python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
print( 'ERROR: stitch_wrapper not yet compiled. Please run `cd /path/to/tensorbox/utils && make`' )
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/stitch_wrapper.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: AnnoList.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x ) or (lambda x: x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='AnnoList.proto', package='protobuf_annolist', serialized_pb=_b( '\n\x0e\x41nnoList.proto\x12\x11protobuf_annolist\"B\n\tAttribute\x12\n\n\x02id\x18\x01 \x01(\x05\x12\x0b\n\x03val\x18\x02 \x01(\x05\x12\x0c\n\x04\x66val\x18\x03 \x01(\x02\x12\x0e\n\x06strval\x18\x04 \x01(\t\"\"\n\tIdStrPair\x12\n\n\x02id\x18\x01 \x01(\x05\x12\t\n\x01s\x18\x02 \x01(\t\"j\n\rAttributeDesc\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\n\n\x02id\x18\x02 \x01(\x05\x12\r\n\x05\x64type\x18\x03 \x01(\x05\x12\x30\n\nval_to_str\x18\x04 \x03(\x0b\x32\x1c.protobuf_annolist.IdStrPair\".\n\x11\x41nnoRectAttribute\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0b\n\x03val\x18\x02 \x01(\t\"\x98\x01\n\x08\x41nnoRect\x12\n\n\x02x1\x18\x01 \x01(\x02\x12\n\n\x02y1\x18\x02 \x01(\x02\x12\n\n\x02x2\x18\x03 \x01(\x02\x12\n\n\x02y2\x18\x04 \x01(\x02\x12\r\n\x05score\x18\x05 \x01(\x02\x12\n\n\x02id\x18\x06 \x01(\x05\x12\x10\n\x08track_id\x18\x0b \x01(\x05\x12/\n\tattribute\x18\x0c \x03(\x0b\x32\x1c.protobuf_annolist.Attribute\"o\n\nAnnotation\x12\x11\n\timageName\x18\x01 \x01(\t\x12)\n\x04rect\x18\x02 \x03(\x0b\x32\x1b.protobuf_annolist.AnnoRect\x12\x10\n\x08imgWidth\x18\x03 \x01(\x05\x12\x11\n\timgHeight\x18\x04 \x01(\x05\"w\n\x08\x41nnoList\x12\x31\n\nannotation\x18\x01 \x03(\x0b\x32\x1d.protobuf_annolist.Annotation\x12\x38\n\x0e\x61ttribute_desc\x18\x02 \x03(\x0b\x32 .protobuf_annolist.AttributeDescB\x0c\x42\nAnnoListPb' ) ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _ATTRIBUTE = _descriptor.Descriptor( name='Attribute', full_name='protobuf_annolist.Attribute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='protobuf_annolist.Attribute.id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='val', full_name='protobuf_annolist.Attribute.val', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='fval', full_name='protobuf_annolist.Attribute.fval', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='strval', full_name='protobuf_annolist.Attribute.strval', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=37, serialized_end=103, ) _IDSTRPAIR = _descriptor.Descriptor( name='IdStrPair', full_name='protobuf_annolist.IdStrPair', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='protobuf_annolist.IdStrPair.id', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='s', full_name='protobuf_annolist.IdStrPair.s', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=105, serialized_end=139, ) _ATTRIBUTEDESC = _descriptor.Descriptor( name='AttributeDesc', full_name='protobuf_annolist.AttributeDesc', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='protobuf_annolist.AttributeDesc.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='id', full_name='protobuf_annolist.AttributeDesc.id', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='dtype', full_name='protobuf_annolist.AttributeDesc.dtype', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='val_to_str', full_name='protobuf_annolist.AttributeDesc.val_to_str', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=141, serialized_end=247, ) _ANNORECTATTRIBUTE = _descriptor.Descriptor( name='AnnoRectAttribute', full_name='protobuf_annolist.AnnoRectAttribute', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='name', full_name='protobuf_annolist.AnnoRectAttribute.name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='val', full_name='protobuf_annolist.AnnoRectAttribute.val', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=249, serialized_end=295, ) _ANNORECT = _descriptor.Descriptor( name='AnnoRect', full_name='protobuf_annolist.AnnoRect', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='x1', full_name='protobuf_annolist.AnnoRect.x1', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='y1', full_name='protobuf_annolist.AnnoRect.y1', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='x2', full_name='protobuf_annolist.AnnoRect.x2', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='y2', full_name='protobuf_annolist.AnnoRect.y2', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='score', full_name='protobuf_annolist.AnnoRect.score', index=4, number=5, type=2, cpp_type=6, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='id', full_name='protobuf_annolist.AnnoRect.id', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='track_id', full_name='protobuf_annolist.AnnoRect.track_id', index=6, number=11, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='attribute', full_name='protobuf_annolist.AnnoRect.attribute', index=7, number=12, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=298, serialized_end=450, ) _ANNOTATION = _descriptor.Descriptor( name='Annotation', full_name='protobuf_annolist.Annotation', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='imageName', full_name='protobuf_annolist.Annotation.imageName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='rect', full_name='protobuf_annolist.Annotation.rect', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='imgWidth', full_name='protobuf_annolist.Annotation.imgWidth', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='imgHeight', full_name='protobuf_annolist.Annotation.imgHeight', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=452, serialized_end=563, ) _ANNOLIST = _descriptor.Descriptor( name='AnnoList', full_name='protobuf_annolist.AnnoList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='annotation', full_name='protobuf_annolist.AnnoList.annotation', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), _descriptor.FieldDescriptor( name='attribute_desc', full_name='protobuf_annolist.AnnoList.attribute_desc', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], oneofs=[], serialized_start=565, serialized_end=684, ) _ATTRIBUTEDESC.fields_by_name['val_to_str'].message_type = _IDSTRPAIR _ANNORECT.fields_by_name['attribute'].message_type = _ATTRIBUTE _ANNOTATION.fields_by_name['rect'].message_type = _ANNORECT _ANNOLIST.fields_by_name['annotation'].message_type = _ANNOTATION _ANNOLIST.fields_by_name['attribute_desc'].message_type = _ATTRIBUTEDESC DESCRIPTOR.message_types_by_name['Attribute'] = _ATTRIBUTE DESCRIPTOR.message_types_by_name['IdStrPair'] = _IDSTRPAIR DESCRIPTOR.message_types_by_name['AttributeDesc'] = _ATTRIBUTEDESC DESCRIPTOR.message_types_by_name['AnnoRectAttribute'] = _ANNORECTATTRIBUTE DESCRIPTOR.message_types_by_name['AnnoRect'] = _ANNORECT DESCRIPTOR.message_types_by_name['Annotation'] = _ANNOTATION DESCRIPTOR.message_types_by_name['AnnoList'] = _ANNOLIST Attribute = _reflection.GeneratedProtocolMessageType( 'Attribute', (_message.Message,), dict( DESCRIPTOR=_ATTRIBUTE, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.Attribute) ) ) _sym_db.RegisterMessage(Attribute) IdStrPair = _reflection.GeneratedProtocolMessageType( 'IdStrPair', (_message.Message,), dict( DESCRIPTOR=_IDSTRPAIR, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.IdStrPair) ) ) _sym_db.RegisterMessage(IdStrPair) AttributeDesc = _reflection.GeneratedProtocolMessageType( 'AttributeDesc', (_message.Message,), dict( DESCRIPTOR=_ATTRIBUTEDESC, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.AttributeDesc) ) ) _sym_db.RegisterMessage(AttributeDesc) AnnoRectAttribute = _reflection.GeneratedProtocolMessageType( 'AnnoRectAttribute', (_message.Message,), dict( DESCRIPTOR=_ANNORECTATTRIBUTE, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.AnnoRectAttribute) ) ) _sym_db.RegisterMessage(AnnoRectAttribute) AnnoRect = _reflection.GeneratedProtocolMessageType( 'AnnoRect', (_message.Message,), dict( DESCRIPTOR=_ANNORECT, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.AnnoRect) ) ) _sym_db.RegisterMessage(AnnoRect) Annotation = _reflection.GeneratedProtocolMessageType( 'Annotation', (_message.Message,), dict( DESCRIPTOR=_ANNOTATION, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.Annotation) ) ) _sym_db.RegisterMessage(Annotation) AnnoList = _reflection.GeneratedProtocolMessageType( 'AnnoList', (_message.Message,), dict( DESCRIPTOR=_ANNOLIST, __module__='AnnoList_pb2' # @@protoc_insertion_point(class_scope:protobuf_annolist.AnnoList) ) ) _sym_db.RegisterMessage(AnnoList) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions( descriptor_pb2.FileOptions(), _b('B\nAnnoListPb') ) # @@protoc_insertion_point(module_scope)
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/AnnoList_pb2.py
import os import sys import string import matplotlib matplotlib.use('Agg') from pylab import * import numpy as np class MatPlotter: fontsize = 15 color = 0 colors = ["r-", "b-", "k-", "c-", "m-", "y-"] colors += [x + "-" for x in colors] colors += ["g-", "g--"] curFigure = [] legendNames = [] fontsizeLegend = 14 legendPlace = 'lower right' legendborderpad = None legendlabelsep = None def __init__(self, fontsize=15): # self.newFigure() self.fontsize = fontsize self.fontsizeLegend = fontsize - 1 def formatLegend( self, newFontSize=14, newPlace='lower right', borderpad=None, labelsep=None ): self.fontsizeLegend = newFontSize self.legendPlace = newPlace self.legendborderpad = borderpad self.legendlabelsep = labelsep def newFigure(self, plotTitle="", fsize=rcParams['figure.figsize']): return self.newRPCFigure(plotTitle, fsize) def newRPCFigure(self, plotTitle="", fsize=rcParams['figure.figsize']): curFigure = figure(figsize=fsize) self.title = title(plotTitle, fontsize=self.fontsize) #subplots_adjust(left=0.085, right=0.975, top=0.975, bottom=0.085) subplots_adjust(right=0.975, top=0.975) #axis('equal') axis([0, 1, 0, 1]) xticklocs, xticklabels = xticks(arange(0, 1.01, 0.1)) setp(xticklabels, size=self.fontsize) yticklocs, yticklabels = yticks(arange(0, 1.01, 0.1)) setp(yticklabels, size=self.fontsize) self.xlabel = xlabel("1-precision") self.xlabel.set_size(self.fontsize + 2) self.ylabel = ylabel("recall") self.ylabel.set_size(self.fontsize + 4) grid() hold(True) def newFPPIFigure(self, plotTitle="", fsize=rcParams['figure.figsize']): curFigure = figure(figsize=fsize) self.title = title(plotTitle, fontsize=self.fontsize) subplots_adjust(left=0.085, right=0.975, top=0.975, bottom=0.085) #axis('equal') axis([0, 100, 0, 1]) xticklocs, xticklabels = xticks(arange(0, 100.01, 0.5)) setp(xticklabels, size=self.fontsize) yticklocs, yticklabels = yticks(arange(0, 1.01, 0.1)) setp(yticklabels, size=self.fontsize) self.xlabel = xlabel("false positives per image") self.xlabel.set_size(self.fontsize + 2) self.ylabel = ylabel("recall") self.ylabel.set_size(self.fontsize + 4) grid() hold(True) def newFreqFigure( self, plotTitle="", maxX=10, maxY=10, fsize=rcParams['figure.figsize'] ): curFigure = figure(figsize=fsize) self.title = title(plotTitle, fontsize=self.fontsize) subplots_adjust(left=0.085, right=0.975, top=0.975, bottom=0.1) #axis('equal') axis([0, maxX, 0, maxY]) xticklocs, xticklabels = xticks( arange(0, maxX + 0.01, maxX * 1.0 / 10) ) setp(xticklabels, size=self.fontsize) yticklocs, yticklabels = yticks( arange(0, maxY + 0.01, maxY * 1.0 / 10) ) setp(yticklabels, size=self.fontsize) self.xlabel = xlabel("False positive / ground truth rect") self.xlabel.set_size(self.fontsize + 2) self.ylabel = ylabel("True positives / ground truth rect") self.ylabel.set_size(self.fontsize + 4) grid() hold(True) def newFPPWFigure(self, plotTitle="", fsize=rcParams['figure.figsize']): curFigure = figure(figsize=fsize) self.title = title(plotTitle, fontsize=self.fontsize) subplots_adjust(left=0.085, right=0.975, top=0.975, bottom=0.085) self.xlabel = xlabel("false positive per windows (FPPW)") self.xlabel.set_size(self.fontsize + 2) self.ylabel = ylabel("miss rate") self.ylabel.set_size(self.fontsize + 4) grid() hold(True) def newLogFPPIFigure(self, plotTitle="", fsize=rcParams['figure.figsize']): curFigure = figure(figsize=fsize) self.title = title(plotTitle, fontsize=self.fontsize) subplots_adjust(left=0.085, right=0.975, top=0.975, bottom=0.1) #axis('equal') self.xlabel = xlabel("false positives per image") self.xlabel.set_size(self.fontsize + 2) self.ylabel = ylabel("miss rate") self.ylabel.set_size(self.fontsize + 4) grid() hold(True) def loadRPCData(self, fname): self.filename = fname self.prec = [] self.rec = [] self.score = [] self.fppi = [] file = open(fname) precScores = [] for i in range(1, 10, 1): precScores.append(100 - i * 10) fppiScores = [] for i in range(0, 500, 5): fppiScores.append(i * 1.0 / 100.0) precinfo = [] fppiinfo = [] eerinfo = [] logAvInfo = [] logAvMR = [] self.lamr = 0 self.eer = None firstLine = True leadingZeroCount = 0 for line in file.readlines(): vals = line.split() #vals=line.split(" ") #for val in vals: # if val=="": # vals.remove(val) self.prec.append(1 - float(vals[0])) self.rec.append(float(vals[1])) self.score.append(float(vals[2])) if (len(vals) > 3): self.fppi.append(float(vals[3])) if firstLine and not float(vals[3]) == 0: firstLine = False lamrcount = 1 self.lamr = 1 - float(vals[1]) lowest_fppi = math.ceil( math.log(float(vals[3])) / math.log(10) * 10 ) print "lowest_fppi: ", lowest_fppi # MA: temporarily commented out # for i in range(lowest_fppi, 1, 1): # logAvMR.append(10** (i * 1.0 / 10)) #self.score.append(float(vals[2][:-1])) #print 1-self.prec[-1], self.rec[-1], self.score[-1] if (len(self.prec) > 1): diff = (1 - self.prec[-1] - self.rec[-1] ) * (1 - self.prec[-2] - self.rec[-2]) if (diff < 0): eerinfo.append( "EER between: %.03f and %.03f\tScore:%f" % (self.rec[-1], self.rec[-2], self.score[-1]) ) self.eer = (self.rec[-1] + self.rec[-2]) * 0.5 if (diff == 0 and 1 - self.prec[-1] - self.rec[-1] == 0): eerinfo.append( "EER: %.03f\tScore:%f" % (self.rec[-1], self.score[-1]) ) self.eer = self.rec[-1] #Remove already passed precision if (len(precScores) > 0 and (float(vals[0])) < precScores[0] / 100.0): precinfo.append( "%d percent precision score: %f, recall: %.03f" % (precScores[0], float(vals[2]), float(vals[1])) ) while ( len(precScores) > 0 and precScores[0] / 100.0 > float(vals[0]) ): precScores.pop(0) #Remove already passed precision if (len(vals) > 3): if (len(fppiScores) > 0 and (float(vals[3])) > fppiScores[0]): fppiinfo.append( "%f fppi score: %f, recall: %.03f" % (fppiScores[0], float(vals[2]), float(vals[1])) ) while ( len(fppiScores) > 0 and fppiScores[0] < float(vals[3]) ): fppiScores.pop(0) if (len(logAvMR) > 0 and (float(vals[3])) > logAvMR[0]): while (len(logAvMR) > 0 and logAvMR[0] < float(vals[3])): logAvInfo.append( "%f fppi, miss rate: %.03f, score: %f" % (logAvMR[0], 1 - float(vals[1]), float(vals[2])) ) self.lamr += 1 - float(vals[1]) lamrcount += 1 logAvMR.pop(0) lastMR = 1 - float(vals[1]) if (len(vals) > 3): for i in logAvMR: logAvInfo.append( "%f fppi, miss rate: %.03f, extended" % (i, lastMR) ) self.lamr += lastMR lamrcount += 1 for i in precinfo: print i print for i in fppiinfo: print i print for i in eerinfo: print i print print "Recall at first false positive: %.03f" % self.rec[0] if (len(vals) > 3): print for i in logAvInfo: print i self.lamr = self.lamr * 1.0 / lamrcount print "Log average miss rate in [10^%.01f, 10^0]: %.03f" % ( lowest_fppi / 10.0, self.lamr ) print print file.close() def loadFreqData(self, fname): self.filename = fname self.prec = [] self.rec = [] self.score = [] file = open(fname) for line in file.readlines(): vals = line.split() self.prec.append(float(vals[0])) self.rec.append(float(vals[1])) self.score.append(float(vals[2])) file.close() def loadFPPWData(self, fname): self.loadFreqData(fname) def finishPlot(self, axlimits=[0, 1.0, 0, 1.0]): # MA: #self.legend = legend(self.legendNames, self.legendPlace, pad = self.legendborderpad, labelsep = self.legendlabelsep) self.legend = legend(self.legendNames, self.legendPlace) lstrings = self.legend.get_texts() setp(lstrings, fontsize=self.fontsizeLegend) #line= plot( [1 - axlimits[0], 0], [axlimits[3], 1 - axlimits[3] ] , 'k') line = plot([1, 0], [0, 1], 'k') def finishFreqPlot(self): self.legend = legend( self.legendNames, self.legendPlace, pad=self.legendborderpad, labelsep=self.legendlabelsep ) lstrings = self.legend.get_texts() setp(lstrings, fontsize=self.fontsizeLegend) def show(self, plotEER=True, axlimits=[0, 1.0, 0, 1.0]): if (plotEER): self.finishPlot(axlimits) axis(axlimits) else: self.finishFreqPlot() show() def saveCurrentFigure(self, plotEER, filename, axlimits=[0, 1.0, 0, 1.0]): if (plotEER): self.finishPlot(axlimits) axis(axlimits) else: self.finishFreqPlot() print "Saving: " + filename savefig(filename) def plotRFP(self, numImages, fname, line="r-"): print 'NOT YET IMPLEMENTED' def plotRPC( self, fname, descr="line", style="-1", axlimits=[0, 1.0, 0, 1.0], linewidth=2, dashstyle=[], addEER=False ): self.loadRPCData(fname) #axis(axlimits); if (style == "-1"): if dashstyle != []: line = plot( self.prec, self.rec, self.colors[self.color], dashes=dashstyle ) else: line = plot(self.prec, self.rec, self.colors[self.color]) self.color = self.color + 1 self.color = self.color % len(self.colors) else: if dashstyle != []: line = plot(self.prec, self.rec, style, dashes=dashstyle) else: line = plot(self.prec, self.rec, style) axis(axlimits) if addEER and self.eer != None: descr += " (%.01f%%)" % (self.eer * 100) setp(line, 'linewidth', linewidth) self.legendNames = self.legendNames + [descr] def plotFPPI( self, fname, descr="line", style="-1", axlimits=[0, 2, 0, 1], linewidth=2, dashstyle=[] ): self.loadRPCData(fname) if (style == "-1"): if dashstyle != []: line = plot( self.fppi, self.rec, self.colors[self.color], dashes=dashstyle ) else: line = plot(self.fppi, self.rec, self.colors[self.color]) self.color = self.color + 1 self.color = self.color % len(self.colors) else: if dashstyle != []: line = plot(self.fppi, self.rec, style, dashes=dashstyle) else: line = plot(self.fppi, self.rec, style) axis(axlimits) setp(line, 'linewidth', linewidth) self.legendNames = self.legendNames + [descr] def plotFreq( self, fname, descr="line", style="-1", linewidth=2, dashstyle=[] ): self.loadFreqData(fname) if (style == "-1"): if dashstyle != []: line = plot( self.prec, self.rec, self.colors[self.color], dashes=dashstyle ) else: line = plot(self.prec, self.rec, self.colors[self.color]) self.color = self.color + 1 self.color = self.color % len(self.colors) else: if dashstyle != []: line = plot(self.prec, self.rec, style, dashes=dashstyle) else: line = plot(self.prec, self.rec, style) setp(line, 'linewidth', linewidth) self.legendNames = self.legendNames + [descr] def plotFPPW( self, fname, descr="line", style="-1", axlimits=[5e-6, 1e0, 1e-2, 0.5], linewidth=2, dashstyle=[] ): self.loadFPPWData(fname) if (style == "-1"): if dashstyle != []: line = loglog( self.prec, self.rec, self.colors[self.color], dashes=dashstyle ) else: line = loglog(self.prec, self.rec, self.colors[self.color]) self.color = self.color + 1 self.color = self.color % len(self.colors) else: if dashstyle != []: line = loglog(self.prec, self.rec, style, dashes=dashstyle) else: line = loglog(self.prec, self.rec, style) xticklocs, xticklabels = xticks([1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0]) setp(xticklabels, size=self.fontsize) yticklocs, yticklabels = yticks( array( [ 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5 ] ), ( "0.01", "0.02", "0.03", "0.04", "0.05", "0.06", "0.07", "0.08", "0.09", "0.1", "0.2", "0.3", "0.4", "0.5" ) ) setp(yticklabels, size=self.fontsize) axis(axlimits) gca().yaxis.grid(True, 'minor') setp(line, 'linewidth', linewidth) self.legendNames = self.legendNames + [descr] def plotLogFPPI( self, fname, descr="line", style="-1", axlimits=[5e-3, 1e1, 1e-1, 1], linewidth=2, dashstyle=[], addlamr=False ): self.loadRPCData(fname) if (style == "-1"): if dashstyle != []: line = loglog( self.fppi, [1 - x for x in self.rec], self.colors[self.color], dashes=dashstyle ) else: line = loglog( self.fppi, [1 - x for x in self.rec], self.colors[self.color] ) self.color = (self.color + 1) % len(self.colors) else: if dashstyle != []: line = loglog( self.fppi, [1 - x for x in self.rec], style, dashes=dashstyle ) else: line = loglog(self.fppi, [1 - x for x in self.rec], style) gca().yaxis.grid(True, 'minor') m = min(self.fppi) lax = axlimits[0] for i in self.fppi: if (i != m): lax = math.floor(log(i) / math.log(10)) leftlabel = math.pow(10, lax) break m = max(self.fppi) rightlabel = math.pow(10, math.ceil(log(m) / math.log(10))) + 0.01 k = leftlabel ticks = [k] while k < rightlabel: k = k * 10 ticks.append(k) xticklocs, xticklabels = xticks(ticks) setp(xticklabels, size=self.fontsize) yticklocs, yticklabels = yticks( arange(0.1, 1.01, 0.1), ( "0.1", "0.2", "0.3", "0.4", "0.5", "0.6", "0.7", "0.8", "0.9", "1.0" ) ) setp(yticklabels, size=self.fontsize) axlimits[0] = lax axis(axlimits) setp(line, 'linewidth', linewidth) if addlamr: descr += " (%.01f%%)" % (self.lamr * 100) self.legendNames = self.legendNames + [descr]
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/MatPlotter.py
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/__init__.py
#!/usr/bin/env python import sys import os import random import re from AnnotationLib import * from MatPlotter import * from optparse import OptionParser from copy import deepcopy from math import sqrt def main(argv): parser = OptionParser(usage="usage: %prog [options] <datafile> [...]") parser.add_option( "-o", "--output-file", action="store", dest="output", type="str", help="outfile. mandatory" ) parser.add_option( "--fppw", action="store_true", dest="fppw", help="False Positives Per Window" ) parser.add_option("--colors", action="store", dest="colors", help="colors") parser.add_option( "--fppi", action="store_true", dest="fppi", help="False Positives Per Image" ) parser.add_option( "--lfppi", action="store_true", dest="lfppi", help="False Positives Per Image(log)" ) parser.add_option( "-c", "--components", action="store", dest="ncomponents", type="int", help="show n trailing components of the part", default=3 ) parser.add_option( "--cut-trailing", action="store", dest="cutcomponents", type="int", help= "cut n trailing components of the part (applied after --components)", default=-1 ) parser.add_option( "-t", "--title", action="store", dest="title", type="str", default="" ) parser.add_option( "-f", "--fontsize", action="store", dest="fontsize", type="int", default=12 ) parser.add_option( "-l", "--legend'", action="store", dest="legend", type="string", default="lr" ) (options, args) = parser.parse_args() plotter = MatPlotter(options.fontsize) position = "lower right" if (options.legend == "ur"): position = "upper right" if (options.legend == "ul"): position = "upper left" if (options.legend == "ll"): position = "lower left" plotter.formatLegend(options.fontsize, newPlace=position) title = options.title colors = None if (options.colors): colors = options.colors.split() if (options.fppw): plotter.newFPPWFigure(title) elif (options.lfppi): plotter.newLogFPPIFigure(title) elif (options.fppi): plotter.newFPPIFigure(title) else: plotter.newFigure(title) for i, filename in enumerate(args): if (os.path.isdir(filename)): filename = os.path.join(filename, "rpc", "result-minh-48") displayname = filename if (options.ncomponents > 0): suffix = None for idx in xrange(options.ncomponents): displayname, last = os.path.split(displayname) if (suffix): suffix = os.path.join(last, suffix) else: suffix = last displayname = suffix if (options.cutcomponents > 0): for idx in xrange(options.cutcomponents): displayname, last = os.path.split(displayname) # plusidx = displayname.index("+") # displayname = displayname[plusidx:] print "Plotting: " + displayname if (options.fppw): plotter.plotFPPW(filename, displayname) elif (options.lfppi): if colors: plotter.plotLogFPPI(filename, displayname, colors[i]) else: plotter.plotLogFPPI(filename, displayname) elif (options.fppi): plotter.plotFPPI(filename, displayname) else: plotter.plotRPC(filename, displayname) plotLine = not (options.fppw or options.lfppi or options.fppi) if (options.output is None): plotter.show(plotLine) else: plotter.saveCurrentFigure(plotLine, options.output) return 0 if __name__ == "__main__": sys.exit(main(sys.argv))
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/plotSimple.py
import os from math import sqrt import gzip import json import bz2 import numpy as np from collections import MutableSequence #import AnnoList_pb2 from . import PalLib import xml.dom.minidom xml_dom_ext_available = False try: import xml.dom.ext xml_dom_ext_available = True except ImportError: pass ################################################ # # TODO: check distance function # ################################################ def cmpAnnoRectsByScore(r1, r2): return cmp(r1.score, r2.score) def cmpAnnoRectsByScoreDescending(r1, r2): return (-1) * cmp(r1.score, r2.score) def cmpDetAnnoRectsByScore(r1, r2): return cmp(r1.rect.score, r2.rect.score) def suffixMatch(fn1, fn2): l1 = len(fn1) l2 = len(fn2) if fn1[-l2:] == fn2: return True if fn2[-l1:] == fn1: return True return False class AnnoList(MutableSequence): """Define a list format, which I can customize""" TYPE_INT32 = 5 TYPE_FLOAT = 2 TYPE_STRING = 9 def __init__(self, data=None): super(AnnoList, self).__init__() self.attribute_desc = {} self.attribute_val_to_str = {} if not (data is None): self._list = list(data) else: self._list = list() def add_attribute(self, name, dtype): _adesc = AnnoList_pb2.AttributeDesc() _adesc.name = name if self.attribute_desc: _adesc.id = max( (self.attribute_desc[d].id for d in self.attribute_desc) ) + 1 else: _adesc.id = 0 if dtype == int: _adesc.dtype = AnnoList.TYPE_INT32 elif dtype == float or dtype == np.float32: _adesc.dtype = AnnoList.TYPE_FLOAT elif dtype == str: _adesc.dtype = AnnoList.TYPE_STRING else: print("unknown attribute type: ", dtype) assert (False) #print "adding attribute: {}, id: {}, type: {}".format(_adesc.name, _adesc.id, _adesc.dtype); self.attribute_desc[name] = _adesc def add_attribute_val(self, aname, vname, val): # add attribute before adding string corresponding to integer value assert (aname in self.attribute_desc) # check and add if new if all( ( val_desc.id != val for val_desc in self.attribute_desc[aname].val_to_str ) ): val_desc = self.attribute_desc[aname].val_to_str.add() val_desc.id = val val_desc.s = vname # also add to map for quick access if not aname in self.attribute_val_to_str: self.attribute_val_to_str[aname] = {} assert (not val in self.attribute_val_to_str[aname]) self.attribute_val_to_str[aname][val] = vname def attribute_get_value_str(self, aname, val): if aname in self.attribute_val_to_str and val in self.attribute_val_to_str[ aname ]: return self.attribute_val_to_str[aname][val] else: return str(val) def save(self, fname): save(fname, self) #MA: list interface def __len__(self): return len(self._list) def __getitem__(self, ii): if isinstance(ii, slice): res = AnnoList() res.attribute_desc = self.attribute_desc res._list = self._list[ii] return res else: return self._list[ii] def __delitem__(self, ii): del self._list[ii] def __setitem__(self, ii, val): self._list[ii] = val return self._list[ii] def __str__(self): return self.__repr__() def __repr__(self): return """<AnnoList %s>""" % self._list def insert(self, ii, val): self._list.insert(ii, val) def append(self, val): list_idx = len(self._list) self.insert(list_idx, val) def is_compatible_attr_type(protobuf_type, attr_type): if protobuf_type == AnnoList.TYPE_INT32: return (attr_type == int) elif protobuf_type == AnnoList.TYPE_FLOAT: return (attr_type == float or attr_type == np.float32) elif protobuf_type == AnnoList.TYPE_STRING: return (attr_type == str) else: assert (false) def protobuf_type_to_python(protobuf_type): if protobuf_type == AnnoList.TYPE_INT32: return int elif protobuf_type == AnnoList.TYPE_FLOAT: return float elif protobuf_type == AnnoList.TYPE_STRING: return str else: assert (false) class AnnoPoint(object): def __init__(self, x=None, y=None, id=None): self.x = x self.y = y self.id = id class AnnoRect(object): def __init__(self, x1=-1, y1=-1, x2=-1, y2=-1): self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 self.score = -1.0 self.scale = -1.0 self.articulations = [] self.viewpoints = [] self.d3 = [] self.silhouetteID = -1 self.classID = -1 self.track_id = -1 self.point = [] self.at = {} def width(self): return abs(self.x2 - self.x1) def height(self): return abs(self.y2 - self.y1) def centerX(self): return (self.x1 + self.x2) / 2.0 def centerY(self): return (self.y1 + self.y2) / 2.0 def left(self): return min(self.x1, self.x2) def right(self): return max(self.x1, self.x2) def top(self): return min(self.y1, self.y2) def bottom(self): return max(self.y1, self.y2) def forceAspectRatio(self, ratio, KeepHeight=False, KeepWidth=False): """force the Aspect ratio""" if KeepWidth or ( (not KeepHeight) and self.width() * 1.0 / self.height() > ratio ): # extend height newHeight = self.width() * 1.0 / ratio self.y1 = (self.centerY() - newHeight / 2.0) self.y2 = (self.y1 + newHeight) else: # extend width newWidth = self.height() * ratio self.x1 = (self.centerX() - newWidth / 2.0) self.x2 = (self.x1 + newWidth) def clipToImage(self, min_x, max_x, min_y, max_y): self.x1 = max(min_x, self.x1) self.x2 = max(min_x, self.x2) self.y1 = max(min_y, self.y1) self.y2 = max(min_y, self.y2) self.x1 = min(max_x, self.x1) self.x2 = min(max_x, self.x2) self.y1 = min(max_y, self.y1) self.y2 = min(max_y, self.y2) def printContent(self): print("Coords: ", self.x1, self.y1, self.x2, self.y2) print("Score: ", self.score) print("Articulations: ", self.articulations) print("Viewpoints: ", self.viewpoints) print("Silhouette: ", self.silhouetteID) def ascii(self): r = "(" + str(self.x1) + ", " + str(self.y1) + ", " + str( self.x2 ) + ", " + str(self.y2) + ")" if (self.score != -1): r = r + ":" + str(self.score) if (self.silhouetteID != -1): ri = r + "/" + str(self.silhouetteID) return r def writeIDL(self, file): file.write( " (" + str(self.x1) + ", " + str(self.y1) + ", " + str(self.x2) + ", " + str(self.y2) + ")" ) if (self.score != -1): file.write(":" + str(self.score)) if (self.silhouetteID != -1): file.write("/" + str(self.silhouetteID)) def writeJSON(self): jdoc = {"x1": self.x1, "x2": self.x2, "y1": self.y1, "y2": self.y2} if (self.score != -1): jdoc["score"] = self.score return jdoc def sortCoords(self): if (self.x1 > self.x2): self.x1, self.x2 = self.x2, self.x1 if (self.y1 > self.y2): self.y1, self.y2 = self.y2, self.y1 def rescale(self, factor): self.x1 = (self.x1 * float(factor)) self.y1 = (self.y1 * float(factor)) self.x2 = (self.x2 * float(factor)) self.y2 = (self.y2 * float(factor)) def resize(self, factor, factor_y=None): w = self.width() h = self.height() if factor_y is None: factor_y = factor centerX = float(self.x1 + self.x2) / 2.0 centerY = float(self.y1 + self.y2) / 2.0 self.x1 = (centerX - (w / 2.0) * factor) self.y1 = (centerY - (h / 2.0) * factor_y) self.x2 = (centerX + (w / 2.0) * factor) self.y2 = (centerY + (h / 2.0) * factor_y) def intersection(self, other): self.sortCoords() other.sortCoords() if (self.x1 >= other.x2): return (0, 0) if (self.x2 <= other.x1): return (0, 0) if (self.y1 >= other.y2): return (0, 0) if (self.y2 <= other.y1): return (0, 0) l = max(self.x1, other.x1) t = max(self.y1, other.y1) r = min(self.x2, other.x2) b = min(self.y2, other.y2) return (r - l, b - t) #Alternate implementation #nWidth = self.x2 - self.x1 #nHeight = self.y2 - self.y1 #iWidth = max(0,min(max(0,other.x2-self.x1),nWidth )-max(0,other.x1-self.x1)) #iHeight = max(0,min(max(0,other.y2-self.y1),nHeight)-max(0,other.y1-self.y1)) #return (iWidth, iHeight) def cover(self, other): nWidth = self.width() nHeight = self.height() iWidth, iHeight = self.intersection(other) return float(iWidth * iHeight) / float(nWidth * nHeight) def overlap_pascal(self, other): self.sortCoords() other.sortCoords() nWidth = self.x2 - self.x1 nHeight = self.y2 - self.y1 iWidth, iHeight = self.intersection(other) interSection = iWidth * iHeight union = self.width() * self.height() + other.width() * other.height( ) - interSection overlap = interSection * 1.0 / union return overlap def isMatchingPascal(self, other, minOverlap): overlap = self.overlap_pascal(other) if (overlap >= minOverlap and (self.classID == -1 or other.classID == -1 or self.classID == other.classID)): return 1 else: return 0 def distance(self, other, aspectRatio=-1, fixWH='fixheight'): if (aspectRatio != -1): if (fixWH == 'fixwidth'): dWidth = float(self.x2 - self.x1) dHeight = dWidth / aspectRatio elif (fixWH == 'fixheight'): dHeight = float(self.y2 - self.y1) dWidth = dHeight * aspectRatio else: dWidth = float(self.x2 - self.x1) dHeight = float(self.y2 - self.y1) xdist = (self.x1 + self.x2 - other.x1 - other.x2) / dWidth ydist = (self.y1 + self.y2 - other.y1 - other.y2) / dHeight return sqrt(xdist * xdist + ydist * ydist) def isMatchingStd( self, other, coverThresh, overlapThresh, distThresh, aspectRatio=-1, fixWH=-1 ): cover = other.cover(self) overlap = self.cover(other) dist = self.distance(other, aspectRatio, fixWH) #if(self.width() == 24 ): #print cover, " ", overlap, " ", dist #print coverThresh, overlapThresh, distThresh #print (cover>=coverThresh and overlap>=overlapThresh and dist<=distThresh) if (cover>=coverThresh and overlap>=overlapThresh and dist<=distThresh and self.classID == other.classID): return 1 else: return 0 def isMatching( self, other, style, coverThresh, overlapThresh, distThresh, minOverlap, aspectRatio=-1, fixWH=-1 ): #choose matching style if (style == 0): return self.isMatchingStd( other, coverThresh, overlapThresh, distThresh, aspectRatio=-1, fixWH=-1 ) if (style == 1): return self.isMatchingPascal(other, minOverlap) def addToXML(self, node, doc): # no Silhouette yet rect_el = doc.createElement("annorect") for item in "x1 y1 x2 y2 score scale track_id".split(): coord_el = doc.createElement(item) coord_val = doc.createTextNode(str(self.