python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """The base :class:`~composer.devices.device.Device` class.""" from abc import ABC, abstractmethod from collections.abc import Mapping, Sequence from typing import Any, Callable, TypeVar import torch import torch.nn from torch.optim import Optimizer from composer.core.serializable import Serializable __all__ = ['Device', 'T_nnModule'] T_nnModule = TypeVar('T_nnModule', bound=torch.nn.Module) T_Batch = TypeVar('T_Batch') class Device(Serializable, ABC): """Abstract class for a device on which a model runs. Attributes: dist_backend (str): Distributed backend to use. Should be ``gloo``, ``mpi``, or ``nccl``. See `the pytorch docs <https://pytorch.org/docs/stable/distributed.html>`_ for details. """ dist_backend: str = '' name: str = '' _device = None @abstractmethod def module_to_device(self, module: T_nnModule) -> T_nnModule: """Invoked by the :class:`.Trainer` to move a ``module`` onto the device. Args: module (torch.nn.Module): The module to move to the device. Returns: torch.nn.Module: The module on the device. """ pass @abstractmethod def tensor_to_device(self, tensor: torch.Tensor) -> torch.Tensor: """Invoked by the :class:`.Trainer` to move a tensor onto a device. Args: tensor (Tensor): The tensor to move to the device. Returns: Tensor: The tensor on the device. """ pass def batch_to_device(self, batch: T_Batch) -> T_Batch: """Invoked by the :class:`.Trainer` move all tensors items in a batch to device. Supports nested sequences and mappings of tensors. Ignores non-tensor items. Preserves sequence and mapping types when possible; otherwise, sequences are converted to lists, and mappings are converted to dictionaries. Args: batch (Any): The batch to move to the device. Returns: Batch: The batch on the device. """ def _to_device(x): if isinstance(x, torch.Tensor): return self.tensor_to_device(x) return x return _map_batch(batch, _to_device) def optimizer_to_device(self, optimizer: Optimizer) -> Optimizer: """Invoked by the :class:`.Trainer` to move the optimizer's state onto the device. Args: optimizer (Optimizer): The optimizer to move to the device Returns: Optimizer: The optimizer on the device """ for state in optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = self.tensor_to_device(v) return optimizer def _map_batch(batch: Any, map_fn: Callable) -> Any: """Recursively maps a function to all items in a batch. Args: batch: Nested lists and dictionaries. map_fn: A function to invoke on each element. Returns: Collections: The result of applying ``map_fn`` on each element of the ``batch``. The type of ``batch`` is preserved. """ if isinstance(batch, Mapping): return {k: _map_batch(v, map_fn) for k, v in batch.items()} if isinstance(batch, Sequence) and not isinstance(batch, (str, bytes)): try: return type(batch)(_map_batch(x, map_fn) for x in batch) # type: ignore except TypeError: return [_map_batch(x, map_fn) for x in batch] return map_fn(batch)
composer-dev
composer/devices/device.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """Module for devices on which models run.""" from composer.devices.device import Device from composer.devices.device_cpu import DeviceCPU from composer.devices.device_gpu import DeviceGPU from composer.devices.device_mps import DeviceMPS from composer.devices.device_tpu import DeviceTPU __all__ = ['Device', 'DeviceCPU', 'DeviceGPU', 'DeviceMPS', 'DeviceTPU']
composer-dev
composer/devices/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """The CPU device used for training.""" from __future__ import annotations import logging from typing import Any, Dict, TypeVar import torch from composer.devices.device import Device logger = logging.getLogger(__name__) __all__ = ['DeviceCPU'] T_nnModule = TypeVar('T_nnModule', bound=torch.nn.Module) class DeviceCPU(Device): """An extension of :class:`~composer.devices.device.Device` for CPUs. This class takes no arguments. """ dist_backend = 'gloo' name = 'cpu' _device = torch.device('cpu') def module_to_device(self, module: T_nnModule) -> T_nnModule: return module.to(self._device) def tensor_to_device(self, tensor: torch.Tensor) -> torch.Tensor: return tensor.to(self._device) def state_dict(self) -> Dict[str, Any]: # CPU device has no RNG state return {} def load_state_dict(self, state: Dict[str, Any]) -> None: if len(state) != 0: raise ValueError('CPU device has no state.')
composer-dev
composer/devices/device_cpu.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """The Apple M-series device used for training.""" from __future__ import annotations from typing import Any, Dict, TypeVar import torch import torch.cuda.amp import torch.utils.data from packaging import version from composer.devices.device import Device __all__ = ['DeviceMPS'] T_nnModule = TypeVar('T_nnModule', bound=torch.nn.Module) class DeviceMPS(Device): """Device to support MPS, for training on Apple's M-series chips. This class takes no arguments. """ dist_backend = '' name = 'mps' def __init__(self): if version.parse(torch.__version__) < version.parse('1.12.0'): raise RuntimeError('Support for MPS device requires torch >= 1.12.') if not torch.backends.mps.is_available(): # type: ignore (version guarded) raise RuntimeError('MPS requires MAC OSX >= 12.3') if not torch.backends.mps.is_built(): # type: ignore (version guarded) raise RuntimeError('torch was not build with MPS support.') self._device = torch.device('mps') def module_to_device(self, module: T_nnModule) -> T_nnModule: return module.to(self._device) def tensor_to_device(self, tensor: torch.Tensor) -> torch.Tensor: return tensor.to(self._device) def state_dict(self) -> Dict[str, Any]: return {} def load_state_dict(self, state: Dict[str, Any]) -> None: if len(state) != 0: raise ValueError('MPS device has no state.')
composer-dev
composer/devices/device_mps.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """The TPU device used for training.""" from __future__ import annotations import logging from typing import Any, Dict, TypeVar import torch from composer.devices.device import Device logger = logging.getLogger(__name__) __all__ = ['DeviceTPU'] T_nnModule = TypeVar('T_nnModule', bound=torch.nn.Module) class DeviceTPU(Device): """An extension of :class:`~composer.devices.device.Device` for TPUs. When running on TPUVMs, you need to `export PJRT_DEVICE=TPU`. More details. """ name = 'tpu' def __init__(self): import torch_xla.core.xla_model as xm self._device = xm.xla_device() def module_to_device(self, module: T_nnModule) -> T_nnModule: return module.to(self._device) def tensor_to_device(self, tensor: torch.Tensor) -> torch.Tensor: return tensor.to(self._device) def state_dict(self) -> Dict[str, Any]: return {} def load_state_dict(self, state: Dict[str, Any]) -> None: if len(state) != 0: raise ValueError('TPU device has no state.')
composer-dev
composer/devices/device_tpu.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """The GPU device used for training.""" from __future__ import annotations from typing import Any, Dict, Optional, TypeVar import torch import torch.backends.cuda import torch.backends.cudnn import torch.cuda import torch.cuda.amp import torch.utils.data from composer.devices.device import Device from composer.utils import dist __all__ = ['DeviceGPU'] T_nnModule = TypeVar('T_nnModule', bound=torch.nn.Module) class DeviceGPU(Device): """An extension of :class:`~composer.devices.device.Device` for GPUs. Args: device_id (int, optional): Integer ID of a GPU device to train with. If not specified, the local rank of the current process is used. Default: None. allow_tf32 (bool, optional): Whether to allow TF32 matrix multiplications. Defaults to True. For more information, see :ref:`torch:tf32_on_ampere`. """ dist_backend = 'nccl' name = 'gpu' def __init__( self, device_id: Optional[int] = None, *, allow_tf32: bool = True, ): if not torch.cuda.is_available(): raise ValueError('DeviceGPU cannot be created as torch.cuda is not available.') if device_id is None: device_id = dist.get_local_rank() self._device = torch.device(f'cuda:{device_id}') torch.cuda.set_device(self._device) assert torch.cuda.current_device() == device_id torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # pyright error: "allow_tf32" is not a known member of module # however, this flag exists on pytorch 1.9+: https://pytorch.org/docs/1.9.0/backends.html torch.backends.cudnn.allow_tf32 = allow_tf32 # type: ignore def module_to_device(self, module: T_nnModule) -> T_nnModule: return module.to(self._device) def tensor_to_device(self, tensor: torch.Tensor) -> torch.Tensor: return tensor.to(self._device, non_blocking=True) def state_dict(self) -> Dict[str, Any]: return { 'rng': torch.cuda.get_rng_state(), } def load_state_dict(self, state: Dict[str, Any]) -> None: torch.cuda.set_rng_state(state['rng'])
composer-dev
composer/devices/device_gpu.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import logging import os import subprocess import sys import textwrap from pathlib import Path from typing import List from unittest.mock import Mock import pytest import composer from composer.core import Engine, Event from composer.core.algorithm import Algorithm from composer.core.callback import Callback from composer.core.state import State from composer.loggers import Logger, LoggerDestination from tests.common.events import EventCounterCallback @pytest.fixture def always_match_algorithms(): return [ Mock(**{ 'match.return.value': True, 'apply.return_value': n, # return encodes order 'interpolate_loss': False, }) for n in range(5) ] @pytest.fixture() def dummy_logger(dummy_state: State): return Logger(dummy_state) @pytest.fixture def never_match_algorithms(): attrs = {'match.return_value': False} return [Mock(**attrs) for _ in range(5)] def run_event(event: Event, state: State, logger: Logger): runner = Engine(state, logger) return runner.run_event(event) class DummyCallback(Callback): def __init__(self, file_path): self.file_path = file_path def init(self, state: State, logger: Logger): with open(self.file_path, 'a') as f: f.write('init callback, ') def batch_end(self, state: State, logger: Logger): with open(self.file_path, 'a') as f: f.write('on_batch_end callback, ') class DummyLoggerDestination(LoggerDestination): def __init__(self, file_path): self.file_path = file_path def init(self, state: State, logger: Logger): with open(self.file_path, 'a') as f: f.write('init logger, ') def batch_end(self, state: State, logger: Logger): with open(self.file_path, 'a') as f: f.write('on_batch_end logger, ') def test_engine_runs_callbacks_in_correct_order(dummy_state, tmp_path): file_path = tmp_path / Path('event_check.txt') dummy_state.callbacks = [DummyCallback(file_path), DummyLoggerDestination(file_path)] logger = Logger(dummy_state) engine = Engine(dummy_state, logger) engine.run_event(Event.INIT) engine.run_event(Event.BATCH_END) engine.run_event(Event.EPOCH_END) engine.close() expected_lines = ['init logger, init callback, on_batch_end callback, on_batch_end logger, '] with open(file_path, 'r') as f: actual_lines = f.readlines() assert expected_lines == actual_lines @pytest.mark.parametrize('event', list(Event)) class TestAlgorithms: def test_algorithms_always_called(self, event: Event, dummy_state: State, always_match_algorithms: List[Algorithm], dummy_logger: Logger): dummy_state.algorithms = always_match_algorithms _ = run_event(event, dummy_state, dummy_logger) for algo in always_match_algorithms: algo.apply.assert_called_once() algo.match.assert_called_once() def test_algorithms_never_called(self, event: Event, dummy_state: State, never_match_algorithms: List[Algorithm], dummy_logger: Logger): dummy_state.algorithms = never_match_algorithms _ = run_event(event, dummy_state, dummy_logger) for algo in never_match_algorithms: algo.apply.assert_not_called() algo.match.assert_called_once() def test_engine_trace_all(self, event: Event, dummy_state: State, always_match_algorithms: List[Algorithm], dummy_logger: Logger): dummy_state.algorithms = always_match_algorithms trace = run_event(event, dummy_state, dummy_logger) assert all([tr.run for tr in trace.values()]) def test_engine_trace_never(self, event: Event, dummy_state: State, never_match_algorithms: List[Algorithm], dummy_logger: Logger): dummy_state.algorithms = never_match_algorithms trace = run_event(event, dummy_state, dummy_logger) assert all([tr.run is False for tr in trace.values()]) def test_engine_is_dead_after_close(dummy_state: State, dummy_logger: Logger): # Create the trainer and run an event engine = Engine(dummy_state, dummy_logger) engine.run_event(Event.INIT) # Close it engine.close() # Assert it complains if you try to run another event with pytest.raises(RuntimeError): engine.run_event(Event.FIT_START) class IsClosedCallback(Callback): def __init__(self) -> None: self.is_closed = True def init(self, state: State, logger: Logger) -> None: assert self.is_closed self.is_closed = False def close(self, state: State, logger: Logger) -> None: self.is_closed = True def test_engine_closes_on_del(dummy_state: State, dummy_logger: Logger): # Create the trainer and run an event is_closed_callback = IsClosedCallback() dummy_state.callbacks.append(is_closed_callback) engine = Engine(dummy_state, dummy_logger) engine.run_event(Event.INIT) # Assert that there is just 2 -- once above, and once as the arg temp reference assert sys.getrefcount(engine) == 2 # Implicitly close the engine del engine # Assert it is closed assert is_closed_callback.is_closed class DummyTrainer: """Helper to simulate what the trainer does w.r.t. events""" def __init__(self, state: State, logger: Logger) -> None: self.engine = Engine(state, logger) self.engine.run_event(Event.INIT) def close(self): self.engine.close() def test_engine_triggers_close_only_once(dummy_state: State, dummy_logger: Logger): # Create the trainer and run an event is_closed_callback = IsClosedCallback() dummy_state.callbacks.append(is_closed_callback) # Create the trainer trainer = DummyTrainer(dummy_state, dummy_logger) # Close the trainer trainer.close() # Assert it is closed assert is_closed_callback.is_closed # Create a new trainer with the same callback. Should implicitly trigger __del__ AFTER # AFTER DummyTrainer was constructed trainer = DummyTrainer(dummy_state, dummy_logger) # Assert it is open assert not is_closed_callback.is_closed def test_engine_errors_if_previous_trainer_was_not_closed(dummy_state: State, dummy_logger: Logger): # Create the trainer and run an event is_closed_callback = IsClosedCallback() dummy_state.callbacks.append(is_closed_callback) # Create the trainer _ = DummyTrainer(dummy_state, dummy_logger) # Assert the callback is open assert not is_closed_callback.is_closed # Create a new trainer with the same callback. Should raise an exception # because trainer.close() was not called before with pytest.raises(RuntimeError, match=r'Cannot create a new trainer with an open callback or logger from a previous trainer'): DummyTrainer(dummy_state, dummy_logger) def check_output(proc: subprocess.CompletedProcess): # Check the subprocess output, and raise an exception with the stdout/stderr dump if there was a non-zero exit # The `check=True` flag available in `subprocess.run` does not print stdout/stderr if proc.returncode == 0: return error_msg = textwrap.dedent(f"""\ Command {proc.args} failed with exit code {proc.returncode}. ----Begin stdout---- {proc.stdout} ----End stdout------ ----Begin stderr---- {proc.stderr} ----End stderr------""") raise RuntimeError(error_msg) @pytest.mark.parametrize('exception', [True, False]) def test_engine_closes_on_atexit(exception: bool): # Running this test via a subprocess, as atexit() must trigger code = textwrap.dedent("""\ from composer import Trainer, Callback from tests.common import SimpleModel class CallbackWithConditionalCloseImport(Callback): def post_close(self): import requests model = SimpleModel(3, 10) cb = CallbackWithConditionalCloseImport() trainer = Trainer( model=model, callbacks=[cb], max_duration="1ep", train_dataloader=None, ) """) if exception: # Should raise an exception, since no dataloader was provided code += 'trainer.fit()' git_root_dir = os.path.join(os.path.dirname(composer.__file__), '..') proc = subprocess.run(['python', '-c', code], cwd=git_root_dir, text=True, capture_output=True) if exception: # manually validate that there was no a conditional import exception assert 'ImportError: sys.meta_path is None, Python is likely shutting down' not in proc.stderr else: check_output(proc) def test_logging( caplog: pytest.LogCaptureFixture, dummy_state: State, dummy_logger: Logger, monkeypatch: pytest.MonkeyPatch, ): """Test that engine logs statements as expected""" caplog.set_level(logging.DEBUG, logger=Engine.__module__) # Include a callback, since most logging happens around callback events dummy_state.callbacks = [EventCounterCallback()] monkeypatch.setenv('ENGINE_DEBUG', '1') engine = Engine(dummy_state, dummy_logger) engine.run_event('INIT') engine.close() # Validate that we have the expected log entries assert caplog.record_tuples == [ ('composer.core.engine', 10, '[ep=0][ba=0][event=INIT]: Running event'), ('composer.core.engine', 10, '[ep=0][ba=0][event=INIT]: Running callback EventCounterCallback'), ('composer.core.engine', 10, 'Closing the engine'), ('composer.core.engine', 10, 'Closing callback EventCounterCallback'), ('composer.core.engine', 10, 'Post-closing callback EventCounterCallback'), ]
composer-dev
tests/test_engine.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os from typing import List, Optional import pytest from composer.utils import reproducibility # Allowed options for pytest.mark.world_size() # Important: when updating this list, make sure to also up ./.ci/test.sh # (so tests of all world sizes will be executed) and tests/README.md # (so the documentation is correct) WORLD_SIZE_OPTIONS = (1, 2) # Enforce deterministic mode before any tests start. reproducibility.configure_deterministic_mode() # Add the path of any pytest fixture files you want to make global pytest_plugins = [ 'tests.fixtures.autouse_fixtures', 'tests.fixtures.fixtures', ] def _add_option(parser: pytest.Parser, name: str, help: str, choices: Optional[List[str]] = None): parser.addoption( f'--{name}', default=None, type=str, choices=choices, help=help, ) parser.addini( name=name, help=help, type='string', default=None, ) def _get_option(config: pytest.Config, name: str, default: Optional[str] = None) -> str: # type: ignore val = config.getoption(name) if val is not None: assert isinstance(val, str) return val val = config.getini(name) if val == []: val = None if val is None: if default is None: pytest.fail(f'Config option {name} is not specified but is required') val = default assert isinstance(val, str) return val def pytest_addoption(parser: pytest.Parser) -> None: _add_option(parser, 'seed', help="""\ Rank zero seed to use. `reproducibility.seed_all(seed + dist.get_global_rank())` will be invoked before each test.""") _add_option(parser, 's3_bucket', help='S3 Bucket for integration tests') def _get_world_size(item: pytest.Item): """Returns the world_size of a test, defaults to 1.""" _default = pytest.mark.world_size(1).mark return item.get_closest_marker('world_size', default=_default).args[0] def pytest_collection_modifyitems(config: pytest.Config, items: List[pytest.Item]) -> None: """Filter tests by world_size (for multi-GPU tests) and duration (short, long, or all)""" world_size = int(os.environ.get('WORLD_SIZE', '1')) conditions = [ lambda item: _get_world_size(item) == world_size, ] # keep items that satisfy all conditions remaining = [] deselected = [] for item in items: if all([condition(item) for condition in conditions]): remaining.append(item) else: deselected.append(item) if deselected: config.hook.pytest_deselected(items=deselected) items[:] = remaining # Note: These methods are an alternative to the tiny_bert fixtures in fixtures.py. # Fixtures cannot be used natively as parametrized inputs, which we require when # we wish to run a test across multiple models, one of which is a HuggingFace BERT Tiny. # As a workaround, we inject objects into the PyTest namespace. Tests should not directly # use pytest.{var}, but instead should import and use the helper copy methods configure_{var} # (in tests.common.models) so the objects in the PyTest namespace do not change. def pytest_configure(): try: import transformers del transformers TRANSFORMERS_INSTALLED = True except ImportError: TRANSFORMERS_INSTALLED = False if TRANSFORMERS_INSTALLED: from tests.fixtures.fixtures import (tiny_bert_config_helper, tiny_bert_model_helper, tiny_bert_tokenizer_helper, tiny_gpt2_config_helper, tiny_gpt2_model_helper, tiny_gpt2_tokenizer_helper, tiny_t5_config_helper, tiny_t5_model_helper, tiny_t5_tokenizer_helper) pytest.tiny_bert_config = tiny_bert_config_helper() # type: ignore pytest.tiny_bert_model = tiny_bert_model_helper(pytest.tiny_bert_config) # type: ignore pytest.tiny_bert_tokenizer = tiny_bert_tokenizer_helper() # type: ignore pytest.tiny_gpt2_config = tiny_gpt2_config_helper() # type: ignore pytest.tiny_gpt2_model = tiny_gpt2_model_helper(pytest.tiny_gpt2_config) # type: ignore pytest.tiny_gpt2_tokenizer = tiny_gpt2_tokenizer_helper() # type: ignore pytest.tiny_t5_config = tiny_t5_config_helper() # type: ignore pytest.tiny_t5_model = tiny_t5_model_helper(pytest.tiny_t5_config) # type: ignore pytest.tiny_t5_tokenizer = tiny_t5_tokenizer_helper() # type: ignore def pytest_sessionfinish(session: pytest.Session, exitstatus: int): if exitstatus == 5: session.exitstatus = 0 # Ignore no-test-ran errors
composer-dev
tests/conftest.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import datetime import pytest from composer.core.time import Time, Timestamp, TimeUnit @pytest.mark.parametrize('time_string,expected_value,expected_unit', [ ['1ep', 1, TimeUnit.EPOCH], ['2ba', 2, TimeUnit.BATCH], ['3e10sp', 3 * 10**10, TimeUnit.SAMPLE], ['4tok', 4, TimeUnit.TOKEN], ['0.5dur', 0.5, TimeUnit.DURATION], ]) def test_time_parse(time_string: str, expected_value: int, expected_unit: TimeUnit): time = Time.from_timestring(time_string) assert time.value == expected_value assert time.unit == expected_unit @pytest.mark.parametrize('expected_timestring,time', [ ['1ep', Time(1, TimeUnit.EPOCH)], ['2ba', Time(2, TimeUnit.BATCH)], ['3sp', Time(3, TimeUnit.SAMPLE)], ['4tok', Time(4, TimeUnit.TOKEN)], ['0.5dur', Time(0.5, TimeUnit.DURATION)], ]) def test_to_timestring(expected_timestring: str, time: Time): assert time.to_timestring() == expected_timestring def test_time_math(): t1 = Time.from_timestring('1ep') t2 = Time.from_timestring('2ep') t3 = Time.from_timestring('3ep') t4 = Time.from_timestring('0.5dur') assert t1 + t2 == t3 assert t2 - t1 == t1 assert t1 - t2 == -t1 assert t1 < t2 assert t1 <= t2 assert t2 > t1 assert t2 >= t1 assert t3 >= t3 assert t3 <= t3 assert t4 * t2 == t1 assert 0.5 * t2 == t1 assert t4 * 2 == Time.from_timestring('1dur') assert t1 / t2 == t4 assert t2 / 2 == t1 def test_time_repr(): time = Time(1, 'tok') assert repr(time) == 'Time(1, TimeUnit.TOKEN)' assert eval(repr(time)) == time def test_timestamp(): timestamp = Timestamp() time = Time(10, 'ep') assert timestamp < time assert timestamp.get(time.unit) == Time.from_epoch(0) def test_timestamp_update(): timestamp = Timestamp(epoch=1) timestamp_2 = timestamp.copy(batch=2) assert timestamp_2.epoch == 1 assert timestamp_2.batch == 2 assert timestamp_2.sample == 0 assert timestamp is not timestamp_2 def test_timestamp_to_next_batch_epoch(): timestamp = Timestamp() # Step batch 0, epoch 0 timestamp = timestamp.to_next_batch(10, 20, datetime.timedelta(seconds=5)) assert timestamp.batch == 1 assert timestamp.batch_in_epoch == 1 assert timestamp.batch_in_epoch == 1 assert timestamp.sample == 10 assert timestamp.sample_in_epoch == 10 assert timestamp.token == 20 assert timestamp.token_in_epoch == 20 assert timestamp.total_wct == datetime.timedelta(seconds=5) assert timestamp.epoch_wct == datetime.timedelta(seconds=5) assert timestamp.batch_wct == datetime.timedelta(seconds=5) # Finish epoch 0 timestamp = timestamp.to_next_epoch() assert timestamp.epoch == 1 assert timestamp.batch == 1 assert timestamp.batch_in_epoch == 0 assert timestamp.sample == 10 assert timestamp.sample_in_epoch == 0 assert timestamp.token == 20 assert timestamp.token_in_epoch == 0 assert timestamp.total_wct == datetime.timedelta(seconds=5) assert timestamp.epoch_wct == datetime.timedelta(seconds=0) assert timestamp.batch_wct == datetime.timedelta(seconds=0) # Step a batch 0 in epoch 1 timestamp = timestamp.to_next_batch(5, 0, datetime.timedelta(seconds=10)) assert timestamp.epoch == 1 assert timestamp.batch == 2 assert timestamp.batch_in_epoch == 1 assert timestamp.sample == 15 assert timestamp.sample_in_epoch == 5 assert timestamp.token == 20 assert timestamp.token_in_epoch == 0 assert timestamp.total_wct == datetime.timedelta(seconds=15) assert timestamp.epoch_wct == datetime.timedelta(seconds=10) assert timestamp.batch_wct == datetime.timedelta(seconds=10) # Step batch 1 in epoch 0 timestamp = timestamp.to_next_batch(5, 1, datetime.timedelta(seconds=10)) assert timestamp.epoch == 1 assert timestamp.batch == 3 assert timestamp.batch_in_epoch == 2 assert timestamp.sample == 20 assert timestamp.sample_in_epoch == 10 assert timestamp.token == 21 assert timestamp.token_in_epoch == 1 assert timestamp.total_wct == datetime.timedelta(seconds=25) assert timestamp.epoch_wct == datetime.timedelta(seconds=20) assert timestamp.batch_wct == datetime.timedelta(seconds=10) def test_timestamp_repr(): timestamp = Timestamp() assert timestamp == eval(repr(timestamp)) @pytest.mark.parametrize('time_string', ['1.5ep', '2.1ba', '3.2sp', '3.4tok']) def test_timestep_bad_strings(time_string: str): with pytest.raises(TypeError): Time.from_timestring(time_string) @pytest.mark.parametrize('time_string', ['0.5dur', '2.0ep', '3.000ba', '030.0sp']) def test_timestep_valid_strings(time_string: str): Time.from_timestring(time_string)
composer-dev
tests/test_time.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch import torch.distributed from torch.utils.data import DataLoader from composer import Trainer from composer.core import Precision from composer.models import composer_resnet_cifar from tests.common import RandomImageDataset try: import transformer_engine.pytorch as te del te te_installed = True except ImportError: te_installed = False def get_trainer(precision: Precision) -> Trainer: return Trainer( model=composer_resnet_cifar('resnet_9'), train_dataloader=DataLoader( dataset=RandomImageDataset(size=1024), batch_size=512, persistent_workers=False, num_workers=0, ), eval_dataloader=DataLoader( dataset=RandomImageDataset(size=1024), batch_size=512, persistent_workers=False, num_workers=0, ), precision=precision, max_duration='1ep', eval_interval='1ep', train_subset_num_batches=1, ) def fit_and_measure_memory(precision) -> int: trainer = get_trainer(precision) torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() trainer.fit() return torch.cuda.max_memory_allocated() def eval_and_measure_memory(precision) -> int: trainer = get_trainer(precision) torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() trainer.eval() return torch.cuda.max_memory_allocated() def predict_and_measure_memory(precision) -> int: trainer = get_trainer(precision) torch.cuda.empty_cache() torch.cuda.reset_peak_memory_stats() trainer.predict(dataloader=trainer.state.evaluators[0].dataloader) return torch.cuda.max_memory_allocated() @pytest.mark.gpu @pytest.mark.parametrize('precision', [Precision.AMP_FP16, Precision.AMP_BF16]) def test_train_precision_memory(precision: Precision): memory_fp32 = fit_and_measure_memory(Precision.FP32) memory_half = fit_and_measure_memory(precision) assert memory_half < 0.7 * memory_fp32 @pytest.mark.gpu @pytest.mark.parametrize('precision', [Precision.AMP_FP16, Precision.AMP_BF16]) def test_eval_precision_memory(precision: Precision): memory_fp32 = eval_and_measure_memory(Precision.FP32) memory_half = eval_and_measure_memory(precision) assert memory_half < 0.95 * memory_fp32 @pytest.mark.gpu @pytest.mark.parametrize('precision', [Precision.AMP_FP16, Precision.AMP_BF16]) def test_predict_precision_memory(precision: Precision): memory_fp32 = predict_and_measure_memory(Precision.FP32) memory_half = predict_and_measure_memory(precision) assert memory_half < 0.95 * memory_fp32 @pytest.mark.gpu def test_amp_fp8_path(): trainer = get_trainer(Precision.AMP_FP8) if te_installed: if torch.cuda.get_device_capability()[0] < 9: with pytest.raises(RuntimeError, match='AMP_FP8 precision is used but current device does not support it'): trainer.fit() else: trainer.fit() else: with pytest.raises(ImportError, match='AMP_FP8 precision is used but TransformerEngine is not installed'): trainer.fit()
composer-dev
tests/test_precision.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torch.utils.data import DataLoader from composer.trainer import Trainer from composer.utils import dist from tests.common.datasets import RandomTextClassificationDataset, RandomTextLMDataset from tests.common.models import SimpleTransformerClassifier, SimpleTransformerMaskedLM def test_simple_nlp_classification(): vocab_size = 100 sequence_length = 32 num_classes = 2 size = 96 batch_size = 8 train_dataset = RandomTextClassificationDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, num_classes=num_classes) eval_dataset = RandomTextClassificationDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, num_classes=num_classes) predict_dataset = RandomTextClassificationDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, num_classes=num_classes) model = SimpleTransformerClassifier(vocab_size=vocab_size, num_classes=num_classes) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=dist.get_sampler(train_dataset)) eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, sampler=dist.get_sampler(eval_dataset)) predict_dataloader = DataLoader(predict_dataset, batch_size=8) trainer = Trainer( model=model, train_dataloader=train_dataloader, max_duration='2ep', eval_dataloader=eval_dataloader, ) trainer.fit() trainer.eval() # Check that there is some train/eval accuracy assert trainer.state.train_metrics['MulticlassAccuracy'].compute() != 0.0 assert trainer.state.eval_metrics['eval']['MulticlassAccuracy'].compute() != 0.0 predictions = trainer.predict(predict_dataloader) # Check that the output predictions are the expected shape num_predict_batches_expected = ((size - 1) // batch_size) + 1 assert len(predictions) == num_predict_batches_expected assert predictions[0].shape == (batch_size, 2) def test_simple_nlp_mlm(tiny_bert_tokenizer, tiny_bert_model): transformers = pytest.importorskip('transformers') vocab_size = tiny_bert_tokenizer.vocab_size sequence_length = 32 size = 96 batch_size = 8 train_dataset = RandomTextLMDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, use_keys=True) eval_dataset = RandomTextLMDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, use_keys=True) predict_dataset = RandomTextLMDataset(size=size, vocab_size=vocab_size, sequence_length=sequence_length, use_keys=True) collator = transformers.DataCollatorForLanguageModeling(tokenizer=tiny_bert_tokenizer, mlm_probability=0.15) model = SimpleTransformerMaskedLM(vocab_size=vocab_size) train_dataloader = DataLoader(train_dataset, batch_size=batch_size, sampler=dist.get_sampler(train_dataset), collate_fn=collator) eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, sampler=dist.get_sampler(eval_dataset), collate_fn=collator) predict_dataloader = DataLoader(predict_dataset, batch_size=8) trainer = Trainer( model=model, train_dataloader=train_dataloader, max_duration='2ep', eval_dataloader=eval_dataloader, ) trainer.fit() trainer.eval() # Check that there is some train/eval cross entropy assert trainer.state.train_metrics['LanguageCrossEntropy'].compute() != 0.0 assert trainer.state.eval_metrics['eval']['LanguageCrossEntropy'].compute() != 0.0 predictions = trainer.predict(predict_dataloader) # Check that the output predictions are the expected shape num_predict_batches_expected = ((size - 1) // batch_size) + 1 assert len(predictions) == num_predict_batches_expected assert predictions[0].shape == (batch_size, sequence_length, vocab_size)
composer-dev
tests/test_simple_nlp.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import copy import os import pytest import torch from torch.utils.data import DataLoader from torchmetrics.classification import MulticlassAccuracy from composer.algorithms import GatedLinearUnits from composer.loggers import RemoteUploaderDownloader from composer.metrics.nlp import LanguageCrossEntropy, MaskedAccuracy from composer.models import HuggingFaceModel from composer.trainer import Trainer from composer.utils import dist, get_device, inference, reproducibility from tests.common import device from tests.common.datasets import RandomTextClassificationDataset, RandomTextLMDataset from tests.common.models import SimpleTransformerClassifier, SimpleTransformerMaskedLM def get_model_embeddings(model): if isinstance(model, HuggingFaceModel): return model.model.bert.embeddings.word_embeddings.weight elif isinstance(model, SimpleTransformerClassifier) or isinstance(model, SimpleTransformerMaskedLM): return model.transformer_base.embedding.weight else: raise ValueError('Unsure how to get embeddings layer from model.') def pretraining_test_helper(tokenizer, model, algorithms, tmp_path, device): transformers = pytest.importorskip('transformers') pretraining_model_copy = copy.deepcopy(model) pretraining_train_dataset = RandomTextLMDataset(size=8, vocab_size=tokenizer.vocab_size, sequence_length=4, use_keys=True) collator = transformers.DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) pretraining_train_dataloader = DataLoader(pretraining_train_dataset, batch_size=4, sampler=dist.get_sampler(pretraining_train_dataset), collate_fn=collator) pretraining_eval_dataloader = DataLoader(pretraining_train_dataset, batch_size=4, sampler=dist.get_sampler(pretraining_train_dataset), collate_fn=collator) pretraining_trainer = Trainer(model=pretraining_model_copy, train_dataloader=pretraining_train_dataloader, save_folder=str(tmp_path / 'pretraining_checkpoints'), max_duration='1ep', seed=17, algorithms=algorithms, device=device) pretraining_trainer.fit() reproducibility.seed_all(17) # seed so that the masking is the same pretraining_trainer.eval(pretraining_eval_dataloader) loaded_pretraining_trainer = Trainer(model=model, load_path=str(tmp_path / 'pretraining_checkpoints' / 'latest-rank0.pt'), seed=17, algorithms=algorithms, device=device) reproducibility.seed_all(17) # seed so that the masking is the same loaded_pretraining_trainer.eval(pretraining_eval_dataloader) original_ce = pretraining_trainer.state.eval_metrics['eval']['LanguageCrossEntropy'] loaded_ce = loaded_pretraining_trainer.state.eval_metrics['eval']['LanguageCrossEntropy'] assert original_ce.compute() > 0.0 assert original_ce.compute() == loaded_ce.compute() return str(tmp_path / 'pretraining_checkpoints' / 'latest-rank0.pt') def finetuning_test_helper(tokenizer, model, algorithms, checkpoint_path, pretraining_model, tmp_path, device): finetuning_model_copy = copy.deepcopy(model) finetuning_train_dataset = RandomTextClassificationDataset(size=8, vocab_size=tokenizer.vocab_size, sequence_length=4, num_classes=3, use_keys=isinstance(model, HuggingFaceModel)) finetuning_train_dataloader = DataLoader(finetuning_train_dataset, batch_size=4, sampler=dist.get_sampler(finetuning_train_dataset)) finetuning_eval_dataloader = DataLoader(finetuning_train_dataset, batch_size=4, sampler=dist.get_sampler(finetuning_train_dataset)) remote_dir = str(tmp_path / 'object_store') os.makedirs(remote_dir, exist_ok=True) rud = RemoteUploaderDownloader( bucket_uri='libcloud://.', backend_kwargs={ 'provider': 'local', 'container': '.', 'provider_kwargs': { 'key': remote_dir, }, }, num_concurrent_uploads=1, use_procs=False, upload_staging_folder=str(tmp_path / 'staging_folder'), ) finetuning_embedding_layer = get_model_embeddings(model) pretraining_embedding_layer = get_model_embeddings(pretraining_model) # The pretraining weights have not yet been loaded into the finetuning model assert not torch.equal(finetuning_embedding_layer.cpu(), pretraining_embedding_layer.cpu()) finetuning_trainer = Trainer(model=model, train_dataloader=finetuning_train_dataloader, save_folder='finetuning_checkpoints', load_path=checkpoint_path, load_weights_only=True, loggers=[rud], max_duration='1ep', seed=17, algorithms=algorithms, device=device) # Now they have been loaded assert torch.equal(finetuning_embedding_layer.cpu(), pretraining_embedding_layer.cpu()) finetuning_trainer.fit() finetuning_trainer.eval(finetuning_eval_dataloader) loaded_finetuning_trainer = Trainer(model=finetuning_model_copy, load_path='finetuning_checkpoints/latest-rank0.pt', load_object_store=rud, seed=17, algorithms=algorithms, device=device) loaded_finetuning_trainer.eval(finetuning_eval_dataloader) original_acc = finetuning_trainer.state.eval_metrics['eval']['MulticlassAccuracy'] loaded_acc = loaded_finetuning_trainer.state.eval_metrics['eval']['MulticlassAccuracy'] assert original_acc.compute() > 0.0 assert original_acc.compute() == loaded_acc.compute() return loaded_finetuning_trainer, finetuning_eval_dataloader, rud, 'finetuning_checkpoints/latest-rank0.pt' def inference_test_helper(finetuning_output_path, rud, finetuning_model, algorithms, original_input, original_output, tmp_path, save_format, device): inference_trainer = Trainer(model=finetuning_model, load_path=finetuning_output_path, load_weights_only=True, loggers=[rud], seed=17, algorithms=algorithms, device=device) os.mkdir(tmp_path / 'inference_checkpoints') sample_input = (original_input, {}) inference.export_for_inference(model=inference_trainer.state.model, save_format=save_format, save_path=str(tmp_path / 'inference_checkpoints' / f'exported_model.{save_format}'), sample_input=sample_input) copied_batch = copy.deepcopy(original_input) if save_format == 'onnx': onnx = pytest.importorskip('onnx') ort = pytest.importorskip('onnxruntime') loaded_inference_model = onnx.load(str(tmp_path / 'inference_checkpoints' / 'exported_model.onnx')) onnx.checker.check_model(loaded_inference_model) ort_session = ort.InferenceSession(str(tmp_path / 'inference_checkpoints' / 'exported_model.onnx')) for key, value in copied_batch.items(): copied_batch[key] = value.numpy() loaded_model_out = ort_session.run(None, copied_batch) elif save_format == 'torchscript': loaded_inference_model = torch.jit.load(str(tmp_path / 'inference_checkpoints' / 'exported_model.torchscript')) loaded_inference_model.eval() loaded_model_out = loaded_inference_model(copied_batch) else: raise ValueError('Unsupported save format') torch.testing.assert_close( loaded_model_out[1] if isinstance(loaded_model_out, list) else loaded_model_out.detach().numpy(), original_output.detach().numpy() if isinstance(original_output, torch.Tensor) else original_output.logits.detach().numpy()) @device('cpu', 'gpu') # Note: the specificity of these settings are due to incompatibilities (e.g. the simpletransformer model is not traceable) @pytest.mark.parametrize('model_type,algorithms,save_format', [('tinybert_hf', [GatedLinearUnits], 'onnx'), ('simpletransformer', [], 'torchscript')]) def test_full_nlp_pipeline(model_type, algorithms, save_format, tiny_bert_tokenizer, tmp_path, request, device): """This test is intended to exercise our full pipeline for NLP. To this end, it performs pretraining, loads the pretrained model with a classification head for finetuning and finetunes it, exports the model for inference, and loads it back in to make predictions. """ pytest.importorskip('libcloud') pytest.importorskip('transformers') algorithms = [algorithm() for algorithm in algorithms] device = get_device(device) tiny_bert_model = None if model_type == 'tinybert_hf': tiny_bert_model = request.getfixturevalue('tiny_bert_model') # pretraining if model_type == 'tinybert_hf': assert tiny_bert_model is not None pretraining_metrics = [LanguageCrossEntropy(ignore_index=-100), MaskedAccuracy(ignore_index=-100)] pretraining_model = HuggingFaceModel(tiny_bert_model, tiny_bert_tokenizer, use_logits=True, metrics=pretraining_metrics) elif model_type == 'simpletransformer': pretraining_model = SimpleTransformerMaskedLM(vocab_size=tiny_bert_tokenizer.vocab_size) else: raise ValueError('Unsupported model type') pretraining_output_path = pretraining_test_helper(tiny_bert_tokenizer, pretraining_model, algorithms, tmp_path, device) # finetuning if model_type == 'tinybert_hf': finetuning_metric = MulticlassAccuracy(num_classes=3, average='micro') hf_finetuning_model, _ = HuggingFaceModel.hf_from_composer_checkpoint( pretraining_output_path, model_instantiation_class='transformers.AutoModelForSequenceClassification', model_config_kwargs={'num_labels': 3}) finetuning_model = HuggingFaceModel(model=hf_finetuning_model, tokenizer=tiny_bert_tokenizer, use_logits=True, metrics=[finetuning_metric]) elif model_type == 'simpletransformer': finetuning_model = SimpleTransformerClassifier(vocab_size=tiny_bert_tokenizer.vocab_size, num_classes=3) else: raise ValueError('Unsupported model type.') finetuning_model_copy = copy.deepcopy(finetuning_model) finetuning_trainer, finetuning_dataloader, rud, finetuning_output_path = finetuning_test_helper( tiny_bert_tokenizer, finetuning_model, algorithms, pretraining_output_path, pretraining_model, tmp_path, device) # inference batch = next(iter(finetuning_dataloader)) finetuning_trainer.state.model.to('cpu') finetuning_trainer.state.model.eval() original_output = finetuning_trainer.state.model(batch) inference_test_helper(finetuning_output_path, rud, finetuning_model_copy, algorithms, batch, original_output, tmp_path, save_format, device)
composer-dev
tests/test_full_nlp.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 # Pytest stub for running lint tests and doctests # Running these checks through pytest allows us to report any errors in Junit format, # which is posted directly on the PR import os import subprocess import textwrap import pytest def check_output(proc: subprocess.CompletedProcess): # Check the subprocess output, and raise an exception with the stdout/stderr dump if there was a non-zero exit # The `check=True` flag available in `subprocess.run` does not print stdout/stderr if proc.returncode == 0: return error_msg = textwrap.dedent(f"""\ Command {proc.args} failed with exit code {proc.returncode}. ----Begin stdout---- {proc.stdout} ----End stdout------ ----Begin stderr---- {proc.stderr} ----End stderr------""") raise RuntimeError(error_msg) @pytest.mark.doctest def test_run_doctests(): docs_folder = os.path.join(os.path.dirname(__file__), '..', 'docs') check_output(subprocess.run(['make', 'clean'], cwd=docs_folder, capture_output=True, text=True)) # Must build the html first to ensure that doctests in .. autosummary:: generated pages are included check_output(subprocess.run(['make', 'html'], cwd=docs_folder, capture_output=True, text=True)) check_output(subprocess.run(['make', 'doctest'], cwd=docs_folder, capture_output=True, text=True)) @pytest.mark.doctest def test_docker_build_matrix(): """Test that the docker build matrix is up to date.""" docker_folder = os.path.join(os.path.dirname(__file__), '..', 'docker') # Capture the existing readme and build matrix contents with open(os.path.join(docker_folder, 'README.md'), 'r') as f: existing_readme = f.read() with open(os.path.join(docker_folder, 'build_matrix.yaml'), 'r') as f: existing_build_matrix = f.read() # Run the script check_output( subprocess.run(['python', os.path.join(docker_folder, 'generate_build_matrix.py')], cwd=docker_folder, capture_output=True, text=True)) # Assert that the files did not change with open(os.path.join(docker_folder, 'README.md'), 'r') as f: assert existing_readme == f.read() with open(os.path.join(docker_folder, 'build_matrix.yaml'), 'r') as f: assert existing_build_matrix == f.read() @pytest.mark.doctest @pytest.mark.parametrize('example', [1, 2]) def test_release_tests_reflect_readme(example: int): """Test that example_1.py and example_2.py in release_tests reflect the README.md.""" with open(os.path.join(os.path.dirname(__file__), '..', 'README.md'), 'r') as f: readme_lines = f.readlines() example_code_lines = [] found_begin = False started = False for i, line in enumerate(readme_lines): if f'begin_example_{example}' in line: found_begin = True continue # Wait until we get the ```python for start of code snippet if found_begin and not started: if line == '```python\n': started = True # Reached end of code snippet elif started and line == '```\n': # Code snippet continues if i + 2 < len(readme_lines) and '-->\n' == readme_lines[ i + 1] and '<!--pytest-codeblocks:cont-->\n' == readme_lines[i + 2]: started = False # Code snippet ends else: break # Add line elif started: example_code_lines.append(line) example_file = os.path.join(os.path.dirname(__file__), '..', '.ci', 'release_tests', f'example_{example}.py') with open(example_file, 'r') as f: assert f.readlines() == example_code_lines
composer-dev
tests/test_docs.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import List, Sequence, Type from unittest.mock import Mock import pytest from composer import Algorithm, Engine, Event, Logger, State, Trainer from composer.algorithms import FusedLayerNorm, LowPrecisionLayerNorm, SelectiveBackprop from composer.algorithms.low_precision_layernorm.low_precision_layernorm import LowPrecisionLayerNorm from composer.core.passes import sort_to_back, sort_to_front from composer.devices import DeviceCPU from tests.common import SimpleModel from .test_engine import run_event @pytest.fixture def always_match_algorithms(): return [ Mock(**{ 'match.return.value': True, 'apply.return_value': n, # return encodes order 'interpolate_loss': False, }) for n in range(5) ] @pytest.fixture() def dummy_logger(dummy_state: State): return Logger(dummy_state) def test_register_pass(dummy_state, dummy_logger): dummy_algorithm = Mock() dummy_algorithm.match.return_value = True dummy_algorithm.apply.return_value = 'dummy' def insert_dummy_algorithm(algorithms, event): algorithms.append(dummy_algorithm) return algorithms engine = Engine(dummy_state, dummy_logger) engine.register_pass(insert_dummy_algorithm) trace = engine.run_event(Event.INIT) assert 'dummy' in [tr.exit_code for tr in trace.values()] class TestLIFOPass: @pytest.mark.parametrize('event', [ Event.BEFORE_LOSS, Event.BEFORE_BACKWARD, ]) def test_lifo_first_in(self, event: Event, dummy_state: State, dummy_logger: Logger, always_match_algorithms: List[Algorithm]): dummy_state.algorithms = always_match_algorithms trace = run_event(event, dummy_state, dummy_logger) order = [tr.order for tr in trace.values()] expected_order = [tr.exit_code for tr in trace.values()] # use exit_code to uniquely label algos assert order == expected_order @pytest.mark.parametrize('event', [ Event.AFTER_LOSS, Event.AFTER_BACKWARD, ]) def test_lifo_last_out(self, event: Event, dummy_state: State, always_match_algorithms: List[Algorithm], dummy_logger: Logger): dummy_state.algorithms = always_match_algorithms trace = run_event(event, dummy_state, dummy_logger) order = [tr.order for tr in trace.values()] expected_order = list(reversed([tr.exit_code for tr in trace.values()])) assert order == expected_order class TestAlgorithmOrderingPasses: @pytest.mark.parametrize('algorithm_cls', [FusedLayerNorm, LowPrecisionLayerNorm]) def test_algorithm_last(self, algorithm_cls: Type[Algorithm], always_match_algorithms: List[Algorithm], dummy_logger: Logger, dummy_state: State): if algorithm_cls == FusedLayerNorm or LowPrecisionLayerNorm: pytest.importorskip('apex') algorithm = algorithm_cls() algorithm.apply = Mock(return_value='algo') algorithm.match = Mock(return_value=True) algortihms = always_match_algorithms[0:2] + [algorithm] + always_match_algorithms[2:] dummy_state._algorithms = algortihms trace = run_event(Event.INIT, dummy_state, dummy_logger) expected = [0, 1, 2, 3, 4, 'algo'] actual = [tr.exit_code for tr in trace.values()] assert actual == expected @pytest.mark.parametrize('algorithm_cls', [SelectiveBackprop]) def test_algorithm_first(self, algorithm_cls: Type[Algorithm], always_match_algorithms: List[Algorithm], dummy_logger: Logger, dummy_state: State): algorithm = algorithm_cls() algorithm.apply = Mock(return_value='algo') algorithm.match = Mock(return_value=True) algorithms = always_match_algorithms[0:2] + [algorithm] + always_match_algorithms[2:] dummy_state._algorithms = algorithms trace = run_event(Event.INIT, dummy_state, dummy_logger) expected = ['algo', 0, 1, 2, 3, 4] actual = [tr.exit_code for tr in trace.values()] assert actual == expected class TestSortHelpers: def test_sort_to_back(self): lst = [1, 'a', 'c', 2, 3.0] assert sort_to_back(lst, int) == ['a', 'c', 3.0, 1, 2] def test_sort_to_front(self): lst = [1, 'a', 'c', 2, 3.0] assert sort_to_front(lst, int) == [1, 2, 'a', 'c', 3.0] def get_default_passes(): state = State(model=SimpleModel(), device=DeviceCPU(), rank_zero_seed=42, run_name='test_chungoose') engine = Engine(state, Logger(state)) return engine.algorithm_passes def get_custom_pass(): def sort_by_name(algorithms: Sequence[Algorithm], event: Event) -> Sequence[Algorithm]: return sorted(algorithms, key=lambda x: type(x).__name__) return sort_by_name sort_by_name = get_custom_pass() # Generate pass object so we can use same ref in tests class TestTrainerArg: @pytest.mark.parametrize( 'algorithm_passes,expected_passes', [ [None, get_default_passes()], [sort_by_name, get_default_passes() + [sort_by_name]], [[sort_by_name], get_default_passes() + [sort_by_name]], [[sort_by_name, 0], [sort_by_name] + get_default_passes()], # type: ignore [(sort_by_name, 0), [sort_by_name] + get_default_passes()], # type: ignore [[(sort_by_name, 0)], [sort_by_name] + get_default_passes()], # type: ignore ]) def test_add_pass(self, algorithm_passes, expected_passes): trainer = Trainer(model=SimpleModel(), algorithm_passes=algorithm_passes) assert trainer.engine.algorithm_passes == expected_passes
composer-dev
tests/test_passes.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import glob import inspect import os import pytest import testbook from testbook.client import TestbookNotebookClient import composer from tests.common import device nb_root = os.path.join(os.path.dirname(composer.__file__), '..', 'examples') NOTEBOOKS = [ os.path.join(nb_root, nb) \ for nb in glob.glob(os.path.join(nb_root, '*.ipynb')) \ ] def _to_pytest_param(filepath: str): notebook_name = os.path.split(filepath)[-1][:-len('.ipynb')] marks = [] if notebook_name == 'ffcv_dataloaders': marks.append(pytest.mark.vision) return pytest.param(filepath, marks=marks) def patch_notebooks(): import itertools import multiprocessing from torch.utils.data import DataLoader from composer import Trainer multiprocessing.cpu_count = lambda: 2 original_fit = Trainer.fit def new_fit(self: Trainer, *args, **kwargs): if 'duration' not in kwargs: kwargs['duration'] = '2ep' if 'train_subset_num_batches' not in kwargs: kwargs['train_subset_num_batches'] = 2 if 'eval_dataloader' in kwargs and 'eval_subset_num_batches' not in kwargs: kwargs['eval_subset_num_batches'] = 1 original_fit(self, *args, **kwargs) Trainer.fit = new_fit original_iter = DataLoader.__iter__ def new_iter(self: DataLoader): return itertools.islice(original_iter(self), 2) DataLoader.__iter__ = new_iter # type: ignore # error: DataLoader has a stricter return type than islice def modify_cell_source(tb: TestbookNotebookClient, notebook_name: str, cell_source: str, s3_bucket: str) -> str: # This function is called before each cell is executed if notebook_name == 'functional_api': # avoid div by 0 errors with batch size of 1 cell_source = cell_source.replace('max_epochs = 5', 'max_epochs = 1') cell_source = cell_source.replace('acc_percent = 100 * num_right / eval_size', 'acc_percent = 1') cell_source = cell_source.replace('batch_size = 1024', 'batch_size = 64') if notebook_name == 'custom_speedup_methods': cell_source = cell_source.replace('resnet_56', 'resnet_9') cell_source = cell_source.replace('batch_size=1024', 'batch_size=64') if notebook_name == 'finetune_huggingface': cell_source = cell_source.replace( 'sst2_dataset = datasets.load_dataset("glue", "sst2")', 'sst2_dataset = datasets.load_dataset("glue", "sst2", download_mode="force_redownload")') cell_source = cell_source.replace('batch_size=16', 'batch_size=2') if notebook_name == 'pretrain_finetune_huggingface': cell_source = cell_source.replace('batch_size=64', 'batch_size=1') cell_source = cell_source.replace('batch_size=32', 'batch_size=1') if notebook_name == 'early_stopping': cell_source = cell_source.replace('batch_size = 1024', 'batch_size = 64') if notebook_name == 'getting_started': cell_source = cell_source.replace('batch_size = 1024', 'batch_size = 64') if notebook_name == 'migrate_from_ptl': cell_source = cell_source.replace('batch_size=256', 'batch_size=64') return cell_source @pytest.mark.parametrize('notebook', [_to_pytest_param(notebook) for notebook in NOTEBOOKS]) @device('cpu', 'gpu') @pytest.mark.daily def test_notebook(notebook: str, device: str, s3_bucket: str): trainer_monkeypatch_code = inspect.getsource(patch_notebooks) notebook_name = os.path.split(notebook)[-1][:-len('.ipynb')] if notebook_name == 'medical_image_segmentation': pytest.skip('Dataset is only available via kaggle; need to authenticate on ci/cd') if notebook_name == 'training_with_submitit': pytest.skip('The CI does not support SLURM and submitit') if notebook_name == 'auto_microbatching' and device == 'cpu': pytest.skip('auto_microbatching notebook only runs with a gpu') if notebook_name == 'TPU_Training_in_composer': pytest.skip('The CI does not support tpus') if notebook_name == 'ffcv_dataloaders' and device == 'cpu': pytest.skip('The FFCV notebook requires CUDA') with testbook.testbook(notebook) as tb: tb.inject(trainer_monkeypatch_code) tb.inject('patch_notebooks()') for i, cell in enumerate(tb.cells): if cell['cell_type'] != 'code': continue cell['source'] = modify_cell_source(tb, notebook_name=notebook_name, cell_source=cell['source'], s3_bucket=s3_bucket) tb.execute_cell(i)
