python_code
stringlengths 0
108k
|
---|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import time
import torch
from colossalai.constants import INPUT_GROUP_3D, OUTPUT_GROUP_3D, WEIGHT_GROUP_3D
from colossalai.core import global_context
from colossalai.logging import get_dist_logger
from colossalai.nn import (Classifier3D, CrossEntropyLoss3D, Embedding3D, LayerNorm3D, Linear3D, PatchEmbedding3D,
VanillaClassifier, VanillaPatchEmbedding, VocabParallelClassifier3D,
VocabParallelCrossEntropyLoss3D, VocabParallelEmbedding3D)
from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env
from colossalai.utils import get_current_device, print_rank_0
from .common import BATCH_SIZE, DEPTH, HIDDEN_SIZE, IMG_SIZE, NUM_CLASSES, SEQ_LENGTH, VOCAB_SIZE, check_equal
def check_linear():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
OUTPUT_SIZE = 2 * HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = Linear3D(INPUT_SIZE, OUTPUT_SIZE, dtype=dtype, bias=True)
layer = layer.to(device)
layer_master = torch.nn.Linear(INPUT_SIZE, OUTPUT_SIZE)
layer_master = layer_master.to(device)
weight_master = layer_master.weight.data.transpose(0, 1)
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[k]
weight = torch.chunk(weight, DEPTH, dim=-1)[j]
weight = torch.chunk(weight, DEPTH, dim=-1)[i]
layer.weight.data.copy_(weight)
bias_master = layer_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
layer.bias.data.copy_(bias)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'linear forward: {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
logger.info('Rank {} linear forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('linear backward: {:.3f} s'.format(bwd_end - bwd_start), logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} linear backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad)))
B_grad = layer_master.weight.grad.transpose(0, 1)
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} linear backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad)))
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
logger.info('Rank {} linear backward (bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_layernorm():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
norm = LayerNorm3D(INPUT_SIZE, eps=1e-6, dtype=dtype)
norm = norm.to(device)
norm_master = torch.nn.LayerNorm(INPUT_SIZE, eps=1e-6)
norm_master = norm_master.to(device)
weight_master = norm_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH)[k]
norm.weight.data.copy_(weight)
bias_master = norm_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[k]
norm.bias.data.copy_(bias)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = norm(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'layer norm forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape),
fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = norm_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('layer norm backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad)))
bias_grad = norm_master.weight.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} layernorm backward (weight_grad): {}'.format(rank, check_equal(bias_grad, norm.weight.grad)))
bias_grad = norm_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} layernorm backward (bias_grad): {}'.format(rank, check_equal(bias_grad, norm.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_classifier_no_given_weight():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = Classifier3D(INPUT_SIZE, NUM_CLASSES, dtype=dtype, bias=True)
layer = layer.to(device)
layer_master = VanillaClassifier(INPUT_SIZE, NUM_CLASSES, bias=True, dtype=dtype)
layer_master = layer_master.to(device)
weight_master = layer_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=-1)[k]
layer.weight.data.copy_(weight)
bias_master = layer_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
layer.bias.data.copy_(bias_master)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'classifier (no given weight) forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} classifier (no given weight) forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('classifier (no given weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} classifier (no given weight) backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
if j == k:
logger.info('Rank {} classifier (no given weight) backward (weight_grad): {}'.format(
rank, check_equal(B_grad, layer.weight.grad)))
else:
logger.info('Rank {} classifier (no given weight) backward (weight_grad): {}'.format(
rank, layer.weight.grad is None))
bias_grad = layer_master.bias.grad
logger.info('Rank {} classifier (no given weight) backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_vocab_parallel_classifier_no_given_weight():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = VocabParallelClassifier3D(INPUT_SIZE, VOCAB_SIZE, bias=True)
layer = layer.to(dtype).to(device)
layer_master = VanillaClassifier(INPUT_SIZE, VOCAB_SIZE, bias=True)
layer_master = layer_master.to(dtype).to(device)
weight_master = layer_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[j]
weight = torch.chunk(weight, DEPTH, dim=0)[i]
weight = torch.chunk(weight, DEPTH, dim=-1)[k]
layer.weight.data.copy_(weight)
bias_master = layer_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
layer.bias.data.copy_(bias)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'vocab parallel classifier (no given weight) forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
logger.info('Rank {} vocab parallel classifier (no given weight) forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('vocab parallel classifier (no given weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} vocab parallel classifier (no given weight) backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
logger.info('Rank {} vocab parallel classifier (no given weight) backward (weight_grad): {}'.format(
rank, check_equal(B_grad, layer.weight.grad)))
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
logger.info('Rank {} vocab parallel classifier (no given weight) backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_classifier_given_embed_weight():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
embed = Embedding3D(VOCAB_SIZE, HIDDEN_SIZE)
embed = embed.to(dtype).to(device)
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
embed_master = embed_master.to(dtype).to(device)
weight_master = embed_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=-1)[k]
embed.weight.data.copy_(weight)
layer = Classifier3D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False)
layer = layer.to(dtype).to(device)
layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False)
layer_master = layer_master.to(dtype).to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH)
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
fwd_start = time.time()
out = layer(embed(A))
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'classifier (given embed weight) forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
C_master = layer_master(embed_master(A_master))
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} classifier (given embed weight) forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('classifier (given embed weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
B_grad = embed_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
if j == k:
logger.info('Rank {} classifier (given embed weight) backward (weight_grad): {}'.format(
rank, check_equal(B_grad, embed.weight.grad)))
else:
logger.info('Rank {} classifier (given embed weight) backward (weight_grad): {}'.format(
rank, embed.weight.grad is None))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_vocab_parallel_classifier_given_embed_weight():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
embed = VocabParallelEmbedding3D(VOCAB_SIZE, HIDDEN_SIZE)
embed = embed.to(dtype).to(device)
embed_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
embed_master = embed_master.to(dtype).to(device)
weight_master = embed_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[j]
weight = torch.chunk(weight, DEPTH, dim=0)[i]
weight = torch.chunk(weight, DEPTH, dim=-1)[k]
embed.weight.data.copy_(weight)
layer = VocabParallelClassifier3D(HIDDEN_SIZE, VOCAB_SIZE, weight=embed.weight, bias=False)
layer = layer.to(dtype).to(device)
layer_master = VanillaClassifier(HIDDEN_SIZE, VOCAB_SIZE, weight=embed_master.weight, bias=False)
layer_master = layer_master.to(dtype).to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH)
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
fwd_start = time.time()
out = layer(embed(A))
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'vocab parallel classifier (given embed weight) forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
C_master = layer_master(embed_master(A_master))
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
logger.info('Rank {} vocab parallel classifier (given embed weight) forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('vocab parallel classifier (given embed weight) backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
B_grad = embed_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
logger.info('Rank {} vocab parallel embed backward (weight_grad): {}'.format(rank,
check_equal(B_grad,
embed.weight.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_patch_embed():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_dist_logger()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = PatchEmbedding3D(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
torch.nn.init.ones_(layer.cls_token)
torch.nn.init.ones_(layer.pos_embed)
layer = layer.to(device)
layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
torch.nn.init.ones_(layer_master.cls_token)
torch.nn.init.ones_(layer_master.pos_embed)
layer_master = layer_master.to(device)
proj_weight_master = layer_master.weight.data
torch.distributed.broadcast(proj_weight_master, src=0)
proj_weight = torch.chunk(proj_weight_master, DEPTH, dim=0)[k]
layer.weight.data.copy_(proj_weight)
proj_bias_master = layer_master.bias.data
torch.distributed.broadcast(proj_bias_master, src=0)
proj_bias = torch.chunk(proj_bias_master, DEPTH)[k]
layer.bias.data.copy_(proj_bias)
A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'patch embed forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape),
fwd_end - fwd_start), logger)
A_master = A_master.clone()
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} patch embed forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('patch embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
cls_grad_master = layer_master.cls_token.grad
cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[k]
logger.info('Rank {} patch embed backward (cls_grad): {}'.format(rank, check_equal(cls_grad, layer.cls_token.grad)))
pos_grad_master = layer_master.pos_embed.grad
pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[k]
logger.info('Rank {} patch embed backward (pos_embed_grad): {}'.format(rank,
check_equal(pos_grad, layer.pos_embed.grad)))
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
logger.info('Rank {} patch embed backward (proj_weight_grad): {}'.format(rank,
check_equal(B_grad, layer.weight.grad)))
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} patch embed backward (proj_bias_grad): {}'.format(rank,
check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_embed():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_dist_logger()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = Embedding3D(VOCAB_SIZE, HIDDEN_SIZE)
layer = layer.to(dtype).to(device)
layer_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
layer_master = layer_master.to(dtype).to(device)
weight_master = layer_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=-1)[k]
layer.weight.data.copy_(weight)
A_shape = (BATCH_SIZE, SEQ_LENGTH)
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
logger.info('embed forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape),
fwd_end - fwd_start),
ranks=[0])
A_master = A_master.clone()
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} embed forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
logger.info('embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0])
grad_master = grad_master.clone()
C_master.backward(grad_master)
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
if j == k:
logger.info('Rank {} embed backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad)))
else:
logger.info('Rank {} embed backward (weight_grad): {}'.format(rank, layer.weight.grad is None))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_vocab_parallel_embed():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_dist_logger()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
layer = VocabParallelEmbedding3D(VOCAB_SIZE, HIDDEN_SIZE)
layer = layer.to(dtype).to(device)
layer_master = torch.nn.Embedding(VOCAB_SIZE, HIDDEN_SIZE)
layer_master = layer_master.to(dtype).to(device)
weight_master = layer_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[j]
weight = torch.chunk(weight, DEPTH, dim=0)[i]
weight = torch.chunk(weight, DEPTH, dim=-1)[k]
layer.weight.data.copy_(weight)
A_shape = (BATCH_SIZE, SEQ_LENGTH)
A_master = torch.randint(VOCAB_SIZE, A_shape, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
logger.info('vocab parallel embed forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start),
ranks=[0])
A_master = A_master.clone()
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} vocab parallel embed forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
logger.info('vocab parallel embed backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0])
grad_master = grad_master.clone()
C_master.backward(grad_master)
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
logger.info('Rank {} vocab parallel embed backward (weight_grad): {}'.format(rank,
check_equal(B_grad,
layer.weight.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_loss():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
criterion = CrossEntropyLoss3D()
criterion_master = torch.nn.CrossEntropyLoss()
out_shape = (BATCH_SIZE, NUM_CLASSES)
out_master = torch.randn(out_shape, dtype=dtype, device=device)
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device)
torch.distributed.broadcast(out_master, src=0)
torch.distributed.broadcast(target_master, src=0)
out = torch.chunk(out_master, DEPTH, dim=0)[i]
out = torch.chunk(out, DEPTH, dim=0)[j]
out = out.clone()
out.requires_grad = True
fwd_start = time.time()
loss = criterion(out, target_master)
fwd_end = time.time()
logger.info('cross entropy loss forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(out.shape), tuple(loss.shape),
fwd_end - fwd_start),
ranks=[0])
out_master = out_master.clone()
out_master.requires_grad = True
loss_master = criterion_master(out_master, target_master)
logger.info('Rank {} cross entropy loss forward: {}'.format(rank, check_equal(loss, loss_master)))
bwd_start = time.time()
loss.backward()
bwd_end = time.time()
logger.info('cross entropy loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0])
loss_master.backward()
out_grad = out_master.grad
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j]
logger.info('Rank {} cross entropy loss backward: {}'.format(rank, check_equal(out_grad, out.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_vocab_parallel_loss():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = global_context.get_local_rank(input_parallel_mode)
i = global_context.get_local_rank(weight_parallel_mode)
k = global_context.get_local_rank(output_parallel_mode)
criterion = VocabParallelCrossEntropyLoss3D()
criterion_master = torch.nn.CrossEntropyLoss()
out_shape = (BATCH_SIZE, NUM_CLASSES)
out_master = torch.randn(out_shape, dtype=dtype, device=device)
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device)
torch.distributed.broadcast(out_master, src=0)
torch.distributed.broadcast(target_master, src=0)
out = torch.chunk(out_master, DEPTH, dim=0)[i]
out = torch.chunk(out, DEPTH, dim=-1)[k]
out = torch.chunk(out, DEPTH, dim=0)[j]
out = out.clone()
out.requires_grad = True
fwd_start = time.time()
loss = criterion(out, target_master)
fwd_end = time.time()
logger.info('vocab parallel cross entropy loss forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start),
ranks=[0])
out_master = out_master.clone()
out_master.requires_grad = True
loss_master = criterion_master(out_master, target_master)
logger.info('Rank {} vocab parallel cross entropy loss forward: {}'.format(rank, check_equal(loss, loss_master)))
bwd_start = time.time()
loss.backward()
bwd_end = time.time()
logger.info('vocab parallel cross entropy loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start), ranks=[0])
loss_master.backward()
out_grad = out_master.grad
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[k]
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j]
logger.info('Rank {} vocab parallel cross entropy loss backward: {}'.format(rank, check_equal(out_grad, out.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
train_data = dict(
dataset=dict(
type='CIFAR10Dataset',
root='/path/to/data',
download=True,
transform_pipeline=[
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]
),
dataloader=dict(
batch_size=64,
pin_memory=True,
num_workers=4,
sampler=dict(
type='DataParallelSampler',
shuffle=True,
)
)
)
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from pathlib import Path
import pytest
from colossalai.context.config import Config
from colossalai.builder import build_ophooks
@pytest.mark.cpu
def test_load_config():
filename = Path(__file__).parent.joinpath('sample_config.py')
config = Config.from_file(filename)
assert config.train_data, 'cannot access train data as attribute'
assert config.train_data.dataset, 'cannot access grandchild attribute'
assert isinstance(config.train_data.dataset.transform_pipeline[0], dict), \
f'expected attribute transform_pipeline elements to be a dict, but found {type(config.train_data.dataset.transform_pipeline)}'
|
import torch
import colossalai
import torch.multiprocessing as mp
from colossalai.amp import convert_to_naive_amp, convert_to_apex_amp
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import assert_close_loose, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.amp import convert_to_naive_amp, convert_to_apex_amp
from tests.components_to_test.registry import non_distributed_component_funcs
import copy
import pytest
from functools import partial
def check_equal(a, b):
"""
This function checks if two tensors are equal within tolerance
"""
assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}'
def run_naive_amp():
"""
In this test, we compare the naive fp16 optimizer implemented in colossalai
and fp32 torch optimizer
"""
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# create layer
test_models = ['repeated_computed_layers', 'nested_model', 'resnet18']
for test_name in test_models:
get_component_func = non_distributed_component_funcs.get_callable(test_name)
model_builder, train_dataloader, _, optim_class, _ = get_component_func()
# create model
naive_amp_model = model_builder(checkpoint=True).cuda()
apex_amp_model = copy.deepcopy(naive_amp_model)
# create optimizer
naive_amp_optimizer = optim_class(naive_amp_model.parameters(), lr=1e-3)
apex_amp_optimizer = optim_class(apex_amp_model.parameters(), lr=1e-3)
# inject naive and apex amp
naive_amp_config = dict(initial_scale=128)
naive_amp_model, naive_amp_optimizer = convert_to_naive_amp(naive_amp_model, naive_amp_optimizer,
naive_amp_config)
apex_amp_config = dict(opt_level='O2', loss_scale=128, keep_batchnorm_fp32=False)
apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config)
# create data
data_iter = iter(train_dataloader)
data, label = next(data_iter)
data = data.cuda()
# forward pass
naive_amp_output = naive_amp_model(data)
apex_amp_output = apex_amp_model(data)
assert_close_loose(naive_amp_output, apex_amp_output)
# backward
naive_amp_optimizer.backward(naive_amp_output.mean())
apex_amp_optimizer.backward(apex_amp_output.mean())
# check grad
for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
assert_close_loose(naive_amp_param.grad, apex_amp_param.grad)
# step
naive_amp_optimizer.step()
apex_amp_optimizer.step()
# check updated param
for naive_amp_param, apex_amp_param in zip(naive_amp_model.parameters(), apex_amp_model.parameters()):
assert_close_loose(naive_amp_param, apex_amp_param)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
run_naive_amp()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_naive_amp():
world_size = 1
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_naive_amp()
|
import os
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.amp.amp_type import AMP_TYPE
from colossalai.builder import build_pipeline_model
from colossalai.engine.schedule import PipelineSchedule
from colossalai.logging import get_dist_logger
from colossalai.nn import LinearWarmupLR
from colossalai.nn.loss import CrossEntropyLoss
from colossalai.trainer import Trainer, hooks
from colossalai.utils import free_port, get_dataloader
from colossalai.utils.gradient_accumulation import GradAccumLrSchedulerByStep
from colossalai.testing import rerun_if_address_is_in_use
from model_zoo.vit import vit_tiny_patch4_32
from torchvision import transforms
from torchvision.datasets import CIFAR10
BATCH_SIZE = 4
NUM_EPOCHS = 60
WARMUP_EPOCHS = 5
CONFIG = dict(NUM_MICRO_BATCHES=2,
parallel=dict(pipeline=2, tensor=dict(size=2, mode='1d')),
fp16=dict(mode=AMP_TYPE.NAIVE),
gradient_accumulation=2)
def run_trainer(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
logger = get_dist_logger()
model = vit_tiny_patch4_32()
pipe_model = build_pipeline_model(model.layers, num_chunks=1)
# build dataloaders
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_train)
train_dataloader = get_dataloader(dataset=train_dataset, shuffle=True, batch_size=BATCH_SIZE, pin_memory=True)
# build criterion
criterion = CrossEntropyLoss()
# optimizer
optimizer = torch.optim.Adam(pipe_model.parameters(), lr=0.001, weight_decay=0)
# lr_scheduler
steps_per_epoch = GradAccumLrSchedulerByStep.compute_effective_steps_per_epoch(train_dataloader, accumulate_size=2)
total_steps = steps_per_epoch * NUM_EPOCHS
warmup_steps = steps_per_epoch * WARMUP_EPOCHS
lr_scheduler = LinearWarmupLR(optimizer, total_steps=total_steps, warmup_steps=warmup_steps)
engine, train_dataloader, _, lr_scheduler = colossalai.initialize(pipe_model,
optimizer,
criterion,
train_dataloader,
lr_scheduler=lr_scheduler)
logger = get_dist_logger()
trainer = Trainer(engine=engine, logger=logger)
hook_list = [
hooks.LRSchedulerHook(lr_scheduler=lr_scheduler, by_epoch=False),
]
trainer.fit(train_dataloader=train_dataloader,
epochs=NUM_EPOCHS,
max_steps=2,
hooks=hook_list,
display_progress=True)
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_hybrid_parallel():
world_size = 8
run_func = partial(run_trainer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_hybrid_parallel()
|
from functools import partial
import colossalai
import pytest
import torch.multiprocessing as mp
from colossalai.amp import AMP_TYPE
from colossalai.core import global_context as gpc
from colossalai.utils import free_port
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import parameterize, rerun_if_address_is_in_use
CONFIG = dict(parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None)),
fp16=dict(mode=None),
clip_grad_norm=1.0)
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'repeated_computed_layers'])
@parameterize('amp_mode', [AMP_TYPE.APEX, AMP_TYPE.TORCH, AMP_TYPE.NAIVE, None])
def run_train(model_name, amp_mode):
# FIXME: test bert
get_components_func = non_distributed_component_funcs.get_callable(model_name)
gpc.config.fp16['mode'] = amp_mode
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
model = model_builder(checkpoint=False)
engine, train_dataloader, *args = colossalai.initialize(model=model,
optimizer=optimizer_class(model.parameters(), lr=1e-3),
criterion=criterion,
train_dataloader=train_dataloader)
try:
engine.train()
for data, label in train_dataloader:
engine.zero_grad()
data = data.cuda()
label = label.cuda()
if criterion:
output = engine(data)
loss = engine.criterion(output, label)
else:
loss = engine(data, label)
engine.backward(loss)
engine.step()
break
except IndexError:
# if using apex amp, NetWithRepeatedlyComputedLayers will raise an index out of range issue
# the following check fails in apex
# if cached_x.grad_fn.next_functions[1][0].variable is not x:
pass
def run_engine(rank, world_size, port):
# init dist env
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_train()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_engine():
world_size = 2
run_func = partial(run_engine, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_engine()
|
import pytest
from colossalai.engine.paramhooks import BaseParamHookMgr
from torch import nn
import torch
import torch.nn.functional as F
import copy
class SubNet(nn.Module):
def __init__(self, out_features) -> None:
super().__init__()
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x, weight):
return F.linear(x, weight, self.bias)
class Net(nn.Module):
def __init__(self, checkpoint=False) -> None:
super().__init__()
self.fc1 = nn.Linear(5, 5)
self.sub_fc = SubNet(5)
self.fc2 = nn.Linear(5, 1)
def forward(self, x):
x = self.fc1(x)
x = self.sub_fc(x, self.fc1.weight)
x = self.fc1(x)
x = self.fc2(x)
return x
def net_data():
return (torch.randn(2, 5, dtype=torch.float, device='cuda'),)
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
if loose:
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b)
def test_base_param_hook():
torch.manual_seed(0)
model = Net(checkpoint=True).cuda()
model.train()
inputs = net_data()
def run_model(model, inputs, use_param_hook = False):
if use_param_hook:
class HooKWrapper:
def __init__(self) -> None:
self.hook_triggered_times = 0
def wrapper_func(self):
def hook(param, grad) -> torch.Tensor or None:
self.hook_triggered_times += 1
return grad
return hook
hookwrapper = HooKWrapper()
param_list = [p for p in model.parameters()]
hook_mgr = BaseParamHookMgr(param_list)
hook_mgr.register_backward_hooks(hookwrapper.wrapper_func())
model.zero_grad(set_to_none=True)
with torch.cuda.amp.autocast():
y = model(*inputs)
loss = y.sum()
loss.backward()
if use_param_hook:
hook_mgr.remove_hooks()
return hookwrapper.hook_triggered_times
model_copy = copy.deepcopy(model)
run_model(model, inputs, False)
ret2 = run_model(model_copy, inputs, True)
# Make sure param hook has only be fired once in case of parameter sharing
assert ret2 == len(list(model.parameters()))
for p, p_copy in zip(model.parameters(), model_copy.parameters()):
assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}"
if __name__ == '__main__':
test_base_param_hook()
|
#!/usr/bin/env python
class Registry:
def __init__(self):
self._registry = dict()
def register(self, name):
assert name not in self._registry
def _regsiter(callable_):
self._registry[name] = callable_
return _regsiter
def get_callable(self, name: str):
return self._registry[name]
def __iter__(self):
self._idx = 0
self._len = len(self._registry)
self._names = list(self._registry.keys())
return self
def __next__(self):
if self._idx < self._len:
key = self._names[self._idx]
callable_ = self._registry[key]
self._idx += 1
return callable_
else:
raise StopIteration
non_distributed_component_funcs = Registry()
model_paralle_component_funcs = Registry()
__all__ = ['non_distributed_component_funcs', 'model_paralle_component_funcs']
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .utils import DummyDataGenerator
from .registry import non_distributed_component_funcs
class SubNet(nn.Module):
def __init__(self, out_features) -> None:
super().__init__()
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x, weight):
return F.linear(x, weight, self.bias)
class NestedNet(CheckpointModule):
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint)
self.fc1 = nn.Linear(5, 5)
self.sub_fc = SubNet(5)
self.fc2 = nn.Linear(5, 2)
def forward(self, x):
x = self.fc1(x)
x = self.sub_fc(x, self.fc1.weight)
x = self.fc1(x)
x = self.fc2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 5)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='nested_model')
def get_training_components():
def model_builder(checkpoint=True):
return NestedNet(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
from . import repeated_computed_layer, resnet, nested_model, bert, no_leaf_module
|
from torchvision.models import resnet18
from .registry import non_distributed_component_funcs
from pathlib import Path
import os
import torch
from torchvision.transforms import transforms
from torchvision.datasets import CIFAR10
from colossalai.utils import get_dataloader
def get_cifar10_dataloader(train):
# build dataloaders
dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
train=train,
transform=transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]))
dataloader = get_dataloader(dataset=dataset, shuffle=True, batch_size=16, drop_last=True)
return dataloader
@non_distributed_component_funcs.register(name='resnet18')
def get_resnet_training_components():
def model_builder(checkpoint=False):
return resnet18(num_classes=10)
trainloader = get_cifar10_dataloader(train=True)
testloader = get_cifar10_dataloader(train=False)
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.nn import CheckpointModule
from .utils.dummy_data_generator import DummyDataGenerator
from .registry import non_distributed_component_funcs
class NoLeafModule(CheckpointModule):
"""
In this no-leaf module, it has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.weight = nn.Parameter(torch.randn(8, 8))
self.proj2 = nn.Linear(8, 4)
def forward(self, x):
x = self.proj1(x)
x = F.linear(x, self.weight)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='no_leaf_module')
def get_training_components():
def model_builder(checkpoint=True):
return NoLeafModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion
|
#!/usr/bin/env python
import torch
import torch.nn as nn
from colossalai.nn import CheckpointModule
from .utils.dummy_data_generator import DummyDataGenerator
from .registry import non_distributed_component_funcs
class NetWithRepeatedlyComputedLayers(CheckpointModule):
"""
This model is to test with layers which go through forward pass multiple times.
