python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
#!/usr/bin/env python with open("AI-progress-metrics.html") as html_file: html = html_file.read() html = html.replace("https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js", "js/require-2.1.10.min.js") html = html.replace("https://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/jquery.min.js", "js/require-2.0.3.min.js") # MathJax is not a single script that's easy to relocate. Eventually we may want to follow # http://docs.mathjax.org/en/latest/start.html#installing-your-own-copy-of-mathjax # but for now, we don't actually use MathJax so let's remove it. #html = html.replace("https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML", # "js/MathJax.js") html = html.replace('<script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>', '') assert 'script src="http' not in html, "HTMLified Notebook appears to contain unhandled 3rd party JS, please fix sanitise.py" assert 'src="http' not in html, "HTMLified Notebook appears to contain unhandled 3rd party embed, please fix sanitise.py" with open("AI-progress-metrics.html", "w") as html_file: html_file.write(html) print "Sanitised AI-progress-metrics.html, apprently successfully"
AI-metrics-master
sanitise.py
from math import log # Different metrics and measurements for progress are made on very different types of scales # we have some helper functions to regularise these a little bit, so we can tell (for instance) # whether progress on some metric appears to be accelerating or decelerating. # Interface: # improvement(score1, score2): retrns a consistent measure of how much better score2 is than score1 # pseudolinear(score): returns a modified version of score where we would expect vaguely linear progress class Linear(): offset = (2,-2) axis_label = "Score" col_label = "Score" def improvement(self, score1, score2): return score2 - score1 def pseudolinear(self, score): return score class AtariLinear(): offset = (2,-2) axis_label = "Score" col_label = "Raw Score" def improvement(self, score1, score2): return score2 - score1 def pseudolinear(self, score): return score linear = Linear() score = Linear() atari_linear = AtariLinear() class ELO: offset = (2,-2) axis_label = "ELO rating" col_label = "ELO" def improvement(self, score1, score2): """ Normalise an ELO score An ELO increase of 400 improves your odds by 10x, so we could justify something like return 10.0 ** ((score2 - score1)/400.) However, it seems that at least for chess ELO progress has been roughly linear over time, both for humans and computers (though with different coefficients). Perhaps this tracks exponential increases in ability to search the game's state space, driven directly by Moore's law on the computer side, and indirectly for humans by access to better training tools and more profound libraries of past play. So for now let's treat this as linear? But ELO is not a chess-specific measure, and in other contexts we may want to do exponentiation as documented above? """ return score2 - score1 def pseudolinear(self, score): return score elo = ELO() class ErrorRate: """Many labelling contests use these measures""" offset = (2,2) axis_label = "Error rate" col_label = "Error" def improvement(self, score1, score2): # improvement is measured as a negative log of the error rate return log(score1) - log(score2) def pseudolinear(self, score): # error rate 1 => 0 # error rate 0 => infinity return -log(score) error_rate = ErrorRate() # some problems have performance measured in bits per X (bits per character, bits per pixel, etc), # reflecting the amount of information necessary for a model to accurately encode something from a corpus. # Lower is better and zero is infinitely good, so we can re-use the error rate math for now (though # scores above 1 are possible) bits_per_x = ErrorRate() bits_per_x.axis_label = "Model Entropy" bits_per_x.col_label = "Model<br>Entropy" # perplexity is 2 to the bits_per_x perplexity = ErrorRate() perplexity.axis_label = "Perplexity" perplexity.col_label = "Perplexity" class CorrectPercent: "100 - error rate" offset = (3,-6) axis_label = "Percentage correct" col_label = "% correct" def erate(self, score): return (100. - score)/100. def improvement(self, score1, score2): return score2 - score1 def pseudolinear(self, score): from math import log return -log(self.erate(score)) correct_percent = CorrectPercent() class BLEUScore: "50 is a perfect BLEU score, meaning a system produces exact matches to professional human translations" offset = (3,-6) axis_label = "BLEU score" col_label = "BLEU" def erate(self, score): return (50. - score)/50. def improvement(self, score1, score2): return score2 - score1 def pseudolinear(self, score): from math import log return -log(self.erate(score)) bleu_score = BLEUScore() class ErrorPercent: "100 * error rate" offset = (3,-6) axis_label = "Percentage error" col_label = "% error" def erate(self, score): return score/100. def improvement(self, score1, score2): return score1 - score2 def pseudolinear(self, score): from math import log return log(self.erate(score)) error_percent = ErrorPercent()
AI-metrics-master
scales.py
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from collections import defaultdict from math import log import datetime import json import re import sys import traceback from lxml.cssselect import CSSSelector from matplotlib import pyplot as plt from matplotlib import markers #from IPython.display import HTML import lxml.html import matplotlib as mpl import numpy import requests from scales import linear try: import seaborn as sns except ImportError: print("Seaborn style not installed") date = datetime.date problems = {} metrics = {} measurements = set() # we don't try to guarantee unique names for these, so use a set all_attributes = set() class Problem: def __init__(self, name, attributes=[], solved=False, url=None): self.name = name self.attributes = attributes for a in attributes: global all_attributes all_attributes.add(a) self.subproblems = [] self.superproblems = [] self.metrics = [] self.solved = solved self.url = url global problems, metrics problems[name] = self def add_subproblem(self, other_problem): # add this other problem as a subproblem of us other_problem.superproblems.append(self) self.subproblems.append(other_problem) def metric(self, *args, **kwargs): m = Metric(*args, **kwargs) m.parent = self self.metrics.append(m) return m def check_solved(self): if all(m.solved for m in self.metrics + self.subproblems): self.solved = True for p in self.superproblems: p.check_solved() def __str__(self): return "Problem({0})".format(self.name) def print_structure(self, indent=0): print(indent * " " + str(self)) for m in self.metrics: print((indent + 4) * " " + str(m)) for p in self.subproblems: p.print_structure(indent + 4) def tables(self): return render_tables(sorted(self.metrics, key=lambda m:m.name)) def graphs(self): for m in sorted(self.metrics, key=lambda m:m.name): m.graph() mpl.rcParams["legend.fontsize"] = u"x-small" mpl.rcParams["xtick.labelsize"] = u"xx-small" mpl.rcParams["ytick.labelsize"] = u"x-small" class Metric: def __init__(self, name, url=None, solved=False, notes="", scale=linear, target=None, target_source=None, parent=None, changeable=False, axis_label=None, target_label=None): self.name = name self.measures = [] self.solved = solved self.url = url self.notes = notes self.scale = scale self.target = target self.target_source = target_source # Source for human-level performance number self.changeable = changeable # True if a metric changes over time self.graphed = False global metrics metrics[name] = self self.parent = parent self.target_label = target_label self.axis_label = ( axis_label if axis_label else self.scale.axis_label if hasattr(self.scale, "axis_label") else self.name) # primarily used by the table() method self.data_url = self.find_edit_url(3) # 3 is stack depth for a problem.metric() call self.data_path = None def __str__(self): solved = "SOLVED" if self.solved else "?" if not self.target else "not solved" return "{0:<60}{1}".format("Metric(%s)" % self.name, solved) def __repr__(self): return 'Metric("{0}")'.format(self.name) def measure(self, *args, **kwargs): try: m = Measurement(*args, **kwargs) except AssertionError: print("WARNING, failed to create measurement", args, kwargs) traceback.print_exc() return None m.metric = self if self.target: if self.target_source == m.url and self.target == m.value: print("Skipping apparent human performance (target_source) paper", m.url) return None if self.scale.improvement(self.target, m.value) >= 0: self.solved = True self.parent.check_solved() self.measures.append(m) self.data_url = self.find_edit_url() return m def find_edit_url(self, depth=2): "Some magic hackery to find what file and line number a Metric was defined on and produce an edit link" try: # Deliberately trigger an exception so that we can inspect the stack import nosuchthing except: # find where the most recent .measure call happened. The stack looks like this: # 0. Metric.find_edit_url; # 1. Metric.measure; # 2. somemetric.measure() in a data/*.py file # (So depth defaults to 2) tb_frame = sys._getframe(depth) line = tb_frame.f_lineno filename = tb_frame and tb_frame.f_code and tb_frame.f_code.co_filename if filename: self.data_path = filename return "https://github.com/AI-metrics/AI-metrics/edit/master/{0}#L{1}".format(filename, line) else: return "https://github.com/AI-metrics/AI-metrics" def table(self): if len(self.measures) < 2: return u"" # TODO: split out CSS table_html = [u'<table style="width: 100%">'] table_html.append(u"<caption>{0}</caption>".format(self.name)) col = 'style="background-color: #f7f7f7"' table_html.append(u"<tr {1}><th>Date</th><th>Algorithm</th><th>{0}</th><th>Paper / Source</th></tr>".format(self.scale.col_label, col)) widest_alg = max(len(m.name) for m in self.measures) alg_bound = u'style="width: 25%"' if widest_alg >= 45 else "" for n, m in enumerate(self.measures): bgcol = u'style="background-color: #f7f7f7"' if n % 2 == 1 else '' table_html.append(u"<tr {0}>".format(bgcol)) table_html.append(u'<td align="center" style="width: 11%">{0}</td>'.format(m.date)) table_html.append(u'<td align="center" {1}>{0}</td>'.format(m.name, alg_bound)) table_html.append(u'<td align="center">{0} {1}</td>'.format(m.value, m.represent_uncertainty())) source = u' (<a href="{0}">source code</a>)'.format(m.replicated_url) if m.replicated_url else "" alglink = u' (algorithm from <a href="{0}">{1}</a>)'.format(m.algorithm_src_url, m.src_name) if m.src_name else '' pname = m.papername if m.papername else m.url table_html.append(u'<td align="center"><a href=\"{0}\">{1}</a>{2}{3}</td>'.format(m.url, pname, source, alglink)) table_html.append(u"</tr>") table_html.append(u"</table>") github_link = [u''' <div style="text-align: right; font-style: italic" class="edit-links"> <a target="_blank" href="{0}">Edit/add data on GitHub</a> <a target="_blank" href="/edit/{1}" style="display: none" class="local-edit">Edit locally</a> </div>'''.format(self.data_url, self.data_path)] html = u"".join(table_html + github_link) return html def graph(self, size=(7,5), scale=1.0, keep=False, reuse=None, title=None, llabel=None, fcol=None, pcol=None): "Spaghetti code graphing function." if len(self.measures) < 2: return if reuse: subplot = reuse else: fig = plt.figure(dpi=300) fig.set_size_inches((7*scale, 5*scale)) #fig.add_subplot(111).set_ylabel(self.name) subplot = fig.add_subplot(111) subplot.set_ylabel(self.axis_label) subplot.set_title(title if title else self.name) #fig.add_subplot(111).set_ylabel(self.name) # dashed line for "solved" / strong human performance if self.target: target_label = ( self.target_label if self.target_label else "Human performance" if self.parent and "agi" in self.parent.attributes else "Target") start = min([self.measures[0].date] + [m.min_date for m in self.measures if m.min_date]) end = max([self.measures[-1].date] + [m.max_date for m in self.measures if m.max_date]) plt.plot_date([start, end], 2 * [self.target], "r--", label=target_label) self.measures.sort(key=lambda m: (m.date, m.metric.scale.pseudolinear(m.value))) # scatter plot of results in the literature available_markers = markers.MarkerStyle().markers for n, m in enumerate(self.measures): kwargs = {"c": pcol if pcol else "r"} if self.target and self.scale.improvement(self.target, m.value) >= 0: kwargs["c"] = "b" if m.not_directly_comparable or self.changeable: kwargs["c"] = "#000000" if "*" in available_markers: kwargs["marker"] = "*" if m.withdrawn: if "X" in available_markers: kwargs["marker"] = "X" kwargs["c"] = "#aaaaaa" plt.plot_date([m.date], [m.value], **kwargs) plt.annotate('%s' % m.label, xy=(m.date, m.value), xytext=m.offset or m.metric.scale.offset, fontsize=scale * 6, textcoords='offset points') # cases where either results or dates of publication are uncertain kwargs = {"c": "#80cf80", "linewidth": scale*1.0, "capsize": scale*1.5, "capthick": scale*0.5, "dash_capstyle": 'projecting'} if m.min_date or m.max_date: before = (m.date - m.min_date) if m.min_date else datetime.timedelta(0) after = (m.max_date - m.date) if m.max_date else datetime.timedelta(0) kwargs["xerr"] = numpy.array([[before], [after]]) if self.measures[n].value != self.measures[n].minval: kwargs["yerr"] = numpy.array([[m.value - self.measures[n].minval], [self.measures[n].maxval - m.value]]) if "xerr" in kwargs or "yerr" in kwargs: subplot.errorbar(m.date, m.value, **kwargs) # line graph of the frontier of best results if not self.changeable: best = self.measures[0].value frontier_x, frontier_y = [], [] for m in self.measures: if self.scale.improvement(best, m.value) >= 0 and not m.withdrawn and not m.not_directly_comparable: frontier_x.append(m.date) frontier_y.append(m.value) xy = (m.date, m.value) best = m.value kwargs = {"label": llabel} if llabel else {} if fcol: kwargs["c"] = fcol plt.plot_date(frontier_x, frontier_y, "g-", **kwargs) plt.legend() self.graphed = True if keep: return subplot else: plt.show() def render_tables(metrics): "Jupyter Notebook only lets you call HTML() once per cell; this function emulates doing it several times" table_html = u"" for m in metrics: html = m.table() if html is not None: table_html += html #HTML(table_html) return table_html def canonicalise(url): if not url: return "" if url.startswith("http://arxiv.org"): url = url.replace("http", "https") if url.startswith("https://arxiv.org/pdf/"): url = url.replace("pdf", "abs", 1) url = url.replace(".pdf", "", 1) return url # dates of conferences help us date papers from the "Are We There Yet" dataset conference_dates = {"ICML 2016": date(2016, 6, 19), "NIPS 2015": date(2015, 12, 7), "ICLR 2014": date(2014, 4, 14), "ICML 2012": date(2012, 6, 26), "ICML 2013": date(2013, 6, 16), "ICML 2014": date(2014, 6, 21), "IJCNN 2015": date(2015, 7, 12), "CVPR 2012": date(2012, 6, 16), "NIPS 2012": date(2012, 12, 3), "CVPR 2015": date(2015, 6, 8), "NIPS 2011": date(2011, 12, 17), "NIPS 2014": date(2014, 12, 8), "TUM-I1222 2013": date(2013, 10, 29), "WMT 2014": date(2014, 2, 24), "ECCV 2012": date(2012, 10, 7)} conferences_wanted = defaultdict(lambda: 0) offline = False try: r = requests.get('http://arxiv.org/abs/1501.02876') if str(r.status_code).startswith("4"): offline = True print("Arxiv blocked!") except requests.ConnectionError: print("In Offline mode!") offline = True class Measurement: def __init__(self, d, value, name, url, algorithms=[], uncertainty=0, minval=None, maxval=None, opensource=False, replicated="", papername=None, venue=None, min_date=None, max_date=None, algorithm_src_url=None, withdrawn=False, not_directly_comparable=False, long_label=False, notes="", offset=None): self.date = d self.value = value assert isinstance(value, float) or isinstance(value, int), "Measurements on metrics need to be numbers" self.name = name # For papers on arxiv, always use the abstract link rather than the PDF link self.url = canonicalise(url) assert self.url or papername, "Measurements must have a URL or a paper name" self.min_date = min_date self.max_date = max_date self.algorithm_src_url = canonicalise(algorithm_src_url) if algorithm_src_url and not min_date: _, prev_dates, _ = ade.get_paper_data(self.algorithm_src_url) if prev_dates: self.min_date = min(prev_dates.values()) self.determine_src_name() self.uncertainty = uncertainty self.minval = minval if minval else value - uncertainty self.maxval = maxval if maxval else value + uncertainty self.opensource = opensource self.not_directly_comparable = not_directly_comparable self.replicated_url = replicated self.long_label = long_label self.algorithms = algorithms self.offset = offset self.notes = notes arxiv_papername, arxiv_dates, arxiv_withdrawn = ade.get_paper_data(self.url) self.withdrawn = withdrawn or arxiv_withdrawn if "arxiv.org" in self.url and not offline: assert arxiv_dates, "Failed to extract arxiv dates for "+ self.url self.papername = papername if papername else arxiv_papername self.determine_paper_dates(d, arxiv_dates, venue) self.set_label() global measurements measurements.add(self) def determine_src_name(self): "Figure out the name of a prior paper this result is based on, if applicable" if self.algorithm_src_url: self.src_name, _, _ = ade.get_paper_data(self.algorithm_src_url) if not self.src_name: self.src_name = self.algorithm_src_url else: self.src_name = None def set_label(self): self.label = self.name if self.withdrawn and not "withdrawn" in self.label.lower(): self.label = "WITHDRAWN " + self.label if len(self.label) >= 28 and not self.long_label: self.label = self.label[:25] + "..." year_re=re.compile(r"([0-9][0-9][0-9][0-9])") def determine_paper_dates(self, d, arxiv_dates, venue): """ Try to figure out when a result was obtained, and our uncertainty on that. :param datetime.date d: date supplied at paper entry time. We may not be able to trust this if the paper had multiple versions and the person doing the entry didn't specify which version they got their result numbers from :/ :param dict arxiv_dates: either None or a dict like {"1": date(2017,1,13), "2": date(2017, 3, 4)...} :param venue: for Rodriguo Benenson's data, a publication venue like "ICML 2016" or "arXiv 2014" """ # begin by trusting whoever entered the data self.date = d # but warn if it doesn't match arXiv dates adates = sorted(arxiv_dates.values()) if arxiv_dates else [] if arxiv_dates and d: if d < min(adates) and d > max(adates): print("WARNING, date", self.date, "for", self.url, end="") print("does not match any of the arXiv versions (%s)" % " ".join(str(s) for s in arxiv_dates.values())) if arxiv_dates: if len(arxiv_dates) == 1: if not self.date: self.date = adates[0] else: # multiple arxiv dates means the url wasn't versioned, and we might not have gotten the date exactly right self.min_date = self.min_date if self.min_date else min(adates) self.max_date = self.max_date if self.max_date else max(adates) if not self.date: midrange = datetime.timedelta(days=0.5 * (self.max_date - self.min_date).days) self.date = self.min_date + midrange elif venue and not self.date: # if all we have is a conference / journal, we might be able to still figure something out.. if venue.upper() in conference_dates: self.date = conference_dates[venue] else: conferences_wanted[venue] += 1 year = int(self.year_re.search(venue).groups(0)[0]) self.date = date(year, 7, 1) self.min_date = date(year, 1, 1) self.max_date = date(year, 12, 31) if not self.date: print(d, arxiv_dates, venue) assert self.date, "Need a date for paper {0} {1}".format(self.url, self.papername) def represent_uncertainty(self): "Printable error bars for this value" err = u"" if self.uncertainty: err = u"± {0}".format(self.uncertainty) elif not self.value == self.minval == self.maxval: err = super_digits(u"+" + str(self.maxval)) + u" " + sub_digits(u"-" + str(self.minval)) return err super_digits = lambda s: u''.join(dict(zip(u".-+0123456789", u"⋅⁻⁺⁰¹²³⁴⁵⁶⁷⁸⁹")).get(c, c) for c in s) sub_digits = lambda s: u''.join(dict(zip(u".-+0123456789", u".₋₊₀₁₂₃₄₅₆₇₈₉")).get(c, c) for c in s) #print canonicalise('http://arxiv.org/pdf/1412.6806.pdf') #cifar10.measure(None, 96.53, 'Fractional Max-Pooling', 'http://arxiv.org/abs/1412.6071', # papername='Fractional Max-Pooling', venue='arXiv 2015') #cifar10.measure(None, 95.59, 'Striving for Simplicity: The All Convolutional Net', # 'http://arxiv.org/pdf/1412.6806.pdf', papername='Striving for Simplicity: The All Convolutional Net', venue='ICLR 2015') # simple hooks for letting us save & restore datetime.date objects in a JSON cache class DateEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.date): return str(obj) return super(MyEncoder, self).default(obj) def parse_date(json_dict): if "dates" in json_dict: for v, date_str in json_dict["dates"].items(): json_dict["dates"][v] = datetime.datetime.strptime(date_str, "%Y-%m-%d").date() return json_dict class ArxivDataExtractor: def __init__(self): try: with open(".paper_cache.json") as f: self.cache = json.load(f, object_hook=parse_date) except: print("Failed to load local paper cache, trying a network copy...") try: req = requests.get('https://raw.githubusercontent.com/AI-metrics/master_text/master/.paper_cache.json') self.cache = json.loads(req.content, object_hook=parse_date) except: traceback.print_exc() print("(Continuing with an empty cache)") self.cache = {} self.arxiv_re = re.compile(r"\[[0-9v.]+\] (.*)") def save_cache(self): try: with open(".paper_cache.json", "w") as f: json.dump(self.cache, f, indent=4, sort_keys=True, cls=DateEncoder) except: traceback.print_exc() print("Not able to save cache") ends_with_version = re.compile(r".*v([0-9])+$") def arxiv_link_version(self, url): m = self.ends_with_version.match(url) if m: return m.group(1) else: return None multiwhitespace = re.compile(r"\s+") # gets rid of newlines def get_paper_data(self, url): "Ask arxiv for a (papername, {version:date}) if we don't know it" if not url: return (None, None, None) if url in self.cache: c = self.cache[url] return (c["name"], c.get("dates"), c.get("withdrawn", False)) try: req = requests.get(url) except requests.ConnectionError: print("Failed to fetch", url) #traceback.print_exc() return (None, None, None) record = {} tree = lxml.html.fromstring(req.content) withdrawn = self.detect_withdrawn(tree, url) if withdrawn: record["withdrawn"] = True #papername = CSSSelector("title")(tree)[0].text_content() papername = tree.findtext('.//title') dates = None if papername: papername = self.multiwhitespace.sub(" ", papername) match = self.arxiv_re.match(papername) if match: papername = match.groups(0)[0] v = self.arxiv_link_version(url) dates = self.get_submission_dates(tree, v) record["dates"] = dates record["name"] = papername self.cache[url] = record print("Caching paper name:", papername) self.save_cache() return papername, dates, withdrawn def detect_withdrawn(self, tree, url): comment = CSSSelector(".tablecell.comments")(tree) if comment: comment = comment[0].text_content() if "withdrawn" in comment.lower(): print("Paper", url, "appears to be withdrawn!") return True return False version_re = re.compile(r"\[v([0-9]+)\] (.*[0-9][0-9][0-9][0-9]) ") def get_submission_dates(self, arxiv_tree, queried_version): links = CSSSelector("div.submission-history")(arxiv_tree)[0] versions = {} #print "Parsing", links.text_content() for line in links.text_content().split("\n"): match = self.version_re.match(line) if match: version, d = match.group(1), match.group(2) d = datetime.datetime.strptime(d,'%a, %d %b %Y').date() versions[version] = d if queried_version == version: return {version: d} #print version, date return versions ade = ArxivDataExtractor() #ade.get_paper_data("https://arxiv.org/abs/1501.02876")
AI-metrics-master
taxonomy.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from __future__ import print_function from data.video_games import * import re # Machinery for importing both copy-and-pasted and (where necessary) OCR'd tables from various Atari research papers # Copying and pasting tables from PDFs produces very weird results sometimes, so we make no promises that there aren't # anyforms of weirdness here. # The common case is that PDF tables paste column-wise; but some are row-wise so we have machinery for both. # COLUMN-WISE RESULT TABLES: wang_table_2 = """GAMES Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar H.E.R.O. Ice Hockey James Bond Kangaroo Krull Kung-Fu Master Montezuma’s Revenge Ms. Pac-Man Name This Game Phoenix Pitfall! Pong Private Eye Q*Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Surround Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard Of Wor Yars Revenge Zaxxon NO. ACTIONS 18 10 7 9 14 4 18 18 9 18 6 18 4 18 18 9 18 6 18 9 18 3 18 8 18 18 18 18 18 18 14 18 9 6 8 18 3 18 6 18 18 18 18 3 18 6 18 5 18 10 8 6 18 9 10 18 18 R ANDOM 227.8 5.8 222.4 210.0 719.1 12,850.0 14.2 2,360.0 363.9 123.7 23.1 0.1 1.7 2,090.9 811.0 10,780.5 2,874.5 152.1 -18.6 0.0 -91.7 0.0 65.2 257.6 173.0 1,027.0 -11.2 29.0 52.0 1,598.0 258.5 0.0 307.3 2,292.3 761.4 -229.4 -20.7 24.9 163.9 1,338.5 11.5 2.2 68.4 -17,098.1 1,236.3 148.0 664.0 -10.0 -23.8 3,568.0 11.4 533.4 0.0 16,256.9 563.5 3,092.9 32.5 HUMAN 7,127.7 1,719.5 742.0 8,503.3 47,388.7 29,028.1 753.1 37,187.5 16,926.5 2,630.4 160.7 12.1 30.5 12,017.0 7,387.8 35,829.4 18,688.9 1,971.0 -16.4 860.5 -38.7 29.6 4,334.7 2,412.5 3,351.4 30,826.4 0.9 302.8 3,035.0 2,665.5 22,736.3 4,753.3 6,951.6 8,049.0 7,242.6 6,463.7 14.6 69,571.3 13,455.0 17,118.0 7,845.0 11.9 42,054.7 -4,336.9 12,326.7 1,668.7 10,250.0 6.5 -8.3 5,229.2 167.6 11,693.2 1,187.5 17,667.9 4,756.5 54,576.9 9,173.3 DQN 1,620.0 978.0 4,280.4 4,359.0 1,364.5 279,987.0 455.0 29,900.0 8,627.5 585.6 50.4 88.0 385.5 4,657.7 6,126.0 110,763.0 23,633.0 12,149.4 -6.6 729.0 -4.9 30.8 797.4 8,777.4 473.0 20,437.8 -1.9 768.5 7,259.0 8,422.3 26,059.0 0.0 3,085.6 8,207.8 8,485.2 -286.1 19.5 146.7 13,117.3 7,377.6 39,544.0 63.9 5,860.6 -13,062.3 3,482.8 1,692.3 54,282.0 -5.6 12.2 4,870.0 68.1 9,989.9 163.0 196,760.4 2,704.0 18,098.9 5,363.0 DDQN 3,747.7 1,793.3 5,393.2 17,356.5 734.7 106,056.0 1,030.6 31,700.0 13,772.8 1,225.4 68.1 91.6 418.5 5,409.4 5,809.0 117,282.0 35,338.5 58,044.2 -5.5 1,211.8 15.5 33.3 1,683.3 14,840.8 412.0 20,130.2 -2.7 1,358.0 12,992.0 7,920.5 29,710.0 0.0 2,711.4 10,616.0 12,252.5 -29.9 20.9 129.7 15,088.5 14,884.5 44,127.0 65.1 16,452.7 -9,021.8 3,067.8 2,525.5 60,142.0 -2.9 -22.8 8,339.0 218.4 22,972.2 98.0 309,941.9 7,492.0 11,712.6 10,163.0 DUEL 4,461.4 2,354.5 4,621.0 28,188.0 2,837.7 382,572.0 1,611.9 37,150.0 12,164.0 1,472.6 65.5 99.4 345.3 7,561.4 11,215.0 143,570.0 42,214.0 60,813.3 0.1 2,258.2 46.4 0.0 4,672.8 15,718.4 588.0 20,818.2 0.5 1,312.5 14,854.0 11,451.9 34,294.0 0.0 6,283.5 11,971.1 23,092.2 0.0 21.0 103.0 19,220.3 21,162.6 69,524.0 65.3 50,254.2 -8,857.4 2,250.8 6,427.3 89,238.0 4.4 5.1 11,666.0 211.4 44,939.6 497.0 98,209.5 7,855.0 49,622.1 12,944.0 P RIOR . 4,203.8 1,838.9 7,672.1 31,527.0 2,654.3 357,324.0 1,054.6 31,530.0 23,384.2 1,305.6 47.9 95.6 373.9 4,463.2 8,600.0 141,161.0 31,286.5 71,846.4 18.5 2,093.0 39.5 33.7 4,380.1 32,487.2 548.5 23,037.7 1.3 5,148.0 16,200.0 9,728.0 39,581.0 0.0 6,518.7 12,270.5 18,992.7 -356.5 20.6 200.0 16,256.5 14,522.3 57,608.0 62.6 26,357.8 -9,996.9 4,309.0 2,865.8 63,302.0 8.9 0.0 9,197.0 204.6 16,154.1 54.0 282,007.3 4,802.0 11,357.0 10,469.0 PRIOR. DUEL. 3,941.0 2,296.8 11,477.0 375,080.0 1,192.7 395,762.0 1,503.1 35,520.0 30,276.5 3,409.0 46.7 98.9 366.0 7,687.5 13,185.0 162,224.0 41,324.5 72,878.6 -12.5 2,306.4 41.3 33.0 7,413.0 104,368.2 238.0 21,036.5 -0.4 812.0 1,792.0 10,374.4 48,375.0 0.0 3,327.3 15,572.5 70,324.3 0.0 20.9 206.0 18,760.3 20,607.6 62,151.0 27.5 931.6 -19,949.9 133.4 15,311.5 125,117.0 1.2 0.0 7,553.0 245.9 33,879.1 48.0 479,197.0 12,352.0 69,618.1 13,886.0""" wang_table_3 = """GAMES Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar H.E.R.O. Ice Hockey James Bond Kangaroo Krull Kung-Fu Master Montezuma’s Revenge Ms. Pac-Man Name This Game Phoenix Pitfall! Pong Private Eye Q*Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Surround Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard Of Wor Yars Revenge Zaxxon N O . A CTIONS 18 10 7 9 14 4 18 18 9 18 6 18 4 18 18 9 18 6 18 9 18 3 18 8 18 18 18 18 18 18 14 18 9 6 8 18 3 18 6 18 18 18 18 3 18 6 18 5 18 10 8 6 18 9 10 18 18 R ANDOM 128.3 11.8 166.9 164.5 871.3 13,463.0 21.7 3,560.0 254.6 196.1 35.2 -1.5 1.6 1,925.5 644.0 9,337.0 1,965.5 208.3 -16.0 -81.8 -77.1 0.1 66.4 250.0 245.5 1,580.3 -9.7 33.5 100.0 1,151.9 304.0 25.0 197.8 1,747.8 1,134.4 -348.8 -18.0 662.8 183.0 588.3 200.0 2.4 215.5 -15,287.4 2,047.2 182.6 697.0 -9.7 -21.4 3,273.0 12.7 707.2 18.0 20,452.0 804.0 1,476.9 475.0 HUMAN 6,371.3 1,540.4 628.9 7,536.0 36,517.3 26,575.0 644.5 33,030.0 14,961.0 2,237.5 146.5 9.6 27.9 10,321.9 8,930.0 32,667.0 14,296.0 3,442.8 -14.4 740.2 5.1 25.6 4,202.8 2,311.0 3,116.0 25,839.4 0.5 368.5 2,739.0 2,109.1 20,786.8 4,182.0 15,375.0 6,796.0 6,686.2 5,998.9 15.5 64,169.1 12,085.0 14,382.2 6,878.0 8.9 40,425.8 -3,686.6 11,032.6 1,464.9 9,528.0 5.4 -6.7 5,650.0 138.3 9,896.1 1,039.0 15,641.1 4,556.0 47,135.2 8,443.0 DQN 634.0 178.4 3,489.3 3,170.5 1,458.7 292,491.0 312.7 23,750.0 9,743.2 493.4 56.5 70.3 354.5 3,973.9 5,017.0 98,128.0 15,917.5 12,550.7 -6.0 626.7 -1.6 26.9 496.1 8,190.4 298.0 14,992.9 -1.6 697.5 4,496.0 6,206.0 20,882.0 47.0 1,092.3 6,738.8 7,484.8 -113.2 18.0 207.9 9,271.5 4,748.5 35,215.0 58.7 4,216.7 -12,142.1 1,295.4 1,293.8 52,970.0 -6.0 11.1 4,786.0 45.6 8,038.5 136.0 154,414.1 1,609.0 4,577.5 4,412.0 DDQN 1,033.4 169.1 6,060.8 16,837.0 1,193.2 319,688.0 886.0 24,740.0 17,417.2 1,011.1 69.6 73.5 368.9 3,853.5 3,495.0 113,782.0 27,510.0 69,803.4 -0.3 1,216.6 3.2 28.8 1,448.1 15,253.0 200.5 14,892.5 -2.5 573.0 11,204.0 6,796.1 30,207.0 42.0 1,241.3 8,960.3 12,366.5 -186.7 19.1 -575.5 11,020.8 10,838.4 43,156.0 59.1 14,498.0 -11,490.4 810.0 2,628.7 58,365.0 1.9 -7.8 6,608.0 92.2 19,086.9 21.0 367,823.7 6,201.0 6,270.6 8,593.0 D UEL 1,486.5 172.7 3,994.8 15,840.0 2,035.4 445,360.0 1,129.3 31,320.0 14,591.3 910.6 65.7 77.3 411.6 4,881.0 3,784.0 124,566.0 33,996.0 56,322.8 -0.8 2,077.4 -4.1 0.2 2,332.4 20,051.4 297.0 15,207.9 -1.3 835.5 10,334.0 8,051.6 24,288.0 22.0 2,250.6 11,185.1 20,410.5 -46.9 18.8 292.6 14,175.8 16,569.4 58,549.0 62.0 37,361.6 -11,928.0 1,768.4 5,993.1 90,804.0 4.0 4.4 6,601.0 48.0 24,759.2 200.0 110,976.2 7,054.0 25,976.5 10,164.0 P RIOR . 1,334.7 129.1 6,548.9 22,484.5 1,745.1 330,647.0 876.6 25,520.0 31,181.3 865.9 52.0 72.3 343.0 3,489.1 4,635.0 127,512.0 23,666.5 61,277.5 16.0 1,831.0 9.8 28.9 3,510.0 34,858.8 269.5 20,889.9 -0.2 3,961.0 12,185.0 6,872.8 31,676.0 51.0 1,865.9 10,497.6 16,903.6 -427.0 18.9 670.7 9,944.0 11,807.2 52,264.0 56.2 25,463.7 -10,169.1 2,272.8 3,912.1 61,582.0 5.9 -5.3 5,963.0 56.9 12,157.4 94.0 295,972.8 5,727.0 4,687.4 9,474.0 P RIOR . D UEL . 823.7 238.4 10,950.6 364,200.0 1,021.9 423,252.0 1,004.6 30,650.0 37,412.2 2,178.6 50.4 79.2 354.6 5,570.2 8,058.0 127,853.0 34,415.0 73,371.3 -10.7 2,223.9 17.0 28.2 4,038.4 105,148.4 167.0 15,459.2 0.5 585.0 861.0 7,658.6 37,484.0 24.0 1,007.8 13,637.9 63,597.0 -243.6 18.4 1,277.6 14,063.0 16,496.8 54,630.0 24.7 1,431.2 -18,955.8 280.6 8,978.0 127,073.0 -0.2 -13.2 4,871.0 108.6 22,681.3 29.0 447,408.6 10,471.0 58,145.9 11,320.0""" # Absorb the data from https://arxiv.org/abs/1703.03864v1 # Copy and paste from Table 3: es_table3 = """Game Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Ice Hockey Kangaroo Krull Montezumas Revenge Name This Game Phoenix Pit Fall Pong Private Eye Q Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard of Wor Yars Revenge Zaxxon DQN 570.2 133.4 3332.3 124.5 697.1 76108.0 176.3 17560.0 8672.4 NaN 41.2 25.8 303.9 3773.1 3046.0 50992.0 12835.2 -21.6 475.6 -2.3 25.8 157.4 2731.8 216.5 -3.8 2696.0 3864.0 50.0 5439.9 NaN NaN 16.2 298.2 4589.8 4065.3 9264.0 58.5 2793.9 NaN NaN 1449.7 34081.0 -2.3 5640.0 32.4 3311.3 54.0 20228.1 246.0 NaN 831.0 A3C FF, 1 day 182.1 283.9 3746.1 6723.0 3009.4 772392.0 946.0 11340.0 13235.9 1433.4 36.2 33.7 551.6 3306.5 4669.0 101624.0 84997.5 0.1 -82.2 13.6 0.1 180.1 8442.8 269.5 -4.7 106.0 8066.6 53.0 5614.0 28181.8 -123.0 11.4 194.4 13752.3 10001.2 31769.0 2.3 2300.2 -13700.0 1884.8 2214.7 64393.0 -10.2 5825.0 26.1 54525.4 19.0 185852.6 5278.0 7270.8 2659.0 ES FF, 1 hour 994.0 112.0 1673.9 1440.0 1562.0 1267410.0 225.0 16600.0 744.0 686.0 30.0 49.8 9.5 7783.9 3710.0 26430.0 1166.5 0.2 95.0 -49.0 31.0 370.0 582.0 805.0 -4.1 11200.0 8647.2 0.0 4503.0 4041.0 0.0 21.0 100.0 147.5 5009.0 16590.0 11.9 1390.0 -15442.5 2090.0 678.5 1470.0 -4.5 4970.0 130.3 67974.0 760.0 22834.8 3480.0 16401.7 6380.0""" bellemare_figure_14 = """GAMES Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar H.E.R.O. Ice Hockey James Bond Kangaroo Krull Kung-Fu Master Montezuma’s Revenge Ms. Pac-Man Name This Game Phoenix Pitfall! Pong Private Eye Q*Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Surround Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard Of Wor Yars’ Revenge Zaxxon RANDOM 227.8 5.8 222.4 210.0 719.1 12,850.0 14.2 2,360.0 363.9 123.7 23.1 0.1 1.7 2,090.9 811.0 10,780.5 2,874.5 152.1 -18.6 0.0 -91.7 0.0 65.2 257.6 173.0 1,027.0 -11.2 29.0 52.0 1,598.0 258.5 0.0 307.3 2,292.3 761.4 -229.4 -20.7 24.9 163.9 1,338.5 11.5 2.2 68.4 -17,098.1 1,236.3 148.0 664.0 -10.0 -23.8 3,568.0 11.4 533.4 0.0 16,256.9 563.5 3,092.9 32.5 HUMAN 7,127.7 1,719.5 742.0 8,503.3 47,388.7 29,028.1 753.1 37,187.5 16,926.5 2,630.4 160.7 12.1 30.5 12,017.0 7,387.8 35,829.4 18,688.9 1,971.0 -16.4 860.5 -38.7 29.6 4,334.7 2,412.5 3,351.4 30,826.4 0.9 302.8 3,035.0 2,665.5 22,736.3 4,753.3 6,951.6 8,049.0 7,242.6 6,463.7 14.6 69,571.3 13,455.0 17,118.0 7,845.0 11.9 42,054.7 -4,336.9 12,326.7 1,668.7 10,250.0 6.5 -8.3 5,229.2 167.6 11,693.2 1,187.5 17,667.9 4,756.5 54,576.9 9,173.3 DQN 1,620.0 978.0 4,280.4 4,359.0 1,364.5 279,987.0 455.0 29,900.0 8,627.5 585.6 50.4 88.0 385.5 4,657.7 6,126.0 110,763.0 23,633.0 12,149.4 -6.6 729.0 -4.9 30.8 797.4 8,777.4 473.0 20,437.8 -1.9 768.5 7,259.0 8,422.3 26,059.0 0.0 3,085.6 8,207.8 8,485.2 -286.1 19.5 146.7 13,117.3 7,377.6 39,544.0 63.9 5,860.6 -13,062.3 3,482.8 1,692.3 54,282.0 -5.6 12.2 4,870.0 68.1 9,989.9 163.0 196,760.4 2,704.0 18,098.9 5,363.0 DDQN 3,747.7 1,793.3 5,393.2 17,356.5 734.7 106,056.0 1,030.6 31,700.0 13,772.8 1,225.4 68.1 91.6 418.5 5,409.4 5,809.0 117,282.0 35,338.5 58,044.2 -5.5 1,211.8 15.5 33.3 1,683.3 14,840.8 412.0 20,130.2 -2.7 1,358.0 12,992.0 7,920.5 29,710.0 0.0 2,711.4 10,616.0 12,252.5 -29.9 20.9 129.7 15,088.5 14,884.5 44,127.0 65.1 16,452.7 -9,021.8 3,067.8 2,525.5 60,142.0 -2.9 -22.8 8,339.0 218.4 22,972.2 98.0 309,941.9 7,492.0 11,712.6 10,163.0 DUEL 4,461.4 2,354.5 4,621.0 28,188.0 2,837.7 382,572.0 1,611.9 37,150.0 12,164.0 1,472.6 65.5 99.4 345.3 7,561.4 11,215.0 143,570.0 42,214.0 60,813.3 0.1 2,258.2 46.4 0.0 4,672.8 15,718.4 588.0 20,818.2 0.5 1,312.5 14,854.0 11,451.9 34,294.0 0.0 6,283.5 11,971.1 23,092.2 0.0 21.0 103.0 19,220.3 21,162.6 69,524.0 65.3 50,254.2 -8,857.4 2,250.8 6,427.3 89,238.0 4.4 5.1 11,666.0 211.4 44,939.6 497.0 98,209.5 7,855.0 49,622.1 12,944.0 PRIOR. DUEL. 3,941.0 2,296.8 11,477.0 375,080.0 1,192.7 395,762.0 1,503.1 35,520.0 30,276.5 3,409.0 46.7 98.9 366.0 7,687.5 13,185.0 162,224.0 41,324.5 72,878.6 -12.5 2,306.4 41.3 33.0 7,413.0 104,368.2 238.0 21,036.5 -0.4 812.0 1,792.0 10,374.4 48,375.0 0.0 3,327.3 15,572.5 70,324.3 0.0 20.9 206.0 18,760.3 20,607.6 62,151.0 27.5 931.6 -19,949.9 133.4 15,311.5 125,117.0 1.2 0.0 7,553.0 245.9 33,879.1 48.0 479,197.0 12,352.0 69,618.1 13,886.0 C51 3,166 1,735 7,203 406,211 1,516 841,075 976 28,742 14,074 1,645 81.8 97.8 748 9,646 15,600 179,877 47,092 130,955 2.5 3,454 8.9 33.9 3,965 33,641 440 38,874 -3.5 1,909 12,853 9,735 48,192 0.0 3,415 12,542 17,490 0.0 20.9 15,095 23,784 17,322 55,839 52.3 266,434 -13,901 8,342 5,747 49,095 6.8 23.1 8,329 280 15,612 1,520 949,604 9,300 35,050 10,513""" mnih_2013_table_1 = """Random Sarsa [3] Contingency [4] DQN Human HNeat Best [8] HNeat Pixel [8] DQN Best B. Rider Breakout Enduro Pong Q*bert Seaquest S. Invaders 354 996 1743 4092 7456 3616 1332 5184 1.2 5.2 6 168 31 52 4 225 0 129 159 470 368 106 91 661 −20.4 −19 −17 20 −3 19 −16 21 157 614 960 1952 18900 1800 1325 4500 110 665 723 1705 28010 920 800 1740 179 271 268 581 3690 1720 1145 1075""" van_hasselt_2016_table1 = """Game Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar H.E.R.O. Ice Hockey James Bond Kangaroo Krull Kung-Fu Master Montezuma’s Revenge Ms. Pacman Name This Game Phoenix Pitfall Pong Private Eye Q*Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Surround Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard of Wor Yars Revenge Zaxxon Random 227.80 5.80 222.40 210.00 719.10 12850.00 14.20 2360.00 363.90 123.70 23.10 0.10 1.70 2090.90 811.00 10780.50 2874.50 152.10 −18.60 0.00 −91.70 0.00 65.20 257.60 173.00 1027.00 −11.20 29.00 52.00 1598.00 258.50 0.00 307.30 2292.30 761.40 −229.40 −20.70 24.90 163.90 1338.50 11.50 2.20 68.40 −17098.10 1236.30 148.00 664.00 −10.00 −23.80 3568.00 11.40 533.40 0.00 16256.90 563.50 3092.90 32.50 Human 7127.70 1719.50 742.00 8503.30 47388.70 29028.10 753.10 37187.50 16926.50 2630.40 160.70 12.10 30.50 12017.00 7387.80 35829.40 18688.90 1971.00 −16.40 860.50 −38.70 29.60 4334.70 2412.50 3351.40 30826.40 0.90 302.80 3035.00 2665.50 22736.30 4753.30 6951.60 8049.00 7242.60 6463.70 14.60 69571.30 13455.00 17118.00 7845.00 11.90 42054.70 −4336.90 12326.70 1668.70 10250.00 6.50 −8.30 5229.20 167.60 11693.20 1187.50 17667.90 4756.50 54576.90 9173.30 Double DQN 3747.70 1793.30 5393.20 17356.50 734.70 106056.00 1030.60 31700.00 13772.80 1225.40 68.10 91.60 418.50 5409.40 5809.00 117282.00 35338.50 58044.20 −5.50 1211.80 15.50 33.30 1683.30 14840.80 412.00 20130.20 −2.70 1358.00 12992.00 7920.50 29710.00 0.00 2711.40 10616.00 12252.50 −29.90 20.90 129.70 15088.50 14884.50 44127.00 65.10 16452.70 −9021.80 3067.80 2525.50 60142.00 −2.90 −22.80 8339.00 218.40 22972.20 98.00 309941.90 7492.00 11712.60 10163.00 Double DQN with Pop-Art 3213.50 782.50 9011.60 18919.50 2869.30 340076.00 1103.30 8220.00 8299.40 1199.60 102.10 99.30 344.10 49065.80 775.00 119679.00 11099.00 63644.90 −11.50 2002.10 45.10 33.40 3469.60 56218.20 483.50 14225.20 −4.10 507.50 13150.00 9745.10 34393.00 0.00 4963.80 15851.20 6202.50 −2.60 20.60 286.70 5236.80 12530.80 47770.00 64.30 10932.30 −13585.10 4544.80 2589.70 589.00 −2.50 12.10 4870.00 183.90 22474.40 1172.00 56287.00 483.00 21409.50 14402.00""" # COLUMN-ORIENTED processing remove_re = re.compile(r"['’!\.]") underscore_re = re.compile(r"[ \-\*]") def game_metric_name(s): "Calculate the name of the Metric() object from a game's name" name = s.strip().lower() name = remove_re.sub("", name) name = underscore_re.sub("_", name) name = name.replace("pac_man", "pacman") # the papers are inconsistent; "Pac-Man" is most correct but pacman most pythonic return name + "_metric" verb = False # Set to True for debugging TSIZE = 57 # Number of games reported in the more recent papers def get_game_metric(metric_name, human_name, target, target_source): """Get a reference to the metric object for a game, creating it if necessary.""" metric = globals().get(metric_name, None) if not metric: if verb: print("Creating metric for", human_name, "target: " + str(target) if target else "") metric = simple_games.metric("Atari 2600 " + human_name, target=target, scale=atari_linear, target_source=target_source) globals()[metric_name] = metric return metric def get_column(raw, n, size=TSIZE): assert isinstance(raw, list), "Not a list: {0}".format(type(raw)) start_pos = n * (size + 1) # Size + headers name = raw[start_pos] data = raw[start_pos + 1:start_pos + size + 1] return name, data def ingest_column(src, n, paper_url, alg=None, extras={}, size=TSIZE): algorithm, data = get_column(src, n, size=size) _, games = get_column(src, 0, size=size) if verb and algorithm.lower() not in alg.lower(): print(u"# {0} not in {1}".format(algorithm, alg)) for i, score in enumerate(data): # Maybe someone should fix Python's float() function... score = float(score.replace(",", "").replace('\xe2\x88\x92', "-").replace("−", "-")) game = game_metric_name(games[i]) metric = get_game_metric(game, games[i], targets[i], "https://arxiv.org/abs/1509.06461") if verb: print(u'{0}.measure(None, {1}, "{2}", url="{3}"{4})'.format(game, score, alg, paper_url, extras if extras else "")) metric.measure(None, score, alg, url=paper_url, **extras) noop_data = wang_table_2.split("\n") human_start_data = wang_table_3.split("\n") es_data = es_table3.split("\n") distributional_data = bellemare_figure_14.split("\n") early_data = mnih_2013_table_1.split("\n") pop_art_data = van_hasselt_2016_table1.split("\n") # Weirdly, the noop start human performance is consistently better than the human start human performance data # Is this because it's newer and at a higher standard? Or because the recorded human starts consistently hamper strong # human play? _, human_noop = get_column(noop_data, 3) human_noop = [float(score.replace(",", "")) for score in human_noop] _, human_human = get_column(human_start_data, 3) human_human = [float(score.replace(",", "")) for score in human_human] targets = [max(scores) for scores in zip(human_noop, human_human)] #ingest_column(early_data, 2, "https://arxiv.org/abs/1312.5602", u"SARSA(λ)", # {"algorithm_src_url": "https://arxiv.org/abs/1207.4708v1"}, size=7) ingest_column(es_data, 3, "https://arxiv.org/abs/1703.03864v1", "ES FF (1 hour) noop", size=51) ingest_column(distributional_data, 7, "https://arxiv.org/abs/1707.06887v1", "C51 noop") ingest_column(pop_art_data, 4, "https://arxiv.org/abs/1602.07714v1", "DDQN+Pop-Art noop") ingest_column(noop_data, 4, "https://arxiv.org/abs/1509.06461v1", "DQN noop", {"algorithm_src_url": "https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf", "min_date": date(2015, 2, 26)}) ingest_column(human_start_data, 4, "https://arxiv.org/abs/1509.06461v1", "DQN hs", {"algorithm_src_url": "https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf", "min_date": date(2015, 2, 26)}) # v1 of the DDQN paper reported only "untuned" results # TODO import those "untuned" results. May require OCR due to missing table columns... # v3 of that paper added "tuned" results for the hs condition # However this (presumably tuned) DDQN noop data is included by Wang et al but seems NOT to be in the DDQN paper. # Conjecture, did Wang et al first report it? ingest_column(noop_data, 5, "https://arxiv.org/abs/1511.06581v1", "DDQN (tuned) noop", {"algorithm_src_url": "https://arxiv.org/abs/1509.06461v3"}) ingest_column(human_start_data, 5, "https://arxiv.org/abs/1509.06461v3", alg="DDQN (tuned) hs") ingest_column(noop_data, 6, "https://arxiv.org/abs/1511.06581v1", alg="Duel noop") ingest_column(human_start_data, 6, "https://arxiv.org/abs/1511.06581v1", alg="Duel hs") ingest_column(noop_data, 7, "https://arxiv.org/abs/1511.05952", alg="Prior noop") ingest_column(human_start_data, 7, "https://arxiv.org/abs/1511.05952", alg="Prior hs") ingest_column(noop_data, 8, "https://arxiv.org/abs/1511.06581v3", "Prior+Duel noop", {"algorithm_src_url":"https://arxiv.org/abs/1511.05952"}) ingest_column(human_start_data, 8, "https://arxiv.org/abs/1509.06461v3", "Prior+Duel hs", {"algorithm_src_url":"https://arxiv.org/abs/1511.05952"}) # ROW-ORIENTED DATA # The row parsers are harder and need to be customized per table, essentially # OCR output: mnih_extended_table_2 = """Game Random Play Best Linear Learner Contingency (SARSA) Human DQN (± std) Normalized DQN (% Human) Alien 227.8 939.2 103.2 6875 3069 (±1093) 42.7% Amidar 5.8 103.4 183.6 1676 739.5 (±3024) 43.9% Assault 222.4 628 537 1496 3359 (±775) 246.2% Asterix 210 987.3 1332 8503 6012 (±1744) 70.0% Asteroids 719.1 907.3 89 13157 1629 (±542) 7.3% Atlantis 12850 62687 852.9 29028 85641 (±17600) 449.9% Bank Heist 14.2 190.8 67.4 734.4 429.7 (±650) 57.7% Battle Zone 2360 15820 16.2 37800 26300 (±7725) 67.6% Beam Rider 363.9 929.4 1743 5775 6846 (±1619) 119.8% Bowling 23.1 43.9 36.4 154.8 42.4 (±88) 14.7% Boxing 0.1 44 9.8 4.3 71.8 (±8.4) 1707.9% Breakout 1.7 5.2 6.1 31.8 401.2 (±26.9) 1327.2% Centipede 2091 8803 4647 11963 8309 (±5237) 63.0% Chopper Command 811 1582 16.9 9882 6687 (±2916) 64.8% Crazy Climber 10781 23411 149.8 35411 114103 (±22797) 419.5% Demon Attack 152.1 520.5 0 3401 9711 (±2406) 294.2% Double Dunk -18.6 -13.1 -16 -15.5 -18.1 (±2.6) 17.1% Enduro 0 129.1 159.4 309.6 301.8 (±24.6) 97.5% Fishing Derby -91.7 -89.5 -85.1 5.5 -0.8 (±19.0) 93.5% Freeway 0 19.1 19.7 29.6 30.3 (±0.7) 102.4% Frostbite 65.2 216.9 180.9 4335 328.3 (±250.5) 6.2% Gopher 257.6 1288 2368 2321 8520 (±3279) 400.4% Gravitar 173 387.7 429 2672 306.7 (±223.9) 5.3% H.E.R.O. 1027 6459 7295 25763 19950 (±158) 76.5% Ice Hockey -11.2 -9.5 -3.2 0.9 -1.6 (±2.5) 79.3% James Bond 29 202.8 354.1 406.7 576.7 (±175.5) 145.0% Kangaroo 52 1622 8.8 3035 6740 (±2959) 224.2% Krull 1598 3372 3341 2395 3805 (±1033) 277.0% Kung-Fu Master 258.5 19544 29151 22736 23270 (±5955) 102.4% Montezuma's Revenge 0 10.7 259 4367 0 (±0) 0.0% Ms. Pacman 307.3 1692 1227 15693 2311 (±525) 13.0% Name This Game 2292 2500 2247 4076 7257 (±547) 278.3% Pong -20.7 -19 -17.4 9.3 18.9 (±1.3) 132.0% Private Eye 24.9 684.3 86 69571 1788 (±5473) 2.5% Q*Bert 163.9 613.5 960.3 13455 10596 (±3294) 78.5% River Raid 1339 1904 2650 13513 8316 (±1049) 57.3% Road Runner 11.5 67.7 89.1 7845 18257 (±4268) 232.9% Robotank 2.2 28.7 12.4 11.9 51.6 (±4.7) 509.0% Seaquest 68.4 664.8 675.5 20182 5286 (±1310) 25.9% Space Invaders 148 250.1 267.9 1652 1976 (±893) 121.5% Star Gunner 664 1070 9.4 10250 57997 (±3152) 598.1% Tennis -23.8 -0.1 0 -8.9 -2.5 (±1.9) 143.2% Time Pilot 3568 3741 24.9 5925 5947 (±1600) 100.9% Tutankham 11.4 114.3 98.2 167.6 186.7 (±41.9) 112.2% Up and Down 533.4 3533 2449 9082 8456 (±3162) 92.7% Venture 0 66 0.6 1188 380 (±238.6) 32.0% Video Pinball 16257 16871 19761 17298 42684 (±16287) 2539.4% Wizard of Wor 563.5 1981 36.9 4757 3393 (±2019) 67.5% Zaxxon 32.5 3365 21.4 9173 4977 (±1235) 54.1%""" nature_rows = mnih_extended_table_2.split("\n")[1:] name_re = re.compile(r'[^0-9\t]+') for row in nature_rows: match = name_re.match(row) game = game_metric_name(match.group(0)) rest = name_re.sub("", row, 1) cols = rest.split() random, bll, sarsa, human, dqn, dqn_err, norm = cols dqn, sarsa, bll = float(dqn), float(sarsa), float(bll) dqn_err = float(re.search("[0-9]+", dqn_err).group(0)) globals()[game].measure(date(2015, 2, 26), dqn, 'Nature DQN', url='https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf', papername="Human-level control through deep reinforcement learning", uncertainty=dqn_err) # The Mnih et al. Nature paper attributes these SARSA results to this paper, # but the paper doesn't actually seem to include them? globals()[game].measure(date(2012, 7, 14), sarsa, 'SARSA', url='https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5162', papername="Investigating Contingency Awareness Using Atari 2600 Games") globals()[game].measure(None, bll, 'Best linear', url='https://arxiv.org/abs/1207.4708v1') if verb: print("{0}.measure(None, {1}, 'Nature DQN', papername='Human-level control through deep reinforcement learning' " "url='https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf'" ", uncertainty={2})".format(game, dqn, dqn_err)) a3c_table_s3 = """Game DQN Gorila Double Dueling Prioritized A3C FF, 1 day A3C FF A3C LSTM Alien 570.2 813.5 1033.4 1486.5 900.5 182.1 518.4 945.3 Amidar 133.4 189.2 169.1 172.7 218.4 283.9 263.9 173.0 Assault 3332.3 1195.8 6060.8 3994.8 7748.5 3746.1 5474.9 14497.9 Asterix 124.5 3324.7 16837.0 15840.0 31907.5 6723.0 22140.5 17244.5 Asteroids 697.1 933.6 1193.2 2035.4 1654.0 3009.4 4474.5 5093.1 Atlantis 76108.0 629166.5 319688.0 445360.0 593642.0 772392.0 911091.0 875822.0 Bank Heist 176.3 399.4 886.0 1129.3 816.8 946.0 970.1 932.8 Battle Zone 17560.0 19938.0 24740.0 31320.0 29100.0 11340.0 12950.0 20760.0 Beam Rider 8672.4 3822.1 17417.2 14591.3 26172.7 13235.9 22707.9 24622.2 Berzerk 1011.1 910.6 1165.6 1433.4 817.9 862.2 Bowling 41.2 54.0 69.6 65.7 65.8 36.2 35.1 41.8 Boxing 25.8 74.2 73.5 77.3 68.6 33.7 59.8 37.3 Breakout 303.9 313.0 368.9 411.6 371.6 551.6 681.9 766.8 Centipede 3773.1 6296.9 3853.5 4881.0 3421.9 3306.5 3755.8 1997.0 Chopper Command 3046.0 3191.8 3495.0 3784.0 6604.0 4669.0 7021.0 10150.0 Crazy Climber 50992.0 65451.0 113782.0 124566.0 131086.0 101624.0 112646.0 138518.0 Defender 27510.0 33996.0 21093.5 36242.5 56533.0 233021.5 Demon Attack 12835.2 14880.1 69803.4 56322.8 73185.8 84997.5 113308.4 115201.9 Double Dunk -21.6 -11.3 -0.3 -0.8 2.7 0.1 -0.1 0.1 Enduro 475.6 71.0 1216.6 2077.4 1884.4 -82.2 -82.5 -82.5 Fishing Derby -2.3 4.6 3.2 -4.1 9.2 13.6 18.8 22.6 Freeway 25.8 10.2 28.8 0.2 27.9 0.1 0.1 0.1 Frostbite 157.4 426.6 1448.1 2332.4 2930.2 180.1 190.5 197.6 Gopher 2731.8 4373.0 15253.0 20051.4 57783.8 8442.8 10022.8 17106.8 Gravitar 216.5 538.4 200.5 297.0 218.0 269.5 303.5 320.0 H.E.R.O. 12952.5 8963.4 14892.5 15207.9 20506.4 28765.8 32464.1 28889.5 Ice Hockey -3.8 -1.7 -2.5 -1.3 -1.0 -4.7 -2.8 -1.7 James Bond 348.5 444.0 573.0 835.5 3511.5 351.5 541.0 613.0 Kangaroo 2696.0 1431.0 11204.0 10334.0 10241.0 106.0 94.0 125.0 Krull 3864.0 6363.1 6796.1 8051.6 7406.5 8066.6 5560.0 5911.4 Kung-Fu Master 11875.0 20620.0 30207.0 24288.0 31244.0 3046.0 28819.0 40835.0 Montezuma’s Revenge 50.0 84.0 42.0 22.0 13.0 53.0 67.0 41.0 Ms. Pacman 763.5 1263.0 1241.3 2250.6 1824.6 594.4 653.7 850.7 Name This Game 5439.9 9238.5 8960.3 11185.1 11836.1 5614.0 10476.1 12093.7 Phoenix 12366.5 20410.5 27430.1 28181.8 52894.1 74786.7 Pit Fall -186.7 -46.9 -14.8 -123.0 -78.5 -135.7 Pong 16.2 16.7 19.1 18.8 18.9 11.4 5.6 10.7 Private Eye 298.2 2598.6 -575.5 292.6 179.0 194.4 206.9 421.1 Q*Bert 4589.8 7089.8 11020.8 14175.8 11277.0 13752.3 15148.8 21307.5 River Raid 4065.3 5310.3 10838.4 16569.4 18184.4 10001.2 12201.8 6591.9 Road Runner 9264.0 43079.8 43156.0 58549.0 56990.0 31769.0 34216.0 73949.0 Robotank 58.5 61.8 59.1 62.0 55.4 2.3 32.8 2.6 Seaquest 2793.9 10145.9 14498.0 37361.6 39096.7 2300.2 2355.4 1326.1 Skiing -11490.4 -11928.0 -10852.8 -13700.0 -10911.1 -14863.8 Solaris 810.0 1768.4 2238.2 1884.8 1956.0 1936.4 Space Invaders 1449.7 1183.3 2628.7 5993.1 9063.0 2214.7 15730.5 23846.0 Star Gunner 34081.0 14919.2 58365.0 90804.0 51959.0 64393.0 138218.0 164766.0 Surround 1.9 4.0 -0.9 -9.6 -9.7 -8.3 Tennis -2.3 -0.7 -7.8 4.4 -2.0 -10.2 -6.3 -6.4 Time Pilot 5640.0 8267.8 6608.0 6601.0 7448.0 5825.0 12679.0 27202.0 Tutankham 32.4 118.5 92.2 48.0 33.6 26.1 156.3 144.2 Up and Down 3311.3 8747.7 19086.9 24759.2 29443.7 54525.4 74705.7 105728.7 Venture 54.0 523.4 21.0 200.0 244.0 19.0 23.0 25.0 Video Pinball 20228.1 112093.4 367823.7 110976.2 374886.9 185852.6 331628.1 470310.5 Wizard of Wor 246.0 10431.0 6201.0 7054.0 7451.0 5278.0 17244.0 18082.0 Yars Revenge 6270.6 25976.5 5965.1 7270.8 7157.5 5615.5 Zaxxon 831.0 6159.4 8593.0 10164.0 9501.0 2659.0 24622.0 23519.0""" # Caption: # Table S3. Raw scores for the human start condition (30 minutes emulator time). DQN scores taken from (Nair et al., # 2015). Double DQN scores taken from (Van Hasselt et al., 2015), Dueling scores from (Wang et al., 2015) and # Prioritized scores taken from (Schaul et al., 2015) a3c_rows = a3c_table_s3.split("\n")[1:] for row in a3c_rows: cols = row.split("\t") game, dqn, gorila, ddqn, duel, prior, a3c_ff_1, a3c_ff, a3c_lstm = cols game1 = game_metric_name(game) metric = get_game_metric(game1, game, None, None) for alg, score in [("A3C FF (1 day) hs", a3c_ff_1), ("A3C FF hs", a3c_ff), ("A3C LSTM hs", a3c_lstm)]: score = float(score) metric.measure(None, score, alg, url="https://arxiv.org/abs/1602.01783") if verb: print('{0}.measure(None, {1}, "{2}", url="{3}")'.format(game1, score, alg, "https://arxiv.org/abs/1602.01783")) try: score = float(gorila) metric.measure(None, score, "Gorila", url="https://arxiv.org/abs/1507.04296") if verb: print('{0}.measure(None, {1}, "Gorila", url="{2}")'.format(game1, score, "https://arxiv.org/abs/1507.04296")) except ValueError: if verb: print("No Gorila score for", game) # vim: set list:listchars=tab:!·,trail:·
AI-metrics-master
scrapers/atari.py
AI-metrics-master
scrapers/__init__.py
#!/usr/bin/env ipython import re import os import lxml from lxml.cssselect import CSSSelector import requests from taxonomy import offline from data.vision import * # So we can pipe the output of this code somewhere os.environ["PYTHONIOENCODING"] = "utf-8" # Rodriguo Benenson's "Are We There Yet?" data! reimport_awty = True if reimport_awty and not offline: # Fetch the summary page awty_url = "https://rodrigob.github.io/are_we_there_yet/build/" req = requests.get(awty_url) page = req.content.replace("</html>", "", 1) # There is a crazy weird </html> near the top of the page that breaks everything tree = lxml.html.fromstring(page) from urlparse import urlparse awty_datasets = {} if reimport_awty and not offline: for e in CSSSelector('div.span7')(tree): #print dir(e) node = e.getchildren()[0].getchildren()[0] link = node.attrib["href"] metric_name = node.text_content() print "%40s" % metric_name, link awty_datasets[metric_name] = urlparse(link) try: got = json.load(open(".awty_cache.json")) except: got = {} # For lots of AWTY data, there's no date but there is a conference, so we can look up the dates that way. conf_dates = {} def parse_awty_dataset(name, link, verbose=False): if offline or not reimport_awty: return [] print "# Handling", repr(name), link.geturl() if link.path not in got: page = requests.get(awty_url + link.path).content tree = lxml.html.fromstring(page.replace("</html>", "", 1)) got[link.path] = tree else: tree = got[link.path] #print dir(tree) #print "fragment:", link.fragment #print page results_section = CSSSelector("div#" + link.fragment)(tree)[0] rows = CSSSelector("tr")(results_section) results = [] for r in rows[1:]: result, paperlink, journal, details = CSSSelector("td")(r) result, papername, journal = [e.text_content() for e in (result, paperlink, journal)] notes = CSSSelector("div")(details) notes = notes[0].text_content().strip() if notes else "" notes = re.sub("\s+", " ", notes, flags=re.UNICODE) assert isinstance(notes, str) or isinstance(notes, unicode), "Expecting stringy notes %s " % type(notes) if "%" not in result: print "# Skipping", result, papername, journal continue if verbose: print "%6s" % result, "%90s" % papername, "%10s" %journal, notes e = CSSSelector("a")(paperlink) paper_url = e[0].attrib["href"] if e else None results.append((result, papername, paper_url, journal, notes)) return results percent_re = re.compile(r'([0-9.]+) *% *(\(?±([0-9\.]+))?') done = {} def ingest_awty_dataset(name, metric, label, regex=percent_re): if offline or not reimport_awty: #print "Offline, not ingesting", name return None done[name] = True for n, (result, papername, paper_url, journal, notes) in enumerate(parse_awty_dataset(name, awty_datasets[name])): try: match = regex.match(result) value = float(match.group(1)) except AttributeError: print "result", result, "does not parse" continue try: uncertainty = float(match.group(3)) if match.group(3) else 0.0 except IndexError: uncertainty = 0.0 #if "Graph Cut based inference" in papername or "Spatial and Global Constraints Really" in papername or (paper_url and'http://research.microsoft.com/en-us/um/people/pkohli/papers/lrkt_eccv2010.pdf' in paper_url): print "%s.measure(%s, %r, %r, url=%r, papername=%r, uncertainty=%r, venue=%r, notes=%r)" % ( label, None, value, papername, paper_url, papername, uncertainty, journal, notes) try: metric.measure(None, value, papername, url=paper_url, papername=papername, uncertainty=uncertainty, venue=journal, notes=notes) except requests.ConnectionError, e: print "Network error on {0} ({1}), skipping:".format(paper_url, papername) print e msrc21_pc = image_classification.metric("MSRC-21 image semantic labelling (per-class)", "http://jamie.shotton.org/work/data.html", scale=correct_percent) msrc21_pp = image_classification.metric("MSRC-21 image semantic labelling (per-pixel)", "http://jamie.shotton.org/work/data.html", scale=correct_percent) cifar100 = image_classification.metric("CIFAR-100 Image Recognition", "http://https://www.cs.toronto.edu/~kriz/cifar.html", scale=correct_percent) cifar10 = image_classification.metric("CIFAR-10 Image Recognition", "http://https://www.cs.toronto.edu/~kriz/cifar.html", scale=correct_percent, target=94, target_source="http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/") svhn = image_classification.metric("Street View House Numbers (SVHN)", "http://ufldl.stanford.edu/housenumbers/", scale=error_percent, target=2.0, target_source="http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf") # We declare MNIST solved because the gap between best performance and human performance appears to be less than the uncertainty in human performance mnist = image_classification.metric("MNIST handwritten digit recognition", "http://yann.lecun.com/exdb/mnist/", scale=error_percent, target=0.2, target_source="http://people.idsia.ch/~juergen/superhumanpatternrecognition.html", solved=True) # This awty URL broken mnist.measure(date(2013,2,28), 0.52, 'COSFIRE', 'http://www.rug.nl/research/portal/files/2390194/2013IEEETPAMIAzzopardi.pdf', papername='Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition') # awty transcribes what's in this paper, but it seems to somehow have confused, wildly different units from everything else: for i, m in enumerate(mnist.measures): if m.url == "http://personal.ie.cuhk.edu.hk/~ccloy/files/aaai_2015_target_coding.pdf": del mnist.measures[i] stl10 = image_classification.metric("STL-10 Image Recognition", "https://cs.stanford.edu/~acoates/stl10/", scale=correct_percent) if not offline: ingest_awty_dataset('STL-10', stl10, 'stl10') leeds_sport_poses = image_classification.metric("Leeds Sport Poses") if reimport_awty and not offline: ingest_awty_dataset('SVHN', svhn, 'svhn') ingest_awty_dataset('CIFAR-100', cifar100, 'cifar100') ingest_awty_dataset('CIFAR-10', cifar10, 'cifar10') ingest_awty_dataset('MNIST', mnist, 'mnist') ingest_awty_dataset('MSRC-21', msrc21_pc, 'msrc21_pc') ingest_awty_dataset('MSRC-21', msrc21_pp, 'msrc21_pp', regex=re.compile("[0-9.]+ *% */ * ([0-9.]+) *%")) for name, link in awty_datasets.items(): if not link.scheme and name not in done: parse_awty_dataset(name, link, verbose=True)
AI-metrics-master
scrapers/awty.py
import os import re import string import urllib2 from BeautifulSoup import BeautifulSoup from dateutil import parser import mistune from data.acoustics import speech_recognition from scales import error_rate # or error_percent? from taxonomy import offline # needs to be manually updated when more metrics are added h2_name_map = { "LibriSpeech" : "librispeech", "WSJ" : "wsj", "Switchboard Hub5'00" : "swb_hub_500", "Fisher" : "fisher", "CHiME (noisy speech)" : "chime", "TIMIT" : "timit" } def get_metrics(h2_name, first_row, file_output, scale = "error_percent", targets = (None, None), target_source = None): metric_names = [] name = h2_name_map[h2_name] if name == "": raise SystemExit("Error! Need to add h2_name to h2_name_map to be able to parse!") for column, target in zip(first_row, targets): column = str(column.getText()).translate(None, string.punctuation) metric_name = str(name + "_" + "_".join(re.findall(r"[\w']+", column))).replace("test", "") metric_names.append(metric_name) if targets != (None, None): s = "{0} = speech_recognition.metric(name=\"{1} {2}\", scale={3}, target={4}, target_source=\"{5}\")\n".format(metric_name, name, column, scale, target, target_source) else: s = "{0} = speech_recognition.metric(name=\"{1} {2}\", scale={3})\n".format(metric_name, name, column, scale) file_output += s return (metric_names, file_output) def add_measures(metric_names, row): def row_data(row): columns = row.findAll('td') l = len(columns) url = columns[l-3].find('a', href=True)['href'] columns = map(lambda x: x.getText(), columns) date = str(parser.parse(columns[l-2]).date()).split("-") date = "date({0}, {1}, {2})".format(int(date[0]), int(date[1]), int(date[2])) r = { 'name': columns[l-1].encode('ascii', 'ignore'), 'date': date, 'url': url, 'values': map(lambda x: x.strip('%'), columns[:-3]) } return r data = row_data(row) notes = data['name'] targets = [] if notes == "Humans": targets = data['values'] return ([], targets, data['url']) table = [] for metric_name, value in zip(metric_names, data['values']): if not value: continue s = "{0}.measure({1}, {2}, '{3}', '{4}')\n".format(metric_name, data['date'], value, notes, data['url']) table.append(s) return (table, targets, '') def main(): md = urllib2.urlopen('https://raw.githubusercontent.com/syhw/wer_are_we/master/README.md').read() bs = BeautifulSoup(mistune.markdown(md)) wer_data_file = os.path.abspath(os.path.join(os.path.dirname(__file__), "../data/wer.py")) file_output = "# The file was autogenerated by ../scrapers/wer.py\n\nfrom datetime import date\n\nfrom data.acoustics import speech_recognition, swb_hub_500\nfrom scales import *\n\n" wer_metrics = [] for table, header in zip(bs.findAll('table'), bs.findAll('h3')): header = header.getText() rows = table.findAll('tr') metric_data = get_metrics(header, rows[0].findAll('th')[:-3], file_output) metric_names = metric_data[0] wer_metrics += metric_names table_data = [] for row in rows: if row.findAll('td') == []: continue measure_data, targets, target_source = add_measures(metric_names, row) if not targets: table_data += measure_data elif not measure_data: metric_data = get_metrics(header, rows[0].findAll('th')[:-3], file_output, targets = targets, target_source = target_source) file_output = metric_data[1] file_output += "".join(sorted(table_data)) file_output = file_output + "\n\nwer_metrics=[" + ", ".join(wer_metrics) + "]" with open(wer_data_file, 'wb') as f: f.write(file_output) if not offline: main()
AI-metrics-master
scrapers/wer.py
# Absorb the data from https://arxiv.org/abs/1703.03864v1 # Copy and paste from Table 3: table3 = """Game Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Ice Hockey Kangaroo Krull Montezumas Revenge Name This Game Phoenix Pit Fall Pong Private Eye Q Bert River Raid Road Runner Robotank Seaquest Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up and Down Venture Video Pinball Wizard of Wor Yars Revenge Zaxxon DQN 570.2 133.4 3332.3 124.5 697.1 76108.0 176.3 17560.0 8672.4 NaN 41.2 25.8 303.9 3773.1 3046.0 50992.0 12835.2 -21.6 475.6 -2.3 25.8 157.4 2731.8 216.5 -3.8 2696.0 3864.0 50.0 5439.9 NaN NaN 16.2 298.2 4589.8 4065.3 9264.0 58.5 2793.9 NaN NaN 1449.7 34081.0 -2.3 5640.0 32.4 3311.3 54.0 20228.1 246.0 NaN 831.0 A3C FF, 1 day 182.1 283.9 3746.1 6723.0 3009.4 772392.0 946.0 11340.0 13235.9 1433.4 36.2 33.7 551.6 3306.5 4669.0 101624.0 84997.5 0.1 -82.2 13.6 0.1 180.1 8442.8 269.5 -4.7 106.0 8066.6 53.0 5614.0 28181.8 -123.0 11.4 194.4 13752.3 10001.2 31769.0 2.3 2300.2 -13700.0 1884.8 2214.7 64393.0 -10.2 5825.0 26.1 54525.4 19.0 185852.6 5278.0 7270.8 2659.0 ES FF, 1 hour 994.0 112.0 1673.9 1440.0 1562.0 1267410.0 225.0 16600.0 744.0 686.0 30.0 49.8 9.5 7783.9 3710.0 26430.0 1166.5 0.2 95.0 -49.0 31.0 370.0 582.0 805.0 -4.1 11200.0 8647.2 0.0 4503.0 4041.0 0.0 21.0 100.0 147.5 5009.0 16590.0 11.9 1390.0 -15442.5 2090.0 678.5 1470.0 -4.5 4970.0 130.3 67974.0 760.0 22834.8 3480.0 16401.7 6380.0""" data = table3.split("\n") names = data[1:52] dqn = data[53:104] a3cs = data[105:156] ess = data[157:] for name, a3c, es in zip(names, a3cs, ess): metric_name = name.lower().replace(" ", "_") + "_metric" a3c_score = float(a3c) es_score = float(es) print metric_name + ".measure(None, "+ `es_score` + ', "ES (1 hour)", url="https://arxiv.org/abs/1703.03864v1")' print metric_name + ".measure(None, "+ `a3c_score` + ', "A3C FF (1 day)", url="https://arxiv.org/abs/1703.03864v1", algorithm_src_url="https://arxiv.org/pdf/1602.01783.pdf", min_date=date(2016,2,4))'
AI-metrics-master
scrapers/es.py
from taxonomy import Problem from scales import * import datetime date = datetime.date abstract_strategy_games = Problem("Abstract strategy games", ["agi", "abstract-games"]) playing_with_hints = Problem("Playing abstract games with extensive hints", ["abstract-games"], solved=True) abstract_strategy_games.add_subproblem(playing_with_hints) playing_with_hints.notes = """ Complex abstract strategy games have been solved to super-human levels by computer systems with extensive rule-hinting and heuristics, in some cases combined with machine learning techniques. """ computer_chess = playing_with_hints.metric("Computer Chess", scale=elo, target=2882, target_label="Best human play", target_source="https://en.wikipedia.org/w/index.php?title=Comparison_of_top_chess_players_throughout_history&oldid=777500496#Elo_system") computer_go = playing_with_hints.metric("Computer Go", scale=elo, target=3632, target_label="Best human play", target_source="https://www.goratings.org/en/history/") computer_go.solved = True # until we get proper data # For some caveats, see https://en.wikipedia.org/w/index.php?title=Chess_engine&oldid=764341963#Ratings # We could script ingestion of data from CCRL, or get data from Katja computer_chess.measure(date(1997,5,11), 2725, "Deep Blue", uncertainty=25, url="https://www.quora.com/What-was-Deep-Blues-Elo-rating") computer_chess.measure(date(2006,5,27), 2995, "Rybka 1.1 64bit", uncertainty=25, url="https://web.archive.org/web/20060531091049/http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html") computer_chess.measure(date(2010,8,7), 3269, "Rybka 4 64bit", uncertainty=22, url="https://web.archive.org/web/20100923131123/http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html") computer_chess.measure(date(2013,7,20), 3248, "Houdini 3 64bit", uncertainty=16, url="https://web.archive.org/web/20130415000000*/http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html") computer_chess.measure(date(2015,7,4), 3332, "Komodo 9", uncertainty=24, url="https://web.archive.org/web/20150708104805/http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html") computer_chess.measure(date(2017,2,27), 3393, "Stockfish", uncertainty=50, url="https://web.archive.org/web/20170227044521/http://www.computerchess.org.uk/ccrl/4040/") # Wikipedia has some nice data here: computer_chess.measure(date(1984,12,31), 1631, "Novag Super Constellation 6502 4 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1985,12,31), 1827, "Mephisto Amsterdam 68000 12 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1986,12,31), 1827, "Mephisto Amsterdam 68000 12 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1987,12,31), 1923, "Mephisto Dallas 68020 14 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1988,12,31), 1993, "Mephisto MM 4 Turbo Kit 6502 16 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1989,12,31), 2027, "Mephisto Portorose 68020 12 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1990,12,31), 2138, "Mephisto Portorose 68030 36 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1991,12,31), 2127, "Mephisto Vancouver 68030 36 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1992,12,31), 2174, "Chess Machine Schroder 3.0 ARM2 30 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1993,12,31), 2235, "Mephisto Genius 2.0 486/50-66 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1995,12,31), 2306, "MChess Pro 5.0 Pentium 90 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1996,12,31), 2337, "Rebel 8.0 Pentium 90 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1997,12,31), 2418, "HIARCS 6.0 49MB P200 MMX", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1998,12,31), 2460, "Fritz 5.0 PB29% 67MB P200 MMX", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(1999,12,31), 2594, "Chess Tiger 12.0 DOS 128MB K6-2 450 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2000,12,31), 2607, "Fritz 6.0 128MB K6-2 450 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2001,12,31), 2709, "Chess Tiger 14.0 CB 256MB Athlon 1200", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2002,12,31), 2759, "Deep Fritz 7.0 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2003,12,31), 2791, "Shredder 7.04 UCI 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2004,12,31), 2800, "Shredder 8.0 CB 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2005,12,31), 2808, "Shredder 9.0 UCI 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2006,12,31), 2902, "Rybka 1.2 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2007,12,31), 2935, "Rybka 2.3.1 Arena 256MB Athlon 1200 MHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2008,12,31), 3238, "Deep Rybka 3 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2009,12,31), 3232, "Deep Rybka 3 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2010,12,31), 3227, "Deep Rybka 3 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2011,12,31), 3216, "Deep Rybka 4 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2012,12,31), 3221, "Deep Rybka 4 x64 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2013,12,31), 3241, "Komodo 5.1 MP x64 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2014,12,31), 3295, "Komodo 7.0 MP x64 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2015,12,31), 3334, "Stockfish 6 MP x64 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") computer_chess.measure(date(2016,12,31), 3366, "Komodo 9.1 MP x64 2GB Q6600 2.4 GHz", url="https://en.wikipedia.org/wiki/Swedish_Chess_Computer_Association#Rating_list_year-end_leaders") mastering_historical_games = Problem("Superhuman mastery of arbitrary abstract strategy games", ["super", "abstract-games"]) abstract_strategy_games.add_subproblem(mastering_historical_games) mastering_chess = mastering_historical_games.metric("mastering chess") mastering_chess.notes = """ Beating all humans at chess, given a corpus of past play amongst masters, but no human-crafted policy constraints and heuristics. This will probably fall out immediately once learning_abstract_game_rules is solved, since playing_with_hints has been solved. """ # Are there any published metrics for these yet? learning_abstract_game_rules = Problem("Learning the rules of complex strategy games from examples", ["agi", "abstract-games"]) abstract_strategy_games.add_subproblem(learning_abstract_game_rules) learning_chess = learning_abstract_game_rules.metric("learning chess") learning_chess.notes = """ Chess software contains hard-coded policy constraints for valid play; this metric is whether RL or other agents can correctly build those policy constraints from examples or oracles""" learning_go = learning_abstract_game_rules.metric("learning go") learning_go.notes = """ Go software contains policy constraints for valid play and evaluating the number of liberties for groups. This metric is whether RL or other agents can correctly build those policy constraints from examples or oracles""" learning_arbitrary_abstract_games = Problem("Play an arbitrary abstract game, first learning the rules", ["agi", "abstract-games"]) abstract_strategy_games.add_subproblem(learning_arbitrary_abstract_games) #computer_chess.graph()
AI-metrics-master
data/strategy_games.py
from taxonomy import Problem from scales import * import datetime date = datetime.date vision = Problem("Vision", ["agi", "vision", "world-modelling"]) image_comprehension = Problem("Image comprehension", ["agi", "vision", "language", "world-modelling"]) image_classification = Problem("Image classification", ["vision", "agi"]) image_classification.add_subproblem(image_comprehension) vision.add_subproblem(image_classification) imagenet = image_classification.metric("Imagenet Image Recognition", "http://image-net.org", scale=error_rate, target=0.051) imagenet.notes = """ Correctly label images from the Imagenet dataset. As of 2016, this includes: - Object localization for 1000 categories. - Object detection for 200 fully labeled categories. - Object detection from video for 30 fully labeled categories. - Scene classification for 365 scene categories (Joint with MIT Places team) on Places2 Database http://places2.csail.mit.edu. - Scene parsing for 150 stuff and discrete object categories (Joint with MIT Places team). """ imagenet.measure(date(2010,8,31), 0.28191, "NEC UIUC", "http://image-net.org/challenges/LSVRC/2010/results") imagenet.measure(date(2011,10,26), 0.2577, "XRCE","http://image-net.org/challenges/LSVRC/2011/results") imagenet.measure(date(2012,10,13), 0.16422, "AlexNet / SuperVision", "http://image-net.org/challenges/LSVRC/2012/results.html", algorithm_src_url="https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks") imagenet.measure(date(2013,11,14), 0.11743, "Clarifai","http://www.image-net.org/challenges/LSVRC/2013/results.php") imagenet.measure(date(2014,8,18), 0.07405, "VGG", "http://image-net.org/challenges/LSVRC/2014/index") imagenet.measure(date(2015,12,10), 0.03567, "MSRA", "http://image-net.org/challenges/LSVRC/2015/results", algorithms=["residual-networks"]) imagenet.measure(date(2016,9,26), 0.02991, "Trimps-Soushen", "http://image-net.org/challenges/LSVRC/2016/results") imagenet.measure(date(2017,7,21), 0.02251, "SE-ResNet152 / WMW", "http://image-net.org/challenges/LSVRC/2017/results") # Test automatic detection of withdrawn papers imagenet.measure(None, 0.0458, "withdrawn", "https://arxiv.org/abs/1501.02876") video_classification = Problem("Recognise events in videos") vision.add_subproblem(video_classification) video_classification.metric("YouTube-8M video labelling", url="https://research.google.com/youtube8m/") # The VQA paper breaks human performance down by real/abstract image so we need to compute the overall number... # Also they don't seem to have human performance numbers for VQA multiple choice? vqa_abstract_human_performance = 87.49 vqa_real_human_performance = 83.3 vqa_real_oe = image_comprehension.metric("COCO Visual Question Answering (VQA) real images 1.0 open ended", url="http://visualqa.org/", target=vqa_real_human_performance, target_source="https://arxiv.org/abs/1505.00468", scale=correct_percent) vqa_real_mc = image_comprehension.metric("COCO Visual Question Answering (VQA) real images 1.0 multiple choice", url="http://visualqa.org/", scale=correct_percent, solved=False) vqa_abstract_oe = image_comprehension.metric("COCO Visual Question Answering (VQA) abstract images 1.0 open ended", url="http://visualqa.org/", target=vqa_abstract_human_performance, target_source="https://arxiv.org/abs/1505.00468", scale=correct_percent) vqa_abstract_mc = image_comprehension.metric("COCO Visual Question Answering (VQA) abstract 1.0 multiple choice", url="http://visualqa.org/", scale=correct_percent, solved=False) # other visual question answering metrics (we don't have data for these yet) # For a survey: https://arxiv.org/pdf/1607.05910 image_comprehension.metric("Toronto COCO-QA", url="http://www.cs.toronto.edu/~mren/imageqa/data/cocoqa/" ) image_comprehension.metric("DAQUAR", url="https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/visual-turing-challenge/", scale=correct_percent, target=60.27, target_source="https://arxiv.org/abs/1505.02074") visual_genome_pairs = image_comprehension.metric("Visual Genome (pairs)", url="http://visualgenome.org", scale=correct_percent, axis_label="Top-1 precision") visual_genome_subjects = image_comprehension.metric("Visual Genome (subjects)", url="http://visualgenome.org", scale=correct_percent, axis_label="Top-1 precision") visual7w = image_comprehension.metric("Visual7W", url="https://arxiv.org/abs/1511.03416", scale=correct_percent) image_comprehension.metric("FM-IQA", url="http://idl.baidu.com/FM-IQA.html") image_comprehension.metric("Visual Madlibs", url="http://tamaraberg.com/visualmadlibs/") vqa_real_oe.measure(date(2015,12,15), 55.89, "iBOWIMG baseline", url="https://arxiv.org/abs/1512.02167") vqa_real_mc.measure(date(2015,12,15), 61.97, "iBOWIMG baseline", url="https://arxiv.org/abs/1512.02167") vqa_real_oe.measure(None, 58.24, "SMem-VQA", url="https://arxiv.org/abs/1511.05234v2") # not so clear what the number in the SANv1 paper was... #vqa_real_oe.measure(None, 57.6, "SAN(2,CNN)", url="https://arxiv.org/abs/1511.02274v1") vqa_real_oe.measure(None, 58.9, "SAN", url="https://arxiv.org/abs/1511.02274v2") vqa_real_oe.measure(None, 59.5, "CNN-RNN", url="https://arxiv.org/abs/1603.02814v1") vqa_real_oe.measure(None, 59.5, "FDA", url="https://arxiv.org/abs/1604.01485v1") vqa_real_mc.measure(None, 64.2, "FDA", url="https://arxiv.org/abs/1604.01485v1") vqa_real_oe.measure(None, 62.1, "HQI+ResNet", url="https://arxiv.org/abs/1606.00061v1") vqa_real_mc.measure(None, 66.1, "HQI+ResNet", url="https://arxiv.org/abs/1606.00061v1") vqa_real_oe.measure(None, 58.2, "LSTM Q+I", url="https://arxiv.org/abs/1505.00468v1") vqa_real_mc.measure(None, 63.1, "LSTM Q+I", url="https://arxiv.org/abs/1505.00468v1") vqa_real_oe.measure(None, 63.2, "joint-loss", url="https://arxiv.org/abs/1606.03647") vqa_real_mc.measure(None, 67.3, "joint-loss", url="https://arxiv.org/abs/1606.03647") vqa_real_oe.measure(None, 66.5, "MCB 7 att.", url="https://arxiv.org/abs/1606.01847v1", replicated="https://github.com/akirafukui/vqa-mcb") vqa_real_mc.measure(None, 70.1, "MCB 7 att.", url="https://arxiv.org/abs/1606.01847v1", replicated="https://github.com/akirafukui/vqa-mcb") visual7w.measure(None, 62.2, "MCB+Att.", url="https://arxiv.org/abs/1606.01847v1") vqa_abstract_mc.measure(None, 61.41, "LSTM blind", url="http://visualqa.org/amc.html", algorithm_src_url="https://arxiv.org/abs/1511.05099", venue="vqa competition 2016") vqa_abstract_oe.measure(None, 57.19, "LSTM blind", url="http://visualqa.org/aoe.html", algorithm_src_url="https://arxiv.org/abs/1511.05099", venue="vqa competition 2016") vqa_abstract_mc.measure(None, 69.21, "LSTM + global features", url="http://visualqa.org/amc.html", algorithm_src_url="https://arxiv.org/abs/1511.05099", venue="vqa competition 2016") vqa_abstract_oe.measure(None, 65.02, "LSTM + global features", url="http://visualqa.org/aoe.html", algorithm_src_url="https://arxiv.org/abs/1511.05099", venue="vqa competition 2016") vqa_abstract_mc.measure(None, 71.18, "Dualnet ensemble", url="http://visualqa.org/amc.html", algorithm_src_url="https://arxiv.org/abs/1606.06108", venue="vqa competition 2016") vqa_abstract_oe.measure(None, 69.73, "Dualnet ensemble", url="http://visualqa.org/aoe.html", algorithm_src_url="https://arxiv.org/abs/1606.06108", venue="vqa competition 2016") vqa_real_mc.measure(None, 66.33, "MRN", url="https://arxiv.org/abs/1606.01455v1") vqa_real_oe.measure(None, 61.84, "MRN + global features", url="https://arxiv.org/abs/1606.01455v1") vqa_abstract_mc.measure(None, 74.37, "Graph VQA", url="https://arxiv.org/abs/1609.05600v1") vqa_abstract_oe.measure(None, 70.42, "Graph VQA", url="https://arxiv.org/abs/1609.05600v1") vqa_real_oe.measure(None, 64.2, "N2NMN", "https://arxiv.org/abs/1704.05526v2", replicated="http://ronghanghu.com/n2nmn/") vqa2_real_oe = image_comprehension.metric("COCO Visual Question Answering (VQA) real images 2.0 open ended", url="http://visualqa.org/", scale=correct_percent) vqa2_real_oe.measure(None, 54.22, "d-LSTM+nI", url="https://arxiv.org/abs/1612.00837v1", algorithm_src_url="https://github.com/VT-vision-lab/VQA_LSTM_CNN", min_date=date(2015,12,14)) vqa2_real_oe.measure(None, 62.27, "MCB", url="https://arxiv.org/abs/1612.00837v1", algorithm_src_url="https://arxiv.org/abs/1606.01847v1") vqa2_real_oe.measure(None, 70.34, "Up-Down", url="https://arxiv.org/abs/1707.07998v1") vqa2_real_oe.measure(date(2017,7,26), 68.16, "HDU-USYD-UNCC", url="http://www.visualqa.org/roe_2017.html") vqa2_real_oe.measure(date(2017,7,26), 68.07, "DLAIT", url="http://www.visualqa.org/roe_2017.html") visual7w.measure(None, 72.53, "CMN", url="https://arxiv.org/abs/1611.09978v1") visual_genome_pairs.measure(None, 28.52, "CMN", url="https://arxiv.org/abs/1611.09978v1") visual_genome_subjects.measure(None, 44.24, "CMN", url="https://arxiv.org/abs/1611.09978v1")