composer-dev
tests/test_notebooks.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pathlib import random import pytest import torch import torch.nn.functional as F from torch.utils.data import DataLoader import composer from composer.core import Batch, Precision, State from composer.devices import DeviceCPU, DeviceGPU from composer.loggers import Logger from tests.common import SimpleModel, assert_state_equivalent from tests.common.datasets import RandomClassificationDataset def random_tensor(size=(4, 10)): return torch.rand(*size) def get_dummy_state(request: pytest.FixtureRequest): model = SimpleModel() dataset = RandomClassificationDataset() dataloader = DataLoader(dataset, batch_size=4) optimizers = torch.optim.Adadelta(model.parameters()) device = None for item in request.session.items: device = DeviceCPU() if item.get_closest_marker('gpu') is None else DeviceGPU() break assert device != None state = State(model=model, device=device, train_dataloader=dataloader, run_name=f'{random.randint(0, 100)}', rank_zero_seed=random.randint(0, 100), precision=Precision.AMP_FP16, max_duration=f'{random.randint(0, 100)}ep', optimizers=optimizers, device_train_microbatch_size=2) state.schedulers = torch.optim.lr_scheduler.StepLR(optimizers, step_size=3) state.loss = random_tensor() state.batch = (random_tensor(), random_tensor()) state.outputs = random_tensor() return state def train_one_step(state: State, batch: Batch) -> None: _, y = batch state.batch = batch for optimizer in state.optimizers: optimizer.zero_grad() state.outputs = state.model(state.batch) assert isinstance(y, torch.Tensor) state.loss = F.cross_entropy(state.outputs, y) state.loss.backward() for optimizer in state.optimizers: optimizer.step() for scheduler in state.schedulers: scheduler.step() state.timestamp = state.timestamp.to_next_batch(len(batch)) def test_state_serialize(tmp_path: pathlib.Path, empty_logger: Logger, request: pytest.FixtureRequest): state1 = get_dummy_state(request) state2 = get_dummy_state(request) dataloader = DataLoader( dataset=RandomClassificationDataset(), batch_size=2, ) dataloader_iter = iter(dataloader) # train one step to set the optimizer states batch = next(dataloader_iter) train_one_step(state1, batch) # load from state1 to state2 state_dict = state1.state_dict() filepath = str(tmp_path / 'state.pt') torch.save(state_dict, filepath) state_dict_2 = torch.load(filepath, map_location='cpu') state2.load_state_dict(state_dict_2, empty_logger) # serialization/deserialization should be exact assert_state_equivalent(state1, state2) # train both for one step on another sample batch = next(dataloader_iter) train_one_step(state1, batch) train_one_step(state2, batch) # both states should have equivalent # state, model parameters, loss, and outputs assert_state_equivalent(state1, state2) # yapf: disable @pytest.mark.parametrize('batch,key,val', [ ([1234, 5678], 0, 1234), ([1234, 5678], 1, 5678), ({'a': 1, 'b': 2}, 'a', 1), ({'a': 1, 'b': 2}, 'b', 2), (({'a': 1, 'b': 7}, {'c': 5}), lambda x: x[1]['c'], 5), ]) # yapf: enable def test_state_batch_get_item(batch, key, val, request: pytest.FixtureRequest): state = get_dummy_state(request) state.batch = batch assert state.batch_get_item(key) == val # yapf: disable @pytest.mark.parametrize('batch,key,val', [ ([1234, 5678], 0, 1111), ([1234, 5678], 1, 1111), ({'a': 1, 'b': 2}, 'a', 9), ({'a': 1, 'b': 2}, 'b', 9), ]) # yapf: enable def test_state_batch_set_item(batch, key, val, request: pytest.FixtureRequest): state = get_dummy_state(request) state.batch = batch state.batch_set_item(key=key, value=val) assert state.batch_get_item(key) == val def test_composer_metadata_in_state_dict(tmp_path, request: pytest.FixtureRequest): state = get_dummy_state(request) save_path = pathlib.Path(tmp_path) / 'state_dict.pt' with open(save_path, 'wb') as _tmp_file: torch.save(state.state_dict(), _tmp_file) loaded_state_dict = torch.load(save_path) expected_env_info_keys = set([ 'composer_version', 'composer_commit_hash', 'node_world_size', 'host_processor_model_name', 'host_processor_core_count', 'local_world_size', 'accelerator_model_name', 'cuda_device_count' ]) actual_env_info_keys = set(loaded_state_dict['metadata']['composer_env_info'].keys()) assert expected_env_info_keys == actual_env_info_keys assert loaded_state_dict['metadata']['composer_env_info']['composer_version'] == composer.__version__ assert loaded_state_dict['metadata']['device'] == 'cpu' assert loaded_state_dict['metadata']['precision'] == 'amp_fp16' assert loaded_state_dict['metadata']['world_size'] == 1 assert loaded_state_dict['metadata']['device_train_microbatch_size'] == 2 assert loaded_state_dict['metadata']['train_dataloader_batch_size'] == 4
composer-dev
tests/test_state.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Dict, List, Mapping, Tuple, Union import pytest import torch from composer.core.data_spec import _default_split_batch, _split_list, _split_tensor def dummy_tensor_batch(batch_size=12) -> torch.Tensor: return torch.randn(size=(batch_size, 3, 32, 32)) def dummy_list_str(batch_size=12) -> List[str]: return [str(x) for x in range(batch_size)] def dummy_tuple_batch(batch_size=12) -> List[torch.Tensor]: # pytorch default collate converts tuples to lists # https://github.com/pytorch/pytorch/blob/e451259a609acdcd83105177ddba73fc41cfa9b4/torch/utils/data/_utils/collate.py#L67 image = torch.randn(size=(batch_size, 3, 32, 32)) target = torch.randint(size=(batch_size,), high=10) return [image, target] def dummy_tuple_batch_long(batch_size=12) -> List[torch.Tensor]: image_1 = torch.randn(size=(batch_size, 3, 32, 32)) image_2 = torch.randn(size=(batch_size, 3, 32, 32)) image_3 = torch.randn(size=(batch_size, 3, 32, 32)) target = torch.randint(size=(batch_size,), high=10) return [image_1, image_2, image_3, target] def dummy_dict_batch(batch_size=12) -> Dict[str, torch.Tensor]: image = torch.randn(size=(batch_size, 3, 32, 32)) target = torch.randint(size=(batch_size,), high=10) return {'image': image, 'target': target} def dummy_dict_batch_with_metadata(batch_size=12) -> Dict[str, Union[List, torch.Tensor, str]]: # sometimes metadata is included with a batch that isn't taken by the model. image = torch.randn(size=(batch_size, 3, 32, 32)) target = torch.randint(size=(batch_size,), high=10) meta = ['hi im a tag' for _ in range(batch_size)] index = [[1, 2, 3] for _ in range(batch_size)] return {'image': image, 'target': target, 'meta': meta, 'index': index} def dummy_dict_batch_with_common_metadata(batch_size=12) -> Dict[str, Union[List, torch.Tensor, str]]: # sometimes metadata is included with a batch that isn't taken by the model. image = torch.randn(size=(batch_size, 3, 32, 32)) target = torch.randint(size=(batch_size,), high=10) meta = 'this is a string' index = [[1, 2, 3] for _ in range(batch_size)] return {'image': image, 'target': target, 'meta': meta, 'index': index} def dummy_maskrcnn_batch(batch_size=12, image_height=12, image_width=12, num_classes=80, max_detections=5) -> List[Tuple[torch.Tensor, Dict[str, torch.Tensor]]]: def generate_maskrcnn_sample(num_detections, image_height=image_height, image_width=image_width, num_classes=num_classes): """Generates a maskrcnn style sample: (Tensor, Dict[Tensor]).""" image = torch.randn(size=(3, image_height, image_width)).type(torch.float) target = { 'boxes': torch.randint(size=(num_detections, 4), low=0, high=min(image_height, image_width)).type(torch.float), 'labels': torch.randint(size=(num_detections,), low=0, high=num_classes + 1), 'masks': torch.randint(size=(num_detections, image_height, image_width), low=0, high=2).type(torch.uint8) } return image, target return [ generate_maskrcnn_sample(num_detections=n) for n in torch.randint(size=(batch_size,), low=1, high=max_detections + 1) ] def dummy_batches(batch_size=12): return [ dummy_tensor_batch(batch_size=batch_size), dummy_list_str(batch_size=batch_size), dummy_tuple_batch(batch_size=batch_size), dummy_tuple_batch_long(batch_size=batch_size), dummy_dict_batch(batch_size=batch_size), dummy_dict_batch_with_metadata(batch_size=batch_size), dummy_dict_batch_with_common_metadata(batch_size=batch_size), ] @pytest.mark.parametrize('batch', dummy_batches(12)) def test_split_without_error(batch): microbatches = _default_split_batch(batch, microbatch_size=3) assert len(microbatches) == 4 @pytest.mark.parametrize('batch', [dummy_tensor_batch(i) for i in [12, 13, 14, 15]]) def test_tensor_vs_list_chunking(batch): tensor_microbatches = _split_tensor(batch, microbatch_size=4) list_microbatches = _split_list([t for t in batch], microbatch_size=4) assert len(tensor_microbatches) == len(list_microbatches) assert all(torch.equal(t1, torch.stack(t2, dim=0)) for t1, t2 in zip(tensor_microbatches, list_microbatches)) @pytest.mark.parametrize('batch', [dummy_tuple_batch(12)]) def test_split_tuple(batch): microbatches = _default_split_batch(batch, microbatch_size=4) # should be 3 microbatches of size 4 tensors pairs # should split into [(x, y), (x, y), (x, y)] assert len(microbatches[0]) == 2 @pytest.mark.parametrize('batch', [dummy_tuple_batch_long(12)]) def test_split_tuple_long(batch): microbatches = _default_split_batch(batch, microbatch_size=4) assert len(microbatches[0]) == 4 @pytest.mark.parametrize('batch', dummy_batches(6)) def test_batch_sizes(batch): microbatches = _default_split_batch(batch, microbatch_size=2) # should split into [len(2), len(2), len(1)] assert len(microbatches) == 3 for microbatch in microbatches: if isinstance(microbatch, Mapping): assert len(microbatch['image']) == 2 assert len(microbatch['target']) == 2 if isinstance(microbatch, tuple): assert len(microbatch[0]) == 2 if isinstance(microbatch, list): assert len(microbatch) == 2 @pytest.mark.parametrize('batch', dummy_batches(5)) def test_odd_batch_sizes(batch): microbatches = _default_split_batch(batch, microbatch_size=2) # should split into [len(2), len(2), len(1)] assert len(microbatches) == 3 last_microbatch = microbatches[-1] if isinstance(last_microbatch, Mapping): assert len(last_microbatch['image']) == 1 assert len(last_microbatch['target']) == 1 if isinstance(last_microbatch, tuple): assert len(last_microbatch[0]) == 1 if isinstance(last_microbatch, list): assert len(last_microbatch) == 1 @pytest.mark.parametrize('batch', dummy_batches(2)) def test_microbatch_size_greater_than_batch_size(batch): with pytest.warns(UserWarning): microbatches = _default_split_batch(batch, microbatch_size=3) assert len(microbatches) == 1 @pytest.mark.parametrize('batch', [dummy_maskrcnn_batch(12)]) def test_microbatch_size_split_maskrcnn(batch): microbatches = _split_list(batch, microbatch_size=4) assert len(microbatches) == 3 @pytest.mark.parametrize('batch', [dummy_dict_batch_with_common_metadata(12)]) def test_primitive_broadcast(batch): microbatches = _default_split_batch(batch, microbatch_size=3) assert len(microbatches) == 4 for mb in microbatches: assert mb['meta'] == 'this is a string'
composer-dev
tests/test_split_batch.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import torch from torch.nn import functional as F from composer.loss import DiceLoss, soft_cross_entropy from composer.loss.utils import _one_hot, ensure_targets_one_hot, infer_target_type def generate_targets(): return [ # Binary classification torch.randint(low=0, high=2, size=(8,), dtype=torch.long), # Classification torch.randint(low=0, high=10, size=(8,), dtype=torch.long), # Segmentation torch.randint(low=0, high=2, size=(8, 5, 5), dtype=torch.long), torch.randint(low=0, high=10, size=(8, 5, 5), dtype=torch.long), # 3D inputs torch.randint(low=0, high=10, size=(8, 5, 7, 11), dtype=torch.long), torch.randint(low=0, high=10, size=(8, 5, 8, 11), dtype=torch.long) ] @pytest.mark.parametrize('targets', generate_targets()) class TestOneHot(): def test_one_hot(self, targets): composer_one_hot = _one_hot(targets) pytorch_one_hot = F.one_hot(targets) torch.testing.assert_close(composer_one_hot, pytorch_one_hot) def test_one_hot_num_classes(self, targets): num_classes = targets.max() + 1 composer_one_hot = _one_hot(targets, num_classes=num_classes) pytorch_one_hot = F.one_hot(targets, num_classes=num_classes) torch.testing.assert_close(composer_one_hot, pytorch_one_hot) @pytest.mark.parametrize('dim', [1]) def test_one_hot_dim(self, targets, dim): composer_one_hot = _one_hot(targets, dim=dim) pytorch_one_hot = F.one_hot(targets) # Move class dim to specified dim pytorch_one_hot = torch.movedim(pytorch_one_hot, source=-1, destination=dim).contiguous() torch.testing.assert_close(composer_one_hot, pytorch_one_hot) @pytest.mark.xfail(raises=ValueError) def test_one_hot_wrong_type(self, targets): targets = _one_hot(targets.float()) @pytest.mark.xfail(raises=ValueError) def test_one_hot_wrong_classes(self, targets): targets = _one_hot(targets, num_classes=1) def fake_input_target_pairs(input_shape): num_classes = input_shape[1] reduced_input_shape = list(input_shape) reduced_input_shape.pop(1) input = torch.randn(input_shape) targets_idx = torch.randint(low=-1, high=num_classes, size=reduced_input_shape) targets_one_hot = torch.zeros_like(input) for i, value in np.ndenumerate(targets_idx): i_expanded = list(i) if value >= 0: i_expanded.insert(1, value) targets_one_hot[tuple(i_expanded)] = 1.0 return input, targets_idx, targets_one_hot def xfail(val): """shorthand to mark xfail parameters.""" return pytest.param(val, marks=pytest.mark.xfail) def generate_tensor_pairs(): return [ # Binary classification fake_input_target_pairs((64, 2)), # Classification fake_input_target_pairs((64, 10)), # Segmentation fake_input_target_pairs((64, 2, 5, 5)), fake_input_target_pairs((64, 10, 5, 5)), # 3D inputs fake_input_target_pairs((64, 2, 5, 7, 11)), fake_input_target_pairs((64, 10, 5, 7, 11)) ] @pytest.mark.filterwarnings( r'ignore:Negative label indices are being ignored in conversion to one-hot labels:UserWarning') @pytest.mark.parametrize('tensors', generate_tensor_pairs()) def test_ensure_targets_one_hot(tensors): input, targets_idx, targets_one_hot = tensors targets_one_hot_test = ensure_targets_one_hot(input, targets_idx) torch.testing.assert_close(targets_one_hot, targets_one_hot_test, check_stride=False) @pytest.mark.parametrize('tensors', generate_tensor_pairs()) class TestSoftCrossEntropy: def test_infer_target_type(self, tensors): input, target_indices, target_onehot = tensors assert infer_target_type(input, target_indices) == 'indices' assert infer_target_type(input, target_onehot) == 'one_hot' @pytest.mark.parametrize('reduction', ['mean', 'sum']) @pytest.mark.parametrize('use_weights', [xfail(True), False]) # TODO(Cory): Remove this filterwarning @pytest.mark.filterwarnings(r'ignore:Some targets have less than 1 total probability:UserWarning') def test_soft_cross_entropy(self, tensors, use_weights, reduction): input, target_indices, target_onehot = tensors if use_weights: num_classes = target_onehot.shape[1] weights = torch.rand(size=[num_classes]) else: weights = None loss_indices = soft_cross_entropy(input, target_indices, weight=weights, reduction=reduction, ignore_index=-1) loss_onehot = soft_cross_entropy(input, target_onehot, weight=weights, reduction=reduction) loss_reference = F.cross_entropy(input, target_indices, weight=weights, reduction=reduction, ignore_index=-1) torch.testing.assert_close(loss_indices, loss_onehot) torch.testing.assert_close(loss_indices, loss_reference) @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.parametrize('squared_pred', [True, False]) @pytest.mark.parametrize('jaccard', [True, False]) @pytest.mark.parametrize('batch', [True, False]) @pytest.mark.parametrize('ignore_absent_classes', [True, False]) class TestDiceLoss: @pytest.fixture() def target(self): target = torch.tensor([[[-1], [0], [1], [2]]]).repeat(1, 1, 4) target = torch.cat([target, target[:, [1, 2, 3, 0]], target[:, [2, 3, 0, 1]], target[:, [3, 0, 1, 2]]], dim=0) return target @pytest.fixture() def correct_input(self, target): input = target.clone() input[input == -1] = 1 # replace negative label with class prediction input = F.one_hot(input) input = torch.movedim(input, 3, 1) return input @pytest.fixture() def incorrect_input(self, correct_input): return correct_input[[3, 2, 1, 0]] @pytest.mark.parametrize('reduction', ['mean', 'sum']) def test_correct_prediction(self, correct_input: torch.Tensor, target: torch.Tensor, squared_pred: bool, jaccard: bool, batch: bool, ignore_absent_classes: bool, reduction: str): dice_loss = DiceLoss(squared_pred=squared_pred, jaccard=jaccard, batch=batch, ignore_absent_classes=ignore_absent_classes, reduction=reduction) assert dice_loss(correct_input, target) == 0.0 def test_incorrect_prediction(self, incorrect_input: torch.Tensor, target: torch.Tensor, squared_pred: bool, jaccard: bool, batch: bool, ignore_absent_classes: bool): dice_loss = DiceLoss(squared_pred=squared_pred, jaccard=jaccard, batch=batch, ignore_absent_classes=ignore_absent_classes) loss = dice_loss(incorrect_input, target) torch.testing.assert_close(loss, torch.tensor(1.0))
composer-dev
tests/test_loss.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Dict, List, Tuple, Union import pytest import torch from composer.devices import DeviceCPU, DeviceGPU from composer.devices.device import _map_batch from tests.common import device, world_size def dummy_tensor_batch() -> torch.Tensor: return torch.randn(size=(1, 1, 1, 1)) def dummy_tuple_batch() -> Tuple[torch.Tensor, torch.Tensor]: image = torch.randn(size=(1, 1, 1, 1)) target = torch.randint(size=(1,), high=10) return image, target def dummy_tuple_batch_long() -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: image_1 = torch.randn(size=(1, 1, 1, 1)) image_2 = torch.randn(size=(1, 1, 1, 1)) image_3 = torch.randn(size=(1, 1, 1, 1)) target = torch.randint(size=(1,), high=10) return image_1, image_2, image_3, target def dummy_dict_batch() -> Dict[str, torch.Tensor]: image = torch.randn(size=(1, 1, 1, 1)) target = torch.randint(size=(1,), high=10) return {'image': image, 'target': target} def dummy_dict_batch_with_metadata(batch_size=1) -> Dict[str, Union[List, torch.Tensor, str]]: # sometimes metadata is included with a batch that isn't taken by the model. image = torch.randn(size=(batch_size, 1, 1, 1)) target = torch.randint(size=(batch_size,), high=10) meta = ['hi im a tag' for _ in range(batch_size)] index = [[1, 2, 3] for _ in range(batch_size)] return {'image': image, 'target': target, 'meta': meta, 'index': index} def dummy_maskrcnn_batch() -> List[Tuple[torch.Tensor, Dict[str, torch.Tensor]]]: def generate_maskrcnn_sample(num_detections, image_height=1, image_width=1, num_classes=1): """Generates a maskrcnn style sample: (Tensor, Dict[Tensor]).""" image = torch.randn(size=(3, image_height, image_width)).type(torch.float) target = { 'boxes': torch.randint(size=(num_detections, 4), low=0, high=min(image_height, image_width)).type(torch.float), 'labels': torch.randint(size=(num_detections,), low=0, high=num_classes), 'masks': torch.randint(size=(num_detections, image_height, image_width), low=0, high=2).type(torch.uint8) } return image, target def generate_maskrcnn_batch(batch_size, max_detections): return [generate_maskrcnn_sample(n) for n in torch.randint(size=(batch_size,), low=1, high=max_detections)] return generate_maskrcnn_batch(batch_size=1, max_detections=2) @device('cpu', 'gpu') @pytest.mark.parametrize('batch', [ dummy_tensor_batch(), dummy_tuple_batch(), dummy_tuple_batch_long(), dummy_dict_batch(), dummy_dict_batch_with_metadata(), dummy_maskrcnn_batch() ]) def test_to_device(device, batch): device_handler = DeviceCPU() if device == 'cpu' else DeviceGPU() def assert_device(x): if isinstance(x, torch.Tensor): assert x.device.type == device_handler._device.type new_batch = device_handler.batch_to_device(batch) _map_batch(new_batch, assert_device) @world_size(2) @device('gpu') def test_gpu_device_id(device, world_size): device_gpu = DeviceGPU(device_id=0) assert device_gpu._device.index == 0
composer-dev
tests/test_device.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import math import pytest import torch from packaging import version from torch.utils.data import DataLoader from composer import Trainer from composer.core import Event, Time from composer.core.time import TimeUnit from composer.utils import dist from tests.common import RandomClassificationDataset, SimpleModel from tests.common.events import EventCounterCallback @pytest.mark.parametrize('event', list(Event)) def test_event_values(event: Event): assert event.name.lower() == event.value class TestEventCalls: eval_subset_num_batches = 5 train_subset_num_batches = 5 def get_trainer(self, precision='fp32', **kwargs): model = SimpleModel() optimizer = torch.optim.Adam(model.parameters()) train_dataset = RandomClassificationDataset() eval_dataset = RandomClassificationDataset() train_batch_size = 4 return Trainer( model=model, train_dataloader=DataLoader( dataset=train_dataset, batch_size=train_batch_size, sampler=dist.get_sampler(train_dataset), ), eval_dataloader=DataLoader( dataset=eval_dataset, batch_size=8, sampler=dist.get_sampler(eval_dataset), ), device_train_microbatch_size=train_batch_size // 2, precision=precision, train_subset_num_batches=self.train_subset_num_batches, eval_subset_num_batches=self.eval_subset_num_batches, max_duration='2ep', optimizers=optimizer, callbacks=[EventCounterCallback()], **kwargs, ) @pytest.mark.parametrize('world_size', [ pytest.param(1), pytest.param(2, marks=pytest.mark.world_size(2)), ]) @pytest.mark.parametrize( 'device,deepspeed_zero_stage,use_fsdp,precision', [ pytest.param('cpu', None, False, 'fp32', id='cpu-ddp'), # TODO: Remove filterwarnings after FSDP remove deprecated code pytest.param('gpu', True, False, 'fp32', id='gpu-ddp', marks=pytest.mark.gpu), pytest.param('gpu', None, True, 'amp_fp16', id='gpu-fsdp', marks=[ pytest.mark.gpu, pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.13.0'), reason='requires PyTorch 1.13 or higher'), pytest.mark.filterwarnings('ignore::UserWarning'), ]), ]) @pytest.mark.parametrize('save_interval', ['1ep', '1ba']) def test_event_calls(self, world_size, device, deepspeed_zero_stage, use_fsdp, precision, save_interval): save_interval = Time.from_timestring(save_interval) deepspeed_config = None if deepspeed_zero_stage: deepspeed_config = {'zero_optimization': {'stage': deepspeed_zero_stage}} fsdp_config = None if use_fsdp: fsdp_config = { 'sharding_strategy': 'FULL_SHARD', 'min_params': 1e8, 'cpu_offload': False, 'mixed_precision': 'PURE', 'backward_prefetch': 'BACKWARD_PRE', 'activation_checkpointing': False, 'activation_ocpu_offload': False, 'verbose': False } trainer = self.get_trainer( precision=precision, device=device, deepspeed_config=deepspeed_config, fsdp_config=fsdp_config, save_interval=save_interval, eval_interval=save_interval, ) trainer.fit() self._assert_expected_event_calls(trainer, save_interval, num_epochs=2) def _assert_expected_event_calls(self, trainer: Trainer, eval_interval: Time, num_epochs: int): state = trainer.state assert state.dataloader_len is not None total_steps = num_epochs * int(state.dataloader_len) batch_size = state.train_dataloader.batch_size # type: ignore assert batch_size is not None assert state.device_train_microbatch_size is not None total_microbatches = total_steps * math.ceil(batch_size / state.device_train_microbatch_size) if eval_interval.unit == TimeUnit.BATCH: total_evals = total_steps // int(eval_interval) elif eval_interval.unit == TimeUnit.EPOCH: total_evals = num_epochs // int(eval_interval) else: total_evals = 0 if trainer.state.evaluators: steps_per_eval = self.eval_subset_num_batches total_eval_steps = total_evals * steps_per_eval * len(trainer.state.evaluators) else: total_eval_steps = 0 expected_num_calls = { Event.INIT: 1, Event.AFTER_LOAD: 1, Event.EPOCH_START: num_epochs, Event.BATCH_START: total_steps, Event.BEFORE_DATALOADER: total_steps + num_epochs, # extra call per epoch when dataloader is exhausted Event.AFTER_DATALOADER: total_steps, Event.BEFORE_FORWARD: total_microbatches, Event.AFTER_FORWARD: total_microbatches, Event.BEFORE_LOSS: total_microbatches, Event.AFTER_LOSS: total_microbatches, Event.BEFORE_BACKWARD: total_microbatches, Event.AFTER_BACKWARD: total_microbatches, Event.BEFORE_TRAIN_BATCH: total_steps, Event.AFTER_TRAIN_BATCH: total_steps, Event.BATCH_END: total_steps, Event.BATCH_CHECKPOINT: total_steps, Event.EPOCH_END: num_epochs, Event.EPOCH_CHECKPOINT: num_epochs, Event.EVAL_START: total_evals, Event.EVAL_BATCH_START: total_eval_steps, Event.EVAL_BEFORE_FORWARD: total_eval_steps, Event.EVAL_AFTER_FORWARD: total_eval_steps, Event.EVAL_BATCH_END: total_eval_steps, Event.EVAL_END: total_evals, } counter_callback = (cb for cb in trainer.state.callbacks if isinstance(cb, EventCounterCallback)) counter_callback = next(counter_callback) for event, expected in expected_num_calls.items(): actual = counter_callback.event_to_num_calls[event] assert expected == actual, f'{event} call mismatch: {expected} != {actual}'
composer-dev
tests/test_events.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from composer import (algorithms, callbacks, core, datasets, devices, functional, loggers, loss, metrics, models, optim, profiler, trainer, utils) # This very simple test is just to use the above imports, which check and make sure we can import all the top-level # modules from composer. This is mainly useful for checking that we have correctly conditionally imported all optional # dependencies. def test_smoketest(): assert callbacks assert algorithms assert core assert datasets assert devices assert functional assert loggers assert loss assert metrics assert models assert optim assert profiler assert trainer assert utils
composer-dev
tests/test_smoketest.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os import platform import PIL import pytest from torch.utils.data import DataLoader from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel @pytest.mark.skipif('composer-python' not in os.environ['PATH'] or 'Linux' not in platform.system(), reason='Pillow-simd test only checks if using the composer docker') class TestDocker: def test_pillow_simd(self): assert 'post' in PIL.__version__, 'pillow-simd is not installed' @pytest.mark.gpu def test_apex(self): """Test that apex is installed and works in the GPU image.""" import apex model = SimpleModel() opt = apex.optimizers.FusedAdam(model.parameters(), lr=0.01) trainer = Trainer( model=model, train_dataloader=DataLoader(RandomClassificationDataset()), optimizers=opt, max_duration='2ba', ) trainer.fit()
composer-dev
tests/test_docker.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from unittest.mock import MagicMock import pytest from torch.utils.data import DataLoader from composer.core import Callback, State from composer.loggers import Logger from composer.trainer import Trainer from tests.common import SimpleModel from tests.common.datasets import RandomClassificationDataset class MetricsCallback(Callback): def __init__(self, compute_val_metrics: bool) -> None: self.compute_val_metrics = compute_val_metrics self._train_batch_end_train_accuracy = None def init(self, state: State, logger: Logger) -> None: # on init, the current metrics should be empty del logger # unused assert state.train_metrics == {}, 'no train metrics should be defined on init()' assert state.eval_metrics == {}, 'no eval metrics should be defined on init()' def batch_end(self, state: State, logger: Logger) -> None: # The metric should be computed and updated on state every batch. del logger # unused # assuming that at least one sample was correctly classified assert state.train_metrics['MulticlassAccuracy'].compute() != 0.0 self._train_batch_end_train_accuracy = state.train_metrics['MulticlassAccuracy'] def epoch_end(self, state: State, logger: Logger) -> None: # The metric at epoch end should be the same as on batch end. del logger # unused assert state.train_metrics['MulticlassAccuracy'].compute() == self._train_batch_end_train_accuracy def eval_end(self, state: State, logger: Logger) -> None: if self.compute_val_metrics: # assuming that at least one sample was correctly classified assert state.eval_metrics['eval']['MulticlassAccuracy'].compute() != 0.0 @pytest.mark.parametrize('eval_interval', ['1ba', '1ep', '0ep']) def test_current_metrics(eval_interval: str,): # Configure the trainer mock_logger_destination = MagicMock() mock_logger_destination.log_metrics = MagicMock() model = SimpleModel(num_features=1, num_classes=2) compute_val_metrics = eval_interval != '0ep' train_subset_num_batches = 2 eval_subset_num_batches = 2 num_epochs = 2 metrics_callback = MetricsCallback(compute_val_metrics=compute_val_metrics,) dataset_kwargs = { 'num_classes': 2, 'shape': (1, 5, 5), } # Create the trainer trainer = Trainer( model=model, train_dataloader=DataLoader( RandomClassificationDataset(**dataset_kwargs), batch_size=16, ), eval_dataloader=DataLoader( RandomClassificationDataset(**dataset_kwargs), batch_size=8, ), max_duration=num_epochs, train_subset_num_batches=train_subset_num_batches, eval_subset_num_batches=eval_subset_num_batches, loggers=[mock_logger_destination], callbacks=[metrics_callback], eval_interval=eval_interval, ) # Train the model trainer.fit() if not compute_val_metrics: return # Validate the metrics assert trainer.state.train_metrics['MulticlassAccuracy'].compute() != 0.0 if compute_val_metrics: assert trainer.state.eval_metrics['eval']['MulticlassAccuracy'].compute() != 0.0 else: assert 'eval' not in trainer.state.eval_metrics num_step_and_index_calls = 2 # global_step and batch_idx calls num_loss_calls_per_epoch = 1 # Validate that the logger was called the correct number of times for metric calls num_expected_calls = 0 # Every epoch is logged. num_expected_calls += num_epochs num_expected_calls += num_epochs * train_subset_num_batches * num_step_and_index_calls num_expected_calls += num_epochs * train_subset_num_batches * num_loss_calls_per_epoch # computed once per batch # and again at epoch end num_expected_calls += (train_subset_num_batches + 1) * num_epochs # computed at eval end if compute_val_metrics: num_evals = 0 if eval_interval == '1ba': num_evals += train_subset_num_batches * num_epochs if eval_interval == '1ep': num_evals += num_epochs num_expected_calls += num_evals num_actual_calls = len(mock_logger_destination.log_metrics.mock_calls) assert num_actual_calls == num_expected_calls
composer-dev
tests/metrics/test_current_metrics.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from tests.metrics.metric_setter_callback import MetricSetterCallback __all__ = ['MetricSetterCallback']
composer-dev
tests/metrics/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch import torch.nn.functional as F from composer.metrics import MIoU @pytest.fixture def block_2D_targets(): base = torch.arange(4) targets = [] for i in range(4): targets.append(torch.roll(base, i).repeat_interleave(2).view(2, 4).repeat_interleave(2, dim=0)) targets = torch.stack(targets) return targets def test_miou(block_2D_targets): miou = MIoU(num_classes=4) # Test if predictions identical to target equal 1.0 # TODO: convert to prediction to one-hot accurate_prediction = F.one_hot(block_2D_targets, num_classes=4).permute(0, 3, 1, 2) miou.update(accurate_prediction, block_2D_targets) assert miou.compute() == 100. miou.reset() # Test if completely incorrect predictions equal 0.0 inaccurate_prediction = torch.flip(accurate_prediction, dims=(0,)) miou.update(inaccurate_prediction, block_2D_targets) assert miou.compute() == 0.0 miou.reset() # Test if halfway correct predictions is close to 33.3333 accurateish_prediction = torch.roll(accurate_prediction, shifts=1, dims=2) miou.update(accurateish_prediction, block_2D_targets) assert torch.isclose(miou.compute(), torch.tensor(33.3333, dtype=torch.double)) miou.reset() # Test if all zeros prediction is equal to 6.25 all_zeros = torch.zeros(4, 1, 4, 4) miou.update(all_zeros, block_2D_targets) assert miou.compute() == 6.25 miou.reset() # Test if only one correct sample is equal to 100 * (1/7) one_accurate_prediction = inaccurate_prediction.clone() one_accurate_prediction[0] = accurate_prediction[0] miou.update(one_accurate_prediction, block_2D_targets) assert torch.isclose(miou.compute(), torch.tensor(100 / 7, dtype=torch.double))
composer-dev
tests/metrics/test_miou.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import math import pytest import torch from torch.nn.functional import cross_entropy from composer.metrics.nlp import (BinaryF1Score, HFCrossEntropy, InContextLearningLMAccuracy, InContextLearningMultipleChoiceAccuracy, InContextLearningQAAccuracy, LanguageCrossEntropy, LanguagePerplexity, MaskedAccuracy, Perplexity) @pytest.mark.parametrize('ignore_index', [-100]) @pytest.mark.parametrize('num_classes', [2, 3, 4, 5]) def test_masked_accuracy(ignore_index, num_classes): """Sanity check to make sure that masked accuracy has reasonable performance. Generates random targets and labels, and then ensures that the random targets and labels must hit at-chance accuracy. Args: batch_size (int): how many samples are in each batch ignore_index (Optional[int]): if present, the class index to ignore in accuracy calculations. num_classes (int): the number of classes in the classification task """ batch_size = int(1e4) torchmetrics_masked_acc = MaskedAccuracy(ignore_index=ignore_index) # we're only testing binary accuracy -- expected accuracy should be 50% generated_preds = torch.rand((batch_size, num_classes)) true_labels = torch.randint(low=0, high=num_classes - 1, size=(batch_size,)) if ignore_index is not None: labels_mask = torch.rand((batch_size,)) labels_mask[labels_mask > 0.8] = 1 labels_mask[labels_mask <= 0.8] = 0 labels_mask = labels_mask.bool() true_labels[labels_mask] = ignore_index true_labels = true_labels.float() generated_preds = generated_preds.float() torchmetrics_masked_acc.update(generated_preds, true_labels) final_acc = torchmetrics_masked_acc.compute() assert abs(final_acc - (1.0 / num_classes)) < 0.02 @pytest.mark.parametrize('ignore_index', [-100]) @pytest.mark.parametrize('batch_size', [1e2, 1e3]) @pytest.mark.parametrize('sequence_length', [128]) @pytest.mark.parametrize('num_classes', [2, 10]) @pytest.mark.parametrize('minibatch_size', [56, 256, 768]) def test_cross_entropy(batch_size: float, ignore_index: int, sequence_length: int, num_classes: int, minibatch_size: int): """Sanity check to make sure that batched CrossEntropyLoss matches the expected performance. Generates a predicted distribution from a normal distribution, and a ground truth from a normal distribution. Verifies Cross Entropy Loss against the baseline performance. Args: batch_size (int): how many samples are in each batch ignore_index (Optional[int]): if present, the class index to ignore in accuracy calculations. sequence_length (int): the length of the generated sequence num_classes (int): the number of classes in the classification task minibatch_size (int): the minibatch size to simulate for model predictions """ batch_size = int(batch_size) generated_preds = torch.randn((batch_size, sequence_length, num_classes)) generated_true = torch.randint(low=0, high=num_classes, size=(batch_size, sequence_length)) torchmetrics_xent = LanguageCrossEntropy(dist_sync_on_step=False, ignore_index=ignore_index) ce_with_keys_metric = LanguageCrossEntropy(dist_sync_on_step=False, ignore_index=ignore_index) if ignore_index is not None: labels_mask = torch.rand((batch_size, sequence_length)) labels_mask[labels_mask > 0.8] = 1 labels_mask[labels_mask <= 0.8] = 0 labels_mask = labels_mask.bool() generated_true[labels_mask] = ignore_index num_batches = math.ceil(batch_size / minibatch_size) for batch_idx in range(num_batches): begin_idx = (batch_idx * minibatch_size) end_idx = ((batch_idx + 1) * minibatch_size) preds_subset = generated_preds[begin_idx:end_idx] true_subset = generated_true[begin_idx:end_idx] torchmetrics_xent.update(preds_subset, true_subset) ce_with_keys_metric.update( { 'logits': preds_subset.view(-1, num_classes), 'loss': cross_entropy(preds_subset.view(-1, num_classes), true_subset.view(-1)) }, true_subset.view(-1)) torchmetrics_loss = torchmetrics_xent.compute() ce_with_keys_loss = ce_with_keys_metric.compute() correct_loss = cross_entropy(generated_preds.view(-1, num_classes), generated_true.view(-1)) assert torchmetrics_loss == ce_with_keys_loss assert torch.isclose(correct_loss, torchmetrics_loss) @pytest.mark.parametrize('batch_size', [1e2, 1e3, 1e4]) @pytest.mark.parametrize('minibatch_size', [256, 768]) def test_binary_f1(batch_size, minibatch_size): """Sanity check to make sure that BinaryF1 TorchMetrics implementation matches the sklearn implementation. Generates a predicted set of labels, and a random set, and compares the resultant Binary F1 score. Args: batch_size (int): how many samples are in each batch minibatch_size (int): the minibatch size to simulate for model predictions """ pytest.importorskip('sklearn', reason='sklearn is an optional dependency') from sklearn.metrics import f1_score batch_size = int(batch_size) generated_preds = torch.randn(size=(batch_size, 2)) generated_true = torch.randint(low=0, high=2, size=(batch_size,)) binary_f1 = BinaryF1Score() num_batches = math.ceil(batch_size / minibatch_size) for batch_idx in range(num_batches): begin_idx = (batch_idx * minibatch_size) end_idx = ((batch_idx + 1) * minibatch_size) preds_subset = generated_preds[begin_idx:end_idx] true_subset = generated_true[begin_idx:end_idx] binary_f1.update(preds_subset, true_subset) torchmetrics_f1 = binary_f1.compute() generated_preds = torch.argmax(generated_preds, dim=1) correct_f1 = f1_score(y_true=generated_true, y_pred=generated_preds) assert correct_f1 == torchmetrics_f1 def test_hf_cross_entropy_equivalence(): batch_size = 1024 sequence_length = 64 num_classes = 10 ignore_index = -100 minibatch_size = 128 generated_preds = torch.randn((batch_size, sequence_length, num_classes)) generated_true = torch.randint(low=0, high=num_classes, size=(batch_size, sequence_length)) ce_with_keys_metric = HFCrossEntropy(dist_sync_on_step=False) ce_direct_loss_metric = HFCrossEntropy(dist_sync_on_step=False) ce_tensors_metric = HFCrossEntropy(dist_sync_on_step=False) labels_mask = torch.rand((batch_size, sequence_length)) labels_mask[labels_mask > 0.8] = 1 labels_mask[labels_mask <= 0.8] = 0 labels_mask = labels_mask.bool() generated_true[labels_mask] = ignore_index num_batches = math.ceil(batch_size / minibatch_size) for batch_idx in range(num_batches): begin_idx = (batch_idx * minibatch_size) end_idx = ((batch_idx + 1) * minibatch_size) preds_subset = generated_preds[begin_idx:end_idx] true_subset = generated_true[begin_idx:end_idx] ce_tensors_metric.update(preds_subset.view(-1, num_classes), true_subset.view(-1)) ce_with_keys_metric.update({'logits': preds_subset.view(-1, num_classes)}, true_subset.view(-1)) ce_direct_loss_metric.update({'loss': cross_entropy(preds_subset.view(-1, num_classes), true_subset.view(-1))}, true_subset) ce_tensors = ce_tensors_metric.compute() ce_with_keys = ce_with_keys_metric.compute() ce_direct_loss = ce_direct_loss_metric.compute() correct_loss = cross_entropy(generated_preds.view(-1, num_classes), generated_true.view(-1)) assert ce_tensors == ce_with_keys assert ce_tensors == ce_direct_loss assert all(torch.isclose(metric, correct_loss) for metric in [ce_tensors, ce_with_keys, ce_direct_loss]) def test_hf_perplexity(): batch_size = 1024 sequence_length = 64 num_classes = 10 ignore_index = -100 minibatch_size = 128 generated_preds = torch.randn((batch_size, sequence_length, num_classes)) generated_true = torch.randint(low=0, high=num_classes, size=(batch_size, sequence_length)) ce_metric = HFCrossEntropy(dist_sync_on_step=False) perplexity_metric = Perplexity(dist_sync_on_step=False) labels_mask = torch.rand((batch_size, sequence_length)) labels_mask[labels_mask > 0.8] = 1 labels_mask[labels_mask <= 0.8] = 0 labels_mask = labels_mask.bool() generated_true[labels_mask] = ignore_index num_batches = math.ceil(batch_size / minibatch_size) for batch_idx in range(num_batches): begin_idx = (batch_idx * minibatch_size) end_idx = ((batch_idx + 1) * minibatch_size) preds_subset = generated_preds[begin_idx:end_idx] true_subset = generated_true[begin_idx:end_idx] ce_metric.update(preds_subset.view(-1, num_classes), true_subset.view(-1)) perplexity_metric.update(preds_subset.view(-1, num_classes), true_subset.view(-1)) ce = ce_metric.compute() perplexity = perplexity_metric.compute() assert torch.equal(torch.exp(ce), perplexity) def test_language_perplexity(): batch_size = 1024 sequence_length = 64 num_classes = 10 ignore_index = -100 minibatch_size = 128 generated_preds = torch.randn((batch_size, sequence_length, num_classes)) generated_true = torch.randint(low=0, high=num_classes, size=(batch_size, sequence_length)) ce_metric = LanguageCrossEntropy(dist_sync_on_step=False) perplexity_metric = LanguagePerplexity(dist_sync_on_step=False) labels_mask = torch.rand((batch_size, sequence_length)) labels_mask[labels_mask > 0.8] = 1 labels_mask[labels_mask <= 0.8] = 0 labels_mask = labels_mask.bool() generated_true[labels_mask] = ignore_index num_batches = math.ceil(batch_size / minibatch_size) for batch_idx in range(num_batches): begin_idx = (batch_idx * minibatch_size) end_idx = ((batch_idx + 1) * minibatch_size) preds_subset = generated_preds[begin_idx:end_idx] true_subset = generated_true[begin_idx:end_idx] ce_metric.update(preds_subset, true_subset) perplexity_metric.update(preds_subset, true_subset) ce = ce_metric.compute() perplexity = perplexity_metric.compute() assert torch.equal(torch.exp(ce), perplexity) def test_in_context_learning_lm_accuracy(tiny_gpt2_tokenizer): contexts = ['The dog is', 'I love to eat', 'I hate', 'The weather is'] continuations = [' furry', ' pie', ' long lines', ' snowy'] pad = tiny_gpt2_tokenizer.pad_token_id inputs = [ tiny_gpt2_tokenizer(context)['input_ids'] + tiny_gpt2_tokenizer(continuation)['input_ids'] for context, continuation in zip(contexts, continuations) ] inputs = torch.tensor([input + [pad] * (2048 - len(input)) for input in inputs]) cont_idxs = [] for context, continuation in zip(contexts, continuations): start = len(tiny_gpt2_tokenizer(context)['input_ids']) end = start + len(tiny_gpt2_tokenizer(continuation)['input_ids']) cont_idxs.append(torch.tensor(list(range(start, end)))) batch = {'continuation_indices': cont_idxs, 'labels': inputs, 'input_ids': inputs} logits = torch.nn.functional.one_hot(inputs, num_classes=pad + 1) logits[2] = logits[1].clone() # make one of the answers incorrect metric = InContextLearningLMAccuracy() metric.update(batch, logits, batch['labels']) assert metric.compute() == 0.75 def test_in_context_learning_qa_accuracy(): outputs = ['Correct but then some more text', 'Incorrect', ' the CORREct with weird casing and spacing'] labels = [['Correct'], ['blah', 'blah2'], ['blah', 'correct']] metric = InContextLearningQAAccuracy() metric.update(outputs, labels) assert metric.compute() == (2 / 3) def test_in_context_learning_mc_accuracy(tiny_gpt2_tokenizer): contexts = [ 'Q: How do you cook a cake?', 'Q: How do you cook a cake?', 'Q: How old is the earth?', 'Q: How old is the earth?' ] continuations = [' A: turn on the oven', ' A: do a backflip', ' A: 2 minutes', ' A: 4.5 billion years'] gold_indices = [0, 1] choice_groupings = [(0, 2), (2, 4)] pad = tiny_gpt2_tokenizer.pad_token_id inputs = [ tiny_gpt2_tokenizer(context)['input_ids'] + tiny_gpt2_tokenizer(continuation)['input_ids'] for context, continuation in zip(contexts, continuations) ] inputs = torch.tensor([input + [pad] * (2048 - len(input)) for input in inputs]) cont_idxs = [] for context, continuation in zip(contexts, continuations): start = len(tiny_gpt2_tokenizer(context)['input_ids']) end = start + len(tiny_gpt2_tokenizer(continuation)['input_ids']) cont_idxs.append(torch.tensor(list(range(start, end)))) batch = { 'continuation_indices': cont_idxs, 'labels': inputs, 'input_ids': inputs, 'gold_indices': gold_indices, 'choice_groupings': choice_groupings } logits = torch.nn.functional.one_hot(inputs, num_classes=pad + 1).float() # for the first two, the correct answer is continuation 0 # make the answer correct by making continuation 0 more likely for both answers start, end = cont_idxs[1].tolist()[0], cont_idxs[1].tolist()[-1] logits[1][start:end] = logits[0][start:end].clone() # for the last two, the correct answer is continuation 3 # make the answer incorrect by making continuation 2 more likely for both answers start, end = cont_idxs[3].tolist()[0], cont_idxs[3].tolist()[-1] logits[3][start:end] = logits[2][start:end].clone() metric = InContextLearningMultipleChoiceAccuracy() metric.update(batch, logits, batch['labels']) assert metric.compute() == 0.5
composer-dev
tests/metrics/test_nlp_metrics.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Callable, Dict, Optional, Sequence, Tuple import torch from composer.core import Callback, State, TimeUnit from composer.devices import Device from composer.loggers import Logger class MetricSetterCallback(Callback): def __init__( self, monitor: str, dataloader_label: str, metric_cls: Callable, # metric function metric_sequence: Sequence, unit: TimeUnit, device: Optional[Device] = None, metric_args: Optional[Dict] = None): self.monitor = monitor self.dataloader_label = dataloader_label self.metric_cls = metric_cls self.metric_sequence = metric_sequence self.unit = unit self.device = device self.metric_args = metric_args if self.metric_args is None: self.metric_args = {} def _generate_dummy_metric_inputs(self, target_val) -> Tuple[torch.Tensor, torch.Tensor]: """Generate fake set of predictions and target values to satisfy the given target accuracy value.""" # predictions is a tensor with a ratio of target_val 1s to sub_target 0s preds_ones = torch.ones(int(target_val * 10), dtype=torch.uint8) sub_target = float('{0:.2f}'.format((1 - target_val) * 10)) preds_zeros = torch.zeros(int(sub_target), dtype=torch.uint8) preds = torch.cat((preds_ones, preds_zeros)) # targets is a tensor full of ones targets = torch.ones(10, dtype=torch.uint8) return (preds, targets) def _update_metrics(self, state: State): idx = min(len(self.metric_sequence) - 1, state.timestamp.get(self.unit).value) metric_val = self.metric_sequence[idx] if self.dataloader_label == 'train': state.train_metrics = state.train_metrics if state.train_metrics else {} else: state.eval_metrics[self.dataloader_label] = state.eval_metrics.get(self.dataloader_label, dict()) metric_tensor = torch.tensor(metric_val) if self.device is not None: self.device.tensor_to_device(metric_tensor) raw_metric = self.metric_cls(**self.metric_args) # type: ignore preds, targets = self._generate_dummy_metric_inputs(metric_val) raw_metric.update(preds=preds, target=targets) # assert for pyright error: "module_to_device" is not a known member of "None" assert self.device is not None self.device.module_to_device(raw_metric) if self.dataloader_label == 'train': state.train_metrics[self.monitor] = raw_metric else: state.eval_metrics[self.dataloader_label][self.monitor] = raw_metric def eval_end(self, state: State, logger: Logger) -> None: if self.dataloader_label == state.dataloader_label: self._update_metrics(state) def epoch_end(self, state: State, logger: Logger) -> None: if self.dataloader_label == state.dataloader_label: self._update_metrics(state) def batch_end(self, state: State, logger: Logger) -> None: if self.unit == TimeUnit.BATCH and self.dataloader_label == state.dataloader_label: self._update_metrics(state)
composer-dev
tests/metrics/metric_setter_callback.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import csv from pathlib import Path from unittest.mock import MagicMock import pytest import yaml from torch.utils.data import DataLoader from composer.loggers import MLFlowLogger from composer.trainer import Trainer from tests.common.datasets import RandomImageDataset from tests.common.models import SimpleConvModel def test_mlflow_experiment_set_up_correctly(tmp_path): mlflow = pytest.importorskip('mlflow') mlflow_uri = tmp_path / Path('my-test-mlflow-uri') mlflow_exp_name = 'my-test-mlflow-exp' mlflow_run_name = 'my-test-mlflow-run' test_mlflow_logger = MLFlowLogger(experiment_name=mlflow_exp_name, run_name=mlflow_run_name, tracking_uri=mlflow_uri) mock_state = MagicMock() mock_state.run_name = 'dummy-run-name' # this run name should be unused. mock_logger = MagicMock() test_mlflow_logger.init(state=mock_state, logger=mock_logger) run_info = mlflow.active_run().info run_id = run_info.run_id experiment_id = run_info.experiment_id # Check uri set correctly. assert mlflow_uri.exists() # Check experiment name set correctly. exp_cfg_file_path = mlflow_uri / Path(experiment_id) / Path('meta.yaml') exp_cfg = yaml.safe_load(open(str(exp_cfg_file_path), 'r')) expected_exp_name = mlflow_exp_name actual_exp_name = exp_cfg['name'] assert actual_exp_name == expected_exp_name # Check run_name set correctly. run_cfg_file_path = mlflow_uri / Path(experiment_id) / Path(run_id) / Path('meta.yaml') run_cfg = yaml.safe_load(open(str(run_cfg_file_path), 'r')) expected_run_name = mlflow_run_name actual_run_name = run_cfg['run_name'] assert actual_run_name == expected_run_name # Check run ended. test_mlflow_logger.post_close() assert mlflow.active_run() is None # Check new run can be created. del test_mlflow_logger test_mlflow_logger = MLFlowLogger(experiment_name=mlflow_exp_name, run_name=mlflow_run_name + '_new') test_mlflow_logger.init(state=mock_state, logger=mock_logger) test_mlflow_logger.post_close() def test_mlflow_logging_works(tmp_path): mlflow = pytest.importorskip('mlflow') mlflow_uri = tmp_path / Path('my-test-mlflow-uri') test_mlflow_logger = MLFlowLogger(tracking_uri=mlflow_uri) dataset_size = 64 batch_size = 4 num_batches = 4 eval_interval = '1ba' trainer = Trainer(model=SimpleConvModel(), loggers=test_mlflow_logger, train_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), eval_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), max_duration=f'{num_batches}ba', eval_interval=eval_interval) trainer.fit() run_info = mlflow.active_run().info run_id = run_info.run_id experiment_id = run_info.experiment_id run_file_path = mlflow_uri / Path(experiment_id) / Path(run_id) # Test metrics logged. for metric_name in [ 'metrics/train/MulticlassAccuracy', 'metrics/eval/MulticlassAccuracy', 'metrics/eval/CrossEntropy', 'loss/train/total' ]: metric_file = run_file_path / Path('metrics') / Path(metric_name) with open(metric_file) as f: csv_reader = csv.reader(f, delimiter=' ') lines = [line for line in csv_reader] assert len(lines) == num_batches # Test params logged. param_path = run_file_path / Path('params') actual_params_list = [param_filepath.stem for param_filepath in param_path.iterdir()] expected_params_list = ['num_cpus_per_node', 'node_name', 'num_nodes', 'rank_zero_seed'] assert set(expected_params_list) == set(actual_params_list)
composer-dev
tests/loggers/test_mlflow_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from unittest.mock import MagicMock import pytest import torch.utils.data from _pytest.monkeypatch import MonkeyPatch from tqdm import auto from composer.core.time import Time, TimeUnit from composer.loggers import ProgressBarLogger from composer.trainer.trainer import Trainer from composer.utils import dist from tests.common import RandomClassificationDataset, SimpleModel @pytest.mark.parametrize('world_size', [ pytest.param(1), pytest.param(2, marks=pytest.mark.world_size(2)), ]) @pytest.mark.parametrize( 'max_duration', [Time.from_timestring('2ep'), Time.from_timestring('100sp'), Time.from_timestring('5ba')], ) def test_progress_bar_logger(max_duration: Time[int], monkeypatch: MonkeyPatch, world_size: int): mock_tqdms_train = [] mock_tqdms_eval = [] def get_mock_tqdm(bar_format: str, *args: object, **kwargs: object): del args, kwargs # unused mock_tqdm = MagicMock() mock_tqdm.n = 0 # store for testing later if 'train' in bar_format: mock_tqdms_train.append(mock_tqdm) if 'eval' in bar_format: mock_tqdms_eval.append(mock_tqdm) return mock_tqdm model = SimpleModel() monkeypatch.setattr(auto, 'tqdm', get_mock_tqdm) eval_interval = 1 eval_subset_num_batches = 2 batch_size = 10 train_dataset = RandomClassificationDataset() eval_dataset = RandomClassificationDataset() trainer = Trainer( model=model, max_duration=max_duration, eval_interval=eval_interval, progress_bar=True, train_dataloader=torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, sampler=dist.get_sampler(train_dataset), ), eval_dataloader=torch.utils.data.DataLoader( eval_dataset, batch_size=batch_size, sampler=dist.get_sampler(train_dataset), ), eval_subset_num_batches=eval_subset_num_batches, ) trainer.fit() if dist.get_local_rank() != 0: return # either have #epoch pbars, or only have 1 train pbar if max_duration.unit == TimeUnit.EPOCH: assert len(mock_tqdms_train) == max_duration.value else: assert len(mock_tqdms_train) == 1 # test train pbar if max_duration.unit == TimeUnit.EPOCH: for mt in mock_tqdms_train: assert trainer.state.dataloader_len is not None assert mt.update.call_count == int(trainer.state.dataloader_len) elif max_duration.unit == TimeUnit.BATCH: for mt in mock_tqdms_train: assert mt.update.call_count == max_duration.value elif max_duration.unit == TimeUnit.SAMPLE: for mt in mock_tqdms_train: assert mt.update.call_count == max_duration.value // batch_size / world_size # test eval pbar for mt in mock_tqdms_eval: assert mt.update.call_count == eval_subset_num_batches def test_progress_bar_warning(): with pytest.warns(Warning): Trainer(model=SimpleModel(), loggers=ProgressBarLogger())
