wd": 4e-7, "adversary_wd": 4e-7, "adversary_steps": 3, "batch_size": 256, "step_size_lr": 45, } # the user may fix some hparams if hparams != "": if isinstance(hparams, str): self.hparams.update(json.loads(hparams)) else: self.hparams.update(hparams) return self.hparams def move_inputs_(self, genes, drugs, covariates): """ Move minibatch tensors to CPU/GPU. """ if genes.device.type != self.device: genes = genes.to(self.device) if drugs is not None: drugs = drugs.to(self.device) if covariates is not None: covariates = [cov.to(self.device) for cov in covariates] return (genes, drugs, covariates) def compute_drug_embeddings_(self, drugs): """ Compute sum of drug embeddings, each of them multiplied by its dose-response curve. """ if self.doser_type == "mlp": doses = [] for d in range(drugs.size(1)): this_drug = drugs[:, d].view(-1, 1) doses.append(self.dosers[d](this_drug).sigmoid() * this_drug.gt(0)) return torch.cat(doses, 1) @ self.drug_embeddings.weight else: return self.dosers(drugs) @ self.drug_embeddings.weight def predict( self, genes, drugs, covariates, return_latent_basal=False, return_latent_treated=False, ): """ Predict "what would have the gene expression `genes` been, had the cells in `genes` with cell types `cell_types` been treated with combination of drugs `drugs`. """ genes, drugs, covariates = self.move_inputs_(genes, drugs, covariates) if self.loss_ae == 'nb': genes = torch.log1p(genes) latent_basal = self.encoder(genes) latent_treated = latent_basal if self.num_drugs > 0: latent_treated = latent_treated + self.compute_drug_embeddings_(drugs) if self.num_covariates[0] > 0: for i, emb in enumerate(self.covariates_embeddings): emb = emb.to(self.device) latent_treated = latent_treated + emb( covariates[i].argmax(1) ) #argmax because OHE gene_reconstructions = self.decoder(latent_treated) if self.loss_ae == 'gauss': # convert variance estimates to a positive value in [1e-3, \infty) dim = gene_reconstructions.size(1) // 2 gene_means = gene_reconstructions[:, :dim] gene_vars = F.softplus(gene_reconstructions[:, dim:]).add(1e-3) #gene_vars = gene_reconstructions[:, dim:].exp().add(1).log().add(1e-3) if self.loss_ae == 'nb': gene_means = F.softplus(gene_means).add(1e-3) #gene_reconstructions[:, :dim] = torch.clamp(gene_reconstructions[:, :dim], min=1e-4, max=1e4) #gene_reconstructions[:, dim:] = torch.clamp(gene_reconstructions[:, dim:], min=1e-4, max=1e4) gene_reconstructions = torch.cat([gene_means, gene_vars], dim=1) if return_latent_basal: if return_latent_treated: return gene_reconstructions, latent_basal, latent_treated else: return gene_reconstructions, latent_basal if return_latent_treated: return gene_reconstructions, latent_treated return gene_reconstructions def early_stopping(self, score): """ Decays the learning rate, and possibly early-stops training. """ self.scheduler_autoencoder.step() self.scheduler_adversary.step() self.scheduler_dosers.step() if score > self.best_score: self.best_score = score self.patience_trials = 0 else: self.patience_trials += 1 return self.patience_trials > self.patience def update(self, genes, drugs, covariates): """ Update CPA's parameters given a minibatch of genes, drugs, and cell types. """ genes, drugs, covariates = self.move_inputs_(genes, drugs, covariates) gene_reconstructions, latent_basal = self.predict( genes, drugs, covariates, return_latent_basal=True, ) dim = gene_reconstructions.size(1) // 2 gene_means = gene_reconstructions[:, :dim] gene_vars = gene_reconstructions[:, dim:] reconstruction_loss = self.loss_autoencoder(gene_means, genes, gene_vars) adversary_drugs_loss = torch.tensor([0.0], device=self.device) if self.num_drugs > 0: adversary_drugs_predictions = self.adversary_drugs(latent_basal) adversary_drugs_loss = self.loss_adversary_drugs( adversary_drugs_predictions, drugs.gt(0).float() ) adversary_covariates_loss = torch.tensor( [0.0], device=self.device ) if self.num_covariates[0] > 0: adversary_covariate_predictions = [] for i, adv in enumerate(self.adversary_covariates): adv = adv.to(self.device) adversary_covariate_predictions.append(adv(latent_basal)) adversary_covariates_loss += self.loss_adversary_covariates[i]( adversary_covariate_predictions[-1], covariates[i].argmax(1) ) # two place-holders for when adversary is not executed adversary_drugs_penalty = torch.tensor([0.0], device=self.device) adversary_covariates_penalty = torch.tensor([0.0], device=self.device) if self.iteration % self.hparams["adversary_steps"]: def compute_gradients(output, input): grads = torch.autograd.grad(output, input, create_graph=True) grads = grads[0].pow(2).mean() return grads if self.num_drugs > 0: adversary_drugs_penalty = compute_gradients( adversary_drugs_predictions.sum(), latent_basal ) if self.num_covariates[0] > 0: adversary_covariates_penalty = torch.tensor([0.0], device=self.device) for pred in adversary_covariate_predictions: adversary_covariates_penalty += compute_gradients( pred.sum(), latent_basal ) # TODO: Adding up tensor sum, is that right? self.optimizer_adversaries.zero_grad() ( adversary_drugs_loss + self.hparams["penalty_adversary"] * adversary_drugs_penalty + adversary_covariates_loss + self.hparams["penalty_adversary"] * adversary_covariates_penalty ).backward() self.optimizer_adversaries.step() else: self.optimizer_autoencoder.zero_grad() if self.num_drugs > 0: self.optimizer_dosers.zero_grad() ( reconstruction_loss - self.hparams["reg_adversary"] * adversary_drugs_loss - self.hparams["reg_adversary"] * adversary_covariates_loss ).backward() self.optimizer_autoencoder.step() if self.num_drugs > 0: self.optimizer_dosers.step() self.iteration += 1 return { "loss_reconstruction": reconstruction_loss.item(), "loss_adv_drugs": adversary_drugs_loss.item(), "loss_adv_covariates": adversary_covariates_loss.item(), "penalty_adv_drugs": adversary_drugs_penalty.item(), "penalty_adv_covariates": adversary_covariates_penalty.item(), } @classmethod def defaults(self): """ Returns the list of default hyper-parameters for CPA """ return self.set_hparams_(self, "")
CPA-main
cpa/model.py
import copy import itertools import os import pprint import time from collections import defaultdict from typing import Optional, Union, Tuple import numpy as np import pandas as pd import scanpy as sc import torch from torch.distributions import ( NegativeBinomial, Normal ) from cpa.train import evaluate, prepare_cpa from cpa.helper import _convert_mean_disp_to_counts_logits from sklearn.metrics import r2_score from sklearn.metrics.pairwise import cosine_distances, euclidean_distances from tqdm import tqdm class API: """ API for CPA model to make it compatible with scanpy. """ def __init__( self, data, perturbation_key="condition", covariate_keys=["cell_type"], split_key="split", dose_key="dose_val", control=None, doser_type="mlp", decoder_activation="linear", loss_ae="gauss", patience=200, seed=0, pretrained=None, device="cuda", save_dir="/tmp/", # directory to save the model hparams={}, only_parameters=False, ): """ Parameters ---------- data : str or `AnnData` AnndData object or a full path to the file in the .h5ad format. covariate_keys : list (default: ['cell_type']) List of names in the .obs of AnnData that should be used as covariates. split_key : str (default: 'split') Name of the column in .obs of AnnData to use for splitting the dataset into train, test and validation. perturbation_key : str (default: 'condition') Name of the column in .obs of AnnData to use for perturbation variable. dose_key : str (default: 'dose_val') Name of the column in .obs of AnnData to use for continious covariate. doser_type : str (default: 'mlp') Type of the nonlinearity in the latent space for the continious covariate encoding: sigm, logsigm, mlp. decoder_activation : str (default: 'linear') Last layer of the decoder. loss_ae : str (default: 'gauss') Loss (currently only gaussian loss is supported). patience : int (default: 200) Patience for early stopping. seed : int (default: 0) Random seed. pretrained : str (default: None) Full path to the pretrained model. only_parameters : bool (default: False) Whether to load only arguments or also weights from pretrained model. save_dir : str (default: '/tmp/') Folder to save the model. device : str (default: 'cpu') Device for model computations. If None, will try to use CUDA if available. hparams : dict (default: {}) Parameters for the architecture of the CPA model. control: str Obs columns with booleans that identify control. If it is not provided the model will look for them in adata.obs["control"] """ args = locals() del args["self"] if not (pretrained is None): state, self.used_args, self.history = torch.load( pretrained, map_location=torch.device(device) ) self.args = self.used_args self.args["data"] = data self.args["covariate_keys"] = covariate_keys self.args["device"] = device self.args["control"] = control if only_parameters: state = None print(f"Loaded ARGS of the model from:\t{pretrained}") else: print(f"Loaded pretrained model from:\t{pretrained}") else: state = None self.args = args self.model, self.datasets = prepare_cpa(self.args, state_dict=state) if not (pretrained is None) and (not only_parameters): self.model.history = self.history self.args["save_dir"] = save_dir self.args["hparams"] = self.model.hparams if not (save_dir is None): if not os.path.exists(save_dir): os.makedirs(save_dir) dataset = self.datasets["training"] self.perturbation_key = dataset.perturbation_key self.dose_key = dataset.dose_key self.covariate_keys = covariate_keys # very important, specifies the order of # covariates during training self.min_dose = dataset.drugs[dataset.drugs > 0].min().item() self.max_dose = dataset.drugs[dataset.drugs > 0].max().item() self.var_names = dataset.var_names self.unique_perts = list(dataset.perts_dict.keys()) self.unique_covars = {} for cov in dataset.covars_dict: self.unique_covars[cov] = list(dataset.covars_dict[cov].keys()) self.num_drugs = dataset.num_drugs self.perts_dict = dataset.perts_dict self.covars_dict = dataset.covars_dict self.drug_ohe = torch.Tensor(list(dataset.perts_dict.values())) self.covars_ohe = {} for cov in dataset.covars_dict: self.covars_ohe[cov] = torch.LongTensor( list(dataset.covars_dict[cov].values()) ) self.emb_covars = {} for cov in dataset.covars_dict: self.emb_covars[cov] = None self.emb_perts = None self.seen_covars_perts = None self.comb_emb = None self.control_cat = None self.seen_covars_perts = {} for k in self.datasets.keys(): self.seen_covars_perts[k] = np.unique(self.datasets[k].pert_categories) self.measured_points = {} self.num_measured_points = {} for k in self.datasets.keys(): self.measured_points[k] = {} self.num_measured_points[k] = {} for pert in np.unique(self.datasets[k].pert_categories): num_points = len(np.where(self.datasets[k].pert_categories == pert)[0]) self.num_measured_points[k][pert] = num_points *cov_list, drug, dose = pert.split("_") cov = "_".join(cov_list) if not ("+" in dose): dose = float(dose) if cov in self.measured_points[k].keys(): if drug in self.measured_points[k][cov].keys(): self.measured_points[k][cov][drug].append(dose) else: self.measured_points[k][cov][drug] = [dose] else: self.measured_points[k][cov] = {drug: [dose]} self.measured_points["all"] = copy.deepcopy(self.measured_points["training"]) for cov in self.measured_points["ood"].keys(): for pert in self.measured_points["ood"][cov].keys(): if pert in self.measured_points["training"][cov].keys(): self.measured_points["all"][cov][pert] = ( self.measured_points["training"][cov][pert].copy() + self.measured_points["ood"][cov][pert].copy() ) else: self.measured_points["all"][cov][pert] = self.measured_points[ "ood" ][cov][pert].copy() def load_from_old(self, pretrained): """ Parameters ---------- pretrained : str Full path to the pretrained model. """ print(f"Loaded pretrained model from:\t{pretrained}") state, self.used_args, self.history = torch.load( pretrained, map_location=torch.device(self.args["device"]) ) self.model.load_state_dict(state_dict) self.model.history = self.history def print_args(self): pprint.pprint(self.args) def load(self, pretrained): """ Parameters ---------- pretrained : str Full path to the pretrained model. """ # TODO fix compatibility print(f"Loaded pretrained model from:\t{pretrained}") state, self.used_args, self.history = torch.load( pretrained, map_location=torch.device(self.args["device"]) ) self.model.load_state_dict(state_dict) def train( self, max_epochs=1, checkpoint_freq=20, run_eval=False, max_minutes=60, filename="model.pt", batch_size=None, save_dir=None, seed=0, ): """ Parameters ---------- max_epochs : int (default: 1) Maximum number epochs for training. checkpoint_freq : int (default: 20) Checkoint frequencty to save intermediate results. run_eval : bool (default: False) Whether or not to run disentanglement and R2 evaluation during training. max_minutes : int (default: 60) Maximum computation time in minutes. filename : str (default: 'model.pt') Name of the file without the directoty path to save the model. Name should be with .pt extension. batch_size : int, optional (default: None) Batch size for training. If None, uses default batch size specified in hparams. save_dir : str, optional (default: None) Full path to the folder to save the model. If None, will use from the path specified during init. seed : int (default: None) Random seed. If None, uses default random seed specified during init. """ args = locals() del args["self"] if batch_size is None: batch_size = self.model.hparams["batch_size"] args["batch_size"] = batch_size self.args["batch_size"] = batch_size if save_dir is None: save_dir = self.args["save_dir"] print("Results will be saved to the folder:", save_dir) self.datasets.update( { "loader_tr": torch.utils.data.DataLoader( self.datasets["training"], batch_size=batch_size, shuffle=True ) } ) self.model.train() start_time = time.time() pbar = tqdm(range(max_epochs), ncols=80) try: for epoch in pbar: epoch_training_stats = defaultdict(float) for data in self.datasets["loader_tr"]: genes, drugs, covariates = data[0], data[1], data[2:] minibatch_training_stats = self.model.update( genes, drugs, covariates ) for key, val in minibatch_training_stats.items(): epoch_training_stats[key] += val for key, val in epoch_training_stats.items(): epoch_training_stats[key] = val / len(self.datasets["loader_tr"]) if not (key in self.model.history.keys()): self.model.history[key] = [] self.model.history[key].append(epoch_training_stats[key]) self.model.history["epoch"].append(epoch) ellapsed_minutes = (time.time() - start_time) / 60 self.model.history["elapsed_time_min"] = ellapsed_minutes # decay learning rate if necessary # also check stopping condition: patience ran out OR # time ran out OR max epochs achieved stop = ellapsed_minutes > max_minutes or (epoch == max_epochs - 1) pbar.set_description( f"Rec: {epoch_training_stats['loss_reconstruction']:.4f}, " + f"AdvPert: {epoch_training_stats['loss_adv_drugs']:.2f}, " + f"AdvCov: {epoch_training_stats['loss_adv_covariates']:.2f}" ) if (epoch % checkpoint_freq) == 0 or stop: if run_eval == True: evaluation_stats = evaluate(self.model, self.datasets) for key, val in evaluation_stats.items(): if not (key in self.model.history.keys()): self.model.history[key] = [] self.model.history[key].append(val) self.model.history["stats_epoch"].append(epoch) stop = stop or self.model.early_stopping( np.mean(evaluation_stats["test"]) ) else: stop = stop or self.model.early_stopping( np.mean(epoch_training_stats["test"]) ) evaluation_stats = None if stop: self.save(f"{save_dir}{filename}") pprint.pprint( { "epoch": epoch, "training_stats": epoch_training_stats, "evaluation_stats": evaluation_stats, "ellapsed_minutes": ellapsed_minutes, } ) print(f"Stop epoch: {epoch}") break except KeyboardInterrupt: self.save(f"{save_dir}{filename}") self.save(f"{save_dir}{filename}") def save(self, filename): """ Parameters ---------- filename : str Full path to save pretrained model. """ torch.save((self.model.state_dict(), self.args, self.model.history), filename) self.history = self.model.history print(f"Model saved to: {filename}") def _init_pert_embeddings(self): dose = 1.0 self.emb_perts = ( self.model.compute_drug_embeddings_( dose * self.drug_ohe.to(self.model.device) ) .cpu() .clone() .detach() .numpy() ) def get_drug_embeddings(self, dose=1.0, return_anndata=True): """ Parameters ---------- dose : int (default: 1.0) Dose at which to evaluate latent embedding vector. return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. Returns ------- If return_anndata is True, returns anndata object. Otherwise, doesn't return anything. Always saves embeddding in self.emb_perts. """ self._init_pert_embeddings() emb_perts = ( self.model.compute_drug_embeddings_( dose * self.drug_ohe.to(self.model.device) ) .cpu() .clone() .detach() .numpy() ) if return_anndata: adata = sc.AnnData(emb_perts) adata.obs[self.perturbation_key] = self.unique_perts return adata def _init_covars_embeddings(self): combo_list = [] for covars_key in self.covariate_keys: combo_list.append(self.unique_covars[covars_key]) if self.emb_covars[covars_key] is None: i_cov = self.covariate_keys.index(covars_key) self.emb_covars[covars_key] = dict( zip( self.unique_covars[covars_key], self.model.covariates_embeddings[i_cov]( self.covars_ohe[covars_key].to(self.model.device).argmax(1) ) .cpu() .clone() .detach() .numpy(), ) ) self.emb_covars_combined = {} for combo in list(itertools.product(*combo_list)): combo_name = "_".join(combo) for i, cov in enumerate(combo): covars_key = self.covariate_keys[i] if i == 0: emb = self.emb_covars[covars_key][cov] else: emb += self.emb_covars[covars_key][cov] self.emb_covars_combined[combo_name] = emb def get_covars_embeddings_combined(self, return_anndata=True): """ Parameters ---------- return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. Returns ------- If return_anndata is True, returns anndata object. Otherwise, doesn't return anything. Always saves embeddding in self.emb_covars. """ self._init_covars_embeddings() if return_anndata: adata = sc.AnnData(np.array(list(self.emb_covars_combined.values()))) adata.obs["covars"] = self.emb_covars_combined.keys() return adata def get_covars_embeddings(self, covars_tgt, return_anndata=True): """ Parameters ---------- covars_tgt : str Name of covariate for which to return AnnData return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. Returns ------- If return_anndata is True, returns anndata object. Otherwise, doesn't return anything. Always saves embeddding in self.emb_covars. """ self._init_covars_embeddings() if return_anndata: adata = sc.AnnData(np.array(list(self.emb_covars[covars_tgt].values()))) adata.obs[covars_tgt] = self.emb_covars[covars_tgt].keys() return adata def _get_drug_encoding(self, drugs, doses=None): """ Parameters ---------- drugs : str Drugs combination as a string, where individual drugs are separated with a plus. doses : str, optional (default: None) Doses corresponding to the drugs combination as a string. Individual drugs are separated with a plus. Returns ------- One hot encodding for a mixture of drugs. """ drug_mix = np.zeros([1, self.num_drugs]) atomic_drugs = drugs.split("+") doses = str(doses) if doses is None: doses_list = [1.0] * len(atomic_drugs) else: doses_list = [float(d) for d in str(doses).split("+")] for j, drug in enumerate(atomic_drugs): drug_mix += doses_list[j] * self.perts_dict[drug] return drug_mix def mix_drugs(self, drugs_list, doses_list=None, return_anndata=True): """ Gets a list of drugs combinations to mix, e.g. ['A+B', 'B+C'] and corresponding doses. Parameters ---------- drugs_list : list List of drug combinations, where each drug combination is a string. Individual drugs in the combination are separated with a plus. doses_list : str, optional (default: None) List of corresponding doses, where each dose combination is a string. Individual doses in the combination are separated with a plus. return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. Returns ------- If return_anndata is True, returns anndata structure of the combinations, otherwise returns a np.array of corresponding embeddings. """ drug_mix = np.zeros([len(drugs_list), self.num_drugs]) for i, drug_combo in enumerate(drugs_list): drug_mix[i] = self._get_drug_encoding(drug_combo, doses=doses_list[i]) emb = ( self.model.compute_drug_embeddings_( torch.Tensor(drug_mix).to(self.model.device) ) .cpu() .clone() .detach() .numpy() ) if return_anndata: adata = sc.AnnData(emb) adata.obs[self.perturbation_key] = drugs_list adata.obs[self.dose_key] = doses_list return adata else: return emb def latent_dose_response( self, perturbations=None, dose=None, contvar_min=0, contvar_max=1, n_points=100 ): """ Parameters ---------- perturbations : list List containing two names for which to return complete pairwise dose-response. doses : np.array (default: None) Doses values. If None, default values will be generated on a grid: n_points in range [contvar_min, contvar_max]. contvar_min : float (default: 0) Minimum dose value to generate for default option. contvar_max : float (default: 0) Maximum dose value to generate for default option. n_points : int (default: 100) Number of dose points to generate for default option. Returns ------- pd.DataFrame """ # dosers work only for atomic drugs. TODO add drug combinations self.model.eval() if perturbations is None: perturbations = self.unique_perts if dose is None: dose = np.linspace(contvar_min, contvar_max, n_points) n_points = len(dose) df = pd.DataFrame(columns=[self.perturbation_key, self.dose_key, "response"]) for drug in perturbations: d = np.where(self.perts_dict[drug] == 1)[0][0] this_drug = torch.Tensor(dose).to(self.model.device).view(-1, 1) if self.model.doser_type == "mlp": response = ( (self.model.dosers[d](this_drug).sigmoid() * this_drug.gt(0)) .cpu() .clone() .detach() .numpy() .reshape(-1) ) else: response = ( self.model.dosers.one_drug(this_drug.view(-1), d) .cpu() .clone() .detach() .numpy() .reshape(-1) ) df_drug = pd.DataFrame( list(zip([drug] * n_points, dose, list(response))), columns=[self.perturbation_key, self.dose_key, "response"], ) df = pd.concat([df, df_drug]) return df def latent_dose_response2D( self, perturbations, dose=None, contvar_min=0, contvar_max=1, n_points=100, ): """ Parameters ---------- perturbations : list, optional (default: None) List of atomic drugs for which to return latent dose response. Currently drug combinations are not supported. doses : np.array (default: None) Doses values. If None, default values will be generated on a grid: n_points in range [contvar_min, contvar_max]. contvar_min : float (default: 0) Minimum dose value to generate for default option. contvar_max : float (default: 0) Maximum dose value to generate for default option. n_points : int (default: 100) Number of dose points to generate for default option. Returns ------- pd.DataFrame """ # dosers work only for atomic drugs. TODO add drug combinations assert len(perturbations) == 2, "You should provide a list of 2 perturbations." self.model.eval() if dose is None: dose = np.linspace(contvar_min, contvar_max, n_points) n_points = len(dose) df = pd.DataFrame(columns=perturbations + ["response"]) response = {} for drug in perturbations: d = np.where(self.perts_dict[drug] == 1)[0][0] this_drug = torch.Tensor(dose).to(self.model.device).view(-1, 1) if self.model.doser_type == "mlp": response[drug] = ( (self.model.dosers[d](this_drug).sigmoid() * this_drug.gt(0)) .cpu() .clone() .detach() .numpy() .reshape(-1) ) else: response[drug] = ( self.model.dosers.one_drug(this_drug.view(-1), d) .cpu() .clone() .detach() .numpy() .reshape(-1) ) l = 0 for i in range(len(dose)): for j in range(len(dose)): df.loc[l] = [ dose[i], dose[j], response[perturbations[0]][i] + response[perturbations[1]][j], ] l += 1 return df def compute_comb_emb(self, thrh=30): """ Generates an AnnData object containing all the latent vectors of the cov+dose*pert combinations seen during training. Called in api.compute_uncertainty(), stores the AnnData in self.comb_emb. Parameters ---------- Returns ------- """ if self.seen_covars_perts["training"] is None: raise ValueError("Need to run parse_training_conditions() first!") emb_covars = self.get_covars_embeddings_combined(return_anndata=True) # Generate adata with all cov+pert latent vect combinations tmp_ad_list = [] for cov_pert in self.seen_covars_perts["training"]: if self.num_measured_points["training"][cov_pert] > thrh: *cov_list, pert_loop, dose_loop = cov_pert.split("_") cov_loop = "_".join(cov_list) emb_perts_loop = [] if "+" in pert_loop: pert_loop_list = pert_loop.split("+") dose_loop_list = dose_loop.split("+") for _dose in pd.Series(dose_loop_list).unique(): tmp_ad = self.get_drug_embeddings(dose=float(_dose)) tmp_ad.obs["pert_dose"] = tmp_ad.obs.condition + "_" + _dose emb_perts_loop.append(tmp_ad) emb_perts_loop = emb_perts_loop[0].concatenate(emb_perts_loop[1:]) X = emb_covars.X[ emb_covars.obs.covars == cov_loop ] + np.expand_dims( emb_perts_loop.X[ emb_perts_loop.obs.pert_dose.isin( [ pert_loop_list[i] + "_" + dose_loop_list[i] for i in range(len(pert_loop_list)) ] ) ].sum(axis=0), axis=0, ) if X.shape[0] > 1: raise ValueError("Error with comb computation") else: emb_perts = self.get_drug_embeddings(dose=float(dose_loop)) X = ( emb_covars.X[emb_covars.obs.covars == cov_loop] + emb_perts.X[emb_perts.obs.condition == pert_loop] ) tmp_ad = sc.AnnData(X=X) tmp_ad.obs["cov_pert"] = "_".join([cov_loop, pert_loop, dose_loop]) tmp_ad_list.append(tmp_ad) self.comb_emb = tmp_ad_list[0].concatenate(tmp_ad_list[1:]) def compute_uncertainty(self, cov, pert, dose, thrh=30): """ Compute uncertainties for the queried covariate+perturbation combination. The distance from the closest condition in the training set is used as a proxy for uncertainty. Parameters ---------- cov: dict Provide a value for each covariate (eg. cell_type) as a dictionaty for the queried uncertainty (e.g. cov_dict={'cell_type': 'A549'}). pert: string Perturbation for the queried uncertainty. In case of combinations the format has to be 'pertA+pertB' dose: string String which contains the dose of the perturbation queried. In case of combinations the format has to be 'doseA+doseB' Returns ------- min_cos_dist: float Minimum cosine distance with the training set. min_eucl_dist: float Minimum euclidean distance with the training set. closest_cond_cos: string Closest training condition wrt cosine distances. closest_cond_eucl: string Closest training condition wrt euclidean distances. """ if self.comb_emb is None: self.compute_comb_emb(thrh=30) drug_ohe = torch.Tensor(self._get_drug_encoding(pert, doses=dose)).to( self.model.device ) pert = drug_ohe.expand([1, self.drug_ohe.shape[1]]) drug_emb = self.model.compute_drug_embeddings_(pert).detach().cpu().numpy() cond_emb = drug_emb for cov_key in cov: cond_emb += self.emb_covars[cov_key][cov[cov_key]] cos_dist = cosine_distances(cond_emb, self.comb_emb.X)[0] min_cos_dist = np.min(cos_dist) cos_idx = np.argmin(cos_dist) closest_cond_cos = self.comb_emb.obs.cov_pert[cos_idx] eucl_dist = euclidean_distances(cond_emb, self.comb_emb.X)[0] min_eucl_dist = np.min(eucl_dist) eucl_idx = np.argmin(eucl_dist) closest_cond_eucl = self.comb_emb.obs.cov_pert[eucl_idx] return min_cos_dist, min_eucl_dist, closest_cond_cos, closest_cond_eucl def predict( self, genes, cov, pert, dose, uncertainty=True, return_anndata=True, sample=False, n_samples=1, ): """Predict values of control 'genes' conditions specified in df. Parameters ---------- genes : np.array Control cells. cov: dict of lists Provide a value for each covariate (eg. cell_type) as a dictionaty for the queried uncertainty (e.g. cov_dict={'cell_type': 'A549'}). pert: list Perturbation for the queried uncertainty. In case of combinations the format has to be 'pertA+pertB' dose: list String which contains the dose of the perturbation queried. In case of combinations the format has to be 'doseA+doseB' uncertainty: bool (default: True) Compute uncertainties for the generated cells. return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. sample : bool (default: False) If sample is True, returns samples from gausssian distribution with mean and variance estimated by the model. Otherwise, returns just means and variances estimated by the model. n_samples : int (default: 10) Number of samples to sample if sampling is True. Returns ------- If return_anndata is True, returns anndata structure. Otherwise, returns np.arrays for gene_means, gene_vars and a data frame for the corresponding conditions df_obs. """ assert len(dose) == len(pert), "Check the length of pert, dose" for cov_key in cov: assert len(cov[cov_key]) == len(pert), "Check the length of covariates" df = pd.concat( [ pd.DataFrame({self.perturbation_key: pert, self.dose_key: dose}), pd.DataFrame(cov), ], axis=1, ) self.model.eval() num = genes.shape[0] dim = genes.shape[1] genes = torch.Tensor(genes).to(self.model.device) gene_means_list = [] gene_vars_list = [] df_list = [] for i in range(len(df)): comb_name = pert[i] dose_name = dose[i] covar_name = {} for cov_key in cov: covar_name[cov_key] = cov[cov_key][i] drug_ohe = torch.Tensor( self._get_drug_encoding(comb_name, doses=dose_name) ).to(self.model.device) drugs = drug_ohe.expand([num, self.drug_ohe.shape[1]]) covars = [] for cov_key in self.covariate_keys: covar_ohe = torch.Tensor( self.covars_dict[cov_key][covar_name[cov_key]] ).to(self.model.device) covars.append(covar_ohe.expand([num, covar_ohe.shape[0]]).clone()) gene_reconstructions = ( self.model.predict(genes, drugs, covars).cpu().clone().detach().numpy() ) if sample: df_list.append( pd.DataFrame( [df.loc[i].values] * num * n_samples, columns=df.columns ) ) if self.args['loss_ae'] == 'gauss': dist = Normal( torch.Tensor(gene_reconstructions[:, :dim]), torch.Tensor(gene_reconstructions[:, dim:]), ) elif self.args['loss_ae'] == 'nb': counts, logits = _convert_mean_disp_to_counts_logits( torch.clamp( torch.Tensor(gene_reconstructions[:, :dim]), min=1e-8, max=1e8, ), torch.clamp( torch.Tensor(gene_reconstructions[:, dim:]), min=1e-8, max=1e8, ) ) dist = NegativeBinomial( total_count=counts, logits=logits ) sampled_gexp = ( dist.sample(torch.Size([n_samples])) .cpu() .detach() .numpy() .reshape(-1, dim) ) sampled_gexp[sampled_gexp < 0] = 0 #set negative values to 0, since gexp can't be negative gene_means_list.append(sampled_gexp) else: df_list.append( pd.DataFrame([df.loc[i].values] * num, columns=df.columns) ) gene_means_list.append(gene_reconstructions[:, :dim]) if uncertainty: ( cos_dist, eucl_dist, closest_cond_cos, closest_cond_eucl, ) = self.compute_uncertainty( cov=covar_name, pert=comb_name, dose=dose_name ) df_list[-1] = df_list[-1].assign( uncertainty_cosine=cos_dist, uncertainty_euclidean=eucl_dist, closest_cond_cosine=closest_cond_cos, closest_cond_euclidean=closest_cond_eucl, ) gene_vars_list.append(gene_reconstructions[:, dim:]) gene_means = np.concatenate(gene_means_list) gene_vars = np.concatenate(gene_vars_list) df_obs = pd.concat(df_list) del df_list, gene_means_list, gene_vars_list if return_anndata: adata = sc.AnnData(gene_means) adata.var_names = self.var_names adata.obs = df_obs if not sample: adata.layers["variance"] = gene_vars adata.obs.index = adata.obs.index.astype(str) # type fix del gene_means, gene_vars, df_obs return adata else: return gene_means, gene_vars, df_obs def get_latent( self, genes, cov, pert, dose, return_anndata=True, ): """Get latent values of control 'genes' with conditions specified in df. Parameters ---------- genes : np.array Control cells. cov: dict of lists Provide a value for each covariate (eg. cell_type) as a dictionaty for the queried uncertainty (e.g. cov_dict={'cell_type': 'A549'}). pert: list Perturbation for the queried uncertainty. In case of combinations the format has to be 'pertA+pertB' dose: list String which contains the dose of the perturbation queried. In case of combinations the format has to be 'doseA+doseB' return_anndata : bool, optional (default: True) Return embedding wrapped into anndata object. Returns ------- If return_anndata is True, returns anndata structure. Otherwise, returns np.arrays for latent and a data frame for the corresponding conditions df_obs. """ assert len(dose) == len(pert), "Check the length of pert, dose" for cov_key in cov: assert len(cov[cov_key]) == len(pert), "Check the length of covariates" df = pd.concat( [ pd.DataFrame({self.perturbation_key: pert, self.dose_key: dose}), pd.DataFrame(cov), ], axis=1, ) self.model.eval() num = genes.shape[0] genes = torch.Tensor(genes).to(self.model.device) latent_list = [] df_list = [] for i in range(len(df)): comb_name = pert[i] dose_name = dose[i] covar_name = {} for cov_key in cov: covar_name[cov_key] = cov[cov_key][i] drug_ohe = torch.Tensor( self._get_drug_encoding(comb_name, doses=dose_name) ).to(self.model.device) drugs = drug_ohe.expand([num, self.drug_ohe.shape[1]]) covars = [] for cov_key in self.covariate_keys: covar_ohe = torch.Tensor( self.covars_dict[cov_key][covar_name[cov_key]] ).to(self.model.device) covars.append(covar_ohe.expand([num, covar_ohe.shape[0]]).clone()) _, latent_treated = self.model.predict( genes, drugs, covars, return_latent_treated=True, ) latent_treated = latent_treated.cpu().clone().detach().numpy() df_list.append( pd.DataFrame([df.loc[i].values] * num, columns=df.columns) ) latent_list.append(latent_treated) latent = np.concatenate(latent_list) df_obs = pd.concat(df_list) del df_list if return_anndata: adata = sc.AnnData(latent) adata.obs = df_obs adata.obs.index = adata.obs.index.astype(str) # type fix return adata else: return latent, df_obs def get_response( self, genes_control=None, doses=None, contvar_min=None, contvar_max=None, n_points=10, ncells_max=100, perturbations=None, control_name="test", ): """Decoded dose response data frame. Parameters ---------- genes_control : np.array (deafult: None) Genes for which to predict values. If None, take from 'test_control' split in datasets. doses : np.array (default: None) Doses values. If None, default values will be generated on a grid: n_points in range [contvar_min, contvar_max]. contvar_min : float (default: 0) Minimum dose value to generate for default option. contvar_max : float (default: 0) Maximum dose value to generate for default option. n_points : int (default: 100) Number of dose points to generate for default option. perturbations : list (default: None) List of perturbations for dose response Returns ------- pd.DataFrame of decoded response values of genes and average response. """ if genes_control is None: genes_control = self.datasets["test"].subset_condition(control=True).genes if contvar_min is None: contvar_min = 0 if contvar_max is None: contvar_max = self.max_dose self.model.eval() if doses is None: doses = np.linspace(contvar_min, contvar_max, n_points) if perturbations is None: perturbations = self.unique_perts response = pd.DataFrame( columns=self.covariate_keys + [self.perturbation_key, self.dose_key, "response"] + list(self.var_names) ) if ncells_max < len(genes_control): ncells_max = min(ncells_max, len(genes_control)) idx = torch.LongTensor( np.random.choice(range(len(genes_control)), ncells_max, replace=False) ) genes_control = genes_control[idx] j = 0 for covar_combo in self.emb_covars_combined: cov_dict = {} for i, cov_val in enumerate(covar_combo.split("_")): cov_dict[self.covariate_keys[i]] = [cov_val] print(cov_dict) for _, drug in enumerate(perturbations): if not (drug in self.datasets[control_name].subset_condition(control=True).ctrl_name): for dose in doses: # TODO handle covars gene_means, _, _ = self.predict( genes_control, cov=cov_dict, pert=[drug], dose=[dose], return_anndata=False, ) predicted_data = np.mean(gene_means, axis=0).reshape(-1) response.loc[j] = ( covar_combo.split("_") + [drug, dose, np.linalg.norm(predicted_data)] + list(predicted_data) ) j += 1 return response def get_response_reference(self, perturbations=None): """Computes reference values of the response. Parameters ---------- dataset : CompPertDataset The file location of the spreadsheet perturbations : list (default: None) List of perturbations for dose response Returns ------- pd.DataFrame of decoded response values of genes and average response. """ if perturbations is None: perturbations = self.unique_perts reference_response_curve = pd.DataFrame( columns=self.covariate_keys + [self.perturbation_key, self.dose_key, "split", "num_cells", "response"] + list(self.var_names) ) dataset_ctr = self.datasets["training"].subset_condition(control=True) i = 0 for split in ["training", "ood"]: if split == 'ood': dataset = self.datasets[split] else: dataset = self.datasets["training"].subset_condition(control=False) for pert in self.seen_covars_perts[split]: *covars, drug, dose_val = pert.split("_") if drug in perturbations: if not ("+" in dose_val): dose = float(dose_val) else: dose = dose_val idx = np.where((dataset.pert_categories == pert))[0] if len(idx): y_true = dataset.genes[idx, :].numpy().mean(axis=0) reference_response_curve.loc[i] = ( covars + [drug, dose, split, len(idx), np.linalg.norm(y_true)] + list(y_true) ) i += 1 reference_response_curve = reference_response_curve.replace( "training_treated", "train" ) return reference_response_curve def get_response2D( self, perturbations, covar, genes_control=None, doses=None, contvar_min=None, contvar_max=None, n_points=10, ncells_max=100, #fixed_drugs="", #fixed_doses="", ): """Decoded dose response data frame. Parameters ---------- perturbations : list List of length 2 of perturbations for dose response. covar : dict Name of a covariate for which to compute dose-response. genes_control : np.array (deafult: None) Genes for which to predict values. If None, take from 'test_control' split in datasets. doses : np.array (default: None) Doses values. If None, default values will be generated on a grid: n_points in range [contvar_min, contvar_max]. contvar_min : float (default: 0) Minimum dose value to generate for default option. contvar_max : float (default: 0) Maximum dose value to generate for default option. n_points : int (default: 100) Number of dose points to generate for default option. Returns ------- pd.DataFrame of decoded response values of genes and average response. """ assert len(perturbations) == 2, "You should provide a list of 2 perturbations." if contvar_min is None: contvar_min = self.min_dose if contvar_max is None: contvar_max = self.max_dose self.model.eval() # doses = torch.Tensor(np.linspace(contvar_min, contvar_max, n_points)) if doses is None: doses = np.linspace(contvar_min, contvar_max, n_points) # genes_control = dataset.genes[dataset.indices['control']] if genes_control is None: genes_control = self.datasets["test"].subset_condition(control=True).genes ncells_max = min(ncells_max, len(genes_control)) idx = torch.LongTensor(np.random.choice(range(len(genes_control)), ncells_max)) genes_control = genes_control[idx] response = pd.DataFrame( columns=perturbations+["response"]+list(self.var_names) ) drug = perturbations[0] + "+" + perturbations[1] dose_vals = [f"{d[0]}+{d[1]}" for d in itertools.product(*[doses, doses])] dose_comb = [list(d) for d in itertools.product(*[doses, doses])] i = 0 if not (drug in self.datasets['training'].subset_condition(control=True).ctrl_name): for dose in dose_vals: gene_means, _, _ = self.predict( genes_control, cov=covar, pert=[drug],# + fixed_drugs], dose=[dose],# + fixed_doses], return_anndata=False, ) predicted_data = np.mean(gene_means, axis=0).reshape(-1) response.loc[i] = ( dose_comb[i] + [np.linalg.norm(predicted_data)] + list(predicted_data) ) i += 1 # i = 0 # if not (drug in ["Vehicle", "EGF", "unst", "control", "ctrl"]): # for dose in dose_vals: # gene_means, _, _ = self.predict( # genes_control, # cov=covar, # pert=[drug + fixed_drugs], # dose=[dose + fixed_doses], # return_anndata=False, # ) # predicted_data = np.mean(gene_means, axis=0).reshape(-1) # response.loc[i] = ( # dose_comb[i] # + [np.linalg.norm(predicted_data)] # + list(predicted_data) # ) # i += 1 return response def evaluate_r2(self, dataset, genes_control, adata_random=None): """ Measures different quality metrics about an CPA `autoencoder`, when tasked to translate some `genes_control` into each of the drug/cell_type combinations described in `dataset`. Considered metrics are R2 score about means and variances for all genes, as well as R2 score about means and variances about differentially expressed (_de) genes. """ self.model.eval() scores = pd.DataFrame( columns=self.covariate_keys + [ self.perturbation_key, self.dose_key, "R2_mean", "R2_mean_DE", "R2_var", "R2_var_DE", "model", "num_cells", ] ) num, dim = genes_control.size(0), genes_control.size(1) total_cells = len(dataset) icond = 0 for pert_category in np.unique(dataset.pert_categories): # pert_category category contains: 'celltype_perturbation_dose' info de_idx = np.where( dataset.var_names.isin(np.array(dataset.de_genes[pert_category])) )[0] idx = np.where(dataset.pert_categories == pert_category)[0] *covars, pert, dose = pert_category.split("_") cov_dict = {} for i, cov_key in enumerate(self.covariate_keys): cov_dict[cov_key] = [covars[i]] if len(idx) > 0: mean_predict, var_predict, _ = self.predict( genes_control, cov=cov_dict, pert=[pert], dose=[dose], return_anndata=False, sample=False, ) # estimate metrics only for reasonably-sized drug/cell-type combos y_true = dataset.genes[idx, :].numpy() # true means and variances yt_m = y_true.mean(axis=0) yt_v = y_true.var(axis=0) # predicted means and variances yp_m = mean_predict.mean(0) yp_v = var_predict.mean(0) #yp_v = np.var(mean_predict, axis=0) mean_score = r2_score(yt_m, yp_m) var_score = r2_score(yt_v, yp_v) mean_score_de = r2_score(yt_m[de_idx], yp_m[de_idx]) var_score_de = r2_score(yt_v[de_idx], yp_v[de_idx]) scores.loc[icond] = pert_category.split("_") + [ mean_score, mean_score_de, var_score, var_score_de, "cpa", len(idx), ] icond += 1 if adata_random is not None: yp_m_bl = np.mean(adata_random, axis=0) yp_v_bl = np.var(adata_random, axis=0) mean_score_bl = r2_score(yt_m, yp_m_bl) var_score_bl = r2_score(yt_v, yp_v_bl) mean_score_de_bl = r2_score(yt_m[de_idx], yp_m_bl[de_idx]) var_score_de_bl = r2_score(yt_v[de_idx], yp_v_bl[de_idx]) scores.loc[icond] = pert_category.split("_") + [ mean_score_bl, mean_score_de_bl, var_score_bl, var_score_de_bl, "baseline", len(idx), ] icond += 1 return scores def get_reference_from_combo(perturbations_list, datasets, splits=["training", "ood"]): """ A simple function that produces a pd.DataFrame of individual drugs-doses combinations used among the splits (for a fixed covariate). """ df_list = [] for split_name in splits: full_dataset = datasets[split_name] ref = {"num_cells": []} for pp in perturbations_list: ref[pp] = [] ndrugs = len(perturbations_list) for pert_cat in np.unique(full_dataset.pert_categories): _, pert, dose = pert_cat.split("_") pert_list = pert.split("+") if set(pert_list) == set(perturbations_list): dose_list = dose.split("+") ncells = len( full_dataset.pert_categories[ full_dataset.pert_categories == pert_cat ] ) for j in range(ndrugs): ref[pert_list[j]].append(float(dose_list[j])) ref["num_cells"].append(ncells) print(pert, dose, ncells) df = pd.DataFrame.from_dict(ref) df["split"] = split_name df_list.append(df) return pd.concat(df_list) def linear_interp(y1, y2, x1, x2, x): a = (y1 - y2) / (x1 - x2) b = y1 - a * x1 y = a * x + b return y def evaluate_r2_benchmark(cpa_api, datasets, pert_category, pert_category_list): scores = pd.DataFrame( columns=[ cpa_api.covars_key, cpa_api.perturbation_key, cpa_api.dose_key, "R2_mean", "R2_mean_DE", "R2_var", "R2_var_DE", "num_cells", "benchmark", "method", ] ) de_idx = np.where( datasets["ood"].var_names.isin( np.array(datasets["ood"].de_genes[pert_category]) ) )[0] idx = np.where(datasets["ood"].pert_categories == pert_category)[0] y_true = datasets["ood"].genes[idx, :].numpy() # true means and variances yt_m = y_true.mean(axis=0) yt_v = y_true.var(axis=0) icond = 0 if len(idx) > 0: for pert_category_predict in pert_category_list: if "+" in pert_category_predict: pert1, pert2 = pert_category_predict.split("+") idx_pred1 = np.where(datasets["training"].pert_categories == pert1)[0] idx_pred2 = np.where(datasets["training"].pert_categories == pert2)[0] y_pred1 = datasets["training"].genes[idx_pred1, :].numpy() y_pred2 = datasets["training"].genes[idx_pred2, :].numpy() x1 = float(pert1.split("_")[2]) x2 = float(pert2.split("_")[2]) x = float(pert_category.split("_")[2]) yp_m1 = y_pred1.mean(axis=0) yp_m2 = y_pred2.mean(axis=0) yp_v1 = y_pred1.var(axis=0) yp_v2 = y_pred2.var(axis=0) yp_m = linear_interp(yp_m1, yp_m2, x1, x2, x) yp_v = linear_interp(yp_v1, yp_v2, x1, x2, x) # yp_m = (y_pred1.mean(axis=0) + y_pred2.mean(axis=0))/2 # yp_v = (y_pred1.var(axis=0) + y_pred2.var(axis=0))/2 else: idx_pred = np.where( datasets["training"].pert_categories == pert_category_predict )[0] print(pert_category_predict, len(idx_pred)) y_pred = datasets["training"].genes[idx_pred, :].numpy() # predicted means and variances yp_m = y_pred.mean(axis=0) yp_v = y_pred.var(axis=0) mean_score = r2_score(yt_m, yp_m) var_score = r2_score(yt_v, yp_v) mean_score_de = r2_score(yt_m[de_idx], yp_m[de_idx]) var_score_de = r2_score(yt_v[de_idx], yp_v[de_idx]) scores.loc[icond] = pert_category.split("_") + [ mean_score, mean_score_de, var_score, var_score_de, len(idx), pert_category_predict, "benchmark", ] icond += 1 return scores
CPA-main
cpa/api.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import warnings import numpy as np import pandas as pd import scanpy as sc from sklearn.metrics import r2_score from scipy.sparse import issparse from scipy.stats import wasserstein_distance import torch warnings.filterwarnings("ignore") import sys if not sys.warnoptions: warnings.simplefilter("ignore") warnings.simplefilter(action="ignore", category=FutureWarning) def _convert_mean_disp_to_counts_logits(mu, theta, eps=1e-6): r"""NB parameterizations conversion Parameters ---------- mu : mean of the NB distribution. theta : inverse overdispersion. eps : constant used for numerical log stability. (Default value = 1e-6) Returns ------- type the number of failures until the experiment is stopped and the success probability. """ assert (mu is None) == ( theta is None ), "If using the mu/theta NB parameterization, both parameters must be specified" logits = (mu + eps).log() - (theta + eps).log() total_count = theta return total_count, logits def rank_genes_groups_by_cov( adata, groupby, control_group, covariate, pool_doses=False, n_genes=50, rankby_abs=True, key_added="rank_genes_groups_cov", return_dict=False, ): """ Function that generates a list of differentially expressed genes computed separately for each covariate category, and using the respective control cells as reference. Usage example: rank_genes_groups_by_cov( adata, groupby='cov_product_dose', covariate_key='cell_type', control_group='Vehicle_0' ) Parameters ---------- adata : AnnData AnnData dataset groupby : str Obs column that defines the groups, should be cartesian product of covariate_perturbation_cont_var, it is important that this format is followed. control_group : str String that defines the control group in the groupby obs covariate : str Obs column that defines the main covariate by which we want to separate DEG computation (eg. cell type, species, etc.) n_genes : int (default: 50) Number of DEGs to include in the lists rankby_abs : bool (default: True) If True, rank genes by absolute values of the score, thus including top downregulated genes in the top N genes. If False, the ranking will have only upregulated genes at the top. key_added : str (default: 'rank_genes_groups_cov') Key used when adding the dictionary to adata.uns return_dict : str (default: False) Signals whether to return the dictionary or not Returns ------- Adds the DEG dictionary to adata.uns If return_dict is True returns: gene_dict : dict Dictionary where groups are stored as keys, and the list of DEGs are the corresponding values """ gene_dict = {} cov_categories = adata.obs[covariate].unique() for cov_cat in cov_categories: print(cov_cat) # name of the control group in the groupby obs column control_group_cov = "_".join([cov_cat, control_group]) # subset adata to cells belonging to a covariate category adata_cov = adata[adata.obs[covariate] == cov_cat] # compute DEGs sc.tl.rank_genes_groups( adata_cov, groupby=groupby, reference=control_group_cov, rankby_abs=rankby_abs, n_genes=n_genes, ) # add entries to dictionary of gene sets de_genes = pd.DataFrame(adata_cov.uns["rank_genes_groups"]["names"]) for group in de_genes: gene_dict[group] = de_genes[group].tolist() adata.uns[key_added] = gene_dict if return_dict: return gene_dict def rank_genes_groups( adata, groupby, pool_doses=False, n_genes=50, rankby_abs=True, key_added="rank_genes_groups_cov", return_dict=False, ): """ Function that generates a list of differentially expressed genes computed separately for each covariate category, and using the respective control cells as reference. Usage example: rank_genes_groups_by_cov( adata, groupby='cov_product_dose', covariate_key='cell_type', control_group='Vehicle_0' ) Parameters ---------- adata : AnnData AnnData dataset groupby : str Obs column that defines the groups, should be cartesian product of covariate_perturbation_cont_var, it is important that this format is followed. control_group : str String that defines the control group in the groupby obs covariate : str Obs column that defines the main covariate by which we want to separate DEG computation (eg. cell type, species, etc.) n_genes : int (default: 50) Number of DEGs to include in the lists rankby_abs : bool (default: True) If True, rank genes by absolute values of the score, thus including top downregulated genes in the top N genes. If False, the ranking will have only upregulated genes at the top. key_added : str (default: 'rank_genes_groups_cov') Key used when adding the dictionary to adata.uns return_dict : str (default: False) Signals whether to return the dictionary or not Returns ------- Adds the DEG dictionary to adata.uns If return_dict is True returns: gene_dict : dict Dictionary where groups are stored as keys, and the list of DEGs are the corresponding values """ covars_comb = [] for i in range(len(adata)): cov = "_".join(adata.obs["cov_drug_dose_name"].values[i].split("_")[:-2]) covars_comb.append(cov) adata.obs["covars_comb"] = covars_comb gene_dict = {} for cov_cat in np.unique(adata.obs["covars_comb"].values): adata_cov = adata[adata.obs["covars_comb"] == cov_cat] control_group_cov = ( adata_cov[adata_cov.obs["control"] == 1].obs[groupby].values[0] ) # compute DEGs sc.tl.rank_genes_groups( adata_cov, groupby=groupby, reference=control_group_cov, rankby_abs=rankby_abs, n_genes=n_genes, ) # add entries to dictionary of gene sets de_genes = pd.DataFrame(adata_cov.uns["rank_genes_groups"]["names"]) for group in de_genes: gene_dict[group] = de_genes[group].tolist() adata.uns[key_added] = gene_dict if return_dict: return gene_dict # def evaluate_r2_(adata, pred_adata, condition_key, sampled=False): # r2_list = [] # if issparse(adata.X): # adata.X = adata.X.A # if issparse(pred_adata.X): # pred_adata.X = pred_adata.X.A # for cond in pred_adata.obs[condition_key].unique(): # adata_ = adata[adata.obs[condition_key] == cond] # pred_adata_ = pred_adata[pred_adata.obs[condition_key] == cond] # r2_mean = r2_score(adata_.X.mean(0), pred_adata_.X.mean(0)) # if sampled: # r2_var = r2_score(adata_.X.var(0), pred_adata_.X.var(0)) # else: # r2_var = r2_score( # adata_.X.var(0), # pred_adata_.layers['variance'].var(0) # ) # r2_list.append( # { # 'condition': cond, # 'r2_mean': r2_mean, # 'r2_var': r2_var, # } # ) # r2_df = pd.DataFrame(r2_list).set_index('condition') # return r2_df def evaluate_r2_(adata, pred_adata, condition_key, sampled=False, de_genes_dict=None): r2_list = [] if issparse(adata.X): adata.X = adata.X.A if issparse(pred_adata.X): pred_adata.X = pred_adata.X.A for cond in pred_adata.obs[condition_key].unique(): adata_ = adata[adata.obs[condition_key] == cond] pred_adata_ = pred_adata[pred_adata.obs[condition_key] == cond] r2_mean = r2_score(adata_.X.mean(0), pred_adata_.X.mean(0)) if sampled: r2_var = r2_score(adata_.X.var(0), pred_adata_.X.var(0)) else: r2_var = r2_score( adata_.X.var(0), pred_adata_.layers['variance'].var(0) ) r2_list.append( { 'condition': cond, 'r2_mean': r2_mean, 'r2_var': r2_var, } ) if de_genes_dict: de_genes = de_genes_dict[cond] sub_adata_ = adata_[:, de_genes] sub_pred_adata_ = pred_adata_[:, de_genes] r2_mean_deg = r2_score(sub_adata_.X.mean(0), sub_pred_adata_.X.mean(0)) if sampled: r2_var_deg = r2_score(sub_adata_.X.var(0), sub_pred_adata_.X.var(0)) else: r2_var_deg = r2_score( sub_adata_.X.var(0), sub_pred_adata_.layers['variance'].var(0) ) r2_list[-1]['r2_mean_deg'] = r2_mean_deg r2_list[-1]['r2_var_deg'] = r2_var_deg r2_df = pd.DataFrame(r2_list).set_index('condition') return r2_df def evaluate_mmd(adata, pred_adata, condition_key, de_genes_dict=None): mmd_list = [] for cond in pred_adata.obs[condition_key].unique(): adata_ = adata[adata.obs[condition_key] == cond].copy() pred_adata_ = pred_adata[pred_adata.obs[condition_key] == cond].copy() if issparse(adata_.X): adata_.X = adata_.X.A if issparse(pred_adata_.X): pred_adata_.X = pred_adata_.X.A mmd = mmd_loss_calc(torch.Tensor(adata_.X), torch.Tensor(pred_adata_.X)) mmd_list.append( { 'condition': cond, 'mmd': mmd.detach().cpu().numpy() } ) if de_genes_dict: de_genes = de_genes_dict[cond] sub_adata_ = adata_[:, de_genes] sub_pred_adata_ = pred_adata_[:, de_genes] mmd_deg = mmd_loss_calc(torch.Tensor(sub_adata_.X), torch.Tensor(sub_pred_adata_.X)) mmd_list[-1]['mmd_deg'] = mmd_deg.detach().cpu().numpy() mmd_df = pd.DataFrame(mmd_list).set_index('condition') return mmd_df def evaluate_emd(adata, pred_adata, condition_key, de_genes_dict=None): emd_list = [] for cond in pred_adata.obs[condition_key].unique(): adata_ = adata[adata.obs[condition_key] == cond].copy() pred_adata_ = pred_adata[pred_adata.obs[condition_key] == cond].copy() if issparse(adata_.X): adata_.X = adata_.X.A if issparse(pred_adata_.X): pred_adata_.X = pred_adata_.X.A wd = [] for i, _ in enumerate(adata_.var_names): wd.append( wasserstein_distance(torch.Tensor(adata_.X[:, i]), torch.Tensor(pred_adata_.X[:, i])) ) emd_list.append( { 'condition': cond, 'emd': np.mean(wd) } ) if de_genes_dict: de_genes = de_genes_dict[cond] sub_adata_ = adata_[:, de_genes] sub_pred_adata_ = pred_adata_[:, de_genes] wd_deg = [] for i, _ in enumerate(sub_adata_.var_names): wd_deg.append( wasserstein_distance(torch.Tensor(sub_adata_.X[:, i]), torch.Tensor(sub_pred_adata_.X[:, i])) ) emd_list[-1]['emd_deg'] = np.mean(wd_deg) emd_df = pd.DataFrame(emd_list).set_index('condition') return emd_df def pairwise_distance(x, y): x = x.view(x.shape[0], x.shape[1], 1) y = torch.transpose(y, 0, 1) output = torch.sum((x - y) ** 2, 1) output = torch.transpose(output, 0, 1) return output def gaussian_kernel_matrix(x, y, alphas): """Computes multiscale-RBF kernel between x and y. Parameters ---------- x: torch.Tensor Tensor with shape [batch_size, z_dim]. y: torch.Tensor Tensor with shape [batch_size, z_dim]. alphas: Tensor Returns ------- Returns the computed multiscale-RBF kernel between x and y. """ dist = pairwise_distance(x, y).contiguous() dist_ = dist.view(1, -1) alphas = alphas.view(alphas.shape[0], 1) beta = 1. / (2. * alphas) s = torch.matmul(beta, dist_) return torch.sum(torch.exp(-s), 0).view_as(dist) def mmd_loss_calc(source_features, target_features): """Initializes Maximum Mean Discrepancy(MMD) between source_features and target_features. - Gretton, Arthur, et al. "A Kernel Two-Sample Test". 2012. Parameters ---------- source_features: torch.Tensor Tensor with shape [batch_size, z_dim] target_features: torch.Tensor Tensor with shape [batch_size, z_dim] Returns ------- Returns the computed MMD between x and y. """ alphas = [ 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6 ] alphas = torch.autograd.Variable(torch.FloatTensor(alphas)).to(device=source_features.device) cost = torch.mean(gaussian_kernel_matrix(source_features, source_features, alphas)) cost += torch.mean(gaussian_kernel_matrix(target_features, target_features, alphas)) cost -= 2 * torch.mean(gaussian_kernel_matrix(source_features, target_features, alphas)) return cost
CPA-main