AI-metrics-master
data/vision.py
"Data files for the AI Progress Measurement Notebook"
AI-metrics-master
data/__init__.py
# -*- coding: utf-8 -*- "Vision data generated by scrapers/awty.py and then edited by hand" from data.vision import * # Data imported from Rodrigo Benenson's "Who is the Best at X / Are we there # yet?" (https://rodrigob.github.io/are_we_there_yet/build/#about) msrc21_pc = image_classification.metric("MSRC-21 image semantic labelling (per-class)", "http://jamie.shotton.org/work/data.html", scale=correct_percent) msrc21_pp = image_classification.metric("MSRC-21 image semantic labelling (per-pixel)", "http://jamie.shotton.org/work/data.html", scale=correct_percent) cifar100 = image_classification.metric("CIFAR-100 Image Recognition", "http://https://www.cs.toronto.edu/~kriz/cifar.html", scale=correct_percent) cifar10 = image_classification.metric("CIFAR-10 Image Recognition", "http://https://www.cs.toronto.edu/~kriz/cifar.html", scale=correct_percent, target=94, target_source="http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/") svhn = image_classification.metric("Street View House Numbers (SVHN)", "http://ufldl.stanford.edu/housenumbers/", scale=error_percent, target=2.0, target_source="http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf") # We declare MNIST solved because the gap between best performance and human performance appears to be less than the uncertainty in human performance mnist = image_classification.metric("MNIST handwritten digit recognition", "http://yann.lecun.com/exdb/mnist/", scale=error_percent, target=0.2, target_source="http://people.idsia.ch/~juergen/superhumanpatternrecognition.html", solved=True) stl10 = image_classification.metric("STL-10 Image Recognition", "https://cs.stanford.edu/~acoates/stl10/", scale=correct_percent) leeds_sport_poses = image_classification.metric("Leeds Sport Poses") # Data not in the AWTY scrape at all # This awty URL broken mnist.measure(date(2013,2,28), 0.52, 'COSFIRE', 'http://www.cs.rug.nl/~george/articles/PAMI2013.pdf', papername='Trainable COSFIRE Filters for Keypoint Detection and Pattern Recognition') mnist.measure(None, 0.38, 'Fitnet-LSUV-SVM', url='http://arxiv.org/abs/1511.06422', papername='All you need is a good init', uncertainty=0.0, venue='ICLR 2015') # ------------------------------------------------- # additional, newer data on the AWTY problems # ------------------------------------------------- cifar100.measure(None, 100 - 22.71, "ResNet-1001", url="https://arxiv.org/pdf/1603.05027", uncertainty=0.22) cifar10.measure(None, 100 - 4.62, "ResNet-1001", url="https://arxiv.org/pdf/1603.05027", uncertainty=0.20) cifar100.measure(None, 69.0, "NiN+Superclass+CDJ", url="https://arxiv.org/abs/1706.02003") stl10.measure(None, 77.79, u"CC-GAN²", url="https://arxiv.org/abs/1611.06430v1", uncertainty=0.8) cifar10.measure(None, 100 - 5.62, "ResNet+ELU", url="https://arxiv.org/pdf/1604.04112.pdf") cifar100.measure(None, 100 - 26.55, "ResNet+ELU", url="https://arxiv.org/pdf/1604.04112.pdf") cifar10.measure(None, 95.6, "Evolution ensemble", url="https://arxiv.org/pdf/1703.01041.pdf") cifar100.measure(None, 77.0, "Evolution", url="https://arxiv.org/pdf/1703.01041.pdf") # --------------------------------------------------------------------------------- # Originally generated by scrapers/awty.py # Algorithm names hurriedly edited to improve graphs; please fix them where they # don't match what's used in the literature # Handling 'STL-10' classification_datasets_results.html#53544c2d3130 stl10.measure(None, 74.33, 'SWWAE', url='http://arxiv.org/abs/1506.02351', papername='Stacked What-Where Auto-encoders', uncertainty=0.0, venue='arXiv 2015', notes='') stl10.measure(None, 74.1, 'Convolutional Clustering', url='http://arxiv.org/abs/1511.06241', papername='Convolutional Clustering for Unsupervised Learning', uncertainty=0.0, venue='arXiv 2015', notes='3 layers + multi dict. With 2 layers, reaches 71.4%') stl10.measure(None, 73.15, 'Deep Representation Learning with Target Coding', url='http://personal.ie.cuhk.edu.hk/~ccloy/files/aaai_2015_target_coding.pdf', papername='Deep Representation Learning with Target Coding', uncertainty=0.0, venue='AAAI 2015', notes='') stl10.measure(None, 72.8, 'Discriminative Unsupervised Feature Learning with Convolutional Neural Networks', url='http://papers.nips.cc/paper/5548-discriminative-unsupervised-feature-learning-with-convolutional-neural-networks.pdf', papername='Discriminative Unsupervised Feature Learning with Convolutional Neural Networks', uncertainty=0.0, venue='NIPS 2014', notes='Unsupervised feature learning + linear SVM') stl10.measure(None, 70.2, 'An Analysis of Unsupervised Pre-training in Light of Recent Advances', url='http://arxiv.org/abs/1412.6597', papername='An Analysis of Unsupervised Pre-training in Light of Recent Advances', uncertainty=0.0, venue='ICLR 2015', notes='Unsupervised pre-training, with supervised fine-tuning. Uses dropout and data-augmentation.') stl10.measure(None, 70.1, 'Multi-Task Bayesian Optimization', url='http://hips.seas.harvard.edu/files/swersky-multi-nips-2013.pdf', papername='Multi-Task Bayesian Optimization', uncertainty=0.0, venue='NIPS 2013', notes='Also uses CIFAR-10 training data') stl10.measure(None, 68.23, 'C-SVDDNet', url='http://arxiv.org/abs/1412.7259', papername='C-SVDDNet: An Effective Single-Layer Network for Unsupervised Feature Learning', uncertainty=0.0, venue='arXiv 2014', notes='') stl10.measure(None, 68.0, 'DFF Committees', url='http://arxiv.org/abs/1406.5947', papername='Committees of deep feedforward networks trained with few data', uncertainty=0.0, venue='arXiv 2014', notes='') stl10.measure(None, 67.9, 'Nonnegativity Constraints ', url='http://jmlr.org/proceedings/papers/v32/line14.pdf', papername='Stable and Efficient Representation Learning with Nonnegativity Constraints ', uncertainty=0.0, venue='ICML 2014', notes=u'3-layers + multi-dict. 5 \xb1 0.5 with 3-layers only. 6 \xb1 0.6 with 1-layers only.') stl10.measure(None, 64.5, 'RGB-D Based Object Recognition', url='http://homes.cs.washington.edu/~lfb/paper/iser12.pdf', papername='Unsupervised Feature Learning for RGB-D Based Object Recognition', uncertainty=0.0, venue='ISER 2012', notes='Hierarchical sparse coding using Matching Pursuit and K-SVD') stl10.measure(None, 62.32, 'CKN', url='http://arxiv.org/abs/1406.3332', papername='Convolutional Kernel Networks', uncertainty=0.0, venue='arXiv 2014', notes='No data augmentation.') stl10.measure(None, 62.3, 'Discriminative Learning of Sum-Product Networks', url='http://homes.cs.washington.edu/~rcg/papers/dspn.pdf', papername='Discriminative Learning of Sum-Product Networks', uncertainty=0.0, venue='NIPS 2012', notes='') stl10.measure(None, 61.0, 'No more meta-parameter tuning in unsupervised sparse feature learning', url='http://arxiv.org/abs/1402.5766', papername='No more meta-parameter tuning in unsupervised sparse feature learning', uncertainty=0.0, venue='arXiv 2014', notes='') stl10.measure(None, 61.0, 'Simulated Fixations', url='http://papers.nips.cc/paper/4730-deep-learning-of-invariant-features-via-simulated-fixations-in-video', papername='Deep Learning of Invariant Features via Simulated Fixations in Video', uncertainty=0.0, venue='NIPS 2012 2012', notes='') stl10.measure(None, 60.1, 'Receptive Fields', url='http://www.stanford.edu/~acoates/papers/coatesng_nips_2011.pdf', papername='Selecting Receptive Fields in Deep Networks ', uncertainty=0.0, venue='NIPS 2011', notes='') stl10.measure(None, 58.7, 'Invariant Representations with Local Transformations', url='http://web.eecs.umich.edu/~honglak/icml12-invariantFeatureLearning.pdf', papername='Learning Invariant Representations with Local Transformations', uncertainty=0.0, venue='ICML 2012', notes='') stl10.measure(None, 58.28, 'Pooling-Invariant', url='http://arxiv.org/pdf/1302.5056v1.pdf', papername='Pooling-Invariant Image Feature Learning ', uncertainty=0.0, venue='arXiv 2012', notes='1600 codes, learnt using 2x PDL') stl10.measure(None, 56.5, 'Deep Learning of Invariant Features via Simulated Fixations in Video', url='http://ai.stanford.edu/~wzou/nips_ZouZhuNgYu12.pdf', papername='Deep Learning of Invariant Features via Simulated Fixations in Video', uncertainty=0.0, venue='NIPS 2012', notes='Trained also with video (unrelated to STL-10) obtained 61%') # Handling 'SVHN' classification_datasets_results.html#5356484e svhn.measure(None, 1.69, 'Tree+Max-Avg pooling', url='http://arxiv.org/abs/1509.08985', papername='Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree', uncertainty=0.0, venue='AISTATS 2016', notes='Single model without data augmentation') svhn.measure(None, 1.76, 'CMsC', url='http://arxiv.org/abs/1511.05635', papername='Competitive Multi-scale Convolution', uncertainty=0.0, venue='arXiv 2015', notes='') svhn.measure(None, 1.77, 'RCNN-96', url='http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_004.pdf', papername='Recurrent Convolutional Neural Network for Object Recognition', uncertainty=0.0, venue='CVPR 2015', notes='Without data augmentation') svhn.measure(None, 1.81, 'BNM NiN', url='http://arxiv.org/abs/1511.02583', papername='Batch-normalized Maxout Network in Network', uncertainty=0.0, venue='arXiv 2015', notes='(k=5 maxout pieces in each maxout unit).') svhn.measure(None, 1.92, 'DSN', url='http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/', papername='Deeply-Supervised Nets', uncertainty=0.0, venue='arXiv 2014', notes='') svhn.measure(None, 1.92, 'MLR DNN', url='http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7258343', papername='Multi-Loss Regularized Deep Neural Network', uncertainty=0.0, venue='CSVT 2015', notes='Based on NiN architecture.') svhn.measure(None, 1.94, 'Regularization of Neural Networks using DropConnect', url='http://cs.nyu.edu/~wanli/dropc/', papername='Regularization of Neural Networks using DropConnect', uncertainty=0.0, venue='ICML 2013', notes='') svhn.measure(None, 1.97, 'MIM', url='http://arxiv.org/abs/1508.00330', papername='On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units', uncertainty=0.08, venue='arXiv 2015', notes='') #svhn.measure(None, 2.0, 'Estimated human performance', url='http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf', papername='Estimated human performance', uncertainty=0.0, venue='NIPS 2011', notes='Based on the paper that introduced the dataset Reading Digits in Natural Images with Unsupervised Feature Learning, section 5.') #Skipping apparent human performance (target_source) paper http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf svhn.measure(None, 2.15, 'BinaryConnect', url='http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf', papername='BinaryConnect: Training Deep Neural Networks with binary weights during propagations', uncertainty=0.0, venue='NIPS 2015', notes='') svhn.measure(None, 2.16, 'DCNN', url='http://openreview.net/document/0c571b22-f4b6-4d58-87e4-99d7de42a893#0c571b22-f4b6-4d58-87e4-99d7de42a893', papername='Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks', uncertainty=0.0, venue='ICLR 2014', notes='For classification of individual digits with a single network, error rate is 2.16%. For classification of the entire digit sequence (first paper doing this): error rate of 3.97%.') svhn.measure(None, 2.35, 'NiN', url='http://openreview.net/document/9b05a3bb-3a5e-49cb-91f7-0f482af65aea#9b05a3bb-3a5e-49cb-91f7-0f482af65aea', papername='Network in Network', uncertainty=0.0, venue='ICLR 2014', notes='NIN + Dropout The code for NIN available at https://github.com/mavenlin/cuda-convnet') svhn.measure(None, 2.38, 'ReNet', url='http://arxiv.org/abs/1505.00393', papername='ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks', uncertainty=0.0, venue='arXiv 2015', notes='') svhn.measure(None, 2.47, 'Maxout', url='http://jmlr.org/proceedings/papers/v28/goodfellow13.pdf', papername='Maxout Networks', uncertainty=0.0, venue='ICML 2013', notes='This result was obtained using convolution but not any synthetic transformations of the training data.') svhn.measure(None, 2.8, 'Stochastic Pooling', url='http://arxiv.org/pdf/1301.3557.pdf', papername='Stochastic Pooling for Regularization of Deep Convolutional Neural Networks', uncertainty=0.0, venue='arXiv 2013', notes='64-64-128 Stochastic Pooling') svhn.measure(None, 3.96, 'FLSCNN', url='http://arxiv.org/abs/1503.04596', papername='Enhanced Image Classification With a Fast-Learning Shallow Convolutional Neural Network', uncertainty=0.0, venue='arXiv 2015', notes='No data augmentation') svhn.measure(None, 4.9, u'Convolutional neural networks applied to house numbers digit classification', url='http://yann.lecun.com/exdb/publis/pdf/sermanet-icpr-12.pdf', papername='Convolutional neural networks applied to house numbers digit classification', uncertainty=0.0, venue='ICPR 2012', notes='ConvNet / MS / L4 / Padded') # Handling 'CIFAR-100' classification_datasets_results.html#43494641522d313030 cifar100.measure(None, 75.72, 'Exponential Linear Units', url='http://arxiv.org/abs/1511.07289', papername='Fast and Accurate Deep Network Learning by Exponential Linear Units', uncertainty=0.0, venue='arXiv 2015', notes='Without data augmentation.') cifar100.measure(None, 75.7, 'SSCNN', url='http://arxiv.org/abs/1409.6070', papername='Spatially-sparse convolutional neural networks', uncertainty=0.0, venue='arXiv 2014', notes='') cifar100.measure(None, 73.61, 'Fractional MP', url='http://arxiv.org/abs/1412.6071', papername='Fractional Max-Pooling', uncertainty=0.0, venue='arXiv 2015', notes='Uses 12 passes at test time. Reaches 68.55% when using a single pass at test time. Uses data augmentation during training.') cifar100.measure(None, 72.6, 'Tuned CNN', url='http://arxiv.org/abs/1502.05700', papername='Scalable Bayesian Optimization Using Deep Neural Networks', uncertainty=0.0, venue='ICML 2015', notes='') cifar100.measure(None, 72.44, 'CMsC', url='http://arxiv.org/abs/1511.05635', papername='Competitive Multi-scale Convolution', uncertainty=0.0, venue='arXiv 2015', notes='') cifar100.measure(None, 72.34, 'Fitnet4-LSUV', url='http://arxiv.org/abs/1511.06422', papername='All you need is a good init', uncertainty=0.0, venue='ICLR 2015', notes='Using RMSProp optimizer') cifar100.measure(None, 71.14, 'BNM NiN', url='http://arxiv.org/abs/1511.02583', papername='Batch-normalized Maxout Network in Network', uncertainty=0.0, venue='arXiv 2015', notes='(k=5 maxout pieces in each maxout unit).') cifar100.measure(None, 70.8, 'MIM', url='http://arxiv.org/abs/1508.00330', papername='On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units', uncertainty=0.2, venue='arXiv 2015', notes='') cifar100.measure(None, 69.17, 'NiN+APL', url='http://arxiv.org/abs/1412.6830', papername='Learning Activation Functions to Improve Deep Neural Networks', uncertainty=0.0, venue='ICLR 2015', notes='Uses a piecewise linear activation function. 69.17% accuracy with data augmentation and 65.6% accuracy without data augmentation.') cifar100.measure(None, 69.12, 'SWWAE', url='http://arxiv.org/abs/1506.02351', papername='Stacked What-Where Auto-encoders', uncertainty=0.0, venue='arXiv 2015', notes='') cifar100.measure(None, 68.53, 'MLR DNN', url='http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7258343', papername='Multi-Loss Regularized Deep Neural Network', uncertainty=0.0, venue='CSVT 2015', notes='With data augmentation, 65.82% without. Based on NiN architecture.') cifar100.measure(None, 68.4, 'Spectral Representations for Convolutional Neural Networks', url='http://papers.nips.cc/paper/5649-spectral-representations-for-convolutional-neural-networks.pdf', papername='Spectral Representations for Convolutional Neural Networks', uncertainty=0.0, venue='NIPS 2015', notes='') cifar100.measure(None, 68.25, 'RCNN-96', url='http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_004.pdf', papername='Recurrent Convolutional Neural Network for Object Recognition', uncertainty=0.0, venue='CVPR 2015', notes='') cifar100.measure(None, 67.76, 'VDN', url='http://people.idsia.ch/~rupesh/very_deep_learning/', papername='Training Very Deep Networks', uncertainty=0.0, venue='NIPS 2015', notes='Best result selected on test set. 67.61% average over multiple trained models.') cifar100.measure(None, 67.68, 'DCNN+GFE', url='http://www.isip.uni-luebeck.de/fileadmin/uploads/tx_wapublications/hertel_ijcnn_2015.pdf', papername='Deep Convolutional Neural Networks as Generic Feature Extractors', uncertainty=0.0, venue='IJCNN 2015', notes='feature extraction part of convnet is trained on imagenet (external training data), classification part is trained on cifar-100') cifar100.measure(None, 67.63, 'Tree+Max-Avg pooling', url='http://arxiv.org/abs/1509.08985', papername='Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree', uncertainty=0.0, venue='AISTATS 2016', notes='Single model without data augmentation') cifar100.measure(None, 67.38, 'HD-CNN', url='https://sites.google.com/site/homepagezhichengyan/home/hdcnn', papername='HD-CNN: Hierarchical Deep Convolutional Neural Network for Large Scale Visual Recognition', uncertainty=0.0, venue='ICCV 2015', notes='') cifar100.measure(None, 67.16, 'Universum Prescription', url='http://arxiv.org/abs/1511.03719', papername='Universum Prescription: Regularization using Unlabeled Data', uncertainty=0.0, venue='arXiv 2015', notes='') cifar100.measure(None, 66.29, 'ACN', url='http://arxiv.org/pdf/1412.6806.pdf', papername='Striving for Simplicity: The All Convolutional Net', uncertainty=0.0, venue='ICLR 2014', notes='') cifar100.measure(None, 66.22, 'Deep Networks with Internal Selective Attention through Feedback Connections', url='http://papers.nips.cc/paper/5276-deep-networks-with-internal-selective-attention-through-feedback-connections.pdf', papername='Deep Networks with Internal Selective Attention through Feedback Connections', uncertainty=0.0, venue='NIPS 2014', notes='') cifar100.measure(None, 65.43, 'DSN', url='http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/', papername='Deeply-Supervised Nets', uncertainty=0.0, venue='arXiv 2014', notes='Single model, without data augmentation.') cifar100.measure(None, 64.77, 'Deep Representation Learning with Target Coding', url='http://personal.ie.cuhk.edu.hk/~ccloy/files/aaai_2015_target_coding.pdf', papername='Deep Representation Learning with Target Coding', uncertainty=0.0, venue='AAAI 2015', notes='') cifar100.measure(None, 64.32, 'NiN', url='http://openreview.net/document/9b05a3bb-3a5e-49cb-91f7-0f482af65aea#9b05a3bb-3a5e-49cb-91f7-0f482af65aea', papername='Network in Network', uncertainty=0.0, venue='ICLR 2014', notes='NIN + Dropout The code for NIN available at https://github.com/mavenlin/cuda-convnet') cifar100.measure(None, 63.15, 'Tree Priors', url='http://www.cs.toronto.edu/~nitish/treebasedpriors.pdf', papername='Discriminative Transfer Learning with Tree-based Priors', uncertainty=0.0, venue='NIPS 2013', notes=u'The baseline Convnet + max pooling + dropout reaches 62.80% (without any tree prior).') cifar100.measure(None, 61.86, 'DNN+Probabilistic Maxout', url='http://openreview.net/document/28d9c3ab-fe88-4836-b898-403d207a037c#28d9c3ab-fe88-4836-b898-403d207a037c', papername='Improving Deep Neural Networks with Probabilistic Maxout Units', uncertainty=0.0, venue='ICLR 2014', notes='') cifar100.measure(None, 61.43, 'Maxout Networks', url='http://jmlr.org/proceedings/papers/v28/goodfellow13.pdf', papername='Maxout Networks', uncertainty=0.0, venue='ICML 2013', notes='Uses convolution. Does not use dataset agumentation.') cifar100.measure(None, 60.8, 'Stable and Efficient Representation Learning with Nonnegativity Constraints ', url='http://jmlr.org/proceedings/papers/v32/line14.pdf', papername='Stable and Efficient Representation Learning with Nonnegativity Constraints ', uncertainty=0.0, venue='ICML 2014', notes='3-layers + multi-dict. 7 with 3-layers only. 3 with 1-layers only.') cifar100.measure(None, 59.75, 'RReLU', url='http://arxiv.org/pdf/1505.00853.pdf', papername='Empirical Evaluation of Rectified Activations in Convolution Network', uncertainty=0.0, venue='ICML workshop 2015', notes='Using Randomized Leaky ReLU') cifar100.measure(None, 57.49, 'Stochastic Pooling', url='http://arxiv.org/pdf/1301.3557.pdf', papername='Stochastic Pooling for Regularization of Deep Convolutional Neural Networks', uncertainty=0.0, venue='arXiv 2013', notes='') cifar100.measure(None, 56.29, 'Smooth Pooling Regions', url='http://www.d2.mpi-inf.mpg.de/content/learning-smooth-pooling-regions-visual-recognition', papername='Smooth Pooling Regions', uncertainty=0.0, venue='BMVC 2013', notes='No data augmentation.') cifar100.measure(None, 54.23, 'Receptive Field Learning', url='http://www.eecs.berkeley.edu/~jiayq/assets/pdf/cvpr12_pooling.pdf', papername='Beyond Spatial Pyramids: Receptive Field Learning for Pooled Image Features', uncertainty=0.0, venue='CVPR 2012', notes='') # Handling 'CIFAR-10' classification_datasets_results.html#43494641522d3130 cifar10.measure(None, 96.53, 'Fractional MP', url='http://arxiv.org/abs/1412.6071', papername='Fractional Max-Pooling', uncertainty=0.0, venue='arXiv 2015', notes='Uses 100 passes at test time. Reaches 95.5% when using a single pass at test time, and 96.33% when using 12 passes.. Uses data augmentation during training.') cifar10.measure(None, 95.59, 'ACN', url='http://arxiv.org/pdf/1412.6806.pdf', papername='Striving for Simplicity: The All Convolutional Net', uncertainty=0.0, venue='ICLR 2015', notes='92% without data augmentation, 92.75% with small data augmentation, 95.59% when using agressive data augmentation and larger network.') cifar10.measure(None, 94.16, 'Fitnet4-LSUV', url='http://arxiv.org/abs/1511.06422', papername='All you need is a good init', uncertainty=0.0, venue='ICLR 2016', notes='Only mirroring and random shifts, no extreme data augmentation. Uses thin deep residual net with maxout activations.') #cifar10.measure(None, 94.0, 'Lessons learned from manually classifying CIFAR-10', url='http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/', papername='Lessons learned from manually classifying CIFAR-10', uncertainty=0.0, venue='unpublished 2011', notes='Rough estimate from a single individual, over 400 training images (~1% of training data).') #Skipping apparent human performance (target_source) paper http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/ cifar10.measure(None, 93.95, 'Tree+Max-Avg pooling', url='http://arxiv.org/abs/1509.08985', papername='Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree', uncertainty=0.0, venue='AISTATS 2016', notes='Single model with data augmentation, 92.38% without.') cifar10.measure(None, 93.72, 'SSCNN', url='http://arxiv.org/abs/1409.6070', papername='Spatially-sparse convolutional neural networks', uncertainty=0.0, venue='arXiv 2014', notes='') cifar10.measure(None, 93.63, 'Tuned CNN', url='http://arxiv.org/abs/1502.05700', papername='Scalable Bayesian Optimization Using Deep Neural Networks', uncertainty=0.0, venue='ICML 2015', notes='') cifar10.measure(None, 93.57, 'DRL', url='http://arxiv.org/abs/1512.03385', papername='Deep Residual Learning for Image Recognition', uncertainty=0.0, venue='arXiv 2015', notes='Best performance reached with 110 layers. Using 1202 layers leads to 92.07%, 56 layers lead to 93.03%.') cifar10.measure(None, 93.45, 'Exponential Linear Units', url='http://arxiv.org/abs/1511.07289', papername='Fast and Accurate Deep Network Learning by Exponential Linear Units', uncertainty=0.0, venue='arXiv 2015', notes='Without data augmentation.') cifar10.measure(None, 93.34, 'Universum Prescription', url='http://arxiv.org/abs/1511.03719', papername='Universum Prescription: Regularization using Unlabeled Data', uncertainty=0.0, venue='arXiv 2015', notes='') cifar10.measure(None, 93.25, 'BNM NiN', url='http://arxiv.org/abs/1511.02583', papername='Batch-normalized Maxout Network in Network', uncertainty=0.0, venue='arXiv 2015', notes='(k=5 maxout pieces in each maxout unit). Reaches 92.15% without data augmentation.') cifar10.measure(None, 93.13, 'CMsC', url='http://arxiv.org/abs/1511.05635', papername='Competitive Multi-scale Convolution', uncertainty=0.0, venue='arXiv 2015', notes='') cifar10.measure(None, 92.91, 'RCNN-96', url='http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_004.pdf', papername='Recurrent Convolutional Neural Network for Object Recognition', uncertainty=0.0, venue='CVPR 2015', notes='Reaches 91.31% without data augmentation.') cifar10.measure(None, 92.49, 'NiN+APL', url='http://arxiv.org/abs/1412.6830', papername='Learning Activation Functions to Improve Deep Neural Networks', uncertainty=0.0, venue='ICLR 2015', notes='Uses an adaptive piecewise linear activation function. 92.49% accuracy with data augmentation and 90.41% accuracy without data augmentation.') cifar10.measure(None, 92.45, 'cifar.torch', url='http://torch.ch/blog/2015/07/30/cifar.html', papername='cifar.torch', uncertainty=0.0, venue='unpublished 2015', notes='Code available at https://github.com/szagoruyko/cifar.torch') cifar10.measure(None, 92.4, 'VDN', url='http://people.idsia.ch/~rupesh/very_deep_learning/', papername='Training Very Deep Networks', uncertainty=0.0, venue='NIPS 2015', notes='Best result selected on test set. 92.31% average over multiple trained models.') cifar10.measure(None, 92.23, 'SWWAE', url='http://arxiv.org/abs/1506.02351', papername='Stacked What-Where Auto-encoders', uncertainty=0.0, venue='arXiv 2015', notes='') cifar10.measure(None, 91.88, 'MLR DNN', url='http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7258343', papername='Multi-Loss Regularized Deep Neural Network', uncertainty=0.0, venue='CSVT 2015', notes='With data augmentation, 90.45% without. Based on NiN architecture.') cifar10.measure(None, 91.78, 'DSN', url='http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/', papername='Deeply-Supervised Nets', uncertainty=0.0, venue='arXiv 2014', notes='Single model, with data augmentation: 91.78%. Without data augmentation: 90.22%.') cifar10.measure(None, 91.73, 'BinaryConnect', url='http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf', papername='BinaryConnect: Training Deep Neural Networks with binary weights during propagations', uncertainty=0.0, venue='NIPS 2015', notes='These results were obtained without using any data-augmentation.') cifar10.measure(None, 91.48, 'MIM', url='http://arxiv.org/abs/1508.00330', papername='On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units', uncertainty=0.2, venue='arXiv 2015', notes='') cifar10.measure(None, 91.4, 'Spectral Representations for Convolutional Neural Networks', url='http://papers.nips.cc/paper/5649-spectral-representations-for-convolutional-neural-networks.pdf', papername='Spectral Representations for Convolutional Neural Networks', uncertainty=0.0, venue='NIPS 2015', notes='') cifar10.measure(None, 91.2, 'NiN', url='http://openreview.net/document/9b05a3bb-3a5e-49cb-91f7-0f482af65aea#9b05a3bb-3a5e-49cb-91f7-0f482af65aea', papername='Network In Network', uncertainty=0.0, venue='ICLR 2014', notes='The code for NIN available at https://github.com/mavenlin/cuda-convnet NIN + Dropout 89.6% NIN + Dropout + Data Augmentation 91.2%') cifar10.measure(None, 91.19, 'ELC', url='http://aad.informatik.uni-freiburg.de/papers/15-IJCAI-Extrapolation_of_Learning_Curves.pdf', papername='Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves', uncertainty=0.0, venue='IJCAI 2015', notes=u'Based on the "call convolutional" architecture. which reaches 90.92% by itself.') cifar10.measure(None, 90.78, 'Deep Networks with Internal Selective Attention through Feedback Connections', url='http://papers.nips.cc/paper/5276-deep-networks-with-internal-selective-attention-through-feedback-connections.pdf', papername='Deep Networks with Internal Selective Attention through Feedback Connections', uncertainty=0.0, venue='NIPS 2014', notes='No data augmentation') cifar10.measure(None, 90.68, 'DropConnect', url='http://cs.nyu.edu/~wanli/dropc/', papername='Regularization of Neural Networks using DropConnect', uncertainty=0.0, venue='ICML 2013', notes='') cifar10.measure(None, 90.65, 'Maxout Networks', url='http://jmlr.org/proceedings/papers/v28/goodfellow13.pdf', papername='Maxout Networks', uncertainty=0.0, venue='ICML 2013', notes='This result was obtained using both convolution and synthetic translations / horizontal reflections of the training data. Reaches 88.32% when using convolution, but without any synthetic transformations of the training data.') cifar10.measure(None, 90.61, 'DNN+Probabilistic Maxout', url='http://openreview.net/document/28d9c3ab-fe88-4836-b898-403d207a037c#28d9c3ab-fe88-4836-b898-403d207a037c', papername='Improving Deep Neural Networks with Probabilistic Maxout Units', uncertainty=0.0, venue='ICLR 2014', notes='65% without data augmentation. 61% when using data augmentation.') cifar10.measure(None, 90.5, 'GP EI', url='http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf', papername='Practical Bayesian Optimization of Machine Learning Algorithms ', uncertainty=0.0, venue='NIPS 2012', notes=u'Reaches 85.02% without data augmentation. With data augmented with horizontal reflections and translations, 90.5% accuracy on test set is achieved.') cifar10.measure(None, 89.67, 'APAC', url='http://arxiv.org/abs/1505.03229', papername='APAC: Augmented PAttern Classification with Neural Networks', uncertainty=0.0, venue='arXiv 2015', notes='') cifar10.measure(None, 89.14, 'DCNN+GFE', url='http://www.isip.uni-luebeck.de/fileadmin/uploads/tx_wapublications/hertel_ijcnn_2015.pdf', papername='Deep Convolutional Neural Networks as Generic Feature Extractors', uncertainty=0.0, venue='IJCNN 2015', notes='feature extraction part of convnet is trained on imagenet (external training data), classification part is trained on cifar-10') cifar10.measure(None, 89.0, 'DCNN', url='http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks', papername='ImageNet Classification with Deep Convolutional Neural Networks', uncertainty=0.0, venue='NIPS 2012', notes='87% error on the unaugmented data.') cifar10.measure(None, 88.8, 'RReLU', url='http://arxiv.org/pdf/1505.00853.pdf', papername='Empirical Evaluation of Rectified Activations in Convolution Network', uncertainty=0.0, venue='ICML workshop 2015', notes='Using Randomized Leaky ReLU') cifar10.measure(None, 88.79, 'MCDNN', url='http://www.idsia.ch/~ciresan/data/cvpr2012.pdf', papername='Multi-Column Deep Neural Networks for Image Classification ', uncertainty=0.0, venue='CVPR 2012', notes='Supplemental material, Technical Report') cifar10.measure(None, 87.65, 'ReNet', url='http://arxiv.org/abs/1505.00393', papername='ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks', uncertainty=0.0, venue='arXiv 2015', notes='') cifar10.measure(None, 86.7, 'An Analysis of Unsupervised Pre-training in Light of Recent Advances', url='http://arxiv.org/abs/1412.6597', papername='An Analysis of Unsupervised Pre-training in Light of Recent Advances', uncertainty=0.0, venue='ICLR 2015', notes='Unsupervised pre-training, with supervised fine-tuning. Uses dropout and data-augmentation.') cifar10.measure(None, 84.87, 'Stochastic Pooling', url='http://arxiv.org/pdf/1301.3557.pdf', papername='Stochastic Pooling for Regularization of Deep Convolutional Neural Networks', uncertainty=0.0, venue='arXiv 2013', notes='') cifar10.measure(None, 84.4, 'Improving neural networks by preventing co-adaptation of feature detectors', url='http://arxiv.org/pdf/1207.0580.pdf', papername='Improving neural networks by preventing co-adaptation of feature detectors', uncertainty=0.0, venue='arXiv 2012', notes=u'So called "dropout" method.') cifar10.measure(None, 83.96, 'Discriminative Learning of Sum-Product Networks', url='http://papers.nips.cc/paper/4516-discriminative-learning-of-sum-product-networks', papername='Discriminative Learning of Sum-Product Networks', uncertainty=0.0, venue='NIPS 2012', notes='') cifar10.measure(None, 82.9, 'Nonnegativity Constraints ', url='http://jmlr.org/proceedings/papers/v32/line14.pdf', papername='Stable and Efficient Representation Learning with Nonnegativity Constraints ', uncertainty=0.0, venue='ICML 2014', notes='Full data, 3-layers + multi-dict. 4 with 3-layers only. 0 with 1-layers only.') cifar10.measure(None, 82.2, 'Local Transformations', url='http://icml.cc/2012/papers/659.pdf', papername='Learning Invariant Representations with Local Transformations', uncertainty=0.0, venue='ICML 2012', notes='K= 4,000') cifar10.measure(None, 82.18, 'CKN', url='http://arxiv.org/abs/1406.3332', papername='Convolutional Kernel Networks', uncertainty=0.0, venue='arXiv 2014', notes='No data augmentation.') cifar10.measure(None, 82.0, 'Discriminative Unsupervised Feature Learning with Convolutional Neural Networks', url='http://papers.nips.cc/paper/5548-discriminative-unsupervised-feature-learning-with-convolutional-neural-networks.pdf', papername='Discriminative Unsupervised Feature Learning with Convolutional Neural Networks', uncertainty=0.0, venue='NIPS 2014', notes='Unsupervised feature learning + linear SVM') cifar10.measure(None, 80.02, 'Smooth Pooling Regions', url='http://www.d2.mpi-inf.mpg.de/content/learning-smooth-pooling-regions-visual-recognition', papername='Learning Smooth Pooling Regions for Visual Recognition', uncertainty=0.0, venue='BMVC 2013', notes='') cifar10.measure(None, 80.0, 'Hierarchical Kernel Descriptors', url='http://research.cs.washington.edu/istc/lfb/paper/cvpr11.pdf', papername='Object Recognition with Hierarchical Kernel Descriptors', uncertainty=0.0, venue='CVPR 2011', notes='') cifar10.measure(None, 79.7, 'Learning with Recursive Perceptual Representations', url='http://papers.nips.cc/paper/4747-learning-with-recursive-perceptual-representations', papername='Learning with Recursive Perceptual Representations', uncertainty=0.0, venue='NIPS 2012', notes='Code size 1600.') cifar10.measure(None, 79.6, 'An Analysis of Single-Layer Networks in Unsupervised Feature Learning ', url='http://www.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf', papername='An Analysis of Single-Layer Networks in Unsupervised Feature Learning ', uncertainty=0.0, venue='AISTATS 2011', notes='6% obtained using K-means over whitened patches, with triangle encoding and 4000 features (clusters).') cifar10.measure(None, 78.67, 'PCANet', url='http://arxiv.org/abs/1404.3606', papername='PCANet: A Simple Deep Learning Baseline for Image Classification?', uncertainty=0.0, venue='arXiv 2014', notes='No data augmentation. Multiple feature scales combined. 77.14% when using only a single scale.') cifar10.measure(None, 75.86, 'FLSCNN', url='http://arxiv.org/abs/1503.04596', papername='Enhanced Image Classification With a Fast-Learning Shallow Convolutional Neural Network', uncertainty=0.0, venue='arXiv 2015', notes='No data augmentation') # Handling 'MNIST' classification_datasets_results.html#4d4e495354 mnist.measure(None, 0.21, 'DropConnect', url='http://cs.nyu.edu/~wanli/dropc/', papername='Regularization of Neural Networks using DropConnect', uncertainty=0.0, venue='ICML 2013', notes='') mnist.measure(None, 0.23, 'MCDNN', url='http://www.idsia.ch/~ciresan/data/cvpr2012.pdf', papername=u'Multi-column Deep Neural Networks for Image Classification ', uncertainty=0.0, venue='CVPR 2012', notes='') mnist.measure(None, 0.23, 'APAC', url='http://arxiv.org/abs/1505.03229', papername='APAC: Augmented PAttern Classification with Neural Networks', uncertainty=0.0, venue='arXiv 2015', notes='') mnist.measure(None, 0.24, 'BNM NiN', url='http://arxiv.org/abs/1511.02583', papername='Batch-normalized Maxout Network in Network', uncertainty=0.0, venue='arXiv 2015', notes='(k=5 maxout pieces in each maxout unit).') mnist.measure(None, 0.29, 'Tree+Max-Avg pooling', url='http://arxiv.org/abs/1509.08985', papername='Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree', uncertainty=0.0, venue='AISTATS 2016', notes='Single model without data augmentation') mnist.measure(None, 0.31, 'RCNN-96', url='http://www.cv-foundation.org/openaccess/content_cvpr_2015/app/2B_004.pdf', papername='Recurrent Convolutional Neural Network for Object Recognition', uncertainty=0.0, venue='CVPR 2015', notes='') mnist.measure(None, 0.35, 'MIM', url='http://arxiv.org/abs/1508.00330', papername='On the Importance of Normalisation Layers in Deep Learning with Piecewise Linear Activation Units', uncertainty=0.03, venue='arXiv 2015', notes='') mnist.measure(None, 0.32, 'Fractional MP', url='http://arxiv.org/abs/1412.6071', papername='Fractional Max-Pooling', uncertainty=0.0, venue='arXiv 2015', notes='Uses 12 passes at test time. Reaches 0.5% when using a single pass at test time.') mnist.measure(None, 0.33, 'CMsC', url='http://arxiv.org/abs/1511.05635', papername='Competitive Multi-scale Convolution', uncertainty=0.0, venue='arXiv 2015', notes='') mnist.measure(None, 0.35, 'DBSNN', url='http://arxiv.org/pdf/1003.0358.pdf', papername='Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition', uncertainty=0.0, venue='Neural Computation 2010', notes='6-layer NN 784-2500-2000-1500-1000-500-10 (on GPU), uses elastic distortions') mnist.measure(None, 0.35, 'C-SVDDNet', url='http://arxiv.org/abs/1412.7259', papername='C-SVDDNet: An Effective Single-Layer Network for Unsupervised Feature Learning', uncertainty=0.0, venue='arXiv 2014', notes='') mnist.measure(None, 0.37, 'FLSCNN', url='http://arxiv.org/abs/1503.04596', papername='Enhanced Image Classification With a Fast-Learning Shallow Convolutional Neural Network', uncertainty=0.0, venue='arXiv 2015', notes='No data augmentation') mnist.measure(None, 0.39, 'Energy-Based Sparse Represenation', url='http://papers.nips.cc/paper/3112-efficient-learning-of-sparse-representations-with-an-energy-based-model', papername=u'Efficient Learning of Sparse Representations with an Energy-Based Model', uncertainty=0.0, venue='NIPS 2006', notes='Large conv. net, unsup pretraining, uses elastic distortions') mnist.measure(None, 0.39, 'CKN', url='http://arxiv.org/abs/1406.3332', papername='Convolutional Kernel Networks', uncertainty=0.0, venue='arXiv 2014', notes='No data augmentation.') mnist.measure(None, 0.39, 'DSN', url='http://vcl.ucsd.edu/~sxie/2014/09/12/dsn-project/', papername='Deeply-Supervised Nets', uncertainty=0.0, venue='arXiv 2014', notes='') mnist.measure(None, 0.4, 'Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis', url='http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D1C7D701BD39935473808DA5A93426C5?doi=10.1.1.160.8494&rep=rep1&type=pdf', papername='Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis', uncertainty=0.0, venue='Document Analysis and Recognition 2003', notes='') mnist.measure(None, 0.4, 'HOPE', url='http://arxiv.org/pdf/1502.00702.pdf', papername='Hybrid Orthogonal Projection and Estimation (HOPE): A New Framework to Probe and Learn Neural Networks', uncertainty=0.0, venue=' arXiv 2015', notes='') mnist.measure(None, 0.42, 'MLR DNN', url='http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7258343', papername='Multi-Loss Regularized Deep Neural Network', uncertainty=0.0, venue='CSVT 2015', notes='Based on NiN architecture.') mnist.measure(None, 0.45, 'Maxout Networks', url='http://jmlr.org/proceedings/papers/v28/goodfellow13.pdf', papername='Maxout Networks', uncertainty=0.0, venue='ICML 2013', notes='Uses convolution. Does not use dataset augmentation.') mnist.measure(None, 0.45, 'VDN', url='http://people.idsia.ch/~rupesh/very_deep_learning/', papername='Training Very Deep Networks', uncertainty=0.0, venue='NIPS 2015', notes='Best result selected on test set. 0.46% average over multiple trained models.') mnist.measure(None, 0.45, 'ReNet', url='http://arxiv.org/abs/1505.00393', papername='ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks', uncertainty=0.0, venue='arXiv 2015', notes='') mnist.measure(None, 0.46, 'DCNN+GFE', url='http://www.isip.uni-luebeck.de/fileadmin/uploads/tx_wapublications/hertel_ijcnn_2015.pdf', papername='Deep Convolutional Neural Networks as Generic Feature Extractors', uncertainty=0.0, venue='IJCNN 2015', notes='feature extraction part of convnet is trained on imagenet (external training data), classification part is trained on cifar-10') mnist.measure(None, 0.47, 'NiN', url='http://openreview.net/document/9b05a3bb-3a5e-49cb-91f7-0f482af65aea#9b05a3bb-3a5e-49cb-91f7-0f482af65aea', papername='Network in Network', uncertainty=0.0, venue='ICLR 2014', notes='NIN + Dropout The code for NIN available at https://github.com/mavenlin/cuda-convnet') # skip broken URL #mnist.measure(None, 0.52, 'COSFIRE', url='http://iwi.eldoc.ub.rug.nl/FILES/root/2013/IEEETPAMIAzzopardi/2013IEEETPAMIAzzopardi.pdf', papername='Trainable COSFIRE filters for keypoint detection and pattern recognition', uncertainty=0.0, venue='PAMI 2013', notes='Source code available.') mnist.measure(None, 0.53, 'The Best Multi-Stage Architecture', url='http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf', papername='What is the Best Multi-Stage Architecture for Object Recognition?', uncertainty=0.0, venue='ICCV 2009', notes='Large conv. net, unsup pretraining, no distortions') mnist.measure(None, 0.54, 'Deformation Models', url='http://www.keysers.net/daniel/files/Keysers--Deformation-Models--TPAMI2007.pdf', papername='Deformation Models for Image Recognition', uncertainty=0.0, venue='PAMI 2007', notes='K-NN with non-linear deformation (IDM) (Preprocessing: shiftable edges)') mnist.measure(None, 0.54, 'Trainable feature extractor', url='http://hal.inria.fr/docs/00/05/75/61/PDF/LauerSuenBlochPR.pdf', papername='A trainable feature extractor for handwritten digit recognition', uncertainty=0.0, venue='\n Journal\n Pattern Recognition 2007\n ', notes='Trainable feature extractor + SVMs, uses affine distortions') mnist.measure(None, 0.56, 'ISVM', url='http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.9924&rep=rep1&type=pdf', papername='Training Invariant Support Vector Machines', uncertainty=0.0, venue='Machine Learning 2002', notes='Virtual SVM, deg-9 poly, 2-pixel jittered (Preprocessing: deskewing)') mnist.measure(None, 0.59, 'Sparse Coding', url='http://www.inb.uni-luebeck.de/publikationen/pdfs/LaBaMa08c.pdf', papername='Simple Methods for High-Performance Digit Recognition Based on Sparse Coding', uncertainty=0.0, venue='TNN 2008', notes='Unsupervised sparse features + SVM, no distortions') mnist.measure(None, 0.62, 'invariant feature hierarchies', url='http://yann.lecun.com/exdb/publis/pdf/ranzato-cvpr-07.pdf', papername='Unsupervised learning of invariant feature hierarchies with applications to object recognition', uncertainty=0.0, venue='CVPR 2007', notes='Large conv. net, unsup features, no distortions') mnist.measure(None, 0.62, 'PCANet', url='http://arxiv.org/abs/1404.3606', papername='PCANet: A Simple Deep Learning Baseline for Image Classification?', uncertainty=0.0, venue='arXiv 2014', notes='No data augmentation.') mnist.measure(None, 0.63, 'Shape contexts', url='http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=B2AAC2BC3824F19757CAC66986D5F3FF?doi=10.1.1.18.8852&rep=rep1&type=pdf', papername='Shape matching and object recognition using shape contexts', uncertainty=0.0, venue='PAMI 2002', notes='K-NN, shape context matching (preprocessing: shape context feature extraction)') mnist.measure(None, 0.64, 'Receptive Field Learning', url='http://www.icsi.berkeley.edu/pubs/vision/beyondspatial12.pdf', papername='Beyond Spatial Pyramids: Receptive Field Learning for Pooled Image Features', uncertainty=0.0, venue='CVPR 2012', notes='') mnist.measure(None, 0.68, 'CNN+Gabor Filters', url='http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.6559&rep=rep1&type=pdf', papername='Handwritten Digit Recognition using Convolutional Neural Networks and Gabor Filters', uncertainty=0.0, venue='ICCI 2003', notes='') mnist.measure(None, 0.69, 'On Optimization Methods for Deep Learning', url='http://ai.stanford.edu/~quocle/LeNgiCoaLahProNg11.pdf', papername='On Optimization Methods for Deep Learning', uncertainty=0.0, venue='ICML 2011', notes='') mnist.measure(None, 0.71, 'Deep Fried Convnets', url='http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yang_Deep_Fried_Convnets_ICCV_2015_paper.pdf', papername='Deep Fried Convnets', uncertainty=0.0, venue='ICCV 2015', notes='Uses about 10x fewer parameters than the reference model, which reaches 0.87%.') mnist.measure(None, 0.75, 'Sparse Activity and Sparse Connectivity in Supervised Learning', url='http://jmlr.org/papers/v14/thom13a.html', papername='Sparse Activity and Sparse Connectivity in Supervised Learning', uncertainty=0.0, venue='JMLR 2013', notes='') mnist.measure(None, 0.78, 'Explaining and Harnessing Adversarial Examples', url='http://arxiv.org/abs/1412.6572', papername='Explaining and Harnessing Adversarial Examples', uncertainty=0.0, venue='ICLR 2015', notes='permutation invariant network used') mnist.measure(None, 0.82, 'CDBN', url=None, papername='Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations', uncertainty=0.0, venue='ICML 2009', notes='') mnist.measure(None, 0.84, 'Supervised Translation-Invariant Sparse Coding', url='http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.339&rep=rep1&type=pdf', papername='Supervised Translation-Invariant Sparse Coding', uncertainty=0.0, venue='CVPR 2010', notes='Uses sparse coding + svm.') mnist.measure(None, 0.94, 'Large-Margin kNN', url=None, papername='Large-Margin kNN Classification using a Deep Encoder Network', uncertainty=0.0, venue=' 2009', notes='') mnist.measure(None, 0.95, 'Deep Boltzmann Machines', url='http://www.utstat.toronto.edu/~rsalakhu/papers/dbm.pdf', papername='Deep Boltzmann Machines', uncertainty=0.0, venue='AISTATS 2009', notes='') mnist.measure(None, 1.01, 'BinaryConnect', url='http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf', papername='BinaryConnect: Training Deep Neural Networks with binary weights during propagations', uncertainty=0.0, venue='NIPS 2015', notes='Using 50% dropout') mnist.measure(None, 1.1, 'StrongNet', url='http://www.alglib.net/articles/tr-20140813-strongnet.pdf', papername='StrongNet: mostly unsupervised image recognition with strong neurons', uncertainty=0.0, venue='technical report on ALGLIB website 2014', notes=u'StrongNet is a neural design which uses two innovations: (a) strong neurons - highly nonlinear neurons with multiple outputs and (b) mostly unsupervised architecture backpropagation-free design with all layers except for the last one being trained in a completely unsupervised setting.') mnist.measure(None, 1.12, 'DBN', url=None, papername='CS81: Learning words with Deep Belief Networks', uncertainty=0.0, venue=' 2008', notes='') mnist.measure(None, 1.19, 'CNN', url=None, papername='Convolutional Neural Networks', uncertainty=0.0, venue=' 2003', notes=u'The ConvNN is based on the paper "Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis".') mnist.measure(None, 1.2, 'Reducing the dimensionality of data with neural networks', url=None, papername='Reducing the dimensionality of data with neural networks', uncertainty=0.0, venue=' 2006', notes='') mnist.measure(None, 1.4, 'Convolutional Clustering', url='http://arxiv.org/abs/1511.06241', papername='Convolutional Clustering for Unsupervised Learning', uncertainty=0.0, venue='arXiv 2015', notes='2 layers + multi dict.') mnist.measure(None, 1.5, 'Deep learning via semi-supervised embedding', url=None, papername='Deep learning via semi-supervised embedding', uncertainty=0.0, venue=' 2008', notes='') # This paper has reasonable results on other things, but one so bad on MNIST that it messes up the graph. So we exclude it: # mnist.measure(None, 14.53, 'Deep Representation Learning with Target Coding', url='http://personal.ie.cuhk.edu.hk/~ccloy/files/aaai_2015_target_coding.pdf', papername='Deep Representation Learning with Target Coding', uncertainty=0.0, venue='AAAI 2015', notes='') # Handling 'MSRC-21' semantic_labeling_datasets_results.html#4d5352432d3231 msrc21_pc.measure(None, 80.9, 'Large FC CRF', url='http://ai2-s2-pdfs.s3.amazonaws.com/daba/eb9185990f65f807c95ff4d09057c2bf1cf0.pdf', papername='Large-Scale Semantic Co-Labeling of Image Sets', uncertainty=0.0, venue='WACV 2014', notes='') msrc21_pc.measure(None, 80.0, 'Harmony Potentials', url='http://link.springer.com/article/10.1007%2Fs11263-011-0449-8', papername='Harmony Potentials - Fusing Local and Global Scale for Semantic Image Segmentation', uncertainty=0.0, venue='IJCV 2012', notes='per-class % / per-pixel %') msrc21_pc.measure(None, 79.0, 'Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation', url='http://ttic.uchicago.edu/~rurtasun/publications/yao_et_al_cvpr12.pdf', papername='Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation', uncertainty=0.0, venue='CVPR 2012', notes='') msrc21_pc.measure(None, 78.2, 'MPP', url='http://mediatum.ub.tum.de/doc/1175516/1175516.pdf', papername='Morphological Proximity Priors: Spatial Relationships for Semantic Segmentation', uncertainty=0.0, venue='TUM-I1222 2013', notes='') msrc21_pc.measure(None, 78.0, 'FC CRF', url='http://graphics.stanford.edu/projects/densecrf/densecrf.pdf', papername='Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials', uncertainty=0.0, venue='NIPS 2011', notes='Strong unary used provides 76.6% / 84.0%') msrc21_pc.measure(None, 77.0, 'HCRF+CO', url='http://research.microsoft.com/en-us/um/people/pkohli/papers/lrkt_eccv2010.pdf', papername='Graph Cut based Inference with Co-occurrence Statistics', uncertainty=0.0, venue='ECCV 2010', notes='') msrc21_pc.measure(None, 77.0, 'Are Spatial and Global Constraints Really Necessary for Segmentation?', url='http://infoscience.epfl.ch/record/169178/files/lucchi_ICCV11.pdf', papername='Are Spatial and Global Constraints Really Necessary for Segmentation?', uncertainty=0.0, venue='ICCV 2011', notes='Several variants are examined, no single method attains the overall best results, i.e. both best per-class and per-pixel averages simultaneously. Indicated result corresponds to the method that we best on the average (per-class + per-pixel / 2). Experiment data available.') msrc21_pc.measure(None, 76.0, 'Kernelized SSVM/CRF', url='https://infoscience.epfl.ch/record/180188/files/top.pdf', papername='Structured Image Segmentation using Kernelized Features', uncertainty=0.0, venue='ECCV 2012', notes='70 % / 73 % when using only local features (not considering global features)') msrc21_pc.measure(None, 72.8, 'PMG', url='http://users.cecs.anu.edu.au/~sgould/papers/eccv12-patchGraph.pdf', papername='PatchMatchGraph: Building a Graph of Dense Patch Correspondences for Label Transfer', uncertainty=0.0, venue='ECCV 2012', notes='8% / 63.3% raw PatchMatchGraph accuracy, 72.8% / 79.0% when using Boosted CRF. Code available.') msrc21_pc.measure(None, 69.0, 'Auto-Context', url='http://pages.ucsd.edu/~ztu/publication/pami_autocontext.pdf', papername='Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation', uncertainty=0.0, venue='PAMI 2010', notes='') msrc21_pc.measure(None, 67.0, 'STF', url='http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2008-CVPR-semantic-texton-forests.pdf', papername='Semantic Texton Forests for Image Categorization and Segmentation', uncertainty=0.0, venue='CVPR 2008', notes='') msrc21_pc.measure(None, 57.0, 'TextonBoost', url='http://research.microsoft.com/pubs/117885/ijcv07a.pdf', papername='TextonBoost for Image Understanding', uncertainty=0.0, venue='IJCV 2009', notes='?? / 69.6 % (per-class / per-pixel) the unaries alone (no CRF on top)') # Handling 'MSRC-21' semantic_labeling_datasets_results.html#4d5352432d3231 msrc21_pp.measure(None, 86.8, 'Large FC CRF', url='http://ai2-s2-pdfs.s3.amazonaws.com/daba/eb9185990f65f807c95ff4d09057c2bf1cf0.pdf', papername='Large-Scale Semantic Co-Labeling of Image Sets', uncertainty=0.0, venue='WACV 2014', notes='') msrc21_pp.measure(None, 83.0, 'Harmony Potentials', url='http://link.springer.com/article/10.1007%2Fs11263-011-0449-8', papername='Harmony Potentials - Fusing Local and Global Scale for Semantic Image Segmentation', uncertainty=0.0, venue='IJCV 2012', notes='per-class % / per-pixel %') msrc21_pp.measure(None, 86.0, 'Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation', url='http://ttic.uchicago.edu/~rurtasun/publications/yao_et_al_cvpr12.pdf', papername='Describing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation', uncertainty=0.0, venue='CVPR 2012', notes='') msrc21_pp.measure(None, 85.0, 'MPP', url='http://mediatum.ub.tum.de/doc/1175516/1175516.pdf', papername='Morphological Proximity Priors: Spatial Relationships for Semantic Segmentation', uncertainty=0.0, venue='TUM-I1222 2013', notes='') msrc21_pp.measure(None, 86.0, 'FC CRF', url='http://graphics.stanford.edu/projects/densecrf/densecrf.pdf', papername='Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials', uncertainty=0.0, venue='NIPS 2011', notes='Strong unary used provides 76.6% / 84.0%') msrc21_pp.measure(None, 87.0, 'HCRF+CO', url='http://research.microsoft.com/en-us/um/people/pkohli/papers/lrkt_eccv2010.pdf', papername='Graph Cut based Inference with Co-occurrence Statistics', uncertainty=0.0, venue='ECCV 2010', notes='') msrc21_pp.measure(None, 85.0, 'Are Spatial and Global Constraints Really Necessary for Segmentation?', url='http://infoscience.epfl.ch/record/169178/files/lucchi_ICCV11.pdf', papername='Are Spatial and Global Constraints Really Necessary for Segmentation?', uncertainty=0.0, venue='ICCV 2011', notes='Several variants are examined, no single method attains the overall best results, i.e. both best per-class and per-pixel averages simultaneously. Indicated result corresponds to the method that we best on the average (per-class + per-pixel / 2). Experiment data available.') msrc21_pp.measure(None, 82.0, 'Kernelized SSVM/CRF', url='https://infoscience.epfl.ch/record/180188/files/top.pdf', papername='Structured Image Segmentation using Kernelized Features', uncertainty=0.0, venue='ECCV 2012', notes='70 % / 73 % when using only local features (not considering global features)') msrc21_pp.measure(None, 79.0, 'PatchMatchGraph', url='http://users.cecs.anu.edu.au/~sgould/papers/eccv12-patchGraph.pdf', papername='PatchMatchGraph: Building a Graph of Dense Patch Correspondences for Label Transfer', uncertainty=0.0, venue='ECCV 2012', notes='8% / 63.3% raw PatchMatchGraph accuracy, 72.8% / 79.0% when using Boosted CRF. Code available.') msrc21_pp.measure(None, 78.0, 'Auto-Context', url='http://pages.ucsd.edu/~ztu/publication/pami_autocontext.pdf', papername='Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation', uncertainty=0.0, venue='PAMI 2010', notes='') msrc21_pp.measure(None, 72.0, 'STF', url='http://mi.eng.cam.ac.uk/~cipolla/publications/inproceedings/2008-CVPR-semantic-texton-forests.pdf', papername='Semantic Texton Forests for Image Categorization and Segmentation', uncertainty=0.0, venue='CVPR 2008', notes='') msrc21_pp.measure(None, 72.0, 'TextonBoost', url='http://research.microsoft.com/pubs/117885/ijcv07a.pdf', papername='TextonBoost for Image Understanding', uncertainty=0.0, venue='IJCV 2009', notes='?? / 69.6 % (per-class / per-pixel) the unaries alone (no CRF on top)') # Handling 'Pascal VOC 2011 comp3' detection_datasets_results.html#50617363616c20564f43203230313120636f6d7033 # Skipping 40.6 mAP Fisher and VLAD with FLAIR CVPR 2014 # Handling 'Leeds Sport Poses' pose_estimation_datasets_results.html#4c656564732053706f727420506f736573 #69.2 % Strong Appearance and Expressive Spatial Models for Human Pose Estimation ICCV 2013 Starting model reaches 58.1 %, improved local appearances reaches 66.9 %, and 69.2% when using the full model. #64.3 % Appearance sharing for collective human pose estimation ACCV 2012 #63.3 % Poselet conditioned pictorial structures CVPR 2013 #60.8 % Articulated pose estimation with flexible mixtures-of-parts CVPR 2011 # 55.6% Pictorial structures revisited: People detection and articulated pose estimation CVPR 2009 # Handling 'Pascal VOC 2007 comp3' detection_datasets_results.html#50617363616c20564f43203230303720636f6d7033 # Skipping 22.7 mAP Ensemble of Exemplar-SVMs for Object Detection and Beyond ICCV 2011 # Skipping 27.4 mAP Measuring the objectness of image windows PAMI 2012 # Skipping 28.7 mAP Automatic discovery of meaningful object parts with latent CRFs CVPR 2010 # Skipping 29.0 mAP Object Detection with Discriminatively Trained Part Based Models PAMI 2010 # Skipping 29.6 mAP Latent Hierarchical Structural Learning for Object Detection CVPR 2010 # Skipping 32.4 mAP Deformable Part Models with Individual Part Scaling BMVC 2013 # Skipping 34.3 mAP Histograms of Sparse Codes for Object Detection CVPR 2013 # Skipping 34.3 mAP Boosted local structured HOG-LBP for object localization CVPR 2011 # Skipping 34.7 mAP Discriminatively Trained And-Or Tree Models for Object Detection CVPR 2013 # Skipping 34.7 mAP Incorporating Structural Alternatives and Sharing into Hierarchy for Multiclass Object Recognition and Detection CVPR 2013 # Skipping 34.8 mAP Color Attributes for Object Detection CVPR 2012 # Skipping 35.4 mAP Object Detection with Discriminatively Trained Part Based Models PAMI 2010 # Skipping 36.0 mAP Machine Learning Methods for Visual Object Detection archives-ouvertes 2011 # Skipping 38.7 mAP Detection Evolution with Multi-Order Contextual Co-occurrence CVPR 2013 # Skipping 40.5 mAP Segmentation Driven Object Detection with Fisher Vectors ICCV 2013 # Skipping 41.7 mAP Regionlets for Generic Object Detection ICCV 2013 # Skipping 43.7 mAP Beyond Bounding-Boxes: Learning Object Shape by Model-Driven Grouping ECCV 2012 # Handling 'Pascal VOC 2007 comp4' detection_datasets_results.html#50617363616c20564f43203230303720636f6d7034 # Skipping 59.2 mAP Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition ECCV 2014 # Skipping 58.5 mAP Rich feature hierarchies for accurate object detection and semantic segmentation CVPR 2014 # Skipping 29.0 mAP Multi-Component Models for Object Detection ECCV 2012 # Handling 'Pascal VOC 2010 comp3' detection_datasets_results.html#50617363616c20564f43203230313020636f6d7033 # Skipping 24.98 mAP Learning Collections of Part Models for Object Recognition CVPR 2013 # Skipping 29.4 mAP Discriminatively Trained And-Or Tree Models for Object Detection CVPR 2013 # Skipping 33.4 mAP Object Detection with Discriminatively Trained Part Based Models PAMI 2010 # Skipping 34.1 mAP Segmentation as selective search for object recognition ICCV 2011 # Skipping 35.1 mAP Selective Search for Object Recognition IJCV 2013 # Skipping 36.0 mAP Latent Hierarchical Structural Learning for Object Detection CVPR 2010 # Skipping 36.8 mAP Object Detection by Context and Boosted HOG-LBP ECCV 2010 # Skipping 38.4 mAP Segmentation Driven Object Detection with Fisher Vectors ICCV 2013 # Skipping 39.7 mAP Regionlets for Generic Object Detection ICCV 2013 # Skipping 40.4 mAP Fisher and VLAD with FLAIR CVPR 2014 # Handling 'Pascal VOC 2010 comp4' detection_datasets_results.html#50617363616c20564f43203230313020636f6d7034 # Skipping 53.7 mAP Rich feature hierarchies for accurate object detection and semantic segmentation CVPR 2014 # Skipping 40.4 mAP Bottom-up Segmentation for Top-down Detection CVPR 2013 # Skipping 33.1 mAP Multi-Component Models for Object Detection ECCV 2012
AI-metrics-master
data/awty.py
# The file was autogenerated by ../scrapers/wer.py from datetime import date from data.acoustics import speech_recognition, swb_hub_500 from scales import * librispeech_WER_clean = speech_recognition.metric(name="librispeech WER testclean", scale=error_percent, target=5.83, target_source="http://arxiv.org/abs/1512.02595v1") librispeech_WER_other = speech_recognition.metric(name="librispeech WER testother", scale=error_percent, target=12.69, target_source="http://arxiv.org/abs/1512.02595v1") librispeech_WER_clean.measure(date(2015, 12, 23), 5.33, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters trained on 11940h', 'http://arxiv.org/abs/1512.02595v1') librispeech_WER_clean.measure(date(2015, 8, 23), 4.83, 'HMM-TDNN + iVectors', 'http://speak.clsp.jhu.edu/uploads/publications/papers/1048_pdf.pdf') librispeech_WER_clean.measure(date(2015, 8, 23), 5.51, 'HMM-DNN + pNorm*', 'http://www.danielpovey.com/files/2015_icassp_librispeech.pdf') librispeech_WER_clean.measure(date(2015, 8, 23), 8.01, 'HMM-(SAT)GMM', 'http://kaldi-asr.org/') librispeech_WER_clean.measure(date(2016, 9, 23), 4.28, 'HMM-TDNN trained with MMI + data augmentation (speed) + iVectors + 3 regularizations', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') librispeech_WER_other.measure(date(2015, 12, 23), 13.25, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters trained on 11940h', 'http://arxiv.org/abs/1512.02595v1') librispeech_WER_other.measure(date(2015, 8, 23), 12.51, 'TDNN + pNorm + speed up/down speech', 'http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf') librispeech_WER_other.measure(date(2015, 8, 23), 13.97, 'HMM-DNN + pNorm*', 'http://www.danielpovey.com/files/2015_icassp_librispeech.pdf') librispeech_WER_other.measure(date(2015, 8, 23), 22.49, 'HMM-(SAT)GMM', 'http://kaldi-asr.org/') wsj_WER_eval92 = speech_recognition.metric(name="wsj WER eval92", scale=error_percent, target=5.03, target_source="http://arxiv.org/abs/1512.02595v1") wsj_WER_eval93 = speech_recognition.metric(name="wsj WER eval93", scale=error_percent, target=8.08, target_source="http://arxiv.org/abs/1512.02595v1") wsj_WER_eval92.measure(date(2014, 8, 23), 5.6, 'CNN over RAW speech (wav)', 'http://infoscience.epfl.ch/record/203464/files/Palaz_Idiap-RR-18-2014.pdf') wsj_WER_eval92.measure(date(2015, 12, 23), 3.60, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters', 'http://arxiv.org/abs/1512.02595v1') wsj_WER_eval92.measure(date(2015, 4, 23), 3.47, 'TC-DNN-BLSTM-DNN', 'http://arxiv.org/pdf/1504.01482v1.pdf') wsj_WER_eval92.measure(date(2015, 8, 23), 3.63, 'test-set on open vocabulary (i.e. harder), model = HMM-DNN + pNorm*', 'http://www.danielpovey.com/files/2015_icassp_librispeech.pdf') wsj_WER_eval93.measure(date(2015, 12, 23), 4.98, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters', 'http://arxiv.org/abs/1512.02595v1') wsj_WER_eval93.measure(date(2015, 8, 23), 5.66, 'test-set on open vocabulary (i.e. harder), model = HMM-DNN + pNorm*', 'http://www.danielpovey.com/files/2015_icassp_librispeech.pdf') #swb_hub_500_WER_SWB = speech_recognition.metric(name="swb_hub_500 WER SWB", scale=error_percent) swb_hub_500_WER_SWB = swb_hub_500 swb_hub_500_WER_fullSWBCH = speech_recognition.metric(name="swb_hub_500 WER fullSWBCH", scale=error_percent) swb_hub_500_WER_SWB.measure(date(2013, 8, 23), 11.5, 'CNN', 'http://www.cs.toronto.edu/~asamir/papers/icassp13_cnn.pdf') swb_hub_500_WER_SWB.measure(date(2013, 8, 23), 12.6, 'HMM-DNN +sMBR', 'http://www.danielpovey.com/files/2013_interspeech_dnn.pdf') swb_hub_500_WER_SWB.measure(date(2014, 12, 23), 12.6, 'CNN + Bi-RNN + CTC (speech to letters), 25.9% WER if trainedonlyon SWB', 'http://arxiv.org/abs/1412.5567') swb_hub_500_WER_SWB.measure(date(2014, 6, 23), 15, 'DNN + Dropout', 'http://arxiv.org/abs/1406.7806v2') swb_hub_500_WER_SWB.measure(date(2014, 8, 23), 10.4, 'CNN on MFSC/fbanks + 1 non-conv layer for FMLLR/I-Vectors concatenated in a DNN', 'http://www.mirlab.org/conference_papers/International_Conference/ICASSP%202014/papers/p5609-soltau.pdf') swb_hub_500_WER_SWB.measure(date(2015, 8, 23), 11, 'HMM-TDNN + iVectors', 'http://speak.clsp.jhu.edu/uploads/publications/papers/1048_pdf.pdf') swb_hub_500_WER_SWB.measure(date(2015, 8, 23), 12.9, 'HMM-TDNN + pNorm + speed up/down speech', 'http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf') swb_hub_500_WER_SWB.measure(date(2015, 9, 23), 12.2, 'Deep CNN (10 conv, 4 FC layers), multi-scale feature maps', 'http://arxiv.org/pdf/1509.08967v1.pdf') swb_hub_500_WER_SWB.measure(date(2016, 6, 23), 6.6, 'RNN + VGG + LSTM acoustic model trained on SWB+Fisher+CH, N-gram + "model M" + NNLM language model', 'http://arxiv.org/pdf/1604.08242v2.pdf') swb_hub_500_WER_SWB.measure(date(2016, 9, 23), 6.3, 'VGG/Resnet/LACE/BiLSTM acoustic model trained on SWB+Fisher+CH, N-gram + RNNLM language model trained on Switchboard+Fisher+Gigaword+Broadcast', 'http://arxiv.org/pdf/1609.03528v1.pdf') swb_hub_500_WER_SWB.measure(date(2016, 9, 23), 8.5, 'HMM-BLSTM trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') swb_hub_500_WER_SWB.measure(date(2016, 9, 23), 9.2, 'HMM-TDNN trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher (10% / 15.1% respectively trained on SWBD only)', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') swb_hub_500_WER_SWB.measure(date(2017, 3, 23), 5.5, 'ResNet + BiLSTMs acoustic model, with 40d FMLLR + i-Vector inputs, trained on SWB+Fisher+CH, n-gram + model-M + LSTM + Strided ( trous) convs-based LM trained on Switchboard+Fisher+Gigaword+Broadcast', 'https://arxiv.org/pdf/1703.02136.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2013, 8, 23), 18.4, 'HMM-DNN +sMBR', 'http://www.danielpovey.com/files/2013_interspeech_dnn.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2014, 12, 23), 16, 'CNN + Bi-RNN + CTC (speech to letters), 25.9% WER if trainedonlyon SWB', 'http://arxiv.org/abs/1412.5567') swb_hub_500_WER_fullSWBCH.measure(date(2014, 6, 23), 19.1, 'DNN + Dropout', 'http://arxiv.org/abs/1406.7806v2') swb_hub_500_WER_fullSWBCH.measure(date(2015, 8, 23), 17.1, 'HMM-TDNN + iVectors', 'http://speak.clsp.jhu.edu/uploads/publications/papers/1048_pdf.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2015, 8, 23), 19.3, 'HMM-TDNN + pNorm + speed up/down speech', 'http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2016, 6, 23), 12.2, 'RNN + VGG + LSTM acoustic model trained on SWB+Fisher+CH, N-gram + "model M" + NNLM language model', 'http://arxiv.org/pdf/1604.08242v2.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2016, 9, 23), 11.9, 'VGG/Resnet/LACE/BiLSTM acoustic model trained on SWB+Fisher+CH, N-gram + RNNLM language model trained on Switchboard+Fisher+Gigaword+Broadcast', 'http://arxiv.org/pdf/1609.03528v1.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2016, 9, 23), 13, 'HMM-BLSTM trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2016, 9, 23), 13.3, 'HMM-TDNN trained with MMI + data augmentation (speed) + iVectors + 3 regularizations + Fisher (10% / 15.1% respectively trained on SWBD only)', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') swb_hub_500_WER_fullSWBCH.measure(date(2017, 3, 23), 10.3, 'ResNet + BiLSTMs acoustic model, with 40d FMLLR + i-Vector inputs, trained on SWB+Fisher+CH, n-gram + model-M + LSTM + Strided ( trous) convs-based LM trained on Switchboard+Fisher+Gigaword+Broadcast', 'https://arxiv.org/pdf/1703.02136.pdf') fisher_WER = speech_recognition.metric(name="fisher WER", scale=error_percent) fisher_WER.measure(date(2016, 9, 23), 9.6, 'HMM-BLSTMtrained with MMI + data augmentation (speed) + iVectors + 3 regularizations + SWBD', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') fisher_WER.measure(date(2016, 9, 23), 9.8, 'HMM-TDNNtrained with MMI + data augmentation (speed) + iVectors + 3 regularizations + SWBD', 'http://www.danielpovey.com/files/2016_interspeech_mmi.pdf') chime_clean = speech_recognition.metric(name="chime clean", scale=error_percent) chime_real = speech_recognition.metric(name="chime real", scale=error_percent) chime_clean.measure(date(2014, 12, 23), 6.30, 'CNN + Bi-RNN + CTC (speech to letters)', 'http://arxiv.org/abs/1412.5567') chime_clean.measure(date(2015, 12, 23), 3.34, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters', 'http://arxiv.org/abs/1512.02595v1') chime_real.measure(date(2014, 12, 23), 67.94, 'CNN + Bi-RNN + CTC (speech to letters)', 'http://arxiv.org/abs/1412.5567') chime_real.measure(date(2015, 12, 23), 21.79, '9-layer model w/ 2 layers of 2D-invariant convolution &amp; 7 recurrent layers, w/ 68M parameters', 'http://arxiv.org/abs/1512.02595v1') timit_PER = speech_recognition.metric(name="timit PER", scale=error_percent) timit_PER.measure(date(2009, 8, 23), 23, '(first, modern) HMM-DBN', 'http://www.cs.toronto.edu/~asamir/papers/NIPS09.pdf') timit_PER.measure(date(2013, 3, 23), 17.7, 'Bi-LSTM + skip connections w/ CTC', 'http://arxiv.org/abs/1303.5778v1') timit_PER.measure(date(2014, 8, 23), 16.7, 'CNN in time and frequency + dropout, 17.6% w/o dropout', 'http://www.inf.u-szeged.hu/~tothl/pubs/ICASSP2014.pdf') timit_PER.measure(date(2015, 6, 23), 17.6, 'Bi-RNN + Attention', 'http://arxiv.org/abs/1506.07503') timit_PER.measure(date(2015, 9, 23), 16.5, 'Hierarchical maxout CNN + Dropout', 'https://link.springer.com/content/pdf/10.1186%2Fs13636-015-0068-3.pdf') timit_PER.measure(date(2016, 3, 23), 17.3, 'RNN-CRF on 24(x3) MFSC', 'https://arxiv.org/abs/1603.00223') wer_metrics=[librispeech_WER_clean, librispeech_WER_other, wsj_WER_eval92, wsj_WER_eval93, swb_hub_500_WER_SWB, swb_hub_500_WER_fullSWBCH, fisher_WER, chime_clean, chime_real, timit_PER]
AI-metrics-master
data/wer.py
"Hand-entered acoustic data" from taxonomy import Problem from scales import * import datetime date = datetime.date """ http://melodi.ee.washington.edu/s3tp/ * * * **_Word error rate on Switchboard (specify details): [Month, Year: Score [SWB]: Team]. Compiled by Jack Clark._** A note about measurement: We're measuring Switchboard (SWB) and Call Home (CH) performance (mostly) from the Hub5'00 dataset, with main scores assesses in terms of word error rate on SWB. We also create Why do we care: Reflects the improvement of audio processing systems on speech over time. """ speech_recognition = Problem(name="Speech Recognition", attributes=["language", "agi"]) swb_hub_500 = speech_recognition.metric(name="Word error rate on Switchboard trained against the Hub5'00 dataset", scale=error_percent, target=5.9) swb_hub_500.measure(date(2011,8,31), 16.1, "CD-DNN", "https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-SWB-Interspeech2011-Pub.pdf") swb_hub_500.measure(date(2012,4,27), 18.5, "DNN-HMM", "https://pdfs.semanticscholar.org/ce25/00257fda92338ec0a117bea1dbc0381d7c73.pdf?_ga=1.195375081.452266805.1483390947") swb_hub_500.measure(date(2013,8,25), 12.9, "DNN MMI", "http://www.danielpovey.com/files/2013_interspeech_dnn.pdf") swb_hub_500.measure(date(2013,8,25), 12.6, "DNN sMBR", "http://www.danielpovey.com/files/2013_interspeech_dnn.pdf") swb_hub_500.measure(date(2013,8,25), 12.9, "DNN MPE", "http://www.danielpovey.com/files/2013_interspeech_dnn.pdf") swb_hub_500.measure(date(2013,8,25), 12.9, "DNN BMMI", "http://www.danielpovey.com/files/2013_interspeech_dnn.pdf") swb_hub_500.measure(date(2014,6,30), 16, "DNN", "https://arxiv.org/abs/1406.7806v1") swb_hub_500.measure(date(2014,12,7), 20, "Deep Speech", "https://arxiv.org/abs/1412.5567") swb_hub_500.measure(date(2014,12,7), 12.6, "Deep Speech + FSH", url="https://arxiv.org/abs/1412.5567") # TODO: why is this also included? swb_hub_500.measure(date(2015,5,21), 8.0, "IBM 2015", "https://arxiv.org/abs/1505.05899") # TODO: (name check) swb_hub_500.measure(date(2016,4,27), 6.9, "IBM 2016", "https://arxiv.org/abs/1604.08242v1") # TODO: (name check) swb_hub_500.measure(date(2017,2,17), 6.9, "RNNLM", "https://arxiv.org/abs/1609.03528") # TODO: (name check) swb_hub_500.measure(date(2017,2,17), 6.2, "Microsoft 2016", "https://arxiv.org/abs/1609.03528") # TODO: (name check) swb_hub_500.measure(date(2016,10,17), 6.6, "CNN-LSTM", "https://arxiv.org/abs/1610.05256") # TODO: (name check) swb_hub_500.measure(None, 5.8, "Microsoft 2016b", "https://arxiv.org/abs/1610.05256") # TODO: (name check) """ Author Yann Bayle E-mail [email protected] Created 03/08/2017 Updated 04/08/2017 Object Music Information Retrieval tasks Why do we care: Reflects the improvement of music auto-tagging over time. """ # Precision for the Instrumentals detection in a musical database in order to create an Instrumental playlist instrumentals_recognition = Problem(name="Detection of Instrumentals musical tracks", attributes=["language", "agi"]) satin = instrumentals_recognition.metric(name="Precision of Instrumentals detection reached when tested on SATIN (Bayle et al. 2017)", scale=correct_percent, target=99) satin.measure(date(2013, 10, 17), 17.3, "Ghosal et al.", "https://link.springer.com/article/10.1186/2193-1801-2-526") satin.measure(date(2014, 9, 30), 12.5, "SVMBFF", "https://arxiv.org/pdf/1410.0001.pdf") satin.measure(date(2014, 9, 30), 29.8, "VQMM", "https://arxiv.org/pdf/1410.0001.pdf") satin.measure(date(2017, 6, 23), 82.5, "Bayle et al.", "https://arxiv.org/abs/1706.07613") # MAP and MAR for Cover Song Identification currently being written # Need for people to work on genres recognition
AI-metrics-master
data/acoustics.py