composer-dev
tests/loggers/test_progress_bar_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import math import re from pathlib import Path import pytest from torch.utils.data import DataLoader from torchmetrics import MetricCollection from composer.callbacks import SpeedMonitor from composer.core import Evaluator from composer.loggers import ConsoleLogger from composer.loggers.console_logger import NUM_EVAL_LOGGING_EVENTS from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel @pytest.fixture def console_logger_test_file_path(tmp_path) -> str: return str(Path(tmp_path) / Path('console_test')) @pytest.fixture def console_logger_test_stream(console_logger_test_file_path): return open(console_logger_test_file_path, 'w') @pytest.mark.filterwarnings('ignore:Cannot split tensor of length .* into batches of size .*:UserWarning') @pytest.mark.parametrize('log_interval_unit', ['ba', 'ep']) @pytest.mark.parametrize('max_duration_unit', ['ba', 'ep']) @pytest.mark.parametrize('log_interval', [1, 2, 3]) @pytest.mark.parametrize('max_duration', [8, 9, 10, 11]) def test_console_logger_interval(console_logger_test_stream, console_logger_test_file_path, log_interval, max_duration, log_interval_unit, max_duration_unit): batch_size = 4 dataset_size = 17 batches_per_epoch = math.ceil(dataset_size / batch_size) model = SimpleModel() trainer = Trainer( model=model, console_stream=console_logger_test_stream, console_log_interval=f'{log_interval}{log_interval_unit}', log_to_console=True, progress_bar=False, train_dataloader=DataLoader(RandomClassificationDataset(size=dataset_size), batch_size=batch_size), max_duration=f'{max_duration}{max_duration_unit}', ) trainer.fit() console_logger_test_stream.flush() console_logger_test_stream.close() with open(console_logger_test_file_path, 'r') as f: lines = f.readlines() # Make a regular expression for matches for any line that contains "Train" followed by # a colon. reg_exp = re.compile('Train *:*') actual_num_log_lines = sum( [1 if bool(reg_exp.search(line)) and ('trainer/' not in line and 'epoch' not in line) else 0 for line in lines]) assert model.train_metrics is not None num_metrics = len(list(model.train_metrics.keys())) if isinstance(model.train_metrics, MetricCollection) else 1 num_losses = 1 num_metrics_and_losses_per_logging_event = num_metrics + num_losses if log_interval_unit == max_duration_unit: expected_num_logging_events = max_duration // log_interval elif log_interval_unit == 'ba' and max_duration_unit == 'ep': expected_num_logging_events = (batches_per_epoch * max_duration) // log_interval else: # for the case where log_interval_unit == 'ep' and max_duration == 'ba'. total_epochs = max_duration // batches_per_epoch expected_num_logging_events = total_epochs // log_interval if log_interval != 1: expected_num_logging_events += 1 # Because we automatically log the first batch or epoch. expected_num_lines = expected_num_logging_events * num_metrics_and_losses_per_logging_event assert actual_num_log_lines == expected_num_lines @pytest.mark.parametrize('eval_interval_unit', ['ba', 'ep']) @pytest.mark.parametrize('max_duration_unit', ['ba', 'ep']) @pytest.mark.parametrize('eval_interval', [2, 3]) @pytest.mark.parametrize('max_duration', [8, 9]) @pytest.mark.parametrize('pass_in_fit', [True, False]) def test_console_logger_fit( console_logger_test_stream, console_logger_test_file_path, eval_interval, max_duration, eval_interval_unit, max_duration_unit, pass_in_fit, ): batch_size = 4 dataset_size = 16 eval_batch_size = 2 eval_dataset_size = 24 batches_per_epoch = math.ceil(dataset_size / batch_size) model = SimpleModel() trainer = Trainer( model=model, console_stream=console_logger_test_stream, eval_interval=f'{eval_interval}{eval_interval_unit}', log_to_console=True, progress_bar=False, train_dataloader=DataLoader(RandomClassificationDataset(size=dataset_size), batch_size=batch_size), eval_dataloader=DataLoader(RandomClassificationDataset(size=eval_dataset_size), batch_size=eval_batch_size), max_duration=f'{max_duration}{max_duration_unit}', ) if pass_in_fit: eval_dataloader = DataLoader(RandomClassificationDataset(size=eval_dataset_size), batch_size=eval_batch_size) trainer.fit( eval_dataloader=eval_dataloader, reset_time=True, eval_interval=f'{eval_interval}{eval_interval_unit}', ) else: trainer.fit() console_logger_test_stream.flush() console_logger_test_stream.close() with open(console_logger_test_file_path, 'r') as f: lines = f.readlines() # Make a regular expression for matches for any line that contains "Eval" followed by # a colon. eval_reg_exp = re.compile('Eval *:*') actual_num_eval_log_lines = sum([1 if bool(eval_reg_exp.search(line)) else 0 for line in lines]) assert model.val_metrics is not None num_eval_metrics_per_event = len(list(model.val_metrics.keys())) if isinstance(model.val_metrics, MetricCollection) else 1 num_eval_losses = 0 num_eval_metrics_and_losses_per_logging_event = num_eval_metrics_per_event + num_eval_losses if eval_interval_unit == max_duration_unit: expected_num_eval_logging_events, remainder = divmod(max_duration, eval_interval) elif eval_interval_unit == 'ba' and max_duration_unit == 'ep': expected_num_eval_logging_events, remainder = divmod((batches_per_epoch * max_duration), eval_interval) else: # for the case where eval_interval_unit == 'ep' and max_duration == 'ba'. batches_per_logging_event = batches_per_epoch * eval_interval expected_num_eval_logging_events, remainder = divmod(max_duration, batches_per_logging_event) num_progress_events_due_to_eval_interval = NUM_EVAL_LOGGING_EVENTS num_eval_progress_lines_per_eval_event = num_progress_events_due_to_eval_interval # An eval logging event always happens at fit_end, so if one would not normally fall at # last batch or epoch, then add an extra event to the expected. if remainder: expected_num_eval_logging_events += 1 expected_num_eval_lines = expected_num_eval_logging_events * (num_eval_metrics_and_losses_per_logging_event + num_eval_progress_lines_per_eval_event) assert actual_num_eval_log_lines == expected_num_eval_lines @pytest.mark.parametrize('eval_interval_unit', ['ba', 'ep']) @pytest.mark.parametrize('max_duration_unit', ['ba', 'ep']) @pytest.mark.parametrize('eval_interval', [2, 3]) @pytest.mark.parametrize('max_duration', [8, 9]) def test_console_logger_eval( console_logger_test_stream, console_logger_test_file_path, eval_interval, max_duration, eval_interval_unit, max_duration_unit, ): batch_size = 4 dataset_size = 16 eval_batch_size = 2 eval_dataset_size = 24 batches_per_epoch = math.ceil(dataset_size / batch_size) model = SimpleModel() trainer = Trainer( model=model, console_stream=console_logger_test_stream, eval_interval=f'{eval_interval}{eval_interval_unit}', log_to_console=True, progress_bar=False, train_dataloader=DataLoader(RandomClassificationDataset(size=dataset_size), batch_size=batch_size), eval_dataloader=DataLoader(RandomClassificationDataset(size=eval_dataset_size), batch_size=eval_batch_size), max_duration=f'{max_duration}{max_duration_unit}', ) trainer.eval(eval_dataloader=Evaluator(label='trainer.eval_dataloader', dataloader=DataLoader(RandomClassificationDataset(size=eval_dataset_size), batch_size=eval_batch_size)),) console_logger_test_stream.flush() console_logger_test_stream.close() with open(console_logger_test_file_path, 'r') as f: lines = f.readlines() # Make a regular expression for matches for any line that contains "Eval" followed by # a colon. eval_reg_exp = re.compile('Eval *:*') actual_num_eval_log_lines = sum([1 if bool(eval_reg_exp.search(line)) else 0 for line in lines]) assert model.val_metrics is not None num_eval_metrics_per_event = len(list(model.val_metrics.keys())) if isinstance(model.val_metrics, MetricCollection) else 1 if eval_interval_unit == max_duration_unit: expected_num_eval_logging_events, remainder = divmod(max_duration, eval_interval) elif eval_interval_unit == 'ba' and max_duration_unit == 'ep': expected_num_eval_logging_events, remainder = divmod((batches_per_epoch * max_duration), eval_interval) else: # for the case where eval_interval_unit == 'ep' and max_duration == 'ba'. batches_per_logging_event = batches_per_epoch * eval_interval expected_num_eval_logging_events, remainder = divmod(max_duration, batches_per_logging_event) num_progress_events_due_to_eval_interval = NUM_EVAL_LOGGING_EVENTS num_eval_progress_lines_per_eval_event = num_progress_events_due_to_eval_interval # An eval logging event always happens at fit_end, so if one would not normally fall at # last batch or epoch, then add an extra event to the expected. if remainder: expected_num_eval_logging_events += 1 expected_num_eval_logging_events_for_trainer_eval_call = 1 expected_num_eval_lines = expected_num_eval_logging_events_for_trainer_eval_call * ( num_eval_progress_lines_per_eval_event + num_eval_metrics_per_event) assert actual_num_eval_log_lines == expected_num_eval_lines def test_log_to_console_and_progress_bar_warning(): with pytest.warns(Warning): Trainer(model=SimpleModel(), log_to_console=True, progress_bar=True) with pytest.warns(Warning): Trainer(model=SimpleModel(), loggers=ConsoleLogger()) @pytest.mark.parametrize('log_interval_unit', ['ba', 'ep']) @pytest.mark.parametrize('max_duration_unit', ['ba', 'ep']) @pytest.mark.parametrize('log_interval', [1]) @pytest.mark.parametrize('max_duration', [8]) def test_console_logger_with_a_callback(console_logger_test_stream, console_logger_test_file_path, log_interval, max_duration, log_interval_unit, max_duration_unit): batch_size = 4 dataset_size = 16 batches_per_epoch = math.ceil(dataset_size / batch_size) model = SimpleModel() trainer = Trainer(model=model, console_stream=console_logger_test_stream, console_log_interval=f'{log_interval}{log_interval_unit}', log_to_console=True, progress_bar=False, callbacks=SpeedMonitor(), train_dataloader=DataLoader(RandomClassificationDataset(size=dataset_size), batch_size=batch_size), max_duration=f'{max_duration}{max_duration_unit}') trainer.fit() console_logger_test_stream.flush() console_logger_test_stream.close() if log_interval_unit == max_duration_unit: expected_num_logging_events = max_duration // log_interval elif log_interval_unit == 'ba' and max_duration_unit == 'ep': expected_num_logging_events = (batches_per_epoch * max_duration) // log_interval else: # for the case where log_interval_unit == 'ep' and max_duration == 'ba'. total_epochs = max_duration // batches_per_epoch expected_num_logging_events = total_epochs // log_interval if log_interval != 1: expected_num_logging_events += 1 # Because we automatically log the first batch or epoch. with open(console_logger_test_file_path, 'r') as f: lines = f.readlines() # Make a regular expression for matches for any line that contains "wall_clock" followed by # a slash. wallclock_reg_exp = re.compile('Train wall_clock*') actual_num_wallclock_lines = sum([1 if bool(wallclock_reg_exp.search(line)) else 0 for line in lines]) num_wallclock_lines_per_log_event = 3 expected_wallclock_lines = num_wallclock_lines_per_log_event * expected_num_logging_events assert actual_num_wallclock_lines == expected_wallclock_lines
composer-dev
tests/loggers/test_console_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import imghdr import os import zipfile from collections import defaultdict from json import JSONDecoder from pathlib import Path from typing import Sequence import pytest import torch from torch.utils.data import DataLoader from composer.loggers import CometMLLogger from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel @pytest.fixture def comet_offline_directory(tmp_path): return str(tmp_path / Path('my_cometml_runs')) @pytest.fixture def comet_logger(monkeypatch, comet_offline_directory): comet_ml = pytest.importorskip('comet_ml', reason='comet_ml is optional') monkeypatch.setattr(comet_ml, 'Experiment', comet_ml.OfflineExperiment) from composer.loggers import CometMLLogger # Set offline directory. os.environ['COMET_OFFLINE_DIRECTORY'] = comet_offline_directory comet_logger = CometMLLogger() return comet_logger def test_comet_ml_log_image_saves_images(comet_logger: CometMLLogger, comet_offline_directory: str): assert isinstance(comet_offline_directory, str) # We group all the image size variants into one test because calling comet_experiment.end() is slow image_variants = [ (torch.rand(4), False), # 1D image (torch.rand(4, 4), False), # 2D image (torch.rand(4, 4, 3), True), # with channels, channels last (torch.rand(3, 4, 4), False), # with channels, not channels last (torch.rand(2, 4, 4, 3), True), # multiple images in tensor ([torch.rand(4, 4, 3), torch.rand(4, 4, 3)], True) # multiple images in list ] expected_num_images_total = 0 for (images, channels_last) in image_variants: # Count expected images and generate numpy arrays from torch tensors. if isinstance(images, Sequence): expected_num_images = len(images) np_images = [image.numpy() for image in images] else: expected_num_images = 1 if images.ndim < 4 else images.shape[0] np_images = images.numpy() # Log images from torch tensors and numpy arrays. comet_logger.log_images(images, channels_last=channels_last) comet_logger.log_images(np_images, channels_last=channels_last) expected_num_images *= 2 # One set of torch tensors, one set of numpy arrays expected_num_images_total += expected_num_images comet_logger.post_close() # Extract all files saved to comet offline directory. assert comet_logger.experiment is not None comet_exp_dump_filepath = str(Path(comet_offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) zf.extractall(comet_offline_directory) # Count the number of files that are images. actual_num_images = 0 for filename in Path(comet_offline_directory).iterdir(): file_path = str(Path(comet_offline_directory) / Path(filename)) if imghdr.what(file_path) == 'png': actual_num_images += 1 assert actual_num_images == expected_num_images_total def test_comet_ml_log_image_saves_images_with_masks(comet_logger: CometMLLogger, comet_offline_directory: str): assert isinstance(comet_offline_directory, str) # We group all the image size variants into one test because calling comet_experiment.end() is slow image_variants = [ # channels last # single image, single mask (torch.rand(4, 4, 3), { 'pred': torch.randint(0, 10, (4, 4)) }, True), # multiple images, masks in tensor (torch.rand(2, 4, 4, 3), { 'pred': torch.randint(0, 10, (2, 4, 4)) }, True), # multiple images, masks in last (torch.rand(2, 4, 4, 3), { 'pred': 2 * [torch.randint(0, 10, (4, 4))] }, True), # multiple images, multiple masks (torch.rand(2, 4, 4, 3), { 'pred': torch.randint(0, 10, (2, 4, 4)), 'pred2': torch.randint(0, 10, (2, 4, 4)) }, True), # not channels last # single image, single mask (torch.rand(3, 4, 4), { 'pred': torch.randint(0, 10, (4, 4)) }, False), # multiple images, masks in tensor (torch.rand(2, 3, 4, 4), { 'pred': torch.randint(0, 10, (2, 4, 4)) }, False) ] expected_num_masks_and_images_total = 0 for (images, masks, channels_last) in image_variants: # Count expected images and generate numpy arrays from torch tensors. num_masks = len(masks.keys()) num_images = images.shape[0] if images.ndim == 4 else 1 num_additional_images_per_mask = 2 # Mask overlaid on image + mask by itself. expected_num_masks = num_images * num_additional_images_per_mask * num_masks expected_num_masks_and_images = num_images + expected_num_masks expected_num_masks_and_images_total += expected_num_masks_and_images # Log images from torch tensors and numpy arrays. comet_logger.log_images(images, masks=masks, channels_last=channels_last) comet_logger.post_close() # Extract all files saved to comet offline directory. assert comet_logger.experiment is not None comet_exp_dump_filepath = str(Path(comet_offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) zf.extractall(comet_offline_directory) # Count the number of files that are images. actual_num_images = 0 for filename in Path(comet_offline_directory).iterdir(): file_path = str(Path(comet_offline_directory) / Path(filename)) if imghdr.what(file_path) == 'png': actual_num_images += 1 assert actual_num_images == expected_num_masks_and_images_total def test_comet_ml_logging_train_loop(monkeypatch, tmp_path): comet_ml = pytest.importorskip('comet_ml', reason='comet_ml is optional') monkeypatch.setattr(comet_ml, 'Experiment', comet_ml.OfflineExperiment) from composer.loggers import CometMLLogger # Set offline directory. offline_directory = str(tmp_path / Path('.my_cometml_runs')) os.environ['COMET_OFFLINE_DIRECTORY'] = offline_directory comet_logger = CometMLLogger() trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset()), train_subset_num_batches=2, max_duration='2ep', loggers=comet_logger, ) trainer.fit() run_name = trainer.state.run_name del trainer assert comet_logger.experiment is not None assert comet_logger.experiment.ended # Open, decompress, decode, and extract offline dump of metrics. comet_exp_dump_filepath = str(Path(offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) comet_logs_path = zf.extract('messages.json', path=offline_directory) jd = JSONDecoder() msg_type_to_msgs = defaultdict(list) with open(comet_logs_path) as f: for line in f.readlines(): parsed_line = jd.decode(line) msg_type_to_msgs[parsed_line['type']].append(parsed_line['payload']) # Check that init set the run name assert comet_logger.name == run_name assert comet_logger.experiment.name == run_name # Check that basic metrics appear in the comet logs assert len([ metric_msg for metric_msg in msg_type_to_msgs['metric_msg'] if metric_msg['metric']['metricName'] == 'trainer/epoch' ]) == 2 # Check that basic params appear in the comet logs assert len([ param_msg for param_msg in msg_type_to_msgs['parameter_msg'] if param_msg['param']['paramName'] == 'rank_zero_seed' ]) > 0 def test_comet_ml_log_metrics_and_hyperparameters(monkeypatch, tmp_path): """Check metrics logged with CometMLLogger are properly written to offline dump.""" pytest.importorskip('comet_ml', reason='comet_ml is optional') import comet_ml # Set some dummy log values. steps = [0, 1, 2] metric_values = [0.1, 0.4, 0.7] metric_name = 'my_test_metric' param_names = ['my_cool_parameter1', 'my_cool_parameter2'] param_values = [10, 3] # Set offline directory. offline_directory = str(tmp_path / Path('.my_cometml_runs')) os.environ['COMET_OFFLINE_DIRECTORY'] = offline_directory # Monkeypatch Experiment with OfflineExperiment to avoid uploading to CometML and # avoid needing an API+KEY. monkeypatch.setattr(comet_ml, 'Experiment', comet_ml.OfflineExperiment) from composer.loggers import CometMLLogger # Log dummy values with CometMLLogger. comet_logger = CometMLLogger() comet_logger.log_hyperparameters(dict(zip(param_names, param_values))) for step, metric_value in zip(steps, metric_values): comet_logger.log_metrics({'my_test_metric': metric_value}, step=step) # Simulate the post_close call to end the CometML experiment comet_logger.post_close() assert comet_logger.experiment is not None # Check that calling post_close ended the comet experiment assert comet_logger.experiment.ended # Open, decompress, decode, and extract offline dump of metrics. comet_exp_dump_filepath = str(Path(offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) comet_logs_path = zf.extract('messages.json', path=offline_directory) jd = JSONDecoder() created_from_found = False expected_created_from_log = {'key': 'Created from', 'val': 'mosaicml-composer'} metric_msgs = [] param_msgs = [] with open(comet_logs_path) as f: for line in f.readlines(): comet_msg = jd.decode(line) if comet_msg['type'] == 'ws_msg' and comet_msg['payload'].get('log_other', {}) == expected_created_from_log: created_from_found = True if (comet_msg['type'] == 'metric_msg') and (comet_msg['payload']['metric']['metricName'] == 'my_test_metric'): metric_msgs.append(comet_msg['payload']['metric']) if comet_msg['type'] == 'parameter_msg' and ( comet_msg['payload']['param']['paramName'].startswith('my_cool')): param_msgs.append(comet_msg['payload']['param']) # Check that the "Created from key was properly set" assert created_from_found # Assert dummy metrics input to log_metrics are the same as # those written to offline dump. assert [msg['metricValue'] for msg in metric_msgs] == metric_values assert [msg['step'] for msg in metric_msgs] == steps assert all([msg['metricName'] == metric_name for msg in metric_msgs]) # Assert dummy params input to log_hyperparameters are the same as # those written to offline dump assert [msg['paramValue'] for msg in param_msgs] == param_values assert [msg['paramName'] for msg in param_msgs] == param_names
composer-dev
tests/loggers/test_cometml_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/loggers/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import contextlib import multiprocessing import os import pathlib import random import shutil import time from typing import Any, Callable, Dict, Optional, Union from unittest.mock import patch import pytest from composer.core import Event, State from composer.loggers import Logger, RemoteUploaderDownloader from composer.utils.object_store.object_store import ObjectStore class DummyObjectStore(ObjectStore): """Dummy ObjectStore implementation that is backed by a local directory.""" def __init__(self, dir: Optional[pathlib.Path] = None, always_fail: bool = False, **kwargs: Dict[str, Any]) -> None: self.dir = str(dir) if dir is not None else kwargs['bucket'] self.always_fail = always_fail assert isinstance(self.dir, str) os.makedirs(self.dir, exist_ok=True) def get_uri(self, object_name: str) -> str: return 'local://' + object_name def _get_abs_path(self, object_name: str): assert isinstance(self.dir, str) return os.path.abspath(self.dir + '/' + object_name) def upload_object( self, object_name: str, filename: Union[str, pathlib.Path], callback: Optional[Callable[[int, int], None]] = None, ) -> None: if self.always_fail and object_name != '.credentials_validated_successfully': raise RuntimeError('Crash because you set always_fail to true!') time.sleep(random.random() * 0.5) # random sleep to simulate random network latency shutil.copy2(filename, self._get_abs_path(object_name)) def download_object(self, object_name: str, filename: Union[str, pathlib.Path], overwrite: bool = False, callback: Optional[Callable[[int, int], None]] = None) -> None: if self.always_fail: raise RuntimeError('Crash because you set always_fail to true!') if not overwrite and os.path.exists(filename): raise FileExistsError return shutil.copy2(self._get_abs_path(object_name), filename) def get_object_size(self, object_name: str) -> int: size = os.stat(self._get_abs_path(object_name)).st_size return size def object_store_test_helper( tmp_path: pathlib.Path, dummy_state: State, use_procs: bool = False, overwrite: bool = True, overwrite_delay: bool = False, event_to_test: Event = Event.BATCH_END, ): remote_dir = str(tmp_path / 'object_store') os.makedirs(remote_dir, exist_ok=True) # Patching does not work when using multiprocessing with spawn, so we also # patch to use fork fork_context = multiprocessing.get_context('fork') with patch('composer.loggers.remote_uploader_downloader.S3ObjectStore', DummyObjectStore): with patch('composer.loggers.remote_uploader_downloader.multiprocessing.get_context', lambda _: fork_context): remote_uploader_downloader = RemoteUploaderDownloader( bucket_uri='s3://{remote_dir}', backend_kwargs={ 'dir': remote_dir, }, num_concurrent_uploads=1, use_procs=use_procs, upload_staging_folder=str(tmp_path / 'staging_folder'), num_attempts=1, ) logger = Logger(dummy_state, destinations=[remote_uploader_downloader]) remote_file_name = 'remote_file_name' remote_uploader_downloader.run_event(Event.INIT, dummy_state, logger) file_path = os.path.join(tmp_path, f'file') with open(file_path, 'w+') as f: f.write('1') logger.upload_file(remote_file_name, file_path, overwrite=overwrite) file_path_2 = os.path.join(tmp_path, f'file_2') with open(file_path_2, 'w+') as f: f.write('2') post_close_ctx = contextlib.nullcontext() if not overwrite: # If not `overwrite_delay`, then the `logger.upload_file` will raise a FileExistsException, because the upload will not even be enqueued # Otherwise, with a sufficient will be uploaded, and cleared from the queue, causing a runtime error to be raised on Event.BATCH_END or Event.EPOCH_END # A 2 second sleep should be enough here -- the DummyObjectStore will block for at most 0.5 seconds, and the RemoteUploaderDownloader polls every 0.1 seconds if overwrite_delay: post_close_ctx = pytest.warns( RuntimeWarning, match= r'The following objects may not have been uploaded, likely due to a worker crash: remote_file_name' ) # Wait for the first upload to go through time.sleep(2) # Do the second upload -- it should enqueue logger.upload_file(remote_file_name, file_path_2, overwrite=overwrite) # Give it some time to finish the second upload # (Since the upload is really a file copy, it should be fast) time.sleep(2) # Then, crashes are detected on the next batch end, but # should be a FileExistsError not a runtime error because the parent will raise # the fatal exception that the worker throws. with pytest.raises( FileExistsError, match= f'Object local://{remote_file_name} already exists, but allow_overwrite was set to False.'): remote_uploader_downloader.run_event(event_to_test, dummy_state, logger) else: # Otherwise, if no delay, it should error when being enqueued with pytest.raises( FileExistsError, match=f'Object {remote_file_name} was already enqueued to be uploaded, but overwrite=False.' ): logger.upload_file(remote_file_name, file_path_2, overwrite=overwrite) remote_uploader_downloader.close(dummy_state, logger) with post_close_ctx: remote_uploader_downloader.post_close() # verify upload uri for file is correct upload_uri = remote_uploader_downloader.get_uri_for_file(remote_file_name) expected_upload_uri = f'local://{remote_file_name}' assert upload_uri == expected_upload_uri # Test downloading file download_path = os.path.join(tmp_path, 'download') remote_uploader_downloader.download_file(remote_file_name, download_path) with open(download_path, 'r') as f: assert f.read() == '1' if not overwrite else '2' # now assert that we have a dummy file in the remote folder remote_file = os.path.join(str(remote_dir), remote_file_name) # Verify file contains the correct value with open(remote_file, 'r') as f: assert f.read() == '1' if not overwrite else '2' def test_remote_uploader_downloader(tmp_path: pathlib.Path, dummy_state: State): object_store_test_helper(tmp_path=tmp_path, dummy_state=dummy_state, use_procs=False) def test_remote_uploader_downloader_use_procs(tmp_path: pathlib.Path, dummy_state: State): object_store_test_helper(tmp_path=tmp_path, dummy_state=dummy_state, use_procs=True) @pytest.mark.filterwarnings(r'ignore:((.|\n)*)FileExistsError((.|\n)*):pytest.PytestUnhandledThreadExceptionWarning') @pytest.mark.parametrize('overwrite_delay', [True, False]) @pytest.mark.parametrize('event_to_test', [Event.BATCH_END, Event.EPOCH_END]) def test_remote_uploader_downloader_no_overwrite(tmp_path: pathlib.Path, dummy_state: State, overwrite_delay: bool, event_to_test: Event): if not overwrite_delay and event_to_test == Event.EPOCH_END: pytest.skip('event_to_test does not affect the overwrite_delay=False part of the test') object_store_test_helper(tmp_path=tmp_path, dummy_state=dummy_state, overwrite=False, overwrite_delay=overwrite_delay, event_to_test=event_to_test) @pytest.mark.parametrize('use_procs', [True, False]) def test_race_with_overwrite(tmp_path: pathlib.Path, use_procs: bool, dummy_state: State): # Test a race condition with the object store logger where multiple files with the same name are logged in rapid succession # The latest version should be the one that is uploaded # Setup: Prep files num_files = 10 os.makedirs(tmp_path / 'samples') for i in range(num_files): with open(tmp_path / 'samples' / f'sample_{i}', 'w+') as f: f.write(str(i)) # Patching does not work when using multiprocessing with spawn, so we also # patch to use fork fork_context = multiprocessing.get_context('fork') with patch('composer.loggers.remote_uploader_downloader.S3ObjectStore', DummyObjectStore): with patch('composer.loggers.remote_uploader_downloader.multiprocessing.get_context', lambda _: fork_context): # Create the object store logger remote_uploader_downloader = RemoteUploaderDownloader( bucket_uri=f"s3://{tmp_path}/'object_store_backend", backend_kwargs={ 'dir': tmp_path / 'object_store_backend', }, num_concurrent_uploads=4, use_procs=use_procs, upload_staging_folder=str(tmp_path / 'staging_folder'), num_attempts=1, ) logger = Logger(dummy_state, destinations=[remote_uploader_downloader]) remote_uploader_downloader.run_event(Event.INIT, dummy_state, logger) # Queue the files for upload in rapid succession to the same remote_file_name remote_file_name = 'remote_file_name' for i in range(num_files): file_path = tmp_path / 'samples' / f'sample_{i}' remote_uploader_downloader.upload_file(dummy_state, remote_file_name, file_path, overwrite=True) # Shutdown the logger. This should wait until all objects are uploaded remote_uploader_downloader.close(dummy_state, logger=logger) remote_uploader_downloader.post_close() # Assert that the file called "remote_file_name" has the content of the last file uploaded file -- i.e. `num_files` - 1 destination = tmp_path / 'downloaded_file' remote_uploader_downloader.download_file(remote_file_name, str(destination), overwrite=False, progress_bar=False) with open(destination, 'r') as f: assert f.read() == str(num_files - 1) @pytest.mark.filterwarnings(r'ignore:Exception in thread:pytest.PytestUnhandledThreadExceptionWarning') def test_close_on_failure(tmp_path: pathlib.Path, dummy_state: State): """Test that .close() and .post_close() does not hang even when a worker crashes.""" with patch('composer.loggers.remote_uploader_downloader.S3ObjectStore', DummyObjectStore): # Create the object store logger remote_uploader_downloader = RemoteUploaderDownloader( bucket_uri=f"s3://{tmp_path}/'object_store_backend", backend_kwargs={ 'dir': tmp_path / 'object_store_backend', 'always_fail': True, }, num_concurrent_uploads=1, use_procs=False, upload_staging_folder=str(tmp_path / 'staging_folder'), num_attempts=1, ) # Enqueue a file. Because `always_fail` is True, it will cause the worker to crash tmpfile_path = tmp_path / 'dummy_file' with open(tmpfile_path, 'w+') as f: f.write('hi') logger = Logger(dummy_state, destinations=[remote_uploader_downloader]) remote_uploader_downloader.run_event(Event.INIT, dummy_state, logger) logger.upload_file('dummy_remote_file_name', tmpfile_path) # Wait enough time for the file to be enqueued time.sleep(0.5) # Assert that the worker crashed with pytest.raises(RuntimeError): remote_uploader_downloader.run_event(Event.EPOCH_END, dummy_state, logger) # Enqueue the file again to ensure that the buffers are dirty logger.upload_file('dummy_remote_file_name', tmpfile_path) # Shutdown the logger. This should not hang or cause any exception remote_uploader_downloader.close(dummy_state, logger=logger) with pytest.warns( RuntimeWarning, match= r'The following objects may not have been uploaded, likely due to a worker crash: dummy_remote_file_name' ): remote_uploader_downloader.post_close() def test_valid_backend_names(): valid_backend_names = ['s3', 'libcloud', 'sftp'] with patch('composer.loggers.remote_uploader_downloader.S3ObjectStore') as _, \ patch('composer.loggers.remote_uploader_downloader.SFTPObjectStore') as _, \ patch('composer.loggers.remote_uploader_downloader.LibcloudObjectStore') as _: for name in valid_backend_names: remote_uploader_downloader = RemoteUploaderDownloader(bucket_uri=f'{name}://not-a-real-bucket') # Access the remote_backend property so that it is built _ = remote_uploader_downloader.remote_backend with pytest.raises(ValueError): remote_uploader_downloader = RemoteUploaderDownloader(bucket_uri='magicloud://not-a-real-bucket') # Access the remote_backend property so that it is built _ = remote_uploader_downloader.remote_backend # We put this filter here because when the worker raises an exception, pytest throws a warning which fails the test. @pytest.mark.filterwarnings(r'ignore:Exception in thread:pytest.PytestUnhandledThreadExceptionWarning') def test_exception_queue_works(tmp_path: pathlib.Path, dummy_state: State): """Test that exceptions get put on the exception queue and get thrown""" with patch('composer.loggers.remote_uploader_downloader.S3ObjectStore', DummyObjectStore): # Create the object store logger remote_uploader_downloader = RemoteUploaderDownloader( bucket_uri=f"s3://{tmp_path}/'object_store_backend", backend_kwargs={ 'dir': tmp_path / 'object_store_backend', 'always_fail': True, }, num_concurrent_uploads=1, use_procs=False, upload_staging_folder=str(tmp_path / 'staging_folder'), num_attempts=1, ) # Enqueue a file. Because `always_fail` is True, it will cause the worker to crash tmpfile_path = tmp_path / 'dummy_file' with open(tmpfile_path, 'w+') as f: f.write('hi') logger = Logger(dummy_state, destinations=[remote_uploader_downloader]) remote_uploader_downloader.run_event(Event.INIT, dummy_state, logger) logger.upload_file('dummy_remote_file_name', tmpfile_path) # Wait enough time for the file to be enqueued and the exception to be enqueued time.sleep(2.0) # Make sure the exception got enqueued. assert not remote_uploader_downloader._exception_queue.empty() # Assert that the worker crashed with the worker's error not the general # 'Upload worker crashed. Please check the logs.' error. with pytest.raises(RuntimeError, match='Crash because you set*'): remote_uploader_downloader.run_event(Event.EPOCH_END, dummy_state, logger)
composer-dev
tests/loggers/test_remote_uploader_downloader.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import contextlib import imghdr import json import os import pathlib import pickle import uuid from pathlib import Path from typing import Sequence, Type import pytest import torch from torch.utils.data import DataLoader from composer.core import Engine, Event from composer.core.callback import Callback from composer.core.state import State from composer.loggers import InMemoryLogger from composer.loggers.logger import Logger from composer.loggers.wandb_logger import WandBLogger from composer.trainer import Trainer from composer.utils import dist, retry from tests.callbacks.callback_settings import get_cb_kwargs, get_cbs_and_marks from tests.common import RandomClassificationDataset, SimpleModel from tests.common.datasets import RandomImageDataset from tests.common.models import SimpleConvModel @pytest.fixture def test_wandb_logger(tmp_path, dummy_state): pytest.importorskip('wandb', reason='wandb is optional') os.environ['WANDB_DIR'] = str(tmp_path) os.environ['WANDB_MODE'] = 'offline' dummy_state.run_name = 'wandb-test-log-image' logger = Logger(dummy_state, []) wandb_logger = WandBLogger() wandb_logger.init(dummy_state, logger) return wandb_logger def test_wandb_log_image(test_wandb_logger): pytest.importorskip('wandb', reason='wandb is optional') # We group all the image size variants into one test because calling wandb.init() is slow image_variants = [ (torch.rand(4, 4), False), # 2D image (torch.rand(2, 3, 4, 4), False), # multiple images, not channels last (torch.rand(3, 4, 4), False), # with channels, not channels last ([torch.rand(4, 4, 3)], True), # with channels, channels last (torch.rand(2, 4, 4, 3), True), # multiple images, channels last ([torch.rand(4, 4, 3), torch.rand(4, 4, 3)], True) # multiple images in list ] expected_num_images_total = 0 for (images, channels_last) in image_variants: if isinstance(images, Sequence): expected_num_images = len(images) np_images = [image.numpy() for image in images] else: expected_num_images = 1 if images.ndim < 4 else images.shape[0] np_images = images.numpy() test_wandb_logger.log_images(images=images, channels_last=channels_last) test_wandb_logger.log_images(images=np_images, channels_last=channels_last) expected_num_images *= 2 # One set of torch tensors, one set of numpy arrays expected_num_images_total += expected_num_images test_wandb_logger.post_close() img_dir = str(Path(test_wandb_logger.run_dir) / Path('media/images')) imgs = [filename for filename in os.listdir(img_dir) if imghdr.what(img_dir + '/' + filename) == 'png'] actual_num_images = len(imgs) assert actual_num_images == expected_num_images_total @pytest.mark.parametrize( 'images,channels_last', [ (torch.rand(32), False), (torch.rand(32, 0), False), # Has zero in dimension. (torch.rand(4, 4, 8, 32, 32), False), # > 4 dim. ([torch.rand(4, 32, 32, 3)], True), ]) # sequence > 3 dim. def test_wandb_ml_log_image_errors_out(test_wandb_logger, images, channels_last): pytest.importorskip('wandb', reason='wandb is optional') with pytest.raises(ValueError): test_wandb_logger.log_images(images, channels_last=channels_last) def test_wandb_log_image_with_masks(test_wandb_logger): pytest.importorskip('wandb', reason='wandb is optional') # We group all the image size variants into one test because calling comet_experiment.end() is slow image_variants = [ # single image, single mask, channels last (torch.randint(0, 256, (4, 4, 3)), { 'pred': torch.randint(0, 10, (4, 4)) }, True), # multiple images, single mask, channels last (torch.rand(2, 4, 4, 3), { 'pred': torch.randint(0, 10, (2, 4, 4)) }, True), # multiple images, multiple masks, channels last (torch.rand(2, 4, 4, 3), { 'pred': torch.randint(0, 10, (2, 4, 4)), 'pred2': torch.randint(0, 10, (2, 4, 4)) }, True), # single image, single mask, not channels last (torch.randint(0, 256, (3, 4, 4)), { 'pred': torch.randint(0, 10, (4, 4)) }, False), # multiple images, single mask, not channels last (torch.rand(2, 3, 4, 4), { 'pred': torch.randint(0, 10, (2, 4, 4)) }, False), # multiple images, multiple masks, not channels last (torch.rand(2, 3, 4, 4), { 'pred': torch.randint(0, 10, (2, 4, 4)), 'pred2': torch.randint(0, 10, (2, 4, 4)) }, False) ] expected_num_masks_total = 0 expected_num_images_total = 0 for (images, masks, channels_last) in image_variants: num_masks = len(masks.keys()) expected_num_images = 1 if images.ndim < 4 else images.shape[0] expected_num_masks = num_masks * expected_num_images test_wandb_logger.log_images(images=images, masks=masks, channels_last=channels_last) expected_num_images_total += expected_num_images expected_num_masks_total += expected_num_masks test_wandb_logger.post_close() img_dir = str(Path(test_wandb_logger.run_dir) / Path('media/images')) imgs = [ filename for filename in os.listdir(img_dir) if not os.path.isdir(img_dir + '/' + filename) and imghdr.what(img_dir + '/' + filename) == 'png' ] actual_num_images = len(imgs) assert actual_num_images == expected_num_images_total mask_dir = str(Path(test_wandb_logger.run_dir) / Path('media/images/mask')) masks = [filename for filename in os.listdir(mask_dir) if imghdr.what(mask_dir + '/' + filename) == 'png'] actual_num_masks = len(masks) assert actual_num_masks == expected_num_masks_total @pytest.mark.parametrize('images,masks', [(torch.randint(0, 256, (32, 32, 3)), { 'pred': torch.randint(0, 10, (32, 32)) })]) def test_wandb_log_image_with_masks_and_table(images, masks, test_wandb_logger): wandb = pytest.importorskip('wandb', reason='wandb is optional') expected_num_images = 1 if images.ndim < 4 else images.shape[0] assert wandb.run is not None wandb_run_dir = Path(wandb.run.dir) test_wandb_logger.log_images(images=images, masks=masks, channels_last=True, use_table=True) test_wandb_logger.post_close() wandb_media_dir = wandb_run_dir.parent / Path('files') / Path('media') / Path('table') image_table_files = wandb_media_dir.glob('./*.json') image_count = 0 for image_table_file in image_table_files: table_columns = json.load(open(image_table_file.absolute()))['data'] num_images = sum([1 for column in table_columns if column[0] == 'Image']) image_count += num_images assert image_count == expected_num_images def test_wandb_log_metrics(test_wandb_logger): wandb = pytest.importorskip('wandb', reason='wandb is optional') dataset_size = 40 batch_size = 4 trainer = Trainer(model=SimpleConvModel(), loggers=test_wandb_logger, train_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), eval_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), max_duration='1ep') trainer.fit() wandb_run_dir = Path(wandb.run.dir) run_file = wandb_run_dir.parent / Path(f'run-{wandb.run.id}.wandb') # delete trainer to force WandBLogger to clean up in post_close del trainer # Note, it is not clear how to correctly load this file, so we are just loading it as text # and searching the text for expected strings with open(run_file, encoding='latin-1') as _wandb_file: all_run_text = _wandb_file.read() train_metrics_accuracy_count = all_run_text.count('metrics/train/MulticlassAccuracy') eval_metrics_accuracy_count = all_run_text.count('metrics/eval/MulticlassAccuracy') eval_metrics_cross_entropy_count = all_run_text.count('metrics/eval/CrossEntropy') train_loss_count = all_run_text.count('loss/train/total') expected_number_train_loss_count = (dataset_size / batch_size) + 1 # wandb includes it in the file one extra time expected_number_train_metrics_count = (dataset_size / batch_size) + 2 # wandb includes it in the file two extra times expected_number_eval_metrics_count = 2 # wandb includes it in the file twice assert train_metrics_accuracy_count == expected_number_train_metrics_count assert train_loss_count == expected_number_train_loss_count assert eval_metrics_accuracy_count == expected_number_eval_metrics_count assert eval_metrics_cross_entropy_count == expected_number_eval_metrics_count @pytest.mark.parametrize('callback_cls', get_cbs_and_marks(callbacks=True)) def test_logged_data_is_json_serializable(callback_cls: Type[Callback]): """Test that all logged data is json serializable, which is a requirement to use wandb.""" pytest.importorskip('wandb', reason='wandb is optional') from wandb.sdk.data_types.base_types.wb_value import WBValue callback_kwargs = get_cb_kwargs(callback_cls) callback = callback_cls(**callback_kwargs) logger = InMemoryLogger() # using an in memory logger to manually validate json serializability trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset()), train_subset_num_batches=2, max_duration='1ep', callbacks=callback, loggers=logger, ) trainer.fit() for log_calls in logger.data.values(): for timestamp, data in log_calls: del timestamp # unused # manually filter out custom W&B data types and tensors, which are allowed, but cannot be json serialized if isinstance(data, (WBValue, torch.Tensor)): continue json.dumps(data) def test_wandb_is_pickleable_when_disabled(dummy_state: State): pytest.importorskip('wandb', reason='wandb is optional') original_wandb_mode = os.environ.get('WANDB_MODE', None) os.environ['WANDB_MODE'] = 'disabled' wandb_logger = WandBLogger() # Need to initialize WandbLogger before calling .state_dict() dummy_state.callbacks.append(wandb_logger) logger = Logger(dummy_state, [wandb_logger]) engine = Engine(dummy_state, logger) engine.run_event(Event.INIT) # Just make sure this doesn't crash due to wandb.sdk.lib.disabled.RunDisabled not being pickleable pickle.loads(pickle.dumps(wandb_logger.state_dict())) # reset wandb mode if original_wandb_mode is None: del os.environ['WANDB_MODE'] else: os.environ['WANDB_MODE'] = original_wandb_mode @pytest.mark.world_size(2) @pytest.mark.parametrize('rank_zero_only', [True, False]) @pytest.mark.skip('This test needs to be refactored to use a Mock API interface.') def test_wandb_artifacts(rank_zero_only: bool, tmp_path: pathlib.Path, dummy_state: State): """Test that wandb artifacts logged on rank zero are accessible by all ranks.""" pytest.importorskip('wandb', reason='wandb is optional') # Create the logger ctx = pytest.warns( UserWarning, match='`rank_zero_only` should be set to False.') if rank_zero_only else contextlib.nullcontext() with ctx: wandb_logger = WandBLogger( rank_zero_only=rank_zero_only, log_artifacts=True, ) dummy_state.callbacks.append(wandb_logger) logger = Logger(dummy_state, [wandb_logger]) engine = Engine(dummy_state, logger) engine.run_event(Event.INIT) # Distribute the artifact name from rank 0 to all ranks wandb_artifact_name = 'test-wandb-artifact-' + str(uuid.uuid4()) wandb_artifact_name_list = [wandb_artifact_name] dist.broadcast_object_list(wandb_artifact_name_list) wandb_artifact_name = wandb_artifact_name_list[0] if dist.get_global_rank() == 0: # Create a dummy artifact dummy_wandb_artifact_path = tmp_path / 'wandb_artifact.txt' with open(dummy_wandb_artifact_path, 'w+') as f: f.write('hello!') # Log a wandb artifact if rank zero logger.upload_file( file_path=dummy_wandb_artifact_path, remote_file_name=wandb_artifact_name, ) # Wait for rank 0 queue the file upload dist.barrier() # Attempt to retrieve the artifact on all ranks downloaded_wandb_artifact_path = tmp_path / 'downloaded_wandb_artifact' @retry(FileNotFoundError, num_attempts=6) # 6 attempts is ~2^(6-1) seconds max wait def _validate_wandb_artifact(): wandb_logger.download_file(wandb_artifact_name, str(downloaded_wandb_artifact_path)) with open(downloaded_wandb_artifact_path, 'r') as f: assert f.read() == 'hello!' _validate_wandb_artifact()
composer-dev
tests/loggers/test_wandb_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pathlib from composer.core.state import State from composer.loggers import Logger, LoggerDestination def test_logger_file_upload(dummy_state: State): file_logged = False class DummyLoggerDestination(LoggerDestination): def upload_file(self, state: State, remote_file_name: str, file_path: pathlib.Path, *, overwrite: bool): nonlocal file_logged file_logged = True assert remote_file_name == 'foo' assert file_path.name == 'bar' assert overwrite logger = Logger(state=dummy_state, destinations=[DummyLoggerDestination()]) logger.upload_file( remote_file_name='foo', file_path='bar', overwrite=True, ) assert file_logged
composer-dev
tests/loggers/test_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import numpy as np from composer.core import State, Time, Timestamp from composer.loggers import InMemoryLogger, Logger def test_in_memory_logger(dummy_state: State): in_memory_logger = InMemoryLogger() logger = Logger(dummy_state, destinations=[in_memory_logger]) in_memory_logger.init(dummy_state, logger) logger.log_metrics({'epoch': 2.2}) dummy_state.timestamp = dummy_state.timestamp.to_next_batch(samples=1, tokens=1) logger.log_metrics({'epoch': 3.3}) # no batch events should be logged, since the level is epoch assert len(in_memory_logger.data['epoch']) == 2 # `in_memory_logger.data` should contain everything timestamp, data = in_memory_logger.data['epoch'][0] assert timestamp.batch == 0 assert data == 2.2 timestamp, data = in_memory_logger.data['epoch'][1] assert timestamp.batch == 1 assert data == 3.3 # the most recent values should have just the last call to epoch assert in_memory_logger.most_recent_values['epoch'] == 3.3 assert in_memory_logger.most_recent_timestamps['epoch'].batch == 1 def test_in_memory_logger_get_timeseries(minimal_state: State, empty_logger: Logger): in_memory_logger = InMemoryLogger() state = minimal_state logger = empty_logger in_memory_logger.init(state, logger) data = {'accuracy/val': [], 'batch': [], 'batch_in_epoch': []} for i in range(10): batch = i batch_in_epoch = i % 3 timestamp = Timestamp( epoch=Time(0, 'ep'), batch=Time(batch, 'ba'), batch_in_epoch=Time(batch_in_epoch, 'ba'), sample=Time(0, 'sp'), sample_in_epoch=Time(0, 'sp'), token=Time(0, 'tok'), token_in_epoch=Time(0, 'tok'), ) assert in_memory_logger.state is not None in_memory_logger.state.timestamp = timestamp datapoint = i / 3 in_memory_logger.log_metrics({'accuracy/val': datapoint}, step=state.timestamp.batch.value) data['accuracy/val'].append(datapoint) data['batch'].append(batch) data['batch_in_epoch'].append(batch_in_epoch) timeseries = in_memory_logger.get_timeseries('accuracy/val') for k, v in data.items(): assert np.all(timeseries[k] == np.array(v))
composer-dev
tests/loggers/test_in_memory_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os import pathlib import sys from torch.utils.data import DataLoader from composer import Callback, Event, State, Trainer from composer.loggers import FileLogger, Logger, LoggerDestination from composer.utils.collect_env import disable_env_report from tests.common.datasets import RandomClassificationDataset from tests.common.models import SimpleModel class FileUploaderTracker(LoggerDestination): def __init__(self) -> None: self.uploaded_files = [] def upload_file(self, state: State, remote_file_name: str, file_path: pathlib.Path, *, overwrite: bool): del state, overwrite # unused self.uploaded_files.append((remote_file_name, file_path)) def test_file_logger(dummy_state: State, tmp_path: pathlib.Path): log_file_name = os.path.join(tmp_path, 'output.log') log_destination = FileLogger( filename=log_file_name, remote_file_name='{run_name}/rank{rank}.log', buffer_size=1, flush_interval=1, ) file_tracker_destination = FileUploaderTracker() logger = Logger(dummy_state, destinations=[log_destination, file_tracker_destination]) log_destination.run_event(Event.INIT, dummy_state, logger) logger.log_hyperparameters({'foo': 3}) logger.log_metrics({'loss': 2}, step=1) log_destination.run_event(Event.BATCH_END, dummy_state, logger) log_destination.close(dummy_state, logger) with open(log_file_name, 'r') as f: assert f.readlines() == [ '[hyperparameter]: foo: 3 \n', '[metric][batch=1]: loss: 2 \n', ] def test_file_logger_capture_stdout_stderr(dummy_state: State, tmp_path: pathlib.Path): log_file_name = os.path.join(tmp_path, 'output.log') log_destination = FileLogger(filename=log_file_name, buffer_size=1, flush_interval=1, capture_stderr=True, capture_stdout=True) # capturing should start immediately print('Hello, stdout!\nExtra Line') print('Hello, stderr!\nExtra Line2', file=sys.stderr) logger = Logger(dummy_state, destinations=[log_destination]) log_destination.run_event(Event.INIT, dummy_state, logger) log_destination.run_event(Event.EPOCH_START, dummy_state, logger) log_destination.run_event(Event.BATCH_START, dummy_state, logger) log_destination.run_event(Event.BATCH_END, dummy_state, logger) log_destination.close(dummy_state, logger) with open(log_file_name, 'r') as f: assert f.readlines() == [ '[stdout]: Hello, stdout!\n', '[stdout]: Extra Line\n', '[stderr]: Hello, stderr!\n', '[stderr]: Extra Line2\n', ] class ExceptionRaisingCallback(Callback): def fit_start(self, state: State, logger: Logger) -> None: del state, logger # unused raise RuntimeError('My Exception!') def test_exceptions_are_printed(tmp_path: pathlib.Path): # Test that exceptions are printed to stderr, which is captured by the file logger # The file logger stops capturing stdout/stderr when it is closed # Here, we construct a trainer that raises an exception on Event.FIT_START # and assert that the exception is written to the logfile exception_raising_callback = ExceptionRaisingCallback() logfile_name = str(tmp_path / 'logfile.txt') file_logger = FileLogger(filename=logfile_name, capture_stderr=True) dataloader = DataLoader(RandomClassificationDataset()) model = SimpleModel() trainer = Trainer(model=model, train_dataloader=dataloader, max_duration=1, callbacks=[exception_raising_callback], loggers=[file_logger]) disable_env_report() # Printing the full report in this test can cause timeouts # manually calling `sys.excepthook` for the exception, as it is impossible to write a test # that validates unhandled exceptions are logged, since the test validation code would by definition # need to handle the exception! try: trainer.fit() except RuntimeError: exc_type, exc_value, tb = sys.exc_info() assert exc_type is not None assert exc_value is not None assert tb is not None sys.excepthook(exc_type, exc_value, tb) trainer.close() with open(logfile_name, 'r') as f: log_lines = f.readlines() assert '[stderr]: RuntimeError: My Exception!\n' == log_lines[-1] # Since the trainer was closed, future prints should not appear in the file logger print('SHOULD NOT BE CAPTURED') with open(logfile_name, 'r') as f: logfile = f.read() assert 'SHOULD NOT BE CAPTURED' not in logfile
composer-dev