cpa/helper.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import json import os import time from collections import defaultdict import numpy as np import torch from cpa.data import load_dataset_splits from cpa.model import CPA, MLP from sklearn.metrics import r2_score from torch.autograd import Variable from torch.distributions import NegativeBinomial from torch import nn def pjson(s): """ Prints a string in JSON format and flushes stdout """ print(json.dumps(s), flush=True) def _convert_mean_disp_to_counts_logits(mu, theta, eps=1e-6): r"""NB parameterizations conversion Parameters ---------- mu : mean of the NB distribution. theta : inverse overdispersion. eps : constant used for numerical log stability. (Default value = 1e-6) Returns ------- type the number of failures until the experiment is stopped and the success probability. """ assert (mu is None) == ( theta is None ), "If using the mu/theta NB parameterization, both parameters must be specified" logits = (mu + eps).log() - (theta + eps).log() total_count = theta return total_count, logits def evaluate_disentanglement(autoencoder, dataset): """ Given a CPA model, this function measures the correlation between its latent space and 1) a dataset's drug vectors 2) a datasets covariate vectors. """ with torch.no_grad(): _, latent_basal = autoencoder.predict( dataset.genes, dataset.drugs, dataset.covariates, return_latent_basal=True, ) mean = latent_basal.mean(dim=0, keepdim=True) stddev = latent_basal.std(0, unbiased=False, keepdim=True) normalized_basal = (latent_basal - mean) / stddev criterion = nn.CrossEntropyLoss() pert_scores, cov_scores = 0, [] def compute_score(labels): if len(np.unique(labels)) > 1: unique_labels = set(labels) label_to_idx = {labels: idx for idx, labels in enumerate(unique_labels)} labels_tensor = torch.tensor( [label_to_idx[label] for label in labels], dtype=torch.long, device=autoencoder.device ) assert normalized_basal.size(0) == len(labels_tensor) #might have to perform a train/test split here dataset = torch.utils.data.TensorDataset(normalized_basal, labels_tensor) data_loader = torch.utils.data.DataLoader(dataset, batch_size=256, shuffle=True) # 2 non-linear layers of size <input_dimension> # followed by a linear layer. disentanglement_classifier = MLP( [normalized_basal.size(1)] + [normalized_basal.size(1) for _ in range(2)] + [len(unique_labels)] ).to(autoencoder.device) optimizer = torch.optim.Adam(disentanglement_classifier.parameters(), lr=1e-2) for epoch in range(50): for X, y in data_loader: pred = disentanglement_classifier(X) loss = Variable(criterion(pred, y), requires_grad=True) optimizer.zero_grad() loss.backward() optimizer.step() with torch.no_grad(): pred = disentanglement_classifier(normalized_basal).argmax(dim=1) acc = torch.sum(pred == labels_tensor) / len(labels_tensor) return acc.item() else: return 0 if dataset.perturbation_key is not None: pert_scores = compute_score(dataset.drugs_names) for cov in list(dataset.covariate_names): cov_scores = [] if len(np.unique(dataset.covariate_names[cov])) == 0: cov_scores = [0] break else: cov_scores.append(compute_score(dataset.covariate_names[cov])) return [np.mean(pert_scores), *[np.mean(cov_score) for cov_score in cov_scores]] def evaluate_r2(autoencoder, dataset, genes_control): """ Measures different quality metrics about an CPA `autoencoder`, when tasked to translate some `genes_control` into each of the drug/covariates combinations described in `dataset`. Considered metrics are R2 score about means and variances for all genes, as well as R2 score about means and variances about differentially expressed (_de) genes. """ mean_score, var_score, mean_score_de, var_score_de = [], [], [], [] num, dim = genes_control.size(0), genes_control.size(1) total_cells = len(dataset) for pert_category in np.unique(dataset.pert_categories): # pert_category category contains: 'celltype_perturbation_dose' info de_idx = np.where( dataset.var_names.isin(np.array(dataset.de_genes[pert_category])) )[0] idx = np.where(dataset.pert_categories == pert_category)[0] if len(idx) > 30: emb_drugs = dataset.drugs[idx][0].view(1, -1).repeat(num, 1).clone() emb_covars = [ covar[idx][0].view(1, -1).repeat(num, 1).clone() for covar in dataset.covariates ] genes_predict = ( autoencoder.predict(genes_control, emb_drugs, emb_covars).detach().cpu() ) mean_predict = genes_predict[:, :dim] var_predict = genes_predict[:, dim:] if autoencoder.loss_ae == 'nb': counts, logits = _convert_mean_disp_to_counts_logits( torch.clamp( torch.Tensor(mean_predict), min=1e-4, max=1e4, ), torch.clamp( torch.Tensor(var_predict), min=1e-4, max=1e4, ) ) dist = NegativeBinomial( total_count=counts, logits=logits ) nb_sample = dist.sample().cpu().numpy() yp_m = nb_sample.mean(0) yp_v = nb_sample.var(0) else: # predicted means and variances yp_m = mean_predict.mean(0) yp_v = var_predict.mean(0) # estimate metrics only for reasonably-sized drug/cell-type combos y_true = dataset.genes[idx, :].numpy() # true means and variances yt_m = y_true.mean(axis=0) yt_v = y_true.var(axis=0) mean_score.append(r2_score(yt_m, yp_m)) var_score.append(r2_score(yt_v, yp_v)) mean_score_de.append(r2_score(yt_m[de_idx], yp_m[de_idx])) var_score_de.append(r2_score(yt_v[de_idx], yp_v[de_idx])) return [ np.mean(s) if len(s) else -1 for s in [mean_score, mean_score_de, var_score, var_score_de] ] def evaluate(autoencoder, datasets): """ Measure quality metrics using `evaluate()` on the training, test, and out-of-distribution (ood) splits. """ autoencoder.eval() with torch.no_grad(): stats_test = evaluate_r2( autoencoder, datasets["test"].subset_condition(control=False), datasets["test"].subset_condition(control=True).genes ) disent_scores = evaluate_disentanglement(autoencoder, datasets["test"]) stats_disent_pert = disent_scores[0] stats_disent_cov = disent_scores[1:] evaluation_stats = { "training": evaluate_r2( autoencoder, datasets["training"].subset_condition(control=False), datasets["training"].subset_condition(control=True).genes, ), "test": stats_test, "ood": evaluate_r2( autoencoder, datasets["ood"], datasets["test"].subset_condition(control=True).genes ), "perturbation disentanglement": stats_disent_pert, "optimal for perturbations": 1 / datasets["test"].num_drugs if datasets["test"].num_drugs > 0 else None, } if len(stats_disent_cov) > 0: for i in range(len(stats_disent_cov)): evaluation_stats[ f"{list(datasets['test'].covariate_names)[i]} disentanglement" ] = stats_disent_cov[i] evaluation_stats[ f"optimal for {list(datasets['test'].covariate_names)[i]}" ] = 1 / datasets["test"].num_covariates[i] autoencoder.train() return evaluation_stats def prepare_cpa(args, state_dict=None): """ Instantiates autoencoder and dataset to run an experiment. """ device = "cuda" if torch.cuda.is_available() else "cpu" datasets = load_dataset_splits( args["data"], args["perturbation_key"], args["dose_key"], args["covariate_keys"], args["split_key"], args["control"], ) autoencoder = CPA( datasets["training"].num_genes, datasets["training"].num_drugs, datasets["training"].num_covariates, device=device, seed=args["seed"], loss_ae=args["loss_ae"], doser_type=args["doser_type"], patience=args["patience"], hparams=args["hparams"], decoder_activation=args["decoder_activation"], ) if state_dict is not None: autoencoder.load_state_dict(state_dict) return autoencoder, datasets def train_cpa(args, return_model=False): """ Trains a CPA autoencoder """ autoencoder, datasets = prepare_cpa(args) datasets.update( { "loader_tr": torch.utils.data.DataLoader( datasets["training"], batch_size=autoencoder.hparams["batch_size"], shuffle=True, ) } ) pjson({"training_args": args}) pjson({"autoencoder_params": autoencoder.hparams}) args["hparams"] = autoencoder.hparams start_time = time.time() for epoch in range(args["max_epochs"]): epoch_training_stats = defaultdict(float) for data in datasets["loader_tr"]: genes, drugs, covariates = data[0], data[1], data[2:] minibatch_training_stats = autoencoder.update(genes, drugs, covariates) for key, val in minibatch_training_stats.items(): epoch_training_stats[key] += val for key, val in epoch_training_stats.items(): epoch_training_stats[key] = val / len(datasets["loader_tr"]) if not (key in autoencoder.history.keys()): autoencoder.history[key] = [] autoencoder.history[key].append(epoch_training_stats[key]) autoencoder.history["epoch"].append(epoch) ellapsed_minutes = (time.time() - start_time) / 60 autoencoder.history["elapsed_time_min"] = ellapsed_minutes # decay learning rate if necessary # also check stopping condition: patience ran out OR # time ran out OR max epochs achieved stop = ellapsed_minutes > args["max_minutes"] or ( epoch == args["max_epochs"] - 1 ) if (epoch % args["checkpoint_freq"]) == 0 or stop: evaluation_stats = evaluate(autoencoder, datasets) for key, val in evaluation_stats.items(): if not (key in autoencoder.history.keys()): autoencoder.history[key] = [] autoencoder.history[key].append(val) autoencoder.history["stats_epoch"].append(epoch) pjson( { "epoch": epoch, "training_stats": epoch_training_stats, "evaluation_stats": evaluation_stats, "ellapsed_minutes": ellapsed_minutes, } ) torch.save( (autoencoder.state_dict(), args, autoencoder.history), os.path.join( args["save_dir"], "model_seed={}_epoch={}.pt".format(args["seed"], epoch), ), ) pjson( { "model_saved": "model_seed={}_epoch={}.pt\n".format( args["seed"], epoch ) } ) stop = stop or autoencoder.early_stopping(np.mean(evaluation_stats["test"])) if stop: pjson({"early_stop": epoch}) break if return_model: return autoencoder, datasets def parse_arguments(): """ Read arguments if this script is called from a terminal. """ parser = argparse.ArgumentParser(description="Drug combinations.") # dataset arguments parser.add_argument("--data", type=str, required=True) parser.add_argument("--perturbation_key", type=str, default="condition") parser.add_argument("--control", type=str, default=None) parser.add_argument("--dose_key", type=str, default="dose_val") parser.add_argument("--covariate_keys", nargs="*", type=str, default="cell_type") parser.add_argument("--split_key", type=str, default="split") parser.add_argument("--loss_ae", type=str, default="gauss") parser.add_argument("--doser_type", type=str, default="sigm") parser.add_argument("--decoder_activation", type=str, default="linear") # CPA arguments (see set_hparams_() in cpa.model.CPA) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--hparams", type=str, default="") # training arguments parser.add_argument("--max_epochs", type=int, default=2000) parser.add_argument("--max_minutes", type=int, default=300) parser.add_argument("--patience", type=int, default=20) parser.add_argument("--checkpoint_freq", type=int, default=20) # output folder parser.add_argument("--save_dir", type=str, required=True) # number of trials when executing cpa.sweep parser.add_argument("--sweep_seeds", type=int, default=200) return dict(vars(parser.parse_args())) if __name__ == "__main__": train_cpa(parse_arguments())
CPA-main
cpa/train.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import warnings import numpy as np import torch warnings.simplefilter(action="ignore", category=FutureWarning) from typing import Union import pandas as pd import scanpy as sc import scipy from cpa.helper import rank_genes_groups from sklearn.preprocessing import OneHotEncoder def ranks_to_df(data, key="rank_genes_groups"): """Converts an `sc.tl.rank_genes_groups` result into a MultiIndex dataframe. You can access various levels of the MultiIndex with `df.loc[[category]]`. Params ------ data : `AnnData` key : str (default: 'rank_genes_groups') Field in `.uns` of data where `sc.tl.rank_genes_groups` result is stored. """ d = data.uns[key] dfs = [] for k in d.keys(): if k == "params": continue series = pd.DataFrame.from_records(d[k]).unstack() series.name = k dfs.append(series) return pd.concat(dfs, axis=1) def check_adata(adata, special_fields): replaced = False for sf in special_fields: if sf in adata.obs: flag = 0 for el in adata.obs[sf].values: if "_" in str(el): flag += 1 if flag: print( f"WARNING. Special characters ('_') were found in: '{sf}'.", "They will be replaced with '-'.", "Be careful, it may lead to errors downstream.", ) adata.obs[sf] = [s.replace("_", "-") for s in adata.obs[sf].values] replaced = True return adata, replaced indx = lambda a, i: a[i] if a is not None else None class Dataset: def __init__( self, data, perturbation_key=None, dose_key=None, covariate_keys=None, split_key="split", control=None, ): if type(data) == str: data = sc.read(data) #Assert that keys are present in the adata object assert perturbation_key in data.obs.columns, f"Perturbation {perturbation_key} is missing in the provided adata" for key in covariate_keys: assert key in data.obs.columns, f"Covariate {key} is missing in the provided adata" assert dose_key in data.obs.columns, f"Dose {dose_key} is missing in the provided adata" assert split_key in data.obs.columns, f"Split {split_key} is missing in the provided adata" assert not (split_key is None), "split_key can not be None" #If covariate keys is empty list create dummy covariate if len(covariate_keys) == 0: print("Adding a dummy covariate...") data.obs['dummy_cov'] = 'dummy_cov' covariate_keys = ['dummy_cov'] self.perturbation_key = perturbation_key self.dose_key = dose_key if scipy.sparse.issparse(data.X): self.genes = torch.Tensor(data.X.A) else: self.genes = torch.Tensor(data.X) self.var_names = data.var_names if isinstance(covariate_keys, str): covariate_keys = [covariate_keys] self.covariate_keys = covariate_keys data, replaced = check_adata( data, [perturbation_key, dose_key] + covariate_keys ) for cov in covariate_keys: if not (cov in data.obs): data.obs[cov] = "unknown" if split_key in data.obs: pass else: print("Performing automatic train-test split with 0.25 ratio.") from sklearn.model_selection import train_test_split data.obs[split_key] = "train" idx = list(range(len(data))) idx_train, idx_test = train_test_split( data.obs_names, test_size=0.25, random_state=42 ) data.obs[split_key].loc[idx_train] = "train" data.obs[split_key].loc[idx_test] = "test" if "control" in data.obs: self.ctrl = data.obs["control"].values else: print(f"Assigning control values for {control}") assert_msg = "Please provide a name for control condition." assert not (control is None), assert_msg data.obs["control"] = 0 if dose_key in data.obs: pert, dose = control.split("_") data.obs.loc[ (data.obs[perturbation_key] == pert) & (data.obs[dose_key] == dose), "control", ] = 1 else: pert = control data.obs.loc[(data.obs[perturbation_key] == pert), "control"] = 1 self.ctrl = data.obs["control"].values assert_msg = "Cells to assign as control not found! Please check the name of control variable." assert sum(self.ctrl), assert_msg print(f"Assigned {sum(self.ctrl)} control cells") if perturbation_key is not None: if dose_key is None: raise ValueError( f"A 'dose_key' is required when provided a 'perturbation_key'({perturbation_key})." ) if not (dose_key in data.obs): print( f"Creating a default entrance for dose_key {dose_key}:", "1.0 per perturbation", ) dose_val = [] for i in range(len(data)): pert = data.obs[perturbation_key].values[i].split("+") dose_val.append("+".join(["1.0"] * len(pert))) data.obs[dose_key] = dose_val if not ("cov_drug_dose_name" in data.obs) or replaced: print("Creating 'cov_drug_dose_name' field.") cov_drug_dose_name = [] for i in range(len(data)): comb_name = "" for cov_key in self.covariate_keys: comb_name += f"{data.obs[cov_key].values[i]}_" comb_name += f"{data.obs[perturbation_key].values[i]}_{data.obs[dose_key].values[i]}" cov_drug_dose_name.append(comb_name) data.obs["cov_drug_dose_name"] = cov_drug_dose_name if not ("rank_genes_groups_cov" in data.uns) or replaced: print("Ranking genes for DE genes.") rank_genes_groups(data, groupby="cov_drug_dose_name") self.pert_categories = np.array(data.obs["cov_drug_dose_name"].values) self.de_genes = data.uns["rank_genes_groups_cov"] self.drugs_names = np.array(data.obs[perturbation_key].values) self.dose_names = np.array(data.obs[dose_key].values) # get unique drugs drugs_names_unique = set() for d in self.drugs_names: [drugs_names_unique.add(i) for i in d.split("+")] self.drugs_names_unique = np.array(list(drugs_names_unique)) # save encoder for a comparison with Mo's model # later we need to remove this part encoder_drug = OneHotEncoder(sparse=False) encoder_drug.fit(self.drugs_names_unique.reshape(-1, 1)) # Store as attribute for molecular featurisation self.encoder_drug = encoder_drug self.perts_dict = dict( zip( self.drugs_names_unique, encoder_drug.transform(self.drugs_names_unique.reshape(-1, 1)), ) ) # get drug combinations drugs = [] for i, comb in enumerate(self.drugs_names): drugs_combos = encoder_drug.transform( np.array(comb.split("+")).reshape(-1, 1) ) dose_combos = str(data.obs[dose_key].values[i]).split("+") for j, d in enumerate(dose_combos): if j == 0: drug_ohe = float(d) * drugs_combos[j] else: drug_ohe += float(d) * drugs_combos[j] drugs.append(drug_ohe) self.drugs = torch.Tensor(drugs) atomic_ohe = encoder_drug.transform(self.drugs_names_unique.reshape(-1, 1)) self.drug_dict = {} for idrug, drug in enumerate(self.drugs_names_unique): i = np.where(atomic_ohe[idrug] == 1)[0][0] self.drug_dict[i] = drug else: self.pert_categories = None self.de_genes = None self.drugs_names = None self.dose_names = None self.drugs_names_unique = None self.perts_dict = None self.drug_dict = None self.drugs = None if isinstance(covariate_keys, list) and covariate_keys: if not len(covariate_keys) == len(set(covariate_keys)): raise ValueError(f"Duplicate keys were given in: {covariate_keys}") self.covariate_names = {} self.covariate_names_unique = {} self.covars_dict = {} self.covariates = [] for cov in covariate_keys: self.covariate_names[cov] = np.array(data.obs[cov].values) self.covariate_names_unique[cov] = np.unique(self.covariate_names[cov]) names = self.covariate_names_unique[cov] encoder_cov = OneHotEncoder(sparse=False) encoder_cov.fit(names.reshape(-1, 1)) self.covars_dict[cov] = dict( zip(list(names), encoder_cov.transform(names.reshape(-1, 1))) ) names = self.covariate_names[cov] self.covariates.append( torch.Tensor(encoder_cov.transform(names.reshape(-1, 1))).float() ) else: self.covariate_names = None self.covariate_names_unique = None self.covars_dict = None self.covariates = None if perturbation_key is not None: self.ctrl_name = list( np.unique(data[data.obs["control"] == 1].obs[self.perturbation_key]) ) else: self.ctrl_name = None if self.covariates is not None: self.num_covariates = [ len(names) for names in self.covariate_names_unique.values() ] else: self.num_covariates = [0] self.num_genes = self.genes.shape[1] self.num_drugs = len(self.drugs_names_unique) if self.drugs is not None else 0 self.is_control = data.obs["control"].values.astype(bool) self.indices = { "all": list(range(len(self.genes))), "control": np.where(data.obs["control"] == 1)[0].tolist(), "treated": np.where(data.obs["control"] != 1)[0].tolist(), "train": np.where(data.obs[split_key] == "train")[0].tolist(), "test": np.where(data.obs[split_key] == "test")[0].tolist(), "ood": np.where(data.obs[split_key] == "ood")[0].tolist(), } def subset(self, split, condition="all"): idx = list(set(self.indices[split]) & set(self.indices[condition])) return SubDataset(self, idx) def __getitem__(self, i): return ( self.genes[i], indx(self.drugs, i), *[indx(cov, i) for cov in self.covariates], ) def __len__(self): return len(self.genes) class SubDataset: """ Subsets a `Dataset` by selecting the examples given by `indices`. """ def __init__(self, dataset, indices): self.perturbation_key = dataset.perturbation_key self.dose_key = dataset.dose_key self.covariate_keys = dataset.covariate_keys self.perts_dict = dataset.perts_dict self.covars_dict = dataset.covars_dict self.genes = dataset.genes[indices] self.drugs = indx(dataset.drugs, indices) self.covariates = [indx(cov, indices) for cov in dataset.covariates] self.drugs_names = indx(dataset.drugs_names, indices) self.pert_categories = indx(dataset.pert_categories, indices) self.covariate_names = {} for cov in self.covariate_keys: self.covariate_names[cov] = indx(dataset.covariate_names[cov], indices) self.var_names = dataset.var_names self.de_genes = dataset.de_genes self.ctrl_name = indx(dataset.ctrl_name, 0) self.num_covariates = dataset.num_covariates self.num_genes = dataset.num_genes self.num_drugs = dataset.num_drugs self.is_control = dataset.is_control[indices] def __getitem__(self, i): return ( self.genes[i], indx(self.drugs, i), *[indx(cov, i) for cov in self.covariates], ) def subset_condition(self, control=True): idx = np.where(self.is_control == control)[0].tolist() return SubDataset(self, idx) def __len__(self): return len(self.genes) def load_dataset_splits( data: str, perturbation_key: Union[str, None], dose_key: Union[str, None], covariate_keys: Union[list, str, None], split_key: str, control: Union[str, None], return_dataset: bool = False, ): dataset = Dataset( data, perturbation_key, dose_key, covariate_keys, split_key, control ) splits = { "training": dataset.subset("train", "all"), "test": dataset.subset("test", "all"), "ood": dataset.subset("ood", "all"), } if return_dataset: return splits, dataset else: return splits
CPA-main
cpa/data.py
import sys sys.path.append("../") import cpa import scanpy as sc import scvi from cpa.helper import rank_genes_groups_by_cov def sim_adata(): adata = scvi.data.synthetic_iid(run_setup_anndata=False) sc.pp.filter_cells(adata, min_counts=0) sc.pp.log1p(adata) adata.obs["condition"] = "drugA" adata.obs["condition"].values[:100] = "control" adata.obs["condition"].values[350:400] = "control" adata.obs["condition"].values[100:200] = "drugB" adata.obs["split"] = "train" return adata if __name__ == "__main__": adata = sim_adata() cpa_api = cpa.api.API( adata, pretrained=None, perturbation_key="condition", dose_key="dose_val", covariate_keys=["batch"], hparams={}, device="cuda:0", control="control", ) print("\nStart training") cpa_api.train(max_epochs=1)
CPA-main
tests/test.py
"""For pip.""" from setuptools import setup exec(open("unagi/_version.py").read()) setup( name="unagi", version=__version__, description="Official repo for the paper 'Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning'", long_description=open("README.md").read(), packages=['unagi'], scripts=["bin/unagi"], install_requires=[ "cmake>=3.21.2, <4.0.0", "datasets>=1.11.0, <2.0.0", "einops>=0.3.2, <1.0.0", "meerkat-ml", "opt-einsum>=3.3.0, <4.0.0", "pykeops>=1.5, <2.0", "pytorch-lightning>=1.4.5, <1.4.9", "torch", "torchvision>=0.10.0, <2.0.0", "transformers", ], include_package_data=True, url="https://github.com/HazyResearch/thanos-code", classifiers=[ # https://pypi.python.org/pypi?:action=list_classifiers "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3 :: Only", ], python_requires=">=3.8", author="HazyResearch Team", )
thanos-code-main
setup.py
import logging from typing import Any, Dict, Sequence import hydra import torch from torch import nn from unagi.trainer import MODULE_REGISTRY from unagi.trainer.task import UnagiTask logger = logging.getLogger(__name__) def _instantiate_modules(module_config: Dict[str, Any], type: str): # Assert type with useful error message assert type in { "preprocessors", "embeddings", "encoders", "decoders", "losses", }, f"{type} is not a valid module type" module_dict = {} for uid, cfg in module_config.items(): module_name, _target_ = cfg["module"], cfg["_target_"] module_kwargs = { k: v for k, v in cfg.items() if k not in ["uid", "module", "_target_", "path_to_checkpoint", "source_module"] } if isinstance(module_name, str): try: # TODO: add this import module = MODULE_REGISTRY[type][module_name](**module_kwargs) except KeyError: raise KeyError(f"{module} is not a valid module for {type} type") else: if isinstance(_target_, str): module = hydra.utils.get_method(path=_target_)(**module_kwargs) # load in weights from pretrained state_dict if "path_to_checkpoint" in cfg and cfg["path_to_checkpoint"] is not None: ckpt = torch.load(cfg["path_to_checkpoint"]) source_module = uid if "source_module" in cfg and cfg["source_module"] is not None: source_module = cfg["source_module"] module.load_state_dict( { ".".join(k.split(".")[3:]): v for k, v in ckpt["state_dict"].items() if ( source_module in k and "model" in k and k.split(".")[2] == source_module ) }, strict=True, ) # Add to all modules for this type module_dict[uid] = module return module_dict def instantiate_modules( preprocessors_config: Sequence[Dict[str, Any]], embeddings_config: Sequence[Dict[str, Any]], encoders_config: Sequence[Dict[str, Any]], decoders_config: Sequence[Dict[str, Any]], losses_config: Sequence[Dict[str, Any]], ): """ Instantiate all modules for the model. """ module_dict, loss_dict = {}, {} module_dict.update(_instantiate_modules(preprocessors_config, "preprocessors")) module_dict.update(_instantiate_modules(embeddings_config, "embeddings")) module_dict.update(_instantiate_modules(encoders_config, "encoders")) module_dict.update(_instantiate_modules(decoders_config, "decoders")) loss_dict.update(_instantiate_modules(losses_config, "losses")) return nn.ModuleDict(module_dict), nn.ModuleDict(loss_dict) def create_tasks(task_configs): return { name: UnagiTask( name=name, # module_dict=module_dict, # loss_dict=loss_dict, task_flow=task_config["task_flow"], losses=task_config["losses"], task_weight=task_config["task_weight"], metrics=task_config["metrics"], torchmetrics=task_config["torchmetrics"], callbacks=task_config["callbacks"], # weight=task_config["task_weight"], ) for name, task_config in task_configs.items() } # def create_task(config): # """ # Builds Unagi tasks. # In Unagi, we define task as the learning criterea # (e.g. supervised, contrastive, masked). # # Inputs # :param config: (dict) dictionary representation of experiment config file # # Returns # :return: list of Unagi tasks # """ # # dataset_desc = vars(get_dataset_config(config["dataset"]["name"])) # # model_params = get_model_params(config["model"], dataset_desc) # # model_params = get_text_embed_layer(config, model_params) # # task_metric = dataset_desc["TASK_METRIC"] # """if "contrastive" in config["tasks"]: # n_views = config["tasks"]["contrastive"]["contrastive_views"] # else: # n_views = 1""" # # shared_modules = get_module_dict_v2(config["model"]["name"], model_params) # # shared_modules = get_module_dict_v2(config["model"]) # # augmentation_modules = add_augmentation_modules(config["augmentations"]) # # shared_modules.update(augmentation_modules) # """loss_fns, _ = get_loss_fns( # config["tasks"], # config["model"]["label_smoothing"], # task_type=dataset_desc["TASK_TYPE"], # )""" # # loss_fns = get_loss_fns_v2( # # config["tasks"], # # config["model"]["label_smoothing"], # # classification_type=, # # # classification_type=dataset_desc["TASK_TYPE"], # # ) # aug_type = None # if config["augmentations"]["patch"]["type"] is not None: # aug_type = "patch" # elif config["augmentations"]["feature"]["type"] is not None: # aug_type = "feature" # all_tasks = [] # for task in config["tasks"]: # task_module_dict = get_input_transform_layers() # #task_module_dict.update(shared_modules) # module_pool = nn.ModuleDict(task_module_dict) # task_name = task["name"] # task_flow = task["task_flow"] # task_type = task["type"] # loss_module = get_loss_module(task_type, loss_fn=task["loss_fn"]) # # output_func = get_output_layer(dataset_desc, task_type) # # scorer = Scorer( # # metrics=task_metric) if task_type == "supervised" else Scorer() # n_views = task["contrastive_views"] if "contrastive_views" # in task.keys() else 1 # encoder_module_names = task["embed_layers"] # if task_type == "supervised": # classification_module_name = task["classification_layers"] # encoder_module_names = classification_module_name # loss_func = partial( # loss_module, loss_fns, aug_type, n_views, encoder_module_names, # task_name # ) # if "weight" in task.keys(): # weight = task["weight"] # else: # weight = 1 # """action_outputs = None # if "action_outputs" in task.keys(): # action_outputs = task["action_outputs"]""" # # if output_func is not None: # # output_func = partial(output_func, classification_module_name[ # 0]) # # task = EmmentalTask( # # name=task_name, # # module_pool=module_pool, # # task_flow=task_flow, # # loss_func=loss_func, # # output_func=output_func, # # action_outputs=action_outputs, # # scorer=scorer, # # weight=weight, # # ) # task = UnagiTask( # name=task_name, # module_pool=module_pool, # task_flow=task_flow, # loss_func=loss_func, # weight=weight, # ) # all_tasks.append(task) # return all_tasks
thanos-code-main
unagi/task.py
import logging from types import SimpleNamespace from unagi.datasets import DATASET_CLASSES logger = logging.getLogger(__name__) def get_data(dataflow_config): """ Builds datasets and dataloaders from config file. # Inputs :param config: (dict) dictionary representation of experiment config file # Returns :return: SimpleNamespace containing datasets and dataloaders (train, val, test). A dataloader is built for every task / dataset type split. """ datasets = list(dataflow_config.dataset.keys()) assert len(datasets) == 1, "Only one dataset is supported." dataset_name = datasets[0] dataset = DATASET_CLASSES[dataset_name]( data_dir=dataflow_config.data_dir, x_transforms=dataflow_config.x, y_transforms=dataflow_config.y, transform_pool=dataflow_config.transforms, **dataflow_config.dataset[dataset_name], ) train_dataloaders = dataset.train_dataloader( batch_size=dataflow_config.batch_size, num_workers=dataflow_config.num_workers, drop_last=True, ) val_dataloaders = dataset.val_dataloader( batch_size=dataflow_config.batch_size, num_workers=dataflow_config.num_workers, drop_last=True, ) test_dataloaders = dataset.test_dataloader( batch_size=dataflow_config.batch_size, num_workers=dataflow_config.num_workers, drop_last=True, ) return SimpleNamespace( dataset=dataset, train_dataloaders=train_dataloaders, val_dataloaders=val_dataloaders, test_dataloaders=test_dataloaders, )
thanos-code-main
unagi/data_driver.py
"""Unagi version.""" __version__ = "0.0.1+dev"
thanos-code-main
unagi/_version.py
import logging import pytorch_lightning as pl from unagi.data_driver import get_data from unagi.trainer.trainer import UnagiModule logger = logging.getLogger(__name__) def main(config): # Create dataloaders data = get_data(config.dataflow) # set seed if ( "random_seed" in config.dataflow.keys() and config.dataflow.random_seed is not None ): pl.seed_everything(seed=config.dataflow.random_seed) if config.model.train: unagi_module = UnagiModule( config=config, dataset=data.dataset, train_dataloaders=data.train_dataloaders, val_dataloaders=data.val_dataloaders, test_dataloaders=data.test_dataloaders, ) if "wandb" in config.keys(): logger = pl.loggers.WandbLogger(**{**config.wandb, "config": config}) # Create trainer trainer = pl.Trainer( **{ **config.trainer, "logger": logger, "callbacks": unagi_module.configure_callbacks(), } ) trainer.fit(unagi_module) trainer.test(ckpt_path="best")
thanos-code-main
unagi/unagi.py
TEXT = "text" TIMESERIES = "timeseries" IMAGE = "image" TYPE = "type" AUGMENTATIONS = "augmentations" CONTRASTIVE = "contrastive" MASKED = "masked" NAME = "name" DATASET = "dataset" TASKS = "tasks" RAW = "raw" PATCH = "patch" FEATURE = "feature"
thanos-code-main
unagi/constants.py
import logging from functools import partial from emmental.scorer import Scorer from emmental.task import EmmentalTask from torch import nn logger = logging.getLogger(__name__) def create_unagi_task( model_name, model, dataset_name, task_flow, loss_module, loss_fns, output_classification, task_metric, n_views, ): loss = loss_module output = output_classification logger.info(f"Built model: {model_name}") return EmmentalTask( name=dataset_name, module_pool=nn.ModuleDict({"base_model": model}), task_flow=task_flow, loss_func=partial(loss, "base_model", model, loss_fns, n_views), output_func=partial(output, "base_model"), scorer=Scorer(metrics=task_metric), )