from taxonomy import Problem from scales import * import datetime date = datetime.date read_stem_papers = Problem("Read a scientific or technical paper, and comprehend its contents", ["language", "world-modelling", "super"]) # Getting some major results from an abstract, tables or conclusion is much easier than understanding the entire paper, its assumptions, robustness, support for its claims, etc extract_results = Problem("Extract major numerical results or progress claims from a STEM paper", ["language", "world-modelling", "agi"]) read_stem_papers.add_subproblem(extract_results) extract_results.metric("Automatically find new relevant ML results on arXiv") extract_results.notes = """ This metric is the ability to automatically update the ipython Notebook you are reading by spotting results in pdfs uploaded to arxiv.org. Pull requests demonstrating solutions are welcome :) """ solve_technical_problems = Problem("Given an arbitrary technical problem, solve it as well as a typical professional in that field", ["language", "world-modelling"]) program_induction = Problem("Writing software from specifications") solve_technical_problems.add_subproblem(program_induction) program_induction.metric("Card2Code", url="https://github.com/deepmind/card2code", scale=correct_percent) vaguely_constrained_technical_problems = Problem("Solve vaguely or under-constrained technical problems") solve_technical_problems.add_subproblem(vaguely_constrained_technical_problems) # This subset of technical problems is much easier; here we assume that a human / worldly problem has been reduced to something that can be # subjected to clear computational evaluation ("is this purported proof of theorem X correct?", "does this circuit perform task Y efficiently?" # "will this airframe fly with reasonable characteristics?") solve_constrained_technical_problems = Problem("Solve technical problems with clear constraints (proofs, circuit design, aerofoil design, etc)") solve_technical_problems.add_subproblem(solve_constrained_technical_problems) vaguely_constrained_technical_problems.add_subproblem(read_stem_papers) # Note that this theorem proving problem (learning to prove theorems) is a little different from the pure search # through proof space that characterises the classic ATP field, though progress there may also be interesting theorem_proving = Problem("Given examples of proofs, find correct proofs of simple mathematical theorems", ["agi", "math"]) circuit_design = Problem("Given desired circuit characteristics, and many examples, design new circuits to spec", ["agi", "math"]) solve_constrained_technical_problems.add_subproblem(theorem_proving) theorem_proving.metric("HolStep", url="https://arxiv.org/abs/1703.00426") solve_constrained_technical_problems.add_subproblem(circuit_design) # TODO: find well-defined metrics for some of these problems in the literature. Or create some! # Some relevant papers: # http://www.ise.bgu.ac.il/faculty/kalech/publications/ijcai13.pdf # https://www.researchgate.net/publication/2745078_Use_of_Automatically_Defined_Functions_and_ArchitectureAltering_Operations_in_Automated_Circuit_Synthesis_with_Genetic_Programming # https://link.springer.com/article/10.1007/s10817-014-9301-5 program_induction = Problem("Write computer programs from specifications") vaguely_constrained_technical_problems.add_subproblem(program_induction) card2code_mtg_acc = program_induction.metric("Card2Code MTG accuracy", url="https://github.com/deepmind/card2code", scale=correct_percent, target=100, target_label="Bug-free card implementation") card2code_hs_acc = program_induction.metric("Card2Code Hearthstone accuracy", url="https://github.com/deepmind/card2code", scale=correct_percent, target=100, target_label="Bug-free card implementation") card2code_mtg_acc.measure(None, 4.8, "LPN", url="https://arxiv.org/abs/1603.06744v1") card2code_hs_acc.measure(None, 6.1, "LPN", url="https://arxiv.org/abs/1603.06744v1") card2code_hs_acc.measure(None, 13.6, "Seq2Tree-Unk", url="https://arxiv.org/abs/1704.01696v1", algorithm_src_url="https://arxiv.org/abs/1601.01280v1") card2code_hs_acc.measure(None, 1.5, "NMT", url="https://arxiv.org/abs/1704.01696v1", algorithm_src_url="https://arxiv.org/abs/1409.0473v1") #card2code_hs_acc.measure(None, 16.2, "SNM", url="https://arxiv.org/abs/1704.01696v1") card2code_hs_acc.measure(None, 16.7, "SNM -frontier embed", url="https://arxiv.org/abs/1704.01696v1") understand_conditional_expressions = Problem("Parse and implement complex conditional expressions") program_induction.add_subproblem(understand_conditional_expressions) science_question_answering = Problem("Answering Science Exam Questions", ["science", "qa"]) vaguely_constrained_technical_problems.add_subproblem(science_question_answering) elementery_ndmc_acc = science_question_answering.metric("Elementery NDMC accuracy", url="", scale=correct_percent, target=100, target_label="Perfect Score")
AI-metrics-master
data/stem.py
# -*- coding: utf-8 -*- "Hand-entered data about written language problems" from taxonomy import Problem from scales import * import datetime date = datetime.date modelling_english = Problem("Accurate modelling of human language.", ["language", "agi"]) ptperplexity = modelling_english.metric(name="Penn Treebank (Perplexity when parsing English sentences)", scale=perplexity) ptperplexity.measure(date(2016,9,26), 70.9, "Pointer Sentinel-LSTM", "https://arxiv.org/pdf/1609.07843v1.pdf") ptperplexity.measure(date(2016,10,5), 73.4, "Variational LSTM", "https://arxiv.org/pdf/1512.05287v5.pdf") ptperplexity.measure(date(2013,12,20), 107.5, "Deep RNN", "https://arxiv.org/abs/1312.6026") ptperplexity.measure(date(2012,4,7), 78.8, "KN5+RNNME ensemble", "http://www.fit.vutbr.cz/~imikolov/rnnlm/google.pdf") ptperplexity.measure(date(2012,4,7), 125.7, "KN5+cache baseline", "http://www.fit.vutbr.cz/~imikolov/rnnlm/google.pdf") ptperplexity.measure(date(2012,7,27), 124.7, "RNNLM", "https://www.microsoft.com/en-us/research/wp-content/uploads/2012/07/rnn_ctxt_TR.sav_.pdf") ptperplexity.measure(date(2012,7,27), 74.1, "RNN-LDA+all", "https://www.microsoft.com/en-us/research/wp-content/uploads/2012/07/rnn_ctxt_TR.sav_.pdf") ptperplexity.measure(date(2012,7,27), 113.7, "RNN-LDA LM", "https://www.microsoft.com/en-us/research/wp-content/uploads/2012/07/rnn_ctxt_TR.sav_.pdf") ptperplexity.measure(date(2012,7,27), 92.0, "RNN-LDA LM+KN5+cache", "https://www.microsoft.com/en-us/research/wp-content/uploads/2012/07/rnn_ctxt_TR.sav_.pdf") ptperplexity.measure(date(2012,7,27), 80.1, "RNN-LDA ensemble", "https://www.microsoft.com/en-us/research/wp-content/uploads/2012/07/rnn_ctxt_TR.sav_.pdf") ptperplexity.measure(None, 68.7, "RNN Dropout Regularization", "https://arxiv.org/abs/1409.2329v1") ptperplexity.measure(None, 68.5, "RHN", "https://arxiv.org/pdf/1607.03474v3") ptperplexity.measure(None, 66, "RHN+WT", "https://arxiv.org/pdf/1607.03474v3") ptperplexity.measure(None, 71.3, "Variational RHN", "https://arxiv.org/abs/1607.03474") hp_compression = modelling_english.metric(name="Hutter Prize (bits per character to encode English text)", scale=bits_per_x, target=1.3) hp_compression.measure(date(2016,10,31), 1.313, "Surprisal-Driven Zoneout", "https://pdfs.semanticscholar.org/e9bc/83f9ff502bec9cffb750468f76fdfcf5dd05.pdf") hp_compression.measure(date(2016,10,19), 1.37, "Surprisal-Driven Feedback RNN", "https://arxiv.org/pdf/1608.06027.pdf") hp_compression.measure(date(2016,9,27), 1.39, "Hypernetworks", "https://arxiv.org/abs/1609.09106") hp_compression.measure(date(2016,9,6), 1.32, " Hierarchical Multiscale RNN", "https://arxiv.org/abs/1609.01704") hp_compression.measure(date(2016,7,12), 1.32, "Recurrent Highway Networks", "https://arxiv.org/abs/1607.03474") hp_compression.measure(date(2015,7,6), 1.47, "Grid LSTM", "https://arxiv.org/abs/1507.01526") hp_compression.measure(date(2015,2,15), 1.58, "Gated Feedback RNN", "https://arxiv.org/abs/1502.02367") # we need to match/double check the release date of the specific version of cmix that got this performance? # hp_compression.measure(date(2014,4,13), 1.245, "cmix", "http://www.byronknoll.com/cmix.html") hp_compression.measure(date(2013,8,4), 1.67, "RNN, LSTM", "https://arxiv.org/abs/1308.0850") hp_compression.measure(date(2011,6,28), 1.60, "RNN", "http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf") lambada = modelling_english.metric("LAMBADA prediction of words in discourse", url="https://arxiv.org/abs/1606.06031", scale=correct_percent, target=86, target_source="https://arxiv.org/abs/1610.08431v3") lambada.measure(None, 21.7, "Stanford Reader", url="https://arxiv.org/abs/1610.08431v3", algorithm_src_url="https://arxiv.org/abs/1606.02858") lambada.measure(None, 32.1, "Modified Stanford", url="https://arxiv.org/abs/1610.08431v3", algorithm_src_url="https://arxiv.org/abs/1606.02858") lambada.measure(None, 49.0, "GA + feat.", url="https://arxiv.org/abs/1610.08431v3", algorithm_src_url="https://arxiv.org/abs/1606.01549v2") lambada.measure(None, 44.5, "AS + feat.", url="https://arxiv.org/abs/1610.08431v3", algorithm_src_url="https://arxiv.org/abs/1603.01547") lambada.measure(None, 51.6, "MAGE (48)", url="https://arxiv.org/abs/1703.02620v1") turing_test = Problem("Conduct arbitrary sustained, probing conversation", ["agi", "language", "world-modelling", "communication"]) easy_turing_test = Problem("Turing test for casual conversation", ["agi", "language", "world-modelling", "communication"]) turing_test.add_subproblem(easy_turing_test) loebner = easy_turing_test.metric("The Loebner Prize scored selection answers", url="http://www.aisb.org.uk/events/loebner-prize", scale=correct_percent, changeable=True, target=100, target_label="Completely plausible answers", axis_label='Percentage of answers rated plausible\n(each year is a different test)') # XXX humans probably don't get 100% on the Loebner Prize selection questions; we should ask the organizers to score # some humans loebner.notes = """ The Loebner Prize is an actual enactment of the Turing Test. Importantly, judges are instructed to engage in casual, natural conversation rather than deliberately probing to determine if participants are "intelligent" (Brian Christian, The Most Human Human). This makes it considerably easier than a probing Turing Test, and it is close to being solved. However these aren't scores for the full Loebner Turing Test; since 2014 the Loebner prize has scored its entrants by giving them a corpus of conversation and scoring their answers. We use these numbers because they remove variability in the behaviour of the judges. Unfortunately, these questions change from year to year (and have to, since entrants will test with last year's data). """ loebner.measure(date(2016,9,17), 90, "Mitsuku 2016", url="http://www.aisb.org.uk/events/loebner-prize#Results16") loebner.measure(date(2016,9,17), 78.3, "Tutor 2016", url="http://www.aisb.org.uk/events/loebner-prize#Results16") loebner.measure(date(2016,9,17), 77.5, "Rose 2016", url="http://www.aisb.org.uk/events/loebner-prize#Results16") loebner.measure(date(2016,9,17), 77.5, "Arckon 2016", url="http://www.aisb.org.uk/events/loebner-prize#Results16") loebner.measure(date(2016,9,17), 76.7, "Katie 2016", url="http://www.aisb.org.uk/events/loebner-prize#Results16") loebner.measure(date(2015,9,19), 83.3, "Mitsuku 2015", url="http://www.aisb.org.uk/events/loebner-prize#Results15") loebner.measure(date(2015,9,19), 80, "Lisa 2015", url="http://www.aisb.org.uk/events/loebner-prize#Results15") loebner.measure(date(2015,9,19), 76.7, "Izar 2015", url="http://www.aisb.org.uk/events/loebner-prize#Results15") loebner.measure(date(2015,9,19), 75, "Rose 2015",url="http://www.aisb.org.uk/events/loebner-prize#Results15") loebner.measure(date(2014,11,15), 89.2, "Rose 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") loebner.measure(date(2014,11,15), 88.3, "Izar 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") loebner.measure(date(2014,11,15), 88.3, "Misuku 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") loebner.measure(date(2014,11,15), 81.67, "Uberbot 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") loebner.measure(date(2014,11,15), 80.83, "Tutor 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") loebner.measure(date(2014,11,15), 76.7, "The Professor 2014", url="http://www.aisb.org.uk/events/loebner-prize#contest2014") reading_comprehension = Problem("Language comprehension and question-answering", ["language", "world-modelling", "agi"]) turing_test.add_subproblem(reading_comprehension) # Overview of Machine Reading Comprehension (MRC) datasets here: # http://eric-yuan.me/compare-popular-mrc-datasets/ bAbi10k = reading_comprehension.metric("bAbi 20 QA (10k training examples)", url="http://fb.ai/babi", scale=correct_percent, target=99, target_label="Excellent performance") bAbi1k = reading_comprehension.metric("bAbi 20 QA (1k training examples)", url="http://fb.ai/babi", scale=correct_percent, target=99, target_label="Excellent performance") bAbi1k.notes = """ A synthetic environment inspired by text adventures and SHRDLU, which enables generation of ground truths, describing sentences, and inferential questions. Includes: supporting facts, relations, yes/no questions, counting, lists/sets, negation, indefiniteness, conference, conjunction, time, basic deduction and induction, reasoning about position, size, path finding and motivation. Table 3 of https://arxiv.org/abs/1502.05698 actually breaks this down into 20 submeasures but initially we're lumping all of this together. Originally "solving" bABI was defined as 95% accuracy (or perhaps) 95% accuracy on all submeasures, but clearly humans and now algorithms are better than that. TODO: bAbi really needs to be decomposed into semi-supervised and unsupervised variants, and by amount of training data provided """ bAbi10k.measure(date(2015,2,19), 93.3, "MemNN-AM+NG+NL (1k + strong supervision)", "https://arxiv.org/abs/1502.05698v1", not_directly_comparable=True, long_label=True, offset=(2,5)) # not literally a 10K example, but more comparable to it #bAbi1k.measure(None, 48.7, "LSTM", "https://arxiv.org/abs/1502.05698v1", algorithm_src_url="http://isle.illinois.edu/sst/meetings/2015/hochreiter-lstm.pdf", min_date=date(1997,11,15)) bAbi1k.measure(date(2015,3,31), 86.1, "MemN2N-PE+LS+RN", "https://arxiv.org/abs/1503.08895") bAbi10k.measure(date(2015,3,31), 93.4, "MemN2N-PE+LS+RN", "https://arxiv.org/abs/1503.08895") bAbi1k.measure(date(2015,6,24), 93.6, "DMN", "https://arxiv.org/abs/1506.07285", offset=(3,-2), not_directly_comparable=True) # The paper doesn't say if this is 1k or 10k bAbi10k.measure(date(2016,1,5), 96.2, "DNC", "https://www.gwern.net/docs/2016-graves.pdf") bAbi10k.measure(date(2016,9,27), 97.1, "SDNC", "https://arxiv.org/abs/1606.04582v4") bAbi10k.measure(date(2016,12,12), 99.5, "EntNet", "https://arxiv.org/abs/1612.03969") bAbi1k.measure(date(2016,12,12), 89.1, "EntNet", "https://arxiv.org/abs/1612.03969") bAbi10k.measure(date(2016,12,9), 99.7, "QRN", "https://arxiv.org/abs/1606.04582v4", offset=(2,3)) bAbi1k.measure(date(2016,12,9), 90.1, "QRN", "https://arxiv.org/abs/1606.04582v4") bAbi1k.measure(None, 66.8, "DMN+", "https://arxiv.org/abs/1606.04582v4", algorithm_src_url="https://arxiv.org/abs/1607.00036", replicated="https://github.com/therne/dmn-tensorflow") bAbi10k.measure(date(2016,6,30), 97.2, "DMN+", "https://arxiv.org/abs/1607.00036") # More papers: # https://www.aclweb.org/anthology/D/D13/D13-1020.pdf mctest160 = reading_comprehension.metric("Reading comprehension MCTest-160-all", scale=correct_percent, url="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/MCTest_EMNLP2013.pdf") mctest160.measure(date(2013, 10, 1), 69.16, "SW+D+RTE", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/MCTest_EMNLP2013.pdf", papername="MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text") mctest160.measure(date(2015, 7, 26), 75.27, "Wang-et-al", url="http://arxiv.org/abs/1603.08884") mctest160.measure(date(2015, 7, 26), 73.27, "Narasimhan-model3", url="https://people.csail.mit.edu/regina/my_papers/MCDR15.pdf", papername="Machine Comprehension with Discourse Relations") mctest160.measure(date(2016, 3, 29), 74.58, "Parallel-Hierarchical", url="http://arxiv.org/abs/1603.08884") mctest500 = reading_comprehension.metric("Reading comprehension MCTest-500-all", scale=correct_percent, url="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/MCTest_EMNLP2013.pdf") mctest500.measure(date(2013, 10, 1), 63.33, "SW+D+RTE", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/MCTest_EMNLP2013.pdf", papername="MCTest: A Challenge Dataset for the Open-Domain Machine Comprehension of Text") mctest500.measure(date(2015, 7, 26), 69.94, "Wang-et-al", url="http://arxiv.org/abs/1603.08884") mctest500.measure(date(2015, 7, 26), 63.75, "Narasimhan-model3", url="https://people.csail.mit.edu/regina/my_papers/MCDR15.pdf", papername="Machine Comprehension with Discourse Relations") mctest500.measure(date(2015, 7, 26), 67.83, "LSSVM", url="https://pdfs.semanticscholar.org/f26e/088bc4659a9b7fce28b6604d26de779bcf93.pdf", papername="Learning Answer-Entailing Structures for Machine Comprehension") mctest500.measure(date(2016, 3, 29), 71.00, "Parallel-Hierarchical", url="http://arxiv.org/abs/1603.08884") cbtest_ne = reading_comprehension.metric("bAbi Children's Book comprehension CBtest NE", url="http://fb.ai/babi", scale=correct_percent, target=81.6, target_source="https://arxiv.org/abs/1511.02301") cbtest_cn = reading_comprehension.metric("bAbi Children's Book comprehension CBtest CN", url="http://fb.ai/babi", scale=correct_percent, target=81.6, target_source="https://arxiv.org/abs/1511.02301") cnn = reading_comprehension.metric("CNN Comprehension test", url="https://github.com/deepmind/rc-data/", scale=correct_percent) daily_mail = reading_comprehension.metric("Daily Mail Comprehension test", url="https://github.com/deepmind/rc-data/", scale=correct_percent) cnn.measure(date(2015, 6, 10), 63.0, "Attentive reader", url="https://arxiv.org/abs/1506.03340") cnn.measure(date(2015, 6, 10), 63.8, "Impatient reader", url="https://arxiv.org/abs/1506.03340") daily_mail.measure(date(2015, 6, 10), 69.0, "Attentive reader", url="https://arxiv.org/abs/1506.03340") daily_mail.measure(date(2015, 6, 10), 68.0, "Impatient reader", url="https://arxiv.org/abs/1506.03340") cnn.measure(date(2016, 6, 7), 75.7, "AIA", url="https://arxiv.org/abs/1606.02245v1") cbtest_ne.measure(date(2016, 6, 7), 72.0, "AIA", url="https://arxiv.org/abs/1606.02245v1") cbtest_ne.measure(date(2016, 6, 7), 71.0, "AIA", url="https://arxiv.org/abs/1606.02245v1") cnn.measure(date(2016, 11, 9), 76.1, "AIA", url="https://arxiv.org/abs/1606.02245v4") cnn.measure(date(2016, 6, 7), 74.0, "EpiReader", url="https://arxiv.org/abs/1606.02270") cbtest_ne.measure(date(2016, 6, 7), 69.7, "EpiReader", url="https://arxiv.org/abs/1606.02270") cbtest_cn.measure(date(2016, 6, 7), 67.4, "EpiReader", url="https://arxiv.org/abs/1606.02270") cbtest_cn.measure(date(2016, 6, 5), 69.4, "GA reader", url="https://arxiv.org/abs/1606.01549v1") cbtest_ne.measure(date(2016, 6, 5), 71.9, "GA reader", url="https://arxiv.org/abs/1606.01549v1") cnn.measure(date(2016, 6, 5), 77.4, "GA reader", url="https://arxiv.org/abs/1606.01549v1") daily_mail.measure(date(2016, 6, 5), 78.1, "GA reader", url="https://arxiv.org/abs/1606.01549v1") cnn.measure(None, 77.9, "GA update L(w)", url="https://arxiv.org/abs/1606.01549v2") daily_mail.measure(None, 80.9, "GA update L(w)", url="https://arxiv.org/abs/1606.01549v2") cbtest_ne.measure(None, 74.9, "GA +feature, fix L(w)", url="https://arxiv.org/abs/1606.01549v2") cbtest_cn.measure(None, 70.7, "GA +feature, fix L(w)", url="https://arxiv.org/abs/1606.01549v2") # Neural semantic encoders invented in https://arxiv.org/abs/1607.04315v1 and retrospectively applied to CBTest by other authors cbtest_ne.measure(date(2016, 12, 1), 73.2, "NSE", url="https://arxiv.org/abs/1606.01549v2", algorithm_src_url="https://arxiv.org/abs/1607.04315", min_date=date(2016,7,4)) cbtest_cn.measure(date(2016, 12, 1), 71.9, "NSE", url="https://arxiv.org/abs/1606.01549v2", algorithm_src_url="https://arxiv.org/abs/1607.04315", min_date=date(2016,7,4)) cnn.measure(date(2016, 8, 4), 74.4, "AoA reader", url="https://arxiv.org/pdf/1607.04423") cbtest_ne.measure(date(2016, 8, 4), 72.0, "AoA reader", url="https://arxiv.org/pdf/1607.04423") cbtest_cn.measure(date(2016, 8, 4), 69.4, "AoA reader", url="https://arxiv.org/pdf/1607.04423") cnn.measure(date(2016, 8, 8), 77.6, "Attentive+relabling+ensemble", url="https://arxiv.org/abs/1606.02858") daily_mail.measure(date(2016, 8, 8), 79.2, "Attentive+relabling+ensemble", url="https://arxiv.org/abs/1606.02858") cnn.measure(None, 75.4, "AS reader (avg)", url="https://arxiv.org/abs/1603.01547v1") cnn.measure(None, 74.8, "AS reader (greedy)", url="https://arxiv.org/abs/1603.01547v1") daily_mail.measure(None, 77.1, "AS reader (avg)", url="https://arxiv.org/abs/1603.01547v1") daily_mail.measure(None, 77.7, "AS reader (greedy)", url="https://arxiv.org/abs/1603.01547v1") cbtest_ne.measure(None, 70.6, "AS reader (avg)", url="https://arxiv.org/abs/1603.01547v1") cbtest_ne.measure(None, 71.0, "AS reader (greedy)", url="https://arxiv.org/abs/1603.01547v1") cbtest_cn.measure(None, 68.9, "AS reader (avg)", url="https://arxiv.org/abs/1603.01547v1") cbtest_cn.measure(None, 67.5, "AS reader (greedy)", url="https://arxiv.org/abs/1603.01547v1") squad_em = reading_comprehension.metric("Stanford Question Answering Dataset EM test", url="https://stanford-qa.com/") squad_f1 = reading_comprehension.metric("Stanford Question Answering Dataset F1 test", url="https://stanford-qa.com/") squad_em.measure(date(2017, 3, 8), 76.922, "r-net (ensemble)", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf") squad_f1.measure(date(2017, 3, 8), 84.006, "r-net (ensemble)", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf") squad_em.measure(date(2017, 3, 8), 74.614, "r-net (single model)", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf") squad_f1.measure(date(2017, 3, 8), 82.458, "r-net (single model)", url="https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf") squad_em.measure(date(2017, 5, 8), 73.754, "Mnemonic reader (ensemble)", url="https://arxiv.org/pdf/1705.02798.pdf") squad_f1.measure(date(2017, 5, 8), 81.863, "Mnemonic reader (ensemble)", url="https://arxiv.org/pdf/1705.02798.pdf") squad_em.measure(date(2017, 4, 20), 73.723, "SEDT+BiDAF (ensemble)", url="https://arxiv.org/pdf/1703.00572.pdf") squad_f1.measure(date(2017, 4, 20), 81.53, "SEDT+BiDAF (ensemble)", url="https://arxiv.org/pdf/1703.00572.pdf") squad_em.measure(date(2017, 2, 24), 73.744, "BiDAF (ensemble)", url="https://arxiv.org/abs/1611.01603") squad_f1.measure(date(2017, 2, 24), 81.525, "BiDAF (ensemble)", url="https://arxiv.org/abs/1611.01603") squad_em.measure(date(2017, 5,31), 73.01, "jNet (ensemble)",url="https://arxiv.org/abs/1703.04617", min_date=date(2017,5,1)) squad_f1.measure(date(2017, 5,31), 81.517, "jNet (ensemble)", url="https://arxiv.org/abs/1703.04617", min_date=date(2017,5,1)) squad_em.measure(date(2016, 12, 13), 73.765, "MPM (ensemble)", url="https://arxiv.org/abs/1612.04211") squad_f1.measure(date(2016, 12, 13), 81.257, "MPM (ensemble)", url="https://arxiv.org/abs/1612.04211") squad_em.measure(date(2016, 11, 4), 66.233, "Dynamic Coattention Networks (single model)", url="https://arxiv.org/pdf/1611.01604v1") squad_f1.measure(date(2016, 11, 4), 75.896, "Dynamic Coattention Networks (single model)", url="https://arxiv.org/pdf/1611.01604v1") squad_em.measure(date(2016, 11, 4), 71.625, "Dynamic Coattention Networks (ensemble)", url="https://arxiv.org/pdf/1611.01604v1") squad_f1.measure(date(2016, 11, 4), 80.383, "Dynamic Coattention Networks (ensemble)", url="https://arxiv.org/pdf/1611.01604v1") squad_em.measure(date(2017, 5,31), 70.607, "jNet (single model)", url="https://arxiv.org/abs/1703.04617", min_date=date(2017,5,1)) squad_f1.measure(date(2017, 5,31), 79.456, "jNet (single model)", url="https://arxiv.org/abs/1703.04617", min_date=date(2017,5,1)) squad_em.measure(date(2017, 4, 24), 70.639, "Ruminating Reader (single model)", url="https://arxiv.org/pdf/1704.07415.pdf") squad_f1.measure(date(2017, 4, 24), 79.821, "Ruminating Reader (single model)", url="https://arxiv.org/pdf/1704.07415.pdf") squad_em.measure(date(2017, 3, 31), 70.733, "Document Reader (single model)", url="https://arxiv.org/abs/1704.00051") squad_f1.measure(date(2017, 3, 31), 79.353, "Document Reader (single model)", url="https://arxiv.org/abs/1704.00051") squad_em.measure(date(2017, 5, 8), 69.863, "Mnemonic reader (single model)", url="https://arxiv.org/pdf/1705.02798.pdf") squad_f1.measure(date(2017, 5, 8), 79.207, "Mnemonic reader (single model)", url="https://arxiv.org/pdf/1705.02798.pdf") squad_em.measure(date(2016, 12, 29), 70.849, "FastQAExt", url="https://arxiv.org/abs/1703.04816") squad_f1.measure(date(2016, 12, 29), 78.857, "FastQAExt", url="https://arxiv.org/abs/1703.04816") squad_em.measure(date(2016, 12, 13), 70.387, "MPM (single model)", url="https://arxiv.org/abs/1612.04211") squad_f1.measure(date(2016, 12, 13), 78.784, "MPM (single model)", url="https://arxiv.org/abs/1612.04211") squad_em.measure(date(2017, 5, 31), 70.849, "RaSoR (single model)", url="https://arxiv.org/abs/1611.01436", min_date=date(2017,5,1)) squad_f1.measure(date(2017, 5, 31), 78.741, "RaSoR (single model)", url="https://arxiv.org/abs/1611.01436", min_date=date(2017,5,1)) squad_em.measure(date(2017, 4, 20), 68.478, "SEDT+BiDAF (single model)", url="https://arxiv.org/pdf/1703.00572.pdf") squad_f1.measure(date(2017, 4, 20), 77.971, "SEDT+BiDAF (single model)", url="https://arxiv.org/pdf/1703.00572.pdf") squad_em.measure(date(2016, 11, 29), 68.478, "BiDAF (single model)", url="https://arxiv.org/abs/1611.01603") squad_f1.measure(date(2016, 11, 29), 77.971, "BiDAF (single model)", url="https://arxiv.org/abs/1611.01603") squad_em.measure(date(2016, 12, 29), 68.436, "FastQA", url="https://arxiv.org/abs/1703.04816") squad_f1.measure(date(2016, 12, 29), 77.07, "FastQA", url="https://arxiv.org/abs/1703.04816") squad_em.measure(date(2016, 11, 7), 67.901, "Match-LSTM+Ans-Ptr", url="https://arxiv.org/pdf/1608.07905v2") squad_f1.measure(date(2016, 11, 7), 77.022, "Match-LSTM+Ans-Ptr", url="https://arxiv.org/pdf/1608.07905v2") translation = Problem("Translation between human langauges", ["agi", "language"]) en_fr_bleu = translation.metric("news-test-2014 En-Fr BLEU", url="http://aclweb.org/anthology/P/P02/P02-1040.pdf", scale=bleu_score, target_label="Identical to professional human translations", target=50) en_de_bleu = translation.metric("news-test-2014 En-De BLEU", url="http://aclweb.org/anthology/P/P02/P02-1040.pdf", scale=bleu_score, target_label="Identical to professional human translations", target=50) en_ro_bleu = translation.metric("news-test-2016 En-Ro BLEU", url="http://www.statmt.org/wmt16/book.pdf", scale=bleu_score, target_label="Identical to professional human translations", target=50) en_fr_bleu.measure(None, 37, "PBMT", url="http://www.anthology.aclweb.org/W/W14/W14-33.pdf", papername=u"Edinburgh’s phrase-based machine translation systems for WMT-14", venue="WMT 2014") en_de_bleu.measure(None, 20.7, "PBMT", url="http://www.anthology.aclweb.org/W/W14/W14-33.pdf", papername=u"Edinburgh’s phrase-based machine translation systems for WMT-14", venue="WMT 2014") en_fr_bleu.measure(date(2014, 9, 1), 36.15, "RNN-search50*", url="https://arxiv.org/abs/1409.0473") en_fr_bleu.measure(date(2014, 10, 30), 37.5, "LSTM6 + PosUnk", url="https://arxiv.org/abs/1410.8206") # XXX need a better way of indicating that LSTM is old.... we don't want the axes running # all the way back to 1997; maybe we can use ellipses? en_fr_bleu.measure(None, 34.81, "LSTM", "https://arxiv.org/abs/1409.3215v1", algorithm_src_url="http://www.bioinf.jku.at/publications/older/2604.pdf")#, min_date=date(2010,1,1)) en_fr_bleu.measure(None, 36.5, "SMT+LSTM5", "https://arxiv.org/abs/1409.3215v1") en_fr_bleu.measure(date(2016, 9, 26), 39.92, "GNMT+RL", url="https://arxiv.org/abs/1609.08144") en_de_bleu.measure(date(2016, 9, 26), 26.30, "GNMT+RL", url="https://arxiv.org/abs/1609.08144") # Lots of this data is coming via https://arxiv.org/abs/1609.08144 en_fr_bleu.measure(date(2016, 7, 23), 39.2, "Deep-Att + PosUnk", url="https://arxiv.org/abs/1606.04199") en_de_bleu.measure(date(2016, 7, 23), 20.7, "Deep-Att", url="https://arxiv.org/abs/1606.04199") en_fr_bleu.measure(date(2017, 1, 23), 40.56, "MoE 2048", url="https://arxiv.org/pdf/1701.06538") en_de_bleu.measure(date(2017, 1, 23), 26.03, "MoE 2048", url="https://arxiv.org/pdf/1701.06538") en_fr_bleu.measure(None, 41.29, "ConvS2S ensemble", url="https://arxiv.org/abs/1705.03122v2") en_de_bleu.measure(None, 26.36, "ConvS2S ensemble", url="https://arxiv.org/abs/1705.03122v2") en_de_bleu.measure(date(2016, 7, 14), 17.93, "NSE-NSE", url="https://arxiv.org/abs/1607.04315v1") en_ro_bleu.measure(date(2016, 7, 11), 28.9, "GRU BPE90k", papername="The QT21/HimL Combined Machine Translation System", url="http://www.statmt.org/wmt16/pdf/W16-2320.pdf") en_ro_bleu.measure(None, 29.88, "ConvS2S BPE40k", url="https://arxiv.org/abs/1705.03122v2") # XXX add more languages
AI-metrics-master
data/language.py
"Hand-entered data about performance of generative models" from taxonomy import Problem from scales import * import datetime date = datetime.date """ * * * **_Generative models of CIFAR-10 Natural Images _****[Year: bits-per-subpixel, method]. Compiled by Durk Kingma.** **Why we care:** (1) The compression=prediction=understanding=intelligence view (see Hutter prize, etc.). (Note that perplexity, log-likelihood, and #bits are all equivalent measurements.) (2) Learning a generative model is a prominent auxiliary task towards semi-supervised learning. Current SOTA semi-supervised classification results utilize generative models. 3) You're finding patterns in the data that let you compress it more efficiently. Ultimate pattern recognition benchmark because you're trying to find the patterns in all the data. """ image_generation = Problem("Drawing pictures", ["vision", "agi"]) # note: this section is not on scene generation, but making the distinction seemed like a good idea. scene_generation = Problem("Be able to generate complex scene e.g. a baboon receiving their degree at convocatoin.", ["vision", "world-modelling", "agi"]) scene_generation.add_subproblem(image_generation) # NOTE: scale, and target need to be checked image_generation_metric = image_generation.metric("Generative models of CIFAR-10 images", scale=bits_per_x, axis_label="Model entropy (bits per pixel)") image_generation_metric.measure(date(2014,10,30), 4.48, "NICE", "https://arxiv.org/abs/1410.8516") image_generation_metric.measure(date(2015,2,16), 4.13, "DRAW", "https://arxiv.org/abs/1502.04623") image_generation_metric.measure(date(2016,5,27), 3.49, "Real NVP", "https://arxiv.org/abs/1605.08803") image_generation_metric.measure(date(2016,6,15), 3.11, "VAE with IAF", "https://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow") image_generation_metric.measure(date(2016,5,27), 3.0, "PixelRNN", "https://arxiv.org/abs/1605.08803") image_generation_metric.measure(date(2016,11,4), 2.92, "PixelCNN++","https://openreview.net/forum?id=BJrFC6ceg", replicated="https://github.com/openai/pixel-cnn")
AI-metrics-master
data/generative.py
from taxonomy import Problem from scales import * import datetime date = datetime.date computer_games = Problem("Play real-time computer & video games", ["world-modelling", "realtime-games", "agi", "language"]) games_requiring_novel_language = Problem("Games that require inventing novel language, forms of speech, or communication") games_requiring_speech = Problem("Games that require both understanding and speaking a language") games_requiring_speech.metric("Starcraft") games_requiring_language_comprehension = Problem("Games that require language comprehension", ["agi", "languge"]) computer_games.add_subproblem(games_requiring_novel_language) games_requiring_novel_language.add_subproblem(games_requiring_speech) games_requiring_speech.add_subproblem(games_requiring_language_comprehension) # Atari 2600 Games: Breakout, Enduro, Pong, Q*Bert, Seaquest, S. Invaders. Each game has its own metric. # We previously used hand-compiled by Yomna Nasser and Miles Brundage; this is # now mostly obsolete, and the data is scraped in scrapers/atari.py simple_games = Problem("Simple video games", ["world-modelling", "realtime-games", "agi"]) computer_games.add_subproblem(simple_games) # Alien alien_metric = simple_games.metric("Atari 2600 Alien", scale=atari_linear, target=6875, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # alien_metric.measure(date(2015, 2, 26), 3069, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # alien_metric.measure(date(2015,11,20), 1620, "DQN","https://arxiv.org/abs/1511.06581v1") # alien_metric.measure(date(2015,11,20), 3747.7, "DDQN","https://arxiv.org/abs/1511.06581v1") # alien_metric.measure(date(2015,11,20), 4461.4, "Duel","https://arxiv.org/abs/1511.06581v1") # Amidar amidar_metric = simple_games.metric("Atari 2600 Amidar", scale=atari_linear, target=1676, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # amidar_metric.measure(date(2015, 2, 26), 739.5, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # amidar_metric.measure(date(2015,11,20), 978, "DQN","https://arxiv.org/abs/1511.06581v1") # amidar_metric.measure(date(2015,11,20), 1793.3, "DDQN","https://arxiv.org/abs/1511.06581v1") # amidar_metric.measure(date(2015,11,20), 2354.5, "Duel","https://arxiv.org/abs/1511.06581v1") # Assault assault_metric = simple_games.metric("Atari 2600 Assault", scale=atari_linear, target=1496, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # assault_metric.measure(date(2015, 2, 26), 3359, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # assault_metric.measure(date(2015,11,20), 4280.4, "DQN","https://arxiv.org/abs/1511.06581v1") # assault_metric.measure(date(2015,11,20), 5393.2, "DDQN","https://arxiv.org/abs/1511.06581v1") # assault_metric.measure(date(2015,11,20), 4621.0, "Duel","https://arxiv.org/abs/1511.06581v1") # Asterix asterix_metric = simple_games.metric("Atari 2600 Asterix", scale=atari_linear, target=8503, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # asterix_metric.measure(date(2015, 2, 26), 6012, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # asterix_metric.measure(date(2015,11,20), 4359, "DQN","https://arxiv.org/abs/1511.06581v1") # asterix_metric.measure(date(2015,11,20), 17356, "DDQN","https://arxiv.org/abs/1511.06581v1") # asterix_metric.measure(date(2015,11,20), 28188, "Duel","https://arxiv.org/abs/1511.06581v1") # Asteroids asteroids_metric = simple_games.metric("Atari 2600 Asteroids", scale=atari_linear, target=13157, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # asteroids_metric.measure(date(2015, 2, 26), 1629, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # asteroids_metric.measure(date(2015,11,20), 1364.5, "DQN","https://arxiv.org/abs/1511.06581v1") # asteroids_metric.measure(date(2015,11,20), 734.7, "DDQN","https://arxiv.org/abs/1511.06581v1") # asteroids_metric.measure(date(2015,11,20), 2837.7, "Duel","https://arxiv.org/abs/1511.06581v1") # Atlantis atlantis_metric = simple_games.metric("Atari 2600 Atlantis", scale=atari_linear, target=29028, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # atlantis_metric.measure(date(2015, 2, 26), 85641, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # atlantis_metric.measure(date(2015,11,20), 279987, "DQN","https://arxiv.org/abs/1511.06581v1") # atlantis_metric.measure(date(2015,11,20), 106056, "DDQN","https://arxiv.org/abs/1511.06581v1") # atlantis_metric.measure(date(2015,11,20), 382572, "Duel","https://arxiv.org/abs/1511.06581v1") # Bank Heist bank_heist_metric = simple_games.metric("Atari 2600 Bank Heist", scale=atari_linear, target=734.4, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # bank_heist_metric.measure(date(2015, 2, 26), 429.7, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # bank_heist_metric.measure(date(2015,11,20), 455, "DQN","https://arxiv.org/abs/1511.06581v1") # bank_heist_metric.measure(date(2015,11,20), 1030.6, "DDQN","https://arxiv.org/abs/1511.06581v1") # bank_heist_metric.measure(date(2015,11,20), 1611.9, "Duel","https://arxiv.org/abs/1511.06581v1") # Battle Zone battle_zone_metric = simple_games.metric("Atari 2600 Battle Zone", scale=atari_linear, target=37800, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # battle_zone_metric.measure(date(2015, 2, 26), 26300, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # battle_zone_metric.measure(date(2015,11,20), 29900, "DQN","https://arxiv.org/abs/1511.06581v1") # battle_zone_metric.measure(date(2015,11,20), 31700, "DDQN","https://arxiv.org/abs/1511.06581v1") # battle_zone_metric.measure(date(2015,11,20), 37150, "Duel","https://arxiv.org/abs/1511.06581v1") # Beam Rider beam_rider_metric = simple_games.metric("Atari 2600 Beam Rider", scale=atari_linear, target=7456, target_source="https://arxiv.org/pdf/1312.5602.pdf") # beam_rider_metric.measure(date(2013,12,19), 4092, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # beam_rider_metric.measure(date(2015,11,20), 8627, "DQN","https://arxiv.org/abs/1511.06581v1") # beam_rider_metric.measure(date(2015,11,20), 13772, "DDQN","https://arxiv.org/abs/1511.06581v1") # beam_rider_metric.measure(date(2015,11,20), 12164, "Duel","https://arxiv.org/abs/1511.06581v1") # Berzerk berzerk_metric = simple_games.metric("Atari 2600 Berzerk", scale=atari_linear, target=2630.4, target_source="https://arxiv.org/abs/1511.06581v1") # berzerk_metric.measure(date(2015,11,20), 585, "DQN","https://arxiv.org/abs/1511.06581v1") # berzerk_metric.measure(date(2015,11,20), 1225, "DDQN","https://arxiv.org/abs/1511.06581v1") # berzerk_metric.measure(date(2015,11,20), 1472, "Duel","https://arxiv.org/abs/1511.06581v1") # Bowling bowling_metric = simple_games.metric("Atari 2600 Bowling", scale=atari_linear, target=154.8, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # bowling_metric.measure(date(2015, 2, 26), 42.8, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # bowling_metric.measure(date(2015,11,20), 50.4, "DQN","https://arxiv.org/abs/1511.06581v1") # bowling_metric.measure(date(2015,11,20), 68.1, "DDQN","https://arxiv.org/abs/1511.06581v1") # bowling_metric.measure(date(2015,11,20), 65.5, "Duel","https://arxiv.org/abs/1511.06581v1") # Boxing boxing_metric = simple_games.metric("Atari 2600 Boxing", scale=atari_linear, target=4.3, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # boxing_metric.measure(date(2015, 2, 26), 71.8, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # boxing_metric.measure(date(2015,11,20), 88, "DQN","https://arxiv.org/abs/1511.06581v1") # boxing_metric.measure(date(2015,11,20), 91.6, "DDQN","https://arxiv.org/abs/1511.06581v1") # boxing_metric.measure(date(2015,11,20), 99.4, "Duel","https://arxiv.org/abs/1511.06581v1") # Breakout breakout_metric = simple_games.metric("Atari 2600 Breakout", scale=atari_linear, target=31.8, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # breakout_metric.measure(date(2013,12,19), 225, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # breakout_metric.measure(date(2015,2,26), 401.2, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # breakout_metric.measure(date(2015,10,22), 375, "DoubleDQN", "https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf") # breakout_metric.measure(date(2015,11,20), 385.5, "DQN", "https://arxiv.org/abs/1511.06581v1") # breakout_metric.measure(date(2015,11,20), 418.5, "DDQN", "https://arxiv.org/abs/1511.06581v1") # breakout_metric.measure(date(2015,11,20), 345.3, "Duel", "https://arxiv.org/abs/1511.06581v1") # breakout_metric.measure(date(2016,6,16), 766.8, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # Centipede centipede_metric = simple_games.metric("Atari 2600 Centipede", scale=atari_linear, target=11963, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # centipede_metric.measure(date(2015, 2, 26), 8309, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # centipede_metric.measure(date(2015,11,20), 4657, "DQN","https://arxiv.org/abs/1511.06581v1") # centipede_metric.measure(date(2015,11,20), 5409, "DDQN","https://arxiv.org/abs/1511.06581v1") # centipede_metric.measure(date(2015,11,20), 7561, "Duel","https://arxiv.org/abs/1511.06581v1") # Chopper Command chopper_command_metric = simple_games.metric("Atari 2600 Chopper Command", scale=atari_linear, target=9882, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # chopper_command_metric.measure(date(2015, 2, 26), 6687, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # chopper_command_metric.measure(date(2015,11,20), 6126, "DQN","https://arxiv.org/abs/1511.06581v1") # chopper_command_metric.measure(date(2015,11,20), 5809, "DDQN","https://arxiv.org/abs/1511.06581v1") # chopper_command_metric.measure(date(2015,11,20), 11215, "Duel","https://arxiv.org/abs/1511.06581v1") # Crazy Climber crazy_climber_metric = simple_games.metric("Atari 2600 Crazy Climber", scale=atari_linear, target=35411, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # crazy_climber_metric.measure(date(2015, 2, 26), 114103, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # crazy_climber_metric.measure(date(2015,11,20), 110763, "DQN","https://arxiv.org/abs/1511.06581v1") # crazy_climber_metric.measure(date(2015,11,20), 117282, "DDQN","https://arxiv.org/abs/1511.06581v1") # crazy_climber_metric.measure(date(2015,11,20), 143570, "Duel","https://arxiv.org/abs/1511.06581v1") # Demon Attack demon_attack_metric = simple_games.metric("Atari 2600 Demon Attack", scale=atari_linear, target=3401, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # demon_attack_metric.measure(date(2015, 2, 26), 9711, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # demon_attack_metric.measure(date(2015,11,20), 12149, "DQN","https://arxiv.org/abs/1511.06581v1") # demon_attack_metric.measure(date(2015,11,20), 58044, "DDQN","https://arxiv.org/abs/1511.06581v1") # demon_attack_metric.measure(date(2015,11,20), 60813, "Duel","https://arxiv.org/abs/1511.06581v1") # Double Dunk # TODO: investigate alternate scale double_dunk_metric = simple_games.metric("Atari 2600 Double Dunk", scale=atari_linear, target=-15.5, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # double_dunk_metric.measure(date(2015, 2, 26), -18.1, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # double_dunk_metric.measure(date(2015,11,20), -6.6, "DQN","https://arxiv.org/abs/1511.06581v1") # double_dunk_metric.measure(date(2015,11,20), -5.5, "DDQN","https://arxiv.org/abs/1511.06581v1") # double_dunk_metric.measure(date(2015,11,20), 0.1, "Duel","https://arxiv.org/abs/1511.06581v1") # Enduro enduro_metric = simple_games.metric("Atari 2600 Enduro", scale=atari_linear, target=309.6, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # enduro_metric.measure(date(2013,12,19), 661, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # enduro_metric.measure(date(2015,2,26), 301, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # enduro_metric.measure(date(2015,10,22), 319, "DoubleDQN", "https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf") # enduro_metric.measure(date(2015,11,20), 729.0, "DQN", "https://arxiv.org/abs/1511.06581v1") # enduro_metric.measure(date(2015,11,20), 1211.8, "DDQN", "https://arxiv.org/abs/1511.06581v1") # enduro_metric.measure(date(2015,11,20), 2258.2, "Duel", "https://arxiv.org/abs/1511.06581v1") # enduro_metric.measure(date(2016,6,16), 82.5, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # Fishing Derby fishing_derby_metric = simple_games.metric("Atari 2600 Fishing Derby", scale=atari_linear, target=5.5, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # fishing_derby_metric.measure(date(2015, 2, 26), -0.8, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # fishing_derby_metric.measure(date(2015,11,20), -4.9, "DQN","https://arxiv.org/abs/1511.06581v1") # fishing_derby_metric.measure(date(2015,11,20), 15.5, "DDQN","https://arxiv.org/abs/1511.06581v1") # fishing_derby_metric.measure(date(2015,11,20), 46.4, "Duel","https://arxiv.org/abs/1511.06581v1") # Freeway freeway_metric = simple_games.metric("Atari 2600 Freeway", scale=atari_linear, target=29.6, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # freeway_metric.measure(date(2015, 2, 26), 30.3, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # freeway_metric.measure(date(2015,11,20), 30.8, "DQN","https://arxiv.org/abs/1511.06581v1") # freeway_metric.measure(date(2015,11,20), 33.3, "DDQN","https://arxiv.org/abs/1511.06581v1") # freeway_metric.measure(date(2015,11,20), 0, "Duel","https://arxiv.org/abs/1511.06581v1") # Frostbite frostbite_metric = simple_games.metric("Atari 2600 Frostbite", scale=atari_linear, target=4355, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # frostbite_metric.measure(date(2015, 2, 26), 328.3, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # frostbite_metric.measure(date(2015,11,20), 797.7, "DQN","https://arxiv.org/abs/1511.06581v1") # frostbite_metric.measure(date(2015,11,20), 1683.3, "DDQN","https://arxiv.org/abs/1511.06581v1") # frostbite_metric.measure(date(2015,11,20), 4672, "Duel","https://arxiv.org/abs/1511.06581v1") # Gopher gopher_metric = simple_games.metric("Atari 2600 Gopher", scale=atari_linear, target=2321, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # gopher_metric.measure(date(2015, 2, 26), 8520, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # gopher_metric.measure(date(2015,11,20), 8777, "DQN","https://arxiv.org/abs/1511.06581v1") # gopher_metric.measure(date(2015,11,20), 14840, "DDQN","https://arxiv.org/abs/1511.06581v1") # gopher_metric.measure(date(2015,11,20), 15718, "Duel","https://arxiv.org/abs/1511.06581v1") # Gravitar gravitar_metric = simple_games.metric("Atari 2600 Gravitar", scale=atari_linear, target=2672, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # gravitar_metric.measure(date(2015, 2, 26), 306.7, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # gravitar_metric.measure(date(2015,11,20), 473, "DQN","https://arxiv.org/abs/1511.06581v1") # gravitar_metric.measure(date(2015,11,20), 412, "DDQN","https://arxiv.org/abs/1511.06581v1") # gravitar_metric.measure(date(2015,11,20), 588, "Duel","https://arxiv.org/abs/1511.06581v1") # H.E.R.O. hero_metric = simple_games.metric("Atari 2600 HERO", scale=atari_linear, target=25763, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # hero_metric.measure(date(2015, 2, 26), 19950, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # hero_metric.measure(date(2015,11,20), 20437, "DQN","https://arxiv.org/abs/1511.06581v1") # hero_metric.measure(date(2015,11,20), 20130, "DDQN","https://arxiv.org/abs/1511.06581v1") # hero_metric.measure(date(2015,11,20), 20818, "Duel","https://arxiv.org/abs/1511.06581v1") # Ice Hockey ice_hockey_metric = simple_games.metric("Atari 2600 Ice Hockey", scale=atari_linear, target=0.9, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # ice_hockey_metric.measure(date(2015, 2, 26), -1.6, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # James Bond james_bond_metric = simple_games.metric("Atari 2600 James Bond", scale=atari_linear, target=406.7, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # james_bond_metric.measure(date(2015, 2, 26), 576.7, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Kangaroo kangaroo_metric = simple_games.metric("Atari 2600 Kangaroo", scale=atari_linear, target=3035, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # kangaroo_metric.measure(date(2015, 2, 26), 6740, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Krull krull_metric = simple_games.metric("Atari 2600 Krull", scale=atari_linear, target=2395, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # krull_metric.measure(date(2015, 2, 26), 3805, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Kung-Fu Master kung_fu_master_metric = simple_games.metric("Atari 2600 Kung-Fu Master", scale=atari_linear, target=22736, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # kung_fu_master_metric.measure(date(2015, 2, 26), 23270, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Montezuma's Revenge montezumas_revenge_metric = simple_games.metric("Atari 2600 Montezuma's Revenge", scale=atari_linear, target=4367, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # montezumas_revenge_metric.measure(date(2015, 2, 26), 0, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Ms. Pacman ms_pacman_metric = simple_games.metric("Atari 2600 Ms. Pacman", scale=atari_linear, target=15693, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # ms_pacman_metric.measure(date(2015, 2, 26), 2311, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Name This Game name_this_game_metric = simple_games.metric("Atari 2600 Name This Game", scale=atari_linear, target=4076, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # name_this_game_metric.measure(date(2015, 2, 26), 7257, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Pong pong_metric = simple_games.metric("Atari 2600 Pong", scale=atari_linear, target=9.3, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # pong_metric.measure(date(2013,12,19), 21, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # pong_metric.measure(date(2015,2,26), 18.9, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # pong_metric.measure(date(2015,10,22), 21, "DoubleDQN", "https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf") # pong_metric.measure(date(2015,11,20), 21, "DQN", "https://arxiv.org/abs/1511.06581v1") # pong_metric.measure(date(2015,11,20), 20.9, "DDQN", "https://arxiv.org/abs/1511.06581v1") # pong_metric.measure(date(2015,11,20), 19.5, "Duel", "https://arxiv.org/abs/1511.06581v1") # pong_metric.measure(date(2016,6,16), 10.7, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # Private Eye private_eye_metric = simple_games.metric("Atari 2600 Private Eye", scale=atari_linear, target=69571, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # private_eye_metric.measure(date(2015, 2, 26), 1788, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Q*Bert q_bert_metric = simple_games.metric("Atari 2600 Q*Bert", scale=atari_linear, target=13455, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # q_bert_metric.measure(date(2013,12,19), 4500, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # q_bert_metric.measure(date(2015,2,26), 10596, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # q_bert_metric.measure(date(2015,10,22), 14875, "DoubleDQN", "https://pdfs.semanticscholar.org/3b97/32bb07dc99bde5e1f9f75251c6ea5039373e.pdf") # q_bert_metric.measure(date(2015,11,20), 13117.3, "DQN", "https://arxiv.org/abs/1511.06581v1") # q_bert_metric.measure(date(2015,11,20), 15088.5, "DDQN", "https://arxiv.org/abs/1511.06581v1") # q_bert_metric.measure(date(2015,11,20), 19220, "Duel", "https://arxiv.org/abs/1511.06581v1") # q_bert_metric.measure(date(2016,6,16), 21307, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # River Raid river_raid_metric = simple_games.metric("Atari 2600 River Raid", scale=atari_linear, target=13513, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # river_raid_metric.measure(date(2015, 2, 26), 8316, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Road Runner road_runner_metric = simple_games.metric("Atari 2600 Road Runner", scale=atari_linear, target=7845, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # road_runner_metric.measure(date(2015, 2, 26), 18257, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Robotank robotank_metric = simple_games.metric("Atari 2600 Robotank", scale=atari_linear, target=11.9, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # robotank_metric.measure(date(2015, 2, 26), 51.6, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Seaquest seaquest_metric = simple_games.metric("Atari 2600 Seaquest", scale=atari_linear, target=20182, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # seaquest_metric.measure(date(2013,12,19), 1740, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # seaquest_metric.measure(date(2015,2,26), 5286, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # seaquest_metric.measure(date(2015,10,22), 7995, "DoubleDQN", "https://arxiv.org/abs/1509.06461") # seaquest_metric.measure(date(2015,11,20), 5860.6, "DQN", "https://arxiv.org/abs/1511.06581v1") # seaquest_metric.measure(date(2015,11,20), 16452.7, "DDQN", "https://arxiv.org/abs/1511.06581v1") # seaquest_metric.measure(date(2015,11,20), 50254.2, "Duel", "https://arxiv.org/abs/1511.06581v1") # seaquest_metric.measure(date(2016,6,16), 1326.1, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # Space Invaders space_invaders_metric = simple_games.metric("Atari 2600 Space Invaders", scale=atari_linear, target=1652, target_source="https://pdfs.semanticscholar.org/340f/48901f72278f6bf78a04ee5b01df208cc508.pdf") # space_invaders_metric.measure(date(2013,12,19), 1075, "DQN", "https://arxiv.org/pdf/1312.5602.pdf") # space_invaders_metric.measure(date(2015,2,26), 1976, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # space_invaders_metric.measure(date(2015,10,22), 3154, "DoubleDQN", "https://arxiv.org/abs/1509.06461") # space_invaders_metric.measure(date(2015,11,20), 1692.3, "DQN", "https://arxiv.org/abs/1511.06581v1") # space_invaders_metric.measure(date(2015,11,20), 2525.5, "DDQN", "https://arxiv.org/abs/1511.06581v1") # space_invaders_metric.measure(date(2015,11,20), 6427.3, "Duel", "https://arxiv.org/abs/1511.06581v1") # space_invaders_metric.measure(date(2016,6,16), 23846, "A3C LSTM", "https://arxiv.org/pdf/1602.01783.pdf") # Star Gunner star_gunner_metric = simple_games.metric("Atari 2600 Star Gunner", scale=atari_linear, target=10250, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # star_gunner_metric.measure(date(2015, 2, 26), 57997, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Tennis # TODO: negative linear scale? tennis_metric = simple_games.metric("Atari 2600 Tennis", scale=atari_linear, target=-8.9, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # tennis_metric.measure(date(2015, 2, 26), -2.5, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Time Pilot time_pilot_metric = simple_games.metric("Atari 2600 Time Pilot", scale=atari_linear, target=5925, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # time_pilot_metric.measure(date(2015, 2, 26), 5947, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Tutankham tutankham_metric = simple_games.metric("Atari 2600 Tutankham", scale=atari_linear, target=167.6, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # tutankham_metric.measure(date(2015, 2, 26), 186.7, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Up and Down up_and_down_metric = simple_games.metric("Atari 2600 Up and Down", scale=atari_linear, target=9082, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # up_and_down_metric.measure(date(2015, 2, 26), 8456, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Venture venture_metric = simple_games.metric("Atari 2600 Venture", scale=atari_linear, target=1188, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # venture_metric.measure(date(2015, 2, 26), 3800, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Video Pinball video_pinball_metric = simple_games.metric("Atari 2600 Video Pinball", scale=atari_linear, target=17298, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # video_pinball_metric.measure(date(2015, 2, 26), 42684, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Wizard of Wor wizard_of_wor_metric = simple_games.metric("Atari 2600 Wizard of Wor", scale=atari_linear, target=4757, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # wizard_of_wor_metric.measure(date(2015, 2, 26), 3393, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Zaxxon zaxxon_metric = simple_games.metric("Atari 2600 Zaxxon", scale=atari_linear, target=9173, target_source="https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # zaxxon_metric.measure(date(2015, 2, 26), 4977, "DQN", "https://www.semanticscholar.org/paper/Human-level-control-through-deep-reinforcement-Mnih-Kavukcuoglu/340f48901f72278f6bf78a04ee5b01df208cc508") # Results from the original DQN paper beam_rider_metric.measure(None, 5184, "DQN best", "https://arxiv.org/abs/1312.5602") breakout_metric.measure(None, 225, "DQN best", "https://arxiv.org/abs/1312.5602") enduro_metric.measure(None, 661, "DQN best", "https://arxiv.org/abs/1312.5602") pong_metric.measure(None, 21, "DQN best", "https://arxiv.org/abs/1312.5602") q_bert_metric.measure(None, 4500, "DQN best", "https://arxiv.org/abs/1312.5602") seaquest_metric.measure(None, 1740, "DQN best", "https://arxiv.org/abs/1312.5602") space_invaders_metric.measure(None, 1075, "DQN best", "https://arxiv.org/abs/1312.5602")
AI-metrics-master
data/video_games.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import, division, print_function, unicode_literals import argparse import logging import os import random from io import open import numpy as np import torch from torch.utils.data import DataLoader, Dataset, RandomSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange from transformers import BertTokenizer, BertModel, BertForPreTraining from transformers import AdamW, get_linear_schedule_with_warmup logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger = logging.getLogger(__name__) class BERTDataset(Dataset): def __init__(self, corpus_path, tokenizer, seq_len, encoding="utf-8", corpus_lines=None, on_memory=True): self.vocab = tokenizer.vocab self.tokenizer = tokenizer self.seq_len = seq_len self.on_memory = on_memory self.corpus_lines = corpus_lines # number of non-empty lines in input corpus self.corpus_path = corpus_path self.encoding = encoding self.current_doc = 0 # to avoid random sentence from same doc # for loading samples directly from file self.sample_counter = 0 # used to keep track of full epochs on file self.line_buffer = None # keep second sentence of a pair in memory and use as first sentence in next pair # for loading samples in memory self.current_random_doc = 0 self.num_docs = 0 self.sample_to_doc = [] # map sample index to doc and line # load samples into memory if on_memory: self.all_docs = [] doc = [] self.corpus_lines = 0 with open(corpus_path, "r", encoding=encoding) as f: for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): line = line.strip() if line == "": self.all_docs.append(doc) doc = [] #remove last added sample because there won't be a subsequent line anymore in the doc self.sample_to_doc.pop() else: #store as one sample sample = {"doc_id": len(self.all_docs), "line": len(doc)} self.sample_to_doc.append(sample) doc.append(line) self.corpus_lines = self.corpus_lines + 1 # if last row in file is not empty if self.all_docs[-1] != doc: self.all_docs.append(doc) self.sample_to_doc.pop() self.num_docs = len(self.all_docs) # load samples later lazily from disk else: if self.corpus_lines is None: with open(corpus_path, "r", encoding=encoding) as f: self.corpus_lines = 0 for line in tqdm(f, desc="Loading Dataset", total=corpus_lines): if line.strip() == "": self.num_docs += 1 else: self.corpus_lines += 1 # if doc does not end with empty line if line.strip() != "": self.num_docs += 1 self.file = open(corpus_path, "r", encoding=encoding) self.random_file = open(corpus_path, "r", encoding=encoding) def __len__(self): # last line of doc won't be used, because there's no "nextSentence". Additionally, we start counting at 0. return self.corpus_lines - self.num_docs - 1 def __getitem__(self, item): cur_id = self.sample_counter self.sample_counter += 1 if not self.on_memory: # after one epoch we start again from beginning of file if cur_id != 0 and (cur_id % len(self) == 0): self.file.close() self.file = open(self.corpus_path, "r", encoding=self.encoding) t1, t2, is_next_label = self.random_sent(item) # tokenize tokens_a = self.tokenizer.tokenize(t1) tokens_b = self.tokenizer.tokenize(t2) # combine to one sample cur_example = InputExample(guid=cur_id, tokens_a=tokens_a, tokens_b=tokens_b, is_next=is_next_label) # transform sample to features cur_features = convert_example_to_features(cur_example, self.seq_len, self.tokenizer) cur_tensors = (torch.tensor(cur_features.input_ids), torch.tensor(cur_features.input_mask), torch.tensor(cur_features.segment_ids), torch.tensor(cur_features.lm_label_ids), torch.tensor(cur_features.is_next)) return cur_tensors def random_sent(self, index): """ Get one sample from corpus consisting of two sentences. With prob. 50% these are two subsequent sentences from one doc. With 50% the second sentence will be a random one from another doc. :param index: int, index of sample. :return: (str, str, int), sentence 1, sentence 2, isNextSentence Label """ t1, t2 = self.get_corpus_line(index) if random.random() > 0.5: label = 0 else: t2 = self.get_random_line() label = 1 assert len(t1) > 0 assert len(t2) > 0 return t1, t2, label def get_corpus_line(self, item): """ Get one sample from corpus consisting of a pair of two subsequent lines from the same doc. :param item: int, index of sample. :return: (str, str), two subsequent sentences from corpus """ t1 = "" t2 = "" assert item < self.corpus_lines if self.on_memory: sample = self.sample_to_doc[item] t1 = self.all_docs[sample["doc_id"]][sample["line"]] t2 = self.all_docs[sample["doc_id"]][sample["line"]+1] # used later to avoid random nextSentence from same doc self.current_doc = sample["doc_id"] return t1, t2 else: if self.line_buffer is None: # read first non-empty line of file while t1 == "" : t1 = next(self.file).strip() t2 = next(self.file).strip() else: # use t2 from previous iteration as new t1 t1 = self.line_buffer t2 = next(self.file).strip() # skip empty rows that are used for separating documents and keep track of current doc id while t2 == "" or t1 == "": t1 = next(self.file).strip() t2 = next(self.file).strip() self.current_doc = self.current_doc+1 self.line_buffer = t2 assert t1 != "" assert t2 != "" return t1, t2 def get_random_line(self): """ Get random line from another document for nextSentence task. :return: str, content of one line """ # Similar to original tf repo: This outer loop should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document we're processing. for _ in range(10): if self.on_memory: rand_doc_idx = random.randint(0, len(self.all_docs)-1) rand_doc = self.all_docs[rand_doc_idx] line = rand_doc[random.randrange(len(rand_doc))] else: rand_index = random.randint(1, self.corpus_lines if self.corpus_lines < 1000 else 1000) #pick random line for _ in range(rand_index): line = self.get_next_line() #check if our picked random line is really from another doc like we want it to be if self.current_random_doc != self.current_doc: break return line def get_next_line(self): """ Gets next line of random_file and starts over when reaching end of file""" try: line = next(self.random_file).strip() #keep track of which document we are currently looking at to later avoid having the same doc as t1 if line == "": self.current_random_doc = self.current_random_doc + 1 line = next(self.random_file).strip() except StopIteration: self.random_file.close() self.random_file = open(self.corpus_path, "r", encoding=self.encoding) line = next(self.random_file).strip() return line class InputExample(object): """A single training/test example for the language model.""" def __init__(self, guid, tokens_a, tokens_b=None, is_next=None, lm_labels=None): """Constructs a InputExample. Args: guid: Unique id for the example. tokens_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. tokens_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.tokens_a = tokens_a self.tokens_b = tokens_b self.is_next = is_next # nextSentence self.lm_labels = lm_labels # masked words for language model class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, is_next, lm_label_ids): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.is_next = is_next self.lm_label_ids = lm_label_ids def random_word(tokens, tokenizer): """ Masking some random tokens for Language Model task with probabilities as in the original BERT paper. :param tokens: list of str, tokenized sentence. :param tokenizer: Tokenizer, object used for tokenization (we need it's vocab here) :return: (list of str, list of int), masked tokens and related labels for LM prediction """ output_label = [] for i, token in enumerate(tokens): prob = random.random() # mask token with 15% probability if prob < 0.15: prob /= 0.15 # 80% randomly change token to mask token if prob < 0.8: tokens[i] = "[MASK]" # 10% randomly change token to random token elif prob < 0.9: tokens[i] = random.choice(list(tokenizer.vocab.items()))[0] # -> rest 10% randomly keep current token # append current token to output (we will predict these later) try: output_label.append(tokenizer.vocab[token]) except KeyError: # For unknown words (should not occur with BPE vocab) output_label.append(tokenizer.vocab["[UNK]"]) logger.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token)) else: # no masking token (will be ignored by loss function later) output_label.append(-100) return tokens, output_label def convert_example_to_features(example, max_seq_length, tokenizer): """ Convert a raw sample (pair of sentences as tokenized strings) into a proper training sample with IDs, LM labels, input_mask, CLS and SEP tokens etc. :param example: InputExample, containing sentence input as strings and is_next label :param max_seq_length: int, maximum length of sequence. :param tokenizer: Tokenizer :return: InputFeatures, containing all inputs and labels of one sample as IDs (as used for model training) """ tokens_a = example.tokens_a tokens_b = example.tokens_b # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) tokens_a, t1_label = random_word(tokens_a, tokenizer) tokens_b, t2_label = random_word(tokens_b, tokenizer) # concatenate lm labels and account for CLS, SEP, SEP lm_label_ids = ([-100] + t1_label + [-100] + t2_label + [-100]) # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) assert len(tokens_b) > 0 for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) lm_label_ids.append(-100) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(lm_label_ids) == max_seq_length if example.guid < 5: logger.info("*** Example ***") logger.info("guid: %s" % (example.guid)) logger.info("tokens: %s" % " ".join( [str(x) for x in tokens])) logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) logger.info( "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) logger.info("LM label: %s " % (lm_label_ids)) logger.info("Is next sentence label: %s " % (example.is_next)) features = InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, lm_label_ids=lm_label_ids, is_next=example.is_next) return features def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--train_corpus", default=None, type=str, required=True, help="The input train corpus.") parser.add_argument("--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints will be written.") ## Other parameters parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--learning_rate", default=3e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument("--on_memory", action='store_true', help="Whether to load train samples into memory or use disk") parser.add_argument("--do_lower_case", action='store_true', help="Whether to lower case the input text. True for uncased models, False for cased models.") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumualte before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.distributed.init_process_group(backend='nccl') logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train: raise ValueError("Training is currently the only implemented execution option. Please set `do_train`.") if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir)) if not os.path.exists(args.output_dir) and (args.local_rank == -1 or torch.distributed.get_rank() == 0): os.makedirs(args.output_dir) tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) #train_examples = None num_train_optimization_steps = None if args.do_train: print("Loading Train Dataset", args.train_corpus) train_dataset = BERTDataset(args.train_corpus, tokenizer, seq_len=args.max_seq_length, corpus_lines=None, on_memory=args.on_memory) num_train_optimization_steps = int( len(train_dataset) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.local_rank != -1: num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size() # Prepare model model = BertForPreTraining.from_pretrained(args.bert_model) if args.fp16: model.half() model.to(device) if args.local_rank != -1: try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif n_gpu > 1: model = torch.nn.DataParallel(model) # Prepare optimizer if args.do_train: param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] if args.fp16: try: from apex.optimizers import FP16_Optimizer from apex.optimizers import FusedAdam except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") optimizer = FusedAdam(optimizer_grouped_parameters, lr=args.learning_rate, bias_correction=False, max_grad_norm=1.0) if args.loss_scale == 0: optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True) else: optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale) else: optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=num_train_optimization_steps) global_step = 0 if args.do_train: logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) if args.local_rank == -1: train_sampler = RandomSampler(train_dataset) else: #TODO: check if this works with current data generator from disk that relies on next(file) # (it doesn't return item back by index) train_sampler = DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) model.train() for _ in trange(int(args.num_train_epochs), desc="Epoch"): tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")): batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch outputs = model(input_ids, segment_ids, input_mask, labels=lm_label_ids, next_sentence_label=is_next) loss = outputs[0] if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: optimizer.backward(loss) else: loss.backward() tr_loss += loss.item() nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() # Update learning rate schedule optimizer.zero_grad() global_step += 1 # Save a trained model if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("** ** * Saving fine - tuned model ** ** * ") model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def accuracy(out, labels): outputs = np.argmax(out, axis=1) return np.sum(outputs == labels) if __name__ == "__main__": main()
commonsense-kg-completion-master
lm_finetuning/simple_lm_finetuning.py
__author__ = "chaitanya" # partially borrowed from implemenation of ConvE import torch import math import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torch.nn.init import xavier_normal_ torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = True class DistMult(nn.Module): def __init__(self, num_entities, num_relations, args): super(DistMult, self).__init__() self.no_cuda = args.no_cuda self.w_relation = torch.nn.Embedding(num_relations, args.embedding_dim, padding_idx=0) self.inp_drop = torch.nn.Dropout(args.input_dropout) def init(self): xavier_normal_(self.w_relation.weight.data) def forward(self, embedding, e1, rel): batch_size = e1.shape[0] e1_embedded = embedding[e1].squeeze() rel_embedded = self.w_relation(rel).squeeze() e1_embedded = self.inp_drop(e1_embedded) rel_embedded = self.inp_drop(rel_embedded) score = torch.mm(e1_embedded * rel_embedded, embedding.t()) score = F.sigmoid(score) return score class ConvE(nn.Module): def __init__(self, num_entities, num_relations, args): super(ConvE, self).__init__() self.w_relation = torch.nn.Embedding(num_relations, args.n_hidden, padding_idx=0) self.inp_drop = torch.nn.Dropout(args.input_dropout) self.hidden_drop = torch.nn.Dropout(args.dropout) self.feature_map_drop = torch.nn.Dropout2d(args.feature_map_dropout) self.conv1 = torch.nn.Conv2d(1, 32, (3, 3), 1, 0, bias=args.use_bias) self.bn0 = torch.nn.BatchNorm2d(1) self.bn1 = torch.nn.BatchNorm2d(32) self.bn2 = torch.nn.BatchNorm1d(args.n_hidden) self.register_parameter('b', Parameter(torch.zeros(num_entities))) self.fc = torch.nn.Linear(10368, args.n_hidden) def init(self): xavier_normal_(self.w_relation.weight.data) def forward(self, embedding, e1, rel): batch_size = e1.shape[0] e1_embedded = embedding[e1].view(-1, 1, 10, 20) rel_embedded = self.w_relation(rel).view(-1, 1, 10, 20) stacked_inputs = torch.cat([e1_embedded, rel_embedded], 2) stacked_inputs = self.bn0(stacked_inputs) x = self.inp_drop(stacked_inputs) x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.feature_map_drop(x) x = x.view(batch_size, -1) x = self.fc(x) x = self.hidden_drop(x) x = self.bn2(x) x = F.relu(x) x = torch.mm(x, embedding.t()) # x = torch.mm(x, self.emb_e.weight.transpose(1,0)) # x += self.b.expand_as(x) x += self.b.expand_as(x) pred = torch.sigmoid(x) return pred class ConvKB(nn.Module): """ Difference from ConvE: loss function is different, convolve over all e's at once """ def __init__(self, num_entities, num_relations, args): super(ConvKB, self).__init__() self.w_relation = torch.nn.Embedding(num_relations, args.n_hidden, padding_idx=0) self.inp_drop = torch.nn.Dropout(args.input_dropout) self.hidden_drop = torch.nn.Dropout(args.dropout) self.feature_map_drop = torch.nn.Dropout(args.feature_map_dropout) self.loss = torch.nn.BCELoss() # 1D convolutions self.conv1 = torch.nn.Conv1d(3, 50, 3, bias=args.use_bias) self.bn0 = torch.nn.BatchNorm1d(1) self.bn1 = torch.nn.BatchNorm1d(50) self.bn2 = torch.nn.BatchNorm1d(1) self.fc = torch.nn.Linear(24900, 1) print(num_entities, num_relations) def init(self): xavier_normal_(self.w_relation.weight.data) def forward(self, embedding, triplets): e1 = triplets[:, 0] e2 = triplets[:, 2] rel = triplets[:, 1] batch_size = len(triplets) e1_embedded = embedding[e1] e2_embedded = embedding[e2] rel_embedded = self.w_relation(rel) stacked_inputs = torch.stack([e1_embedded, rel_embedded, e2_embedded]) # stacked_inputs = self.bn0(stacked_inputs) x = self.inp_drop(stacked_inputs) x = self.conv1(x.transpose(0, 1)) x = self.bn1(x) x = F.relu(x) x = self.feature_map_drop(x) x = x.view(batch_size, -1) x = self.fc(x) x = self.hidden_drop(x) x = self.bn2(x) x = F.relu(x) # x = torch.mm(x, self.emb_e.weight.transpose(1,0)) # x += self.b.expand_as(x) pred = torch.sigmoid(x) return pred.squeeze(1) def evaluate(self, embedding, e1, rel): batch_size = e1.shape[0] e1_embedded = embedding[e1].view(-1, 1, 10, 20) rel_embedded = self.w_relation(rel).view(-1, 1, 10, 20) stacked_inputs = torch.cat([e1_embedded, rel_embedded], 2) stacked_inputs = self.bn0(stacked_inputs) x = self.inp_drop(stacked_inputs) x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.feature_map_drop(x) x = x.view(batch_size, -1) x = self.fc(x) x = self.hidden_drop(x) x = self.bn2(x) x = F.relu(x) x = torch.mm(x, embedding.t()) # x = torch.mm(x, self.emb_e.weight.transpose(1,0)) # x += self.b.expand_as(x) x += self.b pred = torch.sigmoid(x) return pred class ConvTransE(nn.Module): def __init__(self, num_entities, num_relations, args): """ Difference from ConvE: no reshaping after stacking e_1 and e_r """ super(ConvTransE, self).__init__() bert_dims = 1024 self.no_cuda = args.no_cuda if args.bert_concat or args.tying: emb_dim = args.embedding_dim + bert_dims elif args.bert_mlp: emb_dim = 600 else: emb_dim = args.embedding_dim if args.gcn_type == "MultiHeadGATLayer": num_heads = 8 emb_dim = args.embedding_dim * num_heads + bert_dims self.embedding_dim = emb_dim self.w_relation = torch.nn.Embedding(num_relations, emb_dim, padding_idx=0) self.inp_drop = torch.nn.Dropout(args.input_dropout) self.hidden_drop = torch.nn.Dropout(args.dropout) self.feature_map_drop = torch.nn.Dropout(args.feature_map_dropout) kernel_size = 5 self.channels = 200 self.conv1 = nn.Conv1d(2, self.channels, kernel_size, stride=1, padding= int(math.floor(kernel_size/2))) # kernel size is odd, then padding = math.floor(kernel_size/2) self.bn0 = torch.nn.BatchNorm1d(2) self.bn1 = torch.nn.BatchNorm1d(self.channels) self.bn2 = torch.nn.BatchNorm1d(emb_dim) self.fc = torch.nn.Linear(self.channels * emb_dim, emb_dim) self.loss = torch.nn.BCELoss() self.cur_embedding = None def init(self): xavier_normal_(self.w_relation.weight.data) def forward(self, e1, rel, target): embedding = self.cur_embedding if not self.no_cuda: embedding = embedding.to(torch.cuda.current_device()) batch_size = e1.shape[0] e1 = e1.unsqueeze(1) rel = rel.unsqueeze(1) e1_embedded = embedding[e1] rel_embedded = self.w_relation(rel) stacked_inputs = torch.cat([e1_embedded, rel_embedded], 1) stacked_inputs = self.bn0(stacked_inputs) x = self.inp_drop(stacked_inputs) x = self.conv1(x) x = self.bn1(x) x = F.relu(x) x = self.feature_map_drop(x) x = x.view(batch_size, -1) x = self.fc(x) x = self.hidden_drop(x) x = self.bn2(x) x = F.relu(x) x = torch.mm(x, embedding.t()) pred = torch.sigmoid(x) if target is None: return pred else: return self.loss(pred, target)
commonsense-kg-completion-master
src/decoder.py
from src import reader_utils import os import sys data_path = "data/atomic/" filename = sys.argv[1] with open(os.path.join(data_path, filename)) as f: data = f.readlines() edge_dict = {} for inst in data: inst = inst.strip() if inst: inst = inst.split('\t') src, rel, tgt = inst src = reader_utils.preprocess_atomic_sentence(src).replace("-", " ") tgt = reader_utils.preprocess_atomic_sentence(tgt).replace("-", " ") if src and tgt: if (src, rel) in edge_dict: edge_dict[(src, rel)].add(tgt) else: edge_dict[(src, rel)] = set([tgt]) out_lines = [] for k, v in edge_dict.items(): if len(v) > 1 and "none" in v: edge_dict[k].remove("none") out_lines.append([k[0] + "\t" + k[1] + "\t" + e2 + "\n" for e2 in edge_dict[k]]) out_lines = [line for sublist in out_lines for line in sublist] with open(os.path.join(data_path, filename.replace(".txt", ".preprocessed.txt")), 'w') as f: f.writelines(out_lines)
commonsense-kg-completion-master
src/preprocess_atomic.py
