python_code
stringlengths 0
108k
|
---|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
from __future__ import annotations
import os
import typing as t
import datetime
from abc import ABC
from abc import abstractmethod
from contextlib import contextmanager
import fs
import fs.errors
from fs.base import FS
from .tag import Tag
from .types import PathType
from .exportable import Exportable
from ..exceptions import NotFound
from ..exceptions import BentoMLException
T = t.TypeVar("T")
class StoreItem(Exportable):
@property
@abstractmethod
def tag(self) -> Tag:
raise NotImplementedError
@property
def _fs(self) -> FS:
raise NotImplementedError
@classmethod
def get_typename(cls) -> str:
return cls.__name__
@property
def _export_name(self) -> str:
return f"{self.tag.name}-{self.tag.version}"
@property
@abstractmethod
def creation_time(self) -> datetime.datetime:
raise NotImplementedError
def __repr__(self):
return f'{self.get_typename()}(tag="{self.tag}")'
Item = t.TypeVar("Item", bound=StoreItem)
class Store(ABC, t.Generic[Item]):
"""An FsStore manages items under the given base filesystem.
Note that FsStore has no consistency checks; it assumes that no direct modification
of the files in its directory has occurred.
"""
_fs: FS
_item_type: t.Type[Item]
@abstractmethod
def __init__(self, base_path: t.Union[PathType, FS], item_type: t.Type[Item]):
self._item_type = item_type
if isinstance(base_path, os.PathLike):
base_path = base_path.__fspath__()
self._fs = fs.open_fs(base_path)
def list(self, tag: t.Optional[t.Union[Tag, str]] = None) -> t.List[Item]:
if not tag:
return [
ver
for _d in sorted(self._fs.listdir("/"))
if self._fs.isdir(_d)
for ver in self.list(_d)
]
_tag = Tag.from_taglike(tag)
if _tag.version is None:
if not self._fs.isdir(_tag.name):
raise NotFound(
f"no {self._item_type.get_typename()}s with name '{_tag.name}' found"
)
tags = sorted(
[
Tag(_tag.name, f.name)
for f in self._fs.scandir(_tag.name)
if f.is_dir
]
)
return [self._get_item(t) for t in tags]
else:
return [self._get_item(_tag)] if self._fs.isdir(_tag.path()) else []
def _get_item(self, tag: Tag) -> Item:
"""
Creates a new instance of Item that represents the item with tag `tag`.
"""
return self._item_type.from_fs(self._fs.opendir(tag.path()))
def _recreate_latest(self, tag: Tag):
try:
items = self.list(tag.name)
except NotFound:
raise NotFound(
f"no {self._item_type.get_typename()}s with name '{tag.name}' exist in BentoML store {self._fs}"
)
if len(items) == 0:
raise NotFound(
f"no {self._item_type.get_typename()}s with name '{tag.name}' exist in BentoML store {self._fs}"
)
items.sort(reverse=True, key=lambda item: item.creation_time)
tag.version = items[0].tag.version
with self._fs.open(tag.latest_path(), "w") as latest_file:
latest_file.write(tag.version)
def get(self, tag: t.Union[Tag, str]) -> Item:
"""
store.get("my_bento")
store.get("my_bento:v1.0.0")
store.get(Tag("my_bento", "latest"))
"""
_tag = Tag.from_taglike(tag)
if _tag.version is None or _tag.version == "latest":
try:
_tag.version = self._fs.readtext(_tag.latest_path())
if not self._fs.exists(_tag.path()):
self._recreate_latest(_tag)
except fs.errors.ResourceNotFound:
self._recreate_latest(_tag)
path = _tag.path()
if self._fs.exists(path):
return self._get_item(_tag)
matches = self._fs.glob(f"{path}*/")
counts = matches.count().directories
if counts == 0:
raise NotFound(
f"{self._item_type.get_typename()} '{tag}' is not found in BentoML store {self._fs}"
)
elif counts == 1:
match = next(iter(matches))
return self._get_item(Tag(_tag.name, match.info.name))
else:
vers: t.List[str] = []
for match in matches:
vers += match.info.name
raise BentoMLException(
f"multiple versions matched by {_tag.version}: {vers}"
)
@contextmanager
def register(self, tag: t.Union[str, Tag]):
_tag = Tag.from_taglike(tag)
item_path = _tag.path()
if self._fs.exists(item_path):
raise BentoMLException(
f"Item '{_tag}' already exists in the store {self._fs}"
)
self._fs.makedirs(item_path)
try:
yield self._fs.getsyspath(item_path)
finally:
# item generation is most likely successful, link latest path
if (
not self._fs.exists(_tag.latest_path())
or self.get(_tag).creation_time >= self.get(_tag.name).creation_time
):
with self._fs.open(_tag.latest_path(), "w") as latest_file:
latest_file.write(_tag.version)
def delete(self, tag: t.Union[str, Tag]) -> None:
_tag = Tag.from_taglike(tag)
if not self._fs.exists(_tag.path()):
raise NotFound(f"{self._item_type.get_typename()} '{tag}' not found")
self._fs.removetree(_tag.path())
if self._fs.isdir(_tag.name):
versions = self.list(_tag.name)
if len(versions) == 0:
# if we've removed all versions, remove the directory
self._fs.removetree(_tag.name)
else:
new_latest = sorted(versions, key=lambda x: x.creation_time)[-1]
# otherwise, update the latest version
assert new_latest.tag.version is not None
self._fs.writetext(_tag.latest_path(), new_latest.tag.version)
|
from __future__ import annotations
from contextvars import ContextVar
from opentelemetry import trace # type: ignore[import]
class ServiceContextClass:
def __init__(self) -> None:
self.request_id_var: ContextVar[int | None] = ContextVar(
"request_id_var", default=None
)
self.component_name_var: ContextVar[str] = ContextVar(
"component_name", default="cli"
)
@property
def sampled(self) -> int | None:
span = trace.get_current_span()
if span is None:
return None
return 1 if span.get_span_context().trace_flags.sampled else 0
@property
def trace_id(self) -> int | None:
span = trace.get_current_span()
if span is None:
return None
return span.get_span_context().trace_id
@property
def span_id(self) -> int | None:
span = trace.get_current_span()
if span is None:
return None
return span.get_span_context().span_id
@property
def request_id(self) -> int | None:
return self.request_id_var.get()
@property
def component_name(self) -> str | None:
return self.component_name_var.get()
ServiceContext = ServiceContextClass()
|
from __future__ import annotations
import typing as t
import logging
import logging.config
from .trace import ServiceContext
from .configuration import get_debug_mode
from .configuration import get_quiet_mode
default_factory = logging.getLogRecordFactory()
# TODO: remove this filter after implementing CLI output as something other than INFO logs
class InfoFilter(logging.Filter):
def filter(self, record: logging.LogRecord) -> bool:
return logging.INFO <= record.levelno < logging.WARNING
# TODO: can be removed after the above is complete
CLI_LOGGING_CONFIG: dict[str, t.Any] = {
"version": 1,
"disable_existing_loggers": True,
"filters": {"infofilter": {"()": InfoFilter}},
"handlers": {
"bentomlhandler": {
"class": "logging.StreamHandler",
"filters": ["infofilter"],
"stream": "ext://sys.stdout",
},
"defaulthandler": {
"class": "logging.StreamHandler",
"level": logging.WARNING,
},
},
"loggers": {
"bentoml": {
"handlers": ["bentomlhandler", "defaulthandler"],
"level": logging.INFO,
"propagate": False,
},
},
"root": {"level": logging.WARNING},
}
TRACED_LOG_FORMAT = (
"%(asctime)s %(levelname_bracketed)s %(component)s %(message)s%(trace_msg)s"
)
DATE_FORMAT = "%Y-%m-%dT%H:%M:%S%z"
SERVER_LOGGING_CONFIG: dict[str, t.Any] = {
"version": 1,
"disable_existing_loggers": True,
"formatters": {
"traced": {
"format": TRACED_LOG_FORMAT,
"datefmt": DATE_FORMAT,
}
},
"handlers": {
"tracehandler": {
"class": "logging.StreamHandler",
"formatter": "traced",
},
},
"loggers": {
"bentoml": {
"level": logging.INFO,
"handlers": ["tracehandler"],
"propagate": False,
},
},
"root": {
"handlers": ["tracehandler"],
"level": logging.WARNING,
},
}
def configure_logging():
# TODO: convert to simple 'logging.basicConfig' after we no longer need the filter
if get_quiet_mode():
CLI_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.ERROR
CLI_LOGGING_CONFIG["root"]["level"] = logging.ERROR
elif get_debug_mode():
CLI_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.DEBUG
CLI_LOGGING_CONFIG["root"]["level"] = logging.DEBUG
else:
CLI_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.INFO
CLI_LOGGING_CONFIG["root"]["level"] = logging.WARNING
logging.config.dictConfig(CLI_LOGGING_CONFIG)
def trace_record_factory(*args: t.Any, **kwargs: t.Any):
record = default_factory(*args, **kwargs)
record.levelname_bracketed = f"[{record.levelname}]" # type: ignore (adding fields to record)
record.component = f"[{ServiceContext.component_name}]" # type: ignore (adding fields to record)
if ServiceContext.trace_id == 0:
record.trace_msg = "" # type: ignore (adding fields to record)
else:
record.trace_msg = f" (trace={ServiceContext.trace_id},span={ServiceContext.span_id},sampled={ServiceContext.sampled})" # type: ignore (adding fields to record)
record.request_id = ServiceContext.request_id # type: ignore (adding fields to record)
return record
def configure_server_logging():
if get_quiet_mode():
SERVER_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.ERROR
SERVER_LOGGING_CONFIG["root"]["level"] = logging.ERROR
elif get_debug_mode():
SERVER_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.DEBUG
SERVER_LOGGING_CONFIG["root"]["level"] = logging.DEBUG
else:
SERVER_LOGGING_CONFIG["loggers"]["bentoml"]["level"] = logging.INFO
SERVER_LOGGING_CONFIG["root"]["level"] = logging.WARNING
logging.setLogRecordFactory(trace_record_factory)
logging.config.dictConfig(SERVER_LOGGING_CONFIG)
|
from __future__ import annotations
import os
import re
import typing as t
import logging
import urllib.parse
from abc import ABC
from abc import abstractmethod
import fs
import fs.copy
import fs.errors
import fs.mirror
import fs.opener
import fs.tempfs
from fs import open_fs
from fs.base import FS
T = t.TypeVar("T", bound="Exportable")
uriSchemeRe = re.compile(r".*[^\\](?=://)")
class Exportable(ABC):
@staticmethod
@abstractmethod
def _export_ext() -> str:
raise NotImplementedError
@property
@abstractmethod
def _export_name(self) -> str:
raise NotImplementedError
@property
@abstractmethod
def _fs(self) -> FS:
raise NotImplementedError
@classmethod
@abstractmethod
def from_fs(cls: t.Type[T], item_fs: FS) -> T:
raise NotImplementedError
@classmethod
def guess_format(cls, path: str) -> str:
_, ext = fs.path.splitext(path)
if ext == "":
return cls._export_ext()
ext = ext[1:]
if ext in [cls._export_ext(), "gz", "xz", "bz2", "tar", "zip"]:
return ext
else:
return cls._export_ext()
@classmethod
def import_from(
cls: t.Type[T],
path: str,
input_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
) -> T:
try:
parsedurl = fs.opener.parse(path)
except fs.opener.errors.ParseError: # type: ignore (FS types)
if protocol is None:
protocol = "osfs"
resource: str = path if os.sep == "/" else path.replace(os.sep, "/")
else:
resource: str = ""
else:
if any(v is not None for v in [protocol, user, passwd, params, subpath]):
raise ValueError(
"An FS URL was passed as the output path; all additional information should be passed as part of the URL."
)
protocol = parsedurl.protocol # type: ignore (FS types)
user = parsedurl.username # type: ignore (FS types)
passwd = parsedurl.password # type: ignore (FS types)
resource: str = parsedurl.resource # type: ignore (FS types)
params = parsedurl.params # type: ignore (FS types)
subpath = parsedurl.path # type: ignore (FS types)
if protocol not in fs.opener.registry.protocols: # type: ignore (FS types)
if protocol == "s3":
raise ValueError(
"Tried to open an S3 url but the protocol is not registered; did you 'pip install fs-s3fs'?"
)
else:
raise ValueError(
f"Unknown or unsupported protocol {protocol}. Some supported protocols are 'ftp', 's3', and 'osfs'."
)
isOSPath = protocol in [
"temp",
"osfs",
"userdata",
"userconf",
"sitedata",
"siteconf",
"usercache",
"userlog",
]
isCompressedPath = protocol in ["tar", "zip"]
if input_format is not None:
if isCompressedPath:
raise ValueError(
f"A {protocol} path was passed along with an input format ({input_format}); only pass one or the other."
)
else:
# try to guess output format if it hasn't been passed
input_format = cls.guess_format(resource if subpath is None else subpath)
if subpath is None:
if isCompressedPath:
subpath = ""
else:
resource, subpath = fs.path.split(resource)
if isOSPath:
# we can safely ignore user / passwd / params
# get the path on the system so we can skip the copy step
try:
rsc_dir = fs.open_fs(f"{protocol}://{resource}")
# if subpath is root, we can just open directly
if (subpath == "" or subpath == "/") and input_format == "folder":
return cls.from_fs(rsc_dir)
# if subpath is specified, we need to create our own temp fs and mirror that subpath
path = rsc_dir.getsyspath(subpath)
res = cls._from_compressed(path, input_format)
except fs.errors.CreateFailed:
raise ValueError("Directory does not exist")
else:
userblock = ""
if user is not None or passwd is not None:
if user is not None:
userblock += urllib.parse.quote(user)
if passwd is not None:
userblock += ":" + urllib.parse.quote(passwd)
userblock += "@"
resource = urllib.parse.quote(resource)
query = ""
if params is not None:
query = "?" + urllib.parse.urlencode(params)
input_uri = f"{protocol}://{userblock}{resource}{query}"
if isCompressedPath:
input_fs = fs.open_fs(input_uri)
res = cls.from_fs(input_fs)
else:
filename = fs.path.basename(subpath)
tempfs = fs.tempfs.TempFS(identifier=f"bentoml-{filename}-import")
if input_format == "folder":
input_fs = fs.open_fs(input_uri)
fs.copy.copy_dir(input_fs, subpath, tempfs, filename)
else:
input_fs = fs.open_fs(input_uri)
fs.copy.copy_file(input_fs, subpath, tempfs, filename)
res = cls._from_compressed(tempfs.getsyspath(filename), input_format)
input_fs.close()
return res
def export(
self,
path: str,
output_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
) -> str:
try:
parsedurl = fs.opener.parse(path)
except fs.opener.errors.ParseError: # type: ignore (incomplete FS types)
if protocol is None:
protocol = "osfs"
resource = path if os.sep == "/" else path.replace(os.sep, "/")
else:
resource = ""
else:
if any(v is not None for v in [protocol, user, passwd, params, subpath]):
raise ValueError(
"An FS URL was passed as the output path; all additional information should be passed as part of the URL."
)
protocol = parsedurl.protocol # type: ignore (incomplete FS types)
user = parsedurl.username # type: ignore (incomplete FS types)
passwd = parsedurl.password # type: ignore (incomplete FS types)
resource: str = parsedurl.resource # type: ignore (incomplete FS types)
params = parsedurl.params # type: ignore (incomplete FS types)
subpath = parsedurl.path # type: ignore (incomplete FS types)
if protocol not in fs.opener.registry.protocols: # type: ignore (incomplete FS types)
if protocol == "s3":
raise ValueError(
"Tried to open an S3 url but the protocol is not registered; did you install fs-s3fs?"
)
else:
raise ValueError(
f"Unknown or unsupported protocol {protocol}. Some supported protocols are 'ftp', 's3', and 'osfs'."
)
isOSPath = protocol in [
"temp",
"osfs",
"userdata",
"userconf",
"sitedata",
"siteconf",
"usercache",
"userlog",
]
isCompressedPath = protocol in ["tar", "zip"]
if output_format is not None:
if isCompressedPath:
raise ValueError(
f"A {protocol} path was passed along with an output format ({output_format}); only pass one or the other."
)
else:
# try to guess output format if it hasn't been passed
output_format = self.guess_format(resource if subpath is None else subpath)
# use combine here instead of join because we don't want to fold subpath into path.
fullpath = resource if subpath is None else fs.path.combine(resource, subpath)
if fullpath == "" or (not output_format == "folder" and fullpath[-1] == "/"):
subpath = "" if subpath is None else subpath
# if the path has no filename or is empty, we generate a filename from the bento tag
subpath = fs.path.join(subpath, self._export_name)
if output_format in ["gz", "xz", "bz2", "tar", "zip"]:
subpath += "." + output_format
elif isOSPath:
try:
dirfs = fs.open_fs(path)
except fs.errors.CreateFailed:
pass
else:
if subpath is None or dirfs.isdir(subpath):
subpath = "" if subpath is None else subpath
# path exists and is a directory, we will create a file inside that directory
subpath = fs.path.join(subpath, self._export_name)
if output_format in ["gz", "xz", "bz2", "tar", "zip"]:
subpath += "." + output_format
if subpath is None:
if isCompressedPath:
subpath = ""
else:
resource, subpath = fs.path.split(resource)
# as a special case, if the output format is the default we will always append the relevant
# extension if the output filename does not have it
if (
output_format == self._export_ext()
and fs.path.splitext(subpath)[1] != "." + self._export_ext()
):
logging.info(
f"adding {self._export_ext} because ext is {fs.path.splitext(subpath)[1]}"
)
subpath += "." + self._export_ext()
if isOSPath:
# we can safely ignore user / passwd / params
# get the path on the system so we can skip the copy step
try:
rsc_dir = fs.open_fs(f"{protocol}://{resource}")
path = rsc_dir.getsyspath(subpath)
self._compress(path, output_format)
except fs.errors.CreateFailed:
raise ValueError(
f"Output directory '{protocol}://{resource}' does not exist."
)
else:
userblock = ""
if user is not None or passwd is not None:
if user is not None:
userblock += urllib.parse.quote(user)
if passwd is not None:
userblock += ":" + urllib.parse.quote(passwd)
userblock += "@"
resource = urllib.parse.quote(resource)
query = ""
if params is not None:
query = "?" + urllib.parse.urlencode(params)
dest_uri = f"{protocol}://{userblock}{resource}{query}"
if isCompressedPath:
destfs = fs.open_fs(dest_uri, writeable=True, create=True)
fs.mirror.mirror(self._fs, destfs, copy_if_newer=False)
else:
tempfs = fs.tempfs.TempFS(
identifier=f"bentoml-{self._export_name}-export"
)
filename = fs.path.basename(subpath)
self._compress(tempfs.getsyspath(filename), output_format)
if output_format == "folder":
destfs = fs.open_fs(dest_uri)
fs.copy.copy_dir(tempfs, filename, destfs, subpath)
else:
destfs = fs.open_fs(dest_uri)
fs.copy.copy_file(tempfs, filename, destfs, subpath)
tempfs.close()
destfs.close()
return path
def _compress(self, path: str, output_format: str):
if output_format in ["gz", "xz", "bz2", "tar", self._export_ext()]:
from fs.tarfs import WriteTarFS
compression = output_format
if compression == "tar":
compression = None
if compression == self._export_ext():
compression = "xz"
out_fs = WriteTarFS(path, compression)
elif output_format == "zip":
from fs.zipfs import WriteZipFS
out_fs = WriteZipFS(path)
elif output_format == "folder":
out_fs: FS = open_fs(path, writeable=True, create=True)
else:
raise ValueError(f"Unsupported format {output_format}")
fs.mirror.mirror(self._fs, out_fs, copy_if_newer=False)
out_fs.close()
@classmethod
def _from_compressed(cls: t.Type[T], path: str, input_format: str) -> T:
if input_format in ["gz", "xz", "bz2", "tar", cls._export_ext()]:
from fs.tarfs import ReadTarFS
compression = input_format
if compression == "tar":
compression = None
if compression == cls._export_ext():
compression = "xz"
ret_fs = ReadTarFS(path)
elif input_format == "zip":
from fs.zipfs import ReadZipFS
ret_fs = ReadZipFS(path)
elif input_format == "folder":
ret_fs: FS = open_fs(path)
else:
raise ValueError(f"Unsupported format {input_format}")
return cls.from_fs(ret_fs)
|
from __future__ import annotations
import io
import os
import sys
import typing as t
import logging
from types import TracebackType
from typing import TYPE_CHECKING
from datetime import date
from datetime import time
from datetime import datetime
from datetime import timedelta
from dataclasses import dataclass
from .utils.dataclasses import json_serializer
if sys.version_info < (3, 8):
from typing_extensions import get_args
from typing_extensions import get_origin
else:
from typing import get_args
from typing import get_origin
if sys.version_info < (3, 10):
from typing_extensions import ParamSpec
else:
from typing import ParamSpec
__all__ = [
"ParamSpec",
"MetadataType",
"MetadataDict",
"JSONSerializable",
"LazyType",
"is_compatible_type",
"FileLike",
]
logger = logging.getLogger(__name__)
BATCH_HEADER = "Bentoml-Is-Batch-Request"
# For non latin1 characters: https://tools.ietf.org/html/rfc8187
# Also https://github.com/benoitc/gunicorn/issues/1778
HEADER_CHARSET = "latin1"
JSON_CHARSET = "utf-8"
if TYPE_CHECKING:
PathType = t.Union[str, os.PathLike[str]]
else:
PathType = t.Union[str, os.PathLike]
MetadataType: t.TypeAlias = t.Union[
str,
bytes,
bool,
int,
float,
complex,
datetime,
date,
time,
timedelta,
t.List["MetadataType"],
t.Tuple["MetadataType"],
t.Dict[str, "MetadataType"],
]
MetadataDict = t.Dict[str, MetadataType]
JSONSerializable = t.NewType("JSONSerializable", object)
T = t.TypeVar("T")
class LazyType(t.Generic[T]):
"""
LazyType provides solutions for several conflicts when applying lazy dependencies,
type annotations and runtime class checking.
It works both for runtime and type checking phases.
* conflicts 1
isinstance(obj, class) requires importing the class first, which breaks
lazy dependencies
solution:
>>> LazyType("numpy.ndarray").isinstance(obj)
* conflicts 2
`isinstance(obj, str)` will narrow obj types down to str. But it only works for the
case that the class is the type at the same time. For numpy.ndarray which the type
is actually numpy.typing.NDArray, we had to hack the type checking.
solution:
>>> if TYPE_CHECKING:
>>> from numpy.typing import NDArray
>>> LazyType["NDArray"]("numpy.ndarray").isinstance(obj)`
>>> # this will narrow the obj to NDArray with PEP-647
* conflicts 3
compare/refer/map classes before importing them.
>>> HANDLER_MAP = {
>>> LazyType("numpy.ndarray"): ndarray_handler,
>>> LazyType("pandas.DataFrame"): pdframe_handler,
>>> }
>>>
>>> HANDLER_MAP[LazyType(numpy.ndarray)]](array)
>>> LazyType("numpy.ndarray") == numpy.ndarray
"""
@t.overload
def __init__(self, module_or_cls: str, qualname: str) -> None:
"""LazyType("numpy", "ndarray")"""
@t.overload
def __init__(self, module_or_cls: t.Type[T]) -> None:
"""LazyType(numpy.ndarray)"""
@t.overload
def __init__(self, module_or_cls: str) -> None:
"""LazyType("numpy.ndarray")"""
def __init__(
self,
module_or_cls: str | t.Type[T],
qualname: str | None = None,
) -> None:
if isinstance(module_or_cls, str):
if qualname is None: # LazyType("numpy.ndarray")
parts = module_or_cls.rsplit(".", 1)
if len(parts) == 1:
raise ValueError("LazyType only works with classes")
self.module, self.qualname = parts
else: # LazyType("numpy", "ndarray")
self.module = module_or_cls
self.qualname = qualname
self._runtime_class = None
else: # LazyType(numpy.ndarray)
self._runtime_class = module_or_cls
self.module = module_or_cls.__module__
if hasattr(module_or_cls, "__qualname__"):
self.qualname: str = getattr(module_or_cls, "__qualname__")
else:
self.qualname: str = getattr(module_or_cls, "__name__")
def __instancecheck__(self, obj) -> "t.TypeGuard[T]":
return self.isinstance(obj)
@classmethod
def from_type(cls, typ_: t.Union["LazyType[T]", "t.Type[T]"]) -> "LazyType[T]":
if isinstance(typ_, LazyType):
return typ_
return cls(typ_)
def __eq__(self, o: object) -> bool:
"""
LazyType("numpy", "ndarray") == np.ndarray
"""
if isinstance(o, type):
o = self.__class__(o)
if isinstance(o, LazyType):
return self.module == o.module and self.qualname == o.qualname
return False
def __hash__(self) -> int:
return hash(f"{self.module}.{self.qualname}")
def __repr__(self) -> str:
return f'LazyType("{self.module}", "{self.qualname}")'
def get_class(self, import_module: bool = True) -> t.Type[T]:
if self._runtime_class is None:
try:
m = sys.modules[self.module]
except KeyError:
if import_module:
import importlib
m = importlib.import_module(self.module)
else:
raise ValueError(f"Module {self.module} not imported")
self._runtime_class = t.cast("t.Type[T]", getattr(m, self.qualname))
return self._runtime_class
def isinstance(self, obj: t.Any) -> "t.TypeGuard[T]":
try:
return isinstance(obj, self.get_class(import_module=False))
except ValueError:
return False
if TYPE_CHECKING:
from types import UnionType
AnyType: t.TypeAlias = t.Type[t.Any] | UnionType | LazyType[t.Any]
def is_compatible_type(t1: AnyType, t2: AnyType) -> bool:
"""
A very loose check that it is possible for an object to be both an instance of ``t1``
and an instance of ``t2``.
Note: this will resolve ``LazyType``s, so should not be used in any
peformance-critical contexts.
"""
if get_origin(t1) is t.Union:
return any((is_compatible_type(t2, arg_type) for arg_type in get_args(t1)))
if get_origin(t2) is t.Union:
return any((is_compatible_type(t1, arg_type) for arg_type in get_args(t2)))
if isinstance(t1, LazyType):
t1 = t1.get_class()
if isinstance(t2, LazyType):
t2 = t2.get_class()
if isinstance(t1, type) and isinstance(t2, type):
return issubclass(t1, t2) or issubclass(t2, t1)
# catchall return true in unsupported cases so we don't error on unsupported types
return True
@json_serializer(fields=["uri", "name"], compat=True)
@dataclass(frozen=False)
class FileLike(t.Generic[t.AnyStr], io.IOBase):
"""
A wrapper for file-like objects that includes a custom name.
"""
_wrapped: t.IO[t.AnyStr]
_name: str
@property
def mode(self) -> str:
return self._wrapped.mode
@property
def name(self) -> str:
return self._name
def close(self):
self._wrapped.close()
@property
def closed(self) -> bool:
return self._wrapped.closed
def fileno(self) -> int:
return self._wrapped.fileno()
def flush(self):
self._wrapped.flush()
def isatty(self) -> bool:
return self._wrapped.isatty()
def read(self, size: int = -1) -> t.AnyStr: # type: ignore # pylint: disable=arguments-renamed # python IO types
return self._wrapped.read(size)
def readable(self) -> bool:
return self._wrapped.readable()
def readline(self, size: int = -1) -> t.AnyStr: # type: ignore (python IO types)
return self._wrapped.readline(size)
def readlines(self, size: int = -1) -> t.List[t.AnyStr]: # type: ignore (python IO types)
return self._wrapped.readlines(size)
def seek(self, offset: int, whence: int = io.SEEK_SET) -> int:
return self._wrapped.seek(offset, whence)
def seekable(self) -> bool:
return self._wrapped.seekable()
def tell(self) -> int:
return self._wrapped.tell()
def truncate(self, size: t.Optional[int] = None) -> int:
return self._wrapped.truncate(size)
def writable(self) -> bool:
return self._wrapped.writable()
def write(self, s: t.AnyStr) -> int: # type: ignore (python IO types)
return self._wrapped.write(s)
def writelines(self, lines: t.Iterable[t.AnyStr]): # type: ignore (python IO types)
return self._wrapped.writelines(lines)
def __next__(self) -> t.AnyStr: # type: ignore (python IO types)
return next(self._wrapped)
def __iter__(self) -> t.Iterator[t.AnyStr]: # type: ignore (python IO types)
return self._wrapped.__iter__()
def __enter__(self) -> t.IO[t.AnyStr]:
return self._wrapped.__enter__()
def __exit__( # type: ignore (python IO types)
self,
typ: t.Optional[t.Type[BaseException]],
value: t.Optional[BaseException],
traceback: t.Optional[TracebackType],
) -> t.Optional[bool]:
return self._wrapped.__exit__(typ, value, traceback)
|
from __future__ import annotations
import typing as t
import contextvars
from abc import ABC
from abc import abstractmethod
from typing import TYPE_CHECKING
import attr
import starlette.datastructures
from .utils.http import Cookie
if TYPE_CHECKING:
import starlette.requests
import starlette.responses
class Metadata(t.Mapping[str, str], ABC):
@abstractmethod
def __setitem__(self, key: str, value: str) -> None:
"""
Set the header ``key`` to ``value``, removing any duplicate entries.
Retains insertion order.
"""
@abstractmethod
def __delitem__(self, key: str) -> None:
"""
Remove the header ``key``.
"""
@abstractmethod
def __ior__(self, other: t.Mapping[t.Any, t.Any]) -> Metadata:
"""
Updates this metadata with the contents of ``other``
"""
@abstractmethod
def __or__(self, other: t.Mapping[t.Any, t.Any]) -> Metadata:
"""
Returns a new metadata object with the contents of this metadata object updated with the contents of ``other``
"""
@abstractmethod
def update(self, other: t.Mapping[t.Any, t.Any]) -> None:
"""
Sets all the headers in ``other`` in this object.
For example, if this object is ``{"my-header": "my-value", "my-other-header": "my-other-value"}``
and other is {"my-header": 3¸ "other-header": 4}
"""
@abstractmethod
def setdefault(self, key: str, value: str) -> str:
"""
If the header ``key`` does not exist, then set it to ``value``.
Returns the header value.
"""
@abstractmethod
def append(self, key: str, value: str) -> None:
"""
Append a header, preserving any duplicate entries.
"""
@abstractmethod
def mutablecopy(self) -> Metadata:
"""
Returns a copy of this metadata object.
"""
@attr.define
class InferenceApiContext:
request: "RequestContext"
response: "ResponseContext"
def __init__(self, request: "RequestContext", response: "ResponseContext"):
self.request = request
self.response = response
@staticmethod
def from_http(request: "starlette.requests.Request") -> "InferenceApiContext":
request_ctx = InferenceApiContext.RequestContext.from_http(request)
response_ctx = InferenceApiContext.ResponseContext()
return InferenceApiContext(request_ctx, response_ctx)
@attr.define
class RequestContext:
metadata: Metadata
headers: Metadata
def __init__(self, metadata: Metadata):
self.metadata = metadata
self.headers = metadata
@staticmethod
def from_http(
request: "starlette.requests.Request",
) -> "InferenceApiContext.RequestContext":
return InferenceApiContext.RequestContext(request.headers) # type: ignore (coercing Starlette headers to Metadata)
@attr.define
class ResponseContext:
metadata: Metadata
cookies: list[Cookie]
headers: Metadata
status_code: int = 200
def __init__(self):
self.metadata = starlette.datastructures.MutableHeaders() # type: ignore (coercing Starlette headers to Metadata)
self.headers = self.metadata # type: ignore (coercing Starlette headers to Metadata)
def set_cookie(
self,
key: str,
value: str,
max_age: int | None = None,
expires: int | None = None,
path: str = "/",
domain: str | None = None,
secure: bool = False,
httponly: bool = False,
samesite: str = "lax",
):
self.cookies.append(
Cookie(
key,
value,
max_age,
expires,
path,
domain,
secure,
httponly,
samesite,
)
)
class ServiceTraceContext:
def __init__(self) -> None:
self._request_id_var = contextvars.ContextVar(
"_request_id_var", default=t.cast("t.Optional[int]", None)
)
@property
def trace_id(self) -> t.Optional[int]:
from opentelemetry import trace
span = trace.get_current_span()
if span is None:
return None
return span.get_span_context().trace_id
@property
def span_id(self) -> t.Optional[int]:
from opentelemetry import trace # type: ignore
span = trace.get_current_span()
if span is None:
return None
return span.get_span_context().span_id
@property
def request_id(self) -> t.Optional[int]:
"""
Different from span_id, request_id is unique for each inbound request.
"""
return self._request_id_var.get()
@request_id.setter
def request_id(self, request_id: t.Optional[int]) -> None:
self._request_id_var.set(request_id)
@request_id.deleter
def request_id(self) -> None:
self._request_id_var.set(None)
trace_context = ServiceTraceContext()
|
import re
import uuid
import base64
import typing as t
import logging
import fs
import attr
from .utils import bentoml_cattr
from ..exceptions import InvalidArgument
from ..exceptions import BentoMLException
logger = logging.getLogger(__name__)
tag_fmt = "[a-z0-9]([-._a-z0-9]*[a-z0-9])?"
tag_max_length = 63
tag_max_length_error_msg = (
"a tag's name or version must be at most {tag_max_length} characters in length"
)
tag_invalid_error_msg = "a tag's name or version must consist of alphanumeric characters, '_', '-', or '.', and must start and end with an alphanumeric character"
tag_regex = re.compile(f"^{tag_fmt}$")
def validate_tag_str(value: str):
"""
Validate that a tag value (either name or version) is a simple string that:
* Must be at most 63 characters long,
* Begin and end with an alphanumeric character (`[a-z0-9A-Z]`), and
* May contain dashes (`-`), underscores (`_`) dots (`.`), or alphanumerics
between.
"""
errors = []
if len(value) > tag_max_length:
errors.append(tag_max_length_error_msg)
if tag_regex.match(value) is None:
errors.append(tag_invalid_error_msg)
if errors:
raise InvalidArgument(f"{value} is not a valid tag: " + ", and ".join(errors))
@attr.define(slots=True)
class Tag:
name: str
version: t.Optional[str]
def __init__(self, name: str, version: t.Optional[str] = None):
lname = name.lower()
if name != lname:
logger.warning(f"converting {name} to lowercase: {lname}")
validate_tag_str(lname)
self.name = lname
if version is not None:
lversion = version.lower()
if version != lversion:
logger.warning(f"converting {version} to lowercase: {lversion}")
validate_tag_str(lversion)
self.version = lversion
else:
self.version = None
def __str__(self):
if self.version is None:
return self.name
else:
return f"{self.name}:{self.version}"
def __repr__(self):
return f"{self.__class__.__name__}(name={repr(self.name)}, version={repr(self.version)})"
def __eq__(self, other: "Tag") -> bool:
return self.name == other.name and self.version == other.version
def __lt__(self, other: "Tag") -> bool:
if self.name == other.name:
if other.version is None:
return False
if self.version is None:
return True
return self.version < other.version
return self.name < other.name
def __hash__(self) -> int:
return hash((self.name, self.version))
@classmethod
def from_taglike(cls, taglike: t.Union["Tag", str]) -> "Tag":
if isinstance(taglike, Tag):
return taglike
return cls.from_str(taglike)
@classmethod
def from_str(cls, tag_str: str) -> "Tag":
if ":" not in tag_str:
return cls(tag_str, None)
try:
name, _, version = tag_str.partition(":")
if not version:
# in case users mistakenly define "bento:"
raise BentoMLException(
f"{tag_str} contains trailing ':'. Maybe you meant to use `{tag_str}:latest`?"
)
return cls(name, version)
except ValueError:
raise BentoMLException(f"Invalid {cls.__name__} {tag_str}")
def make_new_version(self) -> "Tag":
if self.version is not None:
raise ValueError(
"tried to run 'make_new_version' on a Tag that already has a version"
)
ver_bytes = bytearray(uuid.uuid1().bytes)
# cut out the time_hi and node bits of the uuid
ver_bytes = ver_bytes[:6] + ver_bytes[8:12]
encoded_ver = base64.b32encode(ver_bytes)
return Tag(self.name, encoded_ver.decode("ascii").lower())
def path(self) -> str:
if self.version is None:
return self.name
return fs.path.combine(self.name, self.version)
def latest_path(self) -> str:
return fs.path.combine(self.name, "latest")
# Remove after attrs support ForwardRef natively
attr.resolve_types(Tag, globals(), locals())
bentoml_cattr.register_structure_hook(Tag, lambda d, _: Tag.from_taglike(d)) # type: ignore[misc]
bentoml_cattr.register_unstructure_hook(Tag, lambda tag: str(tag))
|
import os
import uuid
import typing as t
import logging
import multiprocessing
from typing import TYPE_CHECKING
from dataclasses import dataclass
import yaml
from schema import Or
from schema import And
from schema import Use
from schema import Schema
from schema import Optional
from schema import SchemaError
from deepmerge import always_merger
from simple_di import Provide
from simple_di import providers
from . import expand_env_var
from ..utils import validate_or_create_dir
from ...exceptions import BentoMLConfigException
if TYPE_CHECKING:
from bentoml._internal.models import ModelStore
from .. import external_typing as ext
from ..utils.analytics import ServeInfo
from ..server.metrics.prometheus import PrometheusClient
LOGGER = logging.getLogger(__name__)
SYSTEM_HOME = os.path.expanduser("~")
BENTOML_HOME = expand_env_var(
str(os.environ.get("BENTOML_HOME", os.path.join(SYSTEM_HOME, "bentoml")))
)
DEFAULT_BENTOS_PATH = os.path.join(BENTOML_HOME, "bentos")
DEFAULT_MODELS_PATH = os.path.join(BENTOML_HOME, "models")
validate_or_create_dir(BENTOML_HOME, DEFAULT_BENTOS_PATH, DEFAULT_MODELS_PATH)
_check_tracing_type: t.Callable[[str], bool] = lambda s: s in ("zipkin", "jaeger")
_larger_than: t.Callable[[int], t.Callable[[int], bool]] = (
lambda target: lambda val: val > target
)
_larger_than_zero: t.Callable[[int], bool] = _larger_than(0)
def _is_ip_address(addr: str) -> bool:
import socket
try:
socket.inet_aton(addr)
return True
except socket.error:
return False
SCHEMA = Schema(
{
"bento_server": {
"port": And(int, _larger_than_zero),
"host": And(str, _is_ip_address),
"backlog": And(int, _larger_than(64)),
"workers": Or(And(int, _larger_than_zero), None),
"timeout": And(int, _larger_than_zero),
"max_request_size": And(int, _larger_than_zero),
"batch_options": {
Optional("enabled", default=True): bool,
"max_batch_size": Or(And(int, _larger_than_zero), None),
"max_latency_ms": Or(And(int, _larger_than_zero), None),
},
"ngrok": {"enabled": bool},
"metrics": {"enabled": bool, "namespace": str},
"logging": {
# TODO add logging level configuration
"access": {
"enabled": bool,
"request_content_length": Or(bool, None),
"request_content_type": Or(bool, None),
"response_content_length": Or(bool, None),
"response_content_type": Or(bool, None),
},
},
"cors": {
"enabled": bool,
"access_control_allow_origin": Or(str, None),
"access_control_allow_credentials": Or(bool, None),
"access_control_allow_headers": Or([str], str, None),
"access_control_allow_methods": Or([str], str, None),
"access_control_max_age": Or(int, None),
"access_control_expose_headers": Or([str], str, None),
},
},
"runners": {
"logging": {
# TODO add logging level configuration
"access": {
"enabled": bool,
"request_content_length": Or(bool, None),
"request_content_type": Or(bool, None),
"response_content_length": Or(bool, None),
"response_content_type": Or(bool, None),
},
},
},
"tracing": {
"type": Or(And(str, Use(str.lower), _check_tracing_type), None),
"sample_rate": Or(And(float, lambda i: i >= 0 and i <= 1), None),
Optional("zipkin"): {"url": Or(str, None)},
Optional("jaeger"): {"address": Or(str, None), "port": Or(int, None)},
},
Optional("yatai"): {
"default_server": Or(str, None),
"servers": {
str: {
"url": Or(str, None),
"access_token": Or(str, None),
"access_token_header": Or(str, None),
"tls": {
"root_ca_cert": Or(str, None),
"client_key": Or(str, None),
"client_cert": Or(str, None),
"client_certificate_file": Or(str, None),
},
},
},
},
}
)
class BentoMLConfiguration:
def __init__(
self,
override_config_file: t.Optional[str] = None,
validate_schema: bool = True,
):
# Load default configuration
default_config_file = os.path.join(
os.path.dirname(__file__), "default_configuration.yaml"
)
with open(default_config_file, "rb") as f:
self.config: t.Dict[str, t.Any] = yaml.safe_load(f)
if validate_schema:
try:
SCHEMA.validate(self.config)
except SchemaError as e:
raise BentoMLConfigException(
"Default configuration 'default_configuration.yml' does not"
" conform to the required schema."
) from e
# User override configuration
if override_config_file is not None:
LOGGER.info("Applying user config override from %s" % override_config_file)
if not os.path.exists(override_config_file):
raise BentoMLConfigException(
f"Config file {override_config_file} not found"
)
with open(override_config_file, "rb") as f:
override_config = yaml.safe_load(f)
always_merger.merge(self.config, override_config)
if validate_schema:
try:
SCHEMA.validate(self.config)
except SchemaError as e:
raise BentoMLConfigException(
"Configuration after user override does not conform to"
" the required schema."
) from e
def override(self, keys: t.List[str], value: t.Any):
if keys is None:
raise BentoMLConfigException("Configuration override key is None.")
if len(keys) == 0:
raise BentoMLConfigException("Configuration override key is empty.")
if value is None:
return
c = self.config
for key in keys[:-1]:
if key not in c:
raise BentoMLConfigException(
"Configuration override key is invalid, %s" % keys
)
c = c[key]
c[keys[-1]] = value
try:
SCHEMA.validate(self.config)
except SchemaError as e:
raise BentoMLConfigException(
"Configuration after applying override does not conform"
" to the required schema, key=%s, value=%s." % (keys, value)
) from e
def as_dict(self) -> providers.ConfigDictType:
return t.cast(providers.ConfigDictType, self.config)
@dataclass
class BentoMLContainerClass:
config = providers.Configuration()
bentoml_home: str = BENTOML_HOME
default_bento_store_base_dir: str = DEFAULT_BENTOS_PATH
default_model_store_base_dir: str = DEFAULT_MODELS_PATH
@providers.SingletonFactory
@staticmethod
def bento_store(base_dir: str = default_bento_store_base_dir):
from ..bento import BentoStore
return BentoStore(base_dir)
@providers.SingletonFactory
@staticmethod
def model_store(base_dir: str = default_model_store_base_dir) -> "ModelStore":
from ..models import ModelStore
return ModelStore(base_dir)
@providers.SingletonFactory
@staticmethod
def session_id() -> str:
return uuid.uuid1().hex
BentoMLContainer = BentoMLContainerClass()
@dataclass
class DeploymentContainerClass:
bentoml_container = BentoMLContainer
config = bentoml_container.config
api_server_config = config.bento_server
runners_config = config.runners
development_mode = providers.Static(True)
@providers.SingletonFactory
@staticmethod
def serve_info() -> "ServeInfo":
from ..utils.analytics import get_serve_info
return get_serve_info()
@providers.SingletonFactory
@staticmethod
def access_control_options(
allow_origins: t.List[str] = Provide[
api_server_config.cors.access_control_allow_origin
],
allow_credentials: t.List[str] = Provide[
api_server_config.cors.access_control_allow_credentials
],
expose_headers: t.List[str] = Provide[
api_server_config.cors.access_control_expose_headers
],
allow_methods: t.List[str] = Provide[
api_server_config.cors.access_control_allow_methods
],
allow_headers: t.List[str] = Provide[
api_server_config.cors.access_control_allow_headers
],
max_age: int = Provide[api_server_config.cors.access_control_max_age],
) -> t.Dict[str, t.Union[t.List[str], int]]:
kwargs = dict(
allow_origins=allow_origins,
allow_credentials=allow_credentials,
expose_headers=expose_headers,
allow_methods=allow_methods,
allow_headers=allow_headers,
max_age=max_age,
)
filtered_kwargs = {k: v for k, v in kwargs.items() if v is not None}
return filtered_kwargs
api_server_workers = providers.Factory[int](
lambda workers: workers or (multiprocessing.cpu_count() // 2) + 1,
api_server_config.workers,
)
service_port = api_server_config.port
service_host = api_server_config.host
prometheus_multiproc_dir = providers.Factory[str](
os.path.join,
bentoml_container.bentoml_home,
"prometheus_multiproc_dir",
)
@providers.SingletonFactory
@staticmethod
def metrics_client(
multiproc_dir: str = Provide[prometheus_multiproc_dir],
namespace: str = Provide[api_server_config.metrics.namespace],
) -> "PrometheusClient":
from ..server.metrics.prometheus import PrometheusClient
return PrometheusClient(
multiproc_dir=multiproc_dir,
namespace=namespace,
)
@providers.SingletonFactory
@staticmethod
def tracer_provider(
tracer_type: str = Provide[config.tracing.type],
sample_rate: t.Optional[float] = Provide[config.tracing.sample_rate],
zipkin_server_url: t.Optional[str] = Provide[config.tracing.zipkin.url],
jaeger_server_address: t.Optional[str] = Provide[config.tracing.jaeger.address],
jaeger_server_port: t.Optional[int] = Provide[config.tracing.jaeger.port],
):
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from ..utils.telemetry import ParentBasedTraceIdRatio
if sample_rate is None:
sample_rate = 0.0
provider = TracerProvider(
sampler=ParentBasedTraceIdRatio(sample_rate),
# resource: Resource = Resource.create({}),
# shutdown_on_exit: bool = True,
# active_span_processor: Union[
# SynchronousMultiSpanProcessor, ConcurrentMultiSpanProcessor
# ] = None,
# id_generator: IdGenerator = None,
)
if tracer_type == "zipkin" and zipkin_server_url is not None:
from opentelemetry.exporter.zipkin.json import ZipkinExporter
exporter = ZipkinExporter(
endpoint=zipkin_server_url,
)
provider.add_span_processor(BatchSpanProcessor(exporter))
return provider
elif (
tracer_type == "jaeger"
and jaeger_server_address is not None
and jaeger_server_port is not None
):
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
exporter = JaegerExporter(
agent_host_name=jaeger_server_address,
agent_port=jaeger_server_port,
)
provider.add_span_processor(BatchSpanProcessor(exporter))
return provider
else:
return provider
# Mapping from runner name to RunnerApp file descriptor
remote_runner_mapping = providers.Static[t.Dict[str, str]]({})
plasma_db = providers.Static[t.Optional["ext.PlasmaClient"]](None)
DeploymentContainer = DeploymentContainerClass()
|
import os
import typing as t
import logging
from functools import lru_cache
try:
import importlib.metadata as importlib_metadata
except ModuleNotFoundError:
import importlib_metadata
import yaml
try:
import bentoml._version as version_mod
except ImportError:
# Since we aren't VCS _version.py, which is generated by setuptools_scm
class version_mod:
version: str
version_tuple: t.Tuple[t.Union[str, int], ...]
# Note this file is loaded prior to logging being configured, thus logger is only
# used within functions in this file
logger = logging.getLogger(__name__)
DEBUG_ENV_VAR = "BENTOML_DEBUG"
QUIET_ENV_VAR = "BENTOML_QUIET"
CONFIG_ENV_VAR = "BENTOML_CONFIG"
def expand_env_var(env_var: str) -> str:
"""Expands potentially nested env var by repeatedly applying `expandvars` and
`expanduser` until interpolation stops having any effect.
"""
while True:
interpolated = os.path.expanduser(os.path.expandvars(str(env_var)))
if interpolated == env_var:
return interpolated
else:
env_var = interpolated
# Find BentoML version managed by setuptools_scm
BENTOML_VERSION: str = importlib_metadata.version("bentoml")
@lru_cache(maxsize=1)
def is_pypi_installed_bentoml() -> bool:
"""Returns true if BentoML is installed via PyPI official release or installed from
source with a release tag, which should come with pre-built docker base image on
dockerhub.
BentoML uses setuptools_scm to manage its versions, it looks at three things:
* the latest tag (with a version number)
* the distance to this tag (e.g. number of revisions since latest tag)
* workdir state (e.g. uncommitted changes since latest tag)
BentoML uses setuptools_scm with `version_scheme = "post-release"` option, which
uses roughly the following logic to render the version:
* no distance and clean: {tag}
* distance and clean: {tag}.post{distance}+{scm letter}{revision hash}
* no distance and not clean: {tag}+dYYYYMMDD
* distance and not clean: {tag}.post{distance}+{scm letter}{revision hash}.dYYYYMMDD
This function looks at the version str and decide if BentoML installation is
base on a recent official release.
"""
# In a git repo with no tag, setuptools_scm generated version starts with "0.1."
is_tagged = not BENTOML_VERSION.startswith("0.1.")
is_clean = not str(version_mod.version_tuple[-1]).split(".")[-1].startswith("d")
not_been_modified = BENTOML_VERSION == BENTOML_VERSION.split("+")[0]
return is_tagged and is_clean and not_been_modified
def get_bentoml_config_file_from_env() -> t.Optional[str]:
if CONFIG_ENV_VAR in os.environ:
# User local config file for customizing bentoml
return expand_env_var(os.environ.get(CONFIG_ENV_VAR, ""))
return None
def set_debug_mode(enabled: bool) -> None:
os.environ[DEBUG_ENV_VAR] = str(enabled)
logger.info(
f"{'Enabling' if enabled else 'Disabling'} debug mode for current BentoML session"
)
def get_debug_mode() -> bool:
if DEBUG_ENV_VAR in os.environ:
return os.environ[DEBUG_ENV_VAR].lower() == "true"
return False
def set_quiet_mode(enabled: bool) -> None:
os.environ[DEBUG_ENV_VAR] = str(enabled)
# do not log setting quiet mode
def get_quiet_mode() -> bool:
if QUIET_ENV_VAR in os.environ:
return os.environ[QUIET_ENV_VAR].lower() == "true"
return False
def load_global_config(bentoml_config_file: t.Optional[str] = None):
"""Load global configuration of BentoML"""
from .containers import BentoMLContainer
from .containers import BentoMLConfiguration
if not bentoml_config_file:
bentoml_config_file = get_bentoml_config_file_from_env()
if bentoml_config_file:
if not bentoml_config_file.endswith((".yml", ".yaml")):
raise Exception(
"BentoML config file specified in ENV VAR does not end with `.yaml`: "
f"`BENTOML_CONFIG={bentoml_config_file}`"
)
if not os.path.isfile(bentoml_config_file):
raise FileNotFoundError(
"BentoML config file specified in ENV VAR not found: "
f"`BENTOML_CONFIG={bentoml_config_file}`"
)
bentoml_configuration = BentoMLConfiguration(
override_config_file=bentoml_config_file,
)
BentoMLContainer.config.set(bentoml_configuration.as_dict())
def save_global_config(config_file_handle: t.IO[t.Any]):
from ..configuration.containers import BentoMLContainer
content = yaml.safe_dump(BentoMLContainer.config)
config_file_handle.write(content)
|
from typing import TYPE_CHECKING
if TYPE_CHECKING:
import typing as t
from starlette.types import Send as ASGISend
from starlette.types import Scope as ASGIScope
from starlette.types import ASGIApp
from starlette.types import Message as ASGIMessage
from starlette.types import Receive as ASGIReceive
class AsgiMiddleware(t.Protocol):
def __call__(self, app: ASGIApp, **options: t.Any) -> ASGIApp:
...
