python_code
stringlengths
0
108k
from .sharded_model_v2 import ShardedModelV2 __all__ = ['ShardedModelV2']
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. import functools import os from typing import Callable, Dict, List, Optional, Tuple import torch import torch.distributed as dist from torch import Tensor from torch.distributed import ProcessGroup # TODO: Remove the toggle-enable_nccl_base_collectives when github open issue #801 is resolved. if os.getenv("ENABLE_NCCL_BASE_COLLECTIVES", "1") == "0": enable_nccl_base_collectives = False else: enable_nccl_base_collectives = True class Bucket: def __init__(self, shard_size: int, dtype: torch.dtype, device: torch.device, group: ProcessGroup): self.buffer = torch.zeros((group.size(), shard_size), dtype=dtype, device=device) self.group = group self.offset = 0 self.callbacks: List[Callable] = [] self.output_shard = torch.zeros_like(self.buffer[0]) def flush(self) -> None: """Flush content of the bucket.""" if self.offset == 0: assert len(self.callbacks) == 0 return # reduce-scatter bucket if hasattr(dist, "_reduce_scatter_base") and enable_nccl_base_collectives: dist._reduce_scatter_base( self.output_shard[: self.offset], self.buffer[:, : self.offset].contiguous(), group=self.group ) else: dist.reduce_scatter( self.output_shard[: self.offset], list(self.buffer[:, : self.offset].unbind(0)), group=self.group ) # execute post-reduction callbacks for callback_fn in self.callbacks: callback_fn() # reuse input bucket but allocate a fresh output shard self.buffer[:, : self.offset].zero_() self.offset = 0 self.callbacks.clear() self.output_shard = torch.zeros_like(self.buffer[0]) def alloc(self) -> None: """Setup the buffers if they are not allocated. Using ``setup`` and ``teardown``, we can ensure that the bucket buffers are only allocated during the backward pass, hence saving more memory to other parts of the training process, such as the forward pass for activation memory. """ for tensor in [self.buffer, self.output_shard]: if tensor.storage().size() == 0: tensor.storage().resize_(tensor.size().numel()) def free(self) -> None: """Tear down the bucket by freeing the memory""" assert self.offset == 0 and self.callbacks == [], "Incorrect call of teardown" for tensor in [self.buffer, self.output_shard]: tensor.storage().resize_(0) def append(self, tensor_list: List[Tensor], callback_fn: Callable): # copy data from input_list into bucket tensor_size = tensor_list[0].numel() stacked_input = torch.stack(tensor_list).view(self.group.size(), tensor_size) offset = self.offset self.buffer[:, offset: offset + tensor_size].copy_(stacked_input) self.offset += tensor_size # callback will be given the reduced result if callback_fn is not None: result_view = self.output_shard[offset: offset + tensor_size].view_as(tensor_list[0]) self.callbacks.append(functools.partial(callback_fn, result_view)) class ReduceScatterBucketer: """ Helper for bucketing multiple reduce-scatter operations on small tensors into larger reduce-scatter ops to improve communication efficiency. Usage:: bucketer = ReduceScatterBucketer() bucketer.reduce_scatter_async( small_tensors, callback_fn=lambda result: print("small") ) bucketer.reduce_scatter_async( big_tensors, callback_fn=lambda result: print("big") ) bucketer.reduce_scatter_async( more_small_tensors, callback_fn=lambda result: print("small2") ) bucketer.flush() # callbacks only guaranteed to be called after flush() # Example output (note that it is out of order, due to bucketing): # big # small # small2 Args: bucket_size_mb (int, Optional): bucket size for communicating. Buckets are sub-divided based on world_size. Values <= 0 disable bucketing. """ def __init__(self, bucket_size_mb: int = 25): self.bucket_size_mb = bucket_size_mb self.buckets: Dict[Tuple[torch.dtype, torch.device, ProcessGroup], Bucket] = {} @torch.no_grad() def reduce_scatter_async( self, input_list: List[Tensor], group: ProcessGroup, callback_fn: Optional[Callable] = None, ) -> None: """ Reduce-scatter a list of tensors asynchronously, so smaller reductions can be bucketed together. The given callback (``callback_fn``) will be called with the reduced result at some later time. Call ``flush()`` to force all queued ops and callbacks to be executed. Note that large inputs will be reduced immediately, and this function may also flush the relevant bucket to make room for ``input_list``. Args: input_list (List[Tensor]): list of tensors to reduce-scatter. List should contain ``group.size()`` tensors and each tensor should have identical shape, dtype and device. group (ProcessGroup): process group for reduction callback_fn (Callable, Optional): callback function to call after the reduction executes. Function will be called with a single argument corresponding to the reduced result. """ world_size = group.size() assert ( len(input_list) == world_size ), f"reduce_scatter received {len(input_list)} inputs, expected group.size() ({world_size})" first_input = input_list[0] first_input_size = first_input.numel() bucket_shard_size = self._get_shard_size(first_input.element_size(), world_size) if first_input_size > bucket_shard_size: # TODO: investigate how to avoid using torch.cat (because it seems to be slow for CPU tensors) # input is too big to fit in the bucket, reduce-scatter directly output = torch.zeros_like(input_list[0]) if hasattr(dist, "_reduce_scatter_base") and enable_nccl_base_collectives: input_flattened = torch.cat(input_list) dist._reduce_scatter_base(output, input_flattened, group=group) else: # fallback dist.reduce_scatter(output, input_list, group=group) if callback_fn is not None: callback_fn(output) return bucket = self._get_bucket(first_input, group) if first_input_size > bucket.buffer.size(1) - bucket.offset: # not enough space remaining in bucket, flush it now bucket.flush() bucket.append(input_list, callback_fn) @torch.no_grad() def flush(self) -> None: """Reduce-scatter any partial buckets.""" for bucket in self.buckets.values(): bucket.flush() @torch.no_grad() def free(self) -> None: """Free buffers from all buckets.""" for bucket in self.buckets.values(): bucket.free() @functools.lru_cache() def _get_shard_size(self, element_size: int, num_shards: int) -> int: if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing. return 0 MB = 1024 * 1024 bucket_size = self.bucket_size_mb * MB / element_size return int(bucket_size // num_shards) def _get_bucket(self, tensor: Tensor, group: ProcessGroup) -> Bucket: key = (tensor.dtype, tensor.device, group) if key not in self.buckets: # buckets are divided into world_size pieces, bucket.data shaped (world_size, shard_size) world_size = group.size() shard_size = self._get_shard_size(tensor.element_size(), world_size) self.buckets[key] = Bucket(shard_size, tensor.dtype, tensor.device, group) self.buckets[key].alloc() return self.buckets[key]
import torch from colossalai.zero.sharded_model import ShardedModelV2 import copy def col_model_deepcopy(sharded_model: ShardedModelV2, other_model: torch.nn.Module): """ copy param of the ShardedModelV2 to other_model. Note the other_model has to be the same as self. """ for zero_param, param in zip(sharded_model.parameters(), other_model.parameters()): assert hasattr(zero_param, 'colo_attr') shard_flag = zero_param.colo_attr.sharded_data_tensor.is_sharded if shard_flag: sharded_model.shard_strategy.gather([zero_param.colo_attr.sharded_data_tensor]) param.data = copy.deepcopy(zero_param.colo_attr.data_payload) if shard_flag: sharded_model.shard_strategy.shard([zero_param.colo_attr.sharded_data_tensor])
import functools from collections import OrderedDict from typing import Any, Optional import torch import torch.distributed as dist import torch.nn as nn from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.engine.ophooks import register_ophooks_recursively from colossalai.zero.utils import ZeroHook from colossalai.engine.paramhooks import BaseParamHookMgr from colossalai.logging import get_dist_logger from colossalai.utils import get_current_device, disposable from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector from colossalai.utils.memory_tracer.model_data_memtracer import \ GLOBAL_MODEL_DATA_TRACER from colossalai.utils.memory import colo_device_memory_capacity from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.sharded_param.tensor_utils import colo_model_data_move_to_cpu from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer from colossalai.zero.sharded_param.tensorful_state import TensorState from torch.distributed import ProcessGroup from torch.nn.parameter import Parameter from colossalai.gemini.stateful_tensor_mgr import StatefulTensorMgr from colossalai.gemini.tensor_placement_policy import TensorPlacementPolicyFactory, TensorPlacementPolicy from ._utils import (cast_float_arguments, cast_tensor_to_fp16, cast_tensor_to_fp32, chunk_and_pad, free_storage, get_gradient_predivide_factor) class ShardedModelV2(nn.Module): """ A wrapper for the PyTorch module shards the model parameters among multiple GPU memory. Only `1/#nproc` of parameters, gradients are stored in local CUDA memory, so forward and backward passes can be executed with limited CUDA memory budget. Note: You must use ``ShardedModelV2`` with ``ShardedOptimizerV2``. Note: Make sure you don't use gradient accumulation and your optimizer can work with fp16 gradient and fp32 parameter, if you enable ``reuse_fp16_shard``. Args: module (nn.Module): A sharded module, which must be initialized by `ZeroInitContext`. shard_strategy (BaseShardStrategy): A shard strategy to manage shard behavior. process_group (Optional[ProcessGroup], optional): Data parallel process group. Defaults to None. reduce_scatter_process_group (Optional[ProcessGroup], optional): Reduce-scatter process group. Generally, it should be `None`, and it's the same as `process_group`. Defaults to None. reduce_scatter_bucket_size_mb (int, optional): Reduce-scatter bucket size in *MB*. Defaults to 25. fp32_reduce_scatter (bool, optional): If set to `True`, gradients are forced to FP32 before reduce-scatter. Defaults to False. tensor_placement_policy (str): Which device to place *held* tensors. It can be 'cpu', 'cuda' and 'auto'. If it's 'cpu', parameters, gradients and optimizer states will be offloaded to CPU, which means min CUDA memory will be used. If it's 'cuda', they won't be offloaded, which means max CUDA memory will be used. If it's 'auto', they are moving dynamically based on CPU and CUDA memory usage. It will utilize heterogeneous memory space evenly and well. Note that 'auto' policy can only work well when no other processes use CUDA during your training. Defaults to 'cuda'. gradient_predivide_factor (Optional[float], optional): Gradient is divived by this value before reduce-scatter. Defaults to 1.0. reuse_fp16_shard (bool, optional): Whether to reuse fp16 shard for param and grad. Enabling this can reduce GPU memory usage, but you have to make sure you disable it when using gradient accumulation. In this mode, grad will be fp16. Make sure your optimizer supports mixed precision (fp32 param and fp16 grad). We find that PyTorch's optimizers don't support mixed precision, so we recommend you enable this only when using our CPUAdam with CPU offload. Defaults to False. """ def __init__(self, module: nn.Module, shard_strategy: BaseShardStrategy, process_group: Optional[ProcessGroup] = None, reduce_scatter_process_group: Optional[ProcessGroup] = None, reduce_scatter_bucket_size_mb: int = 25, fp32_reduce_scatter: bool = False, tensor_placement_policy: str = 'cuda', gradient_predivide_factor: Optional[float] = 1.0, reuse_fp16_shard: bool = False): super().__init__() self.logger = get_dist_logger() # We force users to use ZeroInitContext for submodule in module.modules(): sharded_cnt = 0 unshard_cnt = 0 for param in submodule.parameters(recurse=False): assert hasattr(param, 'colo_attr'), 'You must use ZeroInitContext to init your module first.' if param.colo_attr.param_is_sharded: sharded_cnt += 1 else: unshard_cnt += 1 assert (not sharded_cnt) or (not unshard_cnt), 'nn.Module can not both have shard param and unshard param' submodule.param_is_sharded = (sharded_cnt > 0) self.sharded_params = [] self.unshard_params = [] for param in module.parameters(): if param.colo_attr.param_is_sharded: self.sharded_params.append(param) else: self.unshard_params.append(param) self.module = module self.process_group = process_group or gpc.get_group(ParallelMode.DATA) self.reduce_scatter_process_group = reduce_scatter_process_group or self.process_group self.world_size = dist.get_world_size(self.process_group) self.rank = dist.get_rank(self.process_group) self.shard_strategy = shard_strategy self._use_memory_tracer = tensor_placement_policy == 'auto' if self._use_memory_tracer: GLOBAL_MODEL_DATA_TRACER.register_model(self) self._memstats_collector = MemStatsCollector() self._start_collect_memstats = disposable(self._memstats_collector.start_collection) self._finish_collect_memstats = disposable(self._memstats_collector.finish_collection) else: self._memstats_collector = None self._tensor_placement_policy: TensorPlacementPolicy = TensorPlacementPolicyFactory.create( tensor_placement_policy)(mem_stats_collector=self._memstats_collector) self._stateful_tensor_mgr = StatefulTensorMgr(self._tensor_placement_policy) for param in module.parameters(): if hasattr(param, 'colo_attr'): self._stateful_tensor_mgr.register_stateful_param(param.colo_attr) # Register hooks self._ophook_list = [ ZeroHook(self.shard_strategy, self._memstats_collector, self._stateful_tensor_mgr, self.process_group) ] register_ophooks_recursively(self.module, self._ophook_list) self.param_hook_mgr = BaseParamHookMgr(list(self.module.parameters())) self.param_hook_mgr.register_backward_hooks(self._grad_post_backward_hook) self.fp32_reduce_scatter = fp32_reduce_scatter self._cpu_offload: bool = tensor_placement_policy != 'cuda' for param in module.parameters(): # Init `offload_grad` param.colo_attr.offload_grad = self._cpu_offload # We find if gradient_predivide_factor != 1.0, there may be wrong precision problem # So we use 1.0 as the default gradient_predivide_factor # However, if you set gradient_predivide_factor to None, we will set # gradient_predivide_factor to a value >= 1.0 automatically self.gradient_predivide_factor: float = gradient_predivide_factor if \ gradient_predivide_factor is not None else \ get_gradient_predivide_factor(self.world_size) self.gradient_postdivide_factor: float = self.world_size / self.gradient_predivide_factor self.comm_stream: torch.cuda.Stream = torch.cuda.Stream() self.reducer = ReduceScatterBucketer(reduce_scatter_bucket_size_mb) self._require_backward_grad_sync: bool = True self._cuda_margin_space = 0 self.reuse_fp16_shard = reuse_fp16_shard # record whether gradients have inf or nan self.overflow_counter = 0 def adjust_stateful_tensor_layout(self) -> None: self._stateful_tensor_mgr.adjust_layout() @property def use_memory_tracer(self): return self._use_memory_tracer @property def cuda_margin_space(self): return self._cuda_margin_space @property def cpu_offload(self): return self._cpu_offload def dump_memory_stats(self, filename: Optional[str] = 'dump_mem_stats.log') -> None: """ dummy memory tracer collected infomation to a file. try: # forward: model(inputs) # backward: optimizer.backward() except Exception as e: model.dump_memory_stats() exit(0) """ if self._use_memory_tracer: self.logger.error(f'dump memort tracer collected infomation to a {filename}', ranks=[0]) if gpc.get_global_rank() == 0: with open(filename, 'w+') as f: f.write(f'cuda reserved {torch.cuda.memory_reserved(get_current_device()) / 1e9} GB\n') f.write(f'cuda max allocated {torch.cuda.max_memory_allocated(get_current_device()) / 1e9} GB\n') f.write('CUDA model data (GB)\n') f.write(str(self._memstats_collector.model_data_list('cuda', 'GB'))) f.write('\n') f.write('CUDA non model data (GB)\n') f.write(str(self._memstats_collector.non_model_data_list('cuda', 'GB'))) f.write('CPU non model data (GB)\n') f.write(str(self._memstats_collector.non_model_data_list('cpu', 'GB'))) f.write('\n') def _pre_forward_operations(self): # the operation will affect the memory tracer behavior in ZeroHook if self._memstats_collector: self._start_collect_memstats() for p in self.module.parameters(): if hasattr(p, 'colo_attr'): p.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD) def _post_forward_operations(self): for p in self.module.parameters(): if hasattr(p, 'colo_attr'): p.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD) def forward(self, *args: Any, **kwargs: Any) -> torch.Tensor: self._pre_forward_operations() args, kwargs = cast_float_arguments(cast_tensor_to_fp16, *args, **kwargs) outputs = self.module(*args, **kwargs) self._post_forward_operations() return outputs def backward(self, loss): loss.backward() self._post_backward_operations() for ophook in self._ophook_list: ophook.post_iter() def backward_by_grad(self, tensor, grad): torch.autograd.backward(tensors=tensor, grad_tensors=grad) self._post_backward_operations() for ophook in self._ophook_list: ophook.post_iter() def _update_memstats(self): if self._memstats_collector: self._finish_collect_memstats() # cuda margin space = cuda mem capacity - max fwd/bwd cuda mem used. # the way to calculate margin space is based on the assumption that # model data is fixed in cuda during training. # cuda margin space can be used to store OS. self._cuda_margin_space = colo_device_memory_capacity(get_current_device()) - max( self._memstats_collector.overall_mem_stats('cuda')) @torch.no_grad() def _post_backward_operations(self) -> None: """ The method includes operations required to be processed after backward 1. update memory tracer. 2. flush the gradient in buckets. Reducing partial gradients in each process. 3. shard tensors not dealed in the zero hook 4. move sharded param grad payload to param.grad """ # 1. update memory tracer. self._update_memstats() # 2. flush the gradient in buckets. Reducing partial gradients in each process. if self._require_backward_grad_sync: # Flush any unreduced buckets in the post_backward stream. with torch.cuda.stream(self.comm_stream): self.reducer.flush() torch.cuda.current_stream().wait_stream(self.comm_stream) self.reducer.free() # 3. shard tensors not dealed in the zero hook tensor_list = [] for p in self.sharded_params: if not p.colo_attr.param_is_sharded: tensor_list.append(p.colo_attr.sharded_data_tensor) p.colo_attr.sharded_data_tensor.trans_state(TensorState.HOLD_AFTER_BWD) p.colo_attr.set_data_none() self.shard_strategy.shard(tensor_list, self.process_group) # 4. set all parameters' grad to None for p in self.module.parameters(): if not p.requires_grad: continue # Leave the gradient accumulation state (_require_backward_grad_sync) as-is if not synchronizing this pass. # NOTE() (no-sync)/sync pass: (not conduct)/conduct gradient allreducing between process group. # If _require_backward_grad_sync is True, # p.grad remains the accumulated unsharded gradient from prior no-sync passes. # We also allows to interleave no-sync pass with sync passes, if desired. if not self._require_backward_grad_sync: continue p.grad = None @torch.no_grad() def _grad_post_backward_hook(self, param: Parameter, grad: torch.Tensor) -> Optional[torch.Tensor]: """ At the start of :func:`_grad_post_backward_hook`, ``param.grad`` contains the full gradient for the local batch. The reduce-scatter op will save a single shard of the summed gradient across all GPUs to param.colo_attr.grad. This shard will align with the current GPU rank. For example:: before reduce_scatter: param.grad (GPU #0): [1, 2, 3, 4] param.grad (GPU #1): [5, 6, 7, 8] after reduce_scatter: param.grad (GPU #0): [6, 8] # 1+5, 2+6 param.grad (GPU #1): [10, 12] # 3+7, 4+8 The local GPU's ``optim.step`` is responsible for updating a single shard of params, also corresponding to the current GPU's rank. This alignment is created by `param.colo_attr.grad`, which ensures that the local optimizer only sees the relevant parameter shard. """ if grad is None: return assert not grad.requires_grad, 'ShardedModel only works with gradients that don\'t require gradients' if not self._require_backward_grad_sync: return # used to cheat Pytorch, since we can't return None empty_grad = torch.empty_like(grad) free_storage(empty_grad) # As torch didn't allow modifying grad in hook, we make a copy grad = grad.clone() if param.colo_attr.is_replicated: self._reduce_scatter_handler(param, grad) else: self._save_grad(param, grad) return empty_grad def _reduce_scatter_handler(self, param: Parameter, grad: torch.Tensor) -> None: self.comm_stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(self.comm_stream): if self.fp32_reduce_scatter: grad.data = grad.data.to(param.dtype) if self.gradient_predivide_factor > 1.0: # Average grad by world_size for consistency with PyTorch DDP. grad.data.div_(self.gradient_predivide_factor) if self.world_size > 1: grad_chunks = chunk_and_pad(grad, self.reduce_scatter_process_group.size()) self.reducer.reduce_scatter_async(grad_chunks, group=self.reduce_scatter_process_group, callback_fn=functools.partial(self._reduce_scatter_callback, param)) else: self._reduce_scatter_callback(param, grad) torch.cuda.current_stream().wait_stream(self.comm_stream) def _reduce_scatter_callback(self, param: Parameter, reduced_grad: torch.Tensor) -> None: assert isinstance(reduced_grad, torch.Tensor), f"_reduce_scatter_callback accept reduced_grad as {type(reduced_grad)}" reduced_grad.data = reduced_grad.data.contiguous().view(-1) if self.gradient_postdivide_factor > 1: # Average grad by world_size for consistency with PyTorch DDP. reduced_grad.data.div_(self.gradient_postdivide_factor) self._save_grad(param, reduced_grad) # FIXME(ver217): refactor the below line when impl eviction policy def _save_grad(self, param: Parameter, grad: torch.Tensor): # record whether we have overflow self.overflow_counter += torch.isinf(grad).any().item() self.overflow_counter += torch.isnan(grad).any().item() # move gradient to cpu if param.colo_attr.offload_grad: colo_model_data_move_to_cpu(grad) if self.reuse_fp16_shard: # make parameters point to gradient assert param.colo_attr.saved_grad.is_null( ), 'Gradien accumulation is not supported when reuse_fp16_shard=True' param.colo_attr.reset_grad_payload(grad.data) param.colo_attr.reset_data_payload(grad.data) # release the memory of param if param.colo_attr.is_replicated: param.colo_attr.sharded_data_tensor.is_sharded = True else: fp32_grad = cast_tensor_to_fp32(grad) if param.colo_attr.saved_grad.is_null(): param.colo_attr.reset_grad_payload(fp32_grad) else: param.colo_attr.grad_payload.add_(fp32_grad.view_as(param.colo_attr.grad_payload)) # keep saved_grad in HOLD state param.colo_attr.saved_grad.trans_state(TensorState.HOLD) def state_dict(self, destination=None, prefix='', keep_vars=False) -> 'OrderedDict[str, torch.Tensor]': self.shard_strategy.gather([p.colo_attr.sharded_data_tensor for p in self.sharded_params], self.process_group) for p in self.sharded_params: p.data = p.colo_attr.data_payload gathered_state_dict = self.module.state_dict(destination, prefix, keep_vars) self.shard_strategy.shard([p.colo_attr.sharded_data_tensor for p in self.sharded_params], self.process_group) for p in self.sharded_params: p.colo_attr.set_data_none() return gathered_state_dict def load_state_dict(self, state_dict: 'OrderedDict[str, torch.Tensor]', strict: bool = True): raise NotImplementedError def __getitem__(self, idx: int): assert isinstance(self.module, nn.ModuleList) return self.module[idx] def __len__(self): assert isinstance(self.module, nn.ModuleList) return len(self.module) def __iter__(self): assert isinstance(self.module, nn.ModuleList) return iter(self.module)
from typing import Any, Callable, List, Tuple import torch import torch.nn.functional as F from typing import Union from colossalai.zero.sharded_param.tensorful_state import StatefulTensor def get_gradient_predivide_factor(world_size: int) -> float: factor: int = 1 while world_size % factor == 0 and world_size / factor > factor: factor *= 2 return float(factor) def free_storage(data: torch.Tensor) -> None: """Free underlying storage of a Tensor.""" if data.storage().size() > 0: # Since we're modifying the Tensor's Storage directly, make sure the Tensor # is the sole occupant of the Storage. assert data.storage_offset() == 0 data.storage().resize_(0) @torch.no_grad() def alloc_storage(data: torch.Tensor, size: torch.Size) -> None: """Allocate storage for a tensor.""" if data.storage().size() == size.numel(): # no need to reallocate return assert data.storage().size() == 0 data.storage().resize_(size.numel()) def cast_tensor_to_fp16(tensor: torch.Tensor) -> torch.Tensor: if isinstance(tensor, StatefulTensor): tensor = tensor.payload if torch.is_floating_point(tensor) and tensor.dtype is torch.float32: return tensor.half() return tensor def cast_tensor_to_fp32(tensor: Union[torch.Tensor, StatefulTensor]) -> torch.Tensor: if isinstance(tensor, StatefulTensor): tensor = tensor.payload if torch.is_floating_point(tensor) and tensor.dtype is torch.float16: return tensor.float() return tensor def apply_to_tensors(x: Any, fn: Callable): if torch.is_tensor(x): return fn(x) elif isinstance(x, list): return [apply_to_tensors(t, fn) for t in x] elif isinstance(x, tuple): return tuple(apply_to_tensors(t, fn) for t in x) elif isinstance(x, dict): return {key: apply_to_tensors(val, fn) for key, val in x.items()} else: return x def cast_float_arguments(fn: Callable, *args: Any, **kwargs: Any) -> Tuple[Any, Any]: return apply_to_tensors(args, fn), apply_to_tensors(kwargs, fn) def chunk_and_pad(tensor: torch.Tensor, num_chunks: int) -> List[torch.Tensor]: """Chunk a given Tensor into num_chunks parts and add any necessary padding.""" chunks = list(torch.flatten(tensor).chunk(num_chunks)) # torch.chunk may return fewer than num_chunks chunks, pad accordingly. num_pad_for_partial_chunk = chunks[0].numel() - chunks[-1].numel() if num_pad_for_partial_chunk > 0: chunks[-1] = F.pad(chunks[-1], [0, num_pad_for_partial_chunk]) if len(chunks) < num_chunks: chunks.extend([torch.zeros_like(chunks[0]) for _ in range(num_chunks - len(chunks))]) return chunks
#!/usr/bin/env python # -*- encoding: utf-8 -*- from .amp_type import AMP_TYPE from colossalai.context import Config import torch.nn as nn from torch.optim import Optimizer from torch.nn.modules.loss import _Loss from .torch_amp import convert_to_torch_amp from .apex_amp import convert_to_apex_amp from .naive_amp import convert_to_naive_amp __all__ = ['convert_to_amp', 'convert_to_naive_amp', 'convert_to_apex_amp', 'convert_to_torch_amp', 'AMP_TYPE'] def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None): """A helper function to wrap training components with Torch AMP modules. Args: param model (:class:`torch.nn.Module`): your model object. optimizer (:class:`torch.optim.Optimizer`): your optimizer object. criterion (:class:`torch.nn.modules.loss._Loss`): your loss function object. mode (:class:`colossalai.amp.AMP_TYPE`): amp mode. amp_config (Union[:class:`colossalai.context.Config`, dict]): configuration for different amp modes. Returns: A tuple (model, optimizer, criterion). Note: ``amp_config`` may vary from different mode you choose. You should check the corresponding amp mode for more details about ``amp_config``. For ``apex_amp``, please check `apex_amp config <https://nvidia.github.io/apex/amp.html?highlight=apex%20amp>`_. For ``naive_amp``, please check `naive_amp config <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/amp/naive_amp/_fp16_optimizer.py#L42>`_. For ``torch_amp``, please check `torch_amp config <https://github.com/pytorch/pytorch/blob/master/torch/cuda/amp/grad_scaler.py#L97>`_. """ assert isinstance(mode, AMP_TYPE), \ f'expected the argument mode be AMP_TYPE, but got {type(mode)}' if amp_config is None: amp_config = Config() if mode == AMP_TYPE.TORCH: model, optimizer, criterion = convert_to_torch_amp(model, optimizer, criterion, amp_config) elif mode == AMP_TYPE.APEX: model, optimizer = convert_to_apex_amp(model, optimizer, amp_config) elif mode == AMP_TYPE.NAIVE: model, optimizer = convert_to_naive_amp(model, optimizer, amp_config) return model, optimizer, criterion
#!/usr/bin/env python # -*- encoding: utf-8 -*- from enum import Enum class AMP_TYPE(Enum): APEX = 'apex' TORCH = 'torch' NAIVE = 'naive'
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.distributed as dist try: import colossal_C except: print('Colossalai should be built with cuda extension to use the FP16 optimizer') from torch.optim import Optimizer from colossalai.core import global_context as gpc from colossalai.context import ParallelMode from colossalai.logging import get_dist_logger from colossalai.utils import (copy_tensor_parallel_attributes, clip_grad_norm_fp32, multi_tensor_applier) from torch.distributed import ProcessGroup from .grad_scaler import BaseGradScaler from ._utils import has_inf_or_nan, zero_gard_by_list __all__ = ['FP16Optimizer'] def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None): """ adapted from Megatron-LM (https://github.com/NVIDIA/Megatron-LM) Use multi-tensor-applier to copy values from one list to another. We don't have a blfoat16 implementation so for now if the overflow_buf is not provided, we default back to simple loop copy to be compatible with bfloat16. """ if overflow_buf: overflow_buf.fill_(0) # Scaling with factor `1.0` is equivalent to copy. multi_tensor_applier(colossal_C.multi_tensor_scale, overflow_buf, [this, that], 1.0) else: for this_, that_ in zip(this, that): that_.copy_(this_) class FP16Optimizer(Optimizer): """Float16 optimizer for fp16 and bf16 data types. Args: optimizer (torch.optim.Optimizer): base optimizer such as Adam or SGD grad_scaler (BaseGradScaler): grad scaler for gradient chose in ``constant_grad_scaler`` or ``dynamic_grad_scaler``. clip_grad_norm (float, optional): clip gradients with this global L2 norm. Default 0. Note that clipping is ignored if clip_grad == 0 verbose (bool, optional): if set to `True`, will print debug info. Default False. """ def __init__(self, optimizer: Optimizer, grad_scaler: BaseGradScaler, verbose: bool = False, clip_grad_norm=0, dp_process_group: ProcessGroup = None, mp_process_group: ProcessGroup = None): # have a defaults for compatibility with pytorch optim self._optimizer = optimizer self._defaults = optimizer.defaults # fp16-related params assert isinstance(grad_scaler, BaseGradScaler) self._grad_scaler = grad_scaler self._found_overflow = torch.cuda.FloatTensor([0.0]) self._dummy_overflow_buf = torch.cuda.IntTensor([0]) # misc params self._clip_grad_max_norm = clip_grad_norm # get process group def _get_process_group(parallel_mode): if gpc.is_initialized(ParallelMode.DATA) and gpc.get_world_size(ParallelMode.DATA): return gpc.get_group(ParallelMode.DATA) else: return None if dp_process_group is None: dp_process_group = _get_process_group(ParallelMode.DATA) if mp_process_group is None: mp_process_group = _get_process_group(ParallelMode.MODEL) self._dp_process_group = dp_process_group self._mp_process_group = mp_process_group # we maintain three groups of parameters # so that the model can have a mixture # of fp16 and fp32 params # fp16_param_groups: the fp16 params of the model # fp32_master_param_groups: the fp32 params cast from the fp16 param of the model # fp32_param_groups: the fp32 params of the model # NOTE: # 1. fp16_param_groups and fp32_master_param_groups have one-to-one correspondence # 2. fp32_param_groups and fp16_param_groups are exclusive of each other self._fp16_param_groups = [] self._fp32_master_param_groups = [] self._fp32_param_groups = [] # For all the groups in the original optimizer: for param_group in self._optimizer.param_groups: fp16_params = [] fp32_master_params = [] fp32_params = [] # For all the parameters in this group: for i, param in enumerate(param_group['params']): if param.requires_grad: # float16 params: if param.type() in ['torch.cuda.HalfTensor']: fp16_params.append(param) # Create a fp32 copy fp32_param = param.detach().clone().float() # Copy tensor model parallel attributes. copy_tensor_parallel_attributes(param, fp32_param) # Replace the optimizer params with the new fp32 copy. param_group['params'][i] = fp32_param fp32_master_params.append(fp32_param) # Reset existing state dict key to the new main param. if param in self._optimizer.state: self._optimizer.state[fp32_param] = self._optimizer.state.pop(param) # fp32 params. elif param.type() == 'torch.cuda.FloatTensor': fp32_params.append(param) else: raise TypeError('Expected parameter of type torch.cuda.FloatTensor ' f'or torch.cuda.HalfTensor, but got {param.type()}') self._fp16_param_groups.append(fp16_params) self._fp32_master_param_groups.append(fp32_master_params) self._fp32_param_groups.append(fp32_params) # Leverage state_dict() and load_state_dict() to # recast preexisting per-param state tensors self._optimizer.load_state_dict(self._optimizer.state_dict()) # log config self._logger = get_dist_logger() if verbose: self._logger.info( f"\n========= FP16 Optimizer Config =========\n" f"Optimizer: {optimizer.__class__.__name__}\n" f"clip_grad_norm = {clip_grad_norm}\n" f"grad_scaler = {self._grad_scaler.__class__.__name__}" f"==========================================", ranks=[0]) @property def grad_scaler(self): return self._grad_scaler @property def loss_scale(self): return self._grad_scaler.scale @property def optimizer(self): return self._optimizer @property def defaults(self): return self._defaults def _check_overflow(self): # clear previous overflow record self._found_overflow.fill_(0.0) # check for overflow for group in self._optimizer.param_groups: for p in group['params']: if p.grad is not None and has_inf_or_nan(p.grad): self._found_overflow.fill_(1.0) break # all-reduce across dp group if self._dp_process_group: dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_process_group) # all-reduce over model parallel group if self._mp_process_group: dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_process_group) return self._found_overflow.item() > 0 def zero_grad(self, set_to_none=True): # set_to_none = True can save some memory space for param_group in self._optimizer.param_groups: zero_gard_by_list(param_group['params'], set_to_none=set_to_none) def _get_fp32_param_groups_to_update(self): return self._fp32_master_param_groups + self._fp32_param_groups def _unscale_grads(self): for group in self._get_fp32_param_groups_to_update(): for p in group: if p.grad is not None: p.grad.data.div_(self.loss_scale) def _assign_grad_to_fp32_master_param(self): # This only needs to be done for the float16 group. for fp16_param_group, fp32_master_param_group in zip(self._fp16_param_groups, self._fp32_master_param_groups): for fp16_param, fp32_param in zip(fp16_param_group, fp32_master_param_group): if fp16_param.grad is not None: fp32_param.grad = fp16_param.grad.float() # clear unneeded grad on fp16 param fp16_param.grad = None def _update_fp16_param_from_fp32_param(self): fp16_param_data = [] fp32_master_param_data = [] for fp16_group, fp32_group in zip(self._fp16_param_groups, self._fp32_master_param_groups): for fp16_param, fp32_param in zip(fp16_group, fp32_group): fp16_param_data.append(fp16_param.data) fp32_master_param_data.append(fp32_param.data) _multi_tensor_copy_this_to_that(this=fp32_master_param_data, that=fp16_param_data, overflow_buf=self._dummy_overflow_buf) def step(self): # Copy gradients from model params to main params. self._assign_grad_to_fp32_master_param() self._unscale_grads() overflow = self._check_overflow() self._grad_scaler.update(overflow) if overflow: self.zero_grad() return False, None # Clip the main gradients. grad_norm = None if self._clip_grad_max_norm > 0.0: grad_norm = self.clip_grad_norm(self._clip_grad_max_norm) # Step the optimizer. self._optimizer.step() # Update params from main params. self._update_fp16_param_from_fp32_param() # Successful update. return True, grad_norm def backward(self, loss): scaled_loss = loss * self.grad_scaler.scale scaled_loss.backward() def state_dict(self): state_dict = {} state_dict['optimizer'] = self._optimizer.state_dict() if self.grad_scaler: state_dict['grad_scaler'] = self.grad_scaler.state_dict() state_dict['fp32_master_param_groups'] = self._fp32_master_param_groups return state_dict def load_state_dict(self, state_dict): # Optimizer. self._optimizer.load_state_dict(state_dict['optimizer']) # Grad scaler. if 'grad_scaler' in state_dict: self.grad_scaler.load_state_dict(state_dict['grad_scaler']) # Copy data for the main params. if 'fp32_master_param_groups' in state_dict: for current_group, ckpt_group in zip(self._fp32_master_param_groups, state_dict['fp32_master_param_groups']): for current_param, ckpt_param in zip(current_group, ckpt_group): current_param.data.copy_(ckpt_param.data) def clip_grad_norm(self, clip_grad): params = [] for param_group in self._optimizer.param_groups: for param in param_group['params']: params.append(param) return clip_grad_norm_fp32(params, clip_grad) # Promote state so it can be retrieved or set via # "optimizer_instance.state" def _get_state(self): return self._optimizer.state def _set_state(self, value): self._optimizer.state = value state = property(_get_state, _set_state) # Promote param_groups so it can be retrieved or set via # "optimizer_instance.param_groups" # (for example, to adjust the learning rate) def _get_param_groups(self): return self._optimizer.param_groups def _set_param_groups(self, value): self._optimizer.param_groups = value param_groups = property(_get_param_groups, _set_param_groups)
import inspect import torch.nn as nn from torch.optim import Optimizer from colossalai.utils import is_no_pp_or_last_stage from .naive_amp import NaiveAMPOptimizer, NaiveAMPModel from .grad_scaler import DynamicGradScaler, ConstantGradScaler from ._fp16_optimizer import FP16Optimizer def convert_to_naive_amp(model: nn.Module, optimizer: Optimizer, amp_config): """A helper function to wrap training components with naive AMP modules. In this mode, we forcibly cast the model weights and inputs to FP16, and cast the model outputs to FP32 to calculate loss, which is equivalent to Apex O3. Args: model (:class:`torch.nn.Module`): your model object optimizer (:class:`torch.optim.Optimizer`): your optimizer object amp_config (:class:`colossalai.context.Config` or dict): configuration for naive mode amp. The ``amp_config`` should contain parameters below:: verbose (bool, optional): if set to `True`, will print debug info (Default: False). clip_grad_norm (float, optional): clip gradients with this global L2 norm (Default 0). Note that clipping is ignored if clip_grad == 0. dynamic_grad_scale (bool): whether to use dynamic grad scaler. Returns: Tuples: A tuple (model, optimizer) """ if isinstance(model, nn.ModuleList): # interleaved pipeline module_list = [] for chunk, m in enumerate(model): output_to_fp32 = is_no_pp_or_last_stage() and chunk == len(model) - 1 module_list.append(NaiveAMPModel(m, output_to_fp32=output_to_fp32)) model = nn.ModuleList(module_list) else: output_to_fp32 = is_no_pp_or_last_stage() model = NaiveAMPModel(model, output_to_fp32=output_to_fp32) use_dynamic_grad_scaler = amp_config.pop('dynamic_grad_scale', True) if use_dynamic_grad_scaler: scaler_class = DynamicGradScaler else: scaler_class = ConstantGradScaler sig = inspect.signature(scaler_class.__init__) kwargs = dict() for param in sig.parameters.values(): if param.name in amp_config: kwargs[param.name] = amp_config.pop(param.name) grad_scaler = scaler_class(**kwargs) optimizer = NaiveAMPOptimizer(optimizer, grad_scaler, **amp_config) return model, optimizer __all__ = ['convert_to_naive_amp', 'NaiveAMPOptimizer', 'FP16Optimizer']
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.nn as nn import torch.distributed as dist from torch import Tensor from typing import Any from torch.optim import Optimizer from torch.distributed import ReduceOp from colossalai.core import global_context as gpc from colossalai.context import ParallelMode from colossalai.nn.optimizer import ColossalaiOptimizer from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from ._fp16_optimizer import FP16Optimizer class NaiveAMPOptimizer(ColossalaiOptimizer): """A wrapper class for optimizer to cast all parameters to fp16 Args: optim (torch.optim.Optimizer): A normal optimizer like Adam or SGD. grad_scaler (BaseGradScaler): grad scaler for gradient chose in ``constant_grad_scaler`` or ``dynamic_grad_scaler``. clip_grad_norm (float, optional): clip gradients with this global L2 norm. Default 0. verbose (bool, optional): if set to `True`, will print debug info. Default False. Note: clipping is ignored if ``clip_grad_norm`` equals 0. """ def __init__(self, optim: Optimizer, *args, **kwargs): optim = FP16Optimizer(optim, *args, **kwargs) super().__init__(optim) def backward(self, loss: Tensor): self.optim.backward(loss) def step(self): return self.optim.step() def clip_grad_norm(self, model: nn.Module, max_norm: float): pass class NaiveAMPModel(nn.Module): r"""A wrapper class for model to cast the model into fp16 and automatically cast the input and output Args: model (torch.nn.Module): torch.nn.Module to be wrapped. output_to_fp32 (bool, optional): Whether cast output of this module into fp32. (Default: True) parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this module. (Default: ``ParallelMode.DATA``) sync_buffer (bool, optional): whether to synchronize buffer. (Default: True) Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ def __init__(self, model: nn.Module, output_to_fp32: bool = True, parallel_mode: ParallelMode = ParallelMode.DATA, sync_buffer: bool = True): super().__init__() self.model = model.half() self._output_to_fp32 = output_to_fp32 self._sync_buf = sync_buffer if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1: self._process_group = gpc.get_group(parallel_mode) self._world_size = gpc.get_world_size(parallel_mode) else: self._process_group = None self._world_size = 1 self._sync_buf = False self._first_eval_run = False @property def sync_buffer(self): return self._sync_buf @sync_buffer.setter def sync_buffer(self, state: bool): self._sync_buf = state def _convert_to_fp16(self, input_: Any): if isinstance(input_, Tensor) and input_.dtype == torch.float32: input_ = input_.half() return input_ def _convert_to_fp32(self, input_: Any): if isinstance(input_, Tensor) and input_.dtype == torch.float16: input_ = input_.float() return input_ def _reduce_module_buffer(self): """ All-reduce the buffers (e.g. running stats of batch normalization) across data parallel ranks so that all the ranks will produce consistent results when given the same input """ buf_list = [] # find valid buffers for buf in self.model.buffers(): if buf is not None: buf_list.append(buf) # reduce buffers across data parallel ranks if buf_list: coalesced_buf = _flatten_dense_tensors(buf_list) coalesced_buf.div_(self._world_size) dist.all_reduce(coalesced_buf, op=ReduceOp.SUM, group=self._process_group) unflattened_buf_list = _unflatten_dense_tensors(coalesced_buf, buf_list) for old, new in zip(buf_list, unflattened_buf_list): old.copy_(new) def eval(self): self.model.eval() # we only sync buffer in the first eval iteration # so that future eval iterations can be done without communication self._first_eval_run = True def forward(self, *args, **kwargs): # reduce buffers after forward will lead to error # as we cannot change the variables needed for gradient computation after forward # so we sync buffer before forward if (self.training or self._first_eval_run) and self._sync_buf: with torch.no_grad(): self._reduce_module_buffer() if self._first_eval_run: self._first_eval_run = False if args: args = [self._convert_to_fp16(arg) for arg in args] if kwargs: for k, v in kwargs.items(): kwargs[k] = self._convert_to_fp16(v) out = self.model(*args, **kwargs) if self._output_to_fp32: if isinstance(out, Tensor): out = self._convert_to_fp32(out) elif isinstance(out, (tuple, list)): out = [self._convert_to_fp32(val) for val in out] return out
from typing import List from torch import Tensor def has_inf_or_nan(tensor): try: # if tensor is half, the .float() incurs an additional deep copy, but it's necessary if # Pytorch's .sum() creates a one-element tensor of the same type as tensor # (which is true for some recent version of pytorch). tensor_sum = float(tensor.float().sum()) # More efficient version that can be used if .sum() returns a Python scalar # tensor_sum = float(tensor.sum()) except RuntimeError as instance: # We want to check if inst is actually an overflow exception. # RuntimeError could come from a different error. # If so, we still want the exception to propagate. if "value cannot be converted" not in instance.args[0]: raise return True else: if tensor_sum == float('inf') or tensor_sum == -float('inf') or tensor_sum != tensor_sum: return True return False def zero_gard_by_list(tensor_list: List[Tensor], set_to_none: bool = True) -> None: """ Clear the gradient of a list of tensors, Note: copied from torch.optim.optimizer. """ for param in tensor_list: if param.grad is not None: if set_to_none: param.grad = None else: if param.grad.grad_fn is not None: param.grad.detach_() else: param.grad.requires_grad_(False) param.grad.zero_()
#!/usr/bin/env python # -*- encoding: utf-8 -*- from .base_grad_scaler import BaseGradScaler __all__ = ['ConstantGradScaler'] class ConstantGradScaler(BaseGradScaler): def __init__(self, initial_scale: int, verbose: bool): super().__init__(initial_scale, verbose) self.log(f"Constant Gradient Scaler is initialized with scale {self.scale}", ranks=[0]) def update(self, overflow: bool) -> None: # do nothing to maintain the current scale value pass
from .base_grad_scaler import BaseGradScaler from .constant_grad_scaler import ConstantGradScaler from .dynamic_grad_scaler import DynamicGradScaler __all__ = ['BaseGradScaler', 'ConstantGradScaler', 'DynamicGradScaler']
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from abc import ABC, abstractmethod from colossalai.logging import get_dist_logger from torch import Tensor from typing import Dict __all__ = ['BaseGradScaler'] class BaseGradScaler(ABC): def __init__(self, initial_scale: float, verbose: bool): assert initial_scale > 0 self._scale = torch.cuda.FloatTensor([initial_scale]) self._verbose = verbose if self._verbose: self._logger = get_dist_logger() @property def scale(self) -> Tensor: return self._scale @property def inv_scale(self) -> Tensor: return self._scale.double().reciprocal().float() def state_dict(self) -> Dict: state_dict = dict() state_dict['scale'] = self.scale return state_dict def load_state_dict(self, state_dict: Dict) -> None: self._scale = state_dict['scale'] @abstractmethod def update(self, overflow: bool) -> None: pass def log(self, message, *args, **kwargs): if self._verbose: self._logger.info(message, *args, **kwargs)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from .base_grad_scaler import BaseGradScaler from typing import Optional __all__ = ['DynamicGradScaler'] class DynamicGradScaler(BaseGradScaler): def __init__(self, initial_scale: float = 2**16, growth_factor: float = 2, backoff_factor: float = 0.5, growth_interval: int = 1000, min_scale: Optional[float] = None, max_scale: Optional[float] = None, hysteresis: int = 2, verbose: bool = False): super().__init__(initial_scale, verbose) if min_scale: self._min_scale = torch.cuda.FloatTensor([min_scale]) else: self._min_scale = None if max_scale: self._max_scale = torch.cuda.FloatTensor([max_scale]) else: self._max_scale = None self._growth_factor = growth_factor self._backoff_factor = backoff_factor self._growth_interval = growth_interval self._growth_step = 0 self._hysteresis = hysteresis self._hysteresis_step = 0 self._sanity_checks() def _sanity_checks(self) -> None: if self._min_scale: assert self._min_scale > 0, 'The minimum gradient scale cannot be zero or negative' if self._max_scale: assert self._min_scale > 0, 'The maximum gradient scale cannot be zero or negative' assert self._growth_factor > 1, 'The growth factor cannot be equal or smaller than 1' assert self._backoff_factor < 1 and self._backoff_factor > 0, 'The backoff factor must be between 0 and 1' assert self._hysteresis >= 0, 'The hysteresis cannot be negative' def update(self, overflow: bool) -> None: if overflow: self._hysteresis_step += 1 self._growth_step = 0 if self._hysteresis_step >= self._hysteresis: self._backoff_scale() self.log(f"Overflow occurs, the loss scale is adjusted to {self.scale.item()}", ranks=[0]) else: self._growth_step += 1 if self._growth_step == self._growth_interval: self._growth_step = 0 self._hysteresis_step = 0 self._grow_scale() self.log( f"No overflow for consecutive {self._growth_interval} steps, " f"the loss scale is adjusted to {self.scale.item()}", ranks=[0]) def _backoff_scale(self) -> None: self._scale = self._scale * self._backoff_factor if self._min_scale: self._scale = torch.max(self._scale, self._min_scale) def _grow_scale(self) -> None: self._scale = self._scale * self._growth_factor if self._max_scale: self._scale = torch.min(self._scale, self._max_scale)