__getattribute__(item))) coord_el.appendChild(coord_val) rect_el.appendChild(coord_el) articulation_el = doc.createElement("articulation") for articulation in self.articulations: id_el = doc.createElement("id") id_val = doc.createTextNode(str(articulation)) id_el.appendChild(id_val) articulation_el.appendChild(id_el) if (len(self.articulations) > 0): rect_el.appendChild(articulation_el) viewpoint_el = doc.createElement("viewpoint") for viewpoint in self.viewpoints: id_el = doc.createElement("id") id_val = doc.createTextNode(str(viewpoint)) id_el.appendChild(id_val) viewpoint_el.appendChild(id_el) if (len(self.viewpoints) > 0): rect_el.appendChild(viewpoint_el) d3_el = doc.createElement("D3") for d in self.d3: id_el = doc.createElement("id") id_val = doc.createTextNode(str(d)) id_el.appendChild(id_val) d3_el.appendChild(id_el) if (len(self.d3) > 0): rect_el.appendChild(d3_el) if self.silhouetteID != -1: silhouette_el = doc.createElement("silhouette") id_el = doc.createElement("id") id_val = doc.createTextNode(str(self.silhouetteID)) id_el.appendChild(id_val) silhouette_el.appendChild(id_el) rect_el.appendChild(silhouette_el) if self.classID != -1: class_el = doc.createElement("classID") class_val = doc.createTextNode(str(self.classID)) class_el.appendChild(class_val) rect_el.appendChild(class_el) if len(self.point) > 0: annopoints_el = doc.createElement("annopoints") for p in self.point: point_el = doc.createElement("point") point_id_el = doc.createElement("id") point_id_val = doc.createTextNode(str(p.id)) point_id_el.appendChild(point_id_val) point_el.appendChild(point_id_el) point_x_el = doc.createElement("x") point_x_val = doc.createTextNode(str(p.x)) point_x_el.appendChild(point_x_val) point_el.appendChild(point_x_el) point_y_el = doc.createElement("y") point_y_val = doc.createTextNode(str(p.y)) point_y_el.appendChild(point_y_val) point_el.appendChild(point_y_el) annopoints_el.appendChild(point_el) rect_el.appendChild(annopoints_el) node.appendChild(rect_el) class Annotation(object): def __init__(self): self.imageName = "" self.imagePath = "" self.rects = [] self.frameNr = -1 def clone_empty(self): new = Annotation() new.imageName = self.imageName new.imagePath = self.imagePath new.frameNr = self.frameNr new.rects = [] return new def filename(self): return os.path.join(self.imagePath, self.imageName) def printContent(self): print("Name: ", self.imageName) for rect in self.rects: rect.printContent() def writeIDL(self, file): if (self.frameNr == -1): file.write( "\"" + os.path.join(self.imagePath, self.imageName) + "\"" ) else: file.write( "\"" + os.path.join(self.imagePath, self.imageName) + "@%d\"" % self.frameNr ) if (len(self.rects) > 0): file.write(":") i = 0 for rect in self.rects: rect.writeIDL(file) if (i + 1 < len(self.rects)): file.write(",") i += 1 def writeJSON(self): jdoc = {} jdoc['image_path'] = os.path.join(self.imagePath, self.imageName) jdoc['rects'] = [] for rect in self.rects: jdoc['rects'].append(rect.writeJSON()) return jdoc def addToXML(self, node, doc): # no frame# yet annotation_el = doc.createElement("annotation") img_el = doc.createElement("image") name_el = doc.createElement("name") name_val = doc.createTextNode( os.path.join(self.imagePath, self.imageName) ) name_el.appendChild(name_val) img_el.appendChild(name_el) if (self.frameNr != -1): frame_el = doc.createElement("frameNr") frame_val = doc.createTextNode(str(self.frameNr)) frame_el.appendChild(frame_val) img_el.appendChild(frame_el) annotation_el.appendChild(img_el) for rect in self.rects: rect.addToXML(annotation_el, doc) node.appendChild(annotation_el) def sortByScore(self, dir="ascending"): if (dir == "descending"): self.rects.sort(cmpAnnoRectsByScoreDescending) else: self.rects.sort(cmpAnnoRectsByScore) def __getitem__(self, index): return self.rects[index] class detAnnoRect: def __init(self): self.imageName = "" self.frameNr = -1 self.rect = AnnoRect() self.imageIndex = -1 self.boxIndex = -1 ##################################################################### ### Parsing def parseTii(filename): # MA: this must be some really old code assert (False) annotations = [] #--- parse xml ---# doc = xml.dom.minidom.parse(filename) #--- get tags ---# for file in doc.getElementsByTagName("file"): anno = Annotation() for filename in file.getElementsByTagName("filename"): aNode = filename.getAttributeNode("Src") anno.imageName = aNode.firstChild.data[:-4] + ".png" for objects in file.getElementsByTagName("objects"): for vehicle in objects.getElementsByTagName("vehicle"): aNode = vehicle.getAttributeNode("Type") type = aNode.firstChild.data if (type == "pedestrian"): rect = AnnoRect() aNode = vehicle.getAttributeNode("FR") frontrear = aNode.firstChild.data aNode = vehicle.getAttributeNode("SD") side = aNode.firstChild.data if (frontrear == "1"): orientation = "FR" elif (side == "1"): orientation = "SD" aNode = vehicle.getAttributeNode( orientation + "_TopLeft_X" ) rect.x1 = float(aNode.firstChild.data) aNode = vehicle.getAttributeNode( orientation + "_TopLeft_Y" ) rect.y1 = float(aNode.firstChild.data) aNode = vehicle.getAttributeNode( orientation + "_BottomRight_X" ) rect.x2 = float(aNode.firstChild.data) aNode = vehicle.getAttributeNode( orientation + "_BottomRight_Y" ) rect.y2 = float(aNode.firstChild.data) print( "pedestrian:", anno.imageName, rect.x1, rect.y1, rect.x2, rect.y2 ) anno.rects.append(rect) annotations.append(anno) return annotations def parseXML(filename): filename = os.path.realpath(filename) name, ext = os.path.splitext(filename) annotations = AnnoList([]) if (ext == ".al"): file = open(filename, 'r') lines = file.read() file.close() if (ext == ".gz"): zfile = gzip.GzipFile(filename) lines = zfile.read() zfile.close() if (ext == ".bz2"): bfile = bz2.BZ2File(filename) lines = bfile.read() bfile.close() #--- parse xml ---# doc = xml.dom.minidom.parseString(lines) #--- get tags ---# for annotation in doc.getElementsByTagName("annotation"): anno = Annotation() for image in annotation.getElementsByTagName("image"): for name in image.getElementsByTagName("name"): anno.imageName = name.firstChild.data for fn in image.getElementsByTagName("frameNr"): anno.frameNr = int(fn.firstChild.data) rects = [] for annoRect in annotation.getElementsByTagName("annorect"): rect = AnnoRect() for x1 in annoRect.getElementsByTagName("x1"): rect.x1 = float(x1.firstChild.data) for y1 in annoRect.getElementsByTagName("y1"): rect.y1 = float(y1.firstChild.data) for x2 in annoRect.getElementsByTagName("x2"): rect.x2 = float(x2.firstChild.data) for y2 in annoRect.getElementsByTagName("y2"): rect.y2 = float(y2.firstChild.data) for scale in annoRect.getElementsByTagName("scale"): rect.scale = float(scale.firstChild.data) for score in annoRect.getElementsByTagName("score"): rect.score = float(score.firstChild.data) for classID in annoRect.getElementsByTagName("classID"): rect.classID = int(classID.firstChild.data) for track_id in annoRect.getElementsByTagName("track_id"): rect.track_id = int(track_id.firstChild.data) for articulation in annoRect.getElementsByTagName("articulation"): for id in articulation.getElementsByTagName("id"): rect.articulations.append(int(id.firstChild.data)) #print "Articulations: ", rect.articulations for viewpoint in annoRect.getElementsByTagName("viewpoint"): for id in viewpoint.getElementsByTagName("id"): rect.viewpoints.append(int(id.firstChild.data)) #print "Viewpoints: ", rect.viewpoints for d in annoRect.getElementsByTagName("D3"): for id in d.getElementsByTagName("id"): rect.d3.append(float(id.firstChild.data)) for silhouette in annoRect.getElementsByTagName("silhouette"): for id in silhouette.getElementsByTagName("id"): rect.silhouetteID = int(id.firstChild.data) #print "SilhouetteID: ", rect.silhouetteID for annoPoints in annoRect.getElementsByTagName("annopoints"): for annoPoint in annoPoints.getElementsByTagName("point"): p = AnnoPoint() for annoPointX in annoPoint.getElementsByTagName("x"): p.x = int(float(annoPointX.firstChild.data)) for annoPointY in annoPoint.getElementsByTagName("y"): p.y = int(float(annoPointY.firstChild.data)) for annoPointId in annoPoint.getElementsByTagName("id"): p.id = int(annoPointId.firstChild.data) assert (p.x != None and p.y != None and p.id != None) rect.point.append(p) rects.append(rect) anno.rects = rects annotations.append(anno) return annotations def parseJSON(filename): filename = os.path.realpath(filename) name, ext = os.path.splitext(filename) assert ext == '.json' annotations = AnnoList([]) with open(filename, 'r') as f: jdoc = json.load(f) for annotation in jdoc: anno = Annotation() anno.imageName = annotation["image_path"] rects = [] for annoRect in annotation["rects"]: rect = AnnoRect() rect.x1 = annoRect["x1"] rect.x2 = annoRect["x2"] rect.y1 = annoRect["y1"] rect.y2 = annoRect["y2"] if "score" in annoRect: rect.score = annoRect["score"] rects.append(rect) anno.rects = rects annotations.append(anno) return annotations def parse(filename, abs_path=False): #print "Parsing: ", filename name, ext = os.path.splitext(filename) if (ext == ".gz" or ext == ".bz2"): name, ext = os.path.splitext(name) if (ext == ".idl"): annolist = parseIDL(filename) elif (ext == ".al"): annolist = parseXML(filename) elif (ext == ".pal"): annolist = PalLib.pal2al(PalLib.loadPal(filename)) elif (ext == ".json"): annolist = parseJSON(filename) else: annolist = AnnoList([]) if abs_path: basedir = os.path.dirname(os.path.abspath(filename)) for a in annolist: a.imageName = basedir + "/" + os.path.basename(a.imageName) return annolist def parseIDL(filename): filename = os.path.realpath(filename) name, ext = os.path.splitext(filename) lines = [] if (ext == ".idl"): file = open(filename, 'r') lines = file.readlines() file.close() if (ext == ".gz"): zfile = gzip.GzipFile(filename) lines = zfile.readlines() zfile.close() if (ext == ".bz2"): bfile = bz2.BZ2File(filename) lines = bfile.readlines() bfile.close() annotations = AnnoList([]) for line in lines: anno = Annotation() ### remove line break if (line[-1] == '\n'): line = line[:-1] # remove '\n' lineLen = len(line) #print line ### get image name posImageEnd = line.find('\":') if (posImageEnd == -1): posImageEnd = line.rfind("\"") anno.imageName = line[1:posImageEnd] #print anno.imageName pos = anno.imageName.rfind("@") if (pos >= 0): anno.frameNr = int(anno.imageName[pos + 1:]) anno.imageName = anno.imageName[:pos] if anno.imageName[-1] == "/": anno.imageName = anno.imageName[:-1] else: anno.frameNr = -1 ### get rect list # we split by ','. there are 3 commas for each rect and 1 comma seperating the rects rectSegs = [] if (posImageEnd != -1 and posImageEnd + 4 < lineLen): line = line[posImageEnd + 3:-1] # remove ; or . segments = line.split(',') if (len(segments) % 4 != 0): print("Parse Errror") else: for i in range(0, len(segments), 4): rectSeg = segments[i] + "," + segments[ i + 1 ] + "," + segments[i + 2] + "," + segments[i + 3] rectSegs.append(rectSeg) #print rectSegs ## parse rect segments for rectSeg in rectSegs: #print "RectSeg: ", rectSeg rect = AnnoRect() posBracket1 = rectSeg.find('(') posBracket2 = rectSeg.find(')') coordinates = rectSeg[posBracket1 + 1:posBracket2].split(',') #print coordinates #print "Coordinates: ",coordinates rect.x1 = float(round(float(coordinates[0].strip()))) rect.y1 = float(round(float(coordinates[1].strip()))) rect.x2 = float(round(float(coordinates[2].strip()))) rect.y2 = float(round(float(coordinates[3].strip()))) posColon = rectSeg.find(':') posSlash = rectSeg.find('/') if (posSlash != -1): rect.silhouetteID = int(rectSeg[posSlash + 1:]) else: rectSeg += "\n" if (posColon != -1): #print rectSeg[posColon+1:posSlash] rect.score = float(rectSeg[posColon + 1:posSlash]) anno.rects.append(rect) annotations.append(anno) return annotations ##################################################################### ### Saving def save(filename, annotations): print("saving: ", filename) name, ext = os.path.splitext(filename) if (ext == ".gz" or ext == ".bz2"): name, ext = os.path.splitext(name) if (ext == ".idl"): return saveIDL(filename, annotations) elif (ext == '.json'): return saveJSON(filename, annotations) elif (ext == ".al"): return saveXML(filename, annotations) elif (ext == ".pal"): return PalLib.savePal(filename, PalLib.al2pal(annotations)) else: assert (False) return False def saveIDL(filename, annotations): [name, ext] = os.path.splitext(filename) if (ext == ".idl"): file = open(filename, 'w') if (ext == ".gz"): file = gzip.GzipFile(filename, 'w') if (ext == ".bz2"): file = bz2.BZ2File(filename, 'w') i = 0 for annotation in annotations: annotation.writeIDL(file) if (i + 1 < len(annotations)): file.write(";\n") else: file.write(".\n") i += 1 file.close() def saveJSON(filename, annotations): [name, ext] = os.path.splitext(filename) jdoc = [] for annotation in annotations: jdoc.append(annotation.writeJSON()) with open(filename, 'w') as f: f.write(json.dumps(jdoc, indent=2, sort_keys=True)) def idlBase(filename): if (filename.rfind(".pal") == len(filename) - 4): return (filename[:-4], ".pal") if (filename.rfind(".json") == len(filename) - 5): return (filename[:-5], ".json") if (filename.rfind(".idl") == len(filename) - 4): return (filename[:-4], ".idl") if (filename.rfind(".al") == len(filename) - 3): return (filename[:-3], ".al") if (filename.rfind(".idl.gz") == len(filename) - 7): return (filename[:-7], ".idl.gz") if (filename.rfind(".idl.bz2") == len(filename) - 8): return (filename[:-8], ".idl.bz2") if (filename.rfind(".al.gz") == len(filename) - 6): return (filename[:-6], ".al.gz") if (filename.rfind(".al.bz2") == len(filename) - 7): return (filename[:-7], ".al.bz2") def saveXML(filename, annotations): document = xml.dom.minidom.Document() rootnode = document.createElement("annotationlist") for anno in annotations: anno.addToXML(rootnode, document) document.appendChild(rootnode) [name, ext] = os.path.splitext(filename) if (ext == ".al"): writer = open(filename, 'w') elif (ext == ".gz"): writer = gzip.GzipFile(filename, 'w') elif (ext == ".bz2"): writer = bz2.BZ2File(filename, 'w') else: print("invalid filename - .al(.gz|.bz2) is accepted") return if xml_dom_ext_available: xml.dom.ext.PrettyPrint(document, writer) else: # MA: skip header (currently Matlab's loadannotations can't deal with the header) document.documentElement.writexml(writer) #document.writexml(writer) document.unlink() ##################################################################### ### Statistics def getStats(annotations): no = 0 noTiny = 0 noSmall = 0 heights = [] widths = [] ###--- get all rects ---### for anno in annotations: no = no + len(anno.rects) for rect in anno.rects: if (rect.height() < 36): noTiny = noTiny + 1 if (rect.height() < 128): noSmall = noSmall + 1 heights.append(rect.height()) if (rect.width() == 0): print("Warning: width=0 in image ", anno.imageName) widths.append(1) else: widths.append(rect.width()) if (float(rect.height()) / float(rect.width()) < 1.5): print( "Degenerated pedestrian annotation: ", anno.imageName ) ###--- compute average height and variance ---### avgHeight = 0 varHeight = 0 minHeight = 0 maxHeight = 0 if len(heights) > 0: minHeight = heights[0] maxHeight = heights[0] for height in heights: avgHeight = avgHeight + height if (height > maxHeight): maxHeight = height if (height < minHeight): minHeight = height if (no > 0): avgHeight = avgHeight / no for height in heights: varHeight += (height - avgHeight) * (height - avgHeight) if (no > 1): varHeight = float(varHeight) / float(no - 1) ###--- compute average width and variance ---### avgWidth = 0 varWidth = 0 for width in widths: avgWidth = avgWidth + width if (no > 0): avgWidth = avgWidth / no for width in widths: varWidth += (width - avgWidth) * (width - avgWidth) if (no > 1): varWidth = float(varWidth) / float(no - 1) ###--- write statistics ---### print(" Total # rects:", no) print( " avg. Width:", avgWidth, " (", sqrt(varWidth), "standard deviation )" ) print( " avg. Height:", avgHeight, " (", sqrt(varHeight), "standard deviation )" ) print(" tiny rects:", noTiny, " (< 36 pixels)") print(" small rects:", noSmall, " (< 128 pixels)") print(" minimum height:", minHeight) print(" maximum height:", maxHeight) ###--- return ---### return [widths, heights] ############################################################ ## ## IDL merging ## def mergeIDL(detIDL, det2IDL, detectionFuse=True, minOverlap=0.5): mergedIDL = [] for i, anno in enumerate(detIDL): mergedAnno = Annotation() mergedAnno.imageName = anno.imageName mergedAnno.frameNr = anno.frameNr mergedAnno.rects = anno.rects imageFound = False filterIndex = -1 for i, filterAnno in enumerate(det2IDL): if (suffixMatch(anno.imageName, filterAnno.imageName) and anno.frameNr == filterAnno.frameNr): filterIndex = i imageFound = True break if (not imageFound): mergedIDL.append(mergedAnno) continue for rect in det2IDL[filterIndex].rects: matches = False for frect in anno.rects: if rect.overlap_pascal(frect) > minOverlap: matches = True break if (not matches or detectionFuse == False): mergedAnno.rects.append(rect) mergedIDL.append(mergedAnno) return mergedIDL ############################################################################33 # # Function to force the aspect ratio of annotations to ratio = width / height # # def forceAspectRatio(annotations, ratio, KeepHeight=False, KeepWidth=False): for anno in annotations: for rect in anno.rects: rect.forceAspectRatio(ratio, KeepHeight, KeepWidth) #Determine which side needs to be extended # if (rect.width() * 1.0 / rect.height() > ratio): # # #Too wide -> extend height # newHeight = rect.width() * 1.0 / ratio # rect.y1 = int(rect.centerY() - newHeight / 2.0) # rect.y2 = int(rect.y1 + newHeight) # # else: # #Too short -> extend width # newWidth = rect.height() * ratio # rect.x1 = int(rect.centerX() - newWidth / 2.0) # rect.x2 = int(rect.x1 + newWidth) ################################################################### # Function to greedyly remove subset detIDL from gtIDL # # returns two sets # # [filteredIDL, missingRecallIDL] # # filteredIDL == Rects that were present in both sets # missingRecallIDL == Rects that were only present in set gtIDL # ################################################################### def extractSubSet(gtIDL, detIDL): filteredIDL = [] missingRecallIDL = [] for i, gtAnno in enumerate(gtIDL): filteredAnno = Annotation() filteredAnno.imageName = gtAnno.imageName filteredAnno.frameNr = gtAnno.frameNr missingRecallAnno = Annotation() missingRecallAnno.imageName = gtAnno.imageName missingRecallAnno.frameNr = gtAnno.frameNr imageFound = False filterIndex = -1 for i, anno in enumerate(detIDL): if (suffixMatch(anno.imageName, gtAnno.imageName) and anno.frameNr == gtAnno.frameNr): filterIndex = i imageFound = True break if (not imageFound): print("Image not found " + gtAnno.imageName + " !") missingRecallIDL.append(gtAnno) filteredIDL.append(filteredAnno) continue matched = [-1] * len(detIDL[filterIndex].rects) for j, rect in enumerate(gtAnno.rects): matches = False matchingID = -1 minCenterPointDist = -1 for k, frect in enumerate(detIDL[filterIndex].rects): minCover = 0.5 minOverlap = 0.5 maxDist = 0.5 if rect.isMatchingStd(frect, minCover, minOverlap, maxDist): if (matchingID == -1 or rect.distance(frect) < minCenterPointDist): matchingID = k minCenterPointDist = rect.distance(frect) matches = True if (matches): #Already matched once check if you are the better match if (matched[matchingID] >= 0): #Take the match with the smaller center point distance if(gtAnno.rects[matched[matchingID]].distance(frect) > rect.distance(frect)): missingRecallAnno.rects.append( gtAnno.rects[matched[matchingID]] ) filteredAnno.rects.remove( gtAnno.rects[matched[matchingID]] ) filteredAnno.rects.append(rect) matched[matchingID] = j else: missingRecallAnno.rects.append(rect) else: #Not matched before.. go on and add the match filteredAnno.rects.append(rect) matched[matchingID] = j else: missingRecallAnno.rects.append(rect) filteredIDL.append(filteredAnno) missingRecallIDL.append(missingRecallAnno) return (filteredIDL, missingRecallIDL) ########################################################### # # Function to remove all detections with a too low score # # def filterMinScore(detections, minScore): newDetections = [] for anno in detections: newAnno = Annotation() newAnno.frameNr = anno.frameNr newAnno.imageName = anno.imageName newAnno.imagePath = anno.imagePath newAnno.rects = [] for rect in anno.rects: if (rect.score >= minScore): newAnno.rects.append(rect) newDetections.append(newAnno) return newDetections # foo.idl -> foo-suffix.idl, foo.idl.gz -> foo-suffix.idl.gz etc def suffixIdlFileName(filename, suffix): exts = [".idl", ".idl.gz", ".idl.bz2"] for ext in exts: if filename.endswith(ext): return filename[0:-len(ext)] + "-" + suffix + ext raise ValueError( "this does not seem to be a valid filename for an idl-file" ) if __name__ == "__main__": # test output idl = parseIDL("/tmp/asdf.idl") idl[0].rects[0].articulations = [4, 2] idl[0].rects[0].viewpoints = [2, 3] saveXML("", idl) def annoAnalyze(detIDL): allRects = [] for i, anno in enumerate(detIDL): for j in anno.rects: newRect = detAnnoRect() newRect.imageName = anno.imageName newRect.frameNr = anno.frameNr newRect.rect = j allRects.append(newRect) allRects.sort(cmpDetAnnoRectsByScore) filteredIDL = AnnoList([]) for i in allRects: a = Annotation() a.imageName = i.imageName a.frameNr = i.frameNr a.rects = [] a.rects.append(i.rect) filteredIDL.append(a) return filteredIDL
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/AnnotationLib.py
#import AnnoList_pb2 from . import AnnotationLib def loadPal(filename): _annolist = AnnoList_pb2.AnnoList() f = open(filename, "rb") _annolist.ParseFromString(f.read()) f.close() return _annolist def savePal(filename, _annolist): f = open(filename, "wb") f.write(_annolist.SerializeToString()) f.close() def al2pal(annotations): _annolist = AnnoList_pb2.AnnoList() #assert(isinstance(annotations, AnnotationLib.AnnoList)); # check type of attributes, add missing attributes for a in annotations: for r in a.rects: for k, v in r.at.items(): if not k in annotations.attribute_desc: annotations.add_attribute(k, type(v)) else: assert ( AnnotationLib.is_compatible_attr_type( annotations.attribute_desc[k].dtype, type(v) ) ) # check attributes values for a in annotations: for r in a.rects: for k, v in r.at.items(): if k in annotations.attribute_val_to_str: # don't allow undefined values if not v in annotations.attribute_val_to_str[k]: print( "attribute: {}, undefined value: {}".format(k, v) ) assert (False) # store attribute descriptions in pal structure for aname, adesc in annotations.attribute_desc.items(): _annolist.attribute_desc.extend([adesc]) for a in annotations: _a = _annolist.annotation.add() _a.imageName = a.imageName for r in a.rects: _r = _a.rect.add() _r.x1 = r.x1 _r.y1 = r.y1 _r.x2 = r.x2 _r.y2 = r.y2 _r.score = float(r.score) if hasattr(r, 'id'): _r.id = r.id if hasattr(r, 'track_id'): _r.track_id = r.track_id if hasattr(r, 'at'): for k, v in list(r.at.items()): _at = _r.attribute.add() _at.id = annotations.attribute_desc[k].id if annotations.attribute_desc[ k ].dtype == AnnotationLib.AnnoList.TYPE_INT32: assert ( AnnotationLib.is_compatible_attr_type( AnnotationLib.AnnoList.TYPE_INT32, type(v) ) ) _at.val = int(v) elif annotations.attribute_desc[ k ].dtype == AnnotationLib.AnnoList.TYPE_FLOAT: assert ( AnnotationLib.is_compatible_attr_type( AnnotationLib.AnnoList.TYPE_FLOAT, type(v) ) ) _at.fval = float(v) elif annotations.attribute_desc[ k ].dtype == AnnotationLib.AnnoList.TYPE_STRING: assert ( AnnotationLib.is_compatible_attr_type( AnnotationLib.AnnoList.TYPE_STRING, type(v) ) ) _at.strval = str(v) else: assert (false) return _annolist def pal2al(_annolist): #annotations = []; annotations = AnnotationLib.AnnoList() for adesc in _annolist.attribute_desc: annotations.attribute_desc[adesc.name] = adesc print("attribute: ", adesc.name, adesc.id) for valdesc in adesc.val_to_str: annotations.add_attribute_val(adesc.name, valdesc.s, valdesc.id) attribute_name_from_id = { adesc.id: aname for aname, adesc in annotations.attribute_desc.items() } attribute_dtype_from_id = { adesc.id: adesc.dtype for aname, adesc in annotations.attribute_desc.items() } for _a in _annolist.annotation: anno = AnnotationLib.Annotation() anno.imageName = _a.imageName anno.rects = [] for _r in _a.rect: rect = AnnotationLib.AnnoRect() rect.x1 = _r.x1 rect.x2 = _r.x2 rect.y1 = _r.y1 rect.y2 = _r.y2 if _r.HasField("id"): rect.id = _r.id if _r.HasField("track_id"): rect.track_id = _r.track_id if _r.HasField("score"): rect.score = _r.score for _at in _r.attribute: try: cur_aname = attribute_name_from_id[_at.id] cur_dtype = attribute_dtype_from_id[_at.id] except KeyError as e: print("attribute: ", _at.id) print(e) assert (False) if cur_dtype == AnnotationLib.AnnoList.TYPE_INT32: rect.at[cur_aname] = _at.val elif cur_dtype == AnnotationLib.AnnoList.TYPE_FLOAT: rect.at[cur_aname] = _at.fval elif cur_dtype == AnnotationLib.AnnoList.TYPE_STRING: rect.at[cur_aname] = _at.strval else: assert (False) anno.rects.append(rect) annotations.append(anno) return annotations
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/PalLib.py
def is_number(s): try: float(s) return True except ValueError: return False
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/ma_utils.py