__all__ = [
"AsgiMiddleware",
"ASGIApp",
"ASGIScope",
"ASGISend",
"ASGIReceive",
"ASGIMessage",
]
|
import typing as t
from transformers.modeling_utils import PreTrainedModel
from transformers.pipelines.base import Pipeline as TransformersPipeline
from transformers.modeling_tf_utils import TFPreTrainedModel
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_flax_utils import FlaxPreTrainedModel
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.feature_extraction_sequence_utils import (
SequenceFeatureExtractor as PreTrainedFeatureExtractor,
)
TransformersModelType = t.Union[PreTrainedModel, TFPreTrainedModel, FlaxPreTrainedModel]
TransformersTokenizerType = t.Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
__all__ = [
"TransformersPipeline",
"TransformersModelType",
"TransformersTokenizerType",
"PreTrainedFeatureExtractor",
"PretrainedConfig",
]
|
import typing as t
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Literal
from pandas import Series as _PdSeries
from pandas import DataFrame as PdDataFrame
from pyarrow.plasma import ObjectID
from pyarrow.plasma import PlasmaClient
PdSeries = _PdSeries[t.Any]
DataFrameOrient = Literal["split", "records", "index", "columns", "values", "table"]
SeriesOrient = Literal["split", "records", "index", "table"]
# numpy is always required by bentoml
from numpy import generic as NpGeneric
from numpy.typing import NDArray as _NDArray
from numpy.typing import DTypeLike as NpDTypeLike # type: ignore (incomplete numpy types)
NpNDArray = _NDArray[t.Any]
from xgboost import DMatrix
from .starlette import ASGIApp
from .starlette import ASGISend
from .starlette import ASGIScope
from .starlette import ASGIMessage
from .starlette import ASGIReceive
from .starlette import AsgiMiddleware
__all__ = [
"PdSeries",
"PdDataFrame",
"DataFrameOrient",
"SeriesOrient",
"ObjectID",
"PlasmaClient",
# xgboost
"DMatrix",
# numpy
"NpNDArray",
"NpGeneric",
"NpDTypeLike",
# starlette
"AsgiMiddleware",
"ASGIApp",
"ASGIScope",
"ASGISend",
"ASGIReceive",
"ASGIMessage",
]
|
import typing as t
from tensorflow.python.framework.ops import Tensor
from tensorflow.python.module.module import Module
from tensorflow.python.client.session import Session
from tensorflow.python.eager.function import FunctionSpec
from tensorflow.python.eager.def_function import Function
from tensorflow.python.framework.type_spec import TypeSpec
from tensorflow.python.ops.tensor_array_ops import TensorArray
from tensorflow.python.ops.tensor_array_ops import TensorArraySpec
from tensorflow.python.framework.tensor_spec import TensorSpec
from tensorflow.python.keras.engine.training import Model
from tensorflow.python.training.tracking.base import Trackable
from tensorflow.python.framework.sparse_tensor import SparseTensorSpec
from tensorflow.python.keras.engine.sequential import Sequential
from tensorflow.python.framework.indexed_slices import IndexedSlices
from tensorflow.python.ops.ragged.ragged_tensor import RaggedTensorSpec
from tensorflow.python.saved_model.save_options import SaveOptions
from tensorflow.python.framework.composite_tensor import CompositeTensor
from tensorflow.python.training.tracking.tracking import AutoTrackable
from tensorflow.python.saved_model.function_deserialization import RestoredFunction
try:
from tensorflow.python.types.core import GenericFunction
from tensorflow.python.types.core import ConcreteFunction
from tensorflow.python.framework.ops import _EagerTensorBase as EagerTensor
except ImportError:
from tensorflow.python.eager.function import ConcreteFunction
class GenericFunction(t.Protocol):
def __call__(self, *args: t.Any, **kwargs: t.Any):
...
# NOTE: future proof when tensorflow decided to remove EagerTensor
# and enable eager execution on Tensor by default. This class only serves
# as type fallback.
class EagerTensor(Tensor):
...
class SignatureMap(t.Mapping[str, t.Any], Trackable):
"""A collection of SavedModel signatures."""
_signatures: t.Dict[str, t.Union[ConcreteFunction, RestoredFunction, Function]]
def __init__(self) -> None:
...
def __getitem__(
self, key: str
) -> t.Union[ConcreteFunction, RestoredFunction, Function]:
...
def __iter__(self) -> t.Iterator[str]:
...
def __len__(self) -> int:
...
def __repr__(self) -> str:
...
# This denotes all decorated function with `tf.function`
DecoratedFunction = t.Union[RestoredFunction, ConcreteFunction, GenericFunction]
# This denotes all possible tensor type that can be casted with `tf.cast`
CastableTensorType = t.Union[Tensor, EagerTensor, CompositeTensor, IndexedSlices]
# This encapsulates scenarios where input can be accepted as TensorArray
TensorLike = t.Union[CastableTensorType, TensorArray]
# This defines all possible TensorSpec from tensorflow API
UnionTensorSpec = t.Union[
TensorSpec,
RaggedTensorSpec,
SparseTensorSpec,
TensorArraySpec,
]
# TODO(aarnphm): Specify types instead of t.Any
TensorSignature = t.Tuple[TensorSpec, bool, t.Optional[t.Any]]
InputSignature = t.Tuple[TensorSignature, t.Dict[str, TypeSpec]]
# This denotes all Keras Model API
KerasModel = t.Union[Model, Sequential]
__all__ = [
"CastableTensorType",
"TensorLike",
"InputSignature",
"TensorSignature",
"UnionTensorSpec",
"Trackable",
"AutoTrackable",
"ConcreteFunction",
"RestoredFunction",
"FunctionSpec",
"SignatureMap",
"Module",
"TypeSpec",
"SaveOptions",
"Session",
"KerasModel",
]
|
import time
import typing as t
import asyncio
import logging
import functools
import traceback
import collections
import numpy as np
from ..utils import cached_property
from ..utils.alg import TokenBucket
logger = logging.getLogger(__name__)
class NonBlockSema:
def __init__(self, count):
self.sema = count
def acquire(self):
if self.sema < 1:
return False
self.sema -= 1
return True
def is_locked(self):
return self.sema < 1
def release(self):
self.sema += 1
class Optimizer:
"""
Analyse historical data to optimize CorkDispatcher.
"""
N_KEPT_SAMPLE = 50 # amount of outbound info kept for inferring params
N_SKIPPED_SAMPLE = 2 # amount of outbound info skipped after init
INTERVAL_REFRESH_PARAMS = 5 # seconds between each params refreshing
def __init__(self):
"""
assume the outbound duration follows duration = o_a * n + o_b
(all in seconds)
"""
self.o_stat = collections.deque(
maxlen=self.N_KEPT_SAMPLE
) # to store outbound stat data
self.o_a = 2
self.o_b = 1
self.wait = 0.01 # the avg wait time before outbound called
self._refresh_tb = TokenBucket(2) # to limit params refresh interval
self._outbound_counter = 0
def log_outbound(self, n, wait, duration):
if (
self._outbound_counter <= self.N_SKIPPED_SAMPLE
): # skip inaccurate info at beginning
self._outbound_counter += 1
return
self.o_stat.append((n, duration, wait))
if self._refresh_tb.consume(1, 1.0 / self.INTERVAL_REFRESH_PARAMS, 1):
self.trigger_refresh()
def trigger_refresh(self):
x = tuple((i, 1) for i, _, _ in self.o_stat)
y = tuple(i for _, i, _ in self.o_stat)
_o_a, _o_b = np.linalg.lstsq(x, y, rcond=None)[0]
_o_w = sum(w for _, _, w in self.o_stat) * 1.0 / len(self.o_stat)
self.o_a, self.o_b = max(0.000001, _o_a), max(0, _o_b)
self.wait = max(0, _o_w)
logger.debug(
"Dynamic batching optimizer params updated: o_a: %.6f, o_b: %.6f, wait: %.6f",
_o_a,
_o_b,
_o_w,
)
T_IN = t.TypeVar("T_IN")
T_OUT = t.TypeVar("T_OUT")
class CorkDispatcher:
"""
A decorator that:
* wrap batch function
* implement CORK algorithm to cork & release calling of wrapped function
The wrapped function should be an async function.
"""
def __init__(
self,
max_latency_in_ms: int,
max_batch_size: int,
shared_sema: t.Optional[NonBlockSema] = None,
fallback: t.Optional[t.Callable[[], t.Any]] = None,
):
"""
params:
* max_latency_in_ms: max_latency_in_ms for inbound tasks in milliseconds
* max_batch_size: max batch size of inbound tasks
* shared_sema: semaphore to limit concurrent outbound tasks
* fallback: callable to return fallback result
raises:
* all possible exceptions the decorated function has
"""
self.max_latency_in_ms = max_latency_in_ms / 1000.0
self.callback = None
self.fallback = fallback
self.optimizer = Optimizer()
self.max_batch_size = int(max_batch_size)
self.tick_interval = 0.001
self._controller = None
self._queue = collections.deque() # TODO(hrmthw): maxlen
self._sema = shared_sema if shared_sema else NonBlockSema(1)
def shutdown(self):
if self._controller is not None:
self._controller.cancel()
try:
while True:
_, _, fut = self._queue.pop()
fut.cancel()
except IndexError:
pass
@cached_property
def _loop(self):
return asyncio.get_event_loop()
@cached_property
def _wake_event(self):
return asyncio.Condition()
def __call__(
self,
callback: t.Callable[
[t.Iterable[T_IN]], t.Coroutine[None, None, t.Iterable[T_OUT]]
],
) -> t.Callable[[T_IN], t.Coroutine[None, None, T_OUT]]:
self.callback = callback
@functools.wraps(callback)
async def _func(data):
if self._controller is None:
self._controller = self._loop.create_task(self.controller())
try:
r = await self.inbound_call(data)
except asyncio.CancelledError:
return None if self.fallback is None else self.fallback()
if isinstance(r, Exception):
raise r
return r
return _func
async def controller(self):
"""
A standalone coroutine to wait/dispatch calling.
"""
while True:
try:
async with self._wake_event: # block until there's any request in queue
await self._wake_event.wait_for(self._queue.__len__)
n = len(self._queue)
dt = self.tick_interval
decay = 0.95 # the decay rate of wait time
now = time.time()
w0 = now - self._queue[0][0]
wn = now - self._queue[-1][0]
a = self.optimizer.o_a
b = self.optimizer.o_b
if n > 1 and (w0 + a * n + b) >= self.max_latency_in_ms:
self._queue.popleft()[2].cancel()
continue
if self._sema.is_locked():
if n == 1 and w0 >= self.max_latency_in_ms:
self._queue.popleft()[2].cancel()
continue
await asyncio.sleep(self.tick_interval)
continue
if n * (wn + dt + (a or 0)) <= self.optimizer.wait * decay:
await asyncio.sleep(self.tick_interval)
continue
n_call_out = min(
self.max_batch_size,
n,
)
# call
self._sema.acquire()
inputs_info = tuple(self._queue.pop() for _ in range(n_call_out))
self._loop.create_task(self.outbound_call(inputs_info))
except asyncio.CancelledError:
break
except Exception: # pylint: disable=broad-except
logger.error(traceback.format_exc())
async def inbound_call(self, data):
now = time.time()
future = self._loop.create_future()
input_info = (now, data, future)
self._queue.append(input_info)
async with self._wake_event:
self._wake_event.notify_all()
return await future
async def outbound_call(self, inputs_info):
_time_start = time.time()
_done = False
logger.debug("Dynamic batching cork released, batch size: %d", len(inputs_info))
try:
outputs = await self.callback(tuple(d for _, d, _ in inputs_info))
assert len(outputs) == len(inputs_info)
for (_, _, fut), out in zip(inputs_info, outputs):
if not fut.done():
fut.set_result(out)
_done = True
self.optimizer.log_outbound(
n=len(inputs_info),
wait=_time_start - inputs_info[-1][0],
duration=time.time() - _time_start,
)
except asyncio.CancelledError:
pass
except Exception as e: # pylint: disable=broad-except
for _, _, fut in inputs_info:
if not fut.done():
fut.set_result(e)
_done = True
finally:
if not _done:
for _, _, fut in inputs_info:
if not fut.done():
fut.cancel()
self._sema.release()
|
from __future__ import annotations
import typing as t
import logging
from typing import TYPE_CHECKING
from functools import lru_cache
import attr
from ..types import ParamSpec
from ..utils import first_not_none
from .resource import Resource
from .runnable import Runnable
from .strategy import Strategy
from .strategy import DefaultStrategy
from ...exceptions import StateException
from .runner_handle import RunnerHandle
from .runner_handle import DummyRunnerHandle
if TYPE_CHECKING:
from ..models import Model
from .runnable import RunnableMethodConfig
T = t.TypeVar("T", bound=Runnable)
P = ParamSpec("P")
R = t.TypeVar("R")
logger = logging.getLogger(__name__)
@attr.frozen(slots=False)
class RunnerMethod(t.Generic[T, P, R]):
runner: Runner
name: str
config: RunnableMethodConfig
max_batch_size: int
max_latency_ms: int
def run(self, *args: t.Any, **kwargs: t.Any) -> t.Any:
return self.runner._runner_handle.run_method( # type: ignore
self,
*args,
**kwargs,
)
async def async_run(self, *args: t.Any, **kwargs: t.Any) -> t.Any:
return await self.runner._runner_handle.async_run_method( # type: ignore
self,
*args,
**kwargs,
)
# TODO: Move these to the default configuration file and allow user override
GLOBAL_DEFAULT_MAX_BATCH_SIZE = 100
GLOBAL_DEFAULT_MAX_LATENCY_MS = 10000
@attr.define(slots=False, frozen=True, eq=False)
class Runner:
runnable_class: t.Type[Runnable]
runnable_init_params: dict[str, t.Any]
name: str
models: list[Model]
resource_config: Resource
runner_methods: list[RunnerMethod[t.Any, t.Any, t.Any]]
scheduling_strategy: t.Type[Strategy]
_runner_handle: RunnerHandle = attr.field(init=False, factory=DummyRunnerHandle)
def __init__(
self,
runnable_class: t.Type[Runnable],
*,
runnable_init_params: t.Dict[str, t.Any] | None = None,
name: str | None = None,
scheduling_strategy: t.Type[Strategy] = DefaultStrategy,
models: t.List[Model] | None = None,
cpu: int
| None = None, # TODO: support str and float type here? e.g "500m" or "0.5"
nvidia_gpu: int | None = None,
custom_resources: t.Dict[str, float] | None = None,
max_batch_size: int | None = None,
max_latency_ms: int | None = None,
method_configs: t.Dict[str, t.Dict[str, int]] | None = None,
) -> None:
"""
Args:
runnable_class: runnable class
runnable_init_params: runnable init params
name: runner name
scheduling_strategy: scheduling strategy
models: list of required bento models
cpu: cpu resource
nvidia_gpu: nvidia gpu resource
custom_resources: custom resources
max_batch_size: max batch size config for micro batching
max_latency_ms: max latency config for micro batching
method_configs: per method configs
"""
name = runnable_class.__name__ if name is None else name
models = [] if models is None else models
runner_method_map: dict[str, RunnerMethod[t.Any, t.Any, t.Any]] = {}
runnable_init_params = (
{} if runnable_init_params is None else runnable_init_params
)
method_configs = {} if method_configs is None else {}
custom_resources = {} if custom_resources is None else {}
resource_config = Resource(
cpu=cpu,
nvidia_gpu=nvidia_gpu,
custom_resources=custom_resources or {},
)
if runnable_class.methods is None:
raise ValueError(
f"Runnable class '{runnable_class.__name__}' has no methods!"
)
for method_name, method in runnable_class.methods.items():
method_max_batch_size = method_configs.get(method_name, {}).get(
"max_batch_size"
)
method_max_latency_ms = method_configs.get(method_name, {}).get(
"max_latency_ms"
)
runner_method_map[method_name] = RunnerMethod(
runner=self,
name=method_name,
config=method.config,
max_batch_size=first_not_none(
method_max_batch_size,
max_batch_size,
default=GLOBAL_DEFAULT_MAX_BATCH_SIZE,
),
max_latency_ms=first_not_none(
method_max_latency_ms,
max_latency_ms,
default=GLOBAL_DEFAULT_MAX_LATENCY_MS,
),
)
self.__attrs_init__( # type: ignore
runnable_class=runnable_class,
runnable_init_params=runnable_init_params,
name=name,
models=models,
resource_config=resource_config,
runner_methods=list(runner_method_map.values()),
scheduling_strategy=scheduling_strategy,
)
# Choose the default method:
# 1. if there's only one method, it will be set as default
# 2. if there's a method named "__call__", it will be set as default
# 3. otherwise, there's no default method
if len(runner_method_map) == 1:
default_method = next(iter(runner_method_map.values()))
logger.debug(
f"Default runner method set to `{default_method.name}`, it can be accessed both via `runner.run` and `runner.{default_method.name}.async_run`"
)
elif "__call__" in runner_method_map:
default_method = runner_method_map["__call__"]
logger.debug(
"Default runner method set to `__call__`, it can be accessed via `runner.run` or `runner.async_run`"
)
else:
default_method = None
logger.warning(
f'No default method found for Runner "{name}", all method access needs to be in the form of `runner.{{method}}.run`'
)
# set default run method entrypoint
if default_method is not None:
object.__setattr__(self, "run", default_method.run)
object.__setattr__(self, "async_run", default_method.async_run)
# set all run method entrypoint
for runner_method in self.runner_methods:
object.__setattr__(self, runner_method.name, runner_method)
@lru_cache(maxsize=1)
def get_effective_resource_config(self) -> Resource:
return (
Resource.from_config(self.name)
| self.resource_config
| Resource.from_system()
)
def _init(self, handle_class: t.Type[RunnerHandle]) -> None:
if not isinstance(self._runner_handle, DummyRunnerHandle):
raise StateException("Runner already initialized")
runner_handle = handle_class(self)
object.__setattr__(self, "_runner_handle", runner_handle)
def _init_local(self) -> None:
from .runner_handle.local import LocalRunnerRef
self._init(LocalRunnerRef)
def init_local(self, quiet: bool = False) -> None:
"""
init local runnable instance, for testing and debugging only
"""
if not quiet:
logger.warning("'Runner.init_local' is for debugging and testing only")
self._init_local()
def init_client(self):
"""
init client for a remote runner instance
"""
from .runner_handle.remote import RemoteRunnerClient
self._init(RemoteRunnerClient)
def destroy(self):
object.__setattr__(self, "_runner_handle", DummyRunnerHandle())
@property
def scheduled_worker_count(self) -> int:
return self.scheduling_strategy.get_worker_count(
self.runnable_class,
self.get_effective_resource_config(),
)
def setup_worker(self, worker_id: int) -> None:
self.scheduling_strategy.setup_worker(
self.runnable_class,
self.get_effective_resource_config(),
worker_id,
)
|
from __future__ import annotations
import os
import re
import math
import typing as t
import logging
import functools
import attr
import psutil
from cattrs.gen import override
from cattrs.gen import make_dict_unstructure_fn
from ..utils import bentoml_cattr
from ...exceptions import BentoMLException
logger = logging.getLogger(__name__)
@attr.define(frozen=True)
class Resource:
cpu: t.Optional[float] = attr.field(default=None)
nvidia_gpu: t.Optional[float] = attr.field(default=None)
custom_resources: t.Dict[str, float] = attr.field(factory=dict)
def __or__(self, right: Resource) -> Resource:
"""
Fill in missing values with values from another.
"""
cpu = right.cpu if self.cpu is None else self.cpu
nvidia_gpu = right.nvidia_gpu if self.nvidia_gpu is None else self.nvidia_gpu
custom_resources = dict(
right.custom_resources,
**{k: v for k, v in self.custom_resources.items() if v is not None},
)
return self.__class__(
cpu=cpu,
nvidia_gpu=nvidia_gpu,
custom_resources=custom_resources,
)
@classmethod
def from_config(cls, runner_name: str) -> Resource:
"""
Create a Resource object from the BentoML config.
"""
# TODO(jiang)
return cls()
@classmethod
def from_system(cls) -> Resource:
"""
Get Resource from system.
"""
cpu = query_cpu_count()
nvidia_gpu = float(query_nvidia_gpu_count())
return cls(cpu=cpu, nvidia_gpu=nvidia_gpu)
# Remove after attrs support ForwardRef natively
attr.resolve_types(Resource, globals(), locals())
bentoml_cattr.register_unstructure_hook(
Resource,
make_dict_unstructure_fn(
Resource,
bentoml_cattr,
cpu=override(omit_if_default=True),
nvidia_gpu=override(omit_if_default=True),
custom_resources=override(omit_if_default=True),
),
)
def cpu_converter(cpu: t.Union[int, float, str]) -> float:
"""
Convert cpu to float.
cpu can be a float, int or string.
- 10m -> 0.01
- 1.0 -> 1.0
- 1 -> 1.0
- "1" -> 1.0
"""
assert isinstance(cpu, (int, float, str)), "cpu must be int, float or str"
if isinstance(cpu, (int, float)):
return float(cpu)
milli_match = re.match("([0-9]+)m", cpu)
if milli_match:
return float(milli_match[1]) / 1000.0
raise BentoMLException(f"Invalid CPU resource limit '{cpu}'. ")
def mem_converter(mem: t.Union[int, str]) -> int:
assert isinstance(mem, (int, str)), "mem must be int or str"
if isinstance(mem, int):
return mem
unit_match = re.match("([0-9]+)([A-Za-z]{1,2})", mem)
mem_multipliers = {
"k": 1000,
"M": 1000**2,
"G": 1000**3,
"T": 1000**4,
"P": 1000**5,
"E": 1000**6,
"Ki": 1024,
"Mi": 1024**2,
"Gi": 1024**3,
"Ti": 1024**4,
"Pi": 1024**5,
"Ei": 1024**6,
}
if unit_match:
base = int(unit_match[1])
unit = unit_match[2]
if unit in mem_multipliers:
return base * mem_multipliers[unit]
raise ValueError(f"Invalid MEM resource limit '{mem}'")
@functools.lru_cache(maxsize=1)
def query_cgroup_cpu_count() -> float:
# Query active cpu processor count using cgroup v1 API, based on OpenJDK
# implementation for `active_processor_count` using cgroup v1:
# https://github.com/openjdk/jdk/blob/master/src/hotspot/os/linux/cgroupSubsystem_linux.cpp
# For cgroup v2, see:
# https://github.com/openjdk/jdk/blob/master/src/hotspot/os/linux/cgroupV2Subsystem_linux.cpp
# Possible supports: cpuset.cpus on kubernetes
def _read_cgroup_file(filename: str) -> float:
with open(filename, "r", encoding="utf-8") as f:
return int(f.read().strip())
cgroup_root = "/sys/fs/cgroup/"
cfs_quota_us_file = os.path.join(cgroup_root, "cpu", "cpu.cfs_quota_us")
cfs_period_us_file = os.path.join(cgroup_root, "cpu", "cpu.cfs_period_us")
shares_file = os.path.join(cgroup_root, "cpu", "cpu.shares")
cpu_max_file = os.path.join(cgroup_root, "cpu.max")
quota, shares = None, None
if os.path.exists(cfs_quota_us_file) and os.path.exists(cfs_period_us_file):
try:
quota = _read_cgroup_file(cfs_quota_us_file) / _read_cgroup_file(
cfs_period_us_file
)
except FileNotFoundError as err:
logger.warning(f"Caught exception while calculating CPU quota: {err}")
# reading from cpu.max for cgroup v2
elif os.path.exists(cpu_max_file):
try:
with open(cpu_max_file, "r") as max_file:
cfs_string = max_file.read()
quota_str, period_str = cfs_string.split()
if quota_str.isnumeric() and period_str.isnumeric():
quota = float(quota_str) / float(period_str)
else:
# quota_str is "max" meaning the cpu quota is unset
quota = None
except FileNotFoundError as err:
logger.warning(f"Caught exception while calculating CPU quota: {err}")
if quota is not None and quota < 0:
quota = None
elif quota == 0:
quota = 1
if os.path.exists(shares_file):
try:
shares = _read_cgroup_file(shares_file) / float(1024)
except FileNotFoundError as err:
logger.warning(f"Caught exception while getting CPU shares: {err}")
os_cpu_count = float(os.cpu_count() or 1.0)
limit_count = math.inf
if quota and shares:
limit_count = min(quota, shares)
elif quota:
limit_count = quota
elif shares:
limit_count = shares
return float(min(limit_count, os_cpu_count))
@functools.lru_cache(maxsize=1)
def query_os_cpu_count() -> int:
cpu_count = os.cpu_count()
if cpu_count is not None:
return cpu_count
logger.warning("os.cpu_count() is NoneType")
return 1
def query_cpu_count() -> float:
# Default to the total CPU count available in current node or cgroup
if psutil.POSIX:
return query_cgroup_cpu_count()
else:
return float(query_os_cpu_count())
@functools.lru_cache(maxsize=1)
def query_nvidia_gpu_count() -> int:
"""
query nvidia gpu count, available on Windows and Linux
"""
import pynvml # type: ignore
try:
pynvml.nvmlInit()
device_count = pynvml.nvmlDeviceGetCount()
return device_count
except (pynvml.nvml.NVMLError, OSError):
return 0
finally:
try:
pynvml.nvmlShutdown()
except Exception: # pylint: disable=broad-except
pass
def gpu_converter(gpus: t.Optional[t.Union[int, str, t.List[str]]]) -> int:
if isinstance(gpus, int):
return gpus
if isinstance(gpus, str):
return int(gpus)
return query_nvidia_gpu_count()
def get_gpu_memory(dev: int) -> t.Tuple[float, float]:
"""
Return Total Memory and Free Memory in given GPU device. in MiB
"""
import pynvml.nvml # type: ignore
from pynvml.smi import nvidia_smi # type: ignore
unit_multiplier = {
"PiB": 1024.0 * 1024 * 1024,
"TiB": 1024.0 * 1024,
"GiB": 1024.0,
"MiB": 1.0,
"KiB": 1.0 / 1024,
"B": 1.0 / 1024 / 1024,
}
try:
inst = nvidia_smi.getInstance()
query: t.Dict[str, int] = inst.DeviceQuery(dev) # type: ignore
except (pynvml.nvml.NVMLError, OSError):
return 0.0, 0.0
try:
gpus: t.List[t.Dict[str, t.Any]] = query.get("gpu", []) # type: ignore
gpu = gpus[dev]
unit = gpu["fb_memory_usage"]["unit"]
total = gpu["fb_memory_usage"]["total"] * unit_multiplier[unit]
free = gpu["fb_memory_usage"]["free"] * unit_multiplier[unit]
return total, free
except IndexError:
raise ValueError(f"Invalid GPU device index {dev}")
except KeyError:
raise RuntimeError(f"unexpected nvml query result: {query}")
|
from .runner import Runner
from .runnable import Runnable
__all__ = ["Runner", "Runnable"]
|
import os
import abc
import math
import typing as t
import logging
from .resource import Resource
from .runnable import Runnable
logger = logging.getLogger(__name__)
class Strategy(abc.ABC):
@classmethod
@abc.abstractmethod
def get_worker_count(
cls,
runnable_class: t.Type[Runnable],
resource_request: Resource,
) -> int:
...
@classmethod
@abc.abstractmethod
def setup_worker(
cls,
runnable_class: t.Type[Runnable],
resource_request: Resource,
worker_index: int,
) -> None:
...
THREAD_ENVS = [
"OMP_NUM_THREADS",
"TF_NUM_INTEROP_THREADS",
"TF_NUM_INTRAOP_THREADS",
"BENTOML_NUM_THREAD",
] # TODO(jiang): make it configurable?
class DefaultStrategy(Strategy):
@classmethod
def get_worker_count(
cls,
runnable_class: t.Type[Runnable],
resource_request: Resource,
) -> int:
# use nvidia gpu
if (
resource_request.nvidia_gpu is not None
and resource_request.nvidia_gpu > 0
and runnable_class.SUPPORT_NVIDIA_GPU
):
return math.ceil(resource_request.nvidia_gpu)
# use CPU
if resource_request.cpu is not None and resource_request.cpu > 0:
if runnable_class.SUPPORT_CPU_MULTI_THREADING:
return 1
return math.ceil(resource_request.cpu)
# this would not be reached by user since we always read system resource as default
logger.warning("No resource request found, always use single worker")
return 1
@classmethod
def setup_worker(
cls,
runnable_class: t.Type[Runnable],
resource_request: Resource,
worker_index: int,
) -> None:
# use nvidia gpu
if (
resource_request.nvidia_gpu is not None
and resource_request.nvidia_gpu > 0
and runnable_class.SUPPORT_NVIDIA_GPU
):
os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_index - 1)
logger.info(
"Setting up worker: set CUDA_VISIBLE_DEVICES to %s",
worker_index - 1,
)
return
# use CPU
if resource_request.cpu is not None and resource_request.cpu > 0:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # disable gpu
if runnable_class.SUPPORT_CPU_MULTI_THREADING:
thread_count = math.ceil(resource_request.cpu)
for thread_env in THREAD_ENVS:
os.environ[thread_env] = str(thread_count)
logger.info(
"Setting up worker: set CPU thread count to %s", thread_count
)
return
else:
for thread_env in THREAD_ENVS:
os.environ[thread_env] = "1"
return
|
from __future__ import annotations
import abc
import pickle
import typing as t
import itertools
from typing import TYPE_CHECKING
from simple_di import inject
from simple_di import Provide
from ..types import LazyType
from ..configuration.containers import DeploymentContainer
SingleType = t.TypeVar("SingleType")
BatchType = t.TypeVar("BatchType")
if TYPE_CHECKING:
from .. import external_typing as ext
class Payload(t.NamedTuple):
data: bytes
meta: dict[str, bool | int | float | str]
container: str
batch_size: int = -1
class DataContainer(t.Generic[SingleType, BatchType]):
@classmethod
def create_payload(
cls,
data: bytes,
batch_size: int,
meta: dict[str, bool | int | float | str] | None = None,
) -> Payload:
return Payload(data, meta or {}, container=cls.__name__, batch_size=batch_size)
@classmethod
@abc.abstractmethod
def to_payload(cls, batch: BatchType, batch_dim: int) -> Payload:
...
@classmethod
@abc.abstractmethod
def from_payload(cls, payload: Payload) -> BatchType:
...
@classmethod
@abc.abstractmethod
def batches_to_batch(
cls, batches: t.Sequence[BatchType], batch_dim: int
) -> tuple[BatchType, list[int]]:
...
@classmethod
@abc.abstractmethod
def batch_to_batches(
cls, batch: BatchType, indices: t.Sequence[int], batch_dim: int
) -> list[BatchType]:
...
@classmethod
@abc.abstractmethod
def batch_to_payloads(
cls, batch: BatchType, indices: t.Sequence[int], batch_dim: int
) -> list[Payload]:
...
@classmethod
@abc.abstractmethod
def from_batch_payloads(
cls,
payloads: t.Sequence[Payload],
batch_dim: int,
) -> tuple[BatchType, list[int]]:
...
class NdarrayContainer(
DataContainer[
"ext.NpNDArray",
"ext.NpNDArray",
]
):
@classmethod
def batches_to_batch(
cls,
batches: t.Sequence[ext.NpNDArray],
batch_dim: int = 0,
) -> tuple[ext.NpNDArray, list[int]]:
import numpy as np
# numpy.concatenate may consume lots of memory, need optimization later
batch: ext.NpNDArray = np.concatenate( # type: ignore (no numpy types)
batches,
axis=batch_dim,
)
indices = list(
itertools.accumulate(subbatch.shape[batch_dim] for subbatch in batches)
)
indices = [0] + indices
return batch, indices
@classmethod
def batch_to_batches(
cls,
batch: ext.NpNDArray,
indices: t.Sequence[int],
batch_dim: int = 0,
) -> list[ext.NpNDArray]:
import numpy as np
return np.split(batch, indices[1:-1], axis=batch_dim) # type: ignore (no numpy types)
@classmethod
@inject
def to_payload(
cls,
batch: ext.NpNDArray,
batch_dim: int,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> Payload:
if plasma_db:
return cls.create_payload(
plasma_db.put(batch).binary(),
batch.shape[batch_dim],
{"plasma": True},
)
return cls.create_payload(
pickle.dumps(batch),
batch.shape[batch_dim],
{"plasma": False},
)
@classmethod
@inject
def from_payload(
cls,
payload: Payload,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> ext.NpNDArray:
if payload.meta.get("plasma"):
import pyarrow.plasma as plasma
assert plasma_db
return plasma_db.get(plasma.ObjectID(payload.data))
return pickle.loads(payload.data)
@classmethod
@inject
def batch_to_payloads(
cls,
batch: ext.NpNDArray,
indices: t.Sequence[int],
batch_dim: int = 0,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> list[Payload]:
batches = cls.batch_to_batches(batch, indices, batch_dim)
payloads = [
cls.to_payload(subbatch, batch_dim, plasma_db) for subbatch in batches
]
return payloads
@classmethod
@inject
def from_batch_payloads(
cls,
payloads: t.Sequence[Payload],
batch_dim: int = 0,
plasma_db: "ext.PlasmaClient" | None = Provide[DeploymentContainer.plasma_db],
) -> t.Tuple["ext.NpNDArray", list[int]]:
batches = [cls.from_payload(payload, plasma_db) for payload in payloads]
return cls.batches_to_batch(batches, batch_dim)
class DMatrixContainer(
DataContainer[
"ext.DMatrix",
"ext.DMatrix",
]
):
@classmethod
def batches_to_batch(
cls,
batches: t.Sequence[ext.DMatrix],
batch_dim: int = 0,
) -> tuple[ext.DMatrix, list[int]]:
raise NotImplementedError
@classmethod
def batch_to_batches(
cls,
batch: ext.DMatrix,
indices: t.Sequence[int],
batch_dim: int = 0,
) -> list[ext.DMatrix]:
raise NotImplementedError
@classmethod
@inject
def to_payload(
cls,
batch: ext.DMatrix,
batch_dim: int,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> Payload:
raise NotImplementedError
@classmethod
@inject
def from_payload(
cls,
payload: Payload,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> ext.DMatrix:
raise NotImplementedError
@classmethod
@inject
def batch_to_payloads(
cls,
batch: ext.DMatrix,
indices: t.Sequence[int],
batch_dim: int = 0,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> list[Payload]:
raise NotImplementedError
@classmethod
@inject
def from_batch_payloads(
cls,
payloads: t.Sequence[Payload],
batch_dim: int = 0,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> tuple[ext.DMatrix, list[int]]:
raise NotImplementedError
class PandasDataFrameContainer(
DataContainer[t.Union["ext.PdDataFrame", "ext.PdSeries"], "ext.PdDataFrame"]
):
@classmethod
def batches_to_batch(
cls,
batches: t.Sequence[ext.PdDataFrame],
batch_dim: int = 0,
) -> tuple[ext.PdDataFrame, list[int]]:
import pandas as pd
assert (
batch_dim == 0
), "PandasDataFrameContainer does not support batch_dim other than 0"
indices = list(
itertools.accumulate(subbatch.shape[batch_dim] for subbatch in batches)
)
indices = [0] + indices
return pd.concat(batches, ignore_index=True), indices # type: ignore (incomplete panadas types)
@classmethod
def batch_to_batches(
cls,
batch: ext.PdDataFrame,
indices: t.Sequence[int],
batch_dim: int = 0,
) -> list[ext.PdDataFrame]:
assert (
batch_dim == 0
), "PandasDataFrameContainer does not support batch_dim other than 0"
return [
batch.iloc[indices[i] : indices[i + 1]].reset_index(drop=True)
for i in range(len(indices) - 1)
]
@classmethod
@inject
def to_payload(
cls,
batch: ext.PdDataFrame | ext.PdSeries,
batch_dim: int,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> Payload:
import pandas as pd
assert (
batch_dim == 0
), "PandasDataFrameContainer does not support batch_dim other than 0"
if isinstance(batch, pd.Series):
batch = pd.DataFrame([batch])
if plasma_db:
return cls.create_payload(
plasma_db.put(batch).binary(),
batch.size,
{"plasma": True},
)
return cls.create_payload(
pickle.dumps(batch),
batch.size,
{"plasma": False},
)
@classmethod
@inject
def from_payload(
cls,
payload: Payload,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> ext.PdDataFrame:
if payload.meta.get("plasma"):
import pyarrow.plasma as plasma
assert plasma_db
return plasma_db.get(plasma.ObjectID(payload.data))
return pickle.loads(payload.data)
@classmethod
@inject
def batch_to_payloads(
cls,
batch: ext.PdDataFrame,
indices: t.Sequence[int],
batch_dim: int = 0,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> list[Payload]:
batches = cls.batch_to_batches(batch, indices, batch_dim)
payloads = [
cls.to_payload(subbatch, batch_dim, plasma_db) for subbatch in batches
]
return payloads
@classmethod
@inject
def from_batch_payloads( # pylint: disable=arguments-differ
cls,
payloads: t.Sequence[Payload],
batch_dim: int = 0,
plasma_db: ext.PlasmaClient | None = Provide[DeploymentContainer.plasma_db],
) -> tuple[ext.PdDataFrame, list[int]]:
batches = [cls.from_payload(payload, plasma_db) for payload in payloads]
return cls.batches_to_batch(batches, batch_dim)
class DefaultContainer(DataContainer[t.Any, t.List[t.Any]]):
@classmethod
def batches_to_batch(
cls, batches: t.Sequence[list[t.Any]], batch_dim: int = 0
) -> tuple[list[t.Any], list[int]]:
assert (
batch_dim == 0
), "Default Runner DataContainer does not support batch_dim other than 0"
batch: list[t.Any] = []
for subbatch in batches:
batch.extend(subbatch)
indices = list(itertools.accumulate(len(subbatch) for subbatch in batches))
indices = [0] + indices
return batch, indices
@classmethod
def batch_to_batches(
cls, batch: list[t.Any], indices: t.Sequence[int], batch_dim: int = 0
) -> list[list[t.Any]]:
assert (
batch_dim == 0
), "Default Runner DataContainer does not support batch_dim other than 0"
return [batch[indices[i] : indices[i + 1]] for i in range(len(indices) - 1)]
@classmethod
def to_payload(cls, batch: t.Any, batch_dim: int) -> Payload:
if isinstance(batch, t.Generator): # Generators can't be pickled
batch = list(t.cast(t.Generator[t.Any, t.Any, t.Any], batch))
if isinstance(batch, list):
return cls.create_payload(
pickle.dumps(batch), len(t.cast(t.List[t.Any], batch))
)
else:
return cls.create_payload(pickle.dumps(batch), 1)
@classmethod
@inject
def from_payload(cls, payload: Payload) -> t.Any:
return pickle.loads(payload.data)
@classmethod
@inject
def batch_to_payloads(
cls,
batch: list[t.Any],
indices: t.Sequence[int],
batch_dim: int = 0,
) -> list[Payload]:
batches = cls.batch_to_batches(batch, indices, batch_dim)
payloads = [cls.to_payload(subbatch, batch_dim) for subbatch in batches]
return payloads
@classmethod
@inject
def from_batch_payloads(
cls,
payloads: t.Sequence[Payload],
batch_dim: int = 0,
) -> tuple[list[t.Any], list[int]]:
batches = [cls.from_payload(payload) for payload in payloads]
return cls.batches_to_batch(batches, batch_dim)
class DataContainerRegistry:
CONTAINER_SINGLE_TYPE_MAP: t.Dict[
LazyType[t.Any], t.Type[DataContainer[t.Any, t.Any]]
] = dict()
CONTAINER_BATCH_TYPE_MAP: t.Dict[
LazyType[t.Any], type[DataContainer[t.Any, t.Any]]
] = dict()
@classmethod
def register_container(
cls,
single_type: LazyType[t.Any] | type,
batch_type: LazyType[t.Any] | type,
container_cls: t.Type[DataContainer[t.Any, t.Any]],
):
single_type = LazyType.from_type(single_type)
batch_type = LazyType.from_type(batch_type)
cls.CONTAINER_BATCH_TYPE_MAP[batch_type] = container_cls
cls.CONTAINER_SINGLE_TYPE_MAP[single_type] = container_cls
@classmethod
def find_by_single_type(
cls, type_: t.Type[SingleType] | LazyType[SingleType]
) -> t.Type[DataContainer[SingleType, t.Any]]:
typeref = LazyType.from_type(type_)
return cls.CONTAINER_SINGLE_TYPE_MAP.get(
typeref,
DefaultContainer,
)
@classmethod
def find_by_batch_type(
cls, type_: t.Type[BatchType] | LazyType[BatchType]
) -> t.Type[DataContainer[t.Any, BatchType]]:
typeref = LazyType.from_type(type_)
return cls.CONTAINER_BATCH_TYPE_MAP.get(
typeref,
DefaultContainer,
)
@classmethod
def find_by_name(cls, name: str) -> t.Type[DataContainer[t.Any, t.Any]]:
for container_cls in cls.CONTAINER_BATCH_TYPE_MAP.values():
if container_cls.__name__ == name:
return container_cls
if name == DefaultContainer.__name__:
return DefaultContainer
raise ValueError(f"can not find specified container class by name {name}")
def register_builtin_containers():
DataContainerRegistry.register_container(
LazyType("numpy", "ndarray"), LazyType("numpy", "ndarray"), NdarrayContainer
)
# DataContainerRegistry.register_container(np.ndarray, np.ndarray, NdarrayContainer)
# DataContainerRegistry.register_container(
# LazyType("xgboost", "DMatrix"), LazyType("xgboost", "DMatrix"), DMatrixContainer
# )
DataContainerRegistry.register_container(
LazyType("pandas.core.series", "Series"),
LazyType("pandas.core.frame", "DataFrame"),
PandasDataFrameContainer,
)
DataContainerRegistry.register_container(
LazyType("pandas.core.frame", "DataFrame"),
LazyType("pandas.core.frame", "DataFrame"),
PandasDataFrameContainer,
)
register_builtin_containers()
class AutoContainer(DataContainer[t.Any, t.Any]):
@classmethod
def to_payload(cls, batch: t.Any, batch_dim: int) -> Payload:
container_cls: t.Type[
DataContainer[t.Any, t.Any]
] = DataContainerRegistry.find_by_batch_type(type(batch))
return container_cls.to_payload(batch, batch_dim)
@classmethod
def from_payload(cls, payload: Payload) -> t.Any:
container_cls = DataContainerRegistry.find_by_name(payload.container)
return container_cls.from_payload(payload)
@classmethod
def batches_to_batch(
cls, batches: t.Sequence[BatchType], batch_dim: int = 0
) -> tuple[BatchType, list[int]]:
container_cls: t.Type[
DataContainer[t.Any, t.Any]
] = DataContainerRegistry.find_by_batch_type(type(batches[0]))
return container_cls.batches_to_batch(batches, batch_dim)
@classmethod
def batch_to_batches(
cls, batch: BatchType, indices: t.Sequence[int], batch_dim: int = 0
) -> list[BatchType]:
container_cls: t.Type[
DataContainer[t.Any, t.Any]
] = DataContainerRegistry.find_by_batch_type(type(batch))
return container_cls.batch_to_batches(batch, indices, batch_dim)
@classmethod
def batch_to_payloads(
cls,
batch: t.Any,
indices: t.Sequence[int],
batch_dim: int = 0,
) -> list[Payload]:
container_cls: t.Type[
DataContainer[t.Any, t.Any]
] = DataContainerRegistry.find_by_batch_type(type(batch))
return container_cls.batch_to_payloads(batch, indices, batch_dim)
@classmethod
def from_batch_payloads(
cls, payloads: t.Sequence[Payload], batch_dim: int = 0
) -> tuple[t.Any, list[int]]:
container_cls = DataContainerRegistry.find_by_name(payloads[0].container)
return container_cls.from_batch_payloads(payloads, batch_dim)
|
from __future__ import annotations
import typing as t
import logging
import itertools
from typing import TYPE_CHECKING
from bentoml.exceptions import InvalidArgument
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from aiohttp import MultipartWriter
from starlette.requests import Request
from ..runner.container import Payload
T = t.TypeVar("T")
To = t.TypeVar("To")
CUDA_SUCCESS = 0
def pass_through(i: T) -> T:
return i
class Params(t.Generic[T]):
"""
A container for */** parameters. It helps to perform an operation on all the params
values at the same time.
"""
args: tuple[T, ...]
kwargs: dict[str, T]
def __init__(
self,
*args: T,
**kwargs: T,
):
self.args = args
self.kwargs = kwargs
def items(self) -> t.Iterator[t.Tuple[t.Union[int, str], T]]:
return itertools.chain(enumerate(self.args), self.kwargs.items())
@classmethod
def from_dict(cls, data: dict[str | int, T]) -> Params[T]:
return cls(
*(data[k] for k in sorted(k for k in data if isinstance(k, int))),
**{k: v for k, v in data.items() if isinstance(k, str)},
)
def all_equal(self) -> bool:
value_iter = iter(self.items())
_, first = next(value_iter)
return all(v == first for _, v in value_iter)
def map(self, function: t.Callable[[T], To]) -> Params[To]:
"""
Apply a function to all the values in the Params and return a Params of the
return values.
"""
args = tuple(function(a) for a in self.args)
kwargs = {k: function(v) for k, v in self.kwargs.items()}
return Params[To](*args, **kwargs)
def iter(self: Params[tuple[t.Any, ...]]) -> t.Iterator[Params[t.Any]]:
"""
Iter over a Params of iterable values into a list of Params. All values should
have the same length.
"""
iter_params = self.map(iter)
try:
while True:
args = tuple(next(a) for a in iter_params.args)
kwargs = {k: next(v) for k, v in iter_params.kwargs.items()}
yield Params[To](*args, **kwargs)
except StopIteration:
pass
@classmethod
def agg(
cls,
params_list: t.Sequence[Params[T]],
agg_func: t.Callable[[t.Sequence[T]], To] = pass_through,
) -> Params[To]:
"""
Aggregate a list of Params into a single Params by performing the aggregate
function on the list of values at the same position.
"""
if not params_list:
return Params()
args = tuple(
agg_func(tuple(params.args[i] for params in params_list))
for i, _ in enumerate(params_list[0].args)
)
kwargs = {
k: agg_func(tuple(params.kwargs[k] for params in params_list))
for k in params_list[0].kwargs
}
return Params(*args, **kwargs)
@property
def sample(self) -> T:
"""
Return a sample value (the first value of args or kwargs if args is empty)
of the Params.
"""
if self.args:
return self.args[0]
return next(iter(self.kwargs.values()))
PAYLOAD_META_HEADER = "Bento-Payload-Meta"
def payload_paramss_to_batch_params(
paramss: t.Sequence[Params[Payload]],
batch_dim: int,
# TODO: support mapping from arg to batch dimension
) -> tuple[Params[t.Any], list[int]]:
from ..runner.container import AutoContainer
_converted_params = Params.agg(
paramss,
agg_func=lambda i: AutoContainer.from_batch_payloads(
i,
batch_dim=batch_dim,
),
).iter()
batched_params = next(_converted_params)
indice_params: Params[list[int]] = next(_converted_params)
# considering skip this check if the CPU overhead of each inference is too high
if not indice_params.all_equal():
raise InvalidArgument(
f"argument lengths for parameters do not matchs: {tuple(indice_params.items())}"
)
return batched_params, indice_params.sample
def payload_params_to_multipart(params: Params[Payload]) -> MultipartWriter:
import json
from multidict import CIMultiDict
from aiohttp.multipart import MultipartWriter
multipart = MultipartWriter(subtype="form-data")
for key, payload in params.items():
multipart.append(
payload.data,
headers=CIMultiDict(
(
(PAYLOAD_META_HEADER, json.dumps(payload.meta)),
("Content-Type", f"application/vnd.bentoml.{payload.container}"),
("Content-Disposition", f'form-data; name="{key}"'),
)
),
)
return multipart
async def multipart_to_payload_params(request: Request) -> Params[Payload]:
import json
from bentoml._internal.runner.container import Payload
from bentoml._internal.utils.formparser import populate_multipart_requests
parts = await populate_multipart_requests(request)
max_arg_index = -1
kwargs: t.Dict[str, Payload] = {}
args_map: t.Dict[int, Payload] = {}
for field_name, req in parts.items():
payload = Payload(
data=await req.body(),
meta=json.loads(req.headers[PAYLOAD_META_HEADER]),
container=req.headers["Content-Type"].strip("application/vnd.bentoml."),
)
if field_name.isdigit():
arg_index = int(field_name)
args_map[arg_index] = payload
max_arg_index = max(max_arg_index, arg_index)
else:
kwargs[field_name] = payload
args = tuple(args_map[i] for i in range(max_arg_index + 1))
return Params(*args, **kwargs)
|
from __future__ import annotations
import typing as t
import logging
from abc import ABC
from abc import abstractmethod
from typing import overload
from typing import TYPE_CHECKING
import attr
from ..types import LazyType
from ..types import ParamSpec
if TYPE_CHECKING:
from ..types import AnyType
T = t.TypeVar("T", bound="Runnable")
P = ParamSpec("P")
R = t.TypeVar("R")
logger = logging.getLogger(__name__)
RUNNABLE_METHOD_MARK: str = "_bentoml_runnable_method"
class Runnable(ABC):
SUPPORT_NVIDIA_GPU: bool
SUPPORT_CPU_MULTI_THREADING: bool
methods: dict[str, RunnableMethod[t.Any, t.Any, t.Any]] | None = None
@abstractmethod
def __init__(self, **kwargs: t.Any):
...
@classmethod
def add_method(
cls: t.Type[T],
method: t.Callable[t.Concatenate[T, P], t.Any],
name: str,
*,
batchable: bool = False,
batch_dim: tuple[int, int] | int = 0,
input_spec: LazyType[t.Any] | t.Tuple[LazyType[t.Any], ...] | None = None,
output_spec: LazyType[t.Any] | None = None,
):
meth = Runnable.method(
method,
batchable=batchable,
batch_dim=batch_dim,
input_spec=input_spec,
output_spec=output_spec,
)
setattr(cls, name, meth)
meth.__set_name__(cls, name)
@overload
@staticmethod
def method(
meth: t.Callable[t.Concatenate[T, P], R],
*,
batchable: bool = False,
batch_dim: tuple[int, int] | int = 0,
input_spec: AnyType | tuple[AnyType, ...] | None = None,
output_spec: AnyType | None = None,
) -> RunnableMethod[T, P, R]:
...
@overload
@staticmethod
def method(
meth: None = None,
*,
batchable: bool = False,
batch_dim: tuple[int, int] | int = 0,
input_spec: AnyType | tuple[AnyType, ...] | None = None,
output_spec: AnyType | None = None,
) -> t.Callable[[t.Callable[t.Concatenate[T, P], R]], RunnableMethod[T, P, R]]:
...
@staticmethod
def method(
meth: t.Callable[t.Concatenate[T, P], R] | None = None,
*,
batchable: bool = False,
batch_dim: tuple[int, int] | int = 0,
input_spec: AnyType | tuple[AnyType, ...] | None = None,
output_spec: AnyType | None = None,
) -> t.Callable[
[t.Callable[t.Concatenate[T, P], R]], RunnableMethod[T, P, R]
] | RunnableMethod[T, P, R]:
def method_decorator(
meth: t.Callable[t.Concatenate[T, P], R]
) -> RunnableMethod[T, P, R]:
return RunnableMethod(
meth,
RunnableMethodConfig(
batchable=batchable,
batch_dim=(batch_dim, batch_dim)
if isinstance(batch_dim, int)
else batch_dim,
input_spec=input_spec,
output_spec=output_spec,
),
)
if callable(meth):
return method_decorator(meth)
return method_decorator
@attr.define
class RunnableMethod(t.Generic[T, P, R]):
func: t.Callable[t.Concatenate[T, P], R]
config: RunnableMethodConfig
_bentoml_runnable_method: None = None
def __get__(self, obj: T, _: t.Type[T] | None = None) -> t.Callable[P, R]:
def method(*args: P.args, **kwargs: P.kwargs) -> R:
return self.func(obj, *args, **kwargs)
return method
def __set_name__(self, owner: t.Any, name: str):
if owner.methods is None:
owner.methods = {}
owner.methods[name] = self
@attr.define()
class RunnableMethodConfig:
batchable: bool
batch_dim: tuple[int, int]
input_spec: AnyType | t.Tuple[AnyType, ...] | None = None
output_spec: AnyType | None = None
|
from __future__ import annotations
import json
import typing as t
import asyncio
import functools
from typing import TYPE_CHECKING
from json.decoder import JSONDecodeError
from urllib.parse import urlparse
from . import RunnerHandle
from ..container import Payload
from ...utils.uri import uri_to_path
from ....exceptions import RemoteException
from ...runner.utils import Params
from ...runner.utils import PAYLOAD_META_HEADER
from ...runner.utils import payload_params_to_multipart
from ...configuration.containers import DeploymentContainer
if TYPE_CHECKING: # pragma: no cover
from aiohttp import BaseConnector
from aiohttp.client import ClientSession
from ..runner import Runner
from ..runner import RunnerMethod
P = t.ParamSpec("P")
R = t.TypeVar("R")
class RemoteRunnerClient(RunnerHandle):
def __init__(self, runner: Runner): # pylint: disable=super-init-not-called
self._runner = runner
self._conn: BaseConnector | None = None
self._client: ClientSession | None = None
self._loop: asyncio.AbstractEventLoop | None = None
self._addr: str | None = None
@property
def _remote_runner_server_map(self) -> dict[str, str]:
return DeploymentContainer.remote_runner_mapping.get()
def _close_conn(self) -> None:
if self._conn:
self._conn.close()
def _get_conn(self) -> BaseConnector:
import aiohttp
if (
self._loop is None
or self._conn is None
or self._conn.closed
or self._loop.is_closed()
):
self._loop = asyncio.get_event_loop() # get the loop lazily
bind_uri = self._remote_runner_server_map[self._runner.name]
parsed = urlparse(bind_uri)
if parsed.scheme == "file":
path = uri_to_path(bind_uri)
self._conn = aiohttp.UnixConnector(
path=path,
loop=self._loop,
limit=800, # TODO(jiang): make it configurable
keepalive_timeout=1800.0,
)
self._addr = "http://127.0.0.1:8000" # addr doesn't matter with UDS
elif parsed.scheme == "tcp":
self._conn = aiohttp.TCPConnector(
loop=self._loop,
verify_ssl=False,
limit=800, # TODO(jiang): make it configurable
keepalive_timeout=1800.0,
)
self._addr = f"http://{parsed.netloc}"
else:
raise ValueError(f"Unsupported bind scheme: {parsed.scheme}")
return self._conn
def _get_client(
self,
timeout_sec: float | None = None,
) -> ClientSession:
import aiohttp
if (
self._loop is None
or self._client is None
or self._client.closed
or self._loop.is_closed()
):
import yarl
from opentelemetry.instrumentation.aiohttp_client import (
create_trace_config, # type: ignore (missing type stubs)
)
def strip_query_params(url: yarl.URL) -> str:
return str(url.with_query(None))
jar = aiohttp.DummyCookieJar()
if timeout_sec is not None:
timeout = aiohttp.ClientTimeout(total=timeout_sec)
else:
DEFAULT_TIMEOUT = aiohttp.ClientTimeout(total=5 * 60)
timeout = DEFAULT_TIMEOUT
self._client = aiohttp.ClientSession(
trace_configs=[
create_trace_config(
# Remove all query params from the URL attribute on the span.
url_filter=strip_query_params, # type: ignore
tracer_provider=DeploymentContainer.tracer_provider.get(),
)
],
connector=self._get_conn(),
auto_decompress=False,
cookie_jar=jar,
connector_owner=False,
timeout=timeout,
loop=self._loop,
)
return self._client
async def async_run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
from ...runner.container import AutoContainer
# TODO: validate call signature
inp_batch_dim = __bentoml_method.config.batch_dim[0]
payload_params = Params[Payload](*args, **kwargs).map(
functools.partial(AutoContainer.to_payload, batch_dim=inp_batch_dim)
)
if __bentoml_method.config.batchable:
if not payload_params.map(lambda i: i.batch_size).all_equal():
raise ValueError(
"All batchable arguments must have the same batch size."