#!/usr/bin/env python # -*- encoding: utf-8 -*- # modified from https://github.com/pytorch/pytorch/blob/master/torch/cuda/amp/grad_scaler.py # to support tensor parallel import torch from collections import defaultdict, abc import warnings from enum import Enum from typing import Any, Dict, List, Optional, Tuple from colossalai.context import ParallelMode import torch.distributed as dist from colossalai.core import global_context as gpc from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from packaging import version class _MultiDeviceReplicator(object): """ Lazily serves copies of a tensor to requested devices. Copies are cached per-device. """ def __init__(self, master_tensor: torch.Tensor) -> None: assert master_tensor.is_cuda or master_tensor.device.type == 'xla' self.master = master_tensor self._per_device_tensors: Dict[torch.device, torch.Tensor] = {} def get(self, device) -> torch.Tensor: retval = self._per_device_tensors.get(device, None) if retval is None: retval = self.master.to(device=device, non_blocking=True, copy=True) self._per_device_tensors[device] = retval return retval # Defines default_factory for GradScaler's _per_optimizer_states defaultdict, # as well as associated "enum" values. Prefers defining these at top level because # - Lambdas can't be pickled, so we don't want to supply a lambda as the factory. # - Defining READY, UNSCALED, STEPPED and _refresh_per_optimizer_state within GradScaler # causes a circular reference, which we'd rather avoid. class OptState(Enum): READY = 0 UNSCALED = 1 STEPPED = 2 def _refresh_per_optimizer_state(): return {"stage": OptState.READY, "found_inf_per_device": {}} class GradScaler(object): _scale: Optional[torch.Tensor] _grows_tracker: Optional[torch.Tensor] _per_optimizer_states: Dict[int, Dict[str, Any]] """ An instance ``scaler`` of :class:`GradScaler` helps perform the steps of gradient scaling conveniently. * ``scaler.scale(loss)`` multiplies a given loss by ``scaler``'s current scale factor. * ``scaler.step(optimizer)`` safely unscales gradients and calls ``optimizer.step()``. * ``scaler.update()`` updates ``scaler``'s scale factor. Example:: # Creates a GradScaler once at the beginning of training. scaler = GradScaler() for epoch in epochs: for input, target in data: optimizer.zero_grad() output = model(input) loss = loss_fn(output, target) # Scales loss. Calls backward() on scaled loss to create scaled gradients. scaler.scale(loss).backward() # scaler.step() first unscales gradients of the optimizer's params. # If gradients don't contain infs/NaNs, optimizer.step() is then called, # otherwise, optimizer.step() is skipped. scaler.step(optimizer) # Updates the scale for next iteration. scaler.update() See the :ref:`Automatic Mixed Precision examples<amp-examples>` for usage (along with autocasting) in more complex cases like gradient clipping, gradient accumulation, gradient penalty, and multiple losses/optimizers. ``scaler`` dynamically estimates the scale factor each iteration. To minimize gradient underflow, a large scale factor should be used. However, ``float16`` values can "overflow" (become inf or NaN) if the scale factor is too large. Therefore, the optimal scale factor is the largest factor that can be used without incurring inf or NaN gradient values. ``scaler`` approximates the optimal scale factor over time by checking the gradients for infs and NaNs during every ``scaler.step(optimizer)`` (or optional separate ``scaler.unscale_(optimizer)``, see :meth:`unscale_`). * If infs/NaNs are found, ``scaler.step(optimizer)`` skips the underlying ``optimizer.step()`` (so the params themselves remain uncorrupted) and ``update()`` multiplies the scale by ``backoff_factor``. * If no infs/NaNs are found, ``scaler.step(optimizer)`` runs the underlying ``optimizer.step()`` as usual. If ``growth_interval`` unskipped iterations occur consecutively, ``update()`` multiplies the scale by ``growth_factor``. The scale factor often causes infs/NaNs to appear in gradients for the first few iterations as its value calibrates. ``scaler.step`` will skip the underlying ``optimizer.step()`` for these iterations. After that, step skipping should occur rarely (once every few hundred or thousand iterations). Args: init_scale (float, optional, default=2.**16): Initial scale factor. growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during :meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations. backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during :meth:`update` if inf/NaN gradients occur in an iteration. growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients that must occur for the scale to be multiplied by ``growth_factor``. enabled (bool, optional, default=True): If ``False``, disables gradient scaling. :meth:`step` simply invokes the underlying ``optimizer.step()``, and other methods become no-ops. """ def __init__(self, init_scale=2.**16, growth_factor=2.0, backoff_factor=0.5, growth_interval=2000, enabled=True): if enabled and not torch.cuda.is_available(): warnings.warn("torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling.") self._enabled = False else: self._enabled = enabled # check version torch_version = version.parse(torch.__version__) assert torch_version.major == 1 if torch_version.minor > 8: self._higher_than_torch18 = True else: self._higher_than_torch18 = False if self._enabled: assert growth_factor > 1.0, "The growth factor must be > 1.0." assert backoff_factor < 1.0, "The backoff factor must be < 1.0." self._init_scale = init_scale # self._scale will be lazily initialized during the first call to scale() self._scale = None self._growth_factor = growth_factor self._backoff_factor = backoff_factor self._growth_interval = growth_interval self._init_growth_tracker = 0 # self._growth_tracker will be lazily initialized during the first call to scale() self._growth_tracker = None self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state) def _check_scale_growth_tracker(self, funcname) -> Tuple[torch.Tensor, torch.Tensor]: fix = "This may indicate your script did not use scaler.scale(loss or outputs) earlier in the iteration." assert self._scale is not None, "Attempted {} but _scale is None. ".format(funcname) + fix assert self._growth_tracker is not None, "Attempted {} but _growth_tracker is None. ".format(funcname) + fix return (self._scale, self._growth_tracker) def _lazy_init_scale_growth_tracker(self, dev): assert self._growth_tracker is None, "_growth_tracker initialized before _scale" self._scale = torch.full((1,), self._init_scale, dtype=torch.float32, device=dev) self._growth_tracker = torch.full((1,), self._init_growth_tracker, dtype=torch.int32, device=dev) def scale(self, outputs): """ Multiplies ('scales') a tensor or list of tensors by the scale factor. Returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned unmodified. Args: outputs (Tensor or iterable of Tensors): Outputs to scale. """ if not self._enabled: return outputs # Short-circuit for the common case. if isinstance(outputs, torch.Tensor): assert outputs.is_cuda or outputs.device.type == 'xla' if self._scale is None: self._lazy_init_scale_growth_tracker(outputs.device) assert self._scale is not None return outputs * self._scale.to(device=outputs.device, non_blocking=True) # Invoke the more complex machinery only if we're treating multiple outputs. # holds a reference that can be overwritten by apply_scale stash: List[_MultiDeviceReplicator] = [] def apply_scale(val): if isinstance(val, torch.Tensor): assert val.is_cuda or val.device.type == 'xla' if len(stash) == 0: if self._scale is None: self._lazy_init_scale_growth_tracker(val.device) assert self._scale is not None stash.append(_MultiDeviceReplicator(self._scale)) return val * stash[0].get(val.device) elif isinstance(val, abc.Iterable): iterable = map(apply_scale, val) if isinstance(val, list) or isinstance(val, tuple): return type(val)(iterable) else: return iterable else: raise ValueError("outputs must be a Tensor or an iterable of Tensors") return apply_scale(outputs) def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): per_device_inv_scale = _MultiDeviceReplicator(inv_scale) per_device_found_inf = _MultiDeviceReplicator(found_inf) # To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype. # There could be hundreds of grads, so we'd like to iterate through them just once. # However, we don't know their devices or dtypes in advance. # https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict # Google says mypy struggles with defaultdicts type annotations. per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated] with torch.no_grad(): for group in optimizer.param_groups: for param in group["params"]: if param.grad is None: continue if (not allow_fp16) and param.grad.dtype == torch.float16: raise ValueError("Attempting to unscale FP16 gradients.") if param.grad.is_sparse: # is_coalesced() == False means the sparse grad has values with duplicate indices. # coalesce() deduplicates indices and adds all values that have the same index. # For scaled fp16 values, there's a good chance coalescing will cause overflow, # so we should check the coalesced _values(). if param.grad.dtype is torch.float16: param.grad = param.grad.coalesce() to_unscale = param.grad._values() else: to_unscale = param.grad # TODO: is there a way to split by device and dtype without appending in the inner loop? per_device_and_dtype_grads[to_unscale.device][to_unscale.dtype].append(to_unscale) for device, per_dtype_grads in per_device_and_dtype_grads.items(): for grads in per_dtype_grads.values(): torch._amp_foreach_non_finite_check_and_unscale_(grads, per_device_found_inf.get(device), per_device_inv_scale.get(device)) # For tensor parallel paramters it should be all-reduced over tensor parallel process group if gpc.is_initialized(ParallelMode.MODEL) and gpc.get_world_size(ParallelMode.MODEL) > 1: vals = [val for val in per_device_found_inf._per_device_tensors.values()] coalesced = _flatten_dense_tensors(vals) dist.all_reduce(coalesced, op=dist.ReduceOp.MAX, group=gpc.get_group(ParallelMode.MODEL)) for buf, synced in zip(vals, _unflatten_dense_tensors(coalesced, vals)): buf.copy_(synced) return per_device_found_inf._per_device_tensors def unscale_(self, optimizer): """ Divides ("unscales") the optimizer's gradient tensors by the scale factor. :meth:`unscale_` is optional, serving cases where you need to :ref:`modify or inspect gradients<working-with-unscaled-gradients>` between the backward pass(es) and :meth:`step`. If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`. Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients:: ... scaler.scale(loss).backward() scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) scaler.step(optimizer) scaler.update() Args: optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled. .. note:: :meth:`unscale_` does not incur a CPU-GPU sync. .. warning:: :meth:`unscale_` should only be called once per optimizer per :meth:`step` call, and only after all gradients for that optimizer's assigned parameters have been accumulated. Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError. .. warning:: :meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute. """ if not self._enabled: return self._check_scale_growth_tracker("unscale_") optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state["stage"] is OptState.UNSCALED: raise RuntimeError("unscale_() has already been called on this optimizer since the last update().") elif optimizer_state["stage"] is OptState.STEPPED: raise RuntimeError("unscale_() is being called after step().") # FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64. assert self._scale is not None inv_scale = self._scale.double().reciprocal().float() found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=self._scale.device) optimizer_state["found_inf_per_device"] = self._unscale_grads_(optimizer, inv_scale, found_inf, False) optimizer_state["stage"] = OptState.UNSCALED def _maybe_opt_step(self, optimizer, optimizer_state, *args, **kwargs): retval = None if not sum(v.item() for v in optimizer_state["found_inf_per_device"].values()): retval = optimizer.step(*args, **kwargs) return retval def step(self, optimizer, *args, **kwargs): """ :meth:`step` carries out the following two operations: 1. Internally invokes ``unscale_(optimizer)`` (unless :meth:`unscale_` was explicitly called for ``optimizer`` earlier in the iteration). As part of the :meth:`unscale_`, gradients are checked for infs/NaNs. 2. If no inf/NaN gradients are found, invokes ``optimizer.step()`` using the unscaled gradients. Otherwise, ``optimizer.step()`` is skipped to avoid corrupting the params. ``*args`` and ``**kwargs`` are forwarded to ``optimizer.step()``. Returns the return value of ``optimizer.step(*args, **kwargs)``. Args: optimizer (torch.optim.Optimizer): Optimizer that applies the gradients. args: Any arguments. kwargs: Any keyword arguments. .. warning:: Closure use is not currently supported. """ if (not self._enabled): return optimizer.step(*args, **kwargs) if "closure" in kwargs: raise RuntimeError("Closure use is not currently supported if GradScaler is enabled.") self._check_scale_growth_tracker("step") optimizer_state = self._per_optimizer_states[id(optimizer)] if optimizer_state["stage"] is OptState.STEPPED: raise RuntimeError("step() has already been called since the last update().") retval = None if (hasattr(optimizer, "_step_supports_amp_scaling") and optimizer._step_supports_amp_scaling): # This optimizer has customized scale-handling logic, so we can call optimizer.step() directly. # The contract with custom optimizers is that their step() should accept an additional, # optional grad_scaler kwarg. We append self to the kwargs so the custom optimizer has full information: # it can query its own state, invoke unscale_ on itself, etc retval = optimizer.step(*args, **dict(kwargs, grad_scaler=self)) optimizer_state["stage"] = OptState.STEPPED return retval if optimizer_state["stage"] is OptState.READY: self.unscale_(optimizer) assert len(optimizer_state["found_inf_per_device"]) > 0, "No inf checks were recorded for this optimizer." retval = self._maybe_opt_step(optimizer, optimizer_state, *args, **kwargs) optimizer_state["stage"] = OptState.STEPPED return retval def update(self, new_scale=None): """ Updates the scale factor. If any optimizer steps were skipped the scale is multiplied by ``backoff_factor`` to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively, the scale is multiplied by ``growth_factor`` to increase it. Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not used directly, it's used to fill GradScaler's internal scale tensor. So if ``new_scale`` was a tensor, later in-place changes to that tensor will not further affect the scale GradScaler uses internally.) Args: new_scale (float or :class:`torch.cuda.FloatTensor`, optional, default=None): New scale factor. .. warning:: :meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has been invoked for all optimizers used this iteration. """ if not self._enabled: return _scale, _growth_tracker = self._check_scale_growth_tracker("update") if new_scale is not None: # Accept a new user-defined scale. if isinstance(new_scale, float): self._scale.fill_(new_scale) # type: ignore[union-attr] else: reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor with requires_grad=False." # type: ignore[attr-defined] assert isinstance(new_scale, torch.cuda.FloatTensor), reason assert new_scale.numel() == 1, reason assert new_scale.requires_grad is False, reason self._scale.copy_(new_scale) # type: ignore[union-attr] else: # Consume shared inf/nan data collected from optimizers to update the scale. # If all found_inf tensors are on the same device as self._scale, this operation is asynchronous. found_infs = [ found_inf.to(device=_scale.device, non_blocking=True) for state in self._per_optimizer_states.values() for found_inf in state["found_inf_per_device"].values() ] assert len(found_infs) > 0, "No inf checks were recorded prior to update." found_inf_combined = found_infs[0] if len(found_infs) > 1: for i in range(1, len(found_infs)): found_inf_combined += found_infs[i] if self._higher_than_torch18: torch._amp_update_scale_(_scale, _growth_tracker, found_inf_combined, self._growth_factor, self._backoff_factor, self._growth_interval) else: self._scale = torch._amp_update_scale(_growth_tracker, _scale, found_inf_combined, self._growth_factor, self._backoff_factor, self._growth_interval) # To prepare for next iteration, clear the data collected from optimizers this iteration. self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state) def _get_scale_async(self): return self._scale def get_scale(self): """ Returns a Python float containing the current scale, or 1.0 if scaling is disabled. .. warning:: :meth:`get_scale` incurs a CPU-GPU sync. """ if self._enabled: return self._init_scale if self._scale is None else self._get_scale_async().item() else: return 1.0 def get_growth_factor(self): r""" Returns a Python float containing the scale growth factor. """ return self._growth_factor def set_growth_factor(self, new_factor): r""" Args: new_scale (float): Value to use as the new scale growth factor. """ self._growth_factor = new_factor def get_backoff_factor(self): r""" Returns a Python float containing the scale backoff factor. """ return self._backoff_factor def set_backoff_factor(self, new_factor): r""" Args: new_scale (float): Value to use as the new scale backoff factor. """ self._backoff_factor = new_factor def get_growth_interval(self): r""" Returns a Python int containing the growth interval. """ return self._growth_interval def set_growth_interval(self, new_interval): r""" Args: new_interval (int): Value to use as the new growth interval. """ self._growth_interval = new_interval def _get_growth_tracker(self): if self._enabled: return self._init_growth_tracker if self._growth_tracker is None else self._growth_tracker.item() else: return 0 def is_enabled(self): r""" Returns a bool indicating whether this instance is enabled. """ return self._enabled def state_dict(self): r""" Returns the state of the scaler as a :class:`dict`. It contains five entries: * ``"scale"`` - a Python float containing the current scale * ``"growth_factor"`` - a Python float containing the current growth factor * ``"backoff_factor"`` - a Python float containing the current backoff factor * ``"growth_interval"`` - a Python int containing the current growth interval * ``"_growth_tracker"`` - a Python int containing the number of recent consecutive unskipped steps. If this instance is not enabled, returns an empty dict. .. note:: If you wish to checkpoint the scaler's state after a particular iteration, :meth:`state_dict` should be called after :meth:`update`. """ return { "scale": self.get_scale(), "growth_factor": self._growth_factor, "backoff_factor": self._backoff_factor, "growth_interval": self._growth_interval, "_growth_tracker": self._get_growth_tracker() } if self._enabled else {} def load_state_dict(self, state_dict): r""" Loads the scaler state. If this instance is disabled, :meth:`load_state_dict` is a no-op. Args: state_dict(dict): scaler state. Should be an object returned from a call to :meth:`state_dict`. """ if not self._enabled: return if len(state_dict) == 0: raise RuntimeError("The source state dict is empty, possibly because it was saved " "from a disabled instance of GradScaler.") self._init_scale = state_dict["scale"] if self._scale is not None: self._scale.fill_(state_dict["scale"]) self._growth_factor = state_dict["growth_factor"] self._backoff_factor = state_dict["backoff_factor"] self._growth_interval = state_dict["growth_interval"] self._init_growth_tracker = state_dict["_growth_tracker"] if self._growth_tracker is not None: self._growth_tracker.fill_(state_dict["_growth_tracker"]) def __getstate__(self): state = self.__dict__.copy() if self._enabled: assert len(self._per_optimizer_states) == 0, "A GradScaler instance may only be pickled at the beginning "\ "of an iteration, or at the end after scaler.update()." # Pickling _scale and _growth_tracker Tensors directly triggers # "warnings.warn("pickle support for Storage will be removed in 1.5..." # so instead, we set the unpickled instance up to reinitialize them lazily. state['_init_scale'] = self.get_scale() state['_init_growth_tracker'] = self._get_growth_tracker() state['_scale'] = None state['_growth_tracker'] = None return state def __setstate__(self, state): self.__dict__.update(state) def _check_inf_per_device(self, optimizer): _scale, _ = self._check_scale_growth_tracker("_check_inf_per_device") dummy_inv_scale = torch.full((1,), 1.0, dtype=torch.float32, device=_scale.device) found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=_scale.device) self._per_optimizer_states[id(optimizer)]["found_inf_per_device"] = \ self._unscale_grads_(optimizer, dummy_inv_scale, found_inf, True) return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"] def _found_inf_per_device(self, optimizer): return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"]
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.nn as nn import torch.cuda.amp as torch_amp from torch import Tensor from torch.nn.modules.loss import _Loss from torch.optim import Optimizer from ._grad_scaler import GradScaler from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.utils import clip_grad_norm_fp32 class TorchAMPOptimizer(ColossalaiOptimizer): """A wrapper class which integrate Pytorch AMP with an optimizer Args: optim (torch.optim.Optimizer): A normal optimizer like Adam or SGD. init_scale (float, optional, default=2.**16): Initial scale factor. growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during :meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations. backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during :meth:`update` if inf/NaN gradients occur in an iteration. growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients that must occur for the scale to be multiplied by ``growth_factor``. enabled (bool, optional, default=True): If ``False``, disables gradient scaling. :meth:`step` simply invokes the underlying ``optimizer.step()``, and other methods become no-ops. """ def __init__(self, optim: Optimizer, *args, **kwargs): super().__init__(optim) self.scaler = GradScaler(*args, **kwargs) def backward(self, loss: Tensor): """Backward with torch amp gradient scaler Args: loss (torch.Tensor): Loss computed by a loss function """ self.scaler.scale(loss).backward() def step(self): """Update the parameters of the model """ self.scaler.step(self.optim) self.scaler.update() def clip_grad_norm(self, model: nn.Module, max_norm: float): """Apply gradient clipping to the model parameters Args: model (torch.nn.Module): Your model object max_norm (float): Max norm value for gradient clipping """ if max_norm > 0.0: self.scaler.unscale_(self.optim) clip_grad_norm_fp32(model.parameters(), max_norm) class TorchAMPModel(nn.Module): """A wrapper class for a model object which executes forward with values automatically cast to fp16 """ def __init__(self, model: nn.Module) -> None: super().__init__() self.model = model @torch_amp.autocast() def forward(self, *args, **kwargs): return self.model(*args, **kwargs) class TorchAMPLoss(nn.Module): """A wrapper class for a criterion object which computes the loss in mixed-precision context Args: loss (torch.nn.modules.loss._Loss): A loss function object """ def __init__(self, loss: _Loss): super().__init__() self.loss = loss @torch_amp.autocast() def forward(self, *args, **kwargs): return self.loss(*args, **kwargs)
import torch.nn as nn from torch.optim import Optimizer from torch.nn.modules.loss import _Loss from colossalai.context import Config from .torch_amp import TorchAMPOptimizer, TorchAMPModel, TorchAMPLoss from typing import Optional def convert_to_torch_amp(model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, amp_config: Optional[Config] = None): """A helper function to wrap training components with Pytorch AMP modules Args: model (:class:`torch.nn.Module`): your model object. optimizer (:class:`torch.optim.Optimizer`): your optimizer object criterion (:class:`torch.nn.modules.loss._Loss`, optional): your loss function object amp_config (:class:`colossalai.context.Config` or dict, optional): configuration for Pytorch AMP. The ``amp_config`` should include parameters below: :: init_scale (float, optional, default=2.**16) growth_factor (float, optional, default=2.0) backoff_factor (float, optional, default=0.5) growth_interval (int, optional, default=2000) enabled (bool, optional, default=True) Returns: A tuple (model, optimizer, criterion) """ model = TorchAMPModel(model) if amp_config is None: amp_config = dict() optimizer = TorchAMPOptimizer(optimizer, **amp_config) if criterion: criterion = TorchAMPLoss(criterion) return model, optimizer, criterion __all__ = ['convert_to_torch_amp', 'TorchAMPModel', 'TorchAMPLoss', 'TorchAMPOptimizer']
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch.nn as nn try: import apex.amp as apex_amp except ImportError: pass from torch import Tensor from colossalai.nn.optimizer import ColossalaiOptimizer from colossalai.utils import clip_grad_norm_fp32 class ApexAMPOptimizer(ColossalaiOptimizer): """ A wrapper class for APEX optimizer and it implements apex-specific backward and clip_grad_norm methods """ def backward(self, loss: Tensor): """Backward pass to get all gradients Args: loss (torch.Tensor): Loss computed by a loss function """ with apex_amp.scale_loss(loss, self.optim) as scaled_loss: scaled_loss.backward() def clip_grad_norm(self, model: nn.Module, max_norm: float): """Clip gradients' norm Args: model (torch.nn.Module): Your model object max_norm (float): The max norm value for gradient clipping """ if max_norm > 0: clip_grad_norm_fp32(apex_amp.master_params(self.optim), max_norm)
from .apex_amp import ApexAMPOptimizer import torch.nn as nn from torch.optim import Optimizer def convert_to_apex_amp(model: nn.Module, optimizer: Optimizer, amp_config): r"""A helper function to wrap training components with Apex AMP modules Args: model (:class:`torch.nn.Module`): your model object. optimizer (:class:`torch.optim.Optimizer`): your optimizer object. amp_config (Union[:class:`colossalai.context.Config`, dict]): configuration for initializing apex_amp. The ``amp_config`` should include parameters below: :: enabled (bool, optional, default=True) opt_level (str, optional, default="O1") cast_model_type (``torch.dtype``, optional, default=None) patch_torch_functions (bool, optional, default=None) keep_batchnorm_fp32 (bool or str, optional, default=None master_weights (bool, optional, default=None) loss_scale (float or str, optional, default=None) cast_model_outputs (torch.dtype, optional, default=None) num_losses (int, optional, default=1) verbosity (int, default=1) min_loss_scale (float, default=None) max_loss_scale (float, default=2.**24) Returns: Tuples: A tuple (model, optimizer). More details about ``amp_config`` refer to `amp_config <https://nvidia.github.io/apex/amp.html?highlight=apex%20amp>`_. """ import apex.amp as apex_amp model, optimizer = apex_amp.initialize(model, optimizer, **amp_config) optimizer = ApexAMPOptimizer(optimizer) return model, optimizer __all__ = ['convert_to_apex_amp', 'ApexAMPOptimizer']
#!/usr/bin/env python # -*- encoding: utf-8 -*- from types import ModuleType from typing import List class Registry: """This is a registry class used to register classes and modules so that a universal object builder can be enabled. Args: name (str): The name of the registry . third_party_library (list, optional): List of third party libraries which are used in the initialization of the register module. """ def __init__(self, name: str, third_party_library: List[ModuleType] = None): self._name = name self._registry = dict() self._third_party_lib = third_party_library @property def name(self): return self._name def register_module(self, module_class): """Registers a module represented in `module_class`. Args: module_class (class): The module to be registered. Returns: class: The module to be registered, so as to use it normally if via importing. Raises: AssertionError: Raises an AssertionError if the module has already been registered before. """ module_name = module_class.__name__ assert module_name not in self._registry self._registry[module_name] = module_class # return so as to use it normally if via importing return module_class def get_module(self, module_name: str): """Retrieves a module with name `module_name` and returns the module if it has already been registered before. Args: module_name (str): The name of the module to be retrieved. Returns: :class:`object`: The retrieved module or None. Raises: NameError: Raises a NameError if the module to be retrieved has neither been registered directly nor as third party modules before. """ if module_name in self._registry: return self._registry[module_name] elif self._third_party_lib is not None: for lib in self._third_party_lib: if hasattr(lib, module_name): return getattr(lib, module_name) raise NameError(f'Module {module_name} not found in the registry {self.name}') def has(self, module_name: str): """Searches for a module with name `module_name` and returns a boolean value indicating whether the module has been registered directly or as third party modules before. Args: module_name (str): The name of the module to be searched for. Returns: bool: A boolean value indicating whether the module has been registered directly or as third party modules before. """ found_flag = module_name in self._registry if self._third_party_lib: for lib in self._third_party_lib: if hasattr(lib, module_name): found_flag = True break return found_flag
import torch.distributed.optim as dist_optim import torch.nn as nn import torch.optim as optim import torchvision.models as tv_models import torchvision.datasets as tv_datasets from torchvision import transforms from .registry import Registry LAYERS = Registry("layers", third_party_library=[nn]) LOSSES = Registry("losses") MODELS = Registry("models", third_party_library=[tv_models]) OPTIMIZERS = Registry("optimizers", third_party_library=[optim, dist_optim]) DATASETS = Registry("datasets", third_party_library=[tv_datasets]) DIST_GROUP_INITIALIZER = Registry("dist_group_initializer") GRADIENT_HANDLER = Registry("gradient_handler") LOSSES = Registry("losses", third_party_library=[nn]) HOOKS = Registry("hooks") TRANSFORMS = Registry("transforms", third_party_library=[transforms]) DATA_SAMPLERS = Registry("data_samplers") LR_SCHEDULERS = Registry("lr_schedulers") SCHEDULE = Registry("schedules") OPHOOKS = Registry("ophooks")
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import torch.distributed as dist from torch.distributed import ReduceOp from torch import Tensor from colossalai.context import ParallelMode from colossalai.core import global_context as gpc def all_gather(tensor: Tensor, dim: int, parallel_mode: ParallelMode, on_cpu: bool = False, async_op: bool = False) -> Tensor: r"""Gathers all tensors from the parallel group and concatenates them in a specific dimension. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. Args: tensor (:class:`torch.Tensor`): Tensor to be gathered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. on_cpu (bool, optional): Whether to communicate with Gloo backend. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-together only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: shape = list(tensor.shape) shape[0], shape[dim] = shape[dim], shape[0] shape[0] *= depth out = torch.empty(shape, dtype=tensor.dtype, device=tensor.device) temp = list(torch.chunk(out, depth, dim=0)) group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode) work = dist.all_gather(tensor_list=temp, tensor=tensor.transpose(0, dim).contiguous(), group=group, async_op=async_op) out = torch.transpose(out, 0, dim) if async_op: return out, work else: return out def reduce_scatter(tensor: Tensor, dim: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, on_cpu: bool = False, async_op: bool = False) -> Tensor: r"""Reduces all tensors then scatters it in a specific dimension to all members in the parallel group. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduce_scattered. dim (int): The dimension concatenating in. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp <https://pytorch.org/docs/stable/distributed.html#torch.distributed.ReduceOp>`_. on_cpu (bool, optional): Whether to communicate with Gloo backend. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce_scatter only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: temp = list(map(lambda x: x.contiguous(), torch.chunk(tensor, depth, dim=dim))) out = torch.empty(temp[0].shape, dtype=tensor.dtype, device=tensor.device) group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode) work = dist.reduce_scatter(output=out, input_list=temp, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def all_reduce(tensor: Tensor, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, on_cpu: bool = False, async_op: bool = False) -> Tensor: r"""Reduces the tensor data across whole parallel group in such a way that all get the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. Args: tensor (:class:`torch.Tensor`): Tensor to be all-reduced. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. op (torch.distributed.ReduceOp, optional): The type of reduce operation, should be included in [SUM, AVG, PRODUCT, MIN, MAX, BAND, BOR, BXOR]. More details about ReduceOp please refer to `ReduceOp <https://pytorch.org/docs/stable/distributed.html#torch.distributed.ReduceOp>`_. on_cpu (bool, optional): Whether to communicate with Gloo backend. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of all-gather only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode) work = dist.all_reduce(out, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def broadcast(tensor: Tensor, src: int, parallel_mode: ParallelMode, on_cpu: bool = False, async_op: bool = False): r"""Broadcast tensors to whole parallel group. Tensor must have the same number of elements in all processes participating in the collective. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. Args: tensor (:class:`torch.Tensor`): Tensor to be broadcast. src (int): Source rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. on_cpu (bool, optional): Whether to communicate with Gloo backend. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The tensor need to be broadcast only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode) work = dist.broadcast(out, src=src, group=group, async_op=async_op) if async_op: return out, work else: return out def reduce(tensor: Tensor, dst: int, parallel_mode: ParallelMode, op: ReduceOp = ReduceOp.SUM, on_cpu: bool = False, async_op: bool = False): r"""Reduce tensors across whole parallel group. Only the process with rank ``dst`` is going to receive the final result. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. Args: tensor (:class:`torch.Tensor`): Tensor to be reduced. dst (int): Destination rank. parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this communication. on_cpu (bool, optional): Whether to communicate with Gloo backend. async_op (bool, optional): Whether operations are asynchronous. Returns: Union[tuple(:class:`torch.Tensor`, work handle), :class:`torch.Tensor`]: The result of reduce only, if async_op is set to False. A tuple of output of all-gather and Async work handle, if async_op is set to True. """ depth = gpc.get_world_size(parallel_mode) if depth == 1: out = tensor work = None else: out = tensor.contiguous() group = gpc.get_cpu_group(parallel_mode) if on_cpu else gpc.get_group(parallel_mode) work = dist.reduce(out, dst=dst, op=op, group=group, async_op=async_op) if async_op: return out, work else: return out def scatter_object_list(scatter_object_output_list, scatter_object_input_list, src=0, group=None): r"""Modified from `torch.distributed.scatter_object_list <https://pytorch.org/docs/stable/_modules/torch/distributed/distributed_c10d.html#scatter_object_list>` to fix issues """ if dist.distributed_c10d._rank_not_in_group(group): return if (not isinstance(scatter_object_output_list, list) or len(scatter_object_output_list) < 1): raise RuntimeError("Expected argument scatter_object_output_list to be a list of size at least 1.") # set tensor device to cuda if backend is nccl device = torch.cuda.current_device() if dist.get_backend(group) == 'nccl' else torch.device("cpu") my_rank = dist.get_rank() # use global rank if my_rank == src: tensor_list, tensor_sizes = zip( *[dist.distributed_c10d._object_to_tensor(obj) for obj in scatter_object_input_list]) tensor_list = list(map(lambda x: x.to(device), tensor_list)) tensor_sizes = list(map(lambda x: x.to(device), tensor_sizes)) # Src rank broadcasts the maximum tensor size. This is because all ranks are # expected to call into scatter() with equal-sized tensors. if my_rank == src: max_tensor_size = max(tensor_sizes) for tensor in tensor_list: tensor.resize_(max_tensor_size) else: max_tensor_size = torch.tensor([0], dtype=torch.long).to(device) dist.broadcast(max_tensor_size, src=src, group=group) # Scatter actual serialized objects output_tensor = torch.empty(max_tensor_size.item(), dtype=torch.uint8).to(device) dist.scatter( output_tensor, scatter_list=None if my_rank != src else tensor_list, src=src, group=group, ) # Scatter per-object sizes to trim tensors when deserializing back to object obj_tensor_size = torch.tensor([0], dtype=torch.long).to(device) dist.scatter( obj_tensor_size, scatter_list=None if my_rank != src else tensor_sizes, src=src, group=group, ) output_tensor, obj_tensor_size = output_tensor.cpu(), obj_tensor_size.cpu() # Deserialize back to object scatter_object_output_list[0] = dist.distributed_c10d._tensor_to_object(output_tensor, obj_tensor_size)
#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import List, Tuple, Union import torch import torch.distributed as dist from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device from functools import reduce import operator from .utils import split_tensor_into_1d_equal_chunks, gather_split_1d_tensor TensorShape = Union[torch.Size, List[int], Tuple[int]] def _get_tensor_shape(tensor_shape: TensorShape, chunk_tensor: bool = False) -> Tuple[TensorShape, bool]: """get the exact tensor shape when communicating and return whether the tensor is a chunk Args: tensor_shape (:class:`torch.Size`): shape of tensor chunk_tensor (bool, optional): whether to chunk tensor, defaults to False Returns: Tuple[Union[torch.Size, List[int], Tuple[int]], bool]: exact tensor shape, whether to chunk tensor """ if chunk_tensor: tensor_chunk_shape = reduce(operator.mul, tensor_shape, 1) tensor_parallel_world_size = gpc.get_world_size(ParallelMode.TENSOR) if tensor_chunk_shape % tensor_parallel_world_size == 0: tensor_chunk_shape = tensor_chunk_shape // tensor_parallel_world_size else: tensor_chunk_shape = tensor_shape chunk_tensor = False else: tensor_chunk_shape = tensor_shape return tensor_chunk_shape, chunk_tensor def _communicate(tensor_send_next=None, tensor_send_prev=None, recv_prev=False, recv_next=False, recv_prev_shape=None, recv_next_shape=None, prev_rank=None, next_rank=None, dtype=None, scatter_gather_tensors=False): """ Adapted from megatron.p2p_communication. Communicate tensors between stages. Used as helper method in other communication methods that are used in pipeline schedule. Takes the following arguments: tensor_send_next: tensor to send to next rank (no tensor sent if set to None). tensor_send_prev: tensor to send to prev rank (no tensor sent if set to None). recv_prev: boolean for whether tensor should be received from previous rank. recv_next: boolean for whether tensor should be received from next rank. Returns: (tensor_recv_prev, tensor_recv_next) """ # Create placeholder tensors for receive in forward and backward directions # if needed. tensor_recv_prev = None tensor_recv_next = None if recv_prev: assert recv_prev_shape is not None recv_prev_chunk_shape, recv_prev_split = _get_tensor_shape(recv_prev_shape, scatter_gather_tensors) tensor_recv_prev = torch.empty(recv_prev_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype) if recv_next: assert recv_next_shape is not None recv_next_chunk_shape, recv_next_split = _get_tensor_shape(recv_next_shape, scatter_gather_tensors) tensor_recv_next = torch.empty(recv_next_chunk_shape, requires_grad=True, device=get_current_device(), dtype=dtype) if tensor_send_prev is not None or recv_prev: if prev_rank is None: prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE) if tensor_send_next is not None or recv_next: if next_rank is None: next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE) if tensor_send_prev is not None: send_prev_split = _get_tensor_shape(tensor_send_prev.shape, scatter_gather_tensors)[1] if send_prev_split: tensor_send_prev = split_tensor_into_1d_equal_chunks(tensor_send_prev) if tensor_send_next is not None: send_next_split = _get_tensor_shape(tensor_send_next.shape, scatter_gather_tensors)[1] if send_next_split: tensor_send_next = split_tensor_into_1d_equal_chunks(tensor_send_next) ops = [] if tensor_send_prev is not None: send_prev_op = dist.P2POp(dist.isend, tensor_send_prev, prev_rank) ops.append(send_prev_op) if tensor_recv_prev is not None: recv_prev_op = dist.P2POp(dist.irecv, tensor_recv_prev, prev_rank) ops.append(recv_prev_op) if tensor_recv_next is not None: recv_next_op = dist.P2POp(dist.irecv, tensor_recv_next, next_rank) ops.append(recv_next_op) if tensor_send_next is not None: send_next_op = dist.P2POp(dist.isend, tensor_send_next, next_rank) ops.append(send_next_op) if len(ops) > 0: reqs = dist.batch_isend_irecv(ops) for req in reqs: req.wait() # To protect against race condition when using batch_isend_irecv(). torch.cuda.synchronize() if recv_prev and recv_prev_split: tensor_recv_prev = gather_split_1d_tensor(tensor_recv_prev).view(recv_prev_shape).requires_grad_() if recv_next and recv_next_split: tensor_recv_next = gather_split_1d_tensor(tensor_recv_next).view(recv_next_shape).requires_grad_() return tensor_recv_prev, tensor_recv_next def recv_forward(input_tensor_shape, prev_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Copy the forward output from the previous stage in pipeline as the input tensor of this stage. Args: input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received. prev_rank (int, optional): The rank of the source of the tensor. Returns: :class:`torch.Tensor`: The input tensor. """ if gpc.is_pipeline_first_stage(): input_tensor = None else: input_tensor, _ = _communicate(recv_prev=True, recv_prev_shape=input_tensor_shape, prev_rank=prev_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return input_tensor def recv_backward(output_grad_shape, next_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Copy the gradient tensor from the next stage in pipeline as the input gradient of this stage. Args: output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received. next_rank (int, optional): The rank of the source of the tensor. Returns: :class:`torch.Tensor`: The input gradient tensor. """ if gpc.is_pipeline_last_stage(): output_tensor_grad = None else: _, output_tensor_grad = _communicate(recv_next=True, recv_next_shape=output_grad_shape, next_rank=next_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return output_tensor_grad def send_forward(output_tensor, next_rank=None, scatter_gather_tensors=False): """Sends the input tensor to the next stage in pipeline. Args: output_tensor (:class:`torch.Tensor`): Tensor to be sent. next_rank (int, optional): The rank of the recipient of the tensor. """ if not gpc.is_pipeline_last_stage(): _communicate(tensor_send_next=output_tensor, next_rank=next_rank, scatter_gather_tensors=scatter_gather_tensors) def send_backward(input_tensor_grad, prev_rank=None, scatter_gather_tensors=False): """Sends the gradient tensor to the previous stage in pipeline. Args: input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent prev_rank (int, optional): The rank of the recipient of the tensor """ if not gpc.is_pipeline_first_stage(): _communicate(tensor_send_prev=input_tensor_grad, prev_rank=prev_rank, scatter_gather_tensors=scatter_gather_tensors) def send_forward_recv_backward(output_tensor, output_grad_shape, recv_next=True, next_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Batched communication operation. Sends the input tensor to the next stage in pipeline, while receives the gradient tensor from the next stage in pipeline as the input gradient tensor of this stage. Args: output_tensor (:class:`torch.Tensor`): Tensor to be sent. output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received. Returns: :class:`torch.Tensor`: The input gradient tensor. """ if gpc.is_pipeline_last_stage(): output_tensor_grad = None else: _, output_tensor_grad = _communicate(tensor_send_next=output_tensor, recv_next=recv_next, recv_next_shape=output_grad_shape, next_rank=next_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return output_tensor_grad def send_backward_recv_forward(input_tensor_grad, input_tensor_shape, recv_prev=True, prev_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Batched communication operation. Sends the gradient tensor to the previous stage in pipeline, while receives the output tensor from the previous stage in pipeline as the input of this stage. Args: input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent. input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received. Returns: :class:`torch.Tensor`: The input tensor. """ if gpc.is_pipeline_first_stage(): input_tensor = None else: input_tensor, _ = _communicate(tensor_send_prev=input_tensor_grad, recv_prev=recv_prev, recv_prev_shape=input_tensor_shape, prev_rank=prev_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return input_tensor def send_forward_recv_forward(output_tensor, input_tensor_shape, recv_prev=True, prev_rank=None, next_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Batched communication operation. Sends the input tensor to the next stage in pipeline, while receives the output tensor from the previous stage in pipeline as the input of this stage. Args: output_tensor (:class:`torch.Tensor`): Tensor to be sent. input_tensor_shape (:class:`torch.Size`): The shape of the tensor to be received. Returns: :class:`torch.Tensor`: The input tensor. """ input_tensor, _ = _communicate(tensor_send_next=output_tensor, recv_prev=recv_prev, recv_prev_shape=input_tensor_shape, prev_rank=prev_rank, next_rank=next_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return input_tensor def send_backward_recv_backward(input_tensor_grad, output_grad_shape, recv_next=True, prev_rank=None, next_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Batched communication operation. Sends the gradient tensor to the previous stage in pipeline, while receives the gradient tensor from the next member in pipeline as the input of this stage. Args: input_tensor_grad (:class:`torch.Tensor`): Tensor to be sent. output_grad_shape (:class:`torch.Size`): The shape of the tensor to be received. Returns: :class:`torch.Tensor`: The input gradient tensor. """ _, output_tensor_grad = _communicate(tensor_send_prev=input_tensor_grad, recv_next=recv_next, recv_next_shape=output_grad_shape, prev_rank=prev_rank, next_rank=next_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return output_tensor_grad def send_forward_backward_recv_forward_backward(output_tensor, input_tensor_grad, input_tensor_shape, output_grad_shape, recv_prev=True, recv_next=True, prev_rank=None, next_rank=None, dtype=torch.float, scatter_gather_tensors=False): """Batched communication operation. Sends the input tensor to the next stage in pipeline and the gradient tensor to the previous stage, while receives the input gradient tensor from the next stage and the input tensor from the previous stage. Args: output_tensor (:class:`torch.Tensor`): Tensor sent to the next. input_tensor_grad (:class:`torch.Tensor`): Tensor sent to the previous. input_tensor_shape (:class:`torch.Size`): The shape of the tensor received from the previous. output_grad_shape (:class:`torch.Size`): The shape of the tensor received from the next. Returns: Tuple(Tensor, Tensor): (the input tensor, the input gradient tensor) """ input_tensor, output_tensor_grad = _communicate(tensor_send_next=output_tensor, tensor_send_prev=input_tensor_grad, recv_prev=recv_prev, recv_next=recv_next, recv_prev_shape=input_tensor_shape, recv_next_shape=output_grad_shape, prev_rank=prev_rank, next_rank=next_rank, dtype=dtype, scatter_gather_tensors=scatter_gather_tensors) return input_tensor, output_tensor_grad
from .collective import all_gather, reduce_scatter, all_reduce, broadcast, reduce from .p2p import (send_forward, send_forward_recv_forward, send_backward_recv_forward, send_backward, send_backward_recv_backward, send_forward_recv_backward, send_forward_backward_recv_forward_backward, recv_forward, recv_backward) from .ring import ring_forward from .utils import send_tensor_meta, recv_tensor_meta __all__ = [ 'all_gather', 'reduce_scatter', 'all_reduce', 'broadcast', 'reduce', 'send_forward', 'send_forward_recv_forward', 'send_forward_backward_recv_forward_backward', 'send_backward', 'send_backward_recv_backward', 'send_backward_recv_forward', 'send_forward_recv_backward', 'recv_backward', 'recv_forward', 'ring_forward', 'send_tensor_meta', 'recv_tensor_meta', ]
import torch import torch.distributed as dist from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device def send_tensor_meta(tensor, need_meta=True, next_rank=None): """Sends tensor meta information before sending a specific tensor. Since the recipient must know the shape of the tensor in p2p communications, meta information of the tensor should be sent before communications. This function synchronizes with :func:`recv_tensor_meta`. Args: tensor (torch.Tensor): Tensor to be sent. need_meta (bool, optional): If False, meta information won't be sent. next_rank (int): The rank of the next member in pipeline parallel group. Returns: bool: False """ if need_meta: if next_rank is None: next_rank = gpc.get_next_global_rank(ParallelMode.PIPELINE) tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()} send_shape = torch.tensor(tensor.size(), **tensor_kwargs) send_ndims = torch.tensor(len(tensor.size()), **tensor_kwargs) dist.send(send_ndims, next_rank) dist.send(send_shape, next_rank) return False def recv_tensor_meta(tensor_shape, prev_rank=None): """Receives tensor meta information before receiving a specific tensor. Since the recipient must know the shape of the tensor in p2p communications, meta information of the tensor should be received before communications. This function synchronizes with :func:`send_tensor_meta`. Args: tensor_shape (torch.Size): The shape of the tensor to be received. prev_rank (int): The rank of the source of the tensor. Returns: :class:`torch.Size`: The shape of the tensor to be received. """ if tensor_shape is None: if prev_rank is None: prev_rank = gpc.get_prev_global_rank(ParallelMode.PIPELINE) tensor_kwargs = {'dtype': torch.long, 'device': get_current_device()} recv_ndims = torch.empty((), **tensor_kwargs) dist.recv(recv_ndims, prev_rank) recv_shape = torch.empty(recv_ndims, **tensor_kwargs) dist.recv(recv_shape, prev_rank) tensor_shape = torch.Size(recv_shape) return tensor_shape def split_tensor_into_1d_equal_chunks(tensor, new_buffer=False): """Break a tensor into equal 1D chunks. Args: tensor (torch.Tensor): Tensor to be split before communication. new_buffer (bool, optional): Whether to use a new buffer to store sliced tensor. Returns: :class:`torch.Size`: The split tensor """ partition_size = torch.numel(tensor) // gpc.get_world_size(ParallelMode.PARALLEL_1D) start_index = partition_size * gpc.get_local_rank(ParallelMode.PARALLEL_1D) end_index = start_index + partition_size if new_buffer: data = torch.empty(partition_size, dtype=tensor.dtype, device=torch.cuda.current_device(), requires_grad=False) data.copy_(tensor.view(-1)[start_index:end_index]) else: data = tensor.view(-1)[start_index:end_index] return data def gather_split_1d_tensor(tensor): """Opposite of above function, gather values from model parallel ranks. Args: tensor (torch.Tensor): Tensor to be gathered after communication. Returns: :class:`torch.Size`: The gathered tensor. """ world_size = gpc.get_world_size(ParallelMode.PARALLEL_1D) numel = torch.numel(tensor) numel_gathered = world_size * numel gathered = torch.empty(numel_gathered, dtype=tensor.dtype, device=torch.cuda.current_device(), requires_grad=False) chunks = [gathered[i * numel:(i + 1) * numel] for i in range(world_size)] dist.all_gather(chunks, tensor, group=gpc.get_group(ParallelMode.PARALLEL_1D)) return gathered
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import get_current_device, synchronize def ring_forward(tensor_send_next: torch.Tensor, parallel_mode: ParallelMode): """Sends a tensor to the next member and receives a tensor from the previous member. This function returns the received tensor from the previous member. Args: tensor_send_next: Tensor sent to next member parallel_mode: Parallel group mode used in this communication Returns: :class:`torch.Tensor`: The tensor received from the previous. Note: The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ buffer_shape = tensor_send_next.size() ops = [] current_rank = gpc.get_global_rank() tensor_recv_prev = torch.empty(buffer_shape, requires_grad=True, device=get_current_device(), dtype=tensor_send_next.dtype) # send to next rank send_next_op = torch.distributed.P2POp(torch.distributed.isend, tensor_send_next, gpc.get_next_global_rank(parallel_mode)) ops.append(send_next_op) # receive from prev rank recv_prev_op = torch.distributed.P2POp(torch.distributed.irecv, tensor_recv_prev, gpc.get_prev_global_rank(parallel_mode)) ops.append(recv_prev_op) if current_rank % 2 == 0: ops = ops[::-1] reqs = torch.distributed.batch_isend_irecv(ops) for req in reqs: req.wait() # To protect against race condition when using batch_isend_irecv(). synchronize() return tensor_recv_prev