import numpy as np import torch import math import json import logging # import matplotlib # matplotlib.use('Agg') # import matplotlib.pyplot as plt ####################################################################### # Utility functions for evaluation ####################################################################### def sort_and_rank(score, target): sorted, indices = torch.sort(score, dim=1, descending=True) indices = torch.nonzero(indices == target.view(-1, 1)) indices = indices[:, 1].view(-1) return indices def get_filtered_ranks(score, target, batch_a, batch_r, e1_to_multi_e2): filtered_scores = score.clone().detach() for i, t in enumerate(target): filter_ents = e1_to_multi_e2[(batch_a[i].item(), batch_r[i].item())] # these filters contain ALL labels target_value = filtered_scores[i][t].clone() # zero all known cases => corresponds to the filtered setting filtered_scores[i][filter_ents] = 0.0 assert t in filter_ents # write base the saved values filtered_scores[i][t] = target_value return sort_and_rank(filtered_scores, target) def perturb_and_get_rank(model, embedding, w, a, r, b, e1_to_multi_e2, num_entity, batch_size=128, perturbed="subj"): """ Perturb one element in the triplets """ num_triples = len(a) n_batch = math.ceil(num_triples / batch_size) gold_scores = [] ranks = [] filtered_ranks = [] for idx in range(n_batch): print("batch {} / {}".format(idx, n_batch), end="\r") batch_start = idx * batch_size batch_end = min(num_triples, (idx + 1) * batch_size) batch_a = a[batch_start: batch_end] batch_r = r[batch_start: batch_end] emb_ar = embedding[batch_a] * w[batch_r] emb_ar = emb_ar.transpose(0, 1).unsqueeze(2) # size: D x E x 1 emb_c = embedding.transpose(0, 1).unsqueeze(1) # size: D x 1 x V # out-prod and reduce sum out_prod = torch.bmm(emb_ar, emb_c) # size D x E x V score = torch.sum(out_prod, dim=0) # size E x V score = torch.sigmoid(score) target = b[batch_start: batch_end] gold_score = torch.FloatTensor([score[i][idx] for i, idx in enumerate(target)]) ranks.append(sort_and_rank(score, target)) gold_scores.append(gold_score) filtered_ranks.append(get_filtered_ranks(score, target, batch_a, batch_r, e1_to_multi_e2, perturbed)) return torch.cat(ranks), torch.cat(filtered_ranks), torch.cat(gold_scores) def perturb_and_get_rank_conv(model, embedding, w, a, r, b, e1_to_multi_e2, num_entity, batch_size=128, perturbed="subj"): """ Perturb one element in the triplets for a convolution-based decoder """ num_triples = len(a) n_batch = math.ceil(num_triples / batch_size) gold_scores = [] ranks = [] filtered_ranks = [] for idx in range(n_batch): print("batch {} / {}".format(idx, n_batch), end="\r") batch_start = idx * batch_size batch_end = min(num_triples, (idx + 1) * batch_size) batch_a = a[batch_start: batch_end] batch_r = r[batch_start: batch_end] with torch.no_grad(): score = model.calc_score(batch_a, batch_r) target = b[batch_start: batch_end] gold_score = torch.FloatTensor([score[i][idx] for i, idx in enumerate(target)]) ranks.append(sort_and_rank(score, target)) gold_scores.append(gold_score) filtered_ranks.append(get_filtered_ranks(score, target, batch_a, batch_r, e1_to_multi_e2, perturbed)) return torch.cat(ranks), torch.cat(filtered_ranks), torch.cat(gold_scores) def ranking_and_hits(test_graph, model, test_triplets, e1_to_multi_e2, network, fusion="graph-only", sim_relations=False, write_results=False, debug=False, epoch=None): print(model) s = test_triplets[:, 0] r = test_triplets[:, 1] o = test_triplets[:, 2] if fusion == "sum": gembedding = model.evaluate(test_graph) init_embedding = model.rgcn.layers[0].embedding.weight with torch.no_grad(): embedding = gembedding + init_embedding elif fusion == "init": embedding = model.rgcn.layers[0].embedding.weight elif fusion == "graph-only": embedding = model.evaluate(test_graph, epoch) if sim_relations: rel_offset = model.num_rels - 1 else: rel_offset = model.num_rels #model.decoder.module.cur_embedding = embedding model.decoder.cur_embedding = embedding hits_left = [] hits_right = [] hits = [] ranks = [] ranks_left = [] ranks_right = [] scores = [] node_mrr = {} for i in range(10): hits_left.append([]) hits_right.append([]) hits.append([]) batch_size = 128 if debug: end = min(5000, len(test_triplets)) else: end = len(test_triplets) # for i in range(0, len(test_triplets), batch_size): for i in range(0, end, batch_size): e1 = s[i: i + batch_size] e2 = o[i: i + batch_size] rel = r[i: i + batch_size] rel_reverse = rel + rel_offset cur_batch_size = len(e1) e2_multi1 = [torch.LongTensor(e1_to_multi_e2[(e.cpu().item(), r.cpu().item())]) for e, r in zip(e1, rel)] e2_multi2 = [torch.LongTensor(e1_to_multi_e2[(e.cpu().item(), r.cpu().item())]) for e, r in zip(e2, rel_reverse)] with torch.no_grad(): pred1 = model.calc_score(e1, rel) pred2 = model.calc_score(e2, rel_reverse) pred1, pred2 = pred1.data, pred2.data scores.append(pred1) e1, e2 = e1.data, e2.data for j in range(0, cur_batch_size): # these filters contain ALL labels filter1 = e2_multi1[j].long() filter2 = e2_multi2[j].long() # save the prediction that is relevant target_value1 = pred1[j, e2[j].item()].item() target_value2 = pred2[j, e1[j].item()].item() # zero all known cases (this are not interesting) # this corresponds to the filtered setting pred1[j][filter1] = 0.0 pred2[j][filter2] = 0.0 # EXP: also remove self-connections pred1[j][e1[j].item()] = 0.0 pred2[j][e2[j].item()] = 0.0 # write base the saved values pred1[j][e2[j]] = target_value1 pred2[j][e1[j]] = target_value2 # sort and rank max_values, argsort1 = torch.sort(pred1, 1, descending=True) max_values, argsort2 = torch.sort(pred2, 1, descending=True) for j in range(0, cur_batch_size): # find the rank of the target entities # rank1 = np.where(argsort1[i]==e2[i].item())[0][0] # rank2 = np.where(argsort2[i]==e1[i].item())[0][0] rank1 = (argsort1[j] == e2[j]).nonzero().cpu().item() rank2 = (argsort2[j] == e1[j]).nonzero().cpu().item() # rank+1, since the lowest rank is rank 1 not rank 0 ranks.append(rank1 + 1) ranks_left.append(rank1 + 1) ranks.append(rank2 + 1) ranks_right.append(rank2 + 1) node1 = network.graph.nodes[e1[j].cpu().item()] node2 = network.graph.nodes[e2[j].cpu().item()] if node1 not in node_mrr: node_mrr[node1] = [] if node2 not in node_mrr: node_mrr[node2] = [] node_mrr[node1].append(rank1) node_mrr[node2].append(rank2) for hits_level in range(0, 10): if rank1 <= hits_level: hits[hits_level].append(1.0) hits_left[hits_level].append(1.0) else: hits[hits_level].append(0.0) hits_left[hits_level].append(0.0) if rank2 <= hits_level: hits[hits_level].append(1.0) hits_right[hits_level].append(1.0) else: hits[hits_level].append(0.0) hits_right[hits_level].append(0.0) for k in range(0, 10): logging.info('Hits left @{0}: {1}'.format(k + 1, np.mean(hits_left[k]))) logging.info('Hits right @{0}: {1}'.format(k + 1, np.mean(hits_right[k]))) logging.info('Hits @{0}: {1}'.format(k + 1, np.mean(hits[k]))) logging.info('Mean rank left: {0}'.format(np.mean(ranks_left))) logging.info('Mean rank right: {0}'.format(np.mean(ranks_right))) logging.info('Mean rank: {0}'.format(np.mean(ranks))) logging.info('Mean reciprocal rank left: {0}'.format(np.mean(1. / np.array(ranks_left)))) logging.info('Mean reciprocal rank right: {0}'.format(np.mean(1. / np.array(ranks_right)))) logging.info('Mean reciprocal rank: {0}'.format(np.mean(1. / np.array(ranks)))) if write_results: write_topk_tuples(torch.cat(scores, dim=0).cpu().numpy(), test_triplets, network) # plot_degree_mrr(node_mrr) return np.mean(1. / np.array(ranks)) def plot_degree_mrr(node_ranks): degree_rank = {} for node, rank in node_ranks.items(): node_degree = node.get_degree() if node_degree not in degree_rank: degree_rank[node_degree] = [] degree_rank[node_degree].append(sum(rank) / len(rank)) degrees = [] ranks = [] for k in sorted(degree_rank.keys()): if k < 20: # degrees.append(k) # ranks.append(sum(degree_rank[k])/len(degree_rank[k])) for rank in degree_rank[k]: if rank < 100: degrees.append(k) ranks.append(rank) fig, ax = plt.subplots() ax.scatter(degrees, ranks, marker='.') ax.set(xlabel="degree", ylabel="mean ranks") ax.grid() fig.savefig("comet_cn_degree_ranks.png") def write_topk_tuples(scores, input_prefs, network, k=50): out_lines = [] argsort = [np.argsort(-1 * np.array(score)) for score in np.array(scores)] for i, sorted_scores in enumerate(argsort): pref = input_prefs[i] e1 = pref[0].cpu().item() rel = pref[1].cpu().item() e2 = pref[2].cpu().item() cur_point = {} cur_point['gold_triple'] = {} cur_point['gold_triple']['e1'] = network.graph.nodes[e1].name cur_point['gold_triple']['e2'] = network.graph.nodes[e2].name cur_point['gold_triple']['relation'] = network.graph.relations[rel].name topk_indices = sorted_scores[:k] topk_tuples = [network.graph.nodes[elem] for elem in topk_indices] # if golds[i] in topk_tuples: # topk_indices = argsort[i][:k+1] # topk_tuples = [input_batch[i][elem] for elem in topk_indices if input_batch[i][elem]!=golds[i]] cur_point['candidates'] = [] for j, node in enumerate(topk_tuples): tup = {} tup['e1'] = network.graph.nodes[e1].name tup['e2'] = node.name tup['relation'] = network.graph.relations[rel].name tup['score'] = str(scores[i][topk_indices[j]]) cur_point['candidates'].append(tup) out_lines.append(cur_point) with open("topk_candidates.jsonl", 'w') as f: for entry in out_lines: json.dump(entry, f) f.write("\n")
commonsense-kg-completion-master
src/evaluation_utils.py
__author__ = "chaitanya" from collections import defaultdict class Graph: def __init__(self, directed=True): self.relations = defaultdict() self.nodes = defaultdict() self.node2id = {} self.relation2id = {} self.edges = {} self.edgeCount = 0 self.directed = directed #self.add_node("UNK-NODE") #self.add_relation("UNK-REL") def add_edge(self, node1, node2, rel, label, weight, uri=None): """ :param node1: source node :param node2: target node :param rel: relation :param label: relation :param weight: weight of edge from [0.0, 1.0] :param uri: uri of edge :return: Edge object """ new_edge = Edge(node1, node2, rel, label, weight, uri) if node2 in self.edges[node1]: self.edges[node1][node2].append(new_edge) else: self.edges[node1][node2] = [new_edge] # node1.neighbors.add(node2) node2.neighbors.add(node1) self.edgeCount += 1 if (self.edgeCount + 1) % 10000 == 0: print("Number of edges: %d" % self.edgeCount, end="\r") return new_edge def add_node(self, name): """ :param name: :return: """ new_node = Node(name, len(self.nodes)) self.nodes[len(self.nodes)] = new_node self.node2id[new_node.name] = len(self.nodes) - 1 self.edges[new_node] = {} return self.node2id[new_node.name] def add_relation(self, name): """ :param name :return: """ new_relation = Relation(name, len(self.relations)) self.relations[len(self.relations)] = new_relation self.relation2id[new_relation.name] = len(self.relations) - 1 return self.relation2id[new_relation.name] def find_node(self, name): """ :param name: :return: """ if name in self.node2id: return self.node2id[name] else: return -1 def find_relation(self, name): """ :param name: :return: """ if name in self.relation2id: return self.relation2id[name] else: return -1 def is_connected(self, node1, node2): """ :param node1: :param node2: :return: """ if node1 in self.edges: if node2 in self.edges[node1]: return True return False def node_exists(self, node): """ :param node: node to check :return: Boolean value """ if node in self.nodes.values(): return True return False def find_all_connections(self, relation): """ :param relation: :return: list of all edges representing this relation """ relevant_edges = [] for edge in self.edges: if edge.relation == relation: relevant_edges.append(edge) return relevant_edges def iter_nodes(self): return list(self.nodes.values()) def iter_relations(self): return list(self.relations.values()) def iter_edges(self): for node in self.edges: for edge_list in self.edges[node].values(): for edge in edge_list: yield edge def __str__(self): for node in self.nodes: print(node) class Node: def __init__(self, name, id, lang='en'): self.name = name self.id = id self.lang = lang self.neighbors = set([]) def get_neighbors(self): """ :param node: :return: """ return self.neighbors def get_degree(self): """ :param node: :return: """ return len(self.neighbors) def __str__(self): out = ("Node #%d : %s" % (self.id, self.name)) return out class Relation: def __init__(self, name, id): self.name = name self.id = id class Edge: def __init__(self, node1, node2, relation, label, weight, uri): self.src = node1 self.tgt = node2 self.relation = relation self.label = label self.weight = weight self.uri = uri def __str__(self): out = ("%s: %s --> %s" % (self.relation.name, self.src.name, self.tgt.name)) return out
commonsense-kg-completion-master
src/graph.py
# Main script for experimenting with training on a subgraph from collections import Counter import argparse import numpy as np import sys import os import json import time import random import torch import torch.nn as nn from model import LinkPredictor from reader import AtomicTSVReader, ConceptNetTSVReader, FB15kReader import utils import reader_utils import evaluation_utils torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def set_seeds(seed): random.seed(42) np.random.seed(42) torch.manual_seed(42) torch.cuda.manual_seed(42) def load_data(dataset, reader_cls, data_dir, sim_relations): train_network = reader_cls(dataset) dev_network = reader_cls(dataset) test_network = reader_cls(dataset) train_network.read_network(data_dir=data_dir, split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k * v for k, v in degree_counter.items()]) / sum([v for k, v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir=data_dir, split="valid", train_network=train_network) test_network.read_network(data_dir=data_dir, split="test", train_network=train_network) word_vocab = train_network.graph.node2id # Add sim nodes if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return train_data, valid_data, test_data, valid_labels, test_labels, train_network def get_model_name(args): name = '_subgraph_model_state.pth' name = "_" + args.gcn_type + "_" + args.decoder + name if args.sim_relations: name = "_sim_relations" + name if args.sim_sim: name = "_sim-sim" + name if args.bert_concat: name = "_bert_concat" + name if args.bert_mlp: name = "_bert_mlp" + name if args.tying: name = "_tying" + name if args.bert_sum: name = "_bert_sum" + name if args.input_layer == "bert": name = "_inp-bert" + name model_state_file = args.dataset + name if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) model_state_file = os.path.join(args.output_dir, model_state_file) return model_state_file def main(args): set_seeds(args.seed) # load graph data if args.dataset == "FB15K-237": dataset_cls = FB15kReader data_dir = "data/FB15k-237/" elif args.dataset == "atomic": dataset_cls = AtomicTSVReader data_dir = "data/atomic/" elif args.dataset == "conceptnet": dataset_cls = ConceptNetTSVReader data_dir = "data/ConceptNet/" else: raise ValueError("Invalid option for dataset.") # Store entity-wise dicts for filtered metrics train_data, valid_data, test_data, valid_labels, test_labels, train_network = load_data(args.dataset, dataset_cls, data_dir, args.sim_relations) num_nodes = len(train_network.graph.nodes) num_rels = len(train_network.graph.relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() # for filtered ranking all_e1_to_multi_e2, all_e2_to_multi_e1 = reader_utils.create_entity_dicts(all_tuples, num_rels, args.sim_relations) # for training train_e1_to_multi_e2, train_e2_to_multi_e1 = reader_utils.create_entity_dicts(train_data.tolist(), num_rels, args.sim_relations) # the below dicts `include` sim relations sim_train_e1_to_multi_e2, sim_train_e2_to_multi_e1 = reader_utils.create_entity_dicts(train_data.tolist(), num_rels) # check cuda use_cuda = torch.cuda.is_available() if use_cuda and not args.no_cuda: torch.cuda.set_device(args.gpu) cpu_decoding = args.cpu_decoding # atomic graph is much larger, so we perform evaluation on cpu cpu_eval = True if args.dataset == "atomic" else False # create model model = LinkPredictor(num_nodes, num_rels, args, use_cuda=use_cuda) # build graph graph_train_data = train_data test_graph, test_rel, test_norm = utils.build_test_graph(num_nodes, num_rels, graph_train_data) test_deg = test_graph.in_degrees(range(test_graph.number_of_nodes())).float().view(-1, 1) test_node_id = torch.arange(0, num_nodes, dtype=torch.long).view(-1, 1) test_rel = torch.from_numpy(test_rel).view(-1, 1) test_norm = torch.from_numpy(test_norm).view(-1, 1) # transfer graph data to gpu if use_cuda and not args.no_cuda and not cpu_decoding: test_node_id = test_node_id.cuda() test_norm = test_norm.cuda() test_rel = test_rel.cuda() # validation and testing triplets valid_data = torch.LongTensor(valid_data) test_data = torch.LongTensor(test_data) if use_cuda and not args.no_cuda and not cpu_eval: valid_data = valid_data.cuda() test_data = test_data.cuda() test_graph.ndata.update({'id': test_node_id, 'norm': test_norm}) test_graph.edata['type'] = test_rel if use_cuda and not args.no_cuda: # model = nn.DataParallel(model, device_ids=[0,1]) model = model.cuda() model_state_file = get_model_name(args) # writer = SummaryWriter("runs/" + model_state_file.replace(".pth",".log")) # check if only evaluation needs to be performed if args.eval_only: if args.load_model: model_state_file = args.load_model else: print("Please provide model path for evaluation (--load_model)") sys.exit(0) checkpoint = torch.load(model_state_file) if use_cuda and not args.no_cuda and cpu_eval: model.cpu() test_graph.ndata['id'] = test_graph.ndata['id'].cpu() test_graph.ndata['norm'] = test_graph.ndata['norm'].cpu() test_graph.edata['type'] = test_graph.edata['type'].cpu() model.decoder.no_cuda = True model.eval() model.load_state_dict(checkpoint['state_dict']) print(model) print("================DEV=================") mrr = evaluation_utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, train_network, fusion="graph-only", sim_relations=args.sim_relations, write_results=args.write_results, debug=args.debug) print("================TEST================") mrr = evaluation_utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, fusion="graph-only", sim_relations=args.sim_relations, debug=args.debug) sys.exit(0) if os.path.isfile(model_state_file): print(model_state_file) overwrite = input('Model already exists. Overwrite? Y = yes, N = no\n') if overwrite.lower() == 'n': print("Quitting") sys.exit(0) elif overwrite.lower() != 'y': raise ValueError("Invalid Option") # build adj list and calculate degrees for sampling adj_list, degrees, sparse_adj_matrix, rel = utils.get_adj_and_degrees(num_nodes, num_rels, train_data) # remove sim edges from sampling_edge_ids (we sample from the original graph and then densify it) if args.sim_relations: sim_edge_ids = np.where(graph_train_data[:, 1] == num_rels - 1)[0] sampling_edge_ids = np.delete(np.arange(len(graph_train_data)), sim_edge_ids) else: sampling_edge_ids = None # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) forward_time = [] backward_time = [] # training loop print("Starting training...") epoch = 0 best_mrr = 0 while True: model.train() epoch += 1 cur_train_data = graph_train_data[:] # build dgl graph g, node_id, edge_type, node_norm, data, labels = \ utils.generate_sampled_graph_and_labels( cur_train_data, args.graph_batch_size, num_rels, adj_list, degrees, args.negative_sample, args.sim_sim, args.sim_relations, sim_train_e1_to_multi_e2, sampling_edge_ids) node_id_copy = np.copy(node_id) node_dict = {v: k for k, v in dict(enumerate(node_id_copy)).items()} # set node/edge feature node_id = torch.from_numpy(node_id).view(-1, 1) edge_type = torch.from_numpy(edge_type) node_norm = torch.from_numpy(node_norm).view(-1, 1) if use_cuda and not args.no_cuda: node_id = node_id.cuda() edge_type, node_norm = edge_type.cuda(), node_norm.cuda() g.ndata.update({'id': node_id, 'norm': node_norm}) g.edata['type'] = edge_type batch_size = args.decoder_batch_size e1_keys = list(train_e1_to_multi_e2.keys()) sub_e1_keys = {} # Add inverse edges to training samples src, dst = np.concatenate((cur_train_data[:, 0], cur_train_data[:, 2])), \ np.concatenate((cur_train_data[:, 2], cur_train_data[:, 0])) rel = cur_train_data[:, 1] rel = np.concatenate((rel, rel + num_rels)) cur_train_data = np.stack((src, rel, dst)).transpose() # The loop below constructs a dict for the decoding step # with the key (src, rel) and the value as the list of nodes present in the original graph # where the source and target nodes both belong to the list of sampled nodes in subgraph for e in cur_train_data: rel = e[1] # Don't use sim relations for decoding if args.sim_relations: if rel == num_rels - 1 or rel == (num_rels * 2) - 1: continue elif rel >= num_rels: rel -= 1 if e[0] in node_id_copy and e[2] in node_id_copy: subgraph_src_idx = node_dict[e[0]] subgraph_tgt_idx = node_dict[e[2]] if (subgraph_src_idx, rel) not in sub_e1_keys: sub_e1_keys[(subgraph_src_idx, rel)] = [subgraph_tgt_idx] else: sub_e1_keys[(subgraph_src_idx, rel)].append(subgraph_tgt_idx) key_list = list(sub_e1_keys.keys()) random.shuffle(key_list) cum_loss = 0.0 for i in range(0, len(key_list), batch_size): optimizer.zero_grad() # compute graph embeddings graph_embeddings = model.get_graph_embeddings(g, epoch) #model.decoder.module.cur_embedding = graph_embeddings model.decoder.cur_embedding = graph_embeddings batch = key_list[i: i + batch_size] # Don't train with batches of size 1 and always set batch_size > 1 since batch norm # fails with batch_size=1 if len(batch) == 1: continue e1 = torch.LongTensor([elem[0] for elem in batch]) rel = torch.LongTensor([elem[1] for elem in batch]) # e2 -> list of target nodes in subgraph e2 = [sub_e1_keys[(k[0], k[1])] for k in batch] batch_len = len(batch) if use_cuda and not args.no_cuda and not cpu_decoding: target = torch.cuda.FloatTensor(batch_len, node_id_copy.shape[0]).fill_(0) e1 = e1.cuda() rel = rel.cuda() else: target = torch.zeros((batch_len, node_id_copy.shape[0])) # construct target tensor for j, inst in enumerate(e2): target[j, inst] = 1.0 # perform label smoothing target = ((1.0 - args.label_smoothing_epsilon) * target) + (1.0 / target.size(1)) if cpu_decoding: graph_embeddings = graph_embeddings.cpu() model.decoder.cpu() model.decoder.no_cuda = True t0 = time.time() loss = model.get_score(e1, rel, target, graph_embeddings) loss = torch.mean(loss) cum_loss += loss.cpu().item() t1 = time.time() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm) # clip gradients optimizer.step() t2 = time.time() forward_time.append(t1 - t0) backward_time.append(t2 - t1) del graph_embeddings, target, batch, loss, e1, rel, e2 # the below make training very slow # gc.collect() # torch.cuda.empty_cache() print("Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f} | Forward {:.4f}s | Backward {:.4f}s". format(epoch, cum_loss, best_mrr, forward_time[-1], backward_time[-1])) # writer.add_scalar('data/loss', cum_loss , epoch) # Save model every 100 epochs # if epoch + 1 % 100==0: # print("saving current model..") # torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, # model_state_file) # validation if epoch % args.evaluate_every == 0: # perform validation on CPU when full graph is too large if use_cuda and not args.no_cuda and cpu_eval: model.cpu() test_graph.ndata['id'] = test_graph.ndata['id'].cpu() test_graph.ndata['norm'] = test_graph.ndata['norm'].cpu() test_graph.edata['type'] = test_graph.edata['type'].cpu() model.decoder.no_cuda = True model.eval() print("start eval") print("===========DEV============") mrr = evaluation_utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, train_network, fusion="graph-only", sim_relations=args.sim_relations, debug=args.debug, epoch=epoch) # writer.add_scalar('data/mrr', mrr, epoch) # save best model # torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, # model_state_file) if mrr < best_mrr: if epoch >= args.n_epochs: break else: best_mrr = mrr print("[saving best model so far]") torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, model_state_file) metrics = {"best_mrr": best_mrr, "cum_loss": cum_loss } with open(os.path.join(args.output_dir, 'metrics.json'), 'w') as f: f.write(json.dumps(metrics)) # transfer graph back to gpu device if use_cuda and not args.no_cuda and cpu_eval: model.cuda() test_graph.ndata['id'] = test_graph.ndata['id'].cuda() test_graph.ndata['norm'] = test_graph.ndata['norm'].cuda() test_graph.edata['type'] = test_graph.edata['type'].cuda() model.decoder.no_cuda = False print("training done") print("Mean forward time: {:4f}s".format(np.mean(forward_time))) print("Mean Backward time: {:4f}s".format(np.mean(backward_time))) # writer.export_scalars_to_json("./all_scalars.json") # writer.close() print("\nStart testing") # use best model checkpoint checkpoint = torch.load(model_state_file) model.eval() model.load_state_dict(checkpoint['state_dict']) print("Using best epoch: {}".format(checkpoint['epoch'])) evaluation_utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, fusion="graph-only", sim_relations=args.sim_relations) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Options for Commonsense Knowledge Base Completion') # General parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--sim_relations", action='store_true', default=False, help="add similarity edges when constructing graph") parser.add_argument("--sim_sim", action='store_true', default=False, help="add sim-sim edges to graph") parser.add_argument("--load_model", type=str, default=None, help="Path to model file") parser.add_argument("--decoder", type=str, default='ConvTransE', help="decoder used to compute scores") parser.add_argument("--n-epochs", type=int, default=200, help="number of minimum training epochs") parser.add_argument("--evaluate-every", type=int, default=10, help="perform evaluation every n epochs") parser.add_argument("--output_dir", type=str, required=False, default="saved_models", help="output directory to store metrics and model file") parser.add_argument("--bert_concat", action='store_true', default=False, help="concat bert embeddings before decoder layer") parser.add_argument("--bert_sum", action='store_true', default=False, help="sum bert embeddings before decoder layer") parser.add_argument("--bert_mlp", action='store_true', default=False, help="use mlp after concatenated bert+gcn embeddings before decoder layer") parser.add_argument("--tying", action='store_true', default=False, help="tie input bert layer to gcn with concatenated tensor before decoding") parser.add_argument("--cpu_decoding", action='store_true', default=False, help="perform decoding on cpu") parser.add_argument("--eval_only", action='store_true', default=False, help="only evaluate using an existing model") parser.add_argument("--write_results", action='store_true', default=False, help="write top-k candidate tuples for evaluation set to file") parser.add_argument("--eval-batch-size", type=int, default=500, help="batch size when evaluating") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--no_cuda", action='store_true', default=False, help="prevents using cuda") parser.add_argument("--seed", type=int, default=42, help="random seed value") parser.add_argument("--debug", action='store_true', default=False, help="use fewer eval instances in debugging mode") # GCN parser.add_argument("--init_embedding_dim", type=int, default=200, help="embedding dimension of input to GCN") parser.add_argument("--input_layer", type=str, default="lookup", help="initialization layer for GCN") parser.add_argument("--n-bases", type=int, default=100, help="number of weight blocks for each relation (for RGCN)") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("--gcn_type", type=str, default="WGCNAttentionLayer", help="type of GCN to be used (class name)") # Miscellaneous Hyperparameters parser.add_argument("--lr", type=float, default=1e-4, help="learning rate") parser.add_argument("--dropout", type=float, default=0.2, help="dropout probability") parser.add_argument("--input_dropout", type=float, default=0.2, help="input dropout") parser.add_argument("--feature_map_dropout", type=float, default=0.2, help="feature map dropout") parser.add_argument("--label_smoothing_epsilon", type=float, default=0.1, help="epsilon for performing label smoothing") parser.add_argument("--embedding_dim", type=int, default=200, help="output embedding dimension of GCN") parser.add_argument("--n-hidden", type=int, default=200, help="number of hidden units") parser.add_argument("--use_bias", action='store_true', default=False, help="use bias") parser.add_argument("--regularization", type=float, default=0.1, help="regularization weight") parser.add_argument("--grad-norm", type=float, default=1.0, help="norm to clip gradient to") parser.add_argument("--graph-batch-size", type=int, default=30000, help="number of edges to sample in each iteration") parser.add_argument("--negative-sample", type=int, default=0, help="number of negative samples per positive sample") parser.add_argument("--decoder_batch_size", type=int, default=128, help="batch size for decoder") parser.add_argument("--layer_norm", action='store_true', default=False, help="use layer normalization on embeddings fed to decoder") args = parser.parse_args() print(args) try: main(args) except KeyboardInterrupt: print('Interrupted') # writer.export_scalars_to_json("./all_scalars.json") # writer.close()
commonsense-kg-completion-master
src/run_kbc_subgraph.py
__author__ = "chaitanya" import torch from torch.nn.init import xavier_normal_ import torch.nn as nn import torch.nn.functional as F from bert_feature_extractor import BertLayer from decoder import DistMult, ConvE, ConvTransE, ConvKB import layers class LinkPredictor(nn.Module): def __init__(self, num_nodes, num_rels, args, use_cuda=False): super(LinkPredictor, self).__init__() self.rgcn = GCN(num_nodes, num_rels * 2, args, use_cuda) # Use 2 * num_rels to account for inverse relations if args.sim_relations: decoder_rels = (num_rels - 1) * 2 else: decoder_rels = num_rels * 2 # initialize decoder if args.decoder == "ConvE": self.decoder = ConvE(num_nodes, decoder_rels, args) elif args.decoder == "ConvTransE": self.decoder = ConvTransE(num_nodes, decoder_rels, args) elif args.decoder == "ConvKB": self.decoder = ConvKB(num_nodes, decoder_rels, args) else: self.decoder = DistMult(num_nodes, decoder_rels, args) #self.decoder = nn.DataParallel(self.decoder) #self.decoder.module.init() self.decoder.init() # Model-wide arguments self.num_rels = num_rels self.num_nodes = num_nodes self.use_cuda = use_cuda self.reg_param = args.regularization self.input_layer = args.input_layer self.bert_concat = args.bert_concat self.bert_sum = args.bert_sum self.bert_mlp = args.bert_mlp self.tying = args.tying self.layer_norm = args.layer_norm self.bert_dim = 1024 if self.bert_concat: self.bert_concat_layer = EmbeddingLayer(num_nodes, self.bert_dim, args.dataset, init_bert=True) if self.bert_sum: self.bert_concat_layer = EmbeddingLayer(num_nodes, self.bert_dim, args.dataset, init_bert=True) self.beta = 0.5 if self.bert_mlp: self.bert_concat_layer = EmbeddingLayer(num_nodes, self.bert_dim, args.dataset, init_bert=True) self.bmlp = nn.Linear(self.bert_dim + 200, 600) if self.layer_norm: self.bert_norm = nn.LayerNorm(self.bert_dim) self.gcn_norm = nn.LayerNorm(args.embedding_dim) def mask_by_schedule(self, tensor, epoch, epoch_cutoff=100): if epoch < epoch_cutoff: cuda_check = tensor.is_cuda if cuda_check: mask = torch.zeros((tensor.size(0), tensor.size(1)), device='cuda') else: mask = torch.zeros((tensor.size(0), tensor.size(1))) k = int((epoch / epoch_cutoff) * tensor.size(1)) perm = torch.randperm(tensor.size(1)) indices = perm[:k] mask[:, indices] = 1 return tensor * mask else: return tensor def forward(self, g, epoch=None): if self.bert_concat: bert_embs = self.bert_concat_layer.embedding(g.ndata['id'].squeeze(1)) gcn_embs = self.rgcn.forward(g) if self.layer_norm: bert_embs = self.bert_norm(bert_embs) gcn_embs = self.gcn_norm(gcn_embs) if epoch is not None: bert_embs = self.mask_by_schedule(bert_embs, epoch) # Fisher Test for checking importance of graph embeddings: # rand_indices = torch.randperm(gcn_embs.size(0)) # gcn_embs = gcn_embs[rand_indices, :] # gcn_embs = torch.zeros((gcn_embs.size(0), gcn_embs.size(1)), device='cuda') out_embs = torch.cat([bert_embs, gcn_embs], dim=1) return out_embs elif self.bert_mlp: bert_embs = self.bert_concat_layer.embedding(g.ndata['id'].squeeze(1)) gcn_embs = self.rgcn.forward(g) full_embs = torch.cat([bert_embs, gcn_embs], dim=1) full_embs_transf = self.bmlp(full_embs) return full_embs_transf elif self.bert_sum: bert_embs = self.bert_concat_layer.embedding(g.ndata['id'].squeeze(1)) gcn_embs = self.rgcn.forward(g) if self.layer_norm: bert_embs = self.bert_norm(bert_embs) gcn_embs = self.gcn_norm(gcn_embs) return bert_embs + self.beta * gcn_embs elif self.tying: init_embs = self.rgcn.layers[0].embedding.weight gcn_embs = self.rgcn.forward(g) full_embs = torch.cat([init_embs, gcn_embs], dim=1) return full_embs else: gcn_embs = self.rgcn.forward(g) return gcn_embs def evaluate(self, g, epoch=None): # get embedding and relation weight without grad with torch.no_grad(): embedding = self.forward(g, epoch) return embedding def regularization_loss(self, embedding): dec_weight = self.decoder.module.w_relation.weight.pow(2) if self.rgcn.num_hidden_layers > 0 and self.bert_concat: return torch.mean(embedding[:, -self.rgcn.layers[-1].out_feat:].pow(2)) + torch.mean(dec_weight) else: return torch.mean(embedding.pow(2)) + torch.mean(dec_weight) def calc_score(self, e1, rel, target=None): return self.decoder(e1, rel, target) def get_graph_embeddings(self, g, epoch=None): embedding = self.forward(g, epoch) return embedding def get_score(self, e1, rel, target, embedding): decoder_score = self.calc_score(e1, rel, target) # predict_loss = F.binary_cross_entropy(decoder_score, target) predict_loss = decoder_score if self.reg_param != 0.0: reg_loss = self.regularization_loss(embedding) return predict_loss + self.reg_param * reg_loss else: return predict_loss class EmbeddingLayer(nn.Module): def __init__(self, num_nodes, h_dim, dataset=None, init_bert=None): super(EmbeddingLayer, self).__init__() self.embedding = torch.nn.Embedding(num_nodes, h_dim, padding_idx=0) if not init_bert: xavier_normal_(self.embedding.weight.data) else: self.init_with_bert(num_nodes, dataset) def forward(self, g): node_id = g.ndata['id'].squeeze(1) g.ndata['h'] = self.embedding(node_id) def init_with_bert(self, num_nodes, dataset): bert_model = BertLayer(dataset) bert_weights = bert_model.forward_as_init(num_nodes) self.embedding.load_state_dict({'weight': bert_weights}) # self.embedding.weight.requires_grad = False class BaseGCN(nn.Module): def __init__(self, num_nodes, num_rels, args, use_cuda=False): super(BaseGCN, self).__init__() self.num_nodes = num_nodes self.num_rels = num_rels self.use_cuda = use_cuda self.input_dim = args.init_embedding_dim self.embedding_dim = args.embedding_dim self.h_dim = args.n_hidden self.out_dim = args.n_hidden self.num_bases = args.n_bases self.num_hidden_layers = args.n_layers self.dropout = args.dropout self.input_layer = args.input_layer self.gcn_type = args.gcn_type self.bias = args.use_bias # create gcn layers self.build_model(args.dataset) def build_model(self, dataset): self.layers = nn.ModuleList() # i2h i2h = self.build_input_layer(dataset, self.input_layer) if i2h is not None: self.layers.append(i2h) # h2h for idx in range(self.num_hidden_layers): h2h = self.build_hidden_layer(idx) self.layers.append(h2h) # h2o h2o = self.build_output_layer() if h2o is not None: self.layers.append(h2o) # initialize feature for each node def create_features(self): return None def build_input_layer(self): return None def build_hidden_layer(self): raise NotImplementedError def build_output_layer(self): return None def forward(self, g): for layer in self.layers: layer(g) return g.ndata.pop('h') class GCN(BaseGCN): def build_input_layer(self, dataset, input_layer="lookup"): if input_layer == "lookup": return EmbeddingLayer(self.num_nodes, self.input_dim) elif input_layer == "bilstm": # Node representations from BiLSTM self.node_embs = nn.Embedding(len(self.word_vocab), self.embedding_dim, padding_idx=self.word_vocab["PAD"]) if self.pretrained_embs: self.init_embs() self.lstm = nn.LSTM(num_layers=self.n_layers, input_size=self.embedding_dim, hidden_size=self.hidden_dim, bidirectional=True, dropout=self.dropout, batch_first=True) if self.max_pooling: self.pooler = nn.AdaptiveMaxPool1d(1) elif input_layer == "bert": return EmbeddingLayer(self.num_nodes, self.input_dim, dataset, input_layer) def build_hidden_layer(self, idx): #act = F.relu if idx < self.num_hidden_layers - 1 else None act = F.tanh if idx < self.num_hidden_layers else None self_loop = True if idx == 0: input_dim = self.input_dim output_dim = self.h_dim elif idx == self.num_hidden_layers-1: input_dim = self.h_dim output_dim = self.embedding_dim else: input_dim = self.h_dim output_dim = self.h_dim if self.gcn_type == "MultiHeadGATLayer": if idx != 0: input_dim = input_dim * 8 if self.gcn_type == "WGCNAttentionSAGELayer": # output_dim = input_dim * 2 self_loop = False #if idx != 0: # input_dim *= 2 cls = getattr(layers, self.gcn_type) return cls(input_dim, output_dim, self.num_rels, self.num_bases, self.bias, activation=act, self_loop=self_loop, dropout=self.dropout)
commonsense-kg-completion-master
src/model.py
__author__ = "chaitanya" import logging as logger from graph import Graph import csv import json import os import pandas as pd import random from sklearn.metrics.pairwise import cosine_similarity from bert_feature_extractor import BertLayer import numpy as np class Reader: def print_summary(self): print("\n\nGraph Summary") print("\nNodes: %d" % len(self.graph.nodes)) print("Edges: %d" % self.graph.edgeCount) print("Relations: %d" % len(self.graph.relation2id)) density = self.graph.edgeCount / (len(self.graph.nodes) * (len(self.graph.nodes) - 1)) print("Density: %f" % density) print("\n******************* Sample Edges *******************") for i, edge in enumerate(self.graph.iter_edges()): print(edge) if (i+1) % 10 == 0: break print("***************** ***************** *****************\n") def gen_negative_examples(self, tgt_size=None, sampling_type="random"): print("Generating negative examples..") existing_edges = list(self.graph.iter_edges()) existing_nodes = list(self.graph.iter_nodes()) existing_relations = list(self.graph.iter_relations()) if tgt_size: selected_edges = random.sample(existing_edges, tgt_size) else: selected_edges = existing_edges # Generate 3 negative samples per example idx = 0 for i, edge in enumerate(selected_edges): src, rel, tgt = edge.src, edge.relation, edge.tgt rand_nodes = [] while len(rand_nodes) != 2: sample = random.sample(existing_nodes, 1) if sample not in [src, tgt]: rand_nodes.append(sample[0]) found = False while not found: sample = random.sample(existing_relations, 1) if sample != rel: rand_rel = sample found = True self.add_example(src.name, rand_nodes[0].name, rel.name, 1.0, 0) self.add_example(rand_nodes[1].name, tgt.name, rel.name, 1.0, 0) self.add_example(src.name, tgt.name, rand_rel[0].name, 1.0, 0) idx += 3 print("Added %d negative examples using %s sampling" %(idx, sampling_type)) def add_sim_edges_bert(self): if self.dataset == "conceptnet": threshold = 0.95 elif self.dataset == "atomic": threshold = 0.98 sim_counter = 0 bert_model = BertLayer(self.dataset) node_list = self.graph.iter_nodes() vecs = bert_model.forward(node_list) vecs = vecs.cpu().numpy() # vecs = np.vstack(vecs) print("Computed embeddings.") batch_size = 1000 out_sims = [] for row_i in range(0, int(vecs.shape[0] / batch_size) + 1): start = row_i * batch_size end = min([(row_i + 1) * batch_size, vecs.shape[0]]) if end <= start: break rows = vecs[start: end] sim = cosine_similarity(rows, vecs) # rows is O(1) size # 2 nodes with unknown text can have perfect similarity sim[sim == 1.0] = 0 sim[sim < threshold] = 0 for i in range(rows.shape[0]): indices = np.nonzero(sim[i])[0] for index in indices: if index!=i+start: self.add_example(node_list[i+start].name, node_list[index].name, "sim", 1.0) out_sims.append((node_list[i+start].name, node_list[index].name)) #self.add_example(node_list[index], node_list[i+start], "sim", 1.0) sim_counter += 1 # with open("bert_atomic_sims.txt", 'w') as f: # f.writelines([s[0] + "\t" + s[1] + "\n" for s in out_sims]) print("Added %d sim edges" % sim_counter) class ConceptNetTSVReader(Reader): def __init__(self, dataset): logger.info("Reading ConceptNet") self.dataset = dataset self.graph = Graph() self.rel2id = {} def read_network(self, data_dir, split="train", train_network=None): if split == "train": data_path = os.path.join(data_dir, "train.txt") elif split == "valid": data_path = os.path.join(data_dir, "valid.txt") elif split == "test": data_path = os.path.join(data_dir, "test.txt") with open(data_path) as f: data = f.readlines() if split == "test": data = data[:1200] for inst in data: inst = inst.strip() if inst: inst = inst.split('\t') rel, src, tgt = inst weight = 1.0 src = src.lower() tgt = tgt.lower() if split != "train": self.add_example(src, tgt, rel, float(weight), int(weight), train_network) else: self.add_example(src, tgt, rel, float(weight)) self.rel2id = self.graph.relation2id def add_example(self, src, tgt, relation, weight, label=1, train_network=None): src_id = self.graph.find_node(src) if src_id == -1: src_id = self.graph.add_node(src) tgt_id = self.graph.find_node(tgt) if tgt_id == -1: tgt_id = self.graph.add_node(tgt) relation_id = self.graph.find_relation(relation) if relation_id == -1: relation_id = self.graph.add_relation(relation) edge = self.graph.add_edge(self.graph.nodes[src_id], self.graph.nodes[tgt_id], self.graph.relations[relation_id], label, weight) # add nodes/relations from evaluation graphs to training graph too if train_network is not None and label == 1: src_id = train_network.graph.find_node(src) if src_id == -1: src_id = train_network.graph.add_node(src) tgt_id = train_network.graph.find_node(tgt) if tgt_id == -1: tgt_id = train_network.graph.add_node(tgt) relation_id = train_network.graph.find_relation(relation) if relation_id == -1: relation_id = train_network.graph.add_relation(relation) return edge class AtomicReader(Reader): def __init__(self): logger.info("Reading ATOMIC corpus") self.graph = Graph() self.rel2id = {} def read_network(self, data_path, split="trn"): df = pd.read_csv(os.path.join(data_path, "atomic/v4_atomic_all.csv"), index_col=0) df.iloc[:, :9] = df.iloc[:, :9].apply(lambda col: col.apply(json.loads)) for rel in df.columns[:9]: self.rel2id[rel] = len(self.rel2id) for index, row in df[df['split'] == split].iterrows(): event = row.name for rel in self.rel2id: if row[rel] or row[rel] == ["none"]: for inst in row[rel]: self.add_example(event, inst, rel) def add_example(self, src, tgt, rel, label=1): start_id = self.graph.find_node(src) if start_id == -1: start_id = self.graph.add_node(src) end_id = self.graph.find_node(tgt) if end_id == -1: end_id = self.graph.add_node(tgt) rel_id = self.graph.find_relation(rel) if rel_id == -1: rel_id = self.graph.add_relation(rel) self.graph.add_edge(self.graph.nodes[start_id], self.graph.nodes[end_id], self.graph.relations[rel_id], label, 1.0) class AtomicTSVReader(Reader): def __init__(self, dataset): logger.info("Reading ATOMIC corpus in TSV format") self.dataset = dataset self.graph = Graph() self.rel2id = {} def read_network(self, data_dir, split="train", train_network=None): data_path = data_dir filename = split + ".preprocessed.txt" #filename = split + ".txt" with open(os.path.join(data_path, filename)) as f: data = f.readlines() for inst in data: inst = inst.strip() if inst: inst = inst.split('\t') if len(inst) == 3: src, rel, tgt = inst #src = reader_utils.preprocess_atomic_sentence(src).replace("-", " ") #tgt = reader_utils.preprocess_atomic_sentence(tgt).replace("-", " ") if split != "train": self.add_example(src, tgt, rel, train_network=train_network) else: self.add_example(src, tgt, rel) def add_example(self, src, tgt, relation, weight=1.0, label=1, train_network=None): src_id = self.graph.find_node(src) if src_id == -1: src_id = self.graph.add_node(src) tgt_id = self.graph.find_node(tgt) if tgt_id == -1: tgt_id = self.graph.add_node(tgt) relation_id = self.graph.find_relation(relation) if relation_id == -1: relation_id = self.graph.add_relation(relation) edge = self.graph.add_edge(self.graph.nodes[src_id], self.graph.nodes[tgt_id], self.graph.relations[relation_id], label, weight) # add nodes/relations from evaluation graphs to training graph too if train_network is not None and label == 1: src_id = train_network.graph.find_node(src) if src_id == -1: src_id = train_network.graph.add_node(src) tgt_id = train_network.graph.find_node(tgt) if tgt_id == -1: tgt_id = train_network.graph.add_node(tgt) relation_id = train_network.graph.find_relation(relation) if relation_id == -1: relation_id = train_network.graph.add_relation(relation) return edge class FB15kReader(Reader): def __init__(self, dataset): logger.info("Reading FB15K-237..") self.graph = Graph() self.rel2id = {} def read_network(self, data_dir, keep_fraction=100, split="train", train_network=None): data_path = data_dir if split == "train": filename = split + str(keep_fraction) + "p.txt" else: filename = split + ".txt" with open(os.path.join(data_path, filename)) as f: data = f.readlines() for inst in data: inst = inst.strip() if inst: inst = inst.split('\t') src, rel, tgt = inst src = src.lower() tgt = tgt.lower() if split != "train": self.add_example(src, tgt, rel, train_network=train_network) else: self.add_example(src, tgt, rel) def add_example(self, src, tgt, relation, weight=1.0, label=1, train_network=None): src_id = self.graph.find_node(src) if src_id == -1: src_id = self.graph.add_node(src) tgt_id = self.graph.find_node(tgt) if tgt_id == -1: tgt_id = self.graph.add_node(tgt) relation_id = self.graph.find_relation(relation) if relation_id == -1: relation_id = self.graph.add_relation(relation) edge = self.graph.add_edge(self.graph.nodes[src_id], self.graph.nodes[tgt_id], self.graph.relations[relation_id], label, weight) # add nodes/relations from evaluation graphs to training graph too if train_network is not None and label == 1: src_id = train_network.graph.find_node(src) if src_id == -1: src_id = train_network.graph.add_node(src) tgt_id = train_network.graph.find_node(tgt) if tgt_id == -1: tgt_id = train_network.graph.add_node(tgt) relation_id = train_network.graph.find_relation(relation) if relation_id == -1: relation_id = train_network.graph.add_relation(relation) return edge
commonsense-kg-completion-master
src/reader.py
# Main script for experimenting with training on full training graph in an epoch import argparse import numpy as np np.random.seed(42) import sys import os import json import time import collections import torch torch.manual_seed(42) torch.cuda.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.set_num_threads(16) import torch.nn as nn import random random.seed(42) from collections import Counter #from dgl.contrib.data import load_data from model import LinkPredict from reader import AtomicTSVReader, ConceptNetTSVReader, ConceptNetFullReader, FB15kReader import reader_utils from src import utils from dgl.contrib.data import load_data #from graphviz import Digraph #from torchviz import make_dot def load_atomic_data(dataset, sim_relations): train_network = AtomicTSVReader(dataset) dev_network = AtomicTSVReader(dataset) test_network = AtomicTSVReader(dataset) #train_network.read_network(data_dir="data/atomic-original/", split="train") train_network.read_network(data_dir="data/atomic/", split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) #dev_network.read_network(data_dir="data/atomic-original/", split="valid", train_network=train_network) #test_network.read_network(data_dir="data/atomic-original/", split="test", train_network=train_network) dev_network.read_network(data_dir="data/atomic/", split="valid", train_network=train_network) test_network.read_network(data_dir="data/atomic/", split="test", train_network=train_network) word_vocab = train_network.graph.node2id #node_names = [] #for node in train_network.graph.iter_nodes():€?€?€?€?€?€? # node_names.append(node.name + "\n") #with open("atomic_node_names.txt", 'w') as f: # f.writelines([reader_utils.preprocess_atomic_sentence(n.replace("-", " €?€?€?€?€?€?")) for n in node_names]) #import sys; sys.exit(0) # Add sim nodes if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def load_fb15k_data(dataset, sim_relations, keep_fraction=100): train_network = FB15kReader(dataset) dev_network = FB15kReader(dataset) test_network = FB15kReader(dataset) train_network.read_network(data_dir="data/FB15k-237/", keep_fraction=keep_fraction, split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir="data/FB15k-237/", split="valid", train_network=train_network) test_network.read_network(data_dir="data/FB15k-237/", split="test", train_network=train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def load_cn_data(dataset, sim_relations, eval_accuracy=False): train_network = ConceptNetTSVReader(dataset) dev1_network = ConceptNetTSVReader(dataset) dev2_network = ConceptNetTSVReader(dataset) test_network = ConceptNetTSVReader(dataset) positive_only = not eval_accuracy train_network.read_network(data_dir="data/conceptnet/", split="train") train_network.print_summary() #node_list = train_network.graph.iter_nodes() #node_degrees = [node.get_degree() for node in node_list] #degree_counter = Counter(node_degrees) #avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) #print("Average Degree: ", avg_degree) dev1_network.read_network(data_dir="data/conceptnet/", split="valid1", train_network=train_network, positive_only=positive_only) dev2_network.read_network(data_dir="data/conceptnet/", split="valid2", train_network=train_network, positive_only=positive_only) test_network.read_network(data_dir="data/conceptnet/", split="test", train_network=train_network, positive_only=positive_only) # Add sim nodes if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() #word_vocab, word_freqs = reader_utils.create_vocab(train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid1_data, valid1_labels = reader_utils.prepare_batch_dgl(word_vocab, dev1_network, train_network) valid2_data, valid2_labels = reader_utils.prepare_batch_dgl(word_vocab, dev2_network, train_network) return len(train_network.graph.nodes), train_data, valid1_data, test_data, len(train_network.graph.relations), valid1_labels, test_labels, train_network def load_cn_full_data(dataset, sim_relations): train_network = ConceptNetFullReader(dataset) dev_network = ConceptNetFullReader(dataset) test_network = ConceptNetFullReader(dataset) train_network.read_network(data_dir="/data/conceptnet-5.6/", split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir="/data/conceptnet-5.6/", split="valid", train_network=train_network) test_network.read_network(data_dir="/data/conceptnet-5.6/", split="test", train_network=train_network) #node_names = [] #for node in train_network.graph.iter_nodes(): # node_names.append(node.name) #with open("cn-full_node_names.txt", 'w') as f: # f.writelines([n.split("/")[-2].replace("_", " ")+"\n" for n in node_names if n not in string.punctuation and not n.isdigit()]) #import sys; sys.exit(0) if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() #word_vocab, word_freqs = reader_utils.create_vocab(train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def main(args): #visualize_graph_degrees() # load graph data if args.dataset == "FB15K-237": data = load_data(args.dataset) num_nodes = data.num_nodes train_data = data.train valid_data = data.valid test_data = data.test num_rels = data.num_rels train_network = None # Deletion experiment delete_fraction = args.delete_fraction delete_indices = random.sample(range(len(train_data)), int(delete_fraction * len(train_data))) train_data = np.array([tup for i, tup in enumerate(train_data) if i not in delete_indices]) selected_nodes = train_data[:,0].tolist() + train_data[:,2].tolist() num_nodes = len(set(selected_nodes)) print(len(train_data)) print(num_nodes) # Store entity-wise dicts for filtered metrics all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() # print("Graph Density: %f" % (len(train_data) / (num_nodes * (num_nodes - 1)))) elif args.dataset == "atomic": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_atomic_data(args.dataset, args.sim_relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "conceptnet": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_cn_data(args.dataset, args.sim_relations, args.eval_accuracy) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "conceptnet-5.6": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_cn_full_data(args.dataset, args.sim_relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "FB15k-237": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_fb15k_data(args.dataset, args.sim_relations, keep_fraction=100-int(args.delete_fraction)) #delete_fraction = args.delete_fraction #delete_indices = random.sample(range(len(train_data)), int(delete_fraction * len(train_data))) #train_data = np.array([tup for i, tup in enumerate(train_data) if i not in delete_indices]) #selected_nodes = train_data[:,0].tolist() + train_data[:,2].tolist() #num_nodes = len(set(selected_nodes)) #print("Remaining edges: ", len(train_data)) #print("Remaining nodes: " , num_nodes) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() else: raise ValueError("Invalid Option for Dataset") # for filtered ranking all_e1_to_multi_e2, all_e2_to_multi_e1 = reader_utils.create_entity_dicts(all_tuples, num_rels, args.sim_relations) # for training train_e1_to_multi_e2, train_e2_to_multi_e1 = reader_utils.create_entity_dicts(train_data.tolist(), num_rels, args.sim_relations) # check cuda use_cuda = torch.cuda.is_available() #use_cuda = False if use_cuda and not args.no_cuda: torch.cuda.set_device(args.gpu) cpu_decoding = args.cpu_decoding # create model model = LinkPredict(num_nodes, num_rels, args, use_cuda=use_cuda) # validation and testing triplets valid_data = torch.LongTensor(valid_data) test_data = torch.LongTensor(test_data) # remove cpu eval for now cpu_eval = True if args.dataset == "atomic" else False if use_cuda and not args.no_cuda and not cpu_eval: valid_data = valid_data.cuda() test_data = test_data.cuda() # build test graph if args.sim_sim and args.sim_relations: graph_train_data = utils.sim_sim_connect(train_data, train_data, num_rels) else: graph_train_data = train_data test_graph, test_rel, test_norm = utils.build_test_graph( num_nodes, num_rels, graph_train_data) test_deg = test_graph.in_degrees( range(test_graph.number_of_nodes())).float().view(-1,1) test_node_id = torch.arange(0, num_nodes, dtype=torch.long).view(-1, 1) test_rel = torch.from_numpy(test_rel).view(-1, 1) test_norm = torch.from_numpy(test_norm).view(-1, 1) if use_cuda and not args.no_cuda: test_node_id = test_node_id.cuda() test_norm = test_norm.cuda() test_rel = test_rel.cuda() test_graph.ndata.update({'id': test_node_id, 'norm': test_norm}) test_graph.edata['type'] = test_rel if use_cuda and not args.no_cuda: #model = nn.DataParallel(model, device_ids=[0,1]) model = model.cuda() name = '_model_state.pth' name = "_" + args.model + "_" + args.gcn_type + "_" + args.decoder + name if args.sim_relations: name = "_sim_relations" + name if args.sim_sim: name = "_sim-sim" + name if args.bert_concat: name = "_bert_concat" + name if args.bert_mlp: name = "_bert_mlp" + name if args.tying: name = "_tying" + name if args.bert_sum: name = "_bert_sum" + name if args.input_layer == "bert": name = "_inp-bert" + name if args.delete_fraction: keep = 100 - int(args.delete_fraction) name = "_" + str(keep) + name #name = str(datetime.now().time()).split(".")[0] + name model_state_file = args.dataset + name model_state_file = os.path.join(args.output_dir, model_state_file) #writer = SummaryWriter("runs/" + model_state_file.replace(".pth",".log")) if args.eval_only: if args.model_name: model_state_file=args.model_name checkpoint = torch.load(model_state_file) #if use_cuda: # model.cpu() # test on CPU model.eval() model.load_state_dict(checkpoint['state_dict']) #model.rgcn.layers[-1].device = torch.device("cpu") print(model) if use_cuda and not args.no_cuda and cpu_eval: model.cpu() test_graph.ndata['id'] = test_graph.ndata['id'].cpu() test_graph.ndata['norm'] = test_graph.ndata['norm'].cpu() test_graph.edata['type'] = test_graph.edata['type'].cpu() model.decoder.no_cuda = True if args.dataset != "atomic" and args.dataset != "conceptnet": valid_labels = None test_labels = None else: valid_labels = torch.LongTensor(valid_labels) test_labels = torch.LongTensor(test_labels) if args.eval_accuracy: threshold = utils.evaluate_accuracy(test_graph, model, valid_data, num_nodes, labels=valid_labels, network=train_network, eval_bz=args.eval_batch_size) utils.evaluate_accuracy(test_graph, model, test_data, num_nodes, labels=test_labels, network=train_network, threshold=threshold, eval_bz=args.eval_batch_size) else: print("===========DEV============") mrr = utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations, write_results=args.write_results, debug=args.debug) print("===========TEST============") mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations, debug=args.debug) if args.dataset=="atomic": mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations, no_nones=True) #mrr = utils.evaluate(test_graph, model, valid_data, all_e1_to_multi_e2, num_nodes, valid_labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) #mrr = utils.evaluate(test_graph, model, test_data, all_e1_to_multi_e2, num_nodes, test_labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) sys.exit(0) # build adj list and calculate degrees for sampling # adj_list, degrees, sparse_adj_matrix, rel = utils.get_adj_and_degrees(num_nodes, num_rels, train_data) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) #optimizer = torch.optim.SGD(model.parameters(), lr=0.01) if os.path.isfile(model_state_file): print(model_state_file) overwrite = input('Model already exists. Overwrite? Y = yes, N = no or C=continue training\n') if overwrite.lower() == 'n': print("Quitting") sys.exit(0) elif overwrite.lower() == 'c': print("Loading model") checkpoint = torch.load(model_state_file) model.load_state_dict(checkpoint['state_dict']) print("Continuing training") elif overwrite.lower() != 'y': raise ValueError("Invalid Option") forward_time = [] backward_time = [] # training loop print("Starting training...") epoch = 0 best_mrr = 0 while True: model.train() epoch += 1 g = test_graph #data = graph_train_data #data = torch.from_numpy(data) #labels = None #if use_cuda and not args.no_cuda: # data = data.cuda() batch_size = args.decoder_batch_size e1_keys = list(train_e1_to_multi_e2.keys()) random.shuffle(e1_keys) cum_loss = 0.0 start_time = time.time() for i in range(0, len(e1_keys), batch_size): optimizer.zero_grad() graph_embeddings = model.get_graph_embeddings(g, epoch) model.decoder.module.cur_embedding = graph_embeddings batch = e1_keys[i : i + batch_size] e1 = torch.LongTensor([elem[0] for elem in batch]) rel = torch.LongTensor([elem[1] for elem in batch]) e2 = [train_e1_to_multi_e2[elem] for elem in batch] if use_cuda and not args.no_cuda and not cpu_decoding: target = torch.cuda.FloatTensor(len(batch), num_nodes).fill_(0) e1 = e1.cuda() rel = rel.cuda() else: target = torch.zeros((len(batch), num_nodes)) for j, inst in enumerate(e2): target[j, inst] = 1.0 target = ((1.0-args.label_smoothing_epsilon)*target) + (1.0/target.size(1)) #if use_cuda and not args.no_cuda and not cpu_decoding: # target = target.cuda() if cpu_decoding: graph_embeddings = graph_embeddings.cpu() model.decoder.cpu() model.decoder.no_cuda = True t0 = time.time() loss = model.get_score(e1, rel, target, graph_embeddings) loss = torch.mean(loss) cum_loss += loss.cpu().item() t1 = time.time() #loss.backward(retain_graph=True) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm) # clip gradients optimizer.step() t2 = time.time() forward_time.append(t1 - t0) backward_time.append(t2 - t1) #torch.cuda.empty_cache() del graph_embeddings, target, batch, loss, e1, rel, e2 #gc.collect() print("Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f} | Forward {:.4f}s | Backward {:.4f}s". format(epoch, cum_loss, best_mrr, forward_time[-1], backward_time[-1])) print("Total Time:", time.time() - start_time) #writer.add_scalar('data/loss', cum_loss , epoch) # Save model every 100 epochs #if epoch+1%100==0: # print("saving current model..") # torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, # model_state_file) # validation if epoch % args.evaluate_every == 0: # perform validation on CPU because full graph is too large if use_cuda and not args.no_cuda and cpu_eval: model.cpu() test_graph.ndata['id'] = test_graph.ndata['id'].cpu() test_graph.ndata['norm'] = test_graph.ndata['norm'].cpu() test_graph.edata['type'] = test_graph.edata['type'].cpu() model.decoder.no_cuda = True model.eval() print("start eval") print("===========DEV============") mrr = utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations, debug=True) print("===========TEST===========") test_mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations, debug=True) #mrr = utils.evaluate(test_graph, model, valid_data, e1_to_multi_e2, num_nodes, labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) #writer.add_scalar('data/mrr', mrr, epoch) #mrr = utils.evaluate(test_graph, model, test_data, num_nodes, labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) # save best model # torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, # model_state_file) if mrr < best_mrr: if epoch >= args.n_epochs: break else: best_mrr = mrr torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, model_state_file) metrics = {"best_mrr": best_mrr, "cum_loss": cum_loss } with open(os.path.join(args.output_dir, 'metrics.json'), 'w') as f: f.write(json.dumps(metrics)) if use_cuda and not args.no_cuda: model.cuda() test_graph.ndata['id'] = test_graph.ndata['id'].cuda() test_graph.ndata['norm'] = test_graph.ndata['norm'].cuda() test_graph.edata['type'] = test_graph.edata['type'].cuda() model.decoder.no_cuda = False print("training done") print("Mean forward time: {:4f}s".format(np.mean(forward_time))) print("Mean Backward time: {:4f}s".format(np.mean(backward_time))) #writer.export_scalars_to_json("./all_scalars.json") #writer.close() print("\nstart testing") # use best model checkpoint checkpoint = torch.load(model_state_file) #if use_cuda: # model.cpu() # test on CPU model.eval() model.load_state_dict(checkpoint['state_dict']) print("Using best epoch: {}".format(checkpoint['epoch'])) mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, train_network, comb="graph", sim_relations=args.sim_relations) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Machine Commonsense Completion') parser.add_argument("--dropout", type=float, default=0.2, help="dropout probability") parser.add_argument("--input_dropout", type=float, default=0.2, help="input dropout") parser.add_argument("--feature_map_dropout", type=float, default=0.2, help="feature map dropout") parser.add_argument("--label_smoothing_epsilon", type=float, default=0.1, help="epsilon for performing label smoothing over target") parser.add_argument("--init_embedding_dim", type=int, default=200, help="init embedding dimension") parser.add_argument("--embedding_dim", type=int, default=200, help="embedding dimension") parser.add_argument("--n-hidden", type=int, default=200, help="number of hidden units") parser.add_argument("--use_bias", action='store_true', default=False, help="use bias") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--no_cuda", action='store_true', default=False, help="prevents using cuda") parser.add_argument("--sim_relations", action='store_true', default=False, help="add sim edges to graph") parser.add_argument("--sim_sim", action='store_true', default=False, help="add sim-sim edges to graph") parser.add_argument("--model", type=str, default='RGCN', help="model architecture") parser.add_argument("--decoder", type=str, default='ConvTransE', help="decoder used to compute scores") parser.add_argument("--lr", type=float, default=1e-4, help="learning rate") parser.add_argument("--input_layer", type=str, default="lookup", help="initialization layer for rgcn") parser.add_argument("--n-bases", type=int, default=100, help="number of weight blocks for each relation") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("--n-epochs", type=int, default=200, help="number of minimum training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--eval_only", action='store_true', default=False, help="only evaluate using an existing model") parser.add_argument("--write_results", action='store_true', default=False, help="write topk candidate tuples for evaluation set to file") parser.add_argument("--eval_accuracy", action='store_true', default=False, help="evaluate binary classification accuracy") parser.add_argument("--eval-batch-size", type=int, default=500, help="batch size when evaluating") parser.add_argument("--regularization", type=float, default=0.05, help="regularization weight") parser.add_argument("--grad-norm", type=float, default=1.0, help="norm to clip gradient to") parser.add_argument("--graph-batch-size", type=int, default=30000, help="number of edges to sample in each iteration") parser.add_argument("--graph-split-size", type=float, default=0.5, help="portion of edges used as positive sample") parser.add_argument("--negative-sample", type=int, default=10, help="number of negative samples per positive sample") parser.add_argument("--evaluate-every", type=int, default=10, help="perform evaluation every n epochs") parser.add_argument("--decoder_batch_size", type=int, default=128, help="batch size for decoder") parser.add_argument("--model_name", type=str, required=False, default=None, help="model to load") parser.add_argument("--output_dir", type=str, required=False, default="saved_models", help="output directory to store metrics and model file") parser.add_argument("--bert_concat", action='store_true', default=False, help="concat bert embeddings before decoder layer") parser.add_argument("--bert_sum", action='store_true', default=False, help="sum bert embeddings before decoder layer") parser.add_argument("--bert_mlp", action='store_true', default=False, help="use mlp after concatenated bert+gcn embeddings before decoder layer") parser.add_argument("--tying", action='store_true', default=False, help="tie input bert layer to gcn with concatenated tensor before decoding") parser.add_argument("--cpu_decoding", action='store_true', default=False, help="perform decoding on cpu") parser.add_argument("--pretrained_gcn", action='store_true', default=False, help="use mlp after concatenated bert+gcn embeddings before decoder layer") parser.add_argument("--multi_step", action='store_true', default=False, help="multi-step classification between nones and remaining entities, for atomic") parser.add_argument("--layer_norm", action='store_true', default=False, help="use layer normalization on embeddings fed to decoder") parser.add_argument("--gcn_type", type=str, default="WGCNAttentionLayer", help="type of GCN to be used") parser.add_argument("--delete_fraction", type=float, default=0.0, help="fraction of edges to delete") parser.add_argument("--use_triplet_loss", action='store_true', default=False, help="use triplet loss") parser.add_argument("--debug", action='store_true', default=False, help="use fewer eval instances in debugging mode") args = parser.parse_args() print(args) try: main(args) except KeyboardInterrupt: print('Interrupted') #writer.export_scalars_to_json("./all_scalars.json") #writer.close()
commonsense-kg-completion-master
src/run_kbc_fullgraph_beaker.py
import numpy as np import torch import dgl import random import itertools from scipy.sparse import coo_matrix torch.set_printoptions(profile="full") def get_adj_and_degrees(num_nodes, num_rels, triplets): """ Get adjacency list and degrees of the graph """ col = [] row = [] rel = [] adj_list = [[] for _ in range(num_nodes)] for i, triplet in enumerate(triplets): adj_list[triplet[0]].append([i, triplet[2]]) adj_list[triplet[2]].append([i, triplet[0]]) row.append(triplet[0]) col.append(triplet[2]) rel.append(triplet[1]) row.append(triplet[2]) col.append(triplet[0]) rel.append(triplet[1] + num_rels) sparse_adj_matrix = coo_matrix((np.ones(len(triplets)*2), (row, col)), shape=(num_nodes, num_nodes)) degrees = np.array([len(a) for a in adj_list]) adj_list = [np.array(a) for a in adj_list] return adj_list, degrees, sparse_adj_matrix, rel def sample_edge_neighborhood(adj_list, degrees, n_triplets, sample_size, sample=True, sampling_edge_ids=None): """ Edge neighborhood sampling to reduce training graph size """ if sample: edges = np.zeros((sample_size), dtype=np.int32) # initialize sample_counts = np.array([d for d in degrees]) picked = np.array([False for _ in range(n_triplets)]) seen = np.array([False for _ in degrees]) i = 0 while i != sample_size: weights = sample_counts * seen if np.sum(weights) == 0: weights = np.ones_like(weights) weights[np.where(sample_counts == 0)] = 0 probabilities = weights / np.sum(weights) chosen_vertex = np.random.choice(np.arange(degrees.shape[0]), p=probabilities) chosen_adj_list = adj_list[chosen_vertex] seen[chosen_vertex] = True chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0])) chosen_edge = chosen_adj_list[chosen_edge] edge_number = chosen_edge[0] while picked[edge_number]: chosen_edge = np.random.choice(np.arange(chosen_adj_list.shape[0])) chosen_edge = chosen_adj_list[chosen_edge] edge_number = chosen_edge[0] edges[i] = edge_number other_vertex = chosen_edge[1] picked[edge_number] = True sample_counts[chosen_vertex] -= 1 sample_counts[other_vertex] -= 1 seen[other_vertex] = True i += 1 else: if sampling_edge_ids is None: random_edges = random.sample(range(n_triplets), sample_size) else: random_edges = np.random.choice(sampling_edge_ids, sample_size, replace=False) edges = np.array(random_edges) return edges def generate_sampled_graph_and_labels(triplets, sample_size, num_rels, adj_list, degrees, negative_rate, sim_sim=False, add_sim_relations=False, sim_train_e1_to_multi_e2=None, sampling_edge_ids=None): """Get training graph and signals First perform edge neighborhood sampling on graph, then perform negative sampling to generate negative samples """ # perform edge neighbor sampling edges = sample_edge_neighborhood(adj_list, degrees, len(triplets), sample_size, sample=False, sampling_edge_ids=sampling_edge_ids) edges = triplets[edges] # add sim edges if add_sim_relations: edges = densify_subgraph(edges, num_rels, sim_train_e1_to_multi_e2) # connect neighbors of nodes connected by sim edges (not used) if sim_sim: edges = sim_sim_connect(edges, triplets, num_rels) src, rel, dst = edges.transpose() # relabel nodes to have consecutive node ids # uniq_v : sorted unique nodes in subsampled graph (original node ids) uniq_v, edges = np.unique((src, dst), return_inverse=True) # node ids now lie in range(0, number of unique nodes in subsampled graph) src, dst = np.reshape(edges, (2, -1)) # relabeled_edges = np.stack((src, rel, dst)).transpose() # Add inverse edges to training samples src, dst = np.concatenate((src, dst)), np.concatenate((dst, src)) rel = np.concatenate((rel, rel+num_rels)) relabeled_edges = np.stack((src, rel, dst)).transpose() # negative sampling if negative_rate == 0: samples = relabeled_edges labels = np.ones(len(samples)) else: samples, labels = negative_sampling(relabeled_edges, len(uniq_v), negative_rate) # build DGL graph print("# sampled nodes: {}".format(len(uniq_v))) print("# sampled edges: {}".format(len(src))) g, rel, norm = build_graph_from_triplets(len(uniq_v), num_rels, (src, rel, dst)) return g, uniq_v, rel, norm, samples, labels def densify_subgraph(edges, num_rels, sim_train_e1_to_multi_e2): sim_edges = [] no_sim_indices = np.where(edges[:, 1] != num_rels-1)[0] no_sim_edges = edges[no_sim_indices] unique, edges = np.unique((no_sim_edges[:, 0], no_sim_edges[:, 2]), return_inverse=True) for pair in itertools.combinations(unique, 2): if (pair[0], num_rels-1) in sim_train_e1_to_multi_e2: if pair[1] in sim_train_e1_to_multi_e2[(pair[0], num_rels-1)]: sim_edges.append(np.array([pair[0], num_rels-1, pair[1]])) return np.concatenate((no_sim_edges, np.array(sim_edges))) def comp_deg_norm(g): in_deg = g.in_degrees(range(g.number_of_nodes())).float().numpy() norm = 1.0 / in_deg norm[np.isinf(norm)] = 0 return norm def build_graph_from_triplets(num_nodes, num_rels, triplets): """ Create a DGL graph. """ g = dgl.DGLGraph() g.add_nodes(num_nodes) src, rel, dst = triplets g.add_edges(src, dst) norm = comp_deg_norm(g) print("# nodes: {}, # edges: {}".format(num_nodes, len(src))) return g, rel, norm def build_test_graph(num_nodes, num_rels, edges): src, rel, dst = edges.transpose() print("Test graph:") return build_graph_from_triplets(num_nodes, num_rels, (src, rel, dst)) def negative_sampling(pos_samples, num_entity, negative_rate): size_of_batch = len(pos_samples) num_to_generate = size_of_batch * negative_rate neg_samples = np.tile(pos_samples, (negative_rate, 1)) labels = np.zeros(size_of_batch * (negative_rate + 1), dtype=np.float32) labels[: size_of_batch] = 1 # TODO: pick negative samples only with same relations values = np.random.randint(num_entity, size=num_to_generate) #values = np.random.choice(tot_entities, size=num_to_generate, replace=False) choices = np.random.uniform(size=num_to_generate) subj = choices > 0.5 obj = choices <= 0.5 neg_samples[subj, 0] = values[subj] neg_samples[obj, 2] = values[obj] #for i, sample in enumerate(neg_samples): # if any(np.array_equal(sample, x) for x in pos_samples): # labels[i+size_of_batch] = 1 return np.concatenate((pos_samples, neg_samples)), labels def sim_sim_connect(pos_samples, all_triplets, num_rels): """ connect neighbors of node with sim edge type to a candidate node """ # filter sim relations sample_ids = np.where(pos_samples[:, 1] == num_rels-1)[0] sampled_sim_edges = pos_samples[sample_ids] addl_samples = [] for edge in sampled_sim_edges: src, rel, tgt = edge # find all neighboring edges of tgt in large graph neighbors = np.where(all_triplets[:, 0] == tgt)[0] no_sim_neighbors = np.where(all_triplets[neighbors][:, 1] != num_rels-1)[0] new_edges = np.copy(all_triplets[neighbors][no_sim_neighbors]) new_edges[:, 0] = src addl_samples.append(new_edges) if len(addl_samples) == 0: return pos_samples else: addl_samples = np.concatenate(addl_samples) final_samples = np.concatenate((pos_samples, addl_samples)) unique_samples = np.unique(final_samples, axis=0) print("Adding %d sim-sim edges" % (unique_samples.shape[0] - pos_samples.shape[0])) return unique_samples
commonsense-kg-completion-master
src/utils.py