)
multipart = payload_params_to_multipart(payload_params)
client = self._get_client()
path = "" if __bentoml_method.name == "__call__" else __bentoml_method.name
async with client.post(
f"{self._addr}/{path}",
data=multipart,
) as resp:
body = await resp.read()
if resp.status != 200:
raise RemoteException(
f"An exception occurred in remote runner {self._runner.name}: [{resp.status}] {body.decode()}"
)
try:
meta_header = resp.headers[PAYLOAD_META_HEADER]
except KeyError:
raise RemoteException(
f"Bento payload decode error: {PAYLOAD_META_HEADER} header not set. "
"An exception might have occurred in the remote server."
f"[{resp.status}] {body.decode()}"
) from None
try:
content_type = resp.headers["Content-Type"]
except KeyError:
raise RemoteException(
f"Bento payload decode error: Content-Type header not set. "
"An exception might have occurred in the remote server."
f"[{resp.status}] {body.decode()}"
) from None
if not content_type.lower().startswith("application/vnd.bentoml."):
raise RemoteException(
f"Bento payload decode error: invalid Content-Type '{content_type}'."
)
container = content_type.strip("application/vnd.bentoml.")
try:
payload = Payload(
data=body, meta=json.loads(meta_header), container=container
)
except JSONDecodeError:
raise ValueError(f"Bento payload decode error: {meta_header}")
return AutoContainer.from_payload(payload)
def run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
import anyio
return anyio.from_thread.run( # type: ignore (pyright cannot infer the return type)
self.async_run_method,
__bentoml_method,
*args,
**kwargs,
)
def __del__(self) -> None:
self._close_conn()
|
from __future__ import annotations
import typing as t
import functools
from typing import TYPE_CHECKING
from bentoml._internal.runner.utils import Params
from bentoml._internal.runner.container import Payload
from bentoml._internal.runner.container import AutoContainer
from . import RunnerHandle
if TYPE_CHECKING:
from ..runner import Runner
from ..runner import RunnerMethod
P = t.ParamSpec("P")
R = t.TypeVar("R")
class LocalRunnerRef(RunnerHandle):
def __init__(self, runner: Runner) -> None: # pylint: disable=super-init-not-called
self._runnable = runner.runnable_class(**runner.runnable_init_params)
def run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
if __bentoml_method.config.batchable:
inp_batch_dim = __bentoml_method.config.batch_dim[0]
payload_params = Params[Payload](*args, **kwargs).map(
lambda arg: AutoContainer.to_payload(arg, batch_dim=inp_batch_dim)
)
if not payload_params.map(lambda i: i.batch_size).all_equal():
raise ValueError(
"All batchable arguments must have the same batch size."
)
return getattr(self._runnable, __bentoml_method.name)(*args, **kwargs)
async def async_run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
import anyio
method = getattr(self._runnable, __bentoml_method.name)
return await anyio.to_thread.run_sync(
functools.partial(method, **kwargs), *args, limiter=anyio.CapacityLimiter(1)
)
|
from __future__ import annotations
import typing as t
import logging
from abc import ABC
from abc import abstractmethod
from typing import TYPE_CHECKING
from ....exceptions import StateException
if TYPE_CHECKING:
from ..runner import Runner
from ..runner import RunnerMethod
R = t.TypeVar("R")
P = t.ParamSpec("P")
logger = logging.getLogger(__name__)
class RunnerHandle(ABC):
@abstractmethod
def __init__(self, runner: Runner) -> None:
...
@abstractmethod
def run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
...
@abstractmethod
async def async_run_method(
self,
__bentoml_method: RunnerMethod[t.Any, P, R],
*args: P.args,
**kwargs: P.kwargs,
) -> R:
...
class DummyRunnerHandle(RunnerHandle):
def __init__( # pylint: disable=super-init-not-called
self, runner: Runner | None = None
) -> None:
pass
def run_method(
self,
__bentoml_method: RunnerMethod[t.Any, t.Any, t.Any],
*args: t.Any,
**kwargs: t.Any,
) -> t.Any:
raise StateException("Runner is not initialized")
async def async_run_method(
self,
__bentoml_method: RunnerMethod[t.Any, t.Any, t.Any],
*args: t.Any,
**kwargs: t.Any,
) -> t.Any:
raise StateException("Runner is not initialized")
|
from __future__ import annotations
import typing as t
from typing import TYPE_CHECKING
from starlette.requests import Request
from multipart.multipart import parse_options_header
from starlette.responses import Response
from .base import IODescriptor
from ...exceptions import InvalidArgument
from ...exceptions import BentoMLException
from ..utils.formparser import populate_multipart_requests
from ..utils.formparser import concat_to_multipart_response
if TYPE_CHECKING:
from types import UnionType
from ..types import LazyType
from ..context import InferenceApiContext as Context
class Multipart(IODescriptor[t.Any]):
"""
:code:`Multipart` defines API specification for the inputs/outputs of a Service, where inputs/outputs
of a Service can receive/send a *multipart* request/responses as specified in your API function signature.
Sample implementation of a sklearn service:
.. code-block:: python
# sklearn_svc.py
import bentoml
from bentoml.io import NumpyNdarray, Multipart, JSON
import bentoml.sklearn
runner = bentoml.sklearn.load_runner("sklearn_model_clf")
svc = bentoml.Service("iris-classifier", runners=[runner])
input_spec = Multipart(arr=NumpyNdarray(), annotations=JSON())
output_spec = Multipart(output=NumpyNdarray(), result=JSON())
@svc.api(input=input_spec, output=output_spec)
def predict(arr, annotations):
res = runner.run(arr)
return {"output":res, "result":annotations}
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./sklearn_svc.py:svc --reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
from requests_toolbelt.multipart.encoder import MultipartEncoder
m = MultipartEncoder(
fields={'field0': 'value', 'field1': 'value',
'field2': ('filename', open('test.json', 'rb'), 'application/json')}
)
requests.post('http://0.0.0.0:3000/predict', data=m, headers={'Content-Type': m.content_type})
.. code-tab:: bash
% curl -X POST -H "Content-Type: multipart/form-data" -F [email protected] -F arr='[5,4,3,2]' http://0.0.0.0:3000/predict
--b1d72c201a064ecd92a17a412eb9208e
Content-Disposition: form-data; name="output"
content-length: 1
content-type: application/json
1
--b1d72c201a064ecd92a17a412eb9208e
Content-Disposition: form-data; name="result"
content-length: 13
content-type: application/json
{"foo":"bar"}
--b1d72c201a064ecd92a17a412eb9208e--
Args:
inputs (:code:`Dict[str, IODescriptor]`):
Dictionary consisting keys as inputs definition for a Multipart
request/response, values as IODescriptor supported by BentoML. Currently,
Multipart supports Image, NumpyNdarray, PandasDataFrame, PandasSeries, Text,
and File.
Make sure to match the input params in an API function to the keys defined
under :code:`Multipart`:
.. code-block:: bash
+----------------------------------------------------------------+
| |
| +--------------------------------------------------------+ |
| | | |
| | Multipart(arr=NumpyNdarray(), annotations=JSON() | |
| | | |
| +----------------+-----------------------+---------------+ |
| | | |
| | | |
| | | |
| +----+ +---------+ |
| | | |
| +---------------v--------v---------+ |
| | def predict(arr, annotations): | |
| +----------------------------------+ |
| |
+----------------------------------------------------------------+
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that Multipart request/response.
"""
def __init__(self, **inputs: IODescriptor[t.Any]):
for descriptor in inputs.values():
if isinstance(descriptor, Multipart): # pragma: no cover
raise InvalidArgument(
"Multipart IO can not contain nested Multipart IO descriptor"
)
self._inputs: dict[str, t.Any] = inputs
def input_type(
self,
) -> dict[str, t.Type[t.Any] | UnionType | LazyType[t.Any]]:
res: dict[str, t.Type[t.Any] | UnionType | LazyType[t.Any]] = {}
for (k, v) in self._inputs.items():
inp_type = v.input_type()
if isinstance(inp_type, dict):
raise TypeError(
"A multipart descriptor cannot take a multi-valued I/O descriptor as input"
)
res[k] = inp_type
return res
def openapi_schema_type(self) -> dict[str, t.Any]:
return {
"type": "object",
"properties": {
k: io.openapi_schema_type() for (k, io) in self._inputs.items()
},
}
def openapi_request_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {"multipart/form-data": {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {"multipart/form-data": {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> dict[str, t.Any]:
ctype, _ = parse_options_header(request.headers["content-type"])
if ctype != b"multipart/form-data":
raise BentoMLException(
f"{self.__class__.__name__} only accepts `multipart/form-data` as Content-Type header, got {ctype} instead."
)
res: dict[str, t.Any] = dict()
reqs = await populate_multipart_requests(request)
for k, i in self._inputs.items():
req = reqs[k]
v = await i.from_http_request(req)
res[k] = v
return res
async def to_http_response(
self, obj: dict[str, t.Any], ctx: Context | None = None
) -> Response:
res_mapping: dict[str, Response] = {}
for k, io_ in self._inputs.items():
data = obj[k]
resp = io_.init_http_response()
res_mapping[k] = await io_.finalize_http_response(resp, data)
return await concat_to_multipart_response(res_mapping, ctx)
|
from __future__ import annotations
import io
import typing as t
import logging
import functools
import importlib.util
from enum import Enum
from typing import TYPE_CHECKING
from starlette.requests import Request
from starlette.responses import Response
from .base import IODescriptor
from .json import MIME_TYPE_JSON
from ..types import LazyType
from ..utils.http import set_cookies
from ...exceptions import BadInput
from ...exceptions import InvalidArgument
from ...exceptions import MissingDependencyException
from ..utils.lazy_loader import LazyLoader
if TYPE_CHECKING:
import pandas as pd # type: ignore[import]
from .. import external_typing as ext
from ..context import InferenceApiContext as Context
else:
pd = LazyLoader(
"pd",
globals(),
"pandas",
exc_msg="`pandas` is required to use PandasDataFrame or PandasSeries. Install with `pip install -U pandas`",
)
logger = logging.getLogger(__name__)
# Check for parquet support
@functools.lru_cache(maxsize=1)
def get_parquet_engine() -> str:
if importlib.util.find_spec("pyarrow") is not None:
return "pyarrow"
elif importlib.util.find_spec("fastparquet") is not None:
return "fastparquet"
else:
logger.warning(
"Neither pyarrow nor fastparquet packages found. Parquet de/serialization will not be available."
)
raise MissingDependencyException(
"Parquet serialization is not available. Try installing pyarrow or fastparquet first."
)
def _infer_type(item: str) -> str: # pragma: no cover
if item.startswith("int"):
return "integer"
elif item.startswith("float") or item.startswith("double"):
return "number"
elif item.startswith("str") or item.startswith("date"):
return "string"
elif item.startswith("bool"):
return "boolean"
else:
return "object"
def _schema_type(
dtype: bool | t.Dict[str, t.Any] | None
) -> t.Dict[str, t.Any]: # pragma: no cover
if isinstance(dtype, dict):
return {
"type": "object",
"properties": {
k: {"type": "array", "items": {"type": _infer_type(v)}}
for k, v in dtype.items()
},
}
else:
return {"type": "object"}
class SerializationFormat(Enum):
JSON = "application/json"
PARQUET = "application/octet-stream"
CSV = "text/csv"
def __init__(self, mime_type: str):
self.mime_type = mime_type
def _infer_serialization_format_from_request(
request: Request, default_format: SerializationFormat
) -> SerializationFormat:
"""Determine the serialization format from the request's headers['content-type']"""
content_type = request.headers.get("content-type")
if content_type == "application/json":
return SerializationFormat.JSON
elif content_type == "application/octet-stream":
return SerializationFormat.PARQUET
elif content_type == "text/csv":
return SerializationFormat.CSV
elif content_type:
logger.debug(
"Unknown content-type (%s), falling back to %s serialization format.",
content_type,
default_format,
)
return default_format
else:
logger.debug(
"Content-type not specified, falling back to %s serialization format.",
default_format,
)
return default_format
def _validate_serialization_format(serialization_format: SerializationFormat):
if (
serialization_format is SerializationFormat.PARQUET
and get_parquet_engine() is None
):
raise MissingDependencyException(
"Parquet serialization is not available. Try installing pyarrow or fastparquet first."
)
class PandasDataFrame(IODescriptor["ext.PdDataFrame"]):
"""
:code:`PandasDataFrame` defines API specification for the inputs/outputs of a Service,
where either inputs will be converted to or outputs will be converted from type
:code:`numpy.ndarray` as specified in your API function signature.
Sample implementation of a sklearn service:
.. code-block:: python
# sklearn_svc.py
import bentoml
import pandas as pd
import numpy as np
from bentoml.io import PandasDataFrame
import bentoml.sklearn
input_spec = PandasDataFrame.from_sample(pd.DataFrame(np.array([[5,4,3,2]])))
runner = bentoml.sklearn.load_runner("sklearn_model_clf")
svc = bentoml.Service("iris-classifier", runners=[runner])
@svc.api(input=input_spec, output=PandasDataFrame())
def predict(input_arr):
res = runner.run_batch(input_arr) # type: np.ndarray
return pd.DataFrame(res)
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./sklearn_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
headers={"content-type": "application/json"},
data='[{"0":5,"1":4,"2":3,"3":2}]'
).text
.. code-tab:: bash
% curl -X POST -H "Content-Type: application/json" --data '[{"0":5,"1":4,"2":3,"3":2}]' http://0.0.0.0:3000/predict
[{"0": 1}]%
Args:
orient (:code:`str`, `optional`, default to :code:`records`): Indication of expected JSON string format. Compatible JSON strings can be
produced by :func:`pandas.io.json.to_json()` with a corresponding orient value.
Possible orients are:
- :obj:`split` - :code:`Dict[str, Any]`: {idx -> [idx], columns -> [columns], data -> [values]}
- :obj:`records` - :code:`List[Any]`: [{column -> value}, ..., {column -> value}]
- :obj:`index` - :code:`Dict[str, Any]`: {idx -> {column -> value}}
- :obj:`columns` - :code:`Dict[str, Any]`: {column -> {index -> value}}
- :obj:`values` - :code:`Dict[str, Any]`: Values arrays
columns (:code:`List[str]`, `optional`, default to :code:`None`):
List of columns name that users wish to update.
apply_column_names (:code:`bool`, `optional`, default to :code:`False`):
Whether to update incoming DataFrame columns. If :code:`apply_column_names`=True,
then `columns` must be specified.
dtype (:code:`Union[bool, Dict[str, Any]]`, `optional`, default to :code:`None`):
Data Type users wish to convert their inputs/outputs to. If it is a boolean,
then pandas will infer dtypes. Else if it is a dictionary of column to
dtype, then applies those to incoming dataframes. If False, then don't
infer dtypes at all (only applies to the data). This is not applicable when
:code:`orient='table'`.
enforce_dtype (:code:`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain data type. if :code:`enforce_dtype=True` then :code:`dtype`
must be specified.
shape (:code:`Tuple[int, ...]`, `optional`, default to :code:`None`): Optional shape check that users can specify for their incoming HTTP
requests. We will only check the number of columns you specified for your
given shape:
.. code-block:: python
import pandas as pd
from bentoml.io import PandasDataFrame
df = pd.DataFrame([[1,2,3]]) # shape (1,3)
inp = PandasDataFrame.from_sample(arr)
@svc.api(input=PandasDataFrame(
shape=(51,10), enforce_shape=True
), output=PandasDataFrame())
def infer(input_df: pd.DataFrame) -> pd.DataFrame:...
# if input_df have shape (40,9), it will throw out errors
enforce_shape (`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain shape. If `enforce_shape=True` then `shape`
must be specified
default_format (:code:`str`, `optional`, default to :obj:`json`):
The default serialization format to use if the request does not specify a :code:`headers['content-type']`.
It is also the serialization format used for the response. Possible values are:
- :obj:`json` - JSON text format (inferred from content-type "application/json")
- :obj:`parquet` - Parquet binary format (inferred from content-type "application/octet-stream")
- :obj:`csv` - CSV text format (inferred from content-type "text/csv")
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that `pd.DataFrame`.
"""
def __init__(
self,
orient: ext.DataFrameOrient = "records",
apply_column_names: bool = False,
columns: list[str] | None = None,
dtype: bool | dict[str, t.Any] | None = None,
enforce_dtype: bool = False,
shape: tuple[int, ...] | None = None,
enforce_shape: bool = False,
default_format: t.Literal["json", "parquet", "csv"] = "json",
):
self._orient = orient
self._columns = columns
self._apply_column_names = apply_column_names
self._dtype = dtype
self._enforce_dtype = enforce_dtype
self._shape = shape
self._enforce_shape = enforce_shape
self._default_format = SerializationFormat[default_format.upper()]
_validate_serialization_format(self._default_format)
def input_type(
self,
) -> LazyType[ext.PdDataFrame]:
return LazyType("pandas", "DataFrame")
def openapi_schema_type(self) -> dict[str, t.Any]:
return _schema_type(self._dtype)
def openapi_request_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {self._default_format.mime_type: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {self._default_format.mime_type: {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> ext.PdDataFrame:
"""
Process incoming requests and convert incoming
objects to `pd.DataFrame`
Args:
request (`starlette.requests.Requests`):
Incoming Requests
Returns:
a `pd.DataFrame` object. This can then be used
inside users defined logics.
Raises:
BadInput:
Raised when the incoming requests are bad formatted.
"""
serialization_format = _infer_serialization_format_from_request(
request, self._default_format
)
_validate_serialization_format(serialization_format)
obj = await request.body()
if self._enforce_dtype:
if self._dtype is None:
logger.warning(
"`dtype` is None or undefined, while `enforce_dtype`=True"
)
# TODO(jiang): check dtype
if serialization_format is SerializationFormat.JSON:
res = pd.read_json( # type: ignore[arg-type]
io.BytesIO(obj),
dtype=self._dtype,
orient=self._orient,
)
elif serialization_format is SerializationFormat.PARQUET:
res = pd.read_parquet( # type: ignore[arg-type]
io.BytesIO(obj),
engine=get_parquet_engine(),
)
elif serialization_format is SerializationFormat.CSV:
res: ext.PdDataFrame = pd.read_csv( # type: ignore[arg-type]
io.BytesIO(obj),
dtype=self._dtype, # type: ignore[arg-type]
)
else:
raise InvalidArgument(
f"Unknown serialization format ({serialization_format})."
)
assert isinstance(res, pd.DataFrame)
if self._apply_column_names:
if self._columns is None:
logger.warning(
"`columns` is None or undefined, while `apply_column_names`=True"
)
elif len(self._columns) == res.shape[1]:
raise BadInput(
"length of `columns` does not match the columns of incoming data"
)
else:
res.columns = pd.Index(self._columns)
if self._enforce_shape:
if self._shape is None:
logger.warning(
"`shape` is None or undefined, while `enforce_shape`=True"
)
else:
assert all(
left == right
for left, right in zip(self._shape, res.shape) # type: ignore (shape type)
if left != -1 and right != -1
), f"incoming has shape {res.shape} where enforced shape to be {self._shape}"
return res
async def to_http_response(
self, obj: ext.PdDataFrame, ctx: Context | None = None
) -> Response:
"""
Process given objects and convert it to HTTP response.
Args:
obj (`pd.DataFrame`):
`pd.DataFrame` that will be serialized to JSON or parquet
Returns:
HTTP Response of type `starlette.responses.Response`. This can
be accessed via cURL or any external web traffic.
"""
# For the response it doesn't make sense to enforce the same serialization format as specified
# by the request's headers['content-type']. Instead we simply use the _default_format.
serialization_format = self._default_format
if not LazyType["ext.PdDataFrame"](pd.DataFrame).isinstance(obj):
raise InvalidArgument(
f"return object is not of type `pd.DataFrame`, got type {type(obj)} instead"
)
if serialization_format is SerializationFormat.JSON:
resp = obj.to_json(orient=self._orient) # type: ignore[arg-type]
elif serialization_format is SerializationFormat.PARQUET:
resp = obj.to_parquet(engine=get_parquet_engine()) # type: ignore
elif serialization_format is SerializationFormat.CSV:
resp = obj.to_csv() # type: ignore
else:
raise InvalidArgument(
f"Unknown serialization format ({serialization_format})."
)
if ctx is not None:
res = Response(
resp,
media_type=serialization_format.mime_type,
headers=ctx.response.headers, # type:ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(resp, media_type=serialization_format.mime_type)
@classmethod
def from_sample(
cls,
sample_input: "pd.DataFrame",
orient: "ext.DataFrameOrient" = "records",
apply_column_names: bool = True,
enforce_shape: bool = True,
enforce_dtype: bool = False,
default_format: "t.Literal['json', 'parquet', 'csv']" = "json",
) -> "PandasDataFrame":
"""
Create a PandasDataFrame IO Descriptor from given inputs.
Args:
sample_input (`pd.DataFrame`): Given sample pd.DataFrame data
orient (:code:`str`, `optional`, default to :code:`records`): Indication of expected JSON string format. Compatible JSON strings can be
produced by :func:`pandas.io.json.to_json()` with a corresponding orient value.
Possible orients are:
- :obj:`split` - :code:`Dict[str, Any]`: {idx -> [idx], columns -> [columns], data -> [values]}
- :obj:`records` - :code:`List[Any]`: [{column -> value}, ..., {column -> value}]
- :obj:`index` - :code:`Dict[str, Any]`: {idx -> {column -> value}}
- :obj:`columns` - :code:`Dict[str, Any]`: {column -> {index -> value}}
- :obj:`values` - :code:`Dict[str, Any]`: Values arrays
apply_column_names (`bool`, `optional`, default to :code:`True`):
Update incoming DataFrame columns. `columns` must be specified at
function signature. If you don't want to enforce a specific columns
name then change `apply_column_names=False`.
enforce_dtype (`bool`, `optional`, default to :code:`True`):
Enforce a certain data type. `dtype` must be specified at function
signature. If you don't want to enforce a specific dtype then change
`enforce_dtype=False`.
enforce_shape (`bool`, `optional`, default to :code:`False`):
Enforce a certain shape. `shape` must be specified at function
signature. If you don't want to enforce a specific shape then change
`enforce_shape=False`.
default_format (:code:`str`, `optional`, default to :code:`json`):
The default serialization format to use if the request does not specify a :code:`headers['content-type']`.
It is also the serialization format used for the response. Possible values are:
- :obj:`json` - JSON text format (inferred from content-type "application/json")
- :obj:`parquet` - Parquet binary format (inferred from content-type "application/octet-stream")
- :obj:`csv` - CSV text format (inferred from content-type "text/csv")
Returns:
:obj:`bentoml._internal.io_descriptors.PandasDataFrame`: :code:`PandasDataFrame` IODescriptor from given users inputs.
Example:
.. code-block:: python
import pandas as pd
from bentoml.io import PandasDataFrame
arr = [[1,2,3]]
inp = PandasDataFrame.from_sample(pd.DataFrame(arr))
...
@svc.api(input=inp, output=PandasDataFrame())
def predict(inputs: pd.DataFrame) -> pd.DataFrame:...
"""
columns = [str(x) for x in list(sample_input.columns)] # type: ignore[reportUnknownVariableType]
return cls(
orient=orient,
enforce_shape=enforce_shape,
shape=sample_input.shape,
apply_column_names=apply_column_names,
columns=columns,
enforce_dtype=enforce_dtype,
dtype=None, # TODO: not breaking atm
default_format=default_format,
)
class PandasSeries(IODescriptor["ext.PdSeries"]):
"""
:code:`PandasSeries` defines API specification for the inputs/outputs of a Service, where
either inputs will be converted to or outputs will be converted from type
:code:`numpy.ndarray` as specified in your API function signature.
Sample implementation of a sklearn service:
.. code-block:: python
# sklearn_svc.py
import bentoml
import pandas as pd
import numpy as np
from bentoml.io import PandasSeries
import bentoml.sklearn
input_spec = PandasSeries.from_sample(pd.Series(np.array([[5,4,3,2]])))
runner = bentoml.sklearn.load_runner("sklearn_model_clf")
svc = bentoml.Service("iris-classifier", runners=[runner])
@svc.api(input=input_spec, output=PandasSeries())
def predict(input_arr):
res = runner.run_batch(input_arr) # type: np.ndarray
return pd.Series(res)
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./sklearn_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
headers={"content-type": "application/json"},
data='[{"0":5,"1":4,"2":3,"3":2}]'
).text
.. code-tab:: bash
% curl -X POST -H "Content-Type: application/json" --data '[{"0":5,"1":4,"2":3,"3":2}]' http://0.0.0.0:3000/predict
[{"0": 1}]%
Args:
orient (:code:`str`, `optional`, default to :code:`records`): Indication of expected JSON string format. Compatible JSON strings can be
produced by :func:`pandas.io.json.to_json()` with a corresponding orient value.
Possible orients are:
- :obj:`split` - :code:`Dict[str, Any]`: {idx -> [idx], columns -> [columns], data -> [values]}
- :obj:`records` - :code:`List[Any]`: [{column -> value}, ..., {column -> value}]
- :obj:`index` - :code:`Dict[str, Any]`: {idx -> {column -> value}}
- :obj:`columns` - :code:`Dict[str, Any]`: {column -> {index -> value}}
- :obj:`values` - :code:`Dict[str, Any]`: Values arrays
columns (`List[str]`, `optional`, default to :code:`None`):
List of columns name that users wish to update
apply_column_names (`bool`, `optional`, default to :code:`False`):
Whether to update incoming DataFrame columns. If
:code:`apply_column_names=True`, then `columns` must be specified.
dtype (:code:`Union[bool, Dict[str, Any]]`, `optional`, default to :code:`None`):
Data Type users wish to convert their inputs/outputs to. If it is a boolean,
then pandas will infer dtypes. Else if it is a dictionary of column to
dtype, then applies those to incoming dataframes. If False, then don't
infer dtypes at all (only applies to the data). This is not applicable when
:code:`orient='table'`.
enforce_dtype (`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain data type. if :code:`enforce_dtype=True` then
:code:`dtype` must be specified.
shape (`Tuple[int, ...]`, `optional`, default to :code:`None`):
Optional shape check that users can specify for their incoming HTTP
requests. We will only check the number of columns you specified for your
given shape. Examples usage:
.. code-block:: python
import pandas as pd
from bentoml.io import PandasSeries
df = pd.DataFrame([[1,2,3]]) # shape (1,3)
inp = PandasSeries.from_sample(arr)
...
@svc.api(input=inp, output=PandasSeries())
# the given shape above is valid
def predict(input_df: pd.DataFrame) -> pd.DataFrame:
result = await runner.run(input_df)
return result
@svc.api(input=PandasSeries(shape=(51,10), enforce_shape=True), output=PandasSeries())
def infer(input_df: pd.DataFrame) -> pd.DataFrame: ...
# if input_df have shape (40,9), it will throw out errors
enforce_shape (`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain shape. If `enforce_shape=True` then `shape`
must be specified
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that `pd.DataFrame`.
"""
def __init__(
self,
orient: "ext.SeriesOrient" = "records",
dtype: t.Optional[t.Union[bool, t.Dict[str, t.Any]]] = None,
enforce_dtype: bool = False,
shape: t.Optional[t.Tuple[int, ...]] = None,
enforce_shape: bool = False,
):
self._orient = orient
self._dtype = dtype
self._enforce_dtype = enforce_dtype
self._shape = shape
self._enforce_shape = enforce_shape
self._mime_type = "application/json"
def input_type(
self,
) -> LazyType[ext.PdSeries]:
return LazyType("pandas", "Series")
def openapi_schema_type(self) -> t.Dict[str, t.Any]:
return _schema_type(self._dtype)
def openapi_request_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for outgoing responses"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> ext.PdSeries:
"""
Process incoming requests and convert incoming
objects to `pd.Series`
Args:
request (`starlette.requests.Requests`):
Incoming Requests
Returns:
a `pd.Series` object. This can then be used
inside users defined logics.
"""
obj = await request.body()
if self._enforce_dtype:
if self._dtype is None:
logger.warning(
"`dtype` is None or undefined, while `enforce_dtype`=True"
)
# TODO(jiang): check dtypes when enforce_dtype is set
res: ext.PdDataFrame = pd.read_json( # type: ignore[arg-type]
obj, # type: ignore[arg-type]
typ="series",
orient=self._orient,
dtype=self._dtype, # type: ignore[arg-type]
)
assert isinstance(res, pd.Series)
if self._enforce_shape:
if self._shape is None:
logger.warning(
"`shape` is None or undefined, while `enforce_shape`=True"
)
else:
assert all(
left == right
for left, right in zip(self._shape, res.shape)
if left != -1 and right != -1
), f"incoming has shape {res.shape} where enforced shape to be {self._shape}"
return res
async def init_http_response(self) -> Response:
return Response(None, media_type=MIME_TYPE_JSON)
async def to_http_response(
self, obj: t.Any, ctx: Context | None = None
) -> Response:
"""
Process given objects and convert it to HTTP response.
Args:
obj (`pd.Series`):
`pd.Series` that will be serialized to JSON
Returns:
HTTP Response of type `starlette.responses.Response`. This can
be accessed via cURL or any external web traffic.
"""
if not LazyType["ext.PdSeries"](pd.Series).isinstance(obj):
raise InvalidArgument(
f"return object is not of type `pd.Series`, got type {type(obj)} instead"
)
if ctx is not None:
res = Response(
obj.to_json(orient=self._orient), # type: ignore[arg-type]
media_type=MIME_TYPE_JSON,
headers=ctx.response.headers, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(
obj.to_json(orient=self._orient), # type: ignore[arg-type]
media_type=MIME_TYPE_JSON,
)
|
from .base import IODescriptor
from .file import File
from .json import JSON
from .text import Text
from .image import Image
from .numpy import NumpyNdarray
from .pandas import PandasSeries
from .pandas import PandasDataFrame
from .multipart import Multipart
__all__ = [
"File",
"Image",
"IODescriptor",
"JSON",
"Multipart",
"NumpyNdarray",
"PandasDataFrame",
"PandasSeries",
"Text",
]
|
from __future__ import annotations
import json
import typing as t
import logging
from typing import TYPE_CHECKING
from starlette.requests import Request
from starlette.responses import Response
from .base import IODescriptor
from .json import MIME_TYPE_JSON
from ..types import LazyType
from ..utils.http import set_cookies
from ...exceptions import BadInput
from ...exceptions import InternalServerError
if TYPE_CHECKING:
import numpy as np
from .. import external_typing as ext
from ..context import InferenceApiContext as Context
logger = logging.getLogger(__name__)
def _is_matched_shape(
left: t.Optional[t.Tuple[int, ...]],
right: t.Optional[t.Tuple[int, ...]],
) -> bool: # pragma: no cover
if (left is None) or (right is None):
return False
if len(left) != len(right):
return False
for i, j in zip(left, right):
if i == -1 or j == -1:
continue
if i == j:
continue
return False
return True
class NumpyNdarray(IODescriptor["ext.NpNDArray"]):
"""
:code:`NumpyNdarray` defines API specification for the inputs/outputs of a Service, where
either inputs will be converted to or outputs will be converted from type
:code:`numpy.ndarray` as specified in your API function signature.
Sample implementation of a sklearn service:
.. code-block:: python
# sklearn_svc.py
import bentoml
from bentoml.io import NumpyNdarray
import bentoml.sklearn
runner = bentoml.sklearn.load_runner("sklearn_model_clf")
svc = bentoml.Service("iris-classifier", runners=[runner])
@svc.api(input=NumpyNdarray(), output=NumpyNdarray())
def predict(input_arr):
res = runner.run(input_arr)
return res
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./sklearn_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-block:: bash
% curl -X POST -H "Content-Type: application/json" --data '[[5,4,3,2]]' http://0.0.0.0:3000/predict
[1]%
Args:
dtype (:code:`numpy.typings.DTypeLike`, `optional`, default to :code:`None`):
Data Type users wish to convert their inputs/outputs to. Refers to `arrays dtypes <https://numpy.org/doc/stable/reference/arrays.dtypes.html>`_ for more information.
enforce_dtype (:code:`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain data type. if :code:`enforce_dtype=True` then :code:`dtype` must be specified.
shape (:code:`Tuple[int, ...]`, `optional`, default to :code:`None`):
Given shape that an array will be converted to. For example:
.. code-block:: python
from bentoml.io import NumpyNdarray
@svc.api(input=NumpyNdarray(shape=(3,1), enforce_shape=True), output=NumpyNdarray())
def predict(input_array: np.ndarray) -> np.ndarray:
# input_array will have shape (3,1)
result = await runner.run(input_array)
enforce_shape (:code:`bool`, `optional`, default to :code:`False`):
Whether to enforce a certain shape. If `enforce_shape=True` then `shape`
must be specified
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that :code:`np.ndarray`.
"""
def __init__(
self,
dtype: t.Optional[t.Union[str, "np.dtype[t.Any]"]] = None,
enforce_dtype: bool = False,
shape: t.Optional[t.Tuple[int, ...]] = None,
enforce_shape: bool = False,
):
import numpy as np
if isinstance(dtype, str):
dtype = np.dtype(dtype)
self._dtype = dtype
self._shape = shape
self._enforce_dtype = enforce_dtype
self._enforce_shape = enforce_shape
def _infer_types(self) -> str: # pragma: no cover
if self._dtype is not None:
name = self._dtype.name
if name.startswith("int") or name.startswith("uint"):
var_type = "integer"
elif name.startswith("float") or name.startswith("complex"):
var_type = "number"
else:
var_type = "object"
else:
var_type = "object"
return var_type
def _items_schema(self) -> t.Dict[str, t.Any]:
if self._shape is not None:
if len(self._shape) > 1:
return {"type": "array", "items": {"type": self._infer_types()}}
return {"type": self._infer_types()}
return {}
def input_type(self) -> LazyType["ext.NpNDArray"]:
return LazyType("numpy", "ndarray")
def openapi_schema_type(self) -> t.Dict[str, t.Any]:
return {"type": "array", "items": self._items_schema()}
def openapi_request_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {MIME_TYPE_JSON: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {MIME_TYPE_JSON: {"schema": self.openapi_schema_type()}}
def _verify_ndarray(
self,
obj: "ext.NpNDArray",
exception_cls: t.Type[Exception] = BadInput,
) -> "ext.NpNDArray":
if self._dtype is not None and self._dtype != obj.dtype:
if self._enforce_dtype:
raise exception_cls(
f"{self.__class__.__name__}: enforced dtype mismatch"
)
try:
obj = obj.astype(self._dtype) # type: ignore
except ValueError as e:
logger.warning(f"{self.__class__.__name__}: {e}")
if self._shape is not None and not _is_matched_shape(self._shape, obj.shape):
if self._enforce_shape:
raise exception_cls(
f"{self.__class__.__name__}: enforced shape mismatch"
)
try:
obj = obj.reshape(self._shape)
except ValueError as e:
logger.warning(f"{self.__class__.__name__}: {e}")
return obj
async def from_http_request(self, request: Request) -> "ext.NpNDArray":
"""
Process incoming requests and convert incoming
objects to `numpy.ndarray`
Args:
request (`starlette.requests.Requests`):
Incoming Requests
Returns:
a `numpy.ndarray` object. This can then be used
inside users defined logics.
"""
import numpy as np
obj = await request.json()
res: "ext.NpNDArray"
try:
res = np.array(obj, dtype=self._dtype) # type: ignore[arg-type]
except ValueError:
res = np.array(obj) # type: ignore[arg-type]
res = self._verify_ndarray(res, BadInput)
return res
async def to_http_response(self, obj: ext.NpNDArray, ctx: Context | None = None):
"""
Process given objects and convert it to HTTP response.
Args:
obj (`np.ndarray`):
`np.ndarray` that will be serialized to JSON
Returns:
HTTP Response of type `starlette.responses.Response`. This can
be accessed via cURL or any external web traffic.
"""
obj = self._verify_ndarray(obj, InternalServerError)
if ctx is not None:
res = Response(
json.dumps(obj.tolist()),
media_type=MIME_TYPE_JSON,
headers=ctx.response.metadata, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(json.dumps(obj.tolist()), media_type=MIME_TYPE_JSON)
@classmethod
def from_sample(
cls,
sample_input: "ext.NpNDArray",
enforce_dtype: bool = True,
enforce_shape: bool = True,
) -> "NumpyNdarray":
"""
Create a NumpyNdarray IO Descriptor from given inputs.
Args:
sample_input (:code:`np.ndarray`): Given sample np.ndarray data
enforce_dtype (;code:`bool`, `optional`, default to :code:`True`):
Enforce a certain data type. :code:`dtype` must be specified at function
signature. If you don't want to enforce a specific dtype then change
:code:`enforce_dtype=False`.
enforce_shape (:code:`bool`, `optional`, default to :code:`False`):
Enforce a certain shape. :code:`shape` must be specified at function
signature. If you don't want to enforce a specific shape then change
:code:`enforce_shape=False`.
Returns:
:obj:`~bentoml._internal.io_descriptors.NumpyNdarray`: :code:`NumpyNdarray` IODescriptor from given users inputs.
Example:
.. code-block:: python
import numpy as np
from bentoml.io import NumpyNdarray
arr = [[1,2,3]]
inp = NumpyNdarray.from_sample(arr)
...
@svc.api(input=inp, output=NumpyNdarray())
def predict() -> np.ndarray:...
"""
return cls(
dtype=sample_input.dtype,
shape=sample_input.shape,
enforce_dtype=enforce_dtype,
enforce_shape=enforce_shape,
)
|
from __future__ import annotations
import io
import typing as t
import logging
from typing import TYPE_CHECKING
from starlette.requests import Request
from multipart.multipart import parse_options_header
from starlette.responses import Response
from starlette.datastructures import UploadFile
from .base import IODescriptor
from ..types import FileLike
from ..utils.http import set_cookies
from ...exceptions import BentoMLException
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from ..context import InferenceApiContext as Context
FileKind: t.TypeAlias = t.Literal["binaryio", "textio"]
FileType: t.TypeAlias = t.Union[io.IOBase, t.IO[bytes], FileLike[bytes]]
class File(IODescriptor[FileType]):
"""
:code:`File` defines API specification for the inputs/outputs of a Service, where either
inputs will be converted to or outputs will be converted from file-like objects as
specified in your API function signature.
Sample implementation of a ViT service:
.. code-block:: python
# vit_svc.py
import bentoml
from bentoml.io import File
svc = bentoml.Service("vit-object-detection")
@svc.api(input=File(), output=File())
def predict(input_pdf):
return input_pdf
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./vit_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "vit-object-detection" defined in "vit_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
files = {"upload_file": open('test.pdf', 'rb')},
headers = {"content-type": "multipart/form-data"}
).text
.. code-tab:: bash
% curl -H "Content-Type: multipart/form-data" -F '[email protected];type=application/pdf' http://0.0.0.0:3000/predict
Args:
mime_type (:code:`str`, `optional`, default to :code:`None`):
Return MIME type of the :code:`starlette.response.Response`, only available
when used as output descriptor
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that file-like objects.
"""
_mime_type: str
def __new__( # pylint: disable=arguments-differ # returning subclass from new
cls, kind: FileKind = "binaryio", mime_type: str | None = None
) -> File:
mime_type = mime_type if mime_type is not None else "application/octet-stream"
if kind == "binaryio":
res = object.__new__(BytesIOFile)
else:
raise ValueError(f"invalid File kind '{kind}'")
res._mime_type = mime_type
return res
def input_type(self) -> t.Type[t.Any]:
return FileLike[bytes]
def openapi_schema_type(self) -> dict[str, str]:
return {"type": "string", "format": "binary"}
def openapi_request_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
async def to_http_response(
self,
obj: FileType,
ctx: Context | None = None,
):
if isinstance(obj, bytes):
body = obj
else:
body = obj.read()
if ctx is not None:
res = Response(
body,
headers=ctx.response.metadata, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
else:
res = Response(body)
return res
class BytesIOFile(File):
async def from_http_request(self, request: Request) -> t.IO[bytes]:
content_type, _ = parse_options_header(request.headers["content-type"])
if content_type.decode("utf-8") == "multipart/form-data":
form = await request.form()
found_mimes: t.List[str] = []
val: t.Union[str, UploadFile]
for val in form.values(): # type: ignore
if isinstance(val, UploadFile):
found_mimes.append(val.content_type) # type: ignore (bad starlette types)
if val.content_type == self._mime_type: # type: ignore (bad starlette types)
res = FileLike[bytes](val.file, val.filename) # type: ignore (bad starlette types)
break
else:
if len(found_mimes) == 0:
raise BentoMLException("no File found in multipart form")
else:
raise BentoMLException(
f"multipart File should have Content-Type '{self._mime_type}', got files with content types {', '.join(found_mimes)}"
)
return res # type: ignore
if content_type.decode("utf-8") == self._mime_type:
body = await request.body()
return t.cast(t.IO[bytes], FileLike(io.BytesIO(body), "<request body>"))
raise BentoMLException(
f"File should have Content-Type '{self._mime_type}' or 'multipart/form-data', got {content_type} instead"
)
|
from __future__ import annotations
import typing as t
from typing import TYPE_CHECKING
from starlette.requests import Request
from starlette.responses import Response
from .base import IODescriptor
from ..utils.http import set_cookies
if TYPE_CHECKING:
from ..context import InferenceApiContext as Context
MIME_TYPE = "text/plain"
class Text(IODescriptor[str]):
"""
:code:`Text` defines API specification for the inputs/outputs of a Service. :code:`Text`
represents strings for all incoming requests/outcoming responses as specified in
your API function signature.
Sample implementation of a GPT2 service:
.. code-block:: python
# gpt2_svc.py
import bentoml
from bentoml.io import Text
import bentoml.transformers
# If you don't have a gpt2 model previously saved under BentoML modelstore
# tag = bentoml.transformers.import_from_huggingface_hub('gpt2')
runner = bentoml.transformers.load_runner('gpt2',tasks='text-generation')
svc = bentoml.Service("gpt2-generation", runners=[runner])
@svc.api(input=Text(), output=Text())
def predict(input_arr):
res = runner.run_batch(input_arr)
return res[0]['generated_text']
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./gpt2_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "gpt2-generation" defined in "gpt2_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-block:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
headers = {"content-type":"text/plain"},
data = 'Not for nothing did Orin say that people outdoors down here just scuttle in vectors from air conditioning to air conditioning.'
).text
.. code-block:: bash
% curl -X POST -H "Content-Type: text/plain" --data 'Not for nothing did Orin
say that people outdoors down here just scuttle in vectors from air
conditioning to air conditioning.' http://0.0.0.0:3000/predict
.. note::
`Text` is not designed to take any `args` or `kwargs` during initialization
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that strings type.
"""
def input_type(self) -> t.Type[str]:
return str
def openapi_schema_type(self) -> t.Dict[str, t.Any]:
return {"type": "string"}
def openapi_request_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {MIME_TYPE: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {MIME_TYPE: {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> str:
obj = await request.body()
return str(obj.decode("utf-8"))
async def to_http_response(self, obj: str, ctx: Context | None = None) -> Response:
if ctx is not None:
res = Response(
obj,
media_type=MIME_TYPE,
headers=ctx.response.metadata, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(obj, media_type=MIME_TYPE)
|
from __future__ import annotations
import json
import typing as t
import dataclasses
from typing import TYPE_CHECKING
from starlette.requests import Request
from starlette.responses import Response
from .base import IODescriptor
from ..types import LazyType
from ..utils.http import set_cookies
from ...exceptions import BadInput
from ...exceptions import MissingDependencyException
if TYPE_CHECKING:
from types import UnionType
import pydantic
from .. import external_typing as ext
from ..context import InferenceApiContext as Context
_SerializableObj: t.TypeAlias = t.Union[
"ext.NpNDArray",
"ext.PdDataFrame",
t.Type["pydantic.BaseModel"],
t.Any,
]
JSONType = t.Union[str, t.Dict[str, t.Any], "pydantic.BaseModel"]
MIME_TYPE_JSON = "application/json"
class DefaultJsonEncoder(json.JSONEncoder): # pragma: no cover
def default(self, o: _SerializableObj) -> t.Any:
if dataclasses.is_dataclass(o):
return dataclasses.asdict(o)
if LazyType["ext.NpNDArray"]("numpy.ndarray").isinstance(o):
return o.tolist()
if LazyType["ext.NpGeneric"]("numpy.generic").isinstance(o):
return o.item()
if LazyType["ext.PdDataFrame"]("pandas.DataFrame").isinstance(o):
return o.to_dict() # type: ignore
if LazyType["ext.PdSeries"]("pandas.Series").isinstance(o):
return o.to_dict() # type: ignore
if LazyType["pydantic.BaseModel"]("pydantic.BaseModel").isinstance(o):
obj_dict = o.dict()
if "__root__" in obj_dict:
obj_dict = obj_dict.get("__root__")
return obj_dict
return super().default(o)
class JSON(IODescriptor[JSONType]):
"""
:code:`JSON` defines API specification for the inputs/outputs of a Service, where either
inputs will be converted to or outputs will be converted from a JSON representation
as specified in your API function signature.
Sample implementation of a sklearn service:
.. code-block:: python
# sklearn_svc.py
import pandas as pd
import numpy as np
from bentoml.io import PandasDataFrame, JSON
import bentoml.sklearn
input_spec = PandasDataFrame.from_sample(pd.DataFrame(np.array([[5,4,3,2]])))
runner = bentoml.sklearn.load_runner("sklearn_model_clf")
svc = bentoml.Service("iris-classifier", runners=[runner])
@svc.api(input=input_spec, output=JSON())
def predict(input_arr: pd.DataFrame):
res = runner.run_batch(input_arr) # type: np.ndarray
return {"res":pd.DataFrame(res).to_json(orient='record')}
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./sklearn_svc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
headers={"content-type": "application/json"},
data='[{"0":5,"1":4,"2":3,"3":2}]'
).text
.. code-tab:: bash
% curl -X POST -H "Content-Type: application/json" --data '[{"0":5,"1":4,"2":3,"3":2}]' http://0.0.0.0:3000/predict
{"res":"[{\"0\":1}]"}%
Args:
pydantic_model (:code:`pydantic.BaseModel`, `optional`, default to :code:`None`):
Pydantic model schema.
validate_json (:code:`bool`, `optional`, default to :code:`True`): If True, then use
Pydantic model specified above to validate given JSON.
json_encoder (:code:`Type[json.JSONEncoder]`, default to :code:`~bentoml._internal.io_descriptor.json.DefaultJsonEncoder`):
JSON encoder class.
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that in JSON format.
"""
def __init__(
self,
pydantic_model: t.Type[pydantic.BaseModel] | None = None,
validate_json: bool = True,
json_encoder: t.Type[json.JSONEncoder] = DefaultJsonEncoder,
):
if pydantic_model is not None:
try:
import pydantic
except ImportError:
raise MissingDependencyException(
"`pydantic` must be installed to use `pydantic_model`"
)
assert issubclass(
pydantic_model, pydantic.BaseModel
), "`pydantic_model` must be a subclass of `pydantic.BaseModel`"
self._pydantic_model = pydantic_model
self._validate_json = validate_json
self._json_encoder = json_encoder
def input_type(self) -> "UnionType":
return JSONType
def openapi_schema_type(self) -> t.Dict[str, t.Any]:
if self._pydantic_model is None:
return {"type": "object"}
return self._pydantic_model.schema()
def openapi_request_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {MIME_TYPE_JSON: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> t.Dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {MIME_TYPE_JSON: {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> JSONType:
json_str = await request.body()
if self._pydantic_model is not None and self._validate_json:
try:
import pydantic
except ImportError:
raise MissingDependencyException(
"`pydantic` must be installed to use `pydantic_model`"
) from None
try:
pydantic_model = self._pydantic_model.parse_raw(json_str)
return pydantic_model
except pydantic.ValidationError as e:
raise BadInput(f"Json validation error: {e}") from None
else:
try:
return json.loads(json_str)
except json.JSONDecodeError as e:
raise BadInput(f"Json validation error: {e}") from None
async def to_http_response(self, obj: JSONType, ctx: Context | None = None):
json_str = json.dumps(
obj,
cls=self._json_encoder,
ensure_ascii=False,
allow_nan=False,
indent=None,
separators=(",", ":"),
)
if ctx is not None:
res = Response(
json_str,
media_type=MIME_TYPE_JSON,
headers=ctx.response.metadata, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(json_str, media_type=MIME_TYPE_JSON)
|
from __future__ import annotations
import io
import typing as t
from typing import TYPE_CHECKING
from urllib.parse import quote
from starlette.requests import Request
from multipart.multipart import parse_options_header
from starlette.responses import Response
from .base import IODescriptor
from ..types import LazyType
from ..utils import LazyLoader
from ..utils.http import set_cookies
from ...exceptions import BadInput
from ...exceptions import InvalidArgument
from ...exceptions import InternalServerError
if TYPE_CHECKING:
from types import UnionType
import PIL.Image
from .. import external_typing as ext
from ..context import InferenceApiContext as Context
_Mode = t.Literal[
"1", "CMYK", "F", "HSV", "I", "L", "LAB", "P", "RGB", "RGBA", "RGBX", "YCbCr"
]
else:
# NOTE: pillow-simd only benefits users who want to do preprocessing
# TODO: add options for users to choose between simd and native mode
_exc = f"""\
`Pillow` is required to use {__name__}
Instructions: `pip install -U Pillow`
"""
PIL = LazyLoader("PIL", globals(), "PIL", exc_msg=_exc)
PIL.Image = LazyLoader("PIL.Image", globals(), "PIL.Image", exc_msg=_exc)
# NOTES: we will keep type in quotation to avoid backward compatibility
# with numpy < 1.20, since we will use the latest stubs from the main branch of numpy.
# that enable a new way to type hint an ndarray.
ImageType: t.TypeAlias = t.Union["PIL.Image.Image", "ext.NpNDArray"]
DEFAULT_PIL_MODE = "RGB"
class Image(IODescriptor[ImageType]):
"""
:code:`Image` defines API specification for the inputs/outputs of a Service, where either
inputs will be converted to or outputs will be converted from images as specified
in your API function signature.
Sample implementation of a transformers service for object detection:
.. code-block:: python
#obj_detc.py
import bentoml
from bentoml.io import Image, JSON
import bentoml.transformers
tag='google_vit_large_patch16_224:latest'
runner = bentoml.transformers.load_runner(tag, tasks='image-classification',
device=-1,
feature_extractor="google/vit-large-patch16-224")
svc = bentoml.Service("vit-object-detection", runners=[runner])
@svc.api(input=Image(), output=JSON())
def predict(input_img):
res = runner.run_batch(input_img)
return res
Users then can then serve this service with :code:`bentoml serve`:
.. code-block:: bash
% bentoml serve ./obj_detc.py:svc --auto-reload
(Press CTRL+C to quit)
[INFO] Starting BentoML API server in development mode with auto-reload enabled
[INFO] Serving BentoML Service "vit-object-detection" defined in "obj_detc.py"
[INFO] API Server running on http://0.0.0.0:3000
Users can then send requests to the newly started services with any client:
.. tabs::
.. code-tab:: python
import requests
requests.post(
"http://0.0.0.0:3000/predict",
files = {"upload_file": open('test.jpg', 'rb')},
headers = {"content-type": "multipart/form-data"}
).text
.. code-tab:: bash
# we will run on our input image test.png
# image can get from http://images.cocodataset.org/val2017/000000039769.jpg
% curl -H "Content-Type: multipart/form-data" -F '[email protected];type=image/jpeg' http://0.0.0.0:3000/predict
[{"score":0.8610631227493286,"label":"Egyptian cat"},
{"score":0.08770329505205154,"label":"tabby, tabby cat"},
{"score":0.03540956228971481,"label":"tiger cat"},
{"score":0.004140055272728205,"label":"lynx, catamount"},
{"score":0.0009498853469267488,"label":"Siamese cat, Siamese"}]%
Args:
pilmode (:code:`str`, `optional`, default to :code:`RGB`):
Color mode for PIL.
mime_type (:code:`str`, `optional`, default to :code:`image/jpeg`):
Return MIME type of the :code:`starlette.response.Response`, only available
when used as output descriptor.