from .builder import (build_schedule, build_lr_scheduler, build_model, build_optimizer, build_layer, build_loss, build_hooks, build_dataset, build_transform, build_data_sampler, build_gradient_handler, build_ophooks) from .pipeline import build_pipeline_model, build_pipeline_model_from_cfg __all__ = [ 'build_schedule', 'build_lr_scheduler', 'build_model', 'build_optimizer', 'build_layer', 'build_loss', 'build_hooks', 'build_dataset', 'build_transform', 'build_data_sampler', 'build_gradient_handler', 'build_pipeline_model', 'build_pipeline_model_from_cfg', 'build_ophooks' ]
#!/usr/bin/env python # -*- encoding: utf-8 -*- import inspect from collections.abc import Iterable from colossalai.registry import * def build_from_config(module, config: dict): """Returns an object of :class:`module` constructed from `config`. Args: module: A python or user-defined class config: A python dict containing information used in the construction of the return object Returns: An ``object`` of interest Raises: AssertionError: Raises an AssertionError if `module` is not a class """ assert inspect.isclass(module), 'module must be a class' return module(**config) def build_from_registry(config, registry: Registry): r"""Returns an object constructed from `config`, the type of the object is specified by `registry`. Note: the `config` is used to construct the return object such as `LAYERS`, `OPTIMIZERS` and other support types in `registry`. The `config` should contain all required parameters of corresponding object. The details of support types in `registry` and the `mod_type` in `config` could be found in `registry <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/registry/__init__.py>`_. Args: config (dict or :class:`colossalai.context.colossalai.context.Config`): information used in the construction of the return object. registry (:class:`Registry`): A registry specifying the type of the return object Returns: A Python object specified by `registry`. Raises: Exception: Raises an Exception if an error occurred when building from registry. """ config_ = config.copy() # keep the original config untouched assert isinstance( registry, Registry), f'Expected type Registry but got {type(registry)}' mod_type = config_.pop('type') assert registry.has( mod_type), f'{mod_type} is not found in registry {registry.name}' try: obj = registry.get_module(mod_type)(**config_) except Exception as e: print( f'An error occurred when building {mod_type} from registry {registry.name}', flush=True) raise e return obj def build_layer(config): """Returns a layer object of :class:`nn.Module` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``LAYERS``. Returns: An object of :class:`torch.nn.Module` """ return build_from_registry(config, LAYERS) def build_loss(config): """Returns a loss function object of :class:`torch.autograd.Function` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``LOSSES``. Returns: An object of :class:`torch.nn.modules.loss._Loss` """ return build_from_registry(config, LOSSES) def build_model(config): """Returns a model object of :class:`nn.Module` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``MODELS``. Returns: An object of :class:`torch.nn.Module` """ return build_from_registry(config, MODELS) def build_dataset(config): """Returns a dataset object of :class:`torch.utils.data.Dataset` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``DATASETS``. Returns: An object of :class:`torch.utils.data.Dataset` """ return build_from_registry(config, DATASETS) def build_optimizer(config, model): """Returns an optimizer object of :class:`torch.optim.Optimizer` constructed from `config`, 'model' and 'params'. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``OPTIMIZERS``. model (:class:`nn.Module`): A model containing parameters for the optimizer Returns: An object of :class:`torch.optim.Optimizer` """ config_ = config.copy() config_['params'] = model.parameters() return build_from_registry(config_, OPTIMIZERS) def build_gradient_handler(config, model, optimizer): """Returns a gradient handler object of :class:`BaseGradientHandler` constructed from `config`, `model` and `optimizer`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``GRADIENT_HANDLER``. model (:class:`nn.Module`): A model containing parameters for the gradient handler optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the gradient handler Returns: An object of :class:`colossalai.engine.BaseGradientHandler` """ config_ = config.copy() config_['model'] = model config_['optimizer'] = optimizer return build_from_registry(config_, GRADIENT_HANDLER) def build_hooks(config, trainer): """Returns a hook object of :class:`BaseHook` constructed from `config` and `trainer`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``HOOKS``. Returns: An object of :class:`colossalai.trainer.hooks.BaseHook` """ config_ = config.copy() config_['trainer'] = trainer return build_from_registry(config_, HOOKS) def build_ophooks(config): """Returns a hook object of :class:`BaseOpHook` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``OPHOOKS``. Returns: An object of :class:`colossalai.trainer.hooks.BaseOpHook` """ config_ = config.copy() return build_from_registry(config_, OPHOOKS) def build_transform(config): """Returns a transformation object of :class:`torchvision.transforms` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``TRANSFORMS``. Returns: An object of :class:`torchvision.transforms` """ return build_from_registry(config, TRANSFORMS) def build_data_sampler(config, dataset): """Returns a data sampler object of :class:`colossalai.nn.data.sampler.BaseSampler` constructed from `config`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``DATA_SAMPLERS``. dataset (:class:`torch.utils.data.Dataset`): An object of :class:`torch.utils.data.Dataset` containing information used in the construction of the return object Returns: An object of :class:`colossalai.utils.data_sampler.BaseSampler` """ config_ = config.copy() config_['dataset'] = dataset return build_from_registry(config_, DATA_SAMPLERS) def build_lr_scheduler(config, optimizer): """Returns a learning rate scheduler object of :class:`torch.optim.lr_scheduler` constructed from `config`, `optimizer`, `total_steps` and `num_steps_per_epoch`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``lr_schedule``. optimizer (:class:`torch.optim.Optimizer`): An optimizer object containing parameters for the learning rate scheduler. Returns: An object of :class:`torch.optim.lr_scheduler` """ config_ = config.copy() config_['optimizer'] = optimizer return build_from_registry(config_, LR_SCHEDULERS) def build_schedule(config): """Returns a schedule of :class:`colossalai.engine.schedule.BaseSchedule`. Args: config (dict or :class:`colossalai.context.Config`): A python dict or a :class:`colossalai.context.Config` object containing information used in the construction of the ``Schedule``. Returns: An object of :class:`colossalai.engine.schedule.BaseSchedule` """ return build_from_registry(config, SCHEDULE)
import copy import heapq from colossalai.builder import build_model, build_layer from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger import torch.nn as nn def _binary_partition(weights, st, ed): """Returns the binary partition position of `weights`, given the start position `st` and the end position `ed`. Args: weights (list): A python list to be binary partitioned st (int): the start position of the binary partition ed (int): the end position of the binary partition Returns: int: the binary partition position of `weights` """ w_sum = weights[ed - 1] prefix = 0 if st > 0: w_sum -= weights[st - 1] prefix = weights[st - 1] minimum = float("inf") for idx in range(st + 1, ed): front = weights[idx - 1] - prefix diff = abs(w_sum - 2 * front) if diff < minimum: pos = idx minimum = diff return st, pos, ed def _heap_addition(weights, intervals, add_cnt): """ """ def _heap_push(heap, st, ed): value = weights[ed - 1] if st > 0: value -= weights[st - 1] heapq.heappush(heap, (-value, st, ed)) ret_intervals = [] heap = [] for st, ed in intervals: _heap_push(heap, st, ed) while add_cnt > 0: _, st, ed = heapq.heappop(heap) if ed - st == 1: ret_intervals.append((st, ed)) else: l, m, r = _binary_partition(weights, st, ed) _heap_push(heap, l, m) _heap_push(heap, m, r) add_cnt -= 1 while heap: _, st, ed = heapq.heappop(heap) ret_intervals.append((st, ed)) ret_intervals.sort() return ret_intervals def _calc_partitions(weights, value): prev = 0 prefix = 0 num_block = 0 intervals = [] for idx, w in enumerate(weights): if weights[idx] - prefix > value: intervals.append((prev, idx)) prev = idx prefix = weights[idx - 1] num_block += 1 intervals.append((prev, len(weights))) return num_block + 1, intervals def _binary_search(weights, num): length = len(weights) prefix = [1 if w == 0 else w for w in weights] for i in range(1, length): prefix[i] += prefix[i - 1] lower_bound = max(weights) upper_bound = prefix[length - 1] while upper_bound > lower_bound: mid = (upper_bound + lower_bound) // 2 number, _ = _calc_partitions(prefix, mid) if number <= num: upper_bound = mid else: lower_bound = mid + 1 num_block, intervals = _calc_partitions(prefix, upper_bound) if num_block < num: intervals = _heap_addition(prefix, intervals, num - num_block) return intervals def partition_uniform(num_items, pipeline_parallel_size, num_chunks): assert num_items % num_chunks == 0, \ "Layer length should be divided by the number of chunks, otherwise parameter method is recomended" logger = get_dist_logger() parts = [[] for _ in range(pipeline_parallel_size)] partition_items = num_items // num_chunks for idx in range(num_chunks): base_idx = idx * partition_items chunk_size = partition_items // pipeline_parallel_size left = pipeline_parallel_size - partition_items % pipeline_parallel_size if chunk_size == 0: logger.warning("Some nodes in Pipeline have no requests") for p in range(pipeline_parallel_size): st = base_idx base_idx += chunk_size + (p >= left) parts[p].append((st, base_idx)) return parts def partition_balanced(weights, pipeline_parallel_size, num_chunks): num_total = pipeline_parallel_size * num_chunks num_items = len(weights) if num_items <= num_total: return partition_uniform(num_items, pipeline_parallel_size, num_chunks) intervals = _binary_search(weights, num_total) current = 0 parts = [[] for _ in range(pipeline_parallel_size)] for inter in intervals: parts[current].append(inter) current = (current + 1) % pipeline_parallel_size return parts def count_layer_params(layers): """Count the number of parameters in each layer """ param_counts = [0] * len(layers) for idx, cfg in enumerate(layers): layer = build_layer(cfg) params = filter(lambda p: p.requires_grad, layer.parameters()) param_counts[idx] = sum(p.numel() for p in params) return param_counts def build_pipeline_model_from_cfg(config, num_chunks: int = 1, partition_method: str = 'parameter', verbose: bool = False): """An initializer to split the model into different stages for pipeline parallelism. An example for the model config is shown below. The class VisionTransformerFromConfig should inherit colossalai.nn.model.ModelFromConfig to allow this initializer to build model from a sequence of layer configurations. :: model_config = dict( type='VisionTransformerFromConfig', embedding_cfg=dict(...), ... ) Args: config (dict): Configuration of the model. num_chunks (int, optional): The number of chunks you want to have on the current stage. This value should be 1 in most cases unless you are using virtual pipeline parallelism. partition_method (str, optional): This parameter determines how you want to split your model layers into stages, you can set it as 'layer' or 'parameter'. verbose (bool, optional): Whether to print the logs. """ ori_model = build_model(config) layers = ori_model.layers_cfg layer_length = len(layers) logger = get_dist_logger() if verbose: logger.info(f"The total length of layers is {layer_length}", ranks=[0]) pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) method = partition_method.lower() # Make a partition if method == 'layer': num_layers = len(layers) parts = partition_uniform(num_layers, pipeline_parallel_size, num_chunks) elif method == 'parameter': param_counts = count_layer_params(layers) # print_rank_0(param_counts) parts = partition_balanced(param_counts, pipeline_parallel_size, num_chunks) else: raise ValueError("Method should be a pre-set string in [layer, parameter]") # Display the partition if verbose: log_str = 'Layer allocation after partitioning: \n' for stage in range(pipeline_parallel_size): num_layers = 0 for st, ed in parts[stage]: num_layers += ed - st log_str += f'\n===== stage={stage}, layers={num_layers} =====\n' for st, ed in parts[stage]: for idx, layer in enumerate(layers[st:ed]): log_str += f'\t{idx + st:2d}: {layer}\n' logger.info(log_str, ranks=[0]) # Save the partition interval = parts[pipeline_rank] models = [] for st, ed in interval: model = copy.deepcopy(ori_model) model.build_from_cfg(st, ed) models.append(model) return nn.ModuleList(models) if len(models) > 1 else models[0] def build_pipeline_model(layers: nn.Sequential, num_chunks: int = 1, verbose: bool = False): """An intializer to split the model into different stages for pipeline parallelism. Note that `layer` must be `torch.nn.Sequential`. Args: layers (`torch.nn.Sequential`): Layers of model num_chunks: The number of chunks you want to have on the current stage. This value should be 1 in most cases unless you are using virtual pipeline parallelism. verbose (bool, optional): Whether to print the logs. """ pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE) partitions = partition_uniform(len(layers), pipeline_parallel_size, num_chunks) module_list = [] for start, end in partitions[pipeline_rank]: module_list.append(nn.Sequential(*layers[start:end])) if verbose: logger = get_dist_logger() logger.info(f'Total {len(layers)} layers', ranks=[0]) for rank, part in enumerate(partitions): log_str = f'===== stage={rank} =====\n' for chunk, (start, end) in enumerate(part): log_str += f'===== chunk={chunk}, layer=[{start}-{end}] =====\n' log_str += '\n'.join([str(layer) for layer in layers[start:end]]) + '\n' logger.info(log_str, ranks=[0]) return nn.ModuleList(module_list) if len(module_list) > 1 else module_list[0]
from ._base_engine import Engine from .gradient_handler import * __all__ = ['Engine']
#!/usr/bin/env python # -*- encoding: utf-8 -*- from asyncio.log import logger from typing import List, Iterable from torch.nn import Module from torch.nn.modules.loss import _Loss from torch.optim import Optimizer from colossalai.logging import get_dist_logger from torch import Tensor from colossalai.engine.ophooks import register_ophooks_recursively, BaseOpHook from colossalai.engine.schedule import BaseSchedule, NonPipelineSchedule, PipelineSchedule, InterleavedPipelineSchedule from typing import Optional, Type from colossalai.engine.gradient_handler import BaseGradientHandler from colossalai.logging import get_dist_logger class Engine: """Basic engine class for training and evaluation. It runs a specific process method :meth:`step` which is based on the given :attr:`schedule` over each batch of a dataset. It controls a iteration in training. Args: model (``torch.nn.Module``): The neural network model. optimizer (``torch.optim.Optimizer``): Optimizer for updating the parameters. criterion (``torch.nn.modules.loss._Loss``, optional): Loss function for calculating loss. gradient_handlers (List[``BaseGradientHandler``], optional): A list of gradient handler used in backward. clip_grad_norm (float, optional): The norm of gradient clipping. ophook_list (list): List of ophook. verbose (bool): whether to display log info. schedule (''BaseSchedule''): Runtime schedule. Examples: >>> # define model, criterion, optimizer, lr_scheduler, train_dataloader for your training >>> model = ... >>> criterion = ... >>> optimizer = ... >>> train_dataloader = ... >>> engine, _, _, _ = colossalai.initialize(model, optimizer, criterion) >>> engine.train() >>> for inputs, labels in train_dataloader >>> # set gradients to zero >>> engine.zero_grad() >>> # run forward pass >>> outputs = engine(inputs) >>> # compute loss value and run backward pass >>> loss = engine.criterion(outputs, labels) >>> engine.backward(loss) >>> # update parameters >>> engine.step() The example of using Engine in training could be find in `Training with engine and trainer <https://www.colossalai.org/docs/basics/engine_trainer>`_. and `Run resnet cifar10 with engine <https://github.com/hpcaitech/ColossalAI-Examples/blob/main/image/resnet/run_resnet_cifar10_with_engine.py>`_. """ def __init__(self, model: Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, gradient_handlers: Optional[List[BaseGradientHandler]] = None, clip_grad_norm: float = 0.0, ophook_list: Optional[List[BaseOpHook]] = None, verbose: bool = True, schedule: Optional[BaseSchedule] = None): self._model = model self._optimizer = optimizer self._criterion = criterion self._clip_grad_norm = clip_grad_norm self._verbose = verbose self._logger = get_dist_logger() # state self.training = True # default # build gradient handler if gradient_handlers: self._gradient_handlers = gradient_handlers else: self._gradient_handlers = [] if ophook_list is None: self._ophook_list = [] else: self._ophook_list = ophook_list # build schedule if schedule: self._schedule = schedule else: self._schedule = NonPipelineSchedule() if self.uses_pipeline: self._schedule.pre_processing(self) register_ophooks_recursively(self._model, self._ophook_list) @property def ophooks(self): """show current activated ophooks""" return self._ophook_list @property def model(self): """Model attached to the engine""" return self._model @property def optimizer(self): """Optimizer attached to the engine""" return self._optimizer @property def criterion(self): """Criterion attached to the engine""" return self._criterion @property def schedule(self): """Schedule attached to the engine""" return self._schedule @property def uses_pipeline(self): """show the pipeline parallel used or not""" return isinstance(self._schedule, (PipelineSchedule, InterleavedPipelineSchedule)) def add_hook(self, ophook: Type[BaseOpHook]) -> None: """add necessary hook""" # whether this hook exist for h in self._ophook_list: if type(h) == type(ophook): logger = get_dist_logger() logger.warning(f"duplicate hooks, at least two instance of {type(ophook)}") self._ophook_list.append(ophook) register_ophooks_recursively(self._model, self._ophook_list) def remove_hook(self, ophook: Type[BaseOpHook]) -> None: """remove hook""" logger = get_dist_logger() logger.warning(f"removing hooks is currently not supported") def zero_grad(self): """Set the gradient of parameters to zero """ self.optimizer.zero_grad() def step(self): """Execute parameter update """ self._all_reduce_gradients() self.optimizer.clip_grad_norm(self.model, self._clip_grad_norm) return self.optimizer.step() def backward(self, loss: Tensor): """Start backward propagation given the loss value computed by a loss function. Args: loss (:class:`torch.Tensor`): Loss value computed by a loss function. """ ret = self.optimizer.backward(loss) for ophook in self._ophook_list: ophook.post_iter() return ret def backward_by_grad(self, tensor, grad): """Start backward propagation given the gradient of the output tensor. Args: tensor (:class:`torch.Tensor`): Output tensor. grad (:class:`torch.Tensor`): Gradient passed back to the output. """ ret = self.optimizer.backward_by_grad(tensor, grad) for ophook in self._ophook_list: ophook.post_iter() return ret def __call__(self, *args, **kwargs): """Run the forward step for the model. Returns: Tuple[:class:`torch.Tensor`] or :class:`torch.Tensor`: Output of the model. """ return self.model(*args, **kwargs) def _all_reduce_gradients(self): """Handles all-reduce operations of gradients across different parallel groups. """ for handler in self._gradient_handlers: handler.handle_gradient() def execute_schedule(self, data_iter: Iterable, **kwargs): """Run the forward, loss computation, and backward for the model. Returns a tuple of (output, label, loss). Returns: Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss). """ output, label, loss = self._schedule.forward_backward_step(self, data_iter, **kwargs) return output, label, loss def train(self): """Sets the model to training mode. """ self.training = True self._model.train() def eval(self): """Sets the model to evaluation mode. """ self.training = False self._model.eval()
#!/usr/bin/env python # -*- encoding: utf-8 -*- from abc import ABC, abstractmethod import torch from typing import Iterable, Callable from colossalai.logging import get_dist_logger from colossalai.utils import get_current_device class BaseSchedule(ABC): """A basic helper class to control the process of training or evaluation. It mainly composes of forward_backward_step for gradient backward and optimizer_step for parameters update. For the convenience to enable FP16, we aggregate all codes that contain the control of FP16 in class schedule. Args: batch_data_process_func (Callable, optional): The preprocessing function which receives a batch of data, and it will be executed in load_batch. """ def __init__(self, batch_data_process_func: Callable = None): self.logger = get_dist_logger() self.batch_data_process_func = batch_data_process_func @staticmethod def _move_tensor(element): if torch.is_tensor(element): if not element.is_cuda: return element.to(get_current_device()).detach() return element def _move_to_device(self, data): if isinstance(data, dict): data = {k: self._move_tensor(v) for k, v in data.items()} else: data = self._move_tensor(data) return data @staticmethod def _check_sanity(data, tag: str): assert isinstance(data, (torch.Tensor, dict)), \ f'{tag} must be torch.Tensor or dict' def load_batch(self, data_iter, to_gpu=True): """Loads a batch from data iterator. It returns the data and labels which are already in the same GPU as where the model's. Args: data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader). to_gpu (bool, optional): Whether the data should be moved to GPU Returns: Tuple (:class:`Tensor`, :class:`torch.Tensor`): A tuple of (data, label). """ if data_iter is None: raise RuntimeError('Dataloader is not defined.') batch_data = next(data_iter) if self.batch_data_process_func: data, label = self.batch_data_process_func(batch_data) else: data, label = batch_data self._check_sanity(data, 'data') self._check_sanity(label, 'label') if isinstance(data, torch.Tensor): self.batch_size = data.size(0) else: self.batch_size = next(iter(data.values())).size(0) if to_gpu: return self._move_to_device(data), self._move_to_device(label) return data, label def pre_processing(self, engine): """To perform actions before running the schedule. """ pass @abstractmethod def forward_backward_step(self, engine, data_iter: Iterable, forward_only: bool, return_loss: bool = True, return_output_label: bool = True): """The process function over a batch of dataset for training or evaluation. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. data_iter (Iterable): Data iterator from which get a batch of data, obtained by calling iter(dataloader). forward_only (bool): If True, the process won't include backward. return_loss (bool, optional): If False, the loss won't be returned. return_output_label (bool, optional): If False, the output and label won't be returned. """ pass @staticmethod def _call_engine(engine, inputs): if isinstance(inputs, torch.Tensor): return engine(inputs) else: return engine(**inputs) @staticmethod def _call_engine_criterion(engine, outputs, labels): assert isinstance( outputs, (torch.Tensor, list, tuple)), f'Expect output of model is (torch.Tensor, list, tuple), got {type(outputs)}' if isinstance(outputs, torch.Tensor): outputs = (outputs,) if isinstance(labels, torch.Tensor): return engine.criterion(*outputs, labels) else: return engine.criterion(*outputs, **labels)
from ._base_schedule import BaseSchedule from ._pipeline_schedule import PipelineSchedule, InterleavedPipelineSchedule, get_tensor_shape from ._non_pipeline_schedule import NonPipelineSchedule __all__ = ['BaseSchedule', 'NonPipelineSchedule', 'PipelineSchedule', 'InterleavedPipelineSchedule', 'get_tensor_shape']
#!/usr/bin/env python # -*- encoding: utf-8 -*- from typing import Iterable import torch from ._base_schedule import BaseSchedule from colossalai.utils import conditional_context class NonPipelineSchedule(BaseSchedule): """A helper schedule class for no pipeline parallelism running environment. During one process, it loads a batch of dataset and feeds it to the model. After getting the output and calculating the loss, it will use :meth:`step` to update the parameters if it is in training mode. Args: batch_data_process_func (Callable, optional): The preprocessing function which receives a batch of data, and it will be executed in load_batch. """ def forward_backward_step(self, engine, data_iter: Iterable, forward_only: bool = False, return_loss: bool = True, return_output_label: bool = True): """The process function that loads a batch of dataset and feeds it to the model. The returned labels and loss will None if :attr:`return_loss` is False. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader). forward_only (bool, optional): If True, the model is run for the forward pass, else back propagation will be executed. return_loss (bool, optional): Loss will be returned if True. return_output_label (bool, optional): Output and label will be returned if True. Returns: Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None. """ assert forward_only or return_loss, \ "The argument 'return_loss' has to be True when 'forward_only' is False, but got False." data, label = self.load_batch(data_iter) # forward with conditional_context(torch.no_grad(), enable=forward_only): output = self._call_engine(engine, data) if return_loss: loss = self._call_engine_criterion(engine, output, label) if not forward_only: engine.backward(loss) if return_output_label: if return_loss: return output, label, loss else: return output, label, None else: if return_loss: return None, None, loss else: return None, None, None
#!/usr/bin/env python # -*- encoding: utf-8 -*- import inspect from typing import Callable, List, Tuple, Union import colossalai.communication as comm import torch.cuda from colossalai.amp.naive_amp import NaiveAMPModel from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import get_dist_logger from colossalai.utils import switch_virtual_pipeline_parallel_rank from colossalai.utils.cuda import get_current_device from colossalai.zero.sharded_model import ShardedModelV2 from ._base_schedule import BaseSchedule def get_tensor_shape(): if hasattr(gpc.config, 'TENSOR_SHAPE'): return gpc.config.TENSOR_SHAPE if not gpc.is_initialized(ParallelMode.PIPELINE): return None if hasattr(gpc.config, 'SEQ_LENGTH') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'GLOBAL_BATCH_SIZE') and hasattr(gpc.config, 'HIDDEN_SIZE'): if gpc.is_initialized(ParallelMode.DATA): dp_size = gpc.get_world_size(ParallelMode.DATA) else: dp_size = 1 if gpc.is_initialized(ParallelMode.SEQUENCE): seq_size = gpc.get_world_size(ParallelMode.SEQUENCE) else: seq_size = 1 tensor_shape = (gpc.config.SEQ_LENGTH // seq_size, gpc.config.GLOBAL_BATCH_SIZE // dp_size // gpc.config.NUM_MICRO_BATCHES, gpc.config.HIDDEN_SIZE) return tensor_shape else: return None def pack_return_tensors(return_tensors): output, label = tuple(zip(*return_tensors)) if isinstance(output[0], torch.Tensor): output = torch.cat(output, dim=0) elif isinstance(output[0], (list, tuple)): output = tuple(torch.cat(tensors, dim=0) for tensors in zip(*output)) else: raise TypeError(f'Output of model must be tensor or list/tuple of tensors') if isinstance(label[0], torch.Tensor): label = torch.cat(label, dim=0) else: merged_label = {k: [] for k in label[0].keys()} for d in label: for k, v in d.items(): merged_label[k].append(v) label = {k: torch.cat(v, dim=0) for k, v in merged_label.items()} return output, label class PipelineSchedule(BaseSchedule): """A helper schedule class for pipeline parallelism running environment. It uses non-interleaved 1F1B strategy. Other properties are similar as :class:`NonPipelineSchedule`. Args: num_microbatches (int): The number of microbatches. batch_data_process_func (Callable, optional): The preprocessing function which receives a batch of data, and it will be executed in `load_batch`. tensor_shape (torch.Size, optional): Specified shape in pipeline communication. scatter_gather_tensors (bool, optional): If set to `True`, communication will be reduced over pipeline when using 1D tensor parallelization. """ def __init__(self, num_microbatches, batch_data_process_func: Callable = None, tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None, scatter_gather_tensors: bool = False): super().__init__(batch_data_process_func=batch_data_process_func) self.num_microbatches = num_microbatches self.dtype = torch.float self.tensor_shape = tensor_shape self.scatter_gather_tensors = False if gpc.is_initialized(ParallelMode.PARALLEL_1D) and gpc.get_world_size(ParallelMode.PARALLEL_1D) > 1: self.scatter_gather_tensors = scatter_gather_tensors self._logger = get_dist_logger() def load_batch(self, data_iter): # Pipeline schedule just puts data in memory self.batch_data, self.batch_label = super().load_batch(data_iter, to_gpu=False) self.microbatch_offset = 0 if isinstance(self.batch_data, torch.Tensor): batch_size = self.batch_data.size(0) else: batch_size = next(iter(self.batch_data.values())).size(0) assert batch_size % self.num_microbatches == 0, \ "Batch size should divided by the number of microbatches" self.microbatch_size = batch_size // self.num_microbatches def _get_data_slice(self, data, offset): if isinstance(data, torch.Tensor): return data[offset:offset + self.microbatch_size] elif isinstance(data, dict): return {k: v[offset:offset + self.microbatch_size] for k, v in data.items()} def load_micro_batch(self): data = self._get_data_slice(self.batch_data, self.microbatch_offset) label = self._get_data_slice(self.batch_label, self.microbatch_offset) self.microbatch_offset += self.microbatch_size return self._move_to_device(data), self._move_to_device(label) def pre_processing(self, engine): # TODO: remove this after testing new zero with pipeline parallelism model = engine.model if isinstance(model, (NaiveAMPModel, ShardedModelV2)): self.dtype = torch.half model = model.model sig = inspect.signature(model.forward) for p in sig.parameters.values(): assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported' @staticmethod def _call_engine(model, input_tensor, batch_data): if isinstance(model, NaiveAMPModel): sig = inspect.signature(model.model.forward) elif isinstance(model, ShardedModelV2): sig = inspect.signature(model.module.forward) else: sig = inspect.signature(model.forward) if isinstance(batch_data, torch.Tensor): if input_tensor is None: return model(batch_data) elif len(sig.parameters) > 1: return model(input_tensor, batch_data) else: return model(input_tensor) else: filter_batch = True for p in sig.parameters.values(): if p.kind == inspect.Parameter.VAR_KEYWORD: filter_batch = False if filter_batch: batch_data = {k: v for k, v in batch_data.items() if k in sig.parameters} if input_tensor is None: return model(**batch_data) else: return model(input_tensor, **batch_data) def forward_step(self, engine, input_tensor, return_tensors, return_output_label=True, accum_loss=None): """Forward step for passed-in model. If it is the first stage, the input tensor is obtained from data_iterator, otherwise the passed-in input_tensor is used. Returns output tensor. This is a helper function and can be ignored by users. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. input_tensor (:class:`torch.Tensor`): Input tensor for this pipeline stage. return_tensors (List[:class:`torch.Tensor`]): A list of tensors to return. return_output_label (bool, optional): Whether returns output labels. accum_loss (optional): Where accumulated loss stores. Returns: :class:`torch.Tensor`: output or the loss value of the current pipeline stage. """ data, label = self.load_micro_batch() output_tensor = self._call_engine(engine.model, input_tensor, data) if gpc.is_last_rank(ParallelMode.PIPELINE): if return_output_label: return_tensors.append((output_tensor, label)) if accum_loss is not None: loss_reduced = self._call_engine_criterion(engine, output_tensor, label) / self.num_microbatches accum_loss.add_(loss_reduced.detach()) return loss_reduced else: # forward only, it's useless since backward is not needed return output_tensor else: assert isinstance( output_tensor, torch.Tensor), 'Output of model using pipeline parallelism must be a tensor (except the last stage).' self._logger.debug( f'Global rank {gpc.get_global_rank()}, pipeline rank {gpc.get_local_rank(ParallelMode.PIPELINE)} forward output tensor {output_tensor.shape}, dtype {output_tensor.dtype}' ) return output_tensor def backward_step(self, engine, input_tensor, output_tensor, output_tensor_grad): """Backward step through the passed-in output tensor. If it is the last stage, the output_tensor_grad is None, otherwise it is the gradients with respect to stage's output tensor. Returns the gradients with respect to the input tensor (None if first stage). This is a helper function and can be ignored by users. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. input_tensor (:class:`torch.Tensor`): input tensor for this pipeline stage. output_tensor (:class:`torch.Tensor`): output tensor for this pipeline stage. output_tensor_grad (:class:`torch.Tensor`): gradient of output tensor for this pipeline stage. Returns: :class:`torch.Tensor`: gradient of input tensor. """ # Retain the grad on the input_tensor. if input_tensor is not None: input_tensor.retain_grad() # Backward pass. if output_tensor_grad is None: engine.backward(output_tensor) else: engine.backward_by_grad(output_tensor, output_tensor_grad) # Collect the grad of the input_tensor. input_tensor_grad = None if input_tensor is not None: input_tensor_grad = input_tensor.grad return input_tensor_grad def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True, return_output_label=True): """Runs non-interleaved 1F1B schedule, with communication between pipeline stages. Returns a tuple with losses if the last stage, an empty tuple otherwise. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader). forward_only (bool, optional): Whether run forward step only. Default is false. If true, no backward will be run. return_loss (bool, optional): Whether returns the loss value. Default is true. return_output_label (bool, optional): If False, the output and label won't be returned. Returns: Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None. """ assert forward_only or return_loss, \ 'The argument \'return_loss\' has to be True when \'forward_only\' is False, but got False.' self.load_batch(data_iter) num_warmup_microbatches = \ (gpc.get_world_size(ParallelMode.PIPELINE) - gpc.get_local_rank(ParallelMode.PIPELINE) - 1) num_warmup_microbatches = min(num_warmup_microbatches, self.num_microbatches) num_microbatches_remaining = self.num_microbatches - num_warmup_microbatches # Input, output tensors only need to be saved when doing backward passes input_tensors = None output_tensors = None if not forward_only: input_tensors = [] output_tensors = [] return_tensors = [] if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True): accum_loss = torch.zeros(1, device=get_current_device()) else: accum_loss = None # Used for tensor meta information communication ft_shape = self.tensor_shape bt_shape = None fs_checker = self.tensor_shape is None # Run warmup forward passes. for i in range(num_warmup_microbatches): if not gpc.is_first_rank(ParallelMode.PIPELINE): ft_shape = comm.recv_tensor_meta(ft_shape) input_tensor = comm.recv_forward(ft_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) output_tensor = self.forward_step(engine, input_tensor, return_tensors, return_output_label=return_output_label, accum_loss=accum_loss) if not gpc.is_last_rank(ParallelMode.PIPELINE): bt_shape = output_tensor.shape fs_checker = comm.send_tensor_meta(output_tensor, fs_checker) comm.send_forward(output_tensor, scatter_gather_tensors=self.scatter_gather_tensors) if not forward_only: input_tensors.append(input_tensor) output_tensors.append(output_tensor) # Before running 1F1B, need to receive first forward tensor. # If all microbatches are run in warmup / cooldown phase, then no need to # receive this tensor here. if num_microbatches_remaining > 0: if not gpc.is_first_rank(ParallelMode.PIPELINE): ft_shape = comm.recv_tensor_meta(ft_shape) input_tensor = comm.recv_forward(ft_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) # Run 1F1B in steady state. for i in range(num_microbatches_remaining): last_iteration = (i == (num_microbatches_remaining - 1)) output_tensor = self.forward_step(engine, input_tensor, return_tensors, return_output_label=return_output_label, accum_loss=accum_loss) if forward_only: comm.send_forward(output_tensor, scatter_gather_tensors=self.scatter_gather_tensors) if not last_iteration: input_tensor = comm.recv_forward(ft_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) else: output_tensor_grad = comm.send_forward_recv_backward(output_tensor, bt_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) # Add input_tensor and output_tensor to end of list. input_tensors.append(input_tensor) output_tensors.append(output_tensor) # Pop input_tensor and output_tensor from the start of the list for # the backward pass. input_tensor = input_tensors.pop(0) output_tensor = output_tensors.pop(0) input_tensor_grad = self.backward_step(engine, input_tensor, output_tensor, output_tensor_grad) if last_iteration: input_tensor = None comm.send_backward(input_tensor_grad, scatter_gather_tensors=self.scatter_gather_tensors) else: input_tensor = comm.send_backward_recv_forward(input_tensor_grad, ft_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) # Run cooldown backward passes. if not forward_only: for i in range(num_warmup_microbatches): input_tensor = input_tensors.pop(0) output_tensor = output_tensors.pop(0) output_tensor_grad = comm.recv_backward(bt_shape, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) input_tensor_grad = self.backward_step(engine, input_tensor, output_tensor, output_tensor_grad) comm.send_backward(input_tensor_grad, scatter_gather_tensors=self.scatter_gather_tensors) if len(return_tensors) > 0: output, label = pack_return_tensors(return_tensors) return output, label, accum_loss else: return None, None, accum_loss class InterleavedPipelineSchedule(PipelineSchedule): def __init__(self, num_microbatches, num_model_chunks, batch_data_process_func: Callable = None, tensor_shape: Union[torch.Size, List[int], Tuple[int]] = None, scatter_gather_tensors: bool = False): """A helper schedule class for pipeline parallelism running environment. It uses interleaved 1F1B strategy. Other properties are similar as :class:`NonPipelineSchedule`. Args: num_microbatches (int): The number of microbatches. num_model_chunks (int): The number of model chunks. batch_data_process_func (Callable, optional): The preprocessing function which receives a batch of data, and it will be executed in `load_batch`. tensor_shape (torch.Size, optional): Specified shape in pipeline communication. scatter_gather_tensors (bool, optional): If set to `True`, communication will be reduced over pipeline when using 1D tensor parallelization. """ assert num_microbatches % gpc.get_world_size(ParallelMode.PIPELINE) == 0, \ 'num_microbatches must be an integer multiple of pipeline parallel world size' super().__init__(num_microbatches, batch_data_process_func=batch_data_process_func, tensor_shape=tensor_shape, scatter_gather_tensors=scatter_gather_tensors) gpc.set_virtual_pipeline_parallel_size(num_model_chunks) gpc.set_virtual_pipeline_parallel_rank(0) self.num_model_chunks = num_model_chunks def pre_processing(self, engine): if isinstance(engine.model, ShardedModelV2): self.dtype = torch.half elif isinstance(engine.model[0], NaiveAMPModel): self.dtype = torch.half for model in engine.model: if isinstance(model, NaiveAMPModel): model = model.model sig = inspect.signature(model.forward) for p in sig.parameters.values(): assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported' def load_batch(self, data_iter): super().load_batch(data_iter) # overwrite microbatch_offset, since model chunks load the same microbatch, and should tract the offset self.microbatch_offset = [0 for _ in range(self.num_model_chunks)] def load_micro_batch(self, model_chunk_id): data = self._get_data_slice(self.batch_data, self.microbatch_offset[model_chunk_id]) label = self._get_data_slice(self.batch_label, self.microbatch_offset[model_chunk_id]) self.microbatch_offset[model_chunk_id] += self.microbatch_size return self._move_to_device(data), self._move_to_device(label) def forward_step(self, engine, model_chunk_id, input_tensor, return_tensors, return_output_label=True, accum_loss=None): """Forward step for passed-in model. If it is the first stage, the input tensor is obtained from data_iterator, otherwise the passed-in input_tensor is used. Returns output tensor. This is a helper function and can be ignored by users. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. model_chunk_id (int): The id of model chunks. input_tensor (:class:`torch.Tensor`): Input tensor for this pipeline stage. return_tensors (List[:class:`torch.Tensor`]): A list of tensors to return. return_output_label (bool, optional): Whether returns output labels. accum_loss (optional): Where accumulated loss stores. Returns: :class:`torch.Tensor`: output or the loss value of the current pipeline stage. """ data, label = self.load_micro_batch(model_chunk_id) output_tensor = self._call_engine(engine.model[model_chunk_id], input_tensor, data) if gpc.is_pipeline_last_stage(): if return_output_label: return_tensors.append((output_tensor, label)) if accum_loss is not None: loss_reduced = self._call_engine_criterion(engine, output_tensor, label) / self.num_microbatches accum_loss.add_(loss_reduced.detach()) return loss_reduced else: # forward only, it's useless since backward is not needed return output_tensor else: assert isinstance( output_tensor, torch.Tensor), 'Output of model using pipeline parallelism must be a tensor (except the last stage).' self._logger.debug( f'Global rank {gpc.get_global_rank()}, pipeline rank {gpc.get_local_rank(ParallelMode.PIPELINE)} forward output tensor {output_tensor.shape}, dtype {output_tensor.dtype}' ) return output_tensor def forward_backward_step(self, engine, data_iter, forward_only=False, return_loss=True, return_output_label=True): """Run interleaved 1F1B schedule (model split into model chunks), with communication between pipeline stages as needed. Args: engine (colossalai.engine.Engine): Colossalai engine for training and inference. data_iter (Iterable): Dataloader as the form of an iterator, obtained by calling iter(dataloader). forward_only (bool, optional): Whether run forward step only. Default is false. If true, no backward will be run. return_loss (bool, optional): Whether returns the loss value. Default is true. return_output_label (bool, optional): If False, the output and label won't be returned. Returns: Tuple[:class:`torch.Tensor`]: A tuple of (output, label, loss), loss and label could be None. The loss would be returned only in the last stage. """ assert forward_only or return_loss, \ 'The argument \'return_loss\' has to be True when \'forward_only\' is False, but got False.' self.load_batch(data_iter) model = engine.model input_tensors = [[] for _ in range(len(model))] output_tensors = [[] for _ in range(len(model))] return_tensors = [] if not forward_only: output_tensor_grads = [[] for _ in range(len(model))] if return_loss and gpc.is_pipeline_last_stage(ignore_virtual=True): accum_loss = torch.zeros(1, device=get_current_device()) else: accum_loss = None # Used for tensor meta information communication input_tensor_shapes = [self.tensor_shape for _ in range(len(model))] output_tensor_shapes = [None for _ in range(len(model))] send_tensor_shape_flags = [self.tensor_shape is None for _ in range(len(model))] pipeline_parallel_size = gpc.get_world_size(ParallelMode.PIPELINE) pipeline_parallel_rank = gpc.get_local_rank(ParallelMode.PIPELINE) # Compute number of warmup and remaining microbatches. num_model_chunks = len(model) num_microbatches = self.num_microbatches * num_model_chunks all_warmup_microbatches = False if forward_only: num_warmup_microbatches = num_microbatches else: # Run all forward passes and then all backward passes if number of # microbatches is just the number of pipeline stages. # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on # all workers, followed by more microbatches after depending on # stage ID (more forward passes for earlier stages, later stages can # immediately start with 1F1B). if self.num_microbatches == pipeline_parallel_size: num_warmup_microbatches = num_microbatches all_warmup_microbatches = True else: num_warmup_microbatches = \ (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2 num_warmup_microbatches += (num_model_chunks - 1) * pipeline_parallel_size num_warmup_microbatches = min(num_warmup_microbatches, num_microbatches) num_microbatches_remaining = \ num_microbatches - num_warmup_microbatches def get_model_chunk_id(microbatch_id, forward): """Helper method to get the model chunk ID given the iteration number.""" microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks) model_chunk_id = microbatch_id_in_group // pipeline_parallel_size if not forward: model_chunk_id = (num_model_chunks - model_chunk_id - 1) return model_chunk_id def forward_step_helper(microbatch_id): """Helper method to run forward step with model split into chunks (run set_virtual_pipeline_model_parallel_rank() before calling forward_step()).""" model_chunk_id = get_model_chunk_id(microbatch_id, forward=True) gpc.set_virtual_pipeline_parallel_rank(model_chunk_id) # forward step if gpc.is_pipeline_first_stage(): if len(input_tensors[model_chunk_id]) == \ len(output_tensors[model_chunk_id]): input_tensors[model_chunk_id].append(None) input_tensor = input_tensors[model_chunk_id][-1] output_tensor = self.forward_step(engine, model_chunk_id, input_tensor, return_tensors, return_output_label=return_output_label, accum_loss=accum_loss) output_tensors[model_chunk_id].append(output_tensor) # if forward-only, no need to save tensors for a backward pass if forward_only: input_tensors[model_chunk_id].pop() output_tensors[model_chunk_id].pop() return output_tensor def backward_step_helper(microbatch_id): """Helper method to run backward step with model split into chunks (run set_virtual_pipeline_model_parallel_rank() before calling backward_step()).""" model_chunk_id = get_model_chunk_id(microbatch_id, forward=False) gpc.set_virtual_pipeline_parallel_rank(model_chunk_id) if gpc.is_pipeline_last_stage(): if len(output_tensor_grads[model_chunk_id]) == 0: output_tensor_grads[model_chunk_id].append(None) input_tensor = input_tensors[model_chunk_id].pop(0) output_tensor = output_tensors[model_chunk_id].pop(0) output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0) input_tensor_grad = self.backward_step(engine, input_tensor, output_tensor, output_tensor_grad) return input_tensor_grad # Run warmup forward passes. gpc.set_virtual_pipeline_parallel_rank(0) if not gpc.is_pipeline_first_stage(): input_tensor_shapes[0] = comm.recv_tensor_meta(input_tensor_shapes[0]) input_tensors[0].append( comm.recv_forward(input_tensor_shapes[0], dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors)) for k in range(num_warmup_microbatches): model_chunk_id = get_model_chunk_id(k, forward=True) output_tensor = forward_step_helper(k) if not gpc.is_pipeline_last_stage(): output_tensor_shapes[model_chunk_id] = output_tensor.shape send_tensor_shape_flags[model_chunk_id] = comm.send_tensor_meta(output_tensor, send_tensor_shape_flags[model_chunk_id]) # Determine if tensor should be received from previous stage. next_forward_model_chunk_id = get_model_chunk_id(k + 1, forward=True) recv_prev = True if gpc.is_pipeline_first_stage(ignore_virtual=True): if next_forward_model_chunk_id == 0: recv_prev = False if k == (num_microbatches - 1): recv_prev = False # Don't send tensor downstream if on last stage. if gpc.is_pipeline_last_stage(): output_tensor = None with switch_virtual_pipeline_parallel_rank(next_forward_model_chunk_id): if not gpc.is_pipeline_first_stage(): input_tensor_shapes[next_forward_model_chunk_id] = comm.recv_tensor_meta( input_tensor_shapes[next_forward_model_chunk_id]) # Send and receive tensors as appropriate (send tensors computed # in this iteration; receive tensors for next iteration). input_shape = input_tensor_shapes[next_forward_model_chunk_id] if recv_prev else None if k == (num_warmup_microbatches - 1) and not forward_only and \ not all_warmup_microbatches: input_tensor_grad = None recv_next = True if gpc.is_pipeline_last_stage(ignore_virtual=True): recv_next = False output_shape = output_tensor_shapes[num_model_chunks - 1] if recv_next else None input_tensor, output_tensor_grad = \ comm.send_forward_backward_recv_forward_backward( output_tensor, input_tensor_grad, input_shape, output_shape, recv_prev=recv_prev, recv_next=recv_next, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) output_tensor_grads[num_model_chunks - 1].append(output_tensor_grad) else: input_tensor = \ comm.send_forward_recv_forward( output_tensor, input_shape, recv_prev=recv_prev, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) input_tensors[next_forward_model_chunk_id].append(input_tensor) # Run 1F1B in steady state. for k in range(num_microbatches_remaining): # Forward pass. forward_k = k + num_warmup_microbatches output_tensor = forward_step_helper(forward_k) # Backward pass. backward_k = k input_tensor_grad = backward_step_helper(backward_k) # Send output_tensor and input_tensor_grad, receive input_tensor # and output_tensor_grad. # Determine if current stage has anything to send in either direction, # otherwise set tensor to None. forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True) gpc.set_virtual_pipeline_parallel_rank(forward_model_chunk_id) if gpc.is_pipeline_last_stage(): output_tensor = None backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False) gpc.set_virtual_pipeline_parallel_rank(backward_model_chunk_id) if gpc.is_pipeline_first_stage(): input_tensor_grad = None # Determine if peers are sending, and where in data structure to put # received tensors. recv_prev = True if gpc.is_pipeline_first_stage(ignore_virtual=True): # First stage is ahead of last stage by (pipeline_parallel_size - 1). next_forward_model_chunk_id = get_model_chunk_id(forward_k - (pipeline_parallel_size - 1), forward=True) if next_forward_model_chunk_id == (num_model_chunks - 1): recv_prev = False next_forward_model_chunk_id += 1 else: next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1, forward=True) recv_next = True if gpc.is_pipeline_last_stage(ignore_virtual=True): # Last stage is ahead of first stage by (pipeline_parallel_size - 1). next_backward_model_chunk_id = get_model_chunk_id(backward_k - (pipeline_parallel_size - 1), forward=False) if next_backward_model_chunk_id == 0: recv_next = False next_backward_model_chunk_id -= 1 else: next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1, forward=False) # If last iteration, don't receive; we already received one extra # before the start of the for loop. if k == (num_microbatches_remaining - 1): recv_prev = False input_shape = input_tensor_shapes[next_forward_model_chunk_id] if recv_prev else None output_shape = output_tensor_shapes[next_backward_model_chunk_id] if recv_next else None # Communicate tensors. input_tensor, output_tensor_grad = \ comm.send_forward_backward_recv_forward_backward( output_tensor, input_tensor_grad, input_shape, output_shape, recv_prev=recv_prev, recv_next=recv_next, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors) # Put input_tensor and output_tensor_grad in data structures in the # right location. if recv_prev: input_tensors[next_forward_model_chunk_id].append(input_tensor) if recv_next: output_tensor_grads[next_backward_model_chunk_id].append(output_tensor_grad) # Run cooldown backward passes (flush out pipeline). if not forward_only: if all_warmup_microbatches: output_tensor_grads[num_model_chunks - 1].append( comm.recv_backward(output_tensor_shapes[num_model_chunks - 1], scatter_gather_tensors=self.scatter_gather_tensors)) for k in range(num_microbatches_remaining, num_microbatches): input_tensor_grad = backward_step_helper(k) next_backward_model_chunk_id = get_model_chunk_id(k + 1, forward=False) recv_next = True if gpc.is_pipeline_last_stage(ignore_virtual=True): if next_backward_model_chunk_id == (num_model_chunks - 1): recv_next = False if k == (num_microbatches - 1): recv_next = False output_shape = output_tensor_shapes[next_backward_model_chunk_id] if recv_next else None output_tensor_grads[next_backward_model_chunk_id].append( comm.send_backward_recv_backward(input_tensor_grad, output_shape, recv_next=recv_next, dtype=self.dtype, scatter_gather_tensors=self.scatter_gather_tensors)) if len(return_tensors) > 0: output, label = pack_return_tensors(return_tensors) return output, label, accum_loss else: return None, None, accum_loss