#!/usr/bin/env python import os, sys from AnnotationLib import * from optparse import OptionParser import copy import math # BASED ON WIKIPEDIA VERSION # n - number of nodes # C - capacity matrix # F - flow matrix # s - source # t - sink # sumC - sum over rows of C (too speed up computation) def edmonds_karp(n, C, s, t, sumC): # Residual capacity from u to v is C[u][v] - F[u][v] F = [[0] * n for i in xrange(n)] while True: P = [-1] * n # Parent table P[s] = s M = [0] * n # Capacity of path to node M[s] = float('infinity') Q = [s] # BFS queue while Q: u = Q.pop(0) for v in xrange(n): # There is available capacity, # and v is not seen before in search if C[u][v] - F[u][v] > 0 and P[v] == -1: P[v] = u M[v] = min(M[u], C[u][v] - F[u][v]) if v != t: if (sumC[u] > 0): Q.append(v) else: # Backtrack search, and write flow while P[v] != v: u = P[v] F[u][v] += M[t] F[v][u] -= M[t] v = u Q = None break if P[t] == -1: # We did not find a path to t return (F) class AnnoGraph: def __init__( self, anno, det, ignore, style, minCover, minOverlap, maxDistance, ignoreOverlap ): # setting rects #print anno.imageName self.anno = anno self.det = det self.det.sortByScore("descending") # generate initial graph self.n = len(det.rects) self.m = len(anno.rects) # Number of nodes = number of detections + number of GT + source + sink self.a = self.n + self.m + 2 # Flow matrix self.F = [[0] * self.a for i in xrange(self.a)] # Capacity matrix self.C = [[0] * self.a for i in xrange(self.a)] # Connect source to all detections for i in range(1, self.n + 1): self.C[0][i] = 1 self.C[i][0] = 1 # Connect sink to all GT for i in range(self.n + 1, self.a - 1): self.C[i][self.a - 1] = 1 self.C[self.a - 1][i] = 1 # Overall flow self.full_flow = 0 self.ignore_flow = 0 # match rects / Adjacency matrix self.M = [[] for i in xrange(self.n)] self.match(style, minCover, minOverlap, maxDistance) self.nextN = 0 # Deactivate All Non Matching detections # Save row sums for capacity matrix self.sumC = [] self.sumC.append(self.n) for q in [len(self.M[j]) for j in xrange(len(self.M))]: self.sumC.append(q) for q in [1] * self.m: self.sumC.append(q) # Initially no links are active self.sumC_active = [] self.sumC_active.append(self.n) for q in [len(self.M[j]) for j in xrange(len(self.M))]: self.sumC_active.append(0) for q in [1] * self.m: self.sumC_active.append(q) # self.ignore = [0] * self.m for ig in ignore.rects: for i, r in enumerate(anno.rects): if (ig.overlap_pascal(r) > ignoreOverlap): self.ignore[i] = 1 def match(self, style, minCover, minOverlap, maxDistance): for i in xrange(self.n): detRect = self.det.rects[i] for j in xrange(self.m): annoRect = self.anno.rects[j] # Bastian Leibe's matching style if (style == 0): assert False if detRect.isMatchingStd( annoRect, minCover, minOverlap, maxDistance ): self.M[i].append(self.n + 1 + j) # Pascal Matching style if (style == 1): if (detRect.isMatchingPascal(annoRect, minOverlap)): self.M[i].append(self.n + 1 + j) def decreaseScore(self, score): capacity_change = False for i in xrange(self.nextN, self.n): if (self.det.rects[i].score >= score): capacity_change = self.insertIntoC(i + 1) or capacity_change self.nextN += 1 else: break if capacity_change: self.F = edmonds_karp( self.a, self.C, 0, self.a - 1, self.sumC_active ) self.full_flow = sum([self.F[0][i] for i in xrange(self.a)]) self.ignore_flow = sum( [ self.F[i][self.a - 1] * self.ignore[i - 1 - self.n] for i in range(1 + self.n, 1 + self.n + self.m) ] ) return capacity_change def addBB(self, rect): self.nextN += 1 capacity_change = self.insertIntoC(rect.boxIndex + 1) if capacity_change: self.F = edmonds_karp( self.a, self.C, 0, self.a - 1, self.sumC_active ) self.full_flow = sum([self.F[0][i] for i in xrange(self.a)]) self.ignore_flow = sum( [ self.F[i][self.a - 1] * self.ignore[i - 1 - self.n] for i in range(1 + self.n, 1 + self.n + self.m) ] ) return capacity_change def insertIntoC(self, i): #print "Inserting node", i, self.det.rects[i-1].score, "of image", self.anno.imageName for match in self.M[i - 1]: #print " match: ", match self.C[i][match] = 1 self.C[match][i] = 1 self.sumC_active[i] = self.sumC[i] return self.sumC[i] > 0 def maxflow(self): return self.full_flow - self.ignore_flow def consideredDets(self): return self.nextN - self.ignore_flow def ignoredFlow(self): return self.ignore_flow def getTruePositives(self): ret = copy.copy(self.anno) ret.rects = [] #iterate over GT for i in xrange(self.n + 1, self.a - 1): #Flow to sink > 0 if(self.F[i][self.a - 1] > 0 and self.ignore[i - self.n - 1] == 0): #Find associated det for j in xrange(1, self.n + 1): if (self.F[j][i] > 0): ret.rects.append(self.det[j - 1]) break return ret def getIgnoredTruePositives(self): ret = copy.copy(self.anno) ret.rects = [] #iterate over GT for i in xrange(self.n + 1, self.a - 1): #Flow to sink > 0 if(self.F[i][self.a - 1] > 0 and self.ignore[i - self.n - 1] == 1): #Find associated det for j in xrange(1, self.n + 1): if (self.F[j][i] > 0): ret.rects.append(self.det[j - 1]) break return ret def getMissingRecall(self): ret = copy.copy(self.anno) ret.rects = [] for i in xrange(self.n + 1, self.a - 1): if(self.F[i][self.a - 1] == 0 and self.ignore[i - self.n - 1] == 0): ret.rects.append(self.anno.rects[i - self.n - 1]) return ret def getFalsePositives(self): ret = copy.copy(self.det) ret.rects = [] for i in xrange(1, self.n + 1): if (self.F[0][i] == 0): ret.rects.append(self.det[i - 1]) return ret def asort( idlGT, idlDet, minWidth, minHeight, style, minCover, minOverlap, maxDistance, maxWidth=float('inf'), maxHeight=float('inf') ): #Asort too small object in ground truth for x, anno in enumerate(idlGT): imageFound = False filterIndex = -1 for i, filterAnno in enumerate(idlDet): if (suffixMatch(anno.imageName, filterAnno.imageName) and anno.frameNr == filterAnno.frameNr): filterIndex = i imageFound = True break if (not imageFound): continue validGTRects = [] for j in anno.rects: if (j.width() >= minWidth) and (j.height() >= minHeight) and ( j.width() <= maxWidth ) and (j.height() <= maxHeight): validGTRects.append(j) else: # Sort out detections that would have matched matchingIndexes = [] for m, frect in enumerate(idlDet[filterIndex].rects): if (style == 0): if (j.isMatchingStd(frect, minCover,minOverlap, maxDistance)): overlap = j.overlap_pascal(frect) matchingIndexes.append((m, overlap)) if (style == 1): if (j.isMatchingPascal(frect, minOverlap)): overlap = j.overlap_pascal(frect) matchingIndexes.append((m, overlap)) for m in xrange(len(matchingIndexes) - 1, -1, -1): matching_rect = idlDet[filterIndex ].rects[matchingIndexes[m][0]] matching_overlap = matchingIndexes[m][1] better_overlap_found = False for l in anno.rects: if l.overlap_pascal(matching_rect) > matching_overlap: better_overlap_found = True if better_overlap_found: continue del idlDet[filterIndex].rects[matchingIndexes[m][0]] idlGT[x].rects = validGTRects #Sort out too small false positives for x, anno in enumerate(idlDet): imageFound = False filterIndex = -1 for i, filterAnno in enumerate(idlGT): if (suffixMatch(anno.imageName, filterAnno.imageName) and anno.frameNr == filterAnno.frameNr): filterIndex = i imageFound = True break if (not imageFound): continue validDetRects = [] for j in anno.rects: if (j.width() >= minWidth) and (j.height() >= minHeight) and ( j.width() <= maxWidth ) and (j.height() <= maxHeight): validDetRects.append(j) else: for frect in idlGT[filterIndex].rects: if (style == 0): if j.isMatchingStd( frect, minCover, minOverlap, maxDistance ): validDetRects.append(j) if (style == 1): if (j.isMatchingPascal(frect, minOverlap)): validDetRects.append(j) idlDet[x].rects = validDetRects # MA: simplified version that does Pascal style matching with one parameter controlling "intersection-over-union" matching threshold def comp_prec_recall(annoIDL, detIDL, minOverlap): ignoreIDL = copy.deepcopy(annoIDL) for anno in ignoreIDL: anno.rects = [] precs, recalls, scores, fppi, graphs = comp_prec_recall_all_params( annoIDL, detIDL, ignoreIDL, minOverlap=minOverlap ) return precs, recalls, scores, fppi def comp_prec_recall_graphs(annoIDL, detIDL, minOverlap): ignoreIDL = copy.deepcopy(annoIDL) for anno in ignoreIDL: anno.rects = [] precs, recalls, scores, fppi, graphs = comp_prec_recall_all_params( annoIDL, detIDL, ignoreIDL, minOverlap=minOverlap ) return graphs # MA: full version def comp_prec_recall_all_params( annoIDL, detIDL, ignoreIDL, minWidth=0, minHeight=0, maxWidth=float('inf'), maxHeight=float('inf'), matchingStyle=1, minCover=0.5, minOverlap=0.5, maxDistance=0.5, ignoreOverlap=0.9, verbose=False ): # Asort detections which are too small/too big if verbose: print "Asorting too large/ too small detections" print "minWidth:", minWidth print "minHeight:", minHeight print "maxWidth: ", maxWidth print "maxHeight: ", maxHeight asort( annoIDL, detIDL, minWidth, minHeight, matchingStyle, minCover, minOverlap, maxDistance, maxWidth, maxHeight ) #Debugging asort #saveIDL("testGT.idl", annoIDL) #saveIDL("testDET.idl", detIDL) noAnnotations = 0 for anno in annoIDL: for j, detAnno in enumerate(detIDL): if (suffixMatch(anno.imageName, detIDL[j].imageName) and anno.frameNr == detIDL[j].frameNr): noAnnotations = noAnnotations + len(anno.rects) break if verbose: print "#Annotations:", noAnnotations ###--- set up graphs ---### print "Setting up graphs ..." graphs = [] allRects = [] missingFrames = 0 for i in xrange(len(annoIDL)): imageFound = False filterIndex = -1 for j, detAnno in enumerate(detIDL): if (suffixMatch(annoIDL[i].imageName, detIDL[j].imageName) and annoIDL[i].frameNr == detIDL[j].frameNr): filterIndex = j imageFound = True break if (not imageFound): print "No annotation/detection pair found for: " + annoIDL[ i ].imageName + " frame: " + str(annoIDL[i].frameNr) missingFrames += 1 continue graphs.append( AnnoGraph( annoIDL[i], detIDL[filterIndex], ignoreIDL[i], matchingStyle, minCover, minOverlap, maxDistance, ignoreOverlap ) ) for j, rect in enumerate(detIDL[filterIndex]): newRect = detAnnoRect() newRect.imageName = anno.imageName newRect.frameNr = anno.frameNr newRect.rect = rect newRect.imageIndex = i - missingFrames newRect.boxIndex = j allRects.append(newRect) if verbose: print "missingFrames: ", missingFrames print "Number of detections on annotated frames: ", len(allRects) ###--- get scores from all rects ---### print "Sorting scores ..." allRects.sort(cmpDetAnnoRectsByScore) allRects.reverse() ###--- gradually decrease score ---### if verbose: print "Gradually decrease score ..." lastScore = float('infinity') precs = [1.0] recalls = [0.0] #fppi = [ 10**(math.floor(math.log(1.0 / float(len(annoIDL)))/math.log(10) * 10.0) / 10.0) ] fppi = [1.0 / float(len(annoIDL))] scores = [lastScore] numDet = len(allRects) sf = lastsf = 0 cd = lastcd = 0 iflow = lastiflow = 0 changed = False firstFP = True for i, nextrect in enumerate(allRects): score = nextrect.rect.score # updating true and false positive counts sf = sf - graphs[nextrect.imageIndex].maxflow() cd = cd - graphs[nextrect.imageIndex].consideredDets() iflow = iflow - graphs[nextrect.imageIndex].ignoredFlow() #changed = changed or graphs[nextrect.imageIndex].decreaseScore(score) changed = graphs[nextrect.imageIndex].addBB(nextrect) or changed sf = sf + graphs[nextrect.imageIndex].maxflow() cd = cd + graphs[nextrect.imageIndex].consideredDets() iflow = iflow + graphs[nextrect.imageIndex].ignoredFlow() if (firstFP and cd - sf != 0): firstFP = False changed = True if (i == numDet - 1 or score != allRects[i + 1].rect.score or firstFP or i == len(allRects)): if (changed or i == numDet - 1 or i == len(allRects)): if (lastcd > 0): scores.append(lastScore) recalls.append( float(lastsf) / float(noAnnotations - lastiflow) ) precs.append(float(lastsf) / float(lastcd)) fppi.append(float(lastcd - lastsf) / float(len(annoIDL))) if (cd > 0): scores.append(score) recalls.append(float(sf) / float(noAnnotations - iflow)) precs.append(float(sf) / float(cd)) fppi.append(float(cd - sf) / float(len(annoIDL))) changed = False lastScore = score lastsf = sf lastcd = cd lastiflow = iflow return precs, recalls, scores, fppi, graphs def main(): parser = OptionParser( usage="usage: %prog [options] <groundTruthIdl> <detectionIdl>" ) parser.add_option( "-o", "--outFile", action="store", type="string", dest="outFile" ) parser.add_option( "-a", "--analysisFiles", action="store", type="string", dest="analysisFile" ) parser.add_option( "-s", "--minScore", action="store", type="float", dest="minScore" ) parser.add_option( "-w", "--minWidth", action="store", type="int", dest="minWidth", default=0 ) parser.add_option( "-u", "--minHeight", action="store", type="int", dest="minHeight", default=0 ) parser.add_option( "--maxWidth", action="store", type="float", dest="maxWidth", default=float('inf') ) parser.add_option( "--maxHeight", action="store", type="float", dest="maxHeight", default=float('inf') ) parser.add_option( "-r", "--fixAspectRatio", action="store", type="float", dest="aspectRatio" ) parser.add_option( "-p", "--Pascal-Style", action="store_true", dest="pascalStyle" ) parser.add_option( "-l", "--Leibe-Seemann-Matching-Style", action="store_true", dest="leibeStyle" ) parser.add_option( "--minCover", action="store", type="float", dest="minCover", default=0.5 ) parser.add_option( "--maxDistance", action="store", type="float", dest="maxDistance", default=0.5 ) parser.add_option( "--minOverlap", action="store", type="float", dest="minOverlap", default=0.5 ) parser.add_option( "--clipToImageWidth", action="store", type="float", dest="clipWidth", default=None ) parser.add_option( "--clipToImageHeight", action="store", type="float", dest="clipHeight", default=None ) parser.add_option( "-d", "--dropFirst", action="store_true", dest="dropFirst" ) #parser.add_option("-c", "--class", action="store", type="int", dest="classID", default=-1) parser.add_option( "-c", "--class", action="store", type="int", dest="classID", default=None ) parser.add_option( "-i", "--ignore", action="store", type="string", dest="ignoreFile" ) parser.add_option( "--ignoreOverlap", action="store", type="float", dest="ignoreOverlap", default=0.9 ) (options, args) = parser.parse_args() if (len(args) < 2): print "Please specify annotation and detection as arguments!" parser.print_help() sys.exit(1) annoFile = args[0] # First figure out the minimum height and width we are dealing with minWidth = options.minWidth minHeight = options.minHeight maxWidth = options.maxWidth maxHeight = options.maxHeight print "Minimum width: %d height: %d" % (minWidth, minHeight) # Load files annoIDL = parse(annoFile) detIDL = [] for dets in args[1:]: detIDL += parse(dets) if options.ignoreFile != None: ignoreIDL = parse(options.ignoreFile) else: ignoreIDL = copy.deepcopy(annoIDL) for anno in ignoreIDL: anno.rects = [] if (options.classID is not None): for anno in annoIDL: anno.rects = [ rect for rect in anno.rects if (rect.classID == options.classID or rect.classID == -1) ] for anno in detIDL: anno.rects = [ rect for rect in anno.rects if (rect.classID == options.classID or rect.classID == -1) ] for anno in ignoreIDL: anno.rects = [ rect for rect in anno.rects if (rect.classID == options.classID or rect.classID == -1) ] # prevent division by zero when fixing aspect ratio for anno in annoIDL: anno.rects = [ rect for rect in anno.rects if rect.width() > 0 and rect.height() > 0 ] for anno in detIDL: anno.rects = [ rect for rect in anno.rects if rect.width() > 0 and rect.height() > 0 ] for anno in ignoreIDL: anno.rects = [ rect for rect in anno.rects if rect.width() > 0 and rect.height() > 0 ] # Fix aspect ratio if (not options.aspectRatio == None): forceAspectRatio(annoIDL, options.aspectRatio) forceAspectRatio(detIDL, options.aspectRatio) forceAspectRatio(ignoreIDL, options.aspectRatio) # Deselect detections with too low score if (not options.minScore == None): for i, anno in enumerate(detIDL): validRects = [] for rect in anno.rects: if (rect.score >= options.minScore): validRects.append(rect) anno.rects = validRects # Clip detections to the image dimensions if (options.clipWidth != None or options.clipHeight != None): min_x = -float('inf') min_y = -float('inf') max_x = float('inf') max_y = float('inf') if (options.clipWidth != None): min_x = 0 max_x = options.clipWidth if (options.clipHeight != None): min_y = 0 max_y = options.clipHeight print "Clipping width: (%.02f-%.02f); clipping height: (%.02f-%.02f)" % ( min_x, max_x, min_y, max_y ) for anno in annoIDL: for rect in anno: rect.clipToImage(min_x, max_x, min_y, max_y) for anno in detIDL: for rect in anno: rect.clipToImage(min_x, max_x, min_y, max_y) # Setup matching style; standard is Pascal # style matchingStyle = 1 # Pascal style if (options.pascalStyle == True): matchingStyle = 1 if (options.leibeStyle == True): matchingStyle = 0 if (options.pascalStyle and options.leibeStyle): print "Conflicting matching styles!" sys.exit(1) if (options.dropFirst == True): print "Drop first frame of each sequence..." newIDL = [] for i, anno in enumerate(detIDL): if (i > 1 and detIDL[i].frameNr == detIDL[i-1].frameNr + 1 and detIDL[i].frameNr == detIDL[i-2].frameNr + 2 and detIDL[i].frameNr == detIDL[i-3].frameNr + 3 and detIDL[i].frameNr == detIDL[i-4].frameNr + 4): newIDL.append(anno) detIDL = newIDL verbose = True precs, recalls, scores, fppi, graphs = comp_prec_recall_all_params( annoIDL, detIDL, ignoreIDL, minWidth=options.minWidth, minHeight=options.minHeight, maxWidth=options.maxWidth, maxHeight=options.maxHeight, matchingStyle=matchingStyle, minCover=options.minCover, minOverlap=options.minOverlap, maxDistance=options.maxDistance, ignoreOverlap=options.ignoreOverlap, verbose=verbose ) ###--- output to file ---### outfilename = options.outFile if outfilename is None: outputDir = os.path.dirname(os.path.abspath(args[1])) outputFile = os.path.basename(os.path.abspath(args[1])) [base, ext] = idlBase(outputFile) #outfilename = outputDir + "/rpc-" + base + ".txt" outfilename = outputDir + "/rpc-" + base + "_overlap" + str( options.minOverlap ) + ".txt" print "saving:\n" + outfilename file = open(outfilename, 'w') for i in xrange(len(precs)): file.write( str(precs[i]) + " " + str(recalls[i]) + " " + str(scores[i]) + " " + str(fppi[i]) + "\n" ) file.close() # Extracting failure cases if (options.analysisFile != None): anaPrefix = options.analysisFile falsePositives = AnnoList([]) truePositives = AnnoList([]) missingRecall = AnnoList([]) ignoredTruePositives = AnnoList([]) for i in xrange(len(graphs)): falsePositives.append(graphs[i].getFalsePositives()) truePositives.append(graphs[i].getTruePositives()) truePositives[-1].imageName = falsePositives[-1].imageName truePositives[-1].imagePath = falsePositives[-1].imagePath missingRecall.append(graphs[i].getMissingRecall()) missingRecall[-1].imageName = falsePositives[-1].imageName missingRecall[-1].imagePath = falsePositives[-1].imagePath if options.ignoreFile != None: ignoredTruePositives.append( graphs[i].getIgnoredTruePositives() ) #saveIDL(anaPrefix + "-falsePositives.idl.gz", falsePositives); falsePositives.save(anaPrefix + "-falsePositives.pal") sortedFP = annoAnalyze(falsePositives) #saveIDL(anaPrefix + "-falsePositives-sortedByScore.idl.gz", sortedFP); #saveIDL(anaPrefix + "-truePositives.idl.gz", truePositives); # saveIDL(anaPrefix + "-falsePositives-sortedByScore.idl", sortedFP); # saveIDL(anaPrefix + "-truePositives.idl", truePositives); sortedFP.save(anaPrefix + "-falsePositives-sortedByScore.pal") truePositives.save(anaPrefix + "-truePositives.pal") sortedFP = annoAnalyze(truePositives) #saveIDL(anaPrefix + "-truePositives-sortedByScore.idl.gz", sortedFP); #saveIDL(anaPrefix + "-truePositives-sortedByScore.idl", sortedFP); sortedFP.save(anaPrefix + "-truePositives-sortedByScore.pal") if options.ignoreFile != None: #saveIDL(anaPrefix + "-ignoredTruePositives.idl.gz", ignoredTruePositives) #saveIDL(anaPrefix + "-ignoredTruePositives.idl", ignoredTruePositives) ignoredTruePositives.save(anaPrefix + "-ignoredTruePositives.pal") #saveIDL(anaPrefix + "-missingRecall.idl.gz", missingRecall); #saveIDL(anaPrefix + "-missingRecall.idl", missingRecall); missingRecall.save(anaPrefix + "-missingRecall.pal") if __name__ == "__main__": main()
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/annolist/doRPC.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for the original form of Residual Networks. The 'v1' residual networks (ResNets) implemented in this module were proposed by: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 Other variants were introduced in: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The networks defined in this module utilize the bottleneck building block of [1] with projection shortcuts only for increasing depths. They employ batch normalization *after* every weight layer. This is the architecture used by MSRA in the Imagenet and MSCOCO 2016 competition models ResNet-101 and ResNet-152. See [2; Fig. 1a] for a comparison between the current 'v1' architecture and the alternative 'v2' architecture of [2] which uses batch normalization *before* every weight layer in the so-called full pre-activation units. Typical use: from tensorflow.contrib.slim.nets import resnet_v1 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = resnet_v1.resnet_v1_101(inputs, 1000, is_training=False) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = resnet_v1.resnet_v1_101(inputs, 21, is_training=False, global_pool=False, output_stride=16) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from . import resnet_utils resnet_arg_scope = resnet_utils.resnet_arg_scope from tensorflow.contrib import slim @slim.add_arg_scope def bottleneck( inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None ): """Bottleneck residual unit variant with BN after convolutions. This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc: depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = slim.conv2d( inputs, depth, [1, 1], stride=stride, activation_fn=None, scope='shortcut' ) residual = slim.conv2d( inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1' ) residual = resnet_utils.conv2d_same( residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2' ) residual = slim.conv2d( residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3' ) output = tf.nn.relu(shortcut + residual) return slim.utils.collect_named_outputs( outputs_collections, sc.original_name_scope, output ) def resnet_v1( inputs, blocks, num_classes=None, is_training=True, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope=None ): """Generator for v1 ResNet models. This function generates a family of ResNet v1 models. See the resnet_v1_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If None we return the features before the logit layer. is_training: whether is training or not. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is not None, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope(scope, 'resnet_v1', [inputs], reuse=reuse) as sc: end_points_collection = sc.name + '_end_points' with slim.arg_scope( [slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection ): with slim.arg_scope([slim.batch_norm], is_training=is_training): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError( 'The output_stride needs to be a multiple of 4.' ) output_stride /= 4 net = resnet_utils.conv2d_same( net, 64, 7, stride=2, scope='conv1' ) net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense( net, blocks, output_stride ) if global_pool: # Global average pooling. net = tf.reduce_mean( net, [1, 2], name='pool5', keep_dims=True ) if num_classes is not None: net = slim.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits' ) # Convert end_points_collection into a dictionary of end_points. end_points = slim.utils.convert_collection_to_dict( end_points_collection ) if num_classes is not None: end_points['predictions'] = slim.softmax( net, scope='predictions' ) return net, end_points resnet_v1.default_image_size = 224 def resnet_v1_50( inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_50' ): """ResNet-50 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)] ), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)] ), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)] ), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope ) def resnet_v1_101( inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_101' ): """ResNet-101 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)] ), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)] ), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)] ), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope ) def resnet_v1_152( inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_152' ): """ResNet-152 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)] ), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)] ), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)] ), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope ) def resnet_v1_200( inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, reuse=None, scope='resnet_v1_200' ): """ResNet-200 model of [2]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)] ), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)] ), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)] ), resnet_utils.Block('block4', bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1( inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, reuse=reuse, scope=scope )
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/slim_nets/resnet_v1.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the definition for inception v1 classification network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev) from tensorboxresnet.utils import tf_concat def inception_v1_base(inputs, final_endpoint='Mixed_5c', scope='InceptionV1'): """Defines the Inception V1 base architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. Args: inputs: a tensor of size [batch_size, height, width, channels]. final_endpoint: specifies the endpoint to construct the network up to. It can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c'] scope: Optional variable_scope. Returns: A dictionary from components of the network to the corresponding activation. Raises: ValueError: if final_endpoint is not set to one of the predefined values. """ end_points = {} with tf.variable_scope(scope, 'InceptionV1', [inputs]): with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_initializer=trunc_normal(0.01) ): with slim.arg_scope( [slim.conv2d, slim.max_pool2d], stride=1, padding='SAME' ): end_point = 'Conv2d_1a_7x7' net = slim.conv2d( inputs, 64, [7, 7], stride=2, scope=end_point ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_2a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2b_1x1' net = slim.conv2d(net, 64, [1, 1], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Conv2d_2c_3x3' net = slim.conv2d(net, 192, [3, 3], scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_3a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 64, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 96, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 128, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 16, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 32, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 32, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_3c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 128, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 128, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 192, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 32, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 96, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_4a_3x3' net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 192, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 96, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 208, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 16, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 48, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 160, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 112, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 224, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 24, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4d' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 128, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 128, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 256, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 24, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4e' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 112, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 144, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 288, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 32, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 64, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 64, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_4f' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 256, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 160, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 320, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 32, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'MaxPool_5a_2x2' net = slim.max_pool2d(net, [2, 2], stride=2, scope=end_point) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5b' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 256, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 160, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 320, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 32, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0a_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points end_point = 'Mixed_5c' with tf.variable_scope(end_point): with tf.variable_scope('Branch_0'): branch_0 = slim.conv2d( net, 384, [1, 1], scope='Conv2d_0a_1x1' ) with tf.variable_scope('Branch_1'): branch_1 = slim.conv2d( net, 192, [1, 1], scope='Conv2d_0a_1x1' ) branch_1 = slim.conv2d( branch_1, 384, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_2'): branch_2 = slim.conv2d( net, 48, [1, 1], scope='Conv2d_0a_1x1' ) branch_2 = slim.conv2d( branch_2, 128, [3, 3], scope='Conv2d_0b_3x3' ) with tf.variable_scope('Branch_3'): branch_3 = slim.max_pool2d( net, [3, 3], scope='MaxPool_0a_3x3' ) branch_3 = slim.conv2d( branch_3, 128, [1, 1], scope='Conv2d_0b_1x1' ) net = tf_concat( 3, [branch_0, branch_1, branch_2, branch_3] ) end_points[end_point] = net if final_endpoint == end_point: return net, end_points raise ValueError('Unknown final endpoint %s' % final_endpoint) def inception_v1( inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.8, prediction_fn=slim.softmax, spatial_squeeze=True, reuse=None, scope='InceptionV1' ): """Defines the Inception V1 architecture. This architecture is defined in: Going deeper with convolutions Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. http://arxiv.org/pdf/1409.4842v1.pdf. The default image size used to train this network is 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: the percentage of activation values that are retained. prediction_fn: a function to get predictions out of logits. spatial_squeeze: if True, logits is of shape is [B, C], if false logits is of shape [B, 1, 1, C], where B is batch_size and C is number of classes. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the pre-softmax activations, a tensor of size [batch_size, num_classes] end_points: a dictionary from components of the network to the corresponding activation. """ # Final pooling and prediction with tf.variable_scope( scope, 'InceptionV1', [inputs, num_classes], reuse=reuse ) as scope: with slim.arg_scope( [slim.batch_norm, slim.dropout], is_training=is_training ): net, end_points = inception_v1_base(inputs, scope=scope) with tf.variable_scope('Logits'): net = slim.avg_pool2d( net, [7, 7], stride=1, scope='MaxPool_0a_7x7' ) net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b') logits = slim.conv2d( net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='Conv2d_0c_1x1' ) if spatial_squeeze: logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze') end_points['Logits'] = logits end_points['Predictions'] = prediction_fn( logits, scope='Predictions' ) return logits, end_points inception_v1.default_image_size = 224 def inception_v1_arg_scope( weight_decay=0.00004, use_batch_norm=True, batch_norm_var_collection='moving_vars' ): """Defines the default InceptionV1 arg scope. Note: Althougth the original paper didn't use batch_norm we found it useful. Args: weight_decay: The weight decay to use for regularizing the model. use_batch_norm: "If `True`, batch_norm is applied after each convolution. batch_norm_var_collection: The name of the collection for the batch norm variables. Returns: An `arg_scope` to use for the inception v3 model. """ batch_norm_params = { # Decay for the moving averages. 'decay': 0.9997, # epsilon to prevent 0s in variance. 'epsilon': 0.001, # collection containing update_ops. 'updates_collections': tf.GraphKeys.UPDATE_OPS, # collection containing the moving mean and moving variance. 'variables_collections': { 'beta': None, 'gamma': None, 'moving_mean': [batch_norm_var_collection], 'moving_variance': [batch_norm_var_collection], } } if use_batch_norm: normalizer_fn = slim.batch_norm normalizer_params = batch_norm_params else: normalizer_fn = None normalizer_params = {} # Set weight_decay for weights in Conv and FC layers. with slim.arg_scope( [slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay) ): with slim.arg_scope( [slim.conv2d], weights_initializer=slim.variance_scaling_initializer(), activation_fn=tf.nn.relu, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params ) as sc: return sc
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/slim_nets/inception_v1.py