thanos-code-main
unagi/tasks/unagi_task_template.py
from torch.nn import ( BCEWithLogitsLoss as BCELoss, CrossEntropyLoss as CELoss, L1Loss as L1Loss, MSELoss as MSELoss, ) from unagi.tasks.loss_fns.ce_loss import LabelSmoothing, SoftCrossEntropyLoss from unagi.tasks.loss_fns.contrastive_loss import ContrastiveLoss from unagi.tasks.loss_fns.mask_loss import BatchMask, BatchMaskDup """from unagi.tasks.loss_modules import ( ce_loss, contrastive_loss, contrastive_loss_clip, mask_loss, sce_loss, )""" from unagi.tasks.output_layer_modules import ( multiclass_classification, multilabel_classification, ) from unagi.tasks.task_preprocessing_layer import ( CLIPInputTransforms, ContrastiveInputTransforms, MaskInputTransforms, SupervisedInputTransform, ViewSelect, ) LOSS_MODULE_REGISTRY = { "sup_con": ContrastiveLoss, "sim_clr": ContrastiveLoss, "l_spread": ContrastiveLoss, "l_attract": ContrastiveLoss, "batch_mask": BatchMask, "batch_mask_dup": BatchMaskDup, "label_smoothing": LabelSmoothing, "cross_entropy": CELoss, "binary_cross_entropy": BCELoss, "soft_cross_entropy": SoftCrossEntropyLoss, "mask_regular": L1Loss, "mse_loss": MSELoss, } """LOSS_MODULE_REGISTRY = { "masked": mask_loss, "contrastive": contrastive_loss, "clip": contrastive_loss_clip, "cross_entropy": ce_loss, "soft_cross_entropy": sce_loss, }""" OUTPUT_LAYER_REGISTRY = { "multi_class": multiclass_classification, "binary_class": multiclass_classification, "multi_label": multilabel_classification, } TASK_PREPROCESSING_LAYER = { "supervised": SupervisedInputTransform, "masked": MaskInputTransforms, "contrastive": ContrastiveInputTransforms, "clip": CLIPInputTransforms, } INTERMEDIATE_TRANSFORM_LAYER = {"view_select": ViewSelect} supervised_taskflow_default = [ { "name": "supervised_task_preprocessing", "module": "supervised_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [("supervised_task_preprocessing", 0)], }, {"name": "encoder", "module": "encoder", "inputs": [("pre_encoder", 0)]}, {"name": "classifier", "module": "classifier", "inputs": [("encoder", 1)]}, ] supervised_taskflow_patchaug = [ { "name": "supervised_task_preprocessing", "module": "supervised_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [("supervised_task_preprocessing", 0)], }, { "name": "patch_augmentation", "module": "patch_augmentation", "inputs": [ ("pre_encoder", 0), ("supervised_task_preprocessing", 1), ("supervised_task_preprocessing", 2), ], }, { "name": "encoder", "module": "encoder", "inputs": [("patch_augmentation", 0)], }, {"name": "classifier", "module": "classifier", "inputs": [("encoder", 1)]}, ] supervised_taskflow_featureaug = [ { "name": "supervised_task_preprocessing", "module": "supervised_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [("supervised_task_preprocessing", 0)], }, {"name": "encoder", "module": "encoder", "inputs": [("pre_encoder", 0)]}, { "name": "feature_augmentation", "module": "feature_augmentation", "inputs": [ ("encoder", 1), ("supervised_task_preprocessing", 1), ("supervised_task_preprocessing", 2), ], }, { "name": "classifier", "module": "classifier", "inputs": [("feature_augmentation", 0)], }, ] masked_taskflow_default = [ { "name": "masked_task_preprocessing", "module": "masked_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [ ("masked_task_preprocessing", 0), ("masked_task_preprocessing", 1), ], }, { "name": "encoder", "module": "encoder", "inputs": [("pre_encoder", 0)], # src_pre_enccoding }, { "name": "decoder", "module": "decoder", "inputs": [ ("encoder", 1), # src_encoding_hidden ("pre_encoder", 1), # target_pre_encoding ("masked_task_preprocessing", 2), # mask ], }, ] masked_taskflow_patchaug = [ { "name": "masked_task_preprocessing", "module": "masked_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [ ("masked_task_preprocessing", 0), ("masked_task_preprocessing", 1), ], }, { "name": "patch_augmentation", "module": "patch_augmentation", "inputs": [("pre_encoder", 0), ("masked_task_preprocessing", 1)], }, { "name": "encoder", "module": "encoder", "inputs": [("patch_augmentation", 0)], # src_pre_enccoding }, { "name": "decoder", "module": "decoder", "inputs": [ ("encoder", 1), # src_encoding_hidden ("pre_encoder", 1), # target_pre_encoding ("masked_task_preprocessing", 2), # mask ], }, ] masked_taskflow_featureaug = [ { "name": "masked_task_preprocessing", "module": "masked_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [ ("masked_task_preprocessing", 0), ("masked_task_preprocessing", 1), ], }, { "name": "encoder", "module": "encoder", "inputs": [("pre_encoder", 0)], # src_pre_enccoding }, { "name": "patch_augmentation", "module": "patch_augmentation", "inputs": [("encoder", 1), ("masked_task_preprocessing", 1)], }, { "name": "decoder", "module": "decoder", "inputs": [ ("encoder", 1), # src_encoding_hidden ("pre_encoder", 1), # target_pre_encoding ("masked_task_preprocessing", 2), # mask ], }, ] contrastive_taskflow_default = [ { "name": "contrastive_task_preprocessing", "module": "contrastive_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [("contrastive_task_preprocessing", 0)], }, {"name": "encoder", "module": "encoder", "inputs": [("pre_encoder", 0)]}, ] contrastive_taskflow_patchaug = [ { "name": "contrastive_task_preprocessing", "module": "contrastive_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder", "module": "pre_encoder", "inputs": [("contrastive_task_preprocessing", 0)], }, { "name": "patch_augmentation", "module": "patch_augmentation", "inputs": [("pre_encoder", 0), ("contrastive_task_preprocessing", 1)], }, { "name": "encoder", "module": "encoder", "inputs": [("patch_augmentation", 0)], }, ] clip_taskflow_default = [ { "name": "clip_task_preprocessing", "module": "clip_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder_img", "module": "pre_encoder_img", "inputs": [("clip_task_preprocessing", "image")], }, { "name": "pre_encoder_text", "module": "pre_encoder_text", "inputs": [("clip_task_preprocessing", "text")], }, { "name": "text_encoder", "module": "encoder_text", "inputs": [("pre_encoder_text", 0)], }, { "name": "image_encoder", "module": "encoder_img", "inputs": [("pre_encoder_image", 0)], }, ] TASK_FLOWS = { "supervised": { "default": supervised_taskflow_default, "patch_aug": supervised_taskflow_patchaug, "feature_aug": supervised_taskflow_featureaug, }, "contrastive": { "default": contrastive_taskflow_default, "patch_aug": contrastive_taskflow_patchaug, }, "masked": { "default": masked_taskflow_default, "patch_aug": masked_taskflow_patchaug, "feature_aug": masked_taskflow_featureaug, }, "clip": {"default": clip_taskflow_default}, } AUGMENTATION_AUGMODULE_MAP = { "raw": "classifier", "patchnet": "patchnet_augmentation", "feature": "feature_augmentation", }
thanos-code-main
unagi/tasks/__init__.py
import torch from einops import rearrange def mask_loss( loss_fns, aug_type, n_views, module_names, task_name, intermediate_output_dict, Y, ): # TODO: MODIFY THIS TO SUPPORT NEW FLOW total_loss = 0 pre_encoding_embs = intermediate_output_dict["pre_encoder"][0] decoder_ouputs = intermediate_output_dict["decoder"][0] for field_name, field_emb in pre_encoding_embs.items(): total_loss += loss_fns["masked_loss"](decoder_ouputs[field_name], field_emb) return total_loss def ce_loss( loss_fns, aug_type, n_views, module_names, task_name, intermediate_output_dict, Y, ): total_loss = 0 if aug_type is not None and aug_type != "raw": Y = intermediate_output_dict[f"{aug_type}_augmentation"][-1] # Y = rearrange(Y, "b v d -> (b v) d", v=n_views) for mname in module_names: output = intermediate_output_dict[mname][0] # output = rearrange(output, "(b v) d -> b v d", v=n_views) total_loss += loss_fns[task_name](output, Y) return total_loss def sce_loss( loss_fns, aug_type, n_views, module_names, task_name, intermediate_output_dict, Y, ): if aug_type is not None and aug_type != "raw": Y = intermediate_output_dict[f"{aug_type}_augmentation"][-1] if len(Y.size()) == 1: label = intermediate_output_dict[module_names][0].new_zeros( intermediate_output_dict[module_names][0].size() ) label.scatter_(1, Y.view(Y.size()[0], 1), 1.0) else: label = Y return loss_fns[task_name](intermediate_output_dict[module_names][0], label) def contrastive_loss( loss_fns, aug_type, n_views, # number of views passed to contrastive loss function module_names, task_name, intermediate_output_dict, Y, ): total_loss = 0 if aug_type is not None and aug_type != "raw": Y = intermediate_output_dict[f"{aug_type}_augmentation"][-1] # tgts = Y.unsqueeze(1).repeat(1, n_views) tgts = rearrange(Y, "(b v) ... -> b v ...", v=n_views) assert n_views == len(module_names), "Please properly select views" field_embs = [ intermediate_output_dict[embed_layer_name][0] for embed_layer_name in module_names ] embs = torch.stack(field_embs, dim=1) total_loss += loss_fns[task_name](embs, tgts) """for embed_layer_name in module_names: field_emb = intermediate_output_dict[embed_layer_name][0] embs = rearrange(field_emb, "(b v) d -> b v d", b=n_views) total_loss += loss_fns[task_name](embs, tgts)""" return total_loss def contrastive_loss_clip( loss_fns, aug_type, n_views, module_names, task_name, intermediate_output_dict, Y, ): total_loss = 0 if aug_type is not None and aug_type != "raw": Y = intermediate_output_dict[f"{aug_type}_augmentation"][-1] tgts = rearrange(Y, "(b v) ... -> b v ...", v=n_views) assert n_views == len(module_names), "Please properly select views" field_embs = [ intermediate_output_dict[embed_layer_name][0] for embed_layer_name in module_names ] embs = torch.stack(field_embs, dim=1) total_loss += loss_fns[task_name](embs, tgts) """tgts = Y.unsqueeze(1).repeat(1, n_views) for embed_layer_name in module_names: field_emb = intermediate_output_dict[embed_layer_name][0] # if len(field_emb.shape) == 3: field_emb = field_emb.squeeze(1) embs = rearrange(field_emb, "(b v) d -> b v d", v=n_views) total_loss += loss_fns[task_name](embs, tgts)""" return total_loss
thanos-code-main
unagi/tasks/loss_modules.py
from torch.nn import functional as F def multiclass_classification(module_name, immediate_output_dict): return F.softmax( immediate_output_dict[module_name][len(immediate_output_dict[module_name]) - 1], dim=1, ) def multilabel_classification(module_name, immediate_output_dict): return F.sigmoid( immediate_output_dict[module_name][len(immediate_output_dict[module_name]) - 1] )
thanos-code-main
unagi/tasks/output_layer_modules.py
import copy import torch import torch.nn as nn from einops import rearrange class MaskInputTransforms(nn.Module): def __init__(self): super().__init__() self.name = "masked_input_transform" def forward(self, x_batch): temp_x_batch = copy.deepcopy(x_batch) is_train = temp_x_batch["is_train"] field_names = copy.deepcopy(list(temp_x_batch.keys())) new_x_batch = {"inputs": {}, "mask": {}} for field_name in field_names: if field_name not in [ "is_train", ]: values = temp_x_batch[field_name] input = tuple(map(torch.stack, zip(*values))) inputs, mask = input if is_train: mask = rearrange(mask, "b v d -> (b v) d") else: mask = None new_x_batch["inputs"][field_name] = { "value": inputs, } new_x_batch["mask"][field_name] = mask return ( new_x_batch["inputs"], new_x_batch["inputs"], new_x_batch["mask"], temp_x_batch["labels"], ) # (src, tgt, mask) class ContrastiveInputTransforms(nn.Module): def __init__(self): super().__init__() self.name = "contrastive_input_transform" def forward(self, x_batch): """temp_x_batch = copy.deepcopy(x_batch) is_train = temp_x_batch["is_train"] feature_type_map = temp_x_batch["feature_type_map"] field_names = copy.deepcopy(list(temp_x_batch.keys())) new_x_batch = {"inputs": {}} for field_name in field_names: if field_name not in ["is_train", "feature_type_map", "labels"]: values = temp_x_batch[field_name] if is_train: values = rearrange(values, "b v c d -> (b v) c d") new_x_batch["inputs"][field_name] = { "value": values, "type": feature_type_map[field_name], } return [new_x_batch["inputs"], temp_x_batch["labels"]]""" temp_x_batch = copy.deepcopy(x_batch) for param, values in temp_x_batch.items(): if param not in [ "is_train", ]: values = temp_x_batch[param] values = rearrange(values, "b v ... -> (b v) ...") temp_x_batch[param] = values del temp_x_batch["is_train"] return temp_x_batch class CLIPInputTransforms(nn.Module): def __init__(self): super().__init__() self.name = "clip_input_transform" def forward(self, x_batch): """temp_x_batch = copy.deepcopy(x_batch) is_train = temp_x_batch["is_train"] feature_type_map = temp_x_batch["feature_type_map"] field_names = copy.deepcopy(list(temp_x_batch.keys())) final_output = {} for field_name in field_names: new_x_batch = {field_name: {}} if field_name not in ["is_train", "feature_type_map", "labels"]: values = temp_x_batch[field_name] if is_train: values = rearrange(values, "b v c d -> (b v) c d") new_x_batch[field_name] = { "value": values, "type": feature_type_map[field_name], } if feature_type_map[field_name] == "text": final_output["text"] = new_x_batch elif feature_type_map[field_name] == "image": final_output["image"] = new_x_batch final_output["labels"] = temp_x_batch["labels"]""" temp_x_batch = copy.deepcopy(x_batch) for param, values in temp_x_batch.items(): if param not in [ "is_train", ]: values = temp_x_batch[param] values = rearrange(values, "b v ... -> (b v) ...") temp_x_batch[param] = values del temp_x_batch["is_train"] return temp_x_batch class SupervisedInputTransform(nn.Module): def __init__(self): super().__init__() self.name = "supervised_input_transform" def forward(self, x_batch): # is_train = False """temp_x_batch = copy.deepcopy(x_batch) feature_type_map = temp_x_batch["feature_type_map"] field_names = copy.deepcopy(list(temp_x_batch.keys())) new_x_batch = {"inputs": {}} for field_name in field_names: if field_name not in ["is_train", "feature_type_map", "labels"]: values = temp_x_batch[field_name] if field_name in feature_type_map.keys(): new_x_batch["inputs"][field_name] = { "value": values, "type": feature_type_map[field_name], } if field_name == "is_train": is_train = temp_x_batch[field_name]""" # pass foward inputs and labels # return [new_x_batch["inputs"], temp_x_batch["labels"], is_train] temp_x_batch = copy.deepcopy(x_batch) for param, values in temp_x_batch.items(): if param not in [ "is_train", ]: values = temp_x_batch[param] values = rearrange(values, "b v ... -> (b v) ...") temp_x_batch[param] = values del temp_x_batch["is_train"] return temp_x_batch class ViewSelect(nn.Module): def __init__(self, view_idx, n_views, **kwargs): super().__init__() self.name = "view_select" self.view_idx = view_idx self.n_views = n_views def forward(self, input): embs = rearrange(input, "(b v) ... -> b v ...", v=self.n_views) embs = embs[:, self.view_idx, ...] return embs
thanos-code-main
unagi/tasks/task_preprocessing_layer.py
import torch import torch.nn.functional as F from unagi.tasks.loss_fns.base_loss import UnagiLoss class BatchMask(UnagiLoss): def __init__(self): super().__init__() def forward(self, last_layer, embs): # embs == output of embedding layers # last_layer == output of the decoder # Both embs and last_layer # batch x sentence x dims # for each prediction in the last layer, we assume no duplicate ftm. a = torch.einsum("b s d, b t d -> b s t", last_layer, embs) return -torch.diagonal(a.log_softmax(-1), dim1=1, dim2=2).mean() class BatchMaskDup(UnagiLoss): def __init__(self, eps=1e-5): super().__init__() print("Using Batchmask") self.eps = eps def forward(self, last_layer, embs): # embs == output of embedding layers # last_layer == output of the decoder # # Both embs and last_layer # batch x sentence x dims # for each prediction in the last layer, we assume no duplicate ftm. def _g(x, y): return torch.einsum("b s d, b t d -> b s t", x, y) def _dupe_check(x): b, s, _ = x.size() x = F.normalize(x, dim=-1) mask = _g(x, x) > 1 - self.eps mask = mask.masked_fill( torch.triu(torch.ones(b, s, s, device=x.device)) > 0, False ) # The mask is true, if there is a duplicate that comes before it in order. # As a result, only the first duplicate is counted. return mask.any(-1) a = _g(last_layer, embs) a = a.masked_fill(_dupe_check(embs).unsqueeze(1), -1e9) return -torch.diagonal(a.log_softmax(-1), dim1=1, dim2=2).mean()
thanos-code-main
unagi/tasks/loss_fns/mask_loss.py
from typing import List import torch import torch.nn.functional as F from torch import Tensor from unagi.tasks.loss_fns.base_loss import UnagiLoss class SoftCrossEntropyLoss(UnagiLoss): """Calculate the CrossEntropyLoss with soft targets. :param weight: Weight to assign to each of the classes. Default: None :type weight: list of float :param reduction: The way to reduce the losses: 'none' | 'mean' | 'sum'. 'none': no reduction, 'mean': the mean of the losses, 'sum': the sum of the losses. :type reduction: str """ def __init__(self, weight: List[float] = None, reduction: str = "mean"): super().__init__() if weight is None: self.weight = None else: self.register_buffer("weight", torch.Tensor(weight)) self.reduction = reduction def forward(self, input: Tensor, target: Tensor) -> Tensor: # type:ignore """Calculate the loss. :param input: prediction logits :param target: target probabilities :return: loss """ n, k = input.shape losses = input.new_zeros(n) for i in range(k): cls_idx = input.new_full((n,), i, dtype=torch.long) loss = F.cross_entropy(input, cls_idx, reduction="none") if self.weight is not None: loss = loss * self.weight[i] losses += target[:, i].float() * loss if self.reduction == "mean": losses = losses.mean() elif self.reduction == "sum": losses = losses.sum() elif self.reduction != "none": raise ValueError(f"Unrecognized reduction: {self.reduction}") return losses class LabelSmoothing(UnagiLoss): """NLL loss with label smoothing.""" def __init__(self, smoothing=0.0): """Constructor for the LabelSmoothing module. :param smoothing: label smoothing factor """ super().__init__() self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x, target): logprobs = torch.nn.functional.log_softmax(x, dim=-1) nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1)) # nll_loss = -logprobs.gather(dim=-1, index=target) nll_loss = nll_loss.squeeze(1) smooth_loss = -logprobs.mean(dim=-1) # smooth_loss = smooth_loss.unsqueeze(-1) # added loss = self.confidence * nll_loss + self.smoothing * smooth_loss return loss.mean()
thanos-code-main
unagi/tasks/loss_fns/ce_loss.py
import numpy as np import torch from einops import rearrange from unagi.tasks.loss_fns.base_loss import UnagiLoss class UnagiContrastiveLoss(UnagiLoss): def __init__(self, views): super().__init__() self.views = views def combine_views(self, *views): all_views = [view for view in views] return torch.stack(all_views, dim=1) def expand_target(self, Y): return rearrange(Y, "(b v) ... -> b v ...", v=self.views) def forward(self, *args): raise NotImplementedError def weighted_logsumexp(mat, axis, weights): _max, _ = torch.max(mat, dim=axis, keepdim=True) lse = ((torch.exp(mat - _max) * weights).sum(dim=axis, keepdim=True)).log() + _max return lse.squeeze(axis) class ContrastiveLoss(UnagiContrastiveLoss): def __init__( self, views, type="l_spread", # sup_con, sim_clr, l_attract, l_spread temp=0.5, pos_in_denom=False, # as per dan, false by default log_first=True, # TODO (ASN): should this be true (false originally) a_lc=1.0, a_spread=1.0, lc_norm=False, use_labels=True, clip_pos=1.0, pos_in_denom_weight=1.0, ): super().__init__(views) self.temp = temp self.log_first = log_first self.a_lc = a_lc self.a_spread = a_spread self.pos_in_denom = pos_in_denom self.lc_norm = lc_norm self.use_labels = use_labels self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.clip_pos = clip_pos self.pos_in_denom_weight = pos_in_denom_weight if type == "sup_con": print(f"Using {type} contrastive loss function") self.a_spread = 0 # self.pos_in_denom = False # this isn't doing anything # elif type == "l_attract": # print(f"Using {type} contrastive loss function") # self.a_spread = 0 # self.pos_in_denom = False # working elif type == "l_repel": print(f"Using {type} contrastive loss function") self.a_spread = 1 self.a_lc = 0 elif type == "sim_clr": print(f"Using {type} contrastive loss function") self.a_spread = 0 self.a_lc = 1 self.use_labels = False def forward(self, *args): inputs = args[:-1] Y = args[-1] x, labels = self.combine_views(*inputs), self.expand_target(Y) # x has shape batch * num views * dimension # labels has shape batch * num views b, nViews, d = x.size() vs = torch.split(x, 1, dim=1) # images indexed by view if not self.use_labels: labels = torch.full(labels.shape, -1) ts = torch.split(labels, 1, dim=1) # labels indexed by view l = 0.0 pairs = nViews * (nViews - 1) // 2 for ii in range(nViews): vi = vs[ii].squeeze() ti = ts[ii].squeeze() ti_np = np.array([int(label) for label in ti]) for jj in range(ii): vj = vs[jj].squeeze() # num[i,j] is f(xi) * f(xj) / tau, for i,j if self.lc_norm: num = ( torch.einsum("b d, c d -> b c", vi, vj) .div(self.temp) .div(torch.norm(vi, dim=1) * torch.norm(vj, dim=1)) ) else: num = torch.einsum("b d, c d -> b c", vi, vj).div(self.temp) # store the first positive (augmentation of the same view) pos_ones = [] neg_ones = [] # store the first negative M_indices = [] div_factor = [] for i, cls in enumerate(ti_np): # fall back to SimCLR pos_indices = torch.tensor([i]).to(ti.device) if cls != -1: pos_indices = torch.where(ti == cls)[0] # fall back to SimCLR neg_indices = torch.tensor( [idx for idx in range(ti.shape[0]) if idx != i] ).to(ti.device) if cls != -1: neg_indices = torch.where(ti != cls)[0] all_indices = torch.stack( [ torch.cat( ( pos_indices if self.pos_in_denom else pos_indices[j : j + 1], neg_indices, ) ) for j in range(len(pos_indices)) ] ) # store all the positive indices pos_ones.append(pos_indices) # store all the negative indices that go up to m neg_ones.append(neg_indices) M_indices.append(all_indices) div_factor.append(len(pos_indices)) if self.pos_in_denom_weight == 1.0: # denominator for each point in the batch denominator = torch.stack( [ # reshape num with an extra dimension, then take the # sum over everything torch.logsumexp(num[i][M_indices[i]], 1).sum() for i in range(len(ti)) ] ) else: # denominator for each Mpoint in the batch denominator = torch.stack( [ # reshape num with an extra dimension, then take the # sum over everything weighted_logsumexp( num[i][M_indices[i]], 1, torch.tensor( np.concatenate( [ np.full( len(pos_ones[i]), self.pos_in_denom_weight, ), np.ones(len(neg_ones[i])), ] ) ).to(ti.device), ).sum() for i in range(len(ti)) ] ) if self.clip_pos != 1.0: # numerator numerator = torch.stack( [ # sum over all the positives torch.sum(-1 * num[i][pos_ones[i]]) # -1 * num[i][pos_ones[i]] for i in range(len(ti)) ] ) else: # numerator numerator = torch.stack( [ # sum over all the positives torch.sum( -1 * torch.clamp(num[i][pos_ones[i]], max=self.clip_pos) ) # -1 * num[i][pos_ones[i]] for i in range(len(ti)) ] ) log_prob = numerator + denominator if self.a_spread > 0.0: assert self.a_lc + self.a_spread != 0 numerator_spread = -1 * torch.diagonal(num, 0) denominator_spread = torch.stack( [ # reshape num with an extra dimension, # then take the sum over everything torch.logsumexp(num[i][pos_ones[i]], 0).sum() for i in range(len(ti)) ] ) log_prob_spread = numerator_spread + denominator_spread a = ( self.a_lc * log_prob.div(torch.tensor(div_factor).to(ti.device)) + self.a_spread * log_prob_spread ) / (self.a_lc + self.a_spread) else: log_prob = log_prob.to(ti.device) a = torch.tensor(self.a_lc).to(ti.device) * log_prob.to( ti.device ).div(torch.tensor(div_factor).to(ti.device)) l += a.mean() out = l / pairs return out
thanos-code-main
unagi/tasks/loss_fns/contrastive_loss.py
import torch.nn as nn class UnagiLoss(nn.Module): def __init__(self): super().__init__() def forward(self): raise NotImplementedError
thanos-code-main
unagi/tasks/loss_fns/base_loss.py
import copy from collections import defaultdict from functools import partial from pathlib import Path from typing import Any, Dict, List, Sequence, Tuple, Union import torch from einops import rearrange from unagi.data.data_utils.transform_util import get_transforms from unagi.utils.misc import list_to_tensor def is_list(x): return isinstance(x, Sequence) and not isinstance(x, str) class TBPTTDataLoader(torch.utils.data.DataLoader): """ Adapted from https://github.com/deepsound-project/samplernn-pytorch """ def __init__(self, dataset, batch_size, chunk_len, overlap_len, *args, **kwargs): super().__init__(dataset, batch_size, *args, **kwargs) # Zero padding value, given by the dataset self.zero = dataset.zero if hasattr(dataset, "zero") else 0 # Size of the chunks to be fed into the model self.chunk_len = chunk_len # Keep `overlap_len` from the previous chunk (e.g. SampleRNN requires this) self.overlap_len = overlap_len def __iter__(self): for batch in super().__iter__(): x, y, *z = batch # Pad with self.overlap_len - 1 zeros x = torch.cat( [ torch.zeros((x.shape[0], self.overlap_len - 1, *x.shape[2:])) .to(x.device) .to(x.dtype) + self.zero, x, ], dim=1, ) y = torch.cat( [ torch.zeros((y.shape[0], self.overlap_len - 1, *y.shape[2:])) .to(y.device) .to(y.dtype) + self.zero, y, ], dim=1, ) z = [ torch.cat( [ torch.zeros( ( z[i].shape[0], self.overlap_len - 1, *z[i].shape[2:], ) ) .to(z[i].device) .to(z[i].dtype), z[i], ], dim=1, ) for i in range(len(z)) ] _, seq_len, *_ = x.shape reset = True for seq_begin in list(range(self.overlap_len - 1, seq_len, self.chunk_len))[ :-1 ]: from_index = seq_begin - self.overlap_len + 1 to_index = seq_begin + self.chunk_len # TODO: check this # Ensure divisible by overlap_len if self.overlap_len > 0: to_index = min( to_index, seq_len - ((seq_len - self.overlap_len + 1) % self.overlap_len), ) x_chunk = x[:, from_index:to_index] if len(y.shape) == 3: y_chunk = y[:, seq_begin:to_index] else: y_chunk = y z_chunk = [z_[:, from_index:to_index] for z_ in z] yield (x_chunk, y_chunk, *z_chunk, reset) reset = False def __len__(self): raise NotImplementedError() class UnagiDatasetBuilder: registry = {} _name_ = NotImplementedError("Dataset must have shorthand name.") # Important: # - dataset should return x, y in the order in which the keys # are defined in the dicts below # - the shapes should always have channels first input_shapes: dict = NotImplementedError("Dataset must have input shapes.") output_shapes: dict = NotImplementedError("Dataset must have output shapes.") uid = "index" @property def x_names(self): self._x_names = list(self.input_shapes.keys()) return self._x_names @property def y_names(self): self._y_names = list(self.output_shapes.keys()) return self._y_names # https://www.python.org/dev/peps/pep-0487/#subclass-registration def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) cls.registry[cls._name_] = cls @property def init_defaults(self): return {} def __init__( self, data_dir=None, tbptt=False, chunk_len=None, overlap_len=None, x_transforms=None, y_transforms=None, transform_pool=None, **dataset_cfg, ): self.data_dir = Path(data_dir).absolute() if data_dir is not None else None self.x_transforms = x_transforms self.y_transforms = y_transforms self.transform_pool = transform_pool # Arguments for TBPTT: only used if tbptt is True and are passed to # TBPTTDataLoader self.tbptt = tbptt self.chunk_len = chunk_len self.overlap_len = overlap_len self.subset_split_percent = None self.subset_split_seed = 42 # Add all arguments to self init_args = self.init_defaults init_args.update( dataset_cfg ) # TODO this overrides the default dict which is bad for k, v in init_args.items(): setattr(self, k, v) self.dataset_train = None self.dataset_val = None self.dataset_test = None self.setup() self.subsample_dataset() self._wrap_datasets() def setup(self): """ This method should set self.dataset_train, self.dataset_val, and self.dataset_test. """ raise NotImplementedError def subsample_dataset(self): if self.subset_split_percent: subset_size = int(len(self.dataset_train) * self.subset_split_percent) dataset_train_subset, dataset_train_heldout = torch.utils.data.random_split( self.dataset_train, (subset_size, len(self.dataset_train) - subset_size), generator=torch.Generator().manual_seed( getattr(self, "seed", self.subset_split_seed) ), ) self.dataset_train = dataset_train_subset self.dataset_test = { "original_testset": self.dataset_test, "heldout_trainset": dataset_train_heldout, } def _wrap_datasets(self): self._create_input_to_output_mapping() # Create all the transforms self.transforms_train = self.transforms("train") self.transforms_eval = self.transforms("eval") UnagiDatasetWrapped = partial( UnagiDataset, input_to_output_mapping=self.input_to_output_mapping, x_names=self.x_names, y_names=self.y_names, uid=self.uid, ) if isinstance(self.dataset_train, torch.utils.data.Dataset): self.dataset_train = UnagiDatasetWrapped( dataset=self.dataset_train, feature_transforms=self.transforms_train, split="train", ) elif isinstance(self.dataset_train, dict): self.dataset_train = { k: UnagiDatasetWrapped( dataset=v, feature_transforms=self.transforms_train, split=k, ) for k, v in self.dataset_train.items() } else: raise TypeError( "dataset_train must be a torch.utils.data.Dataset or dict," f"got {type(self.dataset_train)}" ) if isinstance(self.dataset_val, torch.utils.data.Dataset): self.dataset_val = UnagiDatasetWrapped( dataset=self.dataset_val, feature_transforms=self.transforms_eval, split="val", ) elif isinstance(self.dataset_val, dict): self.dataset_val = { k: UnagiDatasetWrapped( dataset=v, feature_transforms=self.transforms_eval, split=k, ) for k, v