#!/usr/bin/env python # -*- encoding: utf-8 -*- from abc import ABC, abstractmethod class BaseGradientHandler(ABC): """A basic helper class to handle all-reduce operations of gradients across different parallel groups before optimization. Args: model (Module): Model where the gradients accumulate. optimizer (Optimizer): Optimizer for updating the parameters. """ def __init__(self, model, optimizer): self._model = model self._optimizer = optimizer @abstractmethod def handle_gradient(self): """A method to accumulate gradients across different parallel groups. Users should write their own functions or just use the functions in pre-defined subclasses. """ pass
from ._base_gradient_handler import BaseGradientHandler from ._data_parallel_gradient_handler import DataParallelGradientHandler from ._zero_gradient_handler import ZeROGradientHandler from ._sequence_parallel_gradient_handler import SequenceParallelGradientHandler from ._pipeline_parallel_gradient_handler import PipelineSharedModuleGradientHandler from ._moe_gradient_handler import MoeGradientHandler from ._sequence_parallel_gradient_handler import SequenceParallelGradientHandler __all__ = [ 'BaseGradientHandler', 'DataParallelGradientHandler', 'ZeROGradientHandler', 'PipelineSharedModuleGradientHandler', 'MoeGradientHandler', 'SequenceParallelGradientHandler' ]
from colossalai.core import global_context as gpc from colossalai.registry import GRADIENT_HANDLER from ._base_gradient_handler import BaseGradientHandler from ...context.parallel_mode import ParallelMode from .utils import bucket_allreduce @GRADIENT_HANDLER.register_module class DataParallelGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. """ def handle_gradient(self): """A method running a all-reduce operation in a data parallel group. """ # TODO: add memory buffer if gpc.data_parallel_size > 1: bucket_allreduce(param_list=self._model.parameters(), group=gpc.get_group(ParallelMode.DATA))
#!/usr/bin/env python from collections import defaultdict import torch import torch.distributed as dist from colossalai.core import global_context as gpc from colossalai.registry import GRADIENT_HANDLER from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from ._base_gradient_handler import BaseGradientHandler @GRADIENT_HANDLER.register_module class PipelineSharedModuleGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in sub parallel groups. A all-reduce collective communication will be operated in :func:`handle_gradient` among all sub pipeline parallel groups. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. """ def handle_gradient(self): """A method running a all-reduce operation in sub pipeline parallel groups. """ if gpc.pipeline_parallel_size > 1: # bucketize and all-reduce buckets = defaultdict(lambda: defaultdict(list)) # Pack the buckets. for param in self._model.parameters(): group = getattr(param, 'pipeline_shared_module_pg', None) if param.requires_grad and param.grad is not None and group is not None: tp = param.data.type() buckets[group][tp].append(param) # For each bucket, all-reduce and copy all-reduced grads. for group, group_buckets in buckets.items(): for tp, bucket in group_buckets.items(): grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads).to(torch.cuda.current_device()) dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=group) for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced)
import torch.distributed as dist import torch.nn as nn from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors from typing import Iterable def bucket_allreduce(param_list: Iterable[nn.Parameter], group=None): # get communication world size comm_size = dist.get_world_size(group) # bucketize and all-reduce buckets = {} # Pack the buckets. for param in param_list: if param.requires_grad and param.grad is not None: tp = param.data.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) # For each bucket, all-reduce and copy all-reduced grads. for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) coalesced /= comm_size dist.all_reduce(coalesced, group=group) for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced)
from colossalai.core import global_context as gpc from colossalai.registry import GRADIENT_HANDLER from colossalai.utils.moe import get_moe_epsize_param_dict from ._base_gradient_handler import BaseGradientHandler from ...context.parallel_mode import ParallelMode from .utils import bucket_allreduce from colossalai.context.moe_context import MOE_CONTEXT @GRADIENT_HANDLER.register_module class MoeGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group and moe model parallel. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. """ def __init__(self, model, optimizer=None): super().__init__(model, optimizer) def handle_gradient(self): """A method running an all-reduce operation in a data parallel group. Then running an all-reduce operation for all parameters in experts across moe model parallel group """ global_data = gpc.data_parallel_size if global_data > 1: epsize_param_dict = get_moe_epsize_param_dict(self._model) # epsize is 1, indicating the params are replicated among processes in data parallelism # use the ParallelMode.DATA to get data parallel group # reduce gradients for all parameters in data parallelism if 1 in epsize_param_dict: bucket_allreduce(param_list=epsize_param_dict[1], group=gpc.get_group(ParallelMode.DATA)) for ep_size in epsize_param_dict: if ep_size != 1 and ep_size != MOE_CONTEXT.world_size: bucket_allreduce(param_list=epsize_param_dict[ep_size], group=MOE_CONTEXT.parallel_info_dict[ep_size].dp_group)
from colossalai.registry import GRADIENT_HANDLER from ._base_gradient_handler import BaseGradientHandler @GRADIENT_HANDLER.register_module class ZeROGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. This class is specialized with ZeRO optimization. """ def handle_gradient(self): """A method running a all-reduce operation in a data parallel group. """ self._optimizer.sync_grad()
from colossalai.core import global_context as gpc from colossalai.registry import GRADIENT_HANDLER from ._base_gradient_handler import BaseGradientHandler from ...context.parallel_mode import ParallelMode from .utils import bucket_allreduce @GRADIENT_HANDLER.register_module class SequenceParallelGradientHandler(BaseGradientHandler): """A helper class to handle all-reduce operations in a data parallel group. A all-reduce collective communication will be operated in :func:`handle_gradient` among a data parallel group. For better performance, it bucketizes the gradients of all parameters that are the same type to improve the efficiency of communication. """ def handle_gradient(self): """A method running a all-reduce operation in a data parallel group. """ if gpc.get_world_size(ParallelMode.SEQUENCE_DP) > 1: bucket_allreduce(param_list=self._model.parameters(), group=gpc.get_group(ParallelMode.SEQUENCE_DP))
from ._param_hookmgr import BaseParamHookMgr __all__ = ["BaseParamHookMgr"]
from typing import Callable, List import torch import functools class BaseParamHookMgr(object): def __init__(self, param_list: List[torch.nn.Parameter]) -> None: r""" register backward hook on every parameters of module """ self._param_list = param_list self._hook_list = [] def register_backward_hooks(self, hook_call: Callable) -> None: r""" The hook_call will be called every time a gradient with respect to the a param in self.param_list is computed. The hook should have the following signature: ``` hook(param, grad) -> Tensor or None ``` """ if not torch.is_grad_enabled(): return # don't register grad hooks if grad isn't enabled for p in self._param_list: if p.requires_grad and not hasattr(p, '_base_param_hook'): handle = p.register_hook(functools.partial(hook_call, p)) p._base_param_hook = handle def remove_hooks(self): for p in self._param_list: if p.requires_grad and hasattr(p, '_base_param_hook'): p._base_param_hook.remove()
from .utils import register_ophooks_recursively, BaseOpHook from ._memtracer_ophook import MemTracerOpHook __all__ = ["BaseOpHook", "MemTracerOpHook", "register_ophooks_recursively"]
import torch from typing import List, Callable, Optional from abc import ABC, abstractmethod import torch class BaseOpHook(ABC): """This class allows users to add customized operations before and after the execution of a PyTorch submodule""" def __init__(self): pass @abstractmethod def pre_fwd_exec(self, module: torch.nn.Module, *args): pass @abstractmethod def post_fwd_exec(self, module: torch.nn.Module, *args): pass @abstractmethod def pre_bwd_exec(self, module: torch.nn.Module, input, output): pass @abstractmethod def post_bwd_exec(self, module: torch.nn.Module, input): pass @abstractmethod def post_iter(self): pass # apply torch.autograd.Function that calls a backward_function to tensors in output def _apply_to_tensors_only(module, functional, backward_function, outputs): if type(outputs) is tuple: touched_outputs = [] for output in outputs: touched_output = _apply_to_tensors_only(module, functional, backward_function, output) touched_outputs.append(touched_output) return tuple(touched_outputs) elif type(outputs) is torch.Tensor: return functional.apply(module, backward_function, outputs) else: return outputs class PreBackwardFunction(torch.autograd.Function): @staticmethod def forward(ctx, module, pre_backward_function, outputs): ctx.module = module ctx.pre_backward_function = pre_backward_function module.applied_pre_backward = False outputs = outputs.detach() return outputs @staticmethod def backward(ctx, *args): ctx.pre_backward_function(ctx.module) return (None, None) + args class PostBackwardFunction(torch.autograd.Function): @staticmethod def forward(ctx, module, pre_backward_function, output): ctx.module = module output = output.detach() ctx.pre_backward_function = pre_backward_function return output @staticmethod def backward(ctx, *args): """ Args: activation_grad of the next layer. Returns: grad of the input activation. """ ctx.pre_backward_function(ctx.module) return (None, None) + args def register_ophooks_recursively(module: torch.nn.Module, ophook_list: List[BaseOpHook] = None, name: str = "", filter_fn: Optional[Callable] = None): r"""Recursilvely register pre/post hooks for all submodules in the module in FWD and BWD.""" assert isinstance(module, torch.nn.Module) # Add hooks for submodules for child_name, child in module.named_children(): register_ophooks_recursively(child, ophook_list, name + child_name, filter_fn) # Early return on modules with no parameters. if len(list(module.parameters(recurse=False))) == 0: return # return from flitered module if filter_fn is not None and filter_fn(module): return if ophook_list is not None: for hook in ophook_list: assert (isinstance(hook, BaseOpHook)) def _pre_forward_module_hook(submodule, *args): for hook in ophook_list: assert isinstance(submodule, torch.nn.Module) hook.pre_fwd_exec(submodule, *args) def _post_forward_module_hook(submodule, *args): for hook in ophook_list: assert isinstance(submodule, torch.nn.Module) hook.post_fwd_exec(submodule, *args) def _pre_backward_module_hook(submodule, inputs, output): def _run_before_backward_function(submodule): for hook in ophook_list: assert isinstance(submodule, torch.nn.Module) hook.pre_bwd_exec(submodule, inputs, output) return _apply_to_tensors_only(submodule, PreBackwardFunction, _run_before_backward_function, output) def _post_backward_module_hook(submodule, inputs): def _run_after_backward_function(submodule): for hook in ophook_list: assert isinstance(submodule, torch.nn.Module) hook.post_bwd_exec(submodule, inputs) return _apply_to_tensors_only(submodule, PostBackwardFunction, _run_after_backward_function, inputs) module.register_forward_pre_hook(_pre_forward_module_hook) module.register_forward_hook(_post_forward_module_hook) module.register_forward_hook(_pre_backward_module_hook) module.register_forward_pre_hook(_post_backward_module_hook)
import torch from colossalai.registry import OPHOOKS from . import BaseOpHook @OPHOOKS.register_module class ShardParamHook(BaseOpHook): """ A hook to process sharded param before and afther FWD and BWD operator executing. """ def __init__(self): super().__init__() def niter(self): return self._niter def pre_fwd_exec(self, module: torch.nn.Module, *args): for param in module.parameters(): assert hasattr(param, 'ca_attr') param.ca_attr.gather() param.data = param.ca_attr.payload() def post_fwd_exec(self, module: torch.nn.Module, *args): for param in module.parameters(): assert hasattr(param, 'ca_attr') param.ca_attr.shard() param.data = param.ca_attr.payload() def pre_bwd_exec(self, module: torch.nn.Module, input, output): for param in module.parameters(): assert hasattr(param, 'ca_attr') param.ca_attr.gather() param.data = param.ca_attr.payload() def post_bwd_exec(self, module: torch.nn.Module, input): for param in module.parameters(): assert hasattr(param, 'ca_attr') param.ca_attr.shard() param.data = param.ca_attr.payload() def pre_iter(self): pass def post_iter(self): pass
import json import pickle from pathlib import Path from colossalai.context.parallel_mode import ParallelMode import torch from colossalai.engine.ophooks import BaseOpHook from colossalai.registry import OPHOOKS from colossalai.logging import get_dist_logger from colossalai.core import global_context as gpc from typing import Union from colossalai.utils.memory_tracer import AsyncMemoryMonitor import os import math @OPHOOKS.register_module class MemTracerOpHook(BaseOpHook): """ Collect GPU memory usage information Args: warmup (int): This parameter indicates how many iterations to truncate before profiling, defaults to 50. refreshrate (int): This parameter decides the frequency of write file, defaults to 10. data_prefix (string): The prefix of the stats data file, defaults to "memstats". """ def __init__(self, warmup: int = 50, refreshrate: int = 10, data_prefix: str = "memstats"): super().__init__() self.async_mem_monitor = AsyncMemoryMonitor() self._curiter = 0 self._logger = get_dist_logger() self._count = 0 self._warmup = warmup self._refreshrate = refreshrate self._data_prefix = data_prefix # in distributed environment if gpc.is_initialized(ParallelMode.GLOBAL): self._rank = gpc.get_global_rank() else: self._rank = 0 def _isvalid(self, module) -> bool: assert isinstance(module, torch.nn.Module) return module.training def _resample(self): # calculate the average iteration time total_time = (self.async_mem_monitor.time_stamps[-1] - self.async_mem_monitor.time_stamps[0]) avg_it_time = total_time / self.warmup self._logger.debug(f"total time for {self.warmup} iterations is {total_time}s") # adjust the sampling power power: int = round(-math.log(avg_it_time, 10)) + 1 self._logger.debug(f"the power is {power}") self.async_mem_monitor.set_interval(power) @property def refreshrate(self) -> int: return self._refreshrate @property def warmup(self) -> int: return self._warmup @property def curiter(self) -> int: return self._curiter @property def valid_iter(self) -> int: return self.curiter - self.warmup def pre_fwd_exec(self, module: torch.nn.Module, *args): if self._isvalid(module): self.async_mem_monitor.finish() self.async_mem_monitor.start() def post_fwd_exec(self, module: torch.nn.Module, *args): if self._isvalid(module): self.async_mem_monitor.finish() def pre_bwd_exec(self, module: torch.nn.Module, input, output): if self._isvalid(module): self.async_mem_monitor.finish() self.async_mem_monitor.start() def post_bwd_exec(self, module: torch.nn.Module, input): if self._isvalid(module): self.async_mem_monitor.finish() def pre_iter(self): pass def post_iter(self): self.async_mem_monitor.finish() # in the warmup stage if self.curiter < self.warmup: pass # adjust the sampling rate elif self.curiter == self.warmup: # use adaptive sample rate self._resample() # record data to log file else: # every `refreshrate` times, refresh the file if self.valid_iter != 0 and self.valid_iter % self.refreshrate == 0: # output file info self._logger.info(f"dump a memory statistics as pickle to {self._data_prefix}-{self._rank}.pkl") home_dir = Path.home() with open(home_dir.joinpath(f".cache/colossal/mem-{self._rank}.pkl"), "wb") as f: pickle.dump(self.async_mem_monitor.state_dict, f) self._count += 1 self._logger.debug(f"data file has been refreshed {self._count} times") # finish a iteration self._curiter += 1 def save_results(self, data_file: Union[str, Path]): with open(data_file, "w") as f: f.write(json.dumps(self.async_mem_monitor.state_dict))
import torch from colossalai.registry import OPHOOKS from . import BaseOpHook @OPHOOKS.register_module class ShardGradHook(BaseOpHook): """ A hook to process sharded param before and afther FWD and BWD operator executing. """ def __init__(self): super().__init__() def pre_fwd_exec(self, module: torch.nn.Module, *args): pass def post_fwd_exec(self, module: torch.nn.Module, *args): pass def pre_bwd_exec(self, module: torch.nn.Module, input, output): for param in module.parameters(): assert hasattr(param, '_sharded_grad') param._sharded_grad.setup() def post_bwd_exec(self, module: torch.nn.Module, input): pass def post_iter(self): pass
import logging from typing import List, Optional from .logger import DistributedLogger __all__ = ['get_dist_logger', 'DistributedLogger', 'disable_existing_loggers'] def get_dist_logger(name='colossalai'): """Get logger instance based on name. The DistributedLogger will create singleton instances, which means that only one logger instance is created per name. Args: :param name: name of the logger, name must be unique :type name: str :return: a distributed logger instance :rtype: :class:`colossalai.logging.DistributedLogger` """ return DistributedLogger.get_instance(name=name) def disable_existing_loggers(include: Optional[List[str]] = None, exclude: List[str] = ['colossalai']): """Set the level of existing loggers to `WARNING`. By default, it will "disable" all existing loggers except the logger named "colossalai". Args: include (Optional[List[str]], optional): Loggers whose name in this list will be disabled. If set to `None`, `exclude` argument will be used. Defaults to None. exclude (List[str], optional): Loggers whose name not in this list will be disabled. This argument will be used only when `include` is None. Defaults to ['colossalai']. """ if include is None: filter_func = lambda name: name not in exclude else: filter_func = lambda name: name in include for log_name in logging.Logger.manager.loggerDict.keys(): if filter_func(log_name): logging.getLogger(log_name).setLevel(logging.WARNING)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import colossalai import logging from pathlib import Path from typing import Union import inspect from colossalai.context.parallel_mode import ParallelMode try: from rich.logging import RichHandler _FORMAT = 'colossalai - %(name)s - %(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=_FORMAT, handlers=[RichHandler(show_path=False, markup=True, rich_tracebacks=True)]) except ImportError: _FORMAT = 'colossalai - %(name)s - %(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=_FORMAT) class DistributedLogger: """This is a distributed event logger class essentially based on :class:`logging`. Args: name (str): The name of the logger. Note: The parallel_mode used in ``info``, ``warning``, ``debug`` and ``error`` should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_. """ __instances = dict() @staticmethod def get_instance(name: str): """Get the unique single logger instance based on name. Args: name (str): The name of the logger. Returns: DistributedLogger: A DistributedLogger object """ if name in DistributedLogger.__instances: return DistributedLogger.__instances[name] else: logger = DistributedLogger(name=name) return logger def __init__(self, name): if name in DistributedLogger.__instances: raise Exception( 'Logger with the same name has been created, you should use colossalai.logging.get_dist_logger') else: self._name = name self._logger = logging.getLogger(name) DistributedLogger.__instances[name] = self @staticmethod def __get_call_info(): stack = inspect.stack() # stack[1] gives previous function ('info' in our case) # stack[2] gives before previous function and so on fn = stack[2][1] ln = stack[2][2] func = stack[2][3] return fn, ln, func @staticmethod def _check_valid_logging_level(level: str): assert level in ['INFO', 'DEBUG', 'WARNING', 'ERROR'], 'found invalid logging level' def set_level(self, level: str): """Set the logging level Args: level (str): Can only be INFO, DEBUG, WARNING and ERROR. """ self._check_valid_logging_level(level) self._logger.setLevel(getattr(logging, level)) def log_to_file(self, path: Union[str, Path], mode: str = 'a', level: str = 'INFO', suffix: str = None): """Save the logs to file Args: path (A string or pathlib.Path object): The file to save the log. mode (str): The mode to write log into the file. level (str): Can only be INFO, DEBUG, WARNING and ERROR. suffix (str): The suffix string of log's name. """ assert isinstance(path, (str, Path)), \ f'expected argument path to be type str or Path, but got {type(path)}' self._check_valid_logging_level(level) if isinstance(path, str): path = Path(path) # create log directory path.mkdir(parents=True, exist_ok=True) # set the default file name if path is a directory if not colossalai.core.global_context.is_initialized(ParallelMode.GLOBAL): rank = 0 else: rank = colossalai.core.global_context.get_global_rank() if suffix is not None: log_file_name = f'rank_{rank}_{suffix}.log' else: log_file_name = f'rank_{rank}.log' path = path.joinpath(log_file_name) # add file handler file_handler = logging.FileHandler(path, mode) file_handler.setLevel(getattr(logging, level)) formatter = logging.Formatter(_FORMAT) file_handler.setFormatter(formatter) self._logger.addHandler(file_handler) def _log(self, level, message: str, parallel_mode: ParallelMode = ParallelMode.GLOBAL, ranks: list = None): if ranks is None: getattr(self._logger, level)(message) else: local_rank = colossalai.core.global_context.get_local_rank(parallel_mode) if local_rank in ranks: getattr(self._logger, level)(message) def info(self, message: str, parallel_mode: ParallelMode = ParallelMode.GLOBAL, ranks: list = None): """Log an info message. Args: message (str): The message to be logged. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): The parallel mode used for logging. Defaults to ParallelMode.GLOBAL. ranks (List): List of parallel ranks. """ message_prefix = "{}:{} {}".format(*self.__get_call_info()) self._log('info', message_prefix, parallel_mode, ranks) self._log('info', message, parallel_mode, ranks) def warning(self, message: str, parallel_mode: ParallelMode = ParallelMode.GLOBAL, ranks: list = None): """Log a warning message. Args: message (str): The message to be logged. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): The parallel mode used for logging. Defaults to ParallelMode.GLOBAL. ranks (List): List of parallel ranks. """ message_prefix = "{}:{} {}".format(*self.__get_call_info()) self._log('warning', message_prefix, parallel_mode, ranks) self._log('warning', message, parallel_mode, ranks) def debug(self, message: str, parallel_mode: ParallelMode = ParallelMode.GLOBAL, ranks: list = None): """Log a debug message. Args: message (str): The message to be logged. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): The parallel mode used for logging. Defaults to ParallelMode.GLOBAL. ranks (List): List of parallel ranks. """ message_prefix = "{}:{} {}".format(*self.__get_call_info()) self._log('debug', message_prefix, parallel_mode, ranks) self._log('debug', message, parallel_mode, ranks) def error(self, message: str, parallel_mode: ParallelMode = ParallelMode.GLOBAL, ranks: list = None): """Log an error message. Args: message (str): The message to be logged. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`): The parallel mode used for logging. Defaults to ParallelMode.GLOBAL. ranks (List): List of parallel ranks. """ message_prefix = "{}:{} {}".format(*self.__get_call_info()) self._log('error', message_prefix, parallel_mode, ranks) self._log('error', message, parallel_mode, ranks)
from ._trainer import Trainer __all__ = ['Trainer']
from typing import Union, List from colossalai.context.parallel_mode import ParallelMode import torch from torch import Tensor from torch.utils.data import DataLoader from tqdm import tqdm from colossalai.core import global_context as gpc from colossalai.engine import Engine from colossalai.logging import DistributedLogger from colossalai.utils import MultiTimer from colossalai.utils import is_dp_rank_0, is_tp_rank_0, is_no_pp_or_last_stage from colossalai.trainer.hooks import BaseHook class Trainer: r"""This is a class tending for easy deployments of users' training and evaluation instead of writing their own scripts. It is similar with ``ignite.engine`` and ``keras.engine``, but is called `Trainer`. Args: engine (:class:`Engine`): Engine responsible for the process function. timer (:class:`MultiTimer`, optional): Timer used to monitor the whole training. logger (:class:`colossalai.logging.DistributedLogger`, optional): Logger used to record the whole training log. Examples: >>> # define model, criterion, optimizer, lr_scheduler, train_dataloader for your training >>> model = ... >>> criterion = ... >>> optimizer = ... >>> train_dataloader = ... >>> # Initialize your engine, train_dataloader, test_dataloader, lr_scheduler >>> engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion) >>> # Beginning training progress >>> timier = ... >>> logger = ... >>> trainer = Trainer(engine=engine, logger=logger, timer=timier) >>> # add hooks you would like to use here. >>> hook_list = [] >>> trainer.fit( >>> train_dataloader=train_dataloader, >>> epochs=gpc.config.NUM_EPOCHS, >>> test_interval=1, >>> hooks=hook_list, >>> display_progress=True, >>> return_output_label=False >>> ) More examples and details could be found in `Training with engine and trainer <https://www.colossalai.org/docs/basics/engine_trainer>`_ and `ColossalAI-Examples <https://github.com/hpcaitech/ColossalAI-Examples/tree/main>`_. """ def __init__( self, engine: Engine, timer: MultiTimer = None, logger: DistributedLogger = None, ): # training-ralated params self._engine = engine self._max_epochs = 0 self._cur_epoch = 0 self._max_steps = 0 self._cur_step = 0 self._steps_per_epoch = 0 # misc params self._logger = logger self._verbose = logger is not None # hooks can store states in this dict, and could be consumed by other hooks self.states = dict() # build hooks self.hooks = list() # multi-timer for time benchmarking self._timer = timer @property def cur_epoch(self): """Returns the index of the current epoch.""" return self._cur_epoch @cur_epoch.setter def cur_epoch(self, epoch: int): """Set how many epochs have been processed.""" # allow setter for training resumption self._cur_epoch = epoch @property def cur_step(self): """Returns how many iteration steps have been processed.""" return self._cur_step @property def max_epochs(self): return self._max_epochs @property def max_steps(self): return self._max_steps @property def steps_per_epoch(self): return self._steps_per_epoch @property def engine(self): return self._engine def _set_current_step(self, epoch: int): """Sets current step number. Args: epoch (int): Step number to be set. """ self._cur_step = epoch * self._steps_per_epoch def _call_timer(self, action: str, item: str, *args, **kwargs) -> None: """Call timer funciton with a given timer name. Args: action (str): Function to be called on timer. item (str): Name of the timer. args (list): args used for action function. kwargs (dict): kwargs used for action function. """ if self._timer is not None: getattr(self._timer, action)(item, *args, **kwargs) def _reset_states(self) -> None: """Clear trainer states""" self.states = dict() def _call_hooks(self, func, output=None): """Calls specific hooks in the current time point. Args: func (str): A string represents the time point. output (Any, optional): Output of the model after running an iteration or None in any other time points. """ # Only after iter hook will receive output for hook in self.hooks: if output is None: getattr(hook, func)(self) else: getattr(hook, func)(self, *output) @staticmethod def _should_display_progress(display_progress: bool): """Only display progress on DP rank 0, TP rank 0 and PP last rank""" return (display_progress and is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()) def _train_epoch( self, train_dataloader: DataLoader, epoch: int = None, display_progress: bool = False, return_output_label: bool = True, ): # set training state self._engine.train() data_iter = iter(train_dataloader) progress = range(self._steps_per_epoch) if display_progress: if epoch is None: progress = tqdm(progress, desc="[Train]") else: progress = tqdm(progress, desc=f"[Epoch {epoch} / Train]") self._call_hooks("before_train_epoch") self._call_timer(action="start", item="Train-epoch") for i in progress: self._call_hooks("before_train_iter") self._call_timer(action="start", item="Train-step") # run 1 training step self.engine.zero_grad() logits, label, loss = self.engine.execute_schedule( data_iter, forward_only=False, return_loss=True, return_output_label=return_output_label, ) self.engine.step() self._call_timer(action="stop", item="Train-step", keep_in_history=True) self._call_hooks("after_train_iter", output=(logits, label, loss)) self._cur_step += 1 if display_progress: if "step_metrics" in self.states: progress.set_postfix(**self.states["step_metrics"]) # stop when max iter is reached if self._exceed_max_step(): break self._call_timer(action="stop", item="Train-epoch", keep_in_history=True) self._call_hooks("after_train_epoch") self._call_timer(action="reset", item="Train-epoch") def _eval( self, test_dataloader: DataLoader, epoch: int = None, display_progress: bool = False, return_output_label: bool = True, ): # switch engine status self._engine.eval() data_iter = iter(test_dataloader) num_steps = len(test_dataloader) self._call_hooks("before_test") # prepare progress bar progress = range(num_steps) if display_progress: desc = "Evaluation" if epoch is not None: desc = "[Epoch %d / Test]" % epoch progress = tqdm(progress, desc=desc) self._call_hooks("before_test_epoch") self._call_timer(action="start", item="Test-epoch") with torch.no_grad(): for _ in progress: self._call_hooks("before_test_iter") self._call_timer(action="start", item="Test-step") logits, label, loss = self.engine.execute_schedule( data_iter, forward_only=True, return_loss=True, return_output_label=return_output_label, ) self._call_timer(action="stop", item="Test-step", keep_in_history=True) self._call_hooks("after_test_iter", output=(logits, label, loss)) if display_progress: if "step_metrics" in self.states: progress.set_postfix(**self.states["step_metrics"]) self._call_timer(action="stop", item="Test-epoch", keep_in_history=True) self._call_hooks("after_test_epoch") self._call_hooks("after_test") self._call_timer(action="reset", item="Test-step") self._call_timer(action="reset", item="Test-epoch") def _exceed_max_step(self): return self._max_steps is not None and self._cur_step >= self._max_steps def fit( self, train_dataloader: DataLoader, epochs: int, max_steps: int = None, test_dataloader: DataLoader = None, test_interval: int = 1, hooks: List[BaseHook] = None, display_progress: bool = False, return_output_label: bool = True, ): r"""Trains the model to fit training data. Args: train_dataloader (:class:`torch.utils.data.DataLoader`): DataLoader for training. epochs (int): Maximum number of epochs. max_steps (int, optional): Maximum number of running iterations. test_dataloader (:class:`torch.utils.data.DataLoader`, optional): DataLoader for validation. test_interval (int, optional): Interval of validation hooks (list[BaseHook], optional): A list of hooks used in training. display_progress (bool, optional): If True, a progress bar will be displayed. """ # set epochs and steps, consider gradient accumulation self._steps_per_epoch = len(train_dataloader) self._max_steps = max_steps self._max_epochs = epochs # check if testing is required should_test = False if test_dataloader is not None: should_test = True display_progress = self._should_display_progress(display_progress) # reset hooks self._reset_states() if hooks is not None: assert isinstance( hooks, list ), f"expected argument hooks be to list, but got {type(hooks)}" else: hooks = [] self.hooks = hooks self.hooks.sort(key=lambda hook: hook.priority) if self._verbose: for hook in self.hooks: self._logger.info( f"Using {hook.__class__.__name__} for training, priority = {hook.priority}", ranks=[0], ) self._logger.info( "Lower value means higher priority for calling hook function", ranks=[0]) self._call_hooks("after_hook_is_attached") self._engine.train() self._call_hooks("before_train") # recover step value if resuming training last_epoch = self._cur_epoch if self.cur_epoch != 0: self._set_current_step(last_epoch) for epoch in range(last_epoch, epochs): # train for one epoch self._train_epoch( train_dataloader=train_dataloader, epoch=epoch, display_progress=display_progress, return_output_label=return_output_label, ) # start eval if should_test and epoch % test_interval == 0: self._eval( test_dataloader=test_dataloader, display_progress=display_progress, epoch=epoch, return_output_label=return_output_label, ) self._cur_epoch += 1 # check for termination if self._exceed_max_step(): self._logger.info( f"Max number of steps {max_steps} has been reached, training is stopped automatically", ranks=[0], ) break self._call_hooks("after_train") self._call_timer("reset", "Train-epoch") def evaluate( self, test_dataloader: DataLoader, hooks: List[BaseHook] = None, display_progress: bool = False, return_output_label: bool = True, ): """Evaluates the model with testing data. Args: test_dataloader (:class:`torch.utils.data.DataLoader`, optional): Dataloader for testing. hooks (list, optional): A list of hooks used in evaluation. Defaults to None. display_progress (bool, optional): If True, the evaluation progress will be printed. Defaults to False. return_output_label (bool, optional): If True, the output of model and the label will be returned. Defaults to True. """ # set display display_progress = self._should_display_progress(display_progress) # reset hooks self._reset_states() if hooks is not None: assert isinstance( hooks, list ), f"expected argument hooks be to list, but got {type(hooks)}" else: hooks = [] self.hooks = hooks self.hooks.sort(key=lambda hook: hook.priority) if self._verbose: for hook in self.hooks: self._logger.info( f"Using {hook.__class__.__name__} for training, priority = {hook.priority}", ranks=[0], ) self._logger.info( "Lower value means higher priority for calling hook function", ranks=[0]) self._call_hooks("after_hook_is_attached") # eval self._eval( test_dataloader=test_dataloader, display_progress=display_progress, return_output_label=return_output_label, ) def predict(self, data: Union[Tensor, List[Tensor]]): """Uses trained model to make a prediction for a tensor or a tensor list. Args: data (Union[:class:`torch.tensor`, List[:class:`torch.tensor`]]): Data as the input. Returns: :class:`torch.tensor`: The output of model as the prediction """ # predict without labels if isinstance(data, (list, tuple)): assert isinstance(data[0], Tensor) else: assert isinstance(data, Tensor) self._engine.eval() # prepare a list of (data, label) to make it iterable # for compatibility with schedule simple_dataloader = [(data, None)] data_iter = iter(simple_dataloader) output, _, _ = self.engine.execute_schedule(data_iter, forward_only=True, return_loss=False) return output
#!/usr/bin/env python # -*- encoding: utf-8 -*- from abc import ABC, abstractmethod from typing import Callable import torch import torch.distributed as dist from colossalai.communication import all_reduce from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.registry import HOOKS from colossalai.utils import get_current_device, is_no_pp_or_last_stage from ._base_hook import BaseHook class Metric(ABC): """A basic class of metric collectors. It collects a specific metric during training or evaluation and would always be used with :class:`MetricHook` to help it update its states and show the metric. So please use corresponding hook class to make the metric collector works. Args: epoch_only (bool): Whether the metric only read for the full epoch. """ def __init__(self, epoch_only: bool): # is the metric only read for the full epoch self._epoch_only = epoch_only @property def epoch_only(self): """Returns :attr:`epoch_only`. """ return self._epoch_only @abstractmethod def reset(self) -> None: """Resets the metric to it's initial state. By default, this is called at the start of each epoch. """ pass @abstractmethod def update(self, *args, **kwargs) -> None: """Updates the metric's state using the passed batch output. By default, this is called once for each batch. """ pass @abstractmethod def get_last_step_value(self): """Returns the metric value in the last iteration. """ pass @abstractmethod def get_accumulated_value(self): """Computes the metric based on it's accumulated state. By default, this is called at the end of each epoch. :return: the actual quantity of interest :rtype: Any """ pass @staticmethod @abstractmethod def is_better(a, b) -> bool: """Compares a and b, and returns whether a is better than b :return: The result of comparison :rtype: bool """ pass class LossMetric(Metric): """A metric collector for loss. Args: epoch_only (bool): Whether the metric only read for the full epoch. """ def __init__(self, epoch_only): super().__init__(epoch_only=epoch_only) self.last_step_loss = torch.zeros(1, device=get_current_device()) self.accum_loss = torch.zeros(1, device=get_current_device()) self.count = 0 def reset(self) -> None: """Sets :attr:`last_step_loss` and :attr:`accum_loss` to zero. """ self.last_step_loss.zero_() self.accum_loss.zero_() self.count = 0 def update(self, loss) -> None: """Updates :attr:`last_step_loss` and :attr:`accum_loss` with current loss. It expects the output has loss. Args: loss (:class:`torch.tensor`): Current loss of the output. """ # expect output to be logits, label and loss loss_ = loss.detach() self.last_step_loss.copy_(loss_) self.accum_loss.add_(loss_) self.count += 1 def get_accumulated_value(self): """Returns accumulated loss. """ if gpc.is_initialized(ParallelMode.DATA): dist.all_reduce(self.accum_loss, op=dist.ReduceOp.SUM, group=gpc.get_group(ParallelMode.DATA)) self.accum_loss.div_(gpc.get_world_size(ParallelMode.DATA)) self.accum_loss.div_(self.count) return self.accum_loss.item() def get_last_step_value(self): """Returns :attr:`last_step_loss`. """ return self.last_step_loss @staticmethod def is_better(a, b): return a < b class LearningRateMetric(Metric): """A metric collector for learning rate. Args: epoch_only (bool): Whether the metric only read for the full epoch. initial_lr (float, optional): Initial learning rate, defaults to 0.0. """ def __init__(self, epoch_only: bool, initial_lr: float = 0.): super().__init__(epoch_only=epoch_only) self.lr = initial_lr def reset(self) -> None: pass def update(self, lr) -> None: self.lr = lr def get_last_step_value(self): return self.lr def get_accumulated_value(self): return self.lr @staticmethod def is_better(a, b) -> bool: pass class AccuracyMetric(Metric): """A metric collector for accuracy. It only works for classification tasks. Args: epoch_only (bool): Whether the metric only read for the full epoch. accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task. """ def __init__(self, epoch_only: bool, accuracy_func: Callable): super().__init__(epoch_only=epoch_only) self.acc = accuracy_func self.last_step_sum = torch.zeros(1, device=get_current_device()) self.last_step_correct = torch.zeros(1, device=get_current_device()) self.accumulated_sum = torch.zeros(1, device=get_current_device()) self.accumulated_correct = torch.zeros(1, device=get_current_device()) def reset(self) -> None: self.last_step_sum.zero_() self.last_step_correct.zero_() self.accumulated_sum.zero_() self.accumulated_correct.zero_() def update(self, logits, targets, batch_size) -> None: """Updates last step accuracy and accumulated accuracy with current logits and labels. It expects the output has logits and labels. Args: logits (:class:`torch.tensor`): The logits output of the model. targets (:class:`torch.tensor`): Real labels of the dataset. batch_size (int): Batch size of the task. """ if isinstance(logits, (list, tuple)): logits = logits[0] if isinstance(targets, (list, tuple)): targets = targets[0] # update correct = self.acc(logits, targets) self.last_step_sum.fill_(batch_size) self.last_step_correct.fill_(correct) self.accumulated_sum += self.last_step_sum self.accumulated_correct += self.last_step_correct def get_last_step_value(self): self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA) self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA) return (self.last_step_correct / self.last_step_sum).item() def get_accumulated_value(self): self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA) self.accumulated_correct = all_reduce(self.accumulated_correct, ParallelMode.DATA) return (self.accumulated_correct / self.accumulated_sum).item() @staticmethod def is_better(a, b) -> bool: return a > b class MetricHook(BaseHook): """Specialized hook classes for :class:`Metric`. Some help metric collectors initialize, reset and update their states. Others are used to display and record the metric. Args: priority (int): Priority in the printing, hooks with small priority will be printed in front defaults to 1. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__( self, priority: int, ): super().__init__(priority) self._is_stage_to_compute = is_no_pp_or_last_stage() def _check_metric_states_initialization(self, trainer): if 'metrics' not in trainer.states: self.init_runner_states(trainer, 'metrics', dict(train={}, test={})) @HOOKS.register_module class LossHook(MetricHook): """Specialized hook class for :class:`Loss`. Args: priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 0. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, priority: int = 0): super().__init__(priority) def after_hook_is_attached(self, trainer): self._check_metric_states_initialization(trainer) if self._is_stage_to_compute: self.train_loss = LossMetric(epoch_only=False) self.test_loss = LossMetric(epoch_only=True) # register the metric calculator trainer.states['metrics']['train']['Loss'] = self.train_loss trainer.states['metrics']['test']['Loss'] = self.test_loss def before_train_epoch(self, trainer): if self._is_stage_to_compute: self.train_loss.reset() def after_train_iter(self, trainer, logits, label, loss): if self._is_stage_to_compute: self.train_loss.update(loss) def before_test_epoch(self, trainer): if self._is_stage_to_compute: self.test_loss.reset() def after_test_iter(self, trainer, logits, label, loss): if self._is_stage_to_compute: self.test_loss.update(loss) @HOOKS.register_module class AccuracyHook(MetricHook): """Specialized hook class for :class:`Accuracy`. Args: accuracy_func (:class:`typing.Callable`): Accuracy function for the classification task. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 0. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, accuracy_func: Callable, priority: int = 0): super().__init__(priority) self.accuracy_func = accuracy_func def after_hook_is_attached(self, trainer): self._check_metric_states_initialization(trainer) if self._is_stage_to_compute: self.metric = AccuracyMetric(epoch_only=True, accuracy_func=self.accuracy_func) # register the metric trainer.states['metrics']['test']['Accuracy'] = self.metric def before_test(self, trainer): if self._is_stage_to_compute: self.metric.reset() def after_test_iter(self, trainer, logits, targets, *args): if self._is_stage_to_compute: batch_size = trainer.engine.schedule.batch_size self.metric.update(logits, targets, batch_size) class ThroughputMetric(Metric): """Metric for :class:`Throughput`. Args: epoch_only (bool): Whether the metric only read for the full epoch. """ def __init__(self, epoch_only: bool, ignored_steps: int = 0): super().__init__(epoch_only=epoch_only) self.ignored_steps = ignored_steps self.cur_steps = 0 self.accumulated_num_samples = torch.zeros(1, device=get_current_device()) self.accumulated_used_time = torch.zeros(1, device=get_current_device()) self.last_step_num_samples = torch.zeros(1, device=get_current_device()) self.last_step_used_time = torch.zeros(1, device=get_current_device()) def reset(self) -> None: # self.cur_steps = 0 self.accumulated_num_samples.zero_() self.accumulated_used_time.zero_() self.last_step_num_samples.zero_() self.last_step_used_time.zero_() def update(self, num_samples, time) -> None: self.cur_steps += 1 self.last_step_num_samples.fill_(num_samples) self.last_step_used_time.fill_(time) if self.cur_steps >= self.ignored_steps: self.accumulated_num_samples += self.last_step_num_samples self.accumulated_used_time += self.last_step_used_time def get_last_step_value(self): self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \ gpc.get_world_size(ParallelMode.DATA) self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA) return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item() def get_accumulated_value(self): self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \ gpc.get_world_size(ParallelMode.DATA) self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA) return (self.accumulated_num_samples / (self.accumulated_used_time + 1e-12)).item() @staticmethod def is_better(a, b) -> bool: pass @HOOKS.register_module class ThroughputHook(MetricHook): """Specialized hook class for :class:`Throughput`. Hook to measure execution throughput (samples/sec). Args: ignored_steps (int, optional): the number of initial training steps to ignore. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, ignored_steps: int = 0, priority: int = 10): super().__init__(priority) self.ignored_steps = ignored_steps def after_hook_is_attached(self, trainer): self._check_metric_states_initialization(trainer) if self._is_stage_to_compute: self.metric = ThroughputMetric(epoch_only=True, ignored_steps=self.ignored_steps) # register the metric trainer.states['metrics']['train']['Throughput'] = self.metric trainer.states['metrics']['test']['Throughput'] = self.metric def before_train_epoch(self, trainer): if self._is_stage_to_compute: self.metric.reset() def after_train_iter(self, trainer, *args): if self._is_stage_to_compute: self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Train-step').get_elapsed_time()) def before_test(self, trainer): if self._is_stage_to_compute: self.metric.reset() def after_test_iter(self, trainer, *args): if self._is_stage_to_compute: self.metric.update(trainer.engine.schedule.batch_size, trainer._timer.get_timer('Test-step').get_elapsed_time())
#!/usr/bin/env python # -*- encoding: utf-8 -*- from abc import ABC from torch import Tensor class BaseHook(ABC): """This class allows users to add desired actions in specific time points during training or evaluation. :param priority: Priority in the printing, hooks with small priority will be printed in front :type priority: int """ def __init__(self, priority: int) -> None: self.priority = priority def after_hook_is_attached(self, trainer): """Actions after hooks are attached to trainer. """ pass def before_train(self, trainer): """Actions before training. """ pass def after_train(self, trainer): """Actions after training. """ pass def before_train_iter(self, trainer): """Actions before running a training iteration. """ pass def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor): """Actions after running a training iteration. Args: trainer (:class:`Trainer`): Trainer which is using this hook. output (:class:`torch.Tensor`): Output of the model. label (:class:`torch.Tensor`): Labels of the input data. loss (:class:`torch.Tensor`): Loss between the output and input data. """ pass def before_train_epoch(self, trainer): """Actions before starting a training epoch. """ pass def after_train_epoch(self, trainer): """Actions after finishing a training epoch. """ pass def before_test(self, trainer): """Actions before evaluation. """ pass def after_test(self, trainer): """Actions after evaluation. """ pass def before_test_epoch(self, trainer): """Actions before starting a testing epoch. """ pass def after_test_epoch(self, trainer): """Actions after finishing a testing epoch. """ pass def before_test_iter(self, trainer): """Actions before running a testing iteration. """ pass def after_test_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor): """Actions after running a testing iteration. Args: trainer (:class:`Trainer`): Trainer which is using this hook output (:class:`torch.Tensor`): Output of the model label (:class:`torch.Tensor`): Labels of the input data loss (:class:`torch.Tensor`): Loss between the output and input data """ pass def init_runner_states(self, trainer, key, val): """Initializes trainer's state. Args: trainer (:class:`Trainer`): Trainer which is using this hook key: Key of state to be reset val: Value of state to be reset """ if key not in trainer.states: trainer.states[key] = val