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/slim_nets/__init__.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains building blocks for various versions of Residual Networks. Residual networks (ResNets) were proposed in: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2015 More variants were introduced in: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027, 2016 We can obtain different ResNet variants by changing the network depth, width, and form of residual unit. This module implements the infrastructure for building them. Concrete ResNet units and full ResNet networks are implemented in the accompanying resnet_v1.py and resnet_v2.py modules. Compared to https://github.com/KaimingHe/deep-residual-networks, in the current implementation we subsample the output activations in the last residual unit of each block, instead of subsampling the input activations in the first residual unit of each block. The two implementations give identical results but our implementation is more memory efficient. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.framework.python.ops import add_arg_scope from tensorflow.contrib.framework.python.ops import arg_scope from tensorflow.contrib.layers.python.layers import initializers from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.layers.python.layers import regularizers from tensorflow.contrib.layers.python.layers import utils from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope class Block(collections.namedtuple('Block', ['scope', 'unit_fn', 'args'])): """A named tuple describing a ResNet block. Its parts are: scope: The scope of the `Block`. unit_fn: The ResNet unit function which takes as input a `Tensor` and returns another `Tensor` with the output of the ResNet unit. args: A list of length equal to the number of units in the `Block`. The list contains one (depth, depth_bottleneck, stride) tuple for each unit in the block to serve as argument to unit_fn. """ def subsample(inputs, factor, scope=None): """Subsamples the input along the spatial dimensions. Args: inputs: A `Tensor` of size [batch, height_in, width_in, channels]. factor: The subsampling factor. scope: Optional variable_scope. Returns: output: A `Tensor` of size [batch, height_out, width_out, channels] with the input, either intact (if factor == 1) or subsampled (if factor > 1). """ if factor == 1: return inputs else: return layers.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) def conv2d_same(inputs, num_outputs, kernel_size, stride, rate=1, scope=None): """Strided 2-D convolution with 'SAME' padding. When stride > 1, then we do explicit zero-padding, followed by conv2d with 'VALID' padding. Note that net = conv2d_same(inputs, num_outputs, 3, stride=stride) is equivalent to net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=1, padding='SAME') net = subsample(net, factor=stride) whereas net = tf.contrib.layers.conv2d(inputs, num_outputs, 3, stride=stride, padding='SAME') is different when the input's height or width is even, which is why we add the current function. For more details, see ResnetUtilsTest.testConv2DSameEven(). Args: inputs: A 4-D tensor of size [batch, height_in, width_in, channels]. num_outputs: An integer, the number of output filters. kernel_size: An int with the kernel_size of the filters. stride: An integer, the output stride. rate: An integer, rate for atrous convolution. scope: Scope. Returns: output: A 4-D tensor of size [batch, height_out, width_out, channels] with the convolution output. """ if stride == 1: return layers_lib.conv2d( inputs, num_outputs, kernel_size, stride=1, rate=rate, padding='SAME', scope=scope ) else: kernel_size_effective = kernel_size + (kernel_size - 1) * (rate - 1) pad_total = kernel_size_effective - 1 pad_beg = pad_total // 2 pad_end = pad_total - pad_beg inputs = array_ops.pad( inputs, [[0, 0], [pad_beg, pad_end], [pad_beg, pad_end], [0, 0]] ) return layers_lib.conv2d( inputs, num_outputs, kernel_size, stride=stride, rate=rate, padding='VALID', scope=scope ) @add_arg_scope def stack_blocks_dense( net, blocks, output_stride=None, outputs_collections=None ): """Stacks ResNet `Blocks` and controls output feature density. First, this function creates scopes for the ResNet in the form of 'block_name/unit_1', 'block_name/unit_2', etc. Second, this function allows the user to explicitly control the ResNet output_stride, which is the ratio of the input to output spatial resolution. This is useful for dense prediction tasks such as semantic segmentation or object detection. Most ResNets consist of 4 ResNet blocks and subsample the activations by a factor of 2 when transitioning between consecutive ResNet blocks. This results to a nominal ResNet output_stride equal to 8. If we set the output_stride to half the nominal network stride (e.g., output_stride=4), then we compute responses twice. Control of the output feature density is implemented by atrous convolution. Args: net: A `Tensor` of size [batch, height, width, channels]. blocks: A list of length equal to the number of ResNet `Blocks`. Each element is a ResNet `Block` object describing the units in the `Block`. output_stride: If `None`, then the output will be computed at the nominal network stride. If output_stride is not `None`, it specifies the requested ratio of input to output spatial resolution, which needs to be equal to the product of unit strides from the start up to some level of the ResNet. For example, if the ResNet employs units with strides 1, 2, 1, 3, 4, 1, then valid values for the output_stride are 1, 2, 6, 24 or None (which is equivalent to output_stride=24). outputs_collections: Collection to add the ResNet block outputs. Returns: net: Output tensor with stride equal to the specified output_stride. Raises: ValueError: If the target output_stride is not valid. """ # The current_stride variable keeps track of the effective stride of the # activations. This allows us to invoke atrous convolution whenever applying # the next residual unit would result in the activations having stride larger # than the target output_stride. current_stride = 1 # The atrous convolution rate parameter. rate = 1 for block in blocks: with variable_scope.variable_scope(block.scope, 'block', [net]) as sc: for i, unit in enumerate(block.args): if output_stride is not None and current_stride > output_stride: raise ValueError( 'The target output_stride cannot be reached.' ) with variable_scope.variable_scope( 'unit_%d' % (i + 1), values=[net] ): unit_depth, unit_depth_bottleneck, unit_stride = unit # If we have reached the target output_stride, then we need to employ # atrous convolution with stride=1 and multiply the atrous rate by the # current unit's stride for use in subsequent layers. if output_stride is not None and current_stride == output_stride: net = block.unit_fn( net, depth=unit_depth, depth_bottleneck=unit_depth_bottleneck, stride=1, rate=rate ) rate *= unit_stride else: net = block.unit_fn( net, depth=unit_depth, depth_bottleneck=unit_depth_bottleneck, stride=unit_stride, rate=1 ) current_stride *= unit_stride net = utils.collect_named_outputs( outputs_collections, sc.name, net ) if output_stride is not None and current_stride != output_stride: raise ValueError('The target output_stride cannot be reached.') return net def resnet_arg_scope( is_training=True, weight_decay=0.0001, batch_norm_decay=0.997, batch_norm_epsilon=1e-5, batch_norm_scale=True ): """Defines the default ResNet arg scope. TODO(gpapan): The batch-normalization related default values above are appropriate for use in conjunction with the reference ResNet models released at https://github.com/KaimingHe/deep-residual-networks. When training ResNets from scratch, they might need to be tuned. Args: is_training: Whether or not we are training the parameters in the batch normalization layers of the model. weight_decay: The weight decay to use for regularizing the model. batch_norm_decay: The moving average decay when estimating layer activation statistics in batch normalization. batch_norm_epsilon: Small constant to prevent division by zero when normalizing activations by their variance in batch normalization. batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the activations in the batch normalization layer. Returns: An `arg_scope` to use for the resnet models. """ batch_norm_params = { 'is_training': is_training, 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, 'scale': batch_norm_scale, 'updates_collections': ops.GraphKeys.UPDATE_OPS, } with arg_scope( [layers_lib.conv2d], weights_regularizer=regularizers.l2_regularizer(weight_decay), weights_initializer=initializers.variance_scaling_initializer(), activation_fn=nn_ops.relu, normalizer_fn=layers.batch_norm, normalizer_params=batch_norm_params ): with arg_scope([layers.batch_norm], **batch_norm_params): # The following implies padding='SAME' for pool1, which makes feature # alignment easier for dense prediction tasks. This is also used in # https://github.com/facebook/fb.resnet.torch. However the accompanying # code of 'Deep Residual Learning for Image Recognition' uses # padding='VALID' for pool1. You can switch to that choice by setting # tf.contrib.framework.arg_scope([tf.contrib.layers.max_pool2d], padding='VALID'). with arg_scope([layers.max_pool2d], padding='SAME') as arg_sc: return arg_sc
deepfigures-open-master
vendor/tensorboxresnet/tensorboxresnet/utils/slim_nets/resnet_utils.py
from setuptools import setup, find_packages setup( name="allennlp_beaker", version="0.0.1", description=( "An interactive AllenNLP plugin for submitting training jobs to beaker" ), long_description=open("README.md").read(), long_description_content_type="text/markdown", classifiers=[ "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.6", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="allennlp NLP beaker", url="https://github.com/allenai/allennlp-beaker", author="Allen Institute for Artificial Intelligence", author_email="[email protected]", license="Apache", packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"],), install_requires=["allennlp", "click", "PyYAML", "click-spinner"], entry_points={"console_scripts": ["allennlp-beaker=allennlp_beaker.__main__:run"]}, python_requires=">=3.6.1", )
allennlp-beaker-master
setup.py
allennlp-beaker-master
allennlp_beaker/__init__.py
from collections import deque from datetime import date import os import shutil import subprocess from tempfile import TemporaryDirectory from typing import Any, Dict, List, Iterable, Optional, Tuple import uuid from allennlp.common.file_utils import cached_path from allennlp.common.params import Params import click import click_spinner import yaml DEFAULT_CLUSTER = "ai2/on-prem-ai2-server2" DOCKERFILE = """ FROM python:3.7 ENV LC_ALL=C.UTF-8 ENV LANG=C.UTF-8 ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64 # Tell nvidia-docker the driver spec that we need as well as to # use all available devices, which are mounted at /usr/local/nvidia. # The LABEL supports an older version of nvidia-docker, the env # variables a newer one. ENV NVIDIA_VISIBLE_DEVICES all ENV NVIDIA_DRIVER_CAPABILITIES compute,utility LABEL com.nvidia.volumes.needed="nvidia_driver" WORKDIR /stage/allennlp ENTRYPOINT ["allennlp"] ARG ALLENNLP RUN pip install --no-cache-dir ${ALLENNLP} COPY . . """ DOCKERFILE_EXTRA_STEPS = """ # Ensure allennlp isn't re-installed when we install allennlp-models. ENV ALLENNLP_VERSION_OVERRIDE allennlp # To be compatible with older versions of allennlp-models. ENV IGNORE_ALLENNLP_IN_SETUP true # Disable parallelism in tokenizers because it doesn't help, and sometimes hurts. ENV TOKENIZERS_PARALLELISM 0 ARG PACKAGES RUN pip install --no-cache-dir ${PACKAGES} """ def echo_command_output(cmd: List[str]) -> None: for line in shell_out_command(cmd): click.echo(line, nl=True) def shell_out_command(cmd: List[str]) -> Iterable[str]: try: child = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, check=True, ) for line in child.stdout.split("\n"): line = line.rstrip() if line.strip(): yield line except subprocess.CalledProcessError as exc: raise click.ClickException(click.style(exc.output, fg="red")) except FileNotFoundError as exc: raise click.ClickException(click.style(f"{exc.filename} not found", fg="red")) def create_beaker_config( name: str = None, description: str = None, image: str = None, gpus: int = 0, cluster: str = DEFAULT_CLUSTER, ) -> Dict[str, Any]: return { "description": description, "tasks": [ { "name": name, "spec": { "image": image, "resultPath": "/output", "args": [ "train", "config.jsonnet", "-s", "/output", "--file-friendly-logging", ], "requirements": {"gpuCount": gpus}, }, "cluster": cluster, } ], } def parse_version(ctx, param, version) -> str: if not version: return version if param.name == "allennlp_version": package = "allennlp" else: package = "allennlp-models" if version.startswith("git@"): git_url = f"https://github.com/allenai/{package}" if version == "git@master": # Get the latest commit from the git repo. click.secho("Checking for latest commit...", fg="yellow") with click_spinner.spinner(): latest_commits = list( shell_out_command(["git", "ls-remote", git_url + ".git"]) ) latest = latest_commits[0].split("\t")[0] version = f"git+{git_url}.git@{latest}" else: version = f"git+{git_url}.{version}" elif version.startswith("git+"): pass else: version = f"{package}=={version}" click.echo("Using " + click.style(f"{version}", fg="green")) return version def check_for_beaker(): # Print beaker version for debugging. If beaker is not installed, this will # exit with an error an notify the user. echo_command_output(["beaker", "--version"]) _DEFAULT_EXPERIMENT_NAME: Optional[str] = None def setup(ctx, param, config_path): check_for_beaker() path = cached_path(config_path) # If this is a local json/jsonnet file, we'll use the file basename as the # the default name of the experiment. global _DEFAULT_EXPERIMENT_NAME if path.endswith(".json") or path.endswith(".jsonnet"): _DEFAULT_EXPERIMENT_NAME = os.path.splitext(os.path.basename(path))[ 0 ] + date.today().strftime("_%Y%m%d") return path def parse_gpus(ctx, param, value): if value is None: params_file = ctx.params["config"] gpus: int = 0 params = Params.from_file(params_file).as_dict() if "distributed" in params: cuda_devices = params["distributed"].get("cuda_devices") if cuda_devices: gpus = len([d for d in cuda_devices if d >= 0]) else: cuda_device = params.get("trainer", {}).get("cuda_device") if isinstance(cuda_device, int) and cuda_device >= 0: gpus = 1 value = gpus click.echo("Config specifies " + click.style(f"{value}", fg="green") + " gpus") elif not isinstance(value, int): value = int(value) return value def validate_includes(ctx, param, value): if value: for path, _ in value: if not os.path.exists(path): raise click.BadParameter(f"path {path} doesn't exit") return value @click.command() @click.argument( "config", callback=setup, ) @click.option( "--name", prompt="What do you want to call your experiment?", default=lambda: _DEFAULT_EXPERIMENT_NAME, help="The name to give the experiment on beaker.", ) @click.option( "--allennlp-version", prompt="What version of AllenNLP do you want to use?", default="git@master", show_default=True, help="The PyPI version, branch, or commit SHA of AlleNLP to use. " "Git branches and commits should be prefixed with 'git@'. For example, " "'git@master' or '1.0.0rc5'.", callback=parse_version, ) @click.option( "--models-version", prompt="What version (if any) of AllenNLP Models do you want to use?", default="", help="The PyPI version, branch, or commit SHA of AllenNLP Models to use, if any. " "Git branches and commits should be prefixed with 'git@'.", callback=parse_version, ) @click.option( "--packages", prompt="What other Python packages does your experiment need?", help="Additional Python packages to install in the docker image. " "The value of this argument will be passed directly to `pip install`.", default="", ) @click.option( "--gpus", default=None, show_default="parsed from training config", callback=parse_gpus, type=click.INT, help="The number of GPUs to reserve for your experiment. If not specified " "the GPUs will be guessed from the training config.", ) @click.option( "--workspace", default=os.environ.get("BEAKER_DEFAULT_WORKSPACE", ""), show_default="$BEAKER_DEFAULT_WORKSPACE", prompt="Which beaker workspace do you want to use?", help="The beaker workspace to submit the experiment to.", ) @click.option( "--user", default=os.environ.get("BEAKER_DEFAULT_USER", ""), show_default="$BEAKER_DEFAULT_USER", prompt="What is your beaker username?", help="The beaker username to submit the experiment under.", ) @click.option( "--include", type=(str, str), multiple=True, prompt="Do you want to include any other files or directories?", help="A list of files or directories to include.", callback=validate_includes, ) @click.option("-v", "--verbose", count=True) @click.option("--dry-run", is_flag=True) @click.option( "--cluster", type=str, default=DEFAULT_CLUSTER, help="The beaker cluster to use." ) def run( config: str, name: str, allennlp_version: str, models_version: str, packages: str, gpus: int, workspace: str, user: str, include: Tuple[Tuple[str, str], ...], verbose: int, dry_run: bool, cluster: str, ): # We create a temp directory to use as context for the Docker build, and # also to create a temporary beaker config file. with TemporaryDirectory() as context_dir: # Write the training config to the context directory. training_config_path = os.path.join(context_dir, "config.jsonnet") params = Params.from_file(config) params.to_file(training_config_path) # Create a unique tag to use. image_id = str(uuid.uuid4()) local_image_name = f"allennlp-beaker-{name}:{image_id}" beaker_image_name = f"allennlp-beaker-{name}-{image_id}" if models_version: packages = models_version + " " + packages packages = packages.strip() # Write the Dockefile to the context directory. dockerfile_path = os.path.join(context_dir, "Dockerfile") with open(dockerfile_path, "w") as dockerfile: dockerfile.write(DOCKERFILE) if packages: dockerfile.write(DOCKERFILE_EXTRA_STEPS) # Write the beaker config to the context directory. beaker_config_path = os.path.join(context_dir, "config.yml") with open(beaker_config_path, "w") as beaker_config: beaker_config.write( yaml.dump( create_beaker_config( name=name, image=user + "/" + beaker_image_name, gpus=gpus, description=f"{allennlp_version} {packages}", cluster=cluster, ) ) ) if verbose: click.echo("Beaker config:") for line in shell_out_command(["cat", beaker_config_path]): print(line) # Copy any other include files. if include: for (path, dest) in include: dest = os.path.join(context_dir, dest) click.echo(f"Copying {path} to {dest}") if os.path.isdir(path): shutil.copytree(path, dest) else: shutil.copy(path, dest) # Build the Docker image. click.echo( "Building docker image with name " + click.style(local_image_name, fg="green") + "..." ) build_args = [ "docker", "build", "--build-arg", f"ALLENNLP={allennlp_version}", ] if packages: build_args.extend(["--build-arg", f"PACKAGES={packages}"]) build_args.extend(["-t", local_image_name, context_dir]) if verbose: for line in shell_out_command(build_args): print(line) else: with click_spinner.spinner(): deque(shell_out_command(build_args), maxlen=0) if dry_run: click.echo("Run the following to check the Docker image:\n") click.echo( f" docker run --rm -it --entrypoint /bin/bash {local_image_name}" ) return None # Publish the image to beaker. click.echo("Publishing image to beaker...") with click_spinner.spinner(): deque( shell_out_command( [ "beaker", "image", "create", "-n", beaker_image_name, local_image_name, ] ), maxlen=0, ) # Submit the experiment to beaker. click.echo("Submitting experiment to beaker...") cmds = [ "beaker", "experiment", "create", "--name", name, "-f", beaker_config_path, ] if workspace: cmds.extend(["--workspace", workspace]) echo_command_output(cmds) if __name__ == "__main__": run()
allennlp-beaker-master
allennlp_beaker/__main__.py
allennlp-beaker-master
tests/__init__.py
def test_hello(): print("Hello!")
allennlp-beaker-master
tests/test_hello.py
from setuptools import setup, find_packages def read_requirements(filename: str): with open(filename) as requirements_file: import re def fix_url_dependencies(req: str) -> str: """Pip and setuptools disagree about how URL dependencies should be handled.""" m = re.match( r"^(git\+)?(https|ssh)://(git@)?github\.com/([\w-]+)/(?P<name>[\w-]+)\.git", req ) if m is None: return req else: return f"{m.group('name')} @ {req}" requirements = [] for line in requirements_file: line = line.strip() if line.startswith("#") or len(line) <= 0: continue requirements.append(fix_url_dependencies(line)) return requirements # version.py defines the VERSION and VERSION_SHORT variables. # We use exec here so we don't import cached_path whilst setting up. VERSION = {} # type: ignore with open("better_promptability/version.py", "r") as version_file: exec(version_file.read(), VERSION) setup( name="better_promptability", version=VERSION["VERSION"], description="", long_description=open("README.md").read(), long_description_content_type="text/markdown", classifiers=[ "Intended Audience :: Science/Research", "Development Status :: 3 - Alpha", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], keywords="", url="https://github.com/allenai/better-promptability", author="Allen Institute for Artificial Intelligence", author_email="[email protected]", license="Apache", packages=find_packages( exclude=["*.tests", "*.tests.*", "tests.*", "tests"], ), install_requires=read_requirements("requirements.txt"), python_requires=">=3.7, <3.8", # restriction by promptsource )
better-promptability-main
setup.py
_MAJOR = "0" _MINOR = "1" # On main and in a nightly release the patch should be one ahead of the last # released build. _PATCH = "0" # This is mainly for nightly builds which have the suffix ".dev$DATE". See # https://semver.org/#is-v123-a-semantic-version for the semantics. _SUFFIX = "" VERSION_SHORT = "{0}.{1}".format(_MAJOR, _MINOR) VERSION = "{0}.{1}.{2}{3}".format(_MAJOR, _MINOR, _PATCH, _SUFFIX)
better-promptability-main
better_promptability/version.py
from tango import Step @Step.register("check_install") class CheckInstall(Step): DETERMINISTIC = True CACHEABLE = False def run(self) -> None: import torch if torch.cuda.is_available(): print("All good! CUDA is available :)") else: print("All good! No CUDA though :/")
better-promptability-main
better_promptability/check_install.py
better-promptability-main
better_promptability/__init__.py
""" Changing T5Attention's forward to support prefix tuning, along with subclassing other classes that use T5Attention. Changes in T5Attention's forward from are marked with "# <CHANGE>" and "# </CHANGE>". It's possible that the added logic can be separated as some code that entirely preceeds the original forward, s.t. we can call super().forward() without code duplciation. Even better, we might be able to use a pre-hook so that most of this won't be needed. """ import torch from torch import nn from transformers.models.t5.modeling_t5 import ( T5Config, T5Attention, T5LayerSelfAttention, T5LayerCrossAttention, T5Block, T5Stack, T5ForConditionalGeneration, ) class T5WithPrefixConfig(T5Config): def __init__( self, num_prefix=None, reparam=False, reparam_dim=512, no_decoder_self_attn=False, **kwargs ): super().__init__(**kwargs) self.num_prefix = num_prefix self.reparam = reparam self.reparam_dim = reparam_dim self.no_decoder_self_attn = no_decoder_self_attn @classmethod def get_config_dict(cls, *args, **kwargs): config_dict, kwargs = T5Config.get_config_dict(*args, **kwargs) for field in ("num_prefix", "reparam_dim"): assert field not in config_dict if field in kwargs: config_dict[field] = kwargs.pop(field) return config_dict, kwargs class T5AttentionWithPrefix(T5Attention): def __init__(self, config: T5WithPrefixConfig, has_relative_attention_bias=False): super().__init__(config, has_relative_attention_bias=has_relative_attention_bias) self.num_prefix = config.num_prefix # fmt: off def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). # noqa: E501 """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: assert ( len(past_key_value) == 2 ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" # noqa: E501 real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def shape(states): """projection""" return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def unshape(states): """reshape""" return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) # get key/value states key_states = project( hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None ) # <CHANGE> # move this up to not include layer-specific prefix present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None # prefix tuning key_states = torch.cat([self.prefix_key, key_states], dim=2) value_states = torch.cat([self.prefix_value, value_states], dim=2) if mask is not None: prefix_mask = torch.zeros( batch_size, 1, mask.size(2), self.num_prefix, device=hidden_states.device ) mask = torch.cat([prefix_mask, mask], dim=-1) # </CHANGE> # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] # <CHANGE> position_bias = torch.cat( [ torch.zeros( position_bias.shape[:3] + (self.num_prefix,), device=position_bias.device, ), position_bias, ], dim=3, ) # </CHANGE> if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) scores += position_bias attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( scores ) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout( attn_weights, p=self.dropout, training=self.training ) # (batch_size, n_heads, seq_length, key_length) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) attn_output = self.o(attn_output) # <CHANGE> moved one line up # </CHANGE> outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # fmt: on class T5LayerSelfAttentionWithPrefix(T5LayerSelfAttention): def __init__(self, config, has_relative_attention_bias=False): super().__init__(config, has_relative_attention_bias=has_relative_attention_bias) if not config.no_decoder_self_attn: self.SelfAttention = T5AttentionWithPrefix( config, has_relative_attention_bias=has_relative_attention_bias ) class T5LayerCrossAttentionWithPrefix(T5LayerCrossAttention): def __init__(self, config): super().__init__(config) self.EncDecAttention = T5AttentionWithPrefix(config, has_relative_attention_bias=False) class T5BlockWithPrefix(T5Block): def __init__(self, config, has_relative_attention_bias=False): super().__init__(config, has_relative_attention_bias=has_relative_attention_bias) self.layer[0] = T5LayerSelfAttentionWithPrefix( config, has_relative_attention_bias=has_relative_attention_bias ) if self.is_decoder: self.layer[1] = T5LayerCrossAttentionWithPrefix(config) class T5StackWithPrefix(T5Stack): def __init__(self, config, embed_tokens=None): super().__init__(config, embed_tokens=embed_tokens) # prefix tuning - reparam 'trick' self.input_tokens = torch.arange(self.config.num_prefix) per_layer_dim = self.config.num_heads * self.config.d_kv total_dim = self.config.num_layers * 2 * per_layer_dim self.prefix_embed = ( nn.Sequential( nn.Embedding(self.config.num_prefix, per_layer_dim), nn.Linear(per_layer_dim, self.config.reparam_dim), nn.Tanh(), nn.Linear(self.config.reparam_dim, total_dim), ) if self.config.reparam else nn.Embedding(self.config.num_prefix, total_dim) ) if self.is_decoder: self.prefix_embed_cross = ( nn.Sequential( nn.Embedding(self.config.num_prefix, per_layer_dim), nn.Linear(per_layer_dim, self.config.reparam_dim), nn.Tanh(), nn.Linear(self.config.reparam_dim, total_dim), ) if self.config.reparam else nn.Embedding(self.config.num_prefix, total_dim) ) self.block = torch.nn.ModuleList( [ T5BlockWithPrefix(self.config, has_relative_attention_bias=bool(i == 0)) for i in range(self.config.num_layers) ] ) # T5Stack has a self.init_weights() call here, but it's repetitive since we do it in # T5ForConditionalGenerationWithPrefix anyway. def generate_prefix_item(self, input_ids, embedding): bsz = input_ids.size(0) input_tokens = self.input_tokens.unsqueeze(0).expand(bsz, -1).to(input_ids.device) prefix = embedding(input_tokens) # batch, seq, layer * embed * 2 prefix = prefix.view( bsz, self.config.num_prefix, self.config.num_layers, 2, self.config.num_heads, self.config.d_kv, ) prefix = prefix.permute([3, 2, 0, 4, 1, 5]) return prefix[0], prefix[1] def forward(self, input_ids=None, **kwargs): prefix_key, prefix_value = self.generate_prefix_item(input_ids, self.prefix_embed) prefix_key_cross = prefix_value_cross = [None] * len(prefix_key) if self.is_decoder: prefix_key_cross, prefix_value_cross = self.generate_prefix_item( input_ids, self.prefix_embed_cross ) for block, k, v, k_cross, v_cross in zip( self.block, prefix_key, prefix_value, prefix_key_cross, prefix_value_cross ): for layer in block.layer: if isinstance(layer, T5LayerSelfAttentionWithPrefix): layer.SelfAttention.prefix_key = k layer.SelfAttention.prefix_value = v if isinstance(layer, T5LayerCrossAttentionWithPrefix): layer.EncDecAttention.prefix_key = k_cross layer.EncDecAttention.prefix_value = v_cross output = super().forward(input_ids=input_ids, **kwargs) self.clean_up() return output def clean_up(self): # For safety, in case other code uses it for block in self.block: for layer in block.layer: if isinstance(layer, T5LayerSelfAttentionWithPrefix): del layer.SelfAttention.prefix_key del layer.SelfAttention.prefix_value if isinstance(layer, T5LayerCrossAttentionWithPrefix): del layer.EncDecAttention.prefix_key del layer.EncDecAttention.prefix_value class T5ForConditionalGenerationWithPrefix(T5ForConditionalGeneration): def __init__(self, config): super().__init__(config) self.encoder = T5StackWithPrefix(self.encoder.config, self.shared) self.decoder = T5StackWithPrefix(self.decoder.config, self.shared) self.init_weights()
better-promptability-main
better_promptability/models/t5_with_prefix.py