Returns:
:obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that either a :code:`PIL.Image.Image` or a :code:`np.ndarray`
representing an image.
""" # noqa
MIME_EXT_MAPPING: t.Dict[str, str] = {}
def __init__(
self,
pilmode: _Mode | None = DEFAULT_PIL_MODE,
mime_type: str = "image/jpeg",
):
try:
import PIL.Image
except ImportError:
raise InternalServerError(
"`Pillow` is required to use {__name__}\n Instructions: `pip install -U Pillow`"
)
PIL.Image.init()
self.MIME_EXT_MAPPING.update({v: k for k, v in PIL.Image.MIME.items()})
if mime_type.lower() not in self.MIME_EXT_MAPPING: # pragma: no cover
raise InvalidArgument(
f"Invalid Image mime_type '{mime_type}', "
f"Supported mime types are {', '.join(PIL.Image.MIME.values())} "
)
if pilmode is not None and pilmode not in PIL.Image.MODES: # pragma: no cover
raise InvalidArgument(
f"Invalid Image pilmode '{pilmode}', "
f"Supported PIL modes are {', '.join(PIL.Image.MODES)} "
)
self._mime_type = mime_type.lower()
self._pilmode: _Mode | None = pilmode
self._format = self.MIME_EXT_MAPPING[mime_type]
def input_type(self) -> UnionType:
return ImageType
def openapi_schema_type(self) -> dict[str, str]:
return {"type": "string", "format": "binary"}
def openapi_request_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for incoming requests"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
def openapi_responses_schema(self) -> dict[str, t.Any]:
"""Returns OpenAPI schema for outcoming responses"""
return {self._mime_type: {"schema": self.openapi_schema_type()}}
async def from_http_request(self, request: Request) -> ImageType:
content_type, _ = parse_options_header(request.headers["content-type"])
mime_type = content_type.decode().lower()
if mime_type == "multipart/form-data":
form = await request.form()
bytes_ = await next(iter(form.values())).read()
elif mime_type.startswith("image/") or mime_type == self._mime_type:
bytes_ = await request.body()
else:
raise BadInput(
f"{self.__class__.__name__} should get `multipart/form-data`, "
f"`{self._mime_type}` or `image/*`, got {content_type} instead"
)
return PIL.Image.open(io.BytesIO(bytes_))
async def init_http_response(self) -> Response:
return Response(None, media_type=self._mime_type)
async def to_http_response(
self, obj: ImageType, ctx: Context | None = None
) -> Response:
if LazyType["ext.NpNDArray"]("numpy.ndarray").isinstance(obj):
image = PIL.Image.fromarray(obj, mode=self._pilmode)
elif LazyType[PIL.Image.Image]("PIL.Image.Image").isinstance(obj):
image = obj
else:
raise InternalServerError(
f"Unsupported Image type received: {type(obj)}, `{self.__class__.__name__}`"
" only supports `np.ndarray` and `PIL.Image`"
)
filename = f"output.{self._format.lower()}"
ret = io.BytesIO()
image.save(ret, format=self._format)
# rfc2183
content_disposition_filename = quote(filename)
if content_disposition_filename != filename:
content_disposition = "attachment; filename*=utf-8''{}".format(
content_disposition_filename
)
else:
content_disposition = f'attachment; filename="{filename}"'
if ctx is not None:
if "content-disposition" not in ctx.response.headers:
ctx.response.headers["content-disposition"] = content_disposition
res = Response(
ret.getvalue(),
media_type=self._mime_type,
headers=ctx.response.headers, # type: ignore (bad starlette types)
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(
ret.getvalue(),
media_type=self._mime_type,
headers={"content-disposition": content_disposition},
)
|
from __future__ import annotations
import typing as t
from abc import ABC
from abc import abstractmethod
from typing import TYPE_CHECKING
from starlette.requests import Request
from starlette.responses import Response
if TYPE_CHECKING:
from types import UnionType
from ..types import LazyType
from ..context import InferenceApiContext as Context
IOPyObj = t.TypeVar("IOPyObj")
_T = t.TypeVar("_T")
class IODescriptor(ABC, t.Generic[IOPyObj]):
"""
IODescriptor describes the input/output data format of an InferenceAPI defined
in a :code:`bentoml.Service`. This is an abstract base class for extending new HTTP
endpoint IO descriptor types in BentoServer.
"""
HTTP_METHODS = ["POST"]
_init_str: str = ""
def __new__(cls: t.Type[_T], *args: t.Any, **kwargs: t.Any) -> _T:
self = super().__new__(cls)
arg_strs = tuple(repr(i) for i in args) + tuple(
f"{k}={repr(v)}" for k, v in kwargs.items()
)
setattr(self, "_init_str", f"{cls.__name__}({', '.join(arg_strs)})")
return self
def __repr__(self) -> str:
return self._init_str
@abstractmethod
def input_type(
self,
) -> t.Union[
"UnionType",
t.Type[t.Any],
"LazyType[t.Any]",
t.Dict[str, t.Union[t.Type[t.Any], "UnionType", "LazyType[t.Any]"]],
]:
...
@abstractmethod
def openapi_schema_type(self) -> t.Dict[str, str]:
...
@abstractmethod
def openapi_request_schema(self) -> t.Dict[str, t.Any]:
...
@abstractmethod
def openapi_responses_schema(self) -> t.Dict[str, t.Any]:
...
@abstractmethod
async def from_http_request(self, request: Request) -> IOPyObj:
...
@abstractmethod
async def to_http_response(
self, obj: IOPyObj, ctx: Context | None = None
) -> Response:
...
# TODO: gRPC support
# @abstractmethod
# def generate_protobuf(self): ...
# @abstractmethod
# async def from_grpc_request(self, request: GRPCRequest) -> IOType: ...
# @abstractmethod
# async def to_grpc_response(self, obj: IOType) -> GRPCResponse: ...
|
import abc
import typing as t
import logging
from typing import TYPE_CHECKING
from starlette.responses import PlainTextResponse
from starlette.exceptions import HTTPException
if TYPE_CHECKING:
from starlette.routing import BaseRoute
from starlette.requests import Request
from starlette.responses import Response
from starlette.middleware import Middleware
from starlette.applications import Starlette
logger = logging.getLogger(__name__)
class BaseAppFactory(abc.ABC):
_is_ready: bool = False
@property
@abc.abstractmethod
def name(self) -> str:
...
@property
def on_startup(self) -> t.List[t.Callable[[], None]]:
return [self.mark_as_ready]
@property
def on_shutdown(self) -> t.List[t.Callable[[], None]]:
return []
def mark_as_ready(self) -> None:
self._is_ready = True
async def livez(self, _: "Request") -> "Response":
"""
Health check for BentoML API server.
Make sure it works with Kubernetes liveness probe
"""
return PlainTextResponse("\n", status_code=200)
async def readyz(self, _: "Request") -> "Response":
if self._is_ready:
return PlainTextResponse("\n", status_code=200)
raise HTTPException(500)
def __call__(self) -> "Starlette":
from starlette.applications import Starlette
from bentoml._internal.configuration import get_debug_mode
return Starlette(
debug=get_debug_mode(),
routes=self.routes,
middleware=self.middlewares,
on_startup=self.on_startup,
on_shutdown=self.on_shutdown,
)
@property
def routes(self) -> t.List["BaseRoute"]:
from starlette.routing import Route
routes: t.List["BaseRoute"] = []
routes.append(Route(path="/livez", name="livez", endpoint=self.livez))
routes.append(Route(path="/healthz", name="healthz", endpoint=self.livez))
routes.append(Route(path="/readyz", name="readyz", endpoint=self.readyz))
return routes
@property
def middlewares(self) -> t.List["Middleware"]:
return []
|
from __future__ import annotations
import json
import typing as t
import asyncio
import logging
import functools
from typing import TYPE_CHECKING
from functools import partial
from ..trace import ServiceContext
from ..runner.utils import PAYLOAD_META_HEADER
from ..runner.utils import multipart_to_payload_params
from ..runner.utils import payload_paramss_to_batch_params
from ..server.base_app import BaseAppFactory
from ..runner.container import AutoContainer
from ..marshal.dispatcher import CorkDispatcher
from ..configuration.containers import DeploymentContainer
feedback_logger = logging.getLogger("bentoml.feedback")
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from starlette.routing import BaseRoute
from starlette.requests import Request
from starlette.responses import Response
from starlette.middleware import Middleware
from opentelemetry.sdk.trace import Span
from ..runner.runner import Runner
from ..runner.runner import RunnerMethod
class RunnerAppFactory(BaseAppFactory):
def __init__(
self,
runner: Runner,
worker_index: int = 0,
) -> None:
self.runner = runner
self.worker_index = worker_index
from starlette.responses import Response
TooManyRequests = partial(Response, status_code=429)
self.dispatchers: dict[str, CorkDispatcher] = {}
for method in runner.runner_methods:
if not method.config.batchable:
continue
self.dispatchers[method.name] = CorkDispatcher(
max_latency_in_ms=method.max_latency_ms,
max_batch_size=method.max_batch_size,
fallback=TooManyRequests,
)
@property
def name(self) -> str:
return self.runner.name
@property
def on_startup(self) -> t.List[t.Callable[[], None]]:
on_startup = super().on_startup
on_startup.insert(0, functools.partial(self.runner.init_local, quiet=True))
on_startup.insert(
0,
functools.partial(
self.runner.setup_worker,
worker_id=self.worker_index,
),
)
return on_startup
@property
def on_shutdown(self) -> t.List[t.Callable[[], None]]:
on_shutdown = [self.runner.destroy]
for dispatcher in self.dispatchers.values():
on_shutdown.append(dispatcher.shutdown)
on_shutdown.extend(super().on_shutdown)
return on_shutdown
@property
def routes(self) -> t.List[BaseRoute]:
"""
Setup routes for Runner server, including:
/healthz liveness probe endpoint
/readyz Readiness probe endpoint
/metrics Prometheus metrics endpoint
/run
/run_batch
"""
from starlette.routing import Route
routes = super().routes
for method in self.runner.runner_methods:
path = "/" if method.name == "__call__" else "/" + method.name
if method.config.batchable:
_func = self.dispatchers[method.name](
self._async_cork_run(runner_method=method)
)
routes.append(
Route(
path=path,
endpoint=_func,
methods=["POST"],
)
)
else:
routes.append(
Route(
path=path,
endpoint=self.async_run(runner_method=method),
methods=["POST"],
)
)
return routes
@property
def middlewares(self) -> list[Middleware]:
middlewares = super().middlewares
# otel middleware
import opentelemetry.instrumentation.asgi as otel_asgi # type: ignore[import]
from starlette.middleware import Middleware
def client_request_hook(span: Span, _scope: t.Dict[str, t.Any]) -> None:
if span is not None:
span_id: int = span.context.span_id
ServiceContext.request_id_var.set(span_id)
def client_response_hook(span: Span, _message: t.Any) -> None:
if span is not None:
ServiceContext.request_id_var.set(None)
middlewares.append(
Middleware(
otel_asgi.OpenTelemetryMiddleware,
excluded_urls=None,
default_span_details=None,
server_request_hook=None,
client_request_hook=client_request_hook,
client_response_hook=client_response_hook,
tracer_provider=DeploymentContainer.tracer_provider.get(),
)
)
access_log_config = DeploymentContainer.runners_config.logging.access
if access_log_config.enabled.get():
from .access import AccessLogMiddleware
access_logger = logging.getLogger("bentoml.access")
if access_logger.getEffectiveLevel() <= logging.INFO:
middlewares.append(
Middleware(
AccessLogMiddleware,
has_request_content_length=access_log_config.request_content_length.get(),
has_request_content_type=access_log_config.request_content_type.get(),
has_response_content_length=access_log_config.response_content_length.get(),
has_response_content_type=access_log_config.response_content_type.get(),
)
)
return middlewares
def _async_cork_run(
self,
runner_method: RunnerMethod[t.Any, t.Any, t.Any],
) -> t.Callable[[t.Iterable[Request]], t.Coroutine[None, None, list[Response]]]:
from starlette.responses import Response
async def _run(requests: t.Iterable[Request]) -> list[Response]:
assert self._is_ready
if not requests:
return []
params_list = await asyncio.gather(
*tuple(multipart_to_payload_params(r) for r in requests)
)
input_batch_dim, output_batch_dim = runner_method.config.batch_dim
batched_params, indices = payload_paramss_to_batch_params(
params_list,
input_batch_dim,
)
batch_ret = await runner_method.async_run(
*batched_params.args,
**batched_params.kwargs,
)
payloads = AutoContainer.batch_to_payloads(
batch_ret,
indices,
batch_dim=output_batch_dim,
)
return [
Response(
payload.data,
headers={
PAYLOAD_META_HEADER: json.dumps(payload.meta),
"Content-Type": f"application/vnd.bentoml.{payload.container}",
"Server": f"BentoML-Runner/{self.runner.name}/{runner_method.name}/{self.worker_index}",
},
)
for payload in payloads
]
return _run
def async_run(
self,
runner_method: RunnerMethod[t.Any, t.Any, t.Any],
) -> t.Callable[[Request], t.Coroutine[None, None, Response]]:
from starlette.responses import Response
async def _run(request: Request) -> Response:
assert self._is_ready
params = await multipart_to_payload_params(request)
params = params.map(AutoContainer.from_payload)
ret = await runner_method.async_run(*params.args, **params.kwargs)
payload = AutoContainer.to_payload(ret, 0)
return Response(
payload.data,
headers={
PAYLOAD_META_HEADER: json.dumps(payload.meta),
"Content-Type": f"application/vnd.bentoml.{payload.container}",
"Server": f"BentoML-Runner/{self.runner.name}/{runner_method.name}/{self.worker_index}",
},
)
return _run
|
from __future__ import annotations
import os
import sys
import typing as t
import asyncio
import logging
import functools
from typing import TYPE_CHECKING
from simple_di import inject
from simple_di import Provide
from ..context import trace_context
from ..context import InferenceApiContext as Context
from ...exceptions import BentoMLException
from ..server.base_app import BaseAppFactory
from ..service.service import Service
from ..configuration.containers import DeploymentContainer
from ..io_descriptors.multipart import Multipart
if TYPE_CHECKING:
from starlette.routing import BaseRoute
from starlette.requests import Request
from starlette.responses import Response
from starlette.middleware import Middleware
from starlette.applications import Starlette
from opentelemetry.sdk.trace import Span
from ..service.inference_api import InferenceAPI
feedback_logger = logging.getLogger("bentoml.feedback")
logger = logging.getLogger(__name__)
DEFAULT_INDEX_HTML = """\
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Swagger UI</title>
<link rel="stylesheet" type="text/css" href="./static_content/swagger-ui.css" />
<link rel="stylesheet" type="text/css" href="./static_content/index.css" />
<link rel="icon" type="image/png" href="./static_content/favicon-32x32.png" sizes="32x32" />
<link rel="icon" type="image/png" href="./static_content/favicon-96x96.png" sizes="96x96" />
</head>
<body>
<div id="swagger-ui"></div>
<script src="./static_content/swagger-ui-bundle.js" charset="UTF-8"> </script>
<script src="./static_content/swagger-ui-standalone-preset.js" charset="UTF-8"> </script>
<script src="./static_content/swagger-initializer.js" charset="UTF-8"> </script>
</body>
</html>
"""
def log_exception(request: Request, exc_info: t.Any) -> None:
"""
Logs an exception. This is called by :meth:`handle_exception`
if debugging is disabled and right before the handler is called.
The default implementation logs the exception as error on the
:attr:`logger`.
"""
logger.error(
"Exception on %s [%s]", request.url.path, request.method, exc_info=exc_info
)
class ServiceAppFactory(BaseAppFactory):
"""
ServiceApp creates a REST API server based on APIs defined with a BentoService
via BentoService#apis. Each InferenceAPI will become one
endpoint exposed on the REST server, and the RequestHandler defined on each
InferenceAPI object will be used to handle Request object before feeding the
request data into a Service API function
"""
@inject
def __init__(
self,
bento_service: Service,
enable_access_control: bool = Provide[
DeploymentContainer.api_server_config.cors.enabled
],
access_control_options: dict[str, list[str] | int] = Provide[
DeploymentContainer.access_control_options
],
enable_metrics: bool = Provide[
DeploymentContainer.api_server_config.metrics.enabled
],
) -> None:
self.bento_service = bento_service
self.enable_access_control = enable_access_control
self.access_control_options = access_control_options
self.enable_metrics = enable_metrics
@property
def name(self) -> str:
return self.bento_service.name
async def index_view_func(self, _: Request) -> Response:
"""
The default index view for BentoML API server. This includes the readme
generated from docstring and swagger UI
"""
from starlette.responses import Response
return Response(
content=DEFAULT_INDEX_HTML.format(readme=self.bento_service.doc),
status_code=200,
media_type="text/html",
)
async def docs_view_func(self, _: Request) -> Response:
from starlette.responses import JSONResponse
docs = self.bento_service.openapi_doc()
return JSONResponse(docs)
@property
def routes(self) -> list[BaseRoute]:
"""
Setup routes for bento model server, including:
/ Index Page, shows readme docs, metadata, and Swagger UI
/docs.json Returns Swagger/OpenAPI definition file in json format
/healthz liveness probe endpoint
/readyz Readiness probe endpoint
/metrics Prometheus metrics endpoint
And user defined InferenceAPI list into routes, e.g.:
/classify
/predict
"""
from starlette.routing import Mount
from starlette.routing import Route
from starlette.staticfiles import StaticFiles
routes = super().routes
routes.append(Route(path="/", name="home", endpoint=self.index_view_func))
routes.append(
Route(
path="/docs.json",
name="docs",
endpoint=self.docs_view_func,
)
)
parent_dir_path = os.path.dirname(os.path.realpath(__file__))
routes.append(
Mount(
"/static_content",
app=StaticFiles(
directory=os.path.join(parent_dir_path, "static_content")
),
name="static_content",
)
)
for _, api in self.bento_service.apis.items():
api_route_endpoint = self._create_api_endpoint(api)
routes.append(
Route(
path="/{}".format(api.route),
name=api.name,
endpoint=api_route_endpoint,
methods=api.input.HTTP_METHODS,
)
)
return routes
@property
def middlewares(self) -> list[Middleware]:
middlewares = super().middlewares
from starlette.middleware import Middleware
for middleware_cls, options in self.bento_service.middlewares:
middlewares.append(Middleware(middleware_cls, **options))
if self.enable_access_control:
assert (
self.access_control_options.get("allow_origins") is not None
), "To enable cors, access_control_allow_origin must be set"
from starlette.middleware.cors import CORSMiddleware
middlewares.append(
Middleware(CORSMiddleware, **self.access_control_options)
)
# metrics middleware
if self.enable_metrics:
from .instruments import MetricsMiddleware
middlewares.append(
Middleware(
MetricsMiddleware,
bento_service=self.bento_service,
)
)
# otel middleware
import opentelemetry.instrumentation.asgi as otel_asgi # type: ignore
def client_request_hook(span: Span, _scope: dict[str, t.Any]) -> None:
if span is not None:
trace_context.request_id = span.context.span_id
def client_response_hook(span: Span, _message: t.Any) -> None:
if span is not None:
del trace_context.request_id
middlewares.append(
Middleware(
otel_asgi.OpenTelemetryMiddleware,
excluded_urls=None,
default_span_details=None,
server_request_hook=None,
client_request_hook=client_request_hook,
client_response_hook=client_response_hook,
tracer_provider=DeploymentContainer.tracer_provider.get(),
)
)
access_log_config = DeploymentContainer.api_server_config.logging.access
if access_log_config.enabled.get():
from .access import AccessLogMiddleware
access_logger = logging.getLogger("bentoml.access")
if access_logger.getEffectiveLevel() <= logging.INFO:
middlewares.append(
Middleware(
AccessLogMiddleware,
has_request_content_length=access_log_config.request_content_length.get(),
has_request_content_type=access_log_config.request_content_type.get(),
has_response_content_length=access_log_config.response_content_length.get(),
has_response_content_type=access_log_config.response_content_type.get(),
)
)
return middlewares
@property
def on_startup(self) -> list[t.Callable[[], None]]:
on_startup = [self.bento_service.on_asgi_app_startup]
if DeploymentContainer.development_mode.get():
for runner in self.bento_service.runners:
on_startup.append(functools.partial(runner.init_local, quiet=True))
else:
for runner in self.bento_service.runners:
on_startup.append(runner.init_client)
on_startup.extend(super().on_startup)
return on_startup
@property
def on_shutdown(self) -> list[t.Callable[[], None]]:
on_shutdown = [self.bento_service.on_asgi_app_shutdown]
for runner in self.bento_service.runners:
on_shutdown.append(runner.destroy)
on_shutdown.extend(super().on_shutdown)
return on_shutdown
def __call__(self) -> Starlette:
app = super().__call__()
for mount_app, path, name in self.bento_service.mount_apps:
app.mount(app=mount_app, path=path, name=name)
return app
@staticmethod
def _create_api_endpoint(
api: InferenceAPI,
) -> t.Callable[[Request], t.Coroutine[t.Any, t.Any, Response]]:
"""
Create api function for flask route, it wraps around user defined API
callback and adapter class, and adds request logging and instrument metrics
"""
from starlette.responses import JSONResponse
from starlette.concurrency import run_in_threadpool # type: ignore
async def api_func(request: Request) -> Response:
# handle_request may raise 4xx or 5xx exception.
try:
input_data = await api.input.from_http_request(request)
ctx = None
if asyncio.iscoroutinefunction(api.func):
if isinstance(api.input, Multipart):
if api.needs_ctx:
ctx = Context.from_http(request)
input_data[api.ctx_param] = ctx
output = await api.func(**input_data)
else:
if api.needs_ctx:
ctx = Context.from_http(request)
output = await api.func(input_data, ctx)
else:
output = await api.func(input_data)
else:
if isinstance(api.input, Multipart):
if api.needs_ctx:
ctx = Context.from_http(request)
input_data[api.ctx_param] = ctx
output: t.Any = await run_in_threadpool(api.func, **input_data)
else:
if api.needs_ctx:
ctx = Context.from_http(request)
output = await run_in_threadpool(api.func, input_data, ctx)
else:
output = await run_in_threadpool(api.func, input_data)
response = await api.output.to_http_response(output, ctx)
except BentoMLException as e:
log_exception(request, sys.exc_info())
status = e.error_code.value
if 400 <= status < 500 and status not in (401, 403):
response = JSONResponse(
content="BentoService error handling API request: %s" % str(e),
status_code=status,
)
else:
response = JSONResponse("", status_code=status)
except Exception: # pylint: disable=broad-except
# For all unexpected error, return 500 by default. For example,
# if users' model raises an error of division by zero.
log_exception(request, sys.exc_info())
response = JSONResponse(
"An error has occurred in BentoML user code when handling this request, find the error details in server logs",
status_code=500,
)
return response
return api_func
|
import logging
from timeit import default_timer
from typing import TYPE_CHECKING
from contextvars import ContextVar
if TYPE_CHECKING:
from .. import external_typing as ext
REQ_CONTENT_LENGTH = "REQUEST_CONTENT_LENGTH"
REQ_CONTENT_TYPE = "REQUEST_CONTENT_TYPE"
RESP_CONTENT_LENGTH = "RESPONSE_CONTENT_LENGTH"
RESP_CONTENT_TYPE = "RESPONSE_CONTENT_TYPE"
CONTENT_LENGTH = b"content-length"
CONTENT_TYPE = b"content-type"
status: ContextVar[int] = ContextVar("ACCESS_LOG_STATUS_CODE")
request_content_length: ContextVar[bytes] = ContextVar(
"ACCESS_LOG_REQ_CONTENT_LENGTH",
default=b"",
)
request_content_type: ContextVar[bytes] = ContextVar(
"ACCESS_LOG_REQ_CONTENT_TYPE",
default=b"",
)
response_content_length: ContextVar[bytes] = ContextVar(
"ACCESS_LOG_RESP_CONTENT_LENGTH",
default=b"",
)
response_content_type: ContextVar[bytes] = ContextVar(
"ACCESS_LOG_RESP_CONTENT_TYPE",
default=b"",
)
class AccessLogMiddleware:
"""
ASGI Middleware implementation that intercepts and decorates the send
and receive callables to generate the BentoML access log.
"""
def __init__(
self,
app: "ext.ASGIApp",
has_request_content_length: bool = False,
has_request_content_type: bool = False,
has_response_content_length: bool = False,
has_response_content_type: bool = False,
) -> None:
self.app = app
self.has_request_content_length = has_request_content_length
self.has_request_content_type = has_request_content_type
self.has_response_content_length = has_response_content_length
self.has_response_content_type = has_response_content_type
self.logger = logging.getLogger("bentoml.access")
async def __call__(
self,
scope: "ext.ASGIScope",
receive: "ext.ASGIReceive",
send: "ext.ASGISend",
) -> None:
if not scope["type"].startswith("http"):
await self.app(scope, receive, send)
return
start = default_timer()
client = scope["client"]
scheme = scope["scheme"]
method = scope["method"]
path = scope["path"]
if self.has_request_content_length or self.has_request_content_type:
for key, value in scope["headers"]:
if key == CONTENT_LENGTH:
request_content_length.set(value)
elif key == CONTENT_TYPE:
request_content_type.set(value)
async def wrapped_send(message: "ext.ASGIMessage") -> None:
if message["type"] == "http.response.start":
status.set(message["status"])
if self.has_response_content_length or self.has_response_content_type:
for key, value in message["headers"]:
if key == CONTENT_LENGTH:
response_content_length.set(value)
elif key == CONTENT_TYPE:
response_content_type.set(value)
elif message["type"] == "http.response.body":
if "more_body" in message and message["more_body"]:
await send(message)
return
if client:
address = f"{client[0]}:{client[1]}"
else:
address = "_"
request = [f"scheme={scheme}", f"method={method}", f"path={path}"]
if self.has_request_content_type:
request.append(f"type={request_content_type.get().decode()}")
if self.has_request_content_length:
request.append(f"length={request_content_length.get().decode()}")
response = [f"status={status.get()}"]
if self.has_response_content_type:
response.append(f"type={response_content_type.get().decode()}")
if self.has_response_content_length:
response.append(f"length={response_content_length.get().decode()}")
latency = max(default_timer() - start, 0)
self.logger.info(
"%s (%s) (%s) %.3fms",
address,
",".join(request),
",".join(response),
latency,
)
await send(message)
await self.app(scope, receive, wrapped_send)
|
import os
import sys
import json
import math
import shutil
import typing as t
import logging
import tempfile
import contextlib
import psutil
from simple_di import inject
from simple_di import Provide
from bentoml import load
from ..utils import reserve_free_port
from ..utils.uri import path_to_uri
from ..utils.circus import create_standalone_arbiter
from ..runner.resource import query_cpu_count
from ..utils.analytics import track_serve
from ..configuration.containers import DeploymentContainer
logger = logging.getLogger(__name__)
SCRIPT_RUNNER = "bentoml._internal.server.cli.runner"
SCRIPT_API_SERVER = "bentoml._internal.server.cli.api_server"
SCRIPT_DEV_API_SERVER = "bentoml._internal.server.cli.dev_api_server"
SCRIPT_NGROK = "bentoml._internal.server.cli.ngrok"
@inject
def ensure_prometheus_dir(
prometheus_multiproc_dir: str = Provide[
DeploymentContainer.prometheus_multiproc_dir
],
clean: bool = True,
):
if os.path.exists(prometheus_multiproc_dir):
if not os.path.isdir(prometheus_multiproc_dir):
shutil.rmtree(prometheus_multiproc_dir)
elif clean or os.listdir(prometheus_multiproc_dir):
shutil.rmtree(prometheus_multiproc_dir)
os.makedirs(prometheus_multiproc_dir, exist_ok=True)
@inject
def serve_development(
bento_identifier: str,
working_dir: str,
port: int = Provide[DeploymentContainer.api_server_config.port],
host: str = Provide[DeploymentContainer.api_server_config.host],
backlog: int = Provide[DeploymentContainer.api_server_config.backlog],
with_ngrok: bool = False,
reload: bool = False,
reload_delay: float = 0.25,
) -> None:
working_dir = os.path.realpath(os.path.expanduser(working_dir))
svc = load(bento_identifier, working_dir=working_dir) # verify service loading
from circus.sockets import CircusSocket # type: ignore
from circus.watcher import Watcher # type: ignore
watchers: t.List[Watcher] = []
if with_ngrok:
watchers.append(
Watcher(
name="ngrok",
cmd=sys.executable,
args=[
"-m",
SCRIPT_NGROK,
],
copy_env=True,
stop_children=True,
working_dir=working_dir,
)
)
circus_sockets: t.List[CircusSocket] = []
circus_sockets.append(
CircusSocket(
name="_bento_api_server",
host=host,
port=port,
backlog=backlog,
)
)
watchers.append(
Watcher(
name="dev_api_server",
cmd=sys.executable,
args=[
"-m",
SCRIPT_DEV_API_SERVER,
bento_identifier,
"--bind",
"fd://$(circus.sockets._bento_api_server)",
"--working-dir",
working_dir,
],
copy_env=True,
stop_children=True,
use_sockets=True,
working_dir=working_dir,
)
)
if reload:
plugins = [
dict(
use="bentoml._internal.utils.circus.BentoChangeReloader",
bento_identifier=bento_identifier,
working_dir=working_dir,
reload_delay=reload_delay,
),
]
else:
plugins = []
arbiter = create_standalone_arbiter(
watchers,
sockets=circus_sockets,
plugins=plugins,
debug=True,
)
ensure_prometheus_dir()
with track_serve(svc, production=False):
arbiter.start(
cb=lambda _: logger.info( # type: ignore
f'Starting development BentoServer from "{bento_identifier}" '
f"running on http://{host}:{port} (Press CTRL+C to quit)"
),
)
MAX_AF_UNIX_PATH_LENGTH = 103
@inject
def serve_production(
bento_identifier: str,
working_dir: str,
port: int = Provide[DeploymentContainer.api_server_config.port],
host: str = Provide[DeploymentContainer.api_server_config.host],
backlog: int = Provide[DeploymentContainer.api_server_config.backlog],
api_workers: t.Optional[int] = None,
) -> None:
working_dir = os.path.realpath(os.path.expanduser(working_dir))
svc = load(bento_identifier, working_dir=working_dir, change_global_cwd=True)
from circus.sockets import CircusSocket # type: ignore
from circus.watcher import Watcher # type: ignore
watchers: t.List[Watcher] = []
circus_socket_map: t.Dict[str, CircusSocket] = {}
runner_bind_map: t.Dict[str, str] = {}
uds_path = None
if psutil.POSIX:
# use AF_UNIX sockets for Circus
uds_path = tempfile.mkdtemp()
for runner in svc.runners:
sockets_path = os.path.join(uds_path, f"{id(runner)}.sock")
assert len(sockets_path) < MAX_AF_UNIX_PATH_LENGTH
runner_bind_map[runner.name] = path_to_uri(sockets_path)
circus_socket_map[runner.name] = CircusSocket(
name=runner.name,
path=sockets_path,
backlog=backlog,
)
watchers.append(
Watcher(
name=f"runner_{runner.name}",
cmd=sys.executable,
args=[
"-m",
SCRIPT_RUNNER,
bento_identifier,
"--runner-name",
runner.name,
"--bind",
f"fd://$(circus.sockets.{runner.name})",
"--working-dir",
working_dir,
"--worker-id",
"$(CIRCUS.WID)",
],
copy_env=True,
stop_children=True,
working_dir=working_dir,
use_sockets=True,
numprocesses=runner.scheduled_worker_count,
)
)
elif psutil.WINDOWS:
# Windows doesn't (fully) support AF_UNIX sockets
with contextlib.ExitStack() as port_stack:
for runner in svc.runners:
runner_port = port_stack.enter_context(reserve_free_port())
runner_host = "127.0.0.1"
runner_bind_map[runner.name] = f"tcp://{runner_host}:{runner_port}"
circus_socket_map[runner.name] = CircusSocket(
name=runner.name,
host=runner_host,
port=runner_port,
backlog=backlog,
)
watchers.append(
Watcher(
name=f"runner_{runner.name}",
cmd=sys.executable,
args=[
"-m",
SCRIPT_RUNNER,
bento_identifier,
"--runner-name",
runner.name,
"--bind",
f"fd://$(circus.sockets.{runner.name})",
"--working-dir",
working_dir,
"--no-access-log",
"--worker-id",
"$(circus.wid)",
],
copy_env=True,
stop_children=True,
use_sockets=True,
working_dir=working_dir,
numprocesses=runner.scheduled_worker_count,
)
)
port_stack.enter_context(
reserve_free_port()
) # reserve one more to avoid conflicts
else:
raise NotImplementedError("Unsupported platform: {}".format(sys.platform))
logger.debug("Runner map: %s", runner_bind_map)
circus_socket_map["_bento_api_server"] = CircusSocket(
name="_bento_api_server",
host=host,
port=port,
backlog=backlog,
)
watchers.append(
Watcher(
name="api_server",
cmd=sys.executable,
args=[
"-m",
SCRIPT_API_SERVER,
bento_identifier,
"--bind",
"fd://$(circus.sockets._bento_api_server)",
"--runner-map",
json.dumps(runner_bind_map),
"--working-dir",
working_dir,
"--backlog",
f"{backlog}",
"--worker-id",
"$(CIRCUS.WID)",
],
copy_env=True,
numprocesses=api_workers or math.ceil(query_cpu_count()),
stop_children=True,
use_sockets=True,
working_dir=working_dir,
)
)
arbiter = create_standalone_arbiter(
watchers=watchers,
sockets=list(circus_socket_map.values()),
)
ensure_prometheus_dir()
with track_serve(svc, production=True):
try:
arbiter.start(
cb=lambda _: logger.info( # type: ignore
f'Starting production BentoServer from "{bento_identifier}" '
f"running on http://{host}:{port} (Press CTRL+C to quit)"
),
)
finally:
if uds_path is not None:
shutil.rmtree(uds_path)
|
import logging
import contextvars
from timeit import default_timer
from typing import TYPE_CHECKING
from simple_di import inject
from simple_di import Provide
from ..configuration.containers import DeploymentContainer
if TYPE_CHECKING:
from .. import external_typing as ext
from ..service import Service
from ..server.metrics.prometheus import PrometheusClient
logger = logging.getLogger(__name__)
START_TIME_VAR: "contextvars.ContextVar[float]" = contextvars.ContextVar(
"START_TIME_VAR"
)
class MetricsMiddleware:
def __init__(
self,
app: "ext.ASGIApp",
bento_service: "Service",
):
self.app = app
self.bento_service = bento_service
self._is_setup = False
@inject
def _setup(
self,
metrics_client: "PrometheusClient" = Provide[
DeploymentContainer.metrics_client
],
):
self.metrics_client = metrics_client
service_name = self.bento_service.name
# a valid tag name may includes invalid characters, so we need to escape them
# ref: https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels
service_name = service_name.replace("-", ":").replace(".", "::")
self.metrics_request_duration = metrics_client.Histogram(
name=service_name + "_request_duration_seconds",
documentation=service_name + " API HTTP request duration in seconds",
labelnames=["endpoint", "service_version", "http_response_code"],
)
self.metrics_request_total = metrics_client.Counter(
name=service_name + "_request_total",
documentation="Total number of HTTP requests",
labelnames=["endpoint", "service_version", "http_response_code"],
)
self.metrics_request_in_progress = metrics_client.Gauge(
name=service_name + "_request_in_progress",
documentation="Total number of HTTP requests in progress now",
labelnames=["endpoint", "service_version"],
multiprocess_mode="livesum",
)
self._is_setup = True
async def __call__(
self,
scope: "ext.ASGIScope",
receive: "ext.ASGIReceive",
send: "ext.ASGISend",
) -> None:
if not self._is_setup:
self._setup()
if not scope["type"].startswith("http"):
await self.app(scope, receive, send)
return
if scope["path"] == "/metrics":
from starlette.responses import Response
response = Response(
self.metrics_client.generate_latest(),
status_code=200,
media_type=self.metrics_client.CONTENT_TYPE_LATEST,
)
await response(scope, receive, send)
return
service_version = (
self.bento_service.tag.version if self.bento_service.tag is not None else ""
)
endpoint = scope["path"]
START_TIME_VAR.set(default_timer())
async def wrapped_send(message: "ext.ASGIMessage") -> None:
if message["type"] == "http.response.start":
status_code = message["status"]
# instrument request total count
self.metrics_request_total.labels(
endpoint=endpoint,
service_version=service_version,
http_response_code=status_code,
).inc()
# instrument request duration
assert START_TIME_VAR.get() != 0
total_time = max(default_timer() - START_TIME_VAR.get(), 0)
self.metrics_request_duration.labels( # type: ignore
endpoint=endpoint,
service_version=service_version,
http_response_code=status_code,
).observe(total_time)
START_TIME_VAR.set(0)
await send(message)
with self.metrics_request_in_progress.labels(
endpoint=endpoint, service_version=service_version
).track_inprogress():
await self.app(scope, receive, wrapped_send)
return
|
# type: ignore[reportMissingTypeStubs]
import os
import sys
import typing as t
import logging
from functools import partial
logger = logging.getLogger(__name__)
class PrometheusClient:
def __init__(
self,
*,
namespace: str = "",
multiproc: bool = True,
multiproc_dir: t.Optional[str] = None,
):
"""
Set up multiproc_dir for prometheus to work in multiprocess mode,
which is required when working with Gunicorn server
Warning: for this to work, prometheus_client library must be imported after
this function is called. It relies on the os.environ['PROMETHEUS_MULTIPROC_DIR']
to properly setup for multiprocess mode
"""
if multiproc:
assert multiproc_dir is not None, "multiproc_dir must be provided"
self.multiproc = multiproc
self.namespace = namespace
self.multiproc_dir: t.Optional[str] = multiproc_dir
self._registry = None
self._imported = False
self._pid: t.Optional[int] = None
@property
def prometheus_client(self):
if self.multiproc and not self._imported:
# step 1: check environment
assert (
"prometheus_client" not in sys.modules
), "prometheus_client is already imported, multiprocessing will not work properly"
assert (
self.multiproc_dir
), f"Invalid prometheus multiproc directory: {self.multiproc_dir}"
assert os.path.isdir(self.multiproc_dir)
os.environ["PROMETHEUS_MULTIPROC_DIR"] = self.multiproc_dir
# step 2:
import prometheus_client
import prometheus_client.multiprocess
self._imported = True
return prometheus_client
@property
def registry(self):
if self._registry is None:
if self.multiproc:
self._pid = os.getpid()
self._registry = self.prometheus_client.REGISTRY
else:
if self.multiproc:
assert self._pid is not None
assert (
os.getpid() == self._pid
), "The current process's different than the process which the prometheus client gets created"
return self._registry
def __del__(self):
self.mark_process_dead()
def mark_process_dead(self) -> None:
if self.multiproc:
assert self._pid is not None
assert (
os.getpid() == self._pid
), "The current process's different than the process which the prometheus client gets created"
self.prometheus_client.multiprocess.mark_process_dead(self._pid)
def start_http_server(self, port: int, addr: str = "") -> None:
self.prometheus_client.start_http_server(
port=port,
addr=addr,
registry=self.registry,
)
def generate_latest(self):
if self.multiproc:
registry = self.prometheus_client.CollectorRegistry()
self.prometheus_client.multiprocess.MultiProcessCollector(registry)
return self.prometheus_client.generate_latest(registry)
else:
return self.prometheus_client.generate_latest()
@property
def CONTENT_TYPE_LATEST(self) -> str:
return self.prometheus_client.CONTENT_TYPE_LATEST
@property
def Histogram(self):
return partial(
self.prometheus_client.Histogram,
namespace=self.namespace,
registry=self.registry,
)
@property
def Counter(self):
return partial(
self.prometheus_client.Counter,
namespace=self.namespace,
registry=self.registry,
)
@property
def Summary(self):
return partial(
self.prometheus_client.Summary,
namespace=self.namespace,
registry=self.registry,
)
@property
def Gauge(self):
return partial(
self.prometheus_client.Gauge,
namespace=self.namespace,
registry=self.registry,
)
|
from __future__ import annotations
import sys
import socket
import typing as t
from typing import TYPE_CHECKING
from urllib.parse import urlparse
import psutil
from bentoml import load
from bentoml._internal.utils.uri import uri_to_path
from ...log import SERVER_LOGGING_CONFIG
from ...trace import ServiceContext
if TYPE_CHECKING:
from asgiref.typing import ASGI3Application
import click
@click.command()
@click.argument("bento_identifier", type=click.STRING, required=False, default=".")
@click.option("--runner-name", type=click.STRING, required=True)
@click.option("--bind", type=click.STRING, required=True)
@click.option("--working-dir", required=False, default=None, help="Working directory")
@click.option(
"--no-access-log",
required=False,
type=click.BOOL,
is_flag=True,
default=False,
help="Disable the runner server's access log",
)
@click.option(
"--worker-id",
required=False,
type=click.INT,
default=None,
help="If set, start the server as a bare worker with the given worker ID. Otherwise start a standalone server with a supervisor process.",
)
@click.pass_context
def main(
ctx: click.Context,
bento_identifier: str,
runner_name: str,
bind: str,
working_dir: t.Optional[str],
no_access_log: bool,
worker_id: int | None,
) -> None:
"""
Start a runner server.
Args:
bento_identifier: the Bento identifier
name: the name of the runner
bind: the bind address URI. Can be:
- tcp://host:port
- unix://path/to/unix.sock
- file:///path/to/unix.sock
- fd://12
working_dir: (Optional) the working directory
worker_id: (Optional) if set, the runner will be started as a worker with the given ID
"""
from ...log import configure_server_logging
configure_server_logging()
if worker_id is None:
# Start a standalone server with a supervisor process
from circus.watcher import Watcher
from bentoml._internal.utils.click import unparse_click_params
from bentoml._internal.utils.circus import create_standalone_arbiter
from bentoml._internal.utils.circus import create_circus_socket_from_uri
circus_socket = create_circus_socket_from_uri(bind, name=runner_name)
params = ctx.params
params["bind"] = f"fd://$(circus.sockets.{runner_name})"
params["worker_id"] = "$(circus.wid)"
params["no_access_log"] = no_access_log
watcher = Watcher(
name=f"runner_{runner_name}",
cmd=sys.executable,
args=["-m", "bentoml._internal.server.cli.runner"]
+ unparse_click_params(params, ctx.command.params, factory=str),
copy_env=True,
numprocesses=1,
stop_children=True,
use_sockets=True,
working_dir=working_dir,
)
arbiter = create_standalone_arbiter(watchers=[watcher], sockets=[circus_socket])
arbiter.start()
return
import uvicorn # type: ignore
if no_access_log:
from bentoml._internal.configuration.containers import DeploymentContainer
access_log_config = DeploymentContainer.runners_config.logging.access
access_log_config.enabled.set(False)
from bentoml._internal.server.runner_app import RunnerAppFactory
ServiceContext.component_name_var.set(f"{runner_name}:{worker_id}")
service = load(bento_identifier, working_dir=working_dir, change_global_cwd=True)
for runner in service.runners:
if runner.name == runner_name:
break
else:
raise ValueError(f"Runner {runner_name} not found")
app = t.cast("ASGI3Application", RunnerAppFactory(runner, worker_index=worker_id)())
parsed = urlparse(bind)
uvicorn_options = {
"log_level": SERVER_LOGGING_CONFIG["root"]["level"],
"log_config": SERVER_LOGGING_CONFIG,
"workers": 1,
}
if psutil.WINDOWS:
uvicorn_options["loop"] = "asyncio"
import asyncio
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore
if parsed.scheme in ("file", "unix"):
uvicorn.run(
app,
uds=uri_to_path(bind),
**uvicorn_options,
)
elif parsed.scheme == "tcp":
uvicorn.run(
app,
host=parsed.hostname,
port=parsed.port,
**uvicorn_options,
)
elif parsed.scheme == "fd":
# when fd is provided, we will skip the uvicorn internal supervisor, thus there is only one process
fd = int(parsed.netloc)
sock = socket.socket(fileno=fd)
config = uvicorn.Config(app, **uvicorn_options)
uvicorn.Server(config).run(sockets=[sock])
else:
raise ValueError(f"Unsupported bind scheme: {bind}")
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
|
def main():
from ...utils.ngrok import start_ngrok
from ...configuration.containers import DeploymentContainer
start_ngrok(DeploymentContainer.api_server_config.port.get())
if __name__ == "__main__":
main()
|
from __future__ import annotations
import sys
import json
import socket
import typing as t
from typing import TYPE_CHECKING
from urllib.parse import urlparse
import psutil
import bentoml
from ...log import SERVER_LOGGING_CONFIG
from ...trace import ServiceContext
if TYPE_CHECKING:
from asgiref.typing import ASGI3Application
import click
@click.command()
@click.argument("bento_identifier", type=click.STRING, required=False, default=".")
@click.option(
"--bind",
type=click.STRING,
required=True,
help="Bind address sent to circus. This address accepts the following values: 'tcp://127.0.0.1:3000','unix:///tmp/bento_api.sock', 'fd://12'",
)
@click.option(
"--runner-map",
type=click.STRING,
envvar="BENTOML_RUNNER_MAP",
help="JSON string of runners map, default sets to envars `BENTOML_RUNNER_MAP`",
)
@click.option(
"--backlog", type=click.INT, default=2048, help="Backlog size for the socket"
)
@click.option(
"--working-dir",
type=click.Path(exists=True),
help="Working directory for the API server",
)
@click.option(
"--worker-id",
required=False,
type=click.INT,
default=None,
help="If set, start the server as a bare worker with the given worker ID. Otherwise start a standalone server with a supervisor process.",
)
@click.pass_context
def main(
ctx: click.Context,
bento_identifier: str,
bind: str,
runner_map: str | None,
backlog: int,
working_dir: str | None,
worker_id: int | None,
):
"""
Start BentoML API server.
\b
This is an internal API, users should not use this directly. Instead use `bentoml serve <path> [--options]`
"""
from ...log import configure_server_logging
from ...configuration.containers import DeploymentContainer
DeploymentContainer.development_mode.set(False)
configure_server_logging()
if worker_id is None:
# Start a standalone server with a supervisor process
from circus.watcher import Watcher
from bentoml._internal.server import ensure_prometheus_dir
from bentoml._internal.utils.click import unparse_click_params
from bentoml._internal.utils.circus import create_standalone_arbiter
from bentoml._internal.utils.circus import create_circus_socket_from_uri
ensure_prometheus_dir()
circus_socket = create_circus_socket_from_uri(bind, name="_bento_api_server")
params = ctx.params
params["bind"] = "fd://$(circus.sockets._bento_api_server)"
params["worker_id"] = "$(circus.wid)"
watcher = Watcher(
name="bento_api_server",
cmd=sys.executable,
args=["-m", "bentoml._internal.server.cli.api_server"]
+ unparse_click_params(params, ctx.command.params, factory=str),
copy_env=True,
numprocesses=1,
stop_children=True,
use_sockets=True,
working_dir=working_dir,
)
arbiter = create_standalone_arbiter(watchers=[watcher], sockets=[circus_socket])
arbiter.start()
return
import uvicorn # type: ignore
ServiceContext.component_name_var.set(f"api_server:{worker_id}")
if runner_map is not None:
DeploymentContainer.remote_runner_mapping.set(json.loads(runner_map))
svc = bentoml.load(
bento_identifier, working_dir=working_dir, change_global_cwd=True
)
parsed = urlparse(bind)
uvicorn_options: dict[str, t.Any] = {
"log_level": SERVER_LOGGING_CONFIG["root"]["level"],
"backlog": backlog,
"log_config": SERVER_LOGGING_CONFIG,
"workers": 1,
}
if psutil.WINDOWS:
uvicorn_options["loop"] = "asyncio"
import asyncio
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore
app = t.cast("ASGI3Application", svc.asgi_app)
assert parsed.scheme == "fd"
# skip the uvicorn internal supervisor
fd = int(parsed.netloc)
sock = socket.socket(fileno=fd)
config = uvicorn.Config(app, **uvicorn_options)
uvicorn.Server(config).run(sockets=[sock])
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
|
import socket
import typing as t
from urllib.parse import urlparse
import click
import psutil
from bentoml import load
from ...log import SERVER_LOGGING_CONFIG
from ...trace import ServiceContext
@click.command()
@click.argument("bento_identifier", type=click.STRING, required=False, default=".")
@click.option("--bind", type=click.STRING, required=True)
@click.option("--backlog", type=click.INT, default=2048)
@click.option("--working-dir", required=False, type=click.Path(), default=None)
def main(
bento_identifier: str,
bind: str,
working_dir: t.Optional[str],
backlog: int,
):
import uvicorn # type: ignore
from ...log import configure_server_logging
configure_server_logging()
ServiceContext.component_name_var.set("dev_api_server")
parsed = urlparse(bind)
if parsed.scheme == "fd":
fd = int(parsed.netloc)
sock = socket.socket(fileno=fd)
svc = load(bento_identifier, working_dir=working_dir, change_global_cwd=True)
uvicorn_options = {
"log_level": SERVER_LOGGING_CONFIG["root"]["level"],
"backlog": backlog,
"log_config": SERVER_LOGGING_CONFIG,
"workers": 1,
"lifespan": "on",
}
if psutil.WINDOWS:
uvicorn_options["loop"] = "asyncio"
import asyncio
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy()) # type: ignore
config = uvicorn.Config(svc.asgi_app, **uvicorn_options)
uvicorn.Server(config).run(sockets=[sock])
else:
raise ValueError(f"Unsupported bind scheme: {bind}")
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter
|
import time
class FixedBucket:
"""
Fixed size FIFO container.
"""
def __init__(self, size):
self._data = [None] * size
self._cur = 0
self._size = size
self._flag_full = False
def put(self, v):
self._data[self._cur] = v
self._cur += 1
if self._cur == self._size:
self._cur = 0
self._flag_full = True
@property
def data(self):
if not self._flag_full:
return self._data[: self._cur]
return self._data
def __len__(self):
if not self._flag_full:
return self._cur
return self._size
def __getitem__(self, sl):
if not self._flag_full:
return self._data[: self._cur][sl]
return (self._data[self._cur :] + self._data[: self._cur])[sl]
class TokenBucket:
"""
Dynamic token bucket
"""
def __init__(self, init_amount=0):
self._amount = init_amount
self._last_consume_time = time.time()
def consume(self, take_amount, avg_rate, burst_size):
now = time.time()
inc = (now - self._last_consume_time) * avg_rate
current_amount = min(inc + self._amount, burst_size)
if take_amount > current_amount:
return False
self._amount, self._last_consume_time = current_amount - take_amount, now
return True
|
from __future__ import annotations
import typing as t
import logging
import click
logger = logging.getLogger(__name__)
def unparse_click_params(
params: dict[str, t.Any],
command_params: list[click.Parameter],
*,
factory: t.Callable[..., t.Any] | None = None,
) -> list[str]:
"""
Unparse click call to a list of arguments. Used to modify some parameters and
restore to system command. The goal is to unpack cases where parameters can be parsed multiple times.
Refers to ./buildx.py for examples of this usage. This is also used to unparse parameters for running API server.
Args:
params (`dict[str, t.Any]`):
The dictionary of the parameters that is parsed from click.Context.
command_params (`list[click.Parameter]`):
The list of paramters (Arguments/Options) that is part of a given command.
Returns:
Unparsed list of arguments that can be redirected to system commands.
Implementation:
For cases where options is None, or the default value is None, we will remove it from the first params list.
Currently it doesn't support unpacking `prompt_required` or `confirmation_prompt`.
"""
args: list[str] = []
# first filter out all parsed parameters that have value None
# This means that the parameter was not set by the user
params = {k: v for k, v in params.items() if v not in [None, (), []]}
for command_param in command_params:
if isinstance(command_param, click.Argument):
# Arguments.nargs, Arguments.required
if command_param.name in params:
if command_param.nargs > 1:
# multiple arguments are passed as a list.
# In this case we try to convert all None to an empty string
args.extend(
list(
filter(
lambda x: "" if x is None else x,
params[command_param.name],
)
)
)
else:
args.append(params[command_param.name])
elif isinstance(command_param, click.Option):
if command_param.name in params:
if (
command_param.confirmation_prompt
or command_param.prompt is not None
):
logger.warning(
f"{command_params} is a prompt, skip parsing it for now."
)
pass
if command_param.is_flag:
args.append(command_param.opts[-1])
else:
cmd = f"--{command_param.name.replace('_','-')}"
if command_param.multiple:
for var in params[command_param.name]:
args.extend([cmd, var])
else:
args.extend([cmd, params[command_param.name]])
else:
logger.warning(
"Given command params is a subclass of click.Parameter, but not a click.Argument or click.Option. Passing through..."
)
# We will also convert values if factory is parsed:
if factory is not None:
return list(map(factory, args))
return args
|
import shutil
import logging
import os.path
import tempfile
from ..configuration import get_debug_mode
logger = logging.getLogger(__name__)
class TempDirectory(object):
"""
Helper class that creates and cleans up a temporary directory, can
be used as a context manager.