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os import os.path as osp import torch from typing import List from decimal import Decimal from colossalai.context import ParallelMode from colossalai.core import global_context as gpc from colossalai.registry import HOOKS from colossalai.logging import DistributedLogger from colossalai.utils import report_memory_usage, is_dp_rank_0, \ is_tp_rank_0, is_no_pp_or_last_stage, MultiTimer from ._base_hook import BaseHook def _format_number(val, prec=5): if isinstance(val, float): return f'{val:.{prec}g}' elif torch.is_tensor(val) and torch.is_floating_point(val): return f'{val.item():.{prec}g}' return val class LogByEpochHook(BaseHook): """Hook to log by epoch. Args: logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information. interval (int, optional): Interval of printing log information, defaults to 1. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front, defaults to 1. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, logger, interval: int = 1, priority: int = 1): super().__init__(priority) self.logger = logger self._interval = interval def _is_epoch_to_log(self, trainer): return trainer.cur_epoch % self._interval == 0 @HOOKS.register_module class LogMetricByStepHook(BaseHook): """Hook to log metric by step. Args: priority (int, optional): Priority in the printing, hooks with small priority will be printed in front, defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, priority: int = 10): super().__init__(priority) def after_train_iter(self, trainer, *args): trainer.states['step_metrics'] = dict() for metric_name, metric_calculator in trainer.states['metrics']['train'].items(): trainer.states['step_metrics'][metric_name.lower()] = \ f'{_format_number(metric_calculator.get_last_step_value())}' def after_test_iter(self, trainer, *args): trainer.states['step_metrics'] = dict() for metric_name, metric_calculator in trainer.states['metrics']['test'].items(): trainer.states['step_metrics'][metric_name.lower()] = \ f'{_format_number(metric_calculator.get_last_step_value())}' @HOOKS.register_module class LogMetricByEpochHook(LogByEpochHook): """Specialized hook to record the metric to log. Args: logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information. interval (int, optional): Interval of printing log information, defaults to 1. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front, defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, logger, interval: int = 1, priority: int = 10) -> None: super().__init__(logger, interval, priority) self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage() def _get_str(self, trainer, mode): msg = [] for metric_name, metric_calculator in trainer.states['metrics'][mode].items(): msg.append( f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}') msg = ' | '.join(msg) return msg def after_train_epoch(self, trainer): if self._is_epoch_to_log(trainer): msg = self._get_str(trainer=trainer, mode='train') if self._is_rank_to_log: self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg}') # f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}') def after_test_epoch(self, trainer): if self._is_epoch_to_log(trainer): msg = self._get_str(trainer=trainer, mode='test') if self._is_rank_to_log: self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}') # f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}') @HOOKS.register_module class TensorboardHook(BaseHook): """Specialized hook to record the metric to Tensorboard. Args: log_dir (str): Directory of log. ranks (list): Ranks of processors. parallel_mode (:class:`colossalai.context.parallel_mode.ParallelMode`, optional): Parallel mode used in trainer, defaults to colossalai.context.parallel_mode.ParallelMode.GLOBAL. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front, defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, log_dir: str, ranks: List = None, parallel_mode: ParallelMode = ParallelMode.GLOBAL, priority: int = 10, ) -> None: super().__init__(priority=priority) from torch.utils.tensorboard import SummaryWriter # create log dir if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0: os.makedirs(log_dir, exist_ok=True) # determine the ranks to generate tensorboard logs self._is_valid_rank_to_log = False if not gpc.is_initialized(parallel_mode): self._is_valid_rank_to_log = True else: local_rank = gpc.get_local_rank(parallel_mode) if ranks is None or local_rank in ranks: self._is_valid_rank_to_log = True # check for if gpc.is_initialized(ParallelMode.PIPELINE) and \ not gpc.is_last_rank(ParallelMode.PIPELINE) and self._is_valid_rank_to_log: raise ValueError("Tensorboard hook can only log on the last rank of pipeline process group") if self._is_valid_rank_to_log: # create workspace on only one rank if gpc.is_initialized(parallel_mode): rank = gpc.get_local_rank(parallel_mode) else: rank = 0 # create workspace log_dir = osp.join(log_dir, f'{parallel_mode}_rank_{rank}') os.makedirs(log_dir, exist_ok=True) self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f'_rank_{rank}') def _log_by_iter(self, trainer, mode: str): for metric_name, metric_calculator in trainer.states['metrics'][mode].items(): if metric_calculator.epoch_only: continue val = metric_calculator.get_last_step_value() if self._is_valid_rank_to_log: self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step) def _log_by_epoch(self, trainer, mode: str): for metric_name, metric_calculator in trainer.states['metrics'][mode].items(): if metric_calculator.epoch_only: val = metric_calculator.get_accumulated_value() if self._is_valid_rank_to_log: self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step) def after_test_iter(self, trainer, *args): self._log_by_iter(trainer, mode='test') def after_test_epoch(self, trainer): self._log_by_epoch(trainer, mode='test') def after_train_iter(self, trainer, *args): self._log_by_iter(trainer, mode='train') def after_train_epoch(self, trainer): self._log_by_epoch(trainer, mode='train') @HOOKS.register_module class LogTimingByEpochHook(LogByEpochHook): """Specialized hook to write timing record to log. Args: timer (:class:`colossalai.utils.MultiTimer`): Timer for the hook. logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information. interval (int, optional): Interval of printing log information, defaults to 1. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. log_eval (bool, optional): Whether writes in evaluation, defaults to True. ignore_num_train_steps (int, optional): Number of training steps to ignore, defaults to 0. """ def __init__(self, timer: MultiTimer, logger: DistributedLogger, interval: int = 1, priority: int = 10, log_eval: bool = True, ignore_num_train_steps: int = 0) -> None: super().__init__(logger=logger, interval=interval, priority=priority) self._timer = timer self._log_eval = log_eval self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage() # extra handling to avoid the unstable readings of the first # few training steps to affect the history mean time self._ignore_num_train_steps = ignore_num_train_steps self._is_train_step_history_trimmed = False def _get_message(self, mode): msg = [] for timer_name, timer in self._timer: if timer_name.startswith(mode): last_elapsed_time = timer.get_elapsed_time() if timer.has_history: if timer_name == 'Train-step' and not self._is_train_step_history_trimmed: timer._history = timer._history[self._ignore_num_train_steps:] self._is_train_step_history_trimmed = True history_mean = timer.get_history_mean() history_sum = timer.get_history_sum() msg.append( f'{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s' ) else: msg.append(f'{timer_name}: last = {_format_number(last_elapsed_time)} s') msg = ' | '.join(msg) return msg def after_train_epoch(self, trainer): """Writes log after finishing a training epoch. """ if self._is_epoch_to_log(trainer) and self._is_rank_to_log: msg = self._get_message('Train') self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg} | #steps/epoch = {trainer.steps_per_epoch}') def after_test_epoch(self, trainer): """Writes log after finishing a testing epoch. """ if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval: msg = self._get_message('Test') self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}') @HOOKS.register_module class LogMemoryByEpochHook(LogByEpochHook): """Specialized Hook to write memory usage record to log. Args: logger (:class:`colossalai.logging.DistributedLogger`): Logger for recording the log information. interval (int, optional): Interval of printing log information, defaults to 1. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 1. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. log_eval (bool, optional): Whether writes in evaluation, defaults to True. """ def __init__(self, logger: DistributedLogger, interval: int = 1, priority: int = 10, log_eval: bool = True, report_cpu: bool = False, # no reference ) -> None: super().__init__(logger=logger, interval=interval, priority=priority) self._log_eval = log_eval self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() def before_train(self, trainer): """Resets before training. """ if self._is_epoch_to_log(trainer) and self._is_rank_to_log: report_memory_usage('Before-train', self.logger) def after_train_epoch(self, trainer): """Writes log after finishing a training epoch. """ if self._is_epoch_to_log(trainer) and self._is_rank_to_log: report_memory_usage(f'[Epoch {trainer.cur_epoch} / Train]', self.logger) def after_test(self, trainer): """Reports after testing. """ if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval: report_memory_usage(f'[Epoch {trainer.cur_epoch} / Test]', self.logger)
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch from colossalai.logging import get_dist_logger from colossalai.registry import HOOKS from colossalai.trainer.hooks import BaseHook from colossalai.utils.checkpointing import save_checkpoint from ._lr_scheduler_hook import LRSchedulerHook @HOOKS.register_module class SaveCheckpointHook(BaseHook): """Saves the model by interval in training process. Args: interval (int, optional): Number of epochs between saving the checkpoint, defaults to 1. if save_by_iter is True, this arg refers to the number of iters between saving. checkpoint_dir (str, optional): File name to save the checkpoint, defaults to None. model (torch.nn.Module, Optional): The model to save, defaults to None. When not passing, 'trainer.engine.model' will be used. We encourage you to pass the model in it to avoid some unexpected bugs, especially when using **DDP**. save_by_iter (bool, optional): Whether saving the checkpoint by iter, default to False. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 10. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__(self, interval: int = 1, checkpoint_dir: str = None, model: torch.nn.Module = None, save_by_iter: bool = False, priority: int = 10): super().__init__(priority=priority) self.interval = interval self.checkpoint_dir = checkpoint_dir self.model = model self.save_by_iter = save_by_iter self.logger = get_dist_logger() # get lr scheduler from the LRSchedulerHook before train self._lr_scheduler = None def after_hook_is_attached(self, trainer): # get lr scheduler if exists for hook in trainer.hooks: if isinstance(hook, LRSchedulerHook): self._lr_scheduler = hook.lr_scheduler break self.model = self.model if self.model is not None else trainer.engine.model def after_train_iter(self, trainer, output, label, loss): """Saves the model after a training iter. """ # save by interval if self.save_by_iter and trainer.cur_step % self.interval == 0: save_checkpoint(self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer, self._lr_scheduler) self.logger.info( f'checkpoint for iteration {trainer.cur_step} is saved to {self.checkpoint_dir}', ranks=[0]) else: pass def after_train_epoch(self, trainer): """Saves the model after a training epoch. """ # save by interval if trainer.cur_epoch % self.interval == 0: save_checkpoint(self.checkpoint_dir, trainer.cur_epoch, self.model, trainer.engine.optimizer, self._lr_scheduler) self.logger.info( f'checkpoint for epoch {trainer.cur_epoch} is saved to {self.checkpoint_dir}', ranks=[0])
from ._base_hook import BaseHook from ._checkpoint_hook import SaveCheckpointHook from ._log_hook import (LogMemoryByEpochHook, LogMetricByEpochHook, LogMetricByStepHook, LogTimingByEpochHook, TensorboardHook) from ._lr_scheduler_hook import LRSchedulerHook from ._metric_hook import AccuracyHook, LossHook, MetricHook, ThroughputHook __all__ = [ 'BaseHook', 'MetricHook', 'LossHook', 'AccuracyHook', 'LogMetricByEpochHook', 'TensorboardHook', 'LogTimingByEpochHook', 'LogMemoryByEpochHook', 'LRSchedulerHook', 'ThroughputHook', 'LogMetricByStepHook', 'SaveCheckpointHook' ]
from colossalai.registry import HOOKS from torch import Tensor from ._metric_hook import LearningRateMetric, MetricHook @HOOKS.register_module class LRSchedulerHook(MetricHook): r"""Build LR scheduler for trainer. Args: lr_scheduler (:class:`colossalai.nn.lr_scheduler`): The specific LR scheduler in range of ``colossalai.nn.lr_scheduler``, more details about ``lr_scheduler`` could be found in `lr_scheduler <https://github.com/hpcaitech/ColossalAI/tree/main/colossalai/nn/lr_scheduler>`_. by_epoch (bool): If `True`, the LR will be scheduled every epoch. Else, the LR will be scheduled every batch. store_lr_in_state (bool, optional): If `True`, store the learning rate in each state, defaults to `True`. priority (int, optional): Priority in the printing, hooks with small priority will be printed in front defaults to 1. If different hooks share same priority, the order of printing would depend on the hooks order in the hook list. """ def __init__( self, lr_scheduler, by_epoch: bool, store_lr_in_state: bool = True, priority: int = 1, ): super().__init__(priority=priority) self.by_epoch = by_epoch self.lr_scheduler = lr_scheduler self.store_lr_in_state = store_lr_in_state def after_hook_is_attached(self, trainer): self._check_metric_states_initialization(trainer) trainer.states['metrics']['train']['LR'] = LearningRateMetric(epoch_only=self.by_epoch, initial_lr=self.lr_scheduler.get_last_lr()[0]) def after_train_epoch(self, trainer): if self.by_epoch: self.lr_scheduler.step() trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0]) def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor): if not self.by_epoch: self.lr_scheduler.step() trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0])
from colossalai.registry import HOOKS from torch import Tensor from colossalai.trainer.hooks import BaseHook from colossalai.utils.memory_tracer import AsyncMemoryMonitor @HOOKS.register_module class MemTraceHook(BaseHook): """Save memory stats and pass it to states This hook is used to record memory usage info, and pass to trainer.states You can use it as other trainer hook and fetch data from trainer.states['metrics][mode] """ def __init__( self, priority: int = 0, ) -> None: super().__init__(priority=priority) self._memory_monitor = AsyncMemoryMonitor() def after_hook_is_attached(self, trainer): # Initialize the data trainer.states['metrics']['train'] = self._memory_monitor.state_dict trainer.states['metrics']['test'] = self._memory_monitor.state_dict def before_train_iter(self, trainer): self._memory_monitor.start() return super().before_train_iter(trainer) def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor): self._memory_monitor.finish() trainer.states['metrics']['train'] = self._memory_monitor.state_dict trainer.states['metrics']['test'] = self._memory_monitor.state_dict return super().after_train_iter(trainer, output, label, loss) def before_test_iter(self, trainer): self._memory_monitor.start() return super().before_test(trainer) def after_test_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor): self._memory_monitor.finish() trainer.states['metrics']['train'] = self._memory_monitor.state_dict trainer.states['metrics']['test'] = self._memory_monitor.state_dict return super().after_test_iter(trainer, output, label, loss)
from .cuda_native import LayerNorm, FusedScaleMaskSoftmax, MultiHeadAttention __all__ = ["LayerNorm", "FusedScaleMaskSoftmax", "MultiHeadAttention"]
import torch JIT_OPTIONS_SET = False def set_jit_fusion_options(): """Set PyTorch JIT layer fusion options. """ # LSG: the latest pytorch and CUDA versions may not support # the following jit settings global JIT_OPTIONS_SET if JIT_OPTIONS_SET == False: # flags required to enable jit fusion kernels TORCH_MAJOR = int(torch.__version__.split('.')[0]) TORCH_MINOR = int(torch.__version__.split('.')[1]) if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10): # nvfuser torch._C._jit_set_profiling_executor(True) torch._C._jit_set_profiling_mode(True) torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(True) torch._C._debug_set_autodiff_subgraph_inlining(False) else: # legacy pytorch fuser torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) JIT_OPTIONS_SET = True
from .option import set_jit_fusion_options from .bias_dropout_add import bias_dropout_add_fused_train, bias_dropout_add_fused_inference from .bias_gelu import bias_gelu_impl __all__ = [ "bias_dropout_add_fused_train", "bias_dropout_add_fused_inference", "bias_gelu_impl", "set_jit_fusion_options" ]
import torch def bias_dropout_add(x, bias, residual, prob, training): # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor out = torch.nn.functional.dropout(x + bias, p=prob, training=training) out = residual + out return out @torch.jit.script def bias_dropout_add_fused_train(x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float) -> torch.Tensor: return bias_dropout_add(x, bias, residual, prob, True) @torch.jit.script def bias_dropout_add_fused_inference(x: torch.Tensor, bias: torch.Tensor, residual: torch.Tensor, prob: float) -> torch.Tensor: return bias_dropout_add(x, bias, residual, prob, False)
import torch ###### BIAS GELU FUSION/ NO AUTOGRAD ################ # 1/sqrt(2*pi)-> 0.3989423 # 1/sqrt(2) -> 0.70710678 # sqrt(2/pi) -> 0.79788456 # this function is tanh approximation of gelu # actual gelu is: # x * 0.5 * (1.0 + torch.erf(x * 0.70710678)) @torch.jit.script def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) # gradient of tanh approximation of gelu # gradient of actual gelu is: # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) @torch.jit.script def bias_gelu_back(g, bias, y): x = bias + y tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff*g class GeLUFunction(torch.autograd.Function): @staticmethod # bias is an optional argument def forward(ctx, input, bias): ctx.save_for_backward(input, bias) return bias_gelu(bias, input) @staticmethod def backward(ctx, grad_output): input, bias = ctx.saved_tensors tmp = bias_gelu_back(grad_output, bias, input) return tmp, tmp bias_gelu_impl = GeLUFunction.apply
import math import importlib from dataclasses import dataclass import torch from torch import nn from torch.autograd import Function def check_config(config): if config.hidden_size % config.nhead != 0: raise Exception("hidden_size % nhead != 0") factor = 8 if config.fp16 else 4 upbound = factor * 1024 * 4 if config.hidden_size > upbound: # as required by ln backward kernel currently raise Exception(f"hidden_size > {upbound}") head_dim = config.hidden_size // config.nhead if head_dim % factor != 0: # as required by reshape kernel raise Exception(f"head_dim({head_dim}) % {factor} != 0") def calc_offset(sizes): offsets = [0] tmp = 0 for x in sizes: tmp += x offsets.append(tmp) return offsets colossal_multihead_attention = None @dataclass class Config: max_batch_tokens: int # max batch token numbers max_seq_len: int # max sequence length hidden_size: int # size of transformer hidden layers nhead: int # number of heads in attention attn_prob_dropout_ratio: float # attention score dropout ratio hidden_dropout_ratio: float # dropout ration before residual norm_first: bool # norm_first fp16: bool # fp16 presion class MultiHeadAttention1DFunc(Function): @staticmethod def forward(ctx, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, out_proj_bias, norm_weight, norm_bias, config): cuda_module = colossal_multihead_attention forward_func = (cuda_module.multihead_attention_fw_fp16 if config.fp16 else cuda_module.multihead_attention_fw_fp32) if config.fp16: input = input.to(torch.half) input_mask = input_mask.to(torch.half) (output,) = forward_func(config.layer_id, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, out_proj_bias, norm_weight, norm_bias, config.training, config.norm_first) if config.is_grad_enabled and config.training: ctx.save_for_backward(output, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, out_proj_bias, norm_weight, norm_bias) ctx.config = config return output @staticmethod def backward(ctx, grad_output): assert ctx.config.training cuda_module = colossal_multihead_attention backward_func = (cuda_module.multihead_attention_bw_fp16 if ctx.config.fp16 else cuda_module.multihead_attention_bw_fp32) output, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, \ out_proj_bias, norm_weight, norm_bias = ctx.saved_tensors grad_input = None grad_in_proj_weight = None grad_in_proj_bias = None grad_out_proj_weight = None grad_out_proj_bias = None grad_norm_weight = None grad_norm_bias = None if ctx.config.fp16: grad_output = grad_output.to(torch.half) output = output.to(torch.half) input = input.to(torch.half) input_mask = input_mask.to(torch.half) grad_input, grad_in_proj_weight, grad_in_proj_bias, grad_out_proj_weight, \ grad_out_proj_bias, grad_norm_weight, grad_norm_bias = backward_func( ctx.config.layer_id, grad_output, output, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, out_proj_bias, norm_weight, norm_bias) return (grad_input, None, grad_in_proj_weight, grad_in_proj_bias, grad_out_proj_weight, grad_out_proj_bias, grad_norm_weight, grad_norm_bias, None) class MultiHeadAttention(nn.Module): """Initialize the MultiHeadAttention. Static variable: layer_id: The layer-index counter starting from 0 and incrementing by 1 every time a layer object is instantiated, e.g. if a model has 24 transformer layers, layer_id goes from 0 to 23. Arguments: hidden_size: Total dimension of hidden_size. nhead: Number of parallel attention heads. batch_size: Batch Size for one foward max_seq_len: Max length of input sequence dropout: Dropout probability norm_first: perform LayerNorms before attention """ layer_id = 0 def __init__(self, hidden_size, nhead, batch_size, max_seq_len, dropout=0.0, norm_first=False, fp16=True, pg=None): super(MultiHeadAttention, self).__init__() self.config = Config(batch_size * max_seq_len, max_seq_len, hidden_size, nhead, dropout, dropout, norm_first, fp16) check_config(self.config) self.pg = pg self.pg_size = 1 if self.pg: self.pg_size = pg.size() self.config.layer_id = MultiHeadAttention.layer_id MultiHeadAttention.layer_id = MultiHeadAttention.layer_id + 1 # Load cuda modules if needed global colossal_multihead_attention if colossal_multihead_attention is None: try: colossal_multihead_attention = importlib.import_module("colossal_multihead_attention") except ImportError: raise RuntimeError('MultiHeadAttention requires cuda extensions') # create the layer in cuda kernels. cuda_module = colossal_multihead_attention create_layer_func = (cuda_module.create_multihead_attention_fp16 if self.config.fp16 else cuda_module.create_multihead_attention_fp32) create_layer_func( self.config.layer_id, self.config.max_batch_tokens, self.config.max_seq_len, self.config.hidden_size, self.config.nhead, self.config.attn_prob_dropout_ratio, self.config.hidden_dropout_ratio, self.config.norm_first, self.pg, ) hs = self.config.hidden_size self.precision = torch.float32 if self.config.fp16: self.precision = torch.half self.hs_per_rank = int(hs / self.pg_size) self.in_proj_weight = nn.Parameter(torch.Tensor(3, self.hs_per_rank, hs)) self.in_proj_bias = nn.Parameter(torch.Tensor(3, self.hs_per_rank)) self.out_proj_weight = nn.Parameter(torch.Tensor(hs, self.hs_per_rank)) self.out_proj_bias = nn.Parameter(torch.Tensor(hs)) self.norm_weight = nn.Parameter(torch.Tensor(hs)) self.norm_bias = nn.Parameter(torch.Tensor(hs)) self.reset_parameters() torch.cuda.empty_cache() def calc_bound(self, w): fan_in, _ = nn.init._calculate_fan_in_and_fan_out(w) bound = 1.0 / math.sqrt(fan_in) return bound def reset_parameters(self): hs = self.config.hidden_size nn.init.zeros_(self.out_proj_bias) nn.init.ones_(self.norm_weight) nn.init.zeros_(self.norm_bias) if self.pg_size > 1: rank_in_pg = torch.distributed.get_rank(self.pg) attn_qkvw_global = torch.empty(hs * 3, hs) attn_qkvb_global = torch.empty(hs * 3) nn.init.xavier_uniform_(attn_qkvw_global, 1.0 / math.sqrt(2.0)) bound = self.calc_bound(attn_qkvw_global) nn.init.uniform_(attn_qkvb_global, -bound, bound) attn_qkvw_global = attn_qkvw_global.cuda() attn_qkvb_global = attn_qkvb_global.cuda() torch.distributed.broadcast(attn_qkvw_global, src=0, group=self.pg) torch.distributed.broadcast(attn_qkvb_global, src=0, group=self.pg) attn_qkvw_global = attn_qkvw_global.cpu() attn_qkvb_global = attn_qkvb_global.cpu() with torch.no_grad(): self.in_proj_weight.copy_( attn_qkvw_global.view(3, hs, hs)[ :, int(hs * rank_in_pg / self.pg_size): int(hs * (rank_in_pg + 1) / self.pg_size), :]) self.in_proj_bias.copy_( attn_qkvb_global.view(3, hs)[ :, int(hs * rank_in_pg / self.pg_size): int(hs * (rank_in_pg + 1) / self.pg_size)]) attn_ow_global = torch.empty(hs, hs) nn.init.xavier_uniform_(attn_ow_global, 1.0) attn_ow_global = attn_ow_global.cuda() torch.distributed.broadcast(attn_ow_global, src=0, group=self.pg) attn_ow_global = attn_ow_global.cpu() with torch.no_grad(): self.out_proj_weight.copy_(attn_ow_global[ :, int(hs * rank_in_pg / self.pg_size): int(hs * (rank_in_pg + 1) / self.pg_size)]) else: attn_qkvw = self.in_proj_weight.view(-1, hs) nn.init.xavier_uniform_(attn_qkvw, 1.0 / math.sqrt(2.0)) bound = self.calc_bound(attn_qkvw) nn.init.uniform_(self.in_proj_bias, -bound, bound) nn.init.xavier_uniform_(self.out_proj_weight, 1.0) def state_dict(self, destination=None, prefix="", keep_vars=False): destination = torch.nn.Module.state_dict(self, destination=destination, prefix=prefix, keep_vars=keep_vars) return destination def forward(self, hidden_states, encoder_padding_mask): self.config.training = self.training self.config.is_grad_enabled = torch.is_grad_enabled() hidden_states = hidden_states.contiguous() encoder_padding_mask = ((encoder_padding_mask * -1e8).type_as(hidden_states).contiguous()) bs, sl, dim = hidden_states.size() if bs * sl > self.config.max_batch_tokens: raise ValueError( f"Batch token numbers {bs * sl} exceeds the limit {self.config.max_batch_tokens}.") if sl > self.config.max_seq_len: raise ValueError(f"Sequence length {sl} exceeds the limit {self.config.max_seq_len}.") if len(encoder_padding_mask.size()) == 1: assert bs == 1 and sl == encoder_padding_mask.size(0) else: assert bs == encoder_padding_mask.size(0) and sl == encoder_padding_mask.size(1) output = MultiHeadAttention1DFunc.apply(hidden_states, encoder_padding_mask, self.in_proj_weight, self.in_proj_bias, self.out_proj_weight, self.out_proj_bias, self.norm_weight, self.norm_bias, self.config) return output.to(self.precision)
from .layer_norm import MixedFusedLayerNorm as LayerNorm from .scaled_softmax import FusedScaleMaskSoftmax from .multihead_attention import MultiHeadAttention
"""This code from NVIDIA Megatron with some changes. """ import torch import torch.nn as nn import enum class AttnMaskType(enum.Enum): padding = 1 causal = 2 class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function): """ Fused operation which performs following three operations in sequence 1. Scale the tensor. 2. Apply upper triangular mask (typically used in gpt models). 3. Perform softmax. """ @staticmethod def forward(ctx, inputs, scale): try: import colossal_scaled_upper_triang_masked_softmax except ImportError: raise RuntimeError('ScaledUpperTriangMaskedSoftmax requires cuda extensions') scale_t = torch.tensor([scale]) softmax_results = colossal_scaled_upper_triang_masked_softmax.forward( inputs, scale_t[0] ) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): try: import colossal_scaled_upper_triang_masked_softmax except ImportError: raise RuntimeError('ScaledUpperTriangMaskedSoftmax requires cuda extensions') softmax_results, scale_t = ctx.saved_tensors input_grads = colossal_scaled_upper_triang_masked_softmax.backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None class ScaledMaskedSoftmax(torch.autograd.Function): """ Fused operation which performs following three operations in sequence 1. Scale the tensor. 2. Apply the mask. 3. Perform softmax. """ @staticmethod def forward(ctx, inputs, mask, scale): try: import colossal_scaled_masked_softmax except ImportError: raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions') scale_t = torch.tensor([scale]) softmax_results = colossal_scaled_masked_softmax.forward(inputs, mask, scale_t[0]) ctx.save_for_backward(softmax_results, scale_t) return softmax_results @staticmethod def backward(ctx, output_grads): try: import colossal_scaled_masked_softmax except ImportError: raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions') softmax_results, scale_t = ctx.saved_tensors input_grads = colossal_scaled_masked_softmax.backward( output_grads, softmax_results, scale_t[0] ) return input_grads, None, None class FusedScaleMaskSoftmax(nn.Module): """ Fused operation: scaling + mask + softmax Arguments: input_in_fp16: Flag to indicate if input in fp16 data format. input_in_bf16: Flag to indicate if input in bf16 data format. attn_mask_type: Attention mask type (pad or causal) scaled_masked_softmax_fusion: Flag to indicate user want to use softmax fusion mask_func: Mask function to be applied. softmax_in_fp32: If True, softmax in performed at fp32 precision. scale: Scaling factor used in input tensor scaling. """ def __init__( self, input_in_fp16, input_in_bf16, attn_mask_type, scaled_masked_softmax_fusion, mask_func, softmax_in_fp32, scale, ): super(FusedScaleMaskSoftmax, self).__init__() self.input_in_fp16 = input_in_fp16 self.input_in_bf16 = input_in_bf16 assert not ( self.input_in_fp16 and self.input_in_bf16 ), "both fp16 and bf16 flags cannot be active at the same time." self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16 self.attn_mask_type = attn_mask_type self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion self.mask_func = mask_func self.softmax_in_fp32 = softmax_in_fp32 self.scale = scale assert ( self.scale is None or softmax_in_fp32 ), "softmax should be in fp32 when scaled" def forward(self, input, mask): # [b, np, sq, sk] assert input.dim() == 4 if self.is_kernel_available(mask, *input.size()): return self.forward_fused_softmax(input, mask) else: return self.forward_torch_softmax(input, mask) def is_kernel_available(self, mask, b, np, sq, sk): attn_batches = b * np if ( self.scaled_masked_softmax_fusion # user want to fuse and self.input_in_float16 # input must be fp16 and mask is not None # mask tensor must not be None and 16 < sk <= 2048 # sk must be 16 ~ 2048 and sq % 4 == 0 # sq must be divisor of 4 and attn_batches % 4 == 0 # np * b must be divisor of 4 ): if 0 <= sk <= 2048: batch_per_block = self.get_batch_per_block(sq, sk, b, np) if self.attn_mask_type == AttnMaskType.causal: if attn_batches % batch_per_block == 0: return True else: if sq % batch_per_block == 0: return True return False def forward_fused_softmax(self, input, mask): b, np, sq, sk = input.size() scale = self.scale if self.scale is not None else 1.0 if self.attn_mask_type == AttnMaskType.causal: assert sq == sk, "causal mask is only for self attention" # input is 3D tensor (attn_batches, sq, sk) input = input.view(-1, sq, sk) probs = ScaledUpperTriangMaskedSoftmax.apply(input, scale) return probs.view(b, np, sq, sk) else: # input is 4D tensor (b, np, sq, sk) return ScaledMaskedSoftmax.apply(input, mask, scale) def forward_torch_softmax(self, input, mask): if self.input_in_float16 and self.softmax_in_fp32: input = input.float() if self.scale is not None: input = input * self.scale mask_output = self.mask_func(input, mask) if mask is not None else input probs = torch.nn.Softmax(dim=-1)(mask_output) if self.input_in_float16 and self.softmax_in_fp32: if self.input_in_fp16: probs = probs.half() else: probs = probs.bfloat16() return probs @staticmethod def get_batch_per_block(sq, sk, b, np): try: import colossal_scaled_masked_softmax except ImportError: raise RuntimeError('ScaledMaskedSoftmax requires cuda extensions') return colossal_scaled_masked_softmax.get_batch_per_block(sq, sk, b, np)
"""This code is from NVIDIA apex: https://github.com/NVIDIA/apex with some changes. """ import numbers import torch from torch.nn.parameter import Parameter from torch.nn import init from torch.cuda.amp import custom_fwd, custom_bwd import importlib global colossal_layer_norm_cuda colossal_layer_norm_cuda = None class FusedLayerNormAffineFunction(torch.autograd.Function): @staticmethod @custom_fwd(cast_inputs=torch.float32) def forward(ctx, input, weight, bias, normalized_shape, eps): ctx.normalized_shape = normalized_shape ctx.eps = eps input_ = input.contiguous() weight_ = weight.contiguous() bias_ = bias.contiguous() output, mean, invvar = colossal_layer_norm_cuda.forward_affine( input_, ctx.normalized_shape, weight_, bias_, ctx.eps) ctx.save_for_backward(input_, weight_, bias_, mean, invvar) return output @staticmethod @custom_bwd def backward(ctx, grad_output): input_, weight_, bias_, mean, invvar = ctx.saved_tensors grad_input = grad_weight = grad_bias = None grad_input, grad_weight, grad_bias \ = colossal_layer_norm_cuda.backward_affine( grad_output.contiguous(), mean, invvar, input_, ctx.normalized_shape, weight_, bias_, ctx.eps) return grad_input, grad_weight, grad_bias, None, None class MixedFusedLayerNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None): super(MixedFusedLayerNorm, self).__init__() global colossal_layer_norm_cuda if colossal_layer_norm_cuda is None: try: colossal_layer_norm_cuda = importlib.import_module("colossal_layer_norm_cuda") except ImportError: raise RuntimeError('MixedFusedLayerNorm requires cuda extensions') if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) self.normalized_shape = torch.Size(normalized_shape) self.eps = eps self.weight = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype)) self.bias = Parameter(torch.empty(*normalized_shape, device=device, dtype=dtype)) self.reset_parameters() def reset_parameters(self): init.ones_(self.weight) init.zeros_(self.bias) def forward(self, input): return FusedLayerNormAffineFunction.apply(input, self.weight, self.bias, self.normalized_shape, self.eps) def __repr__(self): return f'MixedFusedLayerNorm(normalized_shape={self.normalized_shape}, eps={self.eps})'
import dataclasses import os import random import re import time from concurrent.futures import ThreadPoolExecutor from functools import partial from typing import Any, Mapping, NamedTuple, Text, Tuple, Union from ml_collections import ConfigDict import dill import flax import jax import jax.numpy as jnp import msgpack import numpy as np import optax from absl import logging from flax import jax_utils from flax.core import FrozenDict from flax.serialization import from_bytes, to_bytes from flax.training.train_state import TrainState from jax.experimental import PartitionSpec as PS from jax.experimental.maps import Mesh from jax.experimental.pjit import pjit from coh.utils import open_file, save_pickle class JaxRNG(object): """ A convenient stateful Jax RNG wrapper. Can be used to wrap RNG inside pure function. """ @classmethod def from_seed(cls, seed): return cls(jax.random.PRNGKey(seed)) def __init__(self, rng): self.rng = rng def __call__(self, keys=None): if keys is None: self.rng, split_rng = jax.random.split(self.rng) return split_rng elif isinstance(keys, int): split_rngs = jax.random.split(self.rng, num=keys + 1) self.rng = split_rngs[0] return tuple(split_rngs[1:]) else: split_rngs = jax.random.split(self.rng, num=len(keys) + 1) self.rng = split_rngs[0] return {key: val for key, val in zip(keys, split_rngs[1:])} class ShardingHelper(object): """ A helper utility that handles gathering sharded pytree to host and shard host pytree to devices that supports multi-host environment. This utility does gather and shard one by one to avoid OOM on device. """ def __init__(self, partition_specs): self.partition_specs = partition_specs def gather_tensor(partition_spec): return pjit( lambda x: x, in_axis_resources=partition_spec, out_axis_resources=None ) def shard_tensor(partition_spec): return pjit( lambda x: x, in_axis_resources=None, out_axis_resources=partition_spec ) self.gather_fns = jax.tree_util.tree_map(gather_tensor, partition_specs) self.shard_fns = jax.tree_util.tree_map(shard_tensor, partition_specs) def get(self, tree): def get_fn(gather_fn, tensor): return jax.device_get(gather_fn(tensor)) return jax.tree_util.tree_map(get_fn, self.gather_fns, tree) def put(self, tree): def put_fn(shard_fn, tensor): return shard_fn(tensor).block_until_ready() return jax.tree_util.tree_map(put_fn, self.shard_fns, tree) def set_random_seed(seed): np.random.seed(seed) random.seed(seed) init_rng(seed) def get_jax_mp_mesh(mp_axis_dim, mp_axis_name='mp', dp_axis_name='dp'): """ Return a 2D mesh for (MP, DP) partitioning. """ assert jax.device_count() % mp_axis_dim == 0 return Mesh( np.array(jax.devices()).reshape(-1, mp_axis_dim), (dp_axis_name, mp_axis_name) ) def wrap_function_with_rng(rng): """ To be used as decorator, automatically bookkeep a RNG for the wrapped function. """ def wrap_function(function): def wrapped(*args, **kwargs): nonlocal rng rng, split_rng = jax.random.split(rng) return function(split_rng, *args, **kwargs) return wrapped return wrap_function def init_rng(seed): global jax_utils_rng jax_utils_rng = JaxRNG.from_seed(seed) def next_rng(*args, **kwargs): global jax_utils_rng return jax_utils_rng(*args, **kwargs) def get_metrics(metrics, unreplicate=False, stack=False): if unreplicate: metrics = flax.jax_utils.unreplicate(metrics) metrics = jax.device_get(metrics) if stack: return jax.tree_map(lambda *args: np.stack(args), *metrics) else: return {key: float(val) for key, val in metrics.items()} def mse_loss(val, target, valid=None): if valid is None: valid = jnp.ones((*target.shape[:2], 1)) valid = valid.astype(jnp.float32) loss = jnp.mean( jnp.where( valid > 0.0, jnp.square(val - target), 0.0 ) ) return loss def cross_entropy_loss(logits, labels, smoothing_factor=0.): num_classes = logits.shape[-1] if labels.dtype == jnp.int32 or labels.dtype == jnp.int64: labels = jax.nn.one_hot(labels, num_classes) if smoothing_factor > 0.: labels = labels * (1. - smoothing_factor) + smoothing_factor / num_classes logp = jax.nn.log_softmax(logits, axis=-1) return -jnp.mean(jnp.sum(logp * labels, axis=-1)) def cross_entropy_loss_and_accuracy(logits, tokens, valid=None): if valid is None: valid = jnp.ones(tokens.shape[:2]) valid = valid.astype(jnp.float32) valid_text_length = jnp.maximum(jnp.sum(valid, axis=-1), 1e-10) token_log_prob = jnp.squeeze( jnp.take_along_axis( jax.nn.log_softmax(logits, axis=-1), jnp.expand_dims(tokens, -1), axis=-1, ), -1, ) token_log_prob = jnp.where(valid > 0.0, token_log_prob, jnp.array(0.0)) loss = -jnp.mean(jnp.sum(token_log_prob, axis=-1) / valid_text_length) correct = jnp.where( valid > 0.0, jnp.argmax(logits, axis=-1) == tokens, jnp.array(False) ) accuracy = jnp.mean(jnp.sum(correct, axis=-1) / valid_text_length) return loss, accuracy def global_norm(tree): """ Return the global L2 norm of a pytree. """ squared = jax.tree_util.tree_map(lambda x: jnp.sum(jnp.square(x)), tree) flattened, _ = jax.flatten_util.ravel_pytree(squared) return jnp.sqrt(jnp.sum(flattened)) def flatten_tree(xs, is_leaf=None, sep=None): """ A stronger version of flax.traverse_util.flatten_dict, supports dict, tuple, list and TrainState. Tuple and list indices will be converted to strings. """ tree_node_classes = (FrozenDict, dict, tuple, list, TrainState) if not isinstance(xs, tree_node_classes): ValueError('fUnsupported node type: {type(xs)}') def _is_leaf(prefix, fx): if is_leaf is not None: return is_leaf(prefix, xs) return False def _key(path): if sep is None: return path return sep.join(path) def _convert_to_dict(xs): if isinstance(xs, (FrozenDict, dict)): return xs elif isinstance(xs, (tuple, list)): return {f'{i}': v for i, v in enumerate(xs)} elif isinstance(xs, TrainState): output = {} for field in dataclasses.fields(xs): if 'pytree_node' not in field.metadata or field.metadata['pytree_node']: output[field.name] = getattr(xs, field.name) return output else: raise ValueError('fUnsupported node type: {type(xs)}') def _flatten(xs, prefix): if not isinstance(xs, tree_node_classes) or _is_leaf(prefix, xs): return {_key(prefix): xs} result = {} is_empty = True for (key, value) in _convert_to_dict(xs).items(): is_empty = False path = prefix + (key, ) result.update(_flatten(value, path)) return result return _flatten(xs, ()) def named_tree_map(f, tree, is_leaf=None, sep=None): """ An extended version of jax.tree_util.tree_map, where the mapped function f takes both the name (path) and the tree leaf as input. """ flattened_tree = flatten_tree(tree, is_leaf=is_leaf, sep=sep) id_to_name = {id(val): key for key, val in flattened_tree.items()} def map_fn(leaf): name = id_to_name[id(leaf)] return f(name, leaf) return jax.tree_util.tree_map(map_fn, tree) def match_partition_rules(rules, params): """ Returns a pytree of PartitionSpec according to rules. Supports handling Flax TrainState and Optax optimizer state. """ def get_partition_spec(name, leaf): if len(leaf.shape) == 0 or np.prod(leaf.shape) == 1: """ Don't partition scalar values. """ return PS() for rule, ps in rules: if re.search(rule, name) is not None: return ps raise ValueError(f'Partition rule not found for param: {name}') return named_tree_map(get_partition_spec, params, sep='/') class StreamingCheckpointer(object): """ Custom msgpack checkpointer that saves large train states by serializing and saving tensors one by one in a streaming fashion. Avoids running out of memory or local TPU disk with default flax checkpointer. The checkpointer saves the train state in an asynchronous manner to avoid timing out on JAX barriers in multi-host training. """ def __init__(self, checkpoint_dir, enable=True): self.checkpoint_dir = checkpoint_dir self.enable = enable self.async_manager = ThreadPoolExecutor(max_workers=1) def _save_checkpoint_worker(self, train_state, filename): path = os.path.join(self.checkpoint_dir, filename) packer = msgpack.Packer() flattend_train_state = flax.traverse_util.flatten_dict(train_state) with open_file(path, "wb") as fout: for key, value in flattend_train_state.items(): fout.write(packer.pack((key, to_bytes(value)))) def save_checkpoint(self, train_state, filename): train_state = flax.serialization.to_state_dict(train_state) if self.enable: self.async_manager.submit( self._save_checkpoint_worker, train_state, filename ) @staticmethod def load_checkpoint(path, target=None): flattend_train_state = {} with open_file(path) as fin: unpacker = msgpack.Unpacker(fin, max_buffer_size=0) for key, value in unpacker: flattend_train_state[tuple(key)] = from_bytes(None, value) train_state = flax.traverse_util.unflatten_dict(flattend_train_state) if target is None: return train_state return flax.serialization.from_state_dict(target, train_state) def _save_pickle_worker(self, obj, filename): path = os.path.join(self.checkpoint_dir, filename) save_pickle(obj, path) def save_pickle(self, obj, filename): if self.enable: self.async_manager.submit(self._save_pickle_worker, obj, filename) class OptimizerFactory(object): """ Configurable optax optimizer factory. """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.accumulate_gradient_steps = 1 config.type = 'palm' config.palm_optimizer = PalmOptimizerFactory.get_default_config() config.adamw_optimizer = AdamWOptimizerFactory.get_default_config() if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) if config.type == 'palm': optimizer, optimizer_info = PalmOptimizerFactory.get_optimizer( config.palm_optimizer, weight_decay_mask ) elif config.type == 'adamw': optimizer, optimizer_info = AdamWOptimizerFactory.get_optimizer( config.adamw_optimizer, weight_decay_mask ) else: raise ValueError(f'Unknown optimizer type: {config.optimizer_type}') if config.accumulate_gradient_steps > 1: optimizer = optax.MultiSteps( optimizer, config.accumulate_gradient_steps ) return optimizer, optimizer_info class PalmOptimizerFactory(object): """ PaLM optimizer factory. This optimizer implements the optimizer described in the PaLM paper: https://arxiv.org/abs/2204.02311 """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.lr = 0.01 config.lr_warmup_steps = 10000 config.b1 = 0.9 config.b2 = 0.99 config.clip_gradient = 1.0 config.weight_decay = 1e-4 config.bf16_momentum = True if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) def learning_rate_schedule(step): multiplier = config.lr / 0.01 return multiplier / jnp.sqrt(jnp.maximum(step, config.lr_warmup_steps)) def weight_decay_schedule(step): multiplier = config.weight_decay / 1e-4 return -multiplier * jnp.square(learning_rate_schedule(step)) optimizer_info = dict( learning_rate_schedule=learning_rate_schedule, weight_decay_schedule=weight_decay_schedule, ) optimizer = optax.chain( optax.clip_by_global_norm(config.clip_gradient), optax.adafactor( learning_rate=learning_rate_schedule, multiply_by_parameter_scale=True, momentum=config.b1, decay_rate=config.b2, factored=False, clipping_threshold=None, dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32, ), optax_add_scheduled_weight_decay( weight_decay_schedule, weight_decay_mask ) ) return optimizer, optimizer_info class OptaxScheduledWeightDecayState(NamedTuple): count: jnp.DeviceArray def optax_add_scheduled_weight_decay(schedule_fn, mask=None): """ Apply weight decay with schedule. """ def init_fn(params): del params return OptaxScheduledWeightDecayState(count=jnp.zeros([], jnp.int32)) def update_fn(updates, state, params): if params is None: raise ValueError('Params cannot be None for weight decay!') weight_decay = schedule_fn(state.count) updates = jax.tree_util.tree_map( lambda g, p: g + weight_decay * p, updates, params ) return updates, OptaxScheduledWeightDecayState( count=optax.safe_int32_increment(state.count) ) if mask is not None: return optax.masked(optax.GradientTransformation(init_fn, update_fn), mask) return optax.GradientTransformation(init_fn, update_fn) class AdamWOptimizerFactory(object): """ AdamW optimizer with cosine schedule. """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.init_lr = 0.0 config.end_lr = 0.0 config.lr = 0.01 config.lr_warmup_steps = 10000 config.lr_decay_steps = 500000 config.b1 = 0.9 config.b2 = 0.99 config.clip_gradient = 1.0 config.weight_decay = 1e-4 config.bf16_momentum = True if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) learning_rate_schedule = optax.warmup_cosine_decay_schedule( init_value=config.init_lr, peak_value=config.lr, warmup_steps=config.lr_warmup_steps, decay_steps=config.lr_decay_steps, end_value=config.end_lr, ) optimizer_info = dict( learning_rate_schedule=learning_rate_schedule, ) optimizer = optax.chain( optax.clip_by_global_norm(config.clip_gradient), optax.adamw( learning_rate=learning_rate_schedule, weight_decay=config.weight_decay, b1=0.9, b2=0.95, mask=weight_decay_mask, mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32, ), ) return optimizer, optimizer_info
import inspect import logging import os import pprint import random import tempfile import time import uuid from concurrent.futures import ThreadPoolExecutor from copy import copy from socket import gethostname import absl.flags import absl.logging import cloudpickle as pickle import flax import gcsfs import jax import jax.numpy as jnp import msgpack import numpy as np import wandb from flax.serialization import from_bytes, to_bytes from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from ml_collections.config_flags import config_flags class WandBLogger(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.project_id = "" config.async_save = True config.project_entity = config_dict.placeholder(str) config.experiment_id = config_dict.placeholder(str) config.experiment_note = config_dict.placeholder(str) config.output_dir = "/tmp/" config.gcs_output_dir = "" config.online = False if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, variant, enable=True): self.enable = enable self.config = self.get_default_config(config) self.async_manager = ThreadPoolExecutor(max_workers=1) if self.config.experiment_id is None or self.config.experiment_id == "": self.config.experiment_id = uuid.uuid4().hex else: self.config.experiment_id = str(self.config.experiment_id) + "_" + uuid.uuid4().hex if self.enable: if self.config.output_dir == "": self.config.output_dir = tempfile.mkdtemp() else: self.config.output_dir = os.path.join( self.config.output_dir, self.config.experiment_id ) os.makedirs(self.config.output_dir, exist_ok=True) if self.config.gcs_output_dir != "": self.config.gcs_output_dir = os.path.join( self.config.gcs_output_dir, self.config.experiment_id ) self._variant = copy(variant) if "hostname" not in self._variant: self._variant["hostname"] = gethostname() if self.enable: self.run = wandb.init( config=self._variant, project=self.config.project_id, entity=self.config.project_entity, dir=self.config.output_dir, id=self.config.experiment_id, resume="allow", reinit=True, notes=self.config.experiment_note, settings=wandb.Settings( start_method="thread", _disable_stats=True, ), mode="online" if self.config.online else "offline", ) else: self.run = None def log(self, *args, **kwargs): if self.enable: self.run.log(*args, **kwargs) def _save_pickle_worker(self, obj, filename): if self.enable: if self.config.gcs_output_dir != "": path = os.path.join(self.config.gcs_output_dir, filename) else: path = os.path.join(self.config.output_dir, filename) with open_file(path, "wb") as fout: pickle.dump(obj, fout) def save_pickle(self, obj, filename): if self.config.async_save: self.async_manager.submit(self._save_pickle_worker, obj, filename) else: self._save_pickle_worker(obj, filename) def _save_checkpoint_worker(self, train_state, filename): if self.enable: if self.config.gcs_output_dir != "": path = os.path.join(self.config.gcs_output_dir, filename) else: path = os.path.join(self.config.output_dir, filename) packer = msgpack.Packer() flattend_train_state = flax.traverse_util.flatten_dict(train_state) with open_file(path, "wb") as fout: for key, value in flattend_train_state.items(): fout.write(packer.pack((key, to_bytes(value)))) def save_checkpoint(self, train_state, filename): train_state = flax.serialization.to_state_dict(train_state) if self.config.async_save: self.async_manager.submit(self._save_checkpoint_worker, train_state, filename) else: self._save_checkpoint_worker(train_state, filename) @property def experiment_id(self): return self.config.experiment_id @property def variant(self): return self.config.variant @property def output_dir(self): return self.config.output_dir @property def checkpoint_dir(self): if self.config.gcs_output_dir != "": return self.config.gcs_output_dir return self.config.output_dir def define_flags_with_default(**kwargs): for key, val in kwargs.items(): if isinstance(val, ConfigDict): config_flags.DEFINE_config_dict(key, val) elif isinstance(val, bool): # Note that True and False are instances of int. absl.flags.DEFINE_bool(key, val, "automatically defined flag") elif isinstance(val, int): absl.flags.DEFINE_integer(key, val, "automatically defined flag") elif isinstance(val, float): absl.flags.DEFINE_float(key, val, "automatically defined flag") elif isinstance(val, str): absl.flags.DEFINE_string(key, val, "automatically defined flag") else: raise ValueError("Incorrect value type") return kwargs def print_flags(flags, flags_def): absl.logging.info( "Running training with hyperparameters: \n{}".format( pprint.pformat( [ "{}: {}".format(key, val) for key, val in get_user_flags(flags, flags_def).items() ] ) ) ) def get_user_flags(flags, flags_def): output = {} for key in flags_def: val = getattr(flags, key) if isinstance(val, ConfigDict): output.update(flatten_config_dict(val, prefix=key)) else: output[key] = val return output def user_flags_to_config_dict(flags, flags_def): output = ConfigDict() for key in flags_def: output[key] = getattr(flags, key) return output def flatten_config_dict(config, prefix=None): output = {} for key, val in config.items(): if isinstance(val, ConfigDict): output.update(flatten_config_dict(val, prefix=key)) else: if prefix is not None: output["{}.{}".format(prefix, key)] = val else: output[key] = val return output def prefix_metrics(metrics, prefix): return {"{}/{}".format(prefix, key): value for key, value in metrics.items()} def open_file(path, mode='rb'): if path.startswith("gs://"): logging.getLogger("fsspec").setLevel(logging.WARNING) return gcsfs.GCSFileSystem().open(path, mode, cache_type='block') else: return open(path, mode) def save_pickle(obj, path): with open_file(path, 'wb') as fout: pickle.dump(obj, fout) def load_pickle(path): with open_file(path, 'rb') as fin: data = pickle.load(fin) return data def function_args_to_config(fn, none_arg_types=None, exclude_args=None, override_args=None): config = ConfigDict() arg_spec = inspect.getargspec(fn) n_args = len(arg_spec.defaults) arg_names = arg_spec.args[-n_args:] default_values = arg_spec.defaults for name, value in zip(arg_names, default_values): if exclude_args is not None and name in exclude_args: continue elif override_args is not None and name in override_args: config[name] = override_args[name] elif none_arg_types is not None and value is None and name in none_arg_types: config[name] = config_dict.placeholder(none_arg_types[name]) else: config[name] = value return config class Timer(object): def __init__(self): self._time = None def __enter__(self): self._start_time = time.time() return self def __exit__(self, exc_type, exc_value, exc_tb): self._time = time.time() - self._start_time def __call__(self): return self._time