In this model, the fc1 and fc2 call forward twice
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.fc1 = nn.Linear(5, 5)
self.fc2 = nn.Linear(5, 5)
self.fc3 = nn.Linear(5, 2)
self.layers = [self.fc1, self.fc2, self.fc1, self.fc2, self.fc3]
def forward(self, x):
for layer in self.layers:
x = layer(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 5)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='repeated_computed_layers')
def get_training_components():
def model_builder(checkpoint=True):
return NetWithRepeatedlyComputedLayers(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
import torch
import transformers
from packaging import version
from torch.utils.data import SequentialSampler
from transformers import BertConfig, BertForSequenceClassification
from .registry import non_distributed_component_funcs
def get_bert_data_loader(
batch_size,
total_samples,
sequence_length,
device=torch.device('cpu:0'),
is_distrbuted=False,
):
train_data = torch.randint(
low=0,
high=1000,
size=(total_samples, sequence_length),
device=device,
dtype=torch.long,
)
train_label = torch.randint(low=0, high=2, size=(total_samples,), device=device, dtype=torch.long)
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
if is_distrbuted:
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
sampler = SequentialSampler(train_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler)
return train_loader
@non_distributed_component_funcs.register(name='bert')
def get_training_components():
hidden_dim = 8
num_head = 4
sequence_length = 12
num_layer = 2
def bert_model_builder(checkpoint):
config = BertConfig(gradient_checkpointing=checkpoint,
hidden_size=hidden_dim,
intermediate_size=hidden_dim * 4,
num_attention_heads=num_head,
max_position_embeddings=sequence_length,
num_hidden_layers=num_layer,
hidden_dropout_prob=0.,
attention_probs_dropout_prob=0.)
print('building BertForSequenceClassification model')
# adapting huggingface BertForSequenceClassification for single unitest calling interface
class ModelAaptor(BertForSequenceClassification):
def forward(self, input_ids, labels):
"""
inputs: data, label
outputs: loss
"""
return super().forward(input_ids=input_ids, labels=labels)[0]
model = ModelAaptor(config)
if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
model.gradient_checkpointing_enable()
return model
trainloader = get_bert_data_loader(batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=True)
testloader = get_bert_data_loader(batch_size=2,
total_samples=10000,
sequence_length=sequence_length,
is_distrbuted=True)
criterion = None
return bert_model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
from abc import ABC, abstractmethod
class DummyDataGenerator(ABC):
def __init__(self, length=10):
self.length = length
@abstractmethod
def generate(self):
pass
def __iter__(self):
self.step = 0
return self
def __next__(self):
if self.step < self.length:
self.step += 1
return self.generate()
else:
raise StopIteration
def __len__(self):
return self.length
|
from .dummy_data_generator import DummyDataGenerator
|
import torch
import torch.nn as nn
from torch.optim.adam import Adam
from torch.optim import AdamW
from colossalai.nn.optimizer.fused_adam import FusedAdam
from colossalai.testing import parameterize
class FC(nn.Module):
def __init__(self) -> None:
super().__init__()
self.fc = nn.Sequential(nn.Linear(64, 64))
def forward(self, x):
return self.fc(x)
@parameterize('adamw', [False, True])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, p_dtype, g_dtype):
model = FC().cuda().to(p_dtype)
state = model.state_dict()
model_copy = FC().cuda().to(p_dtype)
model_copy.load_state_dict(state.copy())
if adamw:
optim = FusedAdam(model.parameters(), lr=1e-3, adamw_mode=True)
torch_optim = AdamW(model_copy.parameters(), lr=1e-3)
else:
optim = FusedAdam(model.parameters(), lr=1e-3)
torch_optim = Adam(model_copy.parameters(), lr=1e-3)
data = torch.rand(1024, 64).cuda().to(p_dtype)
data_copy = data.clone()
label = torch.rand(1024, 64).cuda().to(p_dtype)
for d, l in zip(data, label):
y = model(d)
loss = ((l - y) ** 2).sum()
optim.zero_grad()
loss.backward()
if p_dtype != g_dtype:
for i in range(len(optim.param_groups[0]['params'])):
optim.param_groups[0]['params'][i].grad.data = optim.param_groups[0]['params'][i].grad.data.to(g_dtype)
optim.step()
for d, l in zip(data_copy, label):
y = model_copy(d)
loss = ((l - y) ** 2).sum()
torch_optim.zero_grad()
loss.backward()
torch_optim.step()
assert len(optim.param_groups[0]['params']) == len(torch_optim.param_groups[0]['params'])
for i in range(len(optim.param_groups[0]['params'])):
if torch.isnan(optim.param_groups[0]['params'][i]).any() \
or torch.isnan(torch_optim.param_groups[0]['params'][i]).any():
continue
assert torch.allclose(optim.param_groups[0]['params'][i], torch_optim.param_groups[0]['params'][i], 2e-3, 2e-3)
|
import math
import torch
from colossalai.testing import parameterize
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
def assertLess(data_diff, threshold, msg):
assert data_diff < threshold, msg
def assertTrue(condition, msg):
assert condition, msg
@parameterize('adamw', [True, False])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_cpu_adam(adamw, step, p_dtype, g_dtype):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
for i in range(1024):
p_data = torch.rand(64, dtype=p_dtype)
p_data_copy = p_data.clone().float()
p_grad = torch.rand(64, dtype=g_dtype)
p_grad_copy = p_grad.clone().float()
exp_avg = torch.rand(p_data.shape)
exp_avg_copy = exp_avg.clone()
exp_avg_sq = torch.rand(p_data.shape)
exp_avg_sq_copy = exp_avg_sq.clone()
try:
import cpu_adam
cpu_adam_op = cpu_adam
except:
raise ImportError("Import cpu adam error, please install colossal from source code")
cpu_adam_op.create_adam(0, lr, beta1, beta2, eps, weight_decay, adamw, False)
cpu_adam_op.adam_update(
0,
step,
lr,
beta1,
beta2,
eps,
weight_decay,
True,
p_data.view(-1), # fp32 data
p_grad.view(-1), # fp32 grad
exp_avg.view(-1),
exp_avg_sq.view(-1),
-1,
)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_data_copy, # fp32 data
p_grad_copy, # fp32 grad
exp_avg_copy,
exp_avg_sq_copy,
adamw,
)
var = p_data_copy - p_data
data_diff = torch.max(torch.abs(var))
threshold = 1e-3
assertLess(
data_diff,
threshold,
f"p_data diff {data_diff}. failed check, step {step}, lr {lr}, eps "
f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} p_dtype {p_dtype}, g_dtype {g_dtype}",
)
max_grad_diff = torch.max(torch.abs(p_grad_copy - p_grad))
assertTrue(max_grad_diff < threshold, f"diff {max_grad_diff}")
max_exp_avg_diff = torch.max(torch.abs(exp_avg_copy - exp_avg))
assertTrue(max_exp_avg_diff < threshold, f"max_exp_avg_diff {max_exp_avg_diff}")
max_exp_avg_sq_diff = torch.max(torch.abs(exp_avg_sq_copy - exp_avg_sq))
assertTrue(max_exp_avg_sq_diff < threshold, f"max_exp_avg_sq_diff {max_exp_avg_sq_diff}")
|
import torch
import torch.nn as nn
from torch.optim.adam import Adam
from torch.optim import AdamW
from colossalai.nn.optimizer.hybrid_adam import HybridAdam
from colossalai.testing import parameterize
RE = 1024
@parameterize('adamw', [False, True])
@parameterize('device', ['cpu', 'cuda:0'])
@parameterize('p_dtype', [torch.float])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, device, p_dtype, g_dtype):
rng_state = torch.get_rng_state()
p = nn.Parameter(torch.rand(64).to(device, p_dtype))
torch.set_rng_state(rng_state)
p_copy = nn.Parameter(torch.rand(64).to(device).float())
if adamw:
optim = HybridAdam([p], lr=1e-3, adamw_mode=True)
torch_optim = AdamW([p_copy], lr=1e-3)
else:
optim = HybridAdam([p], lr=1e-3)
torch_optim = Adam([p_copy], lr=1e-3)
print(f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}")
for i in range(RE):
p.grad = torch.rand(64).to(device, p_dtype)
p_copy.grad = p.grad.clone().float()
p.grad.data = p.grad.data.to(g_dtype)
optim.step()
torch_optim.step()
if torch.isnan(p.data).any() or torch.isnan(p_copy.data).any():
continue
assert torch.allclose(p.data, p_copy.data, 1e-4, 1e-2), \
f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}"
|
from numpy import dtype
import torch
import torch.nn as nn
import math
from colossalai.testing import parameterize
from colossalai.utils import multi_tensor_applier
def torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
param,
grad,
exp_avg,
exp_avg_sq,
use_adamw,
):
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
if weight_decay != 0:
if use_adamw:
# Perform stepweight decay
param.mul_(1 - lr * weight_decay)
else:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
@parameterize('adamw', [False, True])
@parameterize('step', [1, 2])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, step, p_dtype, g_dtype):
try:
import colossal_C
fused_adam = colossal_C.multi_tensor_adam
dummy_overflow_buf = torch.cuda.IntTensor([0])
except:
raise ImportError("No colossal_C kernel installed.")
count = 0
for i in range(1024):
p = torch.rand(64, dtype=p_dtype).cuda()
p_copy = p.clone().float()
g = torch.rand(p.shape, dtype=g_dtype).cuda()
g_copy = g.clone().float()
m = torch.rand(p.shape).cuda()
m_copy = m.clone()
v = torch.rand(p.shape).cuda()
v_copy = v.clone()
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
weight_decay = 0
multi_tensor_applier(fused_adam, dummy_overflow_buf, [[g], [p], [m], [v]],
lr, beta1, beta2, eps, step, adamw,
True, weight_decay)
torch_adam_update(
step,
lr,
beta1,
beta2,
eps,
weight_decay,
p_copy, # fp32 data
g_copy, # fp32 grad
m_copy,
v_copy,
adamw,
)
if torch.isnan(p).any() or torch.isnan(p_copy).any():
count += 1
continue
assert count < 200, "too many nans"
assert torch.allclose(p.to(torch.float), p_copy.to(torch.float), 1e-5, 1e-5), f"failed check, adamw {adamw}, p_dtype {p_dtype}, g_dtype {g_dtype}"
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.amp.amp_type import AMP_TYPE
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, free_port
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import parameterize, rerun_if_address_is_in_use
BATCH_SIZE = 4
IMG_SIZE = 32
NUM_EPOCHS = 200
CONFIG = dict(fp16=dict(mode=AMP_TYPE.TORCH))
@parameterize('model_name', ['repeated_computed_layers', 'resnet18', 'nested_model'])
def run_trainer(model_name):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
model = model_builder()
optimizer = optimizer_class(model.parameters(), lr=1e-3)
engine, train_dataloader, *_ = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
logger = get_dist_logger()
logger.info("engine is built", ranks=[0])
timer = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timer)
logger.info("trainer is built", ranks=[0])
logger.info("start training", ranks=[0])
trainer.fit(train_dataloader=train_dataloader,
test_dataloader=test_dataloader,
epochs=NUM_EPOCHS,
max_steps=3,
display_progress=True,
test_interval=5)
torch.cuda.empty_cache()
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_trainer_no_pipeline():
world_size = 4
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_trainer_no_pipeline()
|
import os
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine.schedule import PipelineSchedule
from colossalai.logging import get_dist_logger
from colossalai.trainer import Trainer
from colossalai.utils import MultiTimer, free_port, get_dataloader
from torch.optim import Adam
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torchvision.models import resnet18
from colossalai.testing import rerun_if_address_is_in_use
BATCH_SIZE = 4
IMG_SIZE = 32
NUM_EPOCHS = 200
CONFIG = dict(
NUM_MICRO_BATCHES=2,
parallel=dict(pipeline=2),
)
def run_trainer_with_pipeline(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = resnet18(num_classes=10)
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, 1)
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
# build dataloaders
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose([
transforms.Resize(size=(IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
]))
train_dataloader = get_dataloader(dataset=train_dataset,
shuffle=True,
batch_size=BATCH_SIZE,
pin_memory=True,
drop_last=True)
# build optimizer
optimizer = Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
engine, train_dataloader, *args = colossalai.initialize(model=model,
optimizer=optimizer,
criterion=criterion,
train_dataloader=train_dataloader)
logger = get_dist_logger()
logger.info("engine is built", ranks=[0])
timer = MultiTimer()
trainer = Trainer(engine=engine, logger=logger, timer=timer)
logger.info("trainer is built", ranks=[0])
logger.info("start training", ranks=[0])
trainer.fit(train_dataloader=train_dataloader,
epochs=NUM_EPOCHS,
max_steps=3,
display_progress=True,
test_interval=5)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_trainer_with_pipeline():
world_size = 4
run_func = partial(run_trainer_with_pipeline, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_trainer_with_pipeline()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import (recv_backward, recv_forward, recv_tensor_meta, send_backward,
send_backward_recv_forward, send_forward, send_forward_recv_backward,
send_tensor_meta)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_on_exception
BATCH_SIZE = 4
SEQ_LENGTH = 2
HIDDEN_SIZE = 16
CONFIG = dict(parallel=dict(pipeline=dict(size=4), tensor=dict(size=1, mode=None)), seed=1024)
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-5, atol=1e-3)
def check_forward(output_tensor, rank, logger):
dist.barrier()
if gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = output_tensor.clone()
else:
tensor = recv_forward(output_tensor.shape)
logger.info('Rank {} received forward. Correct tensor: {}'.format(rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
send_forward(tensor)
logger.info('Rank {} sent forward.'.format(rank))
def check_backward(output_grad, rank, logger):
dist.barrier()
if gpc.is_last_rank(ParallelMode.PIPELINE):
grad = output_grad.clone()
else:
grad = recv_backward(output_grad.shape)
logger.info('Rank {} received backward. Correct grad: {}'.format(rank, check_equal(grad, output_grad)))
if not gpc.is_first_rank(ParallelMode.PIPELINE):
send_backward(grad)
logger.info('Rank {} sent backward.'.format(rank))
def check_forward_backward(output_tensor, output_grad, rank, logger):
dist.barrier()
if not gpc.is_first_rank(ParallelMode.PIPELINE):
tensor = send_backward_recv_forward(output_grad, output_tensor.shape)
logger.info('Rank {} sent backward received forward. Correct tensor: {}'.format(
rank, check_equal(tensor, output_tensor)))
if not gpc.is_last_rank(ParallelMode.PIPELINE):
grad = send_forward_recv_backward(output_tensor, output_grad.shape)
logger.info('Rank {} sent forward received backward. Correct grad: {}'.format(
rank, check_equal(grad, output_grad)))
def check_comm(size, rank, prev_rank, next_rank, logger):
dtype = torch.float32
device = get_current_device()
tensor_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
grad_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
tensor = torch.randn(tensor_shape, dtype=dtype, device=device)
dist.all_reduce(tensor)
grad = torch.randn(grad_shape, dtype=dtype, device=device)
dist.all_reduce(grad)
check_forward(tensor, rank, logger)
check_backward(grad, rank, logger)
check_forward_backward(tensor, grad, rank, logger)
def run_check(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
logger = get_dist_logger()
rank = gpc.get_global_rank()
prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE)
next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE)
logger.info('Rank {0}: prev rank {1}, next rank {2}'.format(rank, prev_rank, next_rank))
logger.info('Distributed environment is initialzied.')
check_comm(world_size, rank, prev_rank, next_rank, logger)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_p2p():
world_size = 4
run_func = partial(run_check, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_p2p()
|
# referenced from Megatron and used to testify communication
import os
import os.path as osp
from functools import partial
from pathlib import Path
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.builder import build_pipeline_model_from_cfg
from colossalai.core import global_context as gpc
from colossalai.engine.schedule import PipelineSchedule
from colossalai.initialize import launch
from colossalai.utils import free_port, get_dataloader, print_rank_0
from colossalai.testing import rerun_on_exception
from torchvision import transforms
from torchvision.datasets import CIFAR10
BATCH_SIZE = 4
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, './resnet_config.py')
def run_schedule(rank, world_size, port):
launch(config=CONFIG_PATH, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model
model = build_pipeline_model_from_cfg(gpc.config.model, 1)
print_rank_0('model is created')
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
]))
train_dataloader = get_dataloader(
dataset=train_dataset,
shuffle=True,
add_sampler=True,
batch_size=BATCH_SIZE,
pin_memory=True,
)
# build criterion
criterion = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
# initialize
engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion, train_dataloader)
# build pipeline schedule
schedule = engine.schedule
# run schedule
data_iter = iter(train_dataloader)
schedule.forward_backward_step(engine, data_iter)
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_pipeline_schedule():
world_size = 4
run_func = partial(run_schedule, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_pipeline_schedule()
|
import os.path as osp
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.builder.pipeline import build_pipeline_model_from_cfg
from colossalai.core import global_context
from colossalai.initialize import launch
from colossalai.logging import get_dist_logger
from functools import partial
from colossalai.utils import free_port
from colossalai.testing import rerun_on_exception
DIR_PATH = osp.dirname(osp.realpath(__file__))
CONFIG_PATH = osp.join(DIR_PATH, 'resnet_config.py')
def run_partition(rank, world_size, port):
launch(config=CONFIG_PATH, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
logger = get_dist_logger()
logger.info('finished initialization')
# build model
model = build_pipeline_model_from_cfg(global_context.config.model, 1, verbose=True)
assert isinstance(model, torch.nn.Module)
logger.info('model is created')
global_context.destroy()
logger.info('training finished')
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_partition():
world_size = 4
run_func = partial(run_partition, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_partition()
|
import os
import model
from pathlib import Path
BATCH_SIZE = 128
IMG_SIZE = 224
DIM = 768
NUM_CLASSES = 10
NUM_ATTN_HEADS = 12
NUM_MICRO_BATCHES = 2
# resnet 18
model = dict(type='VanillaResNet',
block_type='ResNetBasicBlock',
layers=[2, 2, 2, 2],
num_cls=10)
parallel = dict(
pipeline=dict(size=4),
tensor=dict(size=1, mode=None)
)
|
from .layers import *
from .resnet import VanillaResNet
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import List, Optional
import torch
import torch.nn as nn
from torch import Tensor
from colossalai.registry import LAYERS
from colossalai.registry import MODELS
from colossalai.nn.model import ModelFromConfig
@MODELS.register_module
class VanillaResNet(ModelFromConfig):
"""ResNet from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
"""
def __init__(
self,
num_cls: int,
block_type: str,
layers: List[int],
norm_layer_type: str = 'BatchNorm2d',
in_channels: int = 3,
groups: int = 1,
width_per_group: int = 64,
zero_init_residual: bool = False,
replace_stride_with_dilation: Optional[List[bool]] = None,
dilations=(1, 1, 1, 1)
) -> None:
super().__init__()
self.inplanes = 64
self.zero_init_residual = zero_init_residual
self.blocks = layers
self.block_expansion = LAYERS.get_module(block_type).expansion
self.dilations = dilations
self.reslayer_common_cfg = dict(
type='ResLayer',
block_type=block_type,
norm_layer_type=norm_layer_type,
groups=groups,
base_width=width_per_group
)
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.layers_cfg = [
# conv1
dict(type='Conv2d',
in_channels=in_channels,
out_channels=self.inplanes,
kernel_size=7,
stride=2,
padding=3,
bias=False),
# bn1
dict(
type=norm_layer_type,
num_features=self.inplanes
),
# relu
dict(
type='ReLU',
inplace=True
),
# maxpool
dict(
type='MaxPool2d',
kernel_size=3,
stride=2,
padding=1
),
# layer 1
dict(
inplanes=self.inplanes,
planes=64,
blocks=self.blocks[0],
dilation=self.dilations[0],
**self.reslayer_common_cfg
),
# layer 2
dict(
inplanes=64 * self.block_expansion,
planes=128,
blocks=self.blocks[1],
stride=2,
dilate=replace_stride_with_dilation[0],
dilation=self.dilations[1],
**self.reslayer_common_cfg
),
# layer 3
dict(
inplanes=128 * self.block_expansion,
planes=256,
blocks=layers[2],
stride=2,
dilate=replace_stride_with_dilation[1],
dilation=self.dilations[2],
**self.reslayer_common_cfg
),
# layer 4
dict(
inplanes=256 * self.block_expansion,
planes=512,
blocks=layers[3], stride=2,
dilate=replace_stride_with_dilation[2],
dilation=self.dilations[3],
**self.reslayer_common_cfg
),
# avg pool
dict(
type='AdaptiveAvgPool2d',
output_size=(1, 1)
),
# flatten
dict(
type='LambdaWrapper',
func=lambda mod, x: torch.flatten(x, 1)
),
# linear
dict(
type='Linear',
in_features=512 * self.block_expansion,
out_features=num_cls
)
]
def forward(self, x: Tensor):
for layer in self.layers:
x = layer(x)
return x
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, LAYERS.get_module('ResNetBottleneck')):
# type: ignore[arg-type]
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, LAYERS.get_module('ResNetBasicBlock')):
# type: ignore[arg-type]
nn.init.constant_(m.bn2.weight, 0)
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional, Callable
import torch.nn as nn
from torch import Tensor
from colossalai.registry import LAYERS
from .conv import conv3x3
@LAYERS.register_module
class ResNetBasicBlock(nn.Module):
"""Basic ResNet block
"""
expansion: int = 1
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError(
'BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError(
"Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.nn as nn
from colossalai.registry import LAYERS
from .conv import conv1x1
@LAYERS.register_module
class ResLayer(nn.Module):
def __init__(self,
block_type: str,
norm_layer_type: str,
inplanes: int,
planes: int,
blocks: int,
groups: int,
base_width: int,
stride: int = 1,
dilation: int = 1,
dilate: bool = False,
):
super().__init__()
self.block = LAYERS.get_module(block_type)
self.norm_layer = LAYERS.get_module(norm_layer_type)
self.inplanes = inplanes
self.planes = planes
self.blocks = blocks
self.groups = groups
self.dilation = dilation
self.base_width = base_width
self.dilate = dilate
self.stride = stride
self.layer = self._make_layer()
def _make_layer(self):
norm_layer = self.norm_layer
downsample = None
previous_dilation = self.dilation
if self.dilate:
self.dilation *= self.stride
self.stride = 1
if self.stride != 1 or self.inplanes != self.planes * self.block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, self.planes * self.block.expansion, self.stride),
norm_layer(self.planes * self.block.expansion),
)
layers = []
layers.append(self.block(self.inplanes, self.planes, self.stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = self.planes * self.block.expansion
for _ in range(1, self.blocks):
layers.append(self.block(self.inplanes, self.planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
|
from .basic_block import ResNetBasicBlock
from .bottleneck import ResNetBottleneck
from .reslayer import ResLayer
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Optional, Callable
import torch.nn as nn
from torch import Tensor
from colossalai.registry import LAYERS
from .conv import conv3x3, conv1x1
@LAYERS.register_module
class ResNetBottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes: int,
planes: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.nn as nn
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.communication import all_gather, all_reduce, reduce_scatter
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from colossalai.utils import free_port, get_current_device
from colossalai.testing import rerun_if_address_is_in_use
CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1)))
SIZE = 8
def check_all_gather():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_reduce_scatter():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_all_reduce():
tensor = torch.tensor([dist.get_rank() * SIZE + j for j in range(SIZE)])
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True)
print('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))
torch.cuda.synchronize()
def check_layer(rank, world_size, port):
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
assert dist.get_rank() == gpc.get_global_rank()
print('Rank {} / {}'.format(dist.get_rank(), dist.get_world_size()))
check_all_gather()
check_reduce_scatter()
check_all_reduce()
gpc.destroy()
torch.cuda.empty_cache()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_comm():
world_size = 4
run_func = partial(check_layer, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_comm()
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.amp import convert_to_apex_amp
from colossalai.nn.optimizer import CPUAdam
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.zero.sharded_optim._utils import has_inf_or_nan
from colossalai.utils import get_current_device
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.context import MOE_CONTEXT
from colossalai.testing import assert_equal_in_group
from tests.test_zero.common import CONFIG, check_sharded_model_params
from tests.test_moe.test_moe_zero_init import MoeModel
def _run_step(model, optimizer, data, label, criterion, grad_handler):
model.train()
optimizer.zero_grad()
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
optimizer.backward(loss)
else:
loss.backward()
if grad_handler is not None:
grad_handler.handle_gradient()
optimizer.step()
@parameterize("cpu_offload", [True])
@parameterize("use_cpuadam", [True]) # We do not use Hybrid Adam right now, since it has a little bug
@parameterize("reuse_fp16_shard", [True, False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def _run_test_sharded_optim_v2(cpu_offload,
shard_strategy_class,
use_cpuadam,
reuse_fp16_shard,
gpu_margin_mem_ratio=0.0):
shard_strategy = shard_strategy_class()
if use_cpuadam and cpu_offload is False:
return
MOE_CONTEXT.reset_loss()
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, optimizer_class, criterion = get_components_func()
with ZeroInitContext(target_device=torch.device('cpu') if cpu_offload else get_current_device(),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model,
shard_strategy,
tensor_placement_policy='cpu' if cpu_offload else 'cuda',
reuse_fp16_shard=reuse_fp16_shard)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload.to(get_current_device()))
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda().float()
if use_cpuadam:
optimizer_class = CPUAdam
optim = optimizer_class(model.parameters(), lr=1e-3)
sharded_optim = optimizer_class(zero_model.parameters(), lr=1e-3)
sharded_optim = ShardedOptimizerV2(zero_model,
sharded_optim,
initial_scale=2**5,
gpu_margin_mem_ratio=gpu_margin_mem_ratio)
amp_config = dict(opt_level='O2', keep_batchnorm_fp32=False)
apex_model, apex_optimizer = convert_to_apex_amp(model, optim, amp_config)
apex_grad_handler = MoeGradientHandler(model)
# Since MOE is not compatible with apex_amp now, we need to convert gate weight to fp32
for (n, p), zp in zip(apex_model.named_parameters(), zero_model.parameters()):
if 'gate' in n:
p.data = p.float()
p.data.copy_(zp.colo_attr.data_payload)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = data.cuda(), label.cuda()
_run_step(apex_model, apex_optimizer, data, label, criterion, apex_grad_handler)
_run_step(zero_model, sharded_optim, data, label, criterion, None)
check_sharded_model_params(model, zero_model, loose=True, reuse_fp16_shard=use_cpuadam)
for param in model.parameters():
assert not has_inf_or_nan(param)
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
_run_test_sharded_optim_v2()
# use_cpuadam = True can be used with cpu_offload = False
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_optim(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_optim(world_size=4)
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_model._utils import cast_tensor_to_fp16
from colossalai.zero.sharded_model.utils import col_model_deepcopy
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.context import MOE_CONTEXT
from colossalai.testing import assert_equal_in_group
from tests.test_zero.common import CONFIG, check_grads_padding, run_fwd_bwd
from tests.test_moe.test_moe_zero_init import MoeModel
@parameterize("enable_autocast", [False])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_model_test(enable_autocast, shard_strategy_class):
shard_strategy = shard_strategy_class()
get_components_func = non_distributed_component_funcs.get_callable('no_leaf_module')
_, train_dataloader, _, _, criterion = get_components_func()
with ZeroInitContext(target_device=torch.device('cuda', torch.cuda.current_device()),
shard_strategy=shard_strategy,
shard_param=True):
zero_model = MoeModel(checkpoint=True)
zero_model = ShardedModelV2(zero_model, shard_strategy)
# check whether parameters are identical in ddp
for name, p in zero_model.named_parameters():
if not p.colo_attr.param_is_sharded and p.colo_attr.is_replicated:
assert_equal_in_group(p.colo_attr.data_payload)
model = MoeModel(checkpoint=True).half()
col_model_deepcopy(zero_model, model)
model = model.cuda()
grad_handler = MoeGradientHandler(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 5:
break
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, enable_autocast)
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
grad_handler.handle_gradient()
check_grads_padding(model, zero_model, loose=True)
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
MOE_CONTEXT.reset_loss()
run_model_test()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2])
@rerun_if_address_is_in_use()
def test_moe_zero_model(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_model(world_size=2)
|
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import colossalai
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.testing import rerun_if_address_is_in_use
BATCH_SIZE = 16
NUM_EXPERTS = 4
CONFIG = dict()
def check_equal(tensor_a, tensor_b, atol=1e-06):
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
# Here we do not need TF32, since it brings absolute error on results
torch.backends.cuda.matmul.allow_tf32 = False
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
MOE_CONTEXT.setup(42) # MOE environment initialization
MOE_CONTEXT.reset_loss()
torch.manual_seed(rs + local_rank) # set each process has different random seed
# get randomized data
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
expert_module = nn.Linear
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
if data_type == torch.float16:
layer = layer.half()
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
layer.use_kernel = False
old_out = layer(tokens)
ech = old_out.shape
grad = torch.randn(ech, device=get_current_device())
old_out.backward(grad) # get gradient
# save all results
o_tk_grad = tokens.grad.data.clone()
o_gt_grad = layer.gate.weight.grad.data.clone()
# reset all gradients
tokens.grad.zero_()
layer.gate.weight.grad.zero_()
layer.use_kernel = True
new_out = layer(tokens) # get ouputs through colossal kernel
if data_type == torch.float32:
check_equal(old_out, new_out)
else:
check_equal(old_out, new_out, 1e-2)
# forward function passed
new_out.backward(grad) # get new type gradient
n_tk_grad = tokens.grad.data.clone()
n_gt_grad = layer.gate.weight.grad.data.clone()
if data_type == torch.float32:
check_equal(o_tk_grad, n_tk_grad)
else:
check_equal(o_tk_grad, o_tk_grad, 1e-2)
# tokens gradient is correct
if data_type == torch.float32:
check_equal(o_gt_grad, n_gt_grad, 5e-05)
else:
check_equal(o_gt_grad, n_gt_grad, 2e-01)
# bias gradient is correct
@pytest.mark.dist
@pytest.mark.parametrize("rs", [131])
@pytest.mark.parametrize("hidden_size", [32, 144])
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
@rerun_if_address_is_in_use()
def test_moe_kernel(rs, hidden_size, data_type, router):
world_size = 4
run_func = partial(run_routing,
world_size=world_size,
port=free_port(),
rs=rs,
hidden_size=hidden_size,
data_type=data_type,
router=router)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_kernel(2, 256, torch.float16, Top2Router)
|
from functools import partial
import pytest
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use
D_MODEL = 4
D_FF = 8
CONFIG = dict()
def run_test(rank, port):
world_size = 4
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=D_MODEL, out_features=D_FF, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE environment initialization
exp0 = Experts(expert_module, 1, **expert_factor)
exp1 = Experts(expert_module, 2, **expert_factor)
exp2 = Experts(expert_module, 4, **expert_factor)
exp3 = Experts(expert_module, 8, **expert_factor)
assert exp0.num_local_experts == 1
assert exp1.num_local_experts == 1
assert exp2.num_local_experts == 1
assert exp3.num_local_experts == 2
# experts deployment passed
parallel_info_dict = MOE_CONTEXT.parallel_info_dict
rank = dist.get_rank()
assert len(parallel_info_dict) == 3
assert dist.get_rank(parallel_info_dict[4].ep_group) == rank
assert dist.get_rank(parallel_info_dict[2].ep_group) == rank % 2
assert dist.get_rank(parallel_info_dict[1].ep_group) == 0
assert dist.get_rank(parallel_info_dict[4].dp_group) == 0
assert dist.get_rank(parallel_info_dict[2].dp_group) == rank // 2
assert dist.get_rank(parallel_info_dict[1].dp_group) == rank
# group creation passed
model = nn.ModuleList([exp0, exp1, exp2, exp3])
model = model.to(get_current_device())
sync_moe_model_param(model)
assert_equal_in_group(exp0.experts[0].weight.data, parallel_info_dict[1].dp_group)
assert_equal_in_group(exp0.experts[0].bias.data, parallel_info_dict[1].dp_group)
# MOE experts layout success when ep_size = 1
assert_equal_in_group(exp1.experts[0].weight.data, parallel_info_dict[2].dp_group)
assert_equal_in_group(exp1.experts[0].bias.data, parallel_info_dict[2].dp_group)
# MOE experts layout success when ep_size = 2
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_moe_initialization():
world_size = 4
run_func = partial(run_test, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_initialization()
|
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.nn import CheckpointModule
from colossalai.logging import get_dist_logger
from colossalai.testing import parameterize
from colossalai.utils import free_port
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer import MoeModule
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import get_current_device
from tests.test_zero.common import CONFIG
class MoeModel(CheckpointModule):
def __init__(self, checkpoint: bool = False):
super().__init__(checkpoint)
self.proj1 = nn.Linear(4, 16)
expert_cls = nn.Linear
expert_args_dict = dict(in_features=16, out_features=16)
self.moe = MoeModule(dim_model=16, num_experts=8, use_residual=True, expert_cls=expert_cls, **expert_args_dict)
self.proj2 = nn.Linear(16, 4)
def forward(self, x):
x = self.proj1(x)
x = self.moe(x)
x = self.proj2(x)
return x
@parameterize("init_device_type", ['cpu', 'cuda'])
@parameterize("shard_strategy_class", [TensorShardStrategy, BucketTensorShardStrategy])
def run_moe_zero_init(init_device_type, shard_strategy_class):
logger = get_dist_logger("test_moe_zero_init")
if init_device_type == 'cuda':
init_device = get_current_device()
elif init_device_type == 'cpu':
init_device = torch.device("cpu")
else:
raise NotImplementedError("Unknown device found.")