in self.dataset_val.items() } else: raise TypeError( "dataset_val must be a torch.utils.data.Dataset or dict, " f"got {type(self.dataset_val)}" ) if isinstance(self.dataset_test, torch.utils.data.Dataset): self.dataset_test = UnagiDatasetWrapped( dataset=self.dataset_test, feature_transforms=self.transforms_eval, split="test", ) elif isinstance(self.dataset_test, dict): self.dataset_test = { k: UnagiDatasetWrapped( dataset=v, feature_transforms=self.transforms_eval, split=k, ) for k, v in self.dataset_test.items() } else: raise TypeError( "dataset_test must be a torch.utils.data.Dataset or dict, " f"got {type(self.dataset_test)}" ) def split_train_val(self, val_split: float): train_len = int(len(self.dataset_train) * (1.0 - val_split)) dataset_train, dataset_val = torch.utils.data.random_split( self.dataset_train, (train_len, len(self.dataset_train) - train_len), generator=torch.Generator().manual_seed(getattr(self, "seed", 42)), ) return dataset_train, dataset_val def transforms(self, split: str): # returns a Composed transform return get_transforms( input_features=self.x_transforms, dataset_split=split, augmentations=self.transform_pool, ) def _create_input_to_output_mapping(self): # for contrastive, keep track of which input features as are transformed # with which output features self.input_to_output_mapping = {} for name, output_feat in self.y_transforms.items(): if "transform_with" in output_feat: input_feature_map = output_feat.transform_with if input_feature_map not in self.input_to_output_mapping: self.input_to_output_mapping[input_feature_map] = [name] else: self.input_to_output_mapping[input_feature_map].append(name) @staticmethod def collate_fn( batch: Union[ List[Tuple[Dict[str, Any], Dict[str, torch.Tensor]]], List[Dict[str, Any]] ], resolution: int = 1, is_train: bool = True, ) -> Union[Tuple[Dict[str, Any], Dict[str, torch.Tensor]], Dict[str, Any]]: """Collate function. Args: batch: The batch to collate. min_data_len: The minimal data sequence length, defaults to 0. max_data_len: The maximal data sequence length (0 means no limit), defaults to 0. Returns: The collated batch. """ X_batch: defaultdict = defaultdict(list) Y_batch: defaultdict = defaultdict(list) for item in batch: # Check if batch is (x_dict, y_dict) pair if isinstance(item, dict): x_dict = item y_dict: Dict[str, Any] = dict() else: x_dict, y_dict = item for field_name, value in x_dict.items(): if isinstance(value, list): X_batch[field_name] += value else: X_batch[field_name].append(value) for label_name, value in y_dict.items(): if isinstance(value, list): Y_batch[label_name] += value else: Y_batch[label_name].append(value) field_names = copy.deepcopy(list(X_batch.keys())) for field_name in field_names: values = X_batch[field_name] # Only merge list of tensors if isinstance(values[0], torch.Tensor): item_tensor, item_mask_tensor = list_to_tensor( values, ) X_batch[field_name] = item_tensor if item_mask_tensor is not None: X_batch[f"{field_name}_mask"] = item_mask_tensor # TODO: generalize this to handle the case where resolutions are # different per field X_batch[field_name] = X_batch[field_name][..., ::resolution] # TODO: figure out how to handle the mask # X_batch[f"{field_name}_mask"] = X_batch[f"{field_name}_mask"] # [..., ::resolution] for label_name, values in Y_batch.items(): Y_batch[label_name] = list_to_tensor( values, )[0] X_batch = dict(X_batch) X_batch["is_train"] = is_train new_X_batch = {} new_X_batch["index"] = X_batch["index"] del X_batch["index"] new_X_batch["inputs"] = X_batch if len(Y_batch) != 0: Y_batch = dict(Y_batch) Y_batch = { k: rearrange(v, "b v ... -> (b v) ...") for k, v in Y_batch.items() } return new_X_batch, Y_batch return new_X_batch def train_dataloader(self, train_resolution=None, **kwargs): if train_resolution is None: train_resolution = [1] if not is_list(train_resolution): train_resolution = [train_resolution] assert len(train_resolution) == 1, "Only one train resolution supported for now" return self._dataloader( self.dataset_train, is_train=True, resolutions=train_resolution, shuffle=True, **kwargs, )[0] def val_dataloader(self, eval_resolutions=None, **kwargs): if isinstance(self.dataset_val, dict): val_dataloaders = {} for prefix, dataset in self.dataset_val.items(): dls = self._eval_dataloader( dataset, prefix=f"val/{prefix}", eval_resolutions=eval_resolutions, **kwargs, ) val_dataloaders = {**val_dataloaders, **dls} return val_dataloaders else: return self._eval_dataloader( self.dataset_val, prefix="val", eval_resolutions=eval_resolutions, **kwargs, ) def test_dataloader(self, eval_resolutions=None, **kwargs): if isinstance(self.dataset_test, dict): test_dataloaders = {} for prefix, dataset in self.dataset_test.items(): dls = self._eval_dataloader( dataset, prefix=f"test/{prefix}", eval_resolutions=eval_resolutions, **kwargs, ) test_dataloaders = {**test_dataloaders, **dls} return test_dataloaders else: return self._eval_dataloader( self.dataset_test, prefix="test", eval_resolutions=eval_resolutions, **kwargs, ) def _eval_dataloader(self, dataset, prefix, eval_resolutions=None, **kwargs): if eval_resolutions is None: eval_resolutions = [1] if not is_list(eval_resolutions): eval_resolutions = [eval_resolutions] kwargs["shuffle"] = False if "shuffle" not in kwargs else kwargs["shuffle"] dataloaders = self._dataloader( dataset, is_train=False, resolutions=eval_resolutions, **kwargs, ) return ( { f"{prefix}/{res}" if res > 1 else prefix: dl for res, dl in zip(eval_resolutions, dataloaders) } if dataloaders is not None else None ) def _dataloader(self, dataset, is_train, resolutions, **loader_args): if dataset is None: return None if self.tbptt: DataLoader = partial( TBPTTDataLoader, chunk_len=self.chunk_len, overlap_len=self.overlap_len, ) else: DataLoader = torch.utils.data.DataLoader return [ DataLoader( dataset=dataset, collate_fn=partial( self.collate_fn, resolution=resolution, is_train=is_train ) if self.collate_fn is not None else None, **loader_args, ) for resolution in resolutions ] def __str__(self): return self._name_ class UnagiDataset(torch.utils.data.Dataset): def __init__( self, dataset: torch.utils.data.Dataset, feature_transforms: dict, input_to_output_mapping: dict, x_names: list, y_names: list, uid: str, split: str, ): self.dataset = dataset self.feature_transforms = feature_transforms self.input_to_output_mapping = input_to_output_mapping self.x_names = x_names self.y_names = y_names self.uid = uid self.split = split def __getitem__(self, index): """ Get item by index. Args: index(index): The index of the item. Returns: Tuple[Dict[str, Any], Dict[str, Tensor]]: Tuple of x_dict and y_dict """ x, y = self.dataset[index] if not isinstance(y, torch.Tensor): y = torch.tensor(y) x_dict, y_dict = {}, {} # add uid x_dict[self.uid] = index for idx, input_feature in enumerate(self.x_names): if len(self.x_names) > 1: feature = x[idx] else: feature = x x_dict[input_feature] = [] transforms = self.feature_transforms[input_feature] if input_feature in self.input_to_output_mapping: output_targets = self.input_to_output_mapping[input_feature] labels = torch.stack( [ y[self.y_names.index(target)] if len(self.y_names) > 1 else y for target in output_targets ] ) feature, y = transforms( feature, # input labels, # label ) else: feature, _ = transforms( feature, # input None, # label ) x_dict[input_feature].append(feature) for index, output_feature in enumerate(self.y_names): y_dict[output_feature] = y[index] return x_dict, y_dict def __len__(self): return len(self.dataset) if __name__ == "__main__": dataset = UnagiDataset( data_dir=".", tbptt=True, chunk_len=10, overlap_len=5, permute=False, n_classes=20, )
thanos-code-main
unagi/datasets/base_dataset.py
from unagi.datasets.celeba.celeba_dataset import CelebA from unagi.datasets.cifar.cifar_dataset import CIFAR10, CIFAR100 from unagi.datasets.mnist.mnist_dataset import MNIST from unagi.datasets.tiny_imagenet.tinyimagenet_dataset import TinyImageNet DATASET_CLASSES = { "cifar10": CIFAR10, "cifar100": CIFAR100, "cifar10_coarse": CIFAR10, "cifar100_coarse": CIFAR100, "tinyimagenet": TinyImageNet, "tinyimagenet_coarse": TinyImageNet, "mnist": MNIST, "celeba": CelebA, }
thanos-code-main
unagi/datasets/__init__.py
from torch.utils.data import Dataset class MeerkatDataset(Dataset): """Torch dataset wrapper around meerkat dp""" def __init__(self, datapanel, xs, ys): self.dataset = datapanel self.x_names = xs self.y_names = ys def __len__(self): return len(self.dataset) def __getitem__(self, idx): # if self.x_names is single element, return single element if len(self.x_names) > 1: x = [self.dataset[idx][input_feat] for input_feat in self.x_names] else: x = self.dataset[idx][self.x_names[0]] if len(self.y_names) > 1: y = [self.dataset[idx][output_feat] for output_feat in self.y_names] else: y = self.dataset[idx][self.y_names[0]] return (x, y)
thanos-code-main
unagi/datasets/meerkat_dataset.py
import meerkat as mk import torchvision from unagi.datasets.base_dataset import UnagiDatasetBuilder from unagi.datasets.meerkat_dataset import MeerkatDataset from unagi.datasets.mnist.utils import sparse2coarse class MNIST(UnagiDatasetBuilder): """Dataset to load MNIST dataset.""" _name_ = "mnist" # TODO: these can be modified by the transforms (e.g. grayscale) # and need to be up to date input_shapes = { "image": (1, 28, 28), } output_shapes = { "label": (10,), } @property def init_defaults(self): return { "val_split": 0.1, "seed": 42, # For validation split "coarse_labels": False, } def setup(self): self.dataset_train = torchvision.datasets.MNIST( root=self.data_dir, train=True, download=True, ) self.dataset_train, self.dataset_val = self.split_train_val( val_split=self.val_split ) self.dataset_test = torchvision.datasets.MNIST( root=self.data_dir, train=False, download=True, ) self.dataset_train = self.to_meerkat(self.dataset_train) self.dataset_val = self.to_meerkat(self.dataset_val) self.dataset_test = self.to_meerkat(self.dataset_test) def to_meerkat(self, dataset): if self.coarse_labels: # TODO: split train and val img_pil, label = [], [] for _, (x, y) in enumerate(dataset): img_pil.append(x) label.append(y) coarse_label = sparse2coarse(label, dataset="mnist") obj = { "image": mk.ListColumn(img_pil), "label": mk.TensorColumn(coarse_label), } dp = mk.DataPanel(obj) # TODO: combine this with the UnagiDataset as an option dataset = MeerkatDataset(dp, xs=["image"], ys=["label"]) self.output_shapes["label"] = (2,) return dataset
thanos-code-main
unagi/datasets/mnist/mnist_dataset.py
import numpy as np def sparse2coarse(targets, scramble=False, dataset="mnist"): """Convert Pytorch MNIST sparse targets. trainset = torchvision.datasets.CIFAR100(path) trainset.targets = sparse2coarse(trainset.targets) """ if dataset == "mnist": sparse_coarse_array = [ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, ] targets = np.array(sparse_coarse_array)[targets] return targets.tolist()
thanos-code-main
unagi/datasets/mnist/utils.py
import os import numpy as np def sparse2coarse(targets, scramble=False): """Convert Pytorch CIFAR100 sparse targets to coarse targets. Usage: trainset = torchvision.datasets.CIFAR100(path) trainset.targets = sparse2coarse(trainset.targets) """ sparse_coarse_array = [ 14, 31, 16, 16, 8, 34, 35, 0, 0, 0, 4, 3, 22, 14, 7, 23, 23, 23, 9, 9, 3, 3, 3, 21, 11, 11, 11, 11, 11, 11, 6, 6, 6, 39, 39, 2, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 12, 30, 19, 37, 37, 37, 37, 37, 28, 28, 28, 37, 2, 61, 46, 53, 46, 41, 53, 45, 45, 47, 43, 53, 65, 45, 56, 52, 46, 62, 58, 41, 49, 62, 62, 64, 45, 62, 66, 46, 61, 50, 62, 47, 49, 45, 50, 45, 65, 65, 58, 53, 53, 55, 62, 58, 58, 64, 48, 46, 41, 65, 44, 61, 50, 65, 46, 49, 65, 44, 65, 62, 58, 46, 46, 65, 62, 41, 45, 55, 55, 50, 50, 51, 47, 62, 60, 65, 46, 52, 62, 66, 60, 61, 53, 50, 53, 43, 46, 65, 60, 61, 60, 46, 54, 50, 58, 65, 58, 50, 46, 58, 46, 62, 48, 63, 45, 62, 65, 58, 65, 61, 41, 46, 58, 43, 47, 58, 48, 48, 59, 48, 52, 52, 52, 52, 52, 38, 38, 18, 17, 17, 17, 17, 52, 52, 52, 52, 58, 58, 7, 58, 58, 27, ] targets = np.array(sparse_coarse_array)[targets] return targets.tolist() def create_val_img_folder(path_to_dataset: str): """ This method is responsible for separating validation images into separate sub folders """ val_dir = os.path.join(path_to_dataset, "val") img_dir = os.path.join(val_dir, "images") fp = open(os.path.join(val_dir, "val_annotations.txt"), "r") data = fp.readlines() val_img_dict = {} for line in data: words = line.split("\t") val_img_dict[words[0]] = words[1] fp.close() # Create folder if not present and move images into proper folders for img, folder in val_img_dict.items(): newpath = os.path.join(img_dir, folder) if not os.path.exists(newpath): os.makedirs(newpath) if os.path.exists(os.path.join(img_dir, img)): os.rename(os.path.join(img_dir, img), os.path.join(newpath, img))
thanos-code-main
unagi/datasets/tiny_imagenet/utils.py
import os import meerkat as mk import torchvision from unagi.datasets.base_dataset import UnagiDatasetBuilder from unagi.datasets.meerkat_dataset import MeerkatDataset from unagi.datasets.tiny_imagenet.utils import create_val_img_folder, sparse2coarse class TinyImageNet(UnagiDatasetBuilder): """Dataset to load TinyImageNet dataset.""" _name_ = "tinyimagenet" # TODO: these can be modified by the transforms (e.g. grayscale) # and need to be up to date input_shapes = { "image": (3, 64, 64), } output_shapes = { "label": (200,), } @property def init_defaults(self): return { "val_split": 0.1, "seed": 42, # For validation split "coarse_labels": False, "root_folder": None, } def setup(self): if self.root_folder is None: raise Exception( "Please specify the path to root folder containing " "TinyImageNet" ) dp = {"train": {}, "val": {}} for split in ["train", "val"]: if split in ["val"]: folder_path = os.path.join(self.root_folder, split, "images") # make val image folder if ( sum( [ os.path.isdir(os.path.join(self.root_folder, x)) for x in os.listdir(folder_path) ] ) == 0 ): print("create val folder") create_val_img_folder(self.root_folder) else: folder_path = os.path.join(self.root_folder, split) labels = sorted(os.listdir(folder_path)) class_to_idx = {cls: i for i, cls in enumerate(labels)} # get image paths img_paths, classes = zip( *torchvision.datasets.DatasetFolder.make_dataset( folder_path, class_to_idx=class_to_idx, extensions="jpeg", ) ) if self.coarse_labels: classes = sparse2coarse(list(classes)) self.output_shapes["label"] = (67,) split_dp = mk.DataPanel( { "image": mk.ImageColumn.from_filepaths(list(img_paths)), "label": mk.TensorColumn(classes), } ) dp[split] = split_dp self.dataset_train = MeerkatDataset( dp["train"], xs=list(self.input_shapes.keys()), ys=["label"] ) self.dataset_val = MeerkatDataset( dp["val"], xs=list(self.input_shapes.keys()), ys=["label"] ) self.dataset_test = MeerkatDataset( dp["val"], xs=list(self.input_shapes.keys()), ys=["label"] )
thanos-code-main
unagi/datasets/tiny_imagenet/tinyimagenet_dataset.py
import os import meerkat as mk import numpy as np import pandas as pd import torch from unagi.datasets.base_dataset import UnagiDatasetBuilder from unagi.datasets.meerkat_dataset import MeerkatDataset class CelebA(UnagiDatasetBuilder): """Dataset to load CelebA dataset.""" _name_ = "celeba" # TODO: these can be modified by the transforms (e.g. grayscale) # and need to be up to date input_shapes = { "image": (3, 224, 224), } output_shapes = { "label": (10,), } @property def init_defaults(self): return { "val_split": 0.1, "seed": 42, # For validation split "target_name": "Blond_Hair", "confounder_names": ["Male"], "root_dir": None, } def setup(self): if not os.path.exists(self.root_dir): raise ValueError( f"{self.root_dir} does not exist yet. " f"Please generate the dataset first." ) self.metadata_df = pd.read_csv( os.path.join(self.root_dir, "list_attr_celeba.csv"), delim_whitespace=True, ) self.split_df = pd.read_csv( os.path.join(self.root_dir, "list_eval_partition.csv"), delim_whitespace=True, ) dp = {"train": [], "test": [], "val": []} for split in ["train", "test", "val"]: self.metadata_df["partition"] = self.split_df["partition"] self.metadata_df = self.metadata_df[ self.split_df["partition"] == self.split_dict[split] ] self.y_array = self.metadata_df[self.target_name].values self.confounder_array = self.metadata_df[self.confounder_names].values self.y_array[self.y_array == -1] = 0 self.confounder_array[self.confounder_array == -1] = 0 self.n_classes = len(np.unique(self.y_array)) self.n_confounders = len(self.confounder_names) self.output_shapes = (self.n_classes,) # Get sub_targets / group_idx self.metadata_df["sub_target"] = ( self.metadata_df[self.target_name].astype(str) + "_" + self.metadata_df[self.confounder_names].astype(str) ) # print('> Sub_target loaded!') # Get subclass map attributes = [self.target_name, self.confounder_names] self.df_groups = ( self.metadata_df[attributes].groupby(attributes).size().reset_index() ) # print('> Groups loaded!') self.df_groups["group_id"] = ( self.df_groups[self.target_name].astype(str) + "_" + self.df_groups[self.confounder_names].astype(str) ) # print('> Group IDs loaded!') self.subclass_map = ( self.df_groups["group_id"] .reset_index() .set_index("group_id") .to_dict()["index"] ) self.group_array = ( self.metadata_df["sub_target"].map(self.subclass_map).values ) groups, group_counts = np.unique(self.group_array, return_counts=True) self.n_groups = len(groups) # Extract filenames and splits self.filename_array = self.metadata_df["image_id"].values self.split_array = self.metadata_df["partition"].values self.targets = torch.tensor(self.y_array) self.targets_all = { "target": np.array(self.y_array), "group_idx": np.array(self.group_array), "spurious": np.array(self.confounder_array), "sub_target": np.array(list(zip(self.y_array, self.confounder_array))), } self.group_labels = [self.group_str(i) for i in range(self.n_groups)] file_paths = [ os.path.join(self.root_dir, "img_align_celeba", fname) for fname in self.filename_array ] dp[split] = mk.DataPanel( { "image": mk.ImageColumn.from_filepaths(file_paths), # "label": mk.TensorColumn(label), "label": mk.TensorColumn(self.targets), } ) self.dataset_train = MeerkatDataset( dp["train"], xs=list(self.input_shapes.keys()), ys=["label"] ) self.dataset_test = MeerkatDataset( dp["test"], xs=list(self.input_shapes.keys()), ys=["label"] ) self.dataset_test = MeerkatDataset( dp["val"], xs=list(self.input_shapes.keys()), ys=["label"] )
thanos-code-main
unagi/datasets/celeba/celeba_dataset.py
import meerkat as mk import numpy as np import torch import torchvision from unagi.datasets.base_dataset import UnagiDatasetBuilder from unagi.datasets.cifar.utils import get_superclass_subclass_mapping, sparse2coarse from unagi.datasets.meerkat_dataset import MeerkatDataset class CIFAR10(UnagiDatasetBuilder): """Dataset to load CIFAR 10 dataset.""" _name_ = "cifar10" # TODO: these can be modified by the transforms (e.g. grayscale) # and need to be up to date input_shapes = { "image": (3, 32, 32), } output_shapes = { "label": (10,), } @property def init_defaults(self): return { "val_split": 0.1, "seed": 42, # For validation split "coarse_labels": False, "return_train_as_test": False, "subset_split_percent": None, "subset_split_seed": 42, } def setup(self): self.dataset_train = torchvision.datasets.CIFAR10( root=self.data_dir, train=True, download=True, ) self.dataset_train, self.dataset_val = self.split_train_val( val_split=self.val_split ) self.dataset_test = torchvision.datasets.CIFAR10( root=self.data_dir, train=False, download=True, ) self.dataset_train = self.to_meerkat(self.dataset_train) self.dataset_val = self.to_meerkat(self.dataset_val) if self.return_train_as_test: self.dataset_test = self.to_meerkat(self.dataset_train) else: self.dataset_test = self.to_meerkat(self.dataset_test) def to_meerkat(self, dataset): if self.coarse_labels: # TODO: split train and val img_pil, label = [], [] for _, (x, y) in enumerate(dataset): img_pil.append(x) label.append(y) coarse_label = sparse2coarse(label, dataset="cifar10") obj = { "image": mk.ListColumn(img_pil), # "label": mk.TensorColumn(label), "label": mk.TensorColumn(coarse_label), } dp = mk.DataPanel(obj) # TODO: combine this with the UnagiDataset as an option dataset = MeerkatDataset(dp, xs=["image"], ys=["label"]) self.output_shapes["label"] = (2,) return dataset class CIFAR10Subset(CIFAR10): """Dataset to load subset of CIFAR10 dataset""" _name_ = "cifar10_subset" @property def init_defaults(self): return { "val_split": 0.1, "val_split_seed": 42, # For validation split "subset_split_seed": 42, "subset_split_percent": 0.5, "coarse_labels": False, } def setup(self): super().setup() # randomly split the train set subset_size = int(len(self.dataset_train) * self.subset_split_percent) (dataset_train_subset, dataset_train_heldout,) = torch.utils.data.random_split( self.dataset_train, (subset_size, len(self.dataset_train) - subset_size), generator=torch.Generator().manual_seed( getattr(self, "seed", self.subset_split_seed) ), ) self.dataset_train = dataset_train_subset self.dataset_test = { "original_testset": self.dataset_test, "heldout_trainset": dataset_train_heldout, } class CIFAR100(UnagiDatasetBuilder): """Dataset to load CIFAR 100 dataset.""" _name_ = "cifar100" # TODO: these can be modified by the transforms (e.g. grayscale) # and need to be up to date input_shapes = { "image": (3, 32, 32), } output_shapes = { "label": (100,), } @property def init_defaults(self): return { "val_split": 0.1, "seed": 42, # For validation split "coarse_labels": False, "coarse_labels_u": False, } def setup(self): self.dataset_train = torchvision.datasets.CIFAR100( root=self.data_dir, train=True, download=True, ) self.dataset_train, self.dataset_val = self.split_train_val( val_split=self.val_split ) self.dataset_test = torchvision.datasets.CIFAR100( root=self.data_dir, train=False, download=True, ) self.dataset_train = self.to_meerkat(self.dataset_train) self.dataset_val = self.to_meerkat(self.dataset_val) self.dataset_test = self.to_meerkat(self.dataset_test) def to_meerkat(self, dataset): if self.coarse_labels or self.coarse_labels_u: # TODO: split train and val img_pil, label = [], [] for _, (x, y) in enumerate(dataset): img_pil.append(x) label.append(y) if self.coarse_labels_u: # img_pil = np.array(img_pil) label = np.array(label) coarse_u_mapping = get_superclass_subclass_mapping() indices = [] for coarse_label, subclass_labels in coarse_u_mapping.items(): total_samples = [500, 250, 100, 50, 50] for subclass_label, samples in zip(subclass_labels, total_samples): indices.extend( np.random.choice( np.argwhere(label == subclass_label).squeeze(-1), size=samples, ) ) temp_img_list = [] for idx in indices: temp_img_list.append(img_pil[idx]) img_pil = temp_img_list label = label[indices].tolist() if self.coarse_labels: coarse_label = sparse2coarse(label, dataset="cifar100") self.output_shapes["label"] = (20,) else: coarse_label = label obj = { "image": mk.ListColumn(img_pil), "label": mk.TensorColumn(coarse_label), } dp = mk.DataPanel(obj) # TODO: combine this with the UnagiDataset as an option dataset = MeerkatDataset(dp, xs=["image"], ys=["label"]) return dataset
thanos-code-main
unagi/datasets/cifar/cifar_dataset.py
import numpy as np # https://github.com/ryanchankh/cifar100coarse/blob/master/sparse2coarse.py def sparse2coarse(targets, scramble=False, dataset="cifar10"): """Convert Pytorch CIFAR100 sparse targets to coarse targets. Usage: trainset = torchvision.datasets.CIFAR100(path) trainset.targets = sparse2coarse(trainset.targets) """ if dataset == "cifar100": sparse_coarse_array = [ 4, 1, 14, 8, 0, 6, 7, 7, 18, 3, 3, 14, 9, 18, 7, 11, 3, 9, 7, 11, 6, 11, 5, 10, 7, 6, 13, 15, 3, 15, 0, 11, 1, 10, 12, 14, 16, 9, 11, 5, 5, 19, 8, 8, 15, 13, 14, 17, 18, 10, 16, 4, 17, 4, 2, 0, 17, 4, 18, 17, 10, 3, 2, 12, 12, 16, 12, 1, 9, 19, 2, 10, 0, 1, 16, 12, 9, 13, 15, 13, 16, 19, 2, 4, 6, 19, 5, 5, 8, 19, 18, 1, 2, 15, 6, 0, 17, 8, 14, 13, ] else: # index of original labels: # [b'airplane', b'automobile', b'bird', b'cat', b'deer', # b'dog', b'frog', b'horse', b'ship', b'truck'] sparse_coarse_array = [1, 1, 0, 0, 0, 0, 0, 0, 1, 1] targets = np.array(sparse_coarse_array)[targets] return targets.tolist() def get_superclass_subclass_mapping(): return { 0: [4, 30, 55, 72, 95], 1: [1, 32, 67, 73, 91], 2: [54, 62, 70, 82, 92], 3: [9, 10, 16, 28, 61], 4: [0, 51, 53, 57, 83], 5: [22, 39, 40, 86, 87], 6: [5, 20, 25, 84, 94], 7: [6, 7, 14, 18, 24], 8: [3, 42, 43, 88, 97], 9: [12, 17, 37, 68, 76], 10: [23, 33, 49, 60, 71], 11: [15, 19, 21, 31, 38], 12: [34, 63, 64, 66, 75], 13: [26, 45, 77, 79, 99], 14: [2, 11, 35, 46, 98], 15: [27, 29, 44, 78, 93], 16: [36, 50, 65, 74, 80], 17: [47, 52, 56, 59, 96], 18: [8, 13, 48, 58, 90], 19: [41, 69, 81, 85, 89], }
thanos-code-main
unagi/datasets/cifar/utils.py
"""Unagi utils. Credit: Emmental """ import json import random import string from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from numpy import ndarray from torch import Tensor def list_to_tensor( item_list: List[Tensor], min_len: int = 0, max_len: int = 0 ) -> Tuple[Tensor, Optional[Tensor]]: """Convert the list of torch.Tensor into a torch.Tensor. Args: item_list: The tensor for converting. min_len: Min length of sequence of data, defaults to 0. max_len: Max length of sequence of data, defaults to 0. Returns: The converted tensor and the corresponding mask tensor. """ item_mask_tensor = None # Convert single value tensor if all(item_list[i].dim() == 0 for i in range(len(item_list))): item_tensor = torch.stack(item_list, dim=0) # Convert 2 or more-D tensor with the same shape elif all( (item_list[i].size() == item_list[0].size()) and (len(item_list[i].size()) != 1) for i in range(len(item_list)) ): item_tensor = torch.stack(item_list, dim=0) # Convert reshape to 1-D tensor and then convert else: item_tensor, item_mask_tensor = pad_batch( [item.view(-1) for item in item_list], min_len, max_len ) return item_tensor, item_mask_tensor def pad_batch( batch: List[Tensor], min_len: int = 0, max_len: int = 0, pad_value: int = 0, left_padded: bool = False, ) -> Tuple[Tensor, Tensor]: """Convert the batch into a padded tensor and mask tensor. Args: batch: The tensor for padding. min_len: Min length of sequence of padding, defaults to 0. max_len: Max length of sequence of padding, defaults to 0. pad_value: The value to use for padding, defaults to 0. left_padding: If True, pad on the left, otherwise on the right, defaults to False. Returns: The padded tensor and corresponding mask tensor. """ batch_size = len(batch) max_seq_len = int(np.max([item.size()[0] for item in batch])) if max_len > 0 and max_len < max_seq_len: max_seq_len = max_len max_seq_len = max(max_seq_len, min_len) padded_batch = batch[0].new_full((batch_size, max_seq_len), pad_value) for i, item in enumerate(batch): length = min(item.size()[0], max_seq_len) if left_padded: padded_batch[i, -length:] = item[-length:] else: padded_batch[i, :length] = item[:length] mask_batch = torch.eq(padded_batch.clone().detach(), pad_value) return padded_batch, mask_batch def prob_to_pred(probs: Union[ndarray, List[ndarray]]) -> ndarray: """Identify the class with the maximum probability. Args: probs: predicted probabilities. Returns: predicted labels. """ if isinstance(probs, ndarray): return np.array(np.argmax(probs, axis=-1)) elif isinstance(probs, list): return np.array([np.argmax(prob, axis=-1) for prob in probs]) else: raise ValueError(f"Unrecognized type {type(probs)}") def pred_to_prob(preds: ndarray, n_classes: int) -> ndarray: """Convert predicted labels to probabilistic labels. Args: preds: Predicted labels. n_classes: Total number of classes. Returns: predicted probabilities. """ preds = preds.reshape(-1) probs = np.zeros((preds.shape[0], n_classes)) for idx, class_idx in enumerate(preds): probs[idx, class_idx] = 1.0 return probs def move_to_device( obj: Any, device: Optional[Union[int, str, torch.device]] = -1 ) -> Any: """Move object to specified device. Given a structure (possibly) containing Tensors on the CPU, move all the Tensors to the specified GPU (or do nothing, if they should beon the CPU). device = -1 -> "cpu" device = 0 -> "cuda:0" Originally from: https://github.com/HazyResearch/metal/blob/mmtl_clean/metal/utils.py Args: obj: The object to convert. device: The device id, defaults to -1. Returns: The converted object. """ device = torch.device("cpu") if device == -1 else torch.device(device) if not torch.cuda.is_available(): device = torch.device("cpu") if isinstance(obj, torch.Tensor): return obj.to(device) elif isinstance(obj, dict): return {key: move_to_device(value, device) for key, value in obj.items()} elif isinstance(obj, list): return [move_to_device(item, device) for item in obj] elif isinstance(obj, tuple): return tuple([move_to_device(item, device) for item in obj]) else: return obj def array_to_numpy( array: Union[ndarray, List[Any], Tensor], flatten: bool = False ) -> ndarray: """Covert an array to a numpy array. Args: array: An array to convert. flatten: Whether to flatten or not. Returns: Converted array. """ if isinstance(array, np.ndarray): pass elif isinstance(array, list): array = np.array(array) elif isinstance(array, torch.Tensor): array = array.cpu().numpy() else: raise ValueError(f"Unrecognized type {type(array)} to convert to ndarray") if flatten: array = array.reshape(-1) # type: ignore return array # type: ignore def merge( x: Dict[str, Any], y: Dict[str, Any], specical_keys: Union[str, List[str]] = None ) -> Dict[str, Any]: """Merge two nested dictionaries. Overwrite values in x with values in y. Args: x: The original dict. y: The new dict. specical_keys: The specical keys to replace instead of merging, defaults to None. Returns: The updated dic. """ if x is None: return y if y is None: return x if isinstance(specical_keys, str): specical_keys = [specical_keys] merged = {**x, **y} xkeys = x.keys() for key in xkeys: if specical_keys is not None and key in specical_keys and key in y: merged[key] = y[key] elif isinstance(x[key], dict) and key in y: merged[key] = merge(x[key], y[key], specical_keys) return merged def str2bool(v: str) -> bool: """Parse str to bool. Args: v: The string to parse. Returns: The parsed value. """ if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ValueError("Boolean value expected.") def str2dict(v: str) -> Dict[str, str]: """Parse str to dict. Args: v: The string to parse. Returns: The parsed dict. """ dict = {} for token in v.split(","): key, value = token.split(":") dict[key] = value return dict def str2list(v: str, delim: str = ",") -> List[str]: """Parse str to list. Args: v: The string to parse. delim: The delimiter used to split string. Returns: The parsed list. """ return [t.strip() for t in v.split(delim)] def nullable_float(v: str) -> Optional[float]: """Parse string to nullable float. Args: v: The string to parse. Returns: The parsed value. """ if not v or v.lower() in ["none", "null"]: return None return float(v) def nullable_int(v: str) -> Optional[int]: """Parse string to nullable int. Args: v: The string to parse. Returns: The parsed value. """ if not v or v.lower() in ["none", "null"]: return None return int(v) def nullable_string(v: str) -> Optional[str]: """Parse string to nullable string. Args: v: The string to parse. Returns: The parsed value. """ if not v or v.lower() in ["none", "null"]: return None return v def construct_identifier( task_name: str, data_name: str, split_name: str, metric_name: Optional[str] = None ) -> str: """Construct identifier. Args: task_name: Task name. data_name: Data set name. split_name: Split name. metric_name: Metric name, defaults to None. Returns: The identifier. """ if metric_name: return f"{task_name}/{data_name}/{split_name}/{metric_name}" else: return f"{task_name}/{data_name}/{split_name}" def random_string(length: int = 5) -> str: """Generate a random string of fixed length. Args: length: The length of random string, defaults to 5. Returns: The random string. """ letters = string.ascii_lowercase return "".join(random.choice(letters) for i in range(length)) def convert_to_serializable_json(obj: Dict[str, Any]) -> Dict[str, Any]: """Covert a dict to a serializable json. Args: obj: A dict. Returns: Serializable json. """ try: json.dumps(obj) return obj except TypeError: # Convert function if hasattr(obj, "__name__"): return f"Function: {obj.__name__}" # type: ignore # Convert partial function if hasattr(obj, "func"): if hasattr(obj.func, "__name__"): # type: ignore return f"Function: {obj.func.__name__}" # type: ignore # Convert dict if isinstance(obj, dict): for key in obj.keys(): obj[key] = convert_to_serializable_json(obj[key]) return obj # Convert list if isinstance(obj, list): for i in range(len(obj)): obj[i] = convert_to_serializable_json(obj[i]) return obj # Convert tuple if isinstance(obj, tuple): return tuple([convert_to_serializable_json(item) for item in obj]) # Convert class if hasattr(type(obj), "__name__"): return f"Class: {type(obj).__name__}" # type: ignore return None