# Main script for experimenting with training on full training graph in an epoch import argparse import numpy as np import sys import os import time import torch torch.manual_seed(42) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True import torch.nn as nn import random random.seed(42) from collections import Counter from dgl.contrib.data import load_data from model import LinkPredict from reader import AtomicTSVReader, ConceptNetTSVReader, ConceptNetFullReader, FB15kReader from tensorboardX import SummaryWriter import reader_utils from src import utils def load_atomic_data(dataset, sim_relations): train_network = AtomicTSVReader(dataset) dev_network = AtomicTSVReader(dataset) test_network = AtomicTSVReader(dataset) train_network.read_network(data_dir="/home/chaitanyam/.dgl/Atomic/", split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir="/home/chaitanyam/.dgl/Atomic/", split="valid", train_network=train_network) test_network.read_network(data_dir="/home/chaitanyam/.dgl/Atomic/", split="test", train_network=train_network) word_vocab = train_network.graph.node2id #node_names = [] #for node in train_network.graph.iter_nodes(): # node_names.append(node.name + "\n") #with open("atomic_node_names.txt", 'w') as f: # f.writelines([reader_utils.preprocess_atomic_sentence(n.replace("-", " ")) for n in node_names]) #import sys; sys.exit(0) # Add sim nodes if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def load_fb15k_data(dataset, sim_relations): train_network = FB15kReader(dataset) dev_network = FB15kReader(dataset) test_network = FB15kReader(dataset) train_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/FB15k-237/", split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/FB15k-237/", split="valid", train_network=train_network) test_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/FB15k-237/", split="test", train_network=train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def load_cn_data(dataset, sim_relations, eval_accuracy=False): train_network = ConceptNetTSVReader(dataset) dev1_network = ConceptNetTSVReader(dataset) dev2_network = ConceptNetTSVReader(dataset) test_network = ConceptNetTSVReader(dataset) positive_only = not eval_accuracy train_network.read_network(data_dir="data/", split="train") train_network.print_summary() #node_list = train_network.graph.iter_nodes() #node_degrees = [node.get_degree() for node in node_list] #degree_counter = Counter(node_degrees) #avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) #print("Average Degree: ", avg_degree) dev1_network.read_network(data_dir="data/", split="valid1", train_network=train_network, positive_only=positive_only) dev2_network.read_network(data_dir="data/", split="valid2", train_network=train_network, positive_only=positive_only) test_network.read_network(data_dir="data/", split="valid2", train_network=train_network, positive_only=positive_only) # Add sim nodes if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() #word_vocab, word_freqs = reader_utils.create_vocab(train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid1_data, valid1_labels = reader_utils.prepare_batch_dgl(word_vocab, dev1_network, train_network) valid2_data, valid2_labels = reader_utils.prepare_batch_dgl(word_vocab, dev2_network, train_network) return len(train_network.graph.nodes), train_data, valid1_data, test_data, len(train_network.graph.relations), valid1_labels, test_labels, train_network def load_cn_full_data(dataset, sim_relations): train_network = ConceptNetFullReader(dataset) dev_network = ConceptNetFullReader(dataset) test_network = ConceptNetFullReader(dataset) train_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/", split="train") train_network.print_summary() node_list = train_network.graph.iter_nodes() node_degrees = [node.get_degree() for node in node_list] degree_counter = Counter(node_degrees) avg_degree = sum([k*v for k,v in degree_counter.items()]) / sum([v for k,v in degree_counter.items()]) print("Average Degree: ", avg_degree) dev_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/", split="valid", train_network=train_network) test_network.read_network(data_dir="/net/efs.mosaic/chaitanyam/ConvE/data/", split="test", train_network=train_network) #node_names = [] #for node in train_network.graph.iter_nodes(): # node_names.append(node.name) #with open("cn-full_node_names.txt", 'w') as f: # f.writelines([n.split("/")[-2].replace("_", " ")+"\n" for n in node_names if n not in string.punctuation and not n.isdigit()]) #import sys; sys.exit(0) if sim_relations: print("Adding sim edges..") train_network.add_sim_edges_bert() #word_vocab, word_freqs = reader_utils.create_vocab(train_network) word_vocab = train_network.graph.node2id train_data, _ = reader_utils.prepare_batch_dgl(word_vocab, train_network, train_network) test_data, test_labels = reader_utils.prepare_batch_dgl(word_vocab, test_network, train_network) valid_data, valid_labels = reader_utils.prepare_batch_dgl(word_vocab, dev_network, train_network) return len(train_network.graph.nodes), train_data, valid_data, test_data, len(train_network.graph.relations), valid_labels, test_labels, train_network def main(args): # load graph data if args.dataset == "FB15K-237": data = load_data(args.dataset) num_nodes = data.num_nodes train_data = data.train valid_data = data.valid test_data = data.test num_rels = data.num_rels train_network = None # Deletion experiment # delete_fraction = args.delete_fraction # delete_indices = random.sample(range(len(train_data)), int(delete_fraction * len(train_data))) # train_data = np.array([tup for i, tup in enumerate(train_data) if i not in delete_indices]) # selected_nodes = train_data[:,0].tolist() + train_data[:,2].tolist() # num_nodes = len(set(selected_nodes)) # Store entity-wise dicts for filtered metrics all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() # print("Graph Density: %f" % (len(train_data) / (num_nodes * (num_nodes - 1)))) elif args.dataset == "atomic": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_atomic_data(args.dataset, args.sim_relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "conceptnet": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_cn_data(args.dataset, args.sim_relations, args.eval_accuracy) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "conceptnet-5.6": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_cn_full_data(args.dataset, args.sim_relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() elif args.dataset == "FB15k-237": num_nodes, train_data, valid_data, test_data, num_rels, valid_labels, test_labels, train_network = load_fb15k_data(args.dataset, args.sim_relations) all_tuples = train_data.tolist() + valid_data.tolist() + test_data.tolist() else: raise ValueError("Invalid Option for Dataset") # for filtered ranking all_e1_to_multi_e2, all_e2_to_multi_e1 = reader_utils.create_entity_dicts(all_tuples, num_rels, args.sim_relations) # for training train_e1_to_multi_e2, train_e2_to_multi_e1 = reader_utils.create_entity_dicts(train_data.tolist(), num_rels, args.sim_relations) # check cuda use_cuda = torch.cuda.is_available() #use_cuda = False if use_cuda and not args.no_cuda: torch.cuda.set_device(args.gpu) # create model model = LinkPredict(train_network, num_nodes, num_rels, args, use_cuda=use_cuda) # validation and testing triplets valid_data = torch.LongTensor(valid_data) test_data = torch.LongTensor(test_data) if use_cuda and not args.no_cuda: valid_data = valid_data.cuda() test_data = test_data.cuda() # build test graph if args.sim_sim and args.sim_relations: graph_train_data = utils.sim_sim_connect(train_data, train_data, num_rels) else: graph_train_data = train_data test_graph, test_rel, test_norm = utils.build_test_graph( num_nodes, num_rels, graph_train_data) test_deg = test_graph.in_degrees( range(test_graph.number_of_nodes())).float().view(-1,1) test_node_id = torch.arange(0, num_nodes, dtype=torch.long).view(-1, 1) test_rel = torch.from_numpy(test_rel).view(-1, 1) test_norm = torch.from_numpy(test_norm).view(-1, 1) if use_cuda and not args.no_cuda: test_node_id = test_node_id.cuda() test_norm = test_norm.cuda() test_rel = test_rel.cuda() test_graph.ndata.update({'id': test_node_id, 'norm': test_norm}) # Add bert embedding test_graph.edata['type'] = test_rel if use_cuda and not args.no_cuda: model.cuda() name = '_standard_model_state.pth' name = "_" + args.model + "_" + args.decoder + name if args.sim_relations: name = "_sim_relations" + name if args.sim_sim: name = "_sim-sim" + name if args.bert_trainable: name = '_bert_trainable_model_state.pth' if args.bert: name = '_bert_model_state.pth' if args.input_layer == "bert": name = "_inp-bert" + name #name = str(datetime.now().time()).split(".")[0] + name model_state_file = args.dataset + name writer = SummaryWriter("runs/" + model_state_file.replace(".pth",".log")) if args.eval_only: if args.model_name: model_state_file=args.model_name checkpoint = torch.load(model_state_file) #if use_cuda: # model.cpu() # test on CPU model.eval() model.load_state_dict(checkpoint['state_dict']) #model.rgcn.layers[-1].device = torch.device("cpu") print(model) if args.dataset != "atomic" and args.dataset != "conceptnet": valid_labels = None test_labels = None else: valid_labels = torch.LongTensor(valid_labels) test_labels = torch.LongTensor(test_labels) if args.eval_accuracy: threshold = utils.evaluate_accuracy(test_graph, model, valid_data, num_nodes, labels=valid_labels, network=train_network, eval_bz=args.eval_batch_size) utils.evaluate_accuracy(test_graph, model, test_data, num_nodes, labels=test_labels, network=train_network, threshold=threshold, eval_bz=args.eval_batch_size) else: mrr = utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, valid_labels, train_network, comb="graph", sim_relations=args.sim_relations) mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, test_labels, train_network, comb="graph", sim_relations=args.sim_relations) #mrr = utils.evaluate(test_graph, model, valid_data, all_e1_to_multi_e2, num_nodes, valid_labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) #mrr = utils.evaluate(test_graph, model, test_data, all_e1_to_multi_e2, num_nodes, test_labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) sys.exit(0) # build adj list and calculate degrees for sampling adj_list, degrees, sparse_adj_matrix, rel = utils.get_adj_and_degrees(num_nodes, num_rels, train_data) # optimizer optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) if os.path.isfile(model_state_file): print(model_state_file) overwrite = input('Model already exists. Overwrite? Y = yes, N = no\n') if overwrite.lower() == 'n': print("Quitting") sys.exit(0) elif overwrite.lower() != 'y': raise ValueError("Invalid Option") forward_time = [] backward_time = [] # training loop print("Starting training...") epoch = 0 best_mrr = 0 while True: model.train() epoch += 1 g = test_graph data = graph_train_data data = torch.from_numpy(data) labels = None if use_cuda and not args.no_cuda: data = data.cuda() batch_size = 128 e1_keys = list(train_e1_to_multi_e2.keys()) random.shuffle(e1_keys) cum_loss = 0.0 for i in range(0, len(e1_keys), batch_size): graph_embeddings = model.get_graph_embeddings(g, data, labels, train_network) optimizer.zero_grad() batch = e1_keys[i : i + batch_size] e1 = [elem[0] for elem in batch] rel = [elem[1] for elem in batch] e2 = [train_e1_to_multi_e2[elem] for elem in batch] target = torch.zeros((len(batch), num_nodes)) for j, inst in enumerate(e2): target[j, inst] = 1.0 target = ((1.0-args.label_smoothing_epsilon)*target) + (1.0/target.size(1)) if use_cuda and not args.no_cuda: target = target.cuda() t0 = time.time() loss = model.get_score(batch, target, graph_embeddings, train_network) cum_loss += loss.cpu().item() t1 = time.time() loss.backward(retain_graph=True) #loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm) # clip gradients optimizer.step() t2 = time.time() forward_time.append(t1 - t0) backward_time.append(t2 - t1) print("Epoch {:04d} | Loss {:.4f} | Best MRR {:.4f} | Forward {:.4f}s | Backward {:.4f}s". format(epoch, cum_loss, best_mrr, forward_time[-1], backward_time[-1])) writer.add_scalar('data/loss', cum_loss , epoch) # Save model every 100 epochs if epoch+1%100==0: print("saving current model..") torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, model_state_file) # validation if epoch % args.evaluate_every == 0: # perform validation on CPU because full graph is too large #if use_cuda: # model.cpu() model.eval() #model.rgcn.layers[0].device = torch.device("cpu") #model.rgcn.layers[-1].device = torch.device("cpu") print("start eval") labels = len(valid_data) * [1] labels = torch.LongTensor(labels) if use_cuda and not args.no_cuda: labels = labels.cuda() mrr = utils.ranking_and_hits(test_graph, model, valid_data, all_e1_to_multi_e2, labels, train_network, comb="graph", sim_relations=args.sim_relations) #mrr = utils.evaluate(test_graph, model, valid_data, e1_to_multi_e2, num_nodes, labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) writer.add_scalar('data/mrr', mrr, epoch) metrics = {"best_mrr": best_mrr, "cum_loss": cum_loss } os.makedirs(args.output_dir, exist_ok=True) with open(os.path.join("/output/", 'metrics.json'), 'w') as f: f.write(json.dumps(metrics)) #mrr = utils.evaluate(test_graph, model, test_data, num_nodes, labels, train_network, # hits=[1, 3, 10], eval_bz=args.eval_batch_size) # save best model # torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, # model_state_file) if mrr < best_mrr: if epoch >= args.n_epochs: break else: best_mrr = mrr torch.save({'state_dict': model.state_dict(), 'epoch': epoch}, model_state_file) if use_cuda and not args.no_cuda: model.cuda() #model.rgcn.layers[-1].device = torch.device("cuda") #model.rgcn.layers[0].device = torch.device("cuda") print("training done") print("Mean forward time: {:4f}s".format(np.mean(forward_time))) print("Mean Backward time: {:4f}s".format(np.mean(backward_time))) writer.export_scalars_to_json("./all_scalars.json") writer.close() print("\nstart testing") # use best model checkpoint checkpoint = torch.load(model_state_file) #if use_cuda: # model.cpu() # test on CPU model.eval() model.load_state_dict(checkpoint['state_dict']) print("Using best epoch: {}".format(checkpoint['epoch'])) labels = len(test_data) * [1] mrr = utils.ranking_and_hits(test_graph, model, test_data, all_e1_to_multi_e2, labels, train_network, comb="graph", sim_relations=args.sim_relations) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Machine Commonsense Completion') parser.add_argument("--dropout", type=float, default=0.2, help="dropout probability") parser.add_argument("--input_dropout", type=float, default=0.2, help="input dropout") parser.add_argument("--feature_map_dropout", type=float, default=0.2, help="feature map dropout") parser.add_argument("--label_smoothing_epsilon", type=float, default=0.1, help="epsilon for performing label smoothing over target") parser.add_argument("--init_embedding_dim", type=int, default=200, help="init embedding dimension") parser.add_argument("--embedding_dim", type=int, default=200, help="embedding dimension") parser.add_argument("--n-hidden", type=int, default=200, help="number of hidden units") parser.add_argument("--use_bias", action='store_true', default=True, help="use bias") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--no_cuda", action='store_true', default=False, help="prevents using cuda") parser.add_argument("--sim_relations", action='store_true', default=False, help="add sim edges to graph") parser.add_argument("--sim_sim", action='store_true', default=False, help="add sim-sim edges to graph") parser.add_argument("--model", type=str, default='RGCN', help="model architecture") parser.add_argument("--decoder", type=str, default='DistMult', help="decoder used to compute scores") parser.add_argument("--lr", type=float, default=1e-2, help="learning rate") parser.add_argument("--input_layer", type=str, default="lookup", help="initialization layer for rgcn") parser.add_argument("--n-bases", type=int, default=100, help="number of weight blocks for each relation") parser.add_argument("--n-layers", type=int, default=2, help="number of propagation rounds") parser.add_argument("--n-epochs", type=int, default=200, help="number of minimum training epochs") parser.add_argument("-d", "--dataset", type=str, required=True, help="dataset to use") parser.add_argument("--eval_only", action='store_true', default=False, help="only evaluate using an existing model") parser.add_argument("--eval_accuracy", action='store_true', default=False, help="evaluate binary classification accuracy") parser.add_argument("--eval-batch-size", type=int, default=500, help="batch size when evaluating") parser.add_argument("--regularization", type=float, default=0.01, help="regularization weight") parser.add_argument("--grad-norm", type=float, default=1.0, help="norm to clip gradient to") parser.add_argument("--graph-batch-size", type=int, default=30000, help="number of edges to sample in each iteration") parser.add_argument("--graph-split-size", type=float, default=0.5, help="portion of edges used as positive sample") parser.add_argument("--negative-sample", type=int, default=10, help="number of negative samples per positive sample") parser.add_argument("--evaluate-every", type=int, default=100, help="perform evaluation every n epochs") parser.add_argument("--model_name", type=str, required=False, default=None, help="model to load") parser.add_argument("--bert", action='store_true', default=False, help="use bert") parser.add_argument("--bert_trainable", action='store_true', default=False, help="finetune bert further") args = parser.parse_args() print(args) try: main(args) except KeyboardInterrupt: print('Interrupted') writer.export_scalars_to_json("./all_scalars.json") writer.close()
commonsense-kg-completion-master
src/run_kbc_fullgraph.py
__author__ = "chaitanya" # Adapted from DGL official examples import torch import torch.nn as nn from torch.nn.parallel import data_parallel import numpy as np import dgl.function as fn from torch.nn.init import xavier_normal_, xavier_uniform_ from torch.nn import functional as F, Parameter class RGCNLayer(nn.Module): def __init__(self, in_feat, out_feat, bias=None, activation=None, self_loop=False, dropout=0.0): super(RGCNLayer, self).__init__() self.bias = bias self.activation = activation self.self_loop = self_loop if self.bias: self.bias_weight = nn.Parameter(torch.Tensor(out_feat)) # Following bias initialization used in ConvTransE stdv = 1. / np.sqrt(out_feat) self.bias_weight.data.uniform_(-stdv, stdv) #nn.init.xavier_uniform_(self.bias, # gain=nn.init.calculate_gain('relu')) # weight for self loop if self.self_loop: if isinstance(self, MultiHeadGATLayer): self.loop_weight = nn.Parameter(torch.Tensor(in_feat, out_feat * 8)) else: self.loop_weight = nn.Parameter(torch.Tensor(in_feat, out_feat)) self.loop_rel = nn.Parameter(torch.Tensor(1)) nn.init.xavier_uniform_(self.loop_weight, gain=nn.init.calculate_gain('relu')) if dropout: self.dropout = nn.Dropout(dropout) else: self.dropout = None # define how propagation is done in subclass def propagate(self, g): raise NotImplementedError def forward(self, g): #loop_message = g.ndata['h'] * self.loop_weight #if self.dropout is not None: # loop_message = self.dropout(loop_message) if self.self_loop: loop_message = torch.mm(g.ndata['h'], self.loop_weight) #g.ndata['h_mm'] = torch.mm(g.ndata['h'], self.weight) #g.edata['alpha'] = self.weight_rel(g.edata['type']) self.propagate(g) # additional processing # apply bias and activation node_repr = g.ndata['h'] if self.bias: node_repr = node_repr + self.bias_weight if self.self_loop: node_repr = node_repr + loop_message # Apply batch normalization if not isinstance(self, MultiHeadGATLayer) and not isinstance(self, GATLayer): node_repr = self.bn(node_repr) if self.activation: node_repr = self.activation(node_repr) if self.dropout is not None: node_repr = self.dropout(node_repr) g.ndata['h'] = node_repr class RGCNBasisLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases=-1, bias=None, activation=None, is_input_layer=False): super(RGCNBasisLayer, self).__init__(in_feat, out_feat, bias, activation) self.in_feat = in_feat self.out_feat = out_feat self.num_rels = num_rels self.num_bases = num_bases self.is_input_layer = is_input_layer if self.num_bases <= 0 or self.num_bases > self.num_rels: self.num_bases = self.num_rels # add basis weights self.weight = nn.Parameter(torch.Tensor(self.num_bases, self.in_feat, self.out_feat)) if self.num_bases < self.num_rels: # linear combination coefficients self.w_comp = nn.Parameter(torch.Tensor(self.num_rels, self.num_bases)) nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu')) if self.num_bases < self.num_rels: nn.init.xavier_uniform_(self.w_comp, gain=nn.init.calculate_gain('relu')) def propagate(self, g): if self.num_bases < self.num_rels: # generate all weights from bases weight = self.weight.view(self.num_bases, self.in_feat * self.out_feat) weight = torch.matmul(self.w_comp, weight).view( self.num_rels, self.in_feat, self.out_feat) else: weight = self.weight if self.is_input_layer: def msg_func(edges): # for input layer, matrix multiply can be converted to be # an embedding lookup using source node id embed = weight.view(-1, self.out_feat) index = edges.data['type'] * self.in_feat + edges.src['id'] return {'msg': embed.index_select(0, index) * edges.data['norm']} else: def msg_func(edges): w = weight.index_select(0, edges.data['type'].squeeze()) msg = torch.bmm(edges.src['h'].unsqueeze(1), w).squeeze() msg = msg * edges.data['norm'] return {'msg': msg} g.update_all(msg_func, fn.sum(msg='msg', out='h'), None) class RGCNBlockLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=None, activation=None, self_loop=False, dropout=0.0): super(RGCNBlockLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.num_rels = num_rels self.num_bases = num_bases assert self.num_bases > 0 self.out_feat = out_feat self.submat_in = in_feat // self.num_bases self.submat_out = out_feat // self.num_bases self.bn = torch.nn.BatchNorm1d(self.out_feat) # assuming in_feat and out_feat are both divisible by num_bases self.weight = nn.Parameter(torch.Tensor(self.num_rels, self.num_bases * self.submat_in * self.submat_out)) nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu')) def msg_func(self, edges): """ Compute messages only from source node features """ weight = self.weight.index_select(0, edges.data['type'].squeeze()).view( -1, self.submat_in, self.submat_out) node = edges.src['h'].view(-1, 1, self.submat_in) msg = torch.bmm(node, weight).view(-1, self.out_feat) return {'msg': msg} def propagate(self, g): g.update_all(self.msg_func, fn.sum(msg='msg', out='h'), self.apply_func) def apply_func(self, nodes): return {'h': nodes.data['h'] * nodes.data['norm']} class RGCNBlockAttentionLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=None, activation=None, self_loop=False, dropout=0.0, bert=False, bert_trainable=False): super(RGCNBlockAttentionLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.num_rels = num_rels self.num_bases = num_bases assert self.num_bases > 0 self.out_feat = out_feat self.submat_in = in_feat // self.num_bases self.submat_out = out_feat // self.num_bases self.bn = torch.nn.BatchNorm1d(self.out_feat) # assuming in_feat and out_feat are both divisible by num_bases self.weight = nn.Parameter(torch.Tensor(self.num_rels, self.num_bases * self.submat_in * self.submat_out)) nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu')) def msg_func(self, edges): """ Compute messages only from source node features """ weight = self.weight.index_select(0, edges.data['type'].squeeze()).view( -1, self.submat_in, self.submat_out) node = edges.src['h'].view(-1, 1, self.submat_in) msg = torch.bmm(node, weight).view(-1, self.out_feat) return {'msg': msg, 'node_id': edges.src['id']} def compute_attn_weights(): pass def attn_reduce(self, nodes): # TODO: Weigh neighbors by attention on top of BERT feature representations pass def propagate(self, g): g.update_all(self.msg_func, self.attn_reduce, self.apply_func) def apply_func(self, nodes): return {'h': nodes.data['h'] * nodes.data['norm']} class WGCNLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=True, activation=None, self_loop=False, dropout=0.2): super(WGCNLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.num_rels = num_rels self.in_feat = in_feat self.out_feat = out_feat self.weight = Parameter(torch.FloatTensor(self.in_feat, self.out_feat)) self.weight_rel = torch.nn.Embedding(self.num_rels, 1, padding_idx=0) self.bn = torch.nn.BatchNorm1d(self.out_feat) xavier_normal_(self.weight.data) #stdv = 1. / np.sqrt(self.weight.size(1)) #self.weight.data.uniform_(-stdv, stdv) def msg_func(self, edges): """ Compute messages only from source node features """ edge_types = edges.data['type'].squeeze() alpha = self.weight_rel(edge_types) node = torch.mm(edges.src['h'], self.weight) msg = alpha.expand_as(node) * node return {'msg': msg} def propagate(self, g): #g.update_all(fn.src_mul_edge(src='h_mm', edge='alpha', out='msg'), # fn.sum(msg='msg', out='h'), # apply_node_func=lambda nodes: {'h': nodes.data['h'] * nodes.data['norm']}) g.update_all(self.msg_func, fn.sum(msg='msg', out='h'), self.apply_func) def apply_func(self, nodes): return {'h': nodes.data['h'] * nodes.data['norm']} class WGCNAttentionLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=True, activation=None, self_loop=False, dropout=0.2): super(WGCNAttentionLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.num_rels = num_rels self.in_feat = in_feat self.out_feat = out_feat self.weight = Parameter(torch.FloatTensor(self.in_feat, self.out_feat)) self.weight_rel = torch.nn.Embedding(self.num_rels, 1, padding_idx=0) self.bn = torch.nn.BatchNorm1d(self.out_feat) xavier_normal_(self.weight.data) #stdv = 1. / np.sqrt(self.weight.size(1)) #self.weight.data.uniform_(-stdv, stdv) def msg_func(self, edges): """ Compute messages only from source node features """ edge_types = edges.data['type'].squeeze() alpha = self.weight_rel(edge_types) node = torch.mm(edges.src['h'], self.weight) msg = alpha.expand_as(node) * node return {'msg': msg} def attn_reduce(self, nodes): attn_vector = torch.bmm(nodes.mailbox['msg'], nodes.data['h'].unsqueeze(2)) attn_probs = torch.softmax(attn_vector, dim=1) attn_weighted_msgs = nodes.mailbox['msg'] * attn_probs.expand_as(nodes.mailbox['msg']) attn_sum = torch.sum(attn_weighted_msgs, dim=1) return {'h': attn_sum} def propagate(self, g): #g.update_all(fn.src_mul_edge(src='h_mm', edge='alpha', out='msg'), # fn.sum(msg='msg', out='h'), # apply_node_func=lambda nodes: {'h': nodes.data['h'] * nodes.data['norm']}) g.update_all(self.msg_func, self.attn_reduce, self.apply_func) def apply_func(self, nodes): return {'h': nodes.data['h'] * nodes.data['norm']} class WGCNAttentionSAGELayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=True, activation=None, self_loop=False, dropout=0.2): super(WGCNAttentionSAGELayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.num_rels = num_rels self.in_feat = in_feat self.out_feat = out_feat self.weight = Parameter(torch.FloatTensor(self.in_feat*2, self.out_feat)) self.weight_rel = torch.nn.Embedding(self.num_rels, 1, padding_idx=0) self.bn = torch.nn.BatchNorm1d(self.out_feat) xavier_normal_(self.weight.data) #stdv = 1. / np.sqrt(self.weight.size(1)) #self.weight.data.uniform_(-stdv, stdv) def msg_func(self, edges): """ Compute messages only from source node features """ edge_types = edges.data['type'].squeeze() alpha = self.weight_rel(edge_types) #node = torch.mm(edges.src['h'], self.weight) msg = alpha.expand_as(edges.src['h']) * edges.src['h'] return {'msg': msg} def compute_attn_weights(): pass def attn_reduce(self, nodes): mean_msg = torch.mean(nodes.mailbox['msg'], dim=1) aggreg_msg = torch.cat((nodes.data['h'], mean_msg), dim=1) node_repr = torch.mm(aggreg_msg, self.weight) return {'h': node_repr} def propagate(self, g): #g.update_all(fn.src_mul_edge(src='h_mm', edge='alpha', out='msg'), # fn.sum(msg='msg', out='h'), # apply_node_func=lambda nodes: {'h': nodes.data['h'] * nodes.data['norm']}) g.update_all(self.msg_func, self.attn_reduce, self.apply_func) def apply_func(self, nodes): return {'h': nodes.data['h'] * nodes.data['norm']} class GATLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=True, activation=None, self_loop=False, dropout=0.2): super(GATLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.in_feat = in_feat self.out_feat = out_feat self.weight = nn.Linear(in_feat, out_feat, bias=False) self.weight_rel = torch.nn.Embedding(num_rels, 1, padding_idx=0) self.attn_fc = nn.Linear(2 * out_feat, 1, bias=False) def edge_attention(self, edges): # edge UDF for equation (2) z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1) a = self.attn_fc(z2) edge_types = edges.data['type'].squeeze() rel_alpha = self.weight_rel(edge_types) return {'e': F.leaky_relu(a), 'rel_alpha': rel_alpha} def message_func(self, edges): # message UDF for equation (3) & (4) return {'z': edges.src['z'], 'e': edges.data['e'], 'rel_alpha': edges.data['rel_alpha']} def reduce_func(self, nodes): # reduce UDF for equation (3) & (4) # equation (3) alpha = F.softmax(nodes.mailbox['e'], dim=1) rel_alpha = nodes.mailbox['rel_alpha'] # equation (4) h = torch.sum(rel_alpha * alpha * nodes.mailbox['z'], dim=1) return {'h': h} def propagate(self, g): # equation (1) h = g.ndata['h'] z = self.weight(h) g.ndata['z'] = z # equation (2) g.apply_edges(self.edge_attention) # equation (3) & (4) g.update_all(self.message_func, self.reduce_func) #return self.g.ndata.pop('h') class GATSubLayer(nn.Module): def __init__(self, in_feat, out_feat, num_rels): super(GATSubLayer, self).__init__() self.in_feat = in_feat self.out_feat = out_feat self.weight = nn.Linear(in_feat, out_feat, bias=False) self.weight_rel = torch.nn.Embedding(num_rels, 1, padding_idx=0) self.attn_fc = nn.Linear(2 * out_feat, 1, bias=False) def edge_attention(self, edges): # edge UDF for equation (2) z2 = torch.cat([edges.src['z'], edges.dst['z']], dim=1) edge_types = edges.data['type'].squeeze() rel_alpha = self.weight_rel(edge_types) a = self.attn_fc(z2) return {'e': F.leaky_relu(a), 'rel_alpha': rel_alpha} def message_func(self, edges): # message UDF for equation (3) & (4) return {'z': edges.src['z'], 'e': edges.data['e'], 'rel_alpha': edges.data['rel_alpha']} def reduce_func(self, nodes): # reduce UDF for equation (3) & (4) # equation (3) alpha = F.softmax(nodes.mailbox['e'], dim=1) rel_alpha = nodes.mailbox['rel_alpha'] # equation (4) h = torch.sum(rel_alpha * alpha * nodes.mailbox['z'], dim=1) return {'head-out': h} def propagate(self, g): # equation (1) h = g.ndata['h'] z = self.weight(h) g.ndata['z'] = z # equation (2) g.apply_edges(self.edge_attention) # equation (3) & (4) g.update_all(self.message_func, self.reduce_func) return g.ndata.pop('head-out') class MultiHeadGATLayer(RGCNLayer): def __init__(self, in_feat, out_feat, num_rels, num_bases, bias=True, activation=None, self_loop=False, dropout=0.2): super(MultiHeadGATLayer, self).__init__(in_feat, out_feat, bias, activation, self_loop=self_loop, dropout=dropout) self.heads = nn.ModuleList() for i in range(8): self.heads.append(GATSubLayer(in_feat, out_feat, num_rels)) self.merge = "cat" self.out_feat = out_feat self.in_feat = in_feat def propagate(self, g): head_outs = [attn_head.propagate(g) for attn_head in self.heads] if self.merge == 'cat': # concat on the output feature dimension (dim=1) g.ndata['h'] = torch.cat(head_outs, dim=1) else: # merge using average g.ndata['h'] = torch.mean(torch.stack(head_outs)) return g.ndata['h']
commonsense-kg-completion-master
src/layers.py
__author__ = "chaitanya" import torch import numpy as np import string def create_word_vocab(network): word_vocab = {} word_freqs = {} word_vocab["PAD"] = len(word_vocab) for node in network.graph.iter_nodes(): for word in node.name.split(): word = word.lower() if word not in word_vocab: word_vocab[word] = len(word_vocab) if word not in word_freqs: word_freqs[word] = 1 else: word_freqs[word] += 1 word_vocab["UNK"] = len(word_vocab) return word_vocab, word_freqs def create_vocab(network): word_vocab = {} word_freqs = {} for node in network.graph.iter_nodes(): if node.name not in word_vocab: word_vocab[node.name] = len(word_vocab) if node.name not in word_freqs: word_freqs[node.name] = 1 else: word_freqs[node.name] += 1 word_vocab["UNK"] = len(word_vocab) return word_vocab, word_freqs def get_vocab_idx(vocab, token): if token not in vocab: return vocab["UNK"] else: return vocab[token] def map_to_ids(vocab, seq): return [get_vocab_idx(vocab, word) for word in seq] def get_relation_id(rel_name, train_network): rel_id = train_network.graph.find_relation(rel_name) if rel_id == -1: return len(train_network.rel2id) else: return rel_id def prepare_batch_nodes(vocab, batch): lens = [len(name) for name in batch] max_len = max(lens) sorted_batch = [x for _, x in sorted(zip(lens, batch), reverse=True, key=lambda x: x[0])] all_lens = [] word_ids_batch = [] for node in sorted_batch: word_ids = map_to_ids(vocab, node) padding_length = max_len - len(word_ids) all_lens.append(len(word_ids)) word_ids += [get_vocab_idx(vocab, "PAD")] * padding_length word_ids_batch.append(word_ids) return torch.LongTensor(word_ids_batch), torch.LongTensor(all_lens) def prepare_batch_dgl(vocab, test_network, train_network): all_edges = [] all_labels = [] for edge in test_network.graph.iter_edges(): src_id = get_vocab_idx(vocab, edge.src.name) tgt_id = get_vocab_idx(vocab, edge.tgt.name) rel_id = get_relation_id(edge.relation.name, train_network) all_edges.append(np.array([src_id, rel_id, tgt_id])) all_labels.append(edge.label) return np.array(all_edges), all_labels def create_entity_dicts(all_tuples, num_rels, sim_relations=False): e1_to_multi_e2 = {} e2_to_multi_e1 = {} for tup in all_tuples: e1, rel, e2 = tup # No need to use sim edges for decoding if rel == num_rels-1 and sim_relations: continue rel_offset = num_rels if sim_relations: rel_offset -= 1 if (e1, rel) in e1_to_multi_e2: e1_to_multi_e2[(e1, rel)].append(e2) else: e1_to_multi_e2[(e1, rel)] = [e2] if (e2, rel+rel_offset) in e1_to_multi_e2: e1_to_multi_e2[(e2, rel+rel_offset)].append(e1) else: e1_to_multi_e2[(e2, rel+rel_offset)] = [e1] if (e2, rel+rel_offset) in e2_to_multi_e1: e2_to_multi_e1[(e2, rel+rel_offset)].append(e1) else: e2_to_multi_e1[(e2, rel+rel_offset)] = [e1] return e1_to_multi_e2, e2_to_multi_e1 def preprocess_atomic_sentence(sent): puncts = list(string.punctuation) puncts.remove('-') sent = [c for c in sent.lower() if c not in puncts or c == "'"] sent = ''.join([c for c in sent if not c.isdigit()]) sent = sent.replace("person x", "personx").replace(" x's", " personx's").replace(" x ", " personx ") if sent[:2] == "x " or sent[:2] == "x'": sent = sent.replace("x ", "personx ", 1).replace("x'", "personx'") if sent[-3:] == " x\n": sent = sent.replace(" x\n", "personx\n") sent = sent.replace("person y", "persony").replace(" y's", " persony's").replace(" y ", " persony ") if sent[:2] == "y " or sent[:2] == "y'": sent = sent.replace("y ", "persony ", 1).replace("y'", "persony'") if sent[-3:] == " y\n": sent = sent.replace(" y\n", "persony\n") return sent.replace("personx", "John").replace("persony", "Tom")
commonsense-kg-completion-master
src/reader_utils.py
__author__ = "chaitanya" # Adapted from HuggingFace implementation from transformers import BertTokenizer, BertModel, BertForMaskedLM import os import re import torch import torch.nn as nn from torch.utils.data import TensorDataset, DataLoader, SequentialSampler import numpy as np """ Feature Extractor for BERT """ class InputExample(object): """A single training/test example for simple sequence classification with BERT.""" def __init__(self, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id=None): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id def convert_examples_to_features(examples, max_seq_length, tokenizer, label_list=None): """Loads a data file into a list of `InputBatch`s.""" if label_list: label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambigiously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = ["[CLS]"] + tokens_a + ["[SEP]"] segment_ids = [0] * len(tokens) if tokens_b: tokens += tokens_b + ["[SEP]"] segment_ids += [1] * (len(tokens_b) + 1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. padding = [0] * (max_seq_length - len(input_ids)) input_ids += padding input_mask += padding segment_ids += padding assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if example.label: label_id = label_map[example.label] else: label_id = None features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id)) return features def camel_case_split(identifier): matches = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return (" ".join([m.group(0) for m in matches])).lower() def convert_edges_to_examples(edges, labels, network): examples = [] for i, edge in enumerate(edges): edge = edge.cpu().numpy() text_a = network.graph.nodes[edge[0]].name + " " + camel_case_split(network.graph.relations[edge[1]].name) + " " + network.graph.nodes[edge[2]].name label = labels[i].cpu().item() examples.append( InputExample(text_a=text_a, text_b=None, label=label)) return examples def convert_nodes_to_examples(node_list): examples = [] for node in node_list: text_a = node.name examples.append( InputExample(text_a=text_a)) return examples class BertLayer(nn.Module): def __init__(self, dataset): super(BertLayer, self).__init__() bert_model = "bert-large-uncased" self.dataset = dataset if self.dataset == "conceptnet": output_dir = "bert_model_embeddings/nodes-lm-conceptnet/" elif self.dataset == "atomic": output_dir = "bert_model_embeddings/nodes-lm-atomic/" self.filename = os.path.join(output_dir, self.dataset + "_bert_embeddings.pt") print(self.filename) if os.path.isfile(self.filename): self.exists = True return self.exists = False self.max_seq_length = 32 self.eval_batch_size = 128 self.tokenizer = BertTokenizer.from_pretrained(bert_model, do_lower_case=False) output_model_file = os.path.join(output_dir, "lm_pytorch_model.bin") print("Loading model from %s" % output_dir) self.bert_model = torch.load(output_model_file, map_location='cpu') self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.bert_model.to(self.device) # Make BERT parameters non-trainable # bert_params = list(self.bert_model.parameters()) # for param in bert_params: # param.requires_grad = False def forward(self, node_list): # if self.exists: print("Loading BERT embeddings from disk..") return torch.load(self.filename) print("Computing BERT embeddings..") self.bert_model.eval() eval_examples = convert_nodes_to_examples(node_list) eval_features = convert_examples_to_features( eval_examples, max_seq_length=self.max_seq_length, tokenizer=self.tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.eval_batch_size) sequence_outputs = [] idx = 0 for input_ids, input_mask, segment_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) with torch.no_grad(): sequence_output, _ = self.bert_model.bert(input_ids, segment_ids, input_mask, output_all_encoded_layers=False) sequence_outputs.append(sequence_output[:, 0]) if len(sequence_outputs) == 800: self.save_to_disk(torch.cat(sequence_outputs, dim=0), idx) sequence_outputs = [] idx += 1 self.save_to_disk(torch.cat(sequence_outputs, dim=0), idx) return torch.cat(sequence_outputs, dim=0) def forward_as_init(self, num_nodes, network=None): if self.exists: print("Loading BERT embeddings from disk..") return torch.load(self.filename) node_ids = np.arange(num_nodes) node_list = [network.graph.nodes[idx] for idx in node_ids] print("Computing BERT embeddings..") self.bert_model.eval() eval_examples = convert_nodes_to_examples(node_list) eval_features = convert_examples_to_features( eval_examples, max_seq_length=self.max_seq_length, tokenizer=self.tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=self.eval_batch_size) sequence_outputs = [] for input_ids, input_mask, segment_ids in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) with torch.no_grad(): sequence_output, _ = self.bert_model.bert(input_ids, segment_ids, input_mask, output_all_encoded_layers=False) sequence_outputs.append(sequence_output[:, 0]) return torch.cat(sequence_outputs, dim=0) def save_to_disk(self, tensor, idx): torch.save(tensor, self.dataset + str(idx) + "_bert_embeddings.pt")
commonsense-kg-completion-master
src/bert_feature_extractor.py
import pandas as pd import numpy as np #---------------------------------------------------------- # get stats for ACL Demo track submission #---------------------------------------------------------- df1 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/ACCoRD/1-sentence-annotations copy.csv") df2 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/ACCoRD/2-sentence-annotations copy.csv") df_all = pd.concat([df1, df2]) # save df with only positive rows rslt_df = df_all[df_all['is_relational']==1] #---------------------------------------------------------- print("\n----BASIC STATS-----") # get number of positive and negative examples in ACCoRD print("Number of rows = %d" % len(df_all)) print("Number of extractions with a positive label = %d" % len(df_all[df_all['is_relational']==1])) print("Number of extractions with a negative label = %d" % len(df_all[df_all['is_relational']==0])) print("Number of extractions with is_relational==nan = %d" % len(df_all[pd.isna(df_all['is_relational'])])) print("Number of formatted statements = %d" % len(df_all[pd.notna(df_all['formatted_statement'])])) print("--> Number of formatted statements made from an extraction = %d" % len(df_all[pd.notna(df_all['formatted_statement']) & (df_all['is_relational']==1)])) print("--> Number of additional formatted statements made from an extraction = %d" % len(df_all[pd.notna(df_all['formatted_statement']) & pd.isna(df_all['is_relational'])])) # get number of instances without a differentia num_without_differentia = 0 for index, row in rslt_df.iterrows(): if pd.notna(row['formatted_statement']): if row['formatted_statement'].endswith(row['concept_b']): num_without_differentia+=1 print("Number of formatted sentences with no differentia (end with the annotated concept B) = %d" % num_without_differentia) #---------------------------------------------------------- print("\n----DESCRIPTION + CONCEPT B STATS-----") group_count_conceptb = rslt_df.groupby('concept_a')['concept_b'].nunique().reset_index(name='num_unique_concept_bs') group_count_descriptions = rslt_df.groupby(by=["concept_a"]).size().reset_index(name='counts') # merge dfs on concept_a column merged = pd.merge(group_count_conceptb, group_count_descriptions, on="concept_a") print(np.average(merged['counts'])) print(merged['counts']. value_counts()) merged.to_csv("test.csv") #---------------------------------------------------------- print("\n----ERRORS-----") # ERRORS print("rows that don't have a formatted statement but are also not marked 0 for is_relational\n") print(df_all[pd.isna(df_all['formatted_statement']) & pd.isna(df_all['is_relational'])]) print(df_all[pd.isna(df_all['formatted_statement']) & (df_all['is_relational']==1)])
ACCoRD-main
corpus/accord-stats.py
from re import A import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from statsmodels.stats import inter_rater as irr import numpy as np from statistics import mean df_expertise_ratings = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/expertise-ratings.csv") df_median_expertise = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/median-expertise-ratings.csv") df_description_preferences = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/description-preferences.csv") df_error_analysis = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/completed-error-analysis.csv") error_analysis_concepts = set(df_error_analysis['forecite_concept'].to_list()) # remove _expertise to isolate concept concepts = list(map(lambda x: x.replace('_expertise',''), df_median_expertise['concept_expertise'])) df_expertise_ratings['concept_expertise'] = list(map(lambda x: x.replace('_expertise',''), df_expertise_ratings['concept_expertise'])) df_median_expertise['concept_expertise'] = list(map(lambda x: x.replace('_expertise',''), df_median_expertise['concept_expertise'])) # rename concept columns df_median_expertise = df_median_expertise.rename(columns={"concept_expertise": "concept"}) df_expertise_ratings = df_expertise_ratings.rename(columns={"concept_expertise": "concept"}) print(df_expertise_ratings.keys()) print(df_description_preferences.keys()) # merge expertise ratings and description preferences dfs df_expertise_preferences = pd.merge(df_expertise_ratings, df_description_preferences, on=["concept", "email"]) print(df_expertise_preferences.keys()) res = df_expertise_preferences[['email', 'concept', 'expertise', 'description', 'preference_rating']] res.to_csv("merged-expertise-description-preferences.csv") #-------------------------------------------------------- # Do people with more expertise tend to agree with each # other more than they do with those with less expertise? #-------------------------------------------------------- # function to select and format description preferences for each segment # and calculate Fleiss' kappa def calculateKappaPerSegment(df_concept_description_preferences, segmentEmails): # select rows of the description preferences df for this concept where emailIDs are in the segment list df_concept_description_preferences_segment = df_concept_description_preferences.loc[df_concept_description_preferences['email'].isin(segmentEmails)] # select relevant columns from each df df_concept_description_preferences_segment = df_concept_description_preferences_segment[['email', 'description', 'preference_rating']] # convert categorical preference ratings to numeric df_concept_description_preferences_segment['preference_rating'] = pd.factorize(df_concept_description_preferences_segment['preference_rating'])[0] # pivot df to get columns = emails, rows = descriptions np_concept_description_preferences_segment = df_concept_description_preferences_segment.pivot(index='description', columns='email', values='preference_rating').to_numpy() # calculate kappa for segment kappa = irr.fleiss_kappa(irr.aggregate_raters(np_concept_description_preferences_segment)[0], method='fleiss') return kappa # #-------------------------------------------------------- # # store each kappa calculation for all concepts # above_median_concept_kappas = [] # below_median_concept_kappas = [] # full_concept_kappas = [] # count = 0 # n_runs = 5 # # for each concept # for concept in concepts: # # select rows for this concept # df_concept_description_preferences = df_description_preferences[df_description_preferences['concept']==concept] # all_emails = list(set(df_concept_description_preferences['email'].to_list())) # # # get median expertise for this concept # # median = df_median_expertise.loc[df_median_expertise['concept_expertise'] == concept, 'median.expertise'].iloc[0] # # global median # median = 4 # # # global average # # median = 3.35 # # select rows with expertise rating > median # above_median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] > median)] # # select rows with expertise rating < median # below_median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] < median)] # # select rows with expertise rating < median # median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] == median)] # above_median_kappas = [] # below_median_kappas = [] # for i in range(n_runs): # # randomly + equally assign participants with median expertise to above-median segment and below-median segment # part_50 = median_segment.sample(frac = 0.5, random_state=i) # # Creating dataframe with rest of the 50% values # rest_part_50 = median_segment.drop(part_50.index) # # concatenate portion of median segment to each above-median and below-median segment # # select emailID column # above_median_segment_emails = pd.concat([above_median_segment, part_50])['email'].to_list() # below_median_segment_emails = pd.concat([below_median_segment, rest_part_50])['email'].to_list() # print(len(above_median_segment_emails), len(below_median_segment_emails)) # above_median_kappa = calculateKappaPerSegment(df_concept_description_preferences, above_median_segment_emails) # below_median_kappa = calculateKappaPerSegment(df_concept_description_preferences, below_median_segment_emails) # full_kappa = calculateKappaPerSegment(df_concept_description_preferences, all_emails) # above_median_kappas.append(above_median_kappa) # below_median_kappas.append(below_median_kappa) # # average all the kappas for this concept # avg_above_median_kappa = mean(above_median_kappas) # avg_below_median_kappa = mean(below_median_kappas) # # append to list for all concepts # above_median_concept_kappas.append(avg_above_median_kappa) # below_median_concept_kappas.append(avg_below_median_kappa) # full_concept_kappas.append(full_kappa) # print(concept, avg_below_median_kappa > full_kappa) # if (avg_above_median_kappa > full_kappa): # count+=1 # # print(avg_above_median_kappa) # # print(avg_below_median_kappa) # # print(full_kappa) # print(count) # # format data for seaborn plot # newlist = [x for x in above_median_concept_kappas if np.isnan(x) == False] # print(sum(newlist)/len(newlist)) # print(sum(below_median_concept_kappas)/len(below_median_concept_kappas)) # print(sum(full_concept_kappas)/len(full_concept_kappas)) # kappas_long = above_median_concept_kappas + below_median_concept_kappas + full_concept_kappas # conditions_long = np.repeat(['above', 'below', 'full'], 20) # concepts_long = concepts + concepts + concepts # # combine lists into a df to plot # df_res_long = pd.DataFrame(list(zip(concepts_long, kappas_long, conditions_long)), # columns=['concept','kappa', 'condition']) # df_res_long.to_csv("per-expertise-segment-kappas.csv") # # # plot # # sns.catplot(x="concept", y="kappa", hue="condition", kind="bar", data=df_res_long, palette="ch:.25") # # plt.xticks(rotation='vertical') # # plt.savefig("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/expertise-segment-kappas-barplot-global-average.png", bbox_inches="tight") #-------------------------------------------------------- # how often below-median users chose descriptions with error, compared to above-median ones? # This would help disentangle whether the agreement difference is due to novice users just making error, or something else. n_runs = 5 for concept in error_analysis_concepts: # select rows for this concept df_concept_description_preferences = df_description_preferences[df_description_preferences['concept']==concept] all_emails = list(set(df_concept_description_preferences['email'].to_list())) print(df_concept_description_preferences) # global median median = 4 # select rows with expertise rating > median above_median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] > median)] # select rows with expertise rating < median below_median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] < median)] # select rows with expertise rating < median median_segment = df_expertise_ratings.loc[(df_expertise_ratings['concept'] == concept) & (df_expertise_ratings['expertise'] == median)] above_median_kappas = [] below_median_kappas = [] for i in range(n_runs): # randomly + equally assign participants with median expertise to above-median segment and below-median segment part_50 = median_segment.sample(frac = 0.5, random_state=i) # Creating dataframe with rest of the 50% values rest_part_50 = median_segment.drop(part_50.index) # concatenate portion of median segment to each above-median and below-median segment # select emailID column above_median_segment_emails = pd.concat([above_median_segment, part_50])['email'].to_list() below_median_segment_emails = pd.concat([below_median_segment, rest_part_50])['email'].to_list() print(len(above_median_segment_emails), len(below_median_segment_emails))
ACCoRD-main
system/user-study/analyze-study-responses.py
from os import rename import pandas as pd import re def renameDfColumns(version): df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/study-responses-%s.csv" % version) # iterate over remaining columns and rename for label, content in df.iteritems(): if label == "Timestamp": df.rename(columns={label:"timestamp"},inplace=True) if label == "Email Address": df.rename(columns={label:"email"},inplace=True) if label == "I consider myself proficient in the following areas of computer science:": df.rename(columns={label:"proficiency_areas"},inplace=True) if label == "How many years of experience do you have in NLP?": df.rename(columns={label:"years_experience"},inplace=True) if label == "Have you published a peer-reviewed academic paper in NLP?": df.rename(columns={label:"has_published"},inplace=True) if label == "What is the highest level of education you've completed (in computer science)?": df.rename(columns={label:"highest_edu"},inplace=True) # handle label names with concepts if "[" in label: result = re.findall('\[.*?\]',label) if len(result) == 1: concept = result[0].lower().strip("[]").split() concept = "".join(concept) elif len(result) == 2: concept = result[0].lower().strip("[]").split() concept = "".join(concept) question = result[1].strip("[]") # append question type if "How well do you know this concept?" in label: question = "expertise" if "Imagine that you’re reading a paper" in label: question = "set_preference" final_label = concept + "_" + question df.rename(columns={label:final_label},inplace=True) # handle free response question if "Please describe how you evaluated/determined your preference for the above sets of descriptions." in label: df.rename(columns={label:"set_description_free_text"},inplace=True) if "Can you explain to me why you preferred certain descriptions over others?" in label: df.rename(columns={label:"individual_description_free_text"},inplace=True) if "Here, we asked you to rate each description individually." in label: df.rename(columns={label:"indivudal_vs_set_free_text"},inplace=True) print(df.keys()) return df def mapResponses(df, version): if version == "versionA": df = df.replace('Set A', 'extractions_our_ranking') df = df.replace('Set B', 'generations_intuitive_ranking') df = df.replace('Set C', 'generations_our_ranking') elif version == "versionB": df = df.replace('Set A', 'generations_our_ranking') df = df.replace('Set B', 'extractions_our_ranking') df = df.replace('Set C', 'generations_intuitive_ranking') elif version == "versionC": df = df.replace('Set A', 'generations_intuitive_ranking') df = df.replace('Set B', 'generations_our_ranking') df = df.replace('Set C', 'extractions_our_ranking') # add column for version to each df df['version'] = [version] * len(df) # map description preference responses df = df.replace("👎 I would NOT want to see this description of the concept", "dont_want") df = df.replace("👍 I would want to see this description of the concept", "want") df = df.replace("⚫ No preference/opinion", "no_preference") return df dfA = renameDfColumns('versionA') dfB = renameDfColumns('versionB') dfC = renameDfColumns('versionC') dfA = mapResponses(dfA, 'versionA') dfB = mapResponses(dfB, 'versionB') dfC = mapResponses(dfC, 'versionC') df_all = pd.concat([dfA, dfB, dfC]).reset_index() print(df_all) df_all.to_csv("/net/nfs2.s2-research/soniam/concept-rel/user-study/demo-evaluation/study-responses-all.csv")
ACCoRD-main
system/user-study/aggregate-study-responses.py
import os import json import pandas as pd import csv # USE THIS SCRIPT ON SERVER 1 TO ACCESS LOCAL COPY OF S2ORC # filter papers using metadata values def getValidPaperIDs(batch_id): all_valid_ids = [] count = 0 with open(f'/disk2/s2orc/20200705v1/full/metadata//metadata_{batch_id}.jsonl') as f_meta: for line in f_meta: metadata_dict = json.loads(line) paper_id = metadata_dict['paper_id'] # suppose we only care about CS papers and papers with pdf parses available if (metadata_dict['mag_field_of_study'] == None) or ('Computer Science' not in metadata_dict['mag_field_of_study']): continue if not metadata_dict['has_pdf_parse']: continue if not metadata_dict['has_pdf_parsed_body_text']: continue all_valid_ids.append(paper_id) count +=1 print("number of valid paper IDs = % d" % count) return all_valid_ids # copy full parses of papers that meet our criteria def copyValidPaperIDs(all_valid_ids, batch_id): count = 0 for paper_id in all_valid_ids: count += 1 directory = paper_id[:len(paper_id)-4] file_name = paper_id[-4:] if not os.path.exists("./metadata-%s/%s.json" % (batch_id, paper_id)): os.system("cp /disk2/s2orc/20200705v1/expanded/%s/%s.json ./metadata-%s/%s.json" % (directory, file_name, batch_id, paper_id)) if count % 100 == 0: print("copied %d papers from metadata %d" % (count, batch_id)) # get desired sections of full pdf parses def getPaperSections(batch_id): all_text = [] for filename in os.listdir("./metadata-%d/" % batch_id): path = "./metadata-%d/%s" % (batch_id, filename) if os.path.exists(path) and os.path.getsize(path) > 0: with open(path) as f_pdf: # dict of metadata keys pdf_parse_dict = json.loads(f_pdf.read()) subject = pdf_parse_dict['mag_field_of_study'] paper_id = pdf_parse_dict['paper_id'] # dict of pdf parse related keys pdf_parse_dict = pdf_parse_dict['pdf_parse'] # (2) pull out fields we need from the pdf parse, including abstract & text paragraphs = pdf_parse_dict['abstract'] + pdf_parse_dict['body_text'] # (3) loop over paragraphs for paragraph in paragraphs: section_heading = paragraph['section'].lower() sections_of_interest = [] # sections we care about: AIR = ['abstract', 'introduction', 'previous', 'related work', 'related literature', 'background', 'motivation'] for i in AIR: if i in section_heading: sections_of_interest.append(paragraph) # (4) loop over each section in this paragraph for section in sections_of_interest: all_text.append({ 'paper_id': paper_id, 'subject': subject, 'text': paragraph['text'].encode('ascii', 'ignore').decode('ascii') }) return all_text def processText(all_text, output_file): df = pd.DataFrame.from_dict(all_text) print("total dataset = %s entries" % len(df)) print("number of unique papers = %d" % len(pd.unique(df['paper_id']))) print("removing missing values...") df = df.dropna() # remove missing values print("total dataset = %s entries" % len(df)) print("number of unique papers = %d" % len(pd.unique(df['paper_id']))) print("removing duplicates...") df = df.drop_duplicates(subset=['text']) print("total dataset = %s entries" % len(df)) print("number of unique papers = %d" % len(pd.unique(df['paper_id']))) df.to_csv(output_file, index=False) # main for batch_id in range(30, 31): # make a directory for the papers from this batch_id os.system("mkdir metadata-%d" % batch_id) all_valid_ids = getValidPaperIDs(batch_id) copyValidPaperIDs(all_valid_ids, batch_id) all_text = getPaperSections(batch_id) processText(all_text, "./text-batch-id-%d.csv" % batch_id)
ACCoRD-main
system/resources/s2orc/get-cs-papers.py
import os import json # feel free to wrap this into a larger loop for batches 0~99 BATCH_ID = 0 # create a lookup for the pdf parse based on paper ID paper_id_to_pdf_parse = {} with open('./pdfparse.jsonl') as f_pdf: for line in f_pdf: pdf_parse_dict = json.loads(line) paper_id_to_pdf_parse[pdf_parse_dict['paper_id']] = pdf_parse_dict # filter papers using metadata values all_text = [] count = 0 with open('./metadata.jsonl') as f_meta: for line in f_meta: metadata_dict = json.loads(line) paper_id = metadata_dict['paper_id'] # print("Currently viewing S2ORC paper: "+ paper_id) # suppose we only care about CS papers if (metadata_dict['mag_field_of_study'] == None) or ('Computer Science' not in metadata_dict['mag_field_of_study']): continue # get citation context (paragraphs)! if paper_id in paper_id_to_pdf_parse: print("Currently viewing S2ORC paper: "+ paper_id) print(metadata_dict['mag_field_of_study']) print("pdf parse is available") print("") # (1) get the full pdf parse from the previously computed lookup dict pdf_parse = paper_id_to_pdf_parse[paper_id] # (2) pull out fields we need from the pdf parse, including bibliography & text paragraphs = pdf_parse['abstract'] + pdf_parse['body_text'] # (3) loop over paragraphs for paragraph in paragraphs: # sections we care about: AIR = ['abstract', 'Abstract', 'INTRODUCTION', 'Introduction', 'RELATED WORK', 'Related Work'] sections_of_interest = [] if paragraph['section'] in AIR: sections_of_interest.append(paragraph) # (4) loop over each section in this paragraph for section in sections_of_interest: all_text.append({ 'paper_id': paper_id, 'subject': metadata_dict['mag_field_of_study'], 'text': paragraph['text'].encode('ascii', 'ignore').decode('ascii') }) import csv keys = all_text[0].keys() with open('cleaned_text.csv', 'w') as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(all_text)
ACCoRD-main
system/resources/s2orc/create-dataset.py
import math import numpy as np import pandas as pd import torch import torch.nn as nn from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import transformers import matplotlib.pyplot as plt from transformers import * import matplotlib.ticker as mticker import spacy import ast import re import random def processPhrase(phrase): if len(phrase.text.split()) > 1: p = phrase.text.split() if p[0] in all_stopwords: # if first word is a stop word phrase_no_stopwords = " ".join(p[1:]) elif p[-1] in all_stopwords: # if last word is a stop word phrase_no_stopwords = " ".join(p[:-1]) else: # if neither is a stop word phrase_no_stopwords = phrase.text # if there is only one word in this phrase, just append the text version of it else: phrase_no_stopwords = phrase.text return phrase_no_stopwords def main(sentence, separator, forecite_concept): doc = nlp(sentence) fc_phrase = "" for phrase in doc.noun_chunks: tokens = [t for t in phrase] phrase_key = " ".join([t.lemma_ for t in tokens if not (t.is_stop)]) if phrase_key == forecite_concept: fc_phrase = processPhrase(phrase) break # get starting index of this phrase in the sentence # get an iterable object containing the start and end indices of each occurrence of pattern in string matches = re.finditer(str(fc_phrase), sentence) # get a list containing only the start indices. matches_positions = [match.start() for match in matches] # if there are matches if len(matches_positions) > 0: start = matches_positions[0] txt = sentence[:start] + separator + " " + sentence[start:start+len(fc_phrase)] + " " + separator + sentence[start+len(fc_phrase):] else: txt = "concept not found" return txt #---------------------------------------------------------- # set up sentencizer nlp = spacy.load("en_core_web_md") tokenizer = nlp.tokenizer nlp.add_pipe("sentencizer") all_stopwords = nlp.Defaults.stop_words separator = "§" # # ex 1 # sentence = "neural networks with long short-term memory (lstm), which have emerged as effective and scalable model for several learning problems related to sequential data (e.g., handwriting recognition, speech recognition, human activity recognition and traffic prediction), and it does not suffer from the effect of the vanishing or exploding gradient problem as simple recurrent networks do [1] ." # forecite_concept = "long short - term memory" # print(main(sentence, separator, forecite_concept)) # # ex 2 # sentence = "person reidentification is a task of recognizing person based on appearance matching under different camera views." # forecite_concept = "different camera view" # print(main(sentence, separator, forecite_concept)) # # ex 3 # sentence = "according to google, the tpu can compute neural networks up to 30x faster and up to 80x more power efficient than cpu's or gpu's performing similar applications [6] . the tpu excels because its hardware processing flow is specifically adapted to the inference problem it solves." # forecite_concept = "tpu" # print(main(sentence, separator, forecite_concept)) df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-test-from-heddex-results.csv") demarcated_sentences = [] for index, row in df.iterrows(): demarcated_sentence = main(row['sentence'], separator, row['forecite_concept']) print(row['sentence']) print(demarcated_sentence) print() demarcated_sentences.append(demarcated_sentence) df['sentence'] = demarcated_sentences print(df) df.to_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-test-from-heddex-results-%s.csv" % separator)
ACCoRD-main
system/resources/forecite/locate-forecite-concepts.py
import pandas as pd import pickle import matplotlib.pyplot as plt import collections # import seaborn as sns #---------------------------------------------------------- # get count of concepts in output #---------------------------------------------------------- # count number of each concept in my extracted sentences def getConceptOccurrences(df): all_concepts = [] for index, row in df.iterrows(): concepts = list(eval(row['forecite_concepts'])) all_concepts.extend(concepts) occurrences = collections.Counter(all_concepts) return occurrences # plot counts of concepts present in my extracted sentences def makePlottableDF(occurrences): # format data scores = [] counts = [] concepts = [] for k in occurrences.keys(): concepts.append(k) scores.append(concept_dict[k]) counts.append(occurrences[k]) df_output = pd.DataFrame(list(zip(concepts, scores, counts)), columns =['concept', 'score', 'count']) return df_output def makePlot(occurrences, filepath): # make plottable df df = makePlottableDF(occurrences) # plot scores vs. counts for each concept plot = sns.scatterplot(data=df, x="score", y="count") for index, row in df.iterrows(): plot.text(x=row['score']+0.1, y=row['count']+0.1, s=row['concept'], fontsize=6) plot.figure.savefig(filepath) #----------------------------- # unpickle concept dictionary with open('forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) #----------------------------- # data for noun phrase (np) level concepts df_np = pd.read_csv("./score-threshold-1-0/single-sentence-noun-phrases.csv") # data for word-level substrings (ss) of noun phrases df_ss = pd.read_csv("./score-threshold-1-0/single-sentence-all-substrings.csv") ss_occurrences = getConceptOccurrences(df_ss) np_occurrences = getConceptOccurrences(df_np) # print("plotting noun phrase level counts vs. scores...") # makePlot(np_occurrences, "./score-threshold-1-0/noun-phrase-level-concepts-scatter.png") # print("done") # print("plotting substring level counts vs. scores...") # makePlot(ss_occurrences, "./score-threshold-1-0/substring-level-concepts-scatter.png") # print("done") #----------------------------- # get sentence lengths df = pd.read_csv("./score-threshold-1-0/single-sentence-min1-noun-phrase.csv") text = df['sentence'] # plot sentence lengths seq_len = [len(i.split()) for i in text] pd.Series(seq_len).hist(bins = 30) plt.savefig('single-sentence-min1-np-lengths.png') count = 0 # remove sentences with length < 10 for index, row in df.iterrows(): if len(row['sentence'].split()) < 10: print(row['sentence']) print(row['forecite_concepts']) count += 1 df = df.drop(index) print(df) df.to_csv("./score-threshold-1-0/single-sentence-min1-noun-phrase.csv")
ACCoRD-main
system/resources/forecite/get-forecite-stats.py
import os import json import pandas as pd import pickle concept_dict = {} # for files in the data directory count = 1 for filename in os.listdir("/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/noun-phrase-scores-top-papers/"): print("getting concepts for file %d" % count) if filename.endswith(".json"): # open the json file with open("/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/noun-phrase-scores-top-papers/%s" % filename) as f: # iterate over lines in this file for line in f: data = json.loads(line) concept = data['phrase'] score = data['score'] n = data['n'] paper_id = data['corpus_paper_id'] concept_dict[concept] = (score, n, paper_id) count += 1 with open('./forecite_concept_score_count_dict.pickle', 'wb') as handle: pickle.dump(concept_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) print("pickled concept dictionary") # with open('concept-scores-counts.json', 'w') as fp: # json.dump(concept_dict, fp)
ACCoRD-main
system/resources/forecite/get-forecite-concepts.py
import pickle import matplotlib.pyplot as plt import pandas as pd import spacy import re from collections import Counter import random import sys #---------------------------------------------------------- # process ForeCite concepts #---------------------------------------------------------- # unpickle concept dictionary with open('forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) print("unpickled forecite concept dictionary") # print(concept_dict["k - near neighbor"]) # found => lemmatization is correct # print(concept_dict["k-nearest neighbor"]) # not found # # plot histogram of scores # n, bins, patches = plt.hist(concept_dict.values(), 10, density=True, facecolor='g', alpha=0.75) # print(len(set(concept_dict.values()))) # print(max(concept_dict.values())) # print(min(concept_dict.values())) # plt.xlabel('ForeCite score') # plt.ylabel('Count') # plt.savefig('scores-histogram.png') # get concepts with score above a certain threshold score_threshold = 1.0 concepts_above_threshold = [k for k,v in concept_dict.items() if float(v) >= score_threshold] concept_set = set(concepts_above_threshold) print("%d concepts with score above %2f" % (len(concept_set), score_threshold)) # max_length = 0 # max_word = "" # lens = [] # for c in concepts_above_threshold: # c = c.split() # lens.append(len(c)) # if len(c) > max_length: # max_length = len(c) # max_word = c # print("max length of concepts = %d" % (max_length)) # print(max_word) # print() # plt.hist(lens) # plt.savefig("concept-length-hist.png") #---------------------------------------------------------- # helper functions #---------------------------------------------------------- def getPhraseSubstrings(doc): # get spacy noun chunks for each sentence phrase_keys = [] for phrase in doc.noun_chunks: # iterate over tokens and get all word substrings for i in range(len(phrase)): for j in range(i, len(phrase)+1): tokens = [t for t in phrase[i:j]] lemmatized = [t.lemma_ for t in tokens if not (t.is_stop)] # lemmatize phrase_key = " ".join(lemmatized) phrase_keys.append(phrase_key) return phrase_keys def getPhrases(doc): phrase_keys = [] for phrase in doc.noun_chunks: tokens = [t for t in phrase] phrase_key = " ".join([t.lemma_ for t in tokens if not (t.is_stop)]) phrase_keys.append(phrase_key) return phrase_keys #---------------------------------------------------------- # get sentences with two or more concepts df_text_0 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-0.csv") df_text_1 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-1.csv") df_text_2 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-2.csv") df_text_3 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-3.csv") df_text_4 = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-4.csv") df = pd.concat([df_text_1, df_text_2, df_text_3, df_text_4]) print("total rows across all batches = %d" % len(df)) # set up sentencizer nlp = spacy.load("en_core_web_md") tokenizer = nlp.tokenizer nlp.add_pipe("sentencizer") # test_id = 27044448 # df_paper = df.loc[df['paper_id'] == test_id] #---------------------------------------------------------- # 2 sentence: only one sentence has a forecite concept #---------------------------------------------------------- # # get paper ids from final 1- and 2-sentence annotations and don't include those in this dataset # df1 = pd.read_csv("../../annotations-round2/single-sentence-final-§.csv") # df2 = pd.read_csv("../../annotations-round2/2-sentence-final-§.csv") # df1_paper_ids = set(df1['paper_id']) # df2_paper_ids = set(df2['paper_id']) # all_annotated_paper_ids = df1_paper_ids | df2_paper_ids def twoSentenceOneConcept(batch_id): # iterate over rows in df (paragraph level) num_sents = 0 paper_ids = [] sentences = [] sentences_cased = [] concepts = [] df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/s2orc/text-batch-id-%d.csv" % batch_id) print("%d rows in batch %d" % (len(df), batch_id)) for index, row in df.iterrows(): # progress update if index % 100 == 0: print('...processing row %d' % (index)) # # if this paper_id doesn't already have an annotation # if row['paper_id'] not in all_annotated_paper_ids: # check that row is not na if pd.notna(row['text']): doc = nlp(row['text']) sents = list(doc.sents) # iterate over sentences for s in range(1, len(sents)-1): num_sents += 1 count = 0 previous_sent = sents[s-1].text.lower() current_sent = sents[s].text.lower() next_sent = sents[s+1].text.lower() previous_sent_cased = sents[s-1].text current_sent_cased = sents[s].text next_sent_cased = sents[s+1].text # if the context sentences are too short to be good, just continue if (len(previous_sent) < 5) or (len(next_sent) < 5): continue else: # # get spacy noun chunks # curr_sent_concepts = set(getPhrases(nlp(current_sent))) # # get intersection of sentence concepts and all concepts # curr_intersection = concept_set.intersection(curr_sent_concepts) # generate random number to pick whether prev or next sentence gets appended as context num = random.randint(1, 2) if num == 1: concat = previous_sent + " " + current_sent concat_cased = previous_sent_cased + " " + current_sent_cased if num == 2: concat = current_sent + " " + next_sent concat_cased = current_sent_cased + " " + next_sent_cased # get spacy noun chunks concat_sent_concepts = set(getPhrases(nlp(concat))) # get intersection of sentence concepts and all concepts concat_intersection = concept_set.intersection(concat_sent_concepts) if len(concat_intersection) > 0: paper_ids.append(row['paper_id']) sentences.append(concat) sentences_cased.append(concat_cased) concepts.append(concat_intersection) # if na skip over this row else: continue print("%d sentences in %d rows" % (num_sents, index)) # make final output df df_output = pd.DataFrame(list(zip(paper_ids, sentences, sentences_cased, concepts)), columns =['paper_id', 'sentence', 'sentence_original_case', 'forecite_concepts']) print(df_output) df_output.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-batch-%d.csv" % batch_id) id = int(sys.argv[1]) twoSentenceOneConcept(id) # # make final output df for cased version- # df_output = pd.DataFrame(list(zip(paper_ids, sentences_cased, concepts)), # columns =['paper_id', 'sentence', 'forecite_concepts']) # print(df_output) # df_output.to_csv("./score-threshold-1-0/2-sentence-only-one-sent-has-fc-concept-originalcase.csv") # #---------------------------------------------------------- # # 3 sentence: noun phrase level, middle sentence has forecite concept # #---------------------------------------------------------- # # get paper ids from final 1- and 2-sentence annotations and don't include those in this dataset # df1 = pd.read_csv("../../annotations-round2/single-sentence-final-§.csv") # df2 = pd.read_csv("../../annotations-round2/2-sentence-final-§.csv") # df1_paper_ids = set(df1['paper_id']) # df2_paper_ids = set(df2['paper_id']) # all_annotated_paper_ids = df1_paper_ids | df2_paper_ids # for index, row in df.iterrows(): # # progress update # if index % 100 == 0: print('...processing row %d' % (index)) # # if this paper_id doesn't already have an annotation # if row['paper_id'] not in all_annotated_paper_ids: # # check that row is not na # if pd.notna(row['text']): # doc = nlp(row['text']) # sents = list(doc.sents) # # iterate over sentences # for s in range(1, len(sents)-1): # num_sents += 1 # count = 0 # previous_sent = sents[s-1].text.lower() # current_sent = sents[s].text.lower() # next_sent = sents[s+1].text.lower() # # if the context sentences are too short to be good, just continue # if (len(previous_sent) < 5) or (len(next_sent) < 5): # continue # else: # # get spacy noun chunks # curr_sent_concepts = set(getPhrases(nlp(current_sent))) # # get intersection of sentence concepts and all concepts # curr_intersection = concept_set.intersection(curr_sent_concepts) # concat = previous_sent + " " + current_sent + " " + next_sent # if len(curr_intersection) > 0: # paper_ids.append(row['paper_id']) # sentences.append(concat) # concepts.append(curr_intersection) # # if na skip over this row # else: continue # print("%d sentences in %d rows" % (num_sents, index)) # # make final output df # df_output = pd.DataFrame(list(zip(paper_ids, sentences, concepts)), # columns =['paper_id', 'sentence', 'forecite_concepts']) # print(df_output) # df_output.to_csv("./score-threshold-1-0/3-sentence-min1-noun-phrase.csv") #---------------------------------------------------------- # 2 continguous sentences: noun phrase level and substring level #---------------------------------------------------------- # sentence1_concepts = [] # sentence2_concepts = [] # for index, row in df.iterrows(): # # progress update # if index % 100 == 0: # print('...processing row %d' % (index)) # # check that row is not na # if pd.notna(row['text']): # doc = nlp(row['text']) # sents = list(doc.sents) # # iterate over sentences # for s in range(len(sents)-1): # num_sents += 1 # count = 0 # current_sent = sents[s].text.lower() # next_sent = sents[s+1].text.lower() # current_sent_cased = sents[s].text # next_sent_cased = sents[s+1].text # # Option 1: get spacy noun chunks # curr_sent_concepts = set(getPhrases(nlp(current_sent))) # next_sent_concepts = set(getPhrases(nlp(next_sent))) # # Option 2: get word-level substrings for spacy noun chunks # # curr_sent_concepts = set(getPhraseSubstrings(nlp(current_sent))) # # next_sent_concepts = set(getPhraseSubstrings(nlp(next_sent))) # # get intersection of sentence concepts and all concepts # curr_intersection = concept_set.intersection(curr_sent_concepts) # next_intersection = concept_set.intersection(next_sent_concepts) # # if row['paper_id'] == 12205351: # # print(curr_intersection) # # print(next_intersection) # concat = current_sent_cased + " " + next_sent_cased # if len(curr_intersection) > 0 and len(next_intersection) > 0: # paper_ids.append(row['paper_id']) # sentences.append(concat) # sentence1_concepts.append(curr_intersection) # sentence2_concepts.append(next_intersection) # # if na skip over this row # else: continue # print("%d sentences in %d rows" % (num_sents, index)) # # make final output df # df_output = pd.DataFrame(list(zip(paper_ids, sentences, sentence1_concepts, sentence2_concepts)), # columns =['paper_id', 'sentences', 'sentence1_concepts', 'sentence2_concepts']) # print(df_output) # df_output.to_csv("./score-threshold-1-0/2-contiguous-sentences-noun-phrases-only-originalcase.csv") #---------------------------------------------------------- # single sentence: noun phrase level and substring level #---------------------------------------------------------- # count = 0 # num_1concept = 0 # for index, row in df.iterrows(): # # progress update # if index % 100 == 0: # print('...processing row %d' % (index)) # # check that row is not na # if pd.notna(row['text']): # doc = nlp(row['text']) # # iterate over sentences # for sent in doc.sents: # num_sents += 1 # # count = 0 # text = sent.text.lower() # # get noun phrase level concepts # phrase_keys = getPhrases(nlp(text)) # # # get all word-level substrings concepts # # phrase_keys = getPhraseSubstrings(nlp(text)) # # make set out of phrases for this sentence # sentence_concept_set = set(phrase_keys) # # get intersection of sentence concepts and all concepts # intersection = concept_set.intersection(sentence_concept_set) # # get all single sentences with 1+ noun phrase # if len(intersection) > 0: # count+=1 # if len(intersection) == 1: # num_1concept += 1 # paper_ids.append(row['paper_id']) # concepts.append(intersection) # sentences.append(sent.text) # # if na skip over this row # else: continue # print(count) # print(num_1concept) # print("%d sentences in %d rows" % (num_sents, index)) # # make final output df # df_output = pd.DataFrame(list(zip(paper_ids, sentences, concepts)), # columns =['paper_id', 'sentence', 'forecite_concepts']) # print(df_output) # df_output.to_csv("./score-threshold-1-0/single-sentence-min1-noun-phrase-originalcase.csv")