tests/loggers/test_file_logger.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """ Test inference APIs. """ import os import tempfile from functools import partial from unittest.mock import patch import pytest from torch.utils.data import DataLoader from composer.callbacks import ExportForInferenceCallback, export_for_inference from composer.models import composer_resnet from composer.trainer import Trainer from tests.common.datasets import RandomImageDataset @pytest.mark.parametrize( 'model_cls', [partial(composer_resnet, 'resnet18')], ) def test_inference_callback_torchscript(model_cls): with patch('composer.callbacks.export_for_inference.export_with_logger'): save_format = 'torchscript' model = model_cls() with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.pt') exp_for_inf_callback = ExportForInferenceCallback(save_format=save_format, save_path=str(save_path)) # Construct the trainer and train trainer = Trainer( model=model, callbacks=exp_for_inf_callback, train_dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), max_duration='1ba', ) trainer.fit() # Assert export_for_inference utility called with expected inputs export_for_inference.export_with_logger.assert_called_once_with( model=model, save_format=save_format, save_path=save_path, logger=trainer.logger, save_object_store=None, sample_input=(exp_for_inf_callback.sample_input, {}), transforms=None) @pytest.mark.parametrize( 'model_cls', [partial(composer_resnet, 'resnet18')], ) def test_inference_callback_onnx(model_cls): with patch('composer.callbacks.export_for_inference.export_with_logger'): save_format = 'onnx' model = model_cls() with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.onnx') exp_for_inf_callback = ExportForInferenceCallback(save_format=save_format, save_path=str(save_path)) # Construct the trainer and train trainer = Trainer(model=model, callbacks=exp_for_inf_callback, train_dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), max_duration='1ba') trainer.fit() # Assert export_for_inference utility called with expected inputs export_for_inference.export_with_logger.assert_called_once_with( model=model, save_format=save_format, save_path=save_path, logger=trainer.logger, save_object_store=None, sample_input=(exp_for_inf_callback.sample_input, {}), transforms=None)
composer-dev
tests/callbacks/test_inference.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import imghdr import json import math import os import zipfile from pathlib import Path import pytest from torch.utils.data import DataLoader from composer.callbacks import ImageVisualizer from composer.core import TimeUnit from composer.loggers import WandBLogger from composer.loggers.logger import Logger from composer.trainer import Trainer from tests.common.datasets import RandomImageDataset, RandomSegmentationDataset from tests.common.models import SimpleConvModel, SimpleSegmentationModel @pytest.fixture def test_wandb_logger(tmp_path, dummy_state): pytest.importorskip('wandb', reason='wandb is optional') os.environ['WANDB_DIR'] = str(tmp_path) os.environ['WANDB_MODE'] = 'offline' dummy_state.run_name = 'wand-test-log-image' logger = Logger(dummy_state, []) wandb_logger = WandBLogger() wandb_logger.init(dummy_state, logger) return wandb_logger @pytest.fixture def comet_offline_directory(tmp_path): return str(tmp_path / Path('my_cometml_runs')) @pytest.fixture def comet_logger(monkeypatch, comet_offline_directory): comet_ml = pytest.importorskip('comet_ml', reason='comet_ml is optional') monkeypatch.setattr(comet_ml, 'Experiment', comet_ml.OfflineExperiment) from composer.loggers import CometMLLogger # Set offline directory. os.environ['COMET_OFFLINE_DIRECTORY'] = comet_offline_directory comet_logger = CometMLLogger() return comet_logger @pytest.mark.parametrize('interval', ['9ba', '2ep', '7ep']) def test_image_visualizer_with_wandb(test_wandb_logger, interval): wandb = pytest.importorskip('wandb', reason='wandb is optional') image_visualizer = ImageVisualizer(interval=interval) dataset_size = 40 batch_size = 4 images_per_table = batch_size if batch_size < image_visualizer.num_images else image_visualizer.num_images max_duration = 9 trainer = Trainer(model=SimpleConvModel(), callbacks=image_visualizer, loggers=test_wandb_logger, train_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), eval_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), max_duration=f'{max_duration}ep') trainer.fit() num_train_steps = int(trainer.state.timestamp.batch) assert wandb.run is not None wandb_run_dir = Path(wandb.run.dir) # delete trainer to force WandBLogger to clean up in post_close del trainer wandb_media_dir = wandb_run_dir.parent / Path('files') / Path('media') / Path('table') / Path('Images') image_table_files = wandb_media_dir.glob('./*.json') train_image_count, eval_image_count = 0, 0 for image_table_file in image_table_files: table_columns = json.load(open(image_table_file.absolute()))['data'] num_images = sum([1 for column in table_columns if column[0] == 'Image']) if str(image_table_file.name).startswith('Train'): train_image_count += num_images elif str(image_table_file.name).startswith('Eval'): eval_image_count += num_images num_train_epochs = max_duration expected_number_train_tables = (math.ceil(num_train_steps / image_visualizer.interval.value) if image_visualizer.interval.unit == TimeUnit.BATCH else math.ceil(num_train_epochs / image_visualizer.interval.value)) expected_number_eval_tables = max_duration expected_number_train_images = expected_number_train_tables * images_per_table expected_number_eval_images = expected_number_eval_tables * images_per_table assert train_image_count == expected_number_train_images assert eval_image_count == expected_number_eval_images def test_image_visualizer_with_comet(comet_offline_directory, comet_logger): pytest.importorskip('comet_ml', reason='comet_ml is optional') image_interval = 2 image_visualizer = ImageVisualizer(interval=f'{image_interval}ba') dataset_size = 40 batch_size = 4 max_duration = 6 eval_interval = 6 trainer = Trainer(model=SimpleConvModel(), callbacks=image_visualizer, loggers=comet_logger, train_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), eval_dataloader=DataLoader(RandomImageDataset(size=dataset_size), batch_size), eval_interval=f'{eval_interval}ba', max_duration=f'{max_duration}ba') trainer.fit() comet_logger.experiment.end() expected_number_train_images = int((batch_size * max_duration) / image_interval) expected_number_eval_images = int((max_duration / eval_interval) * batch_size) # Extract all files saved to comet offline directory. assert comet_logger.experiment is not None comet_exp_dump_filepath = str(Path(comet_offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) zf.extractall(comet_offline_directory) # Count the number of files that are images. actual_num_images = 0 for filename in Path(comet_offline_directory).iterdir(): file_path = str(Path(comet_offline_directory) / Path(filename)) if imghdr.what(file_path) == 'png': actual_num_images += 1 assert actual_num_images == expected_number_train_images + expected_number_eval_images def test_image_visualizer_segmentation_with_wandb(test_wandb_logger): wandb = pytest.importorskip('wandb', reason='wandb is optional') image_interval = 2 image_visualizer = ImageVisualizer(interval=f'{image_interval}ba', mode='segmentation') dataset_size = 40 batch_size = 4 max_duration = 8 eval_interval = 4 num_classes = 2 num_channels = 3 trainer = Trainer(model=SimpleSegmentationModel(num_channels=num_channels, num_classes=num_classes), callbacks=image_visualizer, loggers=test_wandb_logger, train_dataloader=DataLoader( RandomSegmentationDataset(size=dataset_size, shape=(3, 8, 8), num_classes=num_classes), batch_size), eval_dataloader=DataLoader( RandomSegmentationDataset(size=dataset_size, shape=(3, 8, 8), num_classes=num_classes), batch_size), eval_interval=f'{eval_interval}ba', max_duration=f'{max_duration}ba') trainer.fit() assert wandb.run is not None wandb_run_dir = Path(wandb.run.dir) # delete trainer to force WandBLogger to clean up in post_close del trainer wandb_media_dir = wandb_run_dir.parent / Path('files') / Path('media') / Path('table') / Path('Images') image_table_files = wandb_media_dir.glob('./*.json') train_image_count, eval_image_count = 0, 0 for image_table_file in image_table_files: table_columns = json.load(open(image_table_file.absolute()))['data'] num_images = sum([1 for column in table_columns if column[0] == 'Image']) if str(image_table_file.name).startswith('Train'): train_image_count += num_images elif str(image_table_file.name).startswith('Eval'): eval_image_count += num_images expected_number_train_images = (max_duration / image_interval) * batch_size expected_number_eval_images = (max_duration / eval_interval) * batch_size assert train_image_count == expected_number_train_images assert eval_image_count == expected_number_eval_images def test_image_visualizer_segmentation_with_comet(comet_offline_directory, comet_logger): pytest.importorskip('comet_ml', reason='comet_ml is optional') image_interval = 2 image_visualizer = ImageVisualizer(interval=f'{image_interval}ba', mode='segmentation') dataset_size = 40 batch_size = 4 max_duration = 6 eval_interval = 6 num_classes = 2 num_channels = 3 num_masks = 2 trainer = Trainer(model=SimpleSegmentationModel(num_channels=num_channels, num_classes=num_classes), callbacks=image_visualizer, loggers=comet_logger, train_dataloader=DataLoader( RandomSegmentationDataset(size=dataset_size, shape=(3, 32, 32), num_classes=num_classes), batch_size), eval_dataloader=DataLoader( RandomSegmentationDataset(size=dataset_size, shape=(3, 32, 32), num_classes=num_classes), batch_size), eval_interval=f'{eval_interval}ba', max_duration=f'{max_duration}ba') trainer.fit() # delete trainer to force WandBLogger to clean up in post_close comet_logger.experiment.end() expected_number_train_images = (batch_size * max_duration) / image_interval expected_number_eval_images = (max_duration / eval_interval) * batch_size num_additional_images_per_mask = 2 # Mask overlaid on image + mask by itself. expected_num_masks = num_masks * num_additional_images_per_mask * (expected_number_train_images + expected_number_eval_images) # Extract all files saved to comet offline directory. assert comet_logger.experiment is not None comet_exp_dump_filepath = str(Path(comet_offline_directory) / Path(comet_logger.experiment.id).with_suffix('.zip')) zf = zipfile.ZipFile(comet_exp_dump_filepath) zf.extractall(comet_offline_directory) # Count the number of files that are images. actual_num_images = 0 for filename in Path(comet_offline_directory).iterdir(): file_path = str(Path(comet_offline_directory) / Path(filename)) if imghdr.what(file_path) == 'png': actual_num_images += 1 assert actual_num_images == expected_number_train_images + expected_number_eval_images + expected_num_masks
composer-dev
tests/callbacks/test_image_visualizer.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Type, cast import pytest from torch.utils.data import DataLoader from composer.core import Callback, Engine, Event, State from composer.core.time import Time from composer.loggers import Logger, LoggerDestination from composer.profiler import Profiler, ProfilerAction from composer.trainer import Trainer from tests.callbacks.callback_settings import get_cb_kwargs, get_cbs_and_marks from tests.common import EventCounterCallback from tests.common.datasets import RandomClassificationDataset from tests.common.models import SimpleModel def test_callbacks_map_to_events(): # callback methods must be 1:1 mapping with events # exception for private methods cb = Callback() excluded_methods = ['state_dict', 'load_state_dict', 'run_event', 'close', 'post_close'] methods = set(m for m in dir(cb) if (m not in excluded_methods and not m.startswith('_'))) event_names = set(e.value for e in Event) assert methods == event_names @pytest.mark.parametrize('event', list(Event)) def test_run_event_callbacks(event: Event, dummy_state: State): callback = EventCounterCallback() logger = Logger(dummy_state) dummy_state.callbacks = [callback] engine = Engine(state=dummy_state, logger=logger) engine.run_event(event) assert callback.event_to_num_calls[event] == 1 @pytest.mark.parametrize('cb_cls', get_cbs_and_marks(callbacks=True, loggers=True, profilers=True)) class TestCallbacks: @classmethod def setup_class(cls): pytest.importorskip('wandb', reason='WandB is optional.') def test_callback_is_constructable(self, cb_cls: Type[Callback]): cb_kwargs = get_cb_kwargs(cb_cls) cb = cb_cls(**cb_kwargs) assert isinstance(cb_cls, type) assert isinstance(cb, cb_cls) def test_multiple_fit_start_and_end(self, cb_cls: Type[Callback], dummy_state: State): """Test that callbacks do not crash when Event.FIT_START and Event.FIT_END is called multiple times.""" cb_kwargs = get_cb_kwargs(cb_cls) dummy_state.callbacks.append(cb_cls(**cb_kwargs)) dummy_state.profiler = Profiler(schedule=lambda _: ProfilerAction.SKIP, trace_handlers=[]) dummy_state.profiler.bind_to_state(dummy_state) logger = Logger(dummy_state) engine = Engine(state=dummy_state, logger=logger) engine.run_event(Event.INIT) # always runs just once per engine engine.run_event(Event.FIT_START) engine.run_event(Event.FIT_END) engine.run_event(Event.FIT_START) engine.run_event(Event.FIT_END) def test_idempotent_close(self, cb_cls: Type[Callback], dummy_state: State): """Test that callbacks do not crash when .close() and .post_close() are called multiple times.""" cb_kwargs = get_cb_kwargs(cb_cls) dummy_state.callbacks.append(cb_cls(**cb_kwargs)) dummy_state.profiler = Profiler(schedule=lambda _: ProfilerAction.SKIP, trace_handlers=[]) dummy_state.profiler.bind_to_state(dummy_state) logger = Logger(dummy_state) engine = Engine(state=dummy_state, logger=logger) engine.run_event(Event.INIT) # always runs just once per engine engine.close() engine.close() def test_multiple_init_and_close(self, cb_cls: Type[Callback], dummy_state: State): """Test that callbacks do not crash when INIT/.close()/.post_close() are called multiple times in that order.""" cb_kwargs = get_cb_kwargs(cb_cls) dummy_state.callbacks.append(cb_cls(**cb_kwargs)) dummy_state.profiler = Profiler(schedule=lambda _: ProfilerAction.SKIP, trace_handlers=[]) dummy_state.profiler.bind_to_state(dummy_state) logger = Logger(dummy_state) engine = Engine(state=dummy_state, logger=logger) engine.run_event(Event.INIT) engine.close() # For good measure, also test idempotent close, in case if there are edge cases with a second call to INIT engine.close() # Create a new engine, since the engine does allow events to run after it has been closed engine = Engine(state=dummy_state, logger=logger) engine.close() # For good measure, also test idempotent close, in case if there are edge cases with a second call to INIT engine.close() @pytest.mark.parametrize('cb_cls', get_cbs_and_marks(callbacks=True, loggers=True, profilers=True)) # Parameterized across @pytest.mark.remote as some loggers (e.g. wandb) support integration testing @pytest.mark.parametrize('device_train_microbatch_size,_remote', [(1, False), (2, False), pytest.param(1, True, marks=pytest.mark.remote)]) @pytest.mark.filterwarnings(r'ignore:The profiler is enabled:UserWarning') class TestCallbackTrains: def _get_trainer(self, cb: Callback, device_train_microbatch_size: int): loggers = cb if isinstance(cb, LoggerDestination) else None callbacks = cb if not isinstance(cb, LoggerDestination) else None batch_size = 2 return Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset(size=4), batch_size=batch_size), eval_dataloader=DataLoader(RandomClassificationDataset(size=4), batch_size=batch_size), max_duration=2, device_train_microbatch_size=device_train_microbatch_size, callbacks=callbacks, loggers=loggers, profiler=Profiler(schedule=lambda _: ProfilerAction.SKIP, trace_handlers=[]), ) def test_trains(self, cb_cls: Type[Callback], device_train_microbatch_size: int, _remote: bool): del _remote # unused. `_remote` must be passed through to parameterize the test markers. cb_kwargs = get_cb_kwargs(cb_cls) cb = cb_cls(**cb_kwargs) trainer = self._get_trainer(cb, device_train_microbatch_size) trainer.fit() def test_trains_multiple_calls(self, cb_cls: Type[Callback], device_train_microbatch_size: int, _remote: bool): """ Tests that training with multiple fits complete. Note: future functional tests should test for idempotency (e.g functionally) """ del _remote # unused. `_remote` must be passed through to parameterize the test markers. cb_kwargs = get_cb_kwargs(cb_cls) cb = cb_cls(**cb_kwargs) trainer = self._get_trainer(cb, device_train_microbatch_size) trainer.fit() assert trainer.state.max_duration is not None trainer.state.max_duration = cast(Time[int], trainer.state.max_duration * 2) trainer.fit()
composer-dev
tests/callbacks/test_callbacks.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from packaging import version from torch.utils.data import DataLoader from composer.callbacks import OptimizerMonitor from composer.loggers import InMemoryLogger from composer.optim import DecoupledAdamW from composer.trainer import Trainer from composer.utils import dist from tests.common import device, world_size from tests.common.datasets import RandomClassificationDataset from tests.common.models import SimpleModel @pytest.mark.parametrize('log_optimizer_metrics', [True, False]) def test_optimizer_monitor(log_optimizer_metrics: bool): # Construct the callback grad_monitor = OptimizerMonitor(log_optimizer_metrics=log_optimizer_metrics) in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger model = SimpleModel() # Construct the trainer and train trainer = Trainer( model=model, callbacks=grad_monitor, loggers=in_memory_logger, train_dataloader=DataLoader(RandomClassificationDataset()), optimizers=DecoupledAdamW(model.parameters()), max_duration='3ba', ) trainer.fit() num_train_steps = int(trainer.state.timestamp.batch) # Count the logged steps grad_norm_calls = len(in_memory_logger.data['l2_norm/grad/global']) layer_norm_calls = [len(calls) for (k, calls) in in_memory_logger.data.items() if 'l2_norm/grad' in k] assert 'l2_norm/grad/module.2.weight' in in_memory_logger.data.keys() if log_optimizer_metrics: assert 'l2_norm/moment/module.2.weight' in in_memory_logger.data.keys() assert 'cosine/moment_grad/module.2.weight' in in_memory_logger.data.keys() assert 'l2_norm/second_moment_sqrt/module.2.weight' in in_memory_logger.data.keys() assert 'l2_norm/update/module.2.weight' in in_memory_logger.data.keys() assert 'cosine/update_grad/module.2.weight' in in_memory_logger.data.keys() # Expected to log gradient norm once per step (total batch) assert grad_norm_calls == num_train_steps for num_calls in layer_norm_calls: assert num_calls == num_train_steps @device('gpu') @world_size(1, 2) @pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.13.0'), reason='requires PyTorch 1.13 or higher') def test_fsdp_optimizer_monitor(device, world_size): # Construct the callback grad_monitor = OptimizerMonitor(log_optimizer_metrics=True) in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger model = SimpleModel() dataset = RandomClassificationDataset() # Construct the trainer and train trainer = Trainer(model=model, callbacks=grad_monitor, loggers=in_memory_logger, train_dataloader=DataLoader(dataset, sampler=dist.get_sampler(dataset)), optimizers=DecoupledAdamW(model.parameters()), max_duration='3ba', fsdp_config={ 'sharding_strategy': 'FULL_SHARD', 'min_params': 10, 'cpu_offload': False, 'mixed_precision': 'PURE', 'backward_prefetch': 'BACKWARD_PRE', 'activation_checkpointing': False, 'activation_ocpu_offload': False, 'verbose': False }) trainer.fit() num_train_steps = int(trainer.state.timestamp.batch) # Count the logged steps grad_norm_calls = len(in_memory_logger.data['l2_norm/grad/global']) layer_norm_calls = [len(calls) for (k, calls) in in_memory_logger.data.items() if 'l2_norm/grad' in k] test_keys = [ 'l2_norm/grad/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', 'l2_norm/moment/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', 'cosine/moment_grad/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', 'l2_norm/second_moment_sqrt/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', 'l2_norm/update/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', 'cosine/update_grad/module._fsdp_wrapped_module._fpw_module.4._fsdp_wrapped_module.flat_param', ] for key in test_keys: assert key in in_memory_logger.data.keys() # Expected to log gradient norm once per step (total batch) assert grad_norm_calls == num_train_steps for num_calls in layer_norm_calls: assert num_calls == num_train_steps
composer-dev
tests/callbacks/test_optimizer_monitor.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torch.utils.data import DataLoader from composer.callbacks import MemoryMonitor from composer.loggers import InMemoryLogger from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel, device @device('cpu', 'gpu') def test_memory_monitor_warnings_on_cpu_models(device: str): # Error if the user sets device=cpu even when cuda is available del device # unused. always using cpu with pytest.warns(UserWarning, match='The memory monitor only works on CUDA devices'): Trainer( model=SimpleModel(), callbacks=MemoryMonitor(), device='cpu', train_dataloader=DataLoader(RandomClassificationDataset()), max_duration='1ba', ) @pytest.mark.gpu def test_memory_monitor_gpu(): # Construct the trainer memory_monitor = MemoryMonitor() in_memory_logger = InMemoryLogger() trainer = Trainer( model=SimpleModel(), callbacks=memory_monitor, loggers=in_memory_logger, train_dataloader=DataLoader(RandomClassificationDataset()), max_duration='1ba', ) trainer.fit() num_memory_monitor_calls = len(in_memory_logger.data['memory/allocated_mem']) assert num_memory_monitor_calls == int(trainer.state.timestamp.batch)
composer-dev
tests/callbacks/test_memory_monitor.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import datetime from unittest.mock import MagicMock, patch import pytest from composer import Timestamp from composer.callbacks import HealthChecker from composer.callbacks.health_checker import GPUUtilization from composer.utils import dist from tests.common import world_size pynvml = pytest.importorskip('pynvml') pytest.importorskip('slack_sdk') class MockUtil: def __init__(self, util): self.gpu = util @pytest.mark.gpu @world_size(1, 2) def test_gpu_utilization(world_size): assert HealthChecker._is_available() gpu_utilization_values = [ MockUtil(100), MockUtil(10), MockUtil(100), MockUtil(100), MockUtil(100), MockUtil(100), ] with patch.multiple(pynvml, nvmlDeviceGetUtilizationRates=MagicMock(side_effect=gpu_utilization_values), nvmlDeviceGetCount=MagicMock(return_value=world_size)): gpu_utilization = GPUUtilization() gpu_utilization.sample() gpu_utilization.sample() gpu_utilization.sample() _, alert = gpu_utilization.check() should_alert = dist.get_local_rank() == 0 and world_size > 1 assert alert == should_alert @pytest.mark.gpu @world_size(1, 2) def test_health_checker(world_size): state = MagicMock() state.run_name = 'pytest-mock-run-kwei73' logger = MagicMock() health_checker = HealthChecker( sample_freq=1, window_size=3, wait=0, ) gpu_utilization_values = [ MockUtil(100), MockUtil(10), MockUtil(100), MockUtil(100), MockUtil(100), MockUtil(100), ] with patch.multiple(pynvml, nvmlDeviceGetUtilizationRates=MagicMock(side_effect=gpu_utilization_values), nvmlDeviceGetCount=MagicMock(return_value=world_size)): # collect data and checker for seconds in [1, 2, 3]: state.timestamp = Timestamp(total_wct=datetime.timedelta(seconds=seconds)) health_checker.after_train_batch(state, logger) should_alert = dist.get_local_rank() == 0 and world_size > 1 assert health_checker.metrics[0].alerted == should_alert def test_health_checker_sampling(): timestamp = Timestamp(total_wct=datetime.timedelta(seconds=0)) health_checker = HealthChecker( sample_freq=1, window_size=5, wait=10, ) config = [ (5, False), # before wait (11, True), (11.5, False), # below sample frequency (12, True), (20, True), (11, False), # no time travel ] for seconds, is_sample in config: timestamp = Timestamp(total_wct=datetime.timedelta(seconds=seconds)) assert health_checker._sample(timestamp) == is_sample
composer-dev
tests/callbacks/test_health_checker.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import collections.abc import datetime import pytest from torch.utils.data import DataLoader from composer.callbacks import SpeedMonitor from composer.core import Time from composer.loggers import InMemoryLogger from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel def _assert_no_negative_values(logged_values): for timestamp, v in logged_values: del timestamp # unused if isinstance(v, Time): assert int(v) >= 0 elif isinstance(v, datetime.timedelta): assert v.total_seconds() >= 0 else: assert v >= 0 @pytest.mark.parametrize('flops_per_batch', [False, True]) def test_speed_monitor(flops_per_batch: bool): # Construct the callbacks speed_monitor = SpeedMonitor(window_size=2) in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger model = SimpleModel() if flops_per_batch: model.flops_per_batch = lambda batch: len(batch) * 100.0 # Construct the trainer and train trainer = Trainer( model=model, callbacks=speed_monitor, loggers=in_memory_logger, train_dataloader=DataLoader(RandomClassificationDataset()), eval_dataloader=DataLoader(RandomClassificationDataset()), max_duration='1ep', ) trainer.fit() _assert_no_negative_values(in_memory_logger.data['wall_clock/train']) _assert_no_negative_values(in_memory_logger.data['wall_clock/val']) _assert_no_negative_values(in_memory_logger.data['wall_clock/total']) _assert_no_negative_values(in_memory_logger.data['throughput/batches_per_sec']) _assert_no_negative_values(in_memory_logger.data['throughput/samples_per_sec']) _assert_no_negative_values(in_memory_logger.data['throughput/device/batches_per_sec']) _assert_no_negative_values(in_memory_logger.data['throughput/device/samples_per_sec']) if flops_per_batch: _assert_no_negative_values(in_memory_logger.data['throughput/flops_per_sec']) _assert_no_negative_values(in_memory_logger.data['throughput/device/flops_per_sec']) assert isinstance(trainer.state.dataloader, collections.abc.Sized) assert trainer.state.dataloader_label is not None assert trainer.state.dataloader_len is not None expected_step_calls = (trainer.state.dataloader_len - len(speed_monitor.history_samples) + 1) * int( trainer.state.timestamp.epoch) assert len(in_memory_logger.data['throughput/batches_per_sec']) == expected_step_calls assert len(in_memory_logger.data['throughput/samples_per_sec']) == expected_step_calls assert len(in_memory_logger.data['throughput/device/batches_per_sec']) == expected_step_calls assert len(in_memory_logger.data['throughput/device/samples_per_sec']) == expected_step_calls if flops_per_batch: assert len(in_memory_logger.data['throughput/flops_per_sec']) == expected_step_calls assert len(in_memory_logger.data['throughput/device/flops_per_sec']) == expected_step_calls num_batches = int(trainer.state.timestamp.batch) assert len(in_memory_logger.data['wall_clock/total']) == num_batches assert len(in_memory_logger.data['wall_clock/train']) == num_batches assert len(in_memory_logger.data['wall_clock/val']) == num_batches
composer-dev
tests/callbacks/test_speed_monitor.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os from typing import Any, Dict, List, Type import pytest import composer.callbacks import composer.loggers import composer.profiler from composer import Callback from composer.callbacks import EarlyStopper, ImageVisualizer, MemoryMonitor, SpeedMonitor, ThresholdStopper from composer.callbacks.export_for_inference import ExportForInferenceCallback from composer.callbacks.mlperf import MLPerfCallback from composer.loggers import (CometMLLogger, ConsoleLogger, LoggerDestination, MLFlowLogger, ProgressBarLogger, RemoteUploaderDownloader, TensorboardLogger, WandBLogger) from tests.common import get_module_subclasses try: import wandb _WANDB_INSTALLED = True del wandb # unused except ImportError: _WANDB_INSTALLED = False try: import tensorboard _TENSORBOARD_INSTALLED = True del tensorboard # unused except ImportError: _TENSORBOARD_INSTALLED = False try: import comet_ml _COMETML_INSTALLED = True os.environ['COMET_API_KEY'] del comet_ml # unused except ImportError: _COMETML_INSTALLED = False # If COMET_API_KEY not set. except KeyError: _COMETML_INSTALLED = False try: import mlperf_logging _MLPERF_INSTALLED = True del mlperf_logging except ImportError: _MLPERF_INSTALLED = False try: import mlflow _MLFLOW_INSTALLED = True del mlflow except ImportError: _MLFLOW_INSTALLED = False try: import libcloud _LIBCLOUD_INSTALLED = True del libcloud # unused except ImportError: _LIBCLOUD_INSTALLED = False _callback_kwargs: Dict[Type[Callback], Dict[str, Any],] = { RemoteUploaderDownloader: { 'bucket_uri': 'libcloud://.', 'backend_kwargs': { 'provider': 'local', 'container': '.', 'provider_kwargs': { 'key': '.', }, }, 'use_procs': False, 'num_concurrent_uploads': 1, }, ThresholdStopper: { 'monitor': 'MulticlassAccuracy', 'dataloader_label': 'train', 'threshold': 0.99, }, EarlyStopper: { 'monitor': 'MulticlassAccuracy', 'dataloader_label': 'train', }, ExportForInferenceCallback: { 'save_format': 'torchscript', 'save_path': '/tmp/model.pth', }, MLPerfCallback: { 'root_folder': '.', 'index': 0, }, SpeedMonitor: { 'window_size': 1, }, } _callback_marks: Dict[Type[Callback], List[pytest.MarkDecorator],] = { RemoteUploaderDownloader: [ pytest.mark.filterwarnings( # post_close might not be called if being used outside of the trainer r'ignore:Implicitly cleaning up:ResourceWarning'), pytest.mark.skipif(not _LIBCLOUD_INSTALLED, reason='Libcloud is optional') ], MemoryMonitor: [ pytest.mark.filterwarnings( r'ignore:The memory monitor only works on CUDA devices, but the model is on cpu:UserWarning') ], MLPerfCallback: [pytest.mark.skipif(not _MLPERF_INSTALLED, reason='MLPerf is optional')], WandBLogger: [ pytest.mark.filterwarnings(r'ignore:unclosed file:ResourceWarning'), pytest.mark.skipif(not _WANDB_INSTALLED, reason='Wandb is optional'), ], ProgressBarLogger: [ pytest.mark.filterwarnings( r'ignore:Specifying the ProgressBarLogger via `loggers` is not recommended as.*:Warning') ], ConsoleLogger: [ pytest.mark.filterwarnings(r'ignore:Specifying the ConsoleLogger via `loggers` is not recommended as.*:Warning') ], CometMLLogger: [pytest.mark.skipif(not _COMETML_INSTALLED, reason='comet_ml is optional'),], TensorboardLogger: [pytest.mark.skipif(not _TENSORBOARD_INSTALLED, reason='Tensorboard is optional'),], ImageVisualizer: [pytest.mark.skipif(not _WANDB_INSTALLED, reason='Wandb is optional')], MLFlowLogger: [pytest.mark.skipif(not _MLFLOW_INSTALLED, reason='mlflow is optional'),], } def get_cb_kwargs(impl: Type[Callback]): return _callback_kwargs.get(impl, {}) def _to_pytest_param(impl): if impl not in _callback_marks: return pytest.param(impl) else: marks = _callback_marks[impl] return pytest.param(impl, marks=marks) def get_cbs_and_marks(callbacks: bool = False, loggers: bool = False, profilers: bool = False): """Returns a list of :class:`pytest.mark.param` objects for all :class:`.Callback`. The callbacks are correctly annotated with ``skipif`` marks for optional dependencies and ``filterwarning`` marks for any warnings that might be emitted and are safe to ignore This function is meant to be used like this:: import pytest from tests.callbacks.callback_settings import get_cbs_and_marks, get_cb_kwargs @pytest.mark.parametrize("cb_cls",get_cbs_and_marks(callbacks=True, loggers=True, profilers=True)) def test_something(cb_cls: Type[Callback]): cb_kwargs = get_cb_kwargs(cb_cls) cb = cb_cls(**cb_kwargs) assert isinstance(cb, Callback) """ implementations = [] if callbacks: implementations.extend(get_module_subclasses(composer.callbacks, Callback)) if loggers: implementations.extend(get_module_subclasses(composer.loggers, LoggerDestination)) if profilers: implementations.extend(get_module_subclasses(composer.profiler, Callback)) ans = [_to_pytest_param(impl) for impl in implementations] if not len(ans): raise ValueError('callbacks, loggers, or profilers must be True') return ans def get_cb_hparams_and_marks(): """Returns a list of :class:`pytest.mark.param` objects for all ``callback_registry`` and ``logger_registry``entries. The callbacks are correctly annotated with ``skipif`` marks for optional dependencies and ``filterwarning`` marks for any warnings that might be emitted and are safe to ignore This function is meant to be used like this:: import pytest from tests.common.hparams import construct_from_yaml from tests.callbacks.callback_settings import get_cb_hparams_and_marks, get_cb_kwargs @pytest.mark.parametrize("constructor",get_cb_hparams_and_marks()) def test_something(constructor: Callable, yaml_dict: Dict[str, Any]): yaml_dict = get_cb_kwargs(constructor) construct_from_yaml(constructor, yaml_dict=yaml_dict) """ # TODO: (Hanlin) populate this implementations = [] ans = [_to_pytest_param(impl) for impl in implementations] return ans
composer-dev
tests/callbacks/callback_settings.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/callbacks/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 # ignore third-party missing imports due to the mlperf logger not pip-installable # pyright: reportMissingImports=none import logging from unittest.mock import Mock import numpy as np import pytest import torch from torch.utils.data import DataLoader from torchmetrics.classification import BinaryAccuracy from composer import State, Trainer from composer.callbacks import MLPerfCallback from composer.utils import dist from tests.common import RandomClassificationDataset, SimpleModel from tests.common.markers import device, world_size def rank_zero() -> bool: return dist.get_global_rank() == 0 @pytest.fixture(autouse=True) def importor_skip_mlperf_logging(): pytest.importorskip('mlperf_logging') # MLperf requires different number of results # depending on the benchmark NUM_TRIALS = { 'resnet': 5, 'bert': 10, } class MockMLLogger: """Mocks the MLPerf Logger interface.""" def __init__(self) -> None: self.logs = [] self.logger = Mock() def event(self, key, metadata, value=None): self.logs.append({'key': key, 'value': value, 'metadata': metadata}) class TestMLPerfCallbackEvents: @pytest.fixture def mlperf_callback(self, monkeypatch, tmp_path) -> MLPerfCallback: """Returns a callback with the MockMLLogger patched.""" callback = MLPerfCallback(tmp_path, 0) monkeypatch.setattr(callback, 'mllogger', MockMLLogger()) return callback @pytest.fixture def mock_state(self): """Mocks a state at epoch 1 with Accuracy 0.99.""" acc = BinaryAccuracy() eval_metrics = {'eval': {'BinaryAccuracy': acc}} acc.update( torch.tensor([1, 1], dtype=torch.int8), torch.tensor([1, 1], dtype=torch.int8), ) state = Mock() state.eval_metrics = eval_metrics state.timestamp.epoch.value = 1 return state def test_eval_start(self, mlperf_callback, mock_state): mlperf_callback.eval_start(mock_state, Mock()) if not rank_zero(): assert mlperf_callback.mllogger.logs == [] return assert mlperf_callback.mllogger.logs == [{'key': 'eval_start', 'value': None, 'metadata': {'epoch_num': 1}}] def test_eval_end(self, mlperf_callback, mock_state): mlperf_callback.eval_end(mock_state, Mock()) if not rank_zero(): assert mlperf_callback.success == False assert mlperf_callback.mllogger.logs == [] return assert mlperf_callback.success == True assert mlperf_callback.mllogger.logs[-1] == { 'key': 'run_stop', 'value': None, 'metadata': { 'status': 'success' } } @world_size(1, 2) @device('cpu', 'gpu') @pytest.mark.parametrize('benchmark', ['resnet', 'bert']) class TestWithMLPerfChecker: """Ensures that the logs created by the MLPerfCallback pass the official package checker.""" def test_mlperf_callback_passes(self, tmp_path, monkeypatch, benchmark, world_size, device): def mock_accuracy(self, state: State): if state.timestamp.epoch >= 2: return 0.99 else: return 0.01 monkeypatch.setattr(MLPerfCallback, '_get_accuracy', mock_accuracy) self.generate_submission(tmp_path, device, benchmark) if rank_zero(): self.run_mlperf_checker(tmp_path, monkeypatch) def test_mlperf_callback_fails(self, tmp_path, monkeypatch, benchmark, world_size, device): def mock_accuracy(self, state: State): return 0.01 monkeypatch.setattr(MLPerfCallback, '_get_accuracy', mock_accuracy) self.generate_submission(tmp_path, device, benchmark) with pytest.raises(ValueError, match='MLPerf checker failed'): self.run_mlperf_checker(tmp_path, monkeypatch) def generate_submission(self, directory, device, benchmark): """Generates submission files by training the benchark n=5 times.""" for run in range(NUM_TRIALS[benchmark]): mlperf_callback = MLPerfCallback( benchmark=benchmark, root_folder=directory, index=run, cache_clear_cmd='sleep 0.1', ) trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader( dataset=RandomClassificationDataset(), batch_size=4, shuffle=False, ), eval_dataloader=DataLoader( dataset=RandomClassificationDataset(), shuffle=False, ), max_duration='3ep', deterministic_mode=True, progress_bar=False, log_to_console=False, loggers=[], device=device, callbacks=[mlperf_callback], seed=np.random.randint(low=2048), ) trainer.fit() def run_mlperf_checker(self, directory, monkeypatch): """Runs the MLPerf package checker and fails on any errors.""" # monkeypatch the logging so that logging.error raises Exception def fail_on_error(msg, *args, **kwargs): print(msg.format(*args)) raise ValueError('MLPerf checker failed, see logs.') monkeypatch.setattr(logging, 'error', fail_on_error) from mlperf_logging.package_checker.package_checker import check_training_package check_training_package( folder=directory, usage='training', ruleset='2.1.0', werror=True, quiet=False, rcp_bypass=False, rcp_bert_train_samples=False, log_output='package_checker.log', )
composer-dev
tests/callbacks/test_mlperf_callback.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os from typing import Type import pytest from torch.utils.data import DataLoader from composer.core import Callback from composer.loggers import ConsoleLogger, LoggerDestination, ProgressBarLogger from composer.loggers.remote_uploader_downloader import RemoteUploaderDownloader from composer.trainer import Trainer from tests.callbacks.callback_settings import get_cb_kwargs, get_cbs_and_marks from tests.common import RandomClassificationDataset, SimpleModel @pytest.mark.parametrize('logger_cls', get_cbs_and_marks(loggers=True)) @pytest.mark.parametrize('callback_cls', get_cbs_and_marks(callbacks=True)) def test_loggers_on_callbacks(logger_cls: Type[LoggerDestination], callback_cls: Type[Callback]): if logger_cls in [ProgressBarLogger, ConsoleLogger]: pytest.skip() logger_kwargs = get_cb_kwargs(logger_cls) if issubclass(logger_cls, RemoteUploaderDownloader): # Ensure that the remote directory does not conflict with any directory used by callbacks logger_kwargs['backend_kwargs']['provider_kwargs']['key'] = './remote' os.makedirs(logger_kwargs['backend_kwargs']['provider_kwargs']['key'], exist_ok=True) logger = logger_cls(**logger_kwargs) callback_kwargs = get_cb_kwargs(callback_cls) callback = callback_cls(**callback_kwargs) trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset()), train_subset_num_batches=2, max_duration='1ep', callbacks=callback, loggers=logger, ) trainer.fit()
composer-dev
tests/callbacks/test_loggers_across_callbacks.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import datetime import time import pytest from torch.utils.data import DataLoader from composer.callbacks import RuntimeEstimator from composer.core import Time from composer.loggers import InMemoryLogger from composer.trainer import Trainer from tests.common import RandomClassificationDataset, SimpleModel def _assert_no_negative_values(logged_values): for timestamp, v in logged_values: del timestamp # unused if isinstance(v, Time): assert int(v) >= 0 elif isinstance(v, datetime.timedelta): assert v.total_seconds() >= 0 else: assert v >= 0 @pytest.mark.parametrize('time_unit', ['seconds', 'minutes', 'hours', 'days']) def test_runtime_estimator(time_unit: str): # Construct the callbacks skip_batches = 1 runtime_estimator = RuntimeEstimator(skip_batches=skip_batches, time_unit=time_unit) in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger simple_model = SimpleModel() original_fwd = simple_model.forward def new_fwd(x): time.sleep(0.02) return original_fwd(x) simple_model.forward = new_fwd # type: ignore # Construct the trainer and train trainer = Trainer( model=simple_model, callbacks=runtime_estimator, loggers=in_memory_logger, train_dataloader=DataLoader(RandomClassificationDataset()), eval_dataloader=DataLoader(RandomClassificationDataset()), max_duration='2ep', eval_interval='1ep', train_subset_num_batches=5, eval_subset_num_batches=5, ) trainer.fit() wall_clock_remaining_calls = len(in_memory_logger.data['wall_clock/remaining_estimate']) _assert_no_negative_values(in_memory_logger.data['wall_clock/remaining_estimate']) expected_calls = int(trainer.state.timestamp.batch) - skip_batches assert wall_clock_remaining_calls == expected_calls ba_2_estimate = in_memory_logger.data['wall_clock/remaining_estimate'][1][-1] # Should be ~0.2 seconds if time_unit == 'seconds': assert ba_2_estimate < 1 assert ba_2_estimate > 0.1 elif time_unit == 'minutes': assert ba_2_estimate < 1 / 60 assert ba_2_estimate > 0.1 / 60 elif time_unit == 'hours': assert ba_2_estimate < 1 / 60 / 60 assert ba_2_estimate > 0.1 / 60 / 60 elif time_unit == 'days': assert ba_2_estimate < 1 / 60 / 60 / 24 assert ba_2_estimate > 0.1 / 60 / 60 / 24
composer-dev
tests/callbacks/test_runtime_estimator.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import List import pytest from torch.utils.data import DataLoader from torchmetrics.classification import MulticlassAccuracy from composer import Trainer from composer.callbacks import ThresholdStopper from composer.core.time import TimeUnit from composer.devices import DeviceCPU, DeviceGPU from tests.common import RandomClassificationDataset, SimpleModel, device from tests.metrics import MetricSetterCallback @device('cpu', 'gpu') @pytest.mark.parametrize('metric_sequence', [[0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8], [0.6, 0.7]]) @pytest.mark.parametrize('unit', [TimeUnit.EPOCH, TimeUnit.BATCH]) def test_threshold_stopper_eval(metric_sequence: List[float], unit: TimeUnit, device: str): metric_threshold = 0.65 if unit == TimeUnit.EPOCH: dataloader_label = 'eval' stop_on_batch = False else: dataloader_label = 'train' stop_on_batch = True test_device = DeviceGPU() if device == 'gpu' else DeviceCPU() tstop = ThresholdStopper( 'MulticlassAccuracy', dataloader_label, metric_threshold, comp=None, stop_on_batch=stop_on_batch, ) test_metric_setter = MetricSetterCallback( 'MulticlassAccuracy', dataloader_label, MulticlassAccuracy, metric_sequence, unit, test_device, metric_args={ 'num_classes': 2, 'average': 'micro' }, ) trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset()), eval_dataloader=DataLoader(RandomClassificationDataset()), train_subset_num_batches=1, eval_subset_num_batches=1, device=test_device, max_duration='30ep', callbacks=[test_metric_setter, tstop], ) trainer.fit() count_before_threshold = 0 for metric in metric_sequence: if metric_threshold > metric: count_before_threshold += 1 assert trainer.state.timestamp.get(unit).value == count_before_threshold
composer-dev
tests/callbacks/test_threshold_stopper.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import List import pytest from torch.utils.data import DataLoader from torchmetrics.classification import MulticlassAccuracy from composer import Trainer from composer.callbacks.early_stopper import EarlyStopper from composer.core.time import Time, TimeUnit from composer.devices import DeviceCPU, DeviceGPU from tests.common import RandomClassificationDataset, SimpleModel, device from tests.metrics import MetricSetterCallback @device('cpu', 'gpu') @pytest.mark.parametrize('metric_sequence', [[0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], [0.1, 0.2]]) @pytest.mark.parametrize('unit', [TimeUnit.EPOCH, TimeUnit.BATCH]) def test_early_stopper(metric_sequence: List[float], unit: TimeUnit, device: str): if unit == TimeUnit.EPOCH: dataloader_label = 'eval' else: dataloader_label = 'train' test_device = DeviceGPU() if device == 'gpu' else DeviceCPU() early_stopper = EarlyStopper('MulticlassAccuracy', dataloader_label, patience=Time(3, unit)) test_metric_setter = MetricSetterCallback( 'MulticlassAccuracy', dataloader_label, MulticlassAccuracy, metric_sequence, unit, test_device, metric_args={ 'num_classes': 2, 'average': 'micro' }, ) trainer = Trainer( model=SimpleModel(num_features=5), train_dataloader=DataLoader( RandomClassificationDataset(shape=(5, 1, 1)), batch_size=4, ), eval_dataloader=DataLoader( RandomClassificationDataset(shape=(5, 1, 1)), batch_size=4, ), max_duration='30ep', callbacks=[test_metric_setter, early_stopper], ) trainer.fit() assert trainer.state.timestamp.get(unit).value == len(metric_sequence) + int(early_stopper.patience)
composer-dev
tests/callbacks/test_early_stopper.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import contextlib import os from pathlib import Path import pytest import transformers from torch.utils.data import DataLoader from transformers import AutoTokenizer from composer import Evaluator from composer.datasets.in_context_learning_evaluation import (_get_fewshot_sample_idxs, _make_padded_input, get_icl_task_dataloader) from composer.loggers import InMemoryLogger from composer.metrics import (InContextLearningLMAccuracy, InContextLearningMultipleChoiceAccuracy, InContextLearningQAAccuracy) from composer.models import HuggingFaceModel from composer.trainer import Trainer from composer.utils import dist, reproducibility from tests.common import device, world_size def test_fewshot_sample_idxs(): fewshot_idxs = _get_fewshot_sample_idxs(dataset_size=5, num_fewshot=4, sample_idx=4) assert fewshot_idxs == set([0, 1, 2, 3]) fewshot_idxs = _get_fewshot_sample_idxs(dataset_size=5, num_fewshot=5, sample_idx=4) assert fewshot_idxs == set([0, 1, 2, 3]) fewshot_idxs = _get_fewshot_sample_idxs(dataset_size=5, num_fewshot=500, sample_idx=4) assert fewshot_idxs == set([0, 1, 2, 3]) fewshot_idxs = _get_fewshot_sample_idxs(dataset_size=10, num_fewshot=7, sample_idx=4) assert len(fewshot_idxs) == 7 and 4 not in fewshot_idxs def test_batch_padding_logic(tiny_gpt2_tokenizer): continuation = tiny_gpt2_tokenizer(' dog' * 2000)['input_ids'] context = tiny_gpt2_tokenizer(' cat' * 2000)['input_ids'] _, continuation_spans = _make_padded_input(context, continuation, 2048, tiny_gpt2_tokenizer.eos_token_id) # the context (of len 2000) gets clipped to len 48 so that the whole continuation can fit assert continuation_spans[0] == 48 and continuation_spans[-1] == 2047 @pytest.mark.parametrize('padding_side', ['left', 'right', 'middle']) def test_make_padding(tiny_gpt2_tokenizer, padding_side): context = tiny_gpt2_tokenizer(' cat' * 2000)['input_ids'] padding_id = tiny_gpt2_tokenizer.eos_token_id error_context = contextlib.nullcontext() if padding_side in {'left', 'right'} else pytest.raises(ValueError) with error_context: input_ids, _ = _make_padded_input(context, [], 2048, padding_id, padding_side=padding_side) if padding_side == 'left': assert input_ids[0] == tiny_gpt2_tokenizer.eos_token_id assert input_ids[48:].tolist() == context elif padding_side == 'right': assert input_ids[-1] == tiny_gpt2_tokenizer.eos_token_id assert input_ids[:-48].tolist() == context @pytest.mark.parametrize('dataset_uri', ['lambada_small.jsonl']) def test_lm_task_dataloader(dataset_uri, tiny_gpt2_tokenizer, tmp_path): pytest.importorskip('datasets') local_data = os.path.join(os.path.dirname(__file__), 'local_data') tokenizer = tiny_gpt2_tokenizer dataset_uri = f'{local_data}/{dataset_uri}' batch_size = 2 seqlen = 2048 dl = get_icl_task_dataloader('language_modeling', dataset_uri, tokenizer, batch_size, max_seq_len=seqlen, pad_tok_id=tokenizer.eos_token_id, num_fewshot=0, prompt_string='', example_delimiter='\n', continuation_delimiter='', destination_path=str(tmp_path / 'icl.jsonl')) assert isinstance(dl.dataloader, DataLoader) # pyright batch = next(dl.dataloader._get_iterator()) assert 'input_ids' in batch assert tuple(batch['input_ids'].shape) == (batch_size, seqlen) assert 'attention_mask' in batch assert tuple(batch['attention_mask'].shape) == (batch_size, seqlen) assert 'continuation_indices' in batch assert isinstance(batch['continuation_indices'], list) and len(batch['continuation_indices']) == batch_size assert 'mode' in batch assert batch['mode'] == 'icl_task' min_idx = min(batch['continuation_indices'][0]).item() max_idx = max(batch['continuation_indices'][0]).item() assert tokenizer.decode(batch['input_ids'][0][min_idx:max_idx + 1]) == ' glen' @pytest.mark.parametrize('dataset_uri', ['lambada_small.jsonl']) @pytest.mark.parametrize('num_fewshot', [0, 1]) def test_lm_task_dataloader_opt_tokenizer(dataset_uri, num_fewshot, tmp_path): pytest.importorskip('datasets') local_data = os.path.join(os.path.dirname(__file__), 'local_data') tokenizer = AutoTokenizer.from_pretrained('facebook/opt-125m', use_fast=False) dataset_uri = f'{local_data}/{dataset_uri}' batch_size = 2 seqlen = 2048 dl = get_icl_task_dataloader('language_modeling', dataset_uri, tokenizer, batch_size, max_seq_len=seqlen, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string='', example_delimiter='\n', continuation_delimiter='', destination_path=str(tmp_path / 'icl.jsonl')) assert isinstance(dl.dataloader, DataLoader) # pyright batch = next(dl.dataloader._get_iterator()) assert 'input_ids' in batch assert tuple(batch['input_ids'].shape) == (batch_size, seqlen) assert 'attention_mask' in batch assert tuple(batch['attention_mask'].shape) == (batch_size, seqlen) assert 'continuation_indices' in batch assert isinstance(batch['continuation_indices'], list) and len(batch['continuation_indices']) == batch_size assert 'mode' in batch assert batch['mode'] == 'icl_task' min_idx = min(batch['continuation_indices'][0]).item() max_idx = max(batch['continuation_indices'][0]).item() assert tokenizer.decode(batch['input_ids'][0][min_idx:max_idx + 1]) == ' glen' assert tokenizer.decode(batch['input_ids'][0][0:min_idx]).startswith('</s>') assert tokenizer.decode(batch['input_ids'][0][0:min_idx]).count('</s>') == 1 @pytest.mark.parametrize('dataset_uri', ['piqa_small.jsonl']) @pytest.mark.parametrize('num_fewshot', [0, 1]) def test_mc_task_dataloader_opt_tokenizer(dataset_uri, num_fewshot, tmp_path): pytest.importorskip('datasets') local_data = os.path.join(os.path.dirname(__file__), 'local_data') tokenizer = AutoTokenizer.from_pretrained('facebook/opt-125m', use_fast=False) dataset_uri = f'{local_data}/{dataset_uri}' batch_size = 2 seqlen = 2048 dl = get_icl_task_dataloader('multiple_choice', dataset_uri, tokenizer, batch_size, max_seq_len=seqlen, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string='', example_delimiter='\n', continuation_delimiter=': ', destination_path=str(tmp_path / 'icl.jsonl')) assert isinstance(dl.dataloader, DataLoader) # pyright batch = next(dl.dataloader._get_iterator()) choices_per_question = 2 assert 'input_ids' in batch assert tuple(batch['input_ids'].shape) == (batch_size, seqlen) assert 'attention_mask' in batch assert tuple(batch['attention_mask'].shape) == (batch_size, seqlen) assert 'continuation_indices' in batch assert isinstance(batch['continuation_indices'], list) and len(batch['continuation_indices']) == batch_size assert 'mode' in batch assert batch['mode'] == 'icl_task' assert 'gold_indices' in batch assert isinstance(batch['gold_indices'], list) and len(batch['gold_indices']) == batch_size // choices_per_question assert 'choice_groupings' in batch assert isinstance(batch['choice_groupings'], list) and len( batch['choice_groupings']) == batch_size // choices_per_question min_idx = min(batch['continuation_indices'][0]).item() max_idx = max(batch['continuation_indices'][0]).item() assert tokenizer.decode(batch['input_ids'][0][min_idx:max_idx + 1]) == ': Pour it onto a plate' assert tokenizer.decode(batch['input_ids'][0][0:min_idx]).startswith('</s>') assert tokenizer.decode(batch['input_ids'][0][0:min_idx]).count('</s>') == 1 @pytest.mark.parametrize('dataset_uri', ['triviaqa_small.jsonl']) @pytest.mark.parametrize('num_fewshot', [0, 1, 2]) @pytest.mark.parametrize('prompt_string', ['I am a prompt', '']) def test_qa_task_dataloader(dataset_uri, tiny_gpt2_tokenizer, tmp_path, num_fewshot, prompt_string): pytest.importorskip('datasets') local_data = os.path.join(os.path.dirname(__file__), 'local_data') tokenizer = tiny_gpt2_tokenizer dataset_uri = f'{local_data}/{dataset_uri}' batch_size = 2 seqlen = 2048 # empirical number from the small test dataset maximum_answer_length = 9 dl = get_icl_task_dataloader('question_answering', dataset_uri, tokenizer, batch_size, max_seq_len=seqlen, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string=prompt_string, example_delimiter='\n', question_prelimiter='Q: ', continuation_delimiter='\nA:', destination_path=str(tmp_path / f'icl_{num_fewshot}.jsonl')) assert isinstance(dl.dataloader, DataLoader) # pyright batch = next(dl.dataloader._get_iterator()) assert tuple(batch['input_ids'].shape) == (batch_size, seqlen - maximum_answer_length) assert tuple(batch['attention_mask'].shape) == (batch_size, seqlen - maximum_answer_length) assert batch['mode'] == 'generate' # the maximum generation length from the small test data assert batch['generation_length'] == maximum_answer_length assert all(item[0] == tokenizer.eos_token_id for item in batch['input_ids']) decoded_batch = tokenizer.batch_decode(batch['input_ids']) assert all([item.count('Q: ') == num_fewshot + 1 for item in decoded_batch]) assert all([item.count('\nA:') == num_fewshot + 1 for item in decoded_batch]) if len(prompt_string) > 0: assert all([item.count('I am a prompt') == 1 for item in decoded_batch]) assert batch['labels'] == [['David Seville'], ['Scorpio', 'Skorpio']] assert decoded_batch[0].endswith('Q: Who was the man behind The Chipmunks?\nA:') assert decoded_batch[1].endswith('Q: What star sign is Jamie Lee Curtis?\nA:') @pytest.mark.parametrize('dataset_uri', ['piqa_small.jsonl']) def test_mc_task_dataloader(dataset_uri, tiny_gpt2_tokenizer, tmp_path): pytest.importorskip('datasets') local_data = os.path.join(os.path.dirname(__file__), 'local_data') tokenizer = tiny_gpt2_tokenizer dataset_uri = f'{local_data}/{dataset_uri}' batch_size = 2 seqlen = 2048 dl = get_icl_task_dataloader('multiple_choice', dataset_uri, tokenizer, batch_size, max_seq_len=seqlen, pad_tok_id=tokenizer.eos_token_id, num_fewshot=1, prompt_string='', example_delimiter='\n', continuation_delimiter=': ', destination_path=str(tmp_path / 'icl.jsonl')) assert isinstance(dl.dataloader, DataLoader) # pyright batch = next(dl.dataloader._get_iterator()) choices_per_question = 2 assert 'input_ids' in batch assert tuple(batch['input_ids'].shape) == (batch_size, seqlen) assert 'attention_mask' in batch assert tuple(batch['attention_mask'].shape) == (batch_size, seqlen) assert 'continuation_indices' in batch assert isinstance(batch['continuation_indices'], list) and len(batch['continuation_indices']) == batch_size assert 'mode' in batch assert batch['mode'] == 'icl_task' assert 'gold_indices' in batch assert isinstance(batch['gold_indices'], list) and len(batch['gold_indices']) == batch_size // choices_per_question assert 'choice_groupings' in batch assert isinstance(batch['choice_groupings'], list) and len( batch['choice_groupings']) == batch_size // choices_per_question min_idx = min(batch['continuation_indices'][0]).item() max_idx = max(batch['continuation_indices'][0]).item() assert tokenizer.decode(batch['input_ids'][0][min_idx:max_idx + 1]) == ': Pour it onto a plate' @pytest.mark.parametrize('dataset_uri', ['lambada_small.jsonl']) @pytest.mark.parametrize('num_fewshot', [0, 5]) @device('gpu') def test_lm_task_evaluation(device, dataset_uri, num_fewshot, tiny_gpt2_tokenizer, tmp_path): pytest.importorskip('datasets') in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger local_data = os.path.join(os.path.dirname(__file__), 'local_data') dataset_uri = f'{local_data}/{dataset_uri}' tokenizer = tiny_gpt2_tokenizer dl = get_icl_task_dataloader( 'language_modeling', dataset_uri, tokenizer, 2, max_seq_len=2048, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string='', example_delimiter='\n', continuation_delimiter='', destination_path=str(tmp_path / 'icl.jsonl'), ) evaluator = Evaluator(label='lambada', dataloader=dl, metric_names=['InContextLearningLMAccuracy']) config = transformers.AutoConfig.from_pretrained('EleutherAI/gpt-neo-125M') model = transformers.AutoModelForCausalLM.from_config(config) model = HuggingFaceModel( model=model, tokenizer=None, eval_metrics=[InContextLearningLMAccuracy()], use_logits=True, ) trainer = Trainer(model=model, max_duration='1ep', loggers=in_memory_logger) trainer.eval(eval_dataloader=evaluator, subset_num_batches=2) assert 'metrics/lambada/InContextLearningLMAccuracy' in in_memory_logger.data.keys() assert in_memory_logger.data['metrics/lambada/InContextLearningLMAccuracy'][0][1].item() == 0 @pytest.mark.parametrize('dataset_uri', ['piqa_small.jsonl', 'hellaswag_small.jsonl']) @device('gpu') @pytest.mark.parametrize('num_fewshot', [0, 5]) def test_mc_task_evaluation(device, num_fewshot, dataset_uri, tiny_gpt2_tokenizer, tmp_path, tiny_gpt2_model): pytest.importorskip('datasets') in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger local_data = os.path.join(os.path.dirname(__file__), 'local_data') dataset_uri = f'{local_data}/{dataset_uri}' tokenizer = tiny_gpt2_tokenizer # seed because the fewshot selection is currently unseeded reproducibility.seed_all(1234) dl = get_icl_task_dataloader( 'multiple_choice', dataset_uri, tokenizer, 8, max_seq_len=1024, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string='', example_delimiter='\n', continuation_delimiter=': ', destination_path=str(tmp_path / 'icl.jsonl'), ) evaluator = Evaluator(label='lambada', dataloader=dl, metric_names=['InContextLearningMultipleChoiceAccuracy']) model = HuggingFaceModel( model=tiny_gpt2_model, tokenizer=None, eval_metrics=[InContextLearningMultipleChoiceAccuracy()], use_logits=True, ) trainer = Trainer(model=model, max_duration='1ba', loggers=in_memory_logger) trainer.eval(eval_dataloader=evaluator, subset_num_batches=2) assert 'metrics/lambada/InContextLearningMultipleChoiceAccuracy' in in_memory_logger.data.keys() assert in_memory_logger.data['metrics/lambada/InContextLearningMultipleChoiceAccuracy'][0][1].item() > 0 @pytest.mark.parametrize('dataset_uri', ['triviaqa_small.jsonl']) @device('gpu') @world_size(1, 2) @pytest.mark.parametrize('num_fewshot', [0, 5]) def test_qa_task_evaluation(device, world_size, num_fewshot, dataset_uri, tiny_gpt2_tokenizer, tiny_gpt2_model, tmp_path): pytest.importorskip('datasets') in_memory_logger = InMemoryLogger() # track the logged metrics in the in_memory_logger local_data = os.path.join(os.path.dirname(__file__), 'local_data') dataset_uri = f'{local_data}/{dataset_uri}' tokenizer = tiny_gpt2_tokenizer tmp_path_to_broadcast = str(os.path.abspath(tmp_path)) gathered_paths = dist.all_gather_object(tmp_path_to_broadcast) dl = get_icl_task_dataloader( 'question_answering', dataset_uri, tokenizer, 2, max_seq_len=1024, pad_tok_id=tokenizer.eos_token_id, num_fewshot=num_fewshot, prompt_string='', example_delimiter='\n', continuation_delimiter=': ', destination_path=str(Path(gathered_paths[0]) / 'icl.jsonl'), ) evaluator = Evaluator(label='triviaqa', dataloader=dl, metric_names=['InContextLearningQAAccuracy']) model = HuggingFaceModel( model=tiny_gpt2_model, tokenizer=tiny_gpt2_tokenizer, eval_metrics=[InContextLearningQAAccuracy()], use_logits=True, ) trainer = Trainer(model=model, max_duration='1ba', loggers=in_memory_logger) trainer.eval(eval_dataloader=evaluator, subset_num_batches=2) assert 'metrics/triviaqa/InContextLearningQAAccuracy' in in_memory_logger.data.keys() assert in_memory_logger.data['metrics/triviaqa/InContextLearningQAAccuracy'][0][1].item() == 0