thanos-code-main
unagi/utils/misc.py
import numpy as np from PIL import Image def relu_model(X, E, W, classification=False, delta=0.1): """Relu model.""" Y = W.dot(np.maximum((E.T @ X.T), 0.0)).reshape(-1) if classification: idx = abs(Y) >= delta X = X[idx] Y = Y[idx] return X, ((Y < 0).astype(int)).reshape(-1) else: return X, Y def pil_loader(path): # open path as file to avoid ResourceWarning # (https://github.com/python-pillow/Pillow/issues/835) with open(path, "rb") as f: img = Image.open(f) return img.convert("RGB") def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): from torchvision import get_image_backend if get_image_backend() == "accimage": return accimage_loader(path) else: return pil_loader(path)
thanos-code-main
unagi/utils/image_utils.py
thanos-code-main
unagi/utils/__init__.py
import json import os import numpy as np import yaml def load_yaml(file_path): with open(file_path, "r") as f: return yaml.load(f) def write_to_file(file_path, value): """Write value to file.""" directory = os.path.dirname(file_path) os.makedirs(directory, exist_ok=True) if not isinstance(value, str): value = str(value) fout = open(file_path, "w") fout.write(value + "\n") fout.close() def write_to_json_file(file_path, dict): """Write dict to json file.""" directory = os.path.dirname(file_path) os.makedirs(directory, exist_ok=True) for k in dict.keys(): if isinstance(dict[k], (np.float32, np.float64)): dict[k] = dict[k].item() json_obj = json.dumps(dict) fout = open(file_path, "w") fout.write(json_obj) fout.close() def load_json(file_path): with open(file_path) as json_file: data = json.load(json_file) return data
thanos-code-main
unagi/utils/file_utils.py
import copy import importlib import logging from collections.abc import Mapping from transformers import AutoModel, AutoTokenizer # from unagi.configs import MODEL_DEFAULT_PATHS from unagi.datasets import DATASET_CONFIG_REGISTRY from unagi.models import AUGMENTATION_LAYERS, MODULE_DICTS from unagi.tasks import ( # LOSS_FN_REGISTRY, LOSS_MODULE_REGISTRY, TASK_FLOWS, TASK_PREPROCESSING_LAYER, ) # from unagi.utils.file_utils import load_yaml logger = logging.getLogger(__name__) def get_dataset_config(dataset_name): config = importlib.import_module(DATASET_CONFIG_REGISTRY[dataset_name]) return config def merge_dict(dct, merge_dct): """Recursive dict merge. Inspired by :meth:``dict.update()``, instead of updating only top-level keys, dict_merge recurses down into dicts nested to an arbitrary depth, updating keys. The ``merge_dct`` is merged into ``dct``. :param dct: dict onto which the merge is executed :param merge_dct: dct merged into dct :return: None """ dct = copy.deepcopy(dct) for k, v in merge_dct.items(): if k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], Mapping): dct[k] = merge_dict(dct[k], merge_dct[k]) else: dct[k] = merge_dct[k] return dct def get_module_dict_v2(model_config): module_dict = {} # root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) for module_layer in ["embeddings", "encoders", "decoders"]: if module_layer in model_config.keys(): for layer in model_config[module_layer]: name = layer["name"] type = layer["type"] """base_model = load_yaml( os.path.join(root_path, MODEL_DEFAULT_PATHS[model]) ) layer = merge_dict(base_model["model"], layer)""" # md = copy.deepcopy(MODULE_DICTS[model][module_layer]) md = copy.deepcopy(MODULE_DICTS[module_layer][type]) del layer["name"] del layer["type"] module = md(**layer) module_dict[name] = module return module_dict def collect_input_feature_views(task_flow): feat_to_view = {} for module in task_flow: for input in module["inputs"]: if isinstance(input[1], list): feat_to_view[input[1][0]] = input[1][0] return feat_to_view def get_model_params(model_config, dataset_desc): """ if args.use_cat: model_params.update({ 'cat': True, 'd_cat': 64, }) """ # TODO (ASN): Clean this up assert not ( model_config["use_cls_token"] and model_config["use_all_tokens"] ), "can't have both use_cls_token and use_all_tokens assigned to True" model_params = { # Set nClasses for LM model later "num_classes": dataset_desc["TASK_NUM_CLASS"], "num_features": dataset_desc["TASK_TOTAL_INPUT_FEATURES"], } model_params.update(model_config) if model_params["learn_pos"] and model_params["name"] in [ "mixer", "hippo", ]: raise ValueError( "learn_pos cannot be set to True when training with hippo or mixer." " Please update your config file." ) if model_params["use_cls_token"] and model_params["name"] in ["mixer"]: raise ValueError( "use_cls_token cannot be set to True when training with mixer." " Please update your config file." ) if model_params["use_all_tokens"] and model_params["name"] in ["hippo"]: raise ValueError( "use_all_tokens cannot be set to True when training with hippo." " Please update your config file." ) if model_config["use_cls_token"] and model_config["use_all_tokens"]: raise ValueError( "can't have both use_cls_token and use_all_tokens assigned to True." " Please update your config file." ) return model_params def get_mask_length(config, model_params=None): # TODO (ASN): fix to support new config model_config = config["model"] use_cls_token = ( True if model_config["name"] != "mixer" and not model_config["use_all_tokens"] else False ) use_mask = False if "masked" in config["tasks"].keys(): use_mask = True mask_length = 0 if use_mask: # TODO (ASN): check 1024 literal if model_config["patch_emb_type"] == "linear": mask_length = 1024 // model_config["patch_size"] if model_config["patch_emb_type"] == "square": mask_length = 1024 // model_config["patch_size"] ** 2 if use_cls_token: mask_length += 1 if model_params: model_params.update({"mask_length": mask_length}) config["tasks"]["masked"]["mask_length"] = mask_length return model_params def get_text_embed_layer(dataset_config, model_params): pretrained_lm_name = None contains_text_feature = False for input_feat in dataset_config["dataset"]["input_features"]: if input_feat["type"] == "text": default_text_transform = input_feat["default_transformation"] default_text_transforms = dataset_config["augmentations"]["raw"][ default_text_transform ] for augmentation in default_text_transforms: if augmentation["type"] == "PretrainedLMTokenize": pretrained_lm_name = augmentation["params"]["model"] if contains_text_feature and not pretrained_lm_name: return ValueError( "Dataset contains a text feature but no pretrained language model " "is specified in augmentations for tokenization. " "Please specifiy a PretrainedLMTokenize augmentation in your config." ) if not pretrained_lm_name: return model_params else: model_params["text_encoder"] = AutoModel.from_pretrained( pretrained_lm_name ).embeddings tokenizer = AutoTokenizer.from_pretrained(pretrained_lm_name) model_params["emb_mask_id"] = tokenizer.mask_token_id model_params["text_dim"] = 768 if "base" in pretrained_lm_name else 1024 return model_params """def get_loss_fns_v2( learning_task_config, label_smoothing=False, classification_type="multi_class", ): # loss_fns = {"masked_loss": None, "contrastive_loss": None, "ce_loss": None} loss_fns = {} for task in learning_task_config: task_name, type, loss_fn = task["name"], task["type"], task["loss_fn"] loss_fns[task_name] = LOSS_FN_REGISTRY[loss_fn]() if type == "supervised": if label_smoothing and loss_fn == "cross_entropy": loss_fns[task_name] = LOSS_FN_REGISTRY["label_smoothing"](0.1) if classification_type == "multi_label": loss_fns[task_name] = LOSS_FN_REGISTRY["binary_cross_entropy_loss"]() return loss_fns""" # def get_loss_fns(learning_task_config, label_smoothing=False, # task_type="multi_class"): # loss_fns = {"masked_loss": None, "contrastive_loss": None, "ce_loss": None} # if "masked" in learning_task_config: # loss_fns["masked_loss"] = LOSS_FN_REGISTRY[ # learning_task_config["masked"]["loss_fn"] # ]() # loss_module = LOSS_MODULE_REGISTRY["masked"] # if "contrastive" in learning_task_config: # params = learning_task_config["contrastive"]["loss_fn_params"] # params["type"] = learning_task_config["contrastive"]["loss_fn"] # loss_fns["contrastive_loss"] = LOSS_FN_REGISTRY[params["type"]]( # **params) # loss_module = LOSS_MODULE_REGISTRY["contrastive"] # if "clip" in learning_task_config: # loss_fns["contrastive_loss"] = LOSS_FN_REGISTRY[ # learning_task_config["clip"]["loss_fn"] # ]() # loss_module = LOSS_MODULE_REGISTRY["contrastive"] # if "supervised" in learning_task_config: # loss_fns["ce_loss"] = LOSS_FN_REGISTRY[ # learning_task_config["supervised"]["loss_fn"] # ]() # if loss_fns["ce_loss"] == "soft_cross_entropy": # loss_module = LOSS_MODULE_REGISTRY["soft_cross_entropy"] # else: # loss_module = LOSS_MODULE_REGISTRY["cross_entropy"] # if ( # label_smoothing # and learning_task_config["supervised"]["loss_fn"] == "cross_entropy" # ): # loss_fns["ce_loss"] = LOSS_FN_REGISTRY["label_smoothing"](0.1) # if task_type == "multi_label": # loss_fns["ce_loss"] = LOSS_FN_REGISTRY["binary_cross_entropy_loss"]() # return loss_fns, loss_module # def get_output_layer(dataset_desc, task_name): # # Only add an output layer if task is supervised task # if task_name == "supervised": # return OUTPUT_LAYER_REGISTRY[dataset_desc["TASK_TYPE"]] # else: # return None def get_module_dict(model_name, model_params): if model_name == "clip": md = copy.deepcopy(MODULE_DICTS[model_name]) for md_name, module in md.items(): enc_params = model_params[md_name] if "text_encoder" in model_params: enc_params["text_encoder"] = model_params["text_encoder"] enc_params["emb_mask_id"] = model_params["emb_mask_id"] enc_params["text_dim"] = model_params["text_dim"] md[md_name] = module(**enc_params) return md else: if model_name in MODULE_DICTS.keys(): md = copy.deepcopy(MODULE_DICTS[model_name]) # instantiate dict for md_name, module in md.items(): md[md_name] = module(**model_params) return md else: # TODO (ASN) : move all config sanity checks to a seperate Config # Preprocessing Step raise ValueError(f"No avalibale modules for this {model_name} model type") clip_taskflow_default = [ { "name": "clip_task_preprocessing", "module": "clip_task_preprocessing", "inputs": [("_input_", "inputs")], }, { "name": "pre_encoder_img", "module": "pre_encoder_img", "inputs": [("clip_task_preprocessing", "image")], }, { "name": "pre_encoder_text", "module": "pre_encoder_text", "inputs": [("clip_task_preprocessing", "text")], }, { "name": "text_encoder", "module": "encoder_text", "inputs": [("pre_encoder_text", 0)], }, { "name": "image_encoder", "module": "encoder_img", "inputs": [("pre_encoder_image", 0)], }, ] def get_task_flow(task_name, model_name, aug_type=None): if aug_type == "patch": task_flow = TASK_FLOWS[task_name]["patch_aug"] elif aug_type == "feature": task_flow = TASK_FLOWS[task_name]["feature_aug"] else: task_flow = TASK_FLOWS[task_name]["default"] # TODO (ASN): FIX UGLY LOGIC if task_name == "masked" and model_name in ["mixer", "hippo"]: modified_task_flow = [] for task_module in task_flow: if task_module["name"] == "encoder": modified_task_module = copy.deepcopy(task_module) modified_task_module["inputs"] = [ ("pre_encoder", 0), ("masked_task_preprocessing", 2), ] modified_task_flow.append(modified_task_module) elif task_module["name"] == "decoder": modified_task_module = copy.deepcopy(task_module) modified_task_module["inputs"] = [ ("encoder", 0), ("encoder", 1), ] modified_task_flow.append(modified_task_module) else: modified_task_flow.append(task_module) return modified_task_flow else: return task_flow def get_loss_module(task_name, loss_fn): if task_name == "masked": return LOSS_MODULE_REGISTRY["masked"] elif task_name == "contrastive": return LOSS_MODULE_REGISTRY["contrastive"] elif task_name == "clip": return LOSS_MODULE_REGISTRY["clip"] elif task_name == "supervised": if loss_fn == "soft_cross_entropy": return LOSS_MODULE_REGISTRY["soft_cross_entropy"] else: return LOSS_MODULE_REGISTRY["cross_entropy"] else: raise ValueError(f"{task_name} has no associated loss module") def get_input_transform_layers(): task_preprocessing_layers = {} for task_name, task_module in TASK_PREPROCESSING_LAYER.items(): task_preprocessing_layers[f"{task_name}_task_preprocessing"] = task_module() return task_preprocessing_layers def add_augmentation_modules(augmentation_config): # patch_augmentation, feature_augmentation keys = ["patch", "feature"] augmentation_modules = {} for layer_type in keys: aug_type = augmentation_config[layer_type]["type"] if aug_type is not None: params = augmentation_config[layer_type]["params"] layer_module = AUGMENTATION_LAYERS[layer_type][aug_type] module = layer_module(**params) module_name = ( "patch_augmentation" if layer_type == "patch" else "feature_augmentation" ) augmentation_modules[module_name] = module return augmentation_modules
thanos-code-main
unagi/utils/task_utils.py
import copy import os from collections.abc import Mapping from unagi.configs import ( BASE_CONFIG_PATH, BASE_DATASET_PATH, BASE_INPUT_FEATURE_PATH, BASE_OUTPUT_FEATURE_PATH, DATASET_DEFAULT_PATHS, ) from unagi.utils.file_utils import load_yaml def get_feature_to_type(config): dataset_config = config["dataset"] input_features = dataset_config["input_features"] mapping = {} for feat in input_features: mapping[feat["name"]] = feat["type"] return mapping def merge_dict(dct, merge_dct): """Recursive dict merge. Inspired by :meth:``dict.update()``, instead of updating only top-level keys, dict_merge recurses down into dicts nested to an arbitrary depth, updating keys. The ``merge_dct`` is merged into ``dct``. :param dct: dict onto which the merge is executed :param merge_dct: dct merged into dct :return: None """ dct = copy.deepcopy(dct) for k, v in merge_dct.items(): if k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], Mapping): dct[k] = merge_dict(dct[k], merge_dct[k]) else: dct[k] = merge_dct[k] return dct # TODO (ASN): modularize to have functions for each def config_preprocessing(config: dict): # model_section = config["model"] # tasks_section = config["tasks"] return def build_config(user_config: dict) -> dict: """ Merges user specified config file with default config file and performs section pre-processing # Inputs :param root_path: (str) filepath to unagi directory :param user_config (dict) dictionary representationn of use config # Returns :return: prepcessed config """ root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) base_cf = load_yaml(os.path.join(root_path, BASE_CONFIG_PATH)) base_cf = merge_dict(base_cf, user_config) # load the dataset defaults default_dataset = load_yaml(os.path.join(root_path, BASE_DATASET_PATH)) base_input_feature = load_yaml(os.path.join(root_path, BASE_INPUT_FEATURE_PATH)) base_output_feature = load_yaml(os.path.join(root_path, BASE_OUTPUT_FEATURE_PATH)) # merge model config # TODO (ASN): replace w/generic modules """ base_model = load_yaml( os.path.join(root_path, MODEL_DEFAULT_PATHS[user_config["model"]["name"]]) ) base_cf["model"] = merge_dict(base_model["model"], base_cf["model"]) """ # merge dataset config base_dataset = load_yaml( os.path.join(root_path, DATASET_DEFAULT_PATHS[user_config["dataset"]["name"]]) ) base_dataset = merge_dict(default_dataset["dataset"], base_dataset["dataset"]) base_cf["dataset"] = merge_dict(base_dataset, base_cf["dataset"]) for key, input_feature in base_cf["dataset"]["input_features"].items(): base_cf["dataset"]["input_features"][key] = merge_dict( base_input_feature, input_feature ) for key, output_feature in base_cf["dataset"]["output_features"].items(): base_cf["dataset"]["output_features"][key] = merge_dict( base_output_feature, output_feature ) # pre_processed_config = config_preprocessing(base_cf) # TODO (ASN): ADD SECTION PRE-PROCESSING # MODEL : --> correct for all conflicting params (use_all_toksn vs use_cls_token) # TASKS : # check that all tasks that are specified are valid # check that all loss functions are valid # compute any task specific computations (mask length) # return base_cf
thanos-code-main
unagi/utils/config_utils.py
from unagi.models.decoders.classifier import ClassificationDecoder from unagi.models.decoders.image.resnet import ResnetDecoder from unagi.models.decoders.image.resnet_autoencoder import ( Resnet18Decoder, Resnet50Decoder, ) from unagi.models.decoders.sequence.mixer import MixerDecoder from unagi.models.decoders.sequence.transformer import TransformerDecoder from unagi.models.embeddings.embeddings import ( CategoricalEmbed, Conv2DEmbed, ConvEmbed, IdentityEmbed, LinearPatchEmbed, PretrainedLMEmbed, SquarePatchEmbed, ) from unagi.models.encoders.image.resnet.resnet import ResnetEncoder from unagi.models.encoders.sequence.bert.bert import BertEncoder from unagi.models.encoders.sequence.mixer.mixer import MixerEncoder from unagi.models.encoders.sequence.transformer.transformer import TransformerEncoder from unagi.models.layers.patch_augmentations import ( BrightnessLayer, CutoutLayer, InvertLayer, MixUpLayer, RotateLayer, SolarizeLayer, ) from unagi.models.ops.grayscale import Grayscale from unagi.models.ops.image_reshape import ImageReshape from unagi.models.ops.linear_proj import LinearProj from unagi.models.ops.pool import PoolDecoder from unagi.models.ops.sequence_concat import SequenceConcat from unagi.models.ops.view_concat import ViewConcat from unagi.models.ops.view_select import ViewSelect MODULE_DICTS = { "embeddings": { "square_patch": SquarePatchEmbed, "linear_patch": LinearPatchEmbed, "categorical": CategoricalEmbed, "conv2d": Conv2DEmbed, "conv1d": ConvEmbed, "pretrained_lm": PretrainedLMEmbed, "identity": IdentityEmbed, "sequence_concat": SequenceConcat, }, "encoders": { "mixer": MixerEncoder, "transformer": TransformerEncoder, "resnet": ResnetEncoder, "bert": BertEncoder, }, "decoders": { "classifier": ClassificationDecoder, "pool": PoolDecoder, "view_select": ViewSelect, "view_concat": ViewConcat, "transformer": TransformerDecoder, "mixer": MixerDecoder, "resnet": ResnetDecoder, "resnet18decoder": Resnet18Decoder, "resnet50decoder": Resnet50Decoder, "image_reshape": ImageReshape, "sequence_concat": SequenceConcat, "linear_proj": LinearProj, "grayscale": Grayscale, }, } AUGMENTATION_LAYERS = { "patch": { "mixup": MixUpLayer, "invert": InvertLayer, "cutout": CutoutLayer, "solarize": SolarizeLayer, "brightness": BrightnessLayer, "rotate": RotateLayer, }, "feature": { "mixup": MixUpLayer, "invert": InvertLayer, "cutout": CutoutLayer, "solarize": SolarizeLayer, "brightness": BrightnessLayer, "rotate": RotateLayer, }, }
thanos-code-main
unagi/models/__init__.py
from math import sqrt import torch import torch.nn.functional as F from einops import rearrange from torch import nn from transformers import AutoModel from unagi.models.embeddings.base_embedding import EmbeddingModule from unagi.models.layers.blocks import Transpose class SquarePatchEmbed(EmbeddingModule): def __init__( self, d_input: int, d_model: int, patch_size: int, dropout=0.1, layernorm=True, ): super().__init__(d_input=d_input, d_model=d_model) self.patch_side = patch_size self.patch_size = patch_size ** 2 * d_input layers = [nn.Linear(self.patch_size, d_model)] if layernorm: layers.append(nn.LayerNorm(d_model)) if dropout > 1e-3: layers.append(nn.Dropout(dropout)) self.emb = nn.Sequential(*layers) def forward(self, x): """ input: (B, C, S) output: (B, S // patch_size, d_model) """ b, c, s = x.size() h_dim = int(sqrt(s)) assert h_dim ** 2 == s, f"SquareEmb Only works on square images ({s} v {h_dim})" x = rearrange(x, "b c (h w) -> b c h w", b=b, c=c, h=h_dim, w=h_dim) # assert c == self.d_input, f"Patchsize expected {self.d_input} channels # got {c} channels" patches = rearrange( x, "b c (h p) (w q) -> b (h w) (p q c)", p=self.patch_side, q=self.patch_side, ) return self.emb(patches) @staticmethod def init_weight(m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) class LinearPatchEmbed(EmbeddingModule): def __init__( self, d_input, d_model, patch_size, dropout=0.1, layernorm=True, ): super().__init__() self.d_input = d_input self.patch_size = patch_size * d_input layers = [nn.Linear(self.patch_size, d_model)] if layernorm: layers.append(nn.LayerNorm(d_model)) if dropout > 1e-3: layers.append(nn.Dropout(dropout)) self.emb = nn.Sequential(*layers) def forward(self, x): """ input: (B, C, S) output: (B, S // patch_size, d_model) """ b, c, s = x.size() # assert c == self.d_input, f"Patchsize expected {self.d_input} # channels got {c} channels" x = x.view(b, c * s // self.patch_size, self.patch_size) return self.emb(x) class ConvEmbed(EmbeddingModule): def __init__(self, d_input, d_model, patch_size, n_layers=1, dropout=0.1): """ input: (B, C, S) output: (B, (S - patch_size ) // (patch_size)^(n_layers+1), d_model) """ super().__init__() layers = [ nn.Conv1d(d_input, d_model, kernel_size=patch_size, stride=2), nn.Dropout(dropout), ] + [ nn.Conv1d(d_model, d_model, kernel_size=patch_size, stride=2) for k in range(n_layers) ] self.emb = nn.Sequential(*layers) def forward(self, x): return rearrange(self.emb(x), "b c s -> b s c") class Conv2DEmbed(EmbeddingModule): def __init__( self, d_input, d_model, patch_size, n_layers=1, ): """ input: (B, C, S) output: (B, (((sqrt(S) - patch_size ) // (patch_size))+ 1)^2, d_model) """ super().__init__() layers = [ nn.Conv2d( d_input, d_model, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), padding=0, bias=False, ), nn.Flatten(2, 3), Transpose(-2, -1), ] self.emb = nn.Sequential(*layers) def forward(self, x): b, c, s = x.size() h_dim = int(sqrt(s)) assert h_dim ** 2 == s, f"Only works on square images ({s} v {h_dim})" x = rearrange(x, "b c (h w) -> b c h w", b=b, c=c, h=h_dim, w=h_dim) return self.emb(x) # https://github.com/SHI-Labs/Compact-Transformers/blob/main/src/cct.py @staticmethod def init_weight(m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) class CategoricalEmbed(EmbeddingModule): def __init__( self, d_input, d_model, embed_size, patch_size=1, n_layers=1, dropout=0.1, layernorm=False, ): """ input: (B, 1) output: (B, 1, d_model) """ super().__init__() self.embed_size = embed_size self.emb = nn.Linear(embed_size, d_model) def forward(self, x): # convert to one-hot input_one_hot = F.one_hot(x.to(torch.int64), num_classes=self.embed_size) return self.emb(input_one_hot.type(torch.FloatTensor)) class NumericalEmbed(EmbeddingModule): def __init__( self, d_input, d_model, patch_size, n_layers=1, dropout=0.1, layernorm=False, ): """ input: (B, 1) output: (B, 1, d_model) """ super().__init__() self.emb = nn.Linear(1, d_model) def forward(self, x): x = self.emb(x) x = x.unsqueeze(-2) return x class IdentityEmbed(EmbeddingModule): def __init__( self, d_input, d_model, patch_size, n_layers=1, dropout=0.1, layernorm=False, ): super().__init__(d_input=d_input, d_model=d_model) def forward(self, x): return x class PretrainedLMEmbed(EmbeddingModule): def __init__( self, d_input, d_model, patch_size, pretrained_lm_name: str = "bert-base-uncased", ): """ " input: (B, C, S) where C=1 output: (B, S, d_model) """ super().__init__(d_input=d_input, d_model=d_model) self.d_input = d_input self.patch_size = patch_size self.text_encoder = AutoModel.from_pretrained(pretrained_lm_name).embeddings self.embedding_dim = self.text_encoder.word_embeddings.embedding_dim self.projection_layer = nn.Linear(self.embedding_dim, d_model) self.emb = nn.Sequential(self.text_encoder, self.projection_layer) def forward(self, x): # TODO (ASN): add patching logic # b, c, s = x.size() # x = rearrange(x, "b c s -> (b c) s") # get rid of single channel dim return self.emb(x) # TODO: mean, sum, concat embeddings
thanos-code-main
unagi/models/embeddings/embeddings.py
from torch import nn class EmbeddingModule(nn.Module): def __init__( self, d_input: int, d_model: int, ): super().__init__() self.d_input = d_input self.d_model = d_model
thanos-code-main
unagi/models/embeddings/base_embedding.py
from math import sqrt from einops import rearrange from torch import nn class Transpose(nn.Module): def __init__(self, i, j): super().__init__() self.i = i self.j = j def forward(self, x): return x.transpose(self.i, self.j) class SquareEmb(nn.Module): def __init__(self, in_d, d, _patch_size, dropout=0.1, layernorm=True): super(SquareEmb, self).__init__() self.in_d = in_d self.patch_side = _patch_size self.patch_size = _patch_size ** 2 * in_d layers = [] layers.append(nn.Linear(self.patch_size, d)) if layernorm: layers.append(nn.LayerNorm(d)) if dropout > 1e-3: layers.append(nn.Dropout(dropout)) self.emb = nn.Sequential(*layers) def forward(self, x): b, c, n = x.size() rt_n = int(sqrt(n)) # assert rt_n**2 == n, f"Only works on square images ({n} v {rt_n})" x = rearrange(x, "b c (h w) -> b c h w", b=b, c=c, h=rt_n, w=rt_n) # assert c == self.in_d, f"Patchsize expected {self.in_d} channels # got {c} channels" patches = rearrange( x, "b c (h p) (w q) -> b (h w) (p q c)", p=self.patch_side, q=self.patch_side, ) return self.emb(patches) @staticmethod def init_weight(m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) class LinearEmb(nn.Module): def __init__(self, in_d, d, _patch_size, dropout=0.1): super().__init__() self.in_d = in_d self.patch_size = _patch_size * in_d self.emb = nn.Sequential(nn.Linear(self.patch_size, d), nn.LayerNorm(d)) def forward(self, x): b, c, n = x.size() # assert c == self.in_d, f"Patchsize expected {self.in_d} # channels got {c} channels" xx = x.view(b, c * n // self.patch_size, self.patch_size) return self.emb(xx) class ConvEmb(nn.Module): def __init__(self, in_d, d, patch_size, nLayers=1, dropout=0.1): super(ConvEmb, self).__init__() _f = [ nn.Conv1d(in_d, d, kernel_size=patch_size, stride=patch_size), nn.Dropout(dropout), ] + [ nn.Conv1d(d, d, kernel_size=patch_size, stride=patch_size) for k in range(nLayers) ] self.f = nn.Sequential(*_f) def forward(self, x): return rearrange(self.f(x), "b c s -> b s c") class Conv2DEmb(nn.Module): def __init__(self, in_d, d, patch_size): super().__init__() emb = nn.Conv2d( in_d, d, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), padding=0, bias=False, ) # Add batch batch or layernorm? self.f = nn.Sequential(emb, nn.Flatten(2, 3), Transpose(-2, -1)) def forward(self, x): b, c, n = x.size() rt_n = int(sqrt(n)) assert rt_n ** 2 == n, f"Only works on square images ({n} v {rt_n})" x = rearrange(x, "b c (h w) -> b c h w", b=b, c=c, h=rt_n, w=rt_n) return self.f(x) # https://github.com/SHI-Labs/Compact-Transformers/blob/main/src/cct.py @staticmethod def init_weight(m): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) emb_type = { "square": SquareEmb, "linear": LinearEmb, "conv": ConvEmb, "conv2d": Conv2DEmb, }