ACCoRD-main
system/resources/forecite/get-sentences-topn-concepts.py
import pickle import pandas as pd from operator import itemgetter import numpy as np import openai from rouge_score import rouge_scorer import spacy import re #-------------------------------------------------------- openai.api_key = "sk-NzQrkRfqE5lnJPubH7faej1ZcDuz0s40qCkTTeFt" pd.set_option('display.max_colwidth', None) #-------------------------------------------------------- # unpickle concept dictionary with open('/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) print("...unpickled forecite concept dictionary") print(len(concept_dict)) # Initialize N N = 100000 # N largest values in dictionary # Using sorted() + itemgetter() + items() res = dict(sorted(concept_dict.items(), key = itemgetter(1), reverse = True)[:N]) # printing result # print("The top N value pairs are " + str(res)) concept_list = list(res.keys()) #-------------------------------------------------------- # CONCEPT LIST #-------------------------------------------------------- selected_nlp_concepts = ['adversarial training', 'beam search', 'bert', 'elmo', 'gpt', 'glove', 'word2vec', 'resnet', 'domain shift', 'ulmfit', 'newsqa', 'squad', 'imagenet', 'lstm', 'roberta', 'variational autoencoder', 'dropout', 'fasttext', 'hierarchical softmax', 'distant supervision'] #-------------------------------------------------------- df_nlp_concepts = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/nlp_concepts.csv") nlp_concept_scores = [] for index, row in df_nlp_concepts.iterrows(): # get forecite score for each nlp concept nlp_concept_scores.append(concept_dict[row['concept']]) df_nlp_concepts['score'] = nlp_concept_scores df_nlp_concepts = df_nlp_concepts[~df_nlp_concepts.concept.isin(['bert model', 'pre - train bert model', 'pre - train bert', 'moses', 'cho et al', 'dagan', 'yarowsky', 'hochreiter', 'turney', 'ney', 'och', 'grosz', 'steedman', 'well translation'])] # # top 150 nlp concepts by score # top150_nlp_concepts = df_nlp_concepts.sort_values(by='score', ascending=False)[:150]['concept'].tolist() # top 150 nlp concepts by num_papers top150_nlp_concepts = df_nlp_concepts.sort_values(by='num_papers', ascending=False)[:150]['concept'].tolist() #-------------------------------------------------------- #-------------------------------------------------------- relations = ['compare', 'isa'] version = "v1-4class" concept_set = "nlp-concepts" df_all = pd.DataFrame() for concept in top150_nlp_concepts[:20]: our_extractions_top6 = [] our_generations_top6 = [] df_concept = pd.DataFrame() for relation in relations: print(concept, relation) # load data df_concept_relation = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/%s/gpt-formatted-statements-all-s2orc-%s-%s.csv" % (version, concept_set, concept, relation)) df_concept_relation = df_concept_relation.loc[:, ~df_concept_relation.columns.str.contains('^Unnamed')] df_concept_relation = df_concept_relation.dropna() if len(df_concept_relation) != 0: # heuristic #1: remove rows with "our" in the text because we don't want references to things that can't be resolved df_concept_relation = df_concept_relation[~df_concept_relation['gpt_generation'].str.contains("our")] # heuristic #2: remove rows with "et al" in the concept b because we don't want authors names as the concept b df_concept_relation = df_concept_relation[~df_concept_relation['concept_b'].str.contains("et al")] # heuristic #3: remove rows where the conceptA occurs more than once in the generation because we don't want to explain the concept in terms of itself for index, row in df_concept_relation.iterrows(): if row['gpt_generation'].count(concept) > 1: df_concept_relation = df_concept_relation.drop(index) #-------------------------------------------------------- # append this concept-relation specific df to a df for the concept so we can select top 6 by multilabel pred score later df_concept = df_concept.append(df_concept_relation) basic_ranking_top6 = df_concept_relation.sort_values(by=['max_multilabel_pred_score'])['gpt_generation'][:6] #-------------------------------------------------------- # select rows that have conceptB == forecite concept df_concept_relation = df_concept_relation[df_concept_relation['is_conceptb_forecite']==1] # count prevalence of concept Bs df_sorted_by_conceptB_counts = df_concept_relation.groupby(['concept_b'])['concept_b'].count().to_frame(name='count').sort_values(['count'], ascending=False).apply(lambda x: x) # get frequency of concept Bs df_sorted_by_conceptB_frequency = df_concept_relation['concept_b'].value_counts(normalize=True).to_frame(name='concept_b_frequency').sort_values(['concept_b_frequency'], ascending=False).apply(lambda x: x) df_sorted_by_conceptB_frequency = df_sorted_by_conceptB_frequency.reset_index().rename(columns={'index':'concept_b'}) # print(df_sorted_by_conceptB_frequency) # group by conceptB --> select the rows with the max multilabel pred score df_concept_relation_groupby_conceptB_maxpredscore = df_concept_relation.loc[df_concept_relation.groupby("concept_b")['%s_pred_score' % relation].idxmax()] # print(df_concept_relation_groupby_conceptB_maxpredscore) # merge with concept_b frequencies df on concept_b result = pd.merge(df_sorted_by_conceptB_frequency, df_concept_relation_groupby_conceptB_maxpredscore, on="concept_b") # #save all ranked-filtered descriptions # result.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s-%s.csv" % (version, concept_set, concept, relation)) # result.to_json("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s-%s.json" % (version, concept_set, concept, relation), orient="records") #-------------------------------------------------------- # save top 3 if len(result) < 3: top = len(result) else: top = 3 result = result[:top] print(result) # result.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s-%s-top.csv" % (version, concept_set, concept, relation)) # result.to_json("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s-%s-top.json" % (version, concept_set, concept, relation), orient="records") df_all = df_all.append(result) #-------------------------------------------------------- # get top 3 descriptions for this concept-relation pair our_generations_top3 = result['gpt_generation'][:top] our_extractions_top3 = result['original_sentence'][:top] # add it to the set of top descriptions for this concept our_generations_top6.extend(our_generations_top3) our_extractions_top6.extend(our_extractions_top3) #-------------------------------------------------------- for i in range(len(our_generations_top6)): print("extraction: %s" % our_extractions_top6[i]) print("generation: %s" % our_generations_top6[i]) print("") # # FOR USER STUDY # # sort the df that includes the rows for all the relations by the max_multilabel_pred_score and select the top 6 generations # df_concept = df_concept.sort_values(by=['max_multilabel_pred_score'])['gpt_generation'][:6] # df_survey = pd.DataFrame(list(zip(our_extractions_top6, basic_ranking_top6, our_generations_top6)), columns =['Set A', 'Set B', 'Set C']) # df_survey.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/top5-sets/%s.csv" % concept) # df_all.reset_index(drop=True, inplace=True) # print(df_all) # fn = "top-150-nlp-concepts" # df_all.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s.csv" % (version, concept_set, fn)) # df_all.to_json("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s.json" % (version, concept_set, fn), orient="records")
ACCoRD-main
system/code/selection/rank-concept-gpt-formatted-statements.py
import pandas as pd import random #------------------------------------------------------------------------------------------------ # filter output from top 150 NLP concepts to only those concepts with 3+ descriptions # format demo data to only include [concept B] [elaboration] # INPUT = ../ranked-filtered/nlp-concepts/top-150-nlp-concepts.csv # OUTPUT = ../demo-data/top-nlp-concepts-with-gt-2-descriptions.csv and "".json # or = ../error-analysis-data/top-nlp-concepts-with-gt-2-descriptions.csv and "".json #------------------------------------------------------------------------------------------------ data_version = 'demo-data' df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/ranked-filtered/nlp-concepts/top-150-nlp-concepts.csv") print(df.keys()) # # select rows for error analysis spreadsheet # df = df[['paper_id','forecite_concept', 'relation', 'concept_b', 'original_sentence', 'gpt_generation']] # make paper_id into link df['paper_id'] = 'api.semanticscholar.org/CorpusId:' + df['paper_id'].astype(str) print(df) # select rows where forecite_concept has 2+ rows v = df['forecite_concept'].value_counts() df = df[df['forecite_concept'].isin(v.index[v.gt(2)])] print("number of forecite concepts with at least 3 entries: %d" % len(df['forecite_concept'].value_counts().to_list())) print(df['forecite_concept'].value_counts()) # remove forecite concept from gpt generation for demo df['gpt_generation_demo'] = df.apply(lambda L: L['gpt_generation'].replace(L['forecite_concept'] + " ", ''), axis=1) df['gpt_generation_demo'] = df.apply(lambda L: L['gpt_generation_demo'].replace('is a ', ''), axis=1) df['gpt_generation_demo'] = df.apply(lambda L: L['gpt_generation_demo'].replace('is like ', ''), axis=1) print(df['gpt_generation_demo']) ids = df['forecite_concept'].unique() random.Random(42).shuffle(ids) df = df.set_index('forecite_concept').loc[ids].reset_index() print(df) # save filtered data for demo and error analysis df.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/%s/top-nlp-concepts-with-gt-2-descriptions.csv" % data_version) df.to_json("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/%s/top-nlp-concepts-with-gt-2-descriptions.json" % data_version, orient="records")
ACCoRD-main
system/code/selection/filter-format-demo-data.py
import pandas as pd import ast import numpy as np experiment = "best-params-all-s2orc" df_preds = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/scibert-multilabel-classification/run-best-model/predictions/scibert-weightedBCE-cls/%s/seed=1-epochs=10-lr=0.000020-bs=32-%s.csv" % (experiment, experiment)) df_train_val = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-1sentence-both2sentence/union-multilabel-data-§.csv") # we don't want to consider the paper_ids that were in the training and val sets paper_ids_to_exclude = df_train_val['paper_id'] df_test = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated.csv") # df_test_undemarcated = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows.csv") # get paper ids and forecite_concepts from test data used in the best scibert-multilabel run paper_ids = df_test['paper_id'] forecite_concepts = df_test['forecite_concept'] lowercase_sentences = df_test['original_sentence'] # add these paper_ids and forecite_concepts as a column to the predictions df df_preds['paper_id'] = paper_ids df_preds['forecite_concept'] = forecite_concepts df_preds['sentence_lowercase'] = lowercase_sentences # print(len(df_preds)) # # remove paper_ids in train/val set from predictions # df_preds = df_preds[~df_preds['paper_id'].isin(paper_ids_to_exclude)] # print(len(df_preds)) # convert string predictions to list demarcated_sentences = df_preds['sentence'].tolist() paper_ids = df_preds['paper_id'].tolist() all_preds = [] for index, row in df_preds.iterrows(): temp = row['scibert_pred'].strip("[]").split() preds = [] for t in temp: preds.append(float(t)) all_preds.append(preds) all_preds = np.array(all_preds) def getSortedPredictions(all_preds, column_to_sort, category): # sort on column_to_sort of all predictions and then reverse the array to get max -> min argsort_indices = np.argsort(all_preds[:,column_to_sort])[::-1] sorted_demarcated_sentences = np.array(demarcated_sentences)[argsort_indices] sorted_lowercase_sentences = np.array(lowercase_sentences)[argsort_indices] sorted_paper_ids = np.array(paper_ids)[argsort_indices] sorted_forecite_concepts = np.array(forecite_concepts)[argsort_indices] sorted_preds = all_preds[argsort_indices] # top20_sentences = sorted_sentences[:20] # top20_preds = sorted_preds[:20] df_output = pd.DataFrame(list(zip(sorted_paper_ids, sorted_lowercase_sentences, sorted_demarcated_sentences, sorted_forecite_concepts, sorted_preds)), columns =['%s_paper_ids' % category, '%s_lowercase_sentences' % category, '%s_demarcated_sentences' % category, '%s_forecite_concepts' % category, '%s_preds' % category]) print(df_output) df_output.to_csv("/net/nfs2.s2-research/soniam/concept-rel/scibert-multilabel-classification/run-best-model/predictions/scibert-weightedBCE-cls/%s/sorted-predictions-seed=1-epochs=10-lr=0.000020-bs=32-%s.csv" % (experiment, category)) return sorted_paper_ids, sorted_lowercase_sentences, sorted_demarcated_sentences, sorted_forecite_concepts, sorted_preds # ['compare' 'is-a' 'part-of' 'used-for'] # sorted_compare_paper_ids, sorted_compare_lowercase_sentences, sorted_compare_demarcated_sentences, sorted_compare_forecite_concepts, sorted_compare_preds = getSortedPredictions(all_preds, 0, 'compare') # compare = column 0 # sorted_partof_paper_ids, sorted_partof_lowercase_sentences, sorted_partof_demarcated_sentences, sorted_partof_forecite_concepts, sorted_partof_preds = getSortedPredictions(all_preds, 2, 'partof') # part-of = column 2 # sorted_usedfor_paper_ids, sorted_usedfor_lowercase_sentences, sorted_usedfor_demarcated_sentences, sorted_usedfor_forecite_concepts, sorted_usedfor_preds = getSortedPredictions(all_preds, 3, 'usedfor') # used-for = column 3 # getSortedPredictions(all_preds, 0, 'compare') # compare = column 0 getSortedPredictions(all_preds, 2, 'partof') # part-of = column 2 getSortedPredictions(all_preds, 3, 'usedfor') # used-for = column 3 # df_output = pd.DataFrame(list(zip(sorted_compare_paper_ids, sorted_compare_sentences, sorted_compare_preds, sorted_partof_paper_ids, sorted_partof_sentences, sorted_partof_preds, sorted_usedfor_paper_ids, sorted_usedfor_sentences, sorted_usedfor_preds)), # columns =['compare_paper_id', 'compare_sentence', 'compare_pred', 'partof_paper_id', 'partof_sentence', 'partof_pred', 'usedfor_paper_id', 'usedfor_sentence', 'usedfor_pred']) # print(df_output) # df_output.to_csv("/net/nfs2.s2-research/soniam/concept-rel/scibert-multilabel-classification/run-best-model/predictions/scibert-weightedBCE-cls/%s/sorted-predictions-seed=1-epochs=1-lr=0.000020-bs=32-%s.csv" % (experiment, experiment))
ACCoRD-main
system/code/extraction/rank-multilabel-predictions.py
# Hyperparameter search for scibert model # Code borrowed from: # https://colab.research.google.com/drive/14Ea4lIzsn5EFvPpYKtWStXEByT9qmbkj?usp=sharing#scrollTo=qAYbKDu4UR6M # https://github.com/pnageshkar/NLP/blob/master/Medium/Multi_label_Classification_BERT_Lightning.ipynb # https://pytorch-lightning.readthedocs.io/en/latest/starter/introduction_guide.html # https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html #---------------------------------------------------------- import pandas as pd import numpy as np import random import torchmetrics import os.path from os import path from tqdm.auto import tqdm import ipdb import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler import transformers from transformers import * import pytorch_lightning as pl from pytorch_lightning.metrics.functional import accuracy, f1, auroc from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_lightning.loggers import TensorBoardLogger from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, multilabel_confusion_matrix from sklearn.model_selection import KFold, GroupShuffleSplit from sklearn.metrics import f1_score import matplotlib.pyplot as plt from matplotlib import rc import json #---------------------------------------------------------- LABEL = 'is_relational' # convert raw text into list of tokens using tokenizer MODEL_NAME = 'scibert' LOSS_NAME = 'softf1' EMBEDDING_TYPE = 'cls' MODEL_PATH = 'allenai/scibert_scivocab_uncased' NUM_TOKENS = 512 tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) #---------------------------------------------------------- # wrap tokenization process in a PyTorch Dataset, along with converting the labels to tensors class RelationalDataset(Dataset): def __init__(self, data: pd.DataFrame, tokenizer: tokenizer, max_token_len: int = 128): self.tokenizer = tokenizer self.data = data self.max_token_len = max_token_len def __len__(self): return len(self.data) def __getitem__(self, index: int): data_row = self.data.iloc[index] sentence = data_row.sentence paper_id = data_row.paper_id labels = data_row[LABEL] encoding = self.tokenizer.encode_plus( sentence, add_special_tokens=True, max_length=self.max_token_len, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoding['input_ids'].flatten() attention_mask = encoding['attention_mask'].flatten() return { 'paper_id': paper_id, 'sentence': sentence, 'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': torch.tensor(labels, dtype=torch.long) } #---------------------------------------------------------- # wrap custom dataset into LightningDataModule class RelationalDataModule(pl.LightningDataModule): def __init__(self, train_df, val_df, tokenizer, batch_size, max_token_len): super().__init__() self.batch_size = batch_size self.train_df = train_df self.val_df = val_df self.tokenizer = tokenizer self.max_token_len = max_token_len def setup(self, stage=None): self.train_dataset = RelationalDataset(self.train_df, self.tokenizer, self.max_token_len) self.val_dataset = RelationalDataset(self.val_df, self.tokenizer, self.max_token_len) def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=2) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=2) def test_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=2) #---------------------------------------------------------- class RelationalClassifier(pl.LightningModule): def __init__(self, n_classes: int, model_seed=None, num_epochs=None, n_training_steps=None, n_warmup_steps=None, learning_rate=None, batch_size=None): super().__init__() self.bert = AutoModel.from_pretrained(MODEL_PATH, return_dict=False) self.save_hyperparameters() self.model_seed = model_seed self.num_epochs = num_epochs self.n_training_steps = n_training_steps self.n_warmup_steps = n_warmup_steps self.learning_rate = learning_rate self.batch_size = batch_size self.tokenizer = AutoTokenizer.from_pretrained('allenai/scibert_scivocab_uncased') self.linear1 = nn.Linear(1536,768) self.linear2 = nn.Linear(768,2) self.relu = nn.ReLU() # # Normal binary cross entropy # self.loss = nn.NLLLoss() # self.softmax = nn.LogSoftmax(dim=1) # Custom loss: soft F1 loss self.loss = SoftF1Loss() self.softmax = nn.Softmax(dim=1) self.train_acc = torchmetrics.Accuracy() self.val_acc = torchmetrics.Accuracy() def forward(self, input_ids, attention_mask, labels=None): # pass the inputs to the model last_hs, cls_hs = self.bert(input_ids, attention_mask=attention_mask) # # option 1 (maxpool): max pooling over last_hs (doesn't work because there are 0s and negatives) # output = last_hs.max(dim=1)[0] # option 2 (cls): using cls embedding output = cls_hs # # option 3 (entities): some pooling of all the tokens in the span + cls embedding # span_mask = input_ids==7253 # span_mask = span_mask.cumsum(dim=1) # span_mask = torch.where(span_mask==1, span_mask, 0) # this mask has an extra 1 for the first entity marker # marker_mask = ~(input_ids==7253) # so make marker mask to identify entity demarcators # final_mask = marker_mask*span_mask # multiply to get rid of first entity marker in span mask # span = last_hs*final_mask.unsqueeze(dim=2) # get weights in last_hs for this span by sending all non-span tokens to 0 # span = torch.sum(span, dim=1) # [32, 70, 768] --> [32, 768] # num_tokens = torch.sum(final_mask, dim=1) # [32, 70] --> [32] # mean_pooled_span = torch.div(span, num_tokens.unsqueeze(dim=1)) # get average embedding by dividing sum of token embeddings by num_tokens # # markers = last_hs*marker_mask.unsqueeze(dim=2) # get entity markers # output = torch.cat((cls_hs, mean_pooled_span), dim=1) # concatenate cls embedding and mean pooled ent embeddings to get [32, 1536] embedding # if not all(x>0 for x in num_tokens): # ipdb.set_trace() # # for cls + pooled entity embedding # output = self.linear1(output) # output = self.relu(output) # output = self.linear2(output) # for cls embedding output = self.linear2(output) output = self.relu(output) output = self.softmax(output) loss = 0 if labels is not None: loss = self.loss(output, labels) return loss, output def training_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("train_loss", loss, prog_bar=True, logger=True) # log step metric self.log('train_acc', self.train_acc(outputs.argmax(dim=1), labels), on_step=True, on_epoch=False) return {"loss": loss, "predictions": outputs, "labels": labels} def validation_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("val_loss", loss, prog_bar=True, logger=True) # log step metric self.log('val_acc', self.val_acc(outputs.argmax(dim=1), labels), on_step=True, on_epoch=True) return {"loss": loss, "predictions": outputs, "labels": labels} def test_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("test_loss", loss, prog_bar=True, logger=True) return loss def training_epoch_end(self, outputs): avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.add_scalar('loss',avg_loss, self.current_epoch) # log epoch metric # self.logger.experiment.add_scalar('train_acc_epoch', self.train_acc.compute(), self.current_epoch) def validation_epoch_end(self, outputs): avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.add_scalar('loss',avg_loss, self.current_epoch) # log epoch metric # self.logger.experiment.add_scalar('val_acc_epoch', self.val_acc.compute(), self.current_epoch) def configure_optimizers(self): optimizer = AdamW(self.parameters(), lr=self.learning_rate) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.n_warmup_steps, num_training_steps=self.n_training_steps) return dict( optimizer=optimizer, lr_scheduler=dict( scheduler=scheduler, interval='step' ) ) #---------------------------------------------------------- # custom loss function for SoftF1Loss # https://gist.github.com/SuperShinyEyes/dcc68a08ff8b615442e3bc6a9b55a354 class SoftF1Loss(nn.Module): def __init__(self, epsilon=1e-7): super().__init__() self.epsilon = epsilon def forward(self, y_pred, y_true): assert y_true.ndim == 1 assert y_pred.ndim == 1 or y_pred.ndim == 2 # ipdb.set_trace() if y_pred.ndim == 2: y_pred = y_pred[:,1] tp = (y_true * y_pred).sum(dim=0).to(torch.float32) tn = ((1 - y_true) * (1 - y_pred)).sum(dim=0).to(torch.float32) fp = ((1 - y_true) * y_pred).sum(dim=0).to(torch.float32) fn = (y_true * (1 - y_pred)).sum(dim=0).to(torch.float32) precision = tp / (tp + fp + self.epsilon) recall = tp / (tp + fn + self.epsilon) f1 = 2* (precision*recall) / (precision + recall + self.epsilon) f1 = f1.clamp(min=self.epsilon, max=1-self.epsilon) return 1 - f1.mean() #---------------------------------------------------------- def runModel(train_df, val_df, test_df, num_epochs, learning_rate, batch_size, setting): # create instance of data module data_module = RelationalDataModule(train_df, val_df, tokenizer, batch_size=batch_size, max_token_len=NUM_TOKENS) # set up data module data_module.setup() # create an instance of our model # to use the scheduler, we need to calculate the number of training and warm-up steps. # The number of training steps per epoch is equal to number of training examples / batch size. # The number of total training steps is training steps per epoch * number of epochs: steps_per_epoch=len(train_df) // batch_size total_training_steps = steps_per_epoch * num_epochs warmup_steps = total_training_steps // 5 # use a fifth of the training steps for a warm-up print(warmup_steps, total_training_steps) model = RelationalClassifier( n_classes=len(LABEL), # model_seed=model_seed, num_epochs=num_epochs, n_warmup_steps=warmup_steps, n_training_steps=total_training_steps, learning_rate=learning_rate, batch_size=batch_size ) # set output directories for checkpoints and logger to model name + loss type + embedding type output_dir = "%s-%s-%s/%s" % (MODEL_NAME, LOSS_NAME, EMBEDDING_TYPE, setting) # set output filename to hyperparam combo output_file = "epochs=%d-lr=%f-bs=%d-%s" % (num_epochs, learning_rate, batch_size, setting) print(output_dir) print(output_file) checkpoint_callback = ModelCheckpoint( dirpath="checkpoints/%s" % output_dir, filename=output_file, save_top_k=1, verbose=True, monitor="val_loss", mode="min" ) logger = TensorBoardLogger("lightning_logs/%s" % output_dir, name=output_file) trainer = pl.Trainer( logger=logger, callbacks=[checkpoint_callback], max_epochs=num_epochs, gpus=1, progress_bar_refresh_rate=20 ) trainer.fit(model, data_module) print("fit model") trainer.test() # load best version of the model according to val loss # https://github.com/pykale/pykale/pull/149#discussion_r638841687 trained_model = RelationalClassifier.load_from_checkpoint( trainer.checkpoint_callback.best_model_path, n_classes=len(LABEL) ) # put model into eval mode trained_model.eval() trained_model.freeze() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') trained_model = trained_model.to(device) # get predictions dataset = RelationalDataset(test_df, tokenizer, max_token_len=NUM_TOKENS) predictions = [] labels = [] sentences = [] paper_ids = [] for item in tqdm(dataset): _, prediction = trained_model( item["input_ids"].unsqueeze(dim=0).to(device), item["attention_mask"].unsqueeze(dim=0).to(device) ) paper_ids.append(item["paper_id"]) sentences.append(item["sentence"]) predictions.append(prediction.flatten()) labels.append(item["labels"].int()) predictions = torch.stack(predictions).detach().cpu().numpy() predictions = predictions[:,1] # predictions = np.argmax(predictions, axis = 1) labels = torch.stack(labels).detach().cpu().numpy() # output preds df_preds = pd.DataFrame(list(zip(paper_ids, sentences, predictions)), columns =['paper_id', 'sentence', 'scibert_pred']) df_preds.to_csv("./predictions/%s/%s-pred-score.csv" % (output_dir, output_file)) # print(classification_report(labels, predictions)) # report = classification_report(labels, predictions, output_dict=True) # return report #---------------------------------------------------------- # # data to split into train and validation sets # cv_df = pd.read_csv("../annotations-round2/1-sentence-final-§-cv.csv") # # drop columns with null values # cv_df = cv_df[cv_df['is_relational'].notna()] # # define groups for sklearn GroupShuffleSplit # groups = cv_df['paper_id'] # output_dir = "%s-%s-%s/learning-curve-all-sentences/" % (MODEL_NAME, LOSS_NAME, EMBEDDING_TYPE) # # for this combo of parameters and this train_size # for train_size in train_sizes: # # define split # gss = GroupShuffleSplit(n_splits=2, train_size=train_size, test_size=0.1, random_state=42) # # reset results # results = {} # # go through all model seeds # for model_seed in range(1,6): # # set model seed # pl.seed_everything(model_seed) # cv_fold = 0 # count number of folds # # split into 5 partitions of train/val with fixed cv seed # for train_idx, test_idx in gss.split(X=cv_df, groups=groups): # cv_fold += 1 # train_df = cv_df.iloc[train_idx] # val_df = cv_df.iloc[test_idx] # this_combo = "seed=%d-fold=%d-epochs=%d-lr=%f-bs=%d-trainsize=%.2f" % (model_seed, cv_fold, num_epochs, learning_rate, batch_size, train_size) # print(this_combo) # print(len(train_df)) # print(len(val_df)) # # if there was already a classification report made for this combo, # # don't run model again for it # if path.exists("./classification_reports/%s/%s.json" % (output_dir, this_combo)): # print("found path") # # if this combo does NOT have a classification report, run model, save report # else: # print("path not found, running model...") # report = runModel(train_df, val_df, model_seed, cv_fold, num_epochs, learning_rate, batch_size, train_size) # results[this_combo] = report # with open('./classification_reports/%s/%s.json' % (output_dir, this_combo), 'w') as outfile: # json.dump(results, outfile) # # DELETE checkpoint regardless # print("deleting checkpoint for combo %s..." % this_combo) # if path.exists("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo)): # os.remove("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo)) #---------------------------------------------------------- # data to split into train and validation sets df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-1sentence-both2sentence/union-binary-label-data-§.csv") df = df[df['is_relational'].notna()] # drop columns with null values train_df = df[:3410] val_df = df[3411:] #------------------------ test_df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated.csv") # test_df = test_df[:100] test_df['is_relational'] = [0] * len(test_df) #------------------------ # get paper_ids of s2orc sentences that were used in data augmentation and do not use those df_compare = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/augmented-data/supplementary-compare-sentences.csv") df_partof = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/augmented-data/supplementary-partof-sentences.csv") df_usedfor = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/augmented-data/supplementary-usedfor-sentences.csv") # remove augmentation sentence paper_ids from test set augmentation_ids_to_exclude = df_compare['paper_ids'].tolist() + df_partof['paper_ids'].tolist() + df_usedfor['paper_ids'].tolist() test_df = test_df[~test_df['paper_id'].isin(augmentation_ids_to_exclude)] # remove training/val set ids from test set train_val_ids_to_exclude = df['paper_id'] test_df = test_df[~test_df['paper_id'].isin(train_val_ids_to_exclude)] #------------------------ # best params num_epochs = 10 learning_rate = 1e-5 batch_size = 16 setting = 'all-s2orc' results = {} output_dir = "%s-%s-%s/%s" % (MODEL_NAME, LOSS_NAME, EMBEDDING_TYPE, setting) this_combo = "epochs=%d-lr=%f-bs=%d-%s" % (num_epochs, learning_rate, batch_size, setting) pl.seed_everything(42) print("running model...") runModel(train_df, val_df, test_df, num_epochs, learning_rate, batch_size, setting) # DELETE checkpoint regardless print("deleting checkpoint for combo %s..." % this_combo) if path.exists("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo)): os.remove("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo))
ACCoRD-main
system/code/extraction/run-scibert-binary-classifier.py
# Hyperparameter search for scibert model # Code borrowed from: # https://colab.research.google.com/drive/14Ea4lIzsn5EFvPpYKtWStXEByT9qmbkj?usp=sharing#scrollTo=qAYbKDu4UR6M # https://github.com/pnageshkar/NLP/blob/master/Medium/Multi_label_Classification_BERT_Lightning.ipynb # https://pytorch-lightning.readthedocs.io/en/latest/starter/introduction_guide.html # https://pytorch-lightning.readthedocs.io/en/latest/common/lightning_module.html #---------------------------------------------------------- import pandas as pd import numpy as np import random import torchmetrics import os.path from os import path from tqdm.auto import tqdm import ipdb import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler import transformers from transformers import * import pytorch_lightning as pl from pytorch_lightning.metrics.functional import accuracy, f1, auroc from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping from pytorch_lightning.loggers import TensorBoardLogger from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, multilabel_confusion_matrix from sklearn.model_selection import KFold, GroupShuffleSplit from sklearn.metrics import f1_score import matplotlib.pyplot as plt from matplotlib import rc import json import ast #---------------------------------------------------------- LABEL = 'binarized_relations' # convert raw text into list of tokens using tokenizer MODEL_NAME = 'scibert' LOSS_NAME = 'weightedBCE' EMBEDDING_TYPE = 'cls' MODEL_PATH = 'allenai/scibert_scivocab_uncased' NUM_TOKENS = 512 tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH) #---------------------------------------------------------- # wrap tokenization process in a PyTorch Dataset, along with converting the labels to tensors class RelationalDataset(Dataset): def __init__(self, data: pd.DataFrame, tokenizer: tokenizer, max_token_len: int = 128): self.tokenizer = tokenizer self.data = data self.max_token_len = max_token_len def __len__(self): return len(self.data) def __getitem__(self, index: int): data_row = self.data.iloc[index] sentence = data_row.sentence labels = list(ast.literal_eval(data_row[LABEL])) encoding = self.tokenizer.encode_plus( sentence, add_special_tokens=True, max_length=self.max_token_len, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt', ) input_ids = encoding['input_ids'].flatten() attention_mask = encoding['attention_mask'].flatten() return { 'sentence': sentence, 'input_ids': input_ids , 'attention_mask': attention_mask, 'labels': torch.tensor(labels, dtype= torch.long) } #---------------------------------------------------------- # wrap custom dataset into LightningDataModule class RelationalDataModule(pl.LightningDataModule): def __init__(self, train_df, val_df, tokenizer, batch_size, max_token_len): super().__init__() self.batch_size = batch_size self.train_df = train_df self.val_df = val_df self.tokenizer = tokenizer self.max_token_len = max_token_len def setup(self, stage=None): self.train_dataset = RelationalDataset(self.train_df, self.tokenizer, self.max_token_len) self.val_dataset = RelationalDataset(self.val_df, self.tokenizer, self.max_token_len) def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=2) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=2) def test_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, num_workers=2) #---------------------------------------------------------- class RelationalClassifier(pl.LightningModule): def __init__(self, n_classes: int, model_seed=None, num_epochs=None, n_training_steps=None, n_warmup_steps=None, learning_rate=None, batch_size=None): super().__init__() self.bert = AutoModel.from_pretrained(MODEL_PATH, return_dict=False) self.save_hyperparameters() self.model_seed = model_seed self.num_epochs = num_epochs self.n_training_steps = n_training_steps self.n_warmup_steps = n_warmup_steps self.learning_rate = learning_rate self.batch_size = batch_size self.classifier = nn.Linear(self.bert.config.hidden_size, 4) self.relu = nn.ReLU() # Normal binary cross entropy (from single label classification) # self.loss = nn.NLLLoss() # self.softmax = nn.LogSoftmax(dim=1) # Binary cross entropy (multilabel classification) # Since the output is multi-label (multiple tags associated with a question), we may tend to use a Sigmoid activation function for the final output # and a Binary Cross-Entropy loss function. However, the Pytorch documentation recommends using the BCEWithLogitsLoss () function which combines a # Sigmoid layer and the BCELoss in one single class instead of having a plain Sigmoid followed by a BCELoss. # self.loss = nn.BCEWithLogitsLoss() self.loss = nn.BCEWithLogitsLoss(pos_weight=torch.full((1, 4), 2)) # # Custom loss: soft F1 loss # self.loss = SoftF1Loss() # self.softmax = nn.Softmax(dim=1) # self.train_acc = torchmetrics.Accuracy() # self.val_acc = torchmetrics.Accuracy() def forward(self, input_ids, attention_mask, labels=None): # pass the inputs to the model last_hs, cls_hs = self.bert(input_ids, attention_mask=attention_mask) # output = last_hs.max(dim=1)[0] # max pooling output = self.classifier(cls_hs) loss = 0 if labels is not None: loss = self.loss(output, labels.float()) return loss, output def training_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("train_loss", loss, prog_bar=True, logger=True) # log step metric # self.log('train_acc', self.train_acc(outputs.argmax(dim=1), labels), on_step=True, on_epoch=False) return {"loss": loss, "predictions": outputs, "labels": labels} def validation_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("val_loss", loss, prog_bar=True, logger=True) # log step metric # self.log('val_acc', self.val_acc(outputs.argmax(dim=1), labels), on_step=True, on_epoch=True) return {"loss": loss, "predictions": outputs, "labels": labels} def test_step(self, batch, batch_idx): input_ids = batch["input_ids"] attention_mask = batch["attention_mask"] labels = batch["labels"] loss, outputs = self(input_ids, attention_mask, labels) self.log("test_loss", loss, prog_bar=True, logger=True) return loss def training_epoch_end(self, outputs): avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.add_scalar('loss',avg_loss, self.current_epoch) # log epoch metric # self.logger.experiment.add_scalar('train_acc_epoch', self.train_acc.compute(), self.current_epoch) def validation_epoch_end(self, outputs): avg_loss = torch.stack([x["loss"] for x in outputs]).mean() self.logger.experiment.add_scalar('loss',avg_loss, self.current_epoch) # log epoch metric # self.logger.experiment.add_scalar('val_acc_epoch', self.val_acc.compute(), self.current_epoch) def configure_optimizers(self): optimizer = AdamW(self.parameters(), lr=self.learning_rate) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.n_warmup_steps, num_training_steps=self.n_training_steps) return dict( optimizer=optimizer, lr_scheduler=dict( scheduler=scheduler, interval='step' ) ) #---------------------------------------------------------- # custom loss function for SoftF1Loss # https://gist.github.com/SuperShinyEyes/dcc68a08ff8b615442e3bc6a9b55a354 class SoftF1Loss(nn.Module): def __init__(self, epsilon=1e-7): super().__init__() self.epsilon = epsilon def forward(self, y_pred, y_true): assert y_true.ndim == 1 assert y_pred.ndim == 1 or y_pred.ndim == 2 # ipdb.set_trace() if y_pred.ndim == 2: y_pred = y_pred[:,1] tp = (y_true * y_pred).sum(dim=0).to(torch.float32) tn = ((1 - y_true) * (1 - y_pred)).sum(dim=0).to(torch.float32) fp = ((1 - y_true) * y_pred).sum(dim=0).to(torch.float32) fn = (y_true * (1 - y_pred)).sum(dim=0).to(torch.float32) precision = tp / (tp + fp + self.epsilon) recall = tp / (tp + fn + self.epsilon) f1 = 2* (precision*recall) / (precision + recall + self.epsilon) f1 = f1.clamp(min=self.epsilon, max=1-self.epsilon) return 1 - f1.mean() #---------------------------------------------------------- # Plot precision-recall curves def plotPrecisionRecallCurve(Y_test, y_score, output_dir, output_file): n_classes = Y_test.shape[1] # For each class precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(Y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(Y_test, y_score, average="micro") print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) #---------------------------------------------------------- # # Plot the micro-averaged Precision-Recall curve¶ # plt.figure() # plt.step(recall['micro'], precision['micro'], where='post') # plt.xlabel('Recall') # plt.ylabel('Precision') # plt.ylim([0.0, 1.05]) # plt.xlim([0.0, 1.0]) # plt.title( # 'Average precision score, micro-averaged over all classes: AP={0:0.2f}' # .format(average_precision["micro"])) # plt.savefig("micro-averaged-precision-recall-curve.png") #---------------------------------------------------------- # Plot Precision-Recall curve for each class and iso-f1 curves from itertools import cycle # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(7, 8)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.25) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title(output_file) plt.legend(lines, labels, loc=(0, -.38), prop=dict(size=14)) plt.savefig("./precision-recall-curves/%s/%s.png" % (output_dir,output_file)) #---------------------------------------------------------- def runModel(train_df, val_df, test_df, model_seed, num_epochs, learning_rate, batch_size): # create instance of data module data_module = RelationalDataModule(train_df, val_df, tokenizer, batch_size=batch_size, max_token_len=NUM_TOKENS) # set up data module data_module.setup() # create an instance of our model # to use the scheduler, we need to calculate the number of training and warm-up steps. # The number of training steps per epoch is equal to number of training examples / batch size. # The number of total training steps is training steps per epoch * number of epochs: steps_per_epoch=len(train_df) // batch_size total_training_steps = steps_per_epoch * num_epochs warmup_steps = total_training_steps // 5 # use a fifth of the training steps for a warm-up print(warmup_steps, total_training_steps) model = RelationalClassifier( n_classes=len(LABEL), model_seed=model_seed, num_epochs=num_epochs, n_warmup_steps=warmup_steps, n_training_steps=total_training_steps, learning_rate=learning_rate, batch_size=batch_size ) # set output directories for checkpoints and logger to model name + loss type + embedding type output_dir = "%s-%s-%s/%s" % (MODEL_NAME, LOSS_NAME, EMBEDDING_TYPE, experiment) # set output filename to hyperparam combo output_file = "seed=%d-epochs=%d-lr=%f-bs=%d-%s" % (model_seed, num_epochs, learning_rate, batch_size, experiment) print(output_dir) print(output_file) checkpoint_callback = ModelCheckpoint( dirpath="checkpoints/%s" % output_dir, filename=output_file, save_top_k=1, verbose=True, monitor="val_loss", mode="min" ) logger = TensorBoardLogger("lightning_logs/%s" % output_dir, name=output_file) trainer = pl.Trainer( logger=logger, callbacks=[checkpoint_callback], max_epochs=num_epochs, gpus=1, progress_bar_refresh_rate=20, track_grad_norm=2 ) trainer.fit(model, data_module) print("fit model") trainer.test() # load best version of the model according to val loss # https://github.com/pykale/pykale/pull/149#discussion_r638841687 trained_model = RelationalClassifier.load_from_checkpoint( trainer.checkpoint_callback.best_model_path, n_classes=len(LABEL) ) # put model into eval mode trained_model.eval() trained_model.freeze() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') trained_model = trained_model.to(device) # get predictions dataset = RelationalDataset(test_df, tokenizer, max_token_len=NUM_TOKENS) predictions = [] labels = [] sentences = [] for item in tqdm(dataset): _, prediction = trained_model( item["input_ids"].unsqueeze(dim=0).to(device), item["attention_mask"].unsqueeze(dim=0).to(device) ) sentences.append(item["sentence"]) predictions.append(prediction.flatten()) # labels.append(item["labels"].int()) predictions = torch.stack(predictions).detach().cpu().numpy() # upper, lower = 1, 0 # predictions = np.where(predictions > 0.5, upper, lower) # labels = torch.stack(labels).detach().cpu().numpy() # output preds df_preds = pd.DataFrame(list(zip(sentences, predictions)), columns =['sentence', 'scibert_pred']) df_preds.to_csv("./predictions/%s/%s.csv" % (output_dir, output_file)) # print(classification_report(labels, predictions, zero_division=0)) # report = classification_report(labels, predictions, output_dict=True, zero_division=0) # return report #---------------------------------------------------------- # Train set: use ALL annotations (both cv and held out test sets since we're running on the 170k new sentences) df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-1sentence-both2sentence/union-multilabel-data-§-quality-control-with-contrast-class.csv") train_df = df[:3510] val_df = df[3511:] print(len(train_df)) print(len(val_df)) # Test set: all 2sentence-1concepts rows from the 6 batches of s2orc metadata test_df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated.csv") # test_df = test_df[:100] test_df['binarized_relations'] = ["[0, 0, 0]"] * len(test_df) print(len(test_df)) # run best model and test on held-out test set # best params num_epochs = 10 learning_rate = 5e-5 batch_size = 32 model_seed = 42 pl.seed_everything(model_seed) results = {} experiment = "best-params-all-s2orc" output_dir = "%s-%s-%s/%s" % (MODEL_NAME, LOSS_NAME, EMBEDDING_TYPE, experiment) this_combo = "seed=%d-epochs=%d-lr=%f-bs=%d-%s" % (model_seed, num_epochs, learning_rate, batch_size, experiment) # run model print("running model...") runModel(train_df, val_df, test_df, model_seed, num_epochs, learning_rate, batch_size) # DELETE checkpoint regardless print("deleting checkpoint for combo %s..." % this_combo) if path.exists("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo)): os.remove("./checkpoints/%s/%s.ckpt" % (output_dir, this_combo))
ACCoRD-main
system/code/extraction/run-scibert-multilabel-classifier.py
import pickle import pandas as pd from operator import itemgetter import numpy as np import seaborn as sns import matplotlib.pyplot as plt from os.path import exists #-------------------------------------------------------- # unpickle concept dictionary with open('/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) print("...unpickled forecite concept dictionary") # Initialize N N = 50 # N largest values in dictionary # Using sorted() + itemgetter() + items() res = dict(sorted(concept_dict.items(), key = itemgetter(1), reverse = True)[:N]) # printing result # print("The top N value pairs are " + str(res)) concept_list = list(res.keys()) # print(concept_list) #-------------------------------------------------------- df_nlp_concepts = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/nlp_concepts.csv") nlp_concept_scores = [] for index, row in df_nlp_concepts.iterrows(): # get forecite score for each nlp concept nlp_concept_scores.append(concept_dict[row['concept']]) df_nlp_concepts['score'] = nlp_concept_scores df_nlp_concepts = df_nlp_concepts[~df_nlp_concepts.concept.isin(['bert model', 'pre - train bert model', 'pre - train bert', 'moses', 'cho et al', 'dagan', 'yarowsky', 'hochreiter', 'turney', 'ney', 'och', 'grosz', 'steedman', 'well translation'])] # # top 150 nlp concepts by score # top150_nlp_concepts = df_nlp_concepts.sort_values(by='score', ascending=False)[:150]['concept'].tolist() # top 150 nlp concepts by num_papers top150_nlp_concepts = df_nlp_concepts.sort_values(by='num_papers', ascending=False)[:150]['concept'].tolist() print(top150_nlp_concepts) selected_nlp_concepts = ['adversarial training', 'beam search', 'bert', 'elmo', 'gpt', 'glove', 'word2vec', 'resnet', 'domain shift', 'ulmfit', 'newsqa', 'squad', 'random forest', 'imagenet', 'lstm', 'roberta', 'variational autoencoder', 'dropout', 'fasttext', 'hierarchical softmax', 'distant supervision'] relations = ['compare','isa'] #-------------------------------------------------------- # 1) PLOT NUMBER OF DESCRIPTIONS BEFORE RANKING FILTERING #-------------------------------------------------------- description_counts = [] relation_counts = [] concept_counts = [] isa_counts = [] compare_counts = [] version = "v1-4class/nlp-concepts" for concept in top150_nlp_concepts: df_concept = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/top-n-forecite-concept-source-sentences/%s/scibert-multilabel-binary-predictions-all-s2orc-with-forecite-%s.csv" % (version, concept)) df_concept = df_concept.loc[:, ~df_concept.columns.str.contains('^Unnamed')] if len(df_concept) == 0: continue for index, relation in enumerate(relations): df_concept_relation = df_concept[df_concept['%s_pred_score' % relation]>0] # add to df to plot concept_counts.append(concept) relation_counts.append(relation) description_counts.append(len(df_concept_relation)) if relation == "compare": compare_counts.append(len(df_concept_relation)) elif relation == "isa": isa_counts.append(len(df_concept_relation)) print(sum(isa_counts)/len(isa_counts)) print(sum(compare_counts)/len(compare_counts)) # plot for first N concepts (by number of papers) num_concepts = 50 df_counts = pd.DataFrame(list(zip(concept_counts, relation_counts, description_counts)), columns =['concept', 'relation', 'num_descriptions']) df_counts_isa = df_counts[df_counts['relation']=="isa"].sort_values(by='num_descriptions', ascending=False)[:num_concepts] df_counts_compare = df_counts[df_counts['relation']=="compare"].sort_values(by='num_descriptions', ascending=False)[:num_concepts] # # plot compare # sns.catplot(data=df_counts_compare, x="concept", y="num_descriptions", col="relation", kind="bar", height=5, aspect=3) # plt.xticks(rotation='vertical') # plt.savefig("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/plots/description-counts-compare.pdf", bbox_inches="tight") # # plot isa # sns.catplot(data=df_counts_isa, x="concept", y="num_descriptions", col="relation", kind="bar", height=5, aspect=3) # plt.xticks(rotation='vertical') # plt.savefig("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/plots/description-counts-isa.pdf", bbox_inches="tight") #-------------------------------------------------------- # GET STATS FOR NUMBER OF CONCEPT Bs per CONCEPT A #-------------------------------------------------------- version = "v1-4class" concept_set = "nlp-concepts" relations = ['compare', 'isa'] concepta_conceptb_counts = [] relation_conceptb_counts = [] conceptb_counts = [] isa_counts = [] compare_counts = [] for concept in top150_nlp_concepts: for index, relation in enumerate(relations): file_path = "/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/ranked-filtered/%s/%s-%s.csv" % (version, concept_set, concept, relation) if exists(file_path): df_ranked_filtered_concept_relation = pd.read_csv(file_path) else: continue # skip if file doesn't have any descriptions if len(df_ranked_filtered_concept_relation) == 0: continue concepta_conceptb_counts.append(concept) relation_conceptb_counts.append(relation) conceptb_counts.append(len(df_ranked_filtered_concept_relation)) if relation == "compare": compare_counts.append(len(df_ranked_filtered_concept_relation)) elif relation == "isa": isa_counts.append(len(df_ranked_filtered_concept_relation)) print(sum(isa_counts)/len(isa_counts)) print(sum(compare_counts)/len(compare_counts)) num_concepts = 150 df_counts = pd.DataFrame(list(zip(concepta_conceptb_counts, relation_conceptb_counts, conceptb_counts)), columns =['concept', 'relation', 'num_concept_bs']) df_counts_isa = df_counts[df_counts['relation']=="isa"].sort_values(by='num_concept_bs', ascending=False)[:num_concepts] df_counts_compare = df_counts[df_counts['relation']=="compare"].sort_values(by='num_concept_bs', ascending=False)[:num_concepts] # plot compare fig, axs = plt.subplots(1, 2, figsize=(4, 3)) plt.setp(axs, ylim=(0,41)) sns.histplot(data=df_counts_isa, x="num_concept_bs", color="darkcyan", ax=axs[0]) sns.histplot(data=df_counts_compare, x="num_concept_bs", color="darkorange", ax=axs[1]) # sns.catplot(x="num_concept_bs", col="relation", data=df_counts, kind="count", height=4, aspect=.7); # sns.histplot(data=df_counts, x="num_concept_bs", hue="relation") plt.savefig("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/v1-4class/plots/conceptb-counts-histogram.pdf", bbox_inches="tight")
ACCoRD-main
system/code/generation/analyze-description-diversity.py
import pickle import pandas as pd from operator import itemgetter import numpy as np import openai from rouge_score import rouge_scorer import spacy import re import seaborn as sns import matplotlib.pyplot as plt #-------------------------------------------------------- openai.api_key = "" # 4class: ['compare' 'is-a' 'part-of' 'used-for'] # 3class: ['compare', contrast, 'is-a'] sum_len = 0 selected_nlp_concepts = ['adversarial training', 'beam search', 'bert', 'elmo', 'gpt', 'glove', 'word2vec', 'resnet', 'domain shift', 'ulmfit', 'newsqa', 'squad', 'random forest', 'imagenet', 'lstm', 'roberta', 'variational autoencoder', 'dropout', 'fasttext', 'hierarchical softmax', 'distant supervision'] relations = ['compare','isa'] #-------------------------------------------------------- # unpickle concept dictionary with open('/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) print("...unpickled forecite concept dictionary") # Initialize N N = 50 # N largest values in dictionary # Using sorted() + itemgetter() + items() res = dict(sorted(concept_dict.items(), key = itemgetter(1), reverse = True)[:N]) # printing result # print("The top N value pairs are " + str(res)) concept_list = list(res.keys()) # print(concept_list) #-------------------------------------------------------- df_nlp_concepts = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/nlp_concepts.csv") nlp_concept_scores = [] for index, row in df_nlp_concepts.iterrows(): # get forecite score for each nlp concept nlp_concept_scores.append(concept_dict[row['concept']]) df_nlp_concepts['score'] = nlp_concept_scores df_nlp_concepts = df_nlp_concepts[~df_nlp_concepts.concept.isin(['bert model', 'pre - train bert model', 'pre - train bert', 'moses', 'cho et al', 'dagan', 'yarowsky', 'hochreiter', 'turney', 'ney', 'och', 'grosz', 'steedman', 'well translation'])] # # top 150 nlp concepts by score # top150_nlp_concepts = df_nlp_concepts.sort_values(by='score', ascending=False)[:150]['concept'].tolist() # top 150 nlp concepts by num_papers top150_nlp_concepts = df_nlp_concepts.sort_values(by='num_papers', ascending=False)[:150]['concept'].tolist() print(top150_nlp_concepts) #-------------------------------------------------------- #-------------------------------------------------------- # set up spacy nlp = spacy.load("en_core_web_md") tokenizer = nlp.tokenizer nlp.add_pipe("sentencizer") all_stopwords = nlp.Defaults.stop_words def getConceptB(generation, concept): # get concept B by selecting the second noun chunk doc = nlp(generation) noun_chunks = list(doc.noun_chunks) # if the generation is not valid: make conceptb an empty string if (len(noun_chunks) <= 1) or (generation == " variable HYDRA_FULL_ERROR=1 for a complete stack tra"): print("concept b not found") concept_b = "" # conceptbs.append("") # if the generation is valid and "used-for": elif re.search('<ENT> is used (to|for)', generation): find_used = re.search('used (to|for)', generation) end = find_used.span()[1] # get index of end of "is" concept_b = generation[end+1:] # conceptbs.append(generation[end+1:]) # index into generation with these indices, removing leading and trailing spaces # if the generation is valid and "compare": elif re.search('is like(.*)in that they are both', generation): find_is = re.search('is like', generation) find_that = re.search('in that they', generation) end = find_is.span()[1] # get index of end of "is" start = find_that.span()[0] # get index of beginning of "that" concept_b = generation[end+1:start-1] # conceptbs.append(generation[end+1:start-1]) # index into generation with these indices, removing leading and trailing spaces # if the generation is valid and "compare": elif re.search('is an alternative (to|for)(.*)that', generation): find_is = re.search('is an alternative (to|for)', generation) find_that = re.search('that', generation) end = find_is.span()[1] # get index of end of "is" start = find_that.span()[0] # get index of beginning of "that" concept_b = generation[end+1:start-1] # conceptbs.append(generation[end+1:start-1]) # index into generation with these indices, removing leading and trailing spaces # if the generation is valid and "used-for": elif re.search('is (a|an)(.*)that', generation): find_is = re.search('is (a|an)', generation) find_that = re.search('that', generation) end = find_is.span()[1] # get index of end of "is" start = find_that.span()[0] # get index of beginning of "that" concept_b = generation[end+1:start-1] # conceptbs.append(generation[end+1:start-1]) # index into generation with these indices, removing leading and trailing spaces # all other relation types else: concept_b = "" # iterate through noun chunks to find first valid one for chunk in noun_chunks: if ("ENT" in chunk.text) or ("type" in chunk.text) or (concept in chunk.text): continue else: concept_b = chunk break # check if concept_b is a string, because it has no .text parameter if isinstance(concept_b, str): print(concept_b) # if the first word of this noun phrase is "a" or "an", select all words past that word else: if (concept_b[0].text == "a") or (concept_b[0].text == "an") or (concept_b[0].text == "the"): concept_b = concept_b[1:] # even if the concept didn't have an article or anything, save it's .text version concept_b = concept_b.text # remove any punctuation or special characters from final value appended # concept_b = re.sub('[^A-Za-z0-9- ]+', '', concept_b) return concept_b #-------------------------------------------------------- def getGPTOutput(j, best_sentences, best_formatted_statements, df_supplementary_sentences, relation, generations, conceptbs, is_conceptb_forecite, conceptb_forecite_score, rouge1, rouge2, rougeL, scorer, relations): # print("GENERATIONS FOR %s CLASS" % relation) prompt = "Describe the provided concept in terms of another concept in the text. \n\n" # prompt examples for i in range(len(best_sentences)): text = "Text: " + best_sentences[i] + "\n" concept_description = "Concept description: " + best_formatted_statements[i] + "\n" separator = "###" + "\n" prompt += text + concept_description + separator prompt_examples = prompt # supplementary sentence we want a generation for row = df_supplementary_sentences.iloc[j] sentence = row['original_sentence'] concept = row['forecite_concept'] # recover the original case of the sentence from the undemarcated dataframe by searching for the lowercase sentence # sentence_original_case = df_all_rows_original_case.loc[df_all_rows_original_case['sentence'] == sentence]['sentence_original_case'].item() prompt += "Text: " + sentence + "\n" prompt += "Concept description: " + concept if relation == "compare": prompt += " is like" elif relation == "used-for": prompt += " can be used for" elif relation == "isa": prompt += " is a" elif relation == "part-of": prompt += " is a part of" # print(prompt) response = openai.Completion.create(engine="davinci-instruct-beta", prompt=prompt, max_tokens=300, temperature=0, frequency_penalty=1, echo=True, stop="\n") # print(response['choices'][0]['text']) generation = response['choices'][0]['text'].splitlines()[-1] generation = generation[21:] conceptb = getConceptB(generation, concept) generations.append(generation) scores = scorer.score(sentence, generation) rouge1.append(scores['rouge1'][2]) rouge2.append(scores['rouge2'][2]) rougeL.append(scores['rougeL'][2]) conceptbs.append(conceptb) relations.append(relation) if conceptb in concept_dict.keys(): is_conceptb_forecite.append(1) conceptb_forecite_score.append(concept_dict[conceptb]) else: is_conceptb_forecite.append(0) conceptb_forecite_score.append("") print(sentence) print("--> " + generation) print("--> " + conceptb) # print(scores['rouge1'][2]) # print(scores['rouge2'][2]) print(scores['rougeL'][2]) print(row['max_multilabel_pred_score']) print("") #---------------------------------------------------------- def getGPTGenerationsForRelation(relation, concept, df_annotations, best_sentences, best_formatted_statements): annotations_generations = [] rouge1 = [] rouge2 = [] rougeL = [] conceptbs = [] is_conceptb_forecite = [] conceptb_forecite_score = [] relations = [] # convert prompt examples to lowercase best_sentences = list(map(lambda x: x.lower(), best_sentences)) best_formatted_statements = list(map(lambda x: x.lower(), best_formatted_statements)) # remove sentences that are in prompt examples df_annotations = df_annotations[~df_annotations['original_sentence'].isin(best_sentences)] print(df_annotations) scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True) for a in range(len(df_annotations)): getGPTOutput(a, best_sentences, best_formatted_statements, df_annotations, relation, annotations_generations, conceptbs, is_conceptb_forecite, conceptb_forecite_score, rouge1, rouge2, rougeL, scorer, relations) df_annotations['gpt_generation'] = annotations_generations df_annotations['concept_b'] = conceptbs df_annotations['is_conceptb_forecite'] = is_conceptb_forecite df_annotations['conceptb_forecite_score'] = conceptb_forecite_score df_annotations['relation'] = relations df_annotations['rouge1'] = rouge1 df_annotations['rouge2'] = rouge2 df_annotations['rougeL'] = rougeL print(len(df_annotations)) df_annotations.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/%s/gpt-formatted-statements-all-s2orc-%s-%s.csv" % (version, concept, relation)) #---------------------------------------------------------- best_isa_sentences = ["although word2vec has successfully been used to learn word embeddings, these kinds of word embeddings capture only co-occurrence relationships between words (levy and goldberg, 2014) .", "there currently exist many software tools for short read alignment, including soap2 [15] , bwa [14] , and bowtie2", "this paper presents the spatial hypertext wiki as a collaborative tool for supporting creativity in the re process.", "cnn architecture consists of several types of layers including convolution, pooling, and fully connected. the network expert has to make multiple choices while designing a cnn such as the number and ordering of layers, the hyperparameters for each type of layer (receptive field size, stride, etc.).", "nodetrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and intercluster edges as curves connecting the matrix boundaries. we study the complexity of constructing nodetrix representations focusing on planarity testing problems, and we show several np-completeness results and some polynomial-time algorithms.", "unlike traditional word embeddings that represent words with fixed vectors, these embedding models encode both words and their contexts and generate context-specific representations. while contextualized embeddings are useful, we observe that a language model-based embedding model, elmo (peters et al., 2018) , cannot accurately capture the semantic equivalence of contexts."] best_isa_formatted_statements = ["word2vec is a word embedding that captures only co-occurrence relationships between words.", "soap2 is a software tool for short read alignment.", "Spatial hypertext wiki is a collaborative tool that is used for supporting creativity in the re process.", "stride is a hyperparameter for layers in a cnn.", "nodetrix representations are a way to visualize clustered graphs that represent clusters as adjacency matrices and intercluster edges as curves connecting the matrix boundaries. ", "elmo is a language model-based embedding model that cannot accurately capture the semantic equivalence of contexts."] #---------------------------------------------------------- # best_compare_sentences = ["Recently, many NLP tasks have shown great improvements thanks to pre-trained language models. Models such as ELMo [10] , BERT [3] and GPT [11] include a large language model or contextual embedder with hundreds of millions of parameters trained on large datasets and were shown to produce state-of-the-art models for many NLP tasks, including low-resource scenarios where very little annotated data is available.", # "OrthoDisease (9) and PhenomicDB (8, 26) are two other resources that allow researchers to look simultaneously at all available phenotypes for an orthologous gene group. The PhenomicDB and OrthoDisease are useful resources integrating the phenotypes with the homologous genes from a variety of species.", # "Highway Networks [7] and Residual Networks [1] are the latest methods to tackle this problem. These network architectures introduce skip connections, which allow flow of information to later layers, empowering deeper networks with better accuracy.", # "MCG is affected less by conductivity variations in the body (lungs, muscles, and skin) than ECG. In addition, because MCG is a fully non-contact method, therefore problems in the skinelectrode contact as encountered in ECG are avoided (Kanzaki et al., 2003; Tsukada et al., 1999; Tavarozzi et al., 2002) .", # "In contrast to Pwrake and GXP Make, Snakemake does not rely on any password-less SSH setup or custom server processes running on the cluster nodes. Finally, Snakemake is the first system to support file name inference with multiple named wildcards in rules.", # "the multidimensional frequencies of a single component is treated as a whole, and the probability density function is projected as independent univariate von mises distribution to perform tractable inference."] # # alternate compare: "We refer the reader to [20] for a mathematical formulation of multilayer networks, of which multiplex networks are a subset. Unlike a multilayer network, a multiplex network only allows for a single type of inter-layer connections via which any given node is connected only to its counterpart nodes in the other layers." # best_compare_formatted_statements = ["ELMo is like BERT in that they are both pre-trained language models that include a large language model or contextual embedder with hundreds of millions of parameters trained on large datasets and were shown to produce state-of-the-art models for many nlp tasks, including low-resource scenarios where very little annotated data is available.", # "PhenomicDB is like OrthoDisease in that they are both resources that allow researchers to look simultaneously at all available phenotypes for an orthologous gene group and are useful resources integrating the phenotypes with the homologous genes from a variety of species.", # "Residual Networks are like Highway Networks in that they are both network architectures that introduce skip connections, which allow flow of information to later layers, empowering deeper networks with better accuracy.", # "MCG is like ECG, except MCG is affected less by conductivity variations in the body (lungs, muscles, and skin).", # "Snakemake is like Pwrake, except Snakemake does not rely on any password-less ssh setup or custom server processes running on the cluster nodes.", # "reinforcement learning is like motivated learning except that reinforcement learning only has a single value function, relies only on externally set objectives, maximizes its reward (and is therefore unstable), and is always active."] #---------------------------------------------------------- # REVISION FOR 3CLASS SETTING and v1-4CLASS: SEPARATE COMPARE AND CONTRAST EXAMPLES #---------------------------------------------------------- best_compare_sentences = ["Recently, many NLP tasks have shown great improvements thanks to pre-trained language models. Models such as ELMo [10] , BERT [3] and GPT [11] include a large language model or contextual embedder with hundreds of millions of parameters trained on large datasets and were shown to produce state-of-the-art models for many NLP tasks, including low-resource scenarios where very little annotated data is available.", "OrthoDisease (9) and PhenomicDB (8, 26) are two other resources that allow researchers to look simultaneously at all available phenotypes for an orthologous gene group. The PhenomicDB and OrthoDisease are useful resources integrating the phenotypes with the homologous genes from a variety of species.", "Highway Networks [7] and Residual Networks [1] are the latest methods to tackle this problem. These network architectures introduce skip connections, which allow flow of information to later layers, empowering deeper networks with better accuracy.", "similarly to ftg+pm, wires [41] supports the specification and execution of model transformation workflows.", "like the nevanlinna-pick interpolation problem, the covariance extension problem has deep roots in the mathematical literature [2] and have numerous applications in various engineering fields, ranging from systems theory [3] , [4] to control design [5] and signal processing [6] ."] # alternate compare: "We refer the reader to [20] for a mathematical formulation of multilayer networks, of which multiplex networks are a subset. Unlike a multilayer network, a multiplex network only allows for a single type of inter-layer connections via which any given node is connected only to its counterpart nodes in the other layers." best_compare_formatted_statements = ["ELMo is like BERT in that they are both pre-trained language models that include a large language model or contextual embedder with hundreds of millions of parameters trained on large datasets and were shown to produce state-of-the-art models for many nlp tasks, including low-resource scenarios where very little annotated data is available.", "PhenomicDB is like OrthoDisease in that they are both resources that allow researchers to look simultaneously at all available phenotypes for an orthologous gene group and are useful resources integrating the phenotypes with the homologous genes from a variety of species.", "Residual Networks are like Highway Networks in that they are both network architectures that introduce skip connections, which allow flow of information to later layers, empowering deeper networks with better accuracy.", "ftg+pm is like wires in that they both support the specification and execution of model transformation workflows.", "covariance extension problem is like the nevanlinna-pick interpolation problem in that they are both problems that have deep roots in the mathematical literature and have numerous applications in various engineering fields, ranging from systems theory, to control design and signal processing."] #---------------------------------------------------------- best_contrast_sentences = ["MCG is affected less by conductivity variations in the body (lungs, muscles, and skin) than ECG. In addition, because MCG is a fully non-contact method, therefore problems in the skinelectrode contact as encountered in ECG are avoided (Kanzaki et al., 2003; Tsukada et al., 1999; Tavarozzi et al., 2002) .", "In contrast to Pwrake and GXP Make, Snakemake does not rely on any password-less SSH setup or custom server processes running on the cluster nodes. Finally, Snakemake is the first system to support file name inference with multiple named wildcards in rules.", "in comparison to reinforcement learning, a motivated learning (ml) agent has multiple value functions, sets its own objectives, solves the minimax problem, is stable, and acts when needed. in contrast, a reinforcement learning (rl) agent typically only has a single value function, relies only on externally set objectives, maximizes its reward (and is therefore unstable), and is always active.", "suitable data for the vqg task can come from standard image datasets on which questions have been manually annotated, such as v qg coco, v qg f lickr, v qg bing (mostafazadeh et al., 2016), each consisting of 5000 images with 5 questions per image. alternatively, vqg samples can be derived from visual question answering datasets, such as v qa1.0 (antol et al., 2015), by \"reversing\" them (taking images as inputs and questions as outputs).", "uchime either uses a database of chimera-free sequences or detects chimeras de novo by exploiting abundance data. uchime has better sensitivity than chimeraslayer (previously the most sensitive database method), especially with short, noisy sequences.", "partially labeled lda (plda) extends labeled lda to incorporate per-label latent topics (ramage et al., 2011)."] best_contrast_formatted_statements = ["MCG is like ECG, except MCG is affected less by conductivity variations in the body (lungs, muscles, and skin).", "Snakemake is like Pwrake, except Snakemake does not rely on any password-less ssh setup or custom server processes running on the cluster nodes.", "reinforcement learning is like motivated learning except that reinforcement learning only has a single value function, relies only on externally set objectives, maximizes its reward (and is therefore unstable), and is always active.", "v qg coco is like v qa1.0, except v qg coco is a standard image dataset and v qa1.0 is a visual question answering dataset.", "uchime is like chimeraslayer except that it has better sensitivity, especially with short, noisy sequences.", "partially labeled lda (plda) is like labeled lda, except partially labeled lda incorporates per-label latent topics."] #---------------------------------------------------------- best_usedfor_sentences = ["In [24] , for example, the need to construct the cloaking regions and to receive the responses from the server through other users can considerably degrade the service. Many obfuscation-based techniques are based on k-anonymity, which has been shown inadequate to protect privacy [8] , [25] .", "Recently, hashing methods have been widely used in ANN search. They usually learn a hamming space which is refined to maintain similarity between features Song et al., 2018c;", "Perhaps even more promising and exciting, however, is recent work on using Reo for programming multicore applications. When it comes to multicore programming, Reo has a number of advantages over conventional programming languages, which feature a fixed set of low-level synchronization constructs (locks, mutexes, etc.).", "Supercompilation is a program transformation technique that was first described by V. F. Turchin in the 1970s. In supercompilation, Turchin's relation as a similarity relation on call-stack configurations is used both for call-by-value and call-by-name semantics to terminate unfolding of the program being transformed.", "Recently, convolutional networks have been used for automatic feature extraction of large image databases, where they have obtained state-of-the-art results. In this work we introduce EEGNet, a compact fully convolutional network for EEG-based BCIs developed using Deep Learning approaches."] # alternate used-for: "Convolutional neural networks (CNN) in recommendation systems have been used to capture localized item feature representations of music [31] , text [16, 29] and images [40] . Previous methods represent text as bag-of-words representations, CNN overcomes this limitation by learning weight filters to identify the most prominent phrases within the text." best_usedfor_formatted_statements = ["K-anonymity can be used for many obfuscation-based techniques, which has been shown inadequate to protect privacy.", "Hashing methods can be used in ANN search to usually learn a hamming space which is refined to maintain similarity between features.", "Reo can be used for programming multicore applications.", "Turchin's relation can be used for call-by-value and call-by-name semantics to terminate unfolding of the program being transformed in supercompilation.", "Convolutional networks can be used for automatic feature extraction of large image databases, where they have obtained state-of-the-art results."] #---------------------------------------------------------- best_partof_sentences = ["The pose graph is constructed by using spatial human poses (black dots and lines), spatial object poses (red dots and lines), and temporal connections (blue lines). In spatial and temporal domains, the graph is used as the input to GCNs.", "In fact, cosegmentations promise to be useful in other bioimaging (and eventually image processing) applications beyond cell tracking. One straightforward application where cosegmentation is of high relevance are protein colocalization studies.", "Sparse coding problems assume the data y can be represented as a sparse linear combination of columns (features) of a matrix H, termed a dictionary. Given the dictionary H, methods such as orthogonal matching pursuit [1] and basis pursuit [2] find the sparse representation.", "In this work, the graphs we consider have a special structure, in the form of a multiplex network, in the sense that each graph can be decomposed into a sequence of subgraphs, each of which corresponds to a layer of the network, and there exist interconnections linking nodes across different layers. We refer the reader to [20] for a mathematical formulation of multilayer networks, of which multiplex networks are a subset.", "CNNs perform very well on any visual recognition tasks. The CNN architecture consists of special layers called convolutional layers and pooling layers."] best_partof_formatted_statements = ["The pose graph is a part of spatial and temporal domains that is constructed by using spatial human poses (black dots and lines), spatial object poses (red dots and lines), and temporal connections (blue lines).", "Cosegmentation is a part of protein colocalization studies.", "Sparse linear combinations are a part of sparse coding problems that represents the data y in the columns (features) of a matrix h, termed a dictionary.", "Multiplex networks are a part of multilayer networks, that can decompose each graph into a sequence of subgraphs, each of which corresponds to a layer of the network, and there exist interconnections linking nodes across diferent layers.", "Pooling layers are part of CNN architectures."] #---------------------------------------------------------- #---------------------------------------------------------- version = "v1-4class/nlp-concepts" for concept in top150_nlp_concepts: df_concept = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/top-n-forecite-concept-source-sentences/%s/scibert-multilabel-binary-predictions-all-s2orc-with-forecite-%s.csv" % (version, concept)) df_concept = df_concept.loc[:, ~df_concept.columns.str.contains('^Unnamed')] if len(df_concept) == 0: continue for index, relation in enumerate(relations): # select the rows that belong to the same relation df_concept_relation = df_concept[df_concept['%s_pred_score' % relation]>0] # drop duplicate source text df_concept_relation = df_concept_relation.drop_duplicates(subset=['original_sentence']) print(concept, relation, len(df_concept_relation)) # generate for only top N extractions to minimize GPT costs top_N = 100 if len(df_concept_relation) > top_N: # sort by max multilabel pred score and take the highest N df_concept_relation = df_concept_relation.sort_values('%s_pred_score' % relation, ascending=False) df_concept_relation = df_concept_relation[:top_N] print(len(df_concept_relation)) # add to running total of number of descriptions sum_len+=len(df_concept_relation) if relation == "compare": best_sentences = best_compare_sentences best_formatted_statements = best_compare_formatted_statements elif relation == "contrast": best_sentences = best_contrast_sentences best_formatted_statements = best_contrast_formatted_statements elif relation == "isa": best_sentences = best_isa_sentences best_formatted_statements = best_isa_formatted_statements # elif relation == "part-of": # best_sentences = best_partof_sentences # best_formatted_statements = best_partof_formatted_statements # elif relation == "used-for": # best_sentences = best_usedfor_sentences # best_formatted_statements = best_usedfor_formatted_statements getGPTGenerationsForRelation(relation, concept, df_concept_relation, best_sentences, best_formatted_statements) #---------------------------------------------------------- # EXTRA CODE (IGNORE) #---------------------------------------------------------- # # for "compare" class,select things that are marked as positive compare_pred_score but negative contrast_pred_score # if relation =="compare": # df_concept_relation = df_concept[df_concept['%s_pred_score' % relation]>0] # df_concept_relation = df_concept[df_concept['contrast_pred_score']<0] # else: # # select rows with a positive prediction score because >0 == >0.5 probability # df_concept_relation = df_concept[df_concept['%s_pred_score' % relation]>0]