model_numel_tensor = torch.zeros(1, dtype=torch.int)
with ZeroInitContext(target_device=init_device,
shard_strategy=shard_strategy_class(),
shard_param=True,
model_numel_tensor=model_numel_tensor):
model = MoeModel(checkpoint=True)
for name, param in model.named_parameters():
assert hasattr(param, 'colo_attr')
# the weights in the gate should be fp32
if 'gate' in name:
assert param.colo_attr.sharded_data_tensor.dtype == torch.float32
else:
assert param.colo_attr.sharded_data_tensor.dtype == torch.half
# the parameters in moe experts and its gate should not be sharded
if ('experts' in name) or ('gate' in name) or ('residual_combine' in name):
assert not param.colo_attr.sharded_data_tensor.is_sharded
else:
assert param.colo_attr.sharded_data_tensor.is_sharded
# the parameters in moe experts is not replicated
if 'experts' in name:
assert not param.colo_attr.is_replicated
else:
assert param.colo_attr.is_replicated
if param.colo_attr.param_is_sharded:
assert param.colo_attr.data_payload.device.type == init_device.type, \
f'{param.colo_attr.data_payload.device.type} vs. {init_device.type}'
else:
assert param.colo_attr.data_payload.device.type == 'cuda'
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
run_moe_zero_init()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_zero_init(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_zero_init(world_size=2)
|
from functools import partial
import pytest
import torch
import torch.nn as nn
import torch.multiprocessing as mp
import torch.distributed as dist
import colossalai
from colossalai.utils import free_port, get_current_device
from colossalai.nn.layer.moe import Top1Router, UniformNoiseGenerator, MoeLayer, Experts
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils.moe import sync_moe_model_param
from colossalai.engine.gradient_handler import MoeGradientHandler
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use
BATCH_SIZE = 4
DIM = 16
CONFIG = dict()
def run_test(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
expert_module = nn.Linear
expert_factor = dict(in_features=DIM, out_features=DIM, device=get_current_device())
MOE_CONTEXT.setup(42) # MOE initialization
noisy_func = UniformNoiseGenerator()
router = Top1Router(noisy_func=noisy_func)
num_experts_list = [1, 2, 4]
layer_list = []
for num_experts in num_experts_list:
exp = Experts(expert_module, num_experts, **expert_factor)
moe_layer = MoeLayer(DIM, num_experts, router, exp)
layer_list.append(moe_layer)
model = nn.Sequential(*layer_list)
model = model.to(get_current_device())
sync_moe_model_param(model)
dist_dict = MOE_CONTEXT.parallel_info_dict
assert_equal_in_group(layer_list[0].experts.experts[0].weight.data, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.data, dist_dict[2].dp_group)
# MoE model synchronization passed
grad_handler = MoeGradientHandler(model, 0)
rank = dist.get_rank()
torch.cuda.manual_seed(78 + rank)
data = torch.randn(BATCH_SIZE, DIM, device=get_current_device())
grad = torch.randn_like(data)
MOE_CONTEXT.reset_loss()
outputs = model(data)
outputs.backward(grad)
grad_handler.handle_gradient()
assert_equal_in_group(layer_list[0].experts.experts[0].weight.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[0].experts.experts[0].bias.grad, dist_dict[1].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].weight.grad, dist_dict[2].dp_group)
assert_equal_in_group(layer_list[1].experts.experts[0].bias.grad, dist_dict[2].dp_group)
# MoE grad handler test passed
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_grad_handler():
world_size = 4
run_func = partial(run_test, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_grad_handler()
|
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
import datetime
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('..'))
# -- Project information -----------------------------------------------------
project = 'Colossal-AI'
copyright = f'{datetime.datetime.now().year}, HPC-AI Tech'
author = 'HPC-AI Technology Inc.'
# The full version, including alpha/beta/rc tags
release = '0.0.1'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.mathjax',
'sphinx.ext.napoleon',
'sphinx.ext.linkcode',
'myst_parser',
]
# Disable docstring inheritance
autodoc_inherit_docstrings = False
# Disable displaying type annotations, these can be very verbose
autodoc_typehints = 'none'
# Enable overriding of function signatures in the first line of the docstring.
autodoc_docstring_signature = True
autodoc_default_options = {
'member-order': 'bysource',
}
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['.build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
html_show_sourcelink = False
html_theme_options = {
'navigation_depth': 3,
}
html_context = {
'display_github': False,
'github_user': 'hpcaitech',
'github_repo': 'ColossalAI',
# 'github_version': 'master/docs/',
}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
html_css_files = [
'css/rtd_theme.css',
]
# -- Extension configuration -------------------------------------------------
source_suffix = ['.rst', '.md', '.MD']
import inspect
import colossalai
def linkcode_resolve(domain, info):
"""
Determine the URL corresponding to Python object
"""
if domain != 'py':
return None
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return None
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return None
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
return None
try:
source, lineno = inspect.findsource(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d" % (lineno + 1)
else:
linespec = ""
fn = os.path.relpath(fn, start=os.path.dirname(colossalai.__file__))
github = "https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/{}{}"
return github.format(fn, linespec)
|
import torch
import torch.nn as nn
from colossalai.nn.layer import WrappedDropPath as DropPath
class TransformerLayer(nn.Module):
"""Transformer layer builder.
"""
def __init__(self,
att: nn.Module,
ffn: nn.Module,
norm1: nn.Module,
norm2: nn.Module,
droppath=None,
droppath_rate: float = 0):
super().__init__()
self.att = att
self.ffn = ffn
self.norm1 = norm1
self.norm2 = norm2
self.droppath = DropPath(droppath_rate) if droppath is None else droppath
def forward(self, x):
x = x + self.droppath(self.att(self.norm1(x)))
x = x + self.droppath(self.ffn(self.norm2(x)))
return x
|
from .gpt import *
|
import math
from typing import Callable
import torch
from colossalai import nn as col_nn
from colossalai.builder.pipeline import partition_uniform
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.nn.layer.utils import CheckpointModule, divide
from colossalai.nn.layer.wrapper import PipelineSharedModuleWrapper
from colossalai.registry import LAYERS, LOSSES, MODELS
from colossalai.utils import get_current_device
from torch import dtype, nn
__all__ = [
'GPT', 'GPTLMLoss', 'gpt2_small', 'gpt2_medium', 'gpt2_large', 'gpt2_xl', 'gpt2_8B', 'gpt2_xl_pipeline',
'gpt2_8B_pipeline', 'gpt3', 'gpt3_pipeline'
]
@LAYERS.register_module
class GPTEmbedding(nn.Module):
def __init__(self,
embedding_dim: int,
vocab_size: int,
max_position_embeddings: int,
num_tokentypes: int = 0,
padding_idx: int = None,
dropout: float = 0.,
dtype: dtype = None) -> None:
super().__init__()
self.word_embeddings = col_nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx, dtype=dtype)
self.position_embeddings = col_nn.Embedding(max_position_embeddings, embedding_dim, dtype=dtype)
if num_tokentypes > 0:
self.tokentype_embeddings = col_nn.Embedding(num_tokentypes, embedding_dim, dtype=dtype)
else:
self.tokentype_embeddings = None
self.dropout = col_nn.Dropout(dropout)
@property
def word_embedding_weight(self):
return self.word_embeddings.weight
def forward(self, input_ids, position_ids=None, tokentype_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=get_current_device()).unsqueeze(0)
x = self.word_embeddings(input_ids) + self.position_embeddings(position_ids)
if self.tokentype_embeddings is not None and tokentype_ids is not None:
x = x + self.tokentype_embeddings(tokentype_ids)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTSelfAttention(nn.Module):
def __init__(self,
dim: int,
num_heads: int,
attention_dropout: float,
dropout: float,
bias: bool = True,
fuse_scale_mask_softmax: bool = False,
dtype: dtype = None) -> None:
super().__init__()
self.fuse_scale_mask_softmax = fuse_scale_mask_softmax
self.attention_head_size = divide(dim, num_heads)
self.query_key_value = col_nn.Linear(dim, 3 * dim, dtype=dtype, bias=bias)
if fuse_scale_mask_softmax:
from colossalai.kernel import FusedScaleMaskSoftmax
from colossalai.kernel.cuda_native.scaled_softmax import \
AttnMaskType
self.softmax = FusedScaleMaskSoftmax(input_in_fp16=True,
input_in_bf16=False,
attn_mask_type=AttnMaskType.causal,
scaled_masked_softmax_fusion=True,
mask_func=None,
softmax_in_fp32=True,
scale=math.sqrt(self.attention_head_size))
else:
self.softmax = nn.Softmax(dim=-1)
self.attention_dropout = col_nn.Dropout(attention_dropout)
self.dense = col_nn.Linear(dim, dim, dtype=dtype, bias=True)
self.dropout = col_nn.Dropout(dropout)
def forward(self, x, attention_mask=None):
qkv = self.query_key_value(x)
all_head_size = qkv.shape[-1] // 3
num_attention_heads = divide(all_head_size, self.attention_head_size)
new_qkv_shape = qkv.shape[:-1] + \
(num_attention_heads, 3 * self.attention_head_size)
qkv = qkv.view(new_qkv_shape)
qkv = qkv.permute((0, 2, 1, 3))
q, k, v = torch.chunk(qkv, 3, dim=-1)
x = torch.matmul(q, k.transpose(-1, -2))
if self.fuse_scale_mask_softmax:
x = self.softmax(x, attention_mask)
else:
x = x / math.sqrt(self.attention_head_size)
# causal mask
q_len, k_len = q.size(-2), k.size(-2)
causal_mask = torch.tril(torch.ones((q_len, k_len), dtype=torch.uint8,
device=get_current_device())).view(1, 1, q_len, k_len).bool()
x = torch.where(causal_mask, x, torch.tensor(-1e4, dtype=x.dtype, device=get_current_device()))
if attention_mask is not None:
x = x + attention_mask
x = self.softmax(x)
x = self.attention_dropout(x)
x = torch.matmul(x, v)
x = x.transpose(1, 2)
new_context_layer_shape = x.size()[:-2] + (all_head_size,)
x = x.reshape(new_context_layer_shape)
x = self.dense(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTMLP(nn.Module):
def __init__(self,
dim: int,
mlp_ratio: float,
activation: Callable,
dropout: float,
dtype: dtype = None,
bias: bool = True):
super().__init__()
intermediate_dim = int(dim * mlp_ratio)
self.dense_1 = col_nn.Linear(dim, intermediate_dim, dtype=dtype, bias=bias)
self.activation = activation
self.dense_2 = col_nn.Linear(intermediate_dim, dim, dtype=dtype, bias=bias)
self.dropout = col_nn.Dropout(dropout)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class GPTBlock(CheckpointModule):
def __init__(self,
dim: int,
num_heads: int,
mlp_ratio: float,
activation: Callable,
attention_dropout: float = 0.,
dropout: float = 0.,
layernorm_epsilon: float = 1e-5,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False,
activation_offload: bool = False):
super().__init__(checkpoint, activation_offload)
self.apply_post_layernorm = apply_post_layernorm
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.attn = GPTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
dropout=dropout,
bias=bias,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
dtype=dtype)
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.mlp = GPTMLP(dim=dim, mlp_ratio=mlp_ratio, activation=activation, dropout=dropout, dtype=dtype, bias=bias)
def _forward(self, x, attention_mask=None):
if not self.apply_post_layernorm:
residual = x
x = self.norm1(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.attn(x, attention_mask)
if not self.apply_post_layernorm:
residual = x
x = self.norm2(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.mlp(x)
return x, attention_mask
@LAYERS.register_module
class GPTLMHead(nn.Module):
def __init__(self,
dim: int,
vocab_size: int,
word_embeeding_weight: nn.Parameter = None,
bias: bool = False,
dtype: dtype = None) -> None:
super().__init__()
self.dense = col_nn.Classifier(dim, vocab_size, word_embeeding_weight, bias=bias, dtype=dtype)
@property
def weight(self):
return self.dense.weight
def forward(self, x):
x = self.dense(x)
return x
@LOSSES.register_module
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss = col_nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
@MODELS.register_module
class GPT(nn.Module):
def __init__(self,
vocab_size: int = 50304,
max_position_embeddings: int = 1024,
dim: int = 768,
num_heads: int = 12,
depth: int = 12,
mlp_ratio: float = 4.0,
dropout: float = 0.1,
embedding_dropout: float = 0.1,
attention_dropout: float = 0.1,
layernorm_epsilon: float = 1e-5,
activation: Callable = nn.functional.gelu,
padding_idx: int = None,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False,
activation_offload: bool = False) -> None:
super().__init__()
self.embed = GPTEmbedding(embedding_dim=dim,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
padding_idx=padding_idx,
dropout=embedding_dropout,
dtype=dtype)
self.blocks = nn.ModuleList([
GPTBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
activation=activation,
attention_dropout=attention_dropout,
dropout=dropout,
layernorm_epsilon=layernorm_epsilon,
dtype=dtype,
bias=bias,
apply_post_layernorm=apply_post_layernorm,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
checkpoint=checkpoint,
activation_offload=activation_offload
) for _ in range(depth)
])
self.norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.head = GPTLMHead(dim=dim,
vocab_size=vocab_size,
word_embeeding_weight=self.embed.word_embedding_weight,
dtype=dtype)
def forward(self, input_ids, attention_mask=None):
x = self.embed(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# Adapted from huggingface
if attention_mask is not None:
batch_size = input_ids.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = col_nn.partition_batch(attention_mask)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=x.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
for block in self.blocks:
x, attention_mask = block(x, attention_mask)
x = self.head(self.norm(x))
return x
class PipelineGPT(nn.Module):
def __init__(self,
vocab_size: int = 50304,
max_position_embeddings: int = 1024,
dim: int = 768,
num_heads: int = 12,
depth: int = 12,
mlp_ratio: float = 4.0,
dropout: float = 0.1,
embedding_dropout: float = 0.1,
attention_dropout: float = 0.1,
layernorm_epsilon: float = 1e-5,
activation: Callable = nn.functional.gelu,
padding_idx: int = None,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False,
first: bool = False,
last: bool = False):
super().__init__()
self.checkpoint = checkpoint
self.first = first
self.last = last
if first:
self.embed = GPTEmbedding(embedding_dim=dim,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
padding_idx=padding_idx,
dropout=embedding_dropout,
dtype=dtype)
self.blocks = nn.ModuleList([
GPTBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
activation=activation,
attention_dropout=attention_dropout,
dropout=dropout,
layernorm_epsilon=layernorm_epsilon,
dtype=dtype,
bias=bias,
apply_post_layernorm=apply_post_layernorm,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
checkpoint=checkpoint,
) for _ in range(depth)
])
if self.last:
self.norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.head = GPTLMHead(dim=dim, vocab_size=vocab_size, dtype=dtype)
def forward(self, x=None, input_ids=None, attention_mask=None):
if self.first:
x = self.embed(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# Adapted from huggingface
if attention_mask is not None:
if self.first:
batch_size = input_ids.shape[0]
else:
batch_size = x.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = col_nn.partition_batch(attention_mask)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=x.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
for block in self.blocks:
x, attention_mask = block(x, attention_mask)
if self.last:
x = self.head(self.norm(x))
return x
def _create_gpt_model(**model_kwargs):
model = GPT(**model_kwargs)
return model
def _create_gpt_pipeline_model(depth=48, num_chunks=1, layer_partitions=None, **model_kwargs):
logger = get_dist_logger()
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
rank = gpc.get_global_rank()
wrapper = PipelineSharedModuleWrapper([0, pipeline_size - 1])
parts = partition_uniform(depth, pipeline_size,
num_chunks)[pipeline_rank] if layer_partitions is None else layer_partitions
models = []
for start, end in parts:
model_kwargs['first'] = start == 0
model_kwargs['last'] = end == depth
model_kwargs['depth'] = end - start
chunk = PipelineGPT(**model_kwargs).to(get_current_device())
if start == 0:
wrapper.register_parameter(chunk.embed.word_embedding_weight)
elif end == depth:
wrapper.register_parameter(chunk.head.weight)
models.append(chunk)
logger.info(f'==> Rank {rank} built layer {start}-{end} / total {depth}')
if len(models) == 1:
model = models[0]
else:
model = nn.ModuleList(models)
return model
@MODELS.register_module
def gpt2_small(**kwargs):
model_kwargs = dict(dim=768, depth=12, num_heads=12, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_medium(**kwargs):
model_kwargs = dict(dim=1024, depth=24, num_heads=8, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_large(**kwargs):
model_kwargs = dict(dim=1536, depth=36, num_heads=12, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_xl(**kwargs):
model_kwargs = dict(dim=1600, depth=48, num_heads=16, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_8B(**kwargs):
model_kwargs = dict(dim=3072, depth=72, num_heads=24, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt2_xl_pipeline(**kwargs):
model_kwargs = dict(dim=1600, depth=48, num_heads=20, **kwargs)
return _create_gpt_pipeline_model(**model_kwargs)
@MODELS.register_module
def gpt2_8B_pipeline(**kwargs):
model_kwargs = dict(dim=3072, depth=72, num_heads=24, **kwargs)
return _create_gpt_pipeline_model(**model_kwargs)
@MODELS.register_module
def gpt3(**kwargs):
model_kwargs = dict(dim=12288, depth=96, num_heads=96, **kwargs)
return _create_gpt_model(**model_kwargs)
@MODELS.register_module
def gpt3_pipeline(**kwargs):
model_kwargs = dict(dim=12288, depth=96, num_heads=96, **kwargs)
return _create_gpt_pipeline_model(**model_kwargs)
|
from .vit import *
|
import math
from typing import Callable
import torch
from colossalai import nn as col_nn
from colossalai.nn.layer.utils import CheckpointModule
from colossalai.registry import LAYERS, MODELS
from torch import dtype, nn
__all__ = [
'VisionTransformer',
'vit_lite_depth7_patch4_32',
'vit_tiny_patch4_32',
'vit_tiny_patch16_224',
'vit_tiny_patch16_384',
'vit_small_patch16_224',
'vit_small_patch16_384',
'vit_small_patch32_224',
'vit_small_patch32_384',
'vit_base_patch16_224',
'vit_base_patch16_384',
'vit_base_patch32_224',
'vit_base_patch32_384',
'vit_large_patch16_224',
'vit_large_patch16_384',
'vit_large_patch32_224',
'vit_large_patch32_384',
]
_init_rules = dict(
torch=dict(
embed=dict(
weight_initializer=col_nn.init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer=col_nn.init.xavier_uniform_(a=1, scale=1),
position_embed_initializer=col_nn.init.zeros_(),
),
transformer=dict(
weight_initializer=col_nn.init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer=col_nn.init.xavier_uniform_(a=1, scale=1),
),
head=dict(
weight_initializer=col_nn.init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer=col_nn.init.xavier_uniform_(a=1, scale=1),
),
),
jax=dict(
embed=dict(
weight_initializer=col_nn.init.lecun_normal_(),
bias_initializer=col_nn.init.zeros_(),
position_embed_initializer=col_nn.init.trunc_normal_(std=.02),
),
transformer=dict(
weight_initializer=col_nn.init.xavier_uniform_(),
bias_initializer=col_nn.init.normal_(std=1e-6),
),
head=dict(
weight_initializer=col_nn.init.zeros_(),
bias_initializer=col_nn.init.zeros_(),
),
),
)
@LAYERS.register_module
class ViTEmbedding(nn.Module):
def __init__(self,
img_size: int,
patch_size: int,
in_chans: int,
embedding_dim: int,
dropout: float,
dtype: dtype = None,
flatten: bool = True,
init_method: str = 'torch'):
super().__init__()
self.patch_embed = col_nn.PatchEmbedding(img_size,
patch_size,
in_chans,
embedding_dim,
dtype=dtype,
flatten=flatten,
**_init_rules[init_method]['embed'])
self.dropout = col_nn.Dropout(dropout)
def forward(self, x):
x = self.patch_embed(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class ViTSelfAttention(nn.Module):
def __init__(self,
dim: int,
num_heads: int,
attention_dropout: float,
dropout: float,
bias: bool = True,
dtype: dtype = None,
init_method: str = 'torch'):
super().__init__()
self.attention_head_size = dim // num_heads
self.query_key_value = col_nn.Linear(dim,
3 * dim,
dtype=dtype,
bias=bias,
**_init_rules[init_method]['transformer'])
self.attention_dropout = col_nn.Dropout(attention_dropout)
self.dense = col_nn.Linear(dim, dim, dtype=dtype, bias=True, **_init_rules[init_method]['transformer'])
self.dropout = col_nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
qkv = self.query_key_value(x)
all_head_size = qkv.shape[-1] // 3
num_attention_heads = all_head_size // self.attention_head_size
new_qkv_shape = qkv.shape[:-1] + \
(num_attention_heads, 3 * self.attention_head_size)
qkv = qkv.view(new_qkv_shape)
qkv = qkv.permute((0, 2, 1, 3))
q, k, v = torch.chunk(qkv, 3, dim=-1)
x = torch.matmul(q, k.transpose(-1, -2))
x = x / math.sqrt(self.attention_head_size)
x = self.softmax(x)
x = self.attention_dropout(x)
x = torch.matmul(x, v)
x = x.transpose(1, 2)
new_context_layer_shape = x.size()[:-2] + (all_head_size, )
x = x.reshape(new_context_layer_shape)
x = self.dense(x)
x = self.dropout(x)
return x
@LAYERS.register_module
class ViTMLP(nn.Module):
def __init__(self,
dim: int,
mlp_ratio: int,
activation: Callable,
dropout: float,
dtype: dtype = None,
bias: bool = True,
init_method: str = 'torch'):
super().__init__()
self.dense_1 = col_nn.Linear(dim,
mlp_ratio * dim,
dtype=dtype,
bias=bias,
**_init_rules[init_method]['transformer'])
self.activation = activation
self.dropout_1 = col_nn.Dropout(dropout)
self.dense_2 = col_nn.Linear(mlp_ratio * dim,
dim,
dtype=dtype,
bias=bias,
**_init_rules[init_method]['transformer'])
self.dropout_2 = col_nn.Dropout(dropout)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dropout_1(x)
x = self.dense_2(x)
x = self.dropout_2(x)
return x
@LAYERS.register_module
class ViTHead(nn.Module):
def __init__(self,
dim: int,
num_classes: int,
representation_size: int = None,
dtype: dtype = None,
bias: bool = True,
init_method: str = 'torch'):
super().__init__()
if representation_size:
self.representation = col_nn.Linear(dim,
representation_size,
bias=bias,
dtype=dtype,
**_init_rules[init_method]['head'])
else:
self.representation = None
representation_size = dim
self.dense = col_nn.Classifier(representation_size,
num_classes,
dtype=dtype,
bias=bias,
**_init_rules[init_method]['head'])
def forward(self, x):
x = x[:, 0]
if self.representation is not None:
x = self.representation(x)
x = self.dense(x)
return x
@LAYERS.register_module
class ViTBlock(CheckpointModule):
def __init__(self,
dim: int,
num_heads: int,
mlp_ratio: int,
activation: Callable,
attention_dropout: float = 0.,
dropout: float = 0.,
drop_path: float = 0.,
layernorm_epsilon: float = 1e-6,
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False,
init_method: str = 'torch'):
super().__init__(checkpoint)
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.attn = ViTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
dropout=dropout,
bias=bias,
dtype=dtype,
init_method=init_method)
self.drop_path = col_nn.DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.mlp = ViTMLP(dim=dim,
mlp_ratio=mlp_ratio,
activation=activation,
dropout=dropout,
dtype=dtype,
bias=bias,
init_method=init_method)
def _forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
@MODELS.register_module
class VisionTransformer(nn.Module):
def __init__(self,
img_size: int = 224,
patch_size: int = 16,
in_chans: int = 3,
num_classes: int = 1000,
depth: int = 12,
num_heads: int = 12,
dim: int = 768,
mlp_ratio: int = 4,
attention_dropout: float = 0.,
dropout: float = 0.1,
drop_path: float = 0.,
layernorm_epsilon: float = 1e-6,
activation: Callable = nn.functional.gelu,
representation_size: int = None,
dtype: dtype = None,
bias: bool = True,
checkpoint: bool = False,
init_method: str = 'torch'):
super().__init__()
embed = ViTEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embedding_dim=dim,
dropout=dropout,
dtype=dtype,
init_method=init_method)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = [
ViTBlock(
dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
attention_dropout=attention_dropout,
dropout=dropout,
drop_path=dpr[i],
activation=activation,
dtype=dtype,
bias=bias,
checkpoint=checkpoint,
init_method=init_method,
) for i in range(depth)
]
norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
head = ViTHead(dim=dim,
num_classes=num_classes,
representation_size=representation_size,
dtype=dtype,
bias=bias,
init_method=init_method)
self.layers = nn.Sequential(
embed,
*blocks,
norm,
head,
)
def forward(self, x):
x = self.layers(x)
return x
def _create_vit_model(**model_kwargs):
model = VisionTransformer(**model_kwargs)
return model
@MODELS.register_module
def vit_lite_depth7_patch4_32(**kwargs):
model_kwargs = dict(img_size=32, patch_size=4, dim=256, depth=7, num_heads=4, mlp_ratio=2, num_classes=10, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_tiny_patch4_32(**kwargs):
model_kwargs = dict(img_size=32, patch_size=4, dim=512, depth=6, num_heads=8, mlp_ratio=1, num_classes=10, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_tiny_patch16_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=16, dim=192, depth=12, num_heads=3, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_tiny_patch16_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=16, dim=192, depth=12, num_heads=3, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_small_patch16_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=16, dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_small_patch16_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=16, dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_small_patch32_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=32, dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_small_patch32_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=32, dim=384, depth=12, num_heads=6, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_base_patch16_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=16, dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_base_patch16_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=16, dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_base_patch32_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=32, dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_base_patch32_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=32, dim=768, depth=12, num_heads=12, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_large_patch16_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=16, dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_large_patch16_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=16, dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_large_patch32_224(**kwargs):
model_kwargs = dict(img_size=224, patch_size=32, dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
@MODELS.register_module
def vit_large_patch32_384(**kwargs):
model_kwargs = dict(img_size=384, patch_size=32, dim=1024, depth=24, num_heads=16, mlp_ratio=4, **kwargs)
return _create_vit_model(**model_kwargs)
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from colossalai.registry import MODELS
from colossalai.nn.model.model_from_config import ModelFromConfig
@MODELS.register_module
class VisionTransformerFromConfig(ModelFromConfig):
"""Vision Transformer from
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" <https://arxiv.org/pdf/2010.11929>`_.