from __future__ import annotations import logging from typing import Any, Dict from allennlp.training.metrics import Metric from learn2learn.utils import clone_module from tango.common.lazy import Lazy import torch import torch.distributed as dist from tango.common.params import logger as tango_logger from tango.integrations.torch.optim import Optimizer from .model import Model from .prefix_transformer import PrefixTransformer from ..modules.with_prefix_embedding import logger as wpe_logger from ..train.optim import resolve_optimizer_conf logger = logging.getLogger(__name__) def split_batch(batch, split_size): bsz = batch["input_ids"].shape[0] assert bsz % split_size == 0 assert all(v.shape[0] == bsz for v in batch.values()) splits = None for k, v in batch.items(): v_splits = v.split(split_size) if splits is None: splits = [{} for _ in v_splits] for i, v_split in enumerate(v_splits): splits[i][k] = v_split return splits @Model.register("meta_learner") class MetaLearner(Model): def __init__( self, model: PrefixTransformer, adaptation_steps: int, algorithm: str, meta_optimizer: Lazy[Optimizer], different_inner_loop_batches: bool = False, meta_accumulate_grad_batches: int = 1, reuse_inner_opt_state: bool = True, ): # TODO: anneal meta LR? assert algorithm in {"fomaml", "reptile"} super().__init__(model.config, model.dataset, optimizer=meta_optimizer, epochs=model.epochs) self.model = model self.algorithm = algorithm self.adaptation_steps = adaptation_steps self.different_inner_loop_batches = different_inner_loop_batches self.meta_accumulate_grad_batches = meta_accumulate_grad_batches self.reuse_inner_opt_state = reuse_inner_opt_state inner_optimizer = resolve_optimizer_conf(self.model.configure_optimizers()) if self.reuse_inner_opt_state: self.inner_optimizer_state = inner_optimizer.state_dict() self.model.metrics = self.model.setup_metrics() self.metrics = self.model.metrics # ShardedDataParallel uses .requires_grad for sharding, and yet we use this property in # quite complicated ways for meta learning. We need to make sure that this property # correctly reflects the learnablity of each parameter after initialization. We restore # it for our purposes in the first forward pass. self.orig_requires_grad = self.model.unfreeze() self.restored_requires_grad = False def setup(self, stage: str = None): pass def setup_metrics(self) -> Dict[str, Dict[str, Metric]]: return {} def compute_loss(self, *args, **kwargs): raise NotImplementedError def get_predictions(self, *args, **kwargs): raise NotImplementedError def forward(self, meta_batch: list[tuple[dict, dict]]) -> dict[str, torch.Tensor]: if not self.restored_requires_grad: for p in self.model.parameters(): p.requires_grad = self.orig_requires_grad[p] self.restored_requires_grad = True for p in self.model.parameters(): p.grad = torch.zeros_like(p.data) # These are for logging only support_loss = 0.0 query_loss = torch.zeros([]) # a dummy query loss for reptile for support_batch, query_batch in meta_batch: # Disable <ERROR logging from model recreation which would otherwise pollute stdout # TODO: this is ugly, but I don't know how to globally change logging level. A better # solution may be something like warn_once. wpe_logger_level = wpe_logger.level wpe_logger.setLevel(logging.ERROR) tango_logger_level = tango_logger.level tango_logger.setLevel(logging.ERROR) learner = clone_module(self.model) detach_module(learner, keep_requires_grad=True) learner.train() # for meta-evaluation, though we don't have it right now inner_optimizer = resolve_optimizer_conf( learner.configure_optimizers() ) if self.reuse_inner_opt_state: inner_optimizer.load_state_dict(self.inner_optimizer_state) wpe_logger.setLevel(wpe_logger_level) tango_logger.setLevel(tango_logger_level) support_batch_size = support_batch["input_ids"].shape[0] if self.different_inner_loop_batches: support_batch_size = support_batch_size // self.adaptation_steps support_batches = split_batch(support_batch, support_batch_size) support_split_size = support_batch_size // self.meta_accumulate_grad_batches query_split_size = ( query_batch["input_ids"].shape[0] // self.meta_accumulate_grad_batches ) for i, adaptation_step in enumerate(range(self.adaptation_steps)): inner_optimizer.zero_grad() curr_support_batch = ( support_batches[i] if self.different_inner_loop_batches else support_batch ) for support_batch_split in split_batch(curr_support_batch, support_split_size): output = learner(support_batch_split) loss = self.model.compute_loss( output["logits"], support_batch_split["target_ids"], support_batch_split.get("target_mask"), ) # Don't worry, this backward doesn't trigger unwanted gradient sync in # distributed training, because self.model is a torch module, not a # distributed wrapper. loss.backward() if adaptation_step == self.adaptation_steps - 1: support_loss += loss.detach().cpu() inner_optimizer.step() # In the inner loop we only tune the prompt embeddings, and in the outer loop we # unfreeze the model to tune it in its entirety. learner.unfreeze() inner_optimizer.zero_grad() for query_batch_split in split_batch(query_batch, query_split_size): query_output = learner(query_batch_split) loss = self.model.compute_loss( query_output["logits"], query_batch_split["target_ids"], query_batch_split.get("target_mask"), ) loss.backward() query_loss += loss.detach().cpu() if self.algorithm == "fomaml": for p, l in zip(self.model.parameters(), learner.parameters()): p.grad.data.add_(l.grad.data) elif self.algorithm == "reptile": inner_optimizer.step() for p, l in zip(self.model.parameters(), learner.parameters()): p.grad.data.add_(-1.0, l.data) else: assert False if self.reuse_inner_opt_state: self.inner_optimizer_state = inner_optimizer.state_dict() for p in self.model.parameters(): # In distributed training, these averages are in most cases exact. The only exception # is at the end of an epoch where different GPUs might have different-sized data. # But since that happens VERY infrequently, we can live with this rather than # implementating custom ddp comm hooks. if self.algorithm == "fomaml": p.grad.data.div_(len(meta_batch)) elif self.algorithm == "reptile": p.grad.data.div_(len(meta_batch)).add_(p.data) support_loss /= len(meta_batch) query_loss /= len(meta_batch) if dist.is_initialized(): # Gradient sync is normally performed in backward(), but we don't call backward for meta # learning since we modify .grad directly. So we need to manually sync gradients. # self.trainer.model is the distributed wrapper. self.trainer.model.reduce() # reduce uses SUM, but we want averages for p in self.model.parameters(): if p.grad is not None: # in sharded ddp, each worker only gets some gradients p.grad.data.div_(dist.get_world_size()) return {"support_loss": support_loss, "query_loss": query_loss} def backward(self, *args, **kwargs): # Gradients are manually populated pass def optimizer_zero_grad(self, *args, **kwargs): # Gradients are manually populated, and we don't want them to be zeroed pass def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> dict[str, Any]: output = self(batch) for k, v in output.items(): self.log(k, v) return {"loss": output["query_loss"]} def eval_step( self, batch: dict[str, torch.Tensor], batch_idx: int, dataloader_idx=0, compute_loss=True ) -> dict[str, Any]: return self.model.eval_step(batch, batch_idx, dataloader_idx, compute_loss) def on_save_checkpoint(self, checkpoint: dict[str, Any]): """ PyTorch's native optimizer state checkpoint logic is very fragile, so we also do it on our own. See https://github.com/pytorch/pytorch/issues/1489 """ optimizer_states = self.optimizers(use_pl_optimizer=False).state param_to_name = {p: n for n, p in self.named_parameters()} states = {param_to_name[p]: states for p, states in optimizer_states.items()} checkpoint["custom_optimizer_states"] = states def detach_module(module, keep_requires_grad=False): """ Adapted from learn2learn.utils.detach_module to add the `keep_requires_grad` flag. This will no longer be necessary once https://github.com/learnables/learn2learn/pull/294 is merged. """ if not isinstance(module, torch.nn.Module): return # First, re-write all parameters for param_key in module._parameters: if module._parameters[param_key] is not None: requires_grad = module._parameters[param_key].requires_grad detached = module._parameters[param_key].detach_() # noqa: F841; consistency w/ orig. if keep_requires_grad and requires_grad: module._parameters[param_key].requires_grad_() # Second, handle the buffers if necessary for buffer_key in module._buffers: if module._buffers[buffer_key] is not None and module._buffers[buffer_key].requires_grad: module._buffers[buffer_key] = module._buffers[buffer_key].detach_() if keep_requires_grad: # requires_grad checked above module._buffers[buffer_key].requires_grad_() # Then, recurse for each submodule for module_key in module._modules: detach_module(module._modules[module_key], keep_requires_grad=keep_requires_grad)
better-promptability-main
better_promptability/models/meta_learner.py
better-promptability-main
better_promptability/models/__init__.py
from __future__ import annotations from collections import defaultdict from typing import Any, Dict, List, Optional, Tuple, Union from allennlp.training.metrics import Metric import torch import torch.nn.functional as F from tango.common.lazy import Lazy from tango.integrations.pytorch_lightning.model import LightningModule from tango.integrations.torch.optim import Optimizer from ..data.config import Config from ..data.data_module import DataModule class Model(LightningModule): def __init__( self, config: Config, dataset: DataModule, optimizer: Optional[Lazy[Optimizer]] = None, epochs: int = 3, weight_decay: float = 0.0, accumulate_grad_batches: int = 1, warmup_steps: int = 0, ): super().__init__() self.config = config self.dataset = dataset self._optimizer = optimizer if self._optimizer is not None: assert isinstance(self._optimizer, Lazy) self.epochs = epochs self.optimizer_kwargs = { "weight_decay": weight_decay, "accumulate_grad_batches": accumulate_grad_batches, "warmup_steps": warmup_steps, } self.metrics = self.setup_metrics() def setup(self, stage: str = None): """To set up self.dataset_size""" if stage != "fit": return self.dataset_size = len(self.dataset.dataset_dict[self.dataset.train_split]) def setup_metrics(self) -> Dict[str, Dict[str, Metric]]: return { split: { name: self.dataset.instantiate_metric(name, split) for name in self.dataset.metric_names } for split in self.dataset.dev_splits + self.dataset.test_splits } def configure_optimizers(self) -> Union[List[Optimizer], Tuple[List[Optimizer], List[Dict]]]: """Prepare optimizer and schedule (linear warmup and decay)""" assert self._optimizer is not None no_decay = ["bias", "LayerNorm.weight", "layernorm.weight", "layer_norm.weight"] optimizer_grouped_parameters = [ { "params": [ p for n, p in self.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": self.optimizer_kwargs["weight_decay"], }, { "params": [ p for n, p in self.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = self._optimizer.construct(params=optimizer_grouped_parameters) # type: ignore return [optimizer] def optimizer_zero_grad( self, epoch: int, batch_idx: int, optimizer: Optimizer, optimizer_idx: int ): """See https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html""" optimizer.zero_grad() def compute_loss( self, logits: torch.Tensor, labels: torch.Tensor, mask: Optional[torch.Tensor] = None, reduce=True, ) -> torch.Tensor: assert mask is not None loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1), reduction="none") loss = loss.view_as(labels) * mask if reduce: assert mask.any(dim=-1).all() loss = loss.sum() / mask.sum() # type: ignore return loss def training_step(self, batch: dict[str, torch.Tensor], batch_idx: int) -> dict[str, Any]: loss = self.compute_loss( self(batch)["logits"], batch["target_ids"], batch.get("target_mask") ) self.log("train_loss", loss) return {"loss": loss} def get_predictions(self, logits: torch.Tensor, batch: dict[str, torch.Tensor]) -> torch.Tensor: return logits.argmax(dim=-1) def eval_step( self, batch: dict[str, torch.Tensor], batch_idx: int, dataloader_idx=0, compute_loss=True, ) -> dict[str, Any]: logits = self(batch)["logits"] preds = self.get_predictions(logits, batch).masked_fill( ~batch["is_correct_mask"], torch.finfo(logits.dtype).min ) targets = batch["target_ids"] # target sequences. if "is_correct" in batch: labels = (batch["is_correct"] & batch["is_correct_mask"]).byte().argmax(dim=-1) split = self.dataset.dev_splits[dataloader_idx] for metric in self.metrics[split].values(): metric(*metric.detach_tensors(preds, labels)) return ( {"loss": self.compute_loss(logits, targets, batch.get("targets_mask")).detach().cpu()} if compute_loss else {} ) def eval_epoch_end(self, outputs: Union[list[list[dict[str, Any]]], list[dict[str, Any]]]): # pytorch-lightning "conveniently" unwraps the list when there's only one dataloader, # so we need a check here. num_splits = 1 if isinstance(outputs[0], dict) else len(outputs) # We gather individual metrics from each dataloader and compute the average if there is # more than one if num_splits > 1: sums: defaultdict = defaultdict(int) for i in range(num_splits): split = self.dataset.dev_splits[i] assert split != "avg" # reserved keyword for below metrics = self.get_metrics(split, reset=True) for k, v in metrics.items(): if num_splits > 1: self.log(f"{k}_{split}", v) sums[k] += v else: self.log(k, v) if num_splits > 1: for k, v in sums.items(): self.log(f"{k}_avg", v / num_splits) def get_metrics(self, split: str, reset=False) -> dict[str, Any]: metrics = {name: metric.get_metric() for name, metric in self.metrics[split].items()} if reset: for metric in self.metrics[split].values(): metric.reset() return metrics def validation_step( self, batch: dict[str, torch.Tensor], batch_idx: int, dataloader_idx=0 ) -> dict[str, Any]: return self.eval_step(batch, batch_idx, dataloader_idx=dataloader_idx) def validation_epoch_end(self, outputs: list[dict[str, Any]]): return self.eval_epoch_end(outputs) def test_step( self, batch: dict[str, torch.Tensor], batch_idx: int, dataloader_idx=0 ) -> dict[str, Any]: return self.eval_step(batch, batch_idx, dataloader_idx=dataloader_idx) def test_epoch_end(self, outputs: list[dict[str, Any]]): return self.eval_epoch_end(outputs)
better-promptability-main
better_promptability/models/model.py
from __future__ import annotations import logging from typing import Any, Callable, IO, Optional, Union, Dict import torch from tango.common.lazy import Lazy from tango.integrations.torch.optim import Optimizer from transformers import T5ForConditionalGeneration from ..data.config import Config from ..data.prompt_data_module import PromptDataModule from ..data.t0_multitask_data_module import T0MultiTaskDataModule from ..modules.transformer import Transformer from ..modules.with_prefix_embedding import WithPrefixEmbedding from .model import Model from .t5_with_prefix import T5WithPrefixConfig, T5ForConditionalGenerationWithPrefix logger = logging.getLogger(__name__) @Model.register("prefix_transformer") @Model.register("prefix_transformer_from_checkpoint", constructor="load_from_checkpoint") class PrefixTransformer(Model): def __init__( self, config: Config, dataset: PromptDataModule, transformer_model: str, optimizer: Optional[Lazy[Optimizer]] = None, epochs: int = 3, weight_decay: float = 0.0, accumulate_grad_batches: int = 1, warmup_steps: int = 0, train_full_model: bool = False, **transformer_kwargs, ): self.transformer_name = transformer_model self.train_full_model = train_full_model self.deep = dataset.deep super().__init__( config, dataset, optimizer=optimizer, epochs=epochs, weight_decay=weight_decay, accumulate_grad_batches=accumulate_grad_batches, warmup_steps=warmup_steps, ) if not self.deep: self.transformer = Transformer(transformer_model, "seq2seq-lm", **transformer_kwargs) else: self.transformer = Transformer( transformer_model, "seq2seq-lm", config_cls=T5WithPrefixConfig, model_cls=T5ForConditionalGenerationWithPrefix, num_prefix=dataset.num_prefix, **transformer_kwargs, ) transformer_model: T5ForConditionalGeneration = self.transformer.model assert isinstance(transformer_model, T5ForConditionalGeneration) if not self.train_full_model: for n, param in self.transformer.named_parameters(): if n.startswith("model.encoder.prefix_") or n.startswith("model.decoder.prefix_"): assert self.deep else: param.requires_grad = False if not self.deep: transformer_model.set_input_embeddings( WithPrefixEmbedding( transformer_model.shared, self.dataset.tokenizer.vocab_size, self.dataset.num_prefix, ) ) def unfreeze(self) -> dict[torch.nn.Parameter, bool]: orig_requires_grad = {} for param in self.transformer.parameters(): orig_requires_grad[param] = param.requires_grad param.requires_grad = True return orig_requires_grad def forward(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: input_ids = batch["input_ids"] input_mask = batch["input_mask"] target_ids = batch["target_ids"] target_mask = batch["target_mask"] return_dict = {} assert input_ids.shape == input_mask.shape and input_ids.dim() in (2, 3) if not self.training: # for inference we have an additional dimension for classes orig_shape = input_ids.shape # bs x num_classes x seq_len input_ids = input_ids.reshape(-1, orig_shape[-1]) input_mask = input_mask.reshape(-1, orig_shape[-1]) orig_decoder_shape = target_ids.shape target_ids = target_ids.reshape(-1, orig_decoder_shape[-1]) target_mask = target_mask.reshape(-1, orig_decoder_shape[-1]) logits = self.transformer( input_ids=input_ids, attention_mask=input_mask, labels=target_ids, decoder_attention_mask=target_mask, ).logits if not self.training: logits = logits.reshape(*(orig_decoder_shape + (-1,))) return_dict["logits"] = logits return return_dict def get_predictions(self, logits: torch.Tensor, batch: dict[str, torch.Tensor]) -> torch.Tensor: """ Input: logits: (bsz, num_classes, seq_len, vocab_size) Output: scores: (bsz, num_classes) """ mask = batch["target_mask"] # (bsz, num_classes, seq_len) loss = self.compute_loss(logits, batch["target_ids"], mask, reduce=False) scores = -loss.sum(-1) / (mask.sum(-1) + 1e-6) # already masked in compute_loss() return scores def eval_step( self, batch: dict[str, torch.Tensor], batch_idx: int, dataloader_idx=0, compute_loss=True, ) -> dict[str, Any]: if isinstance(self.dataset, T0MultiTaskDataModule): preds = self(batch)["logits"] split = self.dataset.dev_splits[dataloader_idx] for metric in self.metrics[split].values(): metric(*metric.detach_tensors(preds, batch["target_ids"], batch["target_mask"])) return {} else: return super().eval_step( batch, batch_idx, dataloader_idx=dataloader_idx, compute_loss=False ) def on_save_checkpoint(self, checkpoint: dict[str, Any]): """ PyTorch's native optimizer state checkpoint logic is very fragile, so we also do it on our own. See https://github.com/pytorch/pytorch/issues/1489 Also, when prompt-tuning, only stores prompt embedding in the checkpoint. """ optimizer_states = self.optimizers(use_pl_optimizer=False).state if not self.train_full_model: weight_keys = ( ["transformer.model.shared.new_embed.weight"] if not self.deep else [ k for k in checkpoint["state_dict"].keys() if k.startswith("transformer.model.encoder.prefix_") or k.startswith("transformer.model.decoder.prefix_") ] ) checkpoint["state_dict"] = {k: checkpoint["state_dict"][k] for k in weight_keys} name_to_param = {n: p for n, p in self.named_parameters()} states = {k: optimizer_states[name_to_param[k]] for k in weight_keys} else: param_to_name = {p: n for n, p in self.named_parameters()} states = {param_to_name[p]: states for p, states in optimizer_states.items()} checkpoint["custom_optimizer_states"] = states def on_load_checkpoint(self, checkpoint: dict[str, Any]) -> None: if any(k.startswith("model.") for k in checkpoint["state_dict"].keys()): # Unwrap the meta-learning model new_state_dict = {} for k, v in checkpoint["state_dict"].items(): assert k.startswith("model.") new_state_dict[k[len("model.") :]] = v checkpoint["state_dict"] = new_state_dict # TODO: optimizer states return super().on_load_checkpoint(checkpoint) def meta_learning_copy(self): new = PrefixTransformer( self.config, self.dataset, self.transformer_name, optimizer=self._optimizer, epochs=self.epochs, weight_decay=self.optimizer_kwargs["weight_decay"], accumulate_grad_batches=self.optimizer_kwargs["accumulate_grad_batches"], warmup_steps=self.optimizer_kwargs["warmup_steps"], train_full_model=self.train_full_model, deep=self.deep, ) new.to(self.device) new.load_state_dict(self.state_dict()) return new @classmethod def load_from_checkpoint( cls, checkpoint_path: Union[str, IO], map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None, hparams_file: Optional[str] = None, strict: bool = True, optimizer: Optional[Lazy[Optimizer]] = None, **kwargs, ): # We need to tell tango the type of optimizer, or otherwise it will only give us a Params # object return super().load_from_checkpoint( checkpoint_path, map_location=map_location, hparams_file=hparams_file, strict=strict, optimizer=optimizer, **kwargs, )
better-promptability-main
better_promptability/models/prefix_transformer.py
better-promptability-main
better_promptability/common/__init__.py
from contextlib import contextmanager from copy import deepcopy import logging import os import shutil import tempfile from pathlib import Path from typing import List, Dict, Any, Optional, cast, Union from tango.common.registrable import Registrable from tango.common.util import PathOrStr class BetterPromptabilityTestCase: """ A custom testing class that * disables some of the more verbose logging, * creates and destroys a temp directory as a test fixture, and * restores the internal state of the `Registrable` class at the end of each test method. """ PROJECT_ROOT = (Path(__file__).parent / ".." / "..").resolve() """ Root of the git repository. """ MODULE_ROOT = PROJECT_ROOT / "better_promptability" """ Root of the tango module. """ TESTS_ROOT = PROJECT_ROOT / "tests" """ Root of the tests directory. """ FIXTURES_ROOT = PROJECT_ROOT / "test_fixtures" """ Root of the test fixtures directory. """ def setup_method(self): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.DEBUG ) # Disabling some of the more verbose logging statements that typically aren't very helpful # in tests. logging.getLogger("urllib3.connectionpool").disabled = True # Create a temporary scratch directory. self.TEST_DIR = Path(tempfile.mkdtemp(prefix="better_promptability_tests")) os.makedirs(self.TEST_DIR, exist_ok=True) @classmethod def setup_class(cls): # During teardown we'll restore the state of `Registrable`'s internal registry # to make sure any registered mock test classes are removed so they don't conflict # with other tests. cls._original_registry = deepcopy(Registrable._registry) def teardown_method(self): shutil.rmtree(self.TEST_DIR) @classmethod def teardown_class(cls): Registrable._registry = cls._original_registry def run( self, config: Union[PathOrStr, Dict[str, Any]], overrides: Optional[Union[Dict[str, Any], str]] = None, include_package: Optional[List[str]] = None, ) -> Path: from .params import Params from tango.__main__ import _run, TangoGlobalSettings if isinstance(config, dict): params = Params(config) config = self.TEST_DIR / "config.json" params.to_file(cast(Path, config)) if isinstance(overrides, dict): import json overrides = json.dumps(overrides) run_dir = self.TEST_DIR / "run" _run( TangoGlobalSettings(), str(config), directory=str(run_dir), overrides=overrides, include_package=include_package, ) return run_dir @contextmanager def run_experiment( config: Union[PathOrStr, Dict[str, Any]], overrides: Optional[Union[Dict[str, Any], str]] = None ): """ A context manager to make testing experiments easier. On ``__enter__`` it runs the experiment and returns the path to the cache directory, a temporary directory that will be cleaned up on ``__exit__``. """ test_case = BetterPromptabilityTestCase() try: test_case.setup_method() yield test_case.run(config, overrides=overrides) finally: test_case.teardown_method()
better-promptability-main
better_promptability/common/testing.py
from .process_dataset import ProcessDataset
better-promptability-main
better_promptability/steps/__init__.py
import logging import os from typing import Dict from datasets import Dataset, DatasetDict from tango.step import Step from allennlp.common import cached_transformers logger = logging.getLogger(__name__) @Step.register("process_story_cloze") class ProcessStoryCloze(Step): DETERMINISTIC: bool = True CACHEABLE = False # use datasets caching. def run( self, old_data_path: str, new_data_path: str, process_if_exists: bool = False, tokenizer_model: str = "google/t5-small-lm-adapt", ) -> DatasetDict: # type: ignore[override] if not process_if_exists and os.path.exists(new_data_path): logger.info( f"The processed dataset already exists at {new_data_path}. " "Set `process_if_exists` to `True` if you want to process again. " "Returning existing dataset." ) return DatasetDict.load_from_disk(new_data_path) tokenizer = cached_transformers.get_tokenizer(tokenizer_model) dataset_dict = DatasetDict.load_from_disk(old_data_path) new_splits = {} for split_name in dataset_dict: split = dataset_dict[split_name] new_instances: Dict = { "inputs": [], "inputs_pretokenized": [], "targets": [], "targets_pretokenized": [], "is_correct": [], } for instance in split: actual_targets_pretokenized = instance["targets_pretokenized"] is_correct = [ choice.strip() == actual_targets_pretokenized.strip() for choice in (instance["answer_choices"]) ] targets = [ tokenizer(choice, add_special_tokens=False)["input_ids"] for choice in instance["answer_choices"] ] targets_pretokenized = instance["answer_choices"] new_instances["inputs"].append(instance["inputs"]) new_instances["inputs_pretokenized"].append(instance["inputs_pretokenized"]) new_instances["targets"].append(targets) new_instances["targets_pretokenized"].append(targets_pretokenized) new_instances["is_correct"].append(is_correct) # Story cloze doesn't have a training set, so we use validation for training and test # for validation. We in general don't use test sets. if split_name == "validation": split_name = "train" if split_name == "test": split_name = "validation" new_splits[split_name] = Dataset.from_dict(new_instances) new_dataset_dict: DatasetDict = DatasetDict(new_splits) logger.info(f"Saving processed dataset at {new_data_path}.") new_dataset_dict.save_to_disk(new_data_path) return new_dataset_dict
better-promptability-main
better_promptability/steps/process_story_cloze.py
import logging import os from typing import Dict from datasets import Dataset, DatasetDict from tango.step import Step logger = logging.getLogger(__name__) @Step.register("process_dataset") class ProcessDataset(Step): DETERMINISTIC: bool = True CACHEABLE = False # use datasets caching. def run( self, old_data_path: str, new_data_path: str, process_if_exists: bool = False ) -> DatasetDict: # type: ignore[override] if not process_if_exists and os.path.exists(new_data_path): logger.info( f"The processed dataset already exists at {new_data_path}. " "Set `process_if_exists` to `True` if you want to process again. " "Returning existing dataset." ) return DatasetDict.load_from_disk(new_data_path) dataset_dict = DatasetDict.load_from_disk(old_data_path) new_splits = {} for split_name in dataset_dict: split = dataset_dict[split_name] new_instances: Dict = { "inputs": [], "inputs_pretokenized": [], "targets": [], "targets_pretokenized": [], "is_correct": [], } instance: Dict = { "inputs": None, "inputs_pretokenized": None, "targets": [], "targets_pretokenized": [], "is_correct": [], } # TODO: assert for presence of the right keys in the dataset. for row in split: if row["idx"][1] == 0 and instance["inputs"] is not None: new_instances["inputs"].append(instance["inputs"]) new_instances["inputs_pretokenized"].append(instance["inputs_pretokenized"]) new_instances["targets"].append(instance["targets"]) new_instances["targets_pretokenized"].append(instance["targets_pretokenized"]) new_instances["is_correct"].append(instance["is_correct"]) instance = { "inputs": None, "inputs_pretokenized": None, "targets": [], "targets_pretokenized": [], "is_correct": [], } instance["inputs"] = row["inputs"] instance["inputs_pretokenized"] = row["inputs_pretokenized"] instance["targets"].append(row["targets"]) instance["targets_pretokenized"].append(row["targets_pretokenized"]) instance["is_correct"].append(row["is_correct"]) new_instances["inputs"].append(instance["inputs"]) new_instances["inputs_pretokenized"].append(instance["inputs_pretokenized"]) new_instances["targets"].append(instance["targets"]) new_instances["targets_pretokenized"].append(instance["targets_pretokenized"]) new_instances["is_correct"].append(instance["is_correct"]) new_splits[split_name] = Dataset.from_dict(new_instances) new_dataset_dict: DatasetDict = DatasetDict(new_splits) logger.info(f"Saving processed dataset at {new_data_path}.") new_dataset_dict.save_to_disk(new_data_path) return new_dataset_dict
better-promptability-main
better_promptability/steps/process_dataset.py
from collections import defaultdict from typing import Any, Dict, List, Tuple, Set, Optional import numpy as np from tango import Format, JsonFormat, Step from tango.common import Params import torch @Step.register("aggregate_results") class AggregateResults(Step): DETERMINISTIC = True CACHEABLE = True FORMAT: Format = JsonFormat() VERSION = "002" def run(self, results: Dict[str, Tuple[str, List[Dict[str, Any]]]]) -> Dict[str, Any]: """ Aggregate the results of a bunch of `TrainStep`s. `results` is a mapping of `task_name` the output from the corresponding `TrainStep`. """ t0_task_info = Params.from_file("configs/t0_task_info.jsonnet")["tasks"].as_dict(quiet=True) def accuracy_for_task(task_name: str) -> float: acc = results[task_name][1][-1]["best_categorical_accuracy"] if isinstance(acc, (float, int)): return float(acc) elif isinstance(acc, torch.Tensor): return acc.item() else: raise TypeError(acc) def stats_for_tasks(tasks: Set[str]) -> Dict[str, Optional[float]]: accuracies = [accuracy_for_task(task_name) for task_name in tasks] return { "mean": np.mean(accuracies), "std": None if len(accuracies) <= 1 else np.std(accuracies), } dataset_to_tasks: Dict[str, Set[str]] = defaultdict(set) dataset_to_subset_to_tasks: Dict[str, Dict[str, Set[str]]] = defaultdict( lambda: defaultdict(set) ) for task_name in results: dataset_name = t0_task_info[task_name]["dataset_name"] subset_name = t0_task_info[task_name]["subset_name"] dataset_to_tasks[dataset_name].add(task_name) dataset_to_subset_to_tasks[dataset_name][subset_name].add(task_name) # For direct copying into a spreadsheet flattened_results = [] for dataset_name, subset_to_tasks in dataset_to_subset_to_tasks.items(): for subset_name in subset_to_tasks: stats = stats_for_tasks(subset_to_tasks[subset_name]) flattened_results.extend([stats["mean"], stats["std"]]) return { "categorical_accuracy_all": stats_for_tasks(set(results.keys())), "categorical_accuracy_by_dataset": { dataset_name: stats_for_tasks(tasks) for dataset_name, tasks in dataset_to_tasks.items() }, "categorical_accuracy_by_dataset_and_subset": { dataset_name: { subset_name: stats_for_tasks(subset_to_tasks[subset_name]) for subset_name in subset_to_tasks } for dataset_name, subset_to_tasks in dataset_to_subset_to_tasks.items() }, "flattened": ",".join( [str(n * 100) if n is not None else "0" for n in flattened_results] ), }
better-promptability-main
better_promptability/train/aggregate_results.py
better-promptability-main
better_promptability/train/__init__.py
import logging import os import sys from pathlib import Path from typing import Dict, List, Tuple, Optional import dill import pytorch_lightning as pl import transformers from pytorch_lightning.plugins import DDPShardedPlugin from pytorch_lightning.utilities import rank_zero_only from tango.common.lazy import Lazy from tango.common.util import get_extra_imported_modules from tango.integrations.pytorch_lightning import ( LightningCallback, LightningModule, LightningTrainer, ) from tango.format import JsonFormat from tango.integrations.torch import Optimizer from tango.step import Step from better_promptability.data.config import Config from better_promptability.data.prompt_data_module import PromptDataModule from better_promptability.data.t0_multitask_data_module import T0MultiTaskDataModule from better_promptability.models.model import Model Optimizer.register("transformers::adafactor")(transformers.optimization.Adafactor) logger = logging.getLogger(__name__) @LightningCallback.register("my_logger") class LoggingCallback(LightningCallback): def __init__(self): self.best_epoch = None self.best_dev_metric = None self.best_dev_metrics = None self.metrics_history = [] @rank_zero_only def on_validation_end(self, trainer: LightningTrainer, pl_module: LightningModule): logger.info("") logger.info(f"***** Validation results at epoch {trainer.current_epoch} *****") assert pl_module.dataset.metric_watch_mode in {"max", "min"} self.metrics_history.append({}) metrics = trainer.callback_metrics # Log results for key in sorted(metrics): if key not in ["log", "progress_bar"]: logger.info("{} = {}".format(key, str(metrics[key]))) self.metrics_history[-1][key] = metrics[key] if key == pl_module.dataset.metric_to_watch and not trainer.sanity_checking: curr_metric = metrics[key] if ( self.best_dev_metric is None or ( pl_module.dataset.metric_watch_mode == "max" and curr_metric > self.best_dev_metric ) or ( pl_module.dataset.metric_watch_mode == "min" and curr_metric < self.best_dev_metric ) ): self.best_epoch = trainer.current_epoch self.best_dev_metric = curr_metric self.best_dev_metrics = { k: v for k, v in metrics.items() if k not in {"log", "progress_bar", "loss", "val_loss", "lr", "epoch"} } if not trainer.sanity_checking: logger.info(f"best_epoch = {self.best_epoch}") self.metrics_history[-1]["best_epoch"] = self.best_epoch for key, value in sorted(self.best_dev_metrics.items()): logger.info(f"best_{key} = {value}") self.metrics_history[-1][f"best_{key}"] = value @LightningCallback.register("t0_multitask") class T0MultiTaskCallback(LightningCallback): """ A Lightning callback for resampling the ``MixerDataset`` at the end of each epoch. """ def on_epoch_end(self, trainer: LightningTrainer, pl_module: LightningModule): assert isinstance(pl_module.dataset, T0MultiTaskDataModule) for dataset in pl_module.dataset.dataset_dict.values(): dataset.resample() # Since both FairScale and DeepSpeed are insane and will restart your whole process to make workers, we have # to be able to do this when train.py is called as a standalone script. def _train_step( work_dir: Path, config: Config, trainer: Lazy[LightningTrainer], strategy: Optional[str], model: Lazy[Model], datamodule: Lazy[PromptDataModule], ) -> Tuple[str, List[Dict]]: pl.seed_everything(config.seed) datamodule = datamodule.construct(config=config) datamodule.prepare_data() datamodule.setup() logger.info("Constructing trainer ...") trainer: LightningTrainer = trainer.construct( work_dir=work_dir, gpus=config.gpus, precision=config.precision, strategy=strategy, auto_select_gpus=config.auto_select_gpus, # Need to reload the dataloaders each epoch when using the T0MultiTaskDataModule. reload_dataloaders_every_n_epochs=1 if isinstance(datamodule, T0MultiTaskDataModule) else 0, ) logger.info("Done constructing trainer ...") # Make sure we're using the `T0MultiTaskCallback` if using the `T0MultiTaskDataModule` if isinstance(datamodule, T0MultiTaskDataModule): for callback in trainer.callbacks: if isinstance(callback, T0MultiTaskCallback): break else: raise RuntimeError("T0MultiTaskCallback required when using T0MultiTaskDataModule") epochs = trainer.max_epochs logger.info("Constructing model ...") model = model.construct( config=config, dataset=datamodule, epochs=epochs, accumulate_grad_batches=trainer.accumulate_grad_batches, ) logger.info("Done constructing model ...") assert model.epochs == epochs # Find the checkpoint callback and make sure it uses the right directory. # Also find the logging callback. checkpoint_callback: pl.callbacks.model_checkpoint.ModelCheckpoint = None logging_callback: LoggingCallback for callback in trainer.callbacks: if isinstance(callback, pl.callbacks.model_checkpoint.ModelCheckpoint): callback.dirpath = work_dir checkpoint_callback = callback if isinstance(callback, LoggingCallback): logging_callback = callback resume_from_checkpoint = None if "last.ckpt" in os.listdir(work_dir): resume_from_checkpoint = os.path.join(work_dir, "last.ckpt") trainer.fit(model, datamodule=datamodule, ckpt_path=resume_from_checkpoint) if not trainer.state.finished: raise ValueError(f"Trainer did not succeed! Final trainer state was {trainer.state}.") return ( checkpoint_callback.best_model_path if checkpoint_callback is not None else None, logging_callback.metrics_history, ) @Step.register("train_step") class TrainStep(Step): VERSION = "004" DETERMINISTIC: bool = True CACHEABLE = True FORMAT = JsonFormat() def run( # type: ignore[override] self, config: Config, trainer: Lazy[LightningTrainer], model: Lazy[Model], datamodule: Lazy[PromptDataModule], ) -> Tuple[str, List[Dict]]: if config.gpus == 1: strategy = None elif config.gpus > 1: # strategy = "deepspeed_stage_3_offload" # strategy = "deepspeed_stage_3" # strategy = "deepspeed_stage_2" # strategy = "ddp_sharded" # We never change trainability of parameters, so this is unnecessary. And actually # we rely on this flag being False for the current meta learning implementation. strategy = DDPShardedPlugin(auto_refresh_trainable=False) # strategy = "ddp" else: strategy = None kwargs_file = self.work_dir / "train_kwargs.dill" with kwargs_file.open("wb") as f: dill.dump( { "work_dir": self.work_dir, "extra_modules": get_extra_imported_modules(), "config": config, "trainer": trainer, "strategy": strategy, "model": model, "datamodule": datamodule, }, f, ) results_file = self.work_dir / "train_results.dill" import subprocess subprocess.check_call( [ sys.executable, "-m", "better_promptability.train.train_main", str(kwargs_file), str(results_file), ] ) with open(results_file, "rb") as f: results = dill.load(f) return results