composer-dev
tests/datasets/test_in_context_learning_datasets.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from composer.datasets import build_cifar10_dataloader, build_synthetic_cifar10_dataloader @pytest.mark.parametrize('is_train', [False, True]) @pytest.mark.parametrize('synthetic', [pytest.param(False, marks=pytest.mark.daily), True]) def test_cifar10_shape_length(is_train, synthetic): batch_size = 1 if synthetic: dataspec = build_synthetic_cifar10_dataloader(global_batch_size=batch_size, is_train=is_train) else: dataspec = build_cifar10_dataloader(datadir='/tmp', global_batch_size=batch_size, is_train=is_train) samples = [_ for _ in dataspec.dataloader] if is_train: assert len(samples) == 50000 // batch_size else: assert len(samples) == 10000 // batch_size assert samples[0][0].shape == (1, 3, 32, 32)
composer-dev
tests/datasets/test_cifar.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import List, Tuple import numpy as np import pytest import torch from PIL import Image from composer.datasets.utils import pil_image_collate @pytest.fixture def num_samples(): return 4 @pytest.fixture def image_size(): return (16, 16) @pytest.fixture def pil_image_list(num_samples: int, image_size: Tuple[int, int]): return [Image.new(mode='RGB', size=image_size, color=(i, i, i)) for i in range(num_samples)] @pytest.fixture def pil_target_list(num_samples: int, image_size: Tuple[int, int]): return [Image.new(mode='L', size=image_size, color=i) for i in range(num_samples)] @pytest.fixture def correct_image_tensor(num_samples: int, image_size: Tuple[int, int]): return torch.arange(num_samples).expand(3, *image_size, -1).permute(3, 0, 1, 2) @pytest.fixture def scalar_target_list(num_samples: int): return np.arange(num_samples) def test_scalar_target_collate(pil_image_list: List[Image.Image], scalar_target_list: np.ndarray, correct_image_tensor: torch.Tensor): batch = [(img, target) for img, target in zip(pil_image_list, scalar_target_list)] image_tensor, target_tensor = pil_image_collate(batch=batch) correct_target_tensor = torch.arange(correct_image_tensor.shape[0]) assert torch.all(image_tensor == correct_image_tensor) and torch.all(target_tensor == correct_target_tensor) def test_image_target_collate(pil_image_list: List[Image.Image], pil_target_list: List[Image.Image], correct_image_tensor): batch = [(img, target) for img, target in zip(pil_image_list, pil_target_list)] image_tensor, target_tensor = pil_image_collate( batch=batch) # type: ignore "Image" is incompatible with "ndarray[Unknown, Unknown]" assert torch.all(image_tensor == correct_image_tensor) and torch.all(target_tensor == correct_image_tensor[:, 0])
composer-dev
tests/datasets/test_dataset_utils.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/datasets/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from composer.datasets import build_mnist_dataloader, build_synthetic_mnist_dataloader @pytest.mark.parametrize('is_train', [False, True]) @pytest.mark.parametrize('synthetic', [pytest.param(False, marks=pytest.mark.daily), True]) def test_mnist_shape_length(is_train, synthetic): batch_size = 1 if synthetic: loader = build_synthetic_mnist_dataloader(global_batch_size=batch_size, is_train=is_train) else: loader = build_mnist_dataloader(datadir='/tmp', global_batch_size=batch_size, is_train=is_train) samples = [_ for _ in loader] if is_train: assert len(samples) == 60000 // batch_size else: assert len(samples) == 10000 // batch_size assert samples[0][0].shape == (1, 1, 28, 28)
composer-dev
tests/datasets/test_mnist.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Optional import pytest import torch from composer.datasets.synthetic import (SyntheticBatchPairDataset, SyntheticDataLabelType, SyntheticDataType, SyntheticPILDataset) @pytest.mark.parametrize('data_type', [ SyntheticDataType.GAUSSIAN, SyntheticDataType.SEPARABLE, ]) @pytest.mark.parametrize('label_type', [ SyntheticDataLabelType.CLASSIFICATION_ONE_HOT, SyntheticDataLabelType.CLASSIFICATION_INT, ]) def test_synthetic_batch_pair_creation(data_type: SyntheticDataType, label_type: SyntheticDataLabelType): if data_type == SyntheticDataType.SEPARABLE: if label_type != SyntheticDataLabelType.CLASSIFICATION_INT: pytest.skip('Separable data requires classification int labels') num_classes = 2 label_shape = None else: num_classes = 10 label_shape = (1, 10, 12) if data_type == SyntheticDataType.GAUSSIAN and label_type == SyntheticDataLabelType.CLASSIFICATION_INT: pytest.xfail('classification_int is not currently supported with gaussian data') dataset_size = 1000 data_shape = (3, 32, 32) num_samples_to_create = 10 dataset = SyntheticBatchPairDataset(total_dataset_size=dataset_size, data_shape=data_shape, num_unique_samples_to_create=num_samples_to_create, data_type=data_type, label_type=label_type, num_classes=num_classes, label_shape=label_shape) assert len(dataset) == dataset_size # verify datapoints are correct x, y = dataset[0] assert x.size() == data_shape if label_type == SyntheticDataLabelType.CLASSIFICATION_INT: assert isinstance(y.item(), int) elif label_type == SyntheticDataLabelType.CLASSIFICATION_ONE_HOT: assert y.size() == (num_classes,) assert torch.min(y) == 0 assert torch.max(y) == 1 # check that points were allocated in memory after the first call to __getitem__ assert dataset.input_data is not None assert dataset.input_target is not None # check that the correct number of points were allocated in memory assert dataset.input_data.size()[0] == num_samples_to_create assert dataset.input_target.size()[0] == num_samples_to_create # verify that you can getch points outside the num_samples_to_create range # (still within the total dataset size range) x, y = dataset[num_samples_to_create + 1] assert x is not None assert y is not None @pytest.mark.parametrize('label_type', [ SyntheticDataLabelType.CLASSIFICATION_ONE_HOT, SyntheticDataLabelType.CLASSIFICATION_INT, ]) @pytest.mark.parametrize('num_classes', [None, 0]) def test_synthetic_classification_param_validation(label_type: SyntheticDataLabelType, num_classes: Optional[int]): with pytest.raises(ValueError): SyntheticBatchPairDataset(total_dataset_size=10, data_shape=(2, 2), label_type=label_type, num_classes=num_classes) @pytest.mark.parametrize('data_type', [ SyntheticDataType.GAUSSIAN, SyntheticDataType.SEPARABLE, ]) @pytest.mark.parametrize('label_type', [ SyntheticDataLabelType.CLASSIFICATION_ONE_HOT, SyntheticDataLabelType.CLASSIFICATION_INT, ]) def test_synthetic_image_data_creation(data_type: SyntheticDataType, label_type: SyntheticDataLabelType): if data_type == SyntheticDataType.SEPARABLE: if label_type != SyntheticDataLabelType.CLASSIFICATION_INT: pytest.skip('Seperable data requires classification int labels') num_classes = 2 label_shape = None else: num_classes = 10 label_shape = (1, 10, 12) if data_type == SyntheticDataType.GAUSSIAN and label_type == SyntheticDataLabelType.CLASSIFICATION_INT: pytest.xfail('classification_int is not currently supported with gaussian data') dataset_size = 1000 data_shape = (32, 32) num_samples_to_create = 100 dataset = SyntheticPILDataset(total_dataset_size=dataset_size, data_shape=data_shape, num_unique_samples_to_create=num_samples_to_create, data_type=data_type, label_type=label_type, num_classes=num_classes, label_shape=label_shape) assert len(dataset) == dataset_size # verify datapoints are correct x, y = dataset[0] assert x.size == data_shape if label_type == SyntheticDataLabelType.CLASSIFICATION_INT: assert isinstance(y.item(), int) elif label_type == SyntheticDataLabelType.CLASSIFICATION_ONE_HOT: assert y.size() == (num_classes,) assert torch.min(y) == 0 assert torch.max(y) == 1 # check that points were allocated in memory after the first call to __getitem__ assert dataset._dataset.input_data is not None assert dataset._dataset.input_target is not None # check that the correct number of points were allocated in memory assert dataset._dataset.input_data.shape[0] == num_samples_to_create assert dataset._dataset.input_target.shape[0] == num_samples_to_create # verify that you can getch points outside the num_samples_to_create range # (still within the total dataset size range) x, y = dataset[num_samples_to_create + 1] assert x is not None assert y is not None
composer-dev
tests/datasets/test_synthetic_data.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torchvision import transforms from composer.datasets.synthetic import SyntheticPILDataset from composer.datasets.utils import add_vision_dataset_transform image_size = 32 def generate_synthetic_dataset(data_transforms): return SyntheticPILDataset(total_dataset_size=1000, data_shape=[image_size, image_size], num_classes=2, transform=data_transforms) def generate_default_transforms(): return transforms.Compose([transforms.RandomCrop(32), transforms.ToTensor(), transforms.RandomRotation(5)]) def generate_composition_no_tensor(): return transforms.Compose( [transforms.RandomCrop(32), transforms.RandomHorizontalFlip(), transforms.RandomRotation(5)]) @pytest.mark.parametrize('is_tensor_transform,index', [(False, 1), (True, 2)]) def test_pre_post_to_tensor_compose(is_tensor_transform, index): dataset = generate_synthetic_dataset(generate_default_transforms()) add_vision_dataset_transform(dataset, transforms.RandomAutocontrast(), is_tensor_transform=is_tensor_transform) assert dataset.transform is not None assert type(dataset.transform.transforms[index]) == transforms.RandomAutocontrast @pytest.mark.parametrize('is_tensor_transform,index', [(False, 0), (True, 1)]) def test_pre_post_to_tensor(is_tensor_transform, index): dataset = generate_synthetic_dataset(transforms.ToTensor()) add_vision_dataset_transform(dataset, transforms.RandomAutocontrast(), is_tensor_transform=is_tensor_transform) assert dataset.transform is not None assert type(dataset.transform.transforms[index]) == transforms.RandomAutocontrast @pytest.mark.parametrize('data_transforms', [(generate_composition_no_tensor()), (transforms.RandomHorizontalFlip())]) def test_default_to_append(data_transforms): dataset = generate_synthetic_dataset(data_transforms) add_vision_dataset_transform(dataset, transforms.RandomAutocontrast()) assert dataset.transform is not None assert type(dataset.transform.transforms[-1]) == transforms.RandomAutocontrast def test_add_to_none_transform(): dataset = generate_synthetic_dataset(None) add_vision_dataset_transform(dataset, transforms.RandomAutocontrast()) assert type(dataset.transform) == transforms.RandomAutocontrast
composer-dev
tests/datasets/test_add_dataset_transform.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os import pathlib import pytest from composer.datasets.ffcv_utils import write_ffcv_dataset from composer.datasets.synthetic import SyntheticDataLabelType, SyntheticPILDataset @pytest.mark.vision def test_write_ffcv_dataset(tmp_path: pathlib.Path): dataset = SyntheticPILDataset(total_dataset_size=1, num_classes=1, data_shape=[1, 1, 3], label_type=SyntheticDataLabelType.CLASSIFICATION_INT, num_unique_samples_to_create=1) output_file = str(tmp_path / 'ffcv') write_ffcv_dataset(dataset, write_path=output_file, num_workers=1) assert os.path.exists(output_file)
composer-dev
tests/datasets/test_ffcv_utils.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import os from pathlib import Path import numpy as np import pytest from torch.utils.data import DataLoader from composer.metrics.nlp import LanguageCrossEntropy, MaskedAccuracy from composer.models import HuggingFaceModel from composer.trainer import Trainer from composer.utils import dist from tests.common import device, world_size @pytest.mark.skip(reason='CO-1735, failing intermittently on different nodes, additional debug required') @pytest.mark.daily @pytest.mark.remote @device('cpu', 'gpu') @world_size(1, 2) @pytest.mark.parametrize('num_workers', [0, 1, 2]) @pytest.mark.parametrize('dataset,dataset_args,seed', [('c4', { 'remote': 's3://mosaicml-internal-dataset-c4/mds/2/', 'tokenizer_name': 'bert-base-uncased', 'max_seq_len': 256, 'group_method': 'truncate' }, 1), ('pile', { 'remote': 's3://mosaicml-internal-dataset-the-pile/mds/2/', 'tokenizer_name': 'bert-base-uncased', 'max_seq_len': 256, 'group_method': 'truncate' }, 2), ('enwiki', { 'remote': 's3://mosaicml-internal-dataset-enwiki-20200101/mds/2b/' }, 3)]) def test_streaming_datasets(num_workers, dataset, dataset_args, seed, tiny_bert_tokenizer, tiny_bert_model, world_size, device, tmp_path): # Need to initialize dist before we get to streaming, because streaming always uses NCCL if not dist.is_initialized(): dist.initialize_dist(device=device) streaming = pytest.importorskip('streaming') transformers = pytest.importorskip('transformers') name_to_cls = { 'c4': streaming.text.c4.StreamingC4, 'pile': streaming.text.pile.StreamingPile, 'enwiki': streaming.text.enwiki.StreamingEnWiki } full_seed = seed + (num_workers + 1) * 10 + (world_size + 1) * 100 + (1 if device == 'cpu' else 2) * 1000 # This seed setting is necessary to prevent a shared memory collision due to a streaming bug np.random.seed(full_seed) # distribute the local dataset path from rank 0 local_path = [os.path.abspath(tmp_path)] dist.broadcast_object_list(local_path, src=0) local_path = Path(local_path[0]) / dataset streaming_dataset = name_to_cls[dataset](local=local_path, split='val', predownload=None, batch_size=4, **dataset_args) pretraining_metrics = [ LanguageCrossEntropy(ignore_index=-100, vocab_size=tiny_bert_tokenizer.vocab_size), MaskedAccuracy(ignore_index=-100) ] model = HuggingFaceModel(model=tiny_bert_model, use_logits=True, metrics=pretraining_metrics) collator = transformers.DataCollatorForLanguageModeling(tokenizer=tiny_bert_tokenizer, mlm_probability=0.15) if dataset != 'enwiki' else None dataloader = DataLoader(streaming_dataset, batch_size=4, num_workers=num_workers, collate_fn=collator) trainer = Trainer(model=model, train_dataloader=dataloader, max_duration='2ba', device=device) trainer.fit() # Necessary for some reason, otherwise streaming does not clean up properly, and tests fail trainer.close() if trainer.state.train_dataloader and trainer.state.train_dataloader._iterator is not None: # type: ignore [reportGeneralTypeIssues] trainer.state.train_dataloader._iterator._shutdown_workers() # type: ignore [reportGeneralTypeIssues]
composer-dev
tests/datasets/test_streaming_datasets_train.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest from PIL import Image from composer.datasets.ade20k import (PadToSize, PhotometricDistoration, RandomCropPair, RandomHFlipPair, RandomResizePair) @pytest.fixture def size(): return 16, 16 @pytest.fixture def sample_pair(size): img = Image.new(mode='RGB', size=size) target = Image.new(mode='L', size=size) return img, target def test_random_resize(sample_pair, size): random_resize_transform = RandomResizePair(min_scale=0.5, max_scale=2.0, base_size=size) # Test that the resized image remains within bounds for 10 iterations for _ in range(10): resized_img, resized_target = random_resize_transform(sample_pair) assert resized_img.size == resized_target.size assert resized_img.size[0] >= size[0] // 2 and resized_img.size[0] <= size[0] * 2 assert resized_img.size[1] >= size[1] // 2 and resized_img.size[1] <= size[1] * 2 @pytest.mark.parametrize('crop_size', [(8, 8), (32, 32)]) def test_random_crop(sample_pair, crop_size): random_crop_transform = RandomCropPair(crop_size) image, target = random_crop_transform(sample_pair) assert image.size == target.size final_size = min(crop_size[0], sample_pair[0].height), min(crop_size[1], sample_pair[0].width) assert final_size == image.size def test_random_hflip(sample_pair): old_image, old_target = np.array(sample_pair[0]), np.array(sample_pair[1]) # Always flip always_hflip_transform = RandomHFlipPair(probability=1.0) new_image, new_target = always_hflip_transform(sample_pair) new_image, new_target = np.array(new_image), np.array(new_target) assert np.allclose(new_image, old_image[:, ::-1]) and np.allclose(new_target, old_target[:, ::-1]) # Never flip always_hflip_transform = RandomHFlipPair(probability=0.0) new_image, new_target = always_hflip_transform(sample_pair) new_image, new_target = np.array(new_image), np.array(new_target) assert np.allclose(new_image, old_image) and np.allclose(new_target, old_target) @pytest.mark.parametrize('pad_size', [(32, 32), (8, 8)]) def test_pad_transform(sample_pair, pad_size): image = sample_pair[0] pad_transform = PadToSize(size=pad_size, fill=255) padded_image = pad_transform(image) final_size = max(pad_size[1], image.width), max(pad_size[0], image.height) # Check for correct size and number of padding elements assert padded_image.size == final_size # Check appropriate amount of padding is used padded_image = np.array(padded_image) initial_area = image.width * image.height final_area = final_size[0] * final_size[1] n_channels = padded_image.shape[2] pad_volume = n_channels * (final_area - initial_area) assert pad_volume == (padded_image == 255).sum() def test_photometric_distortion(sample_pair): old_image = sample_pair[0] # Test no transform case photometric_transform = PhotometricDistoration(brightness=1.0, contrast=1.0, saturation=1.0, hue=0) new_image = photometric_transform(old_image) old_image, new_image = np.array(old_image), np.array(new_image) assert np.allclose(old_image, new_image)
composer-dev
tests/datasets/test_segmentation_transforms.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import List, Optional, Type from unittest.mock import Mock import pytest import torch import torch.nn.functional as F from torchvision.models.resnet import Bottleneck from composer.algorithms import StochasticDepth from composer.algorithms.stochastic_depth.stochastic_depth import _STOCHASTIC_LAYER_MAPPING, apply_stochastic_depth from composer.algorithms.stochastic_depth.stochastic_layers import make_resnet_bottleneck_stochastic from composer.core import Event, State from composer.core.time import TimeUnit from composer.models import composer_resnet from composer.utils import module_surgery @pytest.fixture() def state(minimal_state: State): """stochastic depth tests require ResNet model.""" minimal_state.model = composer_resnet(model_name='resnet50', num_classes=100) return minimal_state @pytest.fixture() def target_layer_name() -> str: return 'ResNetBottleneck' @pytest.fixture() def stochastic_method(): return 'block' def count_sd_forward(module: torch.nn.Module, target_block: Type[torch.nn.Module], count: int = 0): if (len(list(module.children()))) == 0 and len(list(module.parameters())) > 0: return count else: for child in module.children(): if isinstance(child, target_block) and hasattr(child, 'drop_rate'): count += 1 count = count_sd_forward(child, target_block, count) return count @pytest.mark.parametrize('stochastic_method', ['block', 'sample']) @pytest.mark.parametrize('target_layer_name', ['ResNetBottleneck']) def test_sd_algorithm(state: State, stochastic_method: str, target_layer_name: str): target_layer, _ = _STOCHASTIC_LAYER_MAPPING[target_layer_name] target_block_count = module_surgery.count_module_instances(state.model, target_layer) sd = StochasticDepth(stochastic_method=stochastic_method, target_layer_name=target_layer_name, drop_rate=0.5, drop_distribution='linear', drop_warmup=0.0) sd.apply(Event.INIT, state, logger=Mock()) stochastic_forward_count = count_sd_forward(state.model, target_layer) assert target_block_count == stochastic_forward_count @pytest.mark.parametrize('stochastic_method', ['block', 'sample']) @pytest.mark.parametrize('target_layer_name', ['ResNetBottleneck']) def test_sd_functional(state: State, stochastic_method: str, target_layer_name: str): target_layer, _ = _STOCHASTIC_LAYER_MAPPING[target_layer_name] target_block_count = module_surgery.count_module_instances(state.model, target_layer) apply_stochastic_depth(model=state.model, stochastic_method=stochastic_method, target_layer_name=target_layer_name, drop_rate=0.5, drop_distribution='linear') stochastic_forward_count = count_sd_forward(state.model, target_layer) assert target_block_count == stochastic_forward_count class TestStochasticBottleneckForward: @pytest.mark.parametrize('drop_rate', [1.0]) def test_block_stochastic_bottleneck_drop(self, drop_rate: float): X = torch.randn(4, 4, 16, 16) bottleneck_block = Bottleneck(inplanes=4, planes=1) stochastic_block = make_resnet_bottleneck_stochastic(module=bottleneck_block, module_index=0, module_count=1, drop_rate=drop_rate, drop_distribution='linear', stochastic_method='block') stochastic_X = stochastic_block(X) assert stochastic_X is X @pytest.mark.parametrize('drop_rate', [0.0]) def test_block_stochastic_bottleneck_keep(self, drop_rate: float): X = torch.randn(4, 4, 16, 16) bottleneck_block = Bottleneck(inplanes=4, planes=1) stochastic_block = make_resnet_bottleneck_stochastic(module=bottleneck_block, module_index=0, module_count=1, drop_rate=drop_rate, drop_distribution='linear', stochastic_method='block') stochastic_X = stochastic_block(X) assert stochastic_X is not X @pytest.mark.parametrize('drop_rate', [1.0]) def test_sample_stochastic_bottleneck_drop_all(self, drop_rate: float): X = F.relu(torch.randn(4, 4, 16, 16)) # inputs and outputs will match if the input has been ReLUed bottleneck_block = Bottleneck(inplanes=4, planes=1) stochastic_block = make_resnet_bottleneck_stochastic(module=bottleneck_block, module_index=0, module_count=1, drop_rate=drop_rate, drop_distribution='linear', stochastic_method='sample') stochastic_X = stochastic_block(X) assert torch.all(X == stochastic_X) class TestStochasticDepthDropRate: @pytest.fixture def algorithm( self, target_layer_name: str, stochastic_method: str, drop_rate: float, drop_distribution: str, drop_warmup: str, ): return StochasticDepth( target_layer_name, stochastic_method, drop_rate, drop_distribution, drop_warmup, ) def get_drop_rate_list(self, module: torch.nn.Module, drop_rates: Optional[List] = None): if drop_rates is None: drop_rates = [] if (len(list(module.children())) == 0 and len(list(module.parameters())) > 0): return else: for _, child in module.named_children(): if hasattr(child, 'drop_rate'): drop_rates.append(child.drop_rate) self.get_drop_rate_list(child, drop_rates) @pytest.mark.parametrize('step', [50, 100, 1000]) @pytest.mark.parametrize('drop_rate', [0.0, 0.5, 1.0]) @pytest.mark.parametrize('drop_distribution', ['uniform', 'linear']) @pytest.mark.parametrize('drop_warmup', ['0.1dur']) def test_drop_rate_warmup(self, algorithm: StochasticDepth, step: int, state: State): old_drop_rates = [] self.get_drop_rate_list(state.model, drop_rates=old_drop_rates) state.timestamp._batch._value = step algorithm.apply(Event.BATCH_START, state, logger=Mock()) new_drop_rates = [] self.get_drop_rate_list(state.model, drop_rates=new_drop_rates) assert state.max_duration is not None assert state.max_duration.unit == TimeUnit.EPOCH assert state.dataloader_len is not None drop_warmup_iters = int(int(state.dataloader_len) * int(state.max_duration.value) * algorithm.drop_warmup) assert torch.all(torch.tensor(new_drop_rates) == ((step / drop_warmup_iters) * torch.tensor(old_drop_rates))) class TestStochasticDepthInputValidation(): @pytest.mark.parametrize('stochastic_method', ['nonsense']) def test_invalid_method_name(self, stochastic_method: str, target_layer_name: str): with pytest.raises(ValueError): StochasticDepth(stochastic_method=stochastic_method, target_layer_name=target_layer_name) @pytest.mark.parametrize('target_layer_name', ['nonsense_pt2']) def test_invalid_layer_name(self, stochastic_method: str, target_layer_name: str): with pytest.raises(ValueError): StochasticDepth(stochastic_method=stochastic_method, target_layer_name=target_layer_name) @pytest.mark.parametrize('drop_rate', [-0.5, 1.7]) def test_invalid_drop_rate(self, stochastic_method: str, target_layer_name: str, drop_rate: float): with pytest.raises(ValueError): StochasticDepth( stochastic_method=stochastic_method, target_layer_name=target_layer_name, drop_rate=drop_rate, ) @pytest.mark.parametrize('drop_distribution', ['nonsense_pt3']) def test_invalid_drop_distribution(self, stochastic_method: str, target_layer_name: str, drop_distribution: str): with pytest.raises(ValueError): StochasticDepth(stochastic_method=stochastic_method, target_layer_name=target_layer_name, drop_distribution=drop_distribution)
composer-dev
tests/algorithms/test_stochastic_depth.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from unittest.mock import Mock import pytest import torch from packaging import version from torch import nn import composer.algorithms.gradient_clipping.gradient_clipping as gc_module from composer.algorithms.gradient_clipping import GradientClipping, apply_gradient_clipping from composer.algorithms.gradient_clipping.gradient_clipping import _apply_agc, _get_clipped_gradient_coeff from composer.core import Engine, State from composer.core.event import Event from tests.common import world_size from tests.common.datasets import dummy_tiny_bert_classification_batch, dummy_transformer_classifier_batch from tests.common.models import SimpleTransformerClassifier, configure_tiny_bert_config def simple_model_with_grads(): # Set up small NN with one linear layer with no bias + softmax, so only # one set of params and get some gradients. N, hin, num_classes = 8, 4, 3 x = torch.rand((N, hin)) y = torch.randint(high=num_classes - 1, size=(N,)) model = nn.Sequential(nn.Linear(hin, num_classes, bias=False), nn.Softmax(dim=1)) # Force wrap every module in FSDP, to allow for testing FSDP # gradient clipping properly. for module in model: module._fsdp_wrap = True model._fsdp_wrap = True o = model(x) loss_fn = nn.CrossEntropyLoss() loss = loss_fn(o, y) loss.backward() return model def cnn_model_with_grads(): # Make a CNN with all the common parameters: bias, weight matrix, conv filters. class myNN(nn.Module): def __init__(self, n_ch, num_fmaps, h, num_classes, filter_size): super().__init__() self.conv_model = nn.Sequential(nn.Conv2d(n_ch, num_fmaps, kernel_size=filter_size), nn.ReLU()) self.mlp = nn.Sequential(nn.Linear(num_fmaps, h), nn.ReLU(), nn.Linear(h, h), nn.ReLU(), nn.Linear(h, num_classes), nn.Softmax(dim=1)) def forward(self, x): fmaps = self.conv_model(x) vec = torch.mean(fmaps, dim=(2, 3)) out = self.mlp(vec) return out # Generate some gradients. N, n_ch, num_fmaps, h, num_classes, filter_size = 8, 3, 4, 4, 3, 3 x = torch.rand((N, n_ch, 16, 16)) y = torch.randint(high=num_classes - 1, size=(N,)) model = myNN(n_ch, num_fmaps, h, num_classes, filter_size) # Force wrap every module in FSDP, to allow for testing FSDP # gradient clipping properly. for layer in model.modules(): layer._fsdp_wrap = True o = model(x) loss_fn = nn.CrossEntropyLoss() loss = loss_fn(o, y) loss.backward() return model def simple_transformer_model_with_grads(): # Make a Transformer model. model = SimpleTransformerClassifier(vocab_size=100, num_classes=3) # Force wrap every module in FSDP, to allow for testing FSDP # gradient clipping properly. for layer in model.modules(): layer._fsdp_wrap = True x = dummy_transformer_classifier_batch(num_classes=3) o = model(x) y = torch.randint(high=1, size=o.shape, dtype=o.dtype) loss_fn = nn.CrossEntropyLoss() loss = loss_fn(o, y) loss.backward() return model def hf_model_with_grads(): # Make a HuggingFace BERT model. transformers = pytest.importorskip('transformers') from composer.models import HuggingFaceModel tiny_bert_config = configure_tiny_bert_config() tiny_bert_config.num_labels = 3 # type: ignore hf_model = transformers.AutoModelForSequenceClassification.from_config( tiny_bert_config) # type: ignore (thirdparty) model = HuggingFaceModel(hf_model, metrics=[], use_logits=True) # Force wrap every module in FSDP, to allow for testing FSDP # gradient clipping properly. for layer in model.modules(): layer._fsdp_wrap = True x = dummy_tiny_bert_classification_batch(num_classes=3) o = model(x).logits y = torch.randint(high=1, size=o.shape, dtype=o.dtype) loss_fn = nn.CrossEntropyLoss() loss = loss_fn(o, y) loss.backward() return model def test_gradient_clipping_functional(monkeypatch): model = Mock() new_gc_fn = Mock() monkeypatch.setattr(gc_module, '_apply_agc', new_gc_fn) apply_gradient_clipping(model, 'adaptive', 0.1, fsdp_enabled=False) new_gc_fn.assert_called_once_with(model.parameters(), clipping_threshold=0.1) new_gc_fn = Mock() monkeypatch.setattr(torch.nn.utils, 'clip_grad_norm_', new_gc_fn) apply_gradient_clipping(model, 'norm', 0.1, fsdp_enabled=False) new_gc_fn.assert_called_once() new_gc_fn = Mock() monkeypatch.setattr(torch.nn.utils, 'clip_grad_value_', new_gc_fn) apply_gradient_clipping(model, 'value', 0.1, fsdp_enabled=False) new_gc_fn.assert_called_once() @pytest.mark.parametrize('clipping_type', [('adaptive',), ('norm',), ('value',)]) @pytest.mark.parametrize( 'model_with_grads', [simple_model_with_grads, cnn_model_with_grads, simple_transformer_model_with_grads, hf_model_with_grads]) def test_gradient_clipping_algorithm(monkeypatch, clipping_type, model_with_grads, dummy_state: State): model = model_with_grads() apply_gc_fn = Mock() monkeypatch.setattr(gc_module, 'apply_gradient_clipping', apply_gc_fn) state = dummy_state state.model = model state.callbacks = [] state.algorithms = [GradientClipping(clipping_type=clipping_type, clipping_threshold=0.01)] logger = Mock() engine = Engine(state, logger) # Run the Event that should cause gradient_clipping.apply to be called. engine.run_event(Event.AFTER_TRAIN_BATCH) apply_gc_fn.assert_called_once() @pytest.mark.parametrize( 'model_with_grads', [simple_model_with_grads(), cnn_model_with_grads(), simple_transformer_model_with_grads(), hf_model_with_grads()]) def test_gradient_clipping_algorithm_with_deepspeed_enabled( monkeypatch: pytest.MonkeyPatch, model_with_grads, dummy_state: State, ): clipping_threshold = 0.1191 apply_gc_fn = Mock() monkeypatch.setattr(gc_module, 'apply_gradient_clipping', apply_gc_fn) state = dummy_state # Set clipping_type to norm to ensure that apply_gradient_clipping # is not called. state.algorithms = [GradientClipping(clipping_type='norm', clipping_threshold=clipping_threshold)] # Enable deepspeed. state.deepspeed_config = {} model = model_with_grads state.model = model logger = Mock() engine = Engine(state, logger) # Run the Event that should cause gradient_clipping.apply to be called and deepspeed_config to be modified. engine.run_event(Event.INIT) # Make sure deepspeed_config's gradient_clipping field is set properly. assert 'gradient_clipping' in state.deepspeed_config and state.deepspeed_config[ 'gradient_clipping'] == clipping_threshold # Make sure apply_gradient_clipping is not called. apply_gc_fn.assert_not_called() def _auto_wrap_policy(module: torch.nn.Module, recurse: bool, unwrapped_params: int) -> bool: if recurse: return True if hasattr(module, '_fsdp_wrap'): return bool(module._fsdp_wrap) return False @pytest.mark.parametrize('model_with_grads', [ simple_model_with_grads, cnn_model_with_grads, pytest.param(simple_transformer_model_with_grads, marks=pytest.mark.xfail(reason='SimpleTransformerBase cannot be recursively FSDP wrapped.')), hf_model_with_grads ]) @pytest.mark.parametrize('clipping_type', ['norm', 'value']) @pytest.mark.skipif(version.parse(torch.__version__) < version.parse('1.13.0'), reason='requires PyTorch 1.13 or higher') @pytest.mark.gpu @world_size(2) def test_gradient_clipping_algorithm_with_fsdp_enabled_does_not_error( monkeypatch, model_with_grads, clipping_type, dummy_state: State, world_size: int, ): from torch.distributed.fsdp import FullyShardedDataParallel clipping_threshold = 0.1191 state = dummy_state state.model = FullyShardedDataParallel(model_with_grads(), auto_wrap_policy=_auto_wrap_policy, device_id=torch.cuda.current_device()) state.algorithms = [GradientClipping(clipping_type=clipping_type, clipping_threshold=clipping_threshold)] logger = Mock() engine = Engine(state, logger) engine.run_event(Event.AFTER_TRAIN_BATCH) @pytest.mark.parametrize( 'model_with_grads', [simple_model_with_grads, cnn_model_with_grads, simple_transformer_model_with_grads, hf_model_with_grads]) def test_algorithm_with_deepspeed_enabled_errors_out_for_non_norm( monkeypatch: pytest.MonkeyPatch, dummy_state: State, model_with_grads, ): clipping_threshold = 0.1191 apply_gc_fn = Mock() monkeypatch.setattr(gc_module, 'apply_gradient_clipping', apply_gc_fn) state = dummy_state # Enable deepspeed and set clipping_type to norm to ensure that apply_gradient_clipping # is not called. state.algorithms = [GradientClipping(clipping_type='value', clipping_threshold=clipping_threshold)] state.deepspeed_config = {} model = model_with_grads() state.model = model logger = Mock() engine = Engine(state, logger) # Clipping type is not set to norm and deepspeed is enabled so NotImplementedError should be raised. with pytest.raises(NotImplementedError): engine.run_event(Event.INIT) # Clipping threshold is less than zero and deepspeed is enabled so NotImplementedError should be raised. state.algorithms = [GradientClipping(clipping_type='norm', clipping_threshold=-2.0)] with pytest.raises(ValueError): engine.run_event(Event.INIT) #### Tests Specific to AGC ###### @pytest.mark.parametrize( 'model_with_grads', [simple_model_with_grads, cnn_model_with_grads, simple_transformer_model_with_grads, hf_model_with_grads]) def test_apply_agc(model_with_grads): model = model_with_grads() # Make sure after calling apply_agc, the gradients inside the model are # the same as if we manually called _get_clipped_gradients on the weights and # gradients. weights = next(model.parameters()) grad = weights.grad expected_clipped_grad = grad.detach() * _get_clipped_gradient_coeff(weights, grad) _apply_agc(model.parameters(), 0.01) current_grad = next(model.parameters()).grad torch.equal(current_grad, expected_clipped_grad) @pytest.mark.parametrize( 'model_with_grads', [simple_model_with_grads(), cnn_model_with_grads(), simple_transformer_model_with_grads(), hf_model_with_grads()]) def test_apply_agc_does_not_error(model_with_grads): """This test is just to ensure that no errors are raised. Accuracy of the AGC calculations are tested in other tests. """ model = model_with_grads # Call apply_agc. If this function returns then we know that nothing errored out. _apply_agc(model.parameters(), 0.01) def test_get_clipped_gradients_1D(): weights = torch.Tensor([3., 4.]) grad = torch.Tensor([7., 24.]) clipping_threshold = 0.5 expected = torch.Tensor([0.7, 2.4]) clipped_grads = grad * _get_clipped_gradient_coeff( weights=weights, grad=grad, clipping_threshold=clipping_threshold) assert torch.equal(clipped_grads, expected) @pytest.mark.parametrize('weights,grad,expected', [(torch.Tensor([0., 0.]), torch.Tensor([1., 1.]), torch.Tensor([0., 0.])), (torch.Tensor([1., 1.]), torch.Tensor([0., 0.]), torch.Tensor([0., 0.])), (torch.Tensor([0., 0.]), torch.Tensor([0., 0.]), torch.Tensor([0., 0.]))]) def test_get_clipped_gradients_1D_with_zeros(weights: torch.Tensor, grad: torch.Tensor, expected: torch.Tensor): clipping_threshold = 1e-4 clipped_grads = grad * _get_clipped_gradient_coeff( weights=weights, grad=grad, clipping_threshold=clipping_threshold) assert torch.equal(clipped_grads, expected) def test_get_clipped_gradients_2D(): weights = torch.Tensor([[3., 4.], [9., 40.]]) grad = torch.Tensor([[7., 24.], [5., 12.]]) clipping_threshold = 0.5 expected = torch.Tensor([[0.7, 2.4], [5., 12.]]) clipped_grads = grad * _get_clipped_gradient_coeff( weights=weights, grad=grad, clipping_threshold=clipping_threshold) assert torch.equal(clipped_grads, expected) def test_get_clipped_gradients_3D(): weights = torch.Tensor([[[3., 8.], [2., 2.]], [[1., 3.], [3., 9.]]]) grad = torch.Tensor([[[1., 1.], [3., 5.]], [[1., 1.], [1., 1.]]]) clipping_threshold = 1 / 3. expected = torch.Tensor([[[0.5000, 0.5000], [1.5000, 2.5000]], [[1.0000, 1.0000], [1.0000, 1.0000]]]) clipped_grads = grad * _get_clipped_gradient_coeff( weights=weights, grad=grad, clipping_threshold=clipping_threshold) assert torch.equal(clipped_grads, expected) def test_get_clipped_gradients_4D(): weights = torch.Tensor([[[[3.], [8.]], [[2.], [2.]]], [[[1.], [3.]], [[3.], [9.]]]]) grad = torch.Tensor([[[[1.], [1.]], [[3.], [5.]]], [[[1.], [1.]], [[1.], [1.]]]]) clipping_threshold = 1 / 3. expected = torch.Tensor([[[[0.5], [0.5]], [[1.5], [2.5]]], [[[1.0], [1.0]], [[1.0], [1.0]]]]) clipped_grads = grad * _get_clipped_gradient_coeff( weights=weights, grad=grad, clipping_threshold=clipping_threshold) assert torch.equal(clipped_grads, expected)
composer-dev
tests/algorithms/test_gradient_clipping.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """Test Ghost Batch Normalization, both as an algorithm and module.""" import contextlib import math from typing import Any, Dict, Optional, Sequence, Union, cast from unittest.mock import MagicMock, Mock import pytest import torch from torchmetrics import Metric from composer.algorithms import ghost_batchnorm as ghostbn from composer.algorithms.ghost_batchnorm.ghost_batchnorm import GhostBatchNorm, _GhostBatchNorm from composer.core import Batch, Event, State from composer.models import ComposerModel from composer.utils import module_surgery _GHOSTBN_MODULE_CLASS = _GhostBatchNorm _GHOSTBN_CORRECT_EVENT = Event.INIT _TEST_NUM_DIMS = [1, 2, 3] _TEST_GHOST_BATCH_SIZES = [1, 2, 3, 5] _TEST_BATCH_SIZES = [12] # multiple of some, but not all, ghost batch sizes class ModuleWithBatchnorm(ComposerModel): def __init__(self, num_dims, num_features=4): super().__init__() eps = 0 # makes it easier to check normalization correctness factory_func = { 1: torch.nn.BatchNorm1d, 2: torch.nn.BatchNorm2d, 3: torch.nn.BatchNorm3d, } self.bn = factory_func[num_dims](num_features, eps=eps) self.num_dims = num_dims self.num_features = num_features self.non_batchnorm_module = torch.nn.Conv2d(4, 5, (1, 1)) def forward(self, input: torch.Tensor): return self.bn(input) def loss(self, outputs: Any, batch: Batch, *args, **kwargs) -> Union[torch.Tensor, Sequence[torch.Tensor]]: raise NotImplementedError() def get_metrics(self, is_train: bool = False) -> Dict[str, Metric]: raise NotImplementedError() def eval_forward(self, batch: Batch, outputs: Optional[Any] = None): raise NotImplementedError() @pytest.fixture def state(num_dims: int) -> State: return MagicMock(model=ModuleWithBatchnorm(num_dims=num_dims)) @pytest.fixture def algo_instance(ghost_batch_size: int): return GhostBatchNorm(ghost_batch_size=ghost_batch_size) @pytest.mark.parametrize('num_dims', [1, 2, 3, 4, -1]) def test_batchnorm_gets_replaced_functional(num_dims: int): if num_dims < 1 or num_dims > 3: ctx = pytest.raises(KeyError) else: ctx = contextlib.nullcontext() with ctx: """GhostBatchNorm{1,2,3}d should work, but other ints should throw.""" module = ModuleWithBatchnorm(num_dims) assert module_surgery.count_module_instances(module, _GHOSTBN_MODULE_CLASS) == 0 ghostbn.apply_ghost_batchnorm(module, ghost_batch_size=1) assert module_surgery.count_module_instances(module, _GHOSTBN_MODULE_CLASS) == 1 @pytest.mark.parametrize('num_dims', _TEST_NUM_DIMS) @pytest.mark.parametrize('ghost_batch_size', _TEST_GHOST_BATCH_SIZES) @pytest.mark.parametrize('batch_size', _TEST_BATCH_SIZES) class TestGhostBatchesNormalized: def _assert_ghost_batches_normalized(self, module: ModuleWithBatchnorm, ghost_batch_size: int, batch_size: int) -> None: torch.manual_seed(123) size = [batch_size, module.num_features] + ([3] * module.num_dims) X = torch.randn(size=size) module.train() out = module(X) n_channels = out.shape[1] # reduce over everything but channel idx reduce_dims = (0,) + tuple(range(2, out.ndim)) nchunks = int(math.ceil(batch_size / ghost_batch_size)) for ghost_batch in out.chunk(nchunks): channel_variances, channel_means = torch.var_mean(ghost_batch, dim=reduce_dims, unbiased=False) torch.testing.assert_close(channel_variances, torch.ones(n_channels)) torch.testing.assert_close(channel_means, torch.zeros(n_channels)) def test_normalization_correct_functional(self, num_dims: int, ghost_batch_size: int, batch_size: int) -> None: module = ModuleWithBatchnorm(num_dims=num_dims) ghostbn.apply_ghost_batchnorm(module, ghost_batch_size=ghost_batch_size) self._assert_ghost_batches_normalized(module=module, ghost_batch_size=ghost_batch_size, batch_size=batch_size) def test_normalization_correct_algorithm(self, state, algo_instance, num_dims: int, ghost_batch_size: int, batch_size: int) -> None: algo_instance.apply(_GHOSTBN_CORRECT_EVENT, state, logger=Mock()) module = cast(ModuleWithBatchnorm, state.model) self._assert_ghost_batches_normalized(module=module, ghost_batch_size=ghost_batch_size, batch_size=batch_size) @pytest.mark.parametrize('ghost_batch_size', [4]) def test_correct_event_matches(algo_instance): assert algo_instance.match(_GHOSTBN_CORRECT_EVENT, Mock(side_effect=ValueError)) @pytest.mark.parametrize('ghost_batch_size', [4]) @pytest.mark.parametrize('event', Event) # enum iteration def test_incorrect_event_does_not_match(event: Event, algo_instance): if event == _GHOSTBN_CORRECT_EVENT: return assert not algo_instance.match(event, Mock(side_effect=ValueError)) @pytest.mark.parametrize('ghost_batch_size', [4]) @pytest.mark.parametrize('num_dims', [2]) def test_algorithm_logging(state, algo_instance): logger_mock = Mock() algo_instance.apply(Event.INIT, state, logger_mock) logger_mock.log_hyperparameters.assert_called_once_with({ 'GhostBatchNorm/num_new_modules': 1, })
composer-dev
tests/algorithms/test_ghost_batchnorm.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import copy import numpy as np import pytest import torch from composer.algorithms import EMA from composer.algorithms.ema.ema import EMAParameters, compute_ema from composer.core import Event, Time, Timestamp, TimeUnit from tests.common import SimpleConvModel, SimpleTransformerClassifier from tests.common.models import configure_tiny_bert_hf_model def validate_ema(model, original_model, ema_model, smoothing): model_params, model_buffers = dict(model.named_parameters()), dict(model.named_buffers()) original_params, original_buffers = dict(original_model.named_parameters()), dict(original_model.named_buffers()) ema_params, ema_buffers = dict(ema_model.named_parameters()), dict(ema_model.named_buffers()) for name, param in model_params.items(): new_param = (original_params[name] * smoothing + (1. - smoothing) * param) torch.testing.assert_close(ema_params[name].data, new_param) for name, buffer in model_buffers.items(): new_buffer = (original_buffers[name] * smoothing + (1. - smoothing) * buffer).type(ema_buffers[name].data.dtype) torch.testing.assert_close(ema_buffers[name].data, new_buffer) def validate_model(model1, model2): model1_params, model1_buffers = dict(model1.named_parameters()), dict(model1.named_buffers()) model2_params, model2_buffers = dict(model2.named_parameters()), dict(model2.named_buffers()) for name, _ in model1_params.items(): torch.testing.assert_close(model1_params[name].data, model2_params[name].data) for name, _ in model1_buffers.items(): torch.testing.assert_close(model1_buffers[name].data, model2_buffers[name].data) @pytest.mark.parametrize('smoothing', [0, 0.5, 0.99, 1]) @pytest.mark.parametrize('model_cls', [(SimpleConvModel), (SimpleTransformerClassifier), (configure_tiny_bert_hf_model)]) def test_ema(smoothing, model_cls): model = model_cls() ema_model = model_cls() original_model = copy.deepcopy(ema_model) compute_ema(model=model, ema_model=ema_model, smoothing=smoothing) validate_ema(model, original_model, ema_model, smoothing) # params = [(half_life, update_interval)] @pytest.mark.parametrize('params', [{ 'half_life': '10ba', 'update_interval': '1ba' }, { 'half_life': '1ep', 'update_interval': '1ep' }, { 'smoothing': 0.999, 'update_interval': '1ba' }]) @pytest.mark.parametrize('model_cls', [(SimpleConvModel), (SimpleTransformerClassifier), (configure_tiny_bert_hf_model)]) def test_ema_algorithm(params, model_cls, minimal_state, empty_logger): # Initialize input tensor input = torch.rand((32, 5)) if 'smoothing' in params: smoothing, update_interval = params['smoothing'], params['update_interval'] algorithm = EMA(half_life=None, smoothing=smoothing, update_interval=update_interval) else: half_life, update_interval = params['half_life'], params['update_interval'] algorithm = EMA(half_life=half_life, update_interval=update_interval) state = minimal_state state.model = model_cls() state.batch = (input, torch.Tensor()) # Start EMA algorithm.ema_model = EMAParameters(state.model) # Check if ema correctly calculated smoothing update_interval = Time.from_timestring(params['update_interval']) if 'half_life' in params: half_life = Time.from_timestring(params['half_life']) smoothing = np.exp(-np.log(2) * (update_interval.value / half_life.value)) np.testing.assert_allclose(np.asarray(smoothing), np.asarray(algorithm.smoothing)) # Fake a training update by replacing state.model after ema grabbed it. original_model = copy.deepcopy(state.model) state.model = model_cls() training_updated_model = copy.deepcopy(state.model) # Do the EMA update state.timestamp = Timestamp() if update_interval.unit == TimeUnit.BATCH: state.timestamp._batch = update_interval algorithm.apply(Event.BATCH_END, state, empty_logger) elif update_interval.unit == TimeUnit.EPOCH: state.timestamp._epoch = update_interval algorithm.apply(Event.EPOCH_END, state, empty_logger) else: raise ValueError(f'Invalid time string for parameter half_life') # Check if EMA correctly computed the average. validate_ema(state.model, original_model, algorithm.ema_model, algorithm.smoothing) ema_updated_model = copy.deepcopy(algorithm.ema_model) # Check if the EMA model is swapped in for testing algorithm.apply(Event.EVAL_START, state, empty_logger) validate_model(state.model, ema_updated_model) # Check if the training model is swapped back in for training algorithm.apply(Event.EVAL_END, state, empty_logger) validate_model(state.model, training_updated_model)
composer-dev
tests/algorithms/test_ema.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch import torch.nn.utils.parametrize as parametrize from composer.algorithms import WeightStandardization from composer.core import Event, State from composer.functional import apply_weight_standardization from composer.loggers import Logger from tests.common import SimpleConvModel def _count_parametrize(module: torch.nn.Module): count = 0 for m in module.modules(): if parametrize.is_parametrized(m, 'weight'): count += 1 return count def test_ws_calculation(): """Check if convolution weights are properly standardized.""" model = SimpleConvModel() apply_weight_standardization(module=model) var1, mean1 = torch.var_mean(model.conv1.weight, dim=[1, 2, 3], unbiased=False) var2, mean2 = torch.var_mean(model.conv2.weight, dim=[1, 2, 3], unbiased=False) torch.testing.assert_close(var1, torch.ones_like(var1)) torch.testing.assert_close(var2, torch.ones_like(var2)) torch.testing.assert_close(mean1, torch.zeros_like(mean1)) torch.testing.assert_close(mean2, torch.zeros_like(mean2)) @pytest.mark.parametrize('n_last_layers_ignore', [0, 1, 3]) def test_ws_replacement(n_last_layers_ignore: int): """Check if the proper number of layers have been parametrized.""" model = SimpleConvModel() apply_weight_standardization(module=model, n_last_layers_ignore=n_last_layers_ignore) ws_count = _count_parametrize(model) expected_count = max(2 - n_last_layers_ignore, 0) # Expected number of weight standardization layers assert ws_count == expected_count @pytest.mark.parametrize('n_last_layers_ignore', [0, 1, 3]) def test_ws_algorithm(n_last_layers_ignore: int, minimal_state: State, empty_logger: Logger): """Check if the algorithm is applied at the proper event.""" minimal_state.model = SimpleConvModel() ws_algorithm = WeightStandardization(n_last_layers_ignore=n_last_layers_ignore) ws_algorithm.apply(Event.INIT, minimal_state, empty_logger) ws_count = _count_parametrize(minimal_state.model) expected_count = max(2 - n_last_layers_ignore, 0) assert ws_count == expected_count