"""
def __init__(self,
embedding_cfg: dict,
norm_cfg: dict,
block_cfg: dict,
head_cfg: dict,
token_fusion_cfg: dict = None,
embed_dim=768,
depth=12,
drop_path_rate=0.,
tensor_splitting_cfg: dict = None):
super().__init__()
self.embed_dim = embed_dim
self.num_tokens = 1
self.tensor_splitting_cfg = tensor_splitting_cfg
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
if token_fusion_cfg is None:
token_fusion_cfg = []
else:
token_fusion_cfg = [token_fusion_cfg]
self.layers_cfg = [
embedding_cfg,
# input tensor splitting
*self._generate_tensor_splitting_cfg(),
*token_fusion_cfg,
# blocks
*self._generate_block_cfg(
dpr=dpr, block_cfg=block_cfg, depth=depth),
# norm
norm_cfg,
# head
head_cfg
]
def _fuse_tokens(self, x):
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
return x
def _generate_block_cfg(self, dpr, depth, block_cfg):
blocks_cfg = []
for i in range(depth):
_cfg = block_cfg.copy()
_cfg['droppath_cfg']['drop_path'] = dpr[i]
blocks_cfg.append(_cfg)
return blocks_cfg
def _generate_tensor_splitting_cfg(self):
if self.tensor_splitting_cfg:
return [self.tensor_splitting_cfg]
else:
return []
def forward(self, x): # [512, 3, 32, 32]
for layer in self.layers:
if isinstance(x, tuple):
x = layer(*x)
else:
x = layer(x)
return x # [256, 5]
def init_weights(self):
# TODO: add init weights
pass
|
import math
import torch
import torch.nn as nn
from colossalai.context import ParallelMode
from colossalai.nn.layer import VanillaPatchEmbedding, VanillaClassifier, \
WrappedDropout as Dropout, WrappedDropPath as DropPath
from colossalai.nn.layer.moe import build_ffn_experts, MoeLayer, Top2Router, NormalNoiseGenerator, MoeModule
from .util import moe_sa_args, moe_mlp_args
from ..helper import TransformerLayer
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils import get_current_device
from typing import List
class VanillaSelfAttention(nn.Module):
"""Standard ViT self attention.
"""
def __init__(self,
d_model: int,
n_heads: int,
d_kv: int,
attention_drop: float = 0,
drop_rate: float = 0,
bias: bool = True,
dropout1=None,
dropout2=None):
super().__init__()
self.n_heads = n_heads
self.d_kv = d_kv
self.scale = 1.0 / math.sqrt(self.d_kv)
self.dense1 = nn.Linear(d_model, 3 * n_heads * d_kv, bias, device=get_current_device())
self.softmax = nn.Softmax(dim=-1)
self.atten_drop = nn.Dropout(attention_drop) if dropout1 is None else dropout1
self.dense2 = nn.Linear(n_heads * d_kv, d_model, device=get_current_device())
self.dropout = nn.Dropout(drop_rate) if dropout2 is None else dropout2
def forward(self, x):
qkv = self.dense1(x)
new_shape = qkv.shape[:2] + (3, self.n_heads, self.d_kv)
qkv = qkv.view(*new_shape)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[:]
x = torch.matmul(q, k.transpose(-2, -1)) * self.scale
x = self.atten_drop(self.softmax(x))
x = torch.matmul(x, v)
x = x.transpose(1, 2)
new_shape = x.shape[:2] + (self.n_heads * self.d_kv,)
x = x.reshape(*new_shape)
x = self.dense2(x)
x = self.dropout(x)
return x
class VanillaFFN(nn.Module):
"""FFN composed with two linear layers, also called MLP.
"""
def __init__(self,
d_model: int,
d_ff: int,
activation=None,
drop_rate: float = 0,
bias: bool = True,
dropout1=None,
dropout2=None):
super().__init__()
dense1 = nn.Linear(d_model, d_ff, bias, device=get_current_device())
act = nn.GELU() if activation is None else activation
dense2 = nn.Linear(d_ff, d_model, bias, device=get_current_device())
drop1 = nn.Dropout(drop_rate) if dropout1 is None else dropout1
drop2 = nn.Dropout(drop_rate) if dropout2 is None else dropout2
self.ffn = nn.Sequential(dense1, act, drop1, dense2, drop2)
def forward(self, x):
return self.ffn(x)
class Widenet(nn.Module):
def __init__(self,
num_experts: int,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
drop_tks: bool = True,
img_size: int = 224,
patch_size: int = 16,
in_chans: int = 3,
num_classes: int = 1000,
depth: int = 12,
d_model: int = 768,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 4096,
attention_drop: float = 0.,
drop_rate: float = 0.1,
drop_path: float = 0.):
super().__init__()
embedding = VanillaPatchEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_size=d_model)
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
shared_sa = VanillaSelfAttention(**moe_sa_args(
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
noisy_func = NormalNoiseGenerator(num_experts)
shared_router = Top2Router(capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_func=noisy_func,
drop_tks=drop_tks)
shared_experts = build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = [
TransformerLayer(att=shared_sa,
ffn=MoeLayer(dim_model=d_model,
num_experts=num_experts,
router=shared_router,
experts=shared_experts),
norm1=nn.LayerNorm(d_model, eps=1e-6),
norm2=nn.LayerNorm(d_model, eps=1e-6),
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR)) for i in range(depth)
]
norm = nn.LayerNorm(d_model, eps=1e-6)
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.widenet = nn.Sequential(embedding, embed_dropout, *blocks, norm)
def forward(self, x):
MOE_CONTEXT.reset_loss()
x = self.widenet(x)
x = torch.mean(x, dim=1)
x = self.linear(x)
return x
class ViTMoE(nn.Module):
def __init__(self,
num_experts: int or List[int],
use_residual: bool = False,
capacity_factor_train: float = 1.25,
capacity_factor_eval: float = 2.0,
drop_tks: bool = True,
img_size: int = 224,
patch_size: int = 16,
in_chans: int = 3,
num_classes: int = 1000,
depth: int = 12,
d_model: int = 768,
num_heads: int = 12,
d_kv: int = 64,
d_ff: int = 3072,
attention_drop: float = 0.,
drop_rate: float = 0.1,
drop_path: float = 0.):
super().__init__()
assert depth % 2 == 0, "The number of layers should be even right now"
if isinstance(num_experts, list):
assert len(num_experts) == depth // 2, \
"The length of num_experts should equal to the number of MOE layers"
num_experts_list = num_experts
else:
num_experts_list = [num_experts] * (depth // 2)
embedding = VanillaPatchEmbedding(img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_size=d_model)
embed_dropout = Dropout(p=drop_rate, mode=ParallelMode.TENSOR)
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path, depth)]
blocks = []
for i in range(depth):
sa = VanillaSelfAttention(**moe_sa_args(
d_model=d_model, n_heads=num_heads, d_kv=d_kv, attention_drop=attention_drop, drop_rate=drop_rate))
if i % 2 == 0:
ffn = VanillaFFN(**moe_mlp_args(d_model=d_model, d_ff=d_ff, drop_rate=drop_rate))
else:
num_experts = num_experts_list[i // 2]
experts = build_ffn_experts(num_experts, d_model, d_ff, drop_rate=drop_rate)
ffn = MoeModule(dim_model=d_model,
num_experts=num_experts,
top_k=1 if use_residual else 2,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_policy='Jitter' if use_residual else 'Gaussian',
drop_tks=drop_tks,
use_residual=use_residual,
expert_instance=experts,
expert_cls=VanillaFFN,
**moe_mlp_args(d_model=d_model, d_ff=d_ff, drop_rate=drop_rate))
layer = TransformerLayer(att=sa,
ffn=ffn,
norm1=nn.LayerNorm(d_model, eps=1e-6),
norm2=nn.LayerNorm(d_model, eps=1e-6),
droppath=DropPath(p=dpr[i], mode=ParallelMode.TENSOR))
blocks.append(layer)
norm = nn.LayerNorm(d_model, eps=1e-6)
self.linear = VanillaClassifier(in_features=d_model, num_classes=num_classes)
nn.init.zeros_(self.linear.weight)
nn.init.zeros_(self.linear.bias)
self.vitmoe = nn.Sequential(embedding, embed_dropout, *blocks, norm)
def forward(self, x):
MOE_CONTEXT.reset_loss()
x = self.vitmoe(x)
x = torch.mean(x, dim=1)
x = self.linear(x)
return x
|
from colossalai.context import ParallelMode
from colossalai.nn.layer import WrappedDropout as Dropout
def moe_sa_args(d_model: int,
n_heads: int,
d_kv: int,
attention_drop: float = 0,
drop_rate: float = 0,
bias: bool = True):
"""This is an example for args in moe self attention, since lots of modules should be
adapted before putting them in experts.
"""
dropout1 = Dropout(attention_drop, mode=ParallelMode.TENSOR)
dropout2 = Dropout(drop_rate, mode=ParallelMode.TENSOR)
return dict(
d_model=d_model,
n_heads=n_heads,
d_kv=d_kv,
bias=bias,
dropout1=dropout1,
dropout2=dropout2
)
def moe_mlp_args(d_model: int,
d_ff: int,
drop_rate: float,
bias: bool = True):
"""This is an example for args of MLP in Experts, since lots of modules should be adapted
before putting them in experts.
"""
dropout1 = Dropout(drop_rate, mode=ParallelMode.TENSOR)
dropout2 = Dropout(drop_rate, mode=ParallelMode.TENSOR)
return dict(
d_model=d_model,
d_ff=d_ff,
bias=bias,
dropout1=dropout1,
dropout2=dropout2
)
|
from .models import Widenet, ViTMoE
from .gpt import MOEGPT, prmoe_4b, prmoe_31b, prmoe_51b
|
from typing import Callable, List
from torch import dtype, nn
from colossalai import nn as col_nn
from colossalai.registry import LAYERS, MODELS
from colossalai.nn.layer import MoeModule
from colossalai.context import MOE_CONTEXT
from colossalai.logging import get_dist_logger
from colossalai.nn.layer.utils import CheckpointModule, divide
from model_zoo.gpt.gpt import GPTEmbedding, GPTSelfAttention, GPTMLP, GPTBlock, GPTLMHead
@LAYERS.register_module
class MOEGPTBlock(CheckpointModule):
def __init__(self,
num_experts: int,
dim: int,
num_heads: int,
mlp_ratio: float,
activation: Callable,
capacity_factor_train: float = 1.0,
capacity_factor_eval: float = 1.0,
use_residual: bool = False,
attention_dropout: float = 0.,
dropout: float = 0.,
layernorm_epsilon: float = 1e-5,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False):
super().__init__(checkpoint)
self.apply_post_layernorm = apply_post_layernorm
self.norm1 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.attn = GPTSelfAttention(dim=dim,
num_heads=num_heads,
attention_dropout=attention_dropout,
dropout=dropout,
bias=bias,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
dtype=dtype)
self.norm2 = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
mpl_factory_dict = dict(dim=dim,
mlp_ratio=mlp_ratio,
activation=activation,
dropout=dropout,
dtype=dtype,
bias=bias)
self.mlp = MoeModule(dim_model=dim,
num_experts=num_experts,
top_k=1,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
noisy_policy='Jitter',
use_residual=use_residual,
expert_cls=GPTMLP,
**mpl_factory_dict)
def _forward(self, x, attention_mask=None):
if not self.apply_post_layernorm:
residual = x
x = self.norm1(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.attn(x, attention_mask)
if not self.apply_post_layernorm:
residual = x
x = self.norm2(x)
if self.apply_post_layernorm:
residual = x
x = residual + self.mlp(x)
return x, attention_mask
@MODELS.register_module
class MOEGPT(nn.Module):
def __init__(self,
num_experts: int or List[int],
use_residual: bool = False,
capacity_factor_train: float = 1.0,
capacity_factor_eval: float = 1.0,
vocab_size: int = 50304,
max_position_embeddings: int = 1024,
dim: int = 768,
num_heads: int = 12,
depth: int = 12,
mlp_ratio: float = 4.0,
dropout: float = 0.1,
embedding_dropout: float = 0.1,
attention_dropout: float = 0.1,
layernorm_epsilon: float = 1e-5,
activation: Callable = nn.functional.gelu,
padding_idx: int = None,
dtype: dtype = None,
bias: bool = True,
apply_post_layernorm: bool = False,
fuse_scale_mask_softmax: bool = False,
checkpoint: bool = False) -> None:
super().__init__()
half_depth = divide(depth, 2)
if isinstance(num_experts, list):
assert len(num_experts) == half_depth, \
"The length of num_experts should equal to the number of MOE layers"
num_experts_list = num_experts
else:
num_experts_list = [num_experts] * half_depth
self.embed = GPTEmbedding(embedding_dim=dim,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
padding_idx=padding_idx,
dropout=embedding_dropout,
dtype=dtype)
block_list = []
block_factory_dict = dict(dim=dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
activation=activation,
attention_dropout=attention_dropout,
dropout=dropout,
layernorm_epsilon=layernorm_epsilon,
dtype=dtype,
bias=bias,
apply_post_layernorm=apply_post_layernorm,
fuse_scale_mask_softmax=fuse_scale_mask_softmax,
checkpoint=checkpoint)
for i in range(depth):
if i % 2 == 0:
block_module = GPTBlock(**block_factory_dict)
else:
num_experts = num_experts_list[i // 2]
block_module = MOEGPTBlock(num_experts=num_experts,
capacity_factor_train=capacity_factor_train,
capacity_factor_eval=capacity_factor_eval,
use_residual=use_residual,
**block_factory_dict)
block_list.append(block_module)
self.blocks = nn.ModuleList(block_list)
self.norm = col_nn.LayerNorm(normalized_shape=dim, eps=layernorm_epsilon, dtype=dtype)
self.head = GPTLMHead(dim=dim,
vocab_size=vocab_size,
word_embeeding_weight=self.embed.word_embedding_weight,
dtype=dtype)
def forward(self, input_ids, attention_mask=None):
MOE_CONTEXT.reset_loss()
x = self.embed(input_ids)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# Adapted from huggingface
if attention_mask is not None:
batch_size = input_ids.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = col_nn.partition_batch(attention_mask)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=x.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * -10000.0
for block in self.blocks:
x, attention_mask = block(x, attention_mask)
x = self.head(self.norm(x))
return x
def _create_moegpt_model(**model_kwargs):
model = MOEGPT(**model_kwargs)
return model
def _prmoe_check_sanity(kwargs_dict):
logger = get_dist_logger()
if not kwargs_dict.pop('use_residual', False):
logger.warning(
"If you want to use PR-MOE, please set 'use_residual' to True. "
"Otherwise, we'll force 'use_residual' to True.",
ranks=[0])
@MODELS.register_module
def prmoe_4b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64],
use_residual=True,
dim=1024,
depth=24,
num_heads=16,
**kwargs)
return _create_moegpt_model(**model_kwargs)
@MODELS.register_module
def prmoe_31b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 128, 128],
use_residual=True,
dim=2048,
depth=24,
num_heads=16,
**kwargs)
return _create_moegpt_model(**model_kwargs)
@MODELS.register_module
def prmoe_51b(**kwargs):
_prmoe_check_sanity(kwargs)
model_kwargs = dict(num_experts=[32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 64, 64, 64, 64],
use_residual=True,
dim=3072,
depth=32,
num_heads=24,
**kwargs)
return _create_moegpt_model(**model_kwargs)
|
from typing import Optional
class TensorParallelEnv(object):
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = object.__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self, *args, **kwargs):
self.load(*args, **kwargs)
def load(self,
mode: Optional[str] = None,
vocab_parallel: bool = False,
parallel_input_1d: bool = False,
summa_dim: int = None,
tesseract_dim: int = None,
tesseract_dep: int = None,
depth_3d: int = None,
input_group_3d=None,
weight_group_3d=None,
output_group_3d=None):
self.mode = mode
self.vocab_parallel = vocab_parallel
self.parallel_input_1d = parallel_input_1d
self.summa_dim = summa_dim
self.tesseract_dim = tesseract_dim
self.tesseract_dep = tesseract_dep
self.depth_3d = depth_3d
self.input_group_3d = input_group_3d
self.weight_group_3d = weight_group_3d
self.output_group_3d = output_group_3d
def save(self):
return dict(mode=self.mode,
vocab_parallel=self.vocab_parallel,
parallel_input_1d=self.parallel_input_1d,
summa_dim=self.summa_dim,
tesseract_dim=self.tesseract_dim,
tesseract_dep=self.tesseract_dep,
depth_3d=self.depth_3d,
input_group_3d=self.input_group_3d,
weight_group_3d=self.weight_group_3d,
output_group_3d=self.output_group_3d)
tensor_parallel_env = TensorParallelEnv()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import argparse
import os
import pprint
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from colossalai.amp import AMP_TYPE, convert_to_amp
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.builder.builder import build_gradient_handler
from colossalai.context import Config, ConfigException, ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine.schedule import NonPipelineSchedule, PipelineSchedule, InterleavedPipelineSchedule, get_tensor_shape
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.engine import Engine
from colossalai.engine.ophooks import BaseOpHook
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
from colossalai.utils import (accumulate_gradient, get_current_device, is_using_ddp, is_using_pp, is_using_sequence,
sync_model_param)
from colossalai.utils.moe import sync_moe_model_param
from colossalai.zero import convert_to_zero_v2
from colossalai.zero.sharded_optim.sharded_optim_v2 import ShardedOptimizerV2
def get_default_parser():
"""Reads user command line and uses an argument parser to parse the input arguments.
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
Returns:
Namespace: Returns the parser with the default arguments, the user may add customized arguments into this parser.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='path to the config file')
parser.add_argument('--host', type=str, help='the master address for distributed training')
parser.add_argument('--port', type=int, help='the master port for distributed training')
parser.add_argument('--world_size', type=int, help='world size for distributed training')
parser.add_argument('--rank', type=int, help='rank for the default process group')
parser.add_argument('--local_rank', type=int, help='local rank on the node')
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
return parser
def launch(config: Union[str, Path, Config, Dict],
rank: int,
world_size: int,
host: str,
port: int,
backend: str = 'nccl',
local_rank: int = None,
seed: int = 1024,
verbose: bool = True):
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
rank (int): Rank for the default process group
world_size (int): World size of the default process group
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
local_rank (int, optional):
Rank for the process on the node and is used to set the default CUDA device,
defaults to None. If local_rank = None, the default device ordinal will be calculated automatically.
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
Raises:
Exception: Raise exception when config type is wrong
"""
gpc.verbose = verbose
# set config
assert isinstance(config, (Config, str, Path, dict)), \
f'expected argument config to be Config, str or Path, but got {type(config)}'
if not isinstance(config, Config) and isinstance(config, dict):
config = Config(config)
if isinstance(config, (str, Path)):
config = Config.from_file(config)
gpc.load_config(config)
# init default process group
gpc.init_global_dist(rank, world_size, backend, host, port)
# init process groups for different parallel modes from config
gpc.init_parallel_groups()
# set cuda device
if torch.cuda.is_available():
# if local rank is not given, calculate automatically
gpc.set_device(local_rank)
# set the number of processes running on the same node
gpc.detect_num_processes_on_current_node()
gpc.set_seed(seed)
if verbose:
logger = get_dist_logger()
logger.info(
f'Distributed environment is initialized, '
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
f'tensor parallel size: {gpc.tensor_parallel_size}',
ranks=[0])
def launch_from_slurm(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
set by SLURM
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
rank = int(os.environ['SLURM_PROCID'])
world_size = int(os.environ['SLURM_NPROCS'])
launch(config=config,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_openmpi(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
set by OpenMPI
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
host (str): The master address for distributed training
port (str): The master port for distributed training
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_torch(config: Union[str, Path, Config, Dict],
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
from the environment variables set by PyTorch
Args:
config (Union[str, dict, Config]): Config file or config file path are both acceptable
backend (str, optional): Backend for ``torch.distributed``, defaults to ``nccl``
seed (int, optional): Specified random seed for every process. Defaults to 1024.
verbose (bool, optional): Whether to print logs. Defaults to True.