better-promptability-main
better_promptability/train/train.py
from typing import Dict, List, Optional, Tuple import pytorch_lightning as pl from tango.common.lazy import Lazy from tango.integrations.pytorch_lightning import LightningTrainer from tango.format import JsonFormat from tango.step import Step from ..data.config import Config from ..data.prompt_data_module import PromptDataModule from ..models.model import Model @Step.register("eval_step") class EvalStep(Step): DETERMINISTIC: bool = True CACHEABLE = True FORMAT = JsonFormat() def run( # type: ignore[override] self, config: Config, trainer: Lazy[LightningTrainer], model: Lazy[Model], datamodule: Lazy[PromptDataModule], ) -> Tuple[Optional[str], List[Dict[str, float]]]: pl.seed_everything(config.seed) datamodule = datamodule.construct(config=config) datamodule.prepare_data() datamodule.setup() trainer: LightningTrainer = trainer.construct( work_dir=self.work_dir, gpus=config.gpus, accelerator="gpu" if config.gpus else "cpu", auto_select_gpus=True, ) model = model.construct(config=config, dataset=datamodule) output = trainer.test(model, dataloaders=datamodule.val_dataloader()) # Make output the same format as TrainStep for results aggregation. # Maybe it's cleaner to make the aggregation more flexible instead. assert len(output) == 1 output = [{"best_" + k: v for k, v in output[0].items()}] return None, output
better-promptability-main
better_promptability/train/eval.py
from __future__ import annotations from typing import Union from transformers.optimization import Adafactor as HFAdafactor from tango.integrations.torch.optim import Optimizer @Optimizer.register("adafactor") class Adafactor(HFAdafactor): """See https://github.com/huggingface/transformers/issues/14830 Nevertheless, this is only here for backward compatibility, and I suspect technically you can just use transformers::adafactor in your config. """ @staticmethod def _get_options(param_group, param_shape, min_dim_size_to_factor=128): factored, use_first_moment = HFAdafactor._get_options(param_group, param_shape) if all(d < min_dim_size_to_factor for d in param_shape): factored = False return factored, use_first_moment def resolve_optimizer_conf( opt_conf: Union[list[Optimizer], tuple[list[Optimizer], list[dict]]] ) -> Optimizer: """ Get the optimizer from the lightning's configure_optimizers() output. """ if ( isinstance(opt_conf, (list, tuple)) and len(opt_conf) == 2 and isinstance(opt_conf[0][0], Optimizer) ): # optimizers + schedulers optimizers = opt_conf[0] else: optimizers = opt_conf assert len(optimizers) == 1 return optimizers[0]
better-promptability-main
better_promptability/train/optim.py
import sys import dill from tango.common.logging import initialize_logging from tango.common.util import import_extra_module from better_promptability.train.train import _train_step def main(): initialize_logging() _, kwargs_file, results_file = sys.argv with open(kwargs_file, "rb") as f: training_kwargs = dill.load(f) for module in training_kwargs["extra_modules"]: import_extra_module(module) results = _train_step( training_kwargs["work_dir"], training_kwargs["config"], training_kwargs["trainer"], training_kwargs["strategy"], training_kwargs["model"], datamodule=training_kwargs["datamodule"], ) with open(results_file, "wb") as f: dill.dump(results, f) if __name__ == "__main__": main()
better-promptability-main
better_promptability/train/train_main.py
better-promptability-main
better_promptability/modules/__init__.py
import logging import torch from transformers import ( AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForCausalLM, ) logger = logging.getLogger(__name__) TASKS = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "causal-lm": AutoModelForCausalLM, "summarization": AutoModelForSeq2SeqLM, "translation": AutoModelForSeq2SeqLM, "seq2seq-lm": AutoModelForSeq2SeqLM, } class Transformer(torch.nn.Module): def __init__( self, transformer_model: str, task: str, trainable=True, config_cls=AutoConfig, model_cls=None, **config_kwargs, ): super().__init__() config_args = dict(config_kwargs) if task == "base": # TODO: this might break models that don't support this flag config_args["add_pooling_layer"] = False self.config = config_cls.from_pretrained(transformer_model, **config_args) model_cls = model_cls if model_cls is not None else TASKS[task] self.model = model_cls.from_pretrained(transformer_model, config=self.config) if not trainable: # TODO: support this assert task == "base", "No support for freezing the backbone for headed tasks yet" self.trainable = trainable def forward(self, *args, **kwargs): if "attention_mask" in kwargs: # `transformers` doesn't take bool masks which is crazy kwargs["attention_mask"] = kwargs["attention_mask"].float() if "decoder_attention_mask" in kwargs: kwargs["decoder_attention_mask"] = kwargs["decoder_attention_mask"].float() # If grad was previous disabled (e.g., in eval), don't change it with torch.set_grad_enabled(torch.is_grad_enabled() and self.trainable): return self.model(*args, **kwargs)
better-promptability-main
better_promptability/modules/transformer.py
import logging import numpy as np import torch from torch import nn import torch.nn.functional as F logger = logging.getLogger(__name__) class WithPrefixEmbedding(nn.Module): """ From https://github.com/shmsw25/Channel-LM-Prompting/blob/cbbb92cc97039c73475ddf0db46896e9efeff3c1/model_util.py#L113 """ def __init__(self, orig_embed, expected_vocab_size, n_prefix): super().__init__() self.expected_vocab_size = expected_vocab_size orig_embed_len = orig_embed.weight.shape[0] assert expected_vocab_size <= orig_embed_len if expected_vocab_size < orig_embed_len: logger.warning( f"Embedding matrix will be resized from {orig_embed_len} to {expected_vocab_size}. " "This is expected for at least T5, and maybe some other models too. " "See https://github.com/huggingface/transformers/issues/4875#issuecomment-997299787" ) self.embed = orig_embed self.new_embed = nn.Embedding(n_prefix, self.embed.embedding_dim) # following Lester et al. 2021 in initializing using the top 5000 random vocabs indices = np.random.permutation(range(5000))[:n_prefix] init_weight = self.embed.state_dict()["weight"][indices] self.new_embed._load_from_state_dict({"weight": init_weight}, "", None, True, [], [], "") def forward(self, input): return F.embedding( input, torch.cat([self.embed.weight[: self.expected_vocab_size], self.new_embed.weight], 0), self.embed.padding_idx, self.embed.max_norm, self.embed.norm_type, self.embed.scale_grad_by_freq, self.embed.sparse, )
better-promptability-main
better_promptability/modules/with_prefix_embedding.py
from __future__ import annotations from typing import Mapping, Optional from tango.common import PathOrStr, Params from .config import Config from .t0_module import T0Module class T0Mixture: """ This class is used to initialize a collection of T0Module. """ def __init__( self, mixture_name: str, # should be "d4_train", "d4_dev", or "green" config: Config, num_prefix: int, transformer_model: PathOrStr, t0_data_cache: PathOrStr, subsample_indices_file: Optional[str] = None, **data_module_kwargs, ): assert mixture_name in {"d4_train", "d4_dev", "green"} self.mixture_name = mixture_name self.data_modules: dict[str, T0Module] = {} for task_name in Params.from_file("configs/t0_mixtures.jsonnet")[mixture_name]: self.data_modules[task_name] = T0Module( config=config, num_prefix=num_prefix, transformer_model=transformer_model, mixture_name=self.mixture_name, task_name=task_name, t0_data_cache=t0_data_cache, subsample_indices_file=subsample_indices_file, **data_module_kwargs, ) assert len(self.data_modules) > 0
better-promptability-main
better_promptability/data/t0_mixture.py
from __future__ import annotations import random from typing import Any, Optional, Union from datasets import Dataset as HFDataset from torch.utils.data import Dataset from tango.common import Tqdm class MixerDataset(Dataset): """ This dataset mixes multiple other datasets into a single :class:`Dataset`. The `sampling_cap` argument sets an artificial size limit for all of the datasets which controls the sampling probability for each. This is useful when you have a mix of small and large datasets. When using `sampling_cap`, you should call :meth:`resample()` after every epoch to randomize the examples that get picked from the undersampled datasets, i.e. the datasets that are bigger than `sampling_cap`. """ def __init__( self, datasets: list[HFDataset], sampling_cap: Optional[int] = None, seed: int = 3, # this is important during distributed training no_resample: bool = False, # useful for validation ): self._datasets: list[Union[Dataset, HFDataset]] = [] self._total_size: int = 0 self._no_resample = no_resample for dataset in Tqdm.tqdm(datasets, desc="Mixing datasets"): if sampling_cap is not None and len(dataset) > sampling_cap: self._total_size += sampling_cap self._datasets.append(_UndersampledDataset(dataset, sampling_cap, seed=seed)) else: self._total_size += len(dataset) self._datasets.append(dataset) def __getitem__(self, key: int) -> Any: # type: ignore[override] for dataset in self._datasets: if key < len(dataset): return dataset[key] key -= len(dataset) raise IndexError("index out of bounds") def __len__(self) -> int: return self._total_size def get_all_example_lens(self) -> list[int]: lens = [] for dataset in Tqdm.tqdm(self._datasets, desc="Getting lengths for sampler"): if isinstance(dataset, HFDataset): lens.extend(dataset["sort_key_len"]) elif isinstance(dataset, _UndersampledDataset): lens.extend(dataset.get_active_example_lens()) else: assert False return lens def resample(self): if self._no_resample: return for dataset in self._datasets: if isinstance(dataset, _UndersampledDataset): dataset.resample() class _UndersampledDataset(Dataset): def __init__( self, dataset: HFDataset, sampling_cap: int, seed: int = 3, ): assert sampling_cap < len(dataset) self._dataset = dataset self._sampling_cap = sampling_cap self._indices = list(range(len(self._dataset))) self._num_taken = sampling_cap self._seed = seed # It's important that we can shuffle deterministically in order to guarantee # that different processes shuffle the data in exactly the same way during distributed # data parallel training, so we always set the seed before shuffling in this class. # However, we don't want to mess with the RNG state outside of this class, so # we make sure to reset it right after we shuffle. state = random.getstate() random.seed(self._seed) random.shuffle(self._indices) random.setstate(state) def __getitem__(self, i: int) -> Any: # type: ignore[override] if i > self._sampling_cap: raise IndexError("index out of bounds") return self._dataset[self._indices[i]] def __len__(self) -> int: return self._sampling_cap def get_active_example_lens(self) -> list[int]: return self._dataset.select(self._indices[: self._sampling_cap])["sort_key_len"] def resample(self): self._seed += 1 state = random.getstate() random.seed(self._seed) if self._num_taken + self._sampling_cap <= len(self._dataset): # Re-organize `self._indices` so that the latest used chunk is pulled off and put on the end. self._indices = ( self._indices[self._sampling_cap :] + self._indices[: self._sampling_cap] ) self._num_taken += self._sampling_cap else: # Re-shuffle `self._indices` in a way that ensures the last chunk we have got to is # used next. used = ( self._indices[: self._sampling_cap] + self._indices[self._sampling_cap + (len(self._dataset) - self._num_taken) :] ) unused = self._indices[ self._sampling_cap : self._sampling_cap + (len(self._dataset) - self._num_taken) ] # `used` will be sliced up and moved around before being added back into `self._indices`, # so we shuffle it now to add randomness. random.shuffle(used) # `next_up` is the next chunk of `self._sampling_cap` which will include all # of `unused` and however many examples from `used` that we need to reach # `self._sampling_cap` instances. next_up = unused + used[: self._sampling_cap - len(unused)] random.shuffle(next_up) # Put everything back together into `self._indices`. self._indices = next_up + used[self._sampling_cap - len(unused) :] # clean up to hopefully help GC del used, unused, next_up self._num_taken = self._sampling_cap random.setstate(state) def fast_forward(self, num_epochs): # Technically we can manipulate self._seed, self._indices, and self._num_taken directly, # but this is easier and I think not much slower for _ in range(num_epochs): self.resample()
better-promptability-main
better_promptability/data/mixer_dataset.py
from typing import Optional, Union from tango.common.aliases import PathOrStr from tango.common.registrable import Registrable class Config(Registrable): def __init__( self, seed: int = 42, gpus: int = 1, precision: Union[int, str] = 32, output_dir: Optional[PathOrStr] = None, auto_select_gpus: bool = True, ): self.seed = seed self.precision = precision self.gpus = gpus # TODO: do stuff with visible devices. self.output_dir = output_dir self.auto_select_gpus = auto_select_gpus Config.register("default")(Config)
better-promptability-main
better_promptability/data/config.py
from __future__ import annotations from typing import Any, Mapping from urllib.error import HTTPError from tango.common.aliases import PathOrStr from transformers import T5Tokenizer, PreTrainedTokenizerBase from .data_utils import PAD_TYPE from .data_module import DataModule from .config import Config class PromptDataModule(DataModule): def __init__( self, config: Config, num_prefix: int, transformer_model: PathOrStr, deep: bool = False, **kwargs, ): self.num_prefix = num_prefix self.transformer_model = transformer_model self.deep = deep if not self.deep: self.task_tokens = ["<TASK{}>".format(str(i).zfill(2)) for i in range(self.num_prefix)] super().__init__(config, **kwargs) self.inputs_max_length = 768 self.targets_max_length = 192 @property def hash_fields(self) -> list[Any]: return super().hash_fields + [ self.num_prefix, self.deep, self.inputs_max_length, self.targets_max_length, ] def setup_tokenizer(self, retry=10) -> PreTrainedTokenizerBase: while True: try: tokenizer = T5Tokenizer.from_pretrained(self.transformer_model) break except HTTPError as e: if retry == 0: raise e retry -= 1 if not self.deep: tokenizer.add_tokens(self.task_tokens) task_token_ids = tokenizer( " ".join(self.task_tokens), return_tensors="pt", add_special_tokens=False )["input_ids"] assert task_token_ids.shape[-1] == self.num_prefix self.task_token_ids = task_token_ids.squeeze(0).tolist() return tokenizer def tokenize(self, example: dict[str, Any], split: str): return NotImplementedError def pad_token_map(self, split: str) -> Mapping[str, PAD_TYPE]: # type: ignore """ Specifies the padding for each key. Only keys including in this map will be included in the batch. """ pad_token_map_ = { "input_ids": 0, "input_mask": False, "target_ids": 0, "target_mask": False, } return pad_token_map_
better-promptability-main
better_promptability/data/prompt_data_module.py
from __future__ import annotations import logging import os from abc import abstractmethod, abstractproperty from collections.abc import ItemsView from typing import Any, Mapping, Optional, Union from allennlp.training.metrics import Metric import datasets from datasets import Dataset as HFDataset, DatasetDict as HFDatasetDict from tango.common import DatasetDict as TangoDatasetDict from tango.common.aliases import PathOrStr from tango.integrations.pytorch_lightning.data import LightningDataModule from torch.utils.data import DataLoader from transformers import PreTrainedTokenizerBase from transformers.trainer_pt_utils import LengthGroupedSampler, DistributedLengthGroupedSampler from .config import Config from .data_utils import PAD_TYPE, collate_fn as default_collate_fn, md5 from .mixer_dataset import MixerDataset # Sometimes we want to change the implementation of methods, etc., which cache ignores. # We maintain our own cache so this is not very useful anyway. datasets.set_caching_enabled(False) logger = logging.getLogger(__name__) DatasetDictType = Union[TangoDatasetDict, HFDatasetDict] class DataModule(LightningDataModule): """ Abstract class representing a lightning data module using HF datasets, relevant properties, and a tokenizer. """ def __init__( self, config: Config, data_dir: Optional[PathOrStr] = None, max_length: Optional[int] = None, preprocess_and_save: bool = True, batch_size: int = 32, eval_batch_size: int = 32, num_workers: int = 1, ): super().__init__() self.config = config self.data_dir = data_dir or "/tmp/better-promptability/data-dir" self.max_length = max_length self.preprocess_and_save = preprocess_and_save self.batch_size = batch_size self.eval_batch_size = eval_batch_size self.num_workers = num_workers self._tokenizer: Optional[PreTrainedTokenizerBase] = None def setup(self, stage: Optional[str] = None): if self.preprocess_and_save: if os.path.exists(self.cache_path): self.dataset_dict = HFDatasetDict.load_from_disk(self.cache_path) return self.dataset_dict = self.load() if self.preprocess_and_save: self.dataset_dict = self.preprocess(self.dataset_dict) logger.info(f"Saving dataset cache at {self.cache_path}") self.dataset_dict.save_to_disk(self.cache_path) def _to_params(self): return {} def __getitem__(self, key: str) -> HFDataset: return self.dataset_dict[key] @property def hash_fields(self) -> list[Any]: """For cache purpose""" return [self.config.seed, self.tokenizer.__repr__()] @property def cache_path(self) -> str: hash_fields = "".join([str(f) for f in self.hash_fields]) return os.path.join( self.data_dir, f"{self.__class__.__name__}_{md5(hash_fields)}.datacache", ) @property def train_split(self) -> str: return "train" @property def dev_splits(self) -> list[str]: return ["dev"] @property def test_splits(self) -> list[str]: return ["test"] # we don't actually use this @property @abstractproperty def sort_key(self) -> str: raise NotImplementedError("This is an abstract property. Did you forget to implement it?") @property @abstractproperty def metric_names(self) -> list[str]: raise NotImplementedError("This is an abstract property. Did you forget to implement it?") def instantiate_metric(self, metric_name: str, split: str) -> Metric: return Metric.by_name(metric_name)() @property def metric_to_watch(self) -> str: if len(self.metric_names) == 1: return self.metric_names[0] else: raise NotImplementedError( "This is an abstract property. Did you forget to implement it?" ) @property @abstractproperty def metric_watch_mode(self) -> str: raise NotImplementedError("This is an abstract property. Did you forget to implement it?") @abstractmethod def load(self) -> DatasetDictType: raise NotImplementedError("This is an abstract method. Did you forget to implement it?") @abstractmethod def tokenize(self, examples: dict[str, list], split: str) -> dict[str, list]: raise NotImplementedError("This is an abstract method. Did you forget to implement it?") def preprocess(self, dataset_dict: DatasetDictType) -> DatasetDictType: logger.info("Begin preprocessing") assert isinstance(dataset_dict, HFDatasetDict) dataset_dict = HFDatasetDict( # reimplementing DatasetDict.map to provide `split` { split: dataset.map( lambda examples: self.tokenize(examples, split), batched=False, # to make tokenization/transformation easier num_proc=4, ) for split, dataset in dataset_dict.items() } ) logger.info("End preprocessing") # Rename validation -> dev if "validation" in dataset_dict and "dev" not in dataset_dict: dataset_dict["dev"] = dataset_dict["validation"] del dataset_dict["validation"] return dataset_dict @property def tokenizer(self) -> PreTrainedTokenizerBase: if self._tokenizer is None: tokenizer = self.setup_tokenizer() self._tokenizer = tokenizer return tokenizer else: return self._tokenizer @tokenizer.setter def tokenizer(self, tokenizer: PreTrainedTokenizerBase): self._tokenizer = tokenizer @abstractmethod def setup_tokenizer(self) -> PreTrainedTokenizerBase: raise NotImplementedError("This is an abstract method. Did you forget to implement it?") def items(self) -> ItemsView: return self.dataset_dict.items() def dataloader( self, split: str, batch_size: int, collate_fn=default_collate_fn ) -> DataLoader: dataset_split = self.dataset_dict[split] # LengthGroupedSampler sorts from longest to shortest; we want the reverse if isinstance(dataset_split, MixerDataset): # The naive processing is slow and takes too much memory lens = [-l for l in dataset_split.get_all_example_lens()] # noqa: E741 else: lens = [-len(ids) for ids in dataset_split[self.sort_key]] if self.config.gpus is None or self.config.gpus <= 1: sampler = LengthGroupedSampler(batch_size, lengths=lens) else: sampler = DistributedLengthGroupedSampler(batch_size, lengths=lens) pad_token_map = self.pad_token_map(split) assert all(pad is not None for pad in pad_token_map.values()) dataloader = DataLoader( dataset_split, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=self.num_workers, collate_fn=lambda batch: collate_fn(batch, pad_token_map, self.tokenizer.padding_side), pin_memory=True, ) return dataloader @abstractmethod def pad_token_map(self, split: str) -> Mapping[str, PAD_TYPE]: """ Specifies the padding for each key. Only keys including in this map will be included in the batch. """ raise NotImplementedError("This is an abstract method. Did you forget to implement it?") def train_dataloader(self) -> DataLoader: return self.dataloader(self.train_split, self.batch_size) def val_dataloader(self, shuffle: bool = False): return [self.dataloader(split, self.eval_batch_size) for split in self.dev_splits] def test_dataloader(self, shuffle: bool = False): return [self.dataloader(split, self.eval_batch_size) for split in self.test_splits]
better-promptability-main
better_promptability/data/data_module.py
from __future__ import annotations import random from typing import Optional, Mapping from datasets import Dataset as HFDataset from tango.common import PathOrStr, Tqdm import torch import torch.distributed as dist from torch.utils.data.dataloader import DataLoader from transformers.trainer_pt_utils import LengthGroupedSampler from .config import Config from .data_utils import collate_fn as default_collate_fn, PAD_TYPE from .mixer_dataloader import MixerDataLoader from .mixer_dataset import _UndersampledDataset from .prompt_data_module import PromptDataModule from .t0_multitask_data_module import T0MultiTaskDataModule def split_batch(meta_batch: list, support_batch_size: int) -> list: # Because each batch is internally sorted by length, the naive split will cause a distributional # difference. processed_meta_batch = [] for batch in meta_batch: batch_size = len(list(batch.values())[0]) assert all(len(v) == batch_size for v in batch.values()) support_indices = random.sample(range(batch_size), support_batch_size) support_indices_set = set(support_indices) query_indices = [i for i in range(batch_size) if i not in support_indices_set] support_batch = {k: v[support_indices] for k, v in batch.items()} query_batch = {k: v[query_indices] for k, v in batch.items()} processed_meta_batch.append((support_batch, query_batch)) return processed_meta_batch @PromptDataModule.register("t0_meta_learning") class T0MetaLearningDataModule(T0MultiTaskDataModule): def __init__( self, meta_batch_size: int, support_batch_size: int, mixture_name: str, # should be 'd4_train', 'd4_dev', or 'green'. config: Config, num_prefix: int, transformer_model: PathOrStr, sampling_cap: Optional[int] = 500000, **kwargs ): self.meta_batch_size = meta_batch_size self._meta_batch_size_per_device = self.meta_batch_size // ( dist.get_world_size() if dist.is_initialized() else 1 ) self.support_batch_size = support_batch_size super().__init__( mixture_name, config, num_prefix, transformer_model, sampling_cap=sampling_cap, **kwargs ) def collate_fn( self, batch: list[dict[str, list]], pad_token_map: Mapping[str, PAD_TYPE], padding_side: str ) -> list[tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]]: batch = [ default_collate_fn(batch[i : i + self.real_batch_size], pad_token_map, padding_side) for i in range(0, len(batch), self.real_batch_size) ] if len(batch[-1]["input_ids"]) < self.real_batch_size: batch = batch[:-1] return split_batch(batch, self.support_batch_size) def dataloader( self, split: str, batch_size: int, collate_fn=default_collate_fn ) -> DataLoader: if split != "train": return super().dataloader(split, batch_size) dataset_split = self.dataset_dict[split] pad_token_map = self.pad_token_map(split) assert all(pad is not None for pad in pad_token_map.values()) dataloaders = [] for dataset in Tqdm.tqdm(dataset_split._datasets, desc="Creating dataloaders"): # zhaofeng: I don't particularly like this design because of the redundancy with # DataModule. But this is necessary at least to accomodate _UndersampledDataset at the # moment, unless we can somehow turn it into a DataModule too. if isinstance(dataset, HFDataset): lens = dataset["sort_key_len"] elif isinstance(dataset, _UndersampledDataset): lens = dataset.get_active_example_lens() else: assert False # LengthGroupedSampler sorts from longest to shortest; we want the reverse lens = [-l for l in lens] # noqa: E741 # It's important we don't used the distributed sampler here since distributed logic # is handled in MixerDataloader sampler = LengthGroupedSampler(batch_size, lengths=lens) dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=0, # avoid too many open files error collate_fn=lambda batch: collate_fn( batch, pad_token_map, self.tokenizer.padding_side ), pin_memory=True, drop_last=True, # division into support/query is unclear with incomplete batches ) dataloaders.append(dataloader) return MixerDataLoader( dataloaders, self.meta_batch_size, batch_postprocessor=lambda b: split_batch(b, self.support_batch_size), )
better-promptability-main
better_promptability/data/t0_meta_learning_data_module.py
from .t0_mixture import T0Mixture from .t0_module import T0Module
better-promptability-main
better_promptability/data/__init__.py
from __future__ import annotations from typing import Any, List, Mapping, Optional from pathlib import Path import pickle from allennlp.training.metrics import Metric import numpy as np from tango.common import Params, PathOrStr import datasets from .data_module import DatasetDictType from .data_utils import md5, PAD_TYPE from .prompt_data_module import PromptDataModule from .config import Config def read_task_info() -> dict[str, tuple[str, Optional[str], str]]: task_name_to_info: dict[str, tuple[str, Optional[str], str]] = {} for task_name, info in ( Params.from_file("configs/t0_task_info.jsonnet").as_dict(quiet=True)["tasks"].items() ): task_name_to_info[task_name] = ( info["dataset_name"], info["subset_name"], info["template_name"], ) return task_name_to_info @PromptDataModule.register("t0", exist_ok=True) class T0Module(PromptDataModule): """ Represents a single dataset AND template, but all the splits. """ def __init__( self, config: Config, num_prefix: int, transformer_model: PathOrStr, mixture_name: str, task_name: str, t0_data_cache: PathOrStr, subsample_indices_file: Optional[str] = None, **kwargs, ): super().__init__(config, num_prefix, transformer_model, **kwargs) self.mixture_name = mixture_name self.task_name = task_name self.dataset_name, self.subset_name, self.template_name = read_task_info()[self.task_name] self.t0_data_cache = Path(t0_data_cache) self.subsample_indices = None if subsample_indices_file is not None: self.subsample_indices = pickle.load(open(subsample_indices_file, "rb"))[task_name] @property def hash_fields(self) -> list[Any]: return super().hash_fields + [self.task_name] def setup(self, stage: Optional[str] = None): super().setup(stage) if self.subsample_indices is not None: indices, checksum = self.subsample_indices dataset = self.dataset_dict[self.train_split].select(indices) assert md5("".join(str(ex["inputs"] + ex["targets"]) for ex in dataset)) == checksum self.dataset_dict[self.train_split] = dataset @property def dev_splits(self) -> list[str]: # d4_dev and green datasets should have dev splits, d4_train may not. if ( self.mixture_name in {"d4_dev", "green"} or "dev" in self.dataset_dict ): return ["dev"] return [] @property def test_splits(self) -> list[str]: # We don't need the test sets. The test set labels of some datasets are hidden # (e.g., superglue), and T0 only evaluated on the dev sets. return [] @property def metric_names(self) -> list[str]: # For all the green (i.e., d4_score_eval) datasets, all tasks have accuracy as the metric. return ["categorical_accuracy"] @property def metric_watch_mode(self) -> str: return "max" @property def sort_key(self) -> str: return "inputs" def load(self) -> DatasetDictType: data_path = self.t0_data_cache / self.task_name assert data_path.is_dir() dataset_dict = datasets.load_from_disk(data_path) # See comment in test_splits(), above dataset_dict.pop("test", None) return dataset_dict def tokenize(self, example: dict[str, Any], split: str) -> dict[str, Any]: inputs = example["inputs"][: self.inputs_max_length] # Make sure there are no other EOS in `inputs` and `targets`. # The EOS token is really the only special token we are concerned about with T5. # T5 has no BOS token. There might be UNK tokens in the inputs though, but that's okay. assert self.tokenizer.eos_token_id not in inputs single_target: bool = False is_correct: Optional[List[bool]] = None targets = example["targets"] if self.mixture_name == "d4_train": single_target = True elif self.mixture_name == "d4_dev" and split == self.train_split: single_target = True # We want to evaluate d4_dev datasets same way as the green ones. # Some d4_dev datasets do not have answer_choices at all # (eg. "web_questions_get_the_answer" simply wants a knowledge-based answer). # We ignore these datasets. elif self.mixture_name == "d4_dev" and split != self.train_split: single_target = False # The format in d4_dev is the same as train (there is no is_correct). # To get multiple targets, we need to use "answer_choices", and tokenize them. is_correct = [ choice.strip() == example["targets_pretokenized"].strip() for choice in example["answer_choices"] ] targets = [self.tokenizer(choice)["input_ids"] for choice in example["answer_choices"]] elif self.mixture_name == "green" and split == self.train_split: single_target = True # Actually getting the single target. correct_idx = np.argmax(example["is_correct"]) targets = targets[correct_idx] else: single_target = False is_correct = example["is_correct"] if single_target: targets = targets[:-1][ # exclude EOS in example['targets'] (we add later) : self.targets_max_length ] assert self.tokenizer.eos_token_id not in targets input_ids, target_ids, input_mask, target_mask = assemble_prompt( inputs, targets, self.tokenizer.eos_token_id, self.task_token_ids if not self.deep else [], ) else: input_ids = [] input_mask = [] target_mask = [] target_ids = [] for target in targets: target = target[:-1][ # exclude EOS in example['targets'] (we add later) : self.targets_max_length ] assert self.tokenizer.eos_token_id not in target _input_ids, _target_ids, _input_mask, _target_mask = assemble_prompt( inputs, target, self.tokenizer.eos_token_id, self.task_token_ids if not self.deep else [], ) input_ids.append(_input_ids) input_mask.append(_input_mask) target_ids.append(_target_ids) target_mask.append(_target_mask) return_dict = { "input_ids": input_ids, "input_mask": input_mask, "target_ids": target_ids, "target_mask": target_mask, "sort_key_len": len(example[self.sort_key]), } if not single_target: assert is_correct is not None and sum(is_correct) == 1 return_dict["is_correct"] = is_correct return_dict["is_correct_mask"] = [True] * len(is_correct) return return_dict def pad_token_map(self, split: str) -> Mapping[str, PAD_TYPE]: # type: ignore """ Specifies the padding for each key. Only keys including in this map will be included in the batch. """ pad_token_map_ = { "input_ids": 0, "input_mask": False, "target_ids": 0, "target_mask": False, } if ( self.mixture_name in {"d4_dev", "green"} and split != self.train_split ): pad_token_map_["is_correct"] = False pad_token_map_["is_correct_mask"] = False return pad_token_map_ def assemble_prompt(inputs, targets, eos_token_id, task_token_ids): input_ids = task_token_ids + inputs + [eos_token_id] target_ids = targets + [eos_token_id] input_mask = [True] * len(input_ids) target_mask = [True] * len(target_ids) return input_ids, target_ids, input_mask, target_mask