>>> with TempDirectory() as tempdir:
>>> print(os.path.isdir(tempdir))
"""
def __init__(
self,
cleanup=True,
prefix="temp",
):
self._cleanup = cleanup
self._prefix = prefix
self.path = None
def __repr__(self):
return "<{} {!r}>".format(self.__class__.__name__, self.path)
def __enter__(self):
self.create()
return self.path
def __exit__(self, exc_type, exc_val, exc_tb):
if get_debug_mode():
logger.debug(
'BentoML in debug mode, keeping temp directory "%s"', self.path
)
return
if self._cleanup:
self.cleanup()
def create(self):
if self.path is not None:
logger.debug("Skipped temp directory creation: %s", self.path)
return self.path
tempdir = tempfile.mkdtemp(prefix="bentoml-{}-".format(self._prefix))
self.path = os.path.realpath(tempdir)
logger.debug("Created temporary directory: %s", self.path)
def cleanup(self, ignore_errors=False):
"""
Remove the temporary directory created
"""
if self.path is not None and os.path.exists(self.path):
shutil.rmtree(self.path, ignore_errors=ignore_errors)
self.path = None
|
from __future__ import annotations
import typing as t
from datetime import datetime
import cattr
from attr import fields
from cattr import override # type: ignore
from cattr.gen import AttributeOverride
bentoml_cattr = cattr.Converter()
def omit_if_init_false(cls: t.Any) -> dict[str, AttributeOverride]:
return {f.name: override(omit=True) for f in fields(cls) if not f.init}
def omit_if_default(cls: t.Any) -> dict[str, AttributeOverride]:
return {f.name: override(omit_if_default=True) for f in fields(cls)}
def datetime_decoder(dt_like: str | datetime, _: t.Any) -> datetime:
if isinstance(dt_like, str):
return datetime.fromisoformat(dt_like)
elif isinstance(dt_like, datetime):
return dt_like
else:
raise Exception(f"Unable to parse datetime from '{dt_like}'")
bentoml_cattr.register_unstructure_hook(datetime, lambda dt: dt.isoformat()) # type: ignore
bentoml_cattr.register_structure_hook(datetime, datetime_decoder)
|
from __future__ import annotations
import os
import typing as t
import logging
import functools
import subprocess
from typing import TYPE_CHECKING
from ..types import PathType
from ...exceptions import BentoMLException
if TYPE_CHECKING:
P = t.ParamSpec("P")
logger = logging.getLogger(__name__)
DOCKER_BUILDX_CMD = ["docker", "buildx"]
# https://stackoverflow.com/questions/45125516/possible-values-for-uname-m
UNAME_M_TO_PLATFORM_MAPPING = {
"x86_64": "linux/amd64",
"arm64": "linux/arm64/v8",
"ppc64le": "linux/ppc64le",
"s390x": "linux/s390x",
"riscv64": "linux/riscv64",
"mips64": "linux/mips64le",
}
@functools.lru_cache(maxsize=1)
def health() -> None:
"""
Check whether buildx is available in given system.
"""
cmds = DOCKER_BUILDX_CMD + ["--help"]
try:
output = subprocess.check_output(cmds, stderr=subprocess.STDOUT)
assert "--builder string" in output.decode("utf-8")
except (subprocess.CalledProcessError, AssertionError):
raise BentoMLException(
"BentoML requires Docker Buildx to be installed to support multi-arch builds. "
"Buildx comes with Docker Desktop, but one can also install it manually by following "
"instructions via https://docs.docker.com/buildx/working-with-buildx/#install."
)
def lists() -> list[str]:
# Should only be used for testing purposes.
cmds = DOCKER_BUILDX_CMD + ["ls"]
proc = subprocess.run(cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stream = proc.stdout.decode("utf-8")
if len(stream) != 0 and stream[-1] == "\n":
stream = stream[:-1]
output = stream.splitlines()[1:] # first line is a header
# lines starting with a blank space are builders metadata, not builder name
output = list(filter(lambda x: not x.startswith(" "), output))
return [s.split(" ")[0] for s in output]
def use(
builder: str, default: bool = False, global_: bool = False
) -> None: # pragma: no cover
# Should only be used for testing purposes.
cmds = DOCKER_BUILDX_CMD + ["use"]
if default:
cmds.append("--default")
if global_:
cmds.append("--global")
cmds.append(builder)
run_docker_cmd(cmds)
def create(
subprocess_env: dict[str, str] | None = None,
cwd: PathType | None = None,
*,
context_or_endpoints: str | None = None,
buildkitd_flags: str | None = None,
config: PathType | None = None,
driver: t.Literal["docker", "kubernetes", "docker-container"] | None = None,
driver_opt: dict[str, str] | None = None,
name: str | None = None,
platform: list[str] | None = None,
use: bool = False,
) -> None:
"""
Create a new buildx instance.
Args:
context_or_endpoints: Custom docker context or endpoints (DOCKER_HOSTS).
buildkitd_flags: Flags to pass to buildkitd.
config: Path to a buildx configuration file.
driver: Driver to use for buildx.
driver_opt: Driver options.
name: Name of the buildx context.
platform: List of platform for a given builder instance.
use: whether to use the builder instance after create.
"""
cmds = DOCKER_BUILDX_CMD + ["create"]
if buildkitd_flags is not None:
cmds.extend(["--buildkitd-flags", buildkitd_flags])
if config is not None:
cmds.extend(["--config", str(config)])
if driver is not None:
cmds.extend(["--driver", driver])
if driver_opt is not None:
cmds.extend(
["--driver-opt", ",".join([f"{k}={v}" for k, v in driver_opt.items()])]
)
if name is not None:
cmds.extend(["--name", name])
if platform is None:
platform = [
"linux/amd64",
"linux/arm64/v8",
"linux/ppc64le",
"linux/s390x",
"linux/riscv64",
"linux/mips64le",
]
cmds.extend(["--platform", ",".join(platform)])
if use:
cmds.append("--use")
if context_or_endpoints is not None:
cmds.append(context_or_endpoints)
run_docker_cmd(cmds, env=subprocess_env, cwd=cwd)
def build(
subprocess_env: dict[str, str] | None,
cwd: PathType | None,
*,
context_path: PathType = ".",
add_host: dict[str, str] | None,
allow: list[str] | None,
build_args: dict[str, str] | None,
build_context: dict[str, str] | None,
builder: str | None,
cache_from: str | list[str] | dict[str, str] | None,
cache_to: str | list[str] | dict[str, str] | None,
cgroup_parent: str | None,
file: PathType | None,
iidfile: PathType | None,
labels: dict[str, str] | None,
load: bool,
metadata_file: PathType | None,
network: str | None,
no_cache: bool,
no_cache_filter: list[str] | None,
output: str | dict[str, str] | None,
platform: str | list[str] | None,
progress: t.Literal["auto", "tty", "plain"],
pull: bool,
push: bool,
quiet: bool,
secrets: str | list[str] | None,
shm_size: str | int | None,
rm: bool,
ssh: str | None,
tags: str | list[str] | None,
target: str | None,
ulimit: str | None,
) -> None:
cmds = DOCKER_BUILDX_CMD + ["build"]
cmds += ["--progress", progress]
if tags is None:
tags = []
tags = [tags] if not isinstance(tags, list) else tags
for tag in tags:
cmds.extend(["--tag", tag])
if add_host is not None:
hosts = [f"{k}:{v}" for k, v in add_host.items()]
for host in hosts:
cmds.extend(["--add-host", host])
if allow is not None:
for allow_arg in allow:
cmds.extend(["--allow", allow_arg])
if platform is not None and len(platform) > 0:
if isinstance(platform, str):
platform = [platform]
cmds += ["--platform", ",".join(platform)]
if build_args is not None:
args = [f"{k}={v}" for k, v in build_args.items()]
for arg in args:
cmds.extend(["--build-arg", arg])
if build_context is not None:
args = [f"{k}={v}" for k, v in build_context.items()]
for arg in args:
cmds.extend(["--build-context", arg])
if builder is not None:
cmds.extend(["--builder", builder])
if cache_from is not None:
if isinstance(cache_from, str):
cmds.extend(["--cache-from", cache_from])
elif isinstance(cache_from, list):
for arg in cache_from:
cmds.extend(["--cache-from", arg])
else:
args = [f"{k}={v}" for k, v in cache_from.items()]
cmds.extend(["--cache-from", ",".join(args)])
if cache_to is not None:
if isinstance(cache_to, str):
cmds.extend(["--cache-to", cache_to])
elif isinstance(cache_to, list):
for arg in cache_to:
cmds.extend(["--cache-to", arg])
else:
args = [f"{k}={v}" for k, v in cache_to.items()]
cmds.extend(["--cache-to", ",".join(args)])
if cgroup_parent is not None:
cmds.extend(["--cgroup-parent", cgroup_parent])
if file is not None:
cmds.extend(["--file", str(file)])
if iidfile is not None:
cmds.extend(["--iidfile", str(iidfile)])
if load:
cmds.append("--load")
if metadata_file is not None:
cmds.extend(["--metadata-file", str(metadata_file)])
if network is not None:
cmds.extend(["--network", network])
if no_cache:
cmds.append("--no-cache")
if no_cache_filter is not None:
for arg in no_cache_filter:
cmds.extend(["--no-cache-filter", arg])
if labels is not None:
args = [f"{k}={v}" for k, v in labels.items()]
for arg in args:
cmds.extend(["--label", arg])
if output is not None:
if isinstance(output, str):
cmds.extend(["--output", output])
else:
args = [f"{k}={v}" for k, v in output.items()]
cmds += ["--output", ",".join(args)]
if pull:
cmds.append("--pull")
if push:
cmds.append("--push")
if quiet:
cmds.append("--quiet")
if secrets is not None:
if isinstance(secrets, str):
cmds.extend(["--secret", secrets])
else:
for secret in secrets:
cmds.extend(["--secret", secret])
if rm:
cmds.append("--rm")
if shm_size is not None:
cmds.extend(["--shm-size", str(shm_size)])
if ssh is not None:
cmds.extend(["--ssh", ssh])
if target is not None:
cmds.extend(["--target", target])
if ulimit is not None:
cmds.extend(["--ulimit", ulimit])
cmds.append(str(context_path))
logger.debug(f"docker buildx build cmd: `{cmds}`")
run_docker_cmd(cmds, env=subprocess_env, cwd=cwd)
def run_docker_cmd(
cmds: list[str],
*,
env: dict[str, str] | None = None,
cwd: PathType | None = None,
) -> None:
subprocess_env = os.environ.copy()
if env is not None:
subprocess_env.update(env)
subprocess.check_output(list(map(str, cmds)), env=subprocess_env, cwd=cwd)
|
import sys
import types
import typing as t
import logging
import importlib
from ...exceptions import MissingDependencyException
logger = logging.getLogger(__name__)
class LazyLoader(types.ModuleType):
"""
LazyLoader module borrowed from Tensorflow
https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/util/lazy_loader.py
with a addition of "module caching". This will throw an
exception if module cannot be imported.
Lazily import a module, mainly to avoid pulling in large dependencies.
`contrib`, and `ffmpeg` are examples of modules that are large and not always
needed, and this allows them to only be loaded when they are used.
"""
def __init__(
self,
local_name: str,
parent_module_globals: t.Dict[str, t.Any],
name: str,
warning: t.Optional[str] = None,
exc_msg: t.Optional[str] = None,
):
self._local_name = local_name
self._parent_module_globals = parent_module_globals
self._warning = warning
self._exc_msg = exc_msg
self._module: t.Optional[types.ModuleType] = None
super(LazyLoader, self).__init__(str(name))
def _load(self) -> types.ModuleType:
"""Load the module and insert it into the parent's globals."""
# Import the target module and insert it into the parent's namespace
try:
module = importlib.import_module(self.__name__)
self._parent_module_globals[self._local_name] = module
# The additional add to sys.modules ensures library is actually loaded.
sys.modules[self._local_name] = module
except ModuleNotFoundError as err:
raise MissingDependencyException(f"{self._exc_msg}") from err
# Emit a warning if one was specified
if self._warning:
logger.warning(self._warning)
# Make sure to only warn once.
self._warning = None
# Update this object's dict so that if someone keeps a reference to the
# LazyLoader, lookups are efficient (__getattr__ is only called on lookups
# that fail).
self.__dict__.update(module.__dict__)
return module
def __getattr__(self, item: t.Any) -> t.Any:
if self._module is None:
self._module = self._load()
return getattr(self._module, item)
def __dir__(self) -> t.List[str]:
if self._module is None:
self._module = self._load()
return dir(self._module)
|
import math
import time
import asyncio
from collections import defaultdict
from tabulate import tabulate
def wrap_line(s, line_width=120, sep="\n"):
ls = s.split(sep)
outs = []
for line in ls:
while len(line) > line_width:
outs.append(line[:line_width])
line = line[line_width:]
outs.append(line)
return sep.join(outs)
def dict_tab(d, in_row=False):
try:
if in_row:
return tabulate(
[(str(k), str(v)) for k, v in d.items()], tablefmt="fancy_grid"
)
else:
return tabulate(
(map(str, d.values()),),
headers=map(str, d.keys()),
tablefmt="fancy_grid",
)
except ImportError:
return repr(d)
def percentile(data, pers):
if not data:
return [math.nan] * len(pers)
size = len(data)
sorted_data = sorted(data)
return tuple(sorted_data[max(math.ceil(size * p) - 1, 0)] for p in pers)
class DynamicBucketMerge:
"""
real time speed stat
"""
def __init__(self, sample_range=1, bucket_num=10):
self.bucket_num = bucket_num
self.sample_range = sample_range
self.bucket = [0] * bucket_num
self.bucket_sample = [0] * bucket_num
self.bucket_ver = [0] * bucket_num
def put(self, timestamp, num):
timestamp = timestamp / self.sample_range
ver = int(timestamp * self.bucket_num // 1)
i = int(timestamp % 1 * self.bucket_num // 1)
if ver > self.bucket_ver[i]:
self.bucket_ver[i], self.bucket[i], self.bucket_sample[i] = ver, num, 1
else:
self.bucket[i] += num
self.bucket_sample[i] += 1
def sum(self, timestamp):
timestamp = timestamp / self.sample_range
ver = int(timestamp * self.bucket_num // 1)
return (
sum(
n
for n, v in zip(self.bucket, self.bucket_ver)
if v >= ver - self.bucket_num
)
/ self.sample_range
)
def mean(self, timestamp):
timestamp = timestamp / self.sample_range
ver = int(timestamp * self.bucket_num // 1)
num_n_count = [
(n, s)
for n, s, v in zip(self.bucket, self.bucket_sample, self.bucket_ver)
if v >= ver - self.bucket_num and s > 0
]
return (
sum(n for n, _ in num_n_count) / sum(s for _, s in num_n_count)
if num_n_count
else math.nan
)
class Stat:
def __init__(self):
self.success = 0
self.fail = 0
self.succ_ps = DynamicBucketMerge(2, 10)
self.exec_ps = DynamicBucketMerge(2, 10)
self.succ_times = []
self.exec_times = []
self.succ_time_ps = DynamicBucketMerge(2, 10)
self.exec_time_ps = DynamicBucketMerge(2, 10)
self.client_busy = 0
self.exceptions = defaultdict(list)
self._sess_start_time = 0
self._sess_stop_time = 0
@property
def req_total(self):
return self.fail + self.success
@property
def sess_time(self):
if self._sess_stop_time:
return self._sess_stop_time - self._sess_start_time
else:
return time.time() - self._sess_start_time
def log_succeed(self, req_time, n=1):
self.success += n
self.succ_ps.put(time.time(), 1)
self.succ_times.append(req_time)
self.succ_time_ps.put(time.time(), req_time)
def log_exception(self, group, msg, req_time, n=1):
self.fail += n
self.exec_ps.put(time.time(), 1)
self.exec_times.append(req_time)
self.exec_time_ps.put(time.time(), req_time)
self.exceptions[group].append(msg)
def print_step(self):
now = time.time()
headers = (
"Result",
"Total",
"Reqs/s",
"Resp Time Avg",
"Client Health %",
)
r = (
(
"succ",
f"{self.success}",
f"{self.succ_ps.sum(now)}",
f"{self.succ_time_ps.mean(now)}",
f"{(1 - self.client_busy / max(self.req_total, 1)) * 100}",
),
(
"fail",
f"{self.fail}",
f"{self.exec_ps.sum(now)}",
f"{self.exec_time_ps.mean(now)}",
"",
),
)
print(tabulate(r, headers=headers, tablefmt="fancy_grid"))
def print_sumup(self):
ps = percentile(self.succ_times, [0.5, 0.95, 0.99])
ps_fail = percentile(self.exec_times, [0.5, 0.95, 0.99])
health = (1 - self.client_busy / max(self.req_total, 1)) * 100
headers = (
"Result",
"Total",
"Reqs/s",
"Resp Time Avg",
"P50",
"P95",
"P99",
)
r = (
(
"succ",
self.success,
self.success / max(self.sess_time, 1),
sum(self.succ_times) / max(self.success, 1),
ps[0],
ps[1],
ps[2],
),
(
"fail",
self.fail,
self.fail / max(self.sess_time, 1),
sum(self.exec_times) / max(self.fail, 1),
ps_fail[0],
ps_fail[1],
ps_fail[2],
),
)
print(tabulate(r, headers=headers, tablefmt="fancy_grid"))
print(f"------ Client Health {health:.1f}% ------")
if health < 90:
print(
"""
*** WARNING ***
The client health rate is low. The benchmark result is not reliable.
Possible solutions:
* check the failure_rate and avoid request failures
* Rewrite your request_producer to reduce the CPU cost
* Run more instances with multiprocessing. (Multi-threading will not
work because of the GIL)
* Reduce the total_user of your session
"""
)
def print_exec(self):
headers = ["exceptions", "count"]
rs = [
(
wrap_line(str(v[0]), 50)[:1000],
len(v),
)
for k, v in self.exceptions.items()
]
print(tabulate(rs, headers=headers, tablefmt="fancy_grid"))
def default_verify_response(status, _):
if status // 100 == 2:
return True
else:
return False
class BenchmarkClient:
"""
A locust-like benchmark tool with asyncio.
Features:
* Very efficient, low CPU cost
* Could be embedded into other asyncio apps, like jupyter notebook
Paras:
* request_producer: The test case producer, a function with return value
(url: str, method: str, headers: dict, data: str)
* request_interval: intervals in seconds between each requests of the same user,
lazy value supported.
for eg:
- 1 # for constant 1 sec
- lambda: random.random() # for random wait time between 0 and 1
* url_override: override the url provided by request_producer
Example usage
=========
In a session of one minute, 100 users keep sending POST request with
one seconds interval:
``` test.py
def test_case_producer():
return ('http://localhost:3000',
"POST",
{"Content-Type": "application/json"},
'{"x": 1.0}')
from bentoml.utils.benchmark import BenchmarkClient
b = BenchmarkClient(test_case_producer, request_interval=1, timeout=10)
b.start_session(session_time=60, total_user=100)
```
run command:
> python test.py
"""
STATUS_STOPPED = 0
STATUS_SPAWNING = 1
STATUS_SPAWNED = 2
STATUS_STOPPING = 3
def __init__(
self,
request_producer: callable,
request_interval,
verify_response: callable = default_verify_response,
url_override=None,
timeout=10,
):
self.request_interval = request_interval
self.request_producer = request_producer
self.verify_response = verify_response
self.url_override = url_override
self.user_pool = []
self.status = self.STATUS_STOPPED
self.stat = Stat()
self.timeout = timeout
self._stop_loop_flag = False
async def _start(self):
from aiohttp import ClientSession
from aiohttp.client_exceptions import ServerDisconnectedError
wait_time_suffix = 0
url, method, headers, data = self.request_producer()
async with ClientSession() as sess:
while True:
req_start = time.time()
req_url = self.url_override or url
err = ""
group = ""
# noinspection PyUnresolvedReferences
try:
async with sess.request(
method,
req_url,
data=data,
headers=headers,
timeout=self.timeout,
) as r:
msg = await r.text()
if not self.verify_response(r.status, msg):
group = f"{r.status}"
err = f"<status: {r.status}>\n{msg}"
except asyncio.CancelledError: # pylint: disable=try-except-raise
raise
except (ServerDisconnectedError, TimeoutError) as e:
group = repr(e.__class__)
err = repr(e)
except Exception as e: # pylint: disable=broad-except
group = repr(e.__class__)
err = repr(e)
req_stop = time.time()
if err:
self.stat.log_exception(group, err, req_stop - req_start)
else:
self.stat.log_succeed(req_stop - req_start)
url, method, headers, data = self.request_producer()
if callable(self.request_interval):
request_interval = self.request_interval()
else:
request_interval = self.request_interval
wait_time = request_interval + wait_time_suffix
sleep_until = req_stop + wait_time
await asyncio.sleep(sleep_until - time.time())
now = time.time()
if (now - sleep_until) / wait_time > 0.5:
self.stat.client_busy += 1
wait_time_suffix = sleep_until - now
def spawn(self):
self.user_pool.append(asyncio.get_event_loop().create_task(self._start()))
async def _trigger_batch_spawn(self, total, speed):
try:
wait_time = 1 / speed
while self.status == self.STATUS_SPAWNING and len(self.user_pool) < total:
self.spawn()
await asyncio.sleep(wait_time)
finally:
if self.status == self.STATUS_SPAWNING:
print(f"------ {total} users spawned ------")
self.status = self.STATUS_SPAWNED
else:
print(f"------ spawn canceled before {total} users ------")
def kill(self):
if self.user_pool:
self.user_pool.pop().cancel()
if not self.user_pool:
self.status = self.STATUS_STOPPED
return True
else:
return False
def batch_spawn(self, total, speed):
if self.status in {self.STATUS_STOPPED}:
self.status = self.STATUS_SPAWNING
asyncio.get_event_loop().create_task(
self._trigger_batch_spawn(total, speed)
)
else:
print("The status must be STATUS_STOPPED before start_session/batch_spawn")
def killall(self):
if self.status in {self.STATUS_SPAWNING, self.STATUS_SPAWNED}:
self.status = self.STATUS_STOPPING
while self.kill():
pass
async def _start_output(self):
while self.status in {self.STATUS_SPAWNING, self.STATUS_SPAWNED}:
print("")
self.stat.print_step()
await asyncio.sleep(2)
async def _start_session(self, session_time, total_user, spawn_speed):
try:
print("======= Session started! =======")
self.stat._sess_start_time = time.time()
self.batch_spawn(total_user, spawn_speed)
asyncio.get_event_loop().create_task(self._start_output())
await asyncio.sleep(session_time)
finally:
self.killall()
self.stat._sess_stop_time = time.time()
print("======= Session stopped! =======")
if self.stat.exceptions:
print("------ Exceptions happened ------")
self.stat.print_exec()
self.stat.print_sumup()
if self._stop_loop_flag:
loop = asyncio.get_event_loop()
loop.stop()
def start_session(self, session_time, total_user, spawn_speed=None):
"""
To start a benchmark session. If it's running It will return immediately.
Paras:
* session_time: session time in sec
* total_user: user count need to be spawned
* spawn_speed: user spawning speed, in user/sec
"""
if spawn_speed is None:
spawn_speed = total_user
loop = asyncio.get_event_loop()
if not loop.is_running():
self._stop_loop_flag = True
loop.create_task(self._start_session(session_time, total_user, spawn_speed))
if not loop.is_running():
loop.run_forever()
|
import os
import json
import time
import shutil
import logging
import zipfile
import platform
import tempfile
import subprocess
from pathlib import Path
from threading import Thread
import requests
from ...exceptions import BentoMLException
logger = logging.getLogger(__name__)
def get_command() -> str:
"""
ngrok command based on OS
"""
system = platform.system()
if system == "Darwin":
command = "ngrok"
elif system == "Windows":
command = "ngrok.exe"
elif system == "Linux":
command = "ngrok"
else:
raise BentoMLException(f"{system} is not supported")
return command
def log_url() -> None:
localhost_url = "http://localhost:4040/api/tunnels" # Url with tunnel details
while True:
time.sleep(1)
response = requests.get(localhost_url)
if response.status_code == 200:
data = json.loads(response.text)
if data["tunnels"]:
tunnel = data["tunnels"][0]
logger.info(
" Ngrok running at: %s",
tunnel["public_url"].replace("https://", "http://"),
)
logger.info(" Traffic stats available on http://127.0.0.1:4040")
return
else:
logger.info("Waiting for ngrok to start...")
def start_ngrok(port: int):
"""
Start ngrok server synchronously
"""
command = get_command()
ngrok_path = str(Path(tempfile.gettempdir(), "ngrok"))
download_ngrok(ngrok_path)
executable = str(Path(ngrok_path, command))
os.chmod(executable, 0o777)
Thread(target=log_url).start()
with subprocess.Popen([executable, "http", str(port)]) as ngrok_process:
ngrok_process.wait()
def download_ngrok(ngrok_path: str) -> None:
"""
Check OS and decide on ngrok download URL
"""
if Path(ngrok_path).exists():
return
system = platform.system()
if system == "Darwin":
url = "https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-darwin-amd64.zip"
elif system == "Windows":
url = "https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-windows-amd64.zip"
elif system == "Linux":
url = "https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip"
else:
raise Exception(f"{system} is not supported")
download_path = download_file(url)
with zipfile.ZipFile(download_path, "r") as zip_ref:
zip_ref.extractall(ngrok_path)
def download_file(url: str) -> str:
"""
Download ngrok binary file to local
Args:
url (:code:`str`):
URL to download
Returns:
:code:`download_path`: str
"""
local_filename = url.split("/")[-1]
r = requests.get(url, stream=True)
download_path = str(Path(tempfile.gettempdir(), local_filename))
with open(download_path, "wb") as f:
shutil.copyfileobj(r.raw, f)
return download_path
|
import io
import json
import typing as t
import itertools
from typing import TYPE_CHECKING
from . import catch_exceptions
from .csv import csv_row
from .csv import csv_quote
from .csv import csv_split
from .csv import csv_unquote
from .csv import csv_splitlines
from .lazy_loader import LazyLoader
from ...exceptions import BadInput
from ...exceptions import BentoMLException
if TYPE_CHECKING:
import pandas as pd
else:
pd = LazyLoader("pd", globals(), "pandas")
def check_dataframe_column_contains(
required_column_names: str, df: "pd.DataFrame"
) -> None:
df_columns = set(map(str, df.columns))
for col in required_column_names:
if col not in df_columns:
raise BadInput(
f"Missing columns: {','.join(set(required_column_names) - df_columns)}, required_column:{df_columns}" # noqa: E501
)
@catch_exceptions(Exception, BentoMLException, fallback=None)
def guess_orient(
table: t.Union[t.List[t.Mapping[str, t.Any]], t.Dict[str, t.Any]],
strict: bool = False,
) -> t.Optional[t.Set[str]]:
if isinstance(table, list):
if not table:
if strict:
return {"records", "values"}
else:
return {"records"}
if isinstance(table[0], dict):
return {"records"}
else:
return {"values"}
elif isinstance(table, dict):
if set(table) == {"columns", "index", "data"}:
return {"split"}
if set(table) == {"schema", "data"} and "primaryKey" in table["schema"]:
return {"table"}
if strict:
return {"columns", "index"}
else:
return {"columns"}
else:
return None
class _DataFrameState(object):
# fmt: off
@t.overload
def __init__(self, columns: t.Optional[t.Dict[str, int]]): ... # noqa: F811,E704
@t.overload # noqa: F811
def __init__(self, columns: t.Optional[t.Tuple[str, ...]]): ... # noqa: F811,E704
# fmt: on
def __init__( # noqa: F811
self,
columns: t.Optional[t.Union[t.Mapping[str, int], t.Tuple[str, ...]]] = None,
):
self.columns = columns
def _from_json_records(state: _DataFrameState, table: list) -> t.Iterator[str]:
if state.columns is None: # make header
state.columns = {k: i for i, k in enumerate(table[0].keys())}
for tr in table:
yield csv_row(tr[c] for c in state.columns)
def _from_json_values(_: _DataFrameState, table: list) -> t.Iterator[str]:
for tr in table:
yield csv_row(tr)
def _from_json_columns(state: _DataFrameState, table: dict) -> t.Iterator[str]:
if state.columns is None: # make header
state.columns = {k: i for i, k in enumerate(table.keys())}
for row in next(iter(table.values())):
yield csv_row(table[col][row] for col in state.columns)
def _from_json_index(state: _DataFrameState, table: dict) -> t.Iterator[str]:
if state.columns is None: # make header
state.columns = {k: i for i, k in enumerate(next(iter(table.values())).keys())}
for row in table.keys():
yield csv_row(td for td in table[row].values())
else:
for row in table.keys():
yield csv_row(table[row][col] for col in state.columns)
def _from_json_split(state: _DataFrameState, table: dict) -> t.Iterator[str]:
table_columns = {k: i for i, k in enumerate(table["columns"])}
if state.columns is None: # make header
state.columns = table_columns
for row in table["data"]:
yield csv_row(row)
else:
idxs = [state.columns[k] for k in table_columns]
for row in table["data"]:
yield csv_row(row[idx] for idx in idxs)
def _from_csv_without_index(
state: _DataFrameState, table: t.Iterator[str]
) -> t.Iterator[str]:
row_str = next(table) # skip column names
table_columns = tuple(csv_unquote(s) for s in csv_split(row_str, ","))
if state.columns is None:
state.columns = table_columns
for row_str in table:
if not row_str: # skip blank line
continue
if not row_str.strip():
yield csv_quote(row_str)
else:
yield row_str
elif not all(
c1 == c2 for c1, c2 in itertools.zip_longest(state.columns, table_columns)
):
# TODO: check type hint for this case. Right now nothing breaks so :)
idxs = [state.columns[k] for k in table_columns] # type: ignore[call-overload]
for row_str in table:
if not row_str: # skip blank line
continue
if not row_str.strip():
yield csv_quote(row_str)
else:
tr = tuple(s for s in csv_split(row_str, ","))
yield csv_row(tr[i] for i in idxs)
else:
for row_str in table:
if not row_str: # skip blank line
continue
if not row_str.strip():
yield csv_quote(row_str)
else:
yield row_str
_ORIENT_MAP: t.Dict[str, t.Callable[["_DataFrameState", str], t.Iterator[str]]] = {
"records": _from_json_records,
"columns": _from_json_columns,
"values": _from_json_values,
"split": _from_json_split,
"index": _from_json_index,
# 'table': _from_json_table,
}
PANDAS_DATAFRAME_TO_JSON_ORIENT_OPTIONS = {k for k in _ORIENT_MAP}
def _dataframe_csv_from_input(
table: str,
fmt: str,
orient: t.Optional[str],
state: _DataFrameState,
) -> t.Optional[t.Tuple[str, ...]]:
try:
if not fmt or fmt == "json":
table = json.loads(table)
if not orient:
orient = guess_orient(table, strict=False).pop()
else:
# TODO: this can be either a set or a string
guessed_orient = guess_orient(table, strict=True) # type: t.Set[str]
if set(orient) != guessed_orient and orient not in guessed_orient:
return None
if orient not in _ORIENT_MAP:
return None
_from_json = _ORIENT_MAP[orient]
try:
return tuple(_from_json(state, table))
except (TypeError, AttributeError, KeyError, IndexError):
return None
elif fmt == "csv":
_table = csv_splitlines(table)
return tuple(_from_csv_without_index(state, _table))
else:
return None
except json.JSONDecodeError:
return None
def from_json_or_csv(
data: t.Iterable[str],
formats: t.Iterable[str],
orient: t.Optional[str] = None,
columns: t.Optional[t.List[str]] = None,
dtype: t.Optional[t.Union[bool, t.Dict[str, t.Any]]] = None,
) -> t.Tuple[t.Optional["pd.DataFrame"], t.Tuple[int, ...]]:
"""
Load DataFrames from multiple raw data sources in JSON or CSV format, efficiently
Background: Each call of `pandas.read_csv()` or `pandas.read_json` takes about
100ms, no matter how many lines the read data contains. This function concats
the ragged_tensor/csv before running `read_json`/`read_csv` to improve performance.
Args:
data (`Iterable[str]`):
Data in either JSON or CSV format
formats (`Iterable[str]`):
List of formats, which are either `json` or `csv`
orient (:code:`str`, `optional`, default `"records"`):
Indication of expected JSON string format. Compatible JSON strings can be
produced by `pandas.io.json.to_json()` with a corresponding orient value.
Possible orients are:
- `split` - :code:`Dict[str, Any]`: {idx -> [idx], columns -> [columns], data
-> [values]}
- `records` - `List[Any]`: [{column -> value}, ..., {column -> value}]
- `index` - :code:`Dict[str, Any]`: {idx -> {column -> value}}
- `columns` - :code:`Dict[str, Any]`: {column -> {index -> value}}
- `values` - :code:`Dict[str, Any]`: Values arrays
columns (`List[str]`, `optional`, default `None`):
List of column names that users wish to update
dtype (:code:`Union[bool, Dict[str, Any]]`, `optional`, default `None`):
Data type to inputs/outputs to. If it is a boolean, then pandas will infer
data types. Otherwise, if it is a dictionary of column to data type, then
applies those to incoming dataframes. If False, then don't infer data types
at all (only applies to the data). This is not applicable when
`orient='table'`.
Returns:
A tuple containing a `pandas.DataFrame` and a tuple containing the length of all
series in the returned DataFrame.
Raises:
pandas.errors.EmptyDataError:
When data is not found or is empty.
"""
state = _DataFrameState(
columns={k: i for i, k in enumerate(columns)} if columns else None
)
trs_list = tuple(
_dataframe_csv_from_input(_t, _fmt, orient, state)
for _t, _fmt in zip(data, formats)
)
header = ",".join(csv_quote(td) for td in state.columns) if state.columns else None
lens = tuple(len(trs) if trs else 0 for trs in trs_list)
table = "\n".join(tr for trs in trs_list if trs is not None for tr in trs)
try:
if not header:
df = pd.read_csv(
io.StringIO(table),
dtype=dtype,
index_col=None,
header=None,
)
else:
df = pd.read_csv(
io.StringIO("\n".join((header, table))),
dtype=dtype,
index_col=None,
)
return df, lens
except pd.errors.EmptyDataError:
return None, lens
|
from __future__ import annotations
import os
import sys
import uuid
import random
import socket
import typing as t
import functools
import contextlib
from typing import overload
from typing import TYPE_CHECKING
from pathlib import Path
from datetime import date
from datetime import time
from datetime import datetime
from datetime import timedelta
import fs
import attr
import fs.copy
if sys.version_info >= (3, 8):
from functools import cached_property
else:
from backports.cached_property import cached_property
from .cattr import bentoml_cattr
from ..types import LazyType
from ..types import PathType
from ..types import MetadataDict
from ..types import MetadataType
from .lazy_loader import LazyLoader
if TYPE_CHECKING:
from fs.base import FS
P = t.ParamSpec("P")
GenericFunction = t.Callable[P, t.Any]
C = t.TypeVar("C")
T = t.TypeVar("T")
_T_co = t.TypeVar("_T_co", covariant=True, bound=t.Any)
__all__ = [
"bentoml_cattr",
"cached_property",
"cached_contextmanager",
"reserve_free_port",
"catch_exceptions",
"LazyLoader",
"validate_or_create_dir",
"display_path_under_home",
]
@overload
def kwargs_transformers(
func: GenericFunction[t.Concatenate[str, bool, t.Iterable[str], P]],
*,
transformer: GenericFunction[t.Any],
) -> GenericFunction[t.Concatenate[str, t.Iterable[str], bool, P]]:
...
@overload
def kwargs_transformers(
func: None = None, *, transformer: GenericFunction[t.Any]
) -> GenericFunction[t.Any]:
...
def kwargs_transformers(
_func: t.Callable[..., t.Any] | None = None,
*,
transformer: GenericFunction[t.Any],
) -> GenericFunction[t.Any]:
def decorator(func: GenericFunction[t.Any]) -> t.Callable[P, t.Any]:
@functools.wraps(func)
def wrapper(*args: P.args, **kwargs: P.kwargs) -> t.Any:
return func(*args, **{k: transformer(v) for k, v in kwargs.items()})
return wrapper
if _func is None:
return decorator
return decorator(_func)
@t.overload
def first_not_none(*args: T | None, default: T) -> T:
...
@t.overload
def first_not_none(*args: T | None) -> T | None:
...
def first_not_none(*args: T | None, default: None | T = None) -> T | None:
"""
Returns the first argument that is not None.
"""
return next((arg for arg in args if arg is not None), default)
def randomize_runner_name(module_name: str):
return f"{module_name.split('.')[-1]}_{uuid.uuid4().hex[:6].lower()}"
def validate_or_create_dir(*path: PathType) -> None:
for p in path:
path_obj = Path(p)
if path_obj.exists():
if not path_obj.is_dir():
raise OSError(20, f"{path_obj} is not a directory")
else:
path_obj.mkdir(parents=True)
def calc_dir_size(path: PathType) -> int:
return sum(f.stat().st_size for f in Path(path).glob("**/*") if f.is_file())
def display_path_under_home(path: str) -> str:
# Shorten path under home directory with leading `~`
# e.g. from `/Users/foo/bar` to just `~/bar`
try:
return str("~" / Path(path).relative_to(Path.home()))
except ValueError:
# when path is not under home directory, return original full path
return path
def human_readable_size(size: t.Union[int, float], decimal_places: int = 2) -> str:
for unit in ["B", "KiB", "MiB", "GiB", "TiB", "PiB"]:
if size < 1024.0 or unit == "PiB":
break
size /= 1024.0
else:
raise ValueError("size is too large")
return f"{size:.{decimal_places}f} {unit}"
class catch_exceptions(t.Generic[_T_co], object):
def __init__(
self,
catch_exc: t.Union[t.Type[BaseException], t.Tuple[t.Type[BaseException], ...]],
throw_exc: t.Callable[[str], BaseException],
msg: str = "",
fallback: t.Optional[_T_co] = None,
raises: t.Optional[bool] = True,
) -> None:
self._catch_exc = catch_exc
self._throw_exc = throw_exc
self._msg = msg
self._fallback = fallback
self._raises = raises
def __call__(self, func: t.Callable[P, _T_co]) -> t.Callable[P, t.Optional[_T_co]]:
@functools.wraps(func)
def _(*args: P.args, **kwargs: P.kwargs) -> t.Optional[_T_co]:
try:
return func(*args, **kwargs)
except self._catch_exc:
if self._raises:
raise self._throw_exc(self._msg)
return self._fallback
return _
@contextlib.contextmanager
def reserve_free_port(
host: str = "localhost",
prefix: t.Optional[str] = None,
max_retry: int = 50,
) -> t.Iterator[int]:
"""
detect free port and reserve until exit the context
"""
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if prefix is not None:
prefix_num = int(prefix) * 10 ** (5 - len(prefix))
suffix_range = min(65535 - prefix_num, 10 ** (5 - len(prefix)))
for _ in range(max_retry):
suffix = random.randint(0, suffix_range)
port = int(f"{prefix_num + suffix}")
try:
sock.bind((host, port))
break
except OSError:
continue
else:
raise RuntimeError(
f"cannot find free port with prefix {prefix} after {max_retry} retries"
)
else:
sock.bind((host, 0))
port = sock.getsockname()[1]
yield port
sock.close()
def copy_file_to_fs_folder(
src_path: str,
dst_fs: FS,
dst_folder_path: str = ".",
dst_filename: t.Optional[str] = None,
):
"""Copy the given file at src_path to dst_fs filesystem, under its dst_folder_path
folder with dst_filename as file name. When dst_filename is None, keep the original
file name.
"""
src_path = os.path.realpath(os.path.expanduser(src_path))
dir_name, file_name = os.path.split(src_path)
src_fs = fs.open_fs(dir_name)
dst_filename = file_name if dst_filename is None else dst_filename
dst_path = fs.path.join(dst_folder_path, dst_filename)
fs.copy.copy_file(src_fs, file_name, dst_fs, dst_path)
def resolve_user_filepath(filepath: str, ctx: t.Optional[str]) -> str:
"""Resolve the abspath of a filepath provided by user, which may contain "~" or may
be a relative path base on ctx dir.
"""
# Return if filepath exist after expanduser
_path = os.path.expanduser(filepath)
if os.path.exists(_path):
return os.path.realpath(_path)
# Try finding file in ctx if provided
if ctx:
_path = os.path.expanduser(os.path.join(ctx, filepath))
if os.path.exists(_path):
return os.path.realpath(_path)
raise FileNotFoundError(f"file {filepath} not found")
def label_validator(
_: t.Any, _attr: attr.Attribute[dict[str, str]], labels: dict[str, str]
):
validate_labels(labels)
def validate_labels(labels: dict[str, str]):
if not isinstance(labels, dict):
raise ValueError("labels must be a dict!")
for key, val in labels.items():
if not isinstance(key, str):
raise ValueError("label keys must be strings")
if not isinstance(val, str):
raise ValueError("label values must be strings")
def metadata_validator(
_: t.Any, _attr: attr.Attribute[MetadataDict], metadata: MetadataDict
):
validate_metadata(metadata)
def validate_metadata(metadata: MetadataDict):
if not isinstance(metadata, dict):
raise ValueError("metadata must be a dict!")
for key, val in metadata.items():
if not isinstance(key, (str, int, float)):
raise ValueError("metadata keys must be strings")
metadata[key] = _validate_metadata_entry(val)
def _validate_metadata_entry(entry: MetadataType) -> MetadataType:
if isinstance(entry, dict):
validate_metadata(entry)
elif isinstance(entry, list):
for i, val in enumerate(entry):
entry[i] = _validate_metadata_entry(val)
elif isinstance(entry, tuple):
entry = tuple((_validate_metadata_entry(x) for x in entry))
elif LazyType("numpy", "ndarray").isinstance(entry):
entry = entry.tolist() # type: ignore (LazyType)
_validate_metadata_entry(entry)
elif LazyType("numpy", "generic").isinstance(entry):
entry = entry.item() # type: ignore (LazyType)
_validate_metadata_entry(entry)
elif LazyType("scipy.sparse", "spmatrix").isinstance(entry):
raise ValueError(
"SciPy sparse matrices are currently not supported as metadata items; consider using a dictionary instead"
)
elif LazyType("pandas", "Series").isinstance(entry):
entry = {entry.name: entry.to_dict()}
_validate_metadata_entry(entry)
elif LazyType("pandas.api.extensions", "ExtensionArray").isinstance(entry):
entry = entry.to_numpy().tolist() # type: ignore (LazyType)
_validate_metadata_entry(entry)
elif LazyType("pandas", "DataFrame").isinstance(entry):
entry = entry.to_dict() # type: ignore (LazyType)
validate_metadata(entry) # type: ignore (LazyType)
elif LazyType("pandas", "Timestamp").isinstance(entry):
entry = entry.to_pydatetime() # type: ignore (LazyType)
elif LazyType("pandas", "Timedelta").isinstance(entry):
entry = entry.to_pytimedelta() # type: ignore (LazyType)
elif LazyType("pandas", "Period").isinstance(entry):
entry = entry.to_timestamp().to_pydatetime() # type: ignore (LazyType)
elif LazyType("pandas", "Interval").isinstance(entry):
entry = (entry.left, entry.right) # type: ignore (LazyType)
_validate_metadata_entry(entry)
elif not isinstance(
entry, (str, bytes, bool, int, float, complex, datetime, date, time, timedelta)
):
raise ValueError(
f"metadata entries must be basic python types like 'str', 'int', or 'complex', got '{type(entry).__name__}'"
)
return entry
VT = t.TypeVar("VT")
class cached_contextmanager:
"""
Just like contextlib.contextmanager, but will cache the yield value for the same
arguments. When all instances of the same contextmanager exits, the cache value will
be dropped.
Example Usage:
(To reuse the container based on the same image)
>>> @cached_contextmanager("{docker_image.id}")
>>> def start_docker_container_from_image(docker_image, timeout=60):
>>> container = ...
>>> yield container
>>> container.stop()
"""
def __init__(self, cache_key_template: t.Optional[str] = None):
self._cache_key_template = cache_key_template
self._cache: t.Dict[t.Any, t.Any] = {}
def __call__(
self, func: "t.Callable[P, t.Generator[VT, None, None]]"
) -> "t.Callable[P, t.ContextManager[VT]]":
func_m = contextlib.contextmanager(func)
@contextlib.contextmanager
@functools.wraps(func)
def _func(*args: "P.args", **kwargs: "P.kwargs") -> t.Any:
import inspect
bound_args = inspect.signature(func).bind(*args, **kwargs)
bound_args.apply_defaults()
if self._cache_key_template:
cache_key = self._cache_key_template.format(**bound_args.arguments)
else:
cache_key = repr(tuple(bound_args.arguments.values()))
if cache_key in self._cache:
yield self._cache[cache_key]
else:
with func_m(*args, **kwargs) as value:
self._cache[cache_key] = value
yield value
self._cache.pop(cache_key)
return _func
|
# type: ignore[reportMissingTypeStubs]
import typing as t
from typing import TYPE_CHECKING
from opentelemetry.trace import get_current_span
from opentelemetry.sdk.trace.sampling import Decision
from opentelemetry.sdk.trace.sampling import ALWAYS_ON
from opentelemetry.sdk.trace.sampling import ParentBased
from opentelemetry.sdk.trace.sampling import StaticSampler
from opentelemetry.sdk.trace.sampling import SamplingResult
from opentelemetry.sdk.trace.sampling import TraceIdRatioBased
if TYPE_CHECKING:
from opentelemetry.trace import Link
from opentelemetry.trace import Context
from opentelemetry.trace import SpanKind
from opentelemetry.trace import TraceState
from opentelemetry.util.types import Attributes
def _get_parent_trace_state(parent_context: "Context") -> t.Optional["TraceState"]:
parent_span_context = get_current_span(parent_context).get_span_context()
if parent_span_context is None or not parent_span_context.is_valid:
return None
return parent_span_context.trace_state
class TraceIdRatioBasedAlwaysRecording(TraceIdRatioBased):
"""
A trace Sampler that:
* always recording (so that we can get the trace_id)
* respect the parent's trace_state
* ratio sampling
"""
def should_sample(
self,
parent_context: t.Optional["Context"],
trace_id: int,
name: str,
kind: t.Optional["SpanKind"] = None,
attributes: t.Optional["Attributes"] = None,
links: t.Optional[t.Sequence["Link"]] = None,
trace_state: t.Optional["TraceState"] = None,
) -> "SamplingResult":
decision = Decision.RECORD_ONLY
if trace_id & self.TRACE_ID_LIMIT < self.bound:
decision = Decision.RECORD_AND_SAMPLE
if decision is Decision.RECORD_ONLY:
pass
# attributes = None
return SamplingResult(
decision,
attributes,
_get_parent_trace_state(parent_context), # type: ignore[reportGeneralTypeIssues]
)
class ParentBasedTraceIdRatio(ParentBased):
"""
Sampler that respects its parent span's sampling decision, but otherwise
samples probabalistically based on `rate`.
"""
def __init__(self, rate: float):
root = TraceIdRatioBasedAlwaysRecording(rate=rate)
super().__init__(
root=root,
remote_parent_sampled=ALWAYS_ON,
remote_parent_not_sampled=StaticSampler(Decision.RECORD_ONLY),
local_parent_sampled=ALWAYS_ON,
local_parent_not_sampled=StaticSampler(Decision.RECORD_ONLY),
)
|
import re
import typing as t
import logging
from typing import TYPE_CHECKING
from ...exceptions import BentoMLException
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
import click
def to_valid_docker_image_name(name: str) -> str:
# https://docs.docker.com/engine/reference/commandline/tag/#extended-description
return name.lower().strip("._-")
def to_valid_docker_image_version(version: str) -> str:
# https://docs.docker.com/engine/reference/commandline/tag/#extended-description
return version.encode("ascii", errors="ignore").decode().lstrip(".-")[:128]
def validate_tag(
ctx: "click.Context", param: "click.Parameter", tag: t.Optional[str]
) -> t.Optional[str]: # noqa # pylint: disable=unused-argument
if tag is None:
return tag
if ":" in tag:
name, version = tag.split(":")[:2]
else:
name, version = tag, None
valid_name_pattern = re.compile(
r"""
^(
[a-z0-9]+ # alphanumeric
(.|_{1,2}|-+)? # seperators
)*$
""",
re.VERBOSE,
)
valid_version_pattern = re.compile(
r"""
^
[a-zA-Z0-9] # cant start with .-
[ -~]{,127} # ascii match rest, cap at 128
$
""",
re.VERBOSE,
)
if not valid_name_pattern.match(name):
raise BentoMLException(
f"Provided Docker Image tag {tag} is invalid. "
"Name components may contain lowercase letters, digits "
"and separators. A separator is defined as a period, "
"one or two underscores, or one or more dashes."
)
if version and not valid_version_pattern.match(version):
raise BentoMLException(
f"Provided Docker Image tag {tag} is invalid. "
"A tag name must be valid ASCII and may contain "
"lowercase and uppercase letters, digits, underscores, "
"periods and dashes. A tag name may not start with a period "
"or a dash and may contain a maximum of 128 characters."
)
return tag
|
import typing as t
import logging
import importlib.util
from typing import TYPE_CHECKING
from bentoml.exceptions import BentoMLException
from ..types import LazyType
from .lazy_loader import LazyLoader
try:
import importlib.metadata as importlib_metadata
except ImportError:
import importlib_metadata
if TYPE_CHECKING:
import tensorflow as tf
from ..external_typing import tensorflow as tf_ext
else:
tf = LazyLoader(
"tf",
globals(),
"tensorflow",
exc_msg="`tensorflow` is required to use bentoml.tensorflow module.",
)
logger = logging.getLogger(__name__)
TF_KERAS_DEFAULT_FUNCTIONS = {
"_default_save_signature",
"call_and_return_all_conditional_losses",
}
TENSOR_CLASS_NAMES = (
"RaggedTensor",
"SparseTensor",
"TensorArray",
"EagerTensor",
"Tensor",
)
__all__ = [
"get_tf_version",
"tf_function_wrapper",
"pretty_format_restored_model",
"is_gpu_available",
"hook_loaded_model",
]
TF_FUNCTION_WARNING: str = """\
Due to TensorFlow's internal mechanism, only methods
wrapped under `@tf.function` decorator and the Keras default function
`__call__(inputs, training=False)` can be restored after a save & load.\n
You can test the restored model object via `bentoml.tensorflow.load(path)`
"""
KERAS_MODEL_WARNING: str = """\
BentoML detected that {name} is being used to pack a Keras API
based model. In order to get optimal serving performance, we recommend
to wrap your keras model `call()` methods with `@tf.function` decorator.
"""
def hook_loaded_model(
tf_model: "tf_ext.AutoTrackable", module_name: str
) -> "tf_ext.AutoTrackable":
tf_function_wrapper.hook_loaded_model(tf_model)
logger.warning(TF_FUNCTION_WARNING)
# pretty format loaded model
logger.info(pretty_format_restored_model(tf_model))
if hasattr(tf_model, "keras_api"):
logger.warning(KERAS_MODEL_WARNING.format(name=module_name))
return tf_model
def is_gpu_available() -> bool:
try:
return len(tf.config.list_physical_devices("GPU")) > 0
except AttributeError:
return tf.test.is_gpu_available()
def get_tf_version() -> str:
# courtesy of huggingface/transformers
_tf_version = ""
_tf_available = importlib.util.find_spec("tensorflow") is not None
if _tf_available:
candidates = (
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"intel-tensorflow-avx512",
"tensorflow-rocm",
"tensorflow-macos",
)
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for pkg in candidates:
try:
_tf_version = importlib_metadata.version(pkg)
break
except importlib_metadata.PackageNotFoundError:
pass
return _tf_version
def check_tensor_spec(
tensor: "tf_ext.TensorLike",
tensor_spec: t.Union[str, t.Tuple[str, ...], t.List[str], "tf_ext.UnionTensorSpec"],
class_name: t.Optional[str] = None,
) -> bool:
"""
:code:`isinstance` wrapper to check spec for a given tensor.
Args:
tensor (:code:`Union[tf.Tensor, tf.EagerTensor, tf.SparseTensor, tf.RaggedTensor]`):
tensor class to check.
tensor_spec (:code:`Union[str, Tuple[str,...]]`):
class used to check with :obj:`tensor`. Follows :obj:`TENSOR_CLASS_NAME`
class_name (:code:`str`, `optional`, default to :code:`None`):
Optional class name to pass for correct path of tensor spec. If none specified,
then :code:`class_name` will be determined via given spec class.
Returns:
`bool` if given tensor match a given spec.