composer-dev
tests/algorithms/test_weight_standardization.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """This file provides the canonical settings (dataset, model, algorithms, arguments) for each algorithm to be tested. This can be used throughout the codebase for functional tests, serialization tests, etc. Each algorithm is keyed based on its name in the algorithm registry. """ from typing import Any, Dict, Optional, Type import pytest from torch.utils.data import DataLoader import composer import composer.algorithms from composer import Algorithm from composer.algorithms import (EMA, SAM, SWA, Alibi, AugMix, BlurPool, ChannelsLast, ColOut, CutMix, CutOut, Factorize, FusedLayerNorm, GatedLinearUnits, GhostBatchNorm, GradientClipping, GyroDropout, LabelSmoothing, LayerFreezing, LowPrecisionGroupNorm, LowPrecisionLayerNorm, MixUp, NoOpModel, ProgressiveResizing, RandAugment, SelectiveBackprop, SeqLengthWarmup, SqueezeExcite, StochasticDepth, WeightStandardization) from composer.models import composer_resnet from composer.models.base import ComposerModel from composer.utils import dist from tests.common import get_module_subclasses from tests.common.datasets import RandomImageDataset, SimpleDataset, dummy_bert_lm_dataloader, dummy_gpt_lm_dataloader from tests.common.models import (SimpleConvModel, SimpleModelWithDropout, configure_tiny_bert_hf_model, configure_tiny_gpt2_hf_model) simple_bert_settings = { 'model': configure_tiny_bert_hf_model, 'dataloader': (dummy_bert_lm_dataloader, { 'size': 8 }), 'kwargs': {}, } simple_gpt2_settings = { 'model': configure_tiny_gpt2_hf_model, 'dataloader': (dummy_gpt_lm_dataloader, { 'size': 8 }), 'kwargs': {}, } simple_vision_settings = { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': {}, } simple_vision_pil_settings = { 'model': SimpleConvModel, 'dataset': (RandomImageDataset, { 'is_PIL': True }), 'kwargs': {}, } simple_resnet_settings = { 'model': (composer_resnet, { 'model_name': 'resnet18', 'num_classes': 2 }), 'dataset': (RandomImageDataset, { 'shape': (3, 224, 224), }), 'kwargs': {}, } _settings: Dict[Type[Algorithm], Optional[Dict[str, Any]]] = { GradientClipping: { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': { 'clipping_type': 'norm', 'clipping_threshold': 0.1 }, }, Alibi: { 'model': configure_tiny_bert_hf_model, 'dataloader': (dummy_bert_lm_dataloader, { 'size': 8 }), 'kwargs': { 'max_sequence_length': 256 }, }, AugMix: simple_vision_settings, BlurPool: { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': { 'min_channels': 0, }, }, ChannelsLast: simple_vision_settings, ColOut: simple_vision_settings, CutMix: { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': {}, }, CutOut: simple_vision_settings, EMA: { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': { 'half_life': '1ba', }, }, Factorize: simple_resnet_settings, FusedLayerNorm: simple_bert_settings, GatedLinearUnits: simple_bert_settings, GhostBatchNorm: { 'model': (SimpleConvModel, { 'norm': 'group', }), 'dataset': RandomImageDataset, 'kwargs': { 'ghost_batch_size': 2, } }, LabelSmoothing: simple_vision_settings, LayerFreezing: simple_vision_settings, LowPrecisionLayerNorm: simple_bert_settings, LowPrecisionGroupNorm: { 'model': (SimpleConvModel, { 'norm': 'group', }), 'dataset': RandomImageDataset, 'kwargs': {}, }, MixUp: simple_vision_settings, ProgressiveResizing: simple_vision_settings, RandAugment: simple_vision_settings, NoOpModel: simple_vision_settings, SAM: simple_vision_settings, SelectiveBackprop: simple_vision_settings, SeqLengthWarmup: { 'model': configure_tiny_bert_hf_model, 'dataloader': (dummy_bert_lm_dataloader, { 'size': 8 }), 'kwargs': { 'duration': 0.5, 'min_seq_length': 8, 'max_seq_length': 16 }, }, SqueezeExcite: simple_resnet_settings, StochasticDepth: { 'model': (composer_resnet, { 'model_name': 'resnet50', 'num_classes': 2 }), 'dataset': (RandomImageDataset, { 'shape': (3, 224, 224), }), 'kwargs': { 'stochastic_method': 'block', 'target_layer_name': 'ResNetBottleneck', 'drop_rate': 0.2, 'drop_distribution': 'linear', 'drop_warmup': '0.0dur', } }, SWA: { 'model': SimpleConvModel, 'dataset': RandomImageDataset, 'kwargs': { 'swa_start': '0.2dur', 'swa_end': '0.97dur', 'update_interval': '1ep', 'schedule_swa_lr': True, } }, WeightStandardization: simple_vision_settings, GyroDropout: { 'model': SimpleModelWithDropout, 'dataloader': (DataLoader, { 'dataset': SimpleDataset(batch_size=2, feature_size=64, num_classes=10) }), 'kwargs': { 'p': 0.5, 'sigma': 2, 'tau': 1 } }, } def _get_alg_settings(alg_cls: Type[Algorithm]): if alg_cls not in _settings or _settings[alg_cls] is None: raise ValueError(f'Algorithm {alg_cls.__name__} not in the settings dictionary.') settings = _settings[alg_cls] assert settings is not None return settings def get_alg_kwargs(alg_cls: Type[Algorithm]) -> Dict[str, Any]: """Return the kwargs for an algorithm.""" return _get_alg_settings(alg_cls)['kwargs'] def get_alg_model(alg_cls: Type[Algorithm]) -> ComposerModel: """Return an instance of the model for an algorithm.""" settings = _get_alg_settings(alg_cls)['model'] if isinstance(settings, tuple): (cls, kwargs) = settings else: (cls, kwargs) = (settings, {}) return cls(**kwargs) def get_alg_dataloader(alg_cls: Type[Algorithm], multigpu=False) -> DataLoader: """Return an instance of the dataset for an algorithm.""" settings = _get_alg_settings(alg_cls) if 'dataloader' in settings: dataloader_cls, kwargs = settings['dataloader'] if 'dataset' in kwargs and multigpu: kwargs['sampler'] = dist.get_sampler(kwargs['dataset']) dataloader = dataloader_cls(**kwargs) elif 'dataset' in settings: if isinstance(settings['dataset'], tuple): dataset_cls, kwargs = settings['dataset'] else: dataset_cls = settings['dataset'] kwargs = {} dataset = dataset_cls(**kwargs) sampler = dist.get_sampler(dataset) if multigpu else None dataloader = DataLoader(dataset=dataset, batch_size=4, sampler=sampler) else: raise ValueError(f'Neither dataset nor dataloader have been provided for algorithm {alg_cls}') return dataloader def get_algs_with_marks(): """Returns a list of algorithms appropriate markers for a subsequent call to pytest.mark.parameterize. It applies markers as appropriate (e.g. XFAIL for algs missing config) It reads from the algorithm registry E.g. @pytest.mark.parametrize("alg_class", get_algs_with_marks()) """ ans = [] for alg_cls in get_module_subclasses(composer.algorithms, Algorithm): marks = [] settings = _settings[alg_cls] if alg_cls in (Alibi, GatedLinearUnits, SeqLengthWarmup): try: import transformers transformers_available = True del transformers except ImportError: transformers_available = False marks.append(pytest.mark.skipif(not transformers_available, reason='transformers not available')) if alg_cls == SWA: # TODO(matthew): Fix marks.append( pytest.mark.filterwarnings( r'ignore:Detected call of `lr_scheduler.step\(\)` before `optimizer.step\(\)`:UserWarning')) marks.append( pytest.mark.filterwarnings('ignore:SWA has known issues when resuming from a checkpoint.*:UserWarning')) if alg_cls == GyroDropout: marks.append( pytest.mark.filterwarnings( 'ignore:GyroDropout is not implemented in a way that allows correct resumption.*:UserWarning')) if alg_cls == SAM: marks.append( pytest.mark.filterwarnings( 'ignore:SAM has known issues of weight mismatch when loading from a checkpoint.*:UserWarning')) if alg_cls == MixUp: # TODO(Landen): Fix marks.append( pytest.mark.filterwarnings(r'ignore:Some targets have less than 1 total probability:UserWarning')) if alg_cls == FusedLayerNorm: # FusedLayerNorm requires a GPU in order for the class to exist marks.append(pytest.mark.gpu) if alg_cls == SelectiveBackprop: marks.append( pytest.mark.filterwarnings( r'ignore:Cannot split tensor of length .* into batches of size .*:UserWarning')) if settings is None: marks.append(pytest.mark.xfail(reason=f'Algorithm {alg_cls.__name__} is missing settings.')) ans.append(pytest.param(alg_cls, marks=marks, id=alg_cls.__name__)) return ans
composer-dev
tests/algorithms/algorithm_settings.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from torch.nn.functional import gelu, relu from composer.algorithms.gated_linear_units import GatedLinearUnits, apply_gated_linear_units from composer.algorithms.gated_linear_units.gated_linear_unit_layers import BERTGatedFFOutput from composer.core import Event, State from composer.devices import DeviceCPU from composer.loggers import Logger from tests.common.datasets import dummy_bert_lm_dataloader, dummy_text_classification_dataloader from tests.common.models import SimpleTransformerClassifier, configure_tiny_bert_hf_model def _layernorm(input_tensor, layernorm_eps): mean = torch.mean(input_tensor, dim=-1, keepdim=True) var = torch.square(input_tensor - mean).mean(dim=-1, keepdim=True) return (input_tensor - mean) / torch.sqrt(var + layernorm_eps) @pytest.mark.parametrize('batch_size', [1]) @pytest.mark.parametrize('seq_length', [128, 512]) @pytest.mark.parametrize('d_embed', [768]) @pytest.mark.parametrize('d_ff', [3072]) @pytest.mark.parametrize('dropout_rate', [0.0]) @pytest.mark.parametrize('act_fn', [relu, gelu]) @pytest.mark.parametrize('layernorm_eps', [1e-6]) def test_glu_outputs(batch_size, seq_length, d_embed, d_ff, dropout_rate, act_fn, layernorm_eps): gated_ff = BERTGatedFFOutput(d_embed=d_embed, d_ff=d_ff, dropout_rate=dropout_rate, act_fn=act_fn, layernorm_eps=layernorm_eps, gated_layer_bias=False, non_gated_layer_bias=False) hidden_states = torch.rand(batch_size, seq_length, d_embed) residual_connection = torch.zeros_like(hidden_states) model_output = gated_ff(hidden_states, residual_connection) # get rid of the batch dimension when computing the result by hand hidden_states = hidden_states[1:] manual_output = torch.matmul(hidden_states, gated_ff.gated_layer.weight.transpose(0, 1)) manual_output = act_fn(manual_output) manual_output = manual_output * torch.matmul(hidden_states, gated_ff.non_gated_layer.weight.transpose(0, 1)) manual_output = torch.matmul(manual_output, gated_ff.wo.weight.transpose(0, 1)) + gated_ff.wo.bias manual_output = _layernorm(manual_output + residual_connection, layernorm_eps) assert torch.allclose(manual_output, model_output) def assert_is_glu_instance(model): pytest.importorskip('transformers') from transformers import BertForMaskedLM, BertForSequenceClassification from transformers.models.bert.modeling_bert import BertOutput assert isinstance(model, BertForMaskedLM) or isinstance(model, BertForSequenceClassification) # ensure that within the entire model, no BertOutput exists, and at least one BERTGatedFFOutput does. assert model.modules is not None, 'model has .modules method' for module_class in model.modules(): assert not isinstance( module_class, BertOutput ), 'A transformers.models.bert.modeling_bert.BertOutput should not be found in the model after surgery is applied.' assert any( isinstance(module_class, BERTGatedFFOutput) for module_class in model.modules() ), 'composer.algorithms.gated_linear_units.gated_linear_unit_layers.BERTGatedFFOutput is not found in the post-surgery model.' @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (pytest.param( SimpleTransformerClassifier, dummy_text_classification_dataloader, marks=pytest.mark.xfail(reason='Gated Linear Units does not currently support non-HuggingFace models'))), ]) def test_gated_linear_units_functional(model, dataloader): model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=DeviceCPU(), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) apply_gated_linear_units(state.model, state.optimizers) assert_is_glu_instance(state.model.model) @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (pytest.param( SimpleTransformerClassifier, dummy_text_classification_dataloader, marks=pytest.mark.xfail(reason='Gated Linear Units does not currently support non-HuggingFace models'))), ]) def test_gated_linear_units_algorithm(model, dataloader, empty_logger: Logger): pytest.importorskip('transformers') from transformers import BertForMaskedLM, BertForSequenceClassification model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=DeviceCPU(), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) gated_linear_units = GatedLinearUnits() # state.model wrapped in HuggingFaceModel wrapped assert isinstance(state.model.model, BertForMaskedLM) or isinstance(state.model.model, BertForSequenceClassification) gated_linear_units.apply(Event.INIT, state, empty_logger) assert_is_glu_instance(state.model.model)
composer-dev
tests/algorithms/test_gated_linear_units.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torch.nn import LayerNorm from composer.algorithms.fused_layernorm import FusedLayerNorm, apply_fused_layernorm from composer.core import Event, State from composer.loggers import Logger from composer.models.huggingface import HuggingFaceModel from composer.utils import get_device from tests.common import device from tests.common.datasets import dummy_bert_lm_dataloader, dummy_text_classification_dataloader from tests.common.models import SimpleTransformerClassifier, configure_tiny_bert_hf_model def assert_is_fln_instance(model): pytest.importorskip('apex') from apex.normalization.fused_layer_norm import FusedLayerNorm as APEXFusedLayerNorm # When checking modules of a HuggingFace model, we need to parse the model object it wraps # This is not necessary for SimpleTransformerClassifier models. if isinstance(model, HuggingFaceModel): model = model.model # ensure that within the entire model, no PyTorch LayerNorm exists, and at least one APEX FLN does. assert model.modules is not None, 'model has .modules method' for module_class in model.modules(): assert not isinstance( module_class, LayerNorm), 'A torch.nn.LayerNorm should not be found in the model after surgery is applied.' assert any(isinstance(module_class, APEXFusedLayerNorm) for module_class in model.modules() ), 'apex.normalization.fused_layer_norm is not found in the post-surgery model.' @device('gpu') @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (SimpleTransformerClassifier, dummy_text_classification_dataloader), ]) def test_fused_layernorm_functional(model, dataloader, device: str, request: pytest.FixtureRequest): model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=get_device(device), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) if device == 'gpu': state.model = state.model.cuda() # move the model to gpu apply_fused_layernorm(state.model, state.optimizers) assert_is_fln_instance(state.model) @device('gpu') @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (SimpleTransformerClassifier, dummy_text_classification_dataloader), ]) def test_fused_layernorm_algorithm(model, dataloader, empty_logger: Logger, device: str): model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=get_device(device), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) fused_layernorm = FusedLayerNorm() if device == 'gpu': state.model = state.model.cuda() # move the model to gpu fused_layernorm.apply(Event.INIT, state, empty_logger) assert_is_fln_instance(state.model)
composer-dev
tests/algorithms/test_fused_layernorm.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import copy import os import pathlib from typing import Type import pytest import torch from composer import Algorithm, Trainer from composer.algorithms import SAM, SWA, GyroDropout, LayerFreezing, SeqLengthWarmup, StochasticDepth from composer.utils import dist from tests.algorithms.algorithm_settings import get_alg_dataloader, get_alg_kwargs, get_alg_model, get_algs_with_marks from tests.common import deep_compare from tests.common.markers import world_size @pytest.mark.gpu @pytest.mark.parametrize('alg_cls', get_algs_with_marks()) @pytest.mark.filterwarnings('ignore:Detected call of `lr_scheduler.step()' ) # optimizer.step() sometimes skipped when NaN/inf on low batch size @world_size(1, 2) def test_algorithm_resumption( tmp_path: pathlib.Path, alg_cls: Type[Algorithm], world_size, ): folder1 = os.path.join(tmp_path, 'folder1') folder2 = os.path.join(tmp_path, 'folder2') os.makedirs(folder1, exist_ok=True) os.makedirs(folder2, exist_ok=True) model = get_alg_model(alg_cls) alg_kwargs = get_alg_kwargs(alg_cls) copied_model = copy.deepcopy(model) # copy the model so the params will start from the same point if alg_cls is LayerFreezing: pytest.xfail('Known issues') if alg_cls in (SAM, StochasticDepth): pytest.xfail('Mismatch in weights when resuming from a checkpoint.') if alg_cls is GyroDropout: pytest.xfail('GyroDropoutLayer is not implemented in a way that allows correct resumption.') if alg_cls is SWA and world_size > 1: pytest.xfail('SWA is not implemented in a way that is compatible correct resumption on multiple devices.') optimizer = torch.optim.Adam(model.parameters(), lr=0.01) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5) shared_config = { 'max_duration': '2ep', 'save_filename': 'ep{epoch}-rank{rank}', 'save_interval': '1ep', 'train_subset_num_batches': 2, 'precision': 'amp_fp16', } train_dataloader = get_alg_dataloader(alg_cls) if world_size == 1 else get_alg_dataloader(alg_cls, multigpu=True) # train model once, saving checkpoints every epoch trainer1 = Trainer( model=model, train_dataloader=train_dataloader, optimizers=optimizer, schedulers=scheduler, save_folder=folder1, algorithms=alg_cls(**alg_kwargs), **shared_config, ) trainer1.fit() # create second trainer, load an intermediate checkpoint # and continue training optimizer = torch.optim.Adam(copied_model.parameters(), lr=0.01) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5) alg = alg_cls(**alg_kwargs) # SeqLengthWarmup has a call to ._activate_model() that happens on the first call to the algorithm # in order to get complete matching of the rng state, we have to cause that extra call to be skipped # when reloading. if alg_cls is SeqLengthWarmup: alg._activated = True # type: ignore train_dataloader = get_alg_dataloader(alg_cls) if world_size == 1 else get_alg_dataloader(alg_cls, multigpu=True) trainer2 = Trainer( model=copied_model, train_dataloader=train_dataloader, load_path=os.path.join(folder1, 'ep1-rank{rank}'), load_weights_only=False, load_strict_model_weights=False, optimizers=optimizer, schedulers=scheduler, save_folder=folder2, algorithms=alg, **shared_config, ) trainer2.fit() # check that the checkpoints are equal if world_size == 1 or dist.get_global_rank() == 0: _assert_checkpoints_equal( file1=os.path.join(folder1, 'ep2-rank0'), file2=os.path.join(folder2, 'ep2-rank0'), ) # check that different epoch checkpoints are _not_ equal # this ensures that the model weights are being updated. if world_size == 1 or dist.get_global_rank() == 0: with pytest.raises(AssertionError): _assert_model_weights_equal( file1=os.path.join(folder1, 'ep1-rank0'), file2=os.path.join(folder1, 'ep2-rank0'), ) def _assert_checkpoints_equal(file1, file2): checkpoint1 = torch.load(file1) checkpoint2 = torch.load(file2) # compare rng deep_compare(checkpoint1['rng'], checkpoint2['rng']) # compare state # remove the wall clock time fields since they will always differ del checkpoint1['state']['timestamp']['Timestamp']['total_wct'] del checkpoint1['state']['timestamp']['Timestamp']['epoch_wct'] del checkpoint1['state']['timestamp']['Timestamp']['batch_wct'] del checkpoint2['state']['timestamp']['Timestamp']['total_wct'] del checkpoint2['state']['timestamp']['Timestamp']['epoch_wct'] del checkpoint2['state']['timestamp']['Timestamp']['batch_wct'] # delete run_name since its time dependent del checkpoint1['state']['run_name'] del checkpoint2['state']['run_name'] # Remove algorithm representations which are memory addresses for i, algo_info in enumerate(checkpoint1['state']['algorithms']): if '0x' in algo_info[1]['repr']: del checkpoint1['state']['algorithms'][i] for i, algo_info in enumerate(checkpoint2['state']['algorithms']): if '0x' in algo_info[1]['repr']: del checkpoint2['state']['algorithms'][i] deep_compare(checkpoint1['state'], checkpoint2['state']) def _assert_model_weights_equal(file1, file2): checkpoint1 = torch.load(file1) checkpoint2 = torch.load(file2) deep_compare(checkpoint1['state']['model'], checkpoint2['state']['model'])
composer-dev
tests/algorithms/test_algorithm_resumption.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import torch from composer.algorithms.channels_last import apply_channels_last from composer.algorithms.channels_last.channels_last import ChannelsLast from composer.core.event import Event from composer.core.state import State from composer.loggers import Logger from tests.common import SimpleConvModel def _has_singleton_dimension(tensor: torch.Tensor) -> bool: return any(s == 1 for s in tensor.shape) def _infer_memory_format(tensor: torch.Tensor) -> str: if _has_singleton_dimension(tensor): raise ValueError(f'Tensor of shape {tensor.shape} has singleton dimensions, ' 'memory format cannot be infered from strides.') base_order = list('nchw') # type: ignore strides = tensor.stride() if isinstance(strides, tuple) and len(strides) == 4: order = np.argsort(strides) # smallest stride should be last in format, so reverse order memory_format = ''.join([base_order[o] for o in reversed(order)]) return memory_format else: raise ValueError(f'Tensor must be 4-dim, got shape {tensor.shape}') @pytest.fixture() def state(minimal_state: State): minimal_state.model = SimpleConvModel() return minimal_state @pytest.fixture() def simple_conv_model(): return SimpleConvModel() def test_channels_last_functional(simple_conv_model: SimpleConvModel): model = simple_conv_model conv = model.conv1 assert _infer_memory_format(conv.weight) == 'nchw' apply_channels_last(simple_conv_model) assert _infer_memory_format(conv.weight) == 'nhwc' @pytest.mark.parametrize( 'device', [pytest.param('cpu'), pytest.param('gpu', marks=pytest.mark.gpu)], ) def test_channels_last_algorithm(state: State, empty_logger: Logger, device: str): channels_last = ChannelsLast() if device == 'gpu': state.model = state.model.cuda() # move the model to gpu assert isinstance(state.model, SimpleConvModel) assert _infer_memory_format(state.model.conv1.weight) == 'nchw' channels_last.apply(Event.INIT, state, empty_logger) assert isinstance(state.model, SimpleConvModel) assert _infer_memory_format(state.model.conv1.weight) == 'nhwc' # Test helper utility _infer_memory_format @pytest.fixture(params=[True, False]) def tensor(request) -> torch.Tensor: strided = request.param tensor = torch.randn((16, 32, 32, 64)) if strided: tensor = tensor[::2, ::2, ::2, ::2] return tensor def test_infer_memory_format_nhwc(tensor): tensor = tensor.to(memory_format=torch.channels_last) assert _infer_memory_format(tensor) == 'nhwc' def test_infer_memory_format_nchw(tensor): tensor = tensor.to(memory_format=torch.contiguous_format) assert _infer_memory_format(tensor) == 'nchw' def test_infer_memory_format_wcnh(tensor): tensor = tensor.to(memory_format=torch.contiguous_format) tensor = tensor.permute(2, 1, 3, 0) assert _infer_memory_format(tensor) == 'wcnh' def test_infer_memory_format_incorrect_ndims(): tensor = torch.randn((16, 32, 32)) with pytest.raises(ValueError): _infer_memory_format(tensor) def test_infer_memory_format_singleton(): tensor = torch.randn((16, 32, 1, 64)) with pytest.raises(ValueError): _infer_memory_format(tensor)
composer-dev
tests/algorithms/test_channels_last.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import torch from composer.algorithms import CutMix from composer.algorithms.cutmix.cutmix import _rand_bbox, cutmix_batch from composer.core import Event from composer.models import ComposerClassifier # (N, C, d1, d2, num_classes) @pytest.fixture(params=[(7, 11, 3, 5, 10)]) def fake_data(request): # Generate some fake data N, C, d1, d2, num_classes = request.param x_fake = torch.randn(N, C, d1, d2) y_fake = torch.randint(num_classes, size=(N,)) indices = torch.randperm(N) return x_fake, y_fake, indices def validate_cutmix(x, y, indices, x_cutmix, y_perm, bbox): # Create shuffled version of x, y for reference checking x_perm = x[indices] y_perm_ref = y[indices] # Explicitly check that the pixels and labels have been mixed correctly. for i in range(x.size(0)): # Grab N # Check every pixel of the input data for j in range(x.size(2)): for k in range(x.size(3)): if (j >= bbox[0] and j < bbox[2]) and (k >= bbox[1] and k < bbox[3]): torch.testing.assert_close(x_perm[i, :, j, k], x_cutmix[i, :, j, k]) else: torch.testing.assert_close(x[i, :, j, k], x_cutmix[i, :, j, k]) # Check the label torch.testing.assert_close(y_perm_ref, y_perm) @pytest.mark.parametrize('alpha', [0.2, 1]) @pytest.mark.parametrize('uniform_sampling', [True, False]) @pytest.mark.parametrize('interpolate_loss', [True, False]) class TestCutMix: def test_cutmix(self, fake_data, alpha, uniform_sampling, interpolate_loss): # Generate fake data x_fake, y_fake, indices = fake_data # Get lambda based on alpha hparam cutmix_lambda = np.random.beta(alpha, alpha) # Get a random bounding box based on cutmix_lambda cx = np.random.randint(x_fake.shape[2]) cy = np.random.randint(x_fake.shape[3]) bbx1, bby1, bbx2, bby2 = _rand_bbox(W=x_fake.shape[2], H=x_fake.shape[3], cutmix_lambda=cutmix_lambda, cx=cx, cy=cy, uniform_sampling=uniform_sampling) bbox = (bbx1, bby1, bbx2, bby2) # Adjust lambda cutmix_lambda = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (x_fake.size()[-1] * x_fake.size()[-2])) # Apply cutmix x_cutmix, y_perm, _, _ = cutmix_batch(x_fake, y_fake, alpha=1.0, bbox=bbox, indices=indices, uniform_sampling=uniform_sampling) # Validate results validate_cutmix(x=x_fake, y=y_fake, indices=indices, x_cutmix=x_cutmix, y_perm=y_perm, bbox=bbox) def test_cutmix_algorithm(self, fake_data, alpha, uniform_sampling, minimal_state, empty_logger, interpolate_loss): # Generate fake data x_fake, y_fake, _ = fake_data algorithm = CutMix(alpha=alpha, uniform_sampling=uniform_sampling, interpolate_loss=interpolate_loss) state = minimal_state state.model = ComposerClassifier(torch.nn.Flatten(), num_classes=2) state.batch = (x_fake, y_fake) # Apply algo, use test hooks to specify indices and override internally generated interpolation lambda for testability algorithm.apply(Event.BEFORE_FORWARD, state, empty_logger) x, _ = state.batch y_perm = algorithm._permuted_target # Validate results validate_cutmix(x=x_fake, y=y_fake, indices=algorithm._indices, x_cutmix=x, y_perm=y_perm, bbox=algorithm._bbox)
composer-dev
tests/algorithms/test_cutmix.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torch.nn import GroupNorm from torch.utils.data import DataLoader from composer.algorithms.low_precision_groupnorm import LowPrecisionGroupNorm, apply_low_precision_groupnorm from composer.algorithms.low_precision_groupnorm.low_precision_groupnorm import LPGroupNorm from composer.core import Event, State from composer.loggers import Logger from composer.utils import get_device from tests.common import RandomImageDataset from tests.common.models import SimpleConvModel def assert_is_lpgn_instance(model): # ensure that within the entire model, no PyTorch GroupNorm exists, and at least one LPGN does. assert model.modules is not None, 'model has .modules method' for module_class in model.modules(): if isinstance(module_class, GroupNorm): assert isinstance(module_class, LPGroupNorm) assert any(isinstance(module_class, LPGroupNorm) for module_class in model.modules()) @pytest.mark.parametrize('affine', [True, False]) def test_low_precision_groupnorm_functional(affine): model = SimpleConvModel(norm='group', norm_affine=affine) dataloader = DataLoader(RandomImageDataset(), batch_size=2) state = State( model=model, rank_zero_seed=0, run_name='run_name', dataloader=dataloader, dataloader_label='train', max_duration='1ep', precision='amp_fp16', device=get_device('cpu'), ) apply_low_precision_groupnorm(state.model, state._precision, state.optimizers) assert_is_lpgn_instance(state.model) @pytest.mark.parametrize('affine', [True, False]) def test_low_precision_groupnorm_algorithm(affine, empty_logger: Logger): model = SimpleConvModel(norm='group', norm_affine=affine) dataloader = DataLoader(RandomImageDataset(), batch_size=2) state = State( model=model, rank_zero_seed=0, run_name='run_name', dataloader=dataloader, dataloader_label='train', max_duration='1ep', precision='amp_fp16', device=get_device('cpu'), ) low_precision_groupnorm = LowPrecisionGroupNorm() low_precision_groupnorm.apply(Event.INIT, state, empty_logger) assert_is_lpgn_instance(state.model)
composer-dev
tests/algorithms/test_low_precision_groupnorm.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from unittest.mock import Mock import pytest import torch from composer.algorithms import Factorize from composer.algorithms.factorize import FactorizedConv2d, FactorizedLinear from composer.algorithms.factorize.factorize import LOG_NUM_CONV2D_REPLACEMENTS_KEY, LOG_NUM_LINEAR_REPLACEMENTS_KEY from composer.core import Event, State from composer.loggers import Logger from composer.models import HuggingFaceModel from composer.utils import module_surgery from tests.common import SimpleConvModel, SimpleTransformerClassifier from tests.common.datasets import dummy_tiny_bert_lm_batch, dummy_transformer_classifier_batch from tests.common.models import configure_tiny_bert_hf_model def create_state(minimal_state: State, model): minimal_state.model = model return minimal_state def create_algo_instance(replace_convs, replace_linears): return Factorize(factorize_convs=replace_convs, factorize_linears=replace_linears, min_channels=1, latent_channels=2, min_features=1, latent_features=2) @pytest.mark.parametrize('model_cls, model_params', [(SimpleConvModel, (3, 100)), (SimpleTransformerClassifier, ()), (configure_tiny_bert_hf_model, ())]) @pytest.mark.parametrize('replace_convs', [False, True]) @pytest.mark.parametrize('replace_linears', [False, True]) def test_factorize_surgery(minimal_state: State, model_cls, model_params, empty_logger: Logger, replace_convs: bool, replace_linears: bool): model = model_cls(*model_params) state = create_state(minimal_state, model) if (isinstance(model, SimpleTransformerClassifier) or isinstance(model, HuggingFaceModel)) and replace_convs: pytest.skip('Skipping: NLP models do not contain conv layers.') algo_instance = create_algo_instance(replace_convs, replace_linears) num_conv_layers = module_surgery.count_module_instances(state.model, torch.nn.Conv2d) num_linear_layers = module_surgery.count_module_instances(state.model, torch.nn.Linear) algo_instance.apply(event=Event.INIT, state=state, logger=empty_logger) # Each Conv2d/Linear is either unmodified or replaced with a factorized version, # which contains two Conv2d/Linears submodules. if algo_instance.factorize_convs: num_factorized_layers = module_surgery.count_module_instances(state.model, FactorizedConv2d) num_non_factorized_layers = module_surgery.count_module_instances(state.model, torch.nn.Conv2d) - 2 * num_factorized_layers assert num_conv_layers == num_factorized_layers + num_non_factorized_layers assert num_factorized_layers > 0 if algo_instance.factorize_linears: num_factorized_layers = module_surgery.count_module_instances(state.model, FactorizedLinear) num_non_factorized_layers = module_surgery.count_module_instances(state.model, torch.nn.Linear) - 2 * num_factorized_layers assert num_linear_layers == num_factorized_layers + num_non_factorized_layers assert num_factorized_layers > 0 @pytest.mark.parametrize('model_cls, model_params, batch', [(SimpleConvModel, (3, 100), (torch.Tensor(64, 3, 32, 32), torch.Tensor())), (SimpleTransformerClassifier, (), dummy_transformer_classifier_batch()), (configure_tiny_bert_hf_model, (), dummy_tiny_bert_lm_batch())]) @pytest.mark.parametrize('replace_convs', [False, True]) @pytest.mark.parametrize('replace_linears', [False, True]) def test_forward_shape(minimal_state: State, model_cls, model_params, empty_logger: Logger, batch, replace_convs, replace_linears): model = model_cls(*model_params) if (isinstance(model, SimpleTransformerClassifier) or isinstance(model, HuggingFaceModel)) and replace_convs: pytest.skip('Skipping: NLP models do not contain conv layers.') if isinstance(model, SimpleTransformerClassifier): pytest.xfail( 'Factorize does not support torch.nn.MultiheadAttention layers, which are part of the SimpleTransformerClassifier.' ) state = create_state(minimal_state, model) algo_instance = create_algo_instance(replace_convs, replace_linears) output = state.model.forward(batch) algo_instance.apply(event=Event.INIT, state=state, logger=empty_logger) new_output = state.model.forward(batch) if isinstance(model, HuggingFaceModel): assert output.logits.size() == new_output.logits.size() else: assert output.size() == new_output.size() @pytest.mark.parametrize('model_cls, model_params', [(SimpleConvModel, (3, 100)), (SimpleTransformerClassifier, ()), (configure_tiny_bert_hf_model, ())]) @pytest.mark.parametrize('replace_convs', [False, True]) @pytest.mark.parametrize('replace_linears', [False, True]) def test_algorithm_logging(minimal_state: State, model_cls, model_params, replace_convs, replace_linears): model = model_cls(*model_params) state = create_state(minimal_state, model) if (isinstance(model, SimpleTransformerClassifier) or isinstance(model, HuggingFaceModel)) and replace_convs: pytest.skip('Skipping: NLP models do not contain conv layers.') algo_instance = create_algo_instance(replace_convs, replace_linears) logger_mock = Mock() algo_instance.apply(Event.INIT, state, logger=logger_mock) factorize_convs = algo_instance.factorize_convs factorize_linears = algo_instance.factorize_linears mock_obj = logger_mock.log_hyperparameters if factorize_convs: num_factorized_convs = module_surgery.count_module_instances(state.model, FactorizedConv2d) mock_obj.assert_any_call({LOG_NUM_CONV2D_REPLACEMENTS_KEY: num_factorized_convs}) if factorize_linears: num_factorized_linears = module_surgery.count_module_instances(state.model, FactorizedLinear) mock_obj.assert_any_call({LOG_NUM_LINEAR_REPLACEMENTS_KEY: num_factorized_linears}) target_count = 0 target_count += 1 if factorize_convs else 0 target_count += 1 if factorize_linears else 0 assert mock_obj.call_count == target_count
composer-dev
tests/algorithms/test_factorize_algorithm.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from composer.algorithms.progressive_resizing import ProgressiveResizing, resize_batch from composer.core import Event from composer.core.state import State from composer.core.time import TimeUnit from composer.loggers import Logger def check_scaled_shape(orig: torch.Tensor, scaled: torch.Tensor, scale_factor: float) -> bool: """Asserts that the scaled shape is correct, given orig shape and scale_factor.""" N, C, H, W = orig.shape Hc = int(scale_factor * H) Wc = int(scale_factor * W) return scaled.shape == (N, C, Hc, Wc) @pytest.fixture def Wx() -> int: return 32 @pytest.fixture def Hx(Wx: int) -> int: return Wx @pytest.fixture def X(Wx: int, Hx: int): torch.manual_seed(0) return torch.randn(16, 8, Hx, Wx) @pytest.fixture def Wy(Wx: int) -> int: return Wx @pytest.fixture def Hy(Hx: int) -> int: return Hx @pytest.fixture def y(Wy: int, Hy: int): torch.manual_seed(0) return torch.randn(16, 8, Hy, Wy) @pytest.fixture(params=[0.5, 0.75, 1]) def scale_factor(request) -> float: return request.param @pytest.fixture(params=['resize', 'crop']) def mode(request) -> str: return request.param @pytest.fixture def initial_scale() -> float: return 0.5 @pytest.fixture def finetune_fraction() -> float: return 0.2 @pytest.fixture def delay_fraction() -> float: return 0.2 @pytest.fixture def size_increment() -> float: return 8 @pytest.fixture def resize_targets() -> bool: return False class TestResizeInputs: def test_resize_noop(self, X, y, mode): """Tests that no operation is performed when scale_factor == 1.""" Xc, _ = resize_batch(X, y, 1.0, mode, resize_targets=False) assert X is Xc @pytest.mark.parametrize('y', [None]) def test_without_target(self, X, y): """Test that resizing works properly with no target present.""" try: resize_batch(X, y, 1.0, 'crop', resize_targets=False) except: pytest.fail('apply_progressive_resizing failed with y == None') @pytest.mark.parametrize('Wx,Hx', [(31, 31), (32, 32), (32, 16)]) def test_resize_batch_shape(self, X: torch.Tensor, y: torch.Tensor, mode: str, scale_factor: float): """Test scaling works for different input shapes.""" Xc, _ = resize_batch(X, y, scale_factor, mode, resize_targets=False) assert check_scaled_shape(X, Xc, scale_factor) def test_resize_outputs_shape(self, X: torch.Tensor, y: torch.Tensor, mode: str, scale_factor: float): """Test that resizing outputs works.""" _, yc = resize_batch(X, y, scale_factor, mode, resize_targets=True) assert check_scaled_shape(y, yc, scale_factor) def test_resize_outputs_crop(self, X: torch.Tensor, scale_factor: float): """Test that resizing outputs in crop mode gives the right targets.""" xc, yc = resize_batch(X, X, scale_factor, 'crop', resize_targets=True) assert torch.equal(xc, yc) @pytest.mark.parametrize('Wx,Hx,Wy,Hy', [(32, 32, 16, 16)]) def test_resize_outputs_different_shape(self, X, y, scale_factor: float, mode: str): """Test that resizing works when X and y have different shapes.""" _, yc = resize_batch(X, y, scale_factor, mode, resize_targets=True) assert check_scaled_shape(y, yc, scale_factor) @pytest.mark.parametrize('mode,initial_scale,finetune_fraction,delay_fraction,size_increment', [('foo', 0.5, 0.2, 0.2, 8), ('crop', 1.2, 0.2, 0.2, 8), ('crop', 0.5, 1.2, 0.2, 8), ('resize', 0.5, 0.6, 0.5, 8)]) def test_invalid_hparams(mode: str, initial_scale: float, finetune_fraction: float, delay_fraction: float, size_increment: int): """Test that invalid hyperparameters error.""" with pytest.raises(ValueError): ProgressiveResizing(mode, initial_scale, finetune_fraction, delay_fraction, size_increment, False) class TestProgressiveResizingAlgorithm: @pytest.fixture def pr_algorithm(self, mode, initial_scale, finetune_fraction, delay_fraction, size_increment, resize_targets): return ProgressiveResizing(mode, initial_scale, finetune_fraction, delay_fraction, size_increment, resize_targets) @pytest.mark.parametrize('event', [Event.AFTER_DATALOADER]) def test_match_correct(self, event: Event, pr_algorithm, minimal_state: State): """Algo should match AFTER_DATALOADER.""" assert pr_algorithm.match(event, minimal_state) @pytest.mark.parametrize('event', [Event.INIT]) def test_match_incorrect(self, event: Event, pr_algorithm: ProgressiveResizing, minimal_state: State): """Algo should NOT match INIT.""" assert not pr_algorithm.match(event, minimal_state) @pytest.mark.parametrize('epoch_frac', [0.0, 0.6, 0.8, 1.0]) def test_apply(self, epoch_frac: float, X: torch.Tensor, y: torch.Tensor, pr_algorithm: ProgressiveResizing, minimal_state: State, empty_logger: Logger): """Test apply at different epoch fractions (fraction of max epochs)""" assert minimal_state.max_duration is not None assert minimal_state.max_duration.unit == TimeUnit.EPOCH minimal_state.timestamp.epoch._value = int(epoch_frac * minimal_state.max_duration.value) s = pr_algorithm.initial_scale f = pr_algorithm.finetune_fraction d = pr_algorithm.delay_fraction p = pr_algorithm.size_increment if epoch_frac >= d: scale_factor_elapsed = min([(epoch_frac - d) / (1 - f - d), 1.0]) else: scale_factor_elapsed = 0.0 scale_factor = s + (1 - s) * scale_factor_elapsed minimal_state.batch = (X, y) width = X.shape[3] scaled_width_pinned = round(width * scale_factor / p) * p scale_factor_pinned = scaled_width_pinned / width pr_algorithm.apply(Event.AFTER_DATALOADER, minimal_state, empty_logger) last_input, _ = minimal_state.batch assert check_scaled_shape(X, last_input, scale_factor_pinned)
composer-dev
tests/algorithms/test_progressive_resizing.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from copy import deepcopy from operator import attrgetter import pytest import torch from composer.algorithms.alibi import Alibi, apply_alibi from composer.core import Event, State from composer.devices import DeviceCPU from composer.loggers import Logger from tests.common.datasets import dummy_bert_lm_dataloader, dummy_gpt_lm_dataloader from tests.common.models import configure_tiny_bert_hf_model, configure_tiny_gpt2_hf_model def _double_batch_sequence_length(batch): for k, v in batch.items(): if v.ndim >= 2: batch[k] = torch.cat([v, v], dim=1) return batch def check_position_embeddings(model, max_sequence_length): transformers = pytest.importorskip('transformers') if isinstance(model.config, transformers.GPT2Config): position_embedding_attribute = 'model.transformer.wpe' elif isinstance(model.config, transformers.BertConfig): position_embedding_attribute = 'model.bert.embeddings.position_embeddings' else: raise NotImplementedError('Tests not implemented for model with config=' + str(type(model.config))) pos_embedding_module = attrgetter(position_embedding_attribute)(model) pos_embedding_weight = getattr(pos_embedding_module, 'weight') assert pos_embedding_weight.shape[0] == max_sequence_length assert not pos_embedding_weight.requires_grad assert torch.max(torch.abs(pos_embedding_weight)) == 0.0 def check_forward_backward(model, batch): model.zero_grad() output = model.forward(batch) output['loss'].backward() def check_batch_reshaping(before, after, length): # Make sure all the batch tensors have the same shape input_ids_after_shape = after['input_ids'].shape # Just make sure the lengths are correct for k in before.keys(): assert k in after, 'No keys should be removed during sequence reshaping.' assert after[ k].shape == input_ids_after_shape, 'All tensors should have the same size after sequence reshaping.' b_numel = before[k].shape[0] * before[k].shape[1] a_numel = after[k].shape[0] * after[k].shape[1] assert a_numel >= b_numel - length, 'Sequence reshaping should throw away at most curr_sequence_length tokens.' import torch assert torch.all(after[k][0] == before[k][ 0, :input_ids_after_shape[1]]), 'Sequence reshaping should not change the token order.' for k in after.keys(): assert k in before, 'No keys should be added during sequence reshaping.' def encountered_alibi_warning(caplog): """Return true if the caplog shows an alibi warning in the log""" for (logger_name, level, _) in caplog.record_tuples: if 'alibi' in logger_name and level >= 30: # Warnings are level 30 return True return False def test_warning_is_triggered(caplog): """Test that Alibi triggers a warning when it has no effect.""" pytest.importorskip('transformers') apply_alibi( model=torch.nn.Sequential(torch.nn.Linear(20, 10), torch.nn.Linear(10, 5)), max_sequence_length=64, ) assert encountered_alibi_warning(caplog), 'A warning should be generated when Alibi has no effect.' def test_registry(caplog): """Test that registry additions are used by Alibi.""" pytest.importorskip('transformers') from composer.algorithms.alibi.attention_surgery_functions import policy_registry @policy_registry.register(torch.nn.Linear) def zero_linear_weights( # pyright: reportUnusedFunction = none module: torch.nn.Module, idx: int, max_sequence_length: int) -> torch.nn.Module: assert isinstance(module, torch.nn.Linear) old_weight = getattr(module, 'weight') new_weight = torch.nn.Parameter(torch.zeros_like(old_weight)) setattr(module, 'weight', new_weight) return module apply_alibi( model=torch.nn.Sequential(torch.nn.Linear(20, 10), torch.nn.Linear(10, 5)), max_sequence_length=64, ) assert not encountered_alibi_warning(caplog), 'No warnings should be generated after adding to the registry.' del (policy_registry[torch.nn.Linear]) @pytest.mark.parametrize('model,dataloader', [(configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (configure_tiny_gpt2_hf_model, dummy_gpt_lm_dataloader)]) class TestAlibi: def test_functional( self, model, dataloader, caplog, ): transformers = pytest.importorskip('transformers') model = model() if isinstance(model.config, transformers.GPT2Config): max_sequence_length = model.config.n_positions elif isinstance(model.config, transformers.BertConfig): max_sequence_length = model.config.max_position_embeddings else: raise NotImplementedError('Tests not implemented for model with config=' + str(type(model.config))) dataloader = dataloader(sequence_length=max_sequence_length) #### With default sequence length #### # Apply ALiBi using the functional apply_alibi( model=model, max_sequence_length=max_sequence_length, ) assert not encountered_alibi_warning(caplog) # This should not generate any warnings # Ensure that the position embeddings are properly shaped and zeroed check_position_embeddings(model, max_sequence_length) # Try a forward/backward at the max sequence length batch = next(iter(dataloader)) assert batch['input_ids'].shape[1] == max_sequence_length check_forward_backward(model, batch) #### With double sequence length #### # Apply ALiBi using the functional apply_alibi( model=model, max_sequence_length=2 * max_sequence_length, ) assert not encountered_alibi_warning(caplog) # This should not generate any warnings # Ensure that the position embeddings are properly shaped and zeroed check_position_embeddings(model, 2 * max_sequence_length) # Try a forward/backward at the max sequence length batch = next(iter(dataloader)) batch = _double_batch_sequence_length(batch) assert batch['input_ids'].shape[1] == 2 * max_sequence_length check_forward_backward(model, batch) @pytest.mark.parametrize('train_sequence_length_scaling', [0.25, 1.0]) def test_algorithm(self, model, dataloader, empty_logger: Logger, train_sequence_length_scaling: float, caplog, request: pytest.FixtureRequest): transformers = pytest.importorskip('transformers') model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=DeviceCPU(), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) if isinstance(model.config, transformers.GPT2Config): max_sequence_length: int = state.model.config.n_positions # type: ignore elif isinstance(model.config, transformers.BertConfig): max_sequence_length: int = state.model.config.max_position_embeddings # type: ignore else: raise NotImplementedError('Tests not implemented for model with config=' + str(type(model.config))) # Synthetic dataset has a size of 2 batches per epoch (max duration = 1ep) alibi = Alibi( max_sequence_length=max_sequence_length, train_sequence_length_scaling=train_sequence_length_scaling, ) # Apply ALiBi to the model alibi.apply(Event.INIT, state, empty_logger) assert not encountered_alibi_warning(caplog) # This should not generate any warnings batch_before = next(iter(dataloader)) state.batch = deepcopy(batch_before) # Apply any batch reshaping alibi.apply(Event.AFTER_DATALOADER, state, empty_logger) # Ensure proper batch reshaping check_batch_reshaping(batch_before, state.batch, int(train_sequence_length_scaling * max_sequence_length)) # Ensure that the model runs forwards/backwards check_forward_backward(state.model, state.batch)
composer-dev
tests/algorithms/test_alibi.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """ Tests a variety of export options with our surgery methods applied, including torchscript, torch.fx, and ONNX. """ import os import pathlib from typing import Any, Callable, Type import pytest import torch import torch.fx from composer.algorithms import BlurPool, ChannelsLast, Factorize, GhostBatchNorm, SqueezeExcite, StochasticDepth from composer.core import Algorithm from composer.functional import (apply_blurpool, apply_channels_last, apply_factorization, apply_ghost_batchnorm, apply_squeeze_excite, apply_stochastic_depth) from tests.algorithms.algorithm_settings import get_alg_kwargs, get_alg_model, get_algs_with_marks algo_kwargs = { apply_stochastic_depth: { 'stochastic_method': 'block', 'target_layer_name': 'ResNetBottleneck', }, apply_ghost_batchnorm: { 'ghost_batch_size': 2 }, } @pytest.fixture def input(): # input batch to ComposerModel is (input, target) tuple return (torch.rand(4, 3, 112, 112), torch.Tensor()) torchscript_algs_with_marks = [ x for x in get_algs_with_marks() if x.values[0] in (BlurPool, Factorize, GhostBatchNorm, SqueezeExcite, StochasticDepth, ChannelsLast) ] # <--- torchscript export ---> def get_surgery_method(alg_cls: Type[Algorithm]) -> Callable: if alg_cls is BlurPool: return apply_blurpool if alg_cls is Factorize: return apply_factorization if alg_cls is GhostBatchNorm: return apply_ghost_batchnorm if alg_cls is SqueezeExcite: return apply_squeeze_excite if alg_cls is StochasticDepth: return apply_stochastic_depth if alg_cls is ChannelsLast: return apply_channels_last raise ValueError(f'Unknown algorithm class {alg_cls}') @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchscript_train(input: Any, alg_cls: Type[Algorithm]): """Tests torchscript model in train mode.""" if alg_cls in (Factorize, GhostBatchNorm, StochasticDepth): pytest.xfail('Unsupported') alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) surgery_method = get_surgery_method(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) scripted_func = torch.jit.script(model) scripted_func.train() # type: ignore (third-party) model.train() torch.testing.assert_close(scripted_func(input), model(input)) # type: ignore (third-party) @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchscript_eval(input: Any, alg_cls: Type[Algorithm]): """Tests torchscript model in eval mode.""" if alg_cls is Factorize: pytest.xfail('Unsupported') surgery_method = get_surgery_method(alg_cls) alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) scripted_func = torch.jit.script(model) scripted_func.eval() # type: ignore (third-party) model.eval() torch.testing.assert_close(scripted_func(input), model(input)) # type: ignore (third-party) # <--- torch.fx export ---> @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) def test_surgery_torchfx_eval( input: Any, alg_cls: Type[Algorithm], ): """Tests torch.fx model in eval mode.""" alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) surgery_method = get_surgery_method(alg_cls) if alg_cls in (BlurPool, GhostBatchNorm): pytest.xfail('Control flow') alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) model.eval() traced_func = torch.fx.symbolic_trace(model) torch.testing.assert_close(traced_func(input), model(input)) # type: ignore (third-party) # <--- onnx export ---> @pytest.mark.parametrize('alg_cls', torchscript_algs_with_marks) @pytest.mark.filterwarnings( r'ignore:Converting a tensor to a Python .* might cause the trace to be incorrect:torch.jit._trace.TracerWarning') @pytest.mark.filterwarnings('ignore:__floordiv__ is deprecated') def test_surgery_onnx( input: Any, alg_cls: Type[Algorithm], tmp_path: pathlib.Path, ): """Tests onnx export and runtime""" pytest.importorskip('onnx') pytest.importorskip('onnxruntime') import onnx import onnxruntime as ort surgery_method = get_surgery_method(alg_cls) model = get_alg_model(alg_cls) alg_kwargs = get_alg_kwargs(alg_cls) alg_kwargs = algo_kwargs.get(surgery_method, alg_kwargs) surgery_method(model, **alg_kwargs) model.eval() onnx_path = os.path.join(tmp_path, 'model.onnx') torch.onnx.export( model, (input,), onnx_path, input_names=['input'], output_names=['output'], ) # check onnx model onnx_model = onnx.load(onnx_path) onnx.checker.check_model(onnx_model) # type: ignore (third-party) # run inference ort_session = ort.InferenceSession(onnx_path) outputs = ort_session.run( None, {'input': input[0].numpy()}, ) torch.testing.assert_close( outputs[0], model(input).detach().numpy(), rtol=1e-4, # lower tolerance for ONNX atol=1e-3, # lower tolerance for ONNX )
composer-dev