"""
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def initialize(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
train_dataloader: Optional[Iterable] = None,
test_dataloader: Optional[Iterable] = None,
lr_scheduler: Optional[_LRScheduler] = None,
ophooks: Optional[List[BaseOpHook]] = None,
verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
"""Core function to wrap the essential training components with our functionality based on the config which is
loaded into gpc.config.
Args:
model (:class:`torch.nn.Module` or Callbale): Your model instance or a function to build the model.
optimizer (:class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]`):
Your optimizer instance.
criterion (:class:`torch.nn.modules.loss._Loss`, optional): Your criterion instance.
train_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for training.
test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing.
lr_scheduler (:class:`torch.nn.lr_scheduler._LRScheduler`, optional): Your lr scheduler instance, optional.
verbose (bool, optional): Whether to print logs.
Returns:
Tuple (engine, train_dataloader, test_dataloader, lr_scheduler):
A tuple of ``(engine, train_dataloader, test_dataloader, lr_scheduler)``
where only ``engine`` could not be None.
"""
# get logger
logger = get_dist_logger()
gpc.verbose = verbose
# get config from gpc
config = gpc.config
# print config
if verbose:
logger.info(
f"\n========== Your Config ========\n"
f"{pprint.pformat(gpc.config)}\n"
f"================================\n",
ranks=[0])
# cudnn
cudnn_benchmark = config.get('cudnn_benchmark', True)
cudnn_deterministic = config.get('cudnn_deterministic', False)
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.deterministic = cudnn_deterministic
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# zero
use_zero = hasattr(gpc.config, 'zero')
if use_zero:
zero_cfg = gpc.config.get('zero', None)
if zero_cfg is not None:
cfg_ = zero_cfg.copy()
else:
cfg_ = {}
optimizer_config = zero_cfg.get('optimizer_config', None)
model_config = zero_cfg.get('model_config', None)
model, optimizer = convert_to_zero_v2(model,
optimizer,
model_config=model_config,
optimizer_config=optimizer_config)
logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0])
# FIXME() throw a warning if using zero with MP
if gpc.get_world_size(ParallelMode.MODEL) > 1:
logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0])
else:
if isinstance(model, nn.Module):
# first sync model across dp ranks
model.to(get_current_device())
elif isinstance(model, Callable):
model = model().to(get_current_device())
# optimizer maybe a optimizer_cls
logger.warning("Initializing an non ZeRO model with optimizer class")
if isinstance(optimizer, Callable):
optimizer = optimizer(model.parameters())
if not use_zero:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)
elif MOE_CONTEXT.is_initialized:
sync_moe_model_param(model)
elif is_using_ddp():
sync_model_param(model, ParallelMode.DATA)
else:
logger.warning(
"The parameters of models is not automatically synchronized.\n"
"Please make sure that all parameters are the same in data parallel group.",
ranks=[0])
# check amp and zero
fp16_cfg = gpc.config.get('fp16', None)
if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero:
raise ConfigException(
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
# clip grad norm
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
# initialize amp
amp_mode = None
if fp16_cfg is not None and fp16_cfg.mode is not None:
cfg_ = fp16_cfg.copy()
amp_mode = cfg_.pop('mode')
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad_norm'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,
mode=amp_mode,
amp_config=cfg_)
# gradient handler
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
if gradient_handler_cfg is None:
# if gradient handler is not specified in the configuration file,
# check in the following order
# 1. if optimizer is ZERO, then use zero grad handler
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
if isinstance(optimizer, ShardedOptimizerV2):
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
if verbose:
logger.info(
"Training with zero is detected, ZeROGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_ddp() and MOE_CONTEXT.is_initialized:
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_sequence():
model = DDP(model,
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
device_ids=[torch.cuda.current_device()])
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
ranks=[0])
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
model = DDP(model, process_group=gpc.get_group(ParallelMode.DATA), device_ids=[torch.cuda.current_device()])
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
elif is_using_ddp():
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected when using pipeline parallel, "
"DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
)
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
# to avoid duplicated buffer synchronization
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
model.module.sync_buffer = False
# initialize schedule for engine
if is_using_pp():
tensor_shape = get_tensor_shape()
use_interleaved = hasattr(gpc.config, 'model') and hasattr(gpc.config.model, 'num_chunks')
if gpc.is_initialized(ParallelMode.PARALLEL_1D):
scatter_gather = True
else:
scatter_gather = False
if use_interleaved:
schedule = InterleavedPipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
gpc.config.model.num_chunks,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = PipelineSchedule(gpc.config.NUM_MICRO_BATCHES,
tensor_shape=tensor_shape,
scatter_gather_tensors=scatter_gather)
else:
schedule = NonPipelineSchedule()
if gradient_handler_cfg is None:
gradient_handlers = None
if verbose and not isinstance(model, DDP):
logger.warning(
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
"to all-reduce the gradients after a training step.",
ranks=[0])
else:
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
# check if optimizer is ColossalaiOptimizer
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizerV2)):
optimizer = ColossalaiOptimizer(optim=optimizer)
# gradient accumulation
grad_accum_size = gpc.config.get('gradient_accumulation', None)
if grad_accum_size is not None:
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
accumulate_size=grad_accum_size,
gradient_handlers=gradient_handlers,
lr_scheduler=lr_scheduler)
engine = Engine(model=model,
optimizer=optimizer,
criterion=criterion,
gradient_handlers=gradient_handlers,
clip_grad_norm=clip_grad_norm,
ophook_list=ophooks,
schedule=schedule)
return engine, train_dataloader, test_dataloader, lr_scheduler
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
ALLOWED_MODES = [None, '1d', '2d', '2.5d', '3d', 'sequence']
TENSOR_PARALLEL_MODE = 'tensor_parallel_mode'
# intializer
INITIALIZER_MAPPING = {
'data': 'Initializer_Data',
'tensor': 'Initializer_Tensor',
'pipeline': 'Initializer_Pipeline',
'embedding': 'Initializer_Embedding',
'1d': 'Initializer_1D',
'2d': 'Initializer_2D',
'2.5d': 'Initializer_2p5D',
'3d': 'Initializer_3D',
'sequence': 'Initializer_Sequence',
'model': 'Initializer_Model',
'moe': 'Initializer_Moe'
}
# 3D parallelism groups
INPUT_GROUP_3D = 'input_group_3d'
WEIGHT_GROUP_3D = 'weight_group_3d'
OUTPUT_GROUP_3D = 'output_group_3d'
# Attributes of tensor parallel parameters
IS_TENSOR_PARALLEL = 'is_tensor_parallel'
NUM_PARTITIONS = 'num_partitions'
TENSOR_PARALLEL_ATTRIBUTES = [IS_TENSOR_PARALLEL, NUM_PARTITIONS]
|
from .initialize import (initialize, launch, launch_from_openmpi,
launch_from_slurm, launch_from_torch, get_default_parser)
__version__ = '0.0.1'
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context.parallel_context import global_context
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import inspect
import sys
from importlib.machinery import SourceFileLoader
from pathlib import Path
from colossalai.logging import get_dist_logger
class Config(dict):
"""This is a wrapper class for dict objects so that values of which can be
accessed as attributes.
Args:
config (dict): The dict object to be wrapped.
"""
def __init__(self, config: dict = None):
if config is not None:
for k, v in config.items():
self._add_item(k, v)
def __missing__(self, key):
raise KeyError(key)
def __getattr__(self, key):
try:
value = super(Config, self).__getitem__(key)
return value
except KeyError:
raise AttributeError(key)
def __setattr__(self, key, value):
super(Config, self).__setitem__(key, value)
def _add_item(self, key, value):
if isinstance(value, dict):
self.__setattr__(key, Config(value))
else:
self.__setattr__(key, value)
def update(self, config):
assert isinstance(config, (Config, dict)), 'can only update dictionary or Config objects.'
for k, v in config.items():
self._add_item(k, v)
return self
@staticmethod
def from_file(filename: str):
"""Reads a python file and constructs a corresponding :class:`Config` object.
Args:
filename (str): Name of the file to construct the return object.
Returns:
:class:`Config`: A :class:`Config` object constructed with information in the file.
Raises:
AssertionError: Raises an AssertionError if the file does not exist, or the file is not .py file
"""
# check config path
if isinstance(filename, str):
filepath = Path(filename).absolute()
elif isinstance(filename, Path):
filepath = filename.absolute()
assert filepath.exists(), f'{filename} is not found, please check your configuration path'
# check extension
extension = filepath.suffix
assert extension == '.py', 'only .py files are supported'
# import the config as module
remove_path = False
if filepath.parent not in sys.path:
sys.path.insert(0, (filepath))
remove_path = True
module_name = filepath.stem
source_file = SourceFileLoader(fullname=str(module_name), path=str(filepath))
module = source_file.load_module()
# load into config
config = Config()
for k, v in module.__dict__.items():
if k.startswith('__') or inspect.ismodule(v) or inspect.isclass(v):
continue
else:
config._add_item(k, v)
logger = get_dist_logger()
logger.debug('variables which starts with __, is a module or class declaration are omitted in config file')
# remove module
del sys.modules[module_name]
if remove_path:
sys.path.pop(0)
return config
class ConfigException(Exception):
pass
|
from .config import Config, ConfigException
from .parallel_context import ParallelContext
from .parallel_mode import ParallelMode
from .moe_context import MOE_CONTEXT
from .process_group_initializer import *
from .random import *
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import random
import socket
from collections import Counter
from typing import Union
import numpy as np
import torch
import torch.distributed as dist
from colossalai.constants import ALLOWED_MODES, INITIALIZER_MAPPING
from colossalai.context.config import Config
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.logging import get_dist_logger
from colossalai.registry import DIST_GROUP_INITIALIZER
from .parallel_mode import ParallelMode
from .random import add_seed, get_seeds, set_mode
from colossalai.context.singleton_meta import SingletonMeta
class ParallelContext(metaclass=SingletonMeta):
"""This class provides interface functions for users to get the parallel context,
such as the global rank, the local rank, the world size, etc. of each device.
Note:
The parallel_mode used in this class should be concluded in ``ParallelMode``.
More details about ``ParallelMode`` could be found in
`parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
def __init__(self):
# distributed settings
self._global_ranks = dict()
self._local_ranks = dict()
self._world_sizes = dict()
self._groups = dict()
self._cpu_groups = dict()
self._ranks_in_group = dict()
# load config from file
self._config = None
# default 3D parallel args, will be overwritten during process group intialization
self.world_size = 1
self.data_parallel_size = 1
self.pipeline_parallel_size = 1
self.tensor_parallel_size = 1
self.num_processes_on_current_node = -1
self.virtual_pipeline_parallel_size = None
self.virtual_pipeline_parallel_rank = None
# logging
self._verbose = False
self._logger = get_dist_logger()
@property
def config(self):
return self._config
@property
def verbose(self):
return self._verbose
@verbose.setter
def verbose(self, verbose_: bool):
self._verbose = verbose_
def load_config(self, config: Union[dict, str]):
"""Loads the configuration from either a dict or a file.
Args:
config (dict or str): Either a dict containing the configuration information or the filename
of a file containing the configuration information.
Raises:
TypeError: Raises a TypeError if `config` is neither a dict nor a str.
"""
if isinstance(config, str):
self._config = Config.from_file(config)
elif isinstance(config, dict):
self._config = Config(config)
else:
raise TypeError("Invalid type for config, only dictionary or string is supported")
def detect_num_processes_on_current_node(self):
hostname = socket.gethostname()
hostname_list = [None for _ in range(self.get_world_size(ParallelMode.GLOBAL))]
dist.all_gather_object(hostname_list, hostname, group=self.get_group(ParallelMode.GLOBAL))
counter = Counter(hostname_list)
self.num_processes_on_current_node = counter[hostname]
@staticmethod
def _check_parallel_mode(parallel_mode: ParallelMode):
assert isinstance(parallel_mode, ParallelMode)
def get_global_rank(self):
"""Returns the global rank of the current device.
Returns:
int: The global rank of the current device
"""
return self._global_ranks[ParallelMode.GLOBAL]
def add_global_rank(self, parallel_mode: ParallelMode, rank: int):
"""Adds the global rank of the current device for `parallel_mode` to the context.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
rank (int): The rank to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._global_ranks[parallel_mode] = rank
def get_local_rank(self, parallel_mode: ParallelMode):
"""Returns the local rank of the current device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
int: The local rank of the current device for `parallel_mode`.
"""
self._check_parallel_mode(parallel_mode)
return self._local_ranks[parallel_mode]
def add_local_rank(self, parallel_mode: ParallelMode, rank: int):
"""Adds the local rank of the current device for `parallel_mode` to the context.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode for the rank.
rank (int): The rank to be added.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._local_ranks[parallel_mode] = rank
def get_next_global_rank(self, parallel_mode: ParallelMode):
"""Returns the global rank of the next device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
int: The global rank of the next device for `parallel_mode`.
"""
self._check_parallel_mode(parallel_mode)
# get rank and world size
local_rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
ranks_in_group = self.get_ranks_in_group(parallel_mode)
return ranks_in_group[(local_rank + 1) % world_size]
def get_prev_global_rank(self, parallel_mode: ParallelMode):
"""Returns the global rank of the previous device.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
int: The global rank of the previous device for `parallel_mode`.
"""
self._check_parallel_mode(parallel_mode)
# get rank and world size
local_rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
ranks_in_group = self.get_ranks_in_group(parallel_mode)
return ranks_in_group[(local_rank - 1) % world_size]
def is_first_rank(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether the current device is the first one
among its group for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
bool: a boolean value indicating whether the current device is the first one
among its group for `parallel_mode`.
"""
rank = self.get_local_rank(parallel_mode)
return rank == 0
def is_last_rank(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether the current device is the last one
among its group for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
bool: a boolean value indicating whether the current device is the first one
among its group for `parallel_mode`.
"""
rank = self.get_local_rank(parallel_mode)
world_size = self.get_world_size(parallel_mode)
return rank == world_size - 1
def is_pipeline_first_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self.virtual_pipeline_parallel_size is not None and self.virtual_pipeline_parallel_rank != 0:
return False
return self.is_first_rank(ParallelMode.PIPELINE)
def is_pipeline_last_stage(self, ignore_virtual=False):
if not ignore_virtual:
if self.virtual_pipeline_parallel_size \
is not None and self.virtual_pipeline_parallel_rank != self.virtual_pipeline_parallel_size - 1:
return False
return self.is_last_rank(ParallelMode.PIPELINE)
def get_world_size(self, parallel_mode: ParallelMode):
"""Returns the world size for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
int: The world size for `parallel_mode`.
"""
self._check_parallel_mode(parallel_mode)
return self._world_sizes[parallel_mode]
def add_world_size(self, parallel_mode: ParallelMode, world_size: int):
"""Adds world size for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
world_size (int): The world size to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._world_sizes[parallel_mode] = world_size
def get_group(self, parallel_mode: ParallelMode):
"""Returns the group of the current device for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
torch.distributed.ProcessGroup: The group of the current device for `parallel_mode`.
"""
self._check_parallel_mode(parallel_mode)
return self._groups[parallel_mode]
def add_group(self, parallel_mode: ParallelMode, group: dist.ProcessGroup):
"""Adds the group of the current device for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
group (torch.distributed.ProcessGroup): The group to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._groups[parallel_mode] = group
def get_cpu_group(self, parallel_mode: ParallelMode):
"""Returns the Gloo group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
:return: The group of the current device for `parallel_mode`
:rtype: torch.distributed.ProcessGroup
"""
self._check_parallel_mode(parallel_mode)
return self._cpu_groups[parallel_mode]
def add_cpu_group(self, parallel_mode: ParallelMode, group: dist.ProcessGroup):
"""Adds the Gloo group of the current device for `parallel_mode`.
:param parallel_mode: The chosen parallel mode
:type parallel_mode: :class:`colossalai.context.ParallelMode`
:param group: The group to be added
:type group: torch.distributed.ProcessGroup
:raises AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`
"""
self._check_parallel_mode(parallel_mode)
self._cpu_groups[parallel_mode] = group
def get_ranks_in_group(self, parallel_mode: ParallelMode):
"""Returns the rank of the current device for `parallel_mode` in the group.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
Returns:
int: The rank of the current device for `parallel_mode` in the group.
"""
self._check_parallel_mode(parallel_mode)
return self._ranks_in_group[parallel_mode]
def add_ranks_in_group(self, parallel_mode: ParallelMode, ranks: list):
"""Adds the ranks of the current device for `parallel_mode` in the group.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
ranks (list): List of ranks to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance
of :class:`colossalai.context.ParallelMode`.
"""
self._check_parallel_mode(parallel_mode)
self._ranks_in_group[parallel_mode] = ranks
def init_global_dist(self, rank: int, world_size: int, backend: str, host: str, port: int):
"""Initializes the global distributed environment
Args:
rank (int): rank for the default process group.
world_size (int): world size of the default process group.
backend (str): backend for ``torch.distributed``
host (str): the master address for distributed training.
port (str): the master port for distributed training
"""
# initialize the default process group
init_method = f'tcp://{host}:{port}'
dist.init_process_group(rank=rank, world_size=world_size, backend=backend, init_method=init_method)
# None will give the default global process group for pytorch dist operations
ranks = list(range(world_size))
cpu_group = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else None
self._register_dist(rank, world_size, dist.GroupMember.WORLD, cpu_group, ranks, ParallelMode.GLOBAL)
self.add_global_rank(ParallelMode.GLOBAL, rank)
def _register_dist(self, local_rank, world_size, process_group, cpu_group, ranks_in_group, mode):
self.add_local_rank(mode, local_rank)
self.add_world_size(mode, world_size)
self.add_group(mode, process_group)
self.add_cpu_group(mode, cpu_group)
self.add_ranks_in_group(mode, ranks_in_group)
def check_sanity(self):
"""Checks sanity of the parallel context.
Raises:
AssertionError: Raises an AssertionError if the world size does not equal to the product
of data parallel size, pipeline parallel size and tensor parallel size.
"""
dps = self.data_parallel_size
pps = self.pipeline_parallel_size
tps = self.tensor_parallel_size
ws = self.world_size
assert ws == dps * pps * \
tps, f"Expected the world size {ws} to be equal to data" \
f" parallel size ({dps}) * pipeline parallel size " \
f"({pps}) * tensor parallel size ({tps})"
def _set_parallel_size_from_config(self, config: dict, key: str, attr_name: str):
if key in config:
ele = config[key]
if isinstance(ele, int):
setattr(self, attr_name, ele)
elif isinstance(ele, dict):
setattr(self, attr_name, ele['size'])
else:
raise NotImplementedError(
f'{"Parallel configuration does not support this kind of argument, please use int or dict"}')
def init_parallel_groups(self):
"""Initializes the parallel groups.
Raises:
AssertionError: Raises an AssertionError if the field parallel is not present in the config file.
"""
# get rank and world size
rank = self.get_global_rank()
world_size = self.get_world_size(ParallelMode.GLOBAL)
self.world_size = world_size
# set parallel size as attributes for global context
parallel_config = self.config.get('parallel', None)
if parallel_config is not None:
self._set_parallel_size_from_config(parallel_config, 'pipeline', 'pipeline_parallel_size')
self._set_parallel_size_from_config(parallel_config, 'tensor', 'tensor_parallel_size')
# the user should not set the data parallel size manually
# instead, it should be calculated based on other parallel config
self.data_parallel_size = self.world_size // (self.pipeline_parallel_size * self.tensor_parallel_size)
# get the tensor parallel mode and check
tensor_parallel_mode = None
if parallel_config is not None and 'tensor' in \
parallel_config and 'mode' in parallel_config['tensor']:
tensor_parallel_mode = parallel_config['tensor']['mode']
assert tensor_parallel_mode in ALLOWED_MODES, \
f"mode in the parallel config must be set to one of {ALLOWED_MODES}"
env.mode = tensor_parallel_mode
self.check_sanity()
pg_init = []
# LSG: init data parallel process group for compatibility with other parallel module such as zero
pg_init.append(dict(type=INITIALIZER_MAPPING['data']))
# LSG: init model parallel process group for compatibility with amp and clip grad
pg_init.append(dict(type=INITIALIZER_MAPPING['model']))
if self.pipeline_parallel_size > 1:
pg_init.append(dict(type=INITIALIZER_MAPPING['pipeline']))
pg_init.append(dict(type=INITIALIZER_MAPPING['tensor']))
# init specific tensor parallel group
if tensor_parallel_mode is not None:
tensor_parallel_cfg = parallel_config['tensor'].copy()
# remove duplicate parameters
tensor_parallel_cfg.pop('mode')
tensor_parallel_cfg.pop('size')
# add this config to initialize later
pg_init.append(dict(type=INITIALIZER_MAPPING[tensor_parallel_mode.lower()], **tensor_parallel_cfg))
# run initialization of different process groups
for initializer_cfg in pg_init:
cfg = initializer_cfg.copy()
initializer_type = cfg.pop('type')
initializer = DIST_GROUP_INITIALIZER.get_module(initializer_type)(rank, world_size, self.config,
self.data_parallel_size,
self.pipeline_parallel_size,
self.tensor_parallel_size, **cfg)
parallel_setting = initializer.init_dist_group()
if isinstance(parallel_setting, list):
for args in parallel_setting:
self._register_dist(*args)
else:
self._register_dist(*parallel_setting)
def is_initialized(self, parallel_mode: ParallelMode):
"""Returns a boolean value indicating whether `parallel_mode` is initialized
in the current system.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Returns:
bool: a boolean value indicating whether `parallel_mode` is initialized in the current system.
"""
return parallel_mode in self._groups
def destroy(self):
"""Destroys the current distributed parallel environment.
"""
for mode, group in self._groups.items():
if mode is not ParallelMode.GLOBAL:
dist.destroy_process_group(group)
# destroy global process group
dist.destroy_process_group()
self._groups.clear()
def set_device(self, device_ordinal: int = None):
"""Sets distributed processes to be bound to devices.
Args:
device_ordinal (int, optional): the device id to be bound to
"""
global_rank = self.get_global_rank()
if device_ordinal is None:
devices_per_node = torch.cuda.device_count()
device_ordinal = global_rank % devices_per_node
torch.cuda.set_device(device_ordinal)
if self._verbose:
self._logger.info(f'process rank {global_rank} is bound to device {device_ordinal}')
def set_seed(self, seed: int):
"""Sets seeds for all random libraries.
Args:
seed (int): seed for random states
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
global_rank = self.get_global_rank()
if torch.cuda.is_available():
# create random seed for different parallel modes
# data parallel seed are kept the same
parallel_seed = seed
add_seed(ParallelMode.DATA, parallel_seed)
# model parallel seeds are different across ranks
pipeline_offset = self._local_ranks.get(ParallelMode.PIPELINE, 0)
# add seed for data parallel and tensor parallel only
if self.is_initialized(ParallelMode.TENSOR):
tp_rank = self.get_local_rank(ParallelMode.TENSOR)
# 100 is only to increase the diff in seeds between pipeline stages
tp_rank_with_offset = tp_rank + pipeline_offset * 1024
tp_seed = seed + tp_rank_with_offset
add_seed(ParallelMode.TENSOR, tp_seed)
set_mode(ParallelMode.DATA)
seeds = get_seeds()
seed_str = ', '.join([f'{k}: {v}' for k, v in seeds.items()])
if self._verbose:
self._logger.info(f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, {seed_str},"
f"the default parallel seed is {ParallelMode.DATA}.")
else:
if self._verbose:
self._logger.info(
f"initialized seed on rank {global_rank}, "
f"numpy: {seed}, python random: {seed}, pytorch: {seed}",
ranks=[0])
self._logger.info(
'WARNING: CUDA is not available, thus CUDA RNG cannot be used to track CUDA random number states',
ranks=[0])
def set_virtual_pipeline_parallel_size(self, size):
self.virtual_pipeline_parallel_size = size
def set_virtual_pipeline_parallel_rank(self, rank):
self.virtual_pipeline_parallel_rank = rank
global_context = ParallelContext()
|
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.singleton_meta import SingletonMeta
from typing import Tuple
def _check_sanity():
from colossalai.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
class MoeParallelInfo:
"""Moe parallelism information, storing parallel sizes and groups.
"""
def __init__(self, ep_size: int, dp_size: int):
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.ep_group = None
# data parallel group for experts, since ep_group is different
# we may have different dp_group from get_group(ParallelMode.DATA)
self.dp_group = None
# Here we assume tensor parallel size = 1
# Otherwise, MoE can't be used
# Since TENSOR parallel group and DATA parallel group
# have been created, we can use them directly.
if ep_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.TENSOR)
self.dp_group = gpc.get_group(ParallelMode.DATA)
return
if dp_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.DATA)
self.dp_group = gpc.get_group(ParallelMode.TENSOR)
return
rank = dist.get_rank()
# Create expert parallel group
for i in range(dp_size):
ranks = [i * ep_size + j for j in range(ep_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.ep_group = group
# Create data parallel group
for j in range(ep_size):
ranks = [i * ep_size + j for i in range(dp_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.dp_group = group
class MoeContext(metaclass=SingletonMeta):
"""MoE parallel context manager. This class manages different
parallel groups in MoE context and MoE loss in training.
"""
def __init__(self):
self.world_size = 1
# Users may want to set maximum expert parallel size smaller than the world size
# since very low bandwidth across nodes may constrain the performance of MoE
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
self.max_ep_size = 1
self.min_dp_size = 1
self.aux_loss = None
self.use_kernel_optim = True
self.has_setup = False
self._parallel_info_dict = dict()
@property
def parallel_info_dict(self):
return self._parallel_info_dict
@property
def is_initialized(self):
return self.has_setup
def setup(self, seed: int, use_kernel_optim: bool = True):
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
_check_sanity()
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum epxert parallel size must be a factor of the number of GPUs"
self.min_dp_size = self.world_size // self.max_ep_size
# Enabling kernel optimization may raise error in some cases
# Users can close kernel optimization manually
self.use_kernel_optim = use_kernel_optim
from .random import moe_set_seed
moe_set_seed(seed)
self.has_setup = True
def get_info(self, num_experts: int) -> Tuple[int, MoeParallelInfo]:
"""Calculate the Data Parallel Group and Expert Parallel Group.