"""
if tensor_spec is None:
raise BentoMLException("`tensor` should not be None")
tensor_cls = type(tensor).__name__
if isinstance(tensor_spec, str):
return tensor_cls == tensor_spec.split(".")[-1]
elif isinstance(tensor_spec, (list, tuple, set)):
return all(check_tensor_spec(tensor, k) for k in tensor_spec)
else:
if class_name is None:
class_name = (
str(tensor_spec.__class__).replace("<class '", "").replace("'>", "")
)
return LazyType["tf_ext.TensorSpec"](class_name).isinstance(tensor)
def normalize_spec(value: t.Any) -> "tf_ext.TypeSpec":
"""normalize tensor spec"""
if not check_tensor_spec(value, TENSOR_CLASS_NAMES):
return value
if check_tensor_spec(value, "RaggedTensor"):
return tf.RaggedTensorSpec.from_value(value)
if check_tensor_spec(value, "SparseTensor"):
return tf.SparseTensorSpec.from_value(value)
if check_tensor_spec(value, "TensorArray"):
return tf.TensorArraySpec.from_value(value)
if check_tensor_spec(value, ("Tensor", "EagerTensor")):
return tf.TensorSpec.from_tensor(value)
raise BentoMLException(f"Unknown type for tensor spec, got{type(value)}.")
def get_input_signatures(
func: "tf_ext.DecoratedFunction",
) -> t.Tuple["tf_ext.InputSignature"]:
if hasattr(func, "function_spec"): # RestoredFunction
func_spec: "tf_ext.FunctionSpec" = getattr(func, "function_spec")
input_spec: "tf_ext.TensorSignature" = getattr(func_spec, "input_signature")
if input_spec is not None:
return ((input_spec, {}),)
else:
concrete_func: t.List["tf_ext.ConcreteFunction"] = getattr(
func, "concrete_functions"
)
return tuple(
s for conc in concrete_func for s in get_input_signatures(conc)
)
else:
sis: "tf_ext.InputSignature" = getattr(func, "structured_input_signature")
if sis is not None:
return (sis,)
# NOTE: we can use internal `_arg_keywords` here.
# Seems that this is a attributes of all ConcreteFunction and
# does seem safe to access and use externally.
if getattr(func, "_arg_keywords") is not None:
return (
(
tuple(),
{
k: normalize_spec(v)
for k, v in zip(
getattr(func, "_arg_keywords"), getattr(func, "inputs")
)
},
),
)
return tuple()
def get_output_signature(
func: "tf_ext.DecoratedFunction",
) -> t.Union[
"tf_ext.ConcreteFunction", t.Tuple[t.Any, ...], t.Dict[str, "tf_ext.TypeSpec"]
]:
if hasattr(func, "function_spec"): # for RestoredFunction
# assume all concrete functions have same signature
concrete_function_wrapper: "tf_ext.ConcreteFunction" = getattr(
func, "concrete_functions"
)[0]
return get_output_signature(concrete_function_wrapper)
if hasattr(func, "structured_input_signature"): # for ConcreteFunction
if getattr(func, "structured_outputs") is not None:
outputs = getattr(func, "structured_outputs")
if LazyType[t.Dict[str, "tf_ext.TensorSpec"]](dict).isinstance(outputs):
return {k: normalize_spec(v) for k, v in outputs.items()}
return outputs
else:
outputs: t.Tuple["tf_ext.TensorSpec"] = getattr(func, "outputs")
return tuple(normalize_spec(v) for v in outputs)
return tuple()
def get_arg_names(func: "tf_ext.DecoratedFunction") -> t.Optional[t.List[str]]:
if hasattr(func, "function_spec"): # for RestoredFunction
func_spec: "tf_ext.FunctionSpec" = getattr(func, "function_spec")
return getattr(func_spec, "arg_names")
if hasattr(func, "structured_input_signature"): # for ConcreteFunction
return getattr(func, "_arg_keywords")
return list()
def get_restored_functions(
m: "tf_ext.Trackable",
) -> t.Dict[str, "tf_ext.RestoredFunction"]:
function_map = {k: getattr(m, k) for k in dir(m)}
return {
k: v
for k, v in function_map.items()
if k not in TF_KERAS_DEFAULT_FUNCTIONS and hasattr(v, "function_spec")
}
def get_serving_default_function(m: "tf_ext.Trackable") -> "tf_ext.ConcreteFunction":
if not hasattr(m, "signatures"):
raise EnvironmentError(f"{type(m)} is not a valid SavedModel format.")
signatures: "tf_ext.SignatureMap" = getattr(m, "signatures")
func = signatures.get(tf.compat.v2.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY) # type: ignore
if func is not None:
return func
raise BentoMLException(
"Given Trackable objects doesn't contain a"
" default functions from SignatureMap."
" Most likely Tensorflow internal error."
)
def _pretty_format_function_call(base: str, name: str, arg_names: t.Tuple[t.Any]):
if arg_names:
part_sigs = ", ".join(f"{k}" for k in arg_names)
else:
part_sigs = ""
if name == "__call__":
return f"{base}({part_sigs})"
return f"{base}.{name}({part_sigs})"
def _pretty_format_positional(positional: t.Optional["tf_ext.TensorSignature"]) -> str:
if positional is not None:
return f'Positional arguments ({len(positional)} total):\n {" * ".join(str(a) for a in positional)}' # noqa
return "No positional arguments.\n"
def pretty_format_function(
function: "tf_ext.DecoratedFunction",
obj: str = "<object>",
name: str = "<function>",
) -> str:
ret = ""
outs = get_output_signature(function)
sigs = get_input_signatures(function)
arg_names = get_arg_names(function)
if hasattr(function, "function_spec"):
arg_names = getattr(function, "function_spec").arg_names
else:
arg_names = getattr(function, "_arg_keywords")
ret += _pretty_format_function_call(obj, name, arg_names)
ret += "\n------------\n"
signature_descriptions = [] # type: t.List[str]
for index, sig in enumerate(sigs):
positional, keyword = sig
signature_descriptions.append(
f"Arguments Option {index + 1}:\n {_pretty_format_positional(positional)}\n Keyword arguments:\n {keyword}"
)
ret += "\n\n".join(signature_descriptions)
ret += f"\n\nReturn:\n {outs}\n\n"
return ret
def pretty_format_restored_model(model: "tf_ext.AutoTrackable") -> str:
part_functions = ""
restored_functions = get_restored_functions(model)
for name, func in restored_functions.items():
part_functions += pretty_format_function(func, "model", name)
part_functions += "\n"
if get_tf_version().startswith("1"):
serving_default = get_serving_default_function(model)
if serving_default:
part_functions += pretty_format_function(
serving_default, "model", "signatures['serving_default']"
)
part_functions += "\n"
return f"Found restored functions:\n{part_functions}"
def cast_tensor_by_spec(
_input: "tf_ext.TensorLike", spec: "tf_ext.TypeSpec"
) -> "tf_ext.TensorLike":
"""
transform dtype & shape following spec
"""
if not LazyType["tf_ext.TensorSpec"](
"tensorflow.python.framework.tensor_spec.TensorSpec"
).isinstance(spec):
return _input
if LazyType["tf_ext.CastableTensorType"]("tf.Tensor").isinstance(
_input
) or LazyType["tf_ext.CastableTensorType"](
"tensorflow.python.framework.ops.EagerTensor"
).isinstance(
_input
):
# TensorFlow Issues #43038
# pylint: disable=unexpected-keyword-arg, no-value-for-parameter
return t.cast(
"tf_ext.TensorLike", tf.cast(_input, dtype=spec.dtype, name=spec.name)
)
else:
return t.cast(
"tf_ext.TensorLike", tf.constant(_input, dtype=spec.dtype, name=spec.name)
)
class tf_function_wrapper: # pragma: no cover
def __init__(
self,
origin_func: t.Callable[..., t.Any],
arg_names: t.Optional[t.List[str]] = None,
arg_specs: t.Optional[t.Tuple["tf_ext.TensorSpec"]] = None,
kwarg_specs: t.Optional[t.Dict[str, "tf_ext.TensorSpec"]] = None,
) -> None:
self.origin_func = origin_func
self.arg_names = arg_names
self.arg_specs = arg_specs
self.kwarg_specs = {k: v for k, v in zip(arg_names or [], arg_specs or [])}
self.kwarg_specs.update(kwarg_specs or {})
def __call__(
self, *args: "tf_ext.TensorLike", **kwargs: "tf_ext.TensorLike"
) -> t.Any:
if self.arg_specs is None and self.kwarg_specs is None:
return self.origin_func(*args, **kwargs)
for k in kwargs:
if k not in self.kwarg_specs:
raise TypeError(f"Function got an unexpected keyword argument {k}")
arg_keys = {k for k, _ in zip(self.arg_names, args)} # type: ignore[arg-type]
_ambiguous_keys = arg_keys & set(kwargs) # type: t.Set[str]
if _ambiguous_keys:
raise TypeError(f"got two values for arguments '{_ambiguous_keys}'")
# INFO:
# how signature with kwargs works?
# https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/eager/function.py#L1519
transformed_args: t.Tuple[t.Any, ...] = tuple(
cast_tensor_by_spec(arg, spec) for arg, spec in zip(args, self.arg_specs) # type: ignore[arg-type]
)
transformed_kwargs = {
k: cast_tensor_by_spec(arg, self.kwarg_specs[k])
for k, arg in kwargs.items()
}
return self.origin_func(*transformed_args, **transformed_kwargs)
def __getattr__(self, k: t.Any) -> t.Any:
return getattr(self.origin_func, k)
@classmethod
def hook_loaded_model(cls, loaded_model: t.Any) -> None:
funcs = get_restored_functions(loaded_model)
for k, func in funcs.items():
arg_names = get_arg_names(func)
sigs = get_input_signatures(func)
if not sigs:
continue
arg_specs, kwarg_specs = sigs[0]
setattr(
loaded_model,
k,
cls(
func,
arg_names=arg_names,
arg_specs=arg_specs, # type: ignore
kwarg_specs=kwarg_specs, # type: ignore
),
)
|
import signal
import subprocess
from typing import TYPE_CHECKING
import psutil
if TYPE_CHECKING:
import typing as t
def kill_subprocess_tree(p: "subprocess.Popen[t.Any]") -> None:
"""
Tell the process to terminate and kill all of its children. Availabe both on Windows and Linux.
Note: It will return immediately rather than wait for the process to terminate.
Args:
p: subprocess.Popen object
"""
if psutil.WINDOWS:
subprocess.call(["taskkill", "/F", "/T", "/PID", str(p.pid)])
else:
p.terminate()
def cancel_subprocess(p: "subprocess.Popen[t.Any]") -> None:
if psutil.WINDOWS:
p.send_signal(signal.CTRL_C_EVENT) # type: ignore
else:
p.send_signal(signal.SIGINT)
|
from __future__ import annotations
import io
import uuid
import typing as t
from typing import TYPE_CHECKING
import multipart.multipart as multipart
from starlette.requests import Request
from starlette.responses import Response
from starlette.formparsers import MultiPartMessage
from starlette.datastructures import Headers
from starlette.datastructures import MutableHeaders
from .http import set_cookies
from ...exceptions import BentoMLException
if TYPE_CHECKING:
from ..context import InferenceApiContext as Context
_ItemsBody = t.List[t.Tuple[str, t.List[t.Tuple[bytes, bytes]], bytes]]
def user_safe_decode(src: bytes, codec: str) -> str:
try:
return src.decode(codec)
except (UnicodeDecodeError, LookupError):
return src.decode("latin-1")
class MultiPartParser:
"""
An modified version of starlette MultiPartParser.
"""
def __init__(self, headers: Headers, stream: t.AsyncGenerator[bytes, None]) -> None:
assert (
multipart is not None
), "The `python-multipart` library must be installed to use form parsing."
self.headers: Headers = headers
self.stream = stream
self.messages: t.List[t.Tuple[MultiPartMessage, bytes]] = list()
def on_part_begin(self) -> None:
message = (MultiPartMessage.PART_BEGIN, b"")
self.messages.append(message)
def on_part_data(self, data: bytes, start: int, end: int) -> None:
message = (MultiPartMessage.PART_DATA, data[start:end])
self.messages.append(message)
def on_part_end(self) -> None:
message = (MultiPartMessage.PART_END, b"")
self.messages.append(message)
def on_header_field(self, data: bytes, start: int, end: int) -> None:
message = (MultiPartMessage.HEADER_FIELD, data[start:end])
self.messages.append(message)
def on_header_value(self, data: bytes, start: int, end: int) -> None:
message = (MultiPartMessage.HEADER_VALUE, data[start:end])
self.messages.append(message)
def on_header_end(self) -> None:
message = (MultiPartMessage.HEADER_END, b"")
self.messages.append(message)
def on_headers_finished(self) -> None:
message = (MultiPartMessage.HEADERS_FINISHED, b"")
self.messages.append(message)
def on_end(self) -> None:
message = (MultiPartMessage.END, b"")
self.messages.append(message)
async def parse(self) -> _ItemsBody:
# Parse the Content-Type header to get the multipart boundary.
_, params = multipart.parse_options_header(self.headers["Content-Type"])
params = t.cast(t.Dict[bytes, bytes], params)
charset = params.get(b"charset", b"utf-8")
charset = charset.decode("latin-1")
boundary = params.get(b"boundary")
# Callbacks dictionary.
callbacks = {
"on_part_begin": self.on_part_begin,
"on_part_data": self.on_part_data,
"on_part_end": self.on_part_end,
"on_header_field": self.on_header_field,
"on_header_value": self.on_header_value,
"on_header_end": self.on_header_end,
"on_headers_finished": self.on_headers_finished,
"on_end": self.on_end,
}
# Create the parser.
parser = multipart.MultipartParser(boundary, callbacks)
header_field = b""
header_value = b""
field_name = ""
data = b""
items: _ItemsBody = []
headers: t.List[t.Tuple[bytes, bytes]] = []
# Feed the parser with data from the request.
async for chunk in self.stream:
parser.write(chunk)
messages = list(self.messages)
self.messages.clear()
for message_type, message_bytes in messages:
if message_type == MultiPartMessage.PART_BEGIN:
field_name = ""
data = b""
headers = list()
elif message_type == MultiPartMessage.HEADER_FIELD: # type: ignore
header_field += message_bytes
elif message_type == MultiPartMessage.HEADER_VALUE: # type: ignore
header_value += message_bytes
elif message_type == MultiPartMessage.HEADER_END: # type: ignore
field = header_field.lower()
if field == b"content-disposition":
_, options = multipart.parse_options_header(header_value)
options = t.cast(t.Dict[bytes, bytes], options)
field_name = user_safe_decode(options[b"name"], charset)
elif field == b"bentoml-payload-field":
field_name = user_safe_decode(header_value, charset)
else:
headers.append((field, header_value))
header_field = b""
header_value = b""
elif message_type == MultiPartMessage.HEADERS_FINISHED: # type: ignore
assert (
field_name
), "`Content-Disposition` is not available in headers"
elif message_type == MultiPartMessage.PART_DATA: # type: ignore
data += message_bytes
elif message_type == MultiPartMessage.PART_END: # type: ignore
items.append((field_name, headers, data))
parser.finalize()
return items
async def populate_multipart_requests(request: Request) -> t.Dict[str, Request]:
content_type_header = request.headers.get("Content-Type")
content_type, _ = multipart.parse_options_header(content_type_header)
assert content_type in (b"multipart/form-data", b"multipart/mixed")
stream = request.stream()
multipart_parser = MultiPartParser(request.headers, stream)
try:
form = await multipart_parser.parse()
except multipart.MultipartParseError:
raise BentoMLException("Invalid multipart requests")
reqs: dict[str, Request] = dict()
for field_name, headers, data in form:
scope = dict(request.scope)
ori_headers = dict(scope.get("headers", dict()))
ori_headers = t.cast(t.Dict[bytes, bytes], ori_headers)
ori_headers.update(dict(headers))
scope["headers"] = list(ori_headers.items())
req = Request(scope)
req._body = data
reqs[field_name] = req
return reqs
def _get_disp_filename(headers: MutableHeaders) -> t.Optional[bytes]:
if "content-disposition" in headers:
_, options = multipart.parse_options_header(headers["content-disposition"])
if b"filename" in options:
return t.cast(bytes, options[b"filename"])
return None
async def concat_to_multipart_response(
responses: t.Mapping[str, Response], ctx: Context | None
) -> Response:
boundary = uuid.uuid4().hex
boundary_bytes = boundary.encode("latin1")
writer = io.BytesIO()
for field_name, resp in responses.items():
writer.write(b"--%b\r\n" % boundary_bytes)
# headers
filename = _get_disp_filename(resp.headers)
if filename:
writer.write(
b'Content-Disposition: form-data; name="%b"; filename="%b"\r\n'
% (field_name.encode("latin1"), filename)
)
else:
writer.write(
b'Content-Disposition: form-data; name="%b"\r\n'
% field_name.encode("latin1")
)
for header_key, header_value in resp.raw_headers:
if header_key == b"content-disposition":
continue
writer.write(b"%b: %b\r\n" % (header_key, header_value))
writer.write(b"\r\n")
# body
writer.write(resp.body)
writer.write(b"\r\n")
writer.write(b"--%b--\r\n" % boundary_bytes)
if ctx is not None:
res = Response(
writer.getvalue(),
headers=ctx.response.metadata, # type: ignore (pyright thinks the type is dict[Unknown, Unknown])
media_type=f"multipart/form-data; boundary={boundary}",
status_code=ctx.response.status_code,
)
set_cookies(res, ctx.response.cookies)
return res
else:
return Response(
writer.getvalue(), media_type=f"multipart/form-data; boundary={boundary}"
)
|
import os
import pathlib
from urllib.parse import unquote
from urllib.parse import urlparse
from urllib.request import url2pathname
import psutil
def path_to_uri(path: str) -> str:
"""
Convert a path to a URI.
Args:
path: Path to convert to URI.
Returns:
URI string. (quoted, absolute)
"""
path = os.path.abspath(path)
if psutil.WINDOWS:
return pathlib.PureWindowsPath(path).as_uri()
if psutil.POSIX:
return pathlib.PurePosixPath(path).as_uri()
raise ValueError("Unsupported OS")
def uri_to_path(uri: str) -> str:
"""
Convert a file URI to a path.
Args:
uri: URI to convert to path.
Returns:
Path string. (unquoted)
"""
parsed = urlparse(uri)
if parsed.scheme not in ("file", "filesystem", "unix"):
raise ValueError("Unsupported URI scheme")
host = "{0}{0}{mnt}{0}".format(os.path.sep, mnt=parsed.netloc)
return os.path.normpath(os.path.join(host, url2pathname(unquote(parsed.path))))
|
from __future__ import annotations
from typing import TYPE_CHECKING
import attr
if TYPE_CHECKING:
import starlette.responses
@attr.define
class Cookie:
key: str
value: str
max_age: int | None
expires: int | None
path: str
domain: str | None
secure: bool
httponly: bool
samesite: str
def set_cookies(response: starlette.responses.Response, cookies: list[Cookie]):
for cookie in cookies:
response.set_cookie(
cookie.key,
cookie.value,
max_age=cookie.max_age, # type: ignore (bad starlette types)
expires=cookie.expires, # type: ignore (bad starlette types)
path=cookie.path,
domain=cookie.domain, # type: ignore (bad starlette types)
secure=cookie.secure,
httponly=cookie.httponly,
samesite=cookie.samesite,
)
|
# CSV utils following https://tools.ietf.org/html/rfc4180
import typing as t
def csv_splitlines(string: str) -> t.Iterator[str]:
if '"' in string:
def _iter_line(line: str) -> t.Iterator[str]:
quoted = False
last_cur = 0
for i, c in enumerate(line):
if c == '"':
quoted = not quoted
if not quoted and string[i : i + 1] == "\n":
if i == 0 or string[i - 1] != "\r":
yield line[last_cur:i]
last_cur = i + 1
else:
yield line[last_cur : i - 1]
last_cur = i + 1
yield line[last_cur:]
return _iter_line(string)
return iter(string.splitlines())
def csv_split(string: str, delimiter: str) -> t.Iterator[str]:
if '"' in string:
d_len = len(delimiter)
def _iter_line(line: str) -> t.Iterator[str]:
quoted = False
last_cur = 0
for i, c in enumerate(line):
if c == '"':
quoted = not quoted
if not quoted and string[i : i + d_len] == delimiter:
yield line[last_cur:i]
last_cur = i + d_len
yield line[last_cur:]
return _iter_line(string)
else:
return iter(string.split(delimiter))
def csv_row(tds: t.Iterable) -> str:
return ",".join(csv_quote(td) for td in tds)
def csv_unquote(string: str) -> str:
if '"' in string:
string = string.strip()
assert string[0] == '"' and string[-1] == '"'
return string[1:-1].replace('""', '"')
return string
def csv_quote(td: t.Union[int, str]) -> str:
"""
>>> csv_quote(1)
'1'
>>> csv_quote('string')
'string'
>>> csv_quote('a,b"c')
'"a,b""c"'
>>> csv_quote(' ')
'" "'
"""
if td is None:
td = ""
elif not isinstance(td, str):
td = str(td)
if "\n" in td or '"' in td or "," in td or not td.strip():
return td.replace('"', '""').join('""')
return td
|
try:
import importlib.metadata as importlib_metadata
except ImportError:
import importlib_metadata
get_pkg_version = importlib_metadata.version
|
import json
import typing as t
from dataclasses import asdict
from dataclasses import fields as get_fields
from dataclasses import is_dataclass
class DataclassJsonEncoder(json.JSONEncoder):
"""Special json encoder for numpy types"""
def default(self, o: t.Any): # pylint: disable=method-hidden
if is_dataclass(o):
if hasattr(o, "to_json"):
return o.to_json()
else:
return asdict(o)
return super().default(o)
class json_serializer:
def __init__(self, fields: t.Optional[t.List[str]] = None, compat: bool = False):
self.fields = fields
self.compat = compat
@staticmethod
def _extract_nested(obj: t.Any):
if hasattr(obj, "to_json"):
return obj.to_json()
return obj
T = t.TypeVar(
"T",
)
def __call__(self, klass: t.Type[T]) -> t.Type[T]:
if not is_dataclass(klass):
raise TypeError(
f"{self.__class__.__name__} only accepts dataclasses, "
f"got {klass.__name__}"
)
default_map = {
f.name: f.default_factory() if callable(f.default_factory) else f.default
for f in get_fields(klass)
}
if self.fields is None:
_fields = tuple(k for k in default_map.keys() if not k.startswith("_"))
else:
_fields = self.fields
if self.compat:
def to_json_compat(data_obj: t.Any):
return {
k: self._extract_nested(getattr(data_obj, k))
for k in _fields
if default_map[k] != getattr(data_obj, k)
}
klass.to_json = to_json_compat # type: ignore
else:
def to_json(data_obj: t.Any):
return {k: self._extract_nested(getattr(data_obj, k)) for k in _fields}
klass.to_json = to_json # type: ignore
return klass
|
from __future__ import annotations
import typing as t
import logging
import pathlib
from typing import TYPE_CHECKING
from urllib.parse import urlparse
from circus.plugins import CircusPlugin # type: ignore[reportMissingTypeStubs]
if TYPE_CHECKING:
from circus.arbiter import Arbiter # type: ignore[reportMissingTypeStubs]
from circus.sockets import CircusSocket # type: ignore[reportMissingTypeStubs]
from circus.watcher import Watcher # type: ignore[reportMissingTypeStubs]
logger = logging.getLogger(__name__)
def create_circus_socket_from_uri(
uri: str,
*args: t.Any,
name: str = "",
**kwargs: t.Any,
) -> CircusSocket:
from circus.sockets import CircusSocket # type: ignore[reportMissingTypeStubs]
from bentoml._internal.utils.uri import uri_to_path
parsed = urlparse(uri)
if parsed.scheme in ("file", "unix"):
return CircusSocket(
name=name,
path=uri_to_path(uri),
*args,
**kwargs,
)
elif parsed.scheme == "tcp":
return CircusSocket(
name=name,
host=parsed.hostname,
port=parsed.port,
*args,
**kwargs,
)
else:
raise ValueError(f"Unsupported URI scheme: {parsed.scheme}")
def create_standalone_arbiter(watchers: list[Watcher], **kwargs: t.Any) -> Arbiter:
from circus.arbiter import Arbiter # type: ignore[reportMissingTypeStubs]
from . import reserve_free_port
with reserve_free_port() as endpoint_port:
with reserve_free_port() as pubsub_port:
return Arbiter(
watchers,
endpoint=f"tcp://127.0.0.1:{endpoint_port}",
pubsub_endpoint=f"tcp://127.0.0.1:{pubsub_port}",
**kwargs,
)
# TODO: use svc.build_args.include/exclude as default files to watch
# TODO: watch changes in model store when "latest" model tag is used
class BentoChangeReloader(CircusPlugin):
"""
A circus plugin that reloads the BentoService when the service code changes.
Args:
working_dir: The directory of the bento service.
reload_delay: The delay in seconds between checking for changes.
"""
name = "bento_change_reloader"
config: dict[str, t.Any]
def __init__(self, *args: t.Any, **config: t.Any):
assert "bento_identifier" in config, "`bento_identifier` is required"
assert "working_dir" in config, "`working_dir` is required"
super().__init__(*args, **config) # type: ignore (unfinished types for circus)
self.name = self.config.get("name")
working_dir: str = self.config["working_dir"]
# circus/plugins/__init__.py:282 -> converts all given configs to dict[str, str]
self.reload_delay: float = float(self.config.get("reload_delay", 1))
self.file_watcher = PyFileChangeWatcher([working_dir])
def look_after(self):
if self.file_watcher.is_file_changed():
logger.info("Restarting...")
self.call("restart", name="*") # type: ignore
self.file_watcher.reset()
def handle_init(self):
from tornado import ioloop
self.period = ioloop.PeriodicCallback(self.look_after, self.reload_delay * 1000)
self.period.start()
def handle_stop(self):
self.period.stop()
def handle_recv(self, data: t.Any):
pass
class PyFileChangeWatcher:
def __init__(
self,
watch_dirs: list[pathlib.Path] | list[str] | None = None,
) -> None:
self.mtimes: dict[pathlib.Path, float] = {}
if not watch_dirs:
watch_dirs = [pathlib.Path.cwd()]
self.watch_dirs = [
pathlib.Path(d) if isinstance(d, str) else d for d in watch_dirs
]
logger.info(f"Watching directories: {', '.join(map(str, self.watch_dirs))}")
def is_file_changed(self) -> bool:
for file in self.iter_files():
try:
mtime = file.stat().st_mtime
except OSError: # pragma: nocover
continue
old_time = self.mtimes.get(file)
if old_time is None:
self.mtimes[file] = mtime
continue
elif mtime > old_time:
display_path = str(file)
try:
display_path = str(file.relative_to(pathlib.Path.cwd()))
except ValueError:
pass
message = "Detected file change in '%s'"
logger.warning(message, display_path)
return True
return False
def reset(self) -> None:
self.mtimes = {}
def iter_files(self) -> t.Iterator[pathlib.Path]:
for reload_dir in self.watch_dirs:
for path in list(reload_dir.rglob("*.py")):
yield path.resolve()
|
import typing as t
from typing import TYPE_CHECKING
from .. import calc_dir_size
from .schemas import BentoBuildEvent
if TYPE_CHECKING:
from ...bento.bento import Bento
def _cli_bentoml_build_event(
cmd_group: str,
cmd_name: str,
return_value: "t.Optional[Bento]",
) -> BentoBuildEvent: # pragma: no cover
if return_value is not None:
bento = return_value
return BentoBuildEvent(
cmd_group=cmd_group,
cmd_name=cmd_name,
bento_creation_timestamp=bento.info.creation_time,
bento_size_in_kb=calc_dir_size(bento.path_of("/")) / 1024,
model_size_in_kb=calc_dir_size(bento.path_of("/models")) / 1024,
num_of_models=len(bento.info.models),
num_of_runners=len(bento.info.runners),
model_types=[m.module for m in bento.info.models],
runnable_types=[r.runnable_type for r in bento.info.runners],
)
else:
return BentoBuildEvent(
cmd_group=cmd_group,
cmd_name=cmd_name,
)
cli_events_map = {"cli": {"build": _cli_bentoml_build_event}}
|
import os
import typing as t
import logging
import secrets
import threading
import contextlib
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
from functools import wraps
from functools import lru_cache
import attr
import requests
from simple_di import inject
from simple_di import Provide
from .schemas import EventMeta
from .schemas import ServeInitEvent
from .schemas import TrackingPayload
from .schemas import CommonProperties
from .schemas import ServeUpdateEvent
from ...configuration.containers import BentoMLContainer
from ...configuration.containers import DeploymentContainer
if TYPE_CHECKING:
P = t.ParamSpec("P")
T = t.TypeVar("T")
AsyncFunc = t.Callable[P, t.Coroutine[t.Any, t.Any, t.Any]]
from bentoml import Service
from ...server.metrics.prometheus import PrometheusClient
logger = logging.getLogger(__name__)
BENTOML_DO_NOT_TRACK = "BENTOML_DO_NOT_TRACK"
USAGE_TRACKING_URL = "https://t.bentoml.com"
SERVE_USAGE_TRACKING_INTERVAL_SECONDS = int(12 * 60 * 60) # every 12 hours
USAGE_REQUEST_TIMEOUT_SECONDS = 1
@lru_cache(maxsize=1)
def do_not_track() -> bool:
# Returns True if and only if the environment variable is defined and has value True.
# The function is cached for better performance.
return os.environ.get(BENTOML_DO_NOT_TRACK, str(False)).lower() == "true"
@lru_cache(maxsize=1)
def _usage_event_debugging() -> bool:
# For BentoML developers only - debug and print event payload if turned on
return os.environ.get("__BENTOML_DEBUG_USAGE", str(False)).lower() == "true"
def slient(func: "t.Callable[P, T]") -> "t.Callable[P, T]": # pragma: no cover
# Slient errors when tracking
@wraps(func)
def wrapper(*args: "P.args", **kwargs: "P.kwargs") -> t.Any:
try:
return func(*args, **kwargs)
except Exception as err: # pylint: disable=broad-except
if _usage_event_debugging():
logger.info(f"Tracking Error: {err}")
else:
logger.debug(f"Tracking Error: {err}")
return wrapper
@attr.define
class ServeInfo:
serve_id: str
serve_started_timestamp: datetime
def get_serve_info() -> ServeInfo: # pragma: no cover
# Returns a safe token for serve as well as timestamp of creating this token
return ServeInfo(
serve_id=secrets.token_urlsafe(32),
serve_started_timestamp=datetime.now(timezone.utc),
)
@inject
def get_payload(
event_properties: EventMeta,
session_id: str = Provide[BentoMLContainer.session_id],
) -> t.Dict[str, t.Any]:
return TrackingPayload(
session_id=session_id,
common_properties=CommonProperties(),
event_properties=event_properties,
event_type=event_properties.event_name,
).to_dict()
@slient
def track(
event_properties: EventMeta,
):
if do_not_track():
return
payload = get_payload(event_properties=event_properties)
if _usage_event_debugging():
# For internal debugging purpose
global SERVE_USAGE_TRACKING_INTERVAL_SECONDS # pylint: disable=global-statement
SERVE_USAGE_TRACKING_INTERVAL_SECONDS = 5
logger.info("Tracking Payload: %s", payload)
return
requests.post(
USAGE_TRACKING_URL, json=payload, timeout=USAGE_REQUEST_TIMEOUT_SECONDS
)
@inject
def _track_serve_init(
svc: "t.Optional[Service]",
production: bool,
serve_info: ServeInfo = Provide[DeploymentContainer.serve_info],
):
if svc.bento is not None:
bento = svc.bento
event_properties = ServeInitEvent(
serve_id=serve_info.serve_id,
serve_from_bento=True,
production=production,
bento_creation_timestamp=bento.info.creation_time,
num_of_models=len(bento.info.models),
num_of_runners=len(svc.runners),
num_of_apis=len(bento.info.apis),
model_types=[m.module for m in bento.info.models],
runnable_types=[r.runnable_type for r in bento.info.runners],
api_input_types=[api.input_type for api in bento.info.apis],
api_output_types=[api.output_type for api in bento.info.apis],
)
else:
event_properties = ServeInitEvent(
serve_id=serve_info.serve_id,
serve_from_bento=False,
production=production,
bento_creation_timestamp=None,
num_of_models=len(
set(
svc.models
+ [model for runner in svc.runners for model in runner.models]
)
),
num_of_runners=len(svc.runners),
num_of_apis=len(svc.apis.keys()),
runnable_types=[r.runnable_class.__name__ for r in svc.runners],
api_input_types=[api.input.__class__.__name__ for api in svc.apis.values()],
api_output_types=[
api.output.__class__.__name__ for api in svc.apis.values()
],
)
track(event_properties)
EXCLUDE_PATHS = {"/docs.json", "/livez", "/healthz", "/readyz"}
def get_metrics_report(
metrics_client,
) -> t.List[t.Dict[str, t.Union[str, float]]]:
metrics_text = metrics_client.generate_latest().decode()
if not metrics_text:
return []
from prometheus_client.parser import text_string_to_metric_families
for metric in text_string_to_metric_families(metrics_text):
# Searching for the metric BENTOML_{service_name}_request of type Counter
if (
metric.type == "counter"
and metric.name.startswith("BENTOML_")
and metric.name.endswith("_request")
):
return [
{**sample.labels, "value": sample.value}
for sample in metric.samples
if "endpoint" in sample.labels
# exclude common infra paths
and sample.labels["endpoint"] not in EXCLUDE_PATHS
# exclude static_content prefix
and not sample.labels["endpoint"].startswith("/static_content/")
]
return []
@inject
@contextlib.contextmanager
def track_serve(
svc: "t.Optional[Service]",
production: bool,
metrics_client: "PrometheusClient" = Provide[DeploymentContainer.metrics_client],
serve_info: ServeInfo = Provide[DeploymentContainer.serve_info],
): # pragma: no cover
if do_not_track():
yield
return
_track_serve_init(svc, production)
stop_event = threading.Event()
@slient
def loop() -> t.NoReturn: # type: ignore
while not stop_event.wait(SERVE_USAGE_TRACKING_INTERVAL_SECONDS):
now = datetime.now(timezone.utc)
event_properties = ServeUpdateEvent(
serve_id=serve_info.serve_id,
production=production,
triggered_at=now,
duration_in_seconds=(now - serve_info.serve_started_timestamp).seconds,
metrics=get_metrics_report(metrics_client),
)
track(event_properties)
tracking_thread = threading.Thread(target=loop, daemon=True)
try:
tracking_thread.start()
yield
finally:
stop_event.set()
tracking_thread.join()
|
from .schemas import CliEvent
from .schemas import ModelSaveEvent
from .schemas import BentoBuildEvent
from .schemas import ServeUpdateEvent
from .cli_events import cli_events_map
from .usage_stats import track
from .usage_stats import ServeInfo
from .usage_stats import track_serve
from .usage_stats import get_serve_info
from .usage_stats import BENTOML_DO_NOT_TRACK
__all__ = [
"track",
"track_serve",
"get_serve_info",
"ServeInfo",
"BENTOML_DO_NOT_TRACK",
"CliEvent",
"ModelSaveEvent",
"BentoBuildEvent",
"ServeUpdateEvent",
"cli_events_map",
]
|
import os
import re
import uuid
import typing as t
from abc import ABC
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
from platform import platform
from platform import python_version
from functools import lru_cache
import attr
import yaml
import psutil
import attr.converters
from simple_di import inject
from simple_di import Provide
from ...utils import bentoml_cattr
from ...configuration import BENTOML_VERSION
from ...configuration.containers import BentoMLContainer
from ...yatai_rest_api_client.config import get_config_path
from ...yatai_rest_api_client.config import get_current_context
if TYPE_CHECKING:
P = t.ParamSpec("P")
GenericFunction = t.Callable[P, t.Any]
# Refers to bentoml/yatai-deployment-operator/common/consts/consts.go
ENV_YATAI_VERSION = "YATAI_T_VERSION"
ENV_YATAI_ORG_UID = "YATAI_T_ORG_UID"
ENV_YATAI_DEPLOYMENT_UID = "YATAI_T_DEPLOYMENT_UID"
ENV_YATAI_CLUSTER_UID = "YATAI_T_CLUSTER_UID"
@lru_cache(maxsize=1)
def get_platform() -> str:
return platform(aliased=True)
@lru_cache(maxsize=1)
def get_python_version() -> str:
return python_version()
@attr.define
class ClientInfo:
id: str
creation_timestamp: datetime
@inject
@lru_cache(maxsize=1)
def get_client_info(
bentoml_home: str = Provide[BentoMLContainer.bentoml_home],
) -> t.Optional[ClientInfo]:
CLIENT_INFO_FILE_PATH = os.path.join(bentoml_home, "client_id")
if os.path.exists(CLIENT_INFO_FILE_PATH):
with open(CLIENT_INFO_FILE_PATH, "r", encoding="utf-8") as f:
client_info = yaml.safe_load(f)
return bentoml_cattr.structure(client_info, ClientInfo)
else:
# Create new client id
new_client_info = ClientInfo(
id=str(uuid.uuid4()),
creation_timestamp=datetime.now(timezone.utc),
)
# write client info to ~/bentoml/client_id
with open(CLIENT_INFO_FILE_PATH, "w", encoding="utf-8") as f:
yaml.dump(attr.asdict(new_client_info), stream=f)
return new_client_info
@lru_cache(maxsize=1)
def get_yatai_user_email() -> t.Optional[str]:
if os.path.exists(get_config_path()):
return get_current_context().email
@lru_cache(maxsize=1)
def is_interactive() -> bool:
import __main__ as main
return not hasattr(main, "__file__")
@lru_cache(maxsize=1)
def in_notebook() -> bool:
try:
from IPython import get_ipython
if "IPKernelApp" not in get_ipython().config: # pragma: no cover
return False
except ImportError:
return False
except AttributeError:
return False
return True
@attr.define
class CommonProperties:
# when the event is triggered
timestamp: datetime = attr.field(factory=lambda: datetime.now(timezone.utc))
# environment related
platform: str = attr.field(factory=get_platform)
bentoml_version: str = attr.field(default=BENTOML_VERSION)
python_version: str = attr.field(factory=get_python_version)
is_interactive: bool = attr.field(factory=is_interactive)
in_notebook: bool = attr.field(factory=in_notebook)
# resource related
memory_usage_percent: float = attr.field(init=False)
total_memory_in_mb: float = attr.field(init=False)
# client related
client: ClientInfo = attr.field(factory=get_client_info)
yatai_user_email: t.Optional[str] = attr.field(factory=get_yatai_user_email)
yatai_version: t.Optional[str] = attr.field(
default=os.environ.get(ENV_YATAI_VERSION, None)
)
yatai_org_uid: t.Optional[str] = attr.field(
default=os.environ.get(ENV_YATAI_ORG_UID, None)
)
yatai_cluster_uid: t.Optional[str] = attr.field(
default=os.environ.get(ENV_YATAI_CLUSTER_UID, None)
)
yatai_deployment_uid: t.Optional[str] = attr.field(
default=os.environ.get(ENV_YATAI_DEPLOYMENT_UID, None)
)
def __attrs_post_init__(self):
self.total_memory_in_mb = int(psutil.virtual_memory().total / 1024.0 / 1024.0)
proc = psutil.Process(os.getpid())
with proc.oneshot():
self.memory_usage_percent = proc.memory_percent()
class EventMeta(ABC):
@property
def event_name(self):
# camel case to snake case
event_name = re.sub(r"(?<!^)(?=[A-Z])", "_", self.__class__.__name__).lower()
# remove "_event" suffix
suffix_to_remove = "_event"
if event_name.endswith(suffix_to_remove):
event_name = event_name[: -len(suffix_to_remove)]
return event_name
@attr.define
class CliEvent(EventMeta):
cmd_group: str
cmd_name: str
duration_in_ms: float = attr.field(default=0)
error_type: t.Optional[str] = attr.field(default=None)
return_code: t.Optional[int] = attr.field(default=None)
@attr.define
class BentoBuildEvent(CliEvent):
bento_creation_timestamp: t.Optional[datetime] = attr.field(default=None)
bento_size_in_kb: float = attr.field(default=0)
model_size_in_kb: float = attr.field(default=0)
num_of_models: int = attr.field(default=0)
num_of_runners: int = attr.field(default=0)
model_types: t.List[str] = attr.field(factory=list)
runnable_types: t.List[str] = attr.field(factory=list)
@attr.define
class ModelSaveEvent(EventMeta):
module: str
model_size_in_kb: float
@attr.define
class ServeInitEvent(EventMeta):
serve_id: str
production: bool
serve_from_bento: bool
bento_creation_timestamp: t.Optional[datetime]
num_of_models: int = attr.field(default=0)
num_of_runners: int = attr.field(default=0)
num_of_apis: int = attr.field(default=0)
model_types: t.List[str] = attr.field(factory=list)
runnable_types: t.List[str] = attr.field(factory=list)
api_input_types: t.List[str] = attr.field(factory=list)
api_output_types: t.List[str] = attr.field(factory=list)
@attr.define
class ServeUpdateEvent(EventMeta):
serve_id: str
production: bool
triggered_at: datetime
duration_in_seconds: int
metrics: t.List[str] = attr.field(factory=list)
ALL_EVENT_TYPES = t.Union[
CliEvent,
ModelSaveEvent,
BentoBuildEvent,
ServeInitEvent,
ServeUpdateEvent,
EventMeta,
]
@attr.define
class TrackingPayload:
session_id: str
event_properties: ALL_EVENT_TYPES
common_properties: CommonProperties
event_type: str
def to_dict(self):
return bentoml_cattr.unstructure(self)
|
from .model import Model
from .model import copy_model
from .model import ModelStore
from .model import ModelContext
from .model import ModelOptions
# Deprecated. Use framework module local constants and name the saved files with API
# Version in mind. E.g.:
# api_v1_model_file_name = "saved_model.pkl"
# api_v2_model_file_name = "torch_model.pth"
SAVE_NAMESPACE = "saved_model"
JSON_EXT = ".json"
PKL_EXT = ".pkl"
PTH_EXT = ".pth"
TXT_EXT = ".txt"
YAML_EXT = ".yaml"
__all__ = ["Model", "ModelStore", "ModelContext", "ModelOptions", "copy_model"]
|
from __future__ import annotations
import io
import typing as t
import logging
import importlib
from sys import version_info as pyver
from typing import overload
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
import fs
import attr
import yaml
import fs.errors
import fs.mirror
import cloudpickle
from fs.base import FS
from cattr.gen import override
from cattr.gen import make_dict_unstructure_fn
from simple_di import inject
from simple_di import Provide
from ..tag import Tag
from ..store import Store
from ..store import StoreItem
from ..types import MetadataDict
from ..utils import bentoml_cattr
from ..utils import label_validator
from ..utils import metadata_validator
from ..runner import Runner
from ..runner import Runnable
from ...exceptions import NotFound
from ...exceptions import BentoMLException
from ..configuration import BENTOML_VERSION
from ..configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from ..types import AnyType
from ..types import PathType
class ModelSignatureDict(t.TypedDict, total=False):
batch_dim: tuple[int, int] | int
batchable: bool
input_spec: tuple[AnyType] | AnyType | None
output_spec: AnyType | None
T = t.TypeVar("T")
logger = logging.getLogger(__name__)
PYTHON_VERSION: str = f"{pyver.major}.{pyver.minor}.{pyver.micro}"
MODEL_YAML_FILENAME = "model.yaml"
CUSTOM_OBJECTS_FILENAME = "custom_objects.pkl"
@attr.define
class ModelOptions:
def with_options(self, **kwargs: t.Any) -> ModelOptions:
return attr.evolve(self, **kwargs)
def to_dict(self: ModelOptions) -> dict[str, t.Any]:
return attr.asdict(self)
bentoml_cattr.register_structure_hook(ModelOptions, lambda d, cls: cls(**d))
bentoml_cattr.register_unstructure_hook(ModelOptions, lambda v: v.to_dict()) # type: ignore # pylint: disable=unnecessary-lambda # lambda required
@attr.define(repr=False, eq=False, init=False)
class Model(StoreItem):
_tag: Tag
__fs: FS
_info: ModelInfo
_custom_objects: dict[str, t.Any] | None = None
_runnable: t.Type[Runnable] | None = attr.field(init=False, default=None)
def __init__(
self,
tag: Tag,
model_fs: FS,
info: ModelInfo,
custom_objects: dict[str, t.Any] | None = None,
*,
_internal: bool = False,
):
if not _internal:
raise BentoMLException(
"Model cannot be instantiated directly directly; use bentoml.<framework>.save or bentoml.models.get instead"
)
self.__attrs_init__(tag, model_fs, info, custom_objects) # type: ignore (no types for attrs init)
@staticmethod
def _export_ext() -> str:
return "bentomodel"
@property
def tag(self) -> Tag:
return self._tag
@property
def _fs(self) -> FS:
return self.__fs
@property
def info(self) -> ModelInfo:
return self._info
@property
def custom_objects(self) -> t.Dict[str, t.Any]:
if self._custom_objects is None:
if self._fs.isfile(CUSTOM_OBJECTS_FILENAME):
with self._fs.open(CUSTOM_OBJECTS_FILENAME, "rb") as cofile:
self._custom_objects: dict[str, t.Any] | None = cloudpickle.load(
cofile
)
if not isinstance(self._custom_objects, dict):
raise ValueError("Invalid custom objects found.")
else:
self._custom_objects: dict[str, t.Any] | None = {}
return self._custom_objects
def __eq__(self, other: object) -> bool:
return isinstance(other, Model) and self._tag == other._tag
def __hash__(self) -> int:
return hash(self._tag)
@staticmethod
def create(
name: str,
*,
module: str,
api_version: str,
signatures: ModelSignaturesType,
labels: dict[str, str] | None = None,
options: ModelOptions | None = None,
custom_objects: dict[str, t.Any] | None = None,
metadata: dict[str, t.Any] | None = None,
context: ModelContext,
) -> Model:
"""Create a new Model instance in temporary filesystem used for serializing
model artifacts and save to model store
Args:
name: model name in target model store, model version will be automatically
generated
module: import path of module used for saving/loading this model, e.g.
"bentoml.tensorflow"
labels: user-defined labels for managing models, e.g. team=nlp, stage=dev
options: default options for loading this model, defined by runner
implementation, e.g. xgboost booster_params
custom_objects: user-defined additional python objects to be saved
alongside the model, e.g. a tokenizer instance, preprocessor function,
model configuration json
metadata: user-defined metadata for storing model training context
information or model evaluation metrics, e.g. dataset version,
training parameters, model scores
context: Environment context managed by BentoML for loading model,
e.g. {"framework:" "tensorflow", "framework_version": _tf_version}
Returns:
object: Model instance created in temporary filesystem
"""
tag = Tag(name).make_new_version()
labels = {} if labels is None else labels
metadata = {} if metadata is None else metadata
options = ModelOptions() if options is None else options
model_fs = fs.open_fs(f"temp://bentoml_model_{name}")
res = Model(
tag,
model_fs,
ModelInfo(
tag=tag,
module=module,
api_version=api_version,
signatures=signatures,
labels=labels,
options=options,
metadata=metadata,
context=context,
),
custom_objects=custom_objects,
_internal=True,
)
return res
@inject
def save(
self, model_store: ModelStore = Provide[BentoMLContainer.model_store]
) -> Model:
self._save(model_store)
return self
def _save(self, model_store: ModelStore) -> Model:
if not self.validate():
logger.warning(f"Failed to create Model for {self.tag}, not saving.")
raise BentoMLException("Failed to save Model because it was invalid")
with model_store.register(self.tag) as model_path:
out_fs = fs.open_fs(model_path, create=True, writeable=True)
fs.mirror.mirror(self._fs, out_fs, copy_if_newer=False)
self._fs.close()
self.__fs = out_fs
logger.info(f"Successfully saved {self}")
return self
@classmethod
def from_fs(cls: t.Type[Model], item_fs: FS) -> Model:
try:
with item_fs.open(MODEL_YAML_FILENAME, "r") as model_yaml:
info = ModelInfo.from_yaml_file(model_yaml)
except fs.errors.ResourceNotFound:
raise BentoMLException(
f"Failed to load bento model because it does not contain a '{MODEL_YAML_FILENAME}'"
)
res = Model(tag=info.tag, model_fs=item_fs, info=info, _internal=True)
if not res.validate():
raise BentoMLException(
f"Failed to load bento model because it contains an invalid '{MODEL_YAML_FILENAME}'"
)
return res
@property
def path(self) -> str:
return self.path_of("/")
def path_of(self, item: str) -> str:
return self._fs.getsyspath(item)
def flush(self):
self._write_info()
self._write_custom_objects()
def _write_info(self):
with self._fs.open(MODEL_YAML_FILENAME, "w", encoding="utf-8") as model_yaml:
self.info.dump(t.cast(io.StringIO, model_yaml))
def _write_custom_objects(self):
# pickle custom_objects if it is not None and not empty
if self.custom_objects:
with self._fs.open(CUSTOM_OBJECTS_FILENAME, "wb") as cofile:
cloudpickle.dump(self.custom_objects, cofile) # type: ignore (incomplete cloudpickle types)
@property
def creation_time(self) -> datetime:
return self.info.creation_time
def validate(self):
return self._fs.isfile(MODEL_YAML_FILENAME)
def __str__(self):
return f'Model(tag="{self.tag}")'
def __repr__(self):
return f'Model(tag="{self.tag}", path="{self.path}")'
def to_runner(
self,
name: str = "",
cpu: int | None = None,
nvidia_gpu: int | None = None,
custom_resources: dict[str, float] | None = None,
max_batch_size: int | None = None,
max_latency_ms: int | None = None,
method_configs: dict[str, dict[str, int]] | None = None,
) -> Runner:
"""
TODO(chaoyu): add docstring
Args:
name:
cpu:
nvidia_gpu:
custom_resources:
max_batch_size:
max_latency_ms:
runnable_method_configs:
Returns:
"""
return Runner(
self.to_runnable(),
name=name if name != "" else self.tag.name,
models=[self],
cpu=cpu,
nvidia_gpu=nvidia_gpu,
custom_resources=custom_resources,
max_batch_size=max_batch_size,
max_latency_ms=max_latency_ms,
method_configs=method_configs,
)
def to_runnable(self) -> t.Type[Runnable]:
if self._runnable is None:
module = importlib.import_module(self.info.module)
self._runnable = module.get_runnable(self)
return self._runnable
def with_options(self, **kwargs: t.Any) -> Model:
res = Model(
self._tag,
self._fs,
self.info.with_options(**kwargs),
self._custom_objects,
_internal=True,
)
return res
class ModelStore(Store[Model]):
def __init__(self, base_path: "t.Union[PathType, FS]"):
super().__init__(base_path, Model)
@attr.frozen
class ModelContext:
framework_name: str
framework_versions: t.Dict[str, str]
bentoml_version: str = attr.field(default=BENTOML_VERSION)
python_version: str = attr.field(default=PYTHON_VERSION)
@staticmethod
def from_dict(data: dict[str, str | dict[str, str]] | ModelContext) -> ModelContext:
if isinstance(data, ModelContext):
return data
return bentoml_cattr.structure(data, ModelContext)
def to_dict(self: ModelContext) -> dict[str, str | dict[str, str]]:
return bentoml_cattr.unstructure(self) # type: ignore (incomplete cattr types)
# Remove after attrs support ForwardRef natively
attr.resolve_types(ModelContext, globals(), locals())
@attr.frozen
class ModelSignature:
"""
A model signature represents a method on a model object that can be called.
This information is used when creating BentoML runners for this model.
Note that anywhere a ``ModelSignature`` is used, a ``dict`` with keys corresponding to the
fields can be used instead. For example, instead of ``{"predict":
ModelSignature(batchable=True)}``, one can pass ``{"predict": {"batchable": True}}``.
Fields:
batchable:
Whether multiple API calls to this predict method should be batched by the BentoML
runner.
batch_dim:
The dimension(s) that contain multiple data when passing to this prediction method.
For example, if you have two inputs you want to run prediction on, ``[1, 2]`` and ``[3,
4]``, if the array you would pass to the predict method would be ``[[1, 2], [3, 4]]``,
then the batch dimension would be ``0``. If the array you would pass to the predict
method would be ``[[1, 3], [2, 4]]``, then the batch dimension would be ``1``.
If there are multiple arguments to the predict method and there is only one batch
dimension supplied, all arguments will use that batch dimension.
Example: .. code-block:: python
# Save two models with `predict` method that supports taking input batches on the
dimension 0 and the other on dimension 1: bentoml.pytorch.save_model("demo0",
model_0, signatures={"predict": {"batchable": True, "batch_dim": 0}})
bentoml.pytorch.save_model("demo1", model_1, signatures={"predict": {"batchable":
True, "batch_dim": 1}})
# if the following calls are batched, the input to the actual predict method on the
# model.predict method would be [[1, 2], [3, 4], [5, 6]] runner0 =
bentoml.pytorch.get("demo0:latest").to_runner() runner0.init_local()
runner0.predict.run(np.array([[1, 2], [3, 4]])) runner0.predict.run(np.array([[5,
6]]))
# if the following calls are batched, the input to the actual predict method on the
# model.predict would be [[1, 2, 5], [3, 4, 6]] runner1 =
bentoml.pytorch.get("demo1:latest").to_runner() runner1.init_local()
runner1.predict.run(np.array([[1, 2], [3, 4]])) runner1.predict.run(np.array([[5],
[6]]))
Expert API:
The batch dimension can also be a tuple of (input batch dimension, output batch
dimension). For example, if the predict method should have its input batched along the
first axis and its output batched along the zeroth axis, ``batch_dim`` can be set to
``(1, 0)``.
input_spec: Reserved for future use.
output_spec: Reserved for future use.