better-promptability-main
better_promptability/data/t0_module.py
from __future__ import annotations from typing import Optional, Mapping, Any from tango.common import Tqdm, DatasetDict, PathOrStr from .data_utils import PAD_TYPE from .config import Config from .mixer_dataset import MixerDataset, _UndersampledDataset from .prompt_data_module import PromptDataModule from .t0_mixture import T0Mixture @PromptDataModule.register("t0_multitask") class T0MultiTaskDataModule(PromptDataModule): def __init__( self, mixture_name: str, # should be 'd4_train', 'd4_dev', or 'green'. config: Config, num_prefix: int, transformer_model: PathOrStr, t0_data_cache: PathOrStr, sampling_cap: Optional[int] = 500000, dev_sampling_cap: Optional[int] = 400, **kwargs, ): super().__init__(config, num_prefix, transformer_model, preprocess_and_save=False, **kwargs) self.mixture_name = mixture_name self.t0_mixture = T0Mixture( mixture_name, config, num_prefix, transformer_model, t0_data_cache=t0_data_cache, **kwargs, ) self.sampling_cap = sampling_cap self.dev_sampling_cap = dev_sampling_cap @property def hash_fields(self) -> list[Any]: return super().hash_fields + [ self.mixture_name, self.sampling_cap, self.dev_sampling_cap, ] @property def dev_splits(self) -> list[str]: return ["dev"] @property def test_splits(self) -> list[str]: # We don't need the test sets. The test set labels of some datasets are hidden # (e.g., superglue), and T0 only evaluated on the dev sets. return [] @property def metric_names(self) -> list[str]: return ["categorical_accuracy"] @property def metric_watch_mode(self) -> str: return "max" @property def sort_key(self) -> str: return "inputs" def pad_token_map(self, split: str) -> Mapping[str, PAD_TYPE]: # type: ignore pad_token_map_ = { "input_ids": 0, "input_mask": False, "target_ids": 0, "target_mask": False, } if ( self.mixture_name in {"d4_dev", "green"} and split != self.train_split ): pad_token_map_["is_correct"] = False pad_token_map_["is_correct_mask"] = False return pad_token_map_ def load(self) -> DatasetDict: with Tqdm.tqdm(self.t0_mixture.data_modules.items(), "Loading T0 datasets") as dm_iter: for name, data_module in dm_iter: dm_iter.set_postfix({"module": name if len(name) < 30 else (name[:27] + "...")}) data_module.tokenizer = self.tokenizer assert data_module.deep == self.deep if not self.deep: data_module.task_token_ids = self.task_token_ids data_module.setup() return DatasetDict( splits={ "train": MixerDataset( [dm[dm.train_split] for dm in self.t0_mixture.data_modules.values()], sampling_cap=self.sampling_cap, ), "dev": MixerDataset( [ dm[dm.dev_splits[0]] for dm in self.t0_mixture.data_modules.values() if len(dm.dev_splits) > 0 ], sampling_cap=self.dev_sampling_cap, no_resample=True, ), } ) def on_load_checkpoint(self, checkpoint: dict[str, Any]): epochs_elapsed = checkpoint["epoch"] # verified that this is 1-based, so we're good assert self.dataset_dict is not None # loaded already for mixer_dataset in self.dataset_dict.values(): assert isinstance(mixer_dataset, MixerDataset) for dataset in mixer_dataset._datasets: if isinstance(dataset, _UndersampledDataset): dataset.fast_forward(epochs_elapsed) super().on_load_checkpoint(checkpoint)
better-promptability-main
better_promptability/data/t0_multitask_data_module.py
from __future__ import annotations import hashlib from typing import Iterable, Mapping, Union import math import numpy as np import torch from torch.utils.data._utils.collate import default_collate PAD_TYPE = Union[int, float, bool] def _find_max_shapes( batch: list[dict[str, np.ndarray]], allow_keys: Iterable[str], pad_to_multiples_of_8: bool ) -> dict[str, np.ndarray]: max_shapes = {} for e in batch: for k, v in e.items(): if k not in allow_keys: continue shape = np.array(v.shape) if k not in max_shapes: max_shapes[k] = shape else: try: max_shapes[k] = np.maximum(max_shapes[k], shape) except ValueError: # more informed error message raise ValueError(f"Different shapes for {k}: {max_shapes[k]} vs. {shape}") if pad_to_multiples_of_8: for k, v in max_shapes.items(): max_shapes[k] = np.array([int(math.ceil(i / 8)) * 8 for i in v]) return max_shapes def _pad_last_dim(sequence: list[list], padding_token: PAD_TYPE, padding_side: str): """ In-place pads the last dimension of a 2d list. """ assert padding_side in {"left", "right"} max_len = max(len(e) for e in sequence) for i, e in enumerate(sequence): pad_len = max_len - len(e) sequence[i] = ( ([padding_token] * pad_len if padding_side == "left" else []) + e + ([padding_token] * pad_len if padding_side == "right" else []) ) def _pad( sequence: np.ndarray, padding_token: PAD_TYPE, padding_shape: np.ndarray, padding_side: str ) -> np.ndarray: assert padding_side in {"left", "right"} if sequence is None: return None padding = [(p, 0) if padding_side == "left" else (0, p) for p in padding_shape] return np.pad(sequence, padding, constant_values=padding_token) def _tensorize(sequence: np.ndarray, name: str) -> torch.Tensor: dtype = torch.long if "_mask" in name or "is_correct" in name: # TODO: there should be a smarter way to do this dtype = torch.bool return torch.tensor(sequence, dtype=dtype) def collate_fn( batch: list[dict[str, list]], pad_token_map: Mapping[str, PAD_TYPE], padding_side: str, pad_to_multiples_of_8: bool = False, ) -> dict[str, torch.Tensor]: """ Input: pad_token_map: specifies the padding for each key. Only keys including in this map will be included in the batch. """ # This is a bit ad-hoc to deal with 3d elements, but it works for e in batch: for k, v in e.items(): if k in pad_token_map and isinstance(v[0], list): _pad_last_dim(v, pad_token_map[k], padding_side) batch = [{k: np.array(v) for k, v in e.items() if k in pad_token_map} for e in batch] max_shapes = _find_max_shapes( batch, pad_token_map.keys(), pad_to_multiples_of_8=pad_to_multiples_of_8 ) for i, e in enumerate(batch): batch[i] = { k: _pad(e[k], pad_token, max_shapes[k] - np.array(e[k].shape), padding_side) for k, pad_token in pad_token_map.items() } batch[i] = {k: _tensorize(v, k) for k, v in batch[i].items()} return default_collate(batch) def md5(s): return hashlib.md5(s.encode("utf-8")).hexdigest()
better-promptability-main
better_promptability/data/data_utils.py
from __future__ import annotations import math import random from typing import Callable import torch.distributed as dist from torch.utils.data.dataloader import DataLoader, _BaseDataLoaderIter class MixerDataLoader(DataLoader): """ A dataloader that encapsulates multiple dataloaders. At each iteration, yields the next batch from a random dataloader. """ def __init__( self, dataloaders: list[DataLoader], meta_batch_size: int, batch_postprocessor: Callable[[list], list] = lambda b: b, ): self._dataloader_iters = [iter(dataloader) for dataloader in dataloaders] self._meta_batch_size = self._meta_batch_size_per_device = meta_batch_size self._batch_postprocessor = batch_postprocessor if dist.is_initialized(): self._world_size = dist.get_world_size() self._rank = dist.get_rank() assert self._meta_batch_size % self._world_size == 0 self._meta_batch_size_per_device = self._meta_batch_size // self._world_size num_batches = sum(len(dataloader) for dataloader in dataloaders) if dist.is_initialized(): self._total_len = num_batches // meta_batch_size if num_batches % meta_batch_size > self._rank: # Some GPUs have one more batch, depending on the number of samples in the final # batch. self._total_len += 1 else: self._total_len = int(math.ceil(num_batches / meta_batch_size)) self._weights = [len(dataloader) for dataloader in dataloaders] self._seed = 1 self.num_workers = 0 # TODO: multiprocessing self.collate_fn = None self.dataset = None def sample_one_batch(self): dataloader_idx = random.choices(range(len(self._dataloader_iters)), self._weights)[0] self._weights[dataloader_idx] -= 1 assert all(w >= 0 for w in self._weights) dataloader_iter = self._dataloader_iters[dataloader_idx] return next(dataloader_iter) def __iter__(self) -> _BaseDataLoaderIter: while True: batches = [] for _ in range(self._meta_batch_size_per_device): if dist.is_initialized(): # For every GPU, we sample the same WORLD_SIZE samples (achieved by temporarily # syncing the rng state), and give each GPU the sample whose index is the same # as its rank. Technically we only need to increment the seed at the end of an # epoch, but there's no harm in doing it more often. rngstate = random.getstate() self._seed += 1 random.seed(self._seed) for i in range(min(self._world_size, sum(self._weights))): sample = self.sample_one_batch() if i == self._rank: batches.append(sample) random.setstate(rngstate) else: batches.append(self.sample_one_batch()) if all(w == 0 for w in self._weights): # early stopping if len(batches) > 0: yield self._batch_postprocessor(batches) return assert len(batches) > 0 yield self._batch_postprocessor(batches) def __len__(self) -> int: return self._total_len
better-promptability-main
better_promptability/data/mixer_dataloader.py
def test_hello(): print("Hello, World!")
better-promptability-main
tests/hello_test.py
better-promptability-main
tests/__init__.py
import os from tango.common import Params def test_few_shot_baseline_all(): os.environ["CKPT"] = "null" d = Params.from_file("configs/fewshot_eval_all_green.jsonnet").as_dict() del os.environ["CKPT"] assert "result_anli_GPT_3_style_r1_score_eval" in d["steps"] assert "aggregated_results" in d["steps"]
better-promptability-main
tests/configs_test.py
better-promptability-main
tests/models/__init__.py
better-promptability-main
tests/steps/__init__.py
from better_promptability.steps.process_story_cloze import ProcessStoryCloze from better_promptability.common.testing import BetterPromptabilityTestCase class ProcessStoryClozeTest(BetterPromptabilityTestCase): def test_process_story_cloze(self): step = ProcessStoryCloze() result = step.run( old_data_path=str( self.FIXTURES_ROOT / "data" / "cache" / "story_cloze_2016_Story_Continuation_and_Options_score_eval" ), new_data_path=str( self.FIXTURES_ROOT / "data" / "processed_cache" / "story_cloze_2016_Story_Continuation_and_Options_score_eval" ), process_if_exists=True, ) assert len(result["train"]) == 28 assert len(result["train"][0]["targets"]) == 2 assert len(result["train"][0]["targets_pretokenized"]) == 2 assert len(result["train"][0]["is_correct"]) == 2 assert "validation" in result assert "test" not in result
better-promptability-main
tests/steps/process_story_cloze_test.py
from better_promptability.steps.process_dataset import ProcessDataset from better_promptability.common.testing import BetterPromptabilityTestCase class ProcessDatasetTest(BetterPromptabilityTestCase): def test_process_dataset(self): step = ProcessDataset() result = step.run( old_data_path=str( self.FIXTURES_ROOT / "data" / "cache" / "hellaswag_complete_first_then_score_eval" ), new_data_path=str( self.FIXTURES_ROOT / "data" / "processed_cache" / "hellaswag_complete_first_then_score_eval" ), process_if_exists=True, ) assert len(result["train"]) == 7 assert len(result["train"][0]["targets"]) == 4 assert len(result["train"][0]["targets_pretokenized"]) == 4 assert len(result["train"][0]["is_correct"]) == 4
better-promptability-main
tests/steps/process_dataset_test.py
import pytest from transformers.models import t5 as hf_t5 from better_promptability.modules.transformer import Transformer @pytest.fixture(scope="module") def model_name(): return "google/t5-small-lm-adapt" @pytest.fixture(scope="module") def tokenizer(model_name): return hf_t5.T5Tokenizer.from_pretrained(model_name) @pytest.mark.parametrize( "task", [ "seq2seq-lm", ], ) def test_transformer(task: str, model_name: str, tokenizer: hf_t5.T5Tokenizer): model = Transformer(model_name, task=task) input_ids = tokenizer( ["The <extra_id_0> walks in <extra_id_1> park", "The <extra_id_0> barked"], return_tensors="pt", padding=True, ).input_ids assert input_ids.tolist() == [ [37, 32099, 10681, 16, 32098, 2447, 1], [37, 32099, 1207, 5100, 1, 0, 0], ] attention_mask = ~(input_ids == 0) labels = tokenizer( ["<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", "<extra_id_0> dog"], return_tensors="pt", padding=True, ).input_ids assert labels.tolist() == [ [32099, 5295, 1782, 32098, 8, 32097, 1], [32099, 1782, 1, 0, 0, 0, 0], ] decoder_attention_mask = ~(labels == 0) output = model.forward( input_ids, attention_mask=attention_mask, labels=labels, decoder_attention_mask=decoder_attention_mask, ) assert output.logits is not None
better-promptability-main
tests/modules/transformer_test.py
better-promptability-main
tests/modules/__init__.py
better-promptability-main
tests/data/__init__.py
from better_promptability.data.config import Config from better_promptability.data import T0Module from better_promptability.common.testing import BetterPromptabilityTestCase class T0ModuleTest(BetterPromptabilityTestCase): def test_t0_module_green(self): t0 = T0Module( config=Config(), data_dir=str(self.FIXTURES_ROOT / "data"), num_prefix=1, transformer_model="google/t5-small-lm-adapt", mixture_name="green", task_name="hellaswag_complete_first_then_score_eval", t0_data_cache=str(self.FIXTURES_ROOT / "data" / "processed_cache"), ) t0.setup() data = t0.load() assert "train" in data train_batch = list(t0.train_dataloader())[0] assert train_batch["target_ids"].dim() == 2 val_batch = list(t0.val_dataloader()[0])[0] assert val_batch["target_ids"].dim() == 3 def test_t0_module_green_story_cloze(self): # Story_cloze special case. t0 = T0Module( config=Config(), data_dir=str(self.FIXTURES_ROOT / "data"), num_prefix=1, transformer_model="google/t5-small-lm-adapt", mixture_name="green", task_name="story_cloze_2016_Story_Continuation_and_Options_score_eval", t0_data_cache=str(self.FIXTURES_ROOT / "data" / "processed_cache"), ) t0.setup() data = t0.load() assert "train" in data train_batch = list(t0.train_dataloader())[0] assert train_batch["target_ids"].dim() == 2 val_batch = list(t0.val_dataloader()[0])[0] assert val_batch["target_ids"].dim() == 3 def test_t0_module_d4_train(self): t0 = T0Module( config=Config(), data_dir=str(self.FIXTURES_ROOT / "data"), num_prefix=1, transformer_model="google/t5-small-lm-adapt", mixture_name="d4_train", task_name="adversarial_qa_dbert_based_on", t0_data_cache=str(self.FIXTURES_ROOT / "data" / "cache"), ) t0.setup() data = t0.load() assert "train" in data train_batch = list(t0.train_dataloader())[0] assert train_batch["target_ids"].dim() == 2 val_batch = list(t0.val_dataloader()[0])[0] assert val_batch["target_ids"].dim() == 2 def test_t0_module_d4_dev(self): t0 = T0Module( config=Config(), data_dir=str(self.FIXTURES_ROOT / "data"), num_prefix=1, transformer_model="google/t5-small-lm-adapt", mixture_name="d4_dev", task_name="openbookqa_main_choices", t0_data_cache=str(self.FIXTURES_ROOT / "data" / "cache"), ) t0.setup() data = t0.load() assert "train" in data train_batch = list(t0.train_dataloader())[0] assert train_batch["target_ids"].dim() == 2 val_batch = list(t0.val_dataloader()[0])[0] assert val_batch["target_ids"].dim() == 3
better-promptability-main
tests/data/t0_data_module_test.py
import pytest from better_promptability.data.mixer_dataset import MixerDataset @pytest.fixture def datasets(): return [["a1", "a2", "a3"], ["b1", "b2", "b3", "b4", "b5", "b6", "b7"]] def test_mixer_dataset(datasets): mixer = MixerDataset(datasets) assert len(mixer) == 10 assert [x for x in mixer] == [x for dataset in datasets for x in dataset] def test_mixer_dataset_with_size_limit(datasets): mixer = MixerDataset(datasets, sampling_cap=3) assert len(mixer) == 6 assert [x for x in mixer][:3] == ["a1", "a2", "a3"] for x in [x for x in mixer][3:]: assert x in datasets[1] # Make sure we get to all instances in all datasets if we call `resample` enough times. seen = set(iter(mixer)) for _ in range(2): mixer.resample() for x in mixer: seen.add(x) assert seen == set((x for dataset in datasets for x in dataset))
better-promptability-main
tests/data/mixer_dataset_test.py
import random import sys from tqdm import tqdm random.seed(100) TASKS_METADATA = [ # task name, num templates, random performance ("ANLI", 45, 1/3), ("Hellaswag", 4, 1/4), ("StoryCloze", 5, 1/2), ("CB", 15, 1/3), ("COPA", 12, 1/2), ("RTE", 10, 1/2), ("WIC", 10, 1/2), ("WSC", 10, 1/2), ("Winogrande", 5, 1/2), ] NUM_INSTANCES = [1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,1000,1000,1200,10042,10042,10042,10042,1871,1871,1871,1871,1871,56,56,56,56,56,56,56,56,56,56,56,56,56,56,56,48,100,100,100,100,100,100,100,100,48,52,52,277,277,277,277,277,277,277,277,277,277,638,638,638,638,638,638,638,638,638,638,104,104,104,104,104,104,104,104,104,104,1267,1267,1267,1267,1267] RANDOM_SCORES = [e for metadata in TASKS_METADATA for e in [metadata[2]] * metadata[1]] XL_T0REPRO_DEEP = [0.382999986410141,0.3400000035762787,0.32499998807907104,0.3630000054836273,0.3160000145435333,0.398333340883255,0.39500001072883606,0.3569999933242798,0.40583333373069763,0.34299999475479126,0.3619999885559082,0.4008333384990692,0.3720000088214874,0.34299999475479126,0.3166666626930237,0.37599998712539673,0.3630000054836273,0.3958333432674408,0.34599998593330383,0.35499998927116394,0.40416666865348816,0.3709999918937683,0.3479999899864197,0.36916667222976685,0.3400000035762787,0.35899999737739563,0.3408333361148834,0.4009999930858612,0.34200000762939453,0.36916667222976685,0.3659999966621399,0.37599998712539673,0.41083332896232605,0.375,0.3440000116825104,0.398333340883255,0.3930000066757202,0.3310000002384186,0.3824999928474426,0.38499999046325684,0.36500000953674316,0.3916666805744171,0.35600000619888306,0.34700000286102295,0.4258333444595337,0.28719377517700195,0.2502489686012268,0.28779128193855286,0.2903803884983063,0.9182255268096924,0.911811888217926,0.9262426495552063,0.9160876274108887,0.9203634262084961,0.8214285969734192,0.8392857313156128,0.6785714030265808,0.7857142686843872,0.8214285969734192,0.8035714030265808,0.7678571343421936,0.7857142686843872,0.6785714030265808,0.8392857313156128,0.8035714030265808,0.8214285969734192,0.8571428656578064,0.8035714030265808,0.5714285969734192,0.875,0.7900000214576721,0.7200000286102295,0.7900000214576721,0.8500000238418579,0.8100000023841858,0.7799999713897705,0.8299999833106995,0.8299999833106995,0.9166666865348816,0.7692307829856873,0.7692307829856873,0.8122743964195251,0.7653429508209229,0.8050541281700134,0.833935022354126,0.8050541281700134,0.7870036363601685,0.7689530849456787,0.7833935022354126,0.7761732935905457,0.7797833681106567,0.5470219254493713,0.5250783562660217,0.5297805666923523,0.554858922958374,0.5423197746276855,0.5313479900360107,0.5595611333847046,0.5250783562660217,0.5329153537750244,0.5423197746276855,0.49038460850715637,0.5288461446762085,0.4423076808452606,0.5192307829856873,0.6538461446762085,0.682692289352417,0.5480769276618958,0.5480769276618958,0.567307710647583,0.5769230723381042,0.5406472086906433,0.5548539757728577,0.5390686392784119,0.518547773361206,0.5351223349571228] XL_MTL_DEEP = [0.36000001430511475,0.36000001430511475,0.335833340883255,0.4129999876022339,0.33399999141693115,0.4099999964237213,0.41600000858306885,0.3499999940395355,0.3916666805744171,0.33000001311302185,0.36500000953674316,0.3916666805744171,0.3540000021457672,0.34299999475479126,0.3241666555404663,0.39899998903274536,0.3930000066757202,0.39500001072883606,0.40299999713897705,0.375,0.4099999964237213,0.37700000405311584,0.34200000762939453,0.3708333373069763,0.35899999737739563,0.36500000953674316,0.3774999976158142,0.41600000858306885,0.35600000619888306,0.36666667461395264,0.36500000953674316,0.3619999885559082,0.4050000011920929,0.3799999952316284,0.36399999260902405,0.3841666579246521,0.4020000100135803,0.32499998807907104,0.3933333456516266,0.40799999237060547,0.3799999952316284,0.37833333015441895,0.3709999918937683,0.36899998784065247,0.4074999988079071,0.30860385298728943,0.26986655592918396,0.29247161746025085,0.29784902930259705,0.920897901058197,0.9326563477516174,0.9321218729019165,0.921432375907898,0.9203634262084961,0.8035714030265808,0.8214285969734192,0.8214285969734192,0.8035714030265808,0.7678571343421936,0.7857142686843872,0.8571428656578064,0.8392857313156128,0.7857142686843872,0.8392857313156128,0.75,0.8035714030265808,0.8214285969734192,0.8571428656578064,0.75,0.7291666865348816,0.8100000023841858,0.7099999785423279,0.7699999809265137,0.800000011920929,0.800000011920929,0.7599999904632568,0.8299999833106995,0.8100000023841858,0.7708333134651184,0.75,0.7307692170143127,0.7797833681106567,0.7292418479919434,0.7039711475372314,0.7942238450050354,0.7328519821166992,0.6931408047676086,0.7039711475372314,0.750902533531189,0.6859205961227417,0.7220216393470764,0.5768024921417236,0.5219435691833496,0.5454545617103577,0.5877742767333984,0.5877742767333984,0.5611284971237183,0.5203761458396912,0.5094043612480164,0.568965494632721,0.5626959204673767,0.4711538553237915,0.5769230723381042,0.5192307829856873,0.6346153616905212,0.6346153616905212,0.6538461446762085,0.4711538553237915,0.4711538553237915,0.5,0.5769230723381042,0.5217047929763794,0.5611681342124939,0.5730071067810059,0.5493291020393372,0.5603788495063782] assert all(len(RANDOM_SCORES) == len(NUM_INSTANCES) == sum(m[1] for m in TASKS_METADATA) == len(l) for k, l in globals().items() if any(k.startswith(p) for p in ("LARGE", "XL", "T0"))) def avg(l): return sum(l) / len(l) def macro_avg(l): per_task = [] for _, num_prompts, _ in TASKS_METADATA: per_task.append(avg(l[:num_prompts])) l = l[num_prompts:] assert len(l) == 0 return avg(per_task) def arg(results): assert len(RANDOM_SCORES) == len(results) scores = [sum(r) / num for r, num in zip(results, NUM_INSTANCES)] rgs = [(score - baseline) / baseline for baseline, score in zip(RANDOM_SCORES, scores)] return macro_avg(rgs) def pairwise_test(worse_scores, better_scores): worse_n_correct = [round(score * num) for score, num in zip(worse_scores, NUM_INSTANCES)] better_n_correct = [round(score * num) for score, num in zip(better_scores, NUM_INSTANCES)] worse_results = [[1] * n_correct + [0] * (num - n_correct) for n_correct, num in zip(worse_n_correct, NUM_INSTANCES)] better_results = [[1] * n_correct + [0] * (num - n_correct) for n_correct, num in zip(better_n_correct, NUM_INSTANCES)] print(f"Original ARG: worse {arg(worse_results)}, better {arg(better_results)}") arg_diffs = [] for _ in tqdm(range(1000)): new_worse_results = [] new_better_results = [] for worse, better in zip(worse_results, better_results): new_worse, new_better = zip(*random.choices(list(zip(worse, better)), k=len(worse))) new_worse_results.append(new_worse) new_better_results.append(new_better) worse_arg = arg(new_worse_results) better_arg = arg(new_better_results) arg_diffs.append(better_arg - worse_arg) print(f"arg p: {avg([d < 0 for d in arg_diffs])}") def main(): pairwise_test(XL_T0REPRO_DEEP, XL_MTL_DEEP) if __name__ == "__main__": main(*sys.argv[1:]) # pylint: disable=no-value-for-parameter
better-promptability-main
scripts/bootstrap.py
import logging import os import sys from tango.common import Params from tqdm import tqdm from better_promptability.steps.process_dataset import ProcessDataset from better_promptability.steps.process_story_cloze import ProcessStoryCloze logging.basicConfig(level=logging.INFO) def process_green_datasets(old_base_path, new_base_path): datasets = Params.from_file("configs/t0_mixtures.jsonnet")["green"] for dataset in tqdm(datasets): dataset = dataset.strip() if "story_cloze" not in dataset: step = ProcessDataset() else: step = ProcessStoryCloze() try: step.run( old_data_path=os.path.join(old_base_path, dataset), new_data_path=os.path.join(new_base_path, dataset), ) except KeyError: print(f"error in {dataset}") if __name__ == "__main__": process_green_datasets(sys.argv[1], sys.argv[2])
better-promptability-main
scripts/process_green_datasets.py
""" Download all of the data from the [bigscience/P3](https://huggingface.co/datasets/bigscience/P3) corresponding to a particular mixture. This script should only be run from the root of this repository. """ import importlib import json import os import sys from pathlib import Path import datasets from tango.common import Params from tango.common.file_lock import FileLock from tqdm import tqdm STORY_CLOZE_PATH = Path("/data/cl/user/zfw/story_cloze_dir") def main(mixture_name: str, cache_dir: str): cache_dir = Path(cache_dir) def download_task_dataset(task_name: str): local_path = cache_dir / task_name # type: ignore if not os.path.isdir(local_path) or not os.listdir(local_path): if task_name.startswith("story_cloze_"): data_dir = STORY_CLOZE_PATH / task_name # Hack to add story cloze to the config in the P3 dataset builder -- import it first # and change relevant data structures dataset_module = datasets.load.dataset_module_factory( "bigscience/P3", revision=None, download_config=None, download_mode=None, data_files=None, ) p3_module = importlib.import_module(dataset_module.module_path) # Mostly following https://huggingface.co/datasets/bigscience/P3/blob/main/P3.py task_splits_and_features = p3_module._TASK_SPLITS_AND_FEATURES_DICT # type: ignore assert task_name not in task_splits_and_features for split_name in ("validation", "test"): # story cloze has no training set split_info = json.load(open(data_dir / f"info.{split_name}.json")) features_dict = split_info["features"] assert split_info["num_shards"] == 1 if task_name not in task_splits_and_features: task_splits_and_features[task_name] = { "splits": [], "features_dict": features_dict, } task_splits_and_features[task_name]["splits"].append(split_name) assert features_dict == task_splits_and_features[task_name]["features_dict"] splits_and_features_dict = task_splits_and_features[task_name] assert task_name not in p3_module._URLs # type: ignore p3_module._URLs[task_name] = { # type: ignore split_name: {"tfrecord": data_dir / f"{split_name}.tfrecord-00000-of-00001"} for split_name in splits_and_features_dict["splits"] } p3_module.P3.BUILDER_CONFIGS.append( # type: ignore p3_module.P3Config( # type: ignore name=task_name, splits=splits_and_features_dict["splits"], features_dict=splits_and_features_dict["features_dict"], score_eval=task_name.endswith("score_eval"), ) ) p3_module.P3.builder_configs = { # type: ignore config.name: config for config in p3_module.P3.BUILDER_CONFIGS # type: ignore } retries = 0 while True: try: dataset = datasets.load_dataset("bigscience/P3", task_name) break except ConnectionError: retries += 1 if retries > 3: raise with FileLock(str(local_path) + ".lock"): dataset.save_to_disk(local_path) tasks = Params.from_file("configs/t0_mixtures.jsonnet")[mixture_name] for task in tqdm(tasks): download_task_dataset(task) if __name__ == "__main__": main(*sys.argv[1:])
better-promptability-main
scripts/download_t0_training_set.py
""" Subsamples the training set for each dataset (i.e., for all tepmlates). Ideally we want to sample the same examples across templates for a given dataset, but unfortunately this is impossible since the P3 dataset cache does not guarantee the same example order across templates. Check out, for example, hellaswag_complete_first_then_score_eval[29372] and hellaswag_Predict_ending_with_hint_score_eval[29372]. """ from pathlib import Path import pickle import sys import random from tqdm import tqdm sys.path.append(str(Path(__file__).parent.parent.absolute())) from better_promptability.data.config import Config # noqa: E402 from better_promptability.data.data_utils import md5 # noqa: E402 from better_promptability.data.t0_mixture import T0Mixture # noqa: E402 def main(mixture_name, n_shot, seed, output_file): n_shot = int(n_shot) seed = int(seed) random.seed(seed) # All arguments apart from the first two are dummy mixture = T0Mixture( mixture_name=mixture_name, t0_data_cache="/data/cl/user/zfw/better-promptability/t0_cache/", config=Config(), data_dir="tmp", num_prefix=20, transformer_model="t5-base", ) taskname_to_indices = {} for data_module in tqdm(mixture.data_modules.values()): task_name = data_module.task_name dataset_dict = data_module.load() train_split = dataset_dict[data_module.train_split] total_len = len(train_split) print(f"Sampling {n_shot} examples from {total_len} for {task_name} with seed {seed}") indices = random.sample(range(total_len), n_shot) checksum = md5( "".join(str(train_split[i]["inputs"] + train_split[i]["targets"]) for i in indices) ) taskname_to_indices[task_name] = (indices, checksum) pickle.dump(taskname_to_indices, open(output_file, "wb")) if __name__ == "__main__": main(*sys.argv[1:]) # pylint: disable=no-value-for-parameter
better-promptability-main
scripts/subsample_t0_training_set.py