thanos-code-main
unagi/models/layers/embeds.py
import torch import torch.nn.functional as F from torch import nn class Transpose(nn.Module): def __init__(self, i, j): super().__init__() self.i = i self.j = j def forward(self, x): return x.transpose(self.i, self.j) class Truncate(nn.Module): def __init__(self, max_sequence_length): super().__init__() self.max_sequence_length = max_sequence_length def forward(self, input): if self.max_sequence_length is not None: # NOTE: assumes input is of form (batch, seq_length, hidden_dim) # or (batch, seq_length) if input.size(1) > self.max_sequence_length: input = input[:, 0 : self.max_sequence_length, :] elif input.size(1) < self.max_sequence_length: if len(input.size()) == 2: pad = (0, self.max_sequence_length - input.size(1)) elif len(input.size()) == 3: pad = (0, 0, self.max_sequence_length - input.size(1), 0) input = F.pad(input, pad, mode="constant", value=0) return input class PreNorm(nn.Module): def __init__(self, d, f): super().__init__() self.f = f self.norm = nn.LayerNorm(d) def forward(self, x, **kwargs): return self.f(self.norm(x), **kwargs) class FFN(nn.Module): def __init__(self, d, mlp_dim, out_dim=None, dropout=0.1): super().__init__() out_dim = d if out_dim is None else out_dim self.f = nn.Sequential( nn.Linear(d, mlp_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(mlp_dim, out_dim), nn.Dropout(dropout), ) def forward(self, x, **kwargs): return self.f(x, **kwargs) # https://github.com/SHI-Labs/Compact-Transformers/blob/f6d43e50ece006b933eeb27b087a0c3cad3bc635/src/transformers.py#L90 class DropPath(nn.Module): def __init__(self, drop_prob): super().__init__() self.keep_prob = 1 - drop_prob def forward(self, x): if self.keep_prob >= 1.0 or not self.training: return x # work with diff dim tensors, not just 2D ConvNets shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = self.keep_prob + torch.rand( shape, dtype=x.dtype, device=x.device ) random_tensor.floor_() # binarize return x.div(self.keep_prob) * random_tensor class Residual(nn.Module): def __init__(self, d, f, trainable=False, per_channel=False, drop_path=0.0): super().__init__() _init = [1.0] * d if per_channel else [1.0] self.scalar = nn.Parameter(torch.tensor(_init)) if trainable else 1.0 self.f = f self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x, **kwargs): return self.drop_path(self.f(x, **kwargs)) + x * self.scalar class Cat(nn.Module): def __init__(self, f, drop_path=0.0): super().__init__() self.f = f self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x, **kwargs): y = self.drop_path(self.f(x, **kwargs)) return torch.cat([x, y], dim=-1) class Classifier(nn.Module): def __init__(self, input_dim, target_dim): super().__init__() self.classification_layer = nn.Linear(input_dim, target_dim) def forward(self, x, **kwargs): return self.classification_layer(x)
thanos-code-main
unagi/models/layers/blocks.py
import random from typing import Dict import numpy as np import torch import torchvision.transforms.functional as TF from torch import nn from torch.functional import Tensor class MixUpAugmentation(nn.Module): """ Inter-image augmentation: Computes augmentations on an individual sample """ def __init__(self, p=0.3, prob_label=False, alpha=1): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.alpha = alpha self.prob_label = prob_label def forward(self, x, y): if self.alpha > 0.0: mix_ratio = np.random.beta(self.alpha, self.alpha) else: mix_ratio = 1.0 x_aug, y_aug = x, y if random.random() <= self.prob: perm_idxs = torch.randperm(x.shape[0]) x_perm, y_perm = x[perm_idxs], y[perm_idxs] # input augmentation x_aug = mix_ratio * x + (1 - mix_ratio) * x_perm # label augmentation if self.prob_label: y_aug = mix_ratio * y + (1 - mix_ratio) * y_perm else: y_aug = torch.tensor( [ y[idx] if np.random.random() < mix_ratio else y_perm[idx] for idx in range(int(y.size(0))) ] ).to(self.device) return x_aug, y_aug class CutoutAugmentation(nn.Module): """ Intra-image augmentation: masks out a random patch from image """ def __init__(self, p=0.3, prob_label=False): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.prob_label = prob_label def forward(self, x, y): x_aug, y_aug = x, y if random.random() <= self.prob: seq_dim = x.size(1) # randomly select patch to mask out. chooses a random patch for # each sample in batch for batch_idx in range(x.size(0)): patch_idx = random.sample(range(seq_dim), 1)[0] x_aug[batch_idx][patch_idx] = 0 return x_aug, y_aug class SolarizeAugmentation(nn.Module): """ Pixel Level Augmentation: Inverts all tensor values above a threshold. Assumes input is normalized. """ def __init__(self, p=0.3, threshold=0.5, prob_label=False): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.prob_label = prob_label self.threshold = threshold def forward(self, x, y): x_aug, y_aug = x, y if random.random() <= self.prob: x_aug = torch.where(abs(x_aug) > self.threshold, 1 - x_aug, x_aug) return x_aug, y_aug class BrightnessAugmentation(nn.Module): """ Pixel Level Augmentation: Modifies brightness by increasing (or decreasing) the tensor value evenly across all pixels. Values are modified using the factor value """ def __init__(self, p=0.3, factor=1.0, prob_label=False): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.prob_label = prob_label self.factor = factor def forward(self, x, y): x_aug, y_aug = x, y if random.random() <= self.prob: x_aug = x_aug * self.factor return x_aug, y_aug class InvertAugmentation(nn.Module): """ Pixel Level Augmentation: Inverts tensor values -- assumes that input is normalized """ def __init__(self, p=0.3, prob_label=False): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.prob_label = prob_label def forward(self, x, y): x_aug, y_aug = x, y if random.random() <= self.prob: x_aug = 1 - x_aug return x_aug, y_aug class RotateAugmentation(nn.Module): """ Pixel Level Augmentation: Inverts tensor values -- assumes that input is normalized """ def __init__(self, p=0.3, degree=90, prob_label=False): # is label a float? super().__init__() self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") self.prob = p self.prob_label = prob_label self.degree = degree def forward(self, x, y): x_aug, y_aug = x, y if random.random() <= self.prob: bs = x.size(0) seq_len = x_aug.size(1) h_dim = x_aug.size(2) rot_samples = [] for sample_idx in range(bs): batch_mat = x_aug[sample_idx] batch_mat = batch_mat.reshape(1, seq_len * h_dim) rot_mat = TF.rotate(batch_mat.unsqueeze(1), self.degree) rot_samples.append(rot_mat.reshape(1, seq_len, h_dim)) x_aug = torch.stack(rot_samples) return x_aug, y_aug class MixUpLayer(nn.Module): def __init__(self, prob=0.3, prob_label=False, alpha=1): # is label a float? super().__init__() self.patch_aug = MixUpAugmentation(p=prob, prob_label=prob_label, alpha=alpha) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y class InvertLayer(nn.Module): def __init__(self, prob=0.3, prob_label=False): # is label a float? super().__init__() self.patch_aug = InvertAugmentation(p=prob, prob_label=prob_label) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y class CutoutLayer(nn.Module): def __init__(self, prob=0.3, prob_label=False): # is label a float? super().__init__() self.patch_aug = CutoutAugmentation(p=prob, prob_label=prob_label) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y class BrightnessLayer(nn.Module): def __init__(self, prob=0.3, factor=1.0, prob_label=False): # is label a float? super().__init__() self.patch_aug = BrightnessAugmentation(prob, factor, prob_label) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y class SolarizeLayer(nn.Module): def __init__(self, prob=0.3, threshold=1.0, prob_label=False): # is label a float? super().__init__() self.patch_aug = SolarizeAugmentation(prob, threshold, prob_label) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y class RotateLayer(nn.Module): def __init__(self, prob=0.3, degree=90, prob_label=False): # is label a float? super().__init__() self.patch_aug = RotateAugmentation(prob, degree=degree, prob_label=prob_label) def forward(self, patch_feature_dict: Dict[str, Tensor], Y: Tensor, is_train=False): """ patch_aug (Dict[str, Tensor]): mapping between input feature name, and corresponding augmentated patch representation Y (Tensor): augmentated label """ if is_train: aug_patches = {} for feat_name, feat_value in patch_feature_dict.items(): feat_aug, Y_aug = self.patch_aug(feat_value, Y) aug_patches[feat_name] = feat_aug return aug_patches, Y_aug else: return patch_feature_dict, Y
thanos-code-main
unagi/models/layers/patch_augmentations.py
from torch import nn class SequenceModule(nn.Module): """Abstract sequence model class. All layers that the backbones use must adhere to this A sequence model is a layer that transforms an input of shape (n_batch, l_sequence, d_input) to (n_batch, l_sequence, d_output) Additionally, it returns a "state" which can be any additional information For example, RNN and SSM layers may return their hidden state, while some types of transformer layers (e.g. Transformer-XL) may want to pass through state as well - default_state receives a batch_shape with device and returns an initial state - step simulates a single step of the sequence (e.g. one unroll for an RNN). It receives a state and single input (n_batch, d_input) and returns a state and output (n_batch, d_output) - forward is a sequence-to-sequence transformation that receives an optional state """ # def __init__(self, transposed=False, *args, **kwargs): # """ model should support regular (B, L, H) and transposed (B, H, L) # axes ordering """ # self.transposed = transposed @property def d_output(self): return self._d_output @d_output.setter def d_output(self, d): self._d_output = d @property def state_to_tensor(self): """Returns a function mapping a state to a single tensor, in case one wants to use the hidden state instead of the output for final prediction""" return lambda _: None @property def d_state(self): """Returns dimension of output of self.state_to_tensor""" return None @property def transposed(self): return self._transposed @transposed.setter def transposed(self, x): self._transposed = x def default_state(self, *batch_shape, device=None): # TODO device shouldn't be needed; models should store their own # initial state at initialization return None def step(self, x, state=None, *args, **kwargs): return x, state def forward(self, x, state=None, *args, **kwargs): return x, state
thanos-code-main
unagi/models/encoders/base_sequence.py
import torch import torch.nn as nn from torchvision.models import resnet18, resnet34, resnet50 # noqa: F401 class ResnetEncoder(nn.Module): def __init__( self, model="resnet18", use_pretrained=True, **kwargs, ): super().__init__() encoder = eval(model)(pretrained=use_pretrained) self.f = [] """for name, module in encoder.named_children(): if name == "conv1": module = nn.Conv2d( 3, 64, kernel_size=3, stride=1, padding=1, bias=False ) if not isinstance(module, nn.Linear) and not isinstance( module, nn.MaxPool2d ): self.f.append(module)""" for name, module in encoder.named_children(): if not isinstance(module, nn.Linear): self.f.append(module) self.f = nn.Sequential(*self.f) self.feature_size = encoder.fc.in_features self.d_model = encoder.fc.in_features def forward(self, x): x = self.f(x) x = torch.flatten(x, start_dim=1) return x
thanos-code-main
unagi/models/encoders/image/resnet/resnet.py
import torch from torch import nn from unagi.models.encoders.base_sequence import SequenceModule from unagi.models.encoders.sequence.transformer.transformer_modules import ( MHA_Encoder, MHA_Encoder_Cat, ) class TransformerEncoder(SequenceModule): def __init__( self, d_model, n_heads, l_max=512, n_layers=4, dropout=0.1, head_dropout=0.1, mlp_dim=None, tie_them_all=False, cat=False, d_cat=None, att_dim=None, learn_pos=True, use_cls_token=True, use_all_tokens=False, ret_cls_token=True, **kwargs ): super().__init__() if cat: assert d_cat is not None _f = [] dim = d_model for _ in range(n_layers): layer = MHA_Encoder_Cat( dim, n_heads, mlp_dim=mlp_dim, att_dim=att_dim, d_out=d_cat, head_dropout=head_dropout, drop_path=dropout, dropout=dropout, ) _f += [layer] dim += 2 * d_cat _f += [nn.LayerNorm(dim)] _f += [nn.Linear(dim, d_model)] else: def _block(drop_path=0.0): return MHA_Encoder( d_model, n_heads, mlp_dim=mlp_dim, head_dropout=head_dropout, drop_path=drop_path, dropout=dropout, ) if tie_them_all: _f = [_block()] * n_layers else: _f = [ _block( drop_path=k * dropout / (n_layers - 1) if n_layers > 1 else 0 ) for k in range(n_layers) ] _f += [nn.LayerNorm(d_model)] self.f = nn.Sequential(*_f) self.use_cls_token = use_cls_token self.use_all_tokens = use_all_tokens self.ret_cls_token = ret_cls_token self.learn_pos = learn_pos self.pe = nn.Parameter(1e-1 * torch.randn(l_max + 2, d_model).clamp(-1, 1)) self.cls_token = ( nn.Parameter(1e-1 * torch.randn(1, 1, d_model).clamp(-1, 1)) if self.use_cls_token else None ) def add_tokens(self, x): b, _, d = x.size() if self.use_cls_token: x = torch.cat( [self.cls_token.expand(b, self.cls_token.size(1), d), x], dim=1, ) if self.learn_pos: x += self.pe[0 : x.size(1)] return x def forward(self, x, state=None, *args, **kwargs): x = self.add_tokens(x) x = self.f(x) if self.ret_cls_token: x = x[:, 0] return x
thanos-code-main
unagi/models/encoders/sequence/transformer/transformer.py
import torch from einops import rearrange from torch import nn from unagi.models.layers.blocks import FFN, Cat, PreNorm, Residual class MHA(nn.Module): def __init__(self, d_model, n_heads, dropout=0.1, head_dropout=None): super().__init__() self.n_heads = n_heads self.head_dim = d_model // n_heads self.scale = self.head_dim ** (-0.5) # All the dropouts self.out_dropout = nn.Dropout(dropout) self.attn_dropout = nn.Dropout(dropout) self.head_dropout = ( nn.Dropout2d(head_dropout) if head_dropout is not None else None ) def forward(self, q, k, v, mask=None): attn = torch.einsum("b s h d, b t h d -> b s h t", q, k).mul(self.scale) if self.head_dropout is not None: attn = self.head_dropout(attn) if mask is not None: attn[~mask] = -1e9 attn = attn.softmax(dim=-1) # attn is batch x sentence x head x sentence # v is batch x sentence x head x dim ret = torch.einsum("b s h d, b t h s -> b t h d", v, self.attn_dropout(attn)) return self.out_dropout(rearrange(ret, "b t h d -> b t (h d)")) # Initialization from # https://github.com/SHI-Labs/Compact-Transformers/blob/main/src/cct.py @staticmethod def init_weight(m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) # An optimization to fuse keys-and-values class MHA_fused(nn.Module): def __init__( self, d_model, n_heads, dropout=0.1, head_dropout=None, d_att=None, d_out=None ): """d_att: dimension of Q, K, V matrices (must be multiple of n_heads) d_out: output dimension of module""" super().__init__() if d_att is None: d_att = d_model if d_out is not None: self.proj = nn.Linear(d_att, d_out) else: self.proj = nn.Identity() self.qkv = nn.Linear(d_model, 3 * d_att, bias=False) self.f = MHA(d_att, n_heads, dropout=dropout, head_dropout=head_dropout) self.n_heads = n_heads def forward(self, x, mask=None): # Now batch x sentence x 3*dim qkv = rearrange(self.qkv(x), "b s (k h d) -> b s k h d", k=3, h=self.n_heads) return self.proj(self.f(*torch.unbind(qkv, dim=2), mask=mask)) class MHA_split(nn.Module): def __init__(self, d_model, n_heads, out_d=None, dropout=0.1, head_dropout=None): super().__init__() out_d = d_model if out_d is None else out_d assert (d_model % n_heads == 0) and (out_d % n_heads == 0), ( f"The input {d_model} and output {out_d} dimensions must be multiplies of" f" {n_heads}" ) self.q = nn.Linear(d_model, d_model, bias=False) self.k = nn.Linear(d_model, d_model, bias=False) self.v = nn.Linear(d_model, out_d, bias=False) self.f = MHA(d_model, n_heads, dropout=dropout, head_dropout=head_dropout) self.n_heads = n_heads def forward(self, q, k, v, mask=None): def _r(f, x): return rearrange(f(x), "b s (h d) -> b s h d", h=self.n_heads) return self.f(_r(self.q, q), _r(self.k, k), _r(self.v, v), mask=mask) # # Encoder and decoder blocks # def _prenorm(d_model, x, drop_path=0.0): return Residual(d_model, PreNorm(d_model, x), drop_path=drop_path) class MHA_Encoder(nn.Module): def __init__( self, d_model, n_heads, mlp_dim=None, dropout=0.1, drop_path=0.0, head_dropout=None, ): super().__init__() def _pre(x): return _prenorm(d_model, x, drop_path=drop_path) # out_dim = d_model if out_dim is None else out_dim self.mha = _pre( MHA_fused(d_model, n_heads, dropout=dropout, head_dropout=head_dropout) ) mlp_dim = d_model << 1 if mlp_dim is None else mlp_dim self.ffn = _pre(FFN(d_model, mlp_dim, dropout=dropout)) def forward(self, x, mask=None): x = self.mha(x, mask=mask) return self.ffn(x) def _cat(d_model, x, drop_path=0.0): return Cat(PreNorm(d_model, x), drop_path=drop_path) class MHA_Encoder_Cat(nn.Module): def __init__( self, d_model, n_heads, mlp_dim=None, dropout=0.1, drop_path=0.0, head_dropout=None, d_out=None, att_dim=None, ): super().__init__() def _pre(x): return _cat(d_model, x, drop_path=drop_path) d_out = d_model if d_out is None else d_out d_att = 4 * d_out if att_dim is None else att_dim mha = MHA_fused( d_model, n_heads, dropout=dropout, head_dropout=head_dropout, d_att=d_att, d_out=d_out, ) self.mha = _cat(d_model, mha, drop_path) # self.mha = _pre( # MHA_fused(d_model, n_heads, dropout=dropout, # head_dropout=head_dropout, d_att=4*d_out, d_out=d_out)) # # self.mha = Cat( # PreNorm(d_model, MHA_fused( # d_model, n_heads, dropout=dropout, head_dropout=head_dropout, # d_att=4*d_out, d_out=d_out)), drop_path=drop_path) mlp_dim = 2 * d_out if mlp_dim is None else mlp_dim mlp = FFN(d_model + d_out, mlp_dim, out_dim=d_out, dropout=dropout) self.ffn = _cat(d_model + d_out, mlp, drop_path) def forward(self, x, mask=None): x = self.mha(x, mask=mask) return self.ffn(x) class MHA_Decoder(nn.Module): def __init__( self, d_model, n_heads, mlp_dim=None, dropout=0.1, drop_path=0.0, head_dropout=None, ): super().__init__() def _pre(x): return _prenorm(d_model, x, drop_path=drop_path) self._mha1 = _pre( MHA_fused(d_model, n_heads, dropout=dropout, head_dropout=head_dropout) ) self._mha2 = _pre( MHA_split(d_model, n_heads, dropout=dropout, head_dropout=head_dropout) ) mlp_dim = d_model << 1 if mlp_dim is None else mlp_dim self.ffn = _pre(FFN(d_model, mlp_dim, dropout=dropout)) def forward(self, x, e_outputs, src_mask=None, tgt_mask=None): x = self._mha1(x, mask=tgt_mask) x = self._mha2(x, k=e_outputs, v=e_outputs, mask=src_mask) return self.ffn(x)
thanos-code-main
unagi/models/encoders/sequence/transformer/transformer_modules.py
import torch from transformers import AutoTokenizer, BertModel from unagi.models.encoders.base_sequence import SequenceModule class BertEncoder(SequenceModule): def __init__( self, freeze_layers=True, pretrained_lm_name="bert-base-uncased", use_cls_token=True, use_all_tokens=False, pretrained_weights=None, **kwargs, ): super().__init__() self.f = BertModel.from_pretrained(pretrained_lm_name) self.tokenizer = AutoTokenizer.from_pretrained(pretrained_lm_name) self.f = self.f.train() self.use_cls_token = use_cls_token self.use_all_tokens = use_all_tokens """if freeze_layers: for param in self.f.parameters(): param.requires_grad = False""" self.d_model = self.f.encoder.layer[-1].output.dense.out_features self.padding = "max_length" self.truncation = True self.max_length = 128 def forward(self, x): # tok_out = self.tokenizer( # x, # padding=self.padding, # truncation=self.truncation, # max_length=self.max_length, # ) # input_ids = torch.LongTensor(tok_out["input_ids"]) # attention_mask = torch.LongTensor(tok_out["attention_mask"]) input_ids = x attention_mask = (x != 0).long() token_type_ids = torch.zeros_like(input_ids) # output = self.f(inputs_embeds=x, return_dict=True) output = self.f( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, return_dict=True, ) if self.use_cls_token: # return output["pooler_output"] return output["last_hidden_state"][:, 0, :].squeeze(dim=1) else: return output["last_hidden_state"]
thanos-code-main
unagi/models/encoders/sequence/bert/bert.py
from torch import nn from unagi.models.layers.blocks import FFN, PreNorm, Residual class mixer(nn.Module): def __init__(self, d, n=64, dropout=0.0): super().__init__() self.f = FFN(n, n << 1) def forward(self, x): # b x p x c return self.f(x.transpose(1, 2)).transpose(1, 2) # Encoder and decoder blocks def _prenorm(d, x, drop_path=0.0): return Residual(d, PreNorm(d, x), drop_path=drop_path) class mixer_encoder(nn.Module): def __init__( self, d, num_heads, l_max, # should be equal to the sequence length mlp_dim=None, dropout=0.1, drop_path=0.0, head_dropout=None, ): super().__init__() def _pre(x): return _prenorm(d, x, drop_path=drop_path) self.mlp = _pre(mixer(d, n=l_max, dropout=dropout)) mlp_dim = d << 1 if mlp_dim is None else mlp_dim self.ffn = _pre(FFN(d, mlp_dim, dropout=dropout)) def forward(self, x, mask=None): x = self.mlp(x) return self.ffn(x)
thanos-code-main
unagi/models/encoders/sequence/mixer/mixer_modules.py
from torch import nn from unagi.models.encoders.base_sequence import SequenceModule from unagi.models.encoders.sequence.mixer.mixer_modules import mixer_encoder class MixerEncoder(SequenceModule): def __init__( self, d_model, n_heads, l_max, # can be computed based on embedding n_layers=4, dropout=0.1, head_dropout=0.1, mlp_dim=None, tie_them_all=False, **kwargs, ): super().__init__() def _block(): return mixer_encoder( d_model, n_heads, l_max=l_max, mlp_dim=mlp_dim, head_dropout=head_dropout, dropout=dropout, ) _f = ( [_block()] * n_layers if tie_them_all else [_block() for k in range(n_layers)] ) _f += [nn.LayerNorm(d_model)] self.f = nn.Sequential(*_f) self.d_model = d_model self.n_heads = n_heads self.mlp_dim = mlp_dim self.head_dropout = head_dropout self.dropout = dropout self.n_layers = n_layers self.tie_them_all = tie_them_all def forward(self, x, state=None, mask=None, *args, **kwargs): # print(f"px={px.size()} mask={mask.size()}") if mask is not None: mask = self.truncate(mask) x = x.masked_fill(~mask.unsqueeze(-1), 0) if mask is not None else x x = self.f(x) return x, state
thanos-code-main
unagi/models/encoders/sequence/mixer/mixer.py
import torch from torch import nn class ClassificationDecoder(nn.Module): def __init__(self, d_input, d_output, **kwargs): super().__init__() # NOTE: compute d_input as module instantiation time # d_input = sum(d_model of all encoders being fed to Classifier) self.classification_layer = nn.Linear(d_input, d_output) def forward( self, *final_outs, ): """ final_outs List[Tensor]: intermediate outputs from encoder. shape: (B, S, H) """ fx = torch.cat(final_outs, dim=-1) return self.classification_layer(fx)
thanos-code-main
unagi/models/decoders/classifier.py
import torch from torch import nn class ViewConcat(nn.Module): def __init__(self, **kwargs): super().__init__() self.name = "view_concat" def forward(self, *args): return torch.stack(args, dim=1)
thanos-code-main
unagi/models/decoders/view_concat.py
""" Modified from PyTorch Lightning Bolts implementation. https://github.com/PyTorchLightning/lightning-bolts/blob/master/pl_bolts/models/autoencoders/components.py """ import torch from torch import nn from torch.nn import functional as F class Interpolate(nn.Module): """nn.Module wrapper for F.interpolate.""" def __init__(self, size=None, scale_factor=None): super().__init__() self.size, self.scale_factor = size, scale_factor def forward(self, x): return F.interpolate(x, size=self.size, scale_factor=self.scale_factor) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding.""" return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False ) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution.""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def resize_conv3x3(in_planes, out_planes, scale=1): """upsample + 3x3 convolution with padding to avoid checkerboard artifact.""" if scale == 1: return conv3x3(in_planes, out_planes) return nn.Sequential( Interpolate(scale_factor=scale), conv3x3(in_planes, out_planes) ) def resize_conv1x1(in_planes, out_planes, scale=1): """upsample + 1x1 convolution with padding to avoid checkerboard artifact.""" if scale == 1: return conv1x1(in_planes, out_planes) return nn.Sequential( Interpolate(scale_factor=scale), conv1x1(in_planes, out_planes) ) class EncoderBlock(nn.Module): """ResNet block, copied from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L35.""" expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class EncoderBottleneck(nn.Module): """ResNet bottleneck, copied from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L75.""" expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super().__init__() width = planes # this needs to change if we want wide resnets self.conv1 = conv1x1(inplanes, width) self.bn1 = nn.BatchNorm2d(width) self.conv2 = conv3x3(width, width, stride) self.bn2 = nn.BatchNorm2d(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class DecoderBlock(nn.Module): """ResNet block, but convs replaced with resize convs, and channel increase is in second conv, not first.""" expansion = 1 def __init__(self, inplanes, planes, scale=1, upsample=None): super().__init__() self.conv1 = resize_conv3x3(inplanes, inplanes) self.bn1 = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self.conv2 = resize_conv3x3(inplanes, planes, scale) self.bn2 = nn.BatchNorm2d(planes) self.upsample = upsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.upsample is not None: identity = self.upsample(x) out += identity out = self.relu(out) return out class DecoderBottleneck(nn.Module): """ResNet bottleneck, but convs replaced with resize convs.""" expansion = 4 def __init__(self, inplanes, planes, scale=1, upsample=None): super().__init__() width = planes # this needs to change if we want wide resnets self.conv1 = resize_conv1x1(inplanes, width) self.bn1 = nn.BatchNorm2d(width) self.conv2 = resize_conv3x3(width, width, scale) self.bn2 = nn.BatchNorm2d(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.upsample = upsample self.scale = scale def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.upsample is not None: identity = self.upsample(x) out += identity out = self.relu(out) return out class ResNetEncoder(nn.Module): def __init__(self, block, layers, first_conv=False, maxpool1=False): super().__init__() self.inplanes = 64 self.first_conv = first_conv self.maxpool1 = maxpool1 if self.first_conv: self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False ) else: self.conv1 = nn.Conv2d( 3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False ) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) if self.maxpool1: self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: self.maxpool = nn.MaxPool2d(kernel_size=1, stride=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) return x class ResNetDecoder(nn.Module): """Resnet in reverse order.""" def __init__( self, block, layers, d_input, input_height, first_conv=False, maxpool1=False, **kwargs ): super().__init__() latent_dim = d_input self.expansion = block.expansion self.inplanes = 512 * block.expansion self.first_conv = first_conv self.maxpool1 = maxpool1 self.input_height = input_height self.upscale_factor = 8 self.linear = nn.Linear(latent_dim, self.inplanes * 4 * 4) self.layer1 = self._make_layer(block, 256, layers[0], scale=2) self.layer2 = self._make_layer(block, 128, layers[1], scale=2) self.layer3 = self._make_layer(block, 64, layers[2], scale=2) if self.maxpool1: self.layer4 = self._make_layer(block, 64, layers[3], scale=2) self.upscale_factor *= 2 else: self.layer4 = self._make_layer(block, 64, layers[3]) if self.first_conv: self.upscale = Interpolate(scale_factor=2) self.upscale_factor *= 2 else: self.upscale = Interpolate(scale_factor=1) # interpolate after linear layer using scale factor self.upscale1 = Interpolate(size=input_height // self.upscale_factor) self.conv1 = nn.Conv2d( 64 * block.expansion, 3, kernel_size=3, stride=1, padding=1, bias=False ) def _make_layer(self, block, planes, blocks, scale=1): upsample = None if scale != 1 or self.inplanes != planes * block.expansion: upsample = nn.Sequential( resize_conv1x1(self.inplanes, planes * block.expansion, scale), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, scale, upsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.linear(x) # NOTE: replaced this by Linear(in_channels, 514 * 4 * 4) # x = F.interpolate(x, scale_factor=4) x = x.view(x.size(0), 512 * self.expansion, 4, 4) x = self.upscale1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.upscale(x) x = self.conv1(x) return x # def resnet18_encoder(first_conv, maxpool1): # return ResNetEncoder(EncoderBlock, [2, 2, 2, 2], first_conv, maxpool1) def resnet18_decoder(latent_dim, input_height, first_conv, maxpool1): return ResNetDecoder( DecoderBlock, [2, 2, 2, 2], latent_dim, input_height, first_conv, maxpool1 ) # def resnet50_encoder(first_conv, maxpool1): # return ResNetEncoder(EncoderBottleneck, [3, 4, 6, 3], first_conv, maxpool1) def resnet50_decoder(latent_dim, input_height, first_conv, maxpool1): return ResNetDecoder( DecoderBottleneck, [3, 4, 6, 3], latent_dim, input_height, first_conv, maxpool1 ) class Resnet18Decoder(nn.Module): def __init__(self, **kwargs): super().__init__() self.decoder = ResNetDecoder(DecoderBlock, [2, 2, 2, 2], **kwargs) def forward(self, x): return self.decoder(x) class Resnet50Decoder(nn.Module): def __init__(self, **kwargs): super().__init__() self.decoder = ResNetDecoder(DecoderBlock, [3, 4, 6, 3], **kwargs) def forward(self, x): return self.decoder(x)