import dataclasses import pprint import re from functools import partial import absl.app import absl.flags import flax import jax import jax.numpy as jnp import numpy as np import optax from flax import linen as nn from flax.jax_utils import prefetch_to_device from flax.training.train_state import TrainState from jax.experimental import PartitionSpec as PS from jax.experimental.pjit import pjit, with_sharding_constraint from tqdm import tqdm, trange from coh.data import HumanFeedbackDataset, PretrainDataset from coh.jax_utils import (JaxRNG, ShardingHelper, StreamingCheckpointer, cross_entropy_loss_and_accuracy, get_jax_mp_mesh, global_norm, match_partition_rules, named_tree_map, next_rng, set_random_seed, get_metrics, OptimizerFactory) from coh.utils import (WandBLogger, define_flags_with_default, get_user_flags, load_pickle, user_flags_to_config_dict) from coh.models.gptj.gptj import FlaxGPTJForCausalLMModule, GPTJConfig from coh.models.opt.opt import FlaxOPTForCausalLMModule, OPTConfig FLAGS_DEF = define_flags_with_default( seed=42, initialize_jax_distributed=False, mp_mesh_dim=1, total_steps=10000, load_checkpoint='', load_dataset_state='', log_freq=50, save_model_freq=0, optimizer=OptimizerFactory.get_default_config(), tokenizer=GPTJConfig.get_tokenizer_config(), feedback_dataset=HumanFeedbackDataset.get_default_config(), pretrain_dataset=PretrainDataset.get_default_config(), pt_loss_weight=1.0, gptj=GPTJConfig.get_default_config(), load_gptj_config='', opt=OPTConfig.get_default_config(), load_opt_config='', model='gptj', logger=WandBLogger.get_default_config(), log_all_worker=False, ) def main(argv): FLAGS = absl.app.flags.FLAGS if FLAGS.initialize_jax_distributed: jax.distributed.initialize() variant = get_user_flags(FLAGS, FLAGS_DEF) flags_config_dict = user_flags_to_config_dict(FLAGS, FLAGS_DEF) logger = WandBLogger( config=FLAGS.logger, variant=variant, enable=FLAGS.log_all_worker or (jax.process_index() == 0), ) set_random_seed(FLAGS.seed) if FLAGS.load_dataset_state != '': hf, pt = FLAGS.load_dataset_state.split(',') hf_dataset = load_pickle(hf) pt_dataset = load_pickle(pt) else: tokenizer = GPTJConfig.get_tokenizer(FLAGS.tokenizer) hf_dataset = HumanFeedbackDataset(FLAGS.feedback_dataset, tokenizer) pt_dataset = PretrainDataset(FLAGS.pretrain_dataset, tokenizer) seq_length = hf_dataset.seq_length if FLAGS.model == 'gptj': if FLAGS.load_gptj_config != '': gptj_config = GPTJConfig.load_config(FLAGS.load_gptj_config) else: gptj_config = GPTJConfig(**FLAGS.gptj) gptj_config.update(dict( bos_token_id=hf_dataset.tokenizer.bos_token_id, eos_token_id=hf_dataset.tokenizer.eos_token_id, vocab_size=hf_dataset.vocab_size, )) model = FlaxGPTJForCausalLMModule(gptj_config) config = gptj_config elif FLAGS.model == 'opt': if FLAGS.load_opt_config != '': opt_config = OPTConfig.load_config(FLAGS.load_opt_config) else: opt_config = OPTConfig(**FLAGS.opt) opt_config.update(dict( bos_token_id=hf_dataset.tokenizer.bos_token_id, eos_token_id=hf_dataset.tokenizer.eos_token_id, )) if opt_config.vocab_size < hf_dataset.vocab_size: opt_config.update(dict(vocab_size=hf_dataset.vocab_size)) model = FlaxOPTForCausalLMModule(opt_config) config = opt_config else: raise ValueError(f'Unknown model: {FLAGS.model}') def weight_decay_mask(params): def decay(name, _): for rule in GPTJConfig.get_weight_decay_exclusions(): if re.search(rule, name) is not None: return False return True return named_tree_map(decay, params, sep='/') optimizer, optimizer_info = OptimizerFactory.get_optimizer( FLAGS.optimizer, weight_decay_mask ) def init_fn(rng): rng_generator = JaxRNG(rng) params = model.init( input_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), position_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), attention_mask=jnp.ones((4, seq_length), dtype=jnp.int32), rngs=rng_generator(config.rng_keys()), ) return TrainState.create(params=params, tx=optimizer, apply_fn=None) def train_step(train_state, rng, batch, pt_batch): rng_generator = JaxRNG(rng) tokens = with_sharding_constraint(batch['tokens'], PS('dp')) pt_tokens = with_sharding_constraint(pt_batch['tokens'], PS('dp')) loss_masks = with_sharding_constraint(batch['masks'], PS('dp')) def loss_and_accuracy(params): bos_tokens = jnp.full( (tokens.shape[0], 1), config.bos_token_id, dtype=jnp.int32 ) # human feedback data inputs = jnp.concatenate([bos_tokens, tokens[:, :-1]], axis=1) logits = model.apply( params, inputs, deterministic=False, rngs=rng_generator(config.rng_keys()), ).logits hf_loss, hf_accuracy = cross_entropy_loss_and_accuracy(logits, tokens, loss_masks) # general pretrain data bos_tokens = jnp.full( (pt_tokens.shape[0], 1), config.bos_token_id, dtype=jnp.int32 ) pt_inputs = jnp.concatenate([bos_tokens, pt_tokens[:, :-1]], axis=1) pt_logits = model.apply( params, pt_inputs, deterministic=False, rngs=rng_generator(config.rng_keys()), ).logits pt_loss, pt_accuracy = cross_entropy_loss_and_accuracy(pt_logits, pt_tokens) loss = hf_loss + FLAGS.pt_loss_weight * pt_loss aux = { 'hf_accuracy': hf_accuracy, 'pt_accuracy': pt_accuracy, 'hf_loss': hf_loss, 'pt_loss': pt_loss, } return loss, aux grad_fn = jax.value_and_grad(loss_and_accuracy, has_aux=True) (loss, aux), grads = grad_fn(train_state.params) train_state = train_state.apply_gradients(grads=grads) metrics = dict( loss=loss, learning_rate=optimizer_info['learning_rate_schedule'](train_state.step), gradient_norm=global_norm(grads), param_norm=global_norm(train_state.params), ) metrics.update(aux) return train_state, rng_generator(), metrics train_state_shapes = jax.eval_shape(init_fn, next_rng()) train_state_partition = match_partition_rules( GPTJConfig.get_partition_rules(), train_state_shapes ) sharding_helper = ShardingHelper(train_state_partition) checkpointer = StreamingCheckpointer( logger.checkpoint_dir, enable=jax.process_index() == 0 ) sharded_init_fn = pjit( init_fn, in_axis_resources=PS(), out_axis_resources=train_state_partition ) sharded_train_step = pjit( train_step, in_axis_resources=(train_state_partition, PS(), PS(), PS()), out_axis_resources=(train_state_partition, PS(), PS()), donate_argnums=(0, 1), ) def save_checkpoint(train_state): train_state = sharding_helper.get(train_state) step = int(train_state.step) metadata = dict( step=step, variant=variant, flags=flags_config_dict, config=config.to_dict(), ) checkpointer.save_pickle(metadata, 'metadata.pkl') checkpointer.save_pickle(hf_dataset, 'hf_dataset.pkl') checkpointer.save_pickle(pt_dataset, 'pt_dataset.pkl') checkpointer.save_checkpoint(train_state, 'train_state') start_step = 0 restored_checkpoint_state = None restored_params = None if FLAGS.load_checkpoint != '': load_type, load_path = FLAGS.load_checkpoint.split('::', 1) with jax.default_device(jax.devices("cpu")[0]): if load_type == 'trainstate': restored_checkpoint_state = checkpointer.load_checkpoint( load_path, train_state_shapes ) start_step = restored_checkpoint_state.step elif load_type == 'trainstate_params': restored_params = flax.core.frozen_dict.freeze( checkpointer.load_checkpoint(load_path)['params'] ) elif load_type == 'huggingface': restored_params = config.load_pretrained(load_path) mesh = get_jax_mp_mesh(FLAGS.mp_mesh_dim) with mesh: if restored_checkpoint_state is not None: train_state = sharding_helper.put(restored_checkpoint_state) del restored_checkpoint_state elif restored_params is not None: train_state = sharded_init_fn(next_rng()) train_state = sharding_helper.get(train_state) train_state = train_state.replace(params=restored_params) train_state = sharding_helper.put(train_state) del restored_params else: train_state = sharded_init_fn(next_rng()) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) sharded_rng = next_rng() step_counter = trange(start_step, FLAGS.total_steps, ncols=0) for step, hf_batch, pt_batch in zip(step_counter, hf_dataset, pt_dataset): train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, hf_batch, pt_batch ) if step % FLAGS.log_freq == 0: log_metrics = {"step": step} log_metrics.update(metrics) logger.log(log_metrics) tqdm.write("\n" + pprint.pformat(log_metrics) + "\n") if FLAGS.save_model_freq > 0 and (step + 1) % FLAGS.save_model_freq == 0: save_checkpoint(train_state) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) if __name__ == "__main__": absl.app.run(main)
# coding=utf-8 # Copyright 2022 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax OPT model.""" from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.experimental import PartitionSpec from jax.experimental.pjit import with_sharding_constraint from jax.interpreters import pxla from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from transformers import AutoTokenizer from transformers.configuration_utils import PretrainedConfig from transformers.generation.flax_logits_process import FlaxLogitsProcessorList from transformers.modeling_flax_outputs import (FlaxBaseModelOutput, FlaxMaskedLMOutput) from transformers.modeling_flax_utils import (ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring) from transformers.utils import (add_start_docstrings, add_start_docstrings_to_model_forward, logging) from coh.utils import function_args_to_config, load_pickle remat = nn_partitioning.remat logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/opt-350m" _CONFIG_FOR_DOC = "OPTConfig" OPT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`OPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ OPT_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class OPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OPT [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50272): Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`OPTModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of decoder layers. ffn_dim (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). do_layer_norm_before (`bool`, *optional*, defaults to `True`): Whether to perform layer normalization before the attention block. word_embed_proj_dim (`int`, *optional*): `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to `hidden_size`. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. layerdrop: (`float`, *optional*, defaults to 0.0): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). enable_bias (`bool`, *optional*, defaults to `True`): Whether or not if the linear layers in the attention blocks should use the bias term. layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not if the layer norms should have learnable parameters. Example: ```python >>> from transformers import OPTConfig, OPTModel >>> # Initializing a OPT facebook/opt-large style configuration >>> configuration = OPTConfig() >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration >>> model = OPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "opt" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=50272, hidden_size=768, num_hidden_layers=12, ffn_dim=3072, max_position_embeddings=2048, do_layer_norm_before=True, _remove_final_layer_norm=False, word_embed_proj_dim=None, dropout=0.1, attention_dropout=0.0, num_attention_heads=12, activation_function="relu", layerdrop=0.0, init_std=0.02, use_cache=True, pad_token_id=1, bos_token_id=2, eos_token_id=2, enable_bias=True, layer_norm_elementwise_affine=True, fcm_min_ratio=0.0, fcm_max_ratio=0.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.num_attention_heads = num_attention_heads self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size self.ffn_dim = ffn_dim self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dropout = dropout self.attention_dropout = attention_dropout self.activation_function = activation_function self.init_std = init_std self.layerdrop = layerdrop self.use_cache = use_cache self.do_layer_norm_before = do_layer_norm_before # We keep these variables at `True` for backward compatibility. self.enable_bias = enable_bias self.layer_norm_elementwise_affine = layer_norm_elementwise_affine # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 self._remove_final_layer_norm = _remove_final_layer_norm self.fcm_min_ratio = fcm_min_ratio self.fcm_max_ratio = fcm_max_ratio self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs, ) @classmethod def get_default_config(cls, updates=None): none_arg_types = dict( n_inner=int, rotary_dim=int, ) config = function_args_to_config(cls.__init__, none_arg_types=none_arg_types) if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @staticmethod def get_partition_rules(): """ Parition rules for GPTJ. Note that these rules are orderd, so that the beginning rules match first. It is important to use PartitionSpec() instead of None here because JAX does not treat None as a pytree leaf. """ return ( ('embed_tokens/embedding', PartitionSpec(None, 'mp')), ('self_attn/(k_proj|q_proj|v_proj)/kernel', PartitionSpec(None, 'mp')), ('self_attn/out_proj/kernel', PartitionSpec('mp', None)), ('fc1/kernel', PartitionSpec(None, 'mp')), ('fc1/bias', PartitionSpec('mp')), ('fc2/kernel', PartitionSpec('mp', None)), ('fc2/bias', PartitionSpec()), ('self_attn_layer_norm/bias', PartitionSpec()), ('self_attn_layer_norm/scale', PartitionSpec()), ('final_layer_norm/bias', PartitionSpec()), ('final_layer_norm/scale', PartitionSpec()), ('lm_head/kernel', PartitionSpec(None, 'mp')), ('lm_head/bias', PartitionSpec('mp')), ('.*', PartitionSpec()), ) @staticmethod def get_weight_decay_exclusions(): return ( 'ln_[0-9]+/bias', 'ln_[0-9]+/scale', 'ln_f/bias', 'ln_f/scale', 'bias' ) @staticmethod def rng_keys(): return ('params', 'dropout', 'fcm') @staticmethod def get_tokenizer_config(updates=None): config = ConfigDict() config.name = 'facebook/opt-350m' config.bos_token = '</s>' config.eos_token = '</s>' config.pad_token = '</s>' config.cls_token = '</s>' config.mask_token = '</s>' if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_tokenizer(cls, config, padding_side='left'): config = cls.get_tokenizer_config(config) return AutoTokenizer.from_pretrained( config.name, bos_token=config.bos_token, eos_token=config.eos_token, pad_token=config.pad_token, cls_token=config.cls_token, mask_token=config.mask_token, padding_side=padding_side, ) @staticmethod def load_pretrained(name): with jax.default_device(jax.devices("cpu")[0]): params = FlaxOPTForCausalLM.from_pretrained(name, _do_init=False)[1] params = freeze({'params': params}) return params @classmethod def load_config(cls, path): load_type, load_path = path.split('::', 1) if load_type == 'pickle': return load_pickle(load_path)['gptj_config'] elif load_type == 'huggingface': return cls.from_pretrained(load_path) else: raise ValueError(f'Unsupported load config type: {load_type}') # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->OPT class FlaxOPTAttention(nn.Module): config: OPTConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, fcm_mask=None, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask, fcm_mask) elif self.causal: attention_mask = combine_masks(attention_mask, fcm_mask) elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_mask = combine_masks(attention_mask, fcm_mask) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights class FlaxOPTDecoderLayer(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.hidden_size self.self_attn = FlaxOPTAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.num_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.do_layer_norm_before = self.config.do_layer_norm_before self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, fcm_mask=None, ) -> Tuple[jnp.ndarray]: residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache, deterministic=deterministic, fcm_mask=fcm_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.self_attn_layer_norm(hidden_states) # Fully Connected hidden_states_shape = hidden_states.shape hidden_states = hidden_states.reshape(-1, hidden_states.shape[-1]) residual = hidden_states # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention if self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = (residual + hidden_states).reshape(hidden_states_shape) # 350m applies layer norm AFTER attention if not self.do_layer_norm_before: hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class FlaxOPTDecoderLayerCollection(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxOPTDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] self.layerdrop = self.config.layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None if not deterministic and self.config.fcm_max_ratio > 0: # Apply forgetful causal mask batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1] fcm_ratio = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, 1, 1), minval=self.config.fcm_min_ratio, maxval=self.config.fcm_max_ratio ) fcm_mask = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, seq_length, seq_length) ) > fcm_ratio fcm_mask = fcm_mask.at[:, :, :, 0].set(True) fcm_mask = fcm_mask.astype('bool') else: fcm_mask = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, fcm_mask=fcm_mask, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) outputs = [hidden_states, all_hidden_states, all_self_attns] return outputs class FlaxOPTLearnedPositionalEmbedding(nn.Embed): """ This module learns positional embeddings up to a fixed maximum size. """ def setup(self): self.offset = 2 self.embedding = self.param( "embedding", self.embedding_init, (self.num_embeddings + self.offset, self.features), self.param_dtype ) def __call__(self, positions): """`input_ids_shape` is expected to be [bsz x seqlen].""" return super().__call__(positions + self.offset) class FlaxOPTDecoder(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation offset: int = 2 def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.hidden_size self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_tokens = nn.Embed( self.config.vocab_size, self.config.word_embed_proj_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.embed_positions = FlaxOPTLearnedPositionalEmbedding( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) if self.config.word_embed_proj_dim != self.config.hidden_size: self.project_in = nn.Dense(self.config.hidden_size, use_bias=False) self.project_out = nn.Dense(self.config.word_embed_proj_dim, use_bias=False) else: self.project_in = None self.project_out = None # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility # with checkpoints that have been fine-tuned before transformers v4.20.1 # see https://github.com/facebookresearch/metaseq/pull/164 if self.config.do_layer_norm_before and not self.config._remove_final_layer_norm: self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) else: self.final_layer_norm = None self.layers = FlaxOPTDecoderLayerCollection(self.config, self.dtype) def __call__( self, input_ids, attention_mask, position_ids, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) if self.project_in is not None: inputs_embeds = self.project_in(inputs_embeds) positions = self.embed_positions(position_ids) hidden_states = inputs_embeds + positions hidden_state, all_hidden_states, attentions = self.layers( hidden_states, attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) if self.final_layer_norm is not None: hidden_state = self.final_layer_norm(hidden_state) if self.project_out is not None: hidden_state = self.project_out(hidden_state) if output_hidden_states: all_hidden_states += (hidden_state,) outputs = [hidden_state, all_hidden_states, attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_state, hidden_states=all_hidden_states, attentions=attentions, ) class FlaxOPTPreTrainedModel(FlaxPreTrainedModel): config_class = OPTConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: OPTConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, return_dict=False, ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, params: dict = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, dropout_rng: jax.random.PRNGKey = None, deterministic: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: position_ids = (attention_mask.cumsum(axis=1) * attention_mask) - 1 # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxOPTAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxOPTModule(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.decoder = FlaxOPTDecoder(self.config, dtype=self.dtype) def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache=False, ): decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, init_cache=init_cache, ) if not return_dict: return decoder_outputs return FlaxBaseModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModel with Bart->OPT class FlaxOPTModel(FlaxOPTPreTrainedModel): config: OPTConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxOPTModule append_call_sample_docstring(FlaxOPTModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) @add_start_docstrings( "The bare OPT Model transformer outputting raw hidden-states without any specific head on top.", OPT_START_DOCSTRING, ) class FlaxOPTForCausalLMModule(nn.Module): config: OPTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.model = FlaxOPTModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def __call__( self, input_ids, attention_mask=None, position_ids=None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): batch_size, seq_length = input_ids.shape if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to( jnp.cumsum(attention_mask, axis=-1) - 1, (batch_size, seq_length) ) outputs = self.model( input_ids, attention_mask, position_ids, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["decoder"]["embed_tokens"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxMaskedLMOutput( logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ OPT Model with a language modeling head on top (linear layer with weights tied to the input embeddings) e.g for autoregressive tasks. """, OPT_START_DOCSTRING, ) class FlaxOPTForCausalLM(FlaxOPTPreTrainedModel): module_class = FlaxOPTForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxOPTForCausalLM, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC, )
import dataclasses import pprint import re from functools import partial import absl.app import absl.flags import flax import jax import jax.numpy as jnp import numpy as np import optax import wandb from absl import logging from flax import linen as nn from flax.jax_utils import prefetch_to_device from flax.training.train_state import TrainState from jax.experimental import PartitionSpec as PS from jax.experimental.pjit import pjit, with_sharding_constraint from tqdm import tqdm, trange from coh.data import PretrainDataset from coh.jax_utils import (JaxRNG, ShardingHelper, StreamingCheckpointer, cross_entropy_loss_and_accuracy, get_jax_mp_mesh, global_norm, match_partition_rules, named_tree_map, next_rng, set_random_seed, get_metrics, OptimizerFactory) from coh.utils import (WandBLogger, define_flags_with_default, get_user_flags, load_pickle, user_flags_to_config_dict) from coh.models.opt.opt import OPTConfig, FlaxOPTForCausalLMModule FLAGS_DEF = define_flags_with_default( seed=42, initialize_jax_distributed=False, mp_mesh_dim=1, total_steps=10000, load_opt_config='', load_checkpoint='', load_dataset_state='', log_freq=50, save_model_freq=0, tokenizer=OPTConfig.get_tokenizer_config(), dataset=PretrainDataset.get_default_config(), optimizer=OptimizerFactory.get_default_config(), opt=OPTConfig.get_default_config(), logger=WandBLogger.get_default_config(), log_all_worker=False, ) FLAGS = absl.flags.FLAGS def main(argv): FLAGS = absl.flags.FLAGS if FLAGS.initialize_jax_distributed: jax.distributed.initialize() variant = get_user_flags(FLAGS, FLAGS_DEF) flags_config_dict = user_flags_to_config_dict(FLAGS, FLAGS_DEF) logger = WandBLogger( config=FLAGS.logger, variant=variant, enable=FLAGS.log_all_worker or (jax.process_index() == 0), ) set_random_seed(FLAGS.seed) if FLAGS.load_dataset_state != '': dataset = load_pickle(FLAGS.load_dataset_state) else: tokenizer = OPTConfig.get_tokenizer(FLAGS.tokenizer) dataset = PretrainDataset.load_dataset(FLAGS.dataset, tokenizer) seq_length = dataset.seq_length if FLAGS.load_opt_config != '': opt_config = OPTConfig.load_config(FLAGS.load_opt_config) else: opt_config = OPTConfig(**FLAGS.opt) opt_config.update(dict( bos_token_id=dataset.tokenizer.bos_token_id, eos_token_id=dataset.tokenizer.eos_token_id, )) if opt_config.vocab_size < dataset.vocab_size: opt_config.update(dict(vocab_size=dataset.vocab_size)) model = FlaxOPTForCausalLMModule(opt_config) def weight_decay_mask(params): def decay(name, _): for rule in OPTConfig.get_weight_decay_exclusions(): if re.search(rule, name) is not None: return False return True return named_tree_map(decay, params, sep='/') optimizer, optimizer_info = OptimizerFactory.get_optimizer( FLAGS.optimizer, weight_decay_mask ) def init_fn(rng): rng_generator = JaxRNG(rng) params = model.init( input_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), position_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), attention_mask=jnp.ones((4, seq_length), dtype=jnp.int32), rngs=rng_generator(opt_config.rng_keys()), ) return TrainState.create(params=params, tx=optimizer, apply_fn=None) def train_step(train_state, rng, batch): rng_generator = JaxRNG(rng) tokens = with_sharding_constraint(batch['tokens'], PS('dp')) def loss_and_accuracy(params): bos_tokens = jnp.full( (tokens.shape[0], 1), opt_config.bos_token_id, dtype=jnp.int32 ) inputs = jnp.concatenate([bos_tokens, tokens[:, :-1]], axis=1) logits = model.apply( params, inputs, deterministic=False, rngs=rng_generator(opt_config.rng_keys()), ).logits return cross_entropy_loss_and_accuracy(logits, tokens) grad_fn = jax.value_and_grad(loss_and_accuracy, has_aux=True) (loss, accuracy), grads = grad_fn(train_state.params) train_state = train_state.apply_gradients(grads=grads) metrics = dict( loss=loss, accuracy=accuracy, learning_rate=optimizer_info['learning_rate_schedule'](train_state.step), gradient_norm=global_norm(grads), param_norm=global_norm(train_state.params), ) return train_state, rng_generator(), metrics train_state_shapes = jax.eval_shape(init_fn, next_rng()) train_state_partition = match_partition_rules( OPTConfig.get_partition_rules(), train_state_shapes ) sharding_helper = ShardingHelper(train_state_partition) checkpointer = StreamingCheckpointer( logger.checkpoint_dir, enable=jax.process_index() == 0 ) sharded_init_fn = pjit( init_fn, in_axis_resources=PS(), out_axis_resources=train_state_partition ) sharded_train_step = pjit( train_step, in_axis_resources=(train_state_partition, PS(), PS()), out_axis_resources=(train_state_partition, PS(), PS()), donate_argnums=(0, 1), ) def save_checkpoint(train_state): train_state = sharding_helper.get(train_state) step = int(train_state.step) metadata = dict( step=step, variant=variant, flags=flags_config_dict, opt_config=opt_config, ) checkpointer.save_pickle(metadata, 'metadata.pkl') checkpointer.save_pickle(dataset, 'dataset.pkl') checkpointer.save_checkpoint(train_state, 'train_state') start_step = 0 restored_checkpoint_state = None restored_params = None if FLAGS.load_checkpoint != '': load_type, load_path = FLAGS.load_checkpoint.split('::', 1) with jax.default_device(jax.devices("cpu")[0]): if load_type == 'trainstate': restored_checkpoint_state = checkpointer.load_checkpoint( load_path, train_state_shapes ) start_step = restored_checkpoint_state.step elif load_type == 'trainstate_params': restored_params = flax.core.frozen_dict.freeze( checkpointer.load_checkpoint(load_path)['params'] ) elif load_type == 'huggingface': restored_params = opt_config.load_pretrained(load_path) mesh = get_jax_mp_mesh(FLAGS.mp_mesh_dim) with mesh: if restored_checkpoint_state is not None: train_state = sharding_helper.put(restored_checkpoint_state) del restored_checkpoint_state elif restored_params is not None: train_state = sharded_init_fn(next_rng()) train_state = sharding_helper.get(train_state) train_state = train_state.replace(params=restored_params) train_state = sharding_helper.put(train_state) del restored_params else: train_state = sharded_init_fn(next_rng()) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) sharded_rng = next_rng() step_counter = trange(start_step, FLAGS.total_steps, ncols=0) for step, batch in zip(step_counter, dataset): train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, batch ) if step % FLAGS.log_freq == 0: log_metrics = {"step": step} log_metrics.update(metrics) logger.log(log_metrics) tqdm.write("\n" + pprint.pformat(log_metrics) + "\n") if FLAGS.save_model_freq > 0 and (step + 1) % FLAGS.save_model_freq == 0: save_checkpoint(train_state) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) if __name__ == "__main__": absl.app.run(main)
# coding=utf-8 # Copyright 2021 The EleutherAI and The HuggingFace Inc. team. # Modifications copyright 2022 Xinyang Geng # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.experimental import PartitionSpec from jax.experimental.pjit import with_sharding_constraint from jax.interpreters import pxla from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from transformers import AutoTokenizer from transformers.configuration_utils import PretrainedConfig from transformers.generation.flax_logits_process import FlaxLogitsProcessorList from transformers.modeling_flax_outputs import (FlaxBaseModelOutput, FlaxCausalLMOutput) from transformers.modeling_flax_utils import (ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring) from transformers.utils import (add_start_docstrings, add_start_docstrings_to_model_forward, logging) from coh.utils import function_args_to_config, load_pickle """ The follow code is taken from transformers/src/transformers/models/gptj/configuration_gptj.py and modified to work with EasyLM. """ class GPTJConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-J [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50400): Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTJModel`]. n_positions (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. rotary_dim (`int`, *optional*, defaults to 64): Number of dimensions in the embedding that Rotary Position Embedding is applied to. n_inner (`int`, *optional*, defaults to 0): Dimensionality of the inner feed-forward layers. 0 will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_new"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import GPTJModel, GPTJConfig >>> # Initializing a GPT-J 6B configuration >>> configuration = GPTJConfig() >>> # Initializing a model from the configuration >>> model = GPTJModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gptj" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50400, n_positions=2048, n_embd=4096, n_layer=28, n_head=16, rotary_dim=64, n_inner=None, activation_function="gelu_new", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, tie_word_embeddings=False, gradient_checkpointing=True, n_real_tokens=50257, fcm_min_ratio=0.0, fcm_max_ratio=0.0, **kwargs ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.rotary_dim = rotary_dim self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.n_real_tokens = n_real_tokens self.fcm_min_ratio = fcm_min_ratio self.fcm_max_ratio = fcm_max_ratio if self.n_real_tokens is None: self.n_real_tokens = self.vocab_size self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) @classmethod def get_default_config(cls, updates=None): none_arg_types = dict( n_inner=int, rotary_dim=int, ) config = function_args_to_config(cls.__init__, none_arg_types=none_arg_types) if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @staticmethod def get_partition_rules(): """ Parition rules for GPTJ. Note that these rules are orderd, so that the beginning rules match first. It is important to use PartitionSpec() instead of None here because JAX does not treat None as a pytree leaf. """ return ( ('transformer/wte/embedding', PartitionSpec('mp', None)), ('attn/(k_proj|q_proj|v_proj)/kernel', PartitionSpec(None, 'mp')), ('attn/out_proj/kernel', PartitionSpec('mp', None)), ('mlp/fc_in/kernel', PartitionSpec(None, 'mp')), ('mlp/fc_in/bias', PartitionSpec('mp')), ('mlp/fc_out/kernel', PartitionSpec('mp', None)), ('mlp/fc_out/bias', PartitionSpec()), ('ln_[0-9]+/bias', PartitionSpec()), ('[0-9]+/ln_[0-9]+/scale', PartitionSpec()), ('ln_f/bias', PartitionSpec()), ('ln_f/scale', PartitionSpec()), ('lm_head/kernel', PartitionSpec(None, 'mp')), ('lm_head/bias', PartitionSpec('mp')), ('.*', PartitionSpec()), ) @staticmethod def get_weight_decay_exclusions(): return ( 'ln_[0-9]+/bias', 'ln_[0-9]+/scale', 'ln_f/bias', 'ln_f/scale', 'bias' ) @staticmethod def rng_keys(): return ('params', 'dropout', 'fcm') @staticmethod def get_tokenizer_config(updates=None): config = ConfigDict() config.name = 'EleutherAI/gpt-j-6B' config.bos_token = '<|endoftext|>' config.eos_token = '<|endoftext|>' config.pad_token = '<|extratoken_40|>' config.cls_token = '<|extratoken_41|>' config.mask_token = '<|extratoken_42|>' if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_tokenizer(cls, config, padding_side='left', truncation_side='right'): config = cls.get_tokenizer_config(config) return AutoTokenizer.from_pretrained( config.name, bos_token=config.bos_token, eos_token=config.eos_token, pad_token=config.pad_token, cls_token=config.cls_token, mask_token=config.mask_token, padding_side=padding_side, truncation_side=truncation_side, ) @staticmethod def load_pretrained(name): with jax.default_device(jax.devices("cpu")[0]): params = FlaxGPTJForCausalLM.from_pretrained(name, _do_init=False)[1] params = freeze({'params': params}) return params @classmethod def load_config(cls, path): load_type, load_path = path.split('::', 1) if load_type == 'pickle': return cls.from_dict(load_pickle(load_path)['gptj_config']) elif load_type == 'huggingface': return cls.from_pretrained(load_path) else: raise ValueError(f'Unsupported load config type: {load_type}') """ The follow code is taken from transformers/src/transformers/models/gptj/modeling_flax_gptj.py and modified to work with EasyLM. """ logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "gptj" _CONFIG_FOR_DOC = "GPTJConfig" remat = nn_partitioning.remat GPTJ_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`GPTJConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ GPTJ_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class FlaxGPTJAttention(nn.Module): config: GPTJConfig dtype: jnp.dtype = jnp.float32 causal: bool = True is_cross_attention: bool = False def setup(self): config = self.config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.rotary_dim = config.rotary_dim dense = partial( nn.Dense, self.embed_dim, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.resid_dropout = nn.Dropout(rate=config.resid_pdrop) self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") if self.rotary_dim is not None and self.rotary_dim > 0: pos_embd_dim = self.rotary_dim else: pos_embd_dim = self.embed_dim // self.num_heads self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, fcm_mask=None, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) # Rotary position embeddings induce some weird issues in multi-host environments, so we remove activation-sharding for keys/query vectors to fix this. resource_env = pxla.thread_resources.env mesh = resource_env.physical_mesh if "dp" in mesh.axis_names: key = with_sharding_constraint(key, PartitionSpec("dp", None, None, None)) query = with_sharding_constraint(query, PartitionSpec("dp", None, None, None)) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) query_length, key_length = query.shape[1], key.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) if self.causal: attention_mask = combine_masks(attention_mask, causal_mask, fcm_mask) else: attention_mask = attention_mask dropout_rng = None if not deterministic and self.config.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # transform boolean mask into float mask attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype), ) # usual dot product attention attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxGPTJMLP(nn.Module): config: GPTJConfig intermediate_size: int dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init) self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init) self.act = ACT2FN[self.config.activation_function] self.dropout = nn.Dropout(rate=self.config.resid_pdrop) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxGPTJBlock(nn.Module): config: GPTJConfig dtype: jnp.dtype = jnp.float32 def setup(self): hidden_size = self.config.hidden_size inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype) self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, fcm_mask=None, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, fcm_mask=fcm_mask, ) attn_output = attn_outputs[0] feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic) # residual connection hidden_states = attn_output + feed_forward_hidden_states + residual return (hidden_states,) + attn_outputs[1:] class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTJConfig base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: GPTJConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return init_variables["cache"] def _get_logits_processor(self,*args, **kwargs) -> FlaxLogitsProcessorList: processors = super()._get_logits_processor(*args, **kwargs) def squash_extra_tokens(input_ids, scores, cur_len): return scores.at[:, self.config.n_real_tokens:].set(-float('inf')) processors.append(squash_extra_tokens) return processors @add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxGPTJBlockCollection(nn.Module): config: GPTJConfig dtype: jnp.dtype = jnp.float32 def setup(self): block = FlaxGPTJBlock if self.config.gradient_checkpointing: FlaxGPT2CheckpointBlock = remat(block, static_argnums=(3, 4, 5)) block = FlaxGPT2CheckpointBlock self.blocks = [ block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if not deterministic and self.config.fcm_max_ratio > 0: # Apply forgetful causal mask batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1] fcm_ratio = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, 1, 1), minval=self.config.fcm_min_ratio, maxval=self.config.fcm_max_ratio ) fcm_mask = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, seq_length, seq_length) ) > fcm_ratio fcm_mask = fcm_mask.at[:, :, :, 0].set(True) fcm_mask = fcm_mask.astype('bool') else: fcm_mask = None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask, position_ids, deterministic, init_cache, output_attentions, fcm_mask, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxGPTJModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs class FlaxGPTJModule(nn.Module): config: GPTJConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size self.wte = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.embd_pdrop) self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype) self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.wte(input_ids.astype("i4")) hidden_states = self.dropout(input_embeds, deterministic=deterministic) outputs = self.h( hidden_states, attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) @add_start_docstrings( "The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.", GPTJ_START_DOCSTRING, ) class FlaxGPTJModel(FlaxGPTJPreTrainedModel): module_class = FlaxGPTJModule append_call_sample_docstring( FlaxGPTJModel, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC, ) class FlaxGPTJForCausalLMModule(nn.Module): config: GPTJConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): batch_size, seq_length = input_ids.shape if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to( jnp.cumsum(attention_mask, axis=-1) - 1, (batch_size, seq_length) ) outputs = self.transformer( input_ids, attention_mask, position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """ The GPTJ Model transformer with a language modeling head on top. """, GPTJ_START_DOCSTRING, ) class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel): module_class = FlaxGPTJForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPTJ uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxGPTJForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC, )
import dataclasses import pprint import re from functools import partial import absl.app import absl.flags import flax import jax import jax.numpy as jnp import numpy as np import optax import wandb from absl import logging from flax import linen as nn from flax.jax_utils import prefetch_to_device from flax.training.train_state import TrainState from jax.experimental import PartitionSpec as PS from jax.experimental.pjit import pjit, with_sharding_constraint from tqdm import tqdm, trange from coh.data import PretrainDataset from coh.jax_utils import (JaxRNG, ShardingHelper, StreamingCheckpointer, cross_entropy_loss_and_accuracy, get_jax_mp_mesh, global_norm, match_partition_rules, named_tree_map, next_rng, set_random_seed, get_metrics, OptimizerFactory) from coh.utils import (WandBLogger, define_flags_with_default, get_user_flags, load_pickle, user_flags_to_config_dict) from coh.models.gptj.gptj import GPTJConfig, FlaxGPTJForCausalLMModule FLAGS_DEF = define_flags_with_default( seed=42, initialize_jax_distributed=False, mp_mesh_dim=1, total_steps=10000, load_gptj_config='', load_checkpoint='', load_dataset_state='', log_freq=50, save_model_freq=0, tokenizer=GPTJConfig.get_tokenizer_config(), dataset=PretrainDataset.get_default_config(), optimizer=OptimizerFactory.get_default_config(), gptj=GPTJConfig.get_default_config(), logger=WandBLogger.get_default_config(), log_all_worker=False, ) FLAGS = absl.flags.FLAGS def main(argv): FLAGS = absl.flags.FLAGS if FLAGS.initialize_jax_distributed: jax.distributed.initialize() variant = get_user_flags(FLAGS, FLAGS_DEF) flags_config_dict = user_flags_to_config_dict(FLAGS, FLAGS_DEF) logger = WandBLogger( config=FLAGS.logger, variant=variant, enable=FLAGS.log_all_worker or (jax.process_index() == 0), ) set_random_seed(FLAGS.seed) if FLAGS.load_dataset_state != '': dataset = load_pickle(FLAGS.load_dataset_state) else: tokenizer = GPTJConfig.get_tokenizer(FLAGS.tokenizer) dataset = PretrainDataset.load_dataset(FLAGS.dataset, tokenizer) seq_length = dataset.seq_length if FLAGS.load_gptj_config != '': gptj_config = GPTJConfig.load_config(FLAGS.load_gptj_config) else: gptj_config = GPTJConfig(**FLAGS.gptj) gptj_config.update(dict( bos_token_id=dataset.tokenizer.bos_token_id, eos_token_id=dataset.tokenizer.eos_token_id, )) if gptj_config.vocab_size < dataset.vocab_size: gptj_config.update(dict(vocab_size=dataset.vocab_size)) model = FlaxGPTJForCausalLMModule(gptj_config) def weight_decay_mask(params): def decay(name, _): for rule in GPTJConfig.get_weight_decay_exclusions(): if re.search(rule, name) is not None: return False return True return named_tree_map(decay, params, sep='/') optimizer, optimizer_info = OptimizerFactory.get_optimizer( FLAGS.optimizer, weight_decay_mask ) def init_fn(rng): rng_generator = JaxRNG(rng) params = model.init( input_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), position_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), attention_mask=jnp.ones((4, seq_length), dtype=jnp.int32), rngs=rng_generator(gptj_config.rng_keys()), ) return TrainState.create(params=params, tx=optimizer, apply_fn=None) def train_step(train_state, rng, batch): rng_generator = JaxRNG(rng) tokens = with_sharding_constraint(batch['tokens'], PS('dp')) def loss_and_accuracy(params): bos_tokens = jnp.full( (tokens.shape[0], 1), gptj_config.bos_token_id, dtype=jnp.int32 ) inputs = jnp.concatenate([bos_tokens, tokens[:, :-1]], axis=1) logits = model.apply( params, inputs, deterministic=False, rngs=rng_generator(gptj_config.rng_keys()), ).logits return cross_entropy_loss_and_accuracy(logits, tokens) grad_fn = jax.value_and_grad(loss_and_accuracy, has_aux=True) (loss, accuracy), grads = grad_fn(train_state.params) train_state = train_state.apply_gradients(grads=grads) metrics = dict( loss=loss, accuracy=accuracy, learning_rate=optimizer_info['learning_rate_schedule'](train_state.step), gradient_norm=global_norm(grads), param_norm=global_norm(train_state.params), ) return train_state, rng_generator(), metrics train_state_shapes = jax.eval_shape(init_fn, next_rng()) train_state_partition = match_partition_rules( GPTJConfig.get_partition_rules(), train_state_shapes ) sharding_helper = ShardingHelper(train_state_partition) checkpointer = StreamingCheckpointer( logger.checkpoint_dir, enable=jax.process_index() == 0 ) sharded_init_fn = pjit( init_fn, in_axis_resources=PS(), out_axis_resources=train_state_partition ) sharded_train_step = pjit( train_step, in_axis_resources=(train_state_partition, PS(), PS()), out_axis_resources=(train_state_partition, PS(), PS()), donate_argnums=(0, 1), ) def save_checkpoint(train_state): train_state = sharding_helper.get(train_state) step = int(train_state.step) metadata = dict( step=step, variant=variant, flags=flags_config_dict, gptj_config=gptj_config.to_dict(), ) checkpointer.save_pickle(metadata, 'metadata.pkl') checkpointer.save_pickle(dataset, 'dataset.pkl') checkpointer.save_checkpoint(train_state, 'train_state') start_step = 0 restored_checkpoint_state = None restored_params = None if FLAGS.load_checkpoint != '': load_type, load_path = FLAGS.load_checkpoint.split('::', 1) with jax.default_device(jax.devices("cpu")[0]): if load_type == 'trainstate': restored_checkpoint_state = checkpointer.load_checkpoint( load_path, train_state_shapes ) start_step = restored_checkpoint_state.step elif load_type == 'trainstate_params': restored_params = flax.core.frozen_dict.freeze( checkpointer.load_checkpoint(load_path)['params'] ) elif load_type == 'huggingface': restored_params = gptj_config.load_pretrained(load_path) mesh = get_jax_mp_mesh(FLAGS.mp_mesh_dim) with mesh: if restored_checkpoint_state is not None: train_state = sharding_helper.put(restored_checkpoint_state) del restored_checkpoint_state elif restored_params is not None: train_state = sharded_init_fn(next_rng()) train_state = sharding_helper.get(train_state) train_state = train_state.replace(params=restored_params) train_state = sharding_helper.put(train_state) del restored_params else: train_state = sharded_init_fn(next_rng()) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) sharded_rng = next_rng() step_counter = trange(start_step, FLAGS.total_steps, ncols=0) for step, batch in zip(step_counter, dataset): train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, batch ) if step % FLAGS.log_freq == 0: log_metrics = {"step": step} log_metrics.update(metrics) logger.log(log_metrics) tqdm.write("\n" + pprint.pformat(log_metrics) + "\n") if FLAGS.save_model_freq > 0 and (step + 1) % FLAGS.save_model_freq == 0: save_checkpoint(train_state) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) if __name__ == "__main__": absl.app.run(main)