import sys import os sys.path.append(os.path.abspath(os.path.join("..", "nla_semparse"))) from nla_semparse.nla_metric import NlaMetric def test_metric_basic(): metric = NlaMetric() metric(["2"], ["2"]) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 1.0, "sequence_accuracy": 1.0, } metric.reset() def test_metric_one_operation(): metric = NlaMetric() metric(["(add 2 3)"], ["(add 2 3)"]) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 1.0, "sequence_accuracy": 1.0, } metric.reset() metric(["(add 2 3)"], ["5"]) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 1.0, "sequence_accuracy": 0.0, } metric.reset() metric(["(add 2 3)"], ["(add 1 4)"]) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 1.0, "sequence_accuracy": 0.0, } metric.reset() metric(["(add 2 3)"], ["(subtract 1 4)"]) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } metric.reset() def test_metric_ill_formed_sequences(): metric = NlaMetric() metric(["(add 2)"], ["(add 2 3)"]) assert metric.get_metric() == { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } metric.reset() metric(["(add 2))"], ["(add 2 3)"]) assert metric.get_metric() == { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } metric.reset() metric(["()"], ["(add 2 3)"]) assert metric.get_metric() == { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } metric.reset() def test_metric_real_cases(): predictions1 = [ "(subtract (multiply (((((((((())))))", "(subtract (add ((multiply (((()))))))))", ] predictions2 = ["9", "9"] predictions3 = ["(subtract (multiply (((((((((())))))", "9"] targets = [ "(add (add (multiply 5 2) (divide 2 7)) (add (add 7 7) (multiply 3 (multiply 6 6))))", "(subtract (add 8 7) (subtract (add (add 6 (divide 7 7)) 7) (multiply (divide 5 4) 8)))", ] metric = NlaMetric() metric(predictions1, targets) assert metric.get_metric() == { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } metric.reset() metric(predictions2, targets) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 0.5, "sequence_accuracy": 0.0, } metric.reset() metric(predictions3, targets) assert metric.get_metric() == { "well_formedness": 0.5, "denotation_accuracy": 0.5, "sequence_accuracy": 0.0, } metric.reset() metric(targets, targets) assert metric.get_metric() == { "well_formedness": 1.0, "denotation_accuracy": 1.0, "sequence_accuracy": 1.0, } metric.reset()
allennlp-guide-master
nla_semparse/tests/nla_metric_test.py
allennlp-guide-master
nla_semparse/nla_semparse/__init__.py
from allennlp_semparse import DomainLanguage, predicate class NlaLanguage(DomainLanguage): def __init__(self): super().__init__( start_types={int}, allowed_constants={ "0": 0, "1": 1, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "7": 7, "8": 8, "9": 9, }, ) @predicate def add(self, num1: int, num2: int) -> int: return num1 + num2 @predicate def subtract(self, num1: int, num2: int) -> int: return num1 - num2 @predicate def multiply(self, num1: int, num2: int) -> int: return num1 * num2 @predicate def divide(self, num1: int, num2: int) -> int: return num1 // num2 if num2 != 0 else 0
allennlp-guide-master
nla_semparse/nla_semparse/nla_language.py
from typing import Dict, List, Optional from allennlp.training.metrics.metric import Metric from allennlp_semparse.domain_languages.domain_language import ExecutionError from .nla_language import NlaLanguage @Metric.register("nla_metric") class NlaMetric(Metric): """ Metric for evaluating prefix arithmetic sequences against targets, useful for Natural Language Arithmetic parsing. This metric evaluates predicted sequences on three things: 1) whether the predicted metric is a well-formed prefix arithmetic expression, 2) whether the predicted sequence and the target seqquence evaluate to the same value, 3) whether the predicted sequence and the target sequence are identical. """ def __init__(self): self._language = NlaLanguage() self._num_well_formed = 0 self._num_correct_denotation = 0 self._num_same_sequence = 0 self._num_all_sequences = 0 def __call__(self, predictions, targets) -> None: for prediction, target in zip(predictions, targets): if isinstance(prediction, list): prediction = " ".join(prediction).replace("( ", "(").replace(" )", ")") target = " ".join(target).replace("( ", "(").replace(" )", ")") if isinstance(prediction, str) and not prediction.startswith("("): prediction = f"({prediction})" if isinstance(target, str) and not target.startswith("("): target = f"({target})" evaluated_prediction = None evaluated_target = None try: evaluated_target = self._language.execute(target) evaluated_prediction = self._language.execute(prediction) except (TypeError, ExecutionError, IndexError): pass if isinstance(evaluated_prediction, int): self._num_well_formed += 1 if evaluated_prediction == evaluated_target: self._num_correct_denotation += 1 if prediction == target: self._num_same_sequence += 1 self._num_all_sequences += 1 def get_metric(self, reset: bool = False) -> Dict[str, float]: if self._num_all_sequences == 0: metrics = { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } else: metrics = { "well_formedness": self._num_well_formed / self._num_all_sequences, "denotation_accuracy": self._num_correct_denotation / self._num_all_sequences, "sequence_accuracy": self._num_same_sequence / self._num_all_sequences, } if reset: self.reset() return metrics def reset(self): self._num_well_formed = 0 self._num_same_sequence = 0 self._num_correct_denotation = 0 self._num_all_sequences = 0
allennlp-guide-master
nla_semparse/nla_semparse/nla_metric.py
import sys import os import random import math import argparse from typing import List, Dict, Any sys.path.append(os.path.abspath(os.path.join("..", "nla_semparse"))) from nla_semparse.nla_language import NlaLanguage class DataGenerator: """ Generator for data points for natural language arithmetic. """ def __init__(self): self.language = NlaLanguage() self.numbers = [ {"meaning": "0", "translation": "zero"}, {"meaning": "1", "translation": "one"}, {"meaning": "2", "translation": "two"}, {"meaning": "3", "translation": "three"}, {"meaning": "4", "translation": "four"}, {"meaning": "5", "translation": "five"}, {"meaning": "6", "translation": "six"}, {"meaning": "7", "translation": "seven"}, {"meaning": "8", "translation": "eight"}, {"meaning": "9", "translation": "nine"}, ] # The order below defines precedence (in ascending order). self.operators = [ {"meaning": "subtract", "translation": "minus"}, {"meaning": "add", "translation": "plus"}, {"meaning": "multiply", "translation": "times"}, {"meaning": "divide", "translation": "over"}, ] def generate_expression( self, num_operations: int, allowed_operators: List[Dict] = None ): """ Generates a single expression that contains the given number of operations. """ if num_operations == 0: return random.sample(self.numbers, 1)[0] # Expressions will be of the type (OP EXP1 EXP2) if allowed_operators is None: allowed_operators = self.operators operator_index = random.randint(0, len(allowed_operators) - 1) operator = allowed_operators[operator_index] # Decide how many operators will be in each of EXP1 and EXP2 random_value = random.random() num_operations_for_first = int(num_operations * random_value) num_operations_for_second = num_operations - num_operations_for_first - 1 # The operations in the children will be the same as the operator already sampled, or one of a higher # precedence. first_argument = self.generate_expression( num_operations_for_first, allowed_operators[operator_index:] ) second_argument = self.generate_expression( num_operations_for_second, allowed_operators[operator_index:] ) meaning_representation_parts = [ operator["meaning"], first_argument["meaning"], second_argument["meaning"], ] meaning_representation = "(" + " ".join(meaning_representation_parts) + ")" return { "meaning": meaning_representation, "translation": " ".join( [ first_argument["translation"], operator["translation"], second_argument["translation"], ] ), "denotation": self.language.execute(meaning_representation), } def generate_data( self, num_expressions: int, min_num_operations: int = 1, max_num_operations: int = 10, split_data: bool = False, train_proportion: float = 0.8, test_proportion: float = 0.1, ): """ Returns ``num_expressions`` expressions, containing number of operations in the range ``(min_num_operations, max_num_operations)``. Optionally, you can also have the data split into train, test, and dev sets, ans specify their proportions. """ data: List[Dict[str, Any]] = [] while len(data) < num_expressions: num_operations = random.randint(min_num_operations, max_num_operations) try: expression = self.generate_expression(num_operations) data.append(expression) except ZeroDivisionError: pass if not split_data: return {"data": data} test_size = math.ceil(test_proportion * num_expressions) if train_proportion + test_proportion < 1.0: dev_size = math.ceil( (1 - (train_proportion + test_proportion)) * num_expressions ) else: dev_size = 0 return { "test": data[:test_size], "dev": data[test_size : test_size + dev_size], "train": data[test_size + dev_size :], } def main(): parser = argparse.ArgumentParser() parser.add_argument( "--num-expressions", type=int, required=True, dest="num_expressions", help="Number of expressions to generate", ) parser.add_argument( "--min-num-operations", type=int, dest="min_num_operations", default=1 ) parser.add_argument( "--max-num-operations", type=int, dest="max_num_operations", default=10 ) parser.add_argument( "--output", type=str, required=True, help="""Location where output will be written. If splitting data, the name of the split will be appended to the file name""", ) parser.add_argument("--split-data", action="store_true", dest="split") parser.add_argument( "--train-proportion", type=float, dest="train_proportion", help="How big should the train split be? (Between 0 and 1)", ) parser.add_argument( "--test-proportion", type=float, dest="test_proportion", help="""How big should the test split be? (Between 0 and 1). Will also make a dev split if train_proportion + test_proportion < 1""", ) parser.add_argument( "--no-meaning", action="store_true", dest="no_meaning", help="Generated data will have denotations instead of meaning", ) args = parser.parse_args() if args.no_meaning: raise NotImplementedError data_generator = DataGenerator() data = data_generator.generate_data( num_expressions=args.num_expressions, min_num_operations=args.min_num_operations, max_num_operations=args.max_num_operations, split_data=args.split, train_proportion=args.train_proportion, test_proportion=args.test_proportion, ) if args.split: filename_parts = args.output.split(".") assert ( len(filename_parts) == 2 ), "Cannot decide how to alter the file name. Expected just one ." train_file_name = f"{filename_parts[0]}_train.{filename_parts[1]}" dev_file_name = f"{filename_parts[0]}_dev.{filename_parts[1]}" test_file_name = f"{filename_parts[0]}_test.{filename_parts[1]}" with open(train_file_name, "w") as output_file: for datum in data["train"]: source = datum["translation"] target = datum["meaning"].replace("(", "( ").replace(")", " )") print(f"{source}\t{target}", file=output_file) with open(dev_file_name, "w") as output_file: for datum in data["dev"]: source = datum["translation"] target = datum["meaning"].replace("(", "( ").replace(")", " )") print(f"{source}\t{target}", file=output_file) with open(test_file_name, "w") as output_file: for datum in data["test"]: source = datum["translation"] target = datum["meaning"].replace("(", "( ").replace(")", " )") print(f"{source}\t{target}", file=output_file) else: with open(args.output, "w") as output_file: for datum in data["data"]: source = datum["translation"] target = datum["meaning"].replace("(", "( ").replace(")", " )") print(f"{source}\t{target}", file=output_file) if __name__ == "__main__": main()
allennlp-guide-master
nla_semparse/scripts/generate_data.py
# Inputs text: TextField title: TextField stars: LabelField # Outputs aspect: LabelField sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_list_source.py
# Inputs text: TextField title: TextField # Outputs sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_stars_source.py
# Inputs text: TextField title: TextField # Outputs sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_title_solution.py
# Inputs text: TextField # Outputs sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_title_source.py
# Inputs text: TextField title: TextField stars: LabelField aspect: LabelField # either here # Outputs sentiment: LabelField aspect: LabelField # or here
allennlp-guide-master
exercises/chapter05/input_output/add_aspect_solution.py
# Inputs text: TextField title: TextField stars: LabelField # Outputs aspect: List[LabelField] sentiment: List[LabelField] # or a SequenceLabelField that depends on `aspect`
allennlp-guide-master
exercises/chapter05/input_output/add_list_solution.py
# Inputs text: TextField title: TextField stars: LabelField # OR stars: ArrayField, if you want to model the numerical value # Outputs sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_stars_solution.py
# Inputs text: TextField title: TextField stars: LabelField # Outputs sentiment: LabelField
allennlp-guide-master
exercises/chapter05/input_output/add_aspect_source.py
from allennlp.common import Params from allennlp.data import DatasetReader, Instance, Vocabulary from allennlp.data.fields import LabelField, TextField from allennlp.data.iterators import BasicIterator from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import WordTokenizer from allennlp.models import Model from allennlp.modules import Embedding, Seq2VecEncoder, TextFieldEmbedder from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.seq2vec_encoders import BagOfEmbeddingsEncoder import json # Data will be formatted as: # [title][tab][text][tab][stars][tab][aspect][tab][sentiment] @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, ): self.tokenizer = tokenizer or WordTokenizer() self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: text, sentiment = line.strip().split("\t") text_field = TextField( self.tokenizer.tokenize(text), self.token_indexers ) sentiment_field = LabelField(sentiment) fields = {"text": text_field, "sentiment": sentiment_field} yield Instance(fields) reader_params = """ { "type": "classification-tsv", "token_indexers": {"tokens": {"type": "single-id"}} } """ reader = DatasetReader.from_params(Params(json.loads(reader_params))) instances = reader.read("exercises/chapter05/input_output_reader/example_data.tsv") print(instances) vocab = Vocabulary.from_instances(instances) print(vocab) @Model.register("simple_classifier") class SimpleClassifier(Model): def __init__( self, vocab: Vocabulary, embedder: TextFieldEmbedder, encoder: Seq2VecEncoder ): super().__init__(vocab) self.embedder = embedder self.encoder = encoder num_labels = vocab.get_vocab_size("labels") self.classifier = torch.nn.Linear(encoder.get_output_dim(), num_labels) def forward( self, text: Dict[str, torch.Tensor], label: torch.Tensor ) -> Dict[str, torch.Tensor]: # Shape: (batch_size, num_tokens, embedding_dim) embedded_text = self.embedder(text) # Shape: (batch_size, num_tokens) mask = util.get_text_field_mask(text) # Shape: (batch_size, encoding_dim) encoded_text = self.encoder(embedded_text, mask) # Shape: (batch_size, num_labels) logits = self.classifier(encoded_text) # Shape: (batch_size, num_labels) probs = torch.nn.functional.softmax(logits) # Shape: (1,) loss = torch.nn.functional.cross_entropy(logits, label) return {"loss": loss, "probs": probs} iterator = BasicIterator(batch_size=2) iterator.index_with(vocab) model_params = """ { "type": "simple_classifier", "embedder": {"token_embedders": { "tokens": {"type": "embedding", "embedding_dim": 10} }}, "encoder": {"type": "bag_of_embeddings"} } """ model = Model.from_params(vocab, Params(json.loads(model_params))) for batch in iterator(instances, num_epochs=1): outputs = model(batch) print(f"Model outputs: {outputs}")
allennlp-guide-master
exercises/chapter05/putting_them_together/config_source.py
from allennlp.data import DatasetReader, Instance, Vocabulary from allennlp.data.fields import LabelField, TextField from allennlp.data.iterators import BasicIterator from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import WordTokenizer from allennlp.models import Model from allennlp.modules import Embedding, Seq2VecEncoder, TextFieldEmbedder from allennlp.modules.text_field_embedders import BasicTextFieldEmbedder from allennlp.modules.seq2vec_encoders import BagOfEmbeddingsEncoder # Data will be formatted as: # [title][tab][text][tab][stars][tab][aspect][tab][sentiment] @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__(self): self.tokenizer = WordTokenizer() self.token_indexers = {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: text, sentiment = line.strip().split("\t") text_field = TextField( self.tokenizer.tokenize(text), self.token_indexers ) sentiment_field = LabelField(sentiment) fields = {"text": text_field, "sentiment": sentiment_field} yield Instance(fields) reader = ClassificationTsvReader() instances = reader.read("exercises/chapter05/input_output_reader/example_data.tsv") print(instances) vocab = Vocabulary.from_instances(instances) print(vocab) @Model.register("simple_classifier") class SimpleClassifier(Model): def __init__( self, vocab: Vocabulary, embedder: TextFieldEmbedder, encoder: Seq2VecEncoder ): super().__init__(vocab) self.embedder = embedder self.encoder = encoder num_labels = vocab.get_vocab_size("labels") self.classifier = torch.nn.Linear(encoder.get_output_dim(), num_labels) def forward( self, text: Dict[str, torch.Tensor], label: torch.Tensor ) -> Dict[str, torch.Tensor]: # Shape: (batch_size, num_tokens, embedding_dim) embedded_text = self.embedder(text) # Shape: (batch_size, num_tokens) mask = util.get_text_field_mask(text) # Shape: (batch_size, encoding_dim) encoded_text = self.encoder(embedded_text, mask) # Shape: (batch_size, num_labels) logits = self.classifier(encoded_text) # Shape: (batch_size, num_labels) probs = torch.nn.functional.softmax(logits) # Shape: (1,) loss = torch.nn.functional.cross_entropy(logits, label) return {"loss": loss, "probs": probs} iterator = BasicIterator(batch_size=2) iterator.index_with(vocab) embedding = Embedding(num_embeddings=vocab.get_vocab_size("tokens"), embedding_dim=10) model = SimpleClassifier( vocab, BasicTextFieldEmbedder({"tokens": embedding}), BagOfEmbeddingsEncoder() ) for batch in iterator(instances, num_epochs=1): outputs = model(batch) print(f"Model outputs: {outputs}")
allennlp-guide-master
exercises/chapter05/putting_them_together/code_source.py
from allennlp.data import DatasetReader, Instance from allennlp.data.fields import LabelField, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import WordTokenizer # Data will be formatted as: # [title][tab][text][tab][stars][tab][aspect][tab][sentiment] @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__(self): self.tokenizer = WordTokenizer() self.token_indexers = {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: text, sentiment = line.strip().split("\t") text_field = TextField( self.tokenizer.tokenize(text), self.token_indexers ) sentiment_field = LabelField(sentiment) fields = {"text": text_field, "sentiment": sentiment_field} yield Instance(fields) reader = ClassificationTsvReader() instances = reader.read("exercises/chapter05/input_output_reader/example_data.tsv") print(instances)
allennlp-guide-master
exercises/chapter05/input_output_reader/add_fields_source.py
from allennlp.data import DatasetReader, Instance from allennlp.data.fields import LabelField, TextField from allennlp.data.token_indexers import SingleIdTokenIndexer from allennlp.data.tokenizers import WordTokenizer # Data will be formatted as: # [title][tab][text][tab][stars][tab][aspect][tab][sentiment] @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__(self): self.tokenizer = WordTokenizer() self.token_indexers = {"tokens": SingleIdTokenIndexer()} def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: title, text, stars, aspect, sentiment = line.strip().split("\t") title_field = TextField( self.tokenizer.tokenize(title), self.token_indexers ) text_field = TextField( self.tokenizer.tokenize(text), self.token_indexers ) stars_field = LabelField(stars) aspect_field = LabelField(aspect) sentiment_field = LabelField(sentiment) fields = { "title": title_field, "text": text_field, "stars": stars_field, "aspect": aspect_field, "sentiment": sentiment_field, } yield Instance(fields) reader = ClassificationTsvReader() print(reader.read("exercises/chapter05/input_output_reader/example_data.tsv"))
allennlp-guide-master
exercises/chapter05/input_output_reader/add_fields_solution.py
def test(): assert len(instances) == 2, "You didn't get two instances" expected_fields = {"text", "title", "stars", "aspect", "sentiment"} assert ( instances[0].fields.keys() == expected_fields ), "You don't have the right fields in your Instance" assert ( instances[0]["sentiment"] == "negative" ), "You didn't read the fields correctly" assert instances[0]["aspect"] == "tutorials", "You didn't read the fields correctly" assert ( instances[1]["sentiment"] == "positive" ), "You didn't read the fields correctly" assert instances[1]["aspect"] == "library", "You didn't read the fields correctly" __msg__.good("Well done!")
allennlp-guide-master
exercises/chapter05/input_output_reader/add_fields_test.py
inputs = {"sentence": "a very well-made, funny and entertaining picture."} archive = ( "https://storage.googleapis.com/allennlp-public-models/" "basic_stanford_sentiment_treebank-2020.06.09.tar.gz" ) predictor = Predictor.from_path(archive) interpreter = SimpleGradient(predictor) interpretation = interpreter.saliency_interpret_from_json(inputs) print(interpretation)
allennlp-guide-master
exercises/part3/interpret/saliency_source.py
inputs = {"sentence": "a very well-made, funny and entertaining picture."} archive = ( "https://storage.googleapis.com/allennlp-public-models/" "basic_stanford_sentiment_treebank-2020.06.09.tar.gz" ) predictor = Predictor.from_path(archive) reducer = InputReduction(predictor) # or Hotflip(predictor) # if it is Hotflip, we need an extra step: reducer.initialize() reduced = reducer.attack_from_json(inputs, "tokens", "grad_input_1") print(reduced)
allennlp-guide-master
exercises/part3/interpret/attacker_source.py
from allennlp.interpret.saliency_interpreters import SimpleGradient from allennlp.predictors import Predictor
allennlp-guide-master
exercises/part3/interpret/saliency_setup.py
from allennlp.models.archival import load_archive from allennlp.predictors import Predictor from allennlp.interpret.attackers import InputReduction
allennlp-guide-master
exercises/part3/interpret/attacker_setup.py
inputs = ["one plus three minus four", "five minus six times seven over one"] for nla_input in inputs: output = translate_nla(nla_input) print(f"Input: {nla_input}") print(f"Prediction: {output}\n")
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/predictor_source_medium.py
import csv from typing import Dict from allennlp.common.file_utils import cached_path from allennlp.common.util import START_SYMBOL, END_SYMBOL from allennlp.data import DatasetReader, Instance from allennlp.data.fields import TextField from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token, Tokenizer, WhitespaceTokenizer
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/dataset_reader_setup.py
class Seq2SeqDatasetReader(DatasetReader): def __init__( self, source_tokenizer: Tokenizer = None, target_tokenizer: Tokenizer = None, source_token_indexers: Dict[str, TokenIndexer] = None, target_token_indexers: Dict[str, TokenIndexer] = None, **kwargs, ) -> None: super().__init__(**kwargs) self._source_tokenizer = source_tokenizer or WhitespaceTokenizer() self._target_tokenizer = target_tokenizer or self._source_tokenizer self._source_token_indexers = source_token_indexers or { "tokens": SingleIdTokenIndexer() } self._target_token_indexers = ( target_token_indexers or self._source_token_indexers ) def _read(self, file_path: str): with open(cached_path(file_path), "r") as data_file: for line_num, row in enumerate(csv.reader(data_file, delimiter="\t")): source_sequence, target_sequence = row yield self.text_to_instance(source_sequence, target_sequence) def text_to_instance( self, source_string: str, target_string: str = None ) -> Instance: tokenized_source = self._source_tokenizer.tokenize(source_string) source_field = TextField(tokenized_source, self._source_token_indexers) if target_string is not None: tokenized_target = self._target_tokenizer.tokenize(target_string) tokenized_target.insert(0, Token(START_SYMBOL)) tokenized_target.append(Token(END_SYMBOL)) target_field = TextField(tokenized_target, self._target_token_indexers) return Instance( {"source_tokens": source_field, "target_tokens": target_field} ) else: return Instance({"source_tokens": source_field}) dataset_reader = Seq2SeqDatasetReader( source_token_indexers={"tokens": SingleIdTokenIndexer(namespace="source_tokens")}, target_token_indexers={"tokens": SingleIdTokenIndexer(namespace="target_tokens")}, ) instances = list( dataset_reader.read("nla_semparse/data/nla_with_meaning_rep_train.tsv") ) for instance in instances[:10]: print(instance)
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/dataset_reader_source.py
from typing import List from allennlp.predictors import Predictor from allennlp.models.archival import load_archive from allennlp_models.generation import ( ComposedSeq2Seq, ) # Need this for loading model archive from nla_semparse.nla_semparse.nla_metric import ( NlaMetric, ) # Need this for loading model archive archive = load_archive("nla_semparse/trained_models/seq2seq_model.tar.gz") predictor = Predictor.from_archive(archive, "seq2seq") def translate_nla(source: str) -> str: prediction_data = predictor.predict_json({"source": source}) return " ".join(prediction_data["predicted_tokens"]) inputs = ["one plus three", "five minus six", "seven times two", "four over nine"] for nla_input in inputs: output = translate_nla(nla_input) print(f"Input: {nla_input}") print(f"Prediction: {output}\n")
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/predictor_source_easy.py
from typing import Dict, List, Optional from allennlp.training.metrics.metric import Metric from allennlp_semparse.domain_languages.domain_language import ExecutionError from nla_semparse.nla_semparse.nla_language import NlaLanguage @Metric.register("nla_metric") class NlaMetric(Metric): """ Metric for evaluating prefix arithmetic sequences against targets, useful for Natural Language Arithmetic parsing. This metric evaluates predicted sequences on three things: 1) whether the predicted metric is a well-formed prefix arithmetic expression, 2) whether the predicted sequence and the target seqquence evaluate to the same value, 3) whether the predicted sequence and the target sequence are identical. """ def __init__(self): self._language = NlaLanguage() self._num_well_formed = 0 self._num_correct_denotation = 0 self._num_same_sequence = 0 self._num_all_sequences = 0 def __call__(self, predictions, targets) -> None: for prediction, target in zip(predictions, targets): if isinstance(prediction, list): prediction = " ".join(prediction).replace("( ", "(").replace(" )", ")") target = " ".join(target).replace("( ", "(").replace(" )", ")") if isinstance(prediction, str) and not prediction.startswith("("): prediction = f"({prediction})" if isinstance(target, str) and not target.startswith("("): target = f"({target})" evaluated_prediction = None evaluated_target = None try: evaluated_target = self._language.execute(target) evaluated_prediction = self._language.execute(prediction) except (TypeError, ExecutionError, IndexError): pass if isinstance(evaluated_prediction, int): self._num_well_formed += 1 if evaluated_prediction == evaluated_target: self._num_correct_denotation += 1 if prediction == target: self._num_same_sequence += 1 self._num_all_sequences += 1 def get_metric(self, reset: bool = False) -> Dict[str, float]: if self._num_all_sequences == 0: metrics = { "well_formedness": 0.0, "denotation_accuracy": 0.0, "sequence_accuracy": 0.0, } else: metrics = { "well_formedness": self._num_well_formed / self._num_all_sequences, "denotation_accuracy": self._num_correct_denotation / self._num_all_sequences, "sequence_accuracy": self._num_same_sequence / self._num_all_sequences, } if reset: self.reset() return metrics def reset(self): self._num_well_formed = 0 self._num_same_sequence = 0 self._num_correct_denotation = 0 self._num_all_sequences = 0
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/metric_setup.py
from typing import List from allennlp.predictors import Predictor from allennlp.models.archival import load_archive from allennlp_models.generation import ( ComposedSeq2Seq, ) # Need this for loading model archive from nla_semparse.nla_semparse.nla_metric import ( NlaMetric, ) # Need this for loading model archive archive = load_archive("nla_semparse/trained_models/seq2seq_model.tar.gz") predictor = Predictor.from_archive(archive, "seq2seq") def translate_nla(source: str) -> str: prediction_data = predictor.predict_json({"source": source}) return " ".join(prediction_data["predicted_tokens"])
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/predictor_setup.py
def evaluate(prediction: str, target: str) -> Dict[str, float]: metric = NlaMetric() metric([prediction], [target]) return metric.get_metric(reset=True) target = "(subtract (multiply 7 3) 2)" predictions = [ "(subtract (multiply 7 3) 2)", "(subtract (multiply 6 4) 5)", "subtract () add divide", ] for prediction in predictions: metrics = evaluate(prediction, target) print(f"Prediction: {prediction}") print(f"Target: {target}") print(f"Well formedness: {metrics['well_formedness']}") print(f"Accuracy: {metrics['sequence_accuracy']}\n")
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/metric_source.py
inputs = [ "eight over nine times six minus three plus seven over five minus one", "seven times eight plus five minus six plus one plus three plus two over seven", ] for nla_input in inputs: output = translate_nla(nla_input) print(f"Input: {nla_input}") print(f"Prediction: {output}\n")
allennlp-guide-master
exercises/part3/semantic-parsing-seq2seq/predictor_source_hard.py
from collections import Counter, defaultdict from typing import Dict from allennlp.data.instance import Instance from allennlp.data.fields import Field, TextField, LabelField, SequenceLabelField from allennlp.data.token_indexers import TokenIndexer, SingleIdTokenIndexer from allennlp.data.tokenizers import Token from allennlp.data.vocabulary import Vocabulary
allennlp-guide-master
exercises/part2/reading-data/instances_setup.py
# You can implement your own dataset reader by subclassing DatasetReader. # At the very least, you need to implement the _read() method, preferably # text_to_instance() as well. @DatasetReader.register("classification-tsv") class ClassificationTsvReader(DatasetReader): def __init__( self, tokenizer: Tokenizer = None, token_indexers: Dict[str, TokenIndexer] = None, max_tokens: int = None, **kwargs ): super().__init__(**kwargs) self.tokenizer = tokenizer or WhitespaceTokenizer() self.token_indexers = token_indexers or {"tokens": SingleIdTokenIndexer()} self.max_tokens = max_tokens def text_to_instance(self, text: str, label: str = None) -> Instance: tokens = self.tokenizer.tokenize(text) if self.max_tokens: tokens = tokens[: self.max_tokens] text_field = TextField(tokens, self.token_indexers) fields: Dict[str, Field] = {"text": text_field} if label: fields["label"] = LabelField(label) return Instance(fields) def _read(self, file_path: str) -> Iterable[Instance]: with open(file_path, "r") as lines: for line in lines: text, sentiment = line.strip().split("\t") yield self.text_to_instance(text, sentiment) # Instantiate and use the dataset reader to read a file containing the data reader = ClassificationTsvReader() dataset = list(reader.read("quick_start/data/movie_review/train.tsv")) print("type of its first element: ", type(dataset[0])) print("size of dataset: ", len(dataset))
allennlp-guide-master
exercises/part2/reading-data/dataset_reader_basic_source.py