tests/algorithms/test_torch_export.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/algorithms/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from composer.algorithms.factorize import FactorizedConv2d, FactorizedLinear @pytest.mark.parametrize('batch_size', [1, 2]) @pytest.mark.parametrize('h', [5]) @pytest.mark.parametrize('w', [6]) @pytest.mark.parametrize('in_channels', [4, 8]) @pytest.mark.parametrize('out_channels', [4, 8]) @pytest.mark.parametrize('kernel_size', [(1, 1), (2, 2), (3, 3), (1, 3), (3, 1), (5, 5)]) def test_factorized_conv2d_shapes(batch_size, h, w, in_channels, out_channels, kernel_size): X = torch.randn(batch_size, in_channels, h, w) conv = FactorizedConv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size) Y = conv(X) assert Y.ndim == 4 assert Y.shape[:2] == (batch_size, out_channels) @pytest.mark.parametrize('batch_size', [1, 2]) @pytest.mark.parametrize('in_features', [7, 8, 11]) @pytest.mark.parametrize('out_features', [4, 6, 8]) def test_factorized_linear_shapes(batch_size, in_features, out_features): X = torch.randn(batch_size, in_features) module = FactorizedLinear(in_features=in_features, out_features=out_features) Y = module(X) assert Y.ndim == 2 assert Y.shape == (batch_size, out_features) def test_update_factorized_conv2d_twice(): batch_size = 2 h = 5 w = 6 C_in = 36 C_out = 40 C_latent = 16 X = torch.randn(batch_size, C_in, h, w) kernel_size = (3, 3) module = FactorizedConv2d(in_channels=C_in, out_channels=C_out, latent_channels=C_latent, kernel_size=kernel_size, padding=0) def _check_conv_shapes(module: FactorizedConv2d, C_in, C_out, C_latent): assert module.latent_channels == C_latent assert module.module0 is not None assert module.module0.in_channels == C_in assert module.module0.out_channels == C_latent assert isinstance(module.module0.weight, torch.Tensor) assert module.module0.weight.shape[:2] == (C_latent, C_in) assert module.module1 is not None assert module.module1.in_channels == C_latent assert module.module1.out_channels == C_out assert isinstance(module.module1.weight, torch.Tensor) assert module.module1.weight.shape[:2] == (C_out, C_latent) for new_C_latent in [12, 8]: module.set_rank(X, new_C_latent) _check_conv_shapes(module, C_in=C_in, C_out=C_out, C_latent=new_C_latent) def test_update_factorized_linear_twice(): batch_size = 2 d_in = 36 d_out = 40 d_latent = 16 X = torch.randn(batch_size, d_in) module = FactorizedLinear(in_features=d_in, out_features=d_out, latent_features=d_latent) def _check_shapes(module: FactorizedLinear, d_in, d_out, d_latent): assert module.latent_features == d_latent assert module.module0.in_features == d_in assert module.module0.out_features == d_latent # linear layer weights have shape (out_features, in_features) assert module.module0.weight.shape == (d_latent, d_in) assert module.module1 is not None assert module.module1.in_features == d_latent assert module.module1.out_features == d_out assert module.module1.weight.shape == (d_out, d_latent) _check_shapes(module, d_in=d_in, d_out=d_out, d_latent=d_latent) for new_d_latent in [12, 8]: module.set_rank(X, new_d_latent) _check_shapes(module, d_in=d_in, d_out=d_out, d_latent=new_d_latent) @pytest.mark.parametrize('sizes', [(8, 8, 4), (7, 5, 3), (10, 10, 0.5)]) def test_factorized_conv_init_throws_if_latent_too_big(sizes): with pytest.raises(ValueError): FactorizedConv2d(in_channels=sizes[0], out_channels=sizes[1], latent_channels=sizes[2], kernel_size=(1, 1)) @pytest.mark.parametrize('sizes', [(8, 8, 4), (7, 5, 3), (10, 10, 0.5)]) def test_factorized_linear_init_throws_if_latent_too_big(sizes): with pytest.raises(ValueError): FactorizedLinear(in_features=sizes[0], out_features=sizes[1], latent_features=sizes[2]) @pytest.mark.parametrize('sizes', [(8, 8, 3, 4), (7, 5, 2, 4), (12, 13, 0.3, 5)]) def test_factorized_conv2d_set_rank_throws_if_latent_too_big(sizes): module = FactorizedConv2d(in_channels=sizes[0], out_channels=sizes[1], kernel_size=1, latent_channels=sizes[2]) X = torch.randn(2, module.in_channels, 8, 8) with pytest.raises(ValueError): module.set_rank(X, sizes[3]) @pytest.mark.parametrize('sizes', [(8, 8, 3, 4), (7, 5, 2, 4), (12, 13, 0.3, 5)]) def test_factorized_linear_set_rank_throws_if_latent_too_big(sizes): module = FactorizedLinear(in_features=sizes[0], out_features=sizes[1], latent_features=sizes[2]) X = torch.randn(2, module.in_features) with pytest.raises(ValueError): module.set_rank(X, sizes[3])
composer-dev
tests/algorithms/test_factorized_modules.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Callable import pytest import torch from composer.algorithms.selective_backprop import SelectiveBackprop from composer.algorithms.selective_backprop.selective_backprop import select_using_loss, should_selective_backprop from composer.core import Event from composer.core.state import State from composer.loggers import Logger from composer.models import ComposerClassifier @pytest.fixture def N() -> int: """Batch size.""" return 16 @pytest.fixture def D() -> int: """Input dimension.""" return 8 @pytest.fixture def X(N: int, D: int) -> torch.Tensor: """2D input.""" torch.manual_seed(42) return torch.randn(N, D) @pytest.fixture def X3D(N: int, D: int) -> torch.Tensor: """3D input.""" torch.manual_seed(42) return torch.randn(N, D, D) @pytest.fixture def X5D(N: int, D: int) -> torch.Tensor: """5D input.""" torch.manual_seed(42) return torch.randn(N, D, D, D, D) @pytest.fixture def Ximage(N: int) -> torch.Tensor: """4D image input.""" torch.manual_seed(42) return torch.randn(N, 3, 32, 32) @pytest.fixture def y(N: int) -> torch.Tensor: """Target.""" torch.manual_seed(42) return torch.randint(2, (N,)) @pytest.fixture def loss_fun() -> Callable: """Fake loss function.""" def loss(output, target, reduction='none'): return torch.ones_like(target) return loss @pytest.fixture def loss_fun_tuple() -> Callable: """Fake loss function that requires a batch tuple.""" def loss(output, batch, reduction='none'): _, target = batch return torch.ones_like(target) return loss @pytest.fixture def bad_loss() -> Callable: """Fake loss function that will error.""" def loss(output, target): return 0 return loss @pytest.fixture def model(X: torch.Tensor) -> torch.nn.Module: """Simple fake linear model.""" return torch.nn.Linear(X.shape[1], 1) @pytest.fixture def model3D(X3D: torch.Tensor) -> torch.nn.Module: """Simple fake linear model.""" return torch.nn.Sequential(torch.nn.AdaptiveAvgPool1d(1), torch.nn.Flatten(), torch.nn.Linear(X3D.shape[1], 1)) @pytest.fixture def model5D(X5D: torch.Tensor) -> torch.nn.Module: """Simple fake linear model.""" return torch.nn.Sequential(torch.nn.AdaptiveAvgPool3d(1), torch.nn.Flatten(), torch.nn.Linear(X5D.shape[1], 1)) @pytest.fixture def keep() -> float: """keep hparam.""" return 0.5 @pytest.fixture def scale_factor() -> float: """scale_factor hparam.""" return 0.5 @pytest.fixture def epoch() -> int: """Default epoch.""" return 5 @pytest.fixture def batch() -> int: """Default batch.""" return 0 @pytest.fixture def conv_model(Ximage: torch.Tensor, D: int) -> ComposerClassifier: """Dummy conv model.""" return ComposerClassifier(torch.nn.Conv2d(Ximage.shape[1], D, 3), num_classes=2) @pytest.fixture def state(minimal_state: State, conv_model: ComposerClassifier, loss_fun_tuple: Callable, epoch: int, batch: int) -> State: """State with required values set for Selective Backprop.""" assert minimal_state.dataloader_len is not None conv_model.loss = loss_fun_tuple minimal_state.model = conv_model minimal_state.timestamp = minimal_state.timestamp.copy( epoch=epoch, batch=epoch * int(minimal_state.dataloader_len) + batch, batch_in_epoch=batch, ) return minimal_state # tests of the functional API class TestSelectiveBackprop: @pytest.mark.parametrize('epoch,batch,interrupt', [(10, 0, 0), (10, 0, 2), (10, 2, 2)]) def test_select_using_loss_true(self, epoch: int, batch: int, interrupt: int) -> None: """Test functional match when epoch is within interval.""" start = 5 end = 15 is_chosen = should_selective_backprop(epoch, batch, start, end, interrupt) assert is_chosen @pytest.mark.parametrize('epoch,batch,interrupt', [(0, 0, 0), (20, 0, 0), (10, 1, 2)]) def test_select_using_loss_false(self, epoch: int, batch: int, interrupt: int) -> None: """Test functional doesn't match when epoch is outside of interval.""" start = 5 end = 15 is_chosen = should_selective_backprop(epoch, batch, start, end, interrupt) assert not is_chosen @pytest.mark.parametrize('keep', [0.5]) @pytest.mark.parametrize('scale_factor', [0.5]) @pytest.mark.xfail() def test_selective_output_shape_3D(self, X3D: torch.Tensor, y: torch.Tensor, model: torch.nn.Module, loss_fun: Callable, keep: float, scale_factor: float) -> None: """Test functional selection on 3D inputs.""" N, D, _ = X3D.shape X_scaled, y_scaled = select_using_loss(X3D, y, model, loss_fun, keep, scale_factor) assert X_scaled.shape == (int(N * keep), D, D) assert y_scaled.shape == (int(N * keep),) @pytest.mark.parametrize('keep', [1, 0.5, 0.75]) @pytest.mark.parametrize('scale_factor', [1]) def test_selective_output_shape(self, X: torch.Tensor, y: torch.Tensor, model: torch.nn.Module, loss_fun: Callable, keep: float, scale_factor: float) -> None: """Test functional selection on 2D inputs.""" N, D = X.shape X_scaled, y_scaled = select_using_loss(X, y, model, loss_fun, keep, scale_factor) assert X_scaled.shape == (int(N * keep), D) assert y_scaled.shape == (int(N * keep),) @pytest.mark.parametrize('keep', [0.5, 0.75, 1]) @pytest.mark.parametrize('scale_factor', [0.5, 0.75]) def test_selective_output_shape_scaled(self, Ximage: torch.Tensor, y: torch.Tensor, conv_model: ComposerClassifier, loss_fun: Callable, keep: float, scale_factor: float) -> None: """Test functional selection on 4D inputs.""" N, C, H, W = Ximage.shape X_scaled, y_scaled = select_using_loss(Ximage, y, conv_model.module, loss_fun, keep, scale_factor) assert X_scaled.shape == (int(N * keep), C, H, W) assert y_scaled.shape == (int(N * keep),) def test_selective_backprop_interp_dim_error(self, X: torch.Tensor, y: torch.Tensor, model: torch.nn.Module, loss_fun: Callable) -> None: """Ensure that ValueError is raised when input tensor can't be scaled.""" with pytest.raises(ValueError): select_using_loss(X, y, model, loss_fun, 1, 0.5) def test_selective_backprop_bad_loss_error(self, X: torch.Tensor, y: torch.Tensor, model: torch.nn.Module, bad_loss: Callable) -> None: """Ensure that ValueError is raised when loss function doesn't have `reduction` kwarg.""" with pytest.raises(TypeError) as execinfo: select_using_loss(X, y, model, bad_loss, 1, 1) MATCH = 'must take a keyword argument `reduction`.' assert MATCH in str(execinfo.value) class TestSelectiveBackpropAlgorithm: """ Test Selective Backprop Algorithm """ @pytest.fixture def sb_algorithm(self, scale_factor, keep) -> SelectiveBackprop: return SelectiveBackprop( start=0.5, end=0.8, keep=keep, scale_factor=scale_factor, interrupt=2, ) @pytest.mark.parametrize('event', [Event.AFTER_DATALOADER]) @pytest.mark.parametrize('epoch,batch', [(5, 0), (7, 0), (5, 2)]) def test_match_correct(self, event: Event, sb_algorithm: SelectiveBackprop, state: State) -> None: """Algo should match AFTER_DATALOADER in the right interval.""" state.max_duration = '10ep' assert sb_algorithm.match(event, state) @pytest.mark.parametrize('event,epoch,batch', [(Event.AFTER_DATALOADER, 0, 0), (Event.AFTER_DATALOADER, 5, 1)]) def test_match_incorrect(self, event: Event, sb_algorithm: SelectiveBackprop, state: State) -> None: """Algo should NOT match the wrong interval.""" state.max_duration = '10ep' assert not sb_algorithm.match(event, state) @pytest.mark.parametrize('epoch,batch', [(5, 0)]) @pytest.mark.parametrize('keep', [0.5, 0.75, 1]) @pytest.mark.parametrize('scale_factor', [0.5, 1]) def test_apply(self, Ximage: torch.Tensor, y: torch.Tensor, sb_algorithm: SelectiveBackprop, state: State, empty_logger: Logger, keep: float) -> None: """Test apply with image inputs gives the right output shape.""" N, C, H, W = Ximage.shape state.max_duration = '10ep' state.batch = (Ximage, y) sb_algorithm.apply(Event.INIT, state, empty_logger) sb_algorithm.apply(Event.AFTER_DATALOADER, state, empty_logger) X_scaled, y_scaled = state.batch assert X_scaled.shape == (int(N * keep), C, H, W) assert y_scaled.shape == (int(N * keep),)
composer-dev
tests/algorithms/test_selective_backprop.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """Test the blurpool algorithm. Primitives are tested in test_blurpool.py """ from typing import List from unittest.mock import Mock import pytest import torch from composer.algorithms import BlurPool from composer.algorithms.blurpool import apply_blurpool from composer.algorithms.blurpool.blurpool_layers import BlurConv2d, BlurMaxPool2d from composer.algorithms.warnings import NoEffectWarning from composer.core import Event, State from composer.loggers import Logger from composer.utils import module_surgery from tests.common import ConvModel @pytest.fixture def state(minimal_state: State): minimal_state.model = ConvModel() return minimal_state @pytest.fixture(params=[ # replace_conv, replace_pool, blur_first (True, True, True), (True, True, False), (True, False, True), (True, False, False), (False, True, True), (False, True, False), ]) def blurpool_instance(request) -> BlurPool: replace_conv, replace_pool, blur_first = request.param return BlurPool( replace_convs=replace_conv, replace_maxpools=replace_pool, blur_first=blur_first, ) def test_blurconv(state: State, blurpool_instance: BlurPool, empty_logger: Logger): blurpool_instance.apply(Event.INIT, state, empty_logger) assert isinstance(state.model, ConvModel) if blurpool_instance.replace_convs: assert type(state.model.conv1) is BlurConv2d else: assert type(state.model.conv1) is torch.nn.Conv2d def test_maybe_replace_strided_conv_stride(state: State, blurpool_instance: BlurPool, empty_logger: Logger): blurpool_instance.apply(Event.INIT, state, empty_logger) assert isinstance(state.model, ConvModel) assert type(state.model.conv3) is torch.nn.Conv2d # stride = 1, should be no replacement def test_maybe_replace_strided_conv_channels(state: State, blurpool_instance: BlurPool, empty_logger: Logger): blurpool_instance.apply(Event.INIT, state, empty_logger) assert isinstance(state.model, ConvModel) assert type(state.model.conv2) is torch.nn.Conv2d # channels < 16, should be no replacement def test_blurconv_weights_preserved(state: State, blurpool_instance: BlurPool, empty_logger: Logger): assert isinstance(state.model, ConvModel) original_weights = state.model.conv1.weight.clone() blurpool_instance.apply(Event.INIT, state, empty_logger) if isinstance(state.model.conv1, BlurConv2d): new_weights = state.model.conv1.conv.weight elif isinstance(state.model.conv1, torch.nn.Conv2d): new_weights = state.model.conv1.weight else: raise TypeError(f'Layer type {type(state.model.conv1)} not expected.') assert torch.allclose(original_weights, new_weights) def test_blurpool(state: State, blurpool_instance: BlurPool, empty_logger: Logger): blurpool_instance.apply(Event.INIT, state, empty_logger) assert isinstance(state.model, ConvModel) if blurpool_instance.replace_maxpools: assert type(state.model.pool1) is BlurMaxPool2d else: assert type(state.model.pool1) is torch.nn.MaxPool2d def test_blurpool_wrong_event(state: State, blurpool_instance: BlurPool): assert blurpool_instance.match(Event.BATCH_START, state) == False def test_blurpool_correct_event(state: State, blurpool_instance: BlurPool): assert blurpool_instance.match(Event.INIT, state) == True def test_blurpool_algorithm_logging(state: State, blurpool_instance: BlurPool): mock_logger = Mock() blurpool_instance.apply(Event.INIT, state, mock_logger) mock_logger.log_hyperparameters.assert_called_once_with({ 'blurpool/num_blurpool_layers': 1 if blurpool_instance.replace_maxpools else 0, 'blurpool/num_blurconv_layers': 1 if blurpool_instance.replace_convs else 0, }) def test_blurpool_noeffectwarning(): model = torch.nn.Linear(in_features=16, out_features=32) with pytest.warns(NoEffectWarning): apply_blurpool(model) def test_blurpool_min_channels(): model = torch.nn.Conv2d(in_channels=32, out_channels=64, stride=1, kernel_size=(3, 3)) with pytest.warns(NoEffectWarning): apply_blurpool(model, min_channels=64) def test_blurconv2d_optimizer_params_updated(): model = ConvModel() original_layer = model.conv1 assert original_layer.stride == (2, 2) # fail fast if test model changes optimizer = torch.optim.SGD(model.parameters(), lr=.01) apply_blurpool(model, optimizers=optimizer) new_layer = model.conv1 param_list: List[torch.Tensor] = optimizer.param_groups[0]['params'] # assert old parameters removed assert not module_surgery._tensor_in(original_layer.weight, param_list) # new params added new_conv_layer = new_layer.conv assert isinstance(new_conv_layer, torch.nn.Conv2d) assert new_conv_layer.weight is not original_layer.weight assert module_surgery._tensor_in(new_conv_layer.weight, param_list)
composer-dev
tests/algorithms/test_blurpool.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import itertools import pytest import torch from composer.algorithms import blurpool def generate_pool_args(): n_vals = [2] c_vals = [2] size_vals = [(3, 3), (3, 7), (4, 4)] strides = [1, 2] filter_size_vals = [(1, 1), (1, 3), (3, 3)] return list(itertools.product(n_vals, c_vals, size_vals, strides, filter_size_vals)) @pytest.mark.parametrize('pool_args', generate_pool_args()) def test_blurmaxpool_shapes(pool_args): n, c, sz, stride, kernel_size = pool_args X = torch.randn(n, c, sz[0], sz[1]) layer_args = {'kernel_size': kernel_size, 'stride': stride, 'dilation': 1} blurpool_layer = blurpool.BlurMaxPool2d(**layer_args) maxpool_layer = torch.nn.MaxPool2d(**layer_args) assert blurpool_layer(X).shape == maxpool_layer(X).shape @pytest.mark.parametrize('blur_first', [True, False]) @pytest.mark.parametrize('pool_args', generate_pool_args()) def test_blurconv2d_shapes(pool_args, blur_first): n, c, sz, stride, kernel_size = pool_args X = torch.randn(n, c, sz[0], sz[1]) layer_args = {'kernel_size': kernel_size, 'stride': stride, 'dilation': 1, 'in_channels': c, 'out_channels': c + 1} blurconv2d_layer = blurpool.BlurConv2d(**layer_args, blur_first=blur_first) conv2d_layer = torch.nn.Conv2d(**layer_args) assert blurconv2d_layer(X).shape == conv2d_layer(X).shape @pytest.mark.parametrize('pool_args', generate_pool_args()) def test_blur2d_shapes(pool_args): n, c, sz, _, _ = pool_args X = torch.randn(n, c, sz[0], sz[1]) out = blurpool.blur_2d(X) assert out.shape == X.shape def test_default_2d_filter(): def reference_filter(): filt = torch.FloatTensor([1, 2, 1]) filt = torch.outer(filt, filt) filt *= 1. / filt.sum() filt = torch.Tensor(filt) return filt.view(1, 1, *filt.shape) torch.testing.assert_close( blurpool.blurpool_layers._default_2d_filter(), # type: ignore reference_filter(), ) @pytest.mark.parametrize('pool_args', generate_pool_args()) def test_blur2d_std(pool_args): n, c, sz, _, _ = pool_args X = torch.randn(n, c, sz[0], sz[1]) out = blurpool.blur_2d(X) assert torch.std(out) <= torch.std(X) def test_blurpool_blurconv2d_params_match_original_params(): conv2d = torch.nn.Conv2d(16, 32, 3, stride=1, bias=True) blurconv = blurpool.BlurConv2d.from_conv2d(conv2d) torch.testing.assert_close(blurconv.conv.weight, conv2d.weight) torch.testing.assert_close(blurconv.conv.bias, conv2d.bias) assert blurconv.conv.weight.requires_grad assert blurconv.conv.bias is not None assert blurconv.conv.bias.requires_grad
composer-dev
tests/algorithms/test_blurpool_layers.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch import torch.nn.functional as F from composer.algorithms import LabelSmoothing, label_smoothing from composer.core import Event def _generate_tensors_classification(batch_size: int, num_classes: int): """Helper functions to generate input, target pairs for image classification (1d indices)""" N = batch_size C = num_classes target_indices = torch.randint(0, C, [N]) target_onehot = F.one_hot(target_indices, num_classes=C) input = F.softmax(torch.randn((N, C)), dim=1) return (input, target_indices, target_onehot) def _generate_tensors_segmentation(batch_size: int, num_classes: int, H: int, W: int): """Helper functions to generate input, target pairs for image segmentation (2d indices)""" N = batch_size C = num_classes target_indices = torch.randint(0, C, (N, H, W)) target_onehot = F.one_hot(target_indices, num_classes=C) # NHWC target_onehot = torch.movedim(target_onehot, -1, 1).contiguous() # NCHW input = F.softmax(torch.randn((N, C, H, W)), dim=1) return (input, target_indices, target_onehot) def xfail(val): """shorthand to mark xfail parameters.""" return pytest.param(val, marks=pytest.mark.xfail) def generate_tensors(): return [ # binary classification _generate_tensors_classification(batch_size=64, num_classes=2), # classification _generate_tensors_classification(batch_size=64, num_classes=10), # segmentation _generate_tensors_segmentation(batch_size=64, num_classes=2, H=5, W=5), _generate_tensors_segmentation(batch_size=64, num_classes=10, H=5, W=5) ] @pytest.mark.parametrize('smoothing', [0, 0.1, 0.5, 0.9, 1.0]) @pytest.mark.parametrize('tensors', generate_tensors()) class TestLabelSmoothing: @staticmethod def reference_smooth_labels(targets, smoothing): num_classes = targets.shape[1] return targets * (1 - smoothing) + smoothing / num_classes def test_label_smoothing(self, tensors, smoothing): (input, target_indices, target_onehot) = tensors labels_onehot = label_smoothing.smooth_labels(input, target_onehot, smoothing) labels_indices = label_smoothing.smooth_labels(input, target_indices, smoothing) labels_ref = self.reference_smooth_labels(target_onehot, smoothing) torch.testing.assert_close(labels_onehot, labels_ref) torch.testing.assert_close(labels_indices, labels_ref) @pytest.mark.parametrize('target_type', ['onehot', 'indices']) def test_label_smoothing_algorithm(self, tensors, smoothing, target_type, empty_logger, minimal_state): (outputs, target_indices, target_onehot) = tensors target = target_indices if target_type == 'indices' else target_onehot algorithm = LabelSmoothing(smoothing=smoothing) state = minimal_state state.batch = (torch.Tensor(), target) state.outputs = outputs # BEFORE_LOSS should smooth the labels algorithm.apply(Event.BEFORE_LOSS, state, empty_logger) smoothed_reference = self.reference_smooth_labels(target_onehot, smoothing) _, labels = state.batch torch.testing.assert_close(labels, smoothed_reference) # AFTER_LOSS should restore the original targets algorithm.apply(Event.AFTER_LOSS, state, empty_logger) _, labels = state.batch torch.testing.assert_close(labels, target)
composer-dev
tests/algorithms/test_label_smoothing.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Type import pytest from composer import Algorithm, Trainer from composer.algorithms import GyroDropout, LayerFreezing from tests.algorithms.algorithm_settings import get_alg_dataloader, get_alg_kwargs, get_alg_model, get_algs_with_marks @pytest.mark.gpu @pytest.mark.parametrize('alg_cls', get_algs_with_marks()) def test_algorithm_trains(alg_cls: Type[Algorithm]): alg_kwargs = get_alg_kwargs(alg_cls) model = get_alg_model(alg_cls) dataloader = get_alg_dataloader(alg_cls) trainer = Trainer( model=model, train_dataloader=dataloader, max_duration='2ep', algorithms=alg_cls(**alg_kwargs), ) trainer.fit() if alg_cls is LayerFreezing: pytest.xfail(('Layer freezing is incompatible with a second call to .fit() ' 'since all layers are frozen, and it does not unfreeze layers.')) if alg_cls is GyroDropout: pytest.xfail( 'GyroDropout is implemented to be applied on Event.FIT_START, so is not compatible with multiple calls to fit.' ) # fit again for another epoch trainer.fit(duration='1ep')
composer-dev
tests/algorithms/test_algorithms_train.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from composer.algorithms import MixUp from composer.algorithms.mixup.mixup import _gen_mixing_coef, mixup_batch from composer.core import Event from composer.models import ComposerClassifier # (N, C, d1, d2, num_classes) @pytest.fixture(params=[(7, 11, 3, 5, 10)]) def fake_data(request): # Generate some fake data N, C, d1, d2, num_classes = request.param torch.manual_seed(0) x_fake = torch.randn(N, C, d1, d2) y_fake = torch.randint(num_classes, size=(N,)) indices = torch.randperm(N) return x_fake, y_fake, indices def validate_mixup_batch(x, y, indices, x_mix, y_perm, mixing): # Explicitly check that the batches and labels have been mixed correctly. for i in range(x.size(0)): # Grab N j = indices[i] # Check the input data x_mix_test = (1 - mixing) * x[i] + mixing * x[j] torch.testing.assert_close(x_mix_test, x_mix[i]) # Check the label perm_label = y[j] torch.testing.assert_close(perm_label, y_perm[i]) @pytest.mark.parametrize('alpha', [.2, 1]) @pytest.mark.parametrize('interpolate_loss', [True, False]) class TestMixUp: def test_mixup_batch(self, fake_data, alpha, interpolate_loss): # Generate fake data x_fake, y_fake, indices = fake_data # Get interpolation lambda based on alpha hparam mixing = _gen_mixing_coef(alpha) # Apply mixup x_mix, y_perm, _ = mixup_batch(x_fake, y_fake, mixing=mixing, indices=indices) # Validate results validate_mixup_batch(x_fake, y_fake, indices, x_mix, y_perm, mixing) def test_mixup_algorithm(self, fake_data, alpha, interpolate_loss, minimal_state, empty_logger): # Generate fake data x_fake, y_fake, _ = fake_data algorithm = MixUp(alpha=alpha, interpolate_loss=interpolate_loss) state = minimal_state state.model = ComposerClassifier(torch.nn.Flatten(), num_classes=y_fake.shape[0]) state.batch = (x_fake, y_fake) # Apply algo, use test hooks to specify indices and override internally generated interpolation lambda for testability algorithm.apply(Event.BEFORE_FORWARD, state, empty_logger) x, _ = state.batch # Use algorithm generated indices and mixing_coef for validation validate_mixup_batch(x_fake, y_fake, algorithm.indices, x, algorithm.permuted_target, algorithm.mixing)
composer-dev
tests/algorithms/test_mixup.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import functools from typing import Tuple import numpy as np import pytest import torch from PIL import Image from torch.utils.data import DataLoader from composer.algorithms import ColOut from composer.algorithms.colout.colout import ColOutTransform, colout_batch from composer.core import Event, State from composer.loggers import Logger from tests.common import RandomImageDataset def verify_shape_image(orig: Image.Image, new: Image.Image, p_row: float, p_col: float) -> None: """Verify the shape of a transformed PIL Image.""" H_o, W_o = orig.height, orig.width H_n, W_n = new.height, new.width H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert (H_n, W_n) == (H_t, W_t), f'Image shape mismatch: {(H_n, W_n)} != {(H_t, W_t)}' def verify_shape_image_pair(orig_sample: Tuple[Image.Image, Image.Image], new_sample: Tuple[Image.Image, Image.Image], p_row: float, p_col: float): """Verify the shape of a pair of transformed PIL images.""" H_o, W_o = orig_sample[0].height, orig_sample[0].width H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new_sample[0].size == (H_t, W_t), f'Input Image shape mismatch: {new_sample[0].size} != {(H_t, W_t)}' assert new_sample[1].size == (H_t, W_t), f'Target image shape mismatch: {new_sample[1].size} != {(H_t, W_t)}' def verify_shape_tensor(orig: torch.Tensor, new: torch.Tensor, p_row: float, p_col: float) -> None: """Verify the shape of a transformed image tensor.""" C, H_o, W_o = orig.shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new.shape == (C, H_t, W_t), f'Image tensor shape mismatch: {new.shape} != {(C, H_t, W_t)}' def verify_shape_tensor_pair(orig_sample: Tuple[torch.Tensor, torch.Tensor], new_sample: Tuple[torch.Tensor, torch.Tensor], p_row: float, p_col: float) -> None: """Verify the shape of a transformed image tensor.""" C, H_o, W_o = orig_sample[0].shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new_sample[0].shape == (C, H_t, W_t), f'Input shape mismatch: {new_sample[0].shape} != {(C, H_t, W_t)}' assert new_sample[1].shape == (C, H_t, W_t), f'Target shape mismatch: {new_sample[0].shape} != {(C, H_t, W_t)}' def verify_shape_batch(orig: torch.Tensor, new: torch.Tensor, p_row: float, p_col: float) -> None: """Verify the shape of a transformed batch of images.""" N, C, H_o, W_o = orig.shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new.shape == (N, C, H_t, W_t), f'Image batch shape mismatch: {new.shape} != {(N, C, H_t, W_t)}' def verify_shape_batch_pair(orig_sample: Tuple[torch.Tensor, torch.Tensor], new_sample: Tuple[torch.Tensor, torch.Tensor], p_row: float, p_col: float) -> None: """Verify the shape of a transformed batch of images.""" N, C, H_o, W_o = orig_sample[0].shape H_t = int((1 - p_row) * H_o) W_t = int((1 - p_col) * W_o) assert new_sample[0].shape == (N, C, H_t, W_t), f'Input shape mismatch: {new_sample[0].shape} != {(N, C, H_t, W_t)}' assert new_sample[1].shape == (N, C, H_t, W_t), f'Target shape mismatch: {new_sample[1].shape} != {(N, C, H_t, W_t)}' @pytest.fixture(params=[False, True]) def batch(request) -> bool: """Algorithm batch parameter.""" return request.param @pytest.fixture(params=[0, 0.15]) def p_row(request) -> float: """Algorithm p_row parameter.""" return request.param @pytest.fixture def p_col(p_row) -> float: """Algorithm p_col parameter.""" return p_row @pytest.fixture(params=[1, 3]) def C(request) -> int: """Number of image channels. Testing BW and RGB. """ return request.param @pytest.fixture def H(request) -> int: """Default image height.""" return 32 @pytest.fixture def W(H) -> int: """Default image width (equal to height)""" return H @pytest.fixture def fake_image(H: int, W: int, C: int) -> Image.Image: """Fake PIL Image.""" return Image.fromarray((255 * np.random.uniform(size=(H, W, C)).squeeze()).astype(np.uint8)) @pytest.fixture def fake_image_tensor(H: int, W: int, C: int) -> torch.Tensor: """Fake image tensor.""" return torch.rand(C, H, W) @pytest.fixture def fake_image_batch(H: int, W: int, C: int) -> torch.Tensor: """Fake batch of images.""" return torch.rand(16, C, H, W) @pytest.fixture def colout_algorithm(p_row: float, p_col: float, batch: bool) -> ColOut: """Reusable algorithm instance.""" return ColOut(p_row, p_col, batch) class TestColOutTransform: def test_single_image_drop_size(self, fake_image: Image.Image, p_row: float, p_col: float): """Test application to single PIL image.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image) assert isinstance(new_image, Image.Image) verify_shape_image(fake_image, new_image, p_row, p_col) def test_image_pair_drop_size(self, fake_image: Image.Image, p_row: float, p_col: float): """Test application to a 2-tuple of PIL images.""" transform = ColOutTransform(p_row, p_col) orig_sample = (fake_image, fake_image) new_sample = transform(orig_sample) assert isinstance(new_sample, Tuple) verify_shape_image_pair(orig_sample, new_sample, p_row, p_col) @pytest.mark.parametrize('W', [48]) def test_rectangular_image(self, fake_image: Image.Image, p_row: float, p_col: float): """Test application to a rectangular PIL image.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image) verify_shape_image(fake_image, new_image, p_row, p_col) # type: ignore def test_single_image_tensor_drop_size(self, fake_image_tensor: torch.Tensor, p_row: float, p_col: float): """Test application to a single torch image tensor.""" transform = ColOutTransform(p_row, p_col) new_image = transform(fake_image_tensor) verify_shape_tensor(fake_image_tensor, new_image, p_row, p_col) # type: ignore def test_image_tensor_pair_drop_size(self, fake_image_tensor: torch.Tensor, p_row: float, p_col: float): """Test application to a single torch image tensor.""" transform = ColOutTransform(p_row, p_col) orig_sample = (fake_image_tensor, fake_image_tensor) new_sample = transform(orig_sample) verify_shape_tensor_pair(orig_sample, new_sample, p_row, p_col) # type: ignore def test_reproducibility_image(self, fake_image_tensor: torch.Tensor, p_row: float, p_col: float): """Test that transform is reproducible given the same seed.""" transform_1 = ColOutTransform(p_row, p_col) transform_2 = ColOutTransform(p_row, p_col) torch.manual_seed(42) new_image_1 = transform_1(fake_image_tensor) assert isinstance(new_image_1, torch.Tensor) torch.manual_seed(42) new_image_2 = transform_2(fake_image_tensor) assert isinstance(new_image_2, torch.Tensor) assert torch.allclose(new_image_1, new_image_2) class TestColOutFunctional: def test_reproducibility_batch(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test that batch augmentation is reproducible given the same seed.""" transform_1 = functools.partial(colout_batch, p_row=p_row, p_col=p_col) transform_2 = functools.partial(colout_batch, p_row=p_row, p_col=p_col) torch.manual_seed(42) new_batch_1 = transform_1(fake_image_batch) torch.manual_seed(42) new_batch_2 = transform_2(fake_image_batch) assert isinstance(new_batch_1, torch.Tensor) assert isinstance(new_batch_2, torch.Tensor) assert torch.allclose(new_batch_1, new_batch_2) def test_batch_drop_size(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test application to a batch of images.""" colout = functools.partial(colout_batch, p_row=p_row, p_col=p_col) new_batch = colout(fake_image_batch) assert isinstance(new_batch, torch.Tensor) verify_shape_batch(fake_image_batch, new_batch, p_row, p_col) def test_batch_pair_drop_size(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): colout = functools.partial(colout_batch, p_row=p_row, p_col=p_col) sample = (fake_image_batch, fake_image_batch) new_batch = colout(sample) assert isinstance(new_batch, Tuple) and isinstance(new_batch[0], torch.Tensor) and isinstance( new_batch[1], torch.Tensor) verify_shape_batch_pair(sample, new_batch, p_row, p_col) @pytest.mark.parametrize('p_col', [0.05, 0.25]) def test_rectangle_batch_drop_size(self, fake_image_batch: torch.Tensor, p_row: float, p_col: float): """Test that unequal values of p_row and p_col work properly.""" colout = functools.partial(colout_batch, p_row=p_row, p_col=p_col) new_batch = colout(fake_image_batch) assert isinstance(new_batch, torch.Tensor) verify_shape_batch(fake_image_batch, new_batch, p_row, p_col) class TestColOutAlgorithm: @pytest.mark.parametrize('event,batch', [(Event.AFTER_DATALOADER, True), (Event.FIT_START, False)]) def test_match_correct(self, event: Event, colout_algorithm: ColOut, minimal_state: State): """Algo should match AFTER_DATALOADER if batch else FIT_START.""" assert colout_algorithm.match(event, minimal_state) @pytest.mark.parametrize('event,batch', [(Event.FIT_START, True), (Event.AFTER_DATALOADER, False), (Event.EPOCH_END, True)]) def test_match_incorrect(self, event: Event, colout_algorithm: ColOut, minimal_state: State): """Algo should NOT match FIT_START if batch else AFTER_DATALOADER.""" assert not colout_algorithm.match(event, minimal_state) @pytest.mark.parametrize('batch', [True]) def test_apply_batch(self, fake_image_batch: torch.Tensor, colout_algorithm: ColOut, minimal_state: State, empty_logger: Logger): """Applies the algorithm to a fake batch.""" p_row = colout_algorithm.p_row p_col = colout_algorithm.p_col minimal_state.batch = (fake_image_batch, torch.Tensor()) colout_algorithm.apply(Event.AFTER_DATALOADER, minimal_state, empty_logger) last_input, last_target = minimal_state.batch verify_shape_batch(fake_image_batch, last_input, p_row, p_col) assert id(minimal_state.batch[1]) == id(last_target) # Check that the target before and after are the same @pytest.mark.parametrize('batch', [True]) def test_apply_batch_pair(self, fake_image_batch: torch.Tensor, colout_algorithm: ColOut, minimal_state: State, empty_logger: Logger): """Applies batch ColOut to 2-tuple of images.""" p_row = colout_algorithm.p_row p_col = colout_algorithm.p_col orig_sample = (fake_image_batch, fake_image_batch) minimal_state.batch = orig_sample colout_algorithm.apply(Event.AFTER_DATALOADER, minimal_state, empty_logger) new_sample = minimal_state.batch verify_shape_batch_pair(orig_sample, new_sample, p_row, p_col) @pytest.mark.parametrize('batch', [False]) def test_apply_sample(self, colout_algorithm: ColOut, minimal_state: State, empty_logger: Logger): """Test that augmentation is added to dataset and functioning properly.""" p_row = colout_algorithm.p_row p_col = colout_algorithm.p_col dataset = RandomImageDataset(is_PIL=True) dataloader = DataLoader(dataset) original_image, _ = dataset[0] assert isinstance(original_image, Image.Image) minimal_state.set_dataloader(dataloader, 'train') colout_algorithm.apply(Event.FIT_START, minimal_state, empty_logger) new_image, _ = dataset[0] assert isinstance(new_image, Image.Image) verify_shape_image(original_image, new_image, p_row, p_col) @pytest.mark.parametrize('p_row,p_col', [(1.5, 0.15), (0.15, 1.5)]) def test_invalid_hparams(p_row: float, p_col: float): """Test that invalid hyperparameters error.""" with pytest.raises(ValueError): ColOut(p_row, p_col, False)
composer-dev
tests/algorithms/test_colout.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from copy import deepcopy import pytest from composer.algorithms.seq_length_warmup import SeqLengthWarmup, set_batch_sequence_length from composer.core import Event, State from composer.devices import DeviceCPU from composer.loggers import Logger from tests.common.datasets import (dummy_bert_lm_dataloader, dummy_gpt_lm_dataloader, dummy_text_classification_dataloader) from tests.common.models import SimpleTransformerClassifier, configure_tiny_bert_hf_model, configure_tiny_gpt2_hf_model def check_batch_truncation(before, after, length, preserve_end_of_sequence=False): before_lengths = [int(m.sum()) for m in before['attention_mask']] # Just make sure the lengths are correct for k in before.keys(): assert k in after, 'No keys should be removed during sequence truncation.' assert before[k].shape[0] == after[k].shape[ 0], 'The batch size should not be changed during sequence truncation.' if before[k].ndim >= 2: assert after[k].shape[1] == min(before[k].shape[1], length), 'Incorrect sequence length after truncation.' if preserve_end_of_sequence: # The last valid token before truncation should still be the last valid token for seq_before, seq_after, before_length in zip(before[k], after[k], before_lengths): assert seq_after[min(length, before_length) - 1] == seq_before[before_length - 1] for k in after.keys(): assert k in before, 'No keys should be added during sequence truncation' def check_batch_non_truncation(before, after, length): # Make sure all the batch tensors have the same shape input_ids_after_shape = after['input_ids'].shape # Just make sure the lengths are correct for k in before.keys(): assert k in after, 'No keys should be removed during sequence reshaping.' assert after[ k].shape == input_ids_after_shape, 'All tensors should have the same size after sequence reshaping.' b_numel = before[k].shape[0] * before[k].shape[1] a_numel = after[k].shape[0] * after[k].shape[1] assert a_numel >= b_numel - length, 'Sequence reshaping should throw away at most curr_sequence_length tokens.' import torch assert torch.all(after[k][0] == before[k][ 0, :input_ids_after_shape[1]]), 'Sequence reshaping should not change the token order.' for k in after.keys(): assert k in before, 'No keys should be added during sequence reshaping.' def check_batch(before, after, length, truncate: bool, preserve_end_of_sequence: bool): if truncate: check_batch_truncation(before, after, length, preserve_end_of_sequence) else: check_batch_non_truncation(before, after, length) def check_forward_backward(model, batch): model.zero_grad() output = model.forward(batch) output['loss'].backward() @pytest.mark.parametrize('model, dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (configure_tiny_gpt2_hf_model, dummy_gpt_lm_dataloader), (pytest.param( SimpleTransformerClassifier, dummy_text_classification_dataloader, marks=pytest.mark.xfail(reason='Gated Linear Units does not currently support non-HuggingFace models'))), ]) @pytest.mark.parametrize('truncate,preserve_end_of_sequence', [(True, True), (True, False), (False, False)]) class TestSeqLengthWarmup: @pytest.mark.parametrize('curr_seq_length', [8, 64]) def test_functional(self, model, dataloader, curr_seq_length: int, truncate: bool, preserve_end_of_sequence: bool): model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=DeviceCPU(), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) batch_before = next(iter(dataloader)) batch_after = set_batch_sequence_length(deepcopy(batch_before), curr_seq_length, truncate, preserve_end_of_sequence) check_batch(batch_before, batch_after, curr_seq_length, truncate, preserve_end_of_sequence) check_forward_backward(state.model, batch_after) def test_algorithm(self, model, dataloader, empty_logger: Logger, truncate: bool, preserve_end_of_sequence: bool): model = model() dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=DeviceCPU(), dataloader=dataloader, dataloader_label='train', max_duration='1ep', ) # Synthetic dataset has a size of 2 batches per epoch (max duration = 1ep) seq_length_warmup = SeqLengthWarmup(duration=0.5, min_seq_length=8, max_seq_length=16, truncate=truncate, preserve_end_of_sequence=preserve_end_of_sequence) seq_length_warmup.apply(Event.INIT, state, empty_logger) batch_before = next(iter(dataloader)) state.batch = deepcopy(batch_before) seq_length_warmup.apply(Event.AFTER_DATALOADER, state, empty_logger) # At this point, we should see the MINIMUM sequence length after truncation check_batch(batch_before, state.batch, seq_length_warmup.min_seq_length, truncate, preserve_end_of_sequence) check_forward_backward(state.model, state.batch) # Note: max duration is 1 epoch state.timestamp = state.timestamp.to_next_batch(samples=state.batch['input_ids'].shape[0]) batch_before = next(iter(dataloader)) state.batch = deepcopy(batch_before) seq_length_warmup.apply(Event.AFTER_DATALOADER, state, empty_logger) # At this point, we should see the MAXIMUM sequence length after truncation check_batch(batch_before, state.batch, seq_length_warmup.max_seq_length, truncate, preserve_end_of_sequence) check_forward_backward(state.model, state.batch)
composer-dev
tests/algorithms/test_seq_length_warmup.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 # Written by Gihyun Park, Junyeol Lee, and Jiwon Seo import torch from composer.algorithms.gyro_dropout import GyroDropoutLayer def test_gyro_dropout_masking(): batch_size = 256 output_feature = 512 x = torch.randn(batch_size, output_feature) dropout_layer = GyroDropoutLayer( iters_per_epoch=196, max_epoch=100, p=0.5, sigma=256, tau=16, ) y = dropout_layer(x) mask = dropout_layer.dropout_mask p = dropout_layer.p for i in range(batch_size): for j in range(output_feature): assert x[i][j] * mask[i][j] * (1 / (1 - p)) == y[i][j] def test_gyro_dropout_mask_pattern(): batch_size = 256 output_feature = 512 x = torch.randn(batch_size, output_feature) dropout_layer = GyroDropoutLayer( iters_per_epoch=196, max_epoch=100, p=0.5, sigma=256, tau=16, ) _ = dropout_layer(x) mask = dropout_layer.dropout_mask tau = dropout_layer.tau pivot = 0 for i in range(output_feature): for j in range(batch_size): if j % tau == 0: pivot = mask[j][i] else: assert pivot == mask[j][i]
composer-dev
tests/algorithms/test_gyro_dropout.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import pytest import torch from composer.algorithms import factorize @dataclass class _RankReduce(object): """This is just here for convenience when testing.""" batch_size: int = 100 C_out: int = 64 C_in: int = 32 C_latent_now: int = 16 C_latent_new: int = 8 n_iters: int = 2 seed: int = 123 op: str = 'linear' def __call__(self, already_factorized=False): torch.manual_seed(self.seed) X = torch.randn(self.batch_size, self.C_in) bias = torch.randn(self.C_out) if already_factorized: Wa = torch.randn(self.C_in, self.C_latent_now) Wb = torch.randn(self.C_latent_now, self.C_out) Y = (X @ Wa) @ Wb + bias else: Wa = torch.randn(self.C_in, self.C_out) Wb = None Y = X @ Wa + bias return factorize.factorize_matrix(X, Y, Wa, Wb, bias=bias, rank=self.C_latent_new, n_iters=self.n_iters) @dataclass class _RankReduceConv2d(object): """This is just here for convenience when testing.""" batch_size: int = 1 H: int = 4 W: int = 4 kernel_size: Tuple[int, int] = (3, 3) C_in: int = 32 C_latent_now: int = 16 C_latent_new: int = 6 C_out: int = 24 n_iters: int = 2 seed: int = 123 op: str = 'conv2d' def __call__(self, already_factorized=False): torch.manual_seed(self.seed) X = torch.randn(1, self.C_in, self.H, self.W) # NCHW if already_factorized: Wa = torch.randn(self.C_latent_now, self.C_in, *self.kernel_size) Wb = torch.randn(self.C_out, self.C_latent_now, 1, 1) biasA = torch.randn(self.C_latent_now) biasB = torch.randn(self.C_out) else: Wa = torch.randn(self.C_out, self.C_in, *self.kernel_size) Wb = None biasA = torch.randn(self.C_out) biasB = None return factorize.factorize_conv2d(X, Wa, Wb, biasA=biasA, biasB=biasB, rank=self.C_latent_new, n_iters=self.n_iters) @pytest.fixture(params=[_RankReduce(), _RankReduceConv2d()]) def factorize_task(request): return request.param def _check_factorization(f: Union[_RankReduce, _RankReduceConv2d], prev_nmse: Optional[float] = None, already_factorized: bool = True): info = f(already_factorized=already_factorized) Wa = info.Wa Wb = info.Wb bias = info.bias # one bias because only 2nd op needs one nmse = info.nmse op = f.op if op == 'linear': in_dim = 0 out_dim = 1 elif op == 'conv2d': in_dim = 1 out_dim = 0 else: raise ValueError('Invalid op: ', op) k = f.C_latent_new if k >= f.C_in or k >= f.C_out: # no point in factorizing with latent dim bigger than # either input or output; so just regress input onto output assert Wa is not None assert Wb is None assert Wa.shape[in_dim] == f.C_in assert Wa.shape[out_dim] == f.C_out elif k >= f.C_latent_now: # no need to factorize any futher than current factorization assert Wa is not None assert Wa.shape[in_dim] == f.C_in assert Wa.shape[out_dim] == f.C_latent_now else: # actually needed to factorize assert bias is not None assert Wa is not None assert Wb is not None assert bias.ndim == 1 assert bias.shape[0] == f.C_out assert Wa.shape[in_dim] == f.C_in assert Wa.shape[out_dim] == f.C_latent_new assert Wb is not None # should have actually factorized weights assert Wb.shape[in_dim] == f.C_latent_new assert Wb.shape[out_dim] == f.C_out assert nmse < 1.0 # should explain variance better than just predicting mean if prev_nmse is not None: assert nmse <= prev_nmse + 1e-8 # error decreases over time return nmse # new "previous" nmse @pytest.mark.parametrize( 'shapes', [ (16, 16, 16, 16), # all the same (16, 8, 16, 16), # already low rank (16, 8, 16, 16), # requested rank > current latent rank (16, 16, 32, 16), # requested rank > input rank (16, 16, 16, 8), # requested rank > output rank (32, 16, 16, 16), # requested rank >= output rank, and underdetermined ]) @pytest.mark.parametrize('already_factorized', [False, True]) def test_factorize_edge_cases(shapes, factorize_task, already_factorized): """Test edge cases regarding current and requested matrix shapes.""" C_in, C_latent_now, C_latent_new, C_out = shapes factorize_task.C_in = C_in factorize_task.C_latent_now = C_latent_now factorize_task.C_latent_new = C_latent_new factorize_task.C_out = C_out _check_factorization(factorize_task, already_factorized=already_factorized) @pytest.mark.parametrize('already_factorized', [False, True]) def test_factorize_more_dims_better(factorize_task, already_factorized): """More latent dimensions should yield nonincreasing error.""" prev_nmse = np.inf for C_latent_new in [1, 4, 16, 32]: factorize_task.C_latent_new = C_latent_new maybe_nmse = _check_factorization(factorize_task, prev_nmse, already_factorized=already_factorized) prev_nmse = maybe_nmse if maybe_nmse else prev_nmse @pytest.mark.parametrize('already_factorized', [False, True]) def test_factorize_more_iters_better(factorize_task, already_factorized): """More optimization iters should yield nonincreasing error.""" prev_nmse = np.inf for n_iters in [0, 1, 2, 4]: factorize_task.n_iters = n_iters maybe_nmse = _check_factorization(factorize_task, prev_nmse, already_factorized=already_factorized) prev_nmse = maybe_nmse if maybe_nmse else prev_nmse
composer-dev
tests/algorithms/test_factorize_core.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import contextlib import copy import os import pathlib from typing import Type import pytest import torch from composer import Trainer, algorithms from composer.callbacks import CheckpointSaver from composer.core import Algorithm, Time, TimeUnit # type: ignore imports used in `eval(representation)` from composer.models import ComposerClassifier, ComposerModel, composer_resnet from tests.common import ConvModel def initialize_algorithm(algo_cls: Type): """Initialize algorithm with dummy values.""" if algo_cls == algorithms.Alibi: return algo_cls(max_sequence_length=1) elif algo_cls == algorithms.StochasticDepth: return algo_cls(target_layer_name='ResNetBottleneck') elif algo_cls == algorithms.FusedLayerNorm or algorithms.LowPrecisionLayerNorm: pytest.importorskip('apex') return algo_cls() elif algo_cls == algorithms.GatedLinearUnits: pytest.importorskip('transformers') return algo_cls() elif algo_cls == algorithms.Factorize: return algo_cls(min_features=48, latent_features=24) elif algo_cls == algorithms.SqueezeExcite: return algo_cls(min_channels=32) else: return algo_cls() @pytest.mark.parametrize('algo_name', algorithms.__all__) def test_required_on_load_has_repr(algo_name: str): algo_cls = getattr(algorithms, algo_name) if issubclass(algo_cls, Algorithm) and algo_cls.required_on_load(): representation = repr(initialize_algorithm(algo_cls)) # Default repr prints memory address assert 'at 0x' not in representation eval(f'algorithms.{representation}') def compare_models(model_1: torch.nn.Module, model_2: torch.nn.Module, is_equal: bool = True): """Check if two models are the same. To check equivalence, we first verify the modules are the same in each model by checking the list of attributes for each module. This checks if the same set of modules are used and if any module has been marked by adding an attribute. Next, we directly iterate over the state dict and verify the parameters are equal. This is not a comprehensive comparison. For example, an algorithm could silently monkeypatch over a forward function for a module. However, it is sufficient to provide coverage for our existing set of algorithms. """ with contextlib.nullcontext() if is_equal else pytest.raises(Exception): # Compare model module attributes since algorithms like StochasticDepth monkeypatch # on new attributes. We only check this on ComposerClassifier models that have .module if isinstance(model_1, ComposerClassifier) and isinstance(model_2, ComposerClassifier): model_1_modules = list(model_1.module.modules()) model_2_modules = list(model_2.module.modules()) assert len(model_1_modules) == len(model_2_modules) for module_1, module_2 in zip(model_1_modules, model_2_modules): assert sorted(list(module_1.__dict__.keys())) == sorted(list(module_2.__dict__.keys())) # Compare model parameters for (name0, tensor0), (name1, tensor1) in zip(model_1.state_dict().items(), model_2.state_dict().items()): assert name0 == name1 assert torch.equal(tensor0, tensor1) @pytest.mark.filterwarnings('ignore:No instances of') @pytest.mark.parametrize('algo_name', algorithms.__all__) def test_idempotent(algo_name: str, tiny_bert_config): algo_cls = getattr(algorithms, algo_name) if issubclass(algo_cls, Algorithm) and algo_cls.required_on_load(): algorithm = initialize_algorithm(algo_cls) original_model = None if algo_name == 'StochasticDepth': original_model = composer_resnet(model_name='resnet50') elif algo_name in ['Alibi', 'GatedLinearUnits']: transformers = pytest.importorskip('transformers') from composer.models import HuggingFaceModel hf_model = transformers.AutoModelForSequenceClassification.from_config(tiny_bert_config) original_model = HuggingFaceModel(hf_model, use_logits=True) else: original_model = ConvModel() applied_once_model = Trainer( model=copy.deepcopy(original_model), algorithms=algorithm, ).state.model assert isinstance(applied_once_model, ComposerModel) # Assert type for pyright deepcopy applied_twice_model = Trainer( model=copy.deepcopy(applied_once_model), algorithms=algorithm, ).state.model compare_models(original_model, applied_twice_model, is_equal=False) # Surgery actually changes model compare_models(applied_once_model, applied_twice_model, is_equal=True) # Multiple applications are no-ops @pytest.mark.parametrize('algo_name', algorithms.__all__) @pytest.mark.parametrize('load_weights_only,already_added,exclude', [ [False, False, False], [True, False, False], [False, True, False], [False, False, True], ]) def test_autoload(algo_name: str, load_weights_only: bool, already_added: bool, exclude: bool, tmp_path: pathlib.Path, tiny_bert_config): algo_cls = getattr(algorithms, algo_name) if issubclass(algo_cls, Algorithm) and algo_cls.required_on_load(): algorithm = initialize_algorithm(algo_cls) original_model = None if algo_name == 'StochasticDepth': original_model = composer_resnet(model_name='resnet50') elif algo_name in ['Alibi', 'GatedLinearUnits']: transformers = pytest.importorskip('transformers') from composer.models import HuggingFaceModel hf_model = transformers.AutoModelForSequenceClassification.from_config(tiny_bert_config) original_model = HuggingFaceModel(hf_model, use_logits=True) else: original_model = ConvModel() trainer1 = Trainer(model=copy.deepcopy(original_model), algorithms=algorithm, save_folder=str(tmp_path), save_filename='ckpt.pt') checkpoint_saver = [cb for cb in trainer1.state.callbacks if isinstance(cb, CheckpointSaver)][0] checkpoint_saver._save_checkpoint(trainer1.state, trainer1.logger) context = contextlib.nullcontext() # Emit warning when autoloading if not already_added and not exclude: context = pytest.warns(UserWarning, match='Automatically adding required_on_load algorithm*') # Excluding some algorithms leads to errors when loading elif exclude: if algo_name in ['Factorize', 'SqueezeExcite']: context = pytest.raises( ValueError, match= "loaded state dict contains a parameter group that doesn't match the size of optimizer's group", ) elif algo_name == 'Alibi': context = pytest.raises(RuntimeError) with context: trainer2 = Trainer( model=copy.deepcopy(original_model), algorithms=[initialize_algorithm(algo_cls)] if already_added else [], load_path=os.path.join(str(tmp_path), 'ckpt.pt'), load_weights_only=load_weights_only, load_exclude_algorithms=[algo_name] if exclude else None, ) # No algorithms are added if we've excluded them if exclude: assert len(trainer2.state.algorithms) == 0 # Otherwise, check exactly one copy of algorithm is present else: assert len(trainer2.state.algorithms) == 1 assert isinstance(trainer2.state.algorithms[0], algo_cls)
composer-dev
tests/algorithms/test_required_on_load.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest @pytest.fixture def state(minimal_state): # make any test-specific needed modifications # e.g. adding a conv model, or changing the dataloader return minimal_state # Every algorithm test should have the functional and the algorithm usage demonstrated below in the tests. def test_myalgo_functional(): ... def test_myalgo_algorithm(state, empty_logger): ... # Results from logging and hparams initialization should also be tested. def test_myalgo_logging(state): """Test that the logging is as expected. Example: logger_mock = Mock() algorithm = AlgorithmThatLogsSomething() algorithm.apply(Event.INIT, state, logger=logger_mock) logger_mock.log_hyperparameters.assert_called_one_with({ 'some_key': some_value }) """ # The above is the minimal set, the # rest of the test suite will varying depending # on the exact algorithm under test.