"""
batchable: bool = False
batch_dim: t.Tuple[int, int] = (0, 0)
# TODO: define input/output spec struct
input_spec: t.Any = None
output_spec: t.Any = None
@staticmethod
def from_dict(data: ModelSignatureDict) -> ModelSignature:
if "batch_dim" in data and isinstance(data["batch_dim"], int):
formated_data = dict(data, batch_dim=(data["batch_dim"], data["batch_dim"]))
else:
formated_data = data
return bentoml_cattr.structure(formated_data, ModelSignature)
@staticmethod
def convert_signatures_dict(
data: dict[str, ModelSignatureDict | ModelSignature]
) -> dict[str, ModelSignature]:
return {
k: ModelSignature.from_dict(v) if isinstance(v, dict) else v
for k, v in data.items()
}
# Remove after attrs support ForwardRef natively
attr.resolve_types(ModelSignature, globals(), locals())
if TYPE_CHECKING:
ModelSignaturesType: t.TypeAlias = (
dict[str, ModelSignature] | dict[str, ModelSignatureDict]
)
def model_signature_encoder(model_signature: ModelSignature) -> dict[str, t.Any]:
encoded: dict[str, t.Any] = {
"batchable": model_signature.batchable,
}
# ignore batch_dim if batchable is False
if model_signature.batchable:
encoded["batch_dim"] = model_signature.batch_dim
if model_signature.input_spec is not None:
encoded["input_spec"] = model_signature.input_spec
if model_signature.output_spec is not None:
encoded["output_spec"] = model_signature.output_spec
return encoded
bentoml_cattr.register_unstructure_hook(ModelSignature, model_signature_encoder)
@attr.define(repr=False, eq=False, frozen=True)
class ModelInfo:
tag: Tag
name: str
version: str
module: str
labels: t.Dict[str, str] = attr.field(validator=label_validator)
options: ModelOptions
# TODO: make metadata a MetadataDict; this works around a bug in attrs
metadata: t.Dict[str, t.Any] = attr.field(
validator=metadata_validator, converter=dict
)
context: ModelContext = attr.field()
signatures: t.Dict[str, ModelSignature] = attr.field(
converter=ModelSignature.convert_signatures_dict
)
api_version: str
creation_time: datetime
def __init__(
self,
tag: Tag,
module: str,
labels: dict[str, str],
options: ModelOptions,
metadata: MetadataDict,
context: ModelContext,
signatures: ModelSignaturesType,
api_version: str,
creation_time: datetime | None = None,
):
self.__attrs_init__( # type: ignore
tag=tag,
name=tag.name,
version=tag.version,
module=module,
labels=labels,
options=options,
metadata=metadata,
context=context,
signatures=signatures,
api_version=api_version,
creation_time=creation_time or datetime.now(timezone.utc),
)
self.validate()
def __eq__(self, other: object) -> bool:
if not isinstance(other, ModelInfo):
return False
return (
self.tag == other.tag
and self.module == other.module
and self.signatures == other.signatures
and self.labels == other.labels
and self.options == other.options
and self.metadata == other.metadata
and self.context == other.context
and self.signatures == other.signatures
and self.api_version == other.api_version
and self.creation_time == other.creation_time
)
def with_options(self, **kwargs: t.Any) -> ModelInfo:
return ModelInfo(
tag=self.tag,
module=self.module,
signatures=self.signatures,
labels=self.labels,
options=self.options.with_options(**kwargs),
metadata=self.metadata,
context=self.context,
api_version=self.api_version,
creation_time=self.creation_time,
)
def to_dict(self) -> t.Dict[str, t.Any]:
return bentoml_cattr.unstructure(self) # type: ignore (incomplete cattr types)
@overload
def dump(self, stream: io.StringIO) -> io.BytesIO:
...
@overload
def dump(self, stream: None = None) -> None:
...
def dump(self, stream: io.StringIO | None = None) -> io.BytesIO | None:
return yaml.safe_dump(self.to_dict(), stream=stream, sort_keys=False) # type: ignore (bad yaml types)
@staticmethod
def from_yaml_file(stream: t.IO[t.Any]):
try:
yaml_content = yaml.safe_load(stream)
except yaml.YAMLError as exc: # pragma: no cover - simple error handling
logger.error(exc)
raise
if not isinstance(yaml_content, dict):
raise BentoMLException(f"malformed {MODEL_YAML_FILENAME}")
yaml_content["tag"] = str(
Tag(
t.cast(str, yaml_content["name"]),
t.cast(str, yaml_content["version"]),
)
)
del yaml_content["name"]
del yaml_content["version"]
# For backwards compatibility for bentos created prior to version 1.0.0rc1
if "bentoml_version" in yaml_content:
del yaml_content["bentoml_version"]
if "signatures" not in yaml_content:
yaml_content["signatures"] = {}
if "context" in yaml_content and "pip_dependencies" in yaml_content["context"]:
del yaml_content["context"]["pip_dependencies"]
yaml_content["context"]["framework_versions"] = {}
# register hook for model options
module_name: str = yaml_content["module"]
try:
module = importlib.import_module(module_name)
except (ValueError, ModuleNotFoundError) as e:
raise BentoMLException(
f"Module '{module_name}' defined in {MODEL_YAML_FILENAME} is not found."
) from e
if hasattr(module, "ModelOptions"):
bentoml_cattr.register_structure_hook(
ModelOptions,
lambda d, _: module.ModelOptions(**d),
)
try:
model_info = bentoml_cattr.structure(yaml_content, ModelInfo)
except TypeError as e: # pragma: no cover - simple error handling
raise BentoMLException(f"unexpected field in {MODEL_YAML_FILENAME}: {e}")
return model_info
def validate(self):
# Validate model.yml file schema, content, bentoml version, etc
# add tests when implemented
...
# Remove after attrs support ForwardRef natively
attr.resolve_types(ModelInfo, globals(), locals())
bentoml_cattr.register_unstructure_hook_func(
lambda cls: issubclass(cls, ModelInfo),
# Ignore tag, tag is saved via the name and version field
make_dict_unstructure_fn(ModelInfo, bentoml_cattr, tag=override(omit=True)), # type: ignore (incomplete types)
)
def copy_model(
model_tag: t.Union[Tag, str],
*,
src_model_store: ModelStore,
target_model_store: ModelStore,
):
"""copy a model from src model store to target modelstore, and do nothing if the
model tag already exist in target model store
"""
try:
target_model_store.get(model_tag) # if model tag already found in target
return
except NotFound:
pass
model = src_model_store.get(model_tag)
model.save(target_model_store)
def _ModelInfo_dumper(dumper: yaml.Dumper, info: ModelInfo) -> yaml.Node:
return dumper.represent_dict(info.to_dict())
yaml.add_representer(ModelInfo, _ModelInfo_dumper) # type: ignore (incomplete yaml types)
|
# type: ignore[reportUnusedFunction]
import sys
import typing as t
import logging
import click
from ..log import configure_server_logging
from ..configuration.containers import DeploymentContainer
logger = logging.getLogger(__name__)
DEFAULT_DEV_SERVER_HOST = "127.0.0.1"
DEFAULT_RELOAD_DELAY = 0.25
def add_serve_command(cli: click.Group) -> None:
@cli.command()
@click.argument("bento", type=click.STRING, default=".")
@click.option(
"--production",
type=click.BOOL,
help="Run the BentoServer in production mode",
is_flag=True,
default=False,
show_default=True,
)
@click.option(
"--port",
type=click.INT,
default=DeploymentContainer.service_port.get(),
help="The port to listen on for the REST api server",
envvar="BENTOML_PORT",
show_default=True,
)
@click.option(
"--host",
type=click.STRING,
default=None,
help="The host to bind for the REST api server [defaults: 127.0.0.1(dev), 0.0.0.0(production)]",
envvar="BENTOML_HOST",
)
@click.option(
"--api-workers",
type=click.INT,
default=None,
help="Specify the number of API server workers to start. Default to number of available CPU cores in production mode",
envvar="BENTOML_API_WORKERS",
)
@click.option(
"--backlog",
type=click.INT,
default=DeploymentContainer.api_server_config.backlog.get(),
help="The maximum number of pending connections.",
show_default=True,
)
@click.option(
"--reload",
type=click.BOOL,
is_flag=True,
help="Reload Service when code changes detected, this is only available in development mode",
default=False,
show_default=True,
)
@click.option(
"--reload-delay",
type=click.FLOAT,
help="Delay in seconds between each check if the Service needs to be reloaded",
show_default=True,
default=DEFAULT_RELOAD_DELAY,
)
@click.option(
"--working-dir",
type=click.Path(),
help="When loading from source code, specify the directory to find the Service instance",
default=".",
show_default=True,
)
@click.option(
"--run-with-ngrok", # legacy option
"--ngrok",
is_flag=True,
default=False,
help="Use ngrok to relay traffic on a public endpoint to the local BentoServer, only available in dev mode",
show_default=True,
)
def serve(
bento: str,
production: bool,
port: int,
host: t.Optional[str],
api_workers: t.Optional[int],
backlog: int,
reload: bool,
reload_delay: float,
working_dir: str,
run_with_ngrok: bool,
) -> None:
"""Start BentoServer from BENTO
BENTO is the serving target: it can be the import path of a bentoml.Service
instance; a tag to a Bento in local Bento store; or a file path to a Bento
directory, e.g.:
\b
Serve from a bentoml.Service instance source code(for development use only):
bentoml serve fraud_detector.py:svc
\b
Serve from a Bento built in local store:
bentoml serve fraud_detector:4tht2icroji6zput3suqi5nl2
bentoml serve fraud_detector:latest
\b
Serve from a Bento directory:
bentoml serve ./fraud_detector_bento
"""
configure_server_logging()
if sys.path[0] != working_dir:
sys.path.insert(0, working_dir)
if production:
if run_with_ngrok:
logger.warning(
"'--run-with-ngrok' is not supported with '--production; ignoring"
)
if reload:
logger.warning(
"'--reload' is not supported with '--production'; ignoring"
)
from ..server import serve_production
serve_production(
bento,
working_dir=working_dir,
port=port,
host=DeploymentContainer.service_host.get() if host is None else host,
backlog=backlog,
api_workers=api_workers,
)
else:
from ..server import serve_development
serve_development(
bento,
working_dir=working_dir,
with_ngrok=run_with_ngrok,
port=port,
host=DEFAULT_DEV_SERVER_HOST if host is None else host,
reload=reload,
reload_delay=reload_delay,
)
|
from __future__ import annotations
import sys
import typing as t
import logging
import click
from bentoml.bentos import containerize as containerize_bento
from ..utils import kwargs_transformers
from ..utils.docker import validate_tag
logger = logging.getLogger("bentoml")
def containerize_transformer(
value: t.Iterable[str] | str | bool | None,
) -> t.Iterable[str] | str | bool | None:
if value is None:
return
if isinstance(value, tuple) and not value:
return
return value
def add_containerize_command(cli: click.Group) -> None:
@cli.command()
@click.argument("bento_tag", type=click.STRING)
@click.option(
"-t",
"--docker-image-tag",
help="Name and optionally a tag (format: 'name:tag'), defaults to bento tag.",
required=False,
callback=validate_tag,
)
@click.option(
"--add-host",
multiple=True,
help="Add a custom host-to-IP mapping (format: 'host:ip').",
)
@click.option(
"--allow",
multiple=True,
default=None,
help="Allow extra privileged entitlement (e.g., 'network.host', 'security.insecure').",
)
@click.option("--build-arg", multiple=True, help="Set build-time variables.")
@click.option(
"--build-context",
multiple=True,
help="Additional build contexts (e.g., name=path).",
)
@click.option(
"--builder",
type=click.STRING,
default=None,
help="Override the configured builder instance.",
)
@click.option(
"--cache-from",
multiple=True,
default=None,
help="External cache sources (e.g., 'user/app:cache', 'type=local,src=path/to/dir').",
)
@click.option(
"--cache-to",
multiple=True,
default=None,
help="Cache export destinations (e.g., 'user/app:cache', 'type=local,dest=path/to/dir').",
)
@click.option(
"--cgroup-parent",
type=click.STRING,
default=None,
help="Optional parent cgroup for the container.",
)
@click.option(
"--iidfile",
type=click.STRING,
default=None,
help="Write the image ID to the file.",
)
@click.option("--label", multiple=True, help="Set metadata for an image.")
@click.option(
"--load",
is_flag=True,
default=False,
help="Shorthand for '--output=type=docker'.",
)
@click.option(
"--metadata-file",
type=click.STRING,
default=None,
help="Write build result metadata to the file.",
)
@click.option(
"--network",
type=click.STRING,
default=None,
help="Set the networking mode for the 'RUN' instructions during build (default 'default').",
)
@click.option(
"--no-cache",
is_flag=True,
default=False,
help="Do not use cache when building the image.",
)
@click.option(
"--no-cache-filter",
multiple=True,
help="Do not cache specified stages.",
)
@click.option(
"--output",
multiple=True,
default=None,
help="Output destination (format: 'type=local,dest=path').",
)
@click.option(
"--platform", default=None, multiple=True, help="Set target platform for build."
)
@click.option(
"--progress",
default="auto",
type=click.Choice(["auto", "tty", "plain"]),
help="Set type of progress output ('auto', 'plain', 'tty'). Use plain to show container output.",
)
@click.option(
"--pull",
is_flag=True,
default=False,
help="Always attempt to pull all referenced images.",
)
@click.option(
"--push",
is_flag=True,
default=False,
help="Shorthand for '--output=type=registry'.",
)
@click.option(
"--secret",
multiple=True,
default=None,
help="Secret to expose to the build (format: 'id=mysecret[,src=/local/secret]').",
)
@click.option("--shm-size", default=None, help="Size of '/dev/shm'.")
@click.option(
"--ssh",
type=click.STRING,
default=None,
help="SSH agent socket or keys to expose to the build (format: 'default|<id>[=<socket>|<key>[,<key>]]').",
)
@click.option(
"--target",
type=click.STRING,
default=None,
help="Set the target build stage to build.",
)
@click.option(
"--ulimit", type=click.STRING, default=None, help="Ulimit options (default [])."
)
@kwargs_transformers(transformer=containerize_transformer)
def containerize( # type: ignore
bento_tag: str,
docker_image_tag: str,
add_host: t.Iterable[str],
allow: t.Iterable[str],
build_arg: t.List[str],
build_context: t.List[str],
builder: str,
cache_from: t.List[str],
cache_to: t.List[str],
cgroup_parent: str,
iidfile: str,
label: t.List[str],
load: bool,
network: str,
metadata_file: str,
no_cache: bool,
no_cache_filter: t.List[str],
output: t.List[str],
platform: t.List[str],
progress: t.Literal["auto", "tty", "plain"],
pull: bool,
push: bool,
secret: t.List[str],
shm_size: str,
ssh: str,
target: str,
ulimit: str,
) -> None:
"""Containerizes given Bento into a ready-to-use Docker image.
\b
BENTO is the target BentoService to be containerized, referenced by its name
and version in format of name:version. For example: "iris_classifier:v1.2.0"
`bentoml containerize` command also supports the use of the `latest` tag
which will automatically use the last built version of your Bento.
You can provide a tag for the image built by Bento using the
`--tag` flag. Additionally, you can provide a `--push` flag,
which will push the built image to the Docker repository specified by the
image tag.
You can also prefixing the tag with a hostname for the repository you wish
to push to.
e.g. `bentoml containerize IrisClassifier:latest --push --tag
repo-address.com:username/iris` would build a Docker image called
`username/iris:latest` and push that to docker repository at repo-address.com.
By default, the `containerize` command will use the current credentials
provided by Docker daemon.
`bentoml containerize` also uses Docker Buildx as backend, in place for normal `docker build`.
By doing so, BentoML will leverage Docker Buildx features such as multi-node
builds for cross-platform images, Full BuildKit capabilities with all of the
familiar UI from `docker build`.
We also pass all given args for `docker buildx` through `bentoml containerize` with ease.
"""
add_hosts = {}
if add_host:
for host in add_host:
host_name, ip = host.split(":")
add_hosts[host_name] = ip
allow_ = []
if allow:
allow_ = list(allow)
build_args = {}
if build_arg:
for build_arg_str in build_arg:
key, value = build_arg_str.split("=")
build_args[key] = value
build_context_ = {}
if build_context:
for build_context_str in build_context:
key, value = build_context_str.split("=")
build_context_[key] = value
labels = {}
if label:
for label_str in label:
key, value = label_str.split("=")
labels[key] = value
if output:
output_ = {}
for arg in output:
if "," in arg:
for val in arg.split(","):
k, v = val.split("=")
output_[k] = v
key, value = arg.split("=")
output_[key] = value
else:
output_ = None
if not platform:
load = True
else:
if len(platform) > 1:
logger.warning(
"Multiple `--platform` arguments were found. Make sure to also use `--push` to push images to a repository or generated images will not be saved. For more information, see https://docs.docker.com/engine/reference/commandline/buildx_build/#load."
)
else:
load = True
exit_code = not containerize_bento(
bento_tag,
docker_image_tag=docker_image_tag,
add_host=add_hosts,
allow=allow_,
build_args=build_args,
build_context=build_context_,
builder=builder,
cache_from=cache_from,
cache_to=cache_to,
cgroup_parent=cgroup_parent,
iidfile=iidfile,
labels=labels,
load=load,
metadata_file=metadata_file,
network=network,
no_cache=no_cache,
no_cache_filter=no_cache_filter,
output=output_, # type: ignore
platform=platform,
progress=progress,
pull=pull,
push=push,
quiet=logger.getEffectiveLevel() == logging.ERROR,
secrets=secret,
shm_size=shm_size,
ssh=ssh,
target=target,
ulimit=ulimit,
)
sys.exit(exit_code)
|
# type: ignore[reportUnusedFunction]
import sys
import json
import typing as t
import logging
from typing import TYPE_CHECKING
import yaml
import click
from simple_di import inject
from simple_di import Provide
from rich.table import Table
from rich.syntax import Syntax
from rich.console import Console
from bentoml import Tag
from bentoml.bentos import import_bento
from bentoml.bentos import build_bentofile
from ..utils import calc_dir_size
from ..utils import human_readable_size
from ..utils import display_path_under_home
from .click_utils import is_valid_bento_tag
from .click_utils import is_valid_bento_name
from ..bento.bento import DEFAULT_BENTO_BUILD_FILE
from ..yatai_client import yatai_client
from ..configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from ..bento import BentoStore
logger = logging.getLogger(__name__)
def parse_delete_targets_argument_callback(
ctx: "click.Context", params: "click.Parameter", value: t.Any
) -> t.List[str]: # pylint: disable=unused-argument
if value is None:
return value
delete_targets = value.split(",")
delete_targets = list(map(str.strip, delete_targets))
for delete_target in delete_targets:
if not (
is_valid_bento_tag(delete_target) or is_valid_bento_name(delete_target)
):
raise click.BadParameter(
"Bad formatting. Please present a valid bento bundle name or "
'"name:version" tag. For list of bento bundles, separate delete '
'targets by ",", for example: "my_service:v1,my_service:v2,'
'classifier"'
)
return delete_targets
@inject
def add_bento_management_commands(
cli: "click.Group",
bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
):
@cli.command()
@click.argument("bento_tag", type=click.STRING)
@click.option(
"-o",
"--output",
type=click.Choice(["json", "yaml", "path"]),
default="yaml",
)
def get(bento_tag: str, output: str) -> None:
"""Print Bento details by providing the bento_tag
\b
bentoml get FraudDetector:latest
bentoml get --output=json FraudDetector:20210709_DE14C9
"""
bento = bento_store.get(bento_tag)
console = Console()
if output == "path":
console.print(bento.path)
elif output == "json":
info = json.dumps(bento.info.to_dict(), indent=2, default=str)
console.print_json(info)
else:
info = yaml.dump(bento.info, indent=2, sort_keys=False)
console.print(Syntax(info, "yaml"))
@cli.command(name="list")
@click.argument("bento_name", type=click.STRING, required=False)
@click.option(
"-o",
"--output",
type=click.Choice(["json", "yaml", "table"]),
default="table",
)
@click.option(
"--no-trunc",
is_flag=False,
help="Don't truncate the output",
)
def list_bentos(bento_name: str, output: str, no_trunc: bool) -> None:
"""List Bentos in local store
\b
# show all bentos saved
> bentoml list
\b
# show all verions of bento with the name FraudDetector
> bentoml list FraudDetector
"""
bentos = bento_store.list(bento_name)
res = [
{
"tag": str(bento.tag),
"path": display_path_under_home(bento.path),
"size": human_readable_size(calc_dir_size(bento.path)),
"creation_time": bento.info.creation_time.astimezone().strftime(
"%Y-%m-%d %H:%M:%S"
),
}
for bento in sorted(
bentos, key=lambda x: x.info.creation_time, reverse=True
)
]
console = Console()
if output == "json":
info = json.dumps(res, indent=2)
console.print(info)
elif output == "yaml":
info = yaml.safe_dump(res, indent=2)
console.print(Syntax(info, "yaml"))
else:
table = Table(box=None)
table.add_column("Tag")
table.add_column("Size")
table.add_column("Creation Time")
table.add_column("Path")
for bento in res:
table.add_row(
bento["tag"],
bento["size"],
bento["creation_time"],
bento["path"],
)
console.print(table)
@cli.command()
@click.argument(
"delete_targets",
type=click.STRING,
callback=parse_delete_targets_argument_callback,
required=True,
)
@click.option(
"-y",
"--yes",
"--assume-yes",
is_flag=True,
help="Skip confirmation when deleting a specific bento bundle",
)
def delete(
delete_targets: t.List[str],
yes: bool,
) -> None:
"""Delete Bento in local bento store.
\b
Examples:
* Delete single bento bundle by "name:version", e.g: `bentoml delete IrisClassifier:v1`
* Bulk delete all bento bundles with a specific name, e.g.: `bentoml delete IrisClassifier`
* Bulk delete multiple bento bundles by name and version, separated by ",", e.g.: `benotml delete Irisclassifier:v1,MyPredictService:v2`
* Bulk delete without confirmation, e.g.: `bentoml delete IrisClassifier --yes`
""" # noqa
def delete_target(target: str) -> None:
tag = Tag.from_str(target)
if tag.version is None:
to_delete_bentos = bento_store.list(target)
else:
to_delete_bentos = [bento_store.get(tag)]
for bento in to_delete_bentos:
if yes:
delete_confirmed = True
else:
delete_confirmed = click.confirm(f"delete bento {bento.tag}?")
if delete_confirmed:
bento_store.delete(bento.tag)
logger.info(f"{bento} deleted")
for target in delete_targets:
delete_target(target)
@cli.command()
@click.argument("bento_tag", type=click.STRING)
@click.argument(
"out_path",
type=click.STRING,
default="",
required=False,
)
def export(bento_tag: str, out_path: str) -> None:
"""Export a Bento to an external file archive
\b
Arguments:
BENTO_TAG: bento identifier
OUT_PATH: output path of exported bento.
If out_path argument is not provided, bento is exported to name-version.bento in the current directory.
Beside the native .bento format, we also support ('tar'), tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip.
\b
Examples:
bentoml export FraudDetector:20210709_DE14C9
bentoml export FraudDetector:20210709_DE14C9 ./my_bento.bento
bentoml export FraudDetector:latest ./my_bento.bento
bentoml export FraudDetector:latest s3://mybucket/bentos/my_bento.bento
"""
bento = bento_store.get(bento_tag)
out_path = bento.export(out_path)
logger.info(f"{bento} exported to {out_path}")
@cli.command(name="import")
@click.argument("bento_path", type=click.STRING)
def import_bento_(bento_path: str) -> None:
"""Import a previously exported Bento archive file
\b
Arguments:
BENTO_PATH: path of Bento archive file
\b
Examples:
bentoml import ./my_bento.bento
bentoml import s3://mybucket/bentos/my_bento.bento
"""
bento = import_bento(bento_path)
logger.info(f"{bento} imported")
@cli.command(
help="Pull Bento from a yatai server",
)
@click.argument("bento_tag", type=click.STRING)
@click.option(
"-f",
"--force",
is_flag=True,
default=False,
help="Force pull from yatai to local and overwrite even if it already exists in local",
)
def pull(bento_tag: str, force: bool) -> None:
yatai_client.pull_bento(bento_tag, force=force)
@cli.command(help="Push Bento to a yatai server")
@click.argument("bento_tag", type=click.STRING)
@click.option(
"-f",
"--force",
is_flag=True,
default=False,
help="Forced push to yatai even if it exists in yatai",
)
def push(bento_tag: str, force: bool) -> None:
bento_obj = bento_store.get(bento_tag)
if not bento_obj:
raise click.ClickException(f"Bento {bento_tag} not found in local store")
yatai_client.push_bento(bento_obj, force=force)
@cli.command(help="Build a new Bento from current directory")
@click.argument("build_ctx", type=click.Path(), default=".")
@click.option(
"-f", "--bentofile", type=click.STRING, default=DEFAULT_BENTO_BUILD_FILE
)
@click.option("--version", type=click.STRING, default=None)
def build(build_ctx: str, bentofile: str, version: str) -> None:
if sys.path[0] != build_ctx:
sys.path.insert(0, build_ctx)
return build_bentofile(bentofile, build_ctx=build_ctx, version=version)
|
import click
import psutil
from bentoml import __version__ as BENTOML_VERSION
from .yatai import add_login_command
from .click_utils import BentoMLCommandGroup
from .bento_server import add_serve_command
from .containerize import add_containerize_command
from .bento_management import add_bento_management_commands
from .model_management import add_model_management_commands
def create_bentoml_cli():
# exclude traceback from the click library
from rich.traceback import install
install(suppress=[click])
CONTEXT_SETTINGS = {"help_option_names": ("-h", "--help")}
@click.group(cls=BentoMLCommandGroup, context_settings=CONTEXT_SETTINGS)
@click.version_option(BENTOML_VERSION, "-v", "--version") # type: ignore
def cli():
"""BentoML CLI"""
# Add top-level CLI commands
add_login_command(cli)
add_bento_management_commands(cli)
add_model_management_commands(cli)
add_serve_command(cli)
add_containerize_command(cli)
if psutil.WINDOWS:
import sys
sys.stdout.reconfigure(encoding="utf-8") # type: ignore
return cli
cli = create_bentoml_cli()
if __name__ == "__main__":
cli()
|
import os
import re
import time
import typing as t
import difflib
import logging
import functools
from typing import TYPE_CHECKING
import click
from click import ClickException
from click.exceptions import UsageError
from ..log import configure_logging
from ...exceptions import BentoMLException
from ..configuration import CONFIG_ENV_VAR
from ..configuration import set_debug_mode
from ..configuration import set_quiet_mode
from ..configuration import load_global_config
from ..utils.analytics import track
from ..utils.analytics import CliEvent
from ..utils.analytics import cli_events_map
from ..utils.analytics import BENTOML_DO_NOT_TRACK
if TYPE_CHECKING:
P = t.ParamSpec("P")
class ClickFunctionWrapper(t.Protocol[P]):
__name__: str
__click_params__: t.List[click.Option]
def __call__(*args: P.args, **kwargs: P.kwargs) -> t.Callable[P, t.Any]:
...
WrappedCLI = t.Callable[P, ClickFunctionWrapper[t.Any]]
logger = logging.getLogger(__name__)
class BentoMLCommandGroup(click.Group):
"""Click command class customized for BentoML CLI, allow specifying a default
command for each group defined
"""
NUMBER_OF_COMMON_PARAMS = 4
@staticmethod
def bentoml_common_params(
func: "t.Callable[P, t.Any]",
) -> "WrappedCLI[bool, bool, t.Optional[str]]":
# NOTE: update NUMBER_OF_COMMON_PARAMS when adding option.
@click.option(
"-q",
"--quiet",
is_flag=True,
default=False,
help="Suppress all warnings and info logs",
)
@click.option(
"--verbose",
"--debug",
is_flag=True,
default=False,
help="Generate debug information",
)
@click.option(
"--do-not-track",
is_flag=True,
default=False,
envvar=BENTOML_DO_NOT_TRACK,
help="Do not send usage info",
)
@click.option(
"--config",
type=click.Path(exists=True),
envvar=CONFIG_ENV_VAR,
help="BentoML configuration YAML file to apply",
)
@functools.wraps(func)
def wrapper(
quiet: bool,
verbose: bool,
config: t.Optional[str],
*args: "P.args",
**kwargs: "P.kwargs",
) -> t.Any:
if config:
load_global_config(config)
if quiet:
set_quiet_mode(True)
if verbose:
logger.warning("'--quiet' passed; ignoring '--verbose/--debug'")
elif verbose:
set_debug_mode(True)
configure_logging()
return func(*args, **kwargs)
return wrapper
@staticmethod
def bentoml_track_usage(
func: t.Union["t.Callable[P, t.Any]", "ClickFunctionWrapper[t.Any]"],
cmd_group: click.Group,
**kwargs: t.Any,
):
command_name = kwargs.get("name", func.__name__)
@functools.wraps(func)
def wrapper(do_not_track: bool, *args: "P.args", **kwargs: "P.kwargs") -> t.Any:
if do_not_track:
os.environ[BENTOML_DO_NOT_TRACK] = str(True)
return func(*args, **kwargs)
start_time = time.time_ns()
if (
cmd_group.name in cli_events_map
and command_name in cli_events_map[cmd_group.name]
):
get_tracking_event = functools.partial(
cli_events_map[cmd_group.name][command_name],
cmd_group.name,
command_name,
)
else:
def get_tracking_event(ret: t.Any) -> CliEvent:
return CliEvent(
cmd_group=cmd_group.name,
cmd_name=command_name,
)
try:
return_value = func(*args, **kwargs)
event = get_tracking_event(return_value)
duration_in_ns = time.time_ns() - start_time
event.duration_in_ms = duration_in_ns / 1e6
track(event)
return return_value
except BaseException as e:
event = get_tracking_event(None)
duration_in_ns = time.time_ns() - start_time
event.duration_in_ms = duration_in_ns / 1e6
event.error_type = type(e).__name__
event.return_code = 2 if isinstance(e, KeyboardInterrupt) else 1
track(event)
raise
return wrapper
@staticmethod
def raise_click_exception(
func: t.Union["t.Callable[P, t.Any]", "ClickFunctionWrapper[t.Any]"],
cmd_group: click.Group,
**kwargs: t.Any,
) -> "ClickFunctionWrapper[t.Any]":
command_name = kwargs.get("name", func.__name__)
@functools.wraps(func)
def wrapper(*args: "P.args", **kwargs: "P.kwargs") -> t.Any:
try:
return func(*args, **kwargs)
except BentoMLException as err:
msg = f"[{cmd_group.name}] `{command_name}` failed: {str(err)}"
raise ClickException(click.style(msg, fg="red")) from err
return t.cast("ClickFunctionWrapper[t.Any]", wrapper)
def command(
self, *args: t.Any, **kwargs: t.Any
) -> "t.Callable[[t.Callable[P, t.Any]], click.Command]":
if "context_settings" not in kwargs:
kwargs["context_settings"] = {}
kwargs["context_settings"]["max_content_width"] = 120
def wrapper(func: "t.Callable[P, t.Any]") -> click.Command:
# add common parameters to command.
func = BentoMLCommandGroup.bentoml_common_params(func)
# Send tracking events before command finish.
func = BentoMLCommandGroup.bentoml_track_usage(func, self, **kwargs)
# If BentoMLException raise ClickException instead before exit.
func = BentoMLCommandGroup.raise_click_exception(func, self, **kwargs)
# move common parameters to end of the parameters list
func.__click_params__ = (
func.__click_params__[-self.NUMBER_OF_COMMON_PARAMS :]
+ func.__click_params__[: -self.NUMBER_OF_COMMON_PARAMS]
)
return super(BentoMLCommandGroup, self).command(*args, **kwargs)(func)
return wrapper
def resolve_command(
self, ctx: click.Context, args: t.List[str]
) -> t.Tuple[str, click.Command, t.List[str]]:
try:
return super(BentoMLCommandGroup, self).resolve_command(ctx, args)
except UsageError as e:
error_msg = str(e)
original_cmd_name = click.utils.make_str(args[0])
matches = difflib.get_close_matches(
original_cmd_name, self.list_commands(ctx), 3, 0.5
)
if matches:
fmt_matches = "\n ".join(matches)
error_msg += "\n\n"
error_msg += f"Did you mean?\n {fmt_matches}"
raise UsageError(error_msg, e.ctx)
def is_valid_bento_tag(value: str) -> bool:
return re.match(r"^[A-Za-z_][A-Za-z_0-9]*:[A-Za-z0-9.+-_]*$", value) is not None
def is_valid_bento_name(value: str) -> bool:
return re.match(r"^[A-Za-z_0-9]*$", value) is not None
|
# type: ignore[reportUnusedFunction]
import logging
import click
from bentoml.exceptions import CLIException
from ..cli.click_utils import BentoMLCommandGroup
from ..yatai_rest_api_client.yatai import YataiRESTApiClient
from ..yatai_rest_api_client.config import add_context
from ..yatai_rest_api_client.config import YataiClientContext
from ..yatai_rest_api_client.config import default_context_name
logger = logging.getLogger(__name__)
def add_login_command(cli: click.Group) -> None:
@cli.group(name="yatai", cls=BentoMLCommandGroup)
def yatai_cli():
"""Yatai Subcommands Groups"""
@yatai_cli.command(help="Login to Yatai server")
@click.option(
"--endpoint", type=click.STRING, help="Yatai endpoint, i.e: https://yatai.com"
)
@click.option("--api-token", type=click.STRING, help="Yatai user API token")
def login(endpoint: str, api_token: str) -> None:
if not endpoint:
raise CLIException("need --endpoint")
if not api_token:
raise CLIException("need --api-token")
yatai_rest_client = YataiRESTApiClient(endpoint, api_token)
user = yatai_rest_client.get_current_user()
if user is None:
raise CLIException("current user is not found")
org = yatai_rest_client.get_current_organization()
if org is None:
raise CLIException("current organization is not found")
ctx = YataiClientContext(
name=default_context_name,
endpoint=endpoint,
api_token=api_token,
email=user.email,
)
add_context(ctx)
logger.info(
f"login successfully! user: {user.name}, organization: {org.name}",
)
|
# type: ignore[reportUnusedFunction]
import json
import typing as t
import logging
from typing import TYPE_CHECKING
import yaml
import click
from simple_di import inject
from simple_di import Provide
from rich.table import Table
from rich.syntax import Syntax
from rich.console import Console
from bentoml import Tag
from bentoml.models import import_model
from ..utils import calc_dir_size
from ..utils import human_readable_size
from ..utils import display_path_under_home
from .click_utils import is_valid_bento_tag
from .click_utils import BentoMLCommandGroup
from .click_utils import is_valid_bento_name
from ..yatai_client import yatai_client
from ..configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from ..models import ModelStore
logger = logging.getLogger(__name__)
def parse_delete_targets_argument_callback(
ctx: "click.Context", params: "click.Parameter", value: t.Any
) -> t.Any: # pylint: disable=unused-argument
if value is None:
return value
delete_targets = value.split(",")
delete_targets = list(map(str.strip, delete_targets))
for delete_target in delete_targets:
if not (
is_valid_bento_tag(delete_target) or is_valid_bento_name(delete_target)
):
raise click.BadParameter(
"Bad formatting. Please present a valid bento bundle name or "
'"name:version" tag. For list of bento bundles, separate delete '
'targets by ",", for example: "my_service:v1,my_service:v2,'
'classifier"'
)
return delete_targets
@inject
def add_model_management_commands(
cli: "click.Group",
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> None:
@cli.group(name="models", cls=BentoMLCommandGroup)
def model_cli():
"""Model Subcommands Groups"""
@model_cli.command()
@click.argument("model_tag", type=click.STRING)
@click.option(
"-o",
"--output",
type=click.Choice(["json", "yaml", "path"]),
default="yaml",
)
def get(model_tag: str, output: str) -> None:
"""Print Model details by providing the model_tag
\b
bentoml models get FraudDetector:latest
bentoml models get --output=json FraudDetector:20210709_DE14C9
"""
model = model_store.get(model_tag)
console = Console()
if output == "path":
console.print(model.path)
elif output == "json":
info = json.dumps(model.info.to_dict(), indent=2, default=str)
console.print_json(info)
else:
console.print(Syntax(model.info.dump(), "yaml"))
@model_cli.command(name="list")
@click.argument("model_name", type=click.STRING, required=False)
@click.option(
"-o",
"--output",
type=click.Choice(["json", "yaml", "table"]),
default="table",
)
@click.option(
"--no-trunc",
is_flag=False,
help="Don't truncate the output",
)
def list_models(model_name: str, output: str, no_trunc: bool) -> None:
"""List Models in local store
\b
# show all models saved
> bentoml models list
\b
# show all verions of bento with the name FraudDetector
> bentoml models list FraudDetector
"""
console = Console()
models = model_store.list(model_name)
res = [
{
"tag": str(model.tag),
"module": model.info.module,
"size": human_readable_size(calc_dir_size(model.path)),
"creation_time": model.info.creation_time.astimezone().strftime(
"%Y-%m-%d %H:%M:%S"
),
}
for model in sorted(
models, key=lambda x: x.info.creation_time, reverse=True
)
]
if output == "json":
info = json.dumps(res, indent=2)
console.print_json(info)
elif output == "yaml":
info = yaml.safe_dump(res, indent=2)
console.print(Syntax(info, "yaml"))
else:
table = Table(box=None)
table.add_column("Tag")
table.add_column("Module")
table.add_column("Size")
table.add_column("Creation Time")
for model in res:
table.add_row(
model["tag"],
model["module"],
model["size"],
model["creation_time"],
)
console.print(table)
@model_cli.command()
@click.argument(
"delete_targets",
type=click.STRING,
callback=parse_delete_targets_argument_callback,
required=True,
)
@click.option(
"-y",
"--yes",
"--assume-yes",
is_flag=True,
help="Skip confirmation when deleting a specific model",
)
def delete(
delete_targets: str,
yes: bool,
) -> None:
"""Delete Model in local model store.
\b
Examples:
* Delete single model by "name:version", e.g: `bentoml models delete iris_clf:v1`
* Bulk delete all models with a specific name, e.g.: `bentoml models delete iris_clf`
* Bulk delete multiple models by name and version, separated by ",", e.g.: `benotml models delete iris_clf:v1,iris_clf:v2`
* Bulk delete without confirmation, e.g.: `bentoml models delete IrisClassifier --yes`
""" # noqa
def delete_target(target: str) -> None:
tag = Tag.from_str(target)
if tag.version is None:
to_delete_models = model_store.list(target)
else:
to_delete_models = [model_store.get(tag)]
for model in to_delete_models:
if yes:
delete_confirmed = True
else:
delete_confirmed = click.confirm(f"delete model {model.tag}?")
if delete_confirmed:
model_store.delete(model.tag)
logger.info(f"{model} deleted")
for target in delete_targets:
delete_target(target)
@model_cli.command()
@click.argument("model_tag", type=click.STRING)
@click.argument("out_path", type=click.STRING, default="", required=False)
def export(model_tag: str, out_path: str) -> None:
"""Export a Model to an external archive file
arguments:
\b
MODEL_TAG: model identifier
OUT_PATH: output path of exported model.
If this argument is not provided, model is exported to name-version.bentomodel in the current directory.
Besides native .bentomodel format, we also support formats like tar('tar'), tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip.
examples:
\b
bentoml models export FraudDetector:latest
bentoml models export FraudDetector:latest ./my_model.bentomodel
bentoml models export FraudDetector:20210709_DE14C9 ./my_model.bentomodel
bentoml models export FraudDetector:20210709_DE14C9 s3://mybucket/models/my_model.bentomodel
"""
bentomodel = model_store.get(model_tag)
out_path = bentomodel.export(out_path)
logger.info(f"{bentomodel} exported to {out_path}")
@model_cli.command(name="import")
@click.argument("model_path", type=click.STRING)
def import_from(model_path: str) -> None:
"""Import a previously exported Model archive file
bentoml models import ./my_model.bentomodel
bentoml models import s3://mybucket/models/my_model.bentomodel
"""
bentomodel = import_model(model_path)
logger.info(f"{bentomodel} imported")
@model_cli.command(
help="Pull Model from a yatai server",
)
@click.argument("model_tag", type=click.STRING)
@click.option(
"-f",
"--force",
is_flag=True,
default=False,
help="Force pull from yatai to local and overwrite even if it already exists in local",
)
def pull(model_tag: str, force: bool):
yatai_client.pull_model(model_tag, force=force)
@model_cli.command(help="Push Model to a yatai server")
@click.argument("model_tag", type=click.STRING)
@click.option(
"-f",
"--force",
is_flag=True,
default=False,
help="Forced push to yatai even if it exists in yatai",
)
def push(model_tag: str, force: bool):
model_obj = model_store.get(model_tag)
if not model_obj:
raise click.ClickException(f"Model {model_tag} not found in local store")
yatai_client.push_model(model_obj, force=force)
|
import os
import logging
from typing import List
from typing import Optional
from pathlib import Path
import attr
import yaml
import cattr
from bentoml.exceptions import YataiRESTApiClientError
from .yatai import YataiRESTApiClient
from ..configuration.containers import BENTOML_HOME
logger = logging.getLogger(__name__)
default_context_name = "default"
def get_config_path() -> Path:
return Path(BENTOML_HOME) / ".yatai.yaml"
@attr.define
class YataiClientContext:
name: str
endpoint: str
api_token: str
email: Optional[str] = attr.field(default=None)
def get_yatai_rest_api_client(self) -> YataiRESTApiClient:
return YataiRESTApiClient(self.endpoint, self.api_token)
def get_email(self) -> str:
if not self.email:
cli = self.get_yatai_rest_api_client()
user = cli.get_current_user()
if user is None:
raise YataiRESTApiClientError(
"Unable to get current user from yatai server"
)
self.email = user.email
add_context(self, ignore_warning=True)
return self.email
@attr.define
class YataiClientConfig:
contexts: List[YataiClientContext] = attr.field(factory=list)
current_context_name: str = attr.field(default=default_context_name)
def get_current_context(self) -> YataiClientContext:
for ctx in self.contexts:
if ctx.name == self.current_context_name:
return ctx
raise YataiRESTApiClientError(
f"Not found {self.current_context_name} yatai context, please login!"
)
_config: YataiClientConfig = YataiClientConfig()
def store_config(config: YataiClientConfig) -> None:
with open(get_config_path(), "w") as f:
dct = cattr.unstructure(config)
yaml.dump(dct, stream=f)
def init_config() -> YataiClientConfig:
config = YataiClientConfig(contexts=[], current_context_name=default_context_name)
store_config(config)
return config
def get_config() -> YataiClientConfig:
if not os.path.exists(get_config_path()):
return init_config()
with open(get_config_path(), "r") as f:
dct = yaml.safe_load(f)
if not dct:
return init_config()
return cattr.structure(dct, YataiClientConfig)
def add_context(context: YataiClientContext, *, ignore_warning: bool = False) -> None:
config = get_config()
for idx, ctx in enumerate(config.contexts):
if ctx.name == context.name:
if not ignore_warning:
logger.warning("Overriding existing Yatai context config: %s", ctx.name)
config.contexts[idx] = context
break
else:
config.contexts.append(context)
store_config(config)
def get_current_context() -> YataiClientContext:
config = get_config()
return config.get_current_context()
def get_current_yatai_rest_api_client() -> YataiRESTApiClient:
ctx = get_current_context()
return ctx.get_yatai_rest_api_client()
|
import json
from enum import Enum
from typing import Any
from typing import Dict
from typing import List
from typing import Type
from typing import TypeVar
from typing import Optional
from datetime import datetime
import attr
import cattr
from dateutil.parser import parse
time_format = "%Y-%m-%d %H:%M:%S.%f"
def datetime_encoder(time_obj: Optional[datetime]) -> Optional[str]:
if not time_obj:
return None
return time_obj.strftime(time_format)
def datetime_decoder(datetime_str: Optional[str], _) -> Optional[datetime]:
if not datetime_str:
return None
return parse(datetime_str)
converter = cattr.Converter()
converter.register_unstructure_hook(datetime, datetime_encoder)
converter.register_structure_hook(datetime, datetime_decoder)
T = TypeVar("T")
def schema_from_json(json_content: str, cls: Type[T]) -> T:
dct = json.loads(json_content)
return converter.structure(dct, cls)
def schema_to_json(obj: T) -> str:
res = converter.unstructure(obj, obj.__class__)
return json.dumps(res)
@attr.define
class BaseSchema:
uid: str
created_at: datetime
updated_at: Optional[datetime]
deleted_at: Optional[datetime]
@attr.define
class BaseListSchema:
start: int
count: int
total: int
class ResourceType(Enum):
USER = "user"
ORG = "organization"
CLUSTER = "cluster"
BENTO_REPOSITORY = "bento_repository"
BENTO = "bento"
MODEL_REPOSITORY = "model_repository"
MODEL = "model"
@attr.define
class ResourceSchema(BaseSchema):
name: str
resource_type: ResourceType
@attr.define
class LabelItemSchema:
key: str
value: str
@attr.define
class UserSchema:
name: str
email: str
first_name: str
last_name: str
def get_name(self) -> str:
if not self.first_name and not self.last_name:
return self.name
return f"{self.first_name} {self.last_name}".strip()
@attr.define
class OrganizationSchema(ResourceSchema):
description: str
@attr.define
class OrganizationListSchema(BaseListSchema):
items: List[OrganizationSchema]
@attr.define
class ClusterSchema(ResourceSchema):
description: str
@attr.define
class CreateBentoRepositorySchema:
name: str
description: str
class BentoImageBuildStatus(Enum):
PENDING = "pending"
BUILDING = "building"
SUCCESS = "success"
FAILED = "failed"
class BentoUploadStatus(Enum):
PENDING = "pending"
BUILDING = "uploading"
SUCCESS = "success"
FAILED = "failed"
@attr.define
class BentoApiSchema:
route: str
doc: str
input: str
output: str
@attr.define
class BentoRunnerResourceSchema:
cpu: Optional[float]
nvidia_gpu: Optional[float]
custom_resources: Dict[str, float]
@attr.define
class BentoRunnerSchema:
name: str
runnable_type: Optional[str]
models: Optional[List[str]]
resource_config: Optional[BentoRunnerResourceSchema]
@attr.define
class BentoManifestSchema:
service: str
bentoml_version: str
size_bytes: int
apis: Dict[str, BentoApiSchema] = attr.field(factory=dict)
models: List[str] = attr.field(factory=list)
runners: Optional[List[BentoRunnerSchema]] = attr.field(factory=list)
@attr.define
class BentoSchema(ResourceSchema):
description: str
version: str
image_build_status: BentoImageBuildStatus
upload_status: BentoUploadStatus
upload_finished_reason: str
presigned_upload_url: str
presigned_download_url: str
manifest: BentoManifestSchema
upload_started_at: Optional[datetime] = attr.field(default=None)
upload_finished_at: Optional[datetime] = attr.field(default=None)
build_at: datetime = attr.field(factory=datetime.now)
@attr.define
class BentoRepositorySchema(ResourceSchema):
description: str
latest_bento: Optional[BentoSchema]
@attr.define
class CreateBentoSchema:
description: str
version: str
manifest: BentoManifestSchema
build_at: datetime = attr.field(factory=datetime.now)
labels: List[LabelItemSchema] = attr.field(factory=list)
@attr.define
class UpdateBentoSchema:
manifest: Optional[BentoManifestSchema] = attr.field(default=None)
labels: Optional[List[LabelItemSchema]] = attr.field(default=None)
@attr.define
class FinishUploadBentoSchema:
status: Optional[BentoUploadStatus]
reason: Optional[str]
@attr.define
class CreateModelRepositorySchema:
name: str
description: str
class ModelImageBuildStatus(Enum):
PENDING = "pending"
BUILDING = "building"
SUCCESS = "success"
FAILED = "failed"
class ModelUploadStatus(Enum):
PENDING = "pending"
BUILDING = "uploading"
SUCCESS = "success"
FAILED = "failed"
@attr.define
class ModelManifestSchema:
module: str
api_version: str
bentoml_version: str
size_bytes: int
metadata: Dict[str, Any] = attr.field(factory=dict)
context: Dict[str, Any] = attr.field(factory=dict)
options: Dict[str, Any] = attr.field(factory=dict)
@attr.define
class ModelSchema(ResourceSchema):
description: str
version: str
image_build_status: ModelImageBuildStatus
upload_status: ModelUploadStatus
upload_finished_reason: str
presigned_upload_url: str
presigned_download_url: str
manifest: ModelManifestSchema
upload_started_at: Optional[datetime] = attr.field(default=None)
upload_finished_at: Optional[datetime] = attr.field(default=None)
build_at: datetime = attr.field(factory=datetime.now)
@attr.define
class ModelRepositorySchema(ResourceSchema):
description: str
latest_model: Optional[ModelSchema]
@attr.define
class CreateModelSchema:
description: str
version: str
manifest: ModelManifestSchema
build_at: datetime = attr.field(factory=datetime.now)
labels: List[LabelItemSchema] = attr.field(factory=list)
@attr.define
class FinishUploadModelSchema:
status: Optional[ModelUploadStatus]
reason: Optional[str]
|
import logging
from typing import Optional
from urllib.parse import urljoin
import requests
from .schemas import UserSchema
from .schemas import BentoSchema
from .schemas import ModelSchema
from .schemas import schema_to_json
from .schemas import schema_from_json
from .schemas import CreateBentoSchema
from .schemas import CreateModelSchema
from .schemas import UpdateBentoSchema
from .schemas import OrganizationSchema
from .schemas import BentoRepositorySchema
from .schemas import ModelRepositorySchema
from .schemas import FinishUploadBentoSchema
from .schemas import FinishUploadModelSchema
from .schemas import CreateBentoRepositorySchema
from .schemas import CreateModelRepositorySchema
from ...exceptions import YataiRESTApiClientError
logger = logging.getLogger(__name__)
class YataiRESTApiClient:
def __init__(self, endpoint: str, api_token: str) -> None:
self.endpoint = endpoint
self.session = requests.Session()
self.session.headers.update(
{
"X-YATAI-API-TOKEN": api_token,
"Content-Type": "application/json",
}
)
def _is_not_found(self, resp: requests.Response) -> bool:
# Forgive me, I don't know how to map the error returned by gorm to juju/errors
return resp.status_code == 400 and "record not found" in resp.text
def _check_resp(self, resp: requests.Response) -> None:
if resp.status_code != 200:
raise YataiRESTApiClientError(
f"request failed with status code {resp.status_code}: {resp.text}"
)
def get_current_user(self) -> Optional[UserSchema]:
url = urljoin(self.endpoint, "/api/v1/auth/current")
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, UserSchema)
def get_current_organization(self) -> Optional[OrganizationSchema]:
url = urljoin(self.endpoint, "/api/v1/current_org")
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, OrganizationSchema)
def get_bento_repository(
self, bento_repository_name: str
) -> Optional[BentoRepositorySchema]:
url = urljoin(
self.endpoint, f"/api/v1/bento_repositories/{bento_repository_name}"
)
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, BentoRepositorySchema)
def create_bento_repository(
self, req: CreateBentoRepositorySchema
) -> BentoRepositorySchema:
url = urljoin(self.endpoint, "/api/v1/bento_repositories")
resp = self.session.post(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, BentoRepositorySchema)
def get_bento(
self, bento_repository_name: str, version: str
) -> Optional[BentoSchema]:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}",
)
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def create_bento(
self, bento_repository_name: str, req: CreateBentoSchema
) -> BentoSchema:
url = urljoin(
self.endpoint, f"/api/v1/bento_repositories/{bento_repository_name}/bentos"
)
resp = self.session.post(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def update_bento(
self, bento_repository_name: str, version: str, req: UpdateBentoSchema
) -> BentoSchema:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}",
)
resp = self.session.patch(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def presign_bento_upload_url(
self, bento_repository_name: str, version: str
) -> BentoSchema:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}/presign_upload_url",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def presign_bento_download_url(
self, bento_repository_name: str, version: str
) -> BentoSchema:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}/presign_download_url",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def start_upload_bento(
self, bento_repository_name: str, version: str
) -> BentoSchema:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}/start_upload",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def finish_upload_bento(
self, bento_repository_name: str, version: str, req: FinishUploadBentoSchema
) -> BentoSchema:
url = urljoin(
self.endpoint,
f"/api/v1/bento_repositories/{bento_repository_name}/bentos/{version}/finish_upload",
)
resp = self.session.patch(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, BentoSchema)
def get_model_repository(
self, model_repository_name: str
) -> Optional[ModelRepositorySchema]:
url = urljoin(
self.endpoint, f"/api/v1/model_repositories/{model_repository_name}"
)
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, ModelRepositorySchema)
def create_model_repository(
self, req: CreateModelRepositorySchema
) -> ModelRepositorySchema:
url = urljoin(self.endpoint, "/api/v1/model_repositories")
resp = self.session.post(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, ModelRepositorySchema)
def get_model(
self, model_repository_name: str, version: str
) -> Optional[ModelSchema]:
url = urljoin(
self.endpoint,
f"/api/v1/model_repositories/{model_repository_name}/models/{version}",
)
resp = self.session.get(url)
if self._is_not_found(resp):
return None
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
def create_model(
self, model_repository_name: str, req: CreateModelSchema
) -> ModelSchema:
url = urljoin(
self.endpoint, f"/api/v1/model_repositories/{model_repository_name}/models"
)
resp = self.session.post(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
def presign_model_upload_url(
self, model_repository_name: str, version: str
) -> ModelSchema:
url = urljoin(
self.endpoint,
f"/api/v1/model_repositories/{model_repository_name}/models/{version}/presign_upload_url",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
def presign_model_download_url(
self, model_repository_name: str, version: str
) -> ModelSchema:
url = urljoin(
self.endpoint,
f"/api/v1/model_repositories/{model_repository_name}/models/{version}/presign_download_url",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
def start_upload_model(
self, model_repository_name: str, version: str
) -> ModelSchema:
url = urljoin(
self.endpoint,
f"/api/v1/model_repositories/{model_repository_name}/models/{version}/start_upload",
)
resp = self.session.patch(url)
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
def finish_upload_model(
self, model_repository_name: str, version: str, req: FinishUploadModelSchema
) -> ModelSchema:
url = urljoin(
self.endpoint,
f"/api/v1/model_repositories/{model_repository_name}/models/{version}/finish_upload",
)
resp = self.session.patch(url, data=schema_to_json(req))
self._check_resp(resp)
return schema_from_json(resp.text, ModelSchema)
|
import io
import typing as t
import tarfile
from pathlib import Path
from tempfile import NamedTemporaryFile
from functools import wraps
from contextlib import contextmanager
from concurrent.futures import ThreadPoolExecutor
import fs
import requests
from rich.live import Live
from simple_di import inject
from simple_di import Provide
from rich.panel import Panel
from rich.console import Group
from rich.console import ConsoleRenderable
from rich.progress import TaskID
from rich.progress import Progress
from rich.progress import BarColumn
from rich.progress import TextColumn
from rich.progress import SpinnerColumn
from rich.progress import DownloadColumn
from rich.progress import TimeElapsedColumn
from rich.progress import TimeRemainingColumn
from rich.progress import TransferSpeedColumn
from ..tag import Tag
from ..bento import Bento
from ..bento import BentoStore
from ..utils import calc_dir_size
from ..models import Model
from ..models import copy_model
from ..models import ModelStore
from ...exceptions import NotFound
from ...exceptions import BentoMLException
from ..configuration.containers import BentoMLContainer
from ..yatai_rest_api_client.config import get_current_yatai_rest_api_client
from ..yatai_rest_api_client.schemas import BentoApiSchema
from ..yatai_rest_api_client.schemas import LabelItemSchema
from ..yatai_rest_api_client.schemas import BentoRunnerSchema
from ..yatai_rest_api_client.schemas import BentoUploadStatus
from ..yatai_rest_api_client.schemas import CreateBentoSchema
from ..yatai_rest_api_client.schemas import CreateModelSchema
from ..yatai_rest_api_client.schemas import ModelUploadStatus
from ..yatai_rest_api_client.schemas import UpdateBentoSchema
from ..yatai_rest_api_client.schemas import BentoManifestSchema
from ..yatai_rest_api_client.schemas import ModelManifestSchema
from ..yatai_rest_api_client.schemas import FinishUploadBentoSchema
from ..yatai_rest_api_client.schemas import FinishUploadModelSchema
from ..yatai_rest_api_client.schemas import BentoRunnerResourceSchema
from ..yatai_rest_api_client.schemas import CreateBentoRepositorySchema
from ..yatai_rest_api_client.schemas import CreateModelRepositorySchema
class ObjectWrapper(object):
def __getattr__(self, name: str) -> t.Any:
return getattr(self._wrapped, name)
def __setattr__(self, name: str, value: t.Any) -> None:
return setattr(self._wrapped, name, value)
def wrapper_getattr(self, name: str):
"""Actual `self.getattr` rather than self._wrapped.getattr"""
return getattr(self, name)
def wrapper_setattr(self, name: str, value: t.Any) -> None:
"""Actual `self.setattr` rather than self._wrapped.setattr"""
return object.__setattr__(self, name, value)
def __init__(self, wrapped: t.Any):
"""
Thin wrapper around a given object
"""
self.wrapper_setattr("_wrapped", wrapped)
class _CallbackIOWrapper(ObjectWrapper):
def __init__(
self,
callback: t.Callable[[int], None],
stream: t.BinaryIO,
method: "t.Literal['read', 'write']" = "read",
):
"""
Wrap a given `file`-like object's `read()` or `write()` to report
lengths to the given `callback`
"""
super().__init__(stream)
func = getattr(stream, method)
if method == "write":
@wraps(func)
def write(data: t.Union[bytes, bytearray], *args: t.Any, **kwargs: t.Any):
res = func(data, *args, **kwargs)
callback(len(data))
return res
self.wrapper_setattr("write", write)
elif method == "read":
@wraps(func)
def read(*args: t.Any, **kwargs: t.Any):
data = func(*args, **kwargs)
callback(len(data))
return data
self.wrapper_setattr("read", read)
else:
raise KeyError("Can only wrap read/write methods")
# Just make type checker happy
class BinaryIOCast(io.BytesIO):
def __init__( # pylint: disable=useless-super-delegation
self, *args: t.Any, **kwargs: t.Any
) -> None:
super().__init__(*args, **kwargs)
CallbackIOWrapper: t.Type[BinaryIOCast] = t.cast(
t.Type[BinaryIOCast], _CallbackIOWrapper
)
# Just make type checker happy
class ProgressCast(Progress):
def __init__(self, *args: t.Any, **kwargs: t.Any) -> None:
super().__init__(*args, **kwargs)
def __rich__(self) -> t.Union[ConsoleRenderable, str]: # pragma: no cover
...