Parameters
----------
num_experts : int
The number experts
Returns
-------
int, MoeParallelInfo
number of local experts, the MoeParallelInfo of the current ep_size
"""
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
assert gt_flag or lt_flag, "Automatic experts placement dose not not support expert number"\
" is not a multiple of ep size or vice versa."
# If the number of experts is greater than maximum expert parallel size. a.k.a ep_size,
# there are multiple experts in each GPU and each GPU has different experts
# So it's data parallel size is 1
# Otherwise, there is only one expert in each GPU
# The data parallel size should be calculated
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
ep_size = self.max_ep_size // dp_size
# Calculate the number of experts for each GPU
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
# Don't forget to multiply minimum data parallel size
dp_size *= self.min_dp_size
if not (ep_size in self.parallel_info_dict):
self.parallel_info_dict[ep_size] = MoeParallelInfo(ep_size, dp_size)
return num_local_experts, self.parallel_info_dict[ep_size]
def set_kernel_not_use(self):
self.use_kernel_optim = False
def reset_loss(self):
self.aux_loss = 0
def add_loss(self, loss):
self.aux_loss += loss
def get_loss(self):
return self.aux_loss
MOE_CONTEXT = MoeContext()
|
class SingletonMeta(type):
"""
The Singleton class can be implemented in different ways in Python. Some
possible methods include: base class, decorator, metaclass. We will use the
metaclass because it is best suited for this purpose.
"""
_instances = {}
def __call__(cls, *args, **kwargs):
"""
Possible changes to the value of the `__init__` argument do not affect
the returned instance.
"""
if cls not in cls._instances:
instance = super().__call__(*args, **kwargs)
cls._instances[cls] = instance
return cls._instances[cls]
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from enum import Enum
# parallel modes
class ParallelMode(Enum):
"""This is an enumeration class containing all possible parallel modes.
"""
GLOBAL = 'global'
# common parallel
DATA = 'data'
# model parallel - containing tensor and pipeline parallel groups
# this is added to facilitate amp and grad clipping in hybrid parallel
MODEL = 'model'
# pipeline parallel
PIPELINE = 'pipe'
# containing all ranks in tensor parallel
TENSOR = 'tensor'
# sequence parallel
SEQUENCE = 'sequence'
SEQUENCE_DP = 'sequence_dp'
# 1D Parallel
PARALLEL_1D = '1d'
# 2D parallel
PARALLEL_2D_ROW = '2d_row'
PARALLEL_2D_COL = '2d_col'
# 3D parallel
PARALLEL_3D_INPUT = '3d_input'
PARALLEL_3D_WEIGHT = '3d_weight'
PARALLEL_3D_OUTPUT = '3d_output'
# 2.5D parallel
PARALLEL_2P5D_ROW = '2p5d_row'
PARALLEL_2P5D_COL = '2p5d_col'
PARALLEL_2P5D_DEP = '2p5d_dep'
PARALLEL_2P5D_XZ = '2p5d_xz'
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Pipeline(ProcessGroupInitializer):
"""A ProcessGroupInitializer for pipeline parallelism.
Args:
rank (int): The rank of current process
world_size (int): Size of whole communication world
config (Config): Running configuration
data_parallel_size (int): Size of data parallel
pipeline_parallel_size (int): Size of pipeline parallel
tensor_parallel_size (int): Size of tensor parallel
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data_group_size = self.world_size // self.data_parallel_size
self.pipeline_stage_size = self.data_group_size // self.pipeline_parallel_size
def init_dist_group(self):
"""Initialize pipeline parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
A Pipeline parallelism's information in list of tuples.
"""
dist_settings = list()
for i in range(self.data_parallel_size):
for j in range(self.pipeline_stage_size):
pipe_ranks = list(
range(i * self.data_group_size + j, (i + 1) * self.data_group_size, self.pipeline_stage_size))
pipe_group_size = len(pipe_ranks)
pipe_group = dist.new_group(pipe_ranks)
group_cpu = dist.new_group(pipe_ranks, backend='gloo') if dist.get_backend() != 'gloo' else pipe_group
if self.rank in pipe_ranks:
local_rank = pipe_ranks.index(self.rank)
group_world_size = pipe_group_size
process_group = pipe_group
cpu_group = group_cpu
ranks_in_group = pipe_ranks
dist_settings.append(
tuple((local_rank, group_world_size, process_group, cpu_group, ranks_in_group,
ParallelMode.PIPELINE)))
return dist_settings
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
def _check_depth_env_var(depth):
# check global variable
env_depth = env.depth_3d
if env_depth:
assert int(env_depth) == depth, \
'DEPTH_3D has been set in the current environment and ' \
'does not match with the value passed to this initialized'
else:
env.depth_3d = depth
class Initializer_3D_Input(ProcessGroupInitializer):
"""3D tensor parallel initialization among input.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among input in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_INPUT
env.input_group_3d = mode
for h in range(self.num_group):
for i in range(self.depth):
for k in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_3D_Weight(ProcessGroupInitializer):
"""3D tensor parallel initialization among weight.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among weight in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_WEIGHT
env.weight_group_3d = mode
for h in range(self.num_group):
for k in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_3D_Output(ProcessGroupInitializer):
"""3D tensor parallel initialization among output.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among output in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_OUTPUT
env.output_group_3d = mode
for h in range(self.num_group):
for i in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_3D(ProcessGroupInitializer):
"""Serve as the single entry point to 3D parallel initialization.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args):
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
assert self.tensor_parallel_size == self.depth ** 3, \
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
_check_depth_env_var(self.depth)
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
def init_dist_group(self):
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
Whole 3D tensor parallelism's information in a list of tuples.
"""
parallel_setting = [
self.input_initializer.init_dist_group(),
self.weight_initializer.init_dist_group(),
self.output_initializer.init_dist_group()
]
return parallel_setting
|
import math
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
from colossalai.global_variables import tensor_parallel_env as env
def _check_summa_env_var(summa_dim):
# check environment variable for SUMMA
env_summa_dim = env.summa_dim
if env_summa_dim:
assert int(env_summa_dim) == summa_dim, \
'SUMMA_DIM has been set in the current environment and ' \
'does not match with the value passed to this initialized'
else:
env.summa_dim = summa_dim
class Initializer_2D_Row(ProcessGroupInitializer):
"""2d tensor parallel initialization among rows.
Args:
num_group (int): The number of all tensor groups.
summa_dim (int): The dimension of SUMMA.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group, summa_dim, *args, **kwargs):
super(Initializer_2D_Row, self).__init__(*args, **kwargs)
self.num_group = num_group
self.summa_dim = summa_dim
def init_dist_group(self):
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2D tensor row parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2D_ROW
for i in range(self.num_group):
for j in range(self.summa_dim):
ranks = [i * self.tensor_parallel_size + j * self.summa_dim + k for k in range(self.summa_dim)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_2D_Col(ProcessGroupInitializer):
"""2d tensor parallel initialization among cols.
Args:
num_group (int): The number of all tensor groups.
summa_dim (int): The dimension of SUMMA.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group, summa_dim, *args, **kwargs):
super(Initializer_2D_Col, self).__init__(*args, **kwargs)
self.num_group = num_group
self.summa_dim = summa_dim
def init_dist_group(self):
"""Initialize 2D tensor row parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2D tensor col parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2D_COL
for i in range(self.num_group):
for j in range(self.summa_dim):
ranks = [i * self.tensor_parallel_size + j + k * self.summa_dim for k in range(self.summa_dim)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_2D(ProcessGroupInitializer):
"""
Serve as the single entry point to 2D parallel initialization.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_group = self.world_size // self.tensor_parallel_size
self.summa_dim = int(math.sqrt(self.tensor_parallel_size))
assert self.tensor_parallel_size == self.summa_dim ** 2, \
"2D summa dim should equal to tensor parallel size ^ 0.5"
_check_summa_env_var(self.summa_dim)
self.col_initializer = Initializer_2D_Col(self.num_group, self.summa_dim, *args, **kwargs)
self.row_initializer = Initializer_2D_Row(self.num_group, self.summa_dim, *args, **kwargs)
def init_dist_group(self):
"""Initialize 2D tensor row and col parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
2D tensor parallelism's information in a list of tuples.
"""
parallel_setting = [self.row_initializer.init_dist_group(), self.col_initializer.init_dist_group()]
return parallel_setting
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
@DIST_GROUP_INITIALIZER.register_module
class Initializer_1D(ProcessGroupInitializer):
"""A ProcessGroupInitializer for 1d tensor parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_group = self.world_size // self.tensor_parallel_size
def init_dist_group(self):
"""Initialize 1D tensor parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
1D tensor parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_1D
env.parallel_input_1d = False
for i in range(self.num_group):
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Tensor(ProcessGroupInitializer):
"""A ProcessGroupInitializer for tensor parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_tensor_parallel_group = self.world_size // self.tensor_parallel_size
def init_dist_group(self):
"""Initialize tensor parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Tensor parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.TENSOR
for i in range(self.num_tensor_parallel_group):
ranks = [i * self.tensor_parallel_size + j for j in range(self.tensor_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Model(ProcessGroupInitializer):
"""A ProcessGroupInitializer for model parallelism (model parallel group contains pipeline and tensor parallel
groups).
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_parallel_size = self.tensor_parallel_size * self.pipeline_parallel_size
self.num_group = self.world_size // self.model_parallel_size
def init_dist_group(self):
"""Initialize model parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Model parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.MODEL
for i in range(self.num_group):
ranks = [i * self.model_parallel_size + j for j in range(self.model_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
from .initializer_1d import Initializer_1D
from .initializer_2d import Initializer_2D
from .initializer_2p5d import Initializer_2p5D
from .initializer_3d import Initializer_3D
from .initializer_data import Initializer_Data
from .initializer_pipeline import Initializer_Pipeline
from .initializer_sequence import Initializer_Sequence
from .initializer_tensor import Initializer_Tensor
from .initializer_model import Initializer_Model
from .process_group_initializer import ProcessGroupInitializer
__all__ = [
'Initializer_Tensor', 'Initializer_Sequence', 'Initializer_Pipeline', 'Initializer_Data', 'Initializer_2p5D',
'Initializer_2D', 'Initializer_3D', 'Initializer_1D', 'ProcessGroupInitializer', 'Initializer_Model'
]
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from abc import ABC, abstractmethod
from colossalai.context import Config
class ProcessGroupInitializer(ABC):
"""An object, knowing the parallelism configuration, that initializes parallel groups.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
tensor_parallel_size: int):
self.rank = rank
self.world_size = world_size
self.data_parallel_size = data_parallel_size
self.config = config
self.pipeline_parallel_size = pipeline_parallel_size
self.tensor_parallel_size = tensor_parallel_size
super().__init__()
@abstractmethod
def init_dist_group(self):
pass
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch.distributed as dist
from colossalai.context import Config
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
def _check_tesseract_env_var(tesseract_dim: int, tesseract_dep: int):
# check global variable for TESSERACT
env_tesseract_dim = env.tesseract_dim
env_tesseract_dep = env.tesseract_dep
if env_tesseract_dim and env_tesseract_dep:
assert int(env_tesseract_dim) == tesseract_dim, \
'TESSERACT_DIM has been set in the current environment and ' \
'does not match with the value passed to this initialized'
assert int(env_tesseract_dep) == tesseract_dep, \
'TESSERACT_DEP has been set in the current environment and ' \
'does not match with the value passed to this initialized'
else:
env.tesseract_dim = tesseract_dim
env.tesseract_dep = tesseract_dep
# i row j col k dep
class Initializer_2p5D_ROW(ProcessGroupInitializer):
"""2.5d tensor parallel initialization among rows.
Args:
tesseract_dim (int): The dimension of tesseract.
tesseract_dep (int): The dimension of depth.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
super(Initializer_2p5D_ROW, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
"""Initialize 2.5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2.5D tensor row parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_ROW
for h in range(self.num_group):
for j in range(self.tesseract_dim):
for k in range(self.tesseract_dep):
ranks = [
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
for i in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_2p5D_Col(ProcessGroupInitializer):
"""2.5d tensor parallel initialization among cols.
Args:
tesseract_dim (int): The dimension of tesseract.
tesseract_dep (int): The dimension of depth.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
super(Initializer_2p5D_Col, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
"""Initialize 2.5D tensor col parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2.5D tensor col parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_COL
for h in range(self.num_group):
for i in range(self.tesseract_dim):
for k in range(self.tesseract_dep):
ranks = [
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
for j in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_2p5D_Dep(ProcessGroupInitializer):
"""2.5D tensor parallel initialization among depths.
Args:
tesseract_dim (int): The dimension of tesseract.
tesseract_dep (int): The dimension of depth.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
super(Initializer_2p5D_Dep, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
"""Initialize 2.5D tensor depth parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2.5D tensor depth parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_DEP
for h in range(self.num_group):
for i in range(self.tesseract_dim):
for j in range(self.tesseract_dim):
ranks = [
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
for k in range(self.tesseract_dep)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
# i row j col k dep
class Initializer_2p5D_XZ(ProcessGroupInitializer):
"""2.5d tensor parallel initialization among cols times dep.
Args:
tesseract_dim (int): The dimension of tesseract.
tesseract_dep (int): The dimension of depth.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, tesseract_dim: int, tesseract_dep: int, *args):
super(Initializer_2p5D_XZ, self).__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dep = tesseract_dep
self.tesseract_dim = tesseract_dim
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
def init_dist_group(self):
"""Initialize 2.5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
2.5D tensor colXdepth parallelism's information in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_2P5D_XZ
for h in range(self.num_group):
for i in range(self.tesseract_dim):
ranks = [
h * self.tensor_parallel_size + i + self.tesseract_dim * (j + self.tesseract_dim * k)
for k in range(self.tesseract_dep)
for j in range(self.tesseract_dim)
]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_2p5D(ProcessGroupInitializer):
"""
Serve as the single entry point to Tesseract parallel initialization.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
depth (int): The depth of 2.5d parallel.
"""
def __init__(self, rank: int, world_size: int, config: Config, data_parallel_size: int, pipeline_parallel_size: int,
tensor_parallel_size: int, depth: int):
args = (rank, world_size, config, data_parallel_size, pipeline_parallel_size, tensor_parallel_size)
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
self.tesseract_dep = depth
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args)
self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args)
self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args)
def init_dist_group(self):
"""Initialize 2.5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
Whole 2.5D tensor parallelism's information in a list of tuples.
"""
parallel_setting = [
self.col_initializer.init_dist_group(),
self.row_initializer.init_dist_group(),
self.dep_initializer.init_dist_group(),
self.xz_initializer.init_dist_group()
]
return parallel_setting
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Data(ProcessGroupInitializer):
"""A ProcessGroupInitializer for data parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.num_data_parallel_group = self.world_size // self.data_parallel_size
def init_dist_group(self):
"""Initialize data parallel groups, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
A Data parallelism's information tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.DATA
for i in range(self.num_data_parallel_group):
ranks = [i + j * self.num_data_parallel_group for j in range(self.data_parallel_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .initializer_tensor import Initializer_Tensor
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Sequence_DP(ProcessGroupInitializer):
"""A ProcessGroupInitializer for sequence parallelism all-reduce.
In Sequence Parallelism, each GPU holds the full copy of model weights,
thus, gradient all-reduce occurs across all processes in the same pipeline stage
Args:
rank (int): The rank of current process
world_size (int): Size of whole communication world
config (Config): Running configuration
data_parallel_size (int): Size of data parallel
pipeline_parallel_size (int): Size of pipeline parallel
tensor_parallel_size (int): Size of tensor parallel
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dp_size = self.world_size // self.pipeline_parallel_size
self.num_group = self.pipeline_parallel_size
def init_dist_group(self):
"""Initialize Sequence Parallel process groups used for gradient all-reduce.
Returns:
Tuple: A tuple (local_rank, group_world_size, process_group, ranks_in_group, mode).
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.SEQUENCE_DP
for i in range(self.num_group):
ranks = [i * self.dp_size + j for j in range(self.dp_size)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Sequence(ProcessGroupInitializer):
"""A ProcessGroupInitializer for sequence parallelism.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# reuse tensor parallel initializer code
self._sequence_initializer = Initializer_Tensor(*args, **kwargs)
self._sequence_dp_initializer = Initializer_Sequence_DP(*args, **kwargs)
def init_dist_group(self):
"""Initialize Sequence parallel process groups and assign local_ranks and groups to each gpu.
Sequence parallelism requires 2 process groups. The first is for model forward where several processes
exchange partial query, key and value embedding to compute self attention values. The second is for
all-reduce to synchronize the model parameters.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
A Sequence parallelism's information in list of tuples.
"""
parallel_setting = []
local_rank, group_world_size, process_group, cpu_grop, ranks_in_group, mode = \
self._sequence_initializer.init_dist_group()
# change mode to sequence
mode = ParallelMode.SEQUENCE
parallel_setting.append((local_rank, group_world_size, process_group, cpu_grop, ranks_in_group, mode))
parallel_setting.append(self._sequence_dp_initializer.init_dist_group())
return parallel_setting
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
from torch import Tensor
from colossalai.context.parallel_mode import ParallelMode
class SeedManager:
"""This class is a manager of all random seeds involved in the system.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
def __init__(self):
self._current_mode = None
self._seeds = dict()
self._seed_states = dict()
@property
def current_mode(self):
return self._current_mode
@property
def seeds(self):
return self._seeds
@property
def seed_states(self):
return self._seed_states
def set_state(self, parallel_mode: ParallelMode, state: Tensor):
"""Sets the state of the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
state (:class:`torch.Tensor`): the state to be set.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
"""
assert parallel_mode in self._seed_states, f'Parallel mode {parallel_mode} is not found in the seed manager'
self._seed_states[parallel_mode] = state
def set_mode(self, parallel_mode: ParallelMode):
"""Sets the current mode of the seed manager.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
"""
if self.current_mode:
# save the current state for current mode
self._seed_states[self._current_mode] = torch.cuda.get_rng_state()
# set the new state for new mode
self._current_mode = parallel_mode
torch.cuda.set_rng_state(self._seed_states[parallel_mode])
def add_seed(self, parallel_mode: ParallelMode, seed: int, overwrtie: bool = False):
"""Adds a seed to the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
seed (int): The seed to be added.
overwrtie (bool, optional): Whether allows to overwrite the seed that has been set already
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of :class:`colossalai.context.ParallelMode`
or the seed for `parallel_mode` has been added.
"""
assert isinstance(parallel_mode, ParallelMode), 'A valid ParallelMode must be provided'
if overwrtie is False:
assert parallel_mode not in self._seed_states, f'The seed for {parallel_mode} has been added'
elif parallel_mode in self._seed_states:
print(f"Warnning: {parallel_mode} seed has been overwritten.", flush=True)
current_state = torch.cuda.get_rng_state()
torch.cuda.manual_seed(seed)
self._seed_states[parallel_mode] = torch.cuda.get_rng_state()
self._seeds[parallel_mode] = seed
torch.cuda.set_rng_state(current_state)
def reset(self):
self._current_mode = None
self._seeds = dict()
self._seed_states = dict()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import functools
from contextlib import contextmanager
import torch.cuda
from torch import Tensor
from .seed_manager import SeedManager
from ..parallel_mode import ParallelMode
_SEED_MANAGER = SeedManager()
def get_seeds():
"""Returns the seeds of the seed manager.
Returns:
dict: The seeds of the seed manager.
"""
return _SEED_MANAGER.seeds
def get_states(copy=False):
"""Returns the seed states of the seed manager.
Returns:
dict: The seed states of the seed manager.
"""
states = _SEED_MANAGER.seed_states
if copy:
new_states = dict()
for parallel_mode, state in states.items():
new_states[parallel_mode] = state.clone()
return new_states
else:
return _SEED_MANAGER.seed_states
def get_current_mode():
"""Returns the current mode of the seed manager.
Returns:
:class:`torch.ByteTensor`: The current mode of the seed manager.
"""
return _SEED_MANAGER.current_mode
def add_seed(parallel_mode: ParallelMode, seed: int, overwrite: bool = False):
"""Adds a seed to the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
seed (int): The seed to be added
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not an instance of
:class:`colossalai.context.ParallelMode` or the seed for `parallel_mode` has been added.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
_SEED_MANAGER.add_seed(parallel_mode, seed, overwrite)
def set_mode(parallel_mode: ParallelMode):
"""Sets the current mode of the seed manager.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
_SEED_MANAGER.set_mode(parallel_mode)
def set_seed_states(parallel_mode: ParallelMode, state: Tensor):
"""Sets the state of the seed manager for `parallel_mode`.
Args:
parallel_mode (:class:`colossalai.context.ParallelMode`): The chosen parallel mode.
state (:class:`torch.Tensor`): the state to be set.
Raises:
AssertionError: Raises an AssertionError if `parallel_mode` is not found in the seed manager.
"""
_SEED_MANAGER.set_state(parallel_mode, state)
def sync_states():
current_mode = get_current_mode()
current_states = torch.cuda.get_rng_state()
set_seed_states(current_mode, current_states)
@contextmanager
def seed(parallel_mode: ParallelMode):
""" A context for seed switch
Examples::
with seed(ParallelMode.DATA):
output = F.dropout(input)
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
try:
# set to new mode
current_mode = _SEED_MANAGER.current_mode
yield _SEED_MANAGER.set_mode(parallel_mode)
finally:
# recover
_SEED_MANAGER.set_mode(current_mode)
def with_seed(func, parallel_mode: ParallelMode):
"""
A function wrapper which executes the function with a specified seed.
Examples::
# use with decorator
@with_seed(ParallelMode.DATA)
def forward(input):
return F.dropout(input)
out = forward(input)
# OR use it inline
def forward(input):
return F.dropout(input)
wrapper_forward = with_seed(forward, ParallelMode.DATA)
out = wrapped_forward(input)
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs):
# switch mode
current_mode = _SEED_MANAGER.current_mode
_SEED_MANAGER.set_mode(parallel_mode)
# exec func
out = func(*args, **kwargs)
# recover state
_SEED_MANAGER.set_mode(current_mode)
return out
return wrapper
def moe_set_seed(seed):
if torch.cuda.is_available():
from colossalai.core import global_context as gpc
global_rank = gpc.get_global_rank()
diff_seed = seed + global_rank
add_seed(ParallelMode.TENSOR, diff_seed, True)
print(f"moe seed condition: {global_rank} with tensor seed {diff_seed}", flush=True)
def reset_seeds():
_SEED_MANAGER.reset()
|
from ._helper import (seed, set_mode, with_seed, add_seed, get_seeds, get_states, get_current_mode, set_seed_states,
sync_states, moe_set_seed, reset_seeds)
__all__ = [
'seed', 'set_mode', 'with_seed', 'add_seed', 'get_seeds', 'get_states', 'get_current_mode', 'set_seed_states',
'sync_states', 'moe_set_seed', 'reset_seeds'
]
|
from .stateful_tensor_mgr import StatefulTensorMgr
from .tensor_placement_policy import TensorPlacementPolicyFactory
__all__ = ['StatefulTensorMgr', 'TensorPlacementPolicyFactory']
|
from abc import ABC, abstractmethod
from typing import List, Optional
import torch
from colossalai.utils import get_current_device
from colossalai.zero.sharded_param.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
from colossalai.utils.memory import colo_device_memory_capacity
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor
from colossalai.utils.memory_tracer import MemStatsCollector
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
from typing import Type
class TensorPlacementPolicy(ABC):
def __init__(self, device: Optional[torch.device], mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
self.device: Optional[torch.device] = device
self.mem_stats_collector: Optional[MemStatsCollector] = mem_stats_collector
@abstractmethod
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None:
raise NotImplementedError
class CPUTensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
super().__init__(torch.device('cpu'), mem_stats_collector=mem_stats_collector)
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None:
for t in hold_cuda_tensor_list:
colo_model_data_tensor_move_inline(t, self.device)
class CUDATensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available'
super().__init__(get_current_device(), mem_stats_collector=mem_stats_collector)
def evict_tensors(self, hold_cuda_tensor_list: List[StatefulTensor], **kwargs) -> None:
pass
class AutoTensorPlacementPolicy(TensorPlacementPolicy):
def __init__(self, mem_stats_collector: Optional[MemStatsCollector] = None) -> None:
super().__init__(None, mem_stats_collector=mem_stats_collector)
# model data will use 1-self._warmup_non_model_data_ratio CUDA memory in warmup phase
# TODO(ver217): make these args configurable
self._warmup_non_model_data_ratio: float = 0.8
self._steady_cuda_cap_ratio: float = 0.8
def evict_tensors(self,
hold_cuda_tensor_list: List[StatefulTensor],
cuda_demand: int = 0,
warmup: bool = True,
compute_list: List[StatefulTensor] = [],
compute_idx: int = 0,
**kwargs) -> None:
cuda_capacity = colo_device_memory_capacity(get_current_device())
used_cuda_model_data = GLOBAL_MODEL_DATA_TRACER.cuda_usage
if warmup:
# We designate a part of CUDA memory for model data in warmup iterations.
max_cuda_non_model_data_per_period = cuda_capacity * self._warmup_non_model_data_ratio
else:
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda')
cuda_capacity *= self._steady_cuda_cap_ratio
total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
if avail_cuda_model_data < cuda_demand:
# Move cuda_demand - avail_cuda_model_data volume of tensors
# to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
freed_cuda_model_data = 0
to_free_tensor_list = hold_cuda_tensor_list
if not warmup:
next_compute_idx = {t: len(compute_list) for t in hold_cuda_tensor_list}
for i in range(len(compute_list) - 1, compute_idx, -1):
if compute_list[i] in next_compute_idx:
next_compute_idx[compute_list[i]] = i
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
to_free_tensor_list = [t for (t, idx) in next_compute_idx]
for t in to_free_tensor_list:
if freed_cuda_model_data >= to_free_cuda_model_data:
break
freed_cuda_model_data += colo_tensor_mem_usage(t)[0]
colo_model_data_tensor_move_inline(t, torch.device('cpu'))
if freed_cuda_model_data < to_free_cuda_model_data:
raise RuntimeError(
f"Adjust layout failed! No enough CUDA memory! Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}"
)
class TensorPlacementPolicyFactory:
@staticmethod
def create(policy_name: str) -> Type[TensorPlacementPolicy]:
if policy_name == 'cpu':
return CPUTensorPlacementPolicy
elif policy_name == 'cuda':
return CUDATensorPlacementPolicy
elif policy_name == 'auto':
return AutoTensorPlacementPolicy
else:
raise TypeError(f"Unknown tensor placement policy {policy_name}")
|
import functools
import torch
import types
from colossalai.utils.cuda import get_current_device
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from colossalai.zero.sharded_param.tensorful_state import StatefulTensor, TensorState
from colossalai.zero.sharded_param.tensor_utils import colo_model_data_tensor_move_inline, colo_tensor_mem_usage
from colossalai.gemini.tensor_placement_policy import TensorPlacementPolicy
from typing import List
from colossalai.logging import get_dist_logger
class StatefulTensorMgr(object):
"""
Stateful Tensor Manager, inspired from PatrickStar
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
https://arxiv.org/abs/2108.05818
"""
def __init__(self, tensor_placement_policy: TensorPlacementPolicy) -> None:
self._tensor_placement_policy: TensorPlacementPolicy = tensor_placement_policy
self._stateful_tensor_list: List[StatefulTensor] = []
self._logger = get_dist_logger("StatefulTensorMgr")
self._warmup = True
self._compute_list: List[StatefulTensor] = []
self._compute_idx: int = -1
def register_stateful_param(self, param: ShardedParamV2) -> None:
assert isinstance(param, ShardedParamV2)
for t in param.get_payload_tensors():
assert isinstance(t, StatefulTensor)
self._stateful_tensor_list.append(t)
t.trans_state = types.MethodType(functools.partial(self._trans_state, t.trans_state), t)
def adjust_layout(self) -> None:
""" Adjust the layout of statefuil tensor according to the information provided
by mem_stats_collector, which should belongs to a Sharded Model.