composer-dev
tests/algorithms/algorithm_test_template.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from copy import deepcopy from unittest.mock import Mock import pytest import torch from composer.algorithms import LayerFreezing from composer.core import Event, Precision, State, Timestamp from composer.devices import DeviceCPU, DeviceGPU from composer.loggers import Logger from tests.common import SimpleConvModel, SimpleTransformerClassifier from tests.common.models import configure_tiny_bert_hf_model def _generate_state(request: pytest.FixtureRequest, model_cls, epoch: int, max_epochs: int): """Generates a state and fast forwards the timestamp by epochs.""" model = model_cls() device = None for item in request.session.items: device = DeviceCPU() if item.get_closest_marker('gpu') is None else DeviceGPU() break assert device != None state = State(model=model, rank_zero_seed=0, device=device, run_name='run_name', optimizers=torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.99), precision=Precision.FP32, dataloader=Mock(__len__=lambda x: 100), dataloader_label='train', device_train_microbatch_size=1, max_duration=f'{max_epochs}ep') # fast forward by epochs state.timestamp = Timestamp(epoch=epoch) return state def _assert_param_groups_equal(expected_groups, actual_groups): assert len(expected_groups) == len(actual_groups), 'Incorrect number of param groups' for i, expected_group in enumerate(expected_groups): assert len(expected_group) == len(actual_groups[i]), \ f'Group {i} has the wrong number of parameters' for j, expected_params in enumerate(expected_group['params']): assert (actual_groups[i]['params'][j] == expected_params).all() @pytest.mark.parametrize('model_cls', [SimpleConvModel, SimpleTransformerClassifier, configure_tiny_bert_hf_model]) def test_freeze_layers_no_freeze(model_cls, empty_logger: Logger, request: pytest.FixtureRequest): state = _generate_state(request, model_cls, epoch=10, max_epochs=100) first_optimizer = state.optimizers[0] expected_param_groups = deepcopy(first_optimizer.param_groups) freezing = LayerFreezing(freeze_start=0.5, freeze_level=1.0) freezing.apply(event=Event.EPOCH_END, state=state, logger=empty_logger) updated_param_groups = first_optimizer.param_groups _assert_param_groups_equal(expected_param_groups, updated_param_groups) @pytest.mark.parametrize('model_cls', [SimpleConvModel, SimpleTransformerClassifier, configure_tiny_bert_hf_model]) def test_freeze_layers_with_freeze(model_cls, empty_logger: Logger, request: pytest.FixtureRequest): state = _generate_state(request, model_cls, epoch=80, max_epochs=100) first_optimizer = state.optimizers[0] expected_param_groups = deepcopy(first_optimizer.param_groups) freezing = LayerFreezing(freeze_start=0.05, freeze_level=1.0) freezing.apply(event=Event.EPOCH_END, state=state, logger=empty_logger) updated_param_groups = first_optimizer.param_groups # The first group should be removed due to freezing expected_param_groups[0]['params'] = [] _assert_param_groups_equal(expected_param_groups, updated_param_groups)
composer-dev
tests/algorithms/test_layer_freezing.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest import torch from composer.algorithms.cutout.cutout import CutOut, _generate_mask from composer.core import Event # Box validaton checks for a continuous rectangle, cannot handle multiple/coalesced boxes along x, y dimensions def _box_validate(mask_box: torch.Tensor) -> None: # Box is not contiguous if there are any 0's in the tensor box_is_contiguous = not (0 in mask_box) assert box_is_contiguous def _find_box(img_2d: torch.Tensor) -> torch.Tensor: height, width = img_2d.size() # Generate helper tensors ones = torch.ones(height, width) zeros = torch.zeros(height, width) # Find the box # First create h x w filter populated with ones where it thinks there's a box, then find coordinates of ones filter_box = torch.where(img_2d == 0, ones, zeros) box_x, box_y = torch.nonzero(filter_box, as_tuple=True) # Find all points where filter_box is 1 # Check for no box found if ((box_x.size()[0], box_y.size()[0]) == (0, 0)): # Return valid box as this is possible when cutout_length=1 return torch.ones(1, 1) else: # Returns box defined by longest diagonal return filter_box[box_x[0]:box_x[-1] + 1, box_y[0]:box_y[-1] + 1] def check_box(batch_size, channels, input): for b in range(batch_size): for c in range(channels): mask_box = _find_box(input[b, c, :, :]) _box_validate(mask_box) # Test square, rectangle inputs @pytest.fixture(params=[(1, 1, 16, 16), (1, 1, 16, 32)]) def tensor_sizes(request): return request.param # cutout_length=1 won't 0 out (no box is valid) # cutout_length=3 should produce 2x2 box due to floor division except when boundary clipping # cutout_length=4 should produce 4x4 box due except when boundary clipping # cutout_length=0.5 should produce a box with half the side length of the input @pytest.fixture(params=[1, 3, 4]) def cutout_length_pixels(request): return request.param # Check corners, edges and middle @pytest.fixture(params=[(0, 0), (16, 0), (0, 16), (16, 16), (7, 7)]) def anchors(request): return request.param def test_cutout_mask(tensor_sizes, cutout_length_pixels, anchors): batch_size, channels, height, width = tensor_sizes x, y = anchors test_mask = torch.ones(tensor_sizes) test_mask = _generate_mask(mask=test_mask, width=width, height=height, x=x, y=y, cutout_length=cutout_length_pixels) check_box(batch_size, channels, test_mask) @pytest.mark.parametrize('batch_size', [1, 4]) @pytest.mark.parametrize('channels', [1, 4]) @pytest.mark.parametrize('height', [32, 64]) @pytest.mark.parametrize('width', [32, 71]) @pytest.mark.parametrize('cutout_length', [0.25, 0.5]) @pytest.mark.parametrize('uniform_sampling', [True, False]) def test_cutout_algorithm(batch_size, channels, height, width, cutout_length, empty_logger, minimal_state, uniform_sampling): # Initialize input tensor # - Add bias to prevent 0. pixels, causes check_box() to fail since based on search for 0's # - Real data can have 0. pixels but this will not affect cutout algorithm since mask is generated independent of input data input = torch.rand((batch_size, channels, height, width)) + 1 # Fix cutout_num_holes=1, mask generation is additive and box validation isn't smart enough to detect multiple/coalesced boxes algorithm = CutOut(num_holes=1, length=cutout_length, uniform_sampling=uniform_sampling) state = minimal_state state.batch = (input, torch.Tensor()) algorithm.apply(Event.AFTER_DATALOADER, state, empty_logger) input, _ = state.batch check_box(batch_size, channels, input)
composer-dev
tests/algorithms/test_cutout.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from unittest.mock import Mock import pytest import torch from composer.algorithms import SqueezeExcite, SqueezeExciteConv2d from composer.core import Event, State from composer.functional import apply_squeeze_excite as apply_se from composer.loggers import Logger from composer.utils import module_surgery from tests.common import SimpleConvModel @pytest.fixture def state(minimal_state: State): """SE tests require a conv model.""" minimal_state.model = SimpleConvModel(num_channels=32) return minimal_state def test_se_functional(): model = SimpleConvModel() num_conv_layers = module_surgery.count_module_instances(model, torch.nn.Conv2d) apply_se(model, latent_channels=64, min_channels=3) num_se_layers = module_surgery.count_module_instances(model, SqueezeExciteConv2d) assert num_conv_layers == num_se_layers def test_se_algorithm(state: State, empty_logger: Logger): num_conv_layers = module_surgery.count_module_instances(state.model, torch.nn.Conv2d) algorithm = SqueezeExcite(latent_channels=64, min_channels=3) algorithm.apply( event=Event.INIT, state=state, logger=empty_logger, ) num_se_layers = module_surgery.count_module_instances(state.model, SqueezeExciteConv2d) assert num_conv_layers == num_se_layers def test_se_logging(state: State, empty_logger: Logger): logger_mock = Mock() se = SqueezeExcite(latent_channels=64, min_channels=3) se.apply(Event.INIT, state, logger=logger_mock) conv_count = module_surgery.count_module_instances(state.model, torch.nn.Conv2d) logger_mock.log_hyperparameters.assert_called_once_with({ 'squeeze_excite/num_squeeze_excite_layers': conv_count, }) def test_se_forward_shape(state: State): batch = (torch.Tensor(8, 32, 64, 64), None) # NCHW output = state.model.forward(batch) apply_se(state.model, latent_channels=32, min_channels=3) new_output = state.model.forward(batch) assert output.size() == new_output.size()
composer-dev
tests/algorithms/test_squeeze_excite.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 from typing import Callable, Tuple, Union, cast import numpy as np import pytest import torch from PIL.Image import Image as PillowImage from PIL.Image import fromarray from composer.algorithms.utils.augmentation_common import image_as_type from composer.functional import augmix_image, colout_batch, cutout_batch, randaugment_image AnyImage = Union[torch.Tensor, PillowImage] InputAugFunction = Callable[[AnyImage], AnyImage] def _input_image(img_type: str, dtype: torch.dtype) -> AnyImage: rng = np.random.default_rng(123) torch.manual_seed(123) N, H, W, C = 4, 6, 5, 3 if img_type == 'pillow': ints = rng.integers(256, size=(H, W, C)).astype(np.uint8) return fromarray(ints, mode='RGB') elif dtype == torch.uint8: if img_type == 'single_tensor': return torch.randint(256, size=(C, H, W)).to(dtype=torch.uint8) return torch.randint(256, size=(N, C, H, W)).to(dtype=torch.uint8) elif dtype in (torch.float16, torch.float, torch.float64): if img_type == 'single_tensor': return torch.rand(size=(C, H, W)).to(dtype=dtype) return torch.rand(size=(N, C, H, W)).to(dtype=dtype) else: raise ValueError(f'Invalid dtype: {dtype}') def _input_output_pair(img_type: str, img_dtype: torch.dtype, f_aug: InputAugFunction) -> Tuple[AnyImage, AnyImage]: img = _input_image(img_type, dtype=img_dtype) return img, f_aug(img) @pytest.fixture(params=(torch.uint8, torch.float16, torch.float, torch.float64)) def img_dtype(request) -> torch.dtype: return request.param @pytest.mark.parametrize('img_type', ['pillow', 'single_tensor', 'batch_tensor']) @pytest.mark.parametrize('f_aug', [colout_batch, cutout_batch, augmix_image, randaugment_image]) def test_batch_augmentation_funcs_preserve_type(img_type: str, img_dtype: torch.dtype, f_aug: InputAugFunction): img, out = _input_output_pair(img_type, img_dtype, f_aug) assert type(out) == type(img) @pytest.mark.parametrize('img_type', ['pillow', 'single_tensor', 'batch_tensor']) @pytest.mark.parametrize('f_aug', [cutout_batch, augmix_image, randaugment_image]) # colout changes shape def test_batch_augmentation_funcs_preserve_shape(img_type: str, img_dtype: torch.dtype, f_aug: InputAugFunction): img, out = _input_output_pair(img_type, img_dtype, f_aug) if img_type == 'pillow': img = cast(PillowImage, img) out = cast(PillowImage, out) img = image_as_type(img, torch.Tensor) out = image_as_type(out, torch.Tensor) assert isinstance(img, torch.Tensor) assert isinstance(out, torch.Tensor) assert out.shape == img.shape
composer-dev
tests/algorithms/test_augmentations_functional.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import pytest from torch.nn import LayerNorm from composer.algorithms.low_precision_layernorm import LowPrecisionLayerNorm, apply_low_precision_layernorm from composer.algorithms.low_precision_layernorm.low_precision_layernorm import LPLayerNorm from composer.core import Event, State from composer.loggers import Logger from composer.models.huggingface import HuggingFaceModel from composer.utils import get_device from tests.common import device from tests.common.datasets import dummy_bert_lm_dataloader, dummy_text_classification_dataloader from tests.common.models import SimpleTransformerClassifier, configure_tiny_bert_hf_model def assert_is_lpln_instance(model): pytest.importorskip('transformers') # When checking modules of a HuggingFace model, we need to parse the model object it wraps # This is not necessary for SimpleTransformerClassifier models. if isinstance(model, HuggingFaceModel): model = model.model # ensure that within the entire model, no PyTorch LayerNorm exists, and at least one LPLN does. assert model.modules is not None, 'model has .modules method' for module_class in model.modules(): if isinstance(module_class, LayerNorm): assert isinstance(module_class, LPLayerNorm) assert any(isinstance(module_class, LPLayerNorm) for module_class in model.modules()) @device('gpu') @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (SimpleTransformerClassifier, dummy_text_classification_dataloader), ]) def test_low_precision_layernorm_functional(model, dataloader, device: str): model = model() # Remove biases and weights from some LayerNorms to test LPLN robustness if isinstance(model, SimpleTransformerClassifier): model.module[0].net[1].layers[0].norm1.bias = None # type: ignore model.module[0].net[1].layers[0].norm2.weight = None # type: ignore model.module[0].net[1].layers[0].norm2.bias = None # type: ignore dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=get_device(device), dataloader=dataloader, dataloader_label='train', max_duration='1ep', precision='amp_fp16', ) if device == 'gpu': state.model = state.model.cuda() # move the model to gpu apply_low_precision_layernorm(state.model, state._precision, state.optimizers) assert_is_lpln_instance(state.model) @device('gpu') @pytest.mark.parametrize('model,dataloader', [ (configure_tiny_bert_hf_model, dummy_bert_lm_dataloader), (SimpleTransformerClassifier, dummy_text_classification_dataloader), ]) def test_low_precision_layernorm_algorithm(model, dataloader, empty_logger: Logger, device: str): model = model() # Remove biases and weights from some LayerNorms to test LPLN robustness if isinstance(model, SimpleTransformerClassifier): model.module[0].net[1].layers[0].norm1.bias = None # type: ignore model.module[0].net[1].layers[0].norm2.weight = None # type: ignore model.module[0].net[1].layers[0].norm2.bias = None # type: ignore dataloader = dataloader() state = State( model=model, rank_zero_seed=0, run_name='run_name', device=get_device(device), dataloader=dataloader, dataloader_label='train', max_duration='1ep', precision='amp_fp16', ) low_precision_layernorm = LowPrecisionLayerNorm() if device == 'gpu': state.model = state.model.cuda() # move the model to gpu low_precision_layernorm.apply(Event.INIT, state, empty_logger) assert_is_lpln_instance(state.model)
composer-dev
tests/algorithms/test_low_precision_layernorm.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0
composer-dev
tests/optim/__init__.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 import contextlib from typing import List, Optional, Type import pytest from torch.utils.data import DataLoader from composer.core import State, Time from composer.core.time import TimeUnit from composer.devices import DeviceCPU, DeviceGPU from composer.optim.scheduler import (ComposerScheduler, ConstantWithWarmupScheduler, CosineAnnealingScheduler, CosineAnnealingWarmRestartsScheduler, CosineAnnealingWithWarmupScheduler, ExponentialScheduler, LinearScheduler, LinearWithWarmupScheduler, MultiStepScheduler, MultiStepWithWarmupScheduler, PolynomialScheduler, PolynomialWithWarmupScheduler, StepScheduler) from composer.trainer.trainer import Trainer from tests.common.datasets import RandomClassificationDataset from tests.common.models import SimpleModel MAX_DURATION = '1000ep' STEPS_PER_EPOCH = 1000 @pytest.fixture def dummy_schedulers_state(rank_zero_seed: int, request: pytest.FixtureRequest): device = None for item in request.session.items: device = DeviceCPU() if item.get_closest_marker('gpu') is None else DeviceGPU() break assert device != None state = State( model=SimpleModel(), run_name='run_name', device=device, rank_zero_seed=rank_zero_seed, max_duration=MAX_DURATION, ) state.set_dataloader([None] * STEPS_PER_EPOCH, 'train') return state @pytest.mark.parametrize('scheduler,ssr,test_times,expected_lrs', [ pytest.param(StepScheduler(step_size='10ba'), 1.0, ['5ba', '15ba', '35ba'], [1.0, 0.1, 0.001]), pytest.param(StepScheduler(step_size='0.002dur', gamma=0.8), 1.0, ['1000ba', '3000ba', '7000ba'], [1.0, 0.8, 0.512]), pytest.param(StepScheduler(step_size='1ep', gamma=0.5), 1.0, ['500ba', '1500ba', '3500ba'], [1.0, 0.5, 0.125]), pytest.param(StepScheduler(step_size='10ba', gamma=0.5), 0.5, ['3ba', '8ba', '18ba'], [1.0, 0.5, 0.125]), pytest.param(MultiStepScheduler(milestones=['10ba', '30ba', '70ba']), 1.0, ['5ba', '20ba', '50ba', '100ba'], [1.0, 0.1, 0.01, 0.001]), pytest.param(MultiStepScheduler(milestones=['100ba', '1ep', '0.01dur'], gamma=0.5), 1.0, ['50ba', '500ba', '5000ba', '50000ba'], [1.0, 0.5, 0.25, 0.125]), pytest.param(MultiStepScheduler(milestones=['100ba', '1ep', '0.01dur'], gamma=0.5), 4.0, ['200ba', '2000ba', '20000ba', '200000ba'], [1.0, 0.5, 0.25, 0.125]), pytest.param(LinearScheduler(), 1.0, ['100000ba', '200000ba', '400000ba'], [0.9, 0.8, 0.6]), pytest.param(LinearScheduler(alpha_i=0.0, alpha_f=2.0), 1.0, ['100000ba', '200000ba', '400000ba'], [0.2, 0.4, 0.8]), pytest.param(LinearScheduler(alpha_i=0.0, alpha_f=1.0, t_max='0.25dur'), 1.0, ['100000ba', '200000ba', '400000ba'], [0.4, 0.8, 1.0]), pytest.param(LinearScheduler(alpha_i=0.0, alpha_f=1.0, t_max='0.25dur'), 2.0, ['100000ba', '200000ba', '400000ba'], [0.2, 0.4, 0.8]), pytest.param(ExponentialScheduler(gamma=0.5), 1.0, ['1ep', '2ep', '4ep'], [0.5, 0.25, 0.0625]), pytest.param(ExponentialScheduler(gamma=0.5), 2.0, ['2ep', '4ep', '8ep'], [0.5, 0.25, 0.0625]), pytest.param(CosineAnnealingScheduler(), 1.0, ['0ba', '333333ba', '500000ba', '666667ba', '1000000ba'], [1.0, 0.75, 0.5, 0.25, 0.0]), pytest.param(CosineAnnealingScheduler(t_max='30ba', alpha_f=0.5), 1.0, ['0ba', '10ba', '15ba', '20ba', '30ba', '50ba'], [1.0, 0.875, 0.75, 0.625, 0.5, 0.5]), pytest.param(CosineAnnealingScheduler(t_max='30ba', alpha_f=0.5), 0.2, ['0ba', '2ba', '3ba', '4ba', '6ba', '10ba'], [1.0, 0.875, 0.75, 0.625, 0.5, 0.5]), pytest.param(CosineAnnealingWarmRestartsScheduler(t_0='30ba'), 1.0, ['0ba', '10ba', '15ba', '20ba', '30ba', '40ba'], [1.0, 0.75, 0.5, 0.25, 1.0, 0.75]), pytest.param(CosineAnnealingWarmRestartsScheduler(t_0='0.003dur', t_mult=1.5), 1.0, ['0ba', '1000ba', '3000ba', '4500ba', '7500ba', '14250ba'], [1.0, 0.75, 1.0, 0.75, 1.0, 1.0]), pytest.param(CosineAnnealingWarmRestartsScheduler(t_0='30ep', t_mult=2.0, alpha_f=0.5), 0.5, ['0ba', '5000ba', '15000ba', '25000ba'], [1.0, 0.875, 1.0, 0.875]), pytest.param(PolynomialScheduler(power=2.0), 1.0, ['0ba', '100000ba', '200000ba', '500000ba'], [1.0, 0.81, 0.64, 0.25]), pytest.param(PolynomialScheduler(power=2.0, t_max='100ba', alpha_f=0.5), 1.0, ['0ba', '10ba', '20ba', '50ba'], [1.0, 0.905, 0.82, 0.625]), pytest.param(PolynomialScheduler(power=2.0, t_max='100ba', alpha_f=0.5), 0.5, ['0ba', '10ba', '20ba', '50ba'], [1.0, 0.82, 0.68, 0.5]), pytest.param(MultiStepWithWarmupScheduler(t_warmup='10ba', milestones=['20ba', '40ba']), 1.0, ['0ba', '5ba', '15ba', '25ba', '45ba'], [0.0, 0.5, 1.0, 0.1, 0.01]), pytest.param(MultiStepWithWarmupScheduler(t_warmup='10ba', milestones=['2ep', '4ep'], gamma=0.5), 0.5, ['0ba', '5ba', '15ba', '1500ba', '2500ba'], [0.0, 0.5, 1.0, 0.5, 0.25]), pytest.param(MultiStepWithWarmupScheduler(t_warmup='10ba', milestones=['2ep', '4ep'], gamma=0.5, scale_warmup=True), 0.5, ['0ba', '5ba', '15ba', '1500ba', '2500ba'], [0.0, 1.0, 1.0, 0.5, 0.25]), pytest.param(MultiStepWithWarmupScheduler(t_warmup='1000ep', milestones=[]), 1.0, ['0ep', '100ep', '1000ep'], [0.0, 0.1, 1.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='500ep'), 1.0, ['0ba', '250000ba', '500000ba', '750000ba', '1000000ba'], [0.0, 0.5, 1.0, 1.0, 1.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='500ep', alpha=3.0), 1.0, ['0ba', '250000ba', '500000ba', '500500ba', '501000ba', '502000ba'], [0.0, 1.5, 3.0, 3.0, 3.0, 3.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='500ep', alpha=3.0), 1.0, ['0ba', '250000ba', '500000ba', '500500ba', '501000ba', '502000ba'], [0.0, 1.5, 3.0, 3.0, 3.0, 3.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='0.0005dur'), 1.0, ['0ba', '250ba', '500ba', '499750ba'], [0.0, 0.5, 1.0, 1.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='500ep', alpha=3.0, t_max='501000ep'), 0.5, ['0ba', '250000ba', '500000ba', '500500ba', '501000ba', '502000ba'], [0.0, 1.5, 3.0, 3.0, 3.0, 3.0]), pytest.param(ConstantWithWarmupScheduler(t_warmup='1000ep'), 1.0, ['0ep', '100ep', '1000ep'], [0.0, 0.1, 1.0]), pytest.param(LinearWithWarmupScheduler(t_warmup='500ep'), 1.0, ['0ba', '250000ba', '500000ba', '750000ba', '1000000ba'], [0.0, 0.5, 1.0, 0.5, 0.0]), pytest.param(LinearWithWarmupScheduler(t_warmup='500ep', alpha_i=3.0, alpha_f=2.0, t_max='1002ep'), 0.5, ['0ba', '250000ba', '500000ba', '500500ba', '501000ba', '502000ba'], [0.0, 1.5, 3.0, 2.5, 2.0, 2.0]), pytest.param(LinearWithWarmupScheduler(t_warmup='0.0005dur'), 1.0, ['0ba', '250ba', '500ba', '499750ba'], [0.0, 0.5, 1.0, 0.5]), pytest.param(LinearWithWarmupScheduler(t_warmup='500ba', scale_warmup=False), 0.5, ['0ba', '250ba', '500ba', '249875ba'], [0.0, 0.5, 1.0, 0.5]), pytest.param(LinearWithWarmupScheduler(t_warmup='500ba', scale_warmup=True), 0.5, ['0ba', '125ba', '250ba', '249875ba'], [0.0, 0.5, 1.0, 0.5]), pytest.param(LinearWithWarmupScheduler(t_warmup='1000ep'), 1.0, ['0ep', '100ep', '1000ep'], [0.0, 0.1, 1.0]), pytest.param(CosineAnnealingWithWarmupScheduler(t_warmup='0.9dur'), 1.0, ['0ba', '450000ba', '900000ba', '933333ba', '950000ba', '1000000ba'], [0.0, 0.5, 1.0, 0.75, 0.5, 0.0]), pytest.param(CosineAnnealingWithWarmupScheduler(t_warmup='0.9dur', alpha_f=0.5), 0.01, ['0ba', '4500ba', '9000ba', '9333ba', '9500ba', '10000ba'], [0.0, 0.5, 1.0, 0.875, 0.75, 0.5]), pytest.param(CosineAnnealingWithWarmupScheduler(t_warmup='0.9dur', alpha_f=0.5, scale_warmup=True), 0.01, ['0ba', '4500ba', '9000ba', '9333ba', '9500ba', '10000ba'], [0.0, 0.5, 1.0, 0.875, 0.75, 0.5]), pytest.param(CosineAnnealingWithWarmupScheduler(t_warmup='1000ep'), 1.0, ['0ep', '100ep', '1000ep'], [0.0, 0.1, 1.0]), pytest.param(PolynomialWithWarmupScheduler(t_warmup='0.9dur'), 1.0, ['0ba', '450000ba', '900000ba', '913397ba', '929289ba', '1000000ba'], [0.0, 0.5, 1.0, 0.75, 0.5, 0.0]), pytest.param(PolynomialWithWarmupScheduler(t_warmup='0.9dur', alpha_f=0.5), 0.01, ['0ba', '4500ba', '9000ba', '9134ba', '9293ba', '10000ba'], [0.0, 0.5, 1.0, 0.875, 0.75, 0.5]), pytest.param(PolynomialWithWarmupScheduler(t_warmup='0.9dur', alpha_f=0.5, scale_warmup=True), 0.01, ['0ba', '4500ba', '9000ba', '9134ba', '9293ba', '10000ba'], [0.0, 0.5, 1.0, 0.875, 0.75, 0.5]), pytest.param(PolynomialWithWarmupScheduler(t_warmup='1000ep'), 1.0, ['0ep', '100ep', '1000ep'], [0.0, 0.1, 1.0]), ]) def test_scheduler_init(scheduler: ComposerScheduler, ssr: float, test_times: List[str], expected_lrs: List[float], dummy_schedulers_state: State): state = dummy_schedulers_state assert state.dataloader_len is not None assert state.max_duration is not None state.max_duration = Time(value=int(state.max_duration.value * ssr), unit=state.max_duration.unit) for test_time, expected_lr in zip(test_times, expected_lrs): parsed_time = Time.from_timestring(test_time) assert parsed_time.unit in [TimeUnit.EPOCH, TimeUnit.BATCH] if parsed_time.unit == TimeUnit.EPOCH: state.timestamp = state.timestamp.copy( epoch=parsed_time, batch=Time(int(state.dataloader_len) * int(parsed_time), TimeUnit.BATCH), ) else: state.timestamp = state.timestamp.copy( batch=parsed_time, epoch=Time(int(parsed_time) // int(state.dataloader_len), TimeUnit.EPOCH), ) lr = scheduler(state, ssr) assert lr == pytest.approx(expected_lr, abs=1e-3) @pytest.mark.parametrize( 'scheduler,ssr,should_raise', [ (StepScheduler(step_size='2ba'), 1.0, None), (StepScheduler(step_size='0.2dur', gamma=0.8), 0.5, None), (lambda state, ssr=1.0: 0.01 * ssr, 1.5, None), # lambda's are also allowed as a ComposerScheduler (lambda state: 0.01, 1.0, None), # if the ssr = 1.0, then the lambda need not take the ssr parameter (lambda state: 0.01, 1.5, ValueError), # this should error since the ssr != 1.0 and the lambda doesn't support ssr ]) def test_scheduler_trains( scheduler: ComposerScheduler, ssr: float, rank_zero_seed: int, should_raise: Optional[Type[Exception]], ): with pytest.raises(should_raise) if should_raise is not None else contextlib.nullcontext(): trainer = Trainer( model=SimpleModel(), train_dataloader=DataLoader(RandomClassificationDataset()), max_duration='2ep', train_subset_num_batches=5, scale_schedule_ratio=ssr, schedulers=scheduler, seed=rank_zero_seed, ) trainer.fit()
composer-dev
tests/optim/test_scheduler.py
# Copyright 2022 MosaicML Composer authors # SPDX-License-Identifier: Apache-2.0 """ Test inference APIs. """ import os import tempfile from functools import partial from unittest.mock import ANY, patch import pytest import torch import torch.nn as nn from torch.utils.data import DataLoader from composer.core import Precision, State from composer.devices import DeviceCPU, DeviceGPU from composer.functional import apply_gated_linear_units from composer.loggers import InMemoryLogger, Logger from composer.loggers.logger_destination import LoggerDestination from composer.models import composer_resnet from composer.trainer.dist_strategy import prepare_ddp_module from composer.trainer.trainer import Trainer from composer.utils import dist, export_with_logger, inference from composer.utils.device import get_device from tests.common import SimpleTransformerClassifier, device from tests.common.datasets import RandomImageDataset, dummy_transformer_classifier_batch class MockFileUploader(LoggerDestination): """Mocks a generic file uploader interface.""" def can_upload_files(self) -> bool: return True @pytest.mark.parametrize('model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(4, 3, 224, 224), torch.randint(10, (4,)))), (SimpleTransformerClassifier, dummy_transformer_classifier_batch(vocab_size=10)), ]) def test_export_for_inference_torchscript(model_cls, sample_input): model = model_cls() model.eval() orig_out = model(sample_input) save_format = 'torchscript' with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.pt') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path, ) loaded_model = torch.jit.load(save_path) loaded_model.eval() loaded_model_out = loaded_model(sample_input) torch.testing.assert_close( orig_out, loaded_model_out, msg=f'output mismatch with {save_format}', ) def test_huggingface_export_for_inference_onnx(tiny_bert_config): pytest.importorskip('onnx') pytest.importorskip('onnxruntime') pytest.importorskip('transformers') import onnx import onnx.checker import onnxruntime as ort import transformers from composer.models import HuggingFaceModel # HuggingFace Bert Model # dummy sequence batch with 2 labels, 32 sequence length, and 30522 (bert) vocab size). input_ids = torch.randint(low=0, high=30522, size=(2, 32)) labels = torch.randint(low=0, high=1, size=(2,)) token_type_ids = torch.zeros(size=(2, 32), dtype=torch.int64) attention_mask = torch.randint(low=0, high=1, size=(2, 32)) sample_input = { 'input_ids': input_ids, 'labels': labels, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } dynamic_axes = { 'input_ids': { 0: 'batch_size', 1: 'seq_len' }, 'labels': { 0: 'batch_size' }, 'token_type_ids': { 0: 'batch_size', 1: 'seq_len' }, 'attention_mask': { 0: 'batch_size', 1: 'seq_len' }, } tiny_bert_config.num_labels = 2 tiny_bert_config.hidden_act = 'gelu_new' hf_model = transformers.AutoModelForSequenceClassification.from_config( tiny_bert_config) # type: ignore (thirdparty) model = HuggingFaceModel(hf_model) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) apply_gated_linear_units(model, optimizer) model.eval() orig_out = model(sample_input) save_format = 'onnx' with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.{save_format}') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path, sample_input=(sample_input, {}), dynamic_axes=dynamic_axes, ) loaded_model = onnx.load(save_path) onnx.checker.check_model(loaded_model) ort_session = ort.InferenceSession(save_path) for key, value in sample_input.items(): sample_input[key] = value.numpy() loaded_model_out = ort_session.run(None, sample_input) torch.testing.assert_close( orig_out['logits'].detach().numpy(), loaded_model_out[1], rtol=1e-4, # lower tolerance for ONNX atol=1e-3, # lower tolerance for ONNX msg=f'output mismatch with {save_format}', ) @pytest.mark.gpu def test_gpu_huggingface_export_for_inference_onnx(): pytest.importorskip('onnx') pytest.importorskip('onnxruntime') pytest.importorskip('transformers') import onnx import onnx.checker import onnxruntime as ort import transformers from composer.functional import apply_low_precision_layernorm from composer.models import HuggingFaceModel # HuggingFace Bert Model # dummy sequence batch with 2 labels, 32 sequence length, and 30522 (bert) vocab size). input_ids = torch.randint(low=0, high=30522, size=(2, 32)) labels = torch.randint(low=0, high=1, size=(2,)) token_type_ids = torch.zeros(size=(2, 32), dtype=torch.int64) attention_mask = torch.randint(low=0, high=1, size=(2, 32)) sample_input = { 'input_ids': input_ids, 'labels': labels, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask, } dynamic_axes = { 'input_ids': { 0: 'batch_size', 1: 'seq_len' }, 'labels': { 0: 'batch_size' }, 'token_type_ids': { 0: 'batch_size', 1: 'seq_len' }, 'attention_mask': { 0: 'batch_size', 1: 'seq_len' }, } # non pretrained model to avoid a slow test that downloads the weights. config = transformers.AutoConfig.from_pretrained('bert-base-uncased', num_labels=2, hidden_act='gelu_new') hf_model = transformers.AutoModelForSequenceClassification.from_config(config) # type: ignore (thirdparty) model = HuggingFaceModel(hf_model) optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) apply_gated_linear_units(model, optimizer) apply_low_precision_layernorm(model, Precision('amp_fp16'), optimizer) model.eval() orig_out = model(sample_input) gpu = torch.device('cuda:0') model.to(gpu) for key, val in sample_input.items(): sample_input[key] = val.to(gpu) save_format = 'onnx' with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.{save_format}') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path, sample_input=(sample_input, {}), dynamic_axes=dynamic_axes, ) loaded_model = onnx.load(save_path) onnx.checker.check_model(loaded_model) ort_session = ort.InferenceSession(save_path) for key, value in sample_input.items(): sample_input[key] = value.cpu().numpy() loaded_model_out = ort_session.run(None, sample_input) torch.testing.assert_close( orig_out['logits'].detach().numpy(), loaded_model_out[1], rtol=1e-4, # lower tolerance for ONNX atol=1e-3, # lower tolerance for ONNX msg=f'output mismatch with {save_format}', ) @device('cpu', 'gpu') @pytest.mark.parametrize( 'model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(4, 3, 224, 224), torch.randint(10, (4,)))), ], ) def test_export_for_inference_onnx(model_cls, sample_input, device): pytest.importorskip('onnx') pytest.importorskip('onnxruntime') import onnx import onnx.checker import onnxruntime as ort model = model_cls() model.eval() composer_device = get_device(device) cpu_device = get_device('cpu') sample_input = (composer_device.tensor_to_device(sample_input[0]), composer_device.tensor_to_device(sample_input[1])) composer_device.module_to_device(model) orig_out = model(sample_input) save_format = 'onnx' with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.{save_format}') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path, sample_input=(sample_input, {}), ) loaded_model = onnx.load(save_path) onnx.checker.check_model(loaded_model) ort_session = ort.InferenceSession(save_path) loaded_model_out = ort_session.run( None, {'input': cpu_device.tensor_to_device(sample_input[0]).numpy()}, ) torch.testing.assert_close( cpu_device.tensor_to_device(orig_out.detach()).numpy(), loaded_model_out[0], rtol=1e-4 if isinstance(composer_device, DeviceCPU) else 1e-3, # lower tolerance for ONNX atol=1e-3 if isinstance(composer_device, DeviceCPU) else 1e-2, # lower tolerance for ONNX msg=lambda msg: f'output mismatch with {save_format}\n\nOriginal message: {msg}', ) @pytest.mark.parametrize( 'model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(1, 3, 224, 224), torch.randint(10, (1,)))), ], ) @pytest.mark.world_size(2) def test_export_for_inference_onnx_ddp(model_cls, sample_input, request: pytest.FixtureRequest): pytest.importorskip('onnx') pytest.importorskip('onnxruntime') import onnx import onnx.checker import onnxruntime as ort model = model_cls() optimizer = torch.optim.SGD(model.parameters(), 0.1) device = None for item in request.session.items: device = DeviceCPU() if item.get_closest_marker('gpu') is None else DeviceGPU() break assert device != None state = State( model=model, rank_zero_seed=0, device=device, run_name='run_name', optimizers=optimizer, max_duration='1ep', dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), dataloader_label='train', precision='fp32', ) state.model = prepare_ddp_module(state.model, find_unused_parameters=True) state.model.eval() orig_out = state.model(sample_input) save_format = 'onnx' # Only one rank needs to save/load model if dist.get_local_rank() == 0: with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(str(tempdir), f'model.{save_format}') assert isinstance(state.model.module, nn.Module) inference.export_for_inference( model=state.model.module, save_format=save_format, save_path=save_path, sample_input=(sample_input, {}), ) loaded_model = onnx.load(save_path) onnx.checker.check_model(loaded_model) ort_session = ort.InferenceSession(save_path) loaded_model_out = ort_session.run( None, {'input': sample_input[0].numpy()}, ) torch.testing.assert_close( orig_out.detach().numpy(), loaded_model_out[0], rtol=1e-4, # lower tolerance for ONNX atol=1e-3, # lower tolerance for ONNX ) @pytest.mark.parametrize( 'model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(1, 3, 224, 224), torch.randint(10, (1,)))), ], ) @pytest.mark.world_size(2) def test_export_for_inference_torchscript_ddp(model_cls, sample_input, request: pytest.FixtureRequest): model = model_cls() optimizer = torch.optim.SGD(model.parameters(), 0.1) device = None for item in request.session.items: device = DeviceCPU() if item.get_closest_marker('gpu') is None else DeviceGPU() break assert device != None state = State( model=model, rank_zero_seed=0, device=device, run_name='run_name', optimizers=optimizer, max_duration='1ep', dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), dataloader_label='train', precision='fp32', ) state.model = prepare_ddp_module(state.model, find_unused_parameters=True) state.model.eval() orig_out = state.model(sample_input) save_format = 'torchscript' # Only one rank needs to save/load model if dist.get_local_rank() == 0: with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(str(tempdir), f'model.pt') assert isinstance(state.model.module, nn.Module) inference.export_for_inference( model=state.model.module, save_format=save_format, save_path=save_path, ) loaded_model = torch.jit.load(save_path) loaded_model.eval() loaded_model_out = loaded_model(sample_input) torch.testing.assert_close(orig_out, loaded_model_out) @pytest.mark.parametrize( 'model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(1, 3, 224, 224), torch.randint(10, (1,)))), ], ) def test_export_with_file_uploading_logger(model_cls, sample_input): with patch('composer.utils.inference.export_for_inference'): save_format = 'torchscript' model = model_cls() mock_obj_logger = MockFileUploader() with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.pt') # Construct the trainer and train trainer = Trainer( model=model, train_dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), max_duration='1ba', ) trainer.fit() mock_logger = Logger(state=trainer.state, destinations=[mock_obj_logger]) export_with_logger( model=model, save_format=save_format, save_path=save_path, logger=mock_logger, ) # Assert export_for_inference utility called with expected inputs inference.export_for_inference.assert_called_once_with( model=model, save_format=save_format, save_path=ANY, sample_input=ANY, transforms=None, ) @pytest.mark.parametrize( 'model_cls, sample_input', [ (partial(composer_resnet, 'resnet18'), (torch.rand(1, 3, 224, 224), torch.randint(10, (1,)))), ], ) def test_export_with_other_logger(model_cls, sample_input): with patch('composer.utils.inference.export_for_inference'): save_format = 'torchscript' model = model_cls() non_file_uploading_logger = InMemoryLogger() with tempfile.TemporaryDirectory() as tempdir: save_path = os.path.join(tempdir, f'model.pt') # Construct the trainer and train trainer = Trainer( model=model, train_dataloader=DataLoader(RandomImageDataset(shape=(3, 224, 224))), max_duration='1ba', ) trainer.fit() mock_logger = Logger( state=trainer.state, destinations=[non_file_uploading_logger], ) export_with_logger( model=model, save_format=save_format, save_path=save_path, logger=mock_logger, ) # Assert export_for_inference utility called with expected inputs inference.export_for_inference.assert_called_once_with( model=model, save_format=save_format, save_path=save_path, save_object_store=None, sample_input=ANY, transforms=None, ) class LinModel(nn.Module): def __init__(self): super().__init__() self.lin1 = nn.Linear(256, 128) self.lin2 = nn.Linear(128, 256) def forward(self, x): x = self.lin1(x) x = self.lin2(x) return x @pytest.mark.parametrize( 'model_cls', [ (LinModel), ], ) def test_dynamic_quantize(model_cls): model = model_cls() save_format = 'torchscript' with tempfile.TemporaryDirectory() as tempdir: save_path_no_quantize = os.path.join(tempdir, f'model_no_quantize.pt') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path_no_quantize, ) save_path_quantize = os.path.join(tempdir, f'model_quantize.pt') inference.export_for_inference( model=model, save_format=save_format, save_path=save_path_quantize, transforms=[inference.quantize_dynamic], ) no_quantize_size = os.path.getsize(save_path_no_quantize) quantize_size = os.path.getsize(save_path_quantize) # Size different should be almost 4x assert no_quantize_size > 3 * quantize_size, "Quantization didn't work"
composer-dev
tests/utils/test_inference.py