ACCoRD-main
system/code/generation/get-concept-gpt-formatted-statements.py
import numpy as np import pandas as pd import spacy import random from sklearn.model_selection import GroupShuffleSplit import ast import re setting = "union-1sentence-both2sentence" # load test set df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/%s/union-multilabel-data-withformattedstatements-§-test.csv" % setting) sources = [] targets = [] sources_compare = [] sources_isa = [] sources_partof = [] sources_usedfor = [] targets_compare = [] targets_isa = [] targets_partof = [] targets_usedfor = [] separator = "<ENT>" for index, row in df.iterrows(): if pd.notna(row['formatted_statement']) and ('[' not in row['formatted_statement']): sentence = row['sentence'] formatted_statement = row['formatted_statement'] print(sentence) matches = re.finditer('\u00a7', sentence) # get a list containing only the start indices. matches_positions = [match.start() for match in matches] # if there are matches start = matches_positions[0] end = matches_positions[1] # get demarcated concept from source sentence concept = sentence[start+2:end-1] # find and demarcate concept in target matches = re.finditer(concept, formatted_statement) # get a list containing only the start indices. matches_positions = [match.start() for match in matches] if len(matches_positions) < 1: # print(concept) # print(formatted_statement) continue start = matches_positions[0] demarcated_formatted_statement = formatted_statement[:start] + separator + " " + formatted_statement[start:start+len(concept)] + " " + separator + formatted_statement[start+len(concept):] # create dataset for all examples sources.append(sentence.replace('\u00a7', '<ENT>')) # append new entity demarcated sentence to source list targets.append(demarcated_formatted_statement) # if 'compare' in row['relation']: # sources_compare.append(sentence.replace('\u00a7', '<ENT>')) # append new entity demarcated sentence to source list # targets_compare.append(demarcated_formatted_statement) # if ('is-a' in row['relation']) or ('type-of' in row['relation']): # sources_isa.append(sentence.replace('\u00a7', '<ENT>')) # append new entity demarcated sentence to source list # targets_isa.append(demarcated_formatted_statement) # if 'part-of' in row['relation']: # sources_partof.append(sentence.replace('\u00a7', '<ENT>')) # append new entity demarcated sentence to source list # targets_partof.append(demarcated_formatted_statement) # if ('used-for' in row['relation']) or ('based-on' in row['relation']): # sources_usedfor.append(sentence.replace('\u00a7', '<ENT>')) # append new entity demarcated sentence to source list # targets_usedfor.append(demarcated_formatted_statement) dataset = 'train' # create data for all examples df_output = pd.DataFrame(list(zip(sources, targets)), columns =['source', 'target']) df_output.to_json("./%s/%s.json" % (setting, dataset), orient='records', lines=True) # # create separate datasets for each relation category # df_output = pd.DataFrame(list(zip(sources_compare, targets_compare)), # columns =['source', 'target']) # df_output.to_json("./%s/%s-compare.json" % (setting, dataset), orient='records', lines=True) # df_output = pd.DataFrame(list(zip(sources_isa, targets_isa)), # columns =['source', 'target']) # df_output.to_json("./%s/%s-isa.json" % (setting, dataset), orient='records', lines=True) # df_output = pd.DataFrame(list(zip(sources_partof, targets_partof)), # columns =['source', 'target']) # df_output.to_json("./%s/%s-partof.json" % (setting, dataset), orient='records', lines=True) # df_output = pd.DataFrame(list(zip(sources_usedfor, targets_usedfor)), # columns =['source', 'target']) # df_output.to_json("./%s/%s-usedfor.json" % (setting, dataset), orient='records', lines=True)
ACCoRD-main
system/inputs/format-lightning-transformers-input.py
import numpy as np import pandas as pd import spacy import random from sklearn.model_selection import GroupShuffleSplit import ast import re import os #---------------------------------------------------------- # aggregate all batches' 2-sentence, 1-concept instances #---------------------------------------------------------- # df_all = pd.DataFrame() # for i in range(0,100): # df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-batch-%d.csv" % i) # df_all = df_all.append(df) # print(df_all) # df_all = df_all.drop_duplicates(subset=['sentence', 'sentence_original_case', 'forecite_concepts']) # print(df_all) # df_all.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows.csv") #---------------------------------------------------------- # aggregate all demarcated rows #--------------------------------------------------------- df_demarcated = pd.DataFrame() directory = "/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/demarcated-batches/" for filename in os.listdir(directory): print(filename) df = pd.read_csv(directory + filename) df_demarcated = df_demarcated.append(df) df_demarcated = df_demarcated.drop_duplicates(subset=['paper_id','original_sentence','sentence','forecite_concept']) print(df_demarcated) # remove paper_ids that are in the annotated data df_annotations = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/annotations-round2/union-1sentence-both2sentence/union-multilabel-data-§.csv") paper_ids_to_exclude = df_annotations['paper_id'] df_demarcated = df_demarcated[~df_demarcated['paper_id'].isin(paper_ids_to_exclude)] print(df_demarcated) df_demarcated.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated.csv")
ACCoRD-main
system/inputs/aggregate-data-batches.py
import pandas as pd from ast import literal_eval #-------------------------------------------------------- # AGGREGATE SCIBERT MULTILABEL AND BINARY PREDICTIONS #-------------------------------------------------------- # get df of all positive predictions from scibert df_binary_positive = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/bart-lightning-transformers/scibert-positive-predictions-all-s2orc-with-concepta.csv") print(df_binary_positive) # get df of all rows with forecite concepts df_binary_positive_with_concepts = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated.csv") print(df_binary_positive_with_concepts) print(df_binary_positive_with_concepts.keys()) # get df of all multilabel predictions from scibert df_multilabel = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/scibert-multilabel-classification/run-best-model-corrected-with-contrast-class/predictions/scibert-3class-weightedBCE-cls/best-params-all-s2orc/seed=42-epochs=10-lr=0.000050-bs=32-best-params-all-s2orc.csv") print(df_multilabel) # select the rows from the multilabel dataset that have the same sentences as the binary label dataset df_multilabel_positive = df_multilabel.merge(df_binary_positive, on=["sentence"]) print(df_multilabel_positive.keys()) print(df_multilabel_positive) df_multilabel_positive_with_forecite_concepts = pd.merge(df_binary_positive_with_concepts, df_multilabel_positive, on="sentence", how="outer") # remove rows where forecite_concept is nan df_multilabel_positive_with_forecite_concepts = df_multilabel_positive_with_forecite_concepts.dropna() print(df_multilabel_positive_with_forecite_concepts.keys()) # Select the ones you want df_multilabel_positive_with_forecite_concepts = df_multilabel_positive_with_forecite_concepts[['paper_id', 'original_sentence','sentence', 'forecite_concept', 'scibert_pred_x','scibert_pred_y','bart_sentences', 'concept_a']] print(df_multilabel_positive_with_forecite_concepts) print(df_multilabel_positive_with_forecite_concepts.keys()) print(df_multilabel_positive_with_forecite_concepts['scibert_pred_x']) print(df_multilabel_positive_with_forecite_concepts['scibert_pred_y']) df_multilabel_positive_with_forecite_concepts = df_multilabel_positive_with_forecite_concepts.rename(columns={"scibert_pred_x": "multilabel_pred", "scibert_pred_y": "binary_pred"}) # df_multilabel_positive_with_forecite_concepts['multilabel_pred'] = pd.eval(df_multilabel_positive_with_forecite_concepts['multilabel_pred']) # print(type(df_multilabel_positive_with_forecite_concepts.at[0, 'multilabel_pred'])) df_multilabel_positive_with_forecite_concepts.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/scibert-multilabel-binary-predictions-all-s2orc-with-forecite-concepts-revised-3class.csv")
ACCoRD-main
system/inputs/aggregate-scibert-multilabel-binary-predictions.py
import math import numpy as np import pandas as pd import torch import torch.nn as nn from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report import transformers import matplotlib.pyplot as plt from transformers import * import matplotlib.ticker as mticker import spacy import ast import re import random import Levenshtein as lev import os import sys #---------------------------------------------------------- # load data #---------------------------------------------------------- start = int(sys.argv[1]) end = int(sys.argv[2]) df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows.csv") df = df[start:end] # set up sentencizer nlp = spacy.load("en_core_web_md") tokenizer = nlp.tokenizer nlp.add_pipe("sentencizer") all_stopwords = nlp.Defaults.stop_words separator = "§" #---------------------------------------------------------- # demarcate concepts #---------------------------------------------------------- def processPhrase(phrase): if len(phrase.text.split()) > 1: p = phrase.text.split() if p[0] in all_stopwords: # if first word is a stop word phrase_no_stopwords = " ".join(p[1:]) elif p[-1] in all_stopwords: # if last word is a stop word phrase_no_stopwords = " ".join(p[:-1]) else: # if neither is a stop word phrase_no_stopwords = phrase.text # if there is only one word in this phrase, just append the text version of it else: phrase_no_stopwords = phrase.text return phrase_no_stopwords def demarcateConcepts(all_phrase_keys, fc_concept, fc_phrase, sentence): # get starting index of this phrase in the sentence # get an iterable object containing the start and end indices of each occurrence of pattern in string matches = re.finditer(re.escape(str(fc_phrase)), sentence) # list comprehension to get a list containing only the start indices. matches_positions = [match.start() for match in matches] if fc_phrase == "": print("sentence had no match with concept = %s" % fc_concept) print(all_phrase_keys) print(sentence) print("") txt = "sentence had no concept match" elif len(matches_positions) == 1: for m in matches_positions: start = m txt = sentence[:start] + separator + " " + sentence[start:start+len(fc_phrase)] + " " + separator + sentence[start+len(fc_phrase):] df.at[index, 'sentence'] = txt # if there are multiple occurrences of this forecite concept in the text elif len(matches_positions) >= 2: for i in range(len(matches_positions)): start = matches_positions[i] if i == 0: txt = sentence[:start] + separator + " " + sentence[start:start+len(fc_phrase)] + " " + separator + sentence[start+len(fc_phrase):] sentence = txt # set the modified sentence as the new sentence for the next iteration if i == 1: start += 4 # add 4 characters to accomodate separator and space x2 that were added in previous round txt = sentence[:start] + separator + " " + sentence[start:start+len(fc_phrase)] + " " + separator + sentence[start+len(fc_phrase):] df.at[index, 'sentence'] = txt else: txt = "sentence had no concept match" return txt #---------------------------------------------------------- demarcated_sentences = [] lowercase_sentences = [] original_case_sentences = [] concepts = [] paper_ids = [] for index, row in df.iterrows(): if index % 1000 == 0: print("...processing row %d" % index) original_case_sentence = row['sentence_original_case'] sentence = row['sentence'] paper_id = row['paper_id'] all_unique_fc_concepts = list(set(list(ast.literal_eval(row['forecite_concepts'])))) for fc_concept in all_unique_fc_concepts: # get variants of forecite concepts for matching lemmatized_fc_concept = " ".join([t.lemma_ for t in nlp(fc_concept) if not (t.is_stop)]) no_punc_fc_concept = re.sub(r'[^\w\s]','', fc_concept) doc = nlp(sentence) fc_phrase = "" all_phrase_keys = [] for phrase in doc.noun_chunks: tokens = [t for t in phrase] # process phrase like forecite does phrase_key = " ".join([t.lemma_ for t in tokens if not (t.is_stop)]) all_phrase_keys.append(phrase_key) if (fc_concept in phrase_key) or (lemmatized_fc_concept in phrase_key) or (no_punc_fc_concept in re.sub(r'[^\w\s]','', phrase_key)): fc_phrase = processPhrase(phrase) break demarcated_sentence = demarcateConcepts(all_phrase_keys, fc_concept, fc_phrase, sentence) # append to lists for dataframe demarcated_sentences.append(demarcated_sentence) lowercase_sentences.append(sentence) original_case_sentences.append(original_case_sentence) concepts.append(fc_concept) paper_ids.append(paper_id) # save lists as a df df_output = pd.DataFrame(list(zip(paper_ids, original_case_sentences, lowercase_sentences, demarcated_sentences, concepts)), columns =['paper_id', 'sentence_original_case', 'sentence_lowercase', 'sentence', 'forecite_concept']) print(df_output) ids = df_output['paper_id'].unique() random.Random(4).shuffle(ids) df_output = df_output.set_index('paper_id').loc[ids].reset_index() print(df_output) df_output.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/concepts-from-both-sentences/all-2sentence-1concept-rows-demarcated-%d-%d.csv" % (start, end))
ACCoRD-main
system/inputs/demarcate-unlabeled-data.py
import pickle import matplotlib.pyplot as plt import pandas as pd from collections import Counter from operator import itemgetter import numpy as np import re # load final df of sentences to select concept-specific data from df = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/scibert-multilabel-binary-predictions-all-s2orc-with-forecite-concepts.csv") print(df.keys()) print(len(set(df['paper_id'].to_list()))) #-------------------------------------------------------- # unpickle concept dictionary with open('/net/nfs2.s2-research/soniam/concept-rel/resources/forecite/forecite_concept_dict.pickle', 'rb') as handle: concept_dict = pickle.load(handle) print("...unpickled forecite concept dictionary") # Initialize N N = 50 # N largest values in dictionary # Using sorted() + itemgetter() + items() res = dict(sorted(concept_dict.items(), key = itemgetter(1), reverse = True)[:N]) # printing result print("The top N value pairs are " + str(res)) concept_list = list(res.keys()) # print(concept_list) #-------------------------------------------------------- selected_nlp_concepts = ['adversarial training', 'beam search', 'bert', 'elmo', 'gpt', 'glove', 'word2vec', 'resnet', 'domain shift', 'ulmfit', 'newsqa', 'squad', 'random forest', 'imagenet', 'lstm', 'roberta', 'variational autoencoder', 'dropout', 'fasttext', 'hierarchical softmax', 'distant supervision'] #-------------------------------------------------------- df_nlp_concepts = pd.read_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/gpt-generations/top-n-forecite-concepts-gpt-generations/nlp_concepts.csv") nlp_concept_scores = [] for index, row in df_nlp_concepts.iterrows(): # get forecite score for each nlp concept nlp_concept_scores.append(concept_dict[row['concept']]) df_nlp_concepts['score'] = nlp_concept_scores df_nlp_concepts = df_nlp_concepts[~df_nlp_concepts.concept.isin(['bert model', 'pre - train bert model', 'pre - train bert', 'moses', 'cho et al', 'dagan', 'yarowsky', 'hochreiter', 'turney', 'ney', 'och', 'grosz', 'steedman', 'well translation'])] # # top 150 nlp concepts by score # top150_nlp_concepts = df_nlp_concepts.sort_values(by='score', ascending=False)[:150]['concept'].tolist() # top 150 nlp concepts by num_papers top150_nlp_concepts = df_nlp_concepts.sort_values(by='num_papers', ascending=False)[:150]['concept'].tolist() print(top150_nlp_concepts) #-------------------------------------------------------- num_sents = 0 # get predictions for all rows for a concept for concept in top150_nlp_concepts: df_concept = df[df['forecite_concept']==concept] print(concept, len(df_concept)) num_sents += len(df_concept) if len(df_concept) == 0: continue # process multilabel pred scores # indices for old 4class correspond to ['compare' 'is-a' 'part-of' 'used-for'] # indices for new 3class correspond to ['compare' 'contrast' 'isa'] all_preds = [] for index, row in df_concept.iterrows(): temp = row['multilabel_pred'].strip("[]").split() preds = [] for t in temp: preds.append(float(t)) all_preds.append(preds) all_preds = np.array(all_preds) # convert multilabel pred scores to a label by selecting the max pred score result = np.argmax(all_preds, axis=1) max = np.max(all_preds, axis=1) df_concept['index_of_max_multilabel_pred'] = result df_concept['max_multilabel_pred_score'] = max # # convert multilabel pred scores to a label by taking any score above 0 (equals >0.5 probability) # bool_ind = all_preds > 0 # print(len(bool_ind[:,1])) # print(np.any(bool_ind[:,1])) df_concept['compare_pred_score'] = all_preds[:,0] df_concept['isa_pred_score'] = all_preds[:,1] df_concept['partof_pred_score'] = all_preds[:,2] df_concept['usedfor_pred_score'] = all_preds[:,3] # try to find "contrast" label examples within "compare" predictions using heuristics contrast_words = ['unlike', 'alternative to', 'alternatively', 'conversely', 'than', 'contrast', 'compared to', 'in comparison', 'instead', 'whereas', 'while', 'except', 'previous', 'different from', 'different to', 'differs', 'extends', 'extension'] possible_contrast = [] for index, row in df_concept.iterrows(): value = -1 if (row['compare_pred_score'] > 0): for word in contrast_words: if re.search(r'\b' + word + r'\b', row['original_sentence']): value = row['compare_pred_score'] possible_contrast.append(value) if value>0: print(row['compare_pred_score'], row['original_sentence']) df_concept['contrast_pred_score'] = possible_contrast df_concept.to_csv("/net/nfs2.s2-research/soniam/concept-rel/abstractive-summarization/inputs/top-n-forecite-concept-source-sentences/v1-4class/nlp-concepts/scibert-multilabel-binary-predictions-all-s2orc-with-forecite-%s.csv" % concept) print(num_sents)
ACCoRD-main
system/inputs/get-top-n-forecite-concept-source-sentences.py
import logging import random import sys import pytest from beaker import Beaker logger = logging.getLogger(__name__) def _get_unique_name() -> str: from gantry.util import unique_name return unique_name() @pytest.fixture def run_name() -> str: return _get_unique_name() @pytest.fixture def workspace_name() -> str: return "ai2/gantry-testing" @pytest.fixture def public_workspace_name() -> str: return "ai2/gantry-testing-public" @pytest.fixture() def beaker(workspace_name): beaker_client = Beaker.from_env(default_workspace=workspace_name, default_org="ai2") return beaker_client def _get_free_cluster(beaker: Beaker) -> str: choices = [ "ai2/general-cirrascale", "ai2/allennlp-cirrascale", "ai2/aristo-cirrascale", "ai2/mosaic-cirrascale", "ai2/s2-cirrascale", ] random.shuffle(choices) for cluster in choices: utilization = beaker.cluster.utilization(cluster) if utilization.queued_jobs == 0: logger.info("Found suitable on-prem cluster '%s'", cluster) return cluster return "ai2/general-cirrascale" @pytest.fixture() def beaker_cluster_name(beaker: Beaker) -> str: return _get_free_cluster(beaker) if __name__ == "__main__": beaker_client = Beaker.from_env() assert len(sys.argv) == 2 fixture = sys.argv[-1] if fixture == "run_name": print(_get_unique_name()) elif fixture == "cluster": print(_get_free_cluster(beaker_client)) else: raise ValueError(f"Bad fixture argument '{fixture}'")
beaker-gantry-main
conftest.py
beaker-gantry-main
tests/__init__.py
import pytest from gantry.exceptions import InvalidRemoteError from gantry.util import parse_git_remote_url def test_parse_git_remote_url_ssh(): assert parse_git_remote_url("[email protected]:allenai/beaker-gantry.git") == ( "allenai", "beaker-gantry", ) def test_parse_git_remote_url_https(): assert parse_git_remote_url("https://github.com/allenai/beaker-gantry.git") == ( "allenai", "beaker-gantry", ) def test_invalid_git_remote_url(): with pytest.raises(InvalidRemoteError): parse_git_remote_url("[email protected]/allenai/beaker-gantry.git")
beaker-gantry-main
tests/util_test.py
import subprocess from gantry.version import VERSION def test_help(): result = subprocess.run(["gantry", "--help"]) assert result.returncode == 0 def test_version(): result = subprocess.run(["gantry", "--version"], capture_output=True, text=True) assert result.returncode == 0 assert VERSION in result.stdout def test_dry_run(workspace_name: str, beaker_cluster_name: str, run_name: str): result = subprocess.run( [ "gantry", "run", "--dry-run", "--allow-dirty", "--name", run_name, "--workspace", workspace_name, "--cluster", beaker_cluster_name, "--yes", "--", "python", "-c", "print('Hello, World!')", ], capture_output=True, text=True, ) assert result.returncode == 0
beaker-gantry-main
tests/main_test.py
import json from gantry import METRICS_FILE def main(): with open(METRICS_FILE, "w") as f: json.dump({"loss": 0.1, "accuracy": 0.95}, f) print(f"\N{check mark} Done! Metrics written to {METRICS_FILE}") if __name__ == "__main__": main()
beaker-gantry-main
examples/metrics/run.py
from datetime import datetime from pathlib import Path from gantry.version import VERSION def main(): changelog = Path("CHANGELOG.md") with changelog.open() as f: lines = f.readlines() insert_index: int = -1 for i in range(len(lines)): line = lines[i] if line.startswith("## Unreleased"): insert_index = i + 1 elif line.startswith(f"## [v{VERSION}]"): print("CHANGELOG already up-to-date") return elif line.startswith("## [v"): break if insert_index < 0: raise RuntimeError("Couldn't find 'Unreleased' section") lines.insert(insert_index, "\n") lines.insert( insert_index + 1, f"## [v{VERSION}](https://github.com/allenai/beaker-gantry/releases/tag/v{VERSION}) - " f"{datetime.now().strftime('%Y-%m-%d')}\n", ) with changelog.open("w") as f: f.writelines(lines) if __name__ == "__main__": main()
beaker-gantry-main
scripts/prepare_changelog.py
# encoding: utf-8 """ Prepares markdown release notes for GitHub releases. """ import os from typing import List, Optional import packaging.version TAG = os.environ["TAG"] ADDED_HEADER = "### Added 🎉" CHANGED_HEADER = "### Changed ⚠️" FIXED_HEADER = "### Fixed ✅" REMOVED_HEADER = "### Removed 👋" def get_change_log_notes() -> str: in_current_section = False current_section_notes: List[str] = [] with open("CHANGELOG.md") as changelog: for line in changelog: if line.startswith("## "): if line.startswith("## Unreleased"): continue if line.startswith(f"## [{TAG}]"): in_current_section = True continue break if in_current_section: if line.startswith("### Added"): line = ADDED_HEADER + "\n" elif line.startswith("### Changed"): line = CHANGED_HEADER + "\n" elif line.startswith("### Fixed"): line = FIXED_HEADER + "\n" elif line.startswith("### Removed"): line = REMOVED_HEADER + "\n" current_section_notes.append(line) assert current_section_notes return "## What's new\n\n" + "".join(current_section_notes).strip() + "\n" def get_commit_history() -> str: new_version = packaging.version.parse(TAG) # Get all tags sorted by version, latest first. all_tags = os.popen("git tag -l --sort=-version:refname 'v*'").read().split("\n") # Out of `all_tags`, find the latest previous version so that we can collect all # commits between that version and the new version we're about to publish. # Note that we ignore pre-releases unless the new version is also a pre-release. last_tag: Optional[str] = None for tag in all_tags: if not tag.strip(): # could be blank line continue version = packaging.version.parse(tag) if new_version.pre is None and version.pre is not None: continue if version < new_version: last_tag = tag break if last_tag is not None: commits = os.popen(f"git log {last_tag}..{TAG} --oneline --first-parent").read() else: commits = os.popen("git log --oneline --first-parent").read() return "## Commits\n\n" + commits def main(): print(get_change_log_notes()) print(get_commit_history()) if __name__ == "__main__": main()
beaker-gantry-main
scripts/release_notes.py
_MAJOR = "0" _MINOR = "19" _PATCH = "0" _SUFFIX = "" VERSION_SHORT = "{0}.{1}".format(_MAJOR, _MINOR) VERSION = "{0}.{1}.{2}{3}".format(_MAJOR, _MINOR, _PATCH, _SUFFIX)
beaker-gantry-main
gantry/version.py
import platform import tempfile import time from datetime import datetime from pathlib import Path from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union, cast import requests import rich from beaker import ( Beaker, Dataset, DatasetConflict, DatasetNotFound, Digest, Experiment, ExperimentSpec, Job, JobTimeoutError, Priority, SecretNotFound, TaskResources, TaskSpec, WorkspaceNotSet, ) from rich import print, prompt from rich.console import Console from . import constants from .aliases import PathOrStr from .constants import GITHUB_TOKEN_SECRET from .exceptions import * from .version import VERSION if TYPE_CHECKING: from datetime import timedelta def unique_name() -> str: import uuid import petname return cast(str, petname.generate()) + "-" + str(uuid.uuid4())[:7] def stderr_console() -> Console: return Console(stderr=True) def print_stderr(*args, **kwargs): stderr_console().print(*args, **kwargs) def print_exception(*args, **kwargs): stderr_console().print_exception(*args, **kwargs) def parse_git_remote_url(url: str) -> Tuple[str, str]: """ Parse a git remote URL into a GitHub (account, repo) pair. :raises InvalidRemoteError: If the URL can't be parsed correctly. """ try: account, repo = ( url.split("https://github.com/")[-1] .split("[email protected]:")[-1] .split(".git")[0] .split("/") ) except ValueError: raise InvalidRemoteError(f"Failed to parse GitHub repo path from remote '{url}'") return account, repo def display_logs(logs: Iterable[bytes], ignore_timestamp: Optional[str] = None) -> Optional[str]: console = rich.get_console() latest_timestamp: Optional[str] = None def print_line(line: str): if not line: return nonlocal latest_timestamp # Remove timestamp try: timestamp, line = line.split("Z ", maxsplit=1) latest_timestamp = f"{timestamp}Z" if ignore_timestamp is not None and latest_timestamp == ignore_timestamp: return except ValueError: pass console.print(line, highlight=False, markup=False) line_buffer = "" for bytes_chunk in logs: chunk = line_buffer + bytes_chunk.decode(errors="ignore") chunk = chunk.replace("\r", "\n") lines = chunk.split("\n") if chunk.endswith("\n"): line_buffer = "" else: # Last line chunk is probably incomplete. lines, line_buffer = lines[:-1], lines[-1] for line in lines: print_line(line) print_line(line_buffer) return latest_timestamp def follow_experiment(beaker: Beaker, experiment: Experiment, timeout: int = 0) -> Job: start = time.monotonic() # Wait for job to start... job: Optional[Job] = beaker.experiment.tasks(experiment.id)[0].latest_job # type: ignore if job is None: print("Waiting for job to launch..", end="") while job is None: time.sleep(1.0) print(".", end="") job = beaker.experiment.tasks(experiment.id)[0].latest_job # type: ignore exit_code: Optional[int] = job.status.exit_code stream_logs = exit_code is None if stream_logs: print() rich.get_console().rule("Logs") last_timestamp: Optional[str] = None since: Optional[Union[str, datetime]] = datetime.utcnow() while stream_logs and exit_code is None: job = beaker.experiment.tasks(experiment.id)[0].latest_job # type: ignore assert job is not None exit_code = job.status.exit_code last_timestamp = display_logs( beaker.job.logs(job, quiet=True, since=since), ignore_timestamp=last_timestamp, ) since = last_timestamp or since time.sleep(2.0) if timeout > 0 and time.monotonic() - start >= timeout: raise JobTimeoutError(f"Job did not finish within {timeout} seconds") if stream_logs: rich.get_console().rule("End logs") print() return job def display_results(beaker: Beaker, experiment: Experiment, job: Job): exit_code = job.status.exit_code assert exit_code is not None if exit_code > 0: raise ExperimentFailedError(f"Experiment exited with non-zero code ({exit_code})") assert job.execution is not None assert job.status.started is not None assert job.status.exited is not None result_dataset = None if job.result is not None and job.result.beaker is not None: result_dataset = job.result.beaker print( f"[b green]\N{check mark}[/] [b cyan]{experiment.name}[/] completed successfully\n" f"[b]Experiment:[/] {beaker.experiment.url(experiment)}\n" f"[b]Runtime:[/] {format_timedelta(job.status.exited - job.status.started)}\n" f"[b]Results:[/] {None if result_dataset is None else beaker.dataset.url(result_dataset)}" ) metrics = beaker.experiment.metrics(experiment) if metrics is not None: print("[b]Metrics:[/]", metrics) def ensure_repo(allow_dirty: bool = False) -> Tuple[str, str, str, bool]: from git.repo import Repo repo = Repo(".") if repo.is_dirty() and not allow_dirty: raise DirtyRepoError("You have uncommitted changes! Use --allow-dirty to force.") git_ref = str(repo.commit()) account, repo = parse_git_remote_url(repo.remote().url) response = requests.get(f"https://github.com/{account}/{repo}") if response.status_code not in {200, 404}: response.raise_for_status() is_public = response.status_code == 200 return account, repo, git_ref, is_public def ensure_entrypoint_dataset(beaker: Beaker) -> Dataset: import hashlib from importlib.resources import read_binary import gantry workspace_id = beaker.workspace.get().id # Get hash of the local entrypoint source file. sha256_hash = hashlib.sha256() contents = replace_tags(read_binary(gantry, constants.ENTRYPOINT)) sha256_hash.update(contents) entrypoint_dataset_name = f"gantry-v{VERSION}-{workspace_id}-{sha256_hash.hexdigest()[:6]}" # Ensure gantry entrypoint dataset exists. gantry_entrypoint_dataset: Dataset try: gantry_entrypoint_dataset = beaker.dataset.get(entrypoint_dataset_name) except DatasetNotFound: # Create it. print(f"Creating entrypoint dataset '{entrypoint_dataset_name}'") try: with tempfile.TemporaryDirectory() as tmpdirname: tmpdir = Path(tmpdirname) entrypoint_path = tmpdir / constants.ENTRYPOINT with open(entrypoint_path, "wb") as entrypoint_file: entrypoint_file.write(contents) gantry_entrypoint_dataset = beaker.dataset.create( entrypoint_dataset_name, entrypoint_path ) except DatasetConflict: # could be in a race with another `gantry` process. time.sleep(1.0) gantry_entrypoint_dataset = beaker.dataset.get(entrypoint_dataset_name) # Verify contents. err_msg = ( f"Checksum failed for entrypoint dataset {beaker.dataset.url(gantry_entrypoint_dataset)}\n" f"This could be a bug, or it could mean someone has tampered with the dataset.\n" f"If you're sure no one has tampered with it, you can delete the dataset from " f"the Beaker dashboard and try again." ) ds_files = list(beaker.dataset.ls(gantry_entrypoint_dataset)) if len(ds_files) != 1: raise EntrypointChecksumError(err_msg) if ds_files[0].digest != Digest.from_decoded(sha256_hash.digest(), "SHA256"): raise EntrypointChecksumError(err_msg) return gantry_entrypoint_dataset def ensure_github_token_secret( beaker: Beaker, secret_name: str = constants.GITHUB_TOKEN_SECRET ) -> str: try: beaker.secret.get(secret_name) except SecretNotFound: raise GitHubTokenSecretNotFound( f"GitHub token secret '{secret_name}' not found in Beaker workspace!\n" f"You can create a suitable GitHub token by going to https://github.com/settings/tokens/new " f"and generating a token with '\N{ballot box with check} repo' scope.\n" f"Then upload your token as a Beaker secret using the Beaker CLI or Python client." ) return secret_name def format_timedelta(td: "timedelta") -> str: def format_value_and_unit(value: int, unit: str) -> str: if value == 1: return f"{value} {unit}" else: return f"{value} {unit}s" parts = [] seconds = int(td.total_seconds()) days, seconds = divmod(seconds, 86400) hours, seconds = divmod(seconds, 3600) minutes, seconds = divmod(seconds, 60) if days: parts.append(format_value_and_unit(days, "day")) if hours: parts.append(format_value_and_unit(hours, "hour")) if minutes: parts.append(format_value_and_unit(minutes, "minute")) if seconds: parts.append(format_value_and_unit(seconds, "second")) return ", ".join(parts) def ensure_datasets(beaker: Beaker, *datasets: str) -> List[Tuple[str, Optional[str], str]]: out = [] for dataset_str in datasets: dataset_name: str path: str sub_path: Optional[str] = None if dataset_str.count(":") == 1: dataset_name, path = dataset_str.split(":") elif dataset_str.count(":") == 2: dataset_name, sub_path, path = dataset_str.split(":") else: raise ValueError( f"Bad '--dataset' specification: '{dataset_str}'\n" f"Datasets should be in the form of 'dataset-name:/mount/location'" f"or 'dataset-name:sub/path:/mount/location'" ) dataset_id = beaker.dataset.get(dataset_name).id out.append((dataset_id, sub_path, path)) return out def build_experiment_spec( task_name: str, clusters: List[str], task_resources: TaskResources, arguments: List[str], entrypoint_dataset: str, github_account: str, github_repo: str, git_ref: str, description: Optional[str] = None, beaker_image: Optional[str] = None, docker_image: Optional[str] = None, gh_token_secret: Optional[str] = constants.GITHUB_TOKEN_SECRET, conda: Optional[PathOrStr] = None, pip: Optional[PathOrStr] = None, venv: Optional[str] = None, nfs: Optional[bool] = None, datasets: Optional[List[Tuple[str, Optional[str], str]]] = None, env: Optional[List[Tuple[str, str]]] = None, env_secrets: Optional[List[Tuple[str, str]]] = None, priority: Optional[Union[str, Priority]] = None, install: Optional[str] = None, replicas: Optional[int] = None, leader_selection: bool = False, host_networking: bool = False, mounts: Optional[List[Tuple[str, str]]] = None, hostnames: Optional[List[str]] = None, ): task_spec = ( TaskSpec.new( task_name, beaker_image=beaker_image, docker_image=docker_image, result_path=constants.RESULTS_DIR, command=["bash", "/gantry/entrypoint.sh"], arguments=arguments, resources=task_resources, priority=priority, replicas=replicas, leader_selection=leader_selection, host_networking=host_networking, ) .with_env_var(name="GANTRY_VERSION", value=VERSION) .with_env_var(name="GITHUB_REPO", value=f"{github_account}/{github_repo}") .with_env_var(name="GIT_REF", value=git_ref) .with_dataset("/gantry", beaker=entrypoint_dataset) ) if clusters: task_spec = task_spec.with_constraint(cluster=clusters) if hostnames: task_spec = task_spec.with_constraint(hostname=hostnames) if gh_token_secret is not None: task_spec = task_spec.with_env_var(name="GITHUB_TOKEN", secret=gh_token_secret) for name, val in env or []: task_spec = task_spec.with_env_var(name=name, value=val) for name, secret in env_secrets or []: task_spec = task_spec.with_env_var(name=name, secret=secret) if conda is not None: task_spec = task_spec.with_env_var( name="CONDA_ENV_FILE", value=str(conda), ) elif Path(constants.CONDA_ENV_FILE).is_file(): task_spec = task_spec.with_env_var( name="CONDA_ENV_FILE", value=constants.CONDA_ENV_FILE, ) elif Path(constants.CONDA_ENV_FILE_ALTERNATE).is_file(): task_spec = task_spec.with_env_var( name="CONDA_ENV_FILE", value=constants.CONDA_ENV_FILE_ALTERNATE, ) else: task_spec = task_spec.with_env_var( name="PYTHON_VERSION", value=".".join(platform.python_version_tuple()[:-1]) ) if pip is not None: task_spec = task_spec.with_env_var( name="PIP_REQUIREMENTS_FILE", value=str(pip), ) if venv is not None: task_spec = task_spec.with_env_var( name="VENV_NAME", value=venv, ) if install is not None: task_spec = task_spec.with_env_var(name="INSTALL_CMD", value=install) if nfs is None and clusters and all(["cirrascale" in cluster for cluster in clusters]): nfs = True if nfs: task_spec = task_spec.with_dataset(constants.NFS_MOUNT, host_path=constants.NFS_MOUNT) if datasets: for dataset_id, sub_path, path in datasets: task_spec = task_spec.with_dataset(path, beaker=dataset_id, sub_path=sub_path) if mounts: for source, target in mounts: task_spec = task_spec.with_dataset(target, host_path=source) return ExperimentSpec(description=description, tasks=[task_spec]) def check_for_upgrades(): import packaging.version import requests try: response = requests.get( "https://api.github.com/repos/allenai/beaker-gantry/releases/latest", timeout=1 ) if response.ok: latest_version = packaging.version.parse(response.json()["tag_name"]) if latest_version > packaging.version.parse(VERSION): print_stderr( f":warning: [yellow]You're using [b]gantry v{VERSION}[/], " f"but a newer version ([b]v{latest_version}[/]) is available: " f"https://github.com/allenai/beaker-gantry/releases/tag/v{latest_version}[/]\n" f"[yellow i]You can upgrade by running:[/] pip install --upgrade beaker-gantry\n", ) except (requests.exceptions.Timeout, requests.exceptions.ConnectionError): pass def ensure_workspace( workspace: Optional[str] = None, yes: bool = False, gh_token_secret: str = GITHUB_TOKEN_SECRET, public_repo: bool = False, ) -> Beaker: beaker = ( Beaker.from_env(session=True) if workspace is None else Beaker.from_env(session=True, default_workspace=workspace) ) try: permissions = beaker.workspace.get_permissions() if ( not public_repo and permissions.authorizations is not None and len(permissions.authorizations) > 1 ): print_stderr( f"[yellow]Your workspace [b]{beaker.workspace.url()}[/] has multiple contributors! " f"Every contributor can view your GitHub personal access token secret ('{gh_token_secret}').[/]" ) if not yes and not prompt.Confirm.ask( "[yellow][i]Are you sure you want to use this workspace?[/][/]" ): raise KeyboardInterrupt elif workspace is None: default_workspace = beaker.workspace.get() if not yes and not prompt.Confirm.ask( f"Using default workspace [b cyan]{default_workspace.full_name}[/]. [i]Is that correct?[/]" ): raise KeyboardInterrupt except WorkspaceNotSet: raise ConfigurationError( "'--workspace' option is required since you don't have a default workspace set" ) return beaker def replace_tags(contents: bytes) -> bytes: tag_start = contents.find(b"${{") while tag_start != -1: tag_end = contents.find(b"}}") + 2 tag = contents[tag_start:tag_end] constant_name = tag.split(b" ")[1].decode() contents = contents.replace(tag, getattr(constants, constant_name).encode()) # type: ignore tag_start = contents.find(b"${{", tag_end) assert b"${{" not in contents return contents
beaker-gantry-main
gantry/util.py
DEFAULT_IMAGE = "ai2/conda" ENTRYPOINT = "entrypoint.sh" GITHUB_TOKEN_SECRET = "GITHUB_TOKEN" CONDA_ENV_FILE = "environment.yml" CONDA_ENV_FILE_ALTERNATE = "environment.yaml" PIP_REQUIREMENTS_FILE = "requirements.txt" RUNTIME_DIR = "/gantry-runtime" RESULTS_DIR = "/results" METRICS_FILE = f"{RESULTS_DIR}/metrics.json" NFS_MOUNT = "/net/nfs.cirrascale"
beaker-gantry-main
gantry/constants.py
from .constants import METRICS_FILE, RESULTS_DIR __all__ = ["METRICS_FILE", "RESULTS_DIR"]
beaker-gantry-main
gantry/__init__.py
from os import PathLike from typing import Union PathOrStr = Union[PathLike, str]
beaker-gantry-main
gantry/aliases.py
class GantryError(Exception): """ Base exception for all error types that Gantry might raise. """ class GitError(GantryError): pass class DirtyRepoError(GitError): pass class InvalidRemoteError(GitError): pass class ConfigurationError(GantryError): pass class ExperimentFailedError(GantryError): pass class EntrypointChecksumError(GantryError): pass class GitHubTokenSecretNotFound(GantryError): pass class TermInterrupt(GantryError): pass
beaker-gantry-main
gantry/exceptions.py
import os import signal import sys from fnmatch import fnmatch from pathlib import Path from typing import Optional, Tuple import click import rich from beaker import ( Beaker, ImageNotFound, Job, JobTimeoutError, Priority, SecretNotFound, TaskResources, ) from click_help_colors import HelpColorsCommand, HelpColorsGroup from rich import pretty, print, prompt, traceback from . import constants, util from .aliases import PathOrStr from .exceptions import * from .util import print_stderr from .version import VERSION _CLICK_GROUP_DEFAULTS = { "cls": HelpColorsGroup, "help_options_color": "green", "help_headers_color": "yellow", "context_settings": {"max_content_width": 115}, } _CLICK_COMMAND_DEFAULTS = { "cls": HelpColorsCommand, "help_options_color": "green", "help_headers_color": "yellow", "context_settings": {"max_content_width": 115}, } def excepthook(exctype, value, tb): """ Used to patch `sys.excepthook` in order to customize handling of uncaught exceptions. """ # Ignore `GantryError` because we don't need a traceback for those. if issubclass(exctype, (GantryError,)): print_stderr(f"[red][bold]{exctype.__name__}:[/] [i]{value}[/][/]") # For interruptions, call the original exception handler. elif issubclass(exctype, (KeyboardInterrupt, TermInterrupt)): sys.__excepthook__(exctype, value, tb) else: print_stderr(traceback.Traceback.from_exception(exctype, value, tb, suppress=[click])) sys.excepthook = excepthook def handle_sigterm(sig, frame): del sig, frame raise TermInterrupt @click.group(**_CLICK_GROUP_DEFAULTS) # type: ignore @click.version_option(version=VERSION) def main(): # Configure rich. if os.environ.get("GANTRY_GITHUB_TESTING"): # Force a broader terminal when running tests in GitHub Actions. console_width = 180 rich.reconfigure(width=console_width, force_terminal=True, force_interactive=False) pretty.install() else: pretty.install() # Handle SIGTERM just like KeyboardInterrupt signal.signal(signal.SIGTERM, handle_sigterm) rich.get_console().print( r''' [cyan b] o=======[] [/] [cyan b] __ _ _ _ |_ [] [/] [cyan b] / _` | __ _ _ _ | |_ _ _ | || | [] [/] [cyan b] \__, | / _` | | ' \ | _| | '_| \_, | _/ ]_ [/] [cyan b] |___/ \__,_| |_||_| _\__| _|_|_ _|__/ |_____| [/] [blue b]_|"""""|_|"""""|_|"""""|_|"""""|_|"""""|_| """"| [/] [blue b] `---------------------------------------------' [/] ''', # noqa: W605 highlight=False, ) util.check_for_upgrades() @main.command(**_CLICK_COMMAND_DEFAULTS) # type: ignore @click.argument("experiment", nargs=1, required=True, type=str) def follow(experiment: str): """ Follow the logs for a running experiment. """ beaker = Beaker.from_env(session=True) beaker.experiment.follow exp = beaker.experiment.get(experiment) job = util.follow_experiment(beaker, exp) util.display_results(beaker, exp, job) @main.command(**_CLICK_COMMAND_DEFAULTS) # type: ignore @click.argument("arg", nargs=-1) @click.option( "-n", "--name", type=str, help="""A name to assign to the experiment on Beaker. Defaults to a randomly generated name.""", ) @click.option( "-t", "--task-name", type=str, help="""A name to assign to the task on Beaker.""", default="main", show_default=True, ) @click.option("-d", "--description", type=str, help="""A description for the experiment.""") @click.option( "-w", "--workspace", type=str, help="""The Beaker workspace to use. If not specified, your default workspace will be used.""", ) @click.option( "-c", "--cluster", type=str, multiple=True, default=None, help="""A potential cluster to use. This option can be used multiple times to allow multiple clusters. You also specify it as a wildcard, e.g. '--cluster ai2/*-cirrascale'. If you don't specify a cluster or the priority, the priority will default to 'preemptible' and the job will be able to run on any on-premise cluster.""", show_default=True, ) @click.option( "--hostname", type=str, multiple=True, default=None, help="""Hostname constraints to apply to the experiment spec. This option can be used multiple times to alllow multiple hosts.""", show_default=True, ) @click.option( "--beaker-image", type=str, default=constants.DEFAULT_IMAGE, help="""The name or ID of an image on Beaker to use for your experiment. Mutually exclusive with --docker-image.""", show_default=True, ) @click.option( "--docker-image", type=str, help="""The name of a public Docker image to use for your experiment. Mutually exclusive with --beaker-image.""", ) @click.option( "--cpus", type=float, help="""Minimum number of logical CPU cores (e.g. 4.0, 0.5).""", ) @click.option( "--gpus", type=int, help="""Minimum number of GPUs (e.g. 1).""", ) @click.option( "--memory", type=str, help="""Minimum available system memory as a number with unit suffix (e.g. 2.5GiB).""", ) @click.option( "--shared-memory", type=str, help="""Size of /dev/shm as a number with unit suffix (e.g. 2.5GiB).""", ) @click.option( "--dataset", type=str, multiple=True, help="""An input dataset in the form of 'dataset-name:/mount/location' or 'dataset-name:sub/path:/mount/location' to attach to your experiment. You can specify this option more than once to attach multiple datasets.""", ) @click.option( "--gh-token-secret", type=str, help="""The name of the Beaker secret that contains your GitHub token.""", default=constants.GITHUB_TOKEN_SECRET, show_default=True, ) @click.option( "--conda", type=click.Path(exists=True, dir_okay=False), help=f"""Path to a conda environment file for reconstructing your Python environment. If not specified, '{constants.CONDA_ENV_FILE}' will be used if it exists.""", ) @click.option( "--pip", type=click.Path(exists=True, dir_okay=False), help=f"""Path to a PIP requirements file for reconstructing your Python environment. If not specified, '{constants.PIP_REQUIREMENTS_FILE}' will be used if it exists.""", ) @click.option( "--venv", type=str, help="""The name of an existing conda environment on the image to use.""", ) @click.option( "--env", type=str, help="""Environment variables to add the Beaker experiment. Should be in the form '{NAME}={VALUE}'.""", multiple=True, ) @click.option( "--env-secret", type=str, help="""Environment variables to add the Beaker experiment from Beaker secrets. Should be in the form '{NAME}={SECRET_NAME}'.""", multiple=True, ) @click.option( "--nfs / --no-nfs", default=None, help=f"""Whether or not to mount the NFS drive ({constants.NFS_MOUNT}) to the experiment. This only works for cirrascale clusters managed by the Beaker team. If not specified, gantry will always mount NFS when it knows the cluster supports it.""", ) @click.option( "--show-logs/--no-logs", default=True, show_default=True, help="""Whether or not to stream the logs to stdout as the experiment runs. This only takes effect when --timeout is non-zero.""", ) @click.option( "--timeout", type=int, default=0, help="""Time to wait (in seconds) for the experiment to finish. A timeout of -1 means wait indefinitely. A timeout of 0 means don't wait at all.""", show_default=True, ) @click.option( "--allow-dirty", is_flag=True, help="""Allow submitting the experiment with a dirty working directory.""", ) @click.option( "-y", "--yes", is_flag=True, help="""Skip all confirmation prompts.""", ) @click.option("--dry-run", is_flag=True, help="""Do a dry run only.""") @click.option( "--save-spec", type=click.Path(dir_okay=False, file_okay=True), help="""A path to save the generated Beaker experiment spec to.""", ) @click.option( "--priority", type=click.Choice([str(p) for p in Priority]), help="The job priority. If you don't specify at least one cluster, priority will default to 'preemptible'.", ) @click.option( "--install", type=str, help="""Override the default installation command, e.g. '--install "python setup.py install"'""", ) @click.option( "--replicas", type=int, help="""The number of task replicas to run.""", ) @click.option( "--leader-selection", is_flag=True, help="""Specifies that the first task replica should be the leader and populates each task with 'BEAKER_LEADER_REPLICA_HOSTNAME' and 'BEAKER_LEADER_REPLICA_NODE_ID' environment variables. This is only applicable when '--replicas INT' and '--host-networking' are used, although the '--host-networking' flag can be omitted in this case since it's assumed.""", ) @click.option( "--host-networking", is_flag=True, help="""Specifies that each task replica should use the host's network. When used with '--replicas INT', this allows the replicas to communicate with each other using their hostnames.""", ) @click.option( "-m", "--mount", type=str, help="""Host directories to mount to the Beaker experiment. Should be in the form '{HOST_SOURCE}:{TARGET}' similar to the '-v' option with 'docker run'.""", multiple=True, ) def run( arg: Tuple[str, ...], name: Optional[str] = None, description: Optional[str] = None, task_name: str = "main", workspace: Optional[str] = None, cluster: Optional[Tuple[str, ...]] = None, hostname: Optional[Tuple[str, ...]] = None, beaker_image: Optional[str] = constants.DEFAULT_IMAGE, docker_image: Optional[str] = None, cpus: Optional[float] = None, gpus: Optional[int] = None, memory: Optional[str] = None, shared_memory: Optional[str] = None, dataset: Optional[Tuple[str, ...]] = None, gh_token_secret: str = constants.GITHUB_TOKEN_SECRET, conda: Optional[PathOrStr] = None, pip: Optional[PathOrStr] = None, venv: Optional[str] = None, env: Optional[Tuple[str, ...]] = None, env_secret: Optional[Tuple[str, ...]] = None, timeout: int = 0, nfs: Optional[bool] = None, show_logs: bool = True, allow_dirty: bool = False, dry_run: bool = False, yes: bool = False, save_spec: Optional[PathOrStr] = None, priority: Optional[str] = None, install: Optional[str] = None, replicas: Optional[int] = None, leader_selection: bool = False, host_networking: bool = False, mount: Optional[Tuple[str, ...]] = None, ): """ Run an experiment on Beaker. Example: $ gantry run --name 'hello-world' -- python -c 'print("Hello, World!")' """ if not arg: raise ConfigurationError( "[ARGS]... are required! For example:\n$ gantry run -- python -c 'print(\"Hello, World!\")'" ) if (beaker_image is None) == (docker_image is None): raise ConfigurationError( "Either --beaker-image or --docker-image must be specified, but not both." ) task_resources = TaskResources( cpu_count=cpus, gpu_count=gpus, memory=memory, shared_memory=shared_memory ) # Get repository account, name, and current ref. github_account, github_repo, git_ref, is_public = util.ensure_repo(allow_dirty) # Initialize Beaker client and validate workspace. beaker = util.ensure_workspace( workspace=workspace, yes=yes, gh_token_secret=gh_token_secret, public_repo=is_public ) if beaker_image is not None and beaker_image != constants.DEFAULT_IMAGE: try: beaker_image = beaker.image.get(beaker_image).full_name except ImageNotFound: raise ConfigurationError(f"Beaker image '{beaker_image}' not found") # Get the entrypoint dataset. entrypoint_dataset = util.ensure_entrypoint_dataset(beaker) # Get / set the GitHub token secret. if not is_public: try: beaker.secret.get(gh_token_secret) except SecretNotFound: print_stderr( f"[yellow]GitHub token secret '{gh_token_secret}' not found in workspace.[/]\n" f"You can create a suitable GitHub token by going to https://github.com/settings/tokens/new " f"and generating a token with the '\N{ballot box with check} repo' scope." ) gh_token = prompt.Prompt.ask( "[i]Please paste your GitHub token here[/]", password=True, ) if not gh_token: raise ConfigurationError("token cannot be empty!") beaker.secret.write(gh_token_secret, gh_token) print( f"GitHub token secret uploaded to workspace as '{gh_token_secret}'.\n" f"If you need to update this secret in the future, use the command:\n" f"[i]$ gantry config set-gh-token[/]" ) gh_token_secret = util.ensure_github_token_secret(beaker, gh_token_secret) # Validate the input datasets. datasets_to_use = util.ensure_datasets(beaker, *dataset) if dataset else [] env_vars = [] for e in env or []: try: env_name, val = e.split("=") except ValueError: raise ValueError("Invalid --env option: {e}") env_vars.append((env_name, val)) env_secrets = [] for e in env_secret or []: try: env_secret_name, secret = e.split("=") except ValueError: raise ValueError(f"Invalid --env-secret option: '{e}'") env_secrets.append((env_secret_name, secret)) mounts = [] for m in mount or []: try: source, target = m.split(":") except ValueError: raise ValueError(f"Invalid --mount option: '{m}'") mounts.append((source, target)) # Validate clusters. if cluster: cl_objects = beaker.cluster.list() final_clusters = [] for pat in cluster: matching_clusters = [cl.full_name for cl in cl_objects if fnmatch(cl.full_name, pat)] if matching_clusters: final_clusters.extend(matching_clusters) else: raise ConfigurationError(f"cluster '{pat}' did not match any Beaker clusters") cluster = list(set(final_clusters)) # type: ignore # Default to preemptible priority when no cluster has been specified. if not cluster and priority is None: priority = Priority.preemptible # Initialize experiment and task spec. spec = util.build_experiment_spec( task_name=task_name, clusters=list(cluster or []), task_resources=task_resources, arguments=list(arg), entrypoint_dataset=entrypoint_dataset.id, github_account=github_account, github_repo=github_repo, git_ref=git_ref, description=description, beaker_image=beaker_image, docker_image=docker_image, gh_token_secret=gh_token_secret if not is_public else None, conda=conda, pip=pip, venv=venv, nfs=nfs, datasets=datasets_to_use, env=env_vars, env_secrets=env_secrets, priority=priority, install=install, replicas=replicas, leader_selection=leader_selection, host_networking=host_networking or (bool(replicas) and leader_selection), mounts=mounts, hostnames=None if hostname is None else list(hostname), ) if save_spec: if ( Path(save_spec).is_file() and not yes and not prompt.Confirm.ask( f"[yellow]The file '{save_spec}' already exists. " f"[i]Are you sure you want to overwrite it?[/][/]" ) ): raise KeyboardInterrupt spec.to_file(save_spec) print(f"Experiment spec saved to {save_spec}") if dry_run: rich.get_console().rule("[b]Dry run[/]") print( f"[b]Workspace:[/] {beaker.workspace.url()}\n" f"[b]Commit:[/] https://github.com/{github_account}/{github_repo}/commit/{git_ref}\n" f"[b]Experiment spec:[/]", spec.to_json(), ) return name = name or prompt.Prompt.ask( "[i]What would you like to call this experiment?[/]", default=util.unique_name() ) if not name: raise ConfigurationError("Experiment name cannot be empty!") experiment = beaker.experiment.create(name, spec) print(f"Experiment submitted, see progress at {beaker.experiment.url(experiment)}") # Can return right away if timeout is 0. if timeout == 0: return job: Optional[Job] = None try: if show_logs: job = util.follow_experiment(beaker, experiment, timeout=timeout) else: experiment = beaker.experiment.wait_for( experiment, timeout=timeout if timeout > 0 else None )[0] job = beaker.experiment.tasks(experiment)[0].latest_job # type: ignore assert job is not None except (KeyboardInterrupt, TermInterrupt, JobTimeoutError) as exc: print_stderr(f"[red][bold]{exc.__class__.__name__}:[/] [i]{exc}[/][/]") beaker.experiment.stop(experiment) print_stderr("[yellow]Experiment cancelled.[/]") sys.exit(1) util.display_results(beaker, experiment, job) @main.group(**_CLICK_GROUP_DEFAULTS) def config(): """ Configure Gantry for a specific Beaker workspace. """ @config.command(**_CLICK_COMMAND_DEFAULTS) # type: ignore @click.argument("token") @click.option( "-w", "--workspace", type=str, help="""The Beaker workspace to use. If not specified, your default workspace will be used.""", ) @click.option( "-s", "--secret", type=str, help="""The name of the Beaker secret to write to.""", default=constants.GITHUB_TOKEN_SECRET, show_default=True, ) @click.option( "-y", "--yes", is_flag=True, help="""Skip all confirmation prompts.""", ) def set_gh_token( token: str, workspace: Optional[str] = None, secret: str = constants.GITHUB_TOKEN_SECRET, yes: bool = False, ): """ Set or update Gantry's GitHub token for the workspace. You can create a suitable GitHub token by going to https://github.com/settings/tokens/new and generating a token with the '\N{ballot box with check} repo' scope. Example: $ gantry config set-gh-token "$GITHUB_TOKEN" """ # Initialize Beaker client and validate workspace. beaker = util.ensure_workspace(workspace=workspace, yes=yes, gh_token_secret=secret) # Write token to secret. beaker.secret.write(secret, token) print( f"[green]\N{check mark} GitHub token added to workspace " f"'{beaker.config.default_workspace}' as the secret '{secret}'" ) @main.group(**_CLICK_GROUP_DEFAULTS) def cluster(): """ Get information on Beaker clusters. """ @cluster.command(name="list", **_CLICK_COMMAND_DEFAULTS) # type: ignore @click.option( "--cloud", is_flag=True, help="""Only show cloud clusters.""", ) def list_clusters(cloud: bool = False): """ List available clusters. By default only on-premise clusters are displayed. """ beaker = Beaker.from_env(session=True) clusters = [c for c in beaker.cluster.list() if c.is_cloud == cloud] for cluster in clusters: icon = "☁️" if cluster.is_cloud else "🏠" print(f"{icon} [b magenta]{cluster.full_name}[/]") for node in sorted(beaker.cluster.nodes(cluster), key=lambda node: node.hostname): print( f" [i cyan]{node.hostname}[/] - " f"CPUs: {node.limits.cpu_count}, " f"GPUs: {node.limits.gpu_count or 0} {'x' if node.limits.gpu_type else ''} {node.limits.gpu_type or ''}" ) if cluster.node_spec is not None: limits = cluster.node_spec print( f" CPUs: {limits.cpu_count}, " f"GPUs: {limits.gpu_count or 0} {'x' if limits.gpu_type else ''} {limits.gpu_type or ''}" ) @cluster.command(name="util", **_CLICK_COMMAND_DEFAULTS) # type: ignore @click.argument("cluster", nargs=1, required=True, type=str) def cluster_util(cluster: str): """ Get the current status and utilization for a cluster. """ beaker = Beaker.from_env(session=True) cluster_util = beaker.cluster.utilization(cluster) cluster = cluster_util.cluster icon = "☁️" if cluster.is_cloud else "🏠" print( f"{icon} [b magenta]{cluster.full_name}[/]\n\n" f"running jobs: {cluster_util.running_jobs} ({cluster_util.running_preemptible_jobs} preemptible)\n" f"queued jobs: {cluster_util.queued_jobs}" ) if cluster_util.nodes: print("nodes:") for node in sorted(cluster_util.nodes, key=lambda n: n.hostname): print( f" [i cyan]{node.hostname}[/] - {node.running_jobs} jobs ({node.running_preemptible_jobs} preemptible)\n" f" CPUs free: [{'green' if node.free.cpu_count else 'red'}]" f"{node.free.cpu_count} / {node.limits.cpu_count}[/]\n" f" GPUs free: [{'green' if node.free.gpu_count else 'red'}]" f"{node.free.gpu_count or 0} / {node.limits.gpu_count}[/] {node.free.gpu_type or ''}\n" ) if __name__ == "__main__": main()
beaker-gantry-main
gantry/__main__.py
from allennlp.common.testing import ModelTestCase class TestSimpleClassifier(ModelTestCase): def test_model_can_train(self): # This built-in test makes sure that your data can load, that it gets passed to the model # correctly, that your model computes a loss in a way that we can get gradients from it, # that all of your parameters get non-zero gradient updates, and that we can save and load # your model and have the model's predictions remain consistent. param_file = "tests/fixtures/config.json" self.ensure_model_can_train_save_and_load(param_file)
allennlp-template-config-files-master
tests/test_model.py
allennlp-template-config-files-master
tests/__init__.py
from my_project.dataset_reader import ClassificationTsvReader class TestTextClassificationJsonReader: def test_read_from_file_ag_news_corpus_and_truncates_properly(self): reader = ClassificationTsvReader() data_path = "tests/fixtures/toy_data.tsv" instances = list(reader.read(data_path)) assert len(instances) == 2 fields = instances[0].fields expected_tokens = ["it", "is", "movies", "like", "these"] assert [t.text for t in fields["text"].tokens][:5] == expected_tokens assert fields["label"].label == "neg" fields = instances[1].fields expected_tokens = ["the", "music", "is", "well-chosen", "and"] assert [t.text for t in fields["text"].tokens][:5] == expected_tokens assert fields["label"].label == "pos"
allennlp-template-config-files-master
tests/test_dataset_reader.py
# These imports are important for making the configuration files find the classes that you wrote. # If you don't have these, you'll get errors about allennlp not being able to find # "simple_classifier", or whatever name you registered your model with. These imports and the # contents of .allennlp_plugins makes it so you can just use `allennlp train`, and we will find your # classes and use them. If you change the name of `my_project`, you'll also need to change it in # the same way in the .allennlp_plugins file. from my_project.model import * from my_project.dataset_reader import *
allennlp-template-config-files-master
my_project/__init__.py
from typing import Dict import torch from allennlp.data import Vocabulary, TextFieldTensors from allennlp.models import Model from allennlp.modules import TextFieldEmbedder, Seq2VecEncoder from allennlp.nn import util from allennlp.training.metrics import CategoricalAccuracy @Model.register("simple_classifier") class SimpleClassifier(Model): def __init__( self, vocab: Vocabulary, embedder: TextFieldEmbedder, encoder: Seq2VecEncoder ): super().__init__(vocab) self.embedder = embedder self.encoder = encoder num_labels = vocab.get_vocab_size("labels") self.classifier = torch.nn.Linear(encoder.get_output_dim(), num_labels) self.accuracy = CategoricalAccuracy() def forward( # type: ignore self, text: TextFieldTensors, label: torch.Tensor = None ) -> Dict[str, torch.Tensor]: # Shape: (batch_size, num_tokens, embedding_dim) embedded_text = self.embedder(text) # Shape: (batch_size, num_tokens) mask = util.get_text_field_mask(text) # Shape: (batch_size, encoding_dim) encoded_text = self.encoder(embedded_text, mask) # Shape: (batch_size, num_labels) logits = self.classifier(encoded_text) # Shape: (batch_size, num_labels) probs = torch.nn.functional.softmax(logits, dim=-1) # Shape: (1,) output = {"probs": probs} if label is not None: self.accuracy(logits, label) output["loss"] = torch.nn.functional.cross_entropy(logits, label) return output def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self.accuracy.get_metric(reset)}
allennlp-template-config-files-master
my_project/model.py
from typing import Dict, Iterable from allennlp.data import DatasetReader, Instance, Field from allennlp.data.fields import LabelField, TextField from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Tokenizer, WhitespaceTokenizer @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, max_tokens: int = None, **kwargs ): super().__init__(**kwargs) self.tokenizer = tokenizer or WhitespaceTokenizer() self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.max_tokens = max_tokens def text_to_instance(self, text: str, label: str = None) -> Instance: # type: ignore tokens = self.tokenizer.tokenize(text) if self.max_tokens: tokens = tokens[: self.max_tokens] text_field = TextField(tokens, self.token_indexers) fields: Dict[str, Field] = {"text": text_field} if label: fields["label"] = LabelField(label) return Instance(fields) def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: text, sentiment = line.strip().split("\t") yield self.text_to_instance(text, sentiment)
allennlp-template-config-files-master
my_project/dataset_reader.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import io import unittest import torch from models.matcher import HungarianMatcher from models.position_encoding import PositionEmbeddingSine, PositionEmbeddingLearned from models.backbone import Backbone, Joiner, BackboneBase from util import box_ops from util.misc import nested_tensor_from_tensor_list from hubconf import detr_resnet50, detr_resnet50_panoptic # onnxruntime requires python 3.5 or above try: import onnxruntime except ImportError: onnxruntime = None class Tester(unittest.TestCase): def test_box_cxcywh_to_xyxy(self): t = torch.rand(10, 4) r = box_ops.box_xyxy_to_cxcywh(box_ops.box_cxcywh_to_xyxy(t)) self.assertLess((t - r).abs().max(), 1e-5) @staticmethod def indices_torch2python(indices): return [(i.tolist(), j.tolist()) for i, j in indices] def test_hungarian(self): n_queries, n_targets, n_classes = 100, 15, 91 logits = torch.rand(1, n_queries, n_classes + 1) boxes = torch.rand(1, n_queries, 4) tgt_labels = torch.randint(high=n_classes, size=(n_targets,)) tgt_boxes = torch.rand(n_targets, 4) matcher = HungarianMatcher() targets = [{'labels': tgt_labels, 'boxes': tgt_boxes}] indices_single = matcher({'pred_logits': logits, 'pred_boxes': boxes}, targets) indices_batched = matcher({'pred_logits': logits.repeat(2, 1, 1), 'pred_boxes': boxes.repeat(2, 1, 1)}, targets * 2) self.assertEqual(len(indices_single[0][0]), n_targets) self.assertEqual(len(indices_single[0][1]), n_targets) self.assertEqual(self.indices_torch2python(indices_single), self.indices_torch2python([indices_batched[0]])) self.assertEqual(self.indices_torch2python(indices_single), self.indices_torch2python([indices_batched[1]])) # test with empty targets tgt_labels_empty = torch.randint(high=n_classes, size=(0,)) tgt_boxes_empty = torch.rand(0, 4) targets_empty = [{'labels': tgt_labels_empty, 'boxes': tgt_boxes_empty}] indices = matcher({'pred_logits': logits.repeat(2, 1, 1), 'pred_boxes': boxes.repeat(2, 1, 1)}, targets + targets_empty) self.assertEqual(len(indices[1][0]), 0) indices = matcher({'pred_logits': logits.repeat(2, 1, 1), 'pred_boxes': boxes.repeat(2, 1, 1)}, targets_empty * 2) self.assertEqual(len(indices[0][0]), 0) def test_position_encoding_script(self): m1, m2 = PositionEmbeddingSine(), PositionEmbeddingLearned() mm1, mm2 = torch.jit.script(m1), torch.jit.script(m2) # noqa def test_backbone_script(self): backbone = Backbone('resnet50', True, False, False) torch.jit.script(backbone) # noqa def test_model_script_detection(self): model = detr_resnet50(pretrained=False).eval() scripted_model = torch.jit.script(model) x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)]) out = model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) def test_model_script_panoptic(self): model = detr_resnet50_panoptic(pretrained=False).eval() scripted_model = torch.jit.script(model) x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)]) out = model(x) out_script = scripted_model(x) self.assertTrue(out["pred_logits"].equal(out_script["pred_logits"])) self.assertTrue(out["pred_boxes"].equal(out_script["pred_boxes"])) self.assertTrue(out["pred_masks"].equal(out_script["pred_masks"])) def test_model_detection_different_inputs(self): model = detr_resnet50(pretrained=False).eval() # support NestedTensor x = nested_tensor_from_tensor_list([torch.rand(3, 200, 200), torch.rand(3, 200, 250)]) out = model(x) self.assertIn('pred_logits', out) # and 4d Tensor x = torch.rand(1, 3, 200, 200) out = model(x) self.assertIn('pred_logits', out) # and List[Tensor[C, H, W]] x = torch.rand(3, 200, 200) out = model([x]) self.assertIn('pred_logits', out) @unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable') class ONNXExporterTester(unittest.TestCase): @classmethod def setUpClass(cls): torch.manual_seed(123) def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None, output_names=None, input_names=None): model.eval() onnx_io = io.BytesIO() # export to onnx with the first input torch.onnx.export(model, inputs_list[0], onnx_io, do_constant_folding=do_constant_folding, opset_version=12, dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names) # validate the exported model with onnx runtime for test_inputs in inputs_list: with torch.no_grad(): if isinstance(test_inputs, torch.Tensor) or isinstance(test_inputs, list): test_inputs = (nested_tensor_from_tensor_list(test_inputs),) test_ouputs = model(*test_inputs) if isinstance(test_ouputs, torch.Tensor): test_ouputs = (test_ouputs,) self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch) def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False): inputs, _ = torch.jit._flatten(inputs) outputs, _ = torch.jit._flatten(outputs) def to_numpy(tensor): if tensor.requires_grad: return tensor.detach().cpu().numpy() else: return tensor.cpu().numpy() inputs = list(map(to_numpy, inputs)) outputs = list(map(to_numpy, outputs)) ort_session = onnxruntime.InferenceSession(onnx_io.getvalue()) # compute onnxruntime output prediction ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs)) ort_outs = ort_session.run(None, ort_inputs) for i in range(0, len(outputs)): try: torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05) except AssertionError as error: if tolerate_small_mismatch: self.assertIn("(0.00%)", str(error), str(error)) else: raise def test_model_onnx_detection(self): model = detr_resnet50(pretrained=False).eval() dummy_image = torch.ones(1, 3, 800, 800) * 0.3 model(dummy_image) # Test exported model on images of different size, or dummy input self.run_model( model, [(torch.rand(1, 3, 750, 800),)], input_names=["inputs"], output_names=["pred_logits", "pred_boxes"], tolerate_small_mismatch=True, ) if __name__ == '__main__': unittest.main()
detr-master
test_all.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ A script to run multinode training with submitit. """ import argparse import os import uuid from pathlib import Path import main as detection import submitit def parse_args(): detection_parser = detection.get_args_parser() parser = argparse.ArgumentParser("Submitit for detection", parents=[detection_parser]) parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node") parser.add_argument("--nodes", default=4, type=int, help="Number of nodes to request") parser.add_argument("--timeout", default=60, type=int, help="Duration of the job") parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.") return parser.parse_args() def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path(f"/checkpoint/{user}/experiments") p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args def __call__(self): import main as detection self._setup_gpu_args() detection.main(self.args) def checkpoint(self): import os import submitit from pathlib import Path self.args.dist_url = get_init_file().as_uri() checkpoint_file = os.path.join(self.args.output_dir, "checkpoint.pth") if os.path.exists(checkpoint_file): self.args.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit from pathlib import Path job_env = submitit.JobEnvironment() self.args.output_dir = Path(str(self.args.output_dir).replace("%j", str(job_env.job_id))) self.args.gpu = job_env.local_rank self.args.rank = job_env.global_rank self.args.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") def main(): args = parse_args() if args.job_dir == "": args.job_dir = get_shared_folder() / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30) # cluster setup is defined by environment variables num_gpus_per_node = args.ngpus nodes = args.nodes timeout_min = args.timeout executor.update_parameters( mem_gb=40 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, # one task per GPU cpus_per_task=10, nodes=nodes, timeout_min=timeout_min, # max is 60 * 72 ) executor.update_parameters(name="detr") args.dist_url = get_init_file().as_uri() args.output_dir = args.job_dir trainer = Trainer(args) job = executor.submit(trainer) print("Submitted job_id:", job.job_id) if __name__ == "__main__": main()
detr-master
run_with_submitit.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Train and eval functions used in main.py """ import math import os import sys from typing import Iterable import torch import util.misc as utils from datasets.coco_eval import CocoEvaluator from datasets.panoptic_eval import PanopticEvaluator def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, max_norm: float = 0): model.train() criterion.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 for samples, targets in metric_logger.log_every(data_loader, print_freq, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} losses_reduced_scaled = sum(loss_dict_reduced_scaled.values()) loss_value = losses_reduced_scaled.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() if max_norm > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() metric_logger.update(loss=loss_value, **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(class_error=loss_dict_reduced['class_error']) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(model, criterion, postprocessors, data_loader, base_ds, device, output_dir): model.eval() criterion.eval() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('class_error', utils.SmoothedValue(window_size=1, fmt='{value:.2f}')) header = 'Test:' iou_types = tuple(k for k in ('segm', 'bbox') if k in postprocessors.keys()) coco_evaluator = CocoEvaluator(base_ds, iou_types) # coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75] panoptic_evaluator = None if 'panoptic' in postprocessors.keys(): panoptic_evaluator = PanopticEvaluator( data_loader.dataset.ann_file, data_loader.dataset.ann_folder, output_dir=os.path.join(output_dir, "panoptic_eval"), ) for samples, targets in metric_logger.log_every(data_loader, 10, header): samples = samples.to(device) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] outputs = model(samples) loss_dict = criterion(outputs, targets) weight_dict = criterion.weight_dict # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) loss_dict_reduced_scaled = {k: v * weight_dict[k] for k, v in loss_dict_reduced.items() if k in weight_dict} loss_dict_reduced_unscaled = {f'{k}_unscaled': v for k, v in loss_dict_reduced.items()} metric_logger.update(loss=sum(loss_dict_reduced_scaled.values()), **loss_dict_reduced_scaled, **loss_dict_reduced_unscaled) metric_logger.update(class_error=loss_dict_reduced['class_error']) orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0) results = postprocessors['bbox'](outputs, orig_target_sizes) if 'segm' in postprocessors.keys(): target_sizes = torch.stack([t["size"] for t in targets], dim=0) results = postprocessors['segm'](results, outputs, orig_target_sizes, target_sizes) res = {target['image_id'].item(): output for target, output in zip(targets, results)} if coco_evaluator is not None: coco_evaluator.update(res) if panoptic_evaluator is not None: res_pano = postprocessors["panoptic"](outputs, target_sizes, orig_target_sizes) for i, target in enumerate(targets): image_id = target["image_id"].item() file_name = f"{image_id:012d}.png" res_pano[i]["image_id"] = image_id res_pano[i]["file_name"] = file_name panoptic_evaluator.update(res_pano) # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) if coco_evaluator is not None: coco_evaluator.synchronize_between_processes() if panoptic_evaluator is not None: panoptic_evaluator.synchronize_between_processes() # accumulate predictions from all images if coco_evaluator is not None: coco_evaluator.accumulate() coco_evaluator.summarize() panoptic_res = None if panoptic_evaluator is not None: panoptic_res = panoptic_evaluator.summarize() stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} if coco_evaluator is not None: if 'bbox' in postprocessors.keys(): stats['coco_eval_bbox'] = coco_evaluator.coco_eval['bbox'].stats.tolist() if 'segm' in postprocessors.keys(): stats['coco_eval_masks'] = coco_evaluator.coco_eval['segm'].stats.tolist() if panoptic_res is not None: stats['PQ_all'] = panoptic_res["All"] stats['PQ_th'] = panoptic_res["Things"] stats['PQ_st'] = panoptic_res["Stuff"] return stats, coco_evaluator