thanos-code-main
unagi/models/decoders/image/resnet_autoencoder.py
import torch.nn as nn from torchvision.models import resnet18, resnet34, resnet50 # noqa: F401 class ResnetDecoder(nn.Module): def __init__( self, decoder_hidden_dim, decoder_projection_dim, model="resnet18", d_model=None, **kwargs, ): super().__init__() # self.d_model = model if not self.d_model: encoder = eval(model)() self.d_model = encoder.fc.in_features self.decoder = nn.Sequential( nn.Linear(self.d_model, decoder_hidden_dim), nn.ReLU(), nn.Linear(decoder_hidden_dim, decoder_projection_dim), ) def forward(self, x): return self.decoder(x)
thanos-code-main
unagi/models/decoders/image/resnet.py
from torch import nn from unagi.models.encoders.base_sequence import SequenceModule from unagi.models.encoders.sequence.transformer.transformer_modules import MHA_Decoder class TransformerDecoder(SequenceModule): def __init__(self, d_model, n_heads, dropout=0.1, head_dropout=0.1, **kwargs): super().__init__() self.blocks = nn.ModuleList( [MHA_Decoder(d_model, n_heads, dropout=dropout, head_dropout=head_dropout)] ) def forward(self, x, target, state=None, mask=None, *args, **kwargs): for b in self.blocks: tgt = b(target, x, src_mask=mask, tgt_mask=mask) return tgt
thanos-code-main
unagi/models/decoders/sequence/transformer.py
import torch from einops import rearrange from torch import nn from unagi.models.encoders.base_sequence import SequenceModule from unagi.models.encoders.sequence.mixer.mixer_modules import mixer_encoder class MixerDecoder(SequenceModule): def __init__( self, d_model, n_heads, l_max, # can be computed based on embedding n_layers=4, dropout=0.1, head_dropout=0.1, mlp_dim=None, tie_them_all=False, **kwargs, ): super().__init__() def _block(): return mixer_encoder( d_model, n_heads, l_max=l_max, mlp_dim=mlp_dim, head_dropout=head_dropout, dropout=dropout, ) _f = ( [_block()] * n_layers if tie_them_all else [_block() for k in range(n_layers)] ) _f += [nn.LayerNorm(d_model)] self.decoder = nn.Sequential(*_f) self.d_model = d_model self.n_heads = n_heads self.mlp_dim = mlp_dim self.head_dropout = head_dropout self.dropout = dropout self.n_layers = n_layers self.tie_them_all = tie_them_all self.device = torch.device("cpu") if torch.cuda.is_available(): self.device = torch.device("cuda") def forward(self, x, state=None, mask=None, *args, **kwargs): # print(f"px={px.size()} mask={mask.size()}") pooled_output = x.mean(-2) if not self.expand: self.expand = nn.Linear(self.d_model, self.d_model * x.size(1)).to( self.device ) temp_enc = rearrange(self.expand(pooled_output), "b (s d) -> b s d", d=self.d) decoded_outputs = self.decoder(temp_enc, encoding=True) return decoded_outputs
thanos-code-main
unagi/models/decoders/sequence/mixer.py
import torch from torch import nn class EinsumReduceDecoder(nn.Module): def __init__(self, d_model, **kwargs): super().__init__() # NOTE: compute d_input as module instantiation time # d_input = sum(d_model of all encoders being fed to Classifier) self.attend = nn.Linear(d_model, 1) def forward(self, x): """ x: intermediate outpus from encoder. shape: (B, S, H) """ x = torch.einsum("b s o, b s d -> b d", self.attend(x).softmax(-1), x) return x.mean(-2)
thanos-code-main
unagi/models/ops/einsum_reduce.py
import torch from torch import nn from torchvision import transforms as transforms class Grayscale(nn.Module): def __init__(self, dim=1, resize=None, **kwargs): super().__init__() self.dim = dim self.resize = resize if self.resize: self.resize_func = transforms.Resize( self.resize, transforms.InterpolationMode.BILINEAR ) def forward(self, x): grayscale_image = torch.mean(x, dim=self.dim, keepdim=True) if self.resize: return self.resize_func(grayscale_image) return grayscale_image
thanos-code-main
unagi/models/ops/grayscale.py
import torch from torch import nn class SequenceConcat(nn.Module): def __init__(self, **kwargs): super().__init__() self.name = "sequence_concat" def forward(self, *args): return torch.cat(args, dim=1)
thanos-code-main
unagi/models/ops/sequence_concat.py
from einops import rearrange from torch import nn class ViewSelect(nn.Module): def __init__(self, view_idx, n_views, **kwargs): super().__init__() self.name = "view_select" self.view_idx = view_idx self.n_views = n_views def forward(self, input): embs = rearrange(input, "(b v) ... -> b v ...", v=self.n_views) embs = embs[:, self.view_idx, ...] return embs
thanos-code-main
unagi/models/ops/view_select.py
import torch from torch import nn class ViewConcat(nn.Module): def __init__(self, **kwargs): super().__init__() self.name = "view_concat" def forward(self, *args): return torch.stack(args, dim=1)
thanos-code-main
unagi/models/ops/view_concat.py
from torch import nn class LinearProj(nn.Module): def __init__(self, d_input, d_output, **kwargs): super().__init__() self.linear_proj = nn.Linear(d_input, d_output) def forward(self, x): return self.linear_proj(x)
thanos-code-main
unagi/models/ops/linear_proj.py
from torch import nn class PoolDecoder(nn.Module): def __init__(self, **kwargs): super().__init__() # NOTE: compute d_input as module instantiation time # d_input = sum(d_model of all encoders being fed to Classifier) def forward(self, x): """ x: intermediate outpus from encoder. shape: (B, S, H) """ return x.mean(-2)
thanos-code-main
unagi/models/ops/pool.py
from einops import rearrange from torch import nn class ImageReshape(nn.Module): def __init__(self, d_input, output_height, output_width, **kwargs): super().__init__() self.name = "view_select" self.d_input = d_input self.output_height = output_height self.output_width = output_width def forward(self, input): embs = rearrange( input, "... (h w) -> ... h w", h=self.output_height, w=self.output_width ) return embs
thanos-code-main
unagi/models/ops/image_reshape.py
from copy import deepcopy from unagi.data.transforms import ALL_TRANSFORMS from unagi.data.transforms.image.compose import Compose def get_transforms( input_features: dict, dataset_split: str, augmentations: dict, default_transforms: dict = {}, ): """ Gets list of transforms for each input feature. # Inputs :param input_features: (dict) contains all imput feature metadata including transform information used by this module. # Returns :return: returns a dict mapping input feature name to relevamt transforms. """ ifeat_to_transforms = {} for name, inpt_feat in input_features.items(): transforms_list = [] feat_type = inpt_feat["type"] # key that has corresponding mapping in augmentations.raw section if dataset_split == "train": augmentation_key = ( inpt_feat["transform"] if "transform" in inpt_feat.keys() else None ) if augmentation_key is not None and augmentations is not None: augmentation_list = augmentations[augmentation_key] for aug in augmentation_list: type = aug["type"] aug = deepcopy(aug) del aug["type"] if type in ALL_TRANSFORMS[feat_type]: transforms_list.append(ALL_TRANSFORMS[feat_type][type](**aug)) else: raise ValueError( f"Unknown transform type: {type} for feature: {name}" ) # check if default transformation is specified in experiment config # if yes, overwrite preset dataset transformation default_transforms_key = ( inpt_feat["default_transform"] if "default_transform" in inpt_feat.keys() else None ) if default_transforms_key is not None and augmentations is not None: augmentation_list = augmentations[default_transforms_key] for aug in augmentation_list: type = "" + aug["type"] aug = deepcopy(aug) del aug["type"] if type in ALL_TRANSFORMS[feat_type]: transforms_list.append(ALL_TRANSFORMS[feat_type][type](**aug)) else: raise ValueError( f"Unknown transform type: {type} for feature: {name}" ) else: # use dataset preset transform if feat_type in default_transforms: transforms_list.extend(default_transforms[feat_type]) composed_transforms = Compose(transforms_list) if inpt_feat["views"] >= 1: contrastive_transform = ALL_TRANSFORMS["task"]["Contrastive"] composed_transforms = contrastive_transform( composed_transforms, inpt_feat["views"] if dataset_split == "train" else 1, ) if inpt_feat["mask"]: tuple_transform = ALL_TRANSFORMS["task"]["Mask"] mask_gen = ALL_TRANSFORMS["task"]["MaskGenerator"] composed_transforms = tuple_transform( composed_transforms, mask_gen( 1, # task_config["contrastive"]["contrastive_views"], inpt_feat["mask_length"], ), ) ifeat_to_transforms[name] = composed_transforms return ifeat_to_transforms
thanos-code-main
unagi/data/data_utils/transform_util.py
thanos-code-main
unagi/data/data_utils/__init__.py
# flake8: noqa # from __future__ import annotation import logging from typing import Collection, List, Sequence, Tuple import meerkat as mk import pandas as pd import torch from meerkat.columns.lambda_column import LambdaColumn from meerkat.tools.lazy_loader import LazyLoader from unagi.data.transforms.task import GroupTransform, TupleTransform folder = LazyLoader("torchvision.datasets.folder") logger = logging.getLogger(__name__) """ class MultiImageColumn(LambdaColumn): def __init__( self, data: Sequence[Tuple(str, str)] = None, transform: List[callable] = None, loader: callable = None, *args, **kwargs, ): super(MultiImageColumn, self).__init__( mk.PandasSeriesColumn.from_data(data), *args, **kwargs ) self.loader = self.default_loader if loader is None else loader self.transform = transform def fn(self, filepaths: Tuple(str, str)): image_0, image_1 = self.loader(filepaths[0]), self.loader(filepaths[1]) image_0, image_1 = self.transform[0](image_0), self.transform[1](image_1) image_cat = torch.cat((image_0, image_1), 1) return self.transform[2](image_cat) @classmethod def from_filepaths( cls, filepaths: List[Sequence[str]], loader: callable = None, transform: List[callable] = None, *args, **kwargs, ): return cls(data=filepaths, loader=loader, transform=transform, *args, **kwargs) @classmethod def default_loader(cls, *args, **kwargs): return folder.default_loader(*args, **kwargs) @classmethod def _state_keys(cls) -> Collection: return (super()._state_keys() | {"transform", "loader"}) - {"fn"} def _repr_pandas_(self) -> pd.Series: return "ImageCell(" + self.data.data.reset_index(drop=True) + ")" """ class TextTransformCell(mk.AbstractCell): def __init__(self, input_text: str, transforms): self.input = input_text self.transforms = transforms self._token_ids = None def get(self): if self._token_ids is None: token_ids = self.transforms(self.input, None)[0] self._token_ids = token_ids return self._token_ids def data(self): return self.input def __repr__(self): return "TextTransformCell" class PILImgTransformCell(mk.AbstractCell): def __init__(self, pil_image, transforms): self.pil_image = pil_image self.transforms = transforms def get(self): if self.transforms is None: return self.pil_image else: transformed_img = self.transforms(self.pil_image, None) if not isinstance(self.transforms, TupleTransform) and not isinstance( self.transforms, GroupTransform ): transformed_img = transformed_img[0] return transformed_img def data(self): return self.pil_image def transforms(self): return self.transforms def __repr__(self): return "PILImgTransformCell"
thanos-code-main
unagi/data/data_utils/meerkat_processors.py
from typing import Any, Dict, List, Tuple, Union from einops import rearrange from torch import Tensor from unagi.trainer.data import default_unagi_collate_fn def unagi_collate_fn( # is_train, # feature_type_map, # feature_view_map, batch: Union[List[Tuple[Dict[str, Any], Dict[str, Tensor]]], List[Dict[str, Any]]], ): (x_dict, y_dict) = default_unagi_collate_fn(batch) # x_dict["is_train"] = is_train # x_dict["feature_type_map"] = feature_type_map # x_dict["labels"] = y_dict["labels"] """x_dict.update( y_dict ) # ADD THIS LINE, AND IN YOUR DATALOADER ADD MORE LABELES """ new_x_dict = {} new_x_dict["index"] = x_dict["index"] del x_dict["index"] new_x_dict["inputs"] = x_dict new_y_dict = {k: rearrange(v, "b v ... -> (b v) ...") for k, v in y_dict.items()} return (new_x_dict, new_y_dict)
thanos-code-main
unagi/data/data_utils/collate_fns.py
from unagi.data.transforms.image import ALL_TRANSFORMS as ALL_IMAGE_TRANSFORMS from unagi.data.transforms.task import ALL_TRANSFORMS as ALL_TASK_TRANSFORMS from unagi.data.transforms.text import ALL_TRANSFORMS as ALL_TEXT_TRANSFORMS ALL_TRANSFORMS = { "text": ALL_TEXT_TRANSFORMS, "image": ALL_IMAGE_TRANSFORMS, "task": ALL_TASK_TRANSFORMS, }
thanos-code-main
unagi/data/transforms/__init__.py
from unagi.data.transforms.image.transform import UnagiTransform class Reshape2D(UnagiTransform): def __init__(self, h_dim, w_dim, name=None, prob=1.0, level=0): self.h_dim = h_dim self.w_dim = w_dim super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return pil_img.view(self.h_dim, self.w_dim), label
thanos-code-main
unagi/data/transforms/image/reshape2d.py
from PIL import ImageOps from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Solarize(UnagiTransform): value_range = (0, 256) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") return ImageOps.solarize(pil_img, degree), label
thanos-code-main
unagi/data/transforms/image/solarize.py
from PIL import ImageOps from unagi.data.transforms.image.transform import UnagiTransform class AutoContrast(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return ImageOps.autocontrast(pil_img), label
thanos-code-main
unagi/data/transforms/image/auto_contrast.py
from torchvision import transforms from unagi.data.transforms.image.transform import UnagiTransform class GaussianBlur(UnagiTransform): def __init__(self, kernel_size, sigma=(0.1, 2.0), name=None, prob=1.0, level=0): self.kernel_size = kernel_size self.sigma = sigma self.transform_func = transforms.GaussianBlur(self.kernel_size, self.sigma) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label
thanos-code-main
unagi/data/transforms/image/gaussian_blur.py
from PIL import ImageEnhance from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Color(UnagiTransform): value_range = (0.1, 1.9) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") return ImageEnhance.Color(pil_img).enhance(degree), label
thanos-code-main
unagi/data/transforms/image/color.py
from PIL import Image from unagi.data.transforms.image.transform import UnagiTransform class HorizontalFlip(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return pil_img.transpose(Image.FLIP_LEFT_RIGHT), label
thanos-code-main
unagi/data/transforms/image/horizontal_filp.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class Grayscale(UnagiTransform): def __init__(self, num_output_channels=1): self.num_output_channels = num_output_channels self.transform_func = transforms.Grayscale(self.num_output_channels) super().__init__(name="Grayscale", prob=1.0, level=0) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), num_output_channels={self.num_output_channels}>" )
thanos-code-main
unagi/data/transforms/image/grayscale.py
class Compose(object): """Composes several transforms together. Originally from: https://pytorch.org/docs/stable/_modules/torchvision/transforms/transforms.html#Compose Args: transforms (list of ``Transform`` objects): list of transforms to compose. """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img, label, **kwargs): for idx, t in enumerate(self.transforms): kwargs["idx"] = idx img, label = t(img, label, **kwargs) return img, label def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
thanos-code-main
unagi/data/transforms/image/compose.py
from torchvision import transforms from unagi.data.transforms.image.transform import UnagiTransform class ColorDistortion(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0, strength=0.5): super().__init__(name, prob, level) self.strength = strength self.color_jitter = transforms.ColorJitter( 0.8 * self.strength, 0.8 * self.strength, 0.8 * self.strength, 0.2 * self.strength, ) self.rnd_color_jitter = transforms.RandomApply([self.color_jitter], p=0.8) self.rnd_gray = transforms.RandomGrayscale(p=0.2) self.color_distort = transforms.Compose([self.rnd_color_jitter, self.rnd_gray]) def transform(self, pil_img, label, **kwargs): return self.color_distort(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"strength={self.strength}" )
thanos-code-main
unagi/data/transforms/image/color_distortion.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class RandomGrayscale(UnagiTransform): def __init__(self, p=0.1, name=None, prob=1.0, level=0): self.p = p self.transform_func = transforms.RandomGrayscale(self.p) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"p={self.p}" )
thanos-code-main
unagi/data/transforms/image/random_grayscale.py
import numpy as np from PIL import ImageDraw from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Cutout(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0, max_pixel=20, color=None): self.max_pixel = max_pixel self.value_range = (0, self.max_pixel) self.color = color super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): pil_img = pil_img.copy() degree = categorize_value(self.level, self.value_range, "int") width, height = pil_img.size x0 = np.random.uniform(width) y0 = np.random.uniform(height) x0 = int(max(0, x0 - degree / 2.0)) y0 = int(max(0, y0 - degree / 2.0)) x1 = min(width, x0 + degree) y1 = min(height, y0 + degree) xy = (x0, y0, x1, y1) if self.color is not None: color = self.color elif pil_img.mode == "RGB": color = (125, 123, 114) elif pil_img.mode == "L": color = 121 else: raise ValueError(f"Unspported image mode {pil_img.mode}") ImageDraw.Draw(pil_img).rectangle(xy, color) return pil_img, label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"max_pixel={self.max_pixel}>" )
thanos-code-main
unagi/data/transforms/image/cutout.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class Normalize(UnagiTransform): def __init__(self, mean, std, name=None, prob=1.0, level=0): self.mean = mean self.std = std self.transform_func = transforms.Normalize(mean, std) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label
thanos-code-main
unagi/data/transforms/image/normalize.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class CenterCrop(UnagiTransform): def __init__(self, size, name=None, prob=1.0, level=0): self.size = size self.transform_func = transforms.CenterCrop(self.size) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"size={self.size}>" )
thanos-code-main
unagi/data/transforms/image/center_crop.py
from unagi.data.transforms.image.auto_contrast import AutoContrast from unagi.data.transforms.image.blur import Blur from unagi.data.transforms.image.brightness import Brightness from unagi.data.transforms.image.center_crop import CenterCrop from unagi.data.transforms.image.color import Color from unagi.data.transforms.image.color_distortion import ColorDistortion from unagi.data.transforms.image.color_jitter import ColorJitter from unagi.data.transforms.image.contrast import Contrast from unagi.data.transforms.image.cutout import Cutout from unagi.data.transforms.image.equalize import Equalize from unagi.data.transforms.image.gaussian_blur import GaussianBlur from unagi.data.transforms.image.grayscale import Grayscale from unagi.data.transforms.image.horizontal_filp import HorizontalFlip from unagi.data.transforms.image.identity import Identity from unagi.data.transforms.image.invert import Invert from unagi.data.transforms.image.normalize import Normalize from unagi.data.transforms.image.posterize import Posterize from unagi.data.transforms.image.random_crop import RandomCrop from unagi.data.transforms.image.random_grayscale import RandomGrayscale from unagi.data.transforms.image.random_horizontal_flip import RandomHorizontalFlip from unagi.data.transforms.image.random_resize_crop import RandomResizedCrop from unagi.data.transforms.image.reshape2d import Reshape2D from unagi.data.transforms.image.resize import Resize from unagi.data.transforms.image.resize_and_pad import ResizeAndPad from unagi.data.transforms.image.rotate import Rotate from unagi.data.transforms.image.sharpness import Sharpness from unagi.data.transforms.image.shear_x import ShearX from unagi.data.transforms.image.shear_y import ShearY from unagi.data.transforms.image.smooth import Smooth from unagi.data.transforms.image.solarize import Solarize from unagi.data.transforms.image.to_tensor import ToTensor from unagi.data.transforms.image.translate_x import TranslateX from unagi.data.transforms.image.translate_y import TranslateY from unagi.data.transforms.image.vertical_flip import VerticalFlip ALL_TRANSFORMS = { "AutoContrast": AutoContrast, "Blur": Blur, "Brightness": Brightness, "GaussianBlur": GaussianBlur, "CenterCrop": CenterCrop, "Color": Color, "Contrast": Contrast, "Cutout": Cutout, "Equalize": Equalize, "GaussianBlur": GaussianBlur, "Grayscale": Grayscale, "ColorDistortion": ColorDistortion, "HorizontalFlip": HorizontalFlip, "Identity": Identity, "Invert": Invert, "Posterize": Posterize, "RandomCrop": RandomCrop, "RandomResizedCrop": RandomResizedCrop, "Resize": Resize, "Rotate": Rotate, "Sharpness": Sharpness, "ShearX": ShearX, "ShearY": ShearY, "Smooth": Smooth, "Solarize": Solarize, "TranslateX": TranslateX, "TranslateY": TranslateY, "VerticalFlip": VerticalFlip, "ToTensor": ToTensor, "Normalize": Normalize, "Reshape2D": Reshape2D, "RandomHorizontalFlip": RandomHorizontalFlip, "ResizeAndPad": ResizeAndPad, "ColorJitter": ColorJitter, "RandomGrayscale": RandomGrayscale, }
thanos-code-main
unagi/data/transforms/image/__init__.py
from PIL import ImageOps from unagi.data.transforms.image.transform import UnagiTransform class Equalize(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return ImageOps.equalize(pil_img), label
thanos-code-main
unagi/data/transforms/image/equalize.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class ColorJitter(UnagiTransform): def __init__( self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, name=None, prob=1.0, level=0, ): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue self.transform_func = transforms.ColorJitter( brightness=self.brightness, contrast=self.contrast, saturation=self.saturation, hue=self.hue, ) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f" brightness={self.brightness}, contrast={self.contrast}, " f" saturation={self.saturation}, hue={self.hue}" )
thanos-code-main
unagi/data/transforms/image/color_jitter.py
from PIL import ImageFilter from unagi.data.transforms.image.transform import UnagiTransform class Blur(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return pil_img.filter(ImageFilter.BLUR), label
thanos-code-main
unagi/data/transforms/image/blur.py
from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class Resize(UnagiTransform): def __init__( self, size, name=None, prob=1.0, level=0, interpolation=transforms.InterpolationMode.BILINEAR, ): self.size = size self.interpolation = interpolation self.transform_func = transforms.Resize(self.size, self.interpolation) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return self.transform_func(pil_img), label def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"size={self.size}, interpolation={self.interpolation}>" )
thanos-code-main
unagi/data/transforms/image/resize.py
import random from PIL import Image from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class TranslateX(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0, max_degree=10): self.max_degree = max_degree self.value_range = (0, self.max_degree) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") if random.random() > 0.5: degree = -degree return ( pil_img.transform(pil_img.size, Image.AFFINE, (1, 0, degree, 0, 1, 0)), label, ) def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"max_degree={self.max_degree}>" )
thanos-code-main
unagi/data/transforms/image/translate_x.py
def categorize_value(level, value_range, type="int"): val = value_range[0] + level * (value_range[1] - value_range[0]) return int(val) if type == "int" else float(val)
thanos-code-main
unagi/data/transforms/image/utils.py
import random class UnagiTransform(object): """Base UnagiTransform transfrom class. Args: name(str): Transformation name. prob(float): Transformation probability. level(int): Transformation level. """ def __init__(self, name=None, prob=1.0, level=0): self.name = name if name is not None else type(self).__name__ self.prob = prob assert 0 <= level <= 1.0, "Invalid level, level must be in [0, 1.0]." self.level = level def transform(self, pil_img, label, **kwargs): return pil_img, label def __call__(self, pil_img, label, **kwargs): if random.random() <= self.prob: return self.transform(pil_img, label, **kwargs) else: return pil_img, label def __repr__(self): return f"<Transform ({self.name}), prob={self.prob}, level={self.level}>"
thanos-code-main
unagi/data/transforms/image/transform.py
import random from PIL import Image from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class TranslateY(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0, max_degree=10): self.max_degree = max_degree self.value_range = (0, self.max_degree) super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") if random.random() > 0.5: degree = -degree return ( pil_img.transform(pil_img.size, Image.AFFINE, (1, 0, 0, 0, 1, degree)), label, ) def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"max_degree={self.max_degree}>" )
thanos-code-main
unagi/data/transforms/image/translate_y.py
from PIL import ImageFilter from unagi.data.transforms.image.transform import UnagiTransform class Smooth(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return pil_img.filter(ImageFilter.SMOOTH), label
thanos-code-main
unagi/data/transforms/image/smooth.py
from PIL import ImageOps from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Posterize(UnagiTransform): value_range = (0, 4) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "int") return ImageOps.posterize(pil_img, degree), label
thanos-code-main
unagi/data/transforms/image/posterize.py
from PIL import ImageEnhance from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Sharpness(UnagiTransform): value_range = (0.1, 1.9) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") return ImageEnhance.Sharpness(pil_img).enhance(degree), label
thanos-code-main
unagi/data/transforms/image/sharpness.py
from PIL import ImageOps from unagi.data.transforms.image.transform import UnagiTransform class Invert(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return ImageOps.invert(pil_img), label
thanos-code-main
unagi/data/transforms/image/invert.py
from PIL import Image, ImageOps from torchvision import transforms as transforms from unagi.data.transforms.image.transform import UnagiTransform class ResizeAndPad(UnagiTransform): def __init__( self, resized_width, resized_height, name=None, prob=1.0, level=0, ratio=(0.75, 1.333_333_333_333_333_3), interpolation=transforms.InterpolationMode.BILINEAR, ): self.resized_height = resized_height self.resized_width = resized_width super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): original_size = pil_img.size ratio = float(self.resized_width) / max(original_size) new_size = (int(self.resized_width * ratio), int(self.resized_height * ratio)) pil_img = pil_img.resize(new_size, Image.ANTIALIAS) delta_w = self.resized_width - new_size[0] delta_h = self.resized_height - new_size[1] padding = ( delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2), ) resized_img = ImageOps.expand(pil_img, padding) return resized_img def __repr__(self): return ( f"<Transform ({self.name}), prob={self.prob}, level={self.level}, " f"size={self.size}, scale={self.scale}, ratio={self.ratio}, " f"interpolation={self.interpolation}>" )
thanos-code-main
unagi/data/transforms/image/resize_and_pad.py
from PIL import ImageEnhance from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Brightness(UnagiTransform): value_range = (0.1, 1.9) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") return ImageEnhance.Brightness(pil_img).enhance(degree), label
thanos-code-main
unagi/data/transforms/image/brightness.py
import random from PIL import Image from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class ShearY(UnagiTransform): value_range = (0.0, 0.3) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") if random.random() > 0.5: degree = -degree return ( pil_img.transform(pil_img.size, Image.AFFINE, (1, 0, 0, degree, 1, 0)), label, )
thanos-code-main
unagi/data/transforms/image/shear_y.py
import random from unagi.data.transforms.image.transform import UnagiTransform from unagi.data.transforms.image.utils import categorize_value class Rotate(UnagiTransform): value_range = (0, 30) def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): degree = categorize_value(self.level, self.value_range, "float") if random.random() > 0.5: degree = -degree return pil_img.rotate(degree), label
thanos-code-main
unagi/data/transforms/image/rotate.py
from unagi.data.transforms.image.transform import UnagiTransform class Identity(UnagiTransform): def __init__(self, name=None, prob=1.0, level=0): super().__init__(name, prob, level) def transform(self, pil_img, label, **kwargs): return pil_img, label
thanos-code-main
unagi/data/transforms/image/identity.py