import copy import pprint import re from functools import partial import absl.app import absl.flags import flax import jax import jax.numpy as jnp import numpy as np import optax from absl import logging from flax import linen as nn from flax.jax_utils import prefetch_to_device from flax.training.train_state import TrainState from jax.experimental import PartitionSpec as PS from jax.experimental.pjit import pjit, with_sharding_constraint from tqdm import tqdm, trange from coh.jax_utils import (JaxRNG, ShardingHelper, StreamingCheckpointer, cross_entropy_loss_and_accuracy, get_jax_mp_mesh, global_norm, match_partition_rules, named_tree_map, next_rng, optax_add_scheduled_weight_decay, set_random_seed) from coh.scripts.serving import LMServer from coh.utils import (WandBLogger, define_flags_with_default, get_user_flags, load_pickle, user_flags_to_config_dict) from coh.models.gptj.gptj import FlaxGPTJForCausalLM, FlaxGPTJForCausalLMModule, GPTJConfig FLAGS_DEF = define_flags_with_default( seed=42, initialize_jax_distributed=False, mp_mesh_dim=1, dtype='', input_length=256, seq_length=1024, top_k=50, top_p=1.0, do_sample=False, temperature=1.0, num_beams=1, load_gptj_config='', load_checkpoint='', tokenizer=GPTJConfig.get_tokenizer_config(), lm_server=LMServer.get_default_config(), ) FLAGS = absl.flags.FLAGS def main(argv): if FLAGS.initialize_jax_distributed: jax.distributed.initialize() set_random_seed(FLAGS.seed) tokenizer = GPTJConfig.get_tokenizer(FLAGS.tokenizer) generation_tokenizer = GPTJConfig.get_tokenizer( FLAGS.tokenizer, truncation_side='left' ) with jax.default_device(jax.devices("cpu")[0]): gptj_config = GPTJConfig.load_config(FLAGS.load_gptj_config) load_type, load_path = FLAGS.load_checkpoint.split('::', 1) if load_type == 'trainstate_params': params = flax.core.frozen_dict.freeze( StreamingCheckpointer.load_checkpoint(load_path)['params'] ) elif load_type == 'huggingface': params = gptj_config.load_pretrained(load_path) else: raise ValueError(f'Unsupported load checkpoint type {load_type}') hf_model = FlaxGPTJForCausalLM( gptj_config, input_shape=(1, FLAGS.seq_length), seed=FLAGS.seed, _do_init=False ) params = jax.device_put(params, device=jax.devices("cpu")[0]) if FLAGS.dtype == 'fp32': params = hf_model.to_fp32(params) elif FLAGS.dtype == 'fp16': params = hf_model.to_fp16(params) elif FLAGS.dtype == 'bf16': params = hf_model.to_bf16(params) elif FLAGS.dtype == '': pass # No dtype conversion else: raise ValueError(f'Unsupported dtype: {FLAGS.dtype}') model_ps = match_partition_rules( GPTJConfig.get_partition_rules(), params ) sharding_helper = ShardingHelper(model_ps) @partial( pjit, in_axis_resources=(model_ps, PS(), PS()), out_axis_resources=(PS(), PS(), PS()) ) def forward_loglikelihood(params, rng, batch): batch = with_sharding_constraint(batch, PS('dp')) rng_generator = JaxRNG(rng) input_tokens = batch['input_tokens'] output_tokens = batch['output_tokens'] input_mask = batch['input_mask'] output_mask = batch['output_mask'] logits = hf_model.module.apply( params, input_tokens, attention_mask=input_mask, deterministic=True, rngs=rng_generator(gptj_config.rng_keys()), ).logits if gptj_config.n_real_tokens is not None: logits = logits.at[:, :, gptj_config.n_real_tokens:].set(-1e8) loglikelihood = jax.nn.log_softmax(logits, axis=-1) indices = jnp.expand_dims(output_tokens, axis=-1) loglikelihood = jnp.take_along_axis(loglikelihood, indices, axis=-1) loglikelihood = jnp.squeeze(loglikelihood, axis=-1) loglikelihood = jnp.sum(loglikelihood * output_mask, axis=-1) match_count = jnp.sum( (jnp.argmax(logits, axis=-1) == output_tokens) * output_mask, axis=-1 ) total = jnp.sum(output_mask, axis=-1) is_greedy = match_count == total return loglikelihood, is_greedy, rng_generator() @partial( pjit, in_axis_resources=(model_ps, PS(), PS()), out_axis_resources=(PS(), PS()) ) def forward_generate(params, rng, batch): batch = with_sharding_constraint(batch, PS('dp')) rng_generator = JaxRNG(rng) output = hf_model.generate( batch['input_tokens'], attention_mask=batch['attention_mask'], params=params['params'], prng_key=rng_generator(), max_length=FLAGS.seq_length, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, temperature=FLAGS.temperature, top_k=FLAGS.top_k, top_p=FLAGS.top_p, num_beams=FLAGS.num_beams, do_sample=FLAGS.do_sample, ).sequences[:, batch['input_tokens'].shape[1]:] return output, rng_generator() @partial( pjit, in_axis_resources=(model_ps, PS(), PS()), out_axis_resources=(PS(), PS()) ) def forward_greedy_generate(params, rng, batch): batch = with_sharding_constraint(batch, PS('dp')) rng_generator = JaxRNG(rng) output = hf_model.generate( batch['input_tokens'], attention_mask=batch['attention_mask'], params=params['params'], prng_key=rng_generator(), max_length=FLAGS.seq_length, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, num_beams=1, do_sample=False, ).sequences[:, batch['input_tokens'].shape[1]:] return output, rng_generator() mesh = get_jax_mp_mesh(FLAGS.mp_mesh_dim) with mesh: params = sharding_helper.put(params) sharded_rng = next_rng() class GPTJServer(LMServer): @staticmethod def loglikelihood(prefix_text, text): nonlocal sharded_rng prefix = tokenizer( prefix_text, padding='max_length', truncation=True, max_length=FLAGS.input_length, return_tensors='np', ) inputs = tokenizer( text, padding='max_length', truncation=True, max_length=FLAGS.seq_length - FLAGS.input_length, return_tensors='np', ) output_tokens = np.concatenate([prefix.input_ids, inputs.input_ids], axis=1) bos_tokens = np.full( (output_tokens.shape[0], 1), tokenizer.bos_token_id, dtype=np.int32 ) input_tokens = np.concatenate([bos_tokens, output_tokens[:, :-1]], axis=-1) input_mask = np.concatenate( [prefix.attention_mask, inputs.attention_mask], axis=1 ) output_mask = np.concatenate( [np.zeros_like(prefix.attention_mask), inputs.attention_mask], axis=1 ) loglikelihood_mask = np.concatenate( [np.zeros_like(prefix.attention_mask), np.ones_like(inputs.attention_mask)], axis=1 ) batch = dict( input_tokens=input_tokens, output_tokens=output_tokens, input_mask=input_mask, output_mask=output_mask, ) with mesh: loglikelihood, is_greedy, sharded_rng = forward_loglikelihood( params, sharded_rng, batch ) loglikelihood, is_greedy = jax.device_get((loglikelihood, is_greedy)) return loglikelihood, is_greedy @staticmethod def loglikelihood_rolling(text): nonlocal sharded_rng inputs = tokenizer( text, padding='longest', truncation=False, max_length=np.iinfo(np.int32).max, return_tensors='np', ) batch_size = inputs.input_ids.shape[0] output_tokens = inputs.input_ids attention_mask = inputs.attention_mask if output_tokens.shape[1] < FLAGS.seq_length: padding_length = FLAGS.seq_length - output_tokens.shape[1] pad_tokens = np.full( (batch_size, padding_length), tokenizer.pad_token_id, dtype=np.int32 ) output_tokens = np.concatenate([output_tokens, pad_tokens], axis=-1) pad_mask = np.zeros( (batch_size, padding_length), dtype=inputs.attention_mask.dtype ) attention_mask = np.concatenate([attention_mask, pad_mask], axis=-1) bos_tokens = np.full( (batch_size, 1), tokenizer.bos_token_id, dtype=np.int32 ) input_tokens = np.concatenate([bos_tokens, output_tokens[:, :-1]], axis=-1) bos_mask = np.ones((batch_size, 1), dtype=inputs.attention_mask.dtype) total_seq_length = output_tokens.shape[1] total_loglikelihood = 0.0 total_is_greedy = True # Sliding window for i in range(0, total_seq_length, FLAGS.seq_length): # Last window if i + FLAGS.seq_length > total_seq_length: last_output_mask = np.copy(attention_mask[:, -FLAGS.seq_length:]) last_output_mask[:, :i - total_seq_length] = 0.0 batch = dict( input_tokens=input_tokens[:, -FLAGS.seq_length:], output_tokens=output_tokens[:, -FLAGS.seq_length:], input_mask=attention_mask[:, -FLAGS.seq_length:], output_mask=last_output_mask, ) # Normal window else: batch = dict( input_tokens=input_tokens[:, i:i + FLAGS.seq_length], output_tokens=output_tokens[:, i:i + FLAGS.seq_length], input_mask=attention_mask[:, i:i + FLAGS.seq_length], output_mask=attention_mask[:, i:i + FLAGS.seq_length], ) with mesh: loglikelihood, is_greedy, sharded_rng = forward_loglikelihood( params, sharded_rng, batch ) loglikelihood, is_greedy = jax.device_get((loglikelihood, is_greedy)) total_loglikelihood += loglikelihood total_is_greedy = np.logical_and(is_greedy, total_is_greedy) return total_loglikelihood, total_is_greedy @staticmethod def generate(text): nonlocal sharded_rng inputs = generation_tokenizer( text, padding='max_length', truncation=True, max_length=FLAGS.input_length, return_tensors='np', ) batch = dict( input_tokens=inputs.input_ids, attention_mask=inputs.attention_mask, ) with mesh: output, sharded_rng = forward_generate( params, sharded_rng, batch ) output = jax.device_get(output) output_text = [] for text in list(tokenizer.batch_decode(output)): if tokenizer.eos_token in text: text = text.split(tokenizer.eos_token, maxsplit=1)[0] output_text.append(text) return output_text @staticmethod def greedy_until(prefix_text, until, max_length): nonlocal sharded_rng all_outputs = [] for pf, ut in zip(prefix_text, until): total_length = 0 total_generated = '' while total_length < max_length: pf_tokens = tokenizer( pf, padding=False, truncation=False, max_length=np.iinfo(np.int32).max, return_tensors='np', ) input_tokens = pf_tokens.input_ids attention_mask = pf_tokens.attention_mask if input_tokens.shape[1] < FLAGS.input_length: extra = FLAGS.input_length - input_tokens.shape[1] pad_tokens = np.full( (1, extra), tokenizer.pad_token_id, dtype=np.int32 ) input_tokens = np.concatenate( [pad_tokens, input_tokens], axis=1 ) pad_attention = np.zeros((1, extra), dtype=attention_mask.dtype) attention_mask = np.concatenate( [pad_attention, attention_mask], axis=1 ) elif input_tokens.shape[1] > FLAGS.input_length: input_tokens = input_tokens[:, -FLAGS.input_length:] attention_mask = attention_mask[:, -FLAGS.input_length:] batch = dict(input_tokens=input_tokens, attention_mask=attention_mask) with mesh: output, sharded_rng = forward_greedy_generate( params, sharded_rng, batch ) output = jax.device_get(output) total_length += output.shape[1] output_text = tokenizer.batch_decode(output)[0] total_generated = total_generated + output_text pf = pf + output_text if ut in total_generated: break all_outputs.append(total_generated) return all_outputs server = GPTJServer(FLAGS.lm_server) server.run() if __name__ == "__main__": absl.app.run(main)
import dataclasses import os import pprint import re from functools import partial from threading import Lock import absl.logging import numpy as np import wandb from flask import Flask, request from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from tqdm import tqdm, trange class LMServer(object): """ HTTP server for serving langauge models. """ @staticmethod def get_default_config(updates=None): config = ConfigDict() config.chat = False config.name = 'lm_server' config.host = '0.0.0.0' config.port = 5007 config.batch_size = 1 config.logging = False config.pre_compile = 'loglikelihood' config.default_temperature = 1.0 config.default_max_length = 5000 if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config): self.config = self.get_default_config(config) self.lock = Lock() self.app = Flask(self.config.name) self.app.post('/loglikelihood')(self.serve_loglikelihood) self.app.post('/loglikelihood-rolling')(self.serve_loglikelihood_rolling) self.app.post('/generate')(self.serve_generate) self.app.post('/greedy-until')(self.serve_greedy_until) self.app.route('/ready')(self.serve_ready) @staticmethod def loglikelihood(prefix_text, text): raise NotImplementedError() @staticmethod def loglikelihood_rolling(text): raise NotImplementedError() @staticmethod def generate(text): raise NotImplementedError() @staticmethod def greedy_until(prefix_text, until, max_length): raise NotImplementedError() @staticmethod def to_list(x): if isinstance(x, np.ndarray): return x.tolist() return x def serve_loglikelihood(self): with self.lock: data = request.get_json() if self.config.logging: absl.logging.info( '\n========= Serving Log Likelihood Request ========= \n' + pprint.pformat(data) + '\n' ) text = data['text'] if 'prefix_text' not in data: prefix_text = ['' for _ in text] else: prefix_text = data['prefix_text'] log_likelihood = [] is_greedy = [] for i in trange(0, len(text), self.config.batch_size, ncols=0): batch_prefix_text = prefix_text[i:i + self.config.batch_size] batch_text = text[i:i + self.config.batch_size] batch_size = len(batch_text) if batch_size < self.config.batch_size: extra = self.config.batch_size - batch_size batch_prefix_text.extend(['a' for _ in range(extra)]) batch_text.extend(['a' for _ in range(extra)]) batch_log_likelihood, batch_is_greedy = self.loglikelihood( batch_prefix_text, batch_text ) batch_log_likelihood = self.to_list(batch_log_likelihood) batch_is_greedy = self.to_list(batch_is_greedy) log_likelihood.extend(batch_log_likelihood[:batch_size]) is_greedy.extend(batch_is_greedy[:batch_size]) output = { 'prefix_text': prefix_text, 'text': text, 'log_likelihood': log_likelihood, 'is_greedy': is_greedy, } if self.config.logging: absl.logging.info( '\n========= Output ========= \n' + pprint.pformat(output) + '\n' ) return output def serve_loglikelihood_rolling(self): with self.lock: data = request.get_json() if self.config.logging: absl.logging.info( '\n========= Serving Log Likelihood Request ========= \n' + pprint.pformat(data) + '\n' ) text = data['text'] log_likelihood = [] is_greedy = [] for i in trange(0, len(text), self.config.batch_size, ncols=0): batch_text = text[i:i + self.config.batch_size] batch_size = len(batch_text) if batch_size < self.config.batch_size: extra = self.config.batch_size - batch_size batch_text.extend(['a' for _ in range(extra)]) batch_log_likelihood, batch_is_greedy = self.loglikelihood_rolling( batch_text ) batch_log_likelihood = self.to_list(batch_log_likelihood) batch_is_greedy = self.to_list(batch_is_greedy) log_likelihood.extend(batch_log_likelihood[:batch_size]) is_greedy.extend(batch_is_greedy[:batch_size]) output = { 'text': text, 'log_likelihood': log_likelihood, 'is_greedy': is_greedy, } if self.config.logging: absl.logging.info( '\n========= Output ========= \n' + pprint.pformat(output) + '\n' ) return output def serve_generate(self): with self.lock: data = request.get_json() if self.config.logging: absl.logging.info( '\n========= Serving Generate Request ========= \n' + pprint.pformat(data) + '\n' ) prefix_text = data['prefix_text'] output_text = [] for i in trange(0, len(prefix_text), self.config.batch_size, ncols=0): batch_prefix_text = prefix_text[i:i + self.config.batch_size] batch_size = len(batch_prefix_text) if batch_size < self.config.batch_size: extra = self.config.batch_size - batch_size batch_prefix_text.extend(['a' for _ in range(extra)]) batch_output_text = self.generate(batch_prefix_text) output_text.extend(self.to_list(batch_output_text)[:batch_size]) output = { 'prefix_text': prefix_text, 'output_text': output_text, } if self.config.logging: absl.logging.info( '\n========= Output ========= \n' + pprint.pformat(output) + '\n' ) return output def serve_greedy_until(self): with self.lock: data = request.get_json() if self.config.logging: absl.logging.info( '\n========= Serving Greedy Until Request ========= \n' + pprint.pformat(data) + '\n' ) prefix_text = data['prefix_text'] until = data['until'] max_length = data.get('max_length', self.config.default_max_length) output_text = [] for i in range(0, len(prefix_text), self.config.batch_size): batch_prefix_text = prefix_text[i:i + self.config.batch_size] batch_until = until[i:i + self.config.batch_size] batch_size = len(batch_prefix_text) batch_output_text = self.greedy_until(batch_prefix_text, batch_until, max_length) output_text.extend(self.to_list(batch_output_text)[:batch_size]) output = { 'prefix_text': prefix_text, 'until': until, 'max_length': max_length, 'output_text': output_text, } if self.config.logging: absl.logging.info( '\n========= Output ========= \n' + pprint.pformat(output) + '\n' ) return output def serve_ready(self): return 'Ready!\n' def run_server(self): if self.config.pre_compile != '': if self.config.pre_compile == 'all': pre_compile = ['loglikelihood', 'generate', 'greedy_until'] else: pre_compile = self.config.pre_compile.split(',') pre_compile_data = ['a' for _ in range(self.config.batch_size)] for task in pre_compile: if task == 'loglikelihood': self.loglikelihood(pre_compile_data, pre_compile_data) self.loglikelihood_rolling(pre_compile_data) elif task == 'generate': self.generate(pre_compile_data) elif task == 'greedy_until': self.greedy_until( pre_compile_data, pre_compile_data, self.config.default_max_length ) else: raise ValueError(f'Invalid precompile task: {task}!') self.app.run(host=self.config.host, port=self.config.port) def run_chat(self): self.generate(['precompile data']) print('Type ">reset" to reset the context.') context = '' while True: prompt = input('>>> ') if prompt == '>reset': context = '' continue context = context + prompt output = self.generate([context])[0] context = context + output print(output + '\n') def run(self): if self.config.chat: self.run_chat() else: self.run_server()
import dataclasses import json import os import pprint import time import urllib from functools import partial import absl.app import absl.flags import absl.logging import numpy as np import requests import wandb from flax.traverse_util import flatten_dict from lm_eval import evaluator, tasks from lm_eval.base import LM from tqdm import tqdm, trange from coh.utils import (WandBLogger, define_flags_with_default, get_user_flags, load_pickle, set_random_seed) FLAGS_DEF = define_flags_with_default( lm_server_url='http://localhost:5007/', tasks='wsc,piqa,winogrande,openbookqa,logiqa', shots=0, wait_for_ready=True, logger=WandBLogger.get_default_config(), ) FLAGS = absl.flags.FLAGS class LMEvalHarnessInterface(LM): def __init__(self, url): self.url = url def wait_for_ready(self): while True: try: requests.get(self.url) return except requests.Timeout as e: time.sleep(10) def greedy_until(self, inputs): prefix, until = zip(*inputs) prefix = list(prefix) until = list(until) response = requests.post( urllib.parse.urljoin(self.url, 'greedy-until'), json={'prefix_text': prefix, 'until': until} ).json() return list(response['output_text']) def loglikelihood_rolling(self, inputs): text = list(inputs) response = requests.post( urllib.parse.urljoin(self.url, 'loglikelihood-rolling'), json={'text': text} ).json() return list(zip(response['log_likelihood'], response['is_greedy'])) def loglikelihood(self, inputs): prefix, text = zip(*inputs) prefix = list(prefix) text = list(text) response = requests.post( urllib.parse.urljoin(self.url, 'loglikelihood'), json={'prefix_text': prefix, 'text': text} ).json() return list(zip(response['log_likelihood'], response['is_greedy'])) def main(argv): logger = WandBLogger( config=FLAGS.logger, variant=get_user_flags(FLAGS, FLAGS_DEF) ) model = LMEvalHarnessInterface(FLAGS.lm_server_url) if FLAGS.wait_for_ready: model.wait_for_ready() task_list = FLAGS.tasks.split(',') results = evaluator.evaluate( model, tasks.get_task_dict(task_list), False, FLAGS.shots, None ) logger.log(flatten_dict(results['results'], sep='/')) pprint.pprint(results) if __name__ == "__main__": absl.app.run(main)
import dataclasses import pprint import random import warnings from collections import defaultdict from functools import partial from io import BytesIO import gcsfs import h5py import numpy as np import torch from datasets import interleave_datasets, load_dataset from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from torch.utils.data import IterableDataset from tqdm import tqdm, trange from transformers import AutoTokenizer from .templates import webgpt_template, webgpt_tie_template, summary_template, dialogue_template class HumanFeedbackDataset(object): """ Human feedback dataset """ @staticmethod def get_default_config(updates=None): config = ConfigDict() config.tokenizer = 'EleutherAI/gpt-j-6B' config.seq_length = 512 config.split = 'train' config.batch_size = 8 config.weight = "" if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, tokenizer): self.config = self.get_default_config(config) self._tokenizer = tokenizer d1 = load_dataset('openai/webgpt_comparisons', split=self.config.split) d2 = load_dataset('Anthropic/hh-rlhf', split=self.config.split) d3 = load_dataset('openai/summarize_from_feedback', 'comparisons', split=self.config.split) if self.config.weight == "": p = [len(d1), len(d2), len(d3)] else: p = [int(x) for x in self.config.weight.split(',')] assert len(p) == 3, "weight length must be 3" p = [x / sum(p) for x in p] self._dataset = interleave_datasets([d1, d2, d3], p) def __iter__(self): chunk_size = self.config.batch_size * self.config.seq_length while True: tokens = [] masks = [] for sample in self._dataset: processed = self.format_to_sentence(sample) tokens.extend(processed['input_tokens']) masks.extend(processed['loss_masks']) tokens.append(self.tokenizer.eos_token_id) masks.append(1) while len(tokens) > chunk_size: yield { 'tokens': np.array(tokens[:chunk_size], dtype=np.int32).reshape( self.config.batch_size, -1 ), 'masks': np.array(masks[:chunk_size], dtype=np.int32).reshape( self.config.batch_size, -1 ), } tokens = tokens[chunk_size:] masks = masks[chunk_size:] def format_to_sentence(self, sample): if 'info' in sample and sample['info'] is not None and 'post' in sample['info']: # summarize_from_feedback prefix = sample['info']['post'] pos_ind = int(sample['choice']) neg_ind = 1 - pos_ind pos = sample['summaries'][pos_ind]['text'] neg = sample['summaries'][neg_ind]['text'] format = random.choice(random.choice(summary_template)) elif 'question' in sample and sample['question'] is not None and 'full_text' in sample['question']: # webgpt_comparisons score_0, score_1 = sample['score_0'], sample['score_1'] prefix = sample['question']['full_text'] if len(sample['quotes_0']['title']) != 0: token_0 = sample['quotes_0']['title'][0] if len(sample['quotes_0']['extract']) != 0: token_0 += sample['quotes_0']['extract'][0] if len(sample['answer_0']) != 0: token_0 += sample['answer_0'] if len(sample['quotes_1']['title']) != 0: token_1 = sample['quotes_1']['title'][0] if len(sample['quotes_1']['extract']) != 0: token_1 += sample['quotes_1']['extract'][0] if len(sample['answer_1']) != 0: token_1 += sample['answer_1'] if score_0 > score_1: pos, neg = token_0, token_1 format = random.choice(random.choice(webgpt_template)) elif score_0 < score_1: pos, neg = token_1, token_0 format = random.choice(random.choice(webgpt_template)) else: pos, neg = token_0, token_1 format = random.choice(random.choice(webgpt_tie_template)) else: # hh-rlhf pos = sample['chosen'] neg = sample['rejected'] prefix = '' format = random.choice(random.choice(dialogue_template)) if format.endswith('{pos}') and '{neg}' in format: p1 = format.split('{neg}')[0] p2 = format.split('{neg}')[1].split('{pos}')[0] prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) neg = self._tokenizer.encode(neg) p2 = self._tokenizer.encode(p2) pos = self._tokenizer.encode(pos) input_tokens = prefix + p1 + neg + p2 + pos loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(neg) + [0] * len(p2) + [1] * len(pos) elif format.endswith('{neg}') and '{pos}' in format: p1 = format.split('{pos}')[0] p2 = format.split('{pos}')[1].split('{neg}')[0] prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) pos = self._tokenizer.encode(pos) p2 = self._tokenizer.encode(p2) neg = self._tokenizer.encode(neg) input_tokens = prefix + p1 + pos + p2 + neg loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(pos) + [0] * len(p2) + [1] * len(neg) elif format.endswith('{pos}'): p1 = format.split('{pos}')[0] prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) pos = self._tokenizer.encode(pos) input_tokens = prefix + p1 + pos loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(pos) elif format.endswith('{neg}'): p1 = format.split('{neg}')[0] prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) neg = self._tokenizer.encode(neg) input_tokens = prefix + p1 + neg loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(neg) elif format.endswith('{1st}'): p1 = format.split('{1st}')[0] p1 = p1.format(pos=pos, neg=neg) p2 = "the first one." prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) p2 = self._tokenizer.encode(p2) input_tokens = prefix + p1 + p2 loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(p2) elif format.endswith('{2nd}'): p1 = format.split('{2nd}')[0] p1 = p1.format(pos=pos, neg=neg) p2 = "the second one." prefix = self._tokenizer.encode(prefix) p1 = self._tokenizer.encode(p1) p2 = self._tokenizer.encode(p2) input_tokens = prefix + p1 + p2 loss_masks = [0] * len(prefix) + [0] * len(p1) + [1] * len(p2) else: raise ValueError('format: {}'.format(format)) return { 'input_tokens': input_tokens, 'loss_masks': loss_masks } def __getstate__(self): return self.config, self.tokenizer def __setstate__(self, state): config, tokenizer = state self.__init__(config, tokenizer) @property def seq_length(self): return self.config.seq_length @property def tokenizer(self): return self._tokenizer @property def dataset(self): return self._dataset @property def vocab_size(self): return len(self._tokenizer)
from coh.data.hf_data import HumanFeedbackDataset from coh.data.pt_data import PretrainDataset
import dataclasses import pprint from functools import partial from io import BytesIO import gcsfs import h5py import numpy as np from datasets import load_dataset from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from tqdm import tqdm, trange class PretrainDataset(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.seq_length = 1024 config.path = 'c4' config.name = 'en' config.split = 'train' config.field = 'text' config.streaming = True config.batch_size = 8 if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, tokenizer): self.config = self.get_default_config(config) name = self.config.name if self.config.name != '' else None split = self.config.split if self.config.split != '' else None self._tokenizer = tokenizer self._dataset = load_dataset( self.config.path, name, split=split, streaming=self.config.streaming ) def __iter__(self): chunk_size = self.config.batch_size * self.config.seq_length while True: tokens = [] for example in self._dataset: tokens.extend(self.tokenizer.encode(example[self.config.field])) tokens.append(self.tokenizer.eos_token_id) while len(tokens) > chunk_size: yield { 'tokens': np.array(tokens[:chunk_size], dtype=np.int32).reshape( self.config.batch_size, -1 ) } tokens = tokens[chunk_size:] def __getstate__(self): return self.config, self.tokenizer def __setstate__(self, state): config, tokenizer = state self.__init__(config, tokenizer) @property def seq_length(self): return self.config.seq_length @property def tokenizer(self): return self._tokenizer @property def dataset(self): return self._dataset @property def vocab_size(self): return len(self._tokenizer)
summary_template = [ ("a good sumary is {pos}", "a bad sumary is {neg}"), ("the following is a good sumary {pos}", "the following is a bad sumary {neg}"), ("generate a good sumary: {pos}", "generate a bad sumary: {neg}"), ("good sumary: {pos}", "bad sumary: {neg}"), ("good: {pos}", "bad: {neg}"), ("let's generate a good summary {pos}", "let's generate a bad summary: {neg}"), ("a good sumary is given by {pos}", "a bad sumary is given by {neg}"), ("a less preferred sumary is {neg}, a more preferred sumary is {pos}", "a more preferred sumary is {pos}, a less preferred sumary is {neg}"), ("a not so good sumary is {neg}, a better sumary is {pos}", "a good sumary is {pos}, a worse sumary is {neg}"), ("an sumary is {neg}, a better sumary is {pos}", "an sumary is {pos}, a worse sumary is {neg}"), ("the following is not the best sumary {neg}, a better sumary can be {pos}", "the following is a good sumary {pos}, a worse sumary can be {neg}"), ("let's generate a not very good summary {neg}, let's generate a better sumary {pos}", "let's generate a very good summary {pos}, let's generate a worse sumary {neg}"), ("For the following two summaries {pos} and {neg}, which one is better? The answer is {1st}", "For the following two summaries {neg} and {pos}, which one is better? The answer is {2nd}"), ("{pos} and {neg} are two summaries, let's think about which one is better? The answer is {1st}", "{neg} and {pos} are two summaries, let's think about which one is better? The answer is {2nd}"), ("For the following two summaries {pos} and {neg}, which one is worse? The answer is {2nd}", "For the following two summaries {neg} and {pos}, which one is worse? The answer is {1st}"), ("{pos} and {neg} are two summaries, let's think about which one is worse? The answer is {2nd}", "{neg} and {pos} are two summaries, let's think about which one is worse? The answer is {1st}"), ] dialogue_template = [ ("a good conversation is {pos}", "a bad conversation is {neg}"), ("the following is a good conversation {pos}", "the following is a bad conversation {neg}"), ("generate a good conversation: {pos}", "generate a bad conversation: {neg}"), ("good conversation: {pos}", "bad conversation: {neg}"), ("good: {pos}", "bad: {neg}"), ("a good conversation is given by {pos}", "a bad conversation is given by {neg}"), ("a less preferred conversation is {neg}, a more preferred conversation is {pos}", "a more preferred conversation is {pos}, a less preferred conversation is {neg}"), ("a not so good conversation is {neg}, a better conversation is {pos}", "a good conversation is {pos}, a worse conversation is {neg}"), ("an conversation is {neg}, a better conversation is {pos}", "an conversation is {pos}, a worse conversation is {neg}"), ("the following is not the best conversation {neg}, a better conversation can be {pos}", "the following is a good conversation {pos}, a worse conversation can be {neg}"), ("For the following two dialogues {pos} and {neg}, which one is better? The answer is {1st}", "For the following two dialogues {neg} and {pos}, which one is better? The answer is {2nd}"), ("{pos} and {neg} are two dialogues, let's think about which one is better? The answer is {1st}", "{neg} and {pos} are two dialogues, let's think about which one is better? The answer is {2nd}"), ("For the following two dialogues {pos} and {neg}, which one is worse? The answer is {2nd}", "For the following two dialogues {neg} and {pos}, which one is worse? The answer is {1st}"), ("{pos} and {neg} are two dialogues, let's think about which one is worse? The answer is {2nd}", "{neg} and {pos} are two dialogues, let's think about which one is worse? The answer is {1st}"), ] webgpt_tie_template = [ ("a good answer is {pos}", "a good answer is {neg}"), ("the following is a good answer {pos}", "the following is a good answer {neg}"), ("generate a good answer: {pos}", "generate a good answer: {neg}"), ("the following are two equally good answers {pos} and {neg}", "the following are two equally good answers {neg} and {pos}"), ("the following are two equally preferred answers {pos} and {neg}", "the following are two equally preferred answers {neg} and {pos}"), ("two equally good answers are the following {pos} and {neg}", "two equally good answers are {neg} and {pos}"), ] webgpt_template = [ ("a good answer is {pos}", "a bad answer is {neg}"), ("the following is a good answer {pos}", "the following is a bad answer {neg}"), ("generate a good answer: {pos}", "generate a bad answer: {neg}"), ("good answer: {pos}", "bad answer: {neg}"), ("good: {pos}", "bad: {neg}"), ("good response: {pos}", "bad response: {neg}"), ("a good answer is given by {pos}", "a bad answer is given by {neg}"), ("a less preferred answer is {neg}, a more preferred answer is {pos}", "a more preferred answer is {pos}, a less preferred answer is {neg}"), ("a not so good answer is {neg}, a better answer is {pos}", "a good answer is {pos}, a worse answer is {neg}"), ("an answer is {neg}, a better answer is {pos}", "an answer is {pos}, a worse answer is {neg}"), ("the following is not the best answer {neg}, a better answer can be {pos}", "the following is a good answer {pos}, a worse answer can be {neg}"), ("a less preferred response is {neg}, a more preferred response is {pos}", "a more preferred response is {pos}, a less preferred response is {neg}"), ("a not so good response is {neg}, a better response is {pos}", "a good response is {pos}, a worse response is {neg}"), ("an response is {neg}, a better response is {pos}", "an response is {pos}, a worse response is {neg}"), ("the following is not the best response {neg}, a better response can be {pos}", "the following is a good response {pos}, a worse response can be {neg}"), ("For the following two answers {pos} and {neg}, which one is better? The answer is {1st}", "For the following two answers {neg} and {pos}, which one is better? The answer is {2nd}"), ("{pos} and {neg} are two answers, let's think about which one is better? The answer is {1st}", "{neg} and {pos} are two answers, let's think about which one is better? The answer is {2nd}"), ("For the following two answers {pos} and {neg}, which one is worse? The answer is {2nd}", "For the following two answers {neg} and {pos}, which one is worse? The answer is {1st}"), ("{pos} and {neg} are two answers, let's think about which one is worse? The answer is {2nd}", "{neg} and {pos} are two answers, let's think about which one is worse? The answer is {1st}"), ]
# sb3_a2c.py from stable_baselines3 import A2C model = A2C( "MlpPolicy", "CartPole-v0", verbose=0, device="cpu", seed=1, ) model.learn(total_timesteps=3000) for name, param in model.policy.named_parameters(): if param.requires_grad: layer_param_sum = round(param.data.sum().item(), 4) print(f"{name}'s sum = {layer_param_sum}")
# sb3_ppo.py import torch as th from stable_baselines3 import PPO model = PPO( "MlpPolicy", "CartPole-v0", verbose=0, device="cpu", seed=1, policy_kwargs=dict( optimizer_class=th.optim.RMSprop, optimizer_kwargs=dict( alpha=0.99, eps=1e-5, weight_decay=0, ), ), # match A2C's optimizer settings learning_rate=7e-4, # turn off learning rate anneling n_steps=5, # match A2C's number of steps gae_lambda=1, # disable GAE n_epochs=1, # match PPO's and A2C's objective batch_size=5, # perform update on the entire batch normalize_advantage=False, # don't normalize advantages clip_range_vf=None, # disable value function clipping ) model.learn(total_timesteps=3000) for name, param in model.policy.named_parameters(): if param.requires_grad: layer_param_sum = round(param.data.sum().item(), 4) print(f"{name}'s sum = {layer_param_sum}")
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2022 Beartype authors. # See "LICENSE" for further details. ''' **Root test configuration** (i.e., early-time configuration guaranteed to be run by :mod:`pytest` *before* passed command-line arguments are parsed) for this test suite. Caveats ---------- For safety, this configuration should contain *only* early-time hooks absolutely required by :mod:`pytest` design to be defined in this configuration. Hooks for which this is the case (e.g., :func:`pytest_addoption`) are explicitly annotated as such in official :mod:`pytest` documentation with a note resembling: Note This function should be implemented only in plugins or ``conftest.py`` files situated at the tests root directory due to how pytest discovers plugins during startup. This file is the aforementioned ``conftest.py`` file "...situated at the tests root directory." ''' # ....................{ IMPORTS }.................... from pytest import fixture import os, sys # ....................{ HOOKS ~ session : start }.................... def pytest_sessionstart(session: '_pytest.main.Session') -> None: ''' Hook run immediately *before* starting the current test session (i.e., calling the :func:`pytest.session.main` function). Parameters ---------- session: _pytest.main.Session :mod:`pytest`-specific test session object. ''' #FIXME: This doesn't appear to be working when this package is editably #installed into a venv. We need to fix this -- and promptly! # Sanitize import directories *BEFORE* the first module importation. # _clean_imports() #FIXME: Sufficiently general-purpose and widely useful that we should consider #shifting this into a newly discrete "pytest" plugin -- named, say: #* "pytest-pretox". Equally clever and meaningful and hence probably the best # name suggested here. #* "pytest-retox". (Clever, and mildly meaningfull.) #* "pytest-detox". (Clever, but sadly meaningless.) #Once created, we can then require this plugin in both this *AND* various other #codebases. At present, we have no alternative means of sharing this code. DRY! def _clean_imports() -> None: ''' Sanitize and validate import directories (i.e., the global :attr:`sys.list` of the absolute and relative dirnames of all directories to search for modules and packages to be imported from). Specifically, this function: * If this low-level :mod:`pytest` test harness is *not* isolated to a venv (e.g., due to being exercised by the low-level ``pytest`` command), reduce to a noop. * Else, this harness is isolated to a venv (e.g., due to being exercised by the high-level ``tox`` command): #. If the top-level directory for this project is listed in the global list of all import directories (i.e., :attr:`sys.path`), remove this directory from this list. Doing so prevents this test session from accidentally importing from modules *not* isolated to this venv, including this project being tested. #. If the first directory on this list is *not* isolated to this venv, raise an exception. This condition implies that modules will be imported from outside this venv, which entirely defeats the purpose of isolating tests with :mod:`tox` to a venv in the first place. #. If the top-level package is *not* isolated to this venv, raise an exception. This condition implies that this project has been imported from outside this venv -- again defeating the purpose. Raises ---------- ValueError If either the first directory on :attr:`sys.path` or the top-level package are *not* isolated to this venv. ''' # Print a header for disambiguity. print('----------[ venv ]----------') # Print the absolute dirname of the system-wide Python prefix and current # Python prefix, which differs from the former under venvs. print(f'python prefix (system [base]): {sys.base_prefix}') print(f'python prefix (system [real]): {getattr(sys, "real_prefix", "")}') print(f'python prefix (current): {sys.prefix}') # True only if tests are isolated to a venv produced by either... # # See the betse.util.py.pvenv.is_venv() function, whose implementation is # inlined below. While calling that function directly would (of course) be # preferable, doing so invites chicken-and-egg issues by importing *BEFORE* # sanitizing import directories. is_venv = ( # "virtualenv", which uniquely defines the "sys.real_prefix" # attribute to the absolute dirname of the top-level directory # containing the system-wide Python interpreter *OR*... hasattr(sys, 'real_prefix') or # "venv", which (possibly non-uniquely) sets: # # * The "sys.base_prefix" attribute to the absolute dirname of the # top-level directory containing the system-wide Python interpreter. # * The "sys.prefix" attribute to the absolute dirname of the # top-level directory containing the venv-specific Python interpreter # if any *OR* the system-wide Python interpreter otherwise. # # Note that, as Python >= 3.3 *ALWAYS* defines the "sys.base_prefix" # attribute, testing that attribute's existence is unnecessary. sys.prefix != sys.base_prefix ) # Print whether tests are isolated to a venv. print(f'venv test isolation: {is_venv}') # If tests are *NOT* isolated to a venv, silently reduce to a noop. if not is_venv: return # ELse, tests are isolated to a venv. # Absolute dirname of this project's top-level directory. PROJECT_DIRNAME = os.path.dirname(__file__) # Absolute dirname of this venv's top-level directory, suffixed by a # directory separator for disambiguity when calling str.startswith() below. VENV_DIRNAME = sys.prefix + os.path.sep # Function-specific tester requiring "VENV_DIRNAME" and called below. def _is_import_path_isolated(import_pathname: str) -> bool: ''' ``True`` only if the passed pathname is either isolated to this venv *or* is a zipfile. Specifically, this function returns ``True`` only if either: * This pathname is prefixed by the absolute dirname of this venv's top-level directory. * This pathname is suffixed by ``.zip``. Regardless of whether this path is isolated to this venv, zipfiles are by definition effectively isolated from filesystem modification (e.g., ``pip``- and ``setuptools``-based package installation) and thus isolated for all practical intents and purposes. ''' # Return true only if either... return ( # This pathname is isolated to this venv *OR*... import_pathname.startswith(VENV_DIRNAME) or # This pathname is a zipfile. ( os.path.isfile(import_pathname) and import_pathname.endswith('.zip') ) ) # Sanitized list of the absolute pathnames of all paths to find modules to # be imported from, reordered from the unsanitized list of these pathnames # such that pathnames *NOT* isolated to this venv are shifted to the end of # this list and thus deprioritized with respect to pathnames isolated to # this venv. # # Ideally, pathnames *NOT* isolated to this venv would simply be removed # from this list. Unfortunately, doing so fundamentally breaks the world. # Why? Because most venv packages fail to adequately isolate venvs from # system-wide paths. Specifically, the "venv" and "virtualenv" packages # both create insufficient and arguably broken virtual environments whose # "lib/python${PYTHON_VERSION}/" subdirectories contain only a proper # subset of all requisite stdlib files -- thus necessitating that the # equivalent system-wide pathnames remain on "sys.path". Removing these # pathnames induces this fatal exception on attempting to import the stdlib # "pkgutil" submodule from within a purportedly isolated "tox" test venv: # # INTERNALERROR> Traceback (most recent call last): # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/_pytest/main.py", line 194, in wrap_session # INTERNALERROR> config.hook.pytest_sessionstart(session=session) # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/hooks.py", line 286, in __call__ # INTERNALERROR> return self._hookexec(self, self.get_hookimpls(), kwargs) # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/manager.py", line 92, in _hookexec # INTERNALERROR> return self._inner_hookexec(hook, methods, kwargs) # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/manager.py", line 86, in <lambda> # INTERNALERROR> firstresult=hook.spec.opts.get("firstresult") if hook.spec else False, # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/callers.py", line 208, in _multicall # INTERNALERROR> return outcome.get_result() # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/callers.py", line 80, in get_result # INTERNALERROR> raise ex[1].with_traceback(ex[2]) # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pluggy/callers.py", line 187, in _multicall # INTERNALERROR> res = hook_impl.function(*args) # INTERNALERROR> File "/home/leycec/py/betse/conftest.py", line 106, in pytest_sessionstart # INTERNALERROR> _print_metadata() # INTERNALERROR> File "/home/leycec/py/betse/conftest.py", line 260, in _print_metadata # INTERNALERROR> from betse.util.py.module import pymodule # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/betse/util/py/module/pymodule.py", line 31, in <module> # INTERNALERROR> from betse.util.io.log import logs # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/betse/util/io/log/logs.py", line 54, in <module> # INTERNALERROR> from betse.util.type import types # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/betse/util/type/types.py", line 22, in <module> # INTERNALERROR> import functools, inspect, logging, pkg_resources, re # INTERNALERROR> File "/home/leycec/py/betse/.tox/py36/lib/python3.6/site-packages/pkg_resources/__init__.py", line 31, in <module> # INTERNALERROR> import pkgutil # INTERNALERROR> ModuleNotFoundError: No module named 'pkgutil' # ERROR: InvocationError for command /home/leycec/py/betse/.tox/py36/bin/pytest /home/leycec/py/betse (exited with code 3) sys_path_new = [] # Sanitized list of the absolute pathnames of all paths to find modules to # be imported from that are *NOT* isolated to this venv, appended to the # "sys_path_new" list after iteration and thus deprioritized. sys_path_nonvenv = [] # Print the absolute dirname of this venv's top-level directory. print(f'venv dir: {sys.prefix}') # For the pathname of each path to find imports from... for import_pathname in sys.path: # If this pathname is the empty string (implying this project's # top-level directory), ignore this pathname and warn the user. if not import_pathname: print( 'WARNING: Ignoring non-isolated empty import directory...', file=sys.stderr) # Else if this pathname is that of this project's top-level directory, # ignore this pathname and warn the user. elif import_pathname == PROJECT_DIRNAME: print( f'WARNING: Ignoring non-isolated import directory ' f'"{import_pathname}"...', file=sys.stderr) # Else if this pathname is *NOT* isolated to this venv... elif not _is_import_path_isolated(import_pathname): # Warn the user. print( f'WARNING: Deprioritizing non-isolated import path ' f'"{import_pathname}"...', file=sys.stderr) # Append this pathname to the deprioritized list. sys_path_nonvenv.append(import_pathname) # Else, this pathname is isolated to this venv. In this case, preserve # this pathname's ordering in the sanitized list. else: sys_path_new.append(import_pathname) # The sanitized list has now been purged of offending pathnames. # Extend the sanitized list of prioritized pathnames with the # corresponding list of deprioritized pathnames. sys_path_new.extend(sys_path_nonvenv) # Print the unsanitized list of these pathnames. print(f'venv import paths (unsanitized): {sys.path}') # Print the sanitized list of these pathnames. print(f'venv import paths (sanitized): {sys_path_new}') # Replace the original unsanitized list with this sanitized list as a # single atomic assignment, avoiding synchronization issues. sys.path = sys_path_new # print('import paths: ' + str(sys.path)) # First pathname on this sanitized list. import_pathname_first = sys.path[0] # If this pathname is *NOT* isolated to this venv, raise an exception. # # By the above deprioritization of pathnames *NOT* isolated to this venv in # this sanitized list, the first pathname on this list should *ALWAYS* be # isolated to this venv. # if not _is_import_path_isolated(import_pathname_first): raise ValueError( f'Leading import path "{import_pathname_first}" not isolated to ' f'venv directory "{VENV_DIRNAME}".' ) # Top-level package, imported only *AFTER* sanity checks above. import beartype as package # Absolute dirname of the directory defining this package. PACKAGE_DIRNAME = os.path.dirname(package.__file__) # Print this dirname. print(f'venv project path: {PACKAGE_DIRNAME}') # If this directory is *NOT* isolated to this venv, raise an exception. if not _is_import_path_isolated(PACKAGE_DIRNAME): raise ValueError( f'Project import directory "{PACKAGE_DIRNAME}" not isolated to ' f'venv directory "{VENV_DIRNAME}".' )