detr-master
engine.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch from models.backbone import Backbone, Joiner from models.detr import DETR, PostProcess from models.position_encoding import PositionEmbeddingSine from models.segmentation import DETRsegm, PostProcessPanoptic from models.transformer import Transformer dependencies = ["torch", "torchvision"] def _make_detr(backbone_name: str, dilation=False, num_classes=91, mask=False): hidden_dim = 256 backbone = Backbone(backbone_name, train_backbone=True, return_interm_layers=mask, dilation=dilation) pos_enc = PositionEmbeddingSine(hidden_dim // 2, normalize=True) backbone_with_pos_enc = Joiner(backbone, pos_enc) backbone_with_pos_enc.num_channels = backbone.num_channels transformer = Transformer(d_model=hidden_dim, return_intermediate_dec=True) detr = DETR(backbone_with_pos_enc, transformer, num_classes=num_classes, num_queries=100) if mask: return DETRsegm(detr) return detr def detr_resnet50(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 42/62.4 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 43.3/63.1 AP/AP50 on COCO val5k. """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-f0fb7ef5.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 43.5/63.8 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet101_dc5(pretrained=False, num_classes=91, return_postprocessor=False): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. The last block of ResNet-101 has dilation to increase output resolution. Achieves 44.9/64.7 AP/AP50 on COCO val5k. """ model = _make_detr("resnet101", dilation=True, num_classes=num_classes) if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-dc5-a2e86def.pth", map_location="cpu", check_hash=True ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcess() return model def detr_resnet50_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR R50 with 6 encoder and 6 decoder layers. Achieves 43.4 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-panoptic-00ce5173.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet50_dc5_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R50 with 6 encoder and 6 decoder layers. The last block of ResNet-50 has dilation to increase output resolution. Achieves 44.6 on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet50", dilation=True, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r50-dc5-panoptic-da08f1b1.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model def detr_resnet101_panoptic( pretrained=False, num_classes=250, threshold=0.85, return_postprocessor=False ): """ DETR-DC5 R101 with 6 encoder and 6 decoder layers. Achieves 45.1 PQ on COCO val5k. threshold is the minimum confidence required for keeping segments in the prediction """ model = _make_detr("resnet101", dilation=False, num_classes=num_classes, mask=True) is_thing_map = {i: i <= 90 for i in range(250)} if pretrained: checkpoint = torch.hub.load_state_dict_from_url( url="https://dl.fbaipublicfiles.com/detr/detr-r101-panoptic-40021d53.pth", map_location="cpu", check_hash=True, ) model.load_state_dict(checkpoint["model"]) if return_postprocessor: return model, PostProcessPanoptic(is_thing_map, threshold=threshold) return model
detr-master
hubconf.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import datetime import json import random import time from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler import datasets import util.misc as utils from datasets import build_dataset, get_coco_api_from_dataset from engine import evaluate, train_one_epoch from models import build_model def get_args_parser(): parser = argparse.ArgumentParser('Set transformer detector', add_help=False) parser.add_argument('--lr', default=1e-4, type=float) parser.add_argument('--lr_backbone', default=1e-5, type=float) parser.add_argument('--batch_size', default=2, type=int) parser.add_argument('--weight_decay', default=1e-4, type=float) parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--lr_drop', default=200, type=int) parser.add_argument('--clip_max_norm', default=0.1, type=float, help='gradient clipping max norm') # Model parameters parser.add_argument('--frozen_weights', type=str, default=None, help="Path to the pretrained model. If set, only the mask head will be trained") # * Backbone parser.add_argument('--backbone', default='resnet50', type=str, help="Name of the convolutional backbone to use") parser.add_argument('--dilation', action='store_true', help="If true, we replace stride with dilation in the last convolutional block (DC5)") parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'), help="Type of positional embedding to use on top of the image features") # * Transformer parser.add_argument('--enc_layers', default=6, type=int, help="Number of encoding layers in the transformer") parser.add_argument('--dec_layers', default=6, type=int, help="Number of decoding layers in the transformer") parser.add_argument('--dim_feedforward', default=2048, type=int, help="Intermediate size of the feedforward layers in the transformer blocks") parser.add_argument('--hidden_dim', default=256, type=int, help="Size of the embeddings (dimension of the transformer)") parser.add_argument('--dropout', default=0.1, type=float, help="Dropout applied in the transformer") parser.add_argument('--nheads', default=8, type=int, help="Number of attention heads inside the transformer's attentions") parser.add_argument('--num_queries', default=100, type=int, help="Number of query slots") parser.add_argument('--pre_norm', action='store_true') # * Segmentation parser.add_argument('--masks', action='store_true', help="Train segmentation head if the flag is provided") # Loss parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false', help="Disables auxiliary decoding losses (loss at each layer)") # * Matcher parser.add_argument('--set_cost_class', default=1, type=float, help="Class coefficient in the matching cost") parser.add_argument('--set_cost_bbox', default=5, type=float, help="L1 box coefficient in the matching cost") parser.add_argument('--set_cost_giou', default=2, type=float, help="giou box coefficient in the matching cost") # * Loss coefficients parser.add_argument('--mask_loss_coef', default=1, type=float) parser.add_argument('--dice_loss_coef', default=1, type=float) parser.add_argument('--bbox_loss_coef', default=5, type=float) parser.add_argument('--giou_loss_coef', default=2, type=float) parser.add_argument('--eos_coef', default=0.1, type=float, help="Relative classification weight of the no-object class") # dataset parameters parser.add_argument('--dataset_file', default='coco') parser.add_argument('--coco_path', type=str) parser.add_argument('--coco_panoptic_path', type=str) parser.add_argument('--remove_difficult', action='store_true') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=42, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true') parser.add_argument('--num_workers', default=2, type=int) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') return parser def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) param_dicts = [ {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]}, { "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad], "lr": args.lr_backbone, }, ] optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val', args=args) if args.distributed: sampler_train = DistributedSampler(dataset_train) sampler_val = DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True) data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers) data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers) if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = get_coco_api_from_dataset(coco_val) else: base_ds = get_coco_api_from_dataset(dataset_val) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location='cpu') model_without_ddp.detr.load_state_dict(checkpoint['model']) output_dir = Path(args.output_dir) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.eval: test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir) if args.output_dir: utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth") return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm) lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] # extra checkpoint before LR drop and every 100 epochs if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0: checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth') for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'args': args, }, checkpoint_path) test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir ) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: (output_dir / 'eval').mkdir(exist_ok=True) if "bbox" in coco_evaluator.coco_eval: filenames = ['latest.pth'] if epoch % 50 == 0: filenames.append(f'{epoch:03}.pth') for name in filenames: torch.save(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
detr-master
main.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Misc functions, including distributed helpers. Mostly copy-paste from torchvision references. """ import os import subprocess import time from collections import defaultdict, deque import datetime import pickle from typing import Optional, List import torch import torch.distributed as dist from torch import Tensor # needed due to empty tensor bug in pytorch and torchvision 0.5 import torchvision if float(torchvision.__version__[:3]) < 0.7: from torchvision.ops import _new_empty_tensor from torchvision.ops.misc import _output_size class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.tensor([tensor.numel()], device="cuda") size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) if local_size != max_size: padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that all processes have the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.all_reduce(values) if average: values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' if torch.cuda.is_available(): log_msg = self.delimiter.join([ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}', 'max mem: {memory:.0f}' ]) else: log_msg = self.delimiter.join([ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ]) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() sha = 'N/A' diff = "clean" branch = 'N/A' try: sha = _run(['git', 'rev-parse', 'HEAD']) subprocess.check_output(['git', 'diff'], cwd=cwd) diff = _run(['git', 'diff-index', 'HEAD']) diff = "has uncommited changes" if diff else "clean" branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def collate_fn(batch): batch = list(zip(*batch)) batch[0] = nested_tensor_from_tensor_list(batch[0]) return tuple(batch) def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], :img.shape[2]] = False else: raise ValueError('not supported') return NestedTensor(tensor, mask) # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list): max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) @torch.no_grad() def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" if target.numel() == 0: return [torch.zeros([], device=output.device)] maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor """ Equivalent to nn.functional.interpolate, but with support for empty batch sizes. This will eventually be supported natively by PyTorch, and this class can go away. """ if float(torchvision.__version__[:3]) < 0.7: if input.numel() > 0: return torch.nn.functional.interpolate( input, size, scale_factor, mode, align_corners ) output_shape = _output_size(2, input, size, scale_factor) output_shape = list(input.shape[:-2]) + list(output_shape) return _new_empty_tensor(input, output_shape) else: return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
detr-master
util/misc.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Utilities for bounding box manipulation and GIoU. """ import torch from torchvision.ops.boxes import box_area def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=-1) def box_xyxy_to_cxcywh(x): x0, y0, x1, y1 = x.unbind(-1) b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)] return torch.stack(b, dim=-1) # modified from torchvision to also return the union def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] wh = (rb - lt).clamp(min=0) # [N,M,2] inter = wh[:, :, 0] * wh[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check assert (boxes1[:, 2:] >= boxes1[:, :2]).all() assert (boxes2[:, 2:] >= boxes2[:, :2]).all() iou, union = box_iou(boxes1, boxes2) lt = torch.min(boxes1[:, None, :2], boxes2[:, :2]) rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) wh = (rb - lt).clamp(min=0) # [N,M,2] area = wh[:, :, 0] * wh[:, :, 1] return iou - (area - union) / area def masks_to_boxes(masks): """Compute the bounding boxes around the provided masks The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions. Returns a [N, 4] tensors, with the boxes in xyxy format """ if masks.numel() == 0: return torch.zeros((0, 4), device=masks.device) h, w = masks.shape[-2:] y = torch.arange(0, h, dtype=torch.float) x = torch.arange(0, w, dtype=torch.float) y, x = torch.meshgrid(y, x) x_mask = (masks * x.unsqueeze(0)) x_max = x_mask.flatten(1).max(-1)[0] x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] y_mask = (masks * y.unsqueeze(0)) y_max = y_mask.flatten(1).max(-1)[0] y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0] return torch.stack([x_min, y_min, x_max, y_max], 1)
detr-master
util/box_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
detr-master
util/__init__.py
""" Plotting utilities to visualize training logs. """ import torch import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from pathlib import Path, PurePath def plot_logs(logs, fields=('class_error', 'loss_bbox_unscaled', 'mAP'), ewm_col=0, log_name='log.txt'): ''' Function to plot specific fields from training log(s). Plots both training and test results. :: Inputs - logs = list containing Path objects, each pointing to individual dir with a log file - fields = which results to plot from each log file - plots both training and test for each field. - ewm_col = optional, which column to use as the exponential weighted smoothing of the plots - log_name = optional, name of log file if different than default 'log.txt'. :: Outputs - matplotlib plots of results in fields, color coded for each log file. - solid lines are training results, dashed lines are test results. ''' func_name = "plot_utils.py::plot_logs" # verify logs is a list of Paths (list[Paths]) or single Pathlib object Path, # convert single Path to list to avoid 'not iterable' error if not isinstance(logs, list): if isinstance(logs, PurePath): logs = [logs] print(f"{func_name} info: logs param expects a list argument, converted to list[Path].") else: raise ValueError(f"{func_name} - invalid argument for logs parameter.\n \ Expect list[Path] or single Path obj, received {type(logs)}") # verify valid dir(s) and that every item in list is Path object for i, dir in enumerate(logs): if not isinstance(dir, PurePath): raise ValueError(f"{func_name} - non-Path object in logs argument of {type(dir)}: \n{dir}") if dir.exists(): continue raise ValueError(f"{func_name} - invalid directory in logs argument:\n{dir}") # load log file(s) and plot dfs = [pd.read_json(Path(p) / log_name, lines=True) for p in logs] fig, axs = plt.subplots(ncols=len(fields), figsize=(16, 5)) for df, color in zip(dfs, sns.color_palette(n_colors=len(logs))): for j, field in enumerate(fields): if field == 'mAP': coco_eval = pd.DataFrame( pd.np.stack(df.test_coco_eval_bbox.dropna().values)[:, 1] ).ewm(com=ewm_col).mean() axs[j].plot(coco_eval, c=color) else: df.interpolate().ewm(com=ewm_col).mean().plot( y=[f'train_{field}', f'test_{field}'], ax=axs[j], color=[color] * 2, style=['-', '--'] ) for ax, field in zip(axs, fields): ax.legend([Path(p).name for p in logs]) ax.set_title(field) def plot_precision_recall(files, naming_scheme='iter'): if naming_scheme == 'exp_id': # name becomes exp_id names = [f.parts[-3] for f in files] elif naming_scheme == 'iter': names = [f.stem for f in files] else: raise ValueError(f'not supported {naming_scheme}') fig, axs = plt.subplots(ncols=2, figsize=(16, 5)) for f, color, name in zip(files, sns.color_palette("Blues", n_colors=len(files)), names): data = torch.load(f) # precision is n_iou, n_points, n_cat, n_area, max_det precision = data['precision'] recall = data['params'].recThrs scores = data['scores'] # take precision for all classes, all areas and 100 detections precision = precision[0, :, :, 0, -1].mean(1) scores = scores[0, :, :, 0, -1].mean(1) prec = precision.mean() rec = data['recall'][0, :, 0, -1].mean() print(f'{naming_scheme} {name}: mAP@50={prec * 100: 05.1f}, ' + f'score={scores.mean():0.3f}, ' + f'f1={2 * prec * rec / (prec + rec + 1e-8):0.3f}' ) axs[0].plot(recall, precision, c=color) axs[1].plot(recall, scores, c=color) axs[0].set_title('Precision / Recall') axs[0].legend(names) axs[1].set_title('Scores / Recall') axs[1].legend(names) return fig, axs
detr-master
util/plot_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO dataset which returns image_id for evaluation. Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py """ from pathlib import Path import torch import torch.utils.data import torchvision from pycocotools import mask as coco_mask import datasets.transforms as T class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms, return_masks): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms self.prepare = ConvertCocoPolysToMask(return_masks) def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = {'image_id': image_id, 'annotations': target} img, target = self.prepare(img, target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __init__(self, return_masks=False): self.return_masks = return_masks def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) if self.return_masks: segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] if self.return_masks: masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes if self.return_masks: target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno]) target["area"] = area[keep] target["iscrowd"] = iscrowd[keep] target["orig_size"] = torch.as_tensor([int(h), int(w)]) target["size"] = torch.as_tensor([int(h), int(w)]) return image, target def make_coco_transforms(image_set): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == 'train': return T.Compose([ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose([ T.RandomResize([400, 500, 600]), T.RandomSizeCrop(384, 600), T.RandomResize(scales, max_size=1333), ]) ), normalize, ]) if image_set == 'val': return T.Compose([ T.RandomResize([800], max_size=1333), normalize, ]) raise ValueError(f'unknown {image_set}') def build(image_set, args): root = Path(args.coco_path) assert root.exists(), f'provided COCO path {root} does not exist' mode = 'instances' PATHS = { "train": (root / "train2017", root / "annotations" / f'{mode}_train2017.json'), "val": (root / "val2017", root / "annotations" / f'{mode}_val2017.json'), } img_folder, ann_file = PATHS[image_set] dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks) return dataset
detr-master
datasets/coco.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Transforms and data augmentation for both image + bbox. """ import random import PIL import torch import torchvision.transforms as T import torchvision.transforms.functional as F from util.box_ops import box_xyxy_to_cxcywh from util.misc import interpolate def crop(image, target, region): cropped_image = F.crop(image, *region) target = target.copy() i, j, h, w = region # should we do something wrt the original size? target["size"] = torch.tensor([h, w]) fields = ["labels", "area", "iscrowd"] if "boxes" in target: boxes = target["boxes"] max_size = torch.as_tensor([w, h], dtype=torch.float32) cropped_boxes = boxes - torch.as_tensor([j, i, j, i]) cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size) cropped_boxes = cropped_boxes.clamp(min=0) area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1) target["boxes"] = cropped_boxes.reshape(-1, 4) target["area"] = area fields.append("boxes") if "masks" in target: # FIXME should we update the area here if there are no boxes? target['masks'] = target['masks'][:, i:i + h, j:j + w] fields.append("masks") # remove elements for which the boxes or masks that have zero area if "boxes" in target or "masks" in target: # favor boxes selection when defining which elements to keep # this is compatible with previous implementation if "boxes" in target: cropped_boxes = target['boxes'].reshape(-1, 2, 2) keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1) else: keep = target['masks'].flatten(1).any(1) for field in fields: target[field] = target[field][keep] return cropped_image, target def hflip(image, target): flipped_image = F.hflip(image) w, h = image.size target = target.copy() if "boxes" in target: boxes = target["boxes"] boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0]) target["boxes"] = boxes if "masks" in target: target['masks'] = target['masks'].flip(-1) return flipped_image, target def resize(image, target, size, max_size=None): # size can be min_size (scalar) or (w, h) tuple def get_size_with_aspect_ratio(image_size, size, max_size=None): w, h = image_size if max_size is not None: min_original_size = float(min((w, h))) max_original_size = float(max((w, h))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (w <= h and w == size) or (h <= w and h == size): return (h, w) if w < h: ow = size oh = int(size * h / w) else: oh = size ow = int(size * w / h) return (oh, ow) def get_size(image_size, size, max_size=None): if isinstance(size, (list, tuple)): return size[::-1] else: return get_size_with_aspect_ratio(image_size, size, max_size) size = get_size(image.size, size, max_size) rescaled_image = F.resize(image, size) if target is None: return rescaled_image, None ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)) ratio_width, ratio_height = ratios target = target.copy() if "boxes" in target: boxes = target["boxes"] scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height]) target["boxes"] = scaled_boxes if "area" in target: area = target["area"] scaled_area = area * (ratio_width * ratio_height) target["area"] = scaled_area h, w = size target["size"] = torch.tensor([h, w]) if "masks" in target: target['masks'] = interpolate( target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5 return rescaled_image, target def pad(image, target, padding): # assumes that we only pad on the bottom right corners padded_image = F.pad(image, (0, 0, padding[0], padding[1])) if target is None: return padded_image, None target = target.copy() # should we do something wrt the original size? target["size"] = torch.tensor(padded_image[::-1]) if "masks" in target: target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1])) return padded_image, target class RandomCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): region = T.RandomCrop.get_params(img, self.size) return crop(img, target, region) class RandomSizeCrop(object): def __init__(self, min_size: int, max_size: int): self.min_size = min_size self.max_size = max_size def __call__(self, img: PIL.Image.Image, target: dict): w = random.randint(self.min_size, min(img.width, self.max_size)) h = random.randint(self.min_size, min(img.height, self.max_size)) region = T.RandomCrop.get_params(img, [h, w]) return crop(img, target, region) class CenterCrop(object): def __init__(self, size): self.size = size def __call__(self, img, target): image_width, image_height = img.size crop_height, crop_width = self.size crop_top = int(round((image_height - crop_height) / 2.)) crop_left = int(round((image_width - crop_width) / 2.)) return crop(img, target, (crop_top, crop_left, crop_height, crop_width)) class RandomHorizontalFlip(object): def __init__(self, p=0.5): self.p = p def __call__(self, img, target): if random.random() < self.p: return hflip(img, target) return img, target class RandomResize(object): def __init__(self, sizes, max_size=None): assert isinstance(sizes, (list, tuple)) self.sizes = sizes self.max_size = max_size def __call__(self, img, target=None): size = random.choice(self.sizes) return resize(img, target, size, self.max_size) class RandomPad(object): def __init__(self, max_pad): self.max_pad = max_pad def __call__(self, img, target): pad_x = random.randint(0, self.max_pad) pad_y = random.randint(0, self.max_pad) return pad(img, target, (pad_x, pad_y)) class RandomSelect(object): """ Randomly selects between transforms1 and transforms2, with probability p for transforms1 and (1 - p) for transforms2 """ def __init__(self, transforms1, transforms2, p=0.5): self.transforms1 = transforms1 self.transforms2 = transforms2 self.p = p def __call__(self, img, target): if random.random() < self.p: return self.transforms1(img, target) return self.transforms2(img, target) class ToTensor(object): def __call__(self, img, target): return F.to_tensor(img), target class RandomErasing(object): def __init__(self, *args, **kwargs): self.eraser = T.RandomErasing(*args, **kwargs) def __call__(self, img, target): return self.eraser(img), target class Normalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, image, target=None): image = F.normalize(image, mean=self.mean, std=self.std) if target is None: return image, None target = target.copy() h, w = image.shape[-2:] if "boxes" in target: boxes = target["boxes"] boxes = box_xyxy_to_cxcywh(boxes) boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32) target["boxes"] = boxes return image, target class Compose(object): def __init__(self, transforms): self.transforms = transforms def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
detr-master
datasets/transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json import os import util.misc as utils try: from panopticapi.evaluation import pq_compute except ImportError: pass class PanopticEvaluator(object): def __init__(self, ann_file, ann_folder, output_dir="panoptic_eval"): self.gt_json = ann_file self.gt_folder = ann_folder if utils.is_main_process(): if not os.path.exists(output_dir): os.mkdir(output_dir) self.output_dir = output_dir self.predictions = [] def update(self, predictions): for p in predictions: with open(os.path.join(self.output_dir, p["file_name"]), "wb") as f: f.write(p.pop("png_string")) self.predictions += predictions def synchronize_between_processes(self): all_predictions = utils.all_gather(self.predictions) merged_predictions = [] for p in all_predictions: merged_predictions += p self.predictions = merged_predictions def summarize(self): if utils.is_main_process(): json_data = {"annotations": self.predictions} predictions_json = os.path.join(self.output_dir, "predictions.json") with open(predictions_json, "w") as f: f.write(json.dumps(json_data)) return pq_compute(self.gt_json, predictions_json, gt_folder=self.gt_folder, pred_folder=self.output_dir) return None
detr-master
datasets/panoptic_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch.utils.data import torchvision from .coco import build as build_coco def get_coco_api_from_dataset(dataset): for _ in range(10): # if isinstance(dataset, torchvision.datasets.CocoDetection): # break if isinstance(dataset, torch.utils.data.Subset): dataset = dataset.dataset if isinstance(dataset, torchvision.datasets.CocoDetection): return dataset.coco def build_dataset(image_set, args): if args.dataset_file == 'coco': return build_coco(image_set, args) if args.dataset_file == 'coco_panoptic': # to avoid making panopticapi required for coco from .coco_panoptic import build as build_coco_panoptic return build_coco_panoptic(image_set, args) raise ValueError(f'dataset {args.dataset_file} not supported')
detr-master
datasets/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ COCO evaluator that works in distributed mode. Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py The difference is that there is less copy-pasting from pycocotools in the end of the file, as python3 can suppress prints with contextlib """ import os import contextlib import copy import numpy as np import torch from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO import pycocotools.mask as mask_util from util.misc import all_gather class CocoEvaluator(object): def __init__(self, coco_gt, iou_types): assert isinstance(iou_types, (list, tuple)) coco_gt = copy.deepcopy(coco_gt) self.coco_gt = coco_gt self.iou_types = iou_types self.coco_eval = {} for iou_type in iou_types: self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type) self.img_ids = [] self.eval_imgs = {k: [] for k in iou_types} def update(self, predictions): img_ids = list(np.unique(list(predictions.keys()))) self.img_ids.extend(img_ids) for iou_type in self.iou_types: results = self.prepare(predictions, iou_type) # suppress pycocotools prints with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO() coco_eval = self.coco_eval[iou_type] coco_eval.cocoDt = coco_dt coco_eval.params.imgIds = list(img_ids) img_ids, eval_imgs = evaluate(coco_eval) self.eval_imgs[iou_type].append(eval_imgs) def synchronize_between_processes(self): for iou_type in self.iou_types: self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2) create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type]) def accumulate(self): for coco_eval in self.coco_eval.values(): coco_eval.accumulate() def summarize(self): for iou_type, coco_eval in self.coco_eval.items(): print("IoU metric: {}".format(iou_type)) coco_eval.summarize() def prepare(self, predictions, iou_type): if iou_type == "bbox": return self.prepare_for_coco_detection(predictions) elif iou_type == "segm": return self.prepare_for_coco_segmentation(predictions) elif iou_type == "keypoints": return self.prepare_for_coco_keypoint(predictions) else: raise ValueError("Unknown iou type {}".format(iou_type)) def prepare_for_coco_detection(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) ] ) return coco_results def prepare_for_coco_segmentation(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue scores = prediction["scores"] labels = prediction["labels"] masks = prediction["masks"] masks = masks > 0.5 scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(self, predictions): coco_results = [] for original_id, prediction in predictions.items(): if len(prediction) == 0: continue boxes = prediction["boxes"] boxes = convert_to_xywh(boxes).tolist() scores = prediction["scores"].tolist() labels = prediction["labels"].tolist() keypoints = prediction["keypoints"] keypoints = keypoints.flatten(start_dim=1).tolist() coco_results.extend( [ { "image_id": original_id, "category_id": labels[k], 'keypoints': keypoint, "score": scores[k], } for k, keypoint in enumerate(keypoints) ] ) return coco_results def convert_to_xywh(boxes): xmin, ymin, xmax, ymax = boxes.unbind(1) return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) def merge(img_ids, eval_imgs): all_img_ids = all_gather(img_ids) all_eval_imgs = all_gather(eval_imgs) merged_img_ids = [] for p in all_img_ids: merged_img_ids.extend(p) merged_eval_imgs = [] for p in all_eval_imgs: merged_eval_imgs.append(p) merged_img_ids = np.array(merged_img_ids) merged_eval_imgs = np.concatenate(merged_eval_imgs, 2) # keep only unique (and in sorted order) images merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) merged_eval_imgs = merged_eval_imgs[..., idx] return merged_img_ids, merged_eval_imgs def create_common_coco_eval(coco_eval, img_ids, eval_imgs): img_ids, eval_imgs = merge(img_ids, eval_imgs) img_ids = list(img_ids) eval_imgs = list(eval_imgs.flatten()) coco_eval.evalImgs = eval_imgs coco_eval.params.imgIds = img_ids coco_eval._paramsEval = copy.deepcopy(coco_eval.params) ################################################################# # From pycocotools, just removed the prints and fixed # a Python3 bug about unicode not defined ################################################################# def evaluate(self): ''' Run per image evaluation on given images and store results (a list of dict) in self.evalImgs :return: None ''' # tic = time.time() # print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if p.useSegm is not None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) # print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params = p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks self.ious = { (imgId, catId): computeIoU(imgId, catId) for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] evalImgs = [ evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # this is NOT in the pycocotools code, but could be done outside evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds)) self._paramsEval = copy.deepcopy(self.params) # toc = time.time() # print('DONE (t={:0.2f}s).'.format(toc-tic)) return p.imgIds, evalImgs ################################################################# # end of straight copy from pycocotools, just removing the prints #################################################################
detr-master
datasets/coco_eval.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import json from pathlib import Path import numpy as np import torch from PIL import Image from panopticapi.utils import rgb2id from util.box_ops import masks_to_boxes from .coco import make_coco_transforms class CocoPanoptic: def __init__(self, img_folder, ann_folder, ann_file, transforms=None, return_masks=True): with open(ann_file, 'r') as f: self.coco = json.load(f) # sort 'images' field so that they are aligned with 'annotations' # i.e., in alphabetical order self.coco['images'] = sorted(self.coco['images'], key=lambda x: x['id']) # sanity check if "annotations" in self.coco: for img, ann in zip(self.coco['images'], self.coco['annotations']): assert img['file_name'][:-4] == ann['file_name'][:-4] self.img_folder = img_folder self.ann_folder = ann_folder self.ann_file = ann_file self.transforms = transforms self.return_masks = return_masks def __getitem__(self, idx): ann_info = self.coco['annotations'][idx] if "annotations" in self.coco else self.coco['images'][idx] img_path = Path(self.img_folder) / ann_info['file_name'].replace('.png', '.jpg') ann_path = Path(self.ann_folder) / ann_info['file_name'] img = Image.open(img_path).convert('RGB') w, h = img.size if "segments_info" in ann_info: masks = np.asarray(Image.open(ann_path), dtype=np.uint32) masks = rgb2id(masks) ids = np.array([ann['id'] for ann in ann_info['segments_info']]) masks = masks == ids[:, None, None] masks = torch.as_tensor(masks, dtype=torch.uint8) labels = torch.tensor([ann['category_id'] for ann in ann_info['segments_info']], dtype=torch.int64) target = {} target['image_id'] = torch.tensor([ann_info['image_id'] if "image_id" in ann_info else ann_info["id"]]) if self.return_masks: target['masks'] = masks target['labels'] = labels target["boxes"] = masks_to_boxes(masks) target['size'] = torch.as_tensor([int(h), int(w)]) target['orig_size'] = torch.as_tensor([int(h), int(w)]) if "segments_info" in ann_info: for name in ['iscrowd', 'area']: target[name] = torch.tensor([ann[name] for ann in ann_info['segments_info']]) if self.transforms is not None: img, target = self.transforms(img, target) return img, target def __len__(self): return len(self.coco['images']) def get_height_and_width(self, idx): img_info = self.coco['images'][idx] height = img_info['height'] width = img_info['width'] return height, width def build(image_set, args): img_folder_root = Path(args.coco_path) ann_folder_root = Path(args.coco_panoptic_path) assert img_folder_root.exists(), f'provided COCO path {img_folder_root} does not exist' assert ann_folder_root.exists(), f'provided COCO path {ann_folder_root} does not exist' mode = 'panoptic' PATHS = { "train": ("train2017", Path("annotations") / f'{mode}_train2017.json'), "val": ("val2017", Path("annotations") / f'{mode}_val2017.json'), } img_folder, ann_file = PATHS[image_set] img_folder_path = img_folder_root / img_folder ann_folder = ann_folder_root / f'{mode}_{img_folder}' ann_file = ann_folder_root / ann_file dataset = CocoPanoptic(img_folder_path, ann_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks) return dataset
detr-master
datasets/coco_panoptic.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR model and criterion classes. """ import torch import torch.nn.functional as F from torch import nn from util import box_ops from util.misc import (NestedTensor, nested_tensor_from_tensor_list, accuracy, get_world_size, interpolate, is_dist_avail_and_initialized) from .backbone import build_backbone from .matcher import build_matcher from .segmentation import (DETRsegm, PostProcessPanoptic, PostProcessSegm, dice_loss, sigmoid_focal_loss) from .transformer import build_transformer class DETR(nn.Module): """ This is the DETR module that performs object detection """ def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False): """ Initializes the model. Parameters: backbone: torch module of the backbone to be used. See backbone.py transformer: torch module of the transformer architecture. See transformer.py num_classes: number of object classes num_queries: number of object queries, ie detection slot. This is the maximal number of objects DETR can detect in a single image. For COCO, we recommend 100 queries. aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. """ super().__init__() self.num_queries = num_queries self.transformer = transformer hidden_dim = transformer.d_model self.class_embed = nn.Linear(hidden_dim, num_classes + 1) self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) self.query_embed = nn.Embedding(num_queries, hidden_dim) self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1) self.backbone = backbone self.aux_loss = aux_loss def forward(self, samples: NestedTensor): """ The forward expects a NestedTensor, which consists of: - samples.tensor: batched images, of shape [batch_size x 3 x H x W] - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels It returns a dict with the following elements: - "pred_logits": the classification logits (including no-object) for all queries. Shape= [batch_size x num_queries x (num_classes + 1)] - "pred_boxes": The normalized boxes coordinates for all queries, represented as (center_x, center_y, height, width). These values are normalized in [0, 1], relative to the size of each individual image (disregarding possible padding). See PostProcess for information on how to retrieve the unnormalized bounding box. - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of dictionnaries containing the two above keys for each decoder layer. """ if isinstance(samples, (list, torch.Tensor)): samples = nested_tensor_from_tensor_list(samples) features, pos = self.backbone(samples) src, mask = features[-1].decompose() assert mask is not None hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0] outputs_class = self.class_embed(hs) outputs_coord = self.bbox_embed(hs).sigmoid() out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]} if self.aux_loss: out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) return out @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{'pred_logits': a, 'pred_boxes': b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] class SetCriterion(nn.Module): """ This class computes the loss for DETR. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box) """ def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses): """ Create the criterion. Parameters: num_classes: number of object categories, omitting the special no-object category matcher: module able to compute a matching between targets and proposals weight_dict: dict containing as key the names of the losses and as values their relative weight. eos_coef: relative classification weight applied to the no-object category losses: list of all the losses to be applied. See get_loss for list of available losses. """ super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer('empty_weight', empty_weight) def loss_labels(self, outputs, targets, indices, num_boxes, log=True): """Classification loss (NLL) targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] """ assert 'pred_logits' in outputs src_logits = outputs['pred_logits'] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full(src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device) target_classes[idx] = target_classes_o loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {'loss_ce': loss_ce} if log: # TODO this should probably be a separate loss, not hacked in this one here losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] return losses @torch.no_grad() def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients """ pred_logits = outputs['pred_logits'] device = pred_logits.device tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) losses = {'cardinality_error': card_err} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert 'pred_boxes' in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs['pred_boxes'][idx] target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') losses = {} losses['loss_bbox'] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes), box_ops.box_cxcywh_to_xyxy(target_boxes))) losses['loss_giou'] = loss_giou.sum() / num_boxes return losses def loss_masks(self, outputs, targets, indices, num_boxes): """Compute the losses related to the masks: the focal loss and the dice loss. targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w] """ assert "pred_masks" in outputs src_idx = self._get_src_permutation_idx(indices) tgt_idx = self._get_tgt_permutation_idx(indices) src_masks = outputs["pred_masks"] # TODO use valid to mask invalid areas due to padding in loss target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose() target_masks = target_masks.to(src_masks) src_masks = src_masks[src_idx] # upsample predictions to the target size src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False) src_masks = src_masks[:, 0].flatten(1) target_masks = target_masks[tgt_idx].flatten(1) losses = { "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes), "loss_dice": dice_loss(src_masks, target_masks, num_boxes), } return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def _get_tgt_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) tgt_idx = torch.cat([tgt for (_, tgt) in indices]) return batch_idx, tgt_idx def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): loss_map = { 'labels': self.loss_labels, 'cardinality': self.loss_cardinality, 'boxes': self.loss_boxes, 'masks': self.loss_masks } assert loss in loss_map, f'do you really want to compute {loss} loss?' return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) def forward(self, outputs, targets): """ This performs the loss computation. Parameters: outputs: dict of tensors, see the output specification of the model for the format targets: list of dicts, such that len(targets) == batch_size. The expected keys in each dict depends on the losses applied, see each loss' doc """ outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) if is_dist_avail_and_initialized(): torch.distributed.all_reduce(num_boxes) num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if 'aux_outputs' in outputs: for i, aux_outputs in enumerate(outputs['aux_outputs']): indices = self.matcher(aux_outputs, targets) for loss in self.losses: if loss == 'masks': # Intermediate masks losses are too costly to compute, we ignore them. continue kwargs = {} if loss == 'labels': # Logging is enabled only for the last layer kwargs = {'log': False} l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) l_dict = {k + f'_{i}': v for k, v in l_dict.items()} losses.update(l_dict) return losses class PostProcess(nn.Module): """ This module converts the model's output into the format expected by the coco api""" @torch.no_grad() def forward(self, outputs, target_sizes): """ Perform the computation Parameters: outputs: raw outputs of the model target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch For evaluation, this must be the original image size (before any data augmentation) For visualization, this should be the image size after data augment, but before padding """ out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes'] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)] return results class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x def build(args): num_classes = 20 if args.dataset_file != 'coco' else 91 if args.dataset_file == "coco_panoptic": num_classes = 250 device = torch.device(args.device) backbone = build_backbone(args) transformer = build_transformer(args) model = DETR( backbone, transformer, num_classes=num_classes, num_queries=args.num_queries, aux_loss=args.aux_loss, ) if args.masks: model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None)) matcher = build_matcher(args) weight_dict = {'loss_ce': 1, 'loss_bbox': args.bbox_loss_coef} weight_dict['loss_giou'] = args.giou_loss_coef if args.masks: weight_dict["loss_mask"] = args.mask_loss_coef weight_dict["loss_dice"] = args.dice_loss_coef # TODO this is a hack if args.aux_loss: aux_weight_dict = {} for i in range(args.dec_layers - 1): aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ['labels', 'boxes', 'cardinality'] if args.masks: losses += ["masks"] criterion = SetCriterion(num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=args.eos_coef, losses=losses) criterion.to(device) postprocessors = {'bbox': PostProcess()} if args.masks: postprocessors['segm'] = PostProcessSegm() if args.dataset_file == "coco_panoptic": is_thing_map = {i: i <= 90 for i in range(201)} postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85) return model, criterion, postprocessors
detr-master
models/detr.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Modules to compute the matching cost and solve the corresponding LSAP. """ import torch from scipy.optimize import linear_sum_assignment from torch import nn from util.box_ops import box_cxcywh_to_xyxy, generalized_box_iou class HungarianMatcher(nn.Module): """This class computes an assignment between the targets and the predictions of the network For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). """ def __init__(self, cost_class: float = 1, cost_bbox: float = 1, cost_giou: float = 1): """Creates the matcher Params: cost_class: This is the relative weight of the classification error in the matching cost cost_bbox: This is the relative weight of the L1 error of the bounding box coordinates in the matching cost cost_giou: This is the relative weight of the giou loss of the bounding box in the matching cost """ super().__init__() self.cost_class = cost_class self.cost_bbox = cost_bbox self.cost_giou = cost_giou assert cost_class != 0 or cost_bbox != 0 or cost_giou != 0, "all costs cant be 0" @torch.no_grad() def forward(self, outputs, targets): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["pred_logits"].flatten(0, 1).softmax(-1) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -out_prob[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] def build_matcher(args): return HungarianMatcher(cost_class=args.set_cost_class, cost_bbox=args.set_cost_bbox, cost_giou=args.set_cost_giou)
detr-master
models/matcher.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Backbone modules. """ from collections import OrderedDict import torch import torch.nn.functional as F import torchvision from torch import nn from torchvision.models._utils import IntermediateLayerGetter from typing import Dict, List from util.misc import NestedTensor, is_main_process from .position_encoding import build_position_encoding class FrozenBatchNorm2d(torch.nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super(FrozenBatchNorm2d, self).__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): num_batches_tracked_key = prefix + 'num_batches_tracked' if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, x): # move reshapes to the beginning # to make it fuser-friendly w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) eps = 1e-5 scale = w * (rv + eps).rsqrt() bias = b - rm * scale return x * scale + bias class BackboneBase(nn.Module): def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): super().__init__() for name, parameter in backbone.named_parameters(): if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: parameter.requires_grad_(False) if return_interm_layers: return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} else: return_layers = {'layer4': "0"} self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) self.num_channels = num_channels def forward(self, tensor_list: NestedTensor): xs = self.body(tensor_list.tensors) out: Dict[str, NestedTensor] = {} for name, x in xs.items(): m = tensor_list.mask assert m is not None mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] out[name] = NestedTensor(x, mask) return out class Backbone(BackboneBase): """ResNet backbone with frozen BatchNorm.""" def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool): backbone = getattr(torchvision.models, name)( replace_stride_with_dilation=[False, False, dilation], pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d) num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 super().__init__(backbone, train_backbone, num_channels, return_interm_layers) class Joiner(nn.Sequential): def __init__(self, backbone, position_embedding): super().__init__(backbone, position_embedding) def forward(self, tensor_list: NestedTensor): xs = self[0](tensor_list) out: List[NestedTensor] = [] pos = [] for name, x in xs.items(): out.append(x) # position encoding pos.append(self[1](x).to(x.tensors.dtype)) return out, pos def build_backbone(args): position_embedding = build_position_encoding(args) train_backbone = args.lr_backbone > 0 return_interm_layers = args.masks backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) model = Joiner(backbone, position_embedding) model.num_channels = backbone.num_channels return model
detr-master
models/backbone.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Various positional encodings for the transformer. """ import math import torch from torch import nn from util.misc import NestedTensor class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif args.position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
detr-master
models/position_encoding.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .detr import build def build_model(args): return build(args)
detr-master
models/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR Transformer class. Copy-paste from torch.nn.Transformer with modifications: * positional encodings are passed in MHattention * extra LN at the end of encoder is removed * decoder returns a stack of activations from all decoding layers """ import copy from typing import Optional, List import torch import torch.nn.functional as F from torch import nn, Tensor class Transformer(nn.Module): def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False): super().__init__() encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before) encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation, normalize_before) decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec) self._reset_parameters() self.d_model = d_model self.nhead = nhead def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, src, mask, query_embed, pos_embed): # flatten NxCxHxW to HWxNxC bs, c, h, w = src.shape src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1) mask = mask.flatten(1) tgt = torch.zeros_like(query_embed) memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed) return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w) class TransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers, norm=None): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers self.norm = norm def forward(self, src, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): output = src for layer in self.layers: output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos) if self.norm is not None: output = self.norm(output) return output class TransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): output = tgt intermediate = [] for layer in self.layers: output = layer(output, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output.unsqueeze(0) class TransformerEncoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): q = k = self.with_pos_embed(src, pos) src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src = self.norm1(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) src = src + self.dropout2(src2) src = self.norm2(src) return src def forward_pre(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): src2 = self.norm1(src) q = k = self.with_pos_embed(src2, pos) src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] src = src + self.dropout1(src2) src2 = self.norm2(src) src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) src = src + self.dropout2(src2) return src def forward(self, src, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(src, src_mask, src_key_padding_mask, pos) return self.forward_post(src, src_mask, src_key_padding_mask, pos) class TransformerDecoderLayer(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): q = k = self.with_pos_embed(tgt, query_pos) tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt def forward_pre(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): tgt2 = self.norm1(tgt) q = k = self.with_pos_embed(tgt2, query_pos) tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt2 = self.norm2(tgt) tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask)[0] tgt = tgt + self.dropout2(tgt2) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt def forward(self, tgt, memory, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None): if self.normalize_before: return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos) def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def build_transformer(args): return Transformer( d_model=args.hidden_dim, dropout=args.dropout, nhead=args.nheads, dim_feedforward=args.dim_feedforward, num_encoder_layers=args.enc_layers, num_decoder_layers=args.dec_layers, normalize_before=args.pre_norm, return_intermediate_dec=True, ) def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
detr-master
models/transformer.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ This file provides the definition of the convolutional heads used to predict masks, as well as the losses """ import io from collections import defaultdict from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor from PIL import Image import util.box_ops as box_ops from util.misc import NestedTensor, interpolate, nested_tensor_from_tensor_list try: from panopticapi.utils import id2rgb, rgb2id except ImportError: pass class DETRsegm(nn.Module): def __init__(self, detr, freeze_detr=False): super().__init__() self.detr = detr if freeze_detr: for p in self.parameters(): p.requires_grad_(False) hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0.0) self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim) def forward(self, samples: NestedTensor): if not isinstance(samples, NestedTensor): samples = nested_tensor_from_tensor_list(samples) features, pos = self.detr.backbone(samples) bs = features[-1].tensors.shape[0] src, mask = features[-1].decompose() assert mask is not None src_proj = self.detr.input_proj(src) hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1]) outputs_class = self.detr.class_embed(hs) outputs_coord = self.detr.bbox_embed(hs).sigmoid() out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} if self.detr.aux_loss: out['aux_outputs'] = self.detr._set_aux_loss(outputs_class, outputs_coord) # FIXME h_boxes takes the last one computed, keep this in mind bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask) seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors]) outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1]) out["pred_masks"] = outputs_seg_masks return out def _expand(tensor, length: int): return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1) class MaskHeadSmallConv(nn.Module): """ Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, dim, fpn_dims, context_dim): super().__init__() inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64] self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1) self.gn1 = torch.nn.GroupNorm(8, dim) self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1) self.gn2 = torch.nn.GroupNorm(8, inter_dims[1]) self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) self.gn3 = torch.nn.GroupNorm(8, inter_dims[2]) self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) self.gn4 = torch.nn.GroupNorm(8, inter_dims[3]) self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) self.gn5 = torch.nn.GroupNorm(8, inter_dims[4]) self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1) self.dim = dim self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1) self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1) self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_uniform_(m.weight, a=1) nn.init.constant_(m.bias, 0) def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) x = self.lay1(x) x = self.gn1(x) x = F.relu(x) x = self.lay2(x) x = self.gn2(x) x = F.relu(x) cur_fpn = self.adapter1(fpns[0]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay3(x) x = self.gn3(x) x = F.relu(x) cur_fpn = self.adapter2(fpns[1]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay4(x) x = self.gn4(x) x = F.relu(x) cur_fpn = self.adapter3(fpns[2]) if cur_fpn.size(0) != x.size(0): cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") x = self.lay5(x) x = self.gn5(x) x = F.relu(x) x = self.out_lay(x) return x class MHAttentionMap(nn.Module): """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) nn.init.zeros_(self.k_linear.bias) nn.init.zeros_(self.q_linear.bias) nn.init.xavier_uniform_(self.k_linear.weight) nn.init.xavier_uniform_(self.q_linear.weight) self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 def forward(self, q, k, mask: Optional[Tensor] = None): q = self.q_linear(q) k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh) if mask is not None: weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf")) weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights) weights = self.dropout(weights) return weights def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class PostProcessSegm(nn.Module): def __init__(self, threshold=0.5): super().__init__() self.threshold = threshold @torch.no_grad() def forward(self, results, outputs, orig_target_sizes, max_target_sizes): assert len(orig_target_sizes) == len(max_target_sizes) max_h, max_w = max_target_sizes.max(0)[0].tolist() outputs_masks = outputs["pred_masks"].squeeze(2) outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False) outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu() for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)): img_h, img_w = t[0], t[1] results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1) results[i]["masks"] = F.interpolate( results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest" ).byte() return results class PostProcessPanoptic(nn.Module): """This class converts the output of the model to the final panoptic result, in the format expected by the coco panoptic API """ def __init__(self, is_thing_map, threshold=0.85): """ Parameters: is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether the class is a thing (True) or a stuff (False) class threshold: confidence threshold: segments with confidence lower than this will be deleted """ super().__init__() self.threshold = threshold self.is_thing_map = is_thing_map def forward(self, outputs, processed_sizes, target_sizes=None): """ This function computes the panoptic prediction from the model's predictions. Parameters: outputs: This is a dict coming directly from the model. See the model doc for the content. processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the model, ie the size after data augmentation but before batching. target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size of each prediction. If left to None, it will default to the processed_sizes """ if target_sizes is None: target_sizes = processed_sizes assert len(processed_sizes) == len(target_sizes) out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"] assert len(out_logits) == len(raw_masks) == len(target_sizes) preds = [] def to_tuple(tup): if isinstance(tup, tuple): return tup return tuple(tup.cpu().tolist()) for cur_logits, cur_masks, cur_boxes, size, target_size in zip( out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes ): # we filter empty queries and detection below threshold scores, labels = cur_logits.softmax(-1).max(-1) keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold) cur_scores, cur_classes = cur_logits.softmax(-1).max(-1) cur_scores = cur_scores[keep] cur_classes = cur_classes[keep] cur_masks = cur_masks[keep] cur_masks = interpolate(cur_masks[None], to_tuple(size), mode="bilinear").squeeze(0) cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep]) h, w = cur_masks.shape[-2:] assert len(cur_boxes) == len(cur_classes) # It may be that we have several predicted masks for the same stuff class. # In the following, we track the list of masks ids for each stuff class (they are merged later on) cur_masks = cur_masks.flatten(1) stuff_equiv_classes = defaultdict(lambda: []) for k, label in enumerate(cur_classes): if not self.is_thing_map[label.item()]: stuff_equiv_classes[label.item()].append(k) def get_ids_area(masks, scores, dedup=False): # This helper function creates the final panoptic segmentation image # It also returns the area of the masks that appears on the image m_id = masks.transpose(0, 1).softmax(-1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device) else: m_id = m_id.argmax(-1).view(h, w) if dedup: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): if len(equiv) > 1: for eq_id in equiv: m_id.masked_fill_(m_id.eq(eq_id), equiv[0]) final_h, final_w = to_tuple(target_size) seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy())) seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST) np_seg_img = ( torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy() ) m_id = torch.from_numpy(rgb2id(np_seg_img)) area = [] for i in range(len(scores)): area.append(m_id.eq(i).sum().item()) return area, seg_img area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True) if cur_classes.numel() > 0: # We know filter empty masks as long as we find some while True: filtered_small = torch.as_tensor( [area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device ) if filtered_small.any().item(): cur_scores = cur_scores[~filtered_small] cur_classes = cur_classes[~filtered_small] cur_masks = cur_masks[~filtered_small] area, seg_img = get_ids_area(cur_masks, cur_scores) else: break else: cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device) segments_info = [] for i, a in enumerate(area): cat = cur_classes[i].item() segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a}) del cur_classes with io.BytesIO() as out: seg_img.save(out, format="PNG") predictions = {"png_string": out.getvalue(), "segments_info": segments_info} preds.append(predictions) return preds
detr-master
models/segmentation.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Helper script to convert models trained with the main version of DETR to be used with the Detectron2 version. """ import json import argparse import numpy as np import torch def parse_args(): parser = argparse.ArgumentParser("D2 model converter") parser.add_argument("--source_model", default="", type=str, help="Path or url to the DETR model to convert") parser.add_argument("--output_model", default="", type=str, help="Path where to save the converted model") return parser.parse_args() def main(): args = parse_args() # D2 expects contiguous classes, so we need to remap the 92 classes from DETR # fmt: off coco_idx = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91] # fmt: on coco_idx = np.array(coco_idx) if args.source_model.startswith("https"): checkpoint = torch.hub.load_state_dict_from_url(args.source_model, map_location="cpu", check_hash=True) else: checkpoint = torch.load(args.source_model, map_location="cpu") model_to_convert = checkpoint["model"] model_converted = {} for k in model_to_convert.keys(): old_k = k if "backbone" in k: k = k.replace("backbone.0.body.", "") if "layer" not in k: k = "stem." + k for t in [1, 2, 3, 4]: k = k.replace(f"layer{t}", f"res{t + 1}") for t in [1, 2, 3]: k = k.replace(f"bn{t}", f"conv{t}.norm") k = k.replace("downsample.0", "shortcut") k = k.replace("downsample.1", "shortcut.norm") k = "backbone.0.backbone." + k k = "detr." + k print(old_k, "->", k) if "class_embed" in old_k: v = model_to_convert[old_k].detach() if v.shape[0] == 92: shape_old = v.shape model_converted[k] = v[coco_idx] print("Head conversion: changing shape from {} to {}".format(shape_old, model_converted[k].shape)) continue model_converted[k] = model_to_convert[old_k].detach() model_to_save = {"model": model_converted} torch.save(model_to_save, args.output_model) if __name__ == "__main__": main()
detr-master
d2/converter.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ DETR Training Script. This script is a simplified version of the training script in detectron2/tools. """ import os import sys # fmt: off sys.path.insert(1, os.path.join(sys.path[0], '..')) # fmt: on import time from typing import Any, Dict, List, Set import torch import detectron2.utils.comm as comm from d2.detr import DetrDatasetMapper, add_detr_config from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog, build_detection_train_loader from detectron2.engine import AutogradProfiler, DefaultTrainer, default_argument_parser, default_setup, launch from detectron2.evaluation import COCOEvaluator, verify_results from detectron2.solver.build import maybe_add_gradient_clipping class Trainer(DefaultTrainer): """ Extension of the Trainer class adapted to DETR. """ def __init__(self, cfg): """ Args: cfg (CfgNode): """ self.clip_norm_val = 0.0 if cfg.SOLVER.CLIP_GRADIENTS.ENABLED: if cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": self.clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE super().__init__(cfg) def run_step(self): assert self.model.training, "[Trainer] model was changed to eval mode!" start = time.perf_counter() data = next(self._data_loader_iter) data_time = time.perf_counter() - start loss_dict = self.model(data) losses = sum(loss_dict.values()) self._detect_anomaly(losses, loss_dict) metrics_dict = loss_dict metrics_dict["data_time"] = data_time self._write_metrics(metrics_dict) self.optimizer.zero_grad() losses.backward() if self.clip_norm_val > 0.0: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip_norm_val) self.optimizer.step() @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): """ Create evaluator(s) for a given dataset. This uses the special metadata "evaluator_type" associated with each builtin dataset. For your own dataset, you can simply create an evaluator manually in your script and do not have to worry about the hacky if-else logic here. """ if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return COCOEvaluator(dataset_name, cfg, True, output_folder) @classmethod def build_train_loader(cls, cfg): if "Detr" == cfg.MODEL.META_ARCHITECTURE: mapper = DetrDatasetMapper(cfg, True) else: mapper = None return build_detection_train_loader(cfg, mapper=mapper) @classmethod def build_optimizer(cls, cfg, model): params: List[Dict[str, Any]] = [] memo: Set[torch.nn.parameter.Parameter] = set() for key, value in model.named_parameters(recurse=True): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if "backbone" in key: lr = lr * cfg.SOLVER.BACKBONE_MULTIPLIER params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] optimizer_type = cfg.SOLVER.OPTIMIZER if optimizer_type == "SGD": optimizer = torch.optim.SGD(params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM) elif optimizer_type == "ADAMW": optimizer = torch.optim.AdamW(params, cfg.SOLVER.BASE_LR) else: raise NotImplementedError(f"no optimizer type {optimizer_type}") if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model": optimizer = maybe_add_gradient_clipping(cfg, optimizer) return optimizer def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_detr_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(cfg.MODEL.WEIGHTS, resume=args.resume) res = Trainer.test(cfg, model) if comm.is_main_process(): verify_results(cfg, res) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() if __name__ == "__main__": args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), )
detr-master
d2/train_net.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging import math from typing import List import numpy as np import torch import torch.distributed as dist import torch.nn.functional as F from scipy.optimize import linear_sum_assignment from torch import nn from detectron2.layers import ShapeSpec from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, detector_postprocess from detectron2.structures import Boxes, ImageList, Instances from detectron2.utils.logger import log_first_n from fvcore.nn import giou_loss, smooth_l1_loss from models.backbone import Joiner from models.detr import DETR, SetCriterion from models.matcher import HungarianMatcher from models.position_encoding import PositionEmbeddingSine from models.transformer import Transformer from util.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh from util.misc import NestedTensor __all__ = ["Detr"] class MaskedBackbone(nn.Module): """ This is a thin wrapper around D2's backbone to provide padding masking""" def __init__(self, cfg): super().__init__() self.backbone = build_backbone(cfg) backbone_shape = self.backbone.output_shape() self.feature_strides = [backbone_shape[f].stride for f in backbone_shape.keys()] self.num_channels = backbone_shape[list(backbone_shape.keys())[-1]].channels def forward(self, images): features = self.backbone(images.tensor) masks = self.mask_out_padding( [features_per_level.shape for features_per_level in features.values()], images.image_sizes, images.tensor.device, ) assert len(features) == len(masks) for i, k in enumerate(features.keys()): features[k] = NestedTensor(features[k], masks[i]) return features def mask_out_padding(self, feature_shapes, image_sizes, device): masks = [] assert len(feature_shapes) == len(self.feature_strides) for idx, shape in enumerate(feature_shapes): N, _, H, W = shape masks_per_feature_level = torch.ones((N, H, W), dtype=torch.bool, device=device) for img_idx, (h, w) in enumerate(image_sizes): masks_per_feature_level[ img_idx, : int(np.ceil(float(h) / self.feature_strides[idx])), : int(np.ceil(float(w) / self.feature_strides[idx])), ] = 0 masks.append(masks_per_feature_level) return masks @META_ARCH_REGISTRY.register() class Detr(nn.Module): """ Implement Detr """ def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.num_classes = cfg.MODEL.DETR.NUM_CLASSES hidden_dim = cfg.MODEL.DETR.HIDDEN_DIM num_queries = cfg.MODEL.DETR.NUM_OBJECT_QUERIES # Transformer parameters: nheads = cfg.MODEL.DETR.NHEADS dropout = cfg.MODEL.DETR.DROPOUT dim_feedforward = cfg.MODEL.DETR.DIM_FEEDFORWARD enc_layers = cfg.MODEL.DETR.ENC_LAYERS dec_layers = cfg.MODEL.DETR.DEC_LAYERS pre_norm = cfg.MODEL.DETR.PRE_NORM # Loss parameters: giou_weight = cfg.MODEL.DETR.GIOU_WEIGHT l1_weight = cfg.MODEL.DETR.L1_WEIGHT deep_supervision = cfg.MODEL.DETR.DEEP_SUPERVISION no_object_weight = cfg.MODEL.DETR.NO_OBJECT_WEIGHT N_steps = hidden_dim // 2 d2_backbone = MaskedBackbone(cfg) backbone = Joiner(d2_backbone, PositionEmbeddingSine(N_steps, normalize=True)) backbone.num_channels = d2_backbone.num_channels transformer = Transformer( d_model=hidden_dim, dropout=dropout, nhead=nheads, dim_feedforward=dim_feedforward, num_encoder_layers=enc_layers, num_decoder_layers=dec_layers, normalize_before=pre_norm, return_intermediate_dec=deep_supervision, ) self.detr = DETR( backbone, transformer, num_classes=self.num_classes, num_queries=num_queries, aux_loss=deep_supervision ) self.detr.to(self.device) # building criterion matcher = HungarianMatcher(cost_class=1, cost_bbox=l1_weight, cost_giou=giou_weight) weight_dict = {"loss_ce": 1, "loss_bbox": l1_weight} weight_dict["loss_giou"] = giou_weight if deep_supervision: aux_weight_dict = {} for i in range(dec_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) losses = ["labels", "boxes", "cardinality"] self.criterion = SetCriterion( self.num_classes, matcher=matcher, weight_dict=weight_dict, eos_coef=no_object_weight, losses=losses ) self.criterion.to(self.device) pixel_mean = torch.Tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(3, 1, 1) pixel_std = torch.Tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(3, 1, 1) self.normalizer = lambda x: (x - pixel_mean) / pixel_std self.to(self.device) def forward(self, batched_inputs): """ Args: batched_inputs: a list, batched outputs of :class:`DatasetMapper` . Each item in the list contains the inputs for one image. For now, each item in the list is a dict that contains: * image: Tensor, image in (C, H, W) format. * instances: Instances Other information that's included in the original dicts, such as: * "height", "width" (int): the output resolution of the model, used in inference. See :meth:`postprocess` for details. Returns: dict[str: Tensor]: mapping from a named loss to a tensor storing the loss. Used during training only. """ images = self.preprocess_image(batched_inputs) output = self.detr(images) if self.training: gt_instances = [x["instances"].to(self.device) for x in batched_inputs] targets = self.prepare_targets(gt_instances) loss_dict = self.criterion(output, targets) weight_dict = self.criterion.weight_dict for k in loss_dict.keys(): if k in weight_dict: loss_dict[k] *= weight_dict[k] return loss_dict else: box_cls = output["pred_logits"] box_pred = output["pred_boxes"] results = self.inference(box_cls, box_pred, images.image_sizes) processed_results = [] for results_per_image, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes): height = input_per_image.get("height", image_size[0]) width = input_per_image.get("width", image_size[1]) r = detector_postprocess(results_per_image, height, width) processed_results.append({"instances": r}) return processed_results def prepare_targets(self, targets): new_targets = [] for targets_per_image in targets: h, w = targets_per_image.image_size image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) gt_classes = targets_per_image.gt_classes gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy gt_boxes = box_xyxy_to_cxcywh(gt_boxes) new_targets.append({"labels": gt_classes, "boxes": gt_boxes}) return new_targets def inference(self, box_cls, box_pred, image_sizes): """ Arguments: box_cls (Tensor): tensor of shape (batch_size, num_queries, K). The tensor predicts the classification probability for each query. box_pred (Tensor): tensors of shape (batch_size, num_queries, 4). The tensor predicts 4-vector (x,y,w,h) box regression values for every queryx image_sizes (List[torch.Size]): the input image sizes Returns: results (List[Instances]): a list of #images elements. """ assert len(box_cls) == len(image_sizes) results = [] # For each box we assign the best class or the second best if the best on is `no_object`. scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1) for scores_per_image, labels_per_image, box_pred_per_image, image_size in zip( scores, labels, box_pred, image_sizes ): result = Instances(image_size) result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image)) result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0]) result.scores = scores_per_image result.pred_classes = labels_per_image results.append(result) return results def preprocess_image(self, batched_inputs): """ Normalize, pad and batch the input images. """ images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs] images = ImageList.from_tensors(images) return images
detr-master
d2/detr/detr.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from detectron2.config import CfgNode as CN def add_detr_config(cfg): """ Add config for DETR. """ cfg.MODEL.DETR = CN() cfg.MODEL.DETR.NUM_CLASSES = 80 # LOSS cfg.MODEL.DETR.GIOU_WEIGHT = 2.0 cfg.MODEL.DETR.L1_WEIGHT = 5.0 cfg.MODEL.DETR.DEEP_SUPERVISION = True cfg.MODEL.DETR.NO_OBJECT_WEIGHT = 0.1 # TRANSFORMER cfg.MODEL.DETR.NHEADS = 8 cfg.MODEL.DETR.DROPOUT = 0.1 cfg.MODEL.DETR.DIM_FEEDFORWARD = 2048 cfg.MODEL.DETR.ENC_LAYERS = 6 cfg.MODEL.DETR.DEC_LAYERS = 6 cfg.MODEL.DETR.PRE_NORM = False cfg.MODEL.DETR.HIDDEN_DIM = 256 cfg.MODEL.DETR.NUM_OBJECT_QUERIES = 100 cfg.SOLVER.OPTIMIZER = "ADAMW" cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1
detr-master
d2/detr/config.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from .config import add_detr_config from .detr import Detr from .dataset_mapper import DetrDatasetMapper
detr-master
d2/detr/__init__.py