"""
# find stateful tensor in state COMPUTE
cuda_demand = 0
move_to_cuda_tensor_list = []
hold_cuda_tensor_list = []
for tensor in self._stateful_tensor_list:
if tensor.state == TensorState.FREE:
continue
if tensor.device.type == 'cuda':
if tensor.state in [TensorState.HOLD, TensorState.HOLD_AFTER_BWD, TensorState.HOLD_AFTER_FWD]:
hold_cuda_tensor_list.append(tensor)
elif tensor.device.type == 'cpu':
if tensor.state == TensorState.COMPUTE:
move_to_cuda_tensor_list.append(tensor)
cuda_demand += colo_tensor_mem_usage(tensor.payload)[1]
else:
raise RuntimeError
self._tensor_placement_policy.evict_tensors(hold_cuda_tensor_list,
cuda_demand=cuda_demand,
warmup=self._warmup,
compute_list=self._compute_list,
compute_idx=self._compute_idx)
# move COMPUTE tensors to CUDA
for t in move_to_cuda_tensor_list:
colo_model_data_tensor_move_inline(t, get_current_device())
def reset(self):
"""This function must be called when each iteration finishes
"""
self._warmup = False
self._compute_idx = -1
def _trans_state(self, trans_state_func, stateful_tensor, state):
trans_state_func(state)
if state == TensorState.COMPUTE:
self._compute_idx += 1
if self._warmup:
self._compute_list.append(stateful_tensor)
|
from .layer import *
from .loss import *
from .lr_scheduler import *
from .metric import *
from .model import *
from .optimizer import *
|
import math
import warnings
from torch import Tensor
import torch.nn as nn
def zeros_():
"""Return the initializer filling the input Tensor with the scalar zeros"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.zeros_(tensor)
return initializer
def ones_():
"""Return the initializer filling the input Tensor with the scalar ones"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.ones_(tensor)
return initializer
def uniform_(a: float = 0., b: float = 1.):
r"""Return the initializer filling the input Tensor with values drawn from the uniform
distribution :math:`\mathcal{U}(a, b)`.
Args:
a (float): the lower bound of the uniform distribution. Defaults 0.0.
b (float): the upper bound of the uniform distribution. Defaults 1.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.uniform_(tensor, a, b)
return initializer
def normal_(mean: float = 0., std: float = 1.):
r"""Return the initializer filling the input Tensor with values drawn from the normal distribution
.. math::
\mathcal{N}(\text{mean}, \text{std}^2)
Args:
mean (float): the mean of the normal distribution. Defaults 0.0.
std (float): the standard deviation of the normal distribution. Defaults 1.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.normal_(tensor, mean, std)
return initializer
def trunc_normal_(mean: float = 0., std: float = 1., a: float = -2., b: float = 2.):
r"""Return the initializer filling the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
mean (float): the mean of the normal distribution. Defaults 0.0.
std (float): the standard deviation of the normal distribution. Defaults 1.0.
a (float): the minimum cutoff value. Defaults -2.0.
b (float): the maximum cutoff value. Defaults 2.0.
"""
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
return nn.init.trunc_normal_(tensor, mean, std, a, b)
return initializer
def kaiming_uniform_(a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
uniform distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where
.. math::
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan_mode}}}
Also known as 'He initialization'.
Args:
a (int): the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``).
mode (str, optional): either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity (str, optional): the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
if 0 in tensor.shape:
warnings.warn("Initializing zero-element tensors is a no-op")
return tensor
if mode == 'fan_in':
assert fan_in is not None, 'Fan_in is not provided.'
fan = fan_in
elif mode == 'fan_out':
assert fan_out is not None, 'Fan_out is not provided.'
fan = fan_out
else:
raise ValueError(f'Invalid initialization mode \'{mode}\'')
std = nn.init.calculate_gain(nonlinearity, a) / math.sqrt(fan)
bound = math.sqrt(3.) * std
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def kaiming_normal_(a=0, mode='fan_in', nonlinearity='leaky_relu'):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification` - He, K. et al. (2015), using a
normal distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan_mode}}}
Also known as 'He initialization'.
Args:
a (int): the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``).
mode (str, optional): either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity (str, optional): the non-linear function (`nn.functional` name),
recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default).
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
if 0 in tensor.shape:
warnings.warn("Initializing zero-element tensors is a no-op")
return tensor
if mode == 'fan_in':
assert fan_in is not None, 'Fan_in is not provided.'
fan = fan_in
elif mode == 'fan_out':
assert fan_out is not None, 'Fan_out is not provided.'
fan = fan_out
else:
raise ValueError(f'Invalid initialization mode \'{mode}\'')
std = nn.init.calculate_gain(nonlinearity, a) / math.sqrt(fan)
return nn.init.normal_(tensor, 0, std)
return initializer
def xavier_uniform_(a: float = math.sqrt(3.), scale: float = 2., gain: float = 1.):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Understanding the difficulty of training deep feedforward
neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
distribution. The resulting tensor will have values sampled from
:math:`\mathcal{U}(-a, a)` where
.. math::
a = \text{gain} \times \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}
Also known as 'Glorot initialization'.
Args:
a (float, optional): an optional scaling factor used to calculate uniform
bounds from standard deviation. Defaults ``math.sqrt(3.)``.
scale (float, optional): an optional scaling factor used to calculate standard deviation. Defaults 2.0.
gain (float, optional): an optional scaling factor. Defaults 1.0.
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, 'Fan_in is not provided.'
fan = fan_in
if fan_out is not None:
fan += fan_out
std = gain * math.sqrt(scale / float(fan))
bound = a * std
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def xavier_normal_(scale: float = 2., gain: float = 1.):
r"""Return the initializer filling the input `Tensor` with values according to the method
described in `Understanding the difficulty of training deep feedforward
neural networks` - Glorot, X. & Bengio, Y. (2010), using a normal
distribution. The resulting tensor will have values sampled from
:math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan_in} + \text{fan_out}}}
Also known as 'Glorot initialization'.
Args:
scale (float, optional): an optional scaling factor used to calculate standard deviation. Defaults 2.0.
gain (float, optional): an optional scaling factor. Defaults 1.0.
"""
# adapted from torch.nn.init
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, 'Fan_in is not provided.'
fan = fan_in
if fan_out is not None:
fan += fan_out
std = gain * math.sqrt(scale / float(fan))
return nn.init.normal_(tensor, 0., std)
return initializer
def lecun_uniform_():
# adapted from jax.nn.initializers
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, 'Fan_in is not provided.'
var = 1.0 / fan_in
bound = math.sqrt(3 * var)
return nn.init.uniform_(tensor, -bound, bound)
return initializer
def lecun_normal_():
# adapted from jax.nn.initializers
def initializer(tensor: Tensor, fan_in: int = None, fan_out: int = None):
assert fan_in is not None, 'Fan_in is not provided.'
std = math.sqrt(1.0 / fan_in)
return nn.init.trunc_normal_(tensor, std=std / .87962566103423978)
return initializer
|
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_adam.py
import torch
from colossalai.registry import OPTIMIZERS
from colossalai.utils import multi_tensor_applier
@OPTIMIZERS.register_module
class FusedAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
Currently GPU-only. Requires ColossalAI to be installed via
``pip install .``.
This version of fused Adam implements 2 fusions.
* Fusion of the Adam update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
:class:`colossalai.nn.optimizer.FusedAdam` may be used with or without Amp.
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED in FusedAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
adamw_mode=True,
weight_decay=0.,
amsgrad=False,
set_grad_none=True):
if amsgrad:
raise RuntimeError('FusedAdam does not support the AMSGrad variant.')
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay)
super(FusedAdam, self).__init__(params, defaults)
self.adamw_mode = 1 if adamw_mode else 0
self.set_grad_none = set_grad_none
if multi_tensor_applier.available:
import colossal_C
# Skip buffer
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
self.multi_tensor_adam = colossal_C.multi_tensor_adam
else:
raise RuntimeError('FusedAdam requires cuda extensions')
def zero_grad(self, set_to_none=False):
if set_to_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(FusedAdam, self).zero_grad()
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes.
"""
if any(p is not None for p in [grads, output_params, scale, grad_norms]):
raise RuntimeError(
'FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.'
)
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
# create lists for multi-tensor apply
g_l, p_l, m_l, v_l = [], [], [], []
for p in group['params']:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
'FusedAdam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if p.dtype not in [torch.float16, torch.float32]:
raise RuntimeError('FusedAdam only support fp16 and fp32.')
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
beta1, beta2, group['eps'], group['step'], self.adamw_mode, bias_correction,
group['weight_decay'])
return loss
|
"""
Adapted from the pytorch-lamb library at https://github.com/cybertronai/pytorch-lamb
"""
import torch
from torch.optim import Optimizer
from colossalai.registry import OPTIMIZERS
@OPTIMIZERS.register_module
class Lamb(Optimizer):
r"""Implements Lamb algorithm.
It has been proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
adam (bool, optional): always use trust ratio = 1, which turns this into
Adam. Useful for comparison purposes.
.. _Large Batch Optimization for Deep Learning\: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
weight_decay=0, adam=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
self.adam = adam
super(Lamb, self).__init__(params, defaults)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError(
'Lamb does not support sparse gradients, consider SparseAdam instad.')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# Paper v3 does not use debiasing.
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
# Apply bias to lr to avoid broadcast.
# * math.sqrt(bias_correction2) / bias_correction1
step_size = group['lr']
weight_norm = p.data.pow(2).sum().sqrt()
adam_step = exp_avg / exp_avg_sq.sqrt().add(group['eps'])
if group['weight_decay'] != 0:
adam_step.add_(p.data, alpha=group['weight_decay'])
adam_norm = adam_step.pow(2).sum().sqrt()
if weight_norm == 0 or adam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / adam_norm
state['weight_norm'] = weight_norm
state['adam_norm'] = adam_norm
state['trust_ratio'] = trust_ratio
if self.adam:
trust_ratio = 1
p.data.add_(adam_step, alpha=-step_size * trust_ratio)
return loss
|
"""Adapted from https://github.com/NUS-HPC-AI-Lab/LARS-ImageNet-PyTorch/blob/main/lars.py"""
from typing import Iterable
import torch
from torch.optim import Optimizer
from colossalai.registry import OPTIMIZERS
@OPTIMIZERS.register_module
class Lars(Optimizer):
r"""Implements the LARS optimizer from `"Large batch training of convolutional networks"
<https://arxiv.org/pdf/1708.03888.pdf>`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
momentum (float, optional): momentum factor (default: 0)
eeta (float, optional): LARS coefficient as used in the paper (default: 1e-3)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
"""
def __init__(
self,
params: Iterable[torch.nn.Parameter],
lr=1e-3,
momentum=0,
eeta=1e-3,
weight_decay=0,
epsilon=0.0
) -> None:
if not isinstance(lr, float) or lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
if eeta <= 0 or eeta > 1:
raise ValueError("Invalid eeta value: {}".format(eeta))
if epsilon < 0:
raise ValueError("Invalid epsilon value: {}".format(epsilon))
defaults = dict(lr=lr, momentum=momentum,
weight_decay=weight_decay, eeta=eeta, epsilon=epsilon, lars=True)
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
eeta = group['eeta']
lr = group['lr']
lars = group['lars']
eps = group['epsilon']
for p in group['params']:
if p.grad is None:
continue
decayed_grad = p.grad
scaled_lr = lr
if lars:
w_norm = torch.norm(p)
g_norm = torch.norm(p.grad)
trust_ratio = torch.where(
w_norm > 0 and g_norm > 0,
eeta * w_norm / (g_norm + weight_decay * w_norm + eps),
torch.ones_like(w_norm)
)
trust_ratio.clamp_(0.0, 50)
scaled_lr *= trust_ratio.item()
if weight_decay != 0:
decayed_grad = decayed_grad.add(p, alpha=weight_decay)
decayed_grad = torch.clamp(decayed_grad, -10.0, 10.0)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(
decayed_grad).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(decayed_grad)
decayed_grad = buf
p.add_(decayed_grad, alpha=-scaled_lr)
return loss
|
from .utils import CPU_ADAM_CNT
from .colossalai_optimizer import ColossalaiOptimizer
from .fused_adam import FusedAdam
from .fused_lamb import FusedLAMB
from .fused_sgd import FusedSGD
from .lamb import Lamb
from .lars import Lars
from .cpu_adam import CPUAdam
from .hybrid_adam import HybridAdam
__all__ = ['ColossalaiOptimizer', 'FusedLAMB', 'FusedAdam', 'FusedSGD',
'Lamb', 'Lars', 'CPUAdam', 'HybridAdam', 'CPU_ADAM_CNT']
|
import math
import torch
from colossalai.registry import OPTIMIZERS
from colossalai.nn.optimizer import CPU_ADAM_CNT
@OPTIMIZERS.register_module
class CPUAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
But the parameters and gradients should on the same device:
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
Requires ColossalAI to be installed via ``pip install .``.
This version of CPU Adam accelates parameters updating on CPU with SIMD.
Support of AVX2 or AVX512 is required.
The GPU part is implemented in an naive way.
CPU Adam also supports the hybrid precision calculation, eg. fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.CPUAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
model_params (iterable): iterable of parameters of dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED yet in CPUAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
# Number of fp32 shards for per parameter
# Param weight, grad, momentum and variance
num_fp32_shards_per_param = 4
def __init__(self,
model_params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
adamw_mode=True,
simd_log=False):
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
super(CPUAdam, self).__init__(model_params, default_args)
self.opt_id = CPU_ADAM_CNT()
self.adamw_mode = adamw_mode
try:
import cpu_adam
except ImportError:
raise ImportError('Please install colossalai from source code to use CPUAdam')
self.cpu_adam_op = cpu_adam
self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log)
def __del__(self):
if self.cpu_adam_op:
self.cpu_adam_op.destroy_adam(self.opt_id)
def torch_adam_update(self,
data,
grad,
exp_avg,
exp_avg_sq,
lr,
beta1,
beta2,
eps,
weight_decay,
bias_correction1,
bias_correction2,
use_adamw=False):
# FIXME(ver217): remove the below line when replace torch adam with fused adam
grad = grad.float()
if weight_decay != 0:
if use_adamw:
data.mul_(1 - lr * weight_decay)
else:
grad = grad.add(data, alpha=weight_decay)
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
# TODO(jiaruifang) dose not support amsgrad
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
data.addcdiv_(exp_avg, denom, value=-step_size)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for _, group in enumerate(self.param_groups):
for _, p in enumerate(group['params']):
if p.grad is None:
continue
state = self.state[p]
target_device = p.device
if len(state) == 0:
state['step'] = 0
# gradient momentums
state['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
state['step'] += 1
beta1, beta2 = group['betas']
if target_device.type == 'cpu':
assert p.data.numel() == p.grad.data.numel(), "parameter and gradient should have the same size"
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
self.cpu_adam_op.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'],
group['weight_decay'], group['bias_correction'], p.data, p.grad.data,
state['exp_avg'], state['exp_avg_sq'], -1)
elif target_device.type == 'cuda':
assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda"
assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda"
bias_correction1 = 1 - beta1**state['step']
bias_correction2 = 1 - beta2**state['step']
# adam on cuda
self.torch_adam_update(p.data, p.grad.data, state['exp_avg'], state['exp_avg_sq'], group['lr'],
beta1, beta2, group['eps'], group['weight_decay'], bias_correction1,
bias_correction2, self.adamw_mode)
else:
raise RuntimeError
return loss
|
class CpuAdamCounter(object):
"""Used to record the total number of CPU Adam.
We must use it to avoid hybrid cpu adam and cpu adam using the same id.
"""
def __init__(self):
self.number = 0
def __call__(self):
self.number += 1
return self.number - 1
CPU_ADAM_CNT = CpuAdamCounter()
|
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
from torch import Tensor
from torch.optim import Optimizer
from colossalai.utils import clip_grad_norm_fp32
class ColossalaiOptimizer(Optimizer):
def __init__(self, optim: Optimizer):
self.optim = optim
@property
def param_groups(self):
return self.optim.param_groups
@property
def defaults(self):
return self.optim.defaults
def add_param_group(self, *args, **kwargs):
return self.optim.add_param_group(*args, **kwargs)
def step(self, *args, **kwargs):
return self.optim.step(*args, **kwargs)
def zero_grad(self, *args, **kwargs):
self.optim.zero_grad(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.optim.load_state_dict(*args, **kwargs)
def state_dict(self):
return self.optim.state_dict()
def backward(self, loss: Tensor):
loss.backward()
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
def clip_grad_norm(self, model: nn.Module, max_norm: float):
if max_norm > 0.0:
clip_grad_norm_fp32(model.parameters(), max_norm)
|
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_lamb.py
import torch
from colossalai.registry import OPTIMIZERS
from colossalai.utils import multi_tensor_applier
@OPTIMIZERS.register_module
class FusedLAMB(torch.optim.Optimizer):
"""Implements LAMB algorithm.
Currently GPU-only. Requires ColossalAI to be installed via
``pip install .``.
This version of fused LAMB implements 2 fusions.
* Fusion of the LAMB update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer
:class:`colossalai.nn.optimizer.FusedLAMB` may be used with or without Amp.
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its norm. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-6)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0.01)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
NOT SUPPORTED now! (default: False)
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
grad_averaging (bool, optional): whether apply (1-beta2) to grad when
calculating running averages of gradient. (default: True)
set_grad_none (bool, optional): whether set grad to None when zero_grad()
method is called. (default: True)
max_grad_norm (float, optional): value used to clip global grad norm
(default: 1.0)
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
weight decay parameter (default: False)
.. _Large Batch Optimization for Deep Learning: Training BERT in 76 minutes:
https://arxiv.org/abs/1904.00962
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-6,
weight_decay=0.01,
amsgrad=False,
adam_w_mode=True,
grad_averaging=True,
set_grad_none=True,
max_grad_norm=1.0,
use_nvlamb=False):
if amsgrad:
raise RuntimeError('FusedLAMB does not support the AMSGrad variant.')
defaults = dict(lr=lr,
bias_correction=bias_correction,
betas=betas,
eps=eps,
weight_decay=weight_decay,
grad_averaging=grad_averaging,
max_grad_norm=max_grad_norm)
super(FusedLAMB, self).__init__(params, defaults)
if multi_tensor_applier.available:
import colossal_C
self.multi_tensor_l2norm = colossal_C.multi_tensor_l2norm
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self.multi_tensor_lamb = colossal_C.multi_tensor_lamb
else:
raise RuntimeError('FusedLAMB requires cuda extensions')
self.adam_w_mode = 1 if adam_w_mode else 0
self.set_grad_none = set_grad_none
self.use_nvlamb = use_nvlamb
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(FusedLAMB, self).zero_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
# create separate grad lists for fp32 and fp16 params
g_all_32, g_all_16 = [], []
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
if p.dtype == torch.float32:
g_all_32.append(p.grad.data)
elif p.dtype == torch.float16:
g_all_16.append(p.grad.data)
else:
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
device = self.param_groups[0]["params"][0].device
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
# compute grad norm for two lists
if len(g_all_32) > 0:
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0]
if len(g_all_16) > 0:
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]
# blend two grad norms to get global grad norm
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf,
[[g_norm_32, g_norm_16]], False)[0]
max_grad_norm = self.defaults['max_grad_norm']
for group in self.param_groups:
bias_correction = 1 if group['bias_correction'] else 0
beta1, beta2 = group['betas']
grad_averaging = 1 if group['grad_averaging'] else 0
# assume same step across group now to simplify things
# per parameter step can be easily support by making it tensor, or pass list into kernel
if 'step' in group:
group['step'] += 1
else:
group['step'] = 1
# create lists for multi-tensor apply
g_16, p_16, m_16, v_16 = [], [], [], []
g_32, p_32, m_32, v_32 = [], [], [], []
for p in group['params']:
if p.grad is None:
continue
if p.grad.data.is_sparse:
raise RuntimeError(
'FusedLAMB does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
if p.dtype == torch.float16:
g_16.append(p.grad.data)
p_16.append(p.data)
m_16.append(state['exp_avg'])
v_16.append(state['exp_avg_sq'])
elif p.dtype == torch.float32:
g_32.append(p.grad.data)
p_32.append(p.data)
m_32.append(state['exp_avg'])
v_32.append(state['exp_avg_sq'])
else:
raise RuntimeError('FusedLAMB only support fp16 and fp32.')
if (len(g_16) > 0):
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16],
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
max_grad_norm, self.use_nvlamb)
if (len(g_32) > 0):
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32],
group['lr'], beta1, beta2, group['eps'], group['step'], bias_correction,
group['weight_decay'], grad_averaging, self.adam_w_mode, global_grad_norm,
max_grad_norm, self.use_nvlamb)
return loss
|
import torch
from colossalai.utils import multi_tensor_applier
from colossalai.registry import OPTIMIZERS
from colossalai.nn.optimizer import CPU_ADAM_CNT
@OPTIMIZERS.register_module
class HybridAdam(torch.optim.Optimizer):
"""Implements Adam algorithm.
Supports parameters updating on both GPU and CPU, depanding on the device of paramters.
But the parameters and gradients should on the same device:
* Parameters on CPU and gradients on CPU is allowed.
* Parameters on GPU and gradients on GPU is allowed.
* Parameters on GPU and gradients on CPU is **not** allowed.
Requires ColossalAI to be installed via ``pip install .``
This version of Hybrid Adam is an hybrid of CPUAdam and FusedAdam.
* For parameters updating on CPU, it uses CPUAdam.
* For parameters updating on GPU, it uses FusedAdam.
* Hybird precision calculation of fp16 and fp32 is supported, eg fp32 parameters and fp16 gradients.
:class:`colossalai.nn.optimizer.HybridAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``,
or ``torch.optim.Adam`` with ``adamw_mode=False``
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
model_params (iterable): iterable of parameters of dicts defining
parameter groups.
lr (float, optional): learning rate. (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square. (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability. (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False) NOT SUPPORTED yet in CPUAdam!
adamw_mode (boolean, optional): Apply L2 regularization or weight decay
True for decoupled weight decay(also known as AdamW) (default: True)
simd_log (boolean, optional): whether to show if you are using SIMD to
accelerate. (default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
# Number of fp32 shards for per parameter
# Param weight, grad, momentum and variance
num_fp32_shards_per_param = 4
def __init__(self,
model_params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
adamw_mode=True,
simd_log=False):
default_args = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, bias_correction=bias_correction)
super(HybridAdam, self).__init__(model_params, default_args)
self.opt_id = CPU_ADAM_CNT()
self.adamw_mode = adamw_mode
try:
import cpu_adam
import colossal_C
except ImportError:
raise ImportError('Please install colossalai from source code to use HybridAdam')
self.cpu_adam_op = cpu_adam
self.cpu_adam_op.create_adam(self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode, simd_log)
self.gpu_adam_op = colossal_C.multi_tensor_adam
self._dummy_overflow_buf = torch.cuda.IntTensor([0])
def __del__(self):
if self.cpu_adam_op:
self.cpu_adam_op.destroy_adam(self.opt_id)
@torch.no_grad()
def step(self, closure=None):
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for _, group in enumerate(self.param_groups):
g_l, p_l, m_l, v_l = [], [], [], []
group_step = 0
for _, p in enumerate(group['params']):
if p.grad is None:
continue
state = self.state[p]
target_device = p.device
if len(state) == 0:
state['step'] = 0
# gradient momentums
state['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
# gradient variances
state['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float, device=target_device)
state['step'] += 1
group_step = state['step']
beta1, beta2 = group['betas']
if target_device.type == 'cpu':
assert state['exp_avg'].device.type == 'cpu', "exp_avg should stay on cpu"
assert state['exp_avg_sq'].device.type == 'cpu', "exp_avg should stay on cpu"
self.cpu_adam_op.adam_update(self.opt_id, state['step'], group['lr'], beta1, beta2, group['eps'],
group['weight_decay'], group['bias_correction'], p.data, p.grad.data,
state['exp_avg'], state['exp_avg_sq'], -1)
elif target_device.type == 'cuda':
assert state['exp_avg'].device.type == 'cuda', "exp_avg should stay on cuda"
assert state['exp_avg_sq'].device.type == 'cuda', "exp_avg should stay on cuda"
# record the state by gruop and update at once
g_l.append(p.grad.data)
p_l.append(p.data)
m_l.append(state['exp_avg'])
v_l.append(state['exp_avg_sq'])
else:
raise RuntimeError
if len(g_l) > 0:
adamw_mode = 1 if self.adamw_mode else 0
bias_correction = 1 if group['bias_correction'] else 0
multi_tensor_applier(self.gpu_adam_op, self._dummy_overflow_buf, [g_l, p_l, m_l, v_l], group['lr'],
group['betas'][0], group['betas'][1], group['eps'], group_step, adamw_mode,
bias_correction, group['weight_decay'])
return loss
|
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_sgd.py
import torch
from torch.optim.optimizer import Optimizer, required
from colossalai.registry import OPTIMIZERS
from colossalai.utils import multi_tensor_applier
@OPTIMIZERS.register_module
class FusedSGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
Currently GPU-only. Requires ColossalAI to be installed via
``pip install .``.