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2022 Beartype authors. # See "LICENSE" for further details. ''' **Beartype installer.** This submodule conforms to the standard :mod:`setuptools`-based "makefile" format, instrumenting most high-level installation tasks for this package. ''' # ....................{ TODO }.................... #FIXME: Strongly consider migrating to Hatch: # https://hatch.pypa.io #We can't *STAND* poetry, but Hatch looks to be another breed entirely. #Crucially, PyPA itself has officially adopted Hatch (which is a huge boost), #Hatch supports dynamic retrieval of version specifiers from Python modules, #support for PEPs denigrated by poetry authors, and probably much more. #Basically, Hatch looks like everything we wish poetry was. #FIXME: Generate documentation from the NumPy-style docstrings embedded #throughout this codebase, presumably with Sphinx + napoleon. #FIXME: Publish generated documentation to readthedocs.org. # ....................{ KLUDGES ~ path }.................... # Explicitly register all files and subdirectories of the root directory # containing this top-level "setup.py" script to be importable modules and # packages (respectively) for the remainder of this Python process if this # directory has yet to be registered. # # Technically, this should *NOT* be required. The current build framework # (e.g., "pip", "setuptools") should implicitly guarantee this to be the case. # Indeed, the "setuptools"-based "easy_install" script does just that. # Unfortunately, "pip" >= 19.0.0 does *NOT* guarantee this to be the case for # projects defining a "pyproject.toml" file -- which, increasingly, is all of # them. Although "pip" purports to have resolved this upstream, current stable # releases appear to suffer the same deficiencies. See also: # https://github.com/pypa/pip/issues/6163 # Isolate this kludge to a private function for safety. def _register_dir() -> None: # Avert thy eyes, purist Pythonistas! import os, sys # Absolute dirname of this directory inspired by this StackOverflow answer: # https://stackoverflow.com/a/8663557/2809027 setup_dirname = os.path.dirname(os.path.realpath(__file__)) # If the current PYTHONPATH does *NOT* already contain this directory... if setup_dirname not in sys.path: # Print this registration. print( 'WARNING: Registering "setup.py" directory for importation under ' 'broken installer (e.g., pip >= 19.0.0)...', file=sys.stderr) # print('setup_dirname: {}\nsys.path: {!r}'.format(setup_dirname, sys.path)) # Append this directory to the current PYTHONPATH. sys.path.append(setup_dirname) # Kludge us up the bomb. _register_dir() # ....................{ KLUDGES ~ init }.................... # Explicitly notify the "beartype.__init__" submodule that it is being imported # at install time from this script. Doing so prevents that submodule from # implicitly importing from *ANY* "beartype" submodule other than the # "beartype.meta" submodule, which is the *ONLY* "beartype" submodule # guaranteed by sheer force of will to be safely importable at install time. # All other "beartype" submodules should be assumed to be unsafe to import # below due to potentially importing one or more optional runtime dependencies # yet to be installed (e.g., the third-party "typing_extensions" package). # # Naturally, there exist a countably infinite number of ways to notify the # "beartype.__init__" submodule that it is being imported at install time. To # minimize the likelihood of a conflict with other Python subsystems or # interpreters, we intentionally do *NOT*: # * Monkey-patch a module or package in the standard library. # * Detect this script in a stack frame on the call stack. # # Instead, we dynamically populate the standard "sys.modules" list of all # previously imported modules with a fake beartype-specific module. The # "beartype.__init__" submodule then decides whether to implicitly import from # potentially unsafe "beartype" submodules by detecting that fake module. # Isolate this kludge to a private function for safety. def _notify_beartype() -> None: # The acid: it burns more than I expected. from sys import modules from types import ModuleType # Dynamically create a new fake module. Look. Just do it. fake_module = ModuleType('beartype.__is_installing__', 'This is horrible.') # Dynamically register the fake module. Don't look like that. modules['beartype.__is_installing__'] = fake_module # Setuptools made us do it. _notify_beartype() # ....................{ IMPORTS }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: To avoid race conditions during setuptools-based installation, this # module may import *ONLY* from packages guaranteed to exist at the start of # installation. This includes all standard Python and package submodules but # *NOT* third-party dependencies, which if currently uninstalled will only be # installed at some later time in the installation. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! import setuptools from beartype import meta # ....................{ METADATA ~ seo }.................... _KEYWORDS = [ 'type checking', 'type hints', 'PEP 483', 'PEP 484', 'PEP 544', 'PEP 563', 'PEP 585', 'PEP 586', 'PEP 589', 'PEP 593', 'PEP 604', 'PEP 3141', ] ''' List of all lowercase alphabetic keywords synopsising this package. These keywords may be arbitrarily selected so as to pretend to improve search engine optimization (SEO). In actuality, they do absolutely nothing. ''' # ....................{ METADATA ~ seo : classifiers }.................... # To minimize desynchronization woes, all # "Programming Language :: Python :: "-prefixed strings are dynamically # appended to this list by the init() function below. _CLASSIFIERS = [ # PyPI-specific version type. The number specified here is a magic constant # with no relation to this package's version numbering scheme. *sigh* 'Development Status :: 5 - Production/Stable', # Miscellaneous metadata. 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3 :: Only', 'Topic :: Software Development :: Code Generators', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Quality Assurance', 'Typing :: Typed', ] ''' List of all PyPI-specific trove classifier strings synopsizing this project. Each such string *must* contain either two or three ``" :: "`` substrings delimiting human-readable capitalized English words formally recognized by the :mod:`distutils`-specific ``register`` command. See Also ---------- https://pypi.org/classifiers Plaintext list of all trove classifier strings recognized by PyPI. ''' def _sanitize_classifiers( python_version_min_parts: tuple, python_version_minor_max: int, ) -> list: ''' List of all PyPI-specific trove classifier strings synopsizing this package, manufactured by appending classifiers synopsizing this package's support for Python major versions (e.g., ``Programming Language :: Python :: 3.6``, a classifier implying this package to successfully run under Python 3.6) to the global list :data:`_CLASSIFIERS` of static classifiers. Parameters ---------- python_version_min_parts : tuple Minimum fully-specified version of Python required by this package as a tuple of integers (e.g., ``(3, 5, 0)`` if this package requires at least Python 3.5.0). python_version_minor_max : int Maximum minor stable version of the current Python 3.x mainline (e.g., ``9`` if Python 3.9 is the most recent stable version of Python 3.x). Returns ---------- list List of all sanitized PyPI-specific trove classifier strings. ''' assert isinstance(python_version_min_parts, tuple), ( f'"{python_version_min_parts}" not tuple.') assert isinstance(python_version_minor_max, int), ( f'"{python_version_minor_max}" not integer.') # Major version of Python required by this package. PYTHON_VERSION_MAJOR = python_version_min_parts[0] # List of classifiers to return, copied from the global list for safety. classifiers_sane = _CLASSIFIERS[:] # For each minor version of Python 3.x supported by this package, # formally classify this version as such. for python_version_minor in range( python_version_min_parts[1], python_version_minor_max + 1): classifiers_sane.append( f'Programming Language :: Python :: ' f'{PYTHON_VERSION_MAJOR}.{python_version_minor}' ) # print('classifiers: {}'.format(_CLASSIFIERS)) # Return this sanitized list of classifiers. return classifiers_sane # ....................{ OPTIONS }.................... # Setuptools-specific options. Keywords not explicitly recognized by either # setuptools or distutils must be added to the above dictionary instead. _SETUP_OPTIONS = { # ..................{ CORE }.................. # Self-explanatory metadata. Note that the following metadata keys are # instead specified by the "setup.cfg" file: # # * "license_file", for unknown reasons. We should probably reconsider. # * "long_description", since "setup.cfg" supports convenient # "file: ${relative_filename}" syntax for transcluding the contents of # arbitrary project-relative files into metadata values. Attempting to do # so here would require safely opening this file with a context manager, # reading the contents of this file into a local variable, and passing # that variable's value as this metadata outside of that context. (Ugh.) 'name': meta.PACKAGE_NAME, 'version': meta.VERSION, 'description': meta.SYNOPSIS, # ..................{ AUTHORS }.................. 'author': meta.AUTHORS, 'author_email': meta.AUTHOR_EMAIL, 'maintainer': meta.AUTHORS, 'maintainer_email': meta.AUTHOR_EMAIL, # ..................{ URLS }.................. 'url': meta.URL_HOMEPAGE, 'download_url': meta.URL_DOWNLOAD, # Dictionary mapping from arbitrary human-readable terse names describing # various package-related URLs to those URLs. 'project_urls': { 'Source': meta.URL_HOMEPAGE, 'Issues': meta.URL_ISSUES, 'Forums': meta.URL_FORUMS, 'Releases': meta.URL_RELEASES, #FIXME: Uncomment after we actually have meaningful RTD documentation. # 'Documentation': 'https://beartype.readthedocs.io', }, # ..................{ PYPI }.................. # PyPi-specific meta. 'classifiers': _sanitize_classifiers( python_version_min_parts=meta.PYTHON_VERSION_MIN_PARTS, python_version_minor_max=meta.PYTHON_VERSION_MINOR_MAX, ), 'keywords': _KEYWORDS, 'license': meta.LICENSE, # ..................{ DEPENDENCIES }.................. # Python dependency. 'python_requires': f'>={meta.PYTHON_VERSION_MIN}', # Mandatory runtime dependencies. This package intentionally requires no # such dependencies and hopefully never will. 'install_requires': (), # Optional runtime dependencies. Whereas mandatory dependencies are defined # as sequences, optional dependencies are defined as a dictionary mapping # from an arbitrary alphanumeric word to a sequence containing one or more # such dependencies. Such dependencies are then installable via "pip" by # suffixing the name of this project by the "["- and "]"-delimited key # defined below whose value lists the dependencies to be installed (e.g., # "sudo pip3 install betse[all]", installing both the package and all # mandatory and optional dependencies required by the package). 'extras_require': { # All optional runtime dependencies. 'all': meta.LIBS_RUNTIME_OPTIONAL, # All mandatory developer dependencies (including all mandatory test- # and documentation build-time dependencies) as referenced from # external project documentation for developers. 'dev': meta.LIBS_DEVELOPER_MANDATORY, # All mandatory Read The Docs (RTD)-specific documentation build-time # dependencies an arbitrarily named extra. This is required *ONLY* # for integration with the top-level ".readthedocs.yml" file. See the # "python" key in that file for further details. 'doc-rtd': meta.LIBS_DOCTIME_MANDATORY_RTD, # All mandatory tox-specific testing dependencies, copied from the # "tests_require" key below into an arbitrarily named extra. This is # required *ONLY* for integration with the top-level "tox.ini" file. # See the "extras" key in that file for further details. 'test-tox': meta.LIBS_TESTTIME_MANDATORY_TOX, # All mandatory coverage-specific testing dependencies as an # arbitrarily named extra, required *ONLY* for integration with the # top-level "tox.ini" file. See the "extras" key in that file. 'test-tox-coverage': meta.LIBS_TESTTIME_MANDATORY_COVERAGE, }, # Mandatory testing dependencies. 'tests_require': meta.LIBS_TESTTIME_MANDATORY_TOX, # ..................{ PACKAGES }.................. # List of the fully-qualified names of all Python packages (i.e., # directories containing zero or more Python modules) to be installed, # including the top-level package and all subpackages of that package. This # thus excludes: # # * The top-level test package and all subpackages of that package, # defining only test functionality *NOT* intended to be installed with # this package. # * "build", caching both setuptools metadata and a complete copy of this # package, required only by a prior package installation. # #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: This inspection intentionally omits subdirectories containing no # "__init__.py" file, despite the remainder of the Python ecosystem # commonly accepting such subdirectories as subpackages. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 'packages': setuptools.find_packages(exclude=( f'{meta.PACKAGE_NAME}_test', f'{meta.PACKAGE_NAME}_test.*', 'build', )), # ..................{ PACKAGES ~ data }.................. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: *ALL DATA FILES TO BE INSTALLED MUST BE EXPLICITLY MATCHED IN # THE TOP-LEVEL "MANIFEST.in" FILE.* #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # # Install all data files (i.e., non-Python files) embedded in the Python # package tree for this project which are also explicitly matched by the # top-level "MANIFEST.in" file. # # Unlike Python packages, undesirable data files are includable and # excludable from installation *ONLY* via the external "MANIFEST.in" file. # This is terrible, of course. (Did you expect otherwise?) # # Data files are *NOT* Python modules and hence should *NOT* be embedded in # the Python package tree. Sadly, the "data_files" key supported by # setuptools for this purpose is *NOT* cross-platform-portable and is thus # inherently broken. Why? Because that key either requires usage of # absolute paths *OR* relative paths relative to absolute paths defined by # "setup.cfg"; in either case, those paths are absolute. While the current # platform could be detected and the corresponding absolute path embedded # in 'data_files', that implementation would be inherently fragile. (That's # bad.) In lieu of sane setuptools support, we defer to the methodology # employed by everyone. Setuptools, your death is coming. # # See also: # * "Data Files Support", official documentation for this abomination at: # https://setuptools.readthedocs.io/en/latest/userguide/datafiles.html 'include_package_data': True, # Install to an uncompressed directory rather than a compressed archive. # # While nothing technically precludes the latter, doing so substantially # complicates runtime access of data files compressed into this archive # (e.g., with the pkg_resources.resource_filename() function). How so? By # decompressing this archive's contents into a temporary directory on # program startup and removing these contents on program shutdown. Since # there exists no guarantee this removal will actually be performed (e.g., # due to preemptive SIGKILLs), compressed archives are inherently fragile. # # Note that MyPy requires upstream PEP 561-compliant dependencies (like # this project) to explicitly prohibit archival. See also: # https://mypy.readthedocs.io/en/stable/installed_packages.html 'zip_safe': False, } ''' Dictionary unpacked as keyword arguments into the subsequent call of the :func:`setuptools.setup` function, signifying the set of all package-specific :mod:`setuptools` options. ''' # print('extras: {}'.format(setup_options['extras_require'])) # ....................{ SETUP }.................... setuptools.setup(**_SETUP_OPTIONS)
#!/usr/bin/env python3 # Torture test designed to find hotspots in @beartype at decoration time. import yappi from beartype import beartype def run_beartype_decorator(): for _ in range(10000): @beartype def ugh(text: list[str]) -> int: # def ugh(text: str) -> int: return len(text) yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time yappi.start() try: run_beartype_decorator() finally: # yappi.get_func_stats().print_all() func_stats = yappi.get_func_stats() func_stats.save('yappi.prof', 'PSTAT') yappi.stop() yappi.clear_stats()
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2022 Beartype authors. # See "LICENSE" for further details. ''' **Beartype.** For :pep:`8` compliance, this namespace exposes a subset of the metadata constants published by the :mod:`beartype.meta` submodule. These metadata constants are commonly inspected (and thus expected) by external automation. ''' # ....................{ TODO }.................... #FIXME: Consider significantly expanding the above module docstring, assuming #Sphinx presents this module in its generated frontmatter. # ....................{ IMPORTS }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: Explicitly list *ALL* public attributes imported below in the # "__all__" list global declared below to avoid linter complaints. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: To avoid race conditions during setuptools-based installation, this # module may import *ONLY* from modules guaranteed to exist at the start of # installation. This includes all standard Python and package submodules but # *NOT* third-party dependencies, which if currently uninstalled will only be # installed at some later time in the installation. Likewise, to avoid circular # import dependencies, the top-level of this module should avoid importing # package submodules where feasible. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: To avoid polluting the public module namespace, external attributes # should be locally imported at module scope *ONLY* under alternate private # names (e.g., "from argparse import ArgumentParser as _ArgumentParser" rather # than merely "from argparse import ArgumentParser"). #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # ....................{ IMPORTS ~ meta }.................... # For PEP 8 compliance, versions constants expected by external automation are # imported under their PEP 8-mandated names. from beartype.meta import VERSION as __version__ from beartype.meta import VERSION_PARTS as __version_info__ # ....................{ IMPORTS ~ non-meta }.................... from sys import modules as _modules # If this submodule is being imported at install time from our top-level # "setup.py" script, avoid implicitly importing from *ANY* "beartype" submodule # other than the "beartype.meta" submodule. By sheer force of will, # "beartype.meta" is the *ONLY* "beartype" submodule guaranteed to be safely # importable at install time. All other "beartype" submodules should be assumed # to be unsafe due to potentially importing one or more optional runtime # dependencies yet to be installed (e.g., "typing_extensions"). See "setup.py" # for gruesome details you did not want to know about. if 'beartype.__is_installing__' not in _modules: # Publicize the private @beartype._decor.beartype decorator as # @beartype.beartype, preserving all implementation details as private. from beartype._decor.decormain import ( beartype as beartype, ) # Publicize all top-level configuration attributes required to configure the # @beartype.beartype decorator. from beartype._conf.confcls import ( BeartypeConf as BeartypeConf, ) from beartype._conf.confenum import ( BeartypeStrategy as BeartypeStrategy, ) # Else, this submodule is *NOT* being imported at install time. # Delete the temporarily imported "sys.modules" global for ultimate safety. del _modules # ....................{ GLOBALS }.................... # Document all global variables imported into this namespace above. __version__ = __version__ ''' Human-readable package version as a ``.``-delimited string. For PEP 8 compliance, this specifier has the canonical name ``__version__`` rather than that of a typical global (e.g., ``VERSION_STR``). ''' __version_info__ = __version_info__ ''' Machine-readable package version as a tuple of integers. For PEP 8 compliance, this specifier has the canonical name ``__version_info__`` rather than that of a typical global (e.g., ``VERSION_PARTS``). ''' __all__ = [ 'BeartypeConf', 'BeartypeStrategy', 'beartype', '__version__', '__version_info__', ] ''' Special list global of the unqualified names of all public package attributes explicitly exported by and thus safely importable from this package. Caveats ------- **This global is defined only for conformance with static type checkers,** a necessary prerequisite for :pep:`561`-compliance. This global is *not* intended to enable star imports of the form ``from beartype import *`` (now largely considered a harmful anti-pattern by the Python community), although it technically does the latter as well. This global would ideally instead reference *only* a single package attribute guaranteed *not* to exist (e.g., ``'STAR_IMPORTS_CONSIDERED_HARMFUL'``), effectively disabling star imports. Since doing so induces spurious static type-checking failures, we reluctantly embrace the standard approach. For example, :mod:`mypy` emits an error resembling: error: Module 'beartype' does not explicitly export attribute 'beartype'; implicit reexport disabled. ''' # ....................{ DEPRECATIONS }.................... def __getattr__(attr_deprecated_name: str) -> object: ''' Dynamically retrieve a deprecated attribute with the passed unqualified name from this submodule and emit a non-fatal deprecation warning on each such retrieval if this submodule defines this attribute *or* raise an exception otherwise. The Python interpreter implicitly calls this :pep:`562`-compliant module dunder function under Python >= 3.7 *after* failing to directly retrieve an explicit attribute with this name from this submodule. Since this dunder function is only called in the event of an error, neither space nor time efficiency are a concern here. Parameters ---------- attr_deprecated_name : str Unqualified name of the deprecated attribute to be retrieved. Returns ---------- object Value of this deprecated attribute. Warns ---------- DeprecationWarning If this attribute is deprecated. Raises ---------- AttributeError If this attribute is unrecognized and thus erroneous. ''' # Isolate imports to avoid polluting the module namespace. from beartype._util.mod.utilmoddeprecate import deprecate_module_attr # Package scope (i.e., dictionary mapping from the names to values of all # non-deprecated attributes defined by this package). attr_nondeprecated_name_to_value = globals() # If this deprecated attribute is the deprecated "beartype.abby" submodule, # forcibly import the non-deprecated "beartype.door" submodule aliased to # "beartype.abby" into this package scope. For efficiency, this package does # *NOT* unconditionally import and expose the "beartype.door" submodule # above. That submodule does *NOT* exist in the globals() dictionary # defaulted to above and *MUST* now be forcibly injected there. if attr_deprecated_name == 'abby': from beartype import door attr_nondeprecated_name_to_value = {'door': door} attr_nondeprecated_name_to_value.update(globals()) #FIXME: To support attribute-based deferred importation ala "lazy loading" #of heavyweight subpackages like "beartype.door" and "beartype.vale", it #looks like we'll need to manually add support here for that: e.g., # elif attr_deprecated_name in {'cave', 'claw', 'door', 'vale',}: # #FIXME: Dynamically import this attribute here... somehow. Certainly, if # #such functionality does *NOT* exist, add it to the existing # #"utilmodimport" submodule: e.g., # attr_value = import_module_attr(f'beartype.{attr_deprecated_name}') # attr_nondeprecated_name_to_value = {attr_deprecated_name: attr_value} #FIXME: Rename "attr_deprecated_name" to merely "attr_name", please. #FIXME: Revise docstring accordingly, please. #FIXME: Exhaustively test this, please. Because we'll never manage to keep #this in sync, we *ABSOLUTELY* should author a unit test that: #* Decides the set of all public subpackages of "beartype". #* Validates that each subpackage in this set is accessible as a # "beartype.{subpackage_name}" attribute. # Else, this deprecated attribute is any other attribute. # Return the value of this deprecated attribute and emit a warning. return deprecate_module_attr( attr_deprecated_name=attr_deprecated_name, attr_deprecated_name_to_nondeprecated_name={ 'abby': 'door', }, attr_nondeprecated_name_to_value=attr_nondeprecated_name_to_value, )
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2022 Beartype authors. # See "LICENSE" for further details. ''' **Beartype metadata.** This submodule exports global constants synopsizing this package -- including versioning and dependencies. Python Version ---------- For uniformity between this codebase and the ``setup.py`` setuptools script importing this module, this module also validates the version of the active Python 3 interpreter. An exception is raised if this version is insufficient. As a tradeoff between backward compatibility, security, and maintainability, this package strongly attempts to preserve compatibility with the first stable release of the oldest version of CPython still under active development. Hence, obsolete and insecure versions of CPython that have reached their official End of Life (EoL) (e.g., Python 3.5) are explicitly unsupported. ''' # ....................{ IMPORTS }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: To avoid accidental importation of optional runtime dependencies # (e.g., "typing_extensions") at installation time *BEFORE* the current package # manager has installed those dependencies, this module may *NOT* import from # any submodules of the current package. This includes *ALL* "beartype._util" # submodules, most of which import from "beartype.typing", which conditionally # imports optional runtime dependencies under certain contexts. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: To avoid race conditions during setuptools-based installation, this # module may import *ONLY* from modules guaranteed to exist at the start of # installation. This includes all standard Python and package modules but # *NOT* third-party dependencies, which if currently uninstalled will only be # installed at some later time in the installation. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: To avoid polluting the public module namespace, external attributes # should be locally imported at module scope *ONLY* under alternate private # names (e.g., "from argparse import ArgumentParser as _ArgumentParser" rather # than merely "from argparse import ArgumentParser"). #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! import sys as _sys from beartype.typing import Tuple as _Tuple # ....................{ METADATA }.................... NAME = 'beartype' ''' Human-readable package name. ''' LICENSE = 'MIT' ''' Human-readable name of the license this package is licensed under. ''' # ....................{ METADATA ~ package }.................... PACKAGE_NAME = NAME.lower() ''' Fully-qualified name of the top-level Python package containing this submodule. ''' PACKAGE_TEST_NAME = f'{PACKAGE_NAME}_test' ''' Fully-qualified name of the top-level Python package exercising this project. ''' # ....................{ PYTHON ~ version }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: Changes to this section *MUST* be synchronized with: # * Signs declared by the private # "beartype._data.hint.pep.datapepsign" submodule, which *MUST* # be synchronized against the "__all__" dunder list global of the "typing" # module bundled with the most recent CPython release. # * Continuous integration test matrices, including: # * The top-level "tox.ini" file. # * The "jobs/tests/strategy/matrix/{tox-env,include/python-version}" # settings of the GitHub Actions-specific # ".github/workflows/python_test.yml" file. # * Front-facing documentation (e.g., "README.rst", "doc/md/INSTALL.md"). # # On bumping the minimum required version of Python, consider also documenting # the justification for doing so in the "Python Version" section of this # submodule's docstring above. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! PYTHON_VERSION_MIN = '3.7.0' ''' Human-readable minimum version of Python required by this package as a ``.``-delimited string. See Also ---------- "Python Version" section of this submodule's docstring for a detailed justification of this constant's current value. ''' PYTHON_VERSION_MINOR_MAX = 11 ''' Maximum minor stable version of this major version of Python currently released (e.g., ``5`` if Python 3.5 is the most recent stable version of Python 3.x). ''' def _convert_version_str_to_tuple(version_str: str) -> _Tuple[int, ...]: ''' Convert the passed human-readable ``.``-delimited version string into a machine-readable version tuple of corresponding integers. ''' assert isinstance(version_str, str), f'"{version_str}" not version string.' return tuple(int(version_part) for version_part in version_str.split('.')) PYTHON_VERSION_MIN_PARTS = _convert_version_str_to_tuple(PYTHON_VERSION_MIN) ''' Machine-readable minimum version of Python required by this package as a tuple of integers. ''' _PYTHON_VERSION_PARTS = _sys.version_info[:3] ''' Machine-readable current version of the active Python interpreter as a tuple of integers. ''' # Validate the version of the active Python interpreter *BEFORE* subsequent # code possibly depending on this version. Since this version should be # validated both at setuptools-based install time and post-install runtime # *AND* since this module is imported sufficiently early by both, stash this # validation here to avoid duplication of this logic and hence the hardcoded # Python version. # # The "sys" module exposes three version-related constants for this purpose: # # * "hexversion", an integer intended to be specified in an obscure (albeit # both efficient and dependable) hexadecimal format: e.g., # >>> sys.hexversion # 33883376 # >>> '%x' % sys.hexversion # '20504f0' # * "version", a human-readable string: e.g., # >>> sys.version # 2.5.2 (r252:60911, Jul 31 2008, 17:28:52) # [GCC 4.2.3 (Ubuntu 4.2.3-2ubuntu7)] # * "version_info", a tuple of three or more integers *OR* strings: e.g., # >>> sys.version_info # (2, 5, 2, 'final', 0) # # For sanity, this package will *NEVER* conditionally depend upon the # string-formatted release type of the current Python version exposed via the # fourth element of the "version_info" tuple. Since the first three elements of # that tuple are guaranteed to be integers *AND* since a comparable 3-tuple of # integers is declared above, comparing the former and latter yield the # simplest and most reliable Python version test. # # Note that the nearly decade-old and officially accepted PEP 345 proposed a # new field "requires_python" configured via a key-value pair passed to the # call to setup() in "setup.py" (e.g., "requires_python = ['>=2.2.1'],"), that # field has yet to be integrated into either disutils or setuputils. Hence, # that field is validated manually in the typical way. if _PYTHON_VERSION_PARTS < PYTHON_VERSION_MIN_PARTS: # Human-readable current version of Python. Ideally, "sys.version" would be # leveraged here instead; sadly, that string embeds significantly more than # merely a version and hence is inapplicable for real-world usage: e.g., # # >>> import sys # >>> sys.version # '3.6.5 (default, Oct 28 2018, 19:51:39) \n[GCC 7.3.0]' _PYTHON_VERSION = '.'.join( str(version_part) for version_part in _sys.version_info[:3]) # Die ignominiously. raise RuntimeError( f'{NAME} requires at least Python {PYTHON_VERSION_MIN}, but ' f'the active interpreter only targets Python {_PYTHON_VERSION}. ' f'We feel unbearable sadness for you.' ) # ....................{ METADATA ~ version }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # WARNING: When modifying the current version of this package below, # consider adhering to the Semantic Versioning schema. Specifically, the # version should consist of three "."-delimited integers # "{major}.{minor}.{patch}", where: # # * "{major}" specifies the major version, incremented only when either: # * Breaking backward compatibility in this package's public API. # * Implementing headline-worthy functionality (e.g., a GUI). Technically, # this condition breaks the Semantic Versioning schema, which stipulates # that *ONLY* changes breaking backward compatibility warrant major bumps. # But this is the real world. In the real world, significant improvements # are rewarded with significant version changes. # In either case, the minor and patch versions both reset to 0. # * "{minor}" specifies the minor version, incremented only when implementing # customary functionality in a manner preserving such compatibility. In this # case, the patch version resets to 0. # * "{patch}" specifies the patch version, incremented only when correcting # outstanding issues in a manner preserving such compatibility. # # When in doubt, increment only the minor version and reset the patch version. # For further details, see http://semver.org. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! VERSION = '0.12.0' ''' Human-readable package version as a ``.``-delimited string. ''' VERSION_PARTS = _convert_version_str_to_tuple(VERSION) ''' Machine-readable package version as a tuple of integers. ''' # ....................{ METADATA ~ synopsis }.................... SYNOPSIS = 'Unbearably fast runtime type checking in pure Python.' ''' Human-readable single-line synopsis of this package. By PyPI design, this string must *not* span multiple lines or paragraphs. ''' # ....................{ METADATA ~ authors }.................... AUTHOR_EMAIL = '[email protected]' ''' Email address of the principal corresponding author (i.e., the principal author responding to public correspondence). ''' AUTHORS = 'Cecil Curry, et al.' ''' Human-readable list of all principal authors of this package as a comma-delimited string. For brevity, this string *only* lists authors explicitly assigned copyrights. For the list of all contributors regardless of copyright assignment or attribution, see the top-level ``AUTHORS.md`` file. ''' COPYRIGHT = '2014-2022 Beartype authors' ''' Legally binding copyright line excluding the license-specific prefix (e.g., ``"Copyright (c)"``). For brevity, this string *only* lists authors explicitly assigned copyrights. For the list of all contributors regardless of copyright assignment or attribution, see the top-level ``AUTHORS.md`` file. ''' # ....................{ METADATA ~ urls }.................... URL_HOMEPAGE = 'https://github.com/beartype/beartype' ''' URL of this package's homepage. ''' URL_DOWNLOAD = f'{URL_HOMEPAGE}/archive/{VERSION}.tar.gz' ''' URL of the source tarball for the current version of this package. This URL assumes a tag whose name is ``v{VERSION}`` where ``{VERSION}`` is the human-readable current version of this package (e.g., ``v0.4.0``) to exist. Typically, no such tag exists for live versions of this package -- which have yet to be stabilized and hence tagged. Hence, this URL is typically valid *only* for previously released (rather than live) versions of this package. ''' URL_FORUMS = f'{URL_HOMEPAGE}/discussions' ''' URL of this package's user forums. ''' URL_ISSUES = f'{URL_HOMEPAGE}/issues' ''' URL of this package's issue tracker. ''' URL_RELEASES = f'{URL_HOMEPAGE}/releases' ''' URL of this package's release list. ''' # ....................{ METADATA ~ libs : runtime }.................... _LIB_RUNTIME_OPTIONAL_VERSION_MINIMUM_NUMPY = '1.21.0' ''' Minimum optional version of NumPy recommended for use with mod:`beartype`. NumPy >= 1.21.0 first introduced the third-party PEP-noncompliant :attr:`numpy.typing.NDArray` type hint supported by the :func:`beartype.beartype` decorator. ''' _LIB_RUNTIME_OPTIONAL_VERSION_MINIMUM_TYPING_EXTENSIONS = '3.10.0.0' ''' Minimum optional version of the third-party :mod:`typing_extensions` package recommended for use with mod:`beartype`. :mod:`typing_extensions` >= 3.10.0.0 backports all :mod:`typing` attributes unavailable under older Python interpreters supported by the :func:`beartype.beartype` decorator. ''' # Note that we intentionally omit NumPy here. If you want it, you're already # using it; likewise, if you don't want it, you're *NOT* already using it. LIBS_RUNTIME_OPTIONAL = ( ( f'typing_extensions >=' f'{_LIB_RUNTIME_OPTIONAL_VERSION_MINIMUM_TYPING_EXTENSIONS}' ), ) ''' Optional runtime package dependencies as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``, where: * ``{project_name}`` is a :mod:`setuptools`-specific project name (e.g., ``numpy``, ``scipy``). * ``{comparison1}`` and ``{comparisonN}`` are :mod:`setuptools`-specific version comparison operators. As well as standard mathematical comparison operators (e.g., ``==``, ``>=``, ``<``), :mod:`setuptools` also supports the PEP 440-compliant "compatible release" operator ``~=`` more commonly denoted by ``^`` in modern package managers (e.g., poetry, npm); this operator enables forward compatibility with all future versions of this dependency known *not* to break backward compatibility, but should only be applied to dependencies strictly following the semantic versioning contract. * ``{version1}`` and ``{version1}`` are arbitrary version strings (e.g., ``2020.2.16``, ``0.75a2``). ''' # ....................{ METADATA ~ libs : test : optional }.................... #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # CAUTION: Avoid constraining optional test-time dependencies to version # ranges, which commonly fail for edge-case test environments -- including: # * The oldest Python version still supported by @beartype, which typically is # *NOT* supported by newer versions of these dependencies. #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! LIBS_TESTTIME_OPTIONAL = ( # Require a reasonably recent version of mypy known to behave well. Less # recent versions are significantly deficient with respect to error # reporting and *MUST* thus be blacklisted. # # Note that PyPy currently fails to support mypy. See also this official # documentation discussing this regrettable incompatibility: # https://mypy.readthedocs.io/en/stable/faq.html#does-it-run-on-pypy 'mypy >=0.800; platform_python_implementation != "PyPy"', #FIXME: Let's avoid attempting to remotely compile with nuitka under GitHub #Actions-hosted continuous integration (CI) for the moment. Doing so is #non-trivial enough under local testing workflows. *sigh* # Require a reasonably recent version of nuitka if the current platform is a # Linux distribution *AND* the active Python interpreter targets Python >= # 3.8. For questionable reasons best ignored, nuitka fails to compile # beartype under Python <= 3.7. # 'nuitka >=1.2.6; sys_platform == "linux" and python_version >= "3.8.0"', #FIXME: Consider dropping the 'and platform_python_implementation != "PyPy"' #clause now that "tox.ini" installs NumPy wheels from a third-party vendor #explicitly supporting PyPy. # Require NumPy. NumPy has become *EXTREMELY* non-trivial to install under # macOS with "pip", due to the conjunction of multiple issues. These # include: # * NumPy > 1.18.0, whose initial importation now implicitly detects # whether the BLAS implementation NumPy was linked against is sane and # raises a "RuntimeError" exception if that implementation is insane: # RuntimeError: Polyfit sanity test emitted a warning, most # likely due to using a buggy Accelerate backend. If you # compiled yourself, more information is available at # https://numpy.org/doc/stable/user/building.html#accelerated-blas-lapack-libraries # Otherwise report this to the vendor that provided NumPy. # RankWarning: Polyfit may be poorly conditioned # * Apple's blatantly broken multithreaded implementation of their # "Accelerate" BLAS replacement, which neither NumPy nor "pip" have *ANY* # semblance of control over. # * "pip" under PyPy, which for unknown reasons fails to properly install # NumPy even when the "--force-reinstall" option is explicitly passed to # "pip". Oddly, passing that option to "pip" under CPython resolves this # issue -- which is why we only selectively disable NumPy installation # under macOS + PyPy. # # See also this upstream NumPy issue: # https://github.com/numpy/numpy/issues/15947 'numpy; sys_platform != "darwin" and platform_python_implementation != "PyPy"', # Required by our optional "test_sphinx" functional test. 'sphinx', # Required to exercise beartype validators and thus functionality requiring # beartype validators (e.g., "numpy.typing.NDArray" type hints) under # Python < 3.9. 'typing_extensions; python_version < "3.9.0"', ) ''' **Optional developer test-time package dependencies** (i.e., dependencies recommended to test this package with :mod:`tox` as a developer at the command line) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' # ....................{ METADATA ~ libs : test : mandatory }.................... LIBS_TESTTIME_MANDATORY_COVERAGE = ( 'coverage >=5.5', ) ''' **Mandatory test-time coverage package dependencies** (i.e., dependencies required to measure test coverage for this package) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' # For completeness, install *ALL* optional test-time dependencies into *ALL* # isolated virtual environments managed by "tox". Failure to list *ALL* # optional test-time dependencies here commonly results in errors from mypy, # which raises false positives on parsing "import" statements for currently # uninstalled third-party packages (e.g., "import numpy as np"). LIBS_TESTTIME_MANDATORY_TOX = LIBS_TESTTIME_OPTIONAL + ( 'pytest >=4.0.0', ) ''' **Mandatory tox test-time package dependencies** (i.e., dependencies required to test this package under :mod:`tox`) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' LIBS_TESTTIME_MANDATORY = ( LIBS_TESTTIME_MANDATORY_COVERAGE + LIBS_TESTTIME_MANDATORY_TOX + ( # A relatively modern version of tox is required. 'tox >=3.20.1', ) ) ''' **Mandatory developer test-time package dependencies** (i.e., dependencies required to test this package with :mod:`tox` as a developer at the command line) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' # ....................{ METADATA ~ libs : theme }.................... SPHINX_THEME_NAME = 'furo' ''' Name of the third-party Sphinx extension providing the custom HTML theme preferred by this documentation. Note that we selected this theme according to mostly objective (albeit ultimately subjective) heuristic criteria. In descending order of importance, we selected the theme with: #. The most frequent git commit history. #. The open issues and pull requests (PRs). #. The most GitHub stars as a crude proxy for aggregate rating. Furo handily bested all other themes across all three criteria. Furo is very well-maintained, frequently closes out open issues and merges open PRs, and sports the highest quantity of GitHub stars by an overwhelming margin. See Also ---------- https://github.com/pradyunsg/furo Upstream GitHub-hosted repository. ''' SPHINX_THEME_VERSION_MINIMUM = '2022.6.21' ''' Human-readable minimum version as a ``.``-delimited string of the **Furo Sphinx theme** (i.e., :mod:`furo`) optionally leveraged when building package documentation. ''' # ....................{ METADATA ~ libs : doc }.................... _LIB_DOCTIME_MANDATORY_VERSION_MINIMUM_SPHINX = '4.1.0' ''' Human-readable minimum version as a ``.``-delimited string of :mod:`sphinx` required to build package documentation. Specifically, this project requires: * :mod:sphinx` >= 4.1.0, which first supported the ``autodoc_typehints = 'both'`` option. ''' LIBS_DOCTIME_MANDATORY = ( f'sphinx >={_LIB_DOCTIME_MANDATORY_VERSION_MINIMUM_SPHINX}', f'autoapi >=0.9.0', ) ''' **Mandatory developer documentation build-time package dependencies** (i.e., dependencies required to manually build documentation for this package as a developer at the command line) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. For flexibility, these dependencies are loosely relaxed to enable developers to build with *any* versions satisfying at least the bare minimum. For the same reason, optional documentation build-time package dependencies are omitted. Since our documentation build system emits a non-fatal warning for each missing optional dependency, omitting these optional dependencies here imposes no undue hardships while improving usability. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' LIBS_DOCTIME_MANDATORY_RTD = ( f'sphinx =={_LIB_DOCTIME_MANDATORY_VERSION_MINIMUM_SPHINX}', ( f'{SPHINX_THEME_NAME} =={SPHINX_THEME_VERSION_MINIMUM}' ), ) ''' **Mandatory Read The Docs (RTD) documentation build-time package dependencies** (i.e., dependencies required to automatically build documentation for this package from the third-party RTD hosting service) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. For consistency, these dependencies are strictly constrained to force RTD to build against a single well-tested configuration known to work reliably. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. ''' # ....................{ METADATA ~ libs : dev }.................... LIBS_DEVELOPER_MANDATORY = LIBS_TESTTIME_MANDATORY + LIBS_DOCTIME_MANDATORY ''' **Mandatory developer package dependencies** (i.e., dependencies required to develop and meaningfully contribute pull requests for this package) as a tuple of :mod:`setuptools`-specific requirements strings of the format ``{project_name} {comparison1}{version1},...,{comparisonN}{versionN}``. This tuple includes all mandatory test- and documentation build-time package dependencies and is thus a convenient shorthand for those lower-level tuples. See Also ---------- :data:`LIBS_RUNTIME_OPTIONAL` Further details. '''
#!/usr/bin/env python3 # --------------------( LICENSE )-------------------- # Copyright (c) 2014-2022 Beartype authors. # See "LICENSE" for further details. ''' Project-wide **object utilities** (i.e., supplementary low-level functions handling arbitrary objects in a general-purpose manner). This private submodule is *not* intended for importation by downstream callers. ''' # ....................{ IMPORTS }.................... from beartype.roar._roarexc import _BeartypeUtilObjectNameException from contextlib import AbstractContextManager from beartype.typing import Any # ....................{ CLASSES }.................... class Iota(object): ''' **Iota** (i.e., object minimizing space consumption by guaranteeably containing *no* attributes). ''' __slots__ = () # ....................{ CONSTANTS }.................... SENTINEL = Iota() ''' Sentinel object of arbitrary value. This object is internally leveraged by various utility functions to identify erroneous and edge-case input (e.g., iterables of insufficient length). ''' # ....................{ TESTERS }.................... def is_object_context_manager(obj: object) -> bool: ''' ``True`` only if the passed object is a **context manager** (i.e., object defining both the ``__exit__`` and ``__enter__`` dunder methods required to satisfy the context manager protocol).. Parameters ---------- obj : object Object to be inspected. Returns ---------- bool ``True`` only if this object is a context manager. ''' # One-liners for frivolous inanity. return isinstance(obj, AbstractContextManager) # Note that this tester function *CANNOT* be memoized by the @callable_cached # decorator, which requires all passed parameters to already be hashable. def is_object_hashable(obj: object) -> bool: ''' ``True`` only if the passed object is **hashable** (i.e., passable to the builtin :func:`hash` function *without* raising an exception and thus usable in hash-based containers like dictionaries and sets). Parameters ---------- obj : object Object to be inspected. Returns ---------- bool ``True`` only if this object is hashable. ''' # Attempt to hash this object. If doing so raises *any* exception # whatsoever, this object is by definition unhashable. # # Note that there also exists a "collections.abc.Hashable" superclass. # Sadly, this superclass is mostly useless for all practical purposes. Why? # Because user-defined classes are free to subclass that superclass # despite overriding the __hash__() dunder method implicitly called by the # builtin hash() function to raise exceptions: e.g., # # from collections.abc import Hashable # class HashUmUp(Hashable): # def __hash__(self): # raise ValueError('uhoh') # # Note also that we catch all possible exceptions rather than merely the # standard "TypeError" exception raised by unhashable builtin types (e.g., # dictionaries, lists, sets). Why? For the same exact reason as above. try: hash(obj) # If this object is unhashable, return false. except: return False # Else, this object is hashable. Return true. return True # ....................{ GETTERS ~ name }.................... #FIXME: Unit test us up, please. def get_object_name(obj: Any) -> str: ''' **Fully-qualified name** (i.e., ``.``-delimited string unambiguously identifying) of the passed object if this object defines either the ``__qualname__`` or ``__name__`` dunder attributes *or* raise an exception otherwise (i.e., if this object defines *no* such attributes). Specifically, this name comprises (in order): #. If this object is transitively declared by a module, the absolute name of that module. #. If this object is transitively declared by another object (e.g., class, callable) and thus nested in that object, the unqualified basenames of all parent objects transitively declaring this object in that module. #. Unqualified basename of this object. Parameters ---------- obj : object Object to be inspected. Returns ---------- str Fully-qualified name of this object. Raises ---------- _BeartypeUtilObjectNameException If this object defines neither ``__qualname__`` *nor* ``__name__`` dunder attributes. ''' # Avoid circular import dependencies. from beartype._cave._cavefast import CallableOrClassTypes from beartype._util.mod.utilmodget import ( get_object_module_name_or_none, get_object_type_module_name_or_none, ) # Lexically scoped name of this object excluding this module name if this # object is named *OR* raise an exception otherwise. object_scopes_name = get_object_basename_scoped(obj) # Fully-qualified name of the module declaring this object if this object # is declared by a module *OR* "None" otherwise, specifically defined as: # * If this object is either a callable or class, the fully-qualified name # of the module declaring this object. # * Else, the fully-qualified name of the module declaring the class of # this object. object_module_name = ( get_object_module_name_or_none(obj) if isinstance(object, CallableOrClassTypes) else get_object_type_module_name_or_none(obj) ) # Return either... return ( # If this module name exists, "."-delimited concatenation of this # module and object name; f'{object_module_name}.{object_scopes_name}' if object_module_name is not None else # Else, this object name as is. object_scopes_name ) # ....................{ GETTERS ~ basename }.................... #FIXME: Unit test us up, please. def get_object_basename_scoped(obj: Any) -> str: ''' **Lexically scoped name** (i.e., ``.``-delimited string unambiguously identifying all lexical scopes encapsulating) the passed object if this object defines either the ``__qualname__`` or ``__name__`` dunder attributes *or* raise an exception otherwise (i.e., if this object defines *no* such attributes). Specifically, this name comprises (in order): #. If this object is transitively declared by another object (e.g., class, callable) and thus nested in that object, the unqualified basenames of all parent objects transitively declaring this object in that module. For usability, these basenames intentionally omit the meaningless placeholder ``"<locals>"`` substrings artificially injected by Python itself into the original ``__qualname__`` instance variable underlying this getter: e.g., .. code-block:: python >>> from beartype._util.utilobject import get_object_basename_scoped >>> def muh_func(): ... def muh_closure(): pass ... return muh_closure() >>> muh_func().__qualname__ 'muh_func.<locals>.muh_closure' # <-- bad Python >>> get_object_basename_scoped(muh_func) 'muh_func.muh_closure' # <-- good @beartype #. Unqualified basename of this object. Caveats ---------- **The higher-level** :func:`get_object_name` **getter should typically be called instead of this lower-level getter.** This getter unsafely: * Requires the passed object to declare dunder attributes *not* generally declared by arbitrary instances of user-defined classes. * Omits the fully-qualified name of the module transitively declaring this object and thus fails to return fully-qualified names. **This high-level getter should always be called in lieu of directly accessing the low-level** ``__qualname__`` **dunder attribute on objects.** That attribute contains one meaningless ``"<locals>"`` placeholder substring conveying *no* meaningful semantics for each parent callable lexically nesting this object. Parameters ---------- obj : object Object to be inspected. Returns ---------- str Lexically scoped name of this object. Raises ---------- _BeartypeUtilObjectNameException If this object defines neither ``__qualname__`` *nor* ``__name__`` dunder attributes. ''' # Return the fully-qualified name of this object excluding its name, # constructed as follows: # * If this object defines the "__qualname__" dunder attribute whose value # is the "."-delimited concatenation of the unqualified basenames of all # parent objects transitively declaring this object, that value with all # meaningless "<locals>" placeholder substrings removed. If this object # is a nested non-method callable (i.e., pure-Python function nested in # one or more parent pure-Python callables), that value contains one such # placeholder for each parent callable containing this callable. Since # placeholders convey no meaningful semantics, placeholders are removed. # * Else if this object defines the "__name__" dunder attribute whose value # is the unqualified basename of this object, that value. # * Else, "None". object_scoped_name = getattr( obj, '__qualname__', getattr( obj, '__name__', None)) # If this object is unnamed, raise a human-readable exception. The default # "AttributeError" exception raised by attempting to directly access either # the "obj.__name__" or "obj.__qualname__" attributes is sufficiently # non-explanatory to warrant replacement by our explanatory exception. if object_scoped_name is None: raise _BeartypeUtilObjectNameException( f'{repr(obj)} unnamed ' f'(i.e., declares neither "__name__" nor "__qualname__" ' f'dunder attributes).' ) # Else, this object is named. # Remove all "<locals>" placeholder substrings as discussed above. return object_scoped_name.replace('<locals>.', '') # ....................{ GETTERS ~ type }.................... def get_object_type_unless_type(obj: object) -> type: ''' Either the passed object if this object is a class *or* the class of this object otherwise (i.e., if this object is *not* a class). Note that this function *never* raises exceptions on arbitrary objects, as the :func:`type` builtin wisely returns itself when passed itself: e.g., .. code-block:: python >>> type(type(type)) is type True Parameters ---------- obj : object Object to be inspected. Returns ---------- type Type of this object. ''' return obj if isinstance(obj, type) else type(obj) # ....................{ GETTERS ~ type : name }.................... def get_object_type_basename(obj: object) -> str: ''' **Unqualified name** (i.e., non-``.``-delimited basename) of either the passed object if this object is a class *or* the class of this object otherwise (i.e., if this object is *not* a class). Parameters ---------- obj : object Object to be inspected. Returns ---------- str Unqualified name of this class. ''' # Elegant simplicity diminishes aggressive tendencies. return get_object_type_unless_type(obj).__name__ def get_object_type_name(obj: object) -> str: ''' **Fully-qualified name** (i.e., ``.``-delimited name prefixed by the declaring module) of either passed object if this object is a class *or* the class of this object otherwise (i.e., if this object is *not* a class). Parameters ---------- obj : object Object to be inspected. Returns ---------- str Fully-qualified name of the type of this object. ''' # Avoid circular import dependencies. from beartype._util.mod.utilmodget import ( get_object_type_module_name_or_none) # Type of this object. cls = get_object_type_unless_type(obj) # Unqualified name of this type. cls_basename = get_object_type_basename(cls) # Fully-qualified name of the module defining this class if this class is # defined by a module *OR* "None" otherwise. cls_module_name = get_object_type_module_name_or_none(cls) # Return either... return ( # The "."-delimited concatenation of this class basename and module # name if this module name exists. f'{cls_module_name}.{cls_basename}' if cls_module_name is not None else # This class basename as is otherwise. cls_basename )