This version of fused SGD implements 2 fusions.
* Fusion of the SGD update's elementwise operations
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.
:class:`colossalai.nn.optimizer.FusedSGD` may be used as a drop-in replacement for ``torch.optim.SGD``
:class:`colossalai.nn.optimizer.FusedSGD` may be used with or without Amp.
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
v = \rho * v + g \\
p = p - lr * v
where p, g, v and :math:`\rho` denote the parameters, gradient,
velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
v = \rho * v + lr * g \\
p = p - v
The Nesterov version is analogously modified.
"""
def __init__(self,
params,
lr=required,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
wd_after_momentum=False,
materialize_master_grads=True,
set_grad_none=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(FusedSGD, self).__init__(params, defaults)
self.wd_after_momentum = wd_after_momentum
self.materialize_master_grads = materialize_master_grads
self.most_recent_scale = 1.0
self.scale_set_by_backward = False
self.set_grad_none = set_grad_none
if multi_tensor_applier.available:
import colossal_C
# Skip buffer
self._dummy_overflow_buf = torch.tensor([0],
dtype=torch.int,
device=self.param_groups[0]["params"][0].device)
self.multi_tensor_sgd = colossal_C.multi_tensor_sgd
else:
raise RuntimeError('FusedSGD requires cuda extensions')
def __setstate__(self, state):
super(FusedSGD, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
def zero_grad(self):
if self.set_grad_none:
for group in self.param_groups:
for p in group['params']:
p.grad = None
else:
super(FusedSGD, self).zero_grad()
def get_momentums(self, params):
momentums = []
first_run = True
for p in params:
param_state = self.state[p]
# torch.optim.SGD initializes momentum in the main loop, we have
# to do it here, and track whether or not we've done so, so that
# momentum application can be skipped in the main kernel.
if 'momentum_buffer' not in param_state:
first_run = True
buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
momentums.append(buf)
else:
first_run = False
momentums.append(param_state['momentum_buffer'])
return momentums, first_run
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
explicit_master_params = (hasattr(self, "_amp_stash") and hasattr(self._amp_stash, "fp32_from_fp16_groups"))
for gid, group in enumerate(self.param_groups):
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
# For each group, there are 3 possible combinations we need to consider:
# grad_type, param_to_update_type, momentum_type, requires_fp16_model_copy
# 1. fp16, fp16, fp16, No
# 2. fp32, fp32, fp32, No
# 3. fp16, fp32, fp32, Yes
first_runs = [True, True]
# I think a bit of code divergence in exchange for naming clarity is worthwhile
if explicit_master_params:
stash = self._amp_stash
fp32_params = [p for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_grads = [p.grad for p in stash.fp32_from_fp32_groups[gid] if p.grad is not None]
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
if self.materialize_master_grads:
fp16_model_params = [
p for i, p in enumerate(stash.fp16_groups[gid])
if stash.fp32_from_fp16_groups[gid][i].grad is not None
]
fp32_from_fp16_grads = [p.grad for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [p for p in stash.fp32_from_fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
fp16_set = [
fp32_from_fp16_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params
]
else:
fp16_model_params = [p for p in stash.fp16_groups[gid] if p.grad is not None]
fp16_model_grads = [p.grad for p in stash.fp16_groups[gid] if p.grad is not None]
fp32_from_fp16_params = [
p for i, p in enumerate(stash.fp32_from_fp16_groups[gid])
if stash.fp16_groups[gid][i].grad is not None
]
fp32_from_fp16_momentums, first_runs[0] = self.get_momentums(fp32_from_fp16_params)
fp16_set = [fp16_model_grads, fp32_from_fp16_params, fp32_from_fp16_momentums, fp16_model_params]
launch_sets = [fp16_set, [fp32_grads, fp32_params, fp32_momentums]]
else:
fp16_params = [p for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
fp16_grads = [p.grad for p in group['params'] if (p.dtype == torch.float16 and p.grad is not None)]
fp16_momentums, first_runs[0] = self.get_momentums(fp16_params)
fp32_params = [p for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
fp32_grads = [p.grad for p in group['params'] if (p.dtype == torch.float32 and p.grad is not None)]
fp32_momentums, first_runs[1] = self.get_momentums(fp32_params)
launch_sets = [[fp16_grads, fp16_params, fp16_momentums], [fp32_grads, fp32_params, fp32_momentums]]
for s, (launch_set, first_run) in enumerate(zip(launch_sets, first_runs)):
assert len(launch_set[0]) == len(launch_set[1])
assert len(launch_set[0]) == len(launch_set[2])
if len(launch_set[0]) > 0:
multi_tensor_applier(self.multi_tensor_sgd, self._dummy_overflow_buf, launch_set, weight_decay,
momentum, dampening, group['lr'], nesterov, first_run, self.wd_after_momentum,
1.0 / self.most_recent_scale)
self.most_recent_scale = 1.0
self.scale_set_by_backward = False
return loss
|
import torch.nn as nn
from colossalai.registry import LOSSES
from torch.nn.modules.loss import _Loss
from colossalai.context.moe_context import MOE_CONTEXT
@LOSSES.register_module
class MoeCrossEntropyLoss(_Loss):
r"""torch.nn.CrossEntropyLoss added with auxiliary loss.
Args:
input (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
target (:class:`torch.tensor`): Ground truth class indices or class probabilities.
aux_weight (float, optional): Weight of auxiliary loss in total loss.Defaults 0.01.
The ``args`` and ``kwargs`` should include parameters below:
::
weight (Tensor, optional)
size_average (bool, optional)
ignore_index (int, optional)
reduce (bool, optional)
reduction (str, optional)
label_smoothing (float, optional)
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
def __init__(self, aux_weight: float = 0.01, *args, **kwargs):
super().__init__()
self.loss = nn.CrossEntropyLoss(*args, **kwargs)
self.aux_weight = aux_weight
def forward(self, *args):
"""
The ``args`` should at least include parameters below:
::
input (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
target (:class:`torch.tensor`): Ground truth class indices or class probabilities.
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
main_loss = self.loss(*args)
aux_loss = MOE_CONTEXT.get_loss()
return main_loss + self.aux_weight * aux_loss
@LOSSES.register_module
class MoeLoss(_Loss):
"""A wrapper class for any loss module to add with auxiliary loss.
Args:
aux_weight (float): Weight of auxiliary loss in total loss.
loss_fn (``Callable``): Loss function.
args (list): Args in loss function.
kwargs (dict): Kwargs in loss function
"""
def __init__(self, aux_weight: float, loss_fn, *args, **kwargs):
super().__init__()
self.loss_fn = loss_fn(*args, **kwargs)
self.aux_weight = aux_weight
def forward(self, *args, **kwargs):
"""
The ``args`` and ``kwargs`` should at least include parameters below:
::
input (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
target (:class:`torch.tensor`): Ground truth class indices or class probabilities.
Note:
The ``args`` and ``kwargs`` may include different parameters varying with different loss function.
"""
main_loss = self.loss_fn(*args, **kwargs)
aux_loss = MOE_CONTEXT.get_loss()
return main_loss + self.aux_weight * aux_loss
|
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.nn.layer.utils import get_tensor_parallel_mode
from torch import nn
from torch.nn.modules.loss import *
from torch.nn.modules.loss import _Loss
from .loss_1d import VocabParallelCrossEntropyLoss1D
from .loss_2d import CrossEntropyLoss2D, VocabParallelCrossEntropyLoss2D
from .loss_2p5d import CrossEntropyLoss2p5D, VocabParallelCrossEntropyLoss2p5D
from .loss_3d import CrossEntropyLoss3D, VocabParallelCrossEntropyLoss3D
from .loss_moe import MoeCrossEntropyLoss, MoeLoss
_parallel_cross_entropy = {
'2d': CrossEntropyLoss2D,
'2.5d': CrossEntropyLoss2p5D,
'3d': CrossEntropyLoss3D,
}
_vocab_parallel_cross_entropy = {
'1d': VocabParallelCrossEntropyLoss1D,
'2d': VocabParallelCrossEntropyLoss2D,
'2.5d': VocabParallelCrossEntropyLoss2p5D,
'3d': VocabParallelCrossEntropyLoss3D,
}
class CrossEntropyLoss(_Loss):
def __init__(self, reduction: bool = True, *args, **kwargs):
super().__init__()
tensor_parallel = get_tensor_parallel_mode()
if tensor_parallel is not None and env.vocab_parallel:
self.loss = _vocab_parallel_cross_entropy[tensor_parallel](reduction=reduction, *args, **kwargs)
elif tensor_parallel is None or tensor_parallel == '1d':
reduction = 'mean' if reduction else 'none'
self.loss = nn.CrossEntropyLoss(reduction=reduction, *args, **kwargs)
else:
self.loss = _parallel_cross_entropy[tensor_parallel](reduction=reduction, *args, **kwargs)
def forward(self, *args):
return self.loss(*args)
|
import torch
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import LOSSES
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.modules.loss import _Loss
class _VocabParallelCrossEntropy1D(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, vocab_parallel_logits, targets):
# Maximum value along vocab dimension across all GPUs.
logits_max = torch.max(vocab_parallel_logits, dim=-1)[0]
torch.distributed.all_reduce(logits_max,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Subtract the maximum value.
vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
# Get the partition's vocab indecies
partition_vocab_size = vocab_parallel_logits.size()[-1]
rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
vocab_start_index = partition_vocab_size * rank
vocab_end_index = vocab_start_index + partition_vocab_size
# Create a mask of valid vocab ids (1 means it needs to be masked).
target_mask = (targets < vocab_start_index) | (targets >= vocab_end_index)
masked_target = targets.clone() - vocab_start_index
masked_target[target_mask] = 0
# Get predicted-logits = logits[target].
# For Simplicity, we convert logits to a 2-D tensor with size
# [*, partition-vocab-size] and target to a 1-D tensor of size [*].
logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size)
masked_target_1d = masked_target.view(-1)
arange_1d = torch.arange(start=0, end=logits_2d.size()[0], device=logits_2d.device)
predicted_logits_1d = logits_2d[arange_1d, masked_target_1d]
predicted_logits_1d = predicted_logits_1d.clone().contiguous()
predicted_logits = predicted_logits_1d.view_as(targets)
predicted_logits[target_mask] = 0.0
# All reduce is needed to get the chunks from other GPUs.
torch.distributed.all_reduce(predicted_logits,
op=torch.distributed.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Sum of exponential of logits along vocab dimension across all GPUs.
exp_logits = vocab_parallel_logits
torch.exp(vocab_parallel_logits, out=exp_logits)
sum_exp_logits = exp_logits.sum(dim=-1)
torch.distributed.all_reduce(sum_exp_logits,
op=torch.distributed.ReduceOp.SUM,
group=gpc.get_group(ParallelMode.PARALLEL_1D))
# Loss = log(sum(exp(logits))) - predicted-logit.
loss = torch.log(sum_exp_logits) - predicted_logits
# Store softmax, target-mask and masked-target for backward pass.
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target_1d)
return loss
@staticmethod
@custom_bwd
def backward(ctx, grad_output):
# Retreive tensors from the forward path.
softmax, target_mask, masked_target_1d = ctx.saved_tensors
# All the inputs have softmax as thier gradient.
grad_input = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = grad_input.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device)
grad_2d[arange_1d, masked_target_1d] -= (1.0 - target_mask.view(-1).float())
# Finally elementwise multiplication with the output gradients.
grad_input.mul_(grad_output.unsqueeze(dim=-1))
return grad_input, None
@LOSSES.register_module
class VocabParallelCrossEntropyLoss1D(_Loss):
"""Vocab parallel cross entropy loss for 1D parallelism.
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
"""
def __init__(self, reduction=True):
super().__init__()
self.reduction_mean = reduction
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
loss = _VocabParallelCrossEntropy1D.apply(logits, targets)
if self.reduction_mean:
loss = loss.mean()
return loss
|
import torch
import torch.distributed as dist
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_2d import reduce_by_batch_2d, split_batch_2d
from colossalai.nn.layer.parallel_2d._utils import assert_summa_initialization
from colossalai.registry import LOSSES
from colossalai.utils import get_current_device
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.functional import cross_entropy
from torch.nn.modules.loss import _Loss
@LOSSES.register_module
class CrossEntropyLoss2D(_Loss):
r"""Cross entropy loss for 2D parallelism
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
The ``args`` and ``kwargs`` should include parameters below:
::
weight (Tensor, optional)
size_average (bool, optional)
ignore_index (int, optional)
reduce (bool, optional)
label_smoothing (float, optional)
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
def __init__(self, reduction=True, *args, **kwargs):
super().__init__()
assert_summa_initialization()
self.reduction_mean = reduction
self.loss_args = args
self.loss_kwargs = kwargs
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
Returns:
float: the loss between logits and targets.
"""
targets = split_batch_2d(targets)
loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2d(loss, True)
return loss
class _VocabParallelCrossEntropy2D(torch.autograd.Function):
### Modified based on megatron.mpu.cross_entropy ###
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, logits, targets):
# logits: [b/q, h/q]
# labels: [b/q]
# loss: [b/q]
# vocab_parallel_logits: [b/q, s, v/q]
# target: [b/q, s]
logits_max = torch.max(logits, dim=-1)[0]
torch.distributed.all_reduce(logits_max,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
# Subtract the maximum value.
# vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
logits = logits - logits_max.unsqueeze(dim=-1)
vocab_size = logits.size(-1)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
vocab_start = rank * (vocab_size)
vocab_end = (rank + 1) * (vocab_size) - 1
target_mask = (targets < vocab_start) | (targets > vocab_end)
masked_target = targets.clone() - vocab_start
masked_target[target_mask] = 0
arange_1d = torch.arange(
start=0,
end=logits.size()[0],
)
predicted_logits = logits[arange_1d, masked_target]
predicted_logits[target_mask] = 0.
dist.all_reduce(predicted_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
exp_logits = torch.exp(logits)
sum_exp_logits = exp_logits.sum(dim=1)
dist.all_reduce(sum_exp_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
loss = torch.log(sum_exp_logits) - predicted_logits
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target)
return loss
@staticmethod
@custom_bwd
def backward(ctx, output_grad):
# Retreive tensors from the forward path.
softmax, target_mask, masked_target = ctx.saved_tensors
# All the inputs have softmax as their gradient.
grad_input = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = grad_input.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device())
grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float())
# Finally elementwise multiplication with the output gradients.
grad_input.mul_(output_grad.unsqueeze(dim=-1))
return grad_input, None
@LOSSES.register_module
class VocabParallelCrossEntropyLoss2D(_Loss):
"""Vocab parallel cross entropy loss for 2D parallelism.
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
"""
def __init__(self, reduction=True):
super().__init__()
self.reduction_mean = reduction
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_batch_2d(targets)
loss = _VocabParallelCrossEntropy2D.apply(
logits,
targets,
)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2d(loss, True)
return loss
|
import torch
import torch.distributed as dist
from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D
from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_3d import reduce_by_batch_3d, split_tensor_3d
from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env
from colossalai.registry import LOSSES
from colossalai.utils import get_current_device
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.functional import cross_entropy
from torch.nn.modules.loss import _Loss
@LOSSES.register_module
class CrossEntropyLoss3D(_Loss):
r"""Cross entropy loss for 3D parallelism.
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
The ``args`` and ``kwargs`` should include parameters below:
::
weight (Tensor, optional)
size_average (bool, optional)
ignore_index (int, optional)
reduce (bool, optional)
label_smoothing (float, optional)
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
def __init__(self, reduction=True, *args, **kwargs):
super().__init__()
self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
self.reduction_mean = reduction
self.loss_args = args
self.loss_kwargs = kwargs
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_tensor_3d(targets, 0, self.weight_parallel_mode)
targets = split_tensor_3d(targets, 0, self.input_parallel_mode)
loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_3d(loss, self.input_parallel_mode, self.weight_parallel_mode, True)
return loss
class _VocabParallelCrossEntropy3D(torch.autograd.Function):
# Adapted from megatron.mpu.cross_entropy
# loss[i] = -logits[i][targets] + log(sum(exp(logits[i])))
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, logits, targets, output_parallel_mode):
# logits: [b/q^2, c/q]
# labels: [b/q^2]
# loss: [b/q^2]
logits_max = torch.max(logits, dim=-1)[0]
dist.all_reduce(logits_max, op=torch.distributed.ReduceOp.MAX, group=gpc.get_group(output_parallel_mode))
# Subtract the maximum value.
logits = logits - logits_max.unsqueeze(dim=-1)
vocab_size_per_partition = logits.size()[-1]
rank = gpc.get_local_rank(output_parallel_mode)
vocab_start = rank * vocab_size_per_partition
vocab_end = (rank + 1) * vocab_size_per_partition - 1
# loss[i] = 0 if targets[i] < vocab_start or targets[i] > vocab_end
target_mask = (targets < vocab_start) | (targets > vocab_end)
masked_target = targets.clone() - vocab_start
masked_target[target_mask] = 0
arange_1d = torch.arange(start=0, end=logits.size()[0], device=get_current_device())
predicted_logits = logits[arange_1d, masked_target]
predicted_logits = predicted_logits.clone().contiguous().view_as(targets)
predicted_logits[target_mask] = 0.
dist.all_reduce(predicted_logits, group=gpc.get_group(output_parallel_mode))
# Loss = log(sum(exp(logits))) - predicted-logit.
exp_logits = torch.exp(logits)
sum_exp_logits = exp_logits.sum(dim=-1)
dist.all_reduce(sum_exp_logits, group=gpc.get_group(output_parallel_mode))
loss = torch.log(sum_exp_logits) - predicted_logits
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target)
return loss
@staticmethod
@custom_bwd
def backward(ctx, output_grad):
# Retreive tensors from the forward path.
softmax, target_mask, masked_target = ctx.saved_tensors
# All the inputs have softmax as thier gradient.
input_grad = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = input_grad.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device())
grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float())
input_grad.mul_(output_grad.unsqueeze(dim=-1))
return input_grad, None, None, None
@LOSSES.register_module
class VocabParallelCrossEntropyLoss3D(_Loss):
"""Vocab parallel cross entropy loss for 2D parallelism.
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
"""
def __init__(self, reduction=True):
super().__init__()
self.input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
self.weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
self.output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
self.reduction_mean = reduction
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_tensor_3d(targets, 0, self.weight_parallel_mode)
targets = split_tensor_3d(targets, 0, self.input_parallel_mode)
loss = _VocabParallelCrossEntropy3D.apply(logits, targets, self.output_parallel_mode)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_3d(loss, self.input_parallel_mode, self.weight_parallel_mode, True)
return loss
|
import torch
import torch.distributed as dist
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_2p5d import reduce_by_batch_2p5d, split_batch_2p5d
from colossalai.nn.layer.parallel_2p5d._utils import assert_tesseract_initialization
from colossalai.registry import LOSSES
from colossalai.utils import get_current_device
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.functional import cross_entropy
from torch.nn.modules.loss import _Loss
@LOSSES.register_module
class CrossEntropyLoss2p5D(_Loss):
r"""Cross entropy loss for 2.5D parallelism
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
The ``args`` and ``kwargs`` should include parameters below:
::
weight (Tensor, optional)
size_average (bool, optional)
ignore_index (int, optional)
reduce (bool, optional)
label_smoothing (float, optional)
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
def __init__(self, reduction=True, *args, **kwargs):
super().__init__()
assert_tesseract_initialization()
self.reduction_mean = reduction
self.loss_args = args
self.loss_kwargs = kwargs
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_batch_2p5d(targets)
loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2p5d(loss, True)
return loss
class _VocabParallelCrossEntropy2p5D(torch.autograd.Function):
### Modified based on megatron.mpu.cross_entropy ###
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, logits, targets):
# logits: [b/dq, h/q]
# loss: [b/dq]
# targets: [b/dq, h/q]
logits_max = torch.max(logits, dim=-1)[0]
torch.distributed.all_reduce(logits_max,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW))
# Subtract the maximum value.
logits = logits - logits_max.unsqueeze(dim=-1)
vocab_size = logits.size(-1)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
vocab_start = rank * (vocab_size)
vocab_end = (rank + 1) * (vocab_size) - 1
target_mask = (targets < vocab_start) | (targets > vocab_end)
masked_target = targets.clone() - vocab_start
masked_target[target_mask] = 0
arange_1d = torch.arange(
start=0,
end=logits.size()[0],
)
predicted_logits = logits[arange_1d, masked_target]
predicted_logits[target_mask] = 0.
dist.all_reduce(predicted_logits, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW))
exp_logits = torch.exp(logits)
sum_exp_logits = exp_logits.sum(dim=1)
dist.all_reduce(sum_exp_logits, group=gpc.get_group(ParallelMode.PARALLEL_2P5D_ROW))
loss = torch.log(sum_exp_logits) - predicted_logits
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target)
return loss
@staticmethod
@custom_bwd
def backward(ctx, output_grad):
# Retreive tensors from the forward path.
softmax, target_mask, masked_target = ctx.saved_tensors
# All the inputs have softmax as their gradient.
grad_input = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = grad_input.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device())
grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float())
# Finally elementwise multiplication with the output gradients.
grad_input.mul_(output_grad.unsqueeze(dim=-1))
return grad_input, None
@LOSSES.register_module
class VocabParallelCrossEntropyLoss2p5D(_Loss):
"""
Vocab parallel cross entropy loss for 2.5D parallelism
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
"""
def __init__(self, reduction=True):
super().__init__()
self.reduction_mean = reduction
def forward(self, logits, targets):
"""Calculate loss between logits and targets.
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_batch_2p5d(targets)
loss = _VocabParallelCrossEntropy2p5D.apply(logits, targets)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2p5d(loss, True)
return loss
|
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
from colossalai.registry import LR_SCHEDULERS
from .delayed import DelayerScheduler, WarmupDelayerScheduler, WarmupScheduler
@LR_SCHEDULERS.register_module
class CosineAnnealingLR(_CosineAnnealingLR):
r"""Set the learning rate of each parameter group using a cosine annealing
schedule, where :math:`\eta_{max}` is set to the initial lr and
:math:`T_{cur}` is the number of epochs since the last restart in SGDR:
.. math::
\begin{aligned}
\eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1
+ \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right),
& T_{cur} \neq (2k+1)T_{max}; \\
\eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min})
\left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right),
& T_{cur} = (2k+1)T_{max}.
\end{aligned}
When last_epoch=-1, sets initial lr as lr. Notice that because the schedule
is defined recursively, the learning rate can be simultaneously modified
outside this scheduler by other operators. If the learning rate is set
solely by this scheduler, the learning rate at each step becomes:
.. math::
\eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 +
\cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right)
It has been proposed in
`SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only
implements the cosine annealing part of SGDR, and not the restarts.
.. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
https://arxiv.org/abs/1608.03983
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
eta_min (int, optional): Minimum learning rate, defaults to 0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, eta_min: int = 0, last_epoch: int = -1, **kwargs):
super().__init__(optimizer, total_steps, eta_min=eta_min, last_epoch=last_epoch)
@LR_SCHEDULERS.register_module
class CosineAnnealingWarmupLR(WarmupScheduler):
"""Cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied.
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
eta_min (int, optional): Minimum learning rate, defaults to 0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, eta_min: float = 0., last_epoch: int = -1):
base_scheduler = _CosineAnnealingLR(
optimizer, total_steps - warmup_steps, eta_min=eta_min, last_epoch=last_epoch)
super().__init__(optimizer, warmup_steps, base_scheduler)
@LR_SCHEDULERS.register_module
class FlatAnnealingLR(DelayerScheduler):
"""Flat and cosine annealing learning rate scheduler. The learning rate will be a fixed value before starting decay.
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
pct_start (float, optional): Percent of steps before starting learning rate decay, defaults to -0.72.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, pct_start: float = 0.72, last_epoch: int = -1, **kwargs):
if not (0.0 <= pct_start <= 1.0):
raise ValueError(
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
flat_steps = int(total_steps * pct_start)
anneal_steps = total_steps - flat_steps
base_scheduler = _CosineAnnealingLR(
optimizer, anneal_steps)
super().__init__(optimizer, flat_steps, base_scheduler, last_epoch=last_epoch)
@LR_SCHEDULERS.register_module
class FlatAnnealingWarmupLR(WarmupDelayerScheduler):
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be
applied, and then the learning rate will be a fixed value before starting decay.
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
pct_start (float, optional): Percent of steps before starting learning rate decay, defaults to -0.72.
eta_min (int, optional): Minimum learning rate, defaults to 0.
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, pct_start: float = 0.72, eta_min: int = 0,
last_epoch: int = -1, **kwargs):
if not (0.0 <= pct_start <= 1.0):
raise ValueError(
f'pct_start must >= 0.0 and <= 1.0, got {pct_start}')
flat_steps = int((total_steps - warmup_steps) * pct_start)
anneal_steps = total_steps - warmup_steps - flat_steps
base_scheduler = _CosineAnnealingLR(
optimizer, anneal_steps, eta_min=eta_min)
super().__init__(optimizer, warmup_steps, flat_steps,
base_scheduler, last_epoch=last_epoch)
|
from torch.optim.lr_scheduler import _LRScheduler
from colossalai.registry import LR_SCHEDULERS
@LR_SCHEDULERS.register_module
class LinearWarmupLR(_LRScheduler):
"""Linearly warmup learning rate and then linearly decay.
Args:
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
total_steps (int): Number of total training steps.
warmup_steps (int, optional): Number of warmup steps, defaults to 0
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, last_epoch: int = -1, **kwargs):
self.warmup_steps = warmup_steps
self.total_steps = total_steps
super().__init__(optimizer, last_epoch=last_epoch)
def get_lr(self):
if self.last_epoch < self.warmup_steps:
return [(self.last_epoch + 1) / (self.warmup_steps + 1) * lr for lr in self.base_lrs]
else:
return [(self.total_steps - self.last_epoch) / (self.total_steps - self.warmup_steps) * lr for lr in
self.base_lrs]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.