ProgressWrapper: t.Type[ProgressCast] = t.cast(t.Type[ProgressCast], ObjectWrapper)
class YataiClient:
log_progress = ProgressWrapper(
Progress(
TextColumn("{task.description}"),
)
)
spinner_progress = ProgressWrapper(
Progress(
TextColumn(" "),
TimeElapsedColumn(),
TextColumn("[bold purple]{task.fields[action]}"),
SpinnerColumn("simpleDots"),
)
)
transmission_progress = ProgressWrapper(
Progress(
TextColumn("[bold blue]{task.description}", justify="right"),
BarColumn(bar_width=None),
"[progress.percentage]{task.percentage:>3.1f}%",
"•",
DownloadColumn(),
"•",
TransferSpeedColumn(),
"•",
TimeRemainingColumn(),
)
)
progress_group = Group(
Panel(Group(log_progress, spinner_progress)), transmission_progress
)
@contextmanager
def spin(self, *, text: str):
task_id = self.spinner_progress.add_task("", action=text)
try:
yield
finally:
self.spinner_progress.stop_task(task_id)
self.spinner_progress.update(task_id, visible=False)
@inject
def push_bento(
self,
bento: "Bento",
*,
force: bool = False,
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
):
with Live(self.progress_group):
upload_task_id = self.transmission_progress.add_task(
f'Pushing Bento "{bento.tag}"', start=False, visible=False
)
self._do_push_bento(
bento, upload_task_id, force=force, model_store=model_store
)
@inject
def _do_push_bento(
self,
bento: "Bento",
upload_task_id: TaskID,
*,
force: bool = False,
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
):
yatai_rest_client = get_current_yatai_rest_api_client()
name = bento.tag.name
version = bento.tag.version
if version is None:
raise BentoMLException(f"Bento {bento.tag} version cannot be None")
info = bento.info
model_tags = [m.tag for m in info.models]
with ThreadPoolExecutor(max_workers=max(len(model_tags), 1)) as executor:
def push_model(model: "Model"):
model_upload_task_id = self.transmission_progress.add_task(
f'Pushing model "{model.tag}"', start=False, visible=False
)
self._do_push_model(model, model_upload_task_id, force=force)
futures = executor.map(
push_model, (model_store.get(name) for name in model_tags)
)
list(futures)
with self.spin(text=f'Fetching Bento repository "{name}"'):
bento_repository = yatai_rest_client.get_bento_repository(
bento_repository_name=name
)
if not bento_repository:
with self.spin(text=f'Bento repository "{name}" not found, creating now..'):
bento_repository = yatai_rest_client.create_bento_repository(
req=CreateBentoRepositorySchema(name=name, description="")
)
with self.spin(text=f'Try fetching Bento "{bento.tag}" from Yatai..'):
remote_bento = yatai_rest_client.get_bento(
bento_repository_name=name, version=version
)
if (
not force
and remote_bento
and remote_bento.upload_status == BentoUploadStatus.SUCCESS
):
self.log_progress.add_task(
f'[bold blue]Push failed: Bento "{bento.tag}" already exists in Yatai'
)
return
labels: t.List[LabelItemSchema] = [
LabelItemSchema(key=key, value=value) for key, value in info.labels.items()
]
apis: t.Dict[str, BentoApiSchema] = {}
models = [str(m.tag) for m in info.models]
runners = [
BentoRunnerSchema(
name=r.name,
runnable_type=r.runnable_type,
models=r.models,
resource_config=BentoRunnerResourceSchema(
cpu=r.resource_config.cpu,
nvidia_gpu=r.resource_config.nvidia_gpu,
custom_resources=r.resource_config.custom_resources,
)
if r.resource_config
else None,
)
for r in info.runners
]
manifest = BentoManifestSchema(
service=info.service,
bentoml_version=info.bentoml_version,
apis=apis,
models=models,
runners=runners,
size_bytes=calc_dir_size(bento.path),
)
if not remote_bento:
with self.spin(text=f'Registering Bento "{bento.tag}" with Yatai..'):
yatai_rest_client.create_bento(
bento_repository_name=bento_repository.name,
req=CreateBentoSchema(
description="",
version=version,
build_at=info.creation_time,
manifest=manifest,
labels=labels,
),
)
else:
with self.spin(text=f'Updating Bento "{bento.tag}"..'):
yatai_rest_client.update_bento(
bento_repository_name=bento_repository.name,
version=version,
req=UpdateBentoSchema(
manifest=manifest,
labels=labels,
),
)
with self.spin(text=f'Getting a presigned upload url for "{bento.tag}" ..'):
remote_bento = yatai_rest_client.presign_bento_upload_url(
bento_repository_name=bento_repository.name, version=version
)
with io.BytesIO() as tar_io:
bento_dir_path = bento.path
if bento_dir_path is None:
raise BentoMLException(f'Bento "{bento}" path cannot be None')
with self.spin(text=f'Creating tar archive for Bento "{bento.tag}"..'):
with tarfile.open(fileobj=tar_io, mode="w:gz") as tar:
def filter_(
tar_info: tarfile.TarInfo,
) -> t.Optional[tarfile.TarInfo]:
if tar_info.path == "./models" or tar_info.path.startswith(
"./models/"
):
return None
return tar_info
tar.add(bento_dir_path, arcname="./", filter=filter_)
tar_io.seek(0, 0)
with self.spin(text=f'Start uploading Bento "{bento.tag}"..'):
yatai_rest_client.start_upload_bento(
bento_repository_name=bento_repository.name, version=version
)
file_size = tar_io.getbuffer().nbytes
self.transmission_progress.update(
upload_task_id, completed=0, total=file_size, visible=True
)
self.transmission_progress.start_task(upload_task_id)
def io_cb(x: int):
self.transmission_progress.update(upload_task_id, advance=x)
wrapped_file = CallbackIOWrapper(
io_cb,
tar_io,
"read",
)
finish_req = FinishUploadBentoSchema(
status=BentoUploadStatus.SUCCESS,
reason="",
)
try:
resp = requests.put(
remote_bento.presigned_upload_url, data=wrapped_file
)
if resp.status_code != 200:
finish_req = FinishUploadBentoSchema(
status=BentoUploadStatus.FAILED,
reason=resp.text,
)
except Exception as e: # pylint: disable=broad-except
finish_req = FinishUploadBentoSchema(
status=BentoUploadStatus.FAILED,
reason=str(e),
)
if finish_req.status is BentoUploadStatus.FAILED:
self.log_progress.add_task(
f'[bold red]Failed to upload Bento "{bento.tag}"'
)
with self.spin(text="Submitting upload status to Yatai"):
yatai_rest_client.finish_upload_bento(
bento_repository_name=bento_repository.name,
version=version,
req=finish_req,
)
if finish_req.status != BentoUploadStatus.SUCCESS:
self.log_progress.add_task(
f'[bold red]Failed pushing Bento "{bento.tag}": {finish_req.reason}'
)
else:
self.log_progress.add_task(
f'[bold green]Successfully pushed Bento "{bento.tag}"'
)
@inject
def pull_bento(
self,
tag: t.Union[str, Tag],
*,
force: bool = False,
bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Bento":
with Live(self.progress_group):
download_task_id = self.transmission_progress.add_task(
f'Pulling bento "{tag}"', start=False, visible=False
)
return self._do_pull_bento(
tag,
download_task_id,
force=force,
bento_store=bento_store,
model_store=model_store,
)
@inject
def _do_pull_bento(
self,
tag: t.Union[str, Tag],
download_task_id: TaskID,
*,
force: bool = False,
bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Bento":
try:
bento = bento_store.get(tag)
if not force:
self.log_progress.add_task(
f'[bold blue]Bento "{tag}" exists in local model store'
)
return bento
bento_store.delete(tag)
except NotFound:
pass
_tag = Tag.from_taglike(tag)
name = _tag.name
version = _tag.version
if version is None:
raise BentoMLException(f'Bento "{_tag}" version can not be None')
yatai_rest_client = get_current_yatai_rest_api_client()
with self.spin(text=f'Fetching bento "{_tag}"'):
remote_bento = yatai_rest_client.get_bento(
bento_repository_name=name, version=version
)
if not remote_bento:
raise BentoMLException(f'Bento "{_tag}" not found on Yatai')
with ThreadPoolExecutor(
max_workers=max(len(remote_bento.manifest.models), 1)
) as executor:
def pull_model(model_tag: Tag):
model_download_task_id = self.transmission_progress.add_task(
f'Pulling model "{model_tag}"', start=False, visible=False
)
self._do_pull_model(
model_tag,
model_download_task_id,
force=force,
model_store=model_store,
)
futures = executor.map(pull_model, remote_bento.manifest.models)
list(futures)
with self.spin(text=f'Getting a presigned download url for bento "{_tag}"'):
remote_bento = yatai_rest_client.presign_bento_download_url(name, version)
url = remote_bento.presigned_download_url
response = requests.get(url, stream=True)
if response.status_code != 200:
raise BentoMLException(
f'Failed to download bento "{_tag}": {response.text}'
)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
with NamedTemporaryFile() as tar_file:
self.transmission_progress.update(
download_task_id, completed=0, total=total_size_in_bytes, visible=True
)
self.transmission_progress.start_task(download_task_id)
for data in response.iter_content(block_size):
self.transmission_progress.update(download_task_id, advance=len(data))
tar_file.write(data)
self.log_progress.add_task(
f'[bold green]Finished downloading all bento "{_tag}" files'
)
tar_file.seek(0, 0)
tar = tarfile.open(fileobj=tar_file, mode="r:gz")
with fs.open_fs("temp://") as temp_fs:
for member in tar.getmembers():
f = tar.extractfile(member)
if f is None:
continue
p = Path(member.name)
if p.parent != Path("."):
temp_fs.makedirs(str(p.parent), recreate=True)
temp_fs.writebytes(member.name, f.read())
bento = Bento.from_fs(temp_fs)
for model_tag in remote_bento.manifest.models:
with self.spin(text=f'Copying model "{model_tag}" to bento'):
copy_model(
model_tag,
src_model_store=model_store,
target_model_store=bento._model_store, # type: ignore
)
bento = bento.save(bento_store)
self.log_progress.add_task(
f'[bold green]Successfully pulled bento "{_tag}"'
)
return bento
def push_model(self, model: "Model", *, force: bool = False):
with Live(self.progress_group):
upload_task_id = self.transmission_progress.add_task(
f'Pushing model "{model.tag}"', start=False, visible=False
)
self._do_push_model(model, upload_task_id, force=force)
def _do_push_model(
self, model: "Model", upload_task_id: TaskID, *, force: bool = False
):
yatai_rest_client = get_current_yatai_rest_api_client()
name = model.tag.name
version = model.tag.version
if version is None:
raise BentoMLException(f'Model "{model.tag}" version cannot be None')
info = model.info
with self.spin(text=f'Fetching model repository "{name}"'):
model_repository = yatai_rest_client.get_model_repository(
model_repository_name=name
)
if not model_repository:
with self.spin(text=f'Model repository "{name}" not found, creating now..'):
model_repository = yatai_rest_client.create_model_repository(
req=CreateModelRepositorySchema(name=name, description="")
)
with self.spin(text=f'Try fetching model "{model.tag}" from Yatai..'):
remote_model = yatai_rest_client.get_model(
model_repository_name=name, version=version
)
if (
not force
and remote_model
and remote_model.upload_status == ModelUploadStatus.SUCCESS
):
self.log_progress.add_task(
f'[bold blue]Model "{model.tag}" already exists in Yatai, skipping'
)
return
if not remote_model:
labels: t.List[LabelItemSchema] = [
LabelItemSchema(key=key, value=value)
for key, value in info.labels.items()
]
with self.spin(text=f'Registering model "{model.tag}" with Yatai..'):
yatai_rest_client.create_model(
model_repository_name=model_repository.name,
req=CreateModelSchema(
description="",
version=version,
build_at=info.creation_time,
manifest=ModelManifestSchema(
module=info.module,
metadata=info.metadata,
context=info.context.to_dict(),
options=info.options.to_dict(),
api_version=info.api_version,
bentoml_version=info.context.bentoml_version,
size_bytes=calc_dir_size(model.path),
),
labels=labels,
),
)
with self.spin(
text=f'Getting a presigned upload url for model "{model.tag}"..'
):
remote_model = yatai_rest_client.presign_model_upload_url(
model_repository_name=model_repository.name, version=version
)
with io.BytesIO() as tar_io:
bento_dir_path = model.path
with self.spin(text=f'Creating tar archive for model "{model.tag}"..'):
with tarfile.open(fileobj=tar_io, mode="w:gz") as tar:
tar.add(bento_dir_path, arcname="./")
tar_io.seek(0, 0)
with self.spin(text=f'Start uploading model "{model.tag}"..'):
yatai_rest_client.start_upload_model(
model_repository_name=model_repository.name, version=version
)
file_size = tar_io.getbuffer().nbytes
self.transmission_progress.update(
upload_task_id,
description=f'Uploading model "{model.tag}"',
total=file_size,
visible=True,
)
self.transmission_progress.start_task(upload_task_id)
def io_cb(x: int):
self.transmission_progress.update(upload_task_id, advance=x)
wrapped_file = CallbackIOWrapper(
io_cb,
tar_io,
"read",
)
finish_req = FinishUploadModelSchema(
status=ModelUploadStatus.SUCCESS,
reason="",
)
try:
resp = requests.put(
remote_model.presigned_upload_url, data=wrapped_file
)
if resp.status_code != 200:
finish_req = FinishUploadModelSchema(
status=ModelUploadStatus.FAILED,
reason=resp.text,
)
except Exception as e: # pylint: disable=broad-except
finish_req = FinishUploadModelSchema(
status=ModelUploadStatus.FAILED,
reason=str(e),
)
if finish_req.status is ModelUploadStatus.FAILED:
self.log_progress.add_task(
f'[bold red]Failed to upload model "{model.tag}"'
)
with self.spin(text="Submitting upload status to Yatai"):
yatai_rest_client.finish_upload_model(
model_repository_name=model_repository.name,
version=version,
req=finish_req,
)
if finish_req.status != ModelUploadStatus.SUCCESS:
self.log_progress.add_task(
f'[bold red]Failed pushing model "{model.tag}" : {finish_req.reason}'
)
else:
self.log_progress.add_task(
f'[bold green]Successfully pushed model "{model.tag}"'
)
@inject
def pull_model(
self,
tag: t.Union[str, Tag],
*,
force: bool = False,
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Model":
with Live(self.progress_group):
download_task_id = self.transmission_progress.add_task(
f'Pulling model "{tag}"', start=False, visible=False
)
return self._do_pull_model(
tag, download_task_id, force=force, model_store=model_store
)
@inject
def _do_pull_model(
self,
tag: t.Union[str, Tag],
download_task_id: TaskID,
*,
force: bool = False,
model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Model":
try:
model = model_store.get(tag)
if not force:
self.log_progress.add_task(
f'[bold blue]Model "{tag}" already exists locally, skipping'
)
return model
else:
model_store.delete(tag)
except NotFound:
pass
yatai_rest_client = get_current_yatai_rest_api_client()
_tag = Tag.from_taglike(tag)
name = _tag.name
version = _tag.version
if version is None:
raise BentoMLException(f'Model "{_tag}" version cannot be None')
with self.spin(text=f'Getting a presigned download url for model "{_tag}"..'):
remote_model = yatai_rest_client.presign_model_download_url(name, version)
if not remote_model:
raise BentoMLException(f'Model "{_tag}" not found on Yatai')
url = remote_model.presigned_download_url
response = requests.get(url, stream=True)
if response.status_code != 200:
raise BentoMLException(
f'Failed to download model "{_tag}": {response.text}'
)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024 # 1 Kibibyte
with NamedTemporaryFile() as tar_file:
self.transmission_progress.update(
download_task_id,
description=f'Downloading model "{_tag}"',
total=total_size_in_bytes,
visible=True,
)
self.transmission_progress.start_task(download_task_id)
for data in response.iter_content(block_size):
self.transmission_progress.update(download_task_id, advance=len(data))
tar_file.write(data)
self.log_progress.add_task(
f'[bold green]Finished downloading model "{_tag}" files'
)
tar_file.seek(0, 0)
tar = tarfile.open(fileobj=tar_file, mode="r:gz")
with fs.open_fs("temp://") as temp_fs:
for member in tar.getmembers():
f = tar.extractfile(member)
if f is None:
continue
p = Path(member.name)
if p.parent != Path("."):
temp_fs.makedirs(str(p.parent), recreate=True)
temp_fs.writebytes(member.name, f.read())
model = Model.from_fs(temp_fs).save(model_store)
self.log_progress.add_task(
f'[bold green]Successfully pulled model "{_tag}"'
)
return model
yatai_client = YataiClient()
|
import os
import uuid
import shutil
import logging
import importlib
import importlib.util
from ..configuration import is_pypi_installed_bentoml
from ..utils.tempdir import TempDirectory
logger = logging.getLogger(__name__)
BENTOML_DEV_BUILD = "BENTOML_BUNDLE_LOCAL_BUILD"
def build_bentoml_editable_wheel(target_path: str) -> None:
"""This is for BentoML developers to create Bentos that contains their local bentoml
build base on their development branch. To enable this behavior, the developer must
set env var BENTOML_BUNDLE_LOCAL_BUILD=True before building a Bento.
If bentoml is installed in editor mode(pip install -e), this will build a wheel
distribution with the local bentoml source and add it to saved bento directory
under {bento_path}/env/python/wheels/
"""
if str(os.environ.get(BENTOML_DEV_BUILD, False)).lower() != "true":
return
if is_pypi_installed_bentoml():
# skip this entirely if BentoML is installed from PyPI
return
# Find bentoml module path
(module_location,) = importlib.util.find_spec("bentoml").submodule_search_locations # type: ignore # noqa
bentoml_setup_py = os.path.abspath(os.path.join(module_location, "..", "setup.py")) # type: ignore
# this is for BentoML developer to create Service containing custom development
# branches of BentoML library, it is True only when BentoML module is installed
# in development mode via "pip install --editable ."
if os.path.isfile(bentoml_setup_py):
logger.info(
"BentoML is installed in `editable` mode; building BentoML distribution with the local BentoML code base. The built wheel file will be included in the target bento."
)
# temp dir for creating the distribution
with TempDirectory() as dist_dir:
# Assuming developer has setuptools installed from dev-requirements.txt
from setuptools import sandbox
bdist_dir = os.path.join("build", str(uuid.uuid4())[0:8])
sandbox.run_setup( # type: ignore
bentoml_setup_py,
[
"--quiet",
"bdist_wheel",
"--dist-dir",
dist_dir,
"--bdist-dir",
bdist_dir,
],
)
# copy the built wheel file to target directory
shutil.copytree(dist_dir, target_path) # type: ignore
else:
logger.info(
"Custom BentoML build is detected. For a Bento to use the same build at serving time, add your custom BentoML build to the pip packages list, e.g. `packages=['git+https://github.com/bentoml/bentoml.git@13dfb36']`"
)
|
from __future__ import annotations
import os
import re
import typing as t
import logging
from sys import version_info
from typing import TYPE_CHECKING
import attr
from jinja2 import Environment
from jinja2.loaders import FileSystemLoader
from ..utils import resolve_user_filepath
from .docker import DistroSpec
from ...exceptions import BentoMLException
from ..configuration import BENTOML_VERSION
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
P = t.ParamSpec("P")
from .build_config import DockerOptions
TemplateFunc = t.Callable[[DockerOptions], t.Dict[str, t.Any]]
GenericFunc = t.Callable[P, t.Any]
BENTO_UID_GID = 1034
BENTO_USER = "bentoml"
BENTO_HOME = f"/home/{BENTO_USER}/"
BENTO_PATH = f"{BENTO_HOME}bento"
BLOCKS = {
"SETUP_BENTO_BASE_IMAGE",
"SETUP_BENTO_USER",
"SETUP_BENTO_ENVARS",
"SETUP_BENTO_COMPONENTS",
"SETUP_BENTO_ENTRYPOINT",
}
def clean_bentoml_version(bentoml_version: str) -> str:
post_version = bentoml_version.split("+")[0]
match = re.match(r"^(\d+).(\d+).(\d+)(?:(a|rc)\d)*", post_version)
if match is None:
raise BentoMLException("Errors while parsing BentoML version.")
return match.group()
def expands_bento_path(*path: str, bento_path: str = BENTO_PATH) -> str:
"""
Expand a given paths with respect to :code:`BENTO_PATH`.
Note on using "/": the returned path is meant to be used in the generated Dockerfile.
"""
return "/".join([bento_path, *path])
J2_FUNCTION: dict[str, GenericFunc[t.Any]] = {
"clean_bentoml_version": clean_bentoml_version,
"expands_bento_path": expands_bento_path,
}
@attr.frozen(on_setattr=None, eq=False, repr=False)
class ReservedEnv:
base_image: str
supported_architectures: list[str]
bentoml_version: str = attr.field(
default=BENTOML_VERSION, converter=clean_bentoml_version
)
python_version_full: str = attr.field(
default=f"{version_info.major}.{version_info.minor}.{version_info.micro}"
)
def todict(self):
return {f"__{k}__": v for k, v in attr.asdict(self).items()}
@attr.frozen(on_setattr=None, eq=False, repr=False)
class CustomizableEnv:
uid_gid: int = attr.field(default=BENTO_UID_GID)
user: str = attr.field(default=BENTO_USER)
home: str = attr.field(default=BENTO_HOME)
path: str = attr.field(default=BENTO_PATH)
def todict(self) -> dict[str, str]:
return {f"bento__{k}": v for k, v in attr.asdict(self).items()}
def get_templates_variables(
options: DockerOptions, use_conda: bool
) -> dict[str, t.Any]:
"""
Returns a dictionary of variables to be used in BentoML base templates.
"""
distro = options.distro
cuda_version = options.cuda_version
python_version = options.python_version
if options.base_image is None:
spec = DistroSpec.from_distro(
distro, cuda=cuda_version is not None, conda=use_conda
)
if cuda_version is not None:
base_image = spec.image.format(spec_version=cuda_version)
else:
if distro in ["ubi8"]:
python_version = python_version.replace(".", "")
else:
python_version = python_version
base_image = spec.image.format(spec_version=python_version)
supported_architecture = spec.supported_architectures
else:
base_image = options.base_image
supported_architecture = ["amd64"]
logger.info(
f"BentoML will not install Python to custom base images; ensure the base image '{base_image}' has Python installed."
)
# environment returns are
# __base_image__, __supported_architectures__, __bentoml_version__, __python_version_full__
# bento__uid_gid, bento__user, bento__home, bento__path
# __options__distros, __options__base_image, __options_env, __options_system_packages, __options_setup_script
return {
**{f"__options__{k}": v for k, v in attr.asdict(options).items()},
**CustomizableEnv().todict(),
**ReservedEnv(base_image, supported_architecture).todict(),
}
def generate_dockerfile(
options: DockerOptions, build_ctx: str, *, use_conda: bool
) -> str:
"""
Generate a Dockerfile that containerize a Bento.
Args:
docker_options (:class:`DockerOptions`):
Docker Options class parsed from :code:`bentofile.yaml` or any arbitrary Docker options class.
use_conda (:code:`bool`, `required`):
Whether to use conda in the given Dockerfile.
Returns:
str: The rendered Dockerfile string.
.. dropdown:: Implementation Notes
The coresponding Dockerfile template will be determined automatically based on given :class:`DockerOptions`.
The templates are located `here <https://github.com/bentoml/BentoML/tree/main/bentoml/_internal/bento/docker/templates>`_
As one can see, the Dockerfile templates are organized with the format :code:`<release_type>_<distro>.j2` with:
+---------------+------------------------------------------+
| Release type | Description |
+===============+==========================================+
| base | A base setup for all supported distros. |
+---------------+------------------------------------------+
| cuda | CUDA-supported templates. |
+---------------+------------------------------------------+
| miniconda | Conda-supported templates. |
+---------------+------------------------------------------+
| python | Python releases. |
+---------------+------------------------------------------+
Each of the templates will be validated correctly before being rendered. This will also include the user-defined custom templates
if :code:`dockerfile_template` is specified.
.. code-block:: python
from bentoml._internal.bento.gen import generate_dockerfile
from bentoml._internal.bento.bento import BentoInfo
docker_options = BentoInfo.from_yaml_file("{bento_path}/bento.yaml").docker
docker_options.docker_template = "./override_template.j2"
dockerfile = generate_dockerfile(docker_options, use_conda=False)
"""
distro = options.distro
use_cuda = options.cuda_version is not None
user_templates = options.dockerfile_template
TEMPLATES_PATH = [os.path.join(os.path.dirname(__file__), "docker", "templates")]
ENVIRONMENT = Environment(
extensions=["jinja2.ext.do", "jinja2.ext.loopcontrols", "jinja2.ext.debug"],
trim_blocks=True,
lstrip_blocks=True,
loader=FileSystemLoader(TEMPLATES_PATH, followlinks=True),
)
if options.base_image is not None:
base = "base.j2"
else:
spec = DistroSpec.from_distro(distro, cuda=use_cuda, conda=use_conda)
base = f"{spec.release_type}_{distro}.j2"
template = ENVIRONMENT.get_template(base, globals=J2_FUNCTION)
logger.debug(
f"Using base Dockerfile template: {base}, and their path: {os.path.join(TEMPLATES_PATH[0], base)}"
)
if user_templates is not None:
dir_path = os.path.dirname(resolve_user_filepath(user_templates, build_ctx))
user_templates = os.path.basename(user_templates)
TEMPLATES_PATH.append(dir_path)
new_loader = FileSystemLoader(TEMPLATES_PATH, followlinks=True)
environment = ENVIRONMENT.overlay(loader=new_loader)
template = environment.get_template(
user_templates,
globals={"bento_base_template": template, **J2_FUNCTION},
)
return template.render(**get_templates_variables(options, use_conda=use_conda))
|
from .bento import Bento
from .bento import BentoStore
__all__ = ["Bento", "BentoStore"]
|
from __future__ import annotations
import os
import typing as t
import logging
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
import fs
import attr
import yaml
import fs.osfs
import pathspec
import fs.errors
import fs.mirror
from fs.copy import copy_file
from cattr.gen import override # type: ignore (incomplete cattr types)
from cattr.gen import make_dict_unstructure_fn # type: ignore (incomplete cattr types)
from simple_di import inject
from simple_di import Provide
from ..tag import Tag
from ..store import Store
from ..store import StoreItem
from ..types import PathType
from ..utils import bentoml_cattr
from ..utils import copy_file_to_fs_folder
from ..models import ModelStore
from ..runner import Runner
from ...exceptions import InvalidArgument
from ...exceptions import BentoMLException
from .build_config import CondaOptions
from .build_config import DockerOptions
from .build_config import PythonOptions
from .build_config import BentoBuildConfig
from ..configuration import BENTOML_VERSION
from ..runner.resource import Resource
from ..configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from fs.base import FS
from ..models import Model
from ..service import Service
from ..service.inference_api import InferenceAPI
logger = logging.getLogger(__name__)
BENTO_YAML_FILENAME = "bento.yaml"
BENTO_PROJECT_DIR_NAME = "src"
BENTO_README_FILENAME = "README.md"
DEFAULT_BENTO_BUILD_FILE = "bentofile.yaml"
def get_default_bento_readme(svc: "Service"):
doc = f'# BentoML Service "{svc.name}"\n\n'
doc += "This is a Machine Learning Service created with BentoML. \n\n"
if svc.apis:
doc += "## Inference APIs:\n\nIt contains the following inference APIs:\n\n"
for api in svc.apis.values():
doc += f"### /{api.name}\n\n"
doc += f"* Input: {api.input.__class__.__name__}\n"
doc += f"* Output: {api.output.__class__.__name__}\n\n"
doc += """
## Customize This Message
This is the default generated `bentoml.Service` doc. You may customize it in your Bento
build file, e.g.:
```yaml
service: "image_classifier.py:svc"
description: "file: ./readme.md"
labels:
foo: bar
team: abc
docker:
distro: debian
gpu: True
python:
packages:
- tensorflow
- numpy
```
"""
# TODO: add links to documentation that may help with API client development
return doc
@attr.define(repr=False, auto_attribs=False)
class Bento(StoreItem):
_tag: Tag = attr.field()
__fs: "FS" = attr.field()
_info: "BentoInfo"
_model_store: ModelStore
_doc: t.Optional[str] = None
@staticmethod
def _export_ext() -> str:
return "bento"
@__fs.validator # type:ignore # attrs validators not supported by pyright
def check_fs(self, _attr: t.Any, new_fs: "FS"):
try:
new_fs.makedir("models", recreate=True)
except fs.errors.ResourceReadOnly:
# when we import a tarfile, it will be read-only, so just skip the step where we create
# the models folder.
pass
self._model_store = ModelStore(new_fs.opendir("models"))
def __init__(self, tag: Tag, bento_fs: "FS", info: "BentoInfo"):
self._tag = tag
self.__fs = bento_fs
self.check_fs(None, bento_fs)
self._info = info
self.validate()
@property
def tag(self) -> Tag:
return self._tag
@property
def _fs(self) -> "FS":
return self.__fs
@property
def info(self) -> "BentoInfo":
return self._info
@classmethod
@inject
def create(
cls,
build_config: BentoBuildConfig,
version: t.Optional[str] = None,
build_ctx: t.Optional[str] = None,
) -> Bento:
from ..service.loader import import_service
build_ctx = (
os.getcwd()
if build_ctx is None
else os.path.realpath(os.path.expanduser(build_ctx))
)
assert os.path.isdir(build_ctx), f"build ctx {build_ctx} does not exist"
# This also verifies that svc can be imported correctly
svc = import_service(
build_config.service, working_dir=build_ctx, change_global_cwd=True
)
# Apply default build options
build_config = build_config.with_defaults()
tag = Tag(svc.name, version)
if version is None:
tag = tag.make_new_version()
logger.info(
f'Building BentoML service "{tag}" from build context "{build_ctx}"'
)
bento_fs = fs.open_fs(f"temp://bentoml_bento_{svc.name}")
ctx_fs = fs.open_fs(build_ctx)
models: t.Set[Model] = set()
# Add all models required by the service
for model in svc.models:
models.add(model)
# Add all models required by service runners
for runner in svc.runners:
for model in runner.models:
models.add(model)
bento_fs.makedir("models", recreate=True)
bento_model_store = ModelStore(bento_fs.opendir("models"))
for model in models:
logger.info(f'Packing model "{model.tag}"')
model._save(bento_model_store) # type: ignore[reportPrivateUsage]
# Copy all files base on include and exclude, into `src` directory
relpaths = [s for s in build_config.include if s.startswith("../")]
if len(relpaths) != 0:
raise InvalidArgument(
"Paths outside of the build context directory cannot be included; use a symlink or copy those files into the working directory manually."
)
spec = pathspec.PathSpec.from_lines("gitwildmatch", build_config.include)
exclude_spec = pathspec.PathSpec.from_lines(
"gitwildmatch", build_config.exclude
)
exclude_specs: t.List[t.Tuple[str, pathspec.PathSpec]] = []
bento_fs.makedir(BENTO_PROJECT_DIR_NAME)
target_fs = bento_fs.opendir(BENTO_PROJECT_DIR_NAME)
for dir_path, _, files in ctx_fs.walk():
for ignore_file in [f for f in files if f.name == ".bentoignore"]:
exclude_specs.append(
(
dir_path,
pathspec.PathSpec.from_lines(
"gitwildmatch", ctx_fs.open(ignore_file.make_path(dir_path))
),
)
)
cur_exclude_specs: t.List[t.Tuple[str, pathspec.PathSpec]] = []
for ignore_path, _spec in exclude_specs:
if fs.path.isparent(ignore_path, dir_path):
cur_exclude_specs.append((ignore_path, _spec))
for f in files:
_path = fs.path.combine(dir_path, f.name).lstrip("/")
if spec.match_file(_path) and not exclude_spec.match_file(_path):
if not any(
_spec.match_file(fs.path.relativefrom(ignore_path, _path))
for ignore_path, _spec in cur_exclude_specs
):
target_fs.makedirs(dir_path, recreate=True)
copy_file(ctx_fs, _path, target_fs, _path)
build_config.docker.write_to_bento(bento_fs, build_ctx, build_config.conda)
build_config.python.write_to_bento(bento_fs, build_ctx)
build_config.conda.write_to_bento(bento_fs, build_ctx)
# Create `readme.md` file
if build_config.description is None:
with bento_fs.open(BENTO_README_FILENAME, "w", encoding="utf-8") as f:
f.write(get_default_bento_readme(svc))
else:
if build_config.description.startswith("file:"):
file_name = build_config.description[5:].strip()
copy_file_to_fs_folder(
file_name, bento_fs, dst_filename=BENTO_README_FILENAME
)
else:
with bento_fs.open(BENTO_README_FILENAME, "w") as f:
f.write(build_config.description)
# Create 'apis/openapi.yaml' file
bento_fs.makedir("apis")
with bento_fs.open(fs.path.combine("apis", "openapi.yaml"), "w") as f:
yaml.dump(svc.openapi_doc(), f)
res = Bento(
tag,
bento_fs,
BentoInfo(
tag=tag,
service=svc, # type: ignore # attrs converters do not typecheck
labels=build_config.labels,
models=[BentoModelInfo.from_bento_model(m) for m in models],
runners=[BentoRunnerInfo.from_runner(r) for r in svc.runners],
apis=[
BentoApiInfo.from_inference_api(api) for api in svc.apis.values()
],
docker=build_config.docker,
python=build_config.python,
conda=build_config.conda,
),
)
# Create bento.yaml
res.flush_info()
return res
@classmethod
def from_fs(cls, item_fs: "FS") -> "Bento":
try:
with item_fs.open(BENTO_YAML_FILENAME, "r", encoding="utf-8") as bento_yaml:
info = BentoInfo.from_yaml_file(bento_yaml)
except fs.errors.ResourceNotFound:
raise BentoMLException(
f"Failed to load bento because it does not contain a '{BENTO_YAML_FILENAME}'"
)
res = cls(info.tag, item_fs, info)
if not res.validate():
raise BentoMLException(
f"Failed to create bento because it contains an invalid '{BENTO_YAML_FILENAME}'"
)
return res
@property
def path(self) -> str:
return self.path_of("/")
def path_of(self, item: str) -> str:
return self._fs.getsyspath(item)
def flush_info(self):
with self._fs.open(BENTO_YAML_FILENAME, "w") as bento_yaml:
self.info.dump(bento_yaml)
@property
def doc(self) -> str:
if self._doc is not None:
return self._doc
with self._fs.open(BENTO_README_FILENAME, "r") as readme_md:
self._doc = str(readme_md.read())
return self._doc
@property
def creation_time(self) -> datetime:
return self.info.creation_time
@inject
def save(
self,
bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> "Bento":
if not self.validate():
logger.warning(f"Failed to create Bento for {self.tag}, not saving.")
raise BentoMLException("Failed to save Bento because it was invalid.")
with bento_store.register(self.tag) as bento_path:
out_fs = fs.open_fs(bento_path, create=True, writeable=True)
fs.mirror.mirror(self._fs, out_fs, copy_if_newer=False)
self._fs.close()
self.__fs = out_fs
return self
def validate(self):
return self._fs.isfile(BENTO_YAML_FILENAME)
def __str__(self):
return f'Bento(tag="{self.tag}")'
class BentoStore(Store[Bento]):
def __init__(self, base_path: t.Union[PathType, "FS"]):
super().__init__(base_path, Bento)
@attr.define(frozen=True, on_setattr=None)
class BentoRunnerInfo:
name: str
runnable_type: str
models: t.List[str] = attr.field(factory=list)
resource_config: t.Optional[Resource] = attr.field(default=None)
@classmethod
def from_runner(cls, r: Runner) -> "BentoRunnerInfo":
# Add runner default resource quota and batching config here
return cls(
name=r.name, # type: ignore
runnable_type=r.runnable_class.__name__, # type: ignore
models=[str(model.tag) for model in r.models], # type: ignore
resource_config=r.resource_config, # type: ignore
)
# Remove after attrs support ForwardRef natively
attr.resolve_types(BentoRunnerInfo, globals(), locals())
@attr.define(frozen=True, on_setattr=None)
class BentoApiInfo:
name: str
input_type: str
output_type: str
@classmethod
def from_inference_api(cls, api: "InferenceAPI") -> "BentoApiInfo":
return cls(
name=api.name, # type: ignore
input_type=api.input.__class__.__name__, # type: ignore
output_type=api.output.__class__.__name__, # type: ignore
)
# Remove after attrs support ForwardRef natively
attr.resolve_types(BentoApiInfo, globals(), locals())
@attr.define(frozen=True, on_setattr=None)
class BentoModelInfo:
tag: Tag = attr.field(converter=Tag.from_taglike)
module: str
creation_time: datetime
@classmethod
def from_bento_model(cls, bento_model: "Model") -> "BentoModelInfo":
return cls(
tag=bento_model.tag,
module=bento_model.info.module,
creation_time=bento_model.info.creation_time,
)
# Remove after attrs support ForwardRef natively
attr.resolve_types(BentoModelInfo, globals(), locals())
@attr.define(repr=False, frozen=True, on_setattr=None)
class BentoInfo:
tag: Tag
service: str = attr.field(
converter=lambda svc: svc if isinstance(svc, str) else svc._import_str
) # type: ignore[reportPrivateUsage]
name: str = attr.field(init=False) # converted from tag in __attrs_post_init__
version: str = attr.field(init=False) # converted from tag in __attrs_post_init__
bentoml_version: str = attr.field(default=BENTOML_VERSION)
creation_time: datetime = attr.field(factory=lambda: datetime.now(timezone.utc))
labels: t.Dict[str, t.Any] = attr.field(factory=dict)
models: t.List[BentoModelInfo] = attr.field(factory=list)
runners: t.List[BentoRunnerInfo] = attr.field(factory=list)
apis: t.List[BentoApiInfo] = attr.field(factory=list)
docker: DockerOptions = attr.field(factory=lambda: DockerOptions().with_defaults())
python: PythonOptions = attr.field(factory=lambda: PythonOptions().with_defaults())
conda: CondaOptions = attr.field(factory=lambda: CondaOptions().with_defaults())
def __attrs_post_init__(self):
# Direct set is not available when frozen=True
object.__setattr__(self, "name", self.tag.name)
object.__setattr__(self, "version", self.tag.version)
self.validate()
def to_dict(self) -> t.Dict[str, t.Any]:
return bentoml_cattr.unstructure(self) # type: ignore (incomplete cattr types)
def dump(self, stream: t.IO[t.Any]):
return yaml.dump(self, stream, sort_keys=False)
@classmethod
def from_yaml_file(cls, stream: t.IO[t.Any]) -> "BentoInfo":
try:
yaml_content = yaml.safe_load(stream)
except yaml.YAMLError as exc:
logger.error(exc)
raise
assert yaml_content is not None
yaml_content["tag"] = Tag(yaml_content["name"], yaml_content["version"])
del yaml_content["name"]
del yaml_content["version"]
# For backwards compatibility for bentos created prior to version 1.0.0rc1
if "runners" in yaml_content:
runners = yaml_content["runners"]
for r in runners:
if "runner_type" in r: # BentoRunnerInfo prior to 1.0.0rc1 release
r["runnable_type"] = r["runner_type"]
del r["runner_type"]
if "model_runner_module" in r:
del r["model_runner_module"]
if "models" in yaml_content:
# For backwards compatibility for bentos created prior to version 1.0.0a7
models = yaml_content["models"]
if models and len(models) > 0 and isinstance(models[0], str):
yaml_content["models"] = list(
map(
lambda model_tag: {
"tag": model_tag,
"module": "unknown",
"creation_time": datetime.fromordinal(1),
},
models,
)
)
try:
# type: ignore[attr-defined]
return bentoml_cattr.structure(yaml_content, cls)
except KeyError as e:
raise BentoMLException(f"Missing field {e} in {BENTO_YAML_FILENAME}")
def validate(self):
# Validate bento.yml file schema, content, bentoml version, etc
...
# Remove after attrs support ForwardRef natively
attr.resolve_types(BentoInfo, globals(), locals())
bentoml_cattr.register_unstructure_hook(
BentoInfo,
# Ignore tag, tag is saved via the name and version field
make_dict_unstructure_fn(BentoInfo, bentoml_cattr, tag=override(omit=True)), # type: ignore
)
def _BentoInfo_dumper(dumper: yaml.Dumper, info: BentoInfo) -> yaml.Node:
return dumper.represent_dict(info.to_dict())
yaml.add_representer(BentoInfo, _BentoInfo_dumper) # type: ignore (incomplete yaml types)
|
from __future__ import annotations
import typing as t
import logging
from typing import TYPE_CHECKING
import attr
from ...exceptions import InvalidArgument
from ...exceptions import BentoMLException
if TYPE_CHECKING:
P = t.ParamSpec("P")
logger = logging.getLogger(__name__)
# Python supported versions
SUPPORTED_PYTHON_VERSIONS = ["3.7", "3.8", "3.9", "3.10"]
# CUDA supported versions
SUPPORTED_CUDA_VERSIONS = {"11": "11.6.2"}
# Supported supported_architectures
SUPPORTED_ARCHITECTURES = ["amd64", "arm64", "ppc64le", "s390x"]
# Supported release types
SUPPORTED_RELEASE_TYPES = ["python", "miniconda", "cuda"]
# BentoML supported distros mapping spec with
# keys represents distros, and value is a tuple of list for supported python
# versions and list of supported CUDA versions.
DOCKER_METADATA: dict[str, dict[str, t.Any]] = {
"amazonlinux": {
"supported_python_versions": ["3.7", "3.8"],
"supported_cuda_versions": None,
"python": {
"image": "amazonlinux:2",
"supported_architectures": ["amd64", "arm64"],
},
},
"ubi8": {
"supported_python_versions": ["3.8", "3.9"],
"supported_cuda_versions": list(SUPPORTED_CUDA_VERSIONS.values()),
"python": {
"image": "registry.access.redhat.com/ubi8/python-{spec_version}:1",
"supported_architectures": ["amd64", "arm64"],
},
"cuda": {
"image": "nvidia/cuda:{spec_version}-cudnn8-runtime-ubi8",
"supported_architectures": ["amd64", "arm64", "ppc64le"],
},
},
"debian": {
"supported_python_versions": SUPPORTED_PYTHON_VERSIONS,
"supported_cuda_versions": list(SUPPORTED_CUDA_VERSIONS.values()),
"python": {
"image": "python:{spec_version}-slim",
"supported_architectures": SUPPORTED_ARCHITECTURES,
},
"cuda": {
"image": "nvidia/cuda:{spec_version}-cudnn8-runtime-ubuntu20.04",
"supported_architectures": ["amd64", "arm64"],
},
"miniconda": {
"image": "continuumio/miniconda3:latest",
"supported_architectures": SUPPORTED_ARCHITECTURES,
},
},
"alpine": {
"supported_python_versions": SUPPORTED_PYTHON_VERSIONS,
"supported_cuda_versions": None,
"python": {
"image": "python:{spec_version}-alpine",
"supported_architectures": SUPPORTED_ARCHITECTURES,
},
"miniconda": {
"image": "continuumio/miniconda3:4.10.3p0-alpine",
"supported_architectures": ["amd64"],
},
},
}
DOCKER_SUPPORTED_DISTROS = list(DOCKER_METADATA.keys())
def get_supported_spec(spec: t.Literal["python", "miniconda", "cuda"]) -> list[str]:
if spec not in SUPPORTED_RELEASE_TYPES:
raise InvalidArgument(
f"Unknown release type: {spec}, supported spec: {SUPPORTED_RELEASE_TYPES}"
)
return [v for v in DOCKER_METADATA if spec in DOCKER_METADATA[v]]
@attr.define(slots=True, frozen=True)
class DistroSpec:
name: str = attr.field()
image: str = attr.field(kw_only=True)
release_type: str = attr.field(kw_only=True)
supported_python_versions: t.List[str] = attr.field(
validator=attr.validators.deep_iterable(
lambda _, __, value: value in SUPPORTED_PYTHON_VERSIONS,
iterable_validator=attr.validators.instance_of(list),
),
)
supported_cuda_versions: t.List[str] = attr.field(
default=None,
validator=attr.validators.optional(
attr.validators.deep_iterable(
lambda _, __, value: value in SUPPORTED_CUDA_VERSIONS.values(),
)
),
)
supported_architectures: t.List[str] = attr.field(
default=SUPPORTED_ARCHITECTURES,
validator=attr.validators.deep_iterable(
lambda _, __, value: value in SUPPORTED_ARCHITECTURES,
),
)
@classmethod
def from_distro(
cls,
value: str,
*,
cuda: bool = False,
conda: bool = False,
) -> DistroSpec:
if not value:
raise BentoMLException("Distro name is required, got None instead.")
if value not in DOCKER_METADATA:
raise BentoMLException(
f"{value} is not supported. "
f"Supported distros are: {', '.join(DOCKER_METADATA.keys())}."
)
if cuda:
release_type = "cuda"
elif conda:
release_type = "miniconda"
else:
release_type = "python"
meta = DOCKER_METADATA[value]
python_version = meta["supported_python_versions"]
cuda_version = (
meta["supported_cuda_versions"] if release_type == "cuda" else None
)
return cls(
**meta[release_type],
name=value,
release_type=release_type,
supported_python_versions=python_version,
supported_cuda_versions=cuda_version,
)
|
import os
import re
import sys
import typing as t
import logging
import subprocess
from sys import version_info as pyver
from typing import TYPE_CHECKING
import fs
import attr
import yaml
import fs.copy
from dotenv import dotenv_values # type: ignore
from .gen import generate_dockerfile
from ..utils import bentoml_cattr
from ..utils import resolve_user_filepath
from ..utils import copy_file_to_fs_folder
from .docker import DistroSpec
from .docker import get_supported_spec
from .docker import SUPPORTED_CUDA_VERSIONS
from .docker import DOCKER_SUPPORTED_DISTROS
from .docker import SUPPORTED_PYTHON_VERSIONS
from ...exceptions import InvalidArgument
from ...exceptions import BentoMLException
from .build_dev_bentoml_whl import build_bentoml_editable_wheel
if pyver >= (3, 8):
from typing import Literal
else:
from typing_extensions import Literal
if TYPE_CHECKING:
from attr import Attribute
from fs.base import FS
if pyver >= (3, 10):
from typing import TypeAlias
else:
from typing_extensions import TypeAlias
logger = logging.getLogger(__name__)
PYTHON_VERSION = f"{pyver.major}.{pyver.minor}"
PYTHON_FULL_VERSION = f"{pyver.major}.{pyver.minor}.{pyver.micro}"
# Docker defaults
DEFAULT_CUDA_VERSION = "11.6.2"
DEFAULT_DOCKER_DISTRO = "debian"
CONDA_ENV_YAML_FILE_NAME = "environment.yml"
if PYTHON_VERSION not in SUPPORTED_PYTHON_VERSIONS:
logger.warning(
f"BentoML may not work well with current python version: {PYTHON_VERSION}, "
f"supported python versions are: {', '.join(SUPPORTED_PYTHON_VERSIONS)}"
)
def _convert_python_version(py_version: t.Optional[str]) -> t.Optional[str]:
if py_version is None:
return None
if not isinstance(py_version, str):
py_version = str(py_version)
match = re.match(r"^(\d+).(\d+)", py_version)
if match is None:
raise InvalidArgument(
f'Invalid build option: docker.python_version="{py_version}", python '
f"version must follow standard python semver format, e.g. 3.7.10 ",
)
major, minor = match.groups()
return f"{major}.{minor}"
def _convert_cuda_version(cuda_version: t.Optional[str]) -> t.Optional[str]:
if cuda_version is None or cuda_version == "":
return None
if isinstance(cuda_version, int):
cuda_version = str(cuda_version)
if cuda_version == "default":
cuda_version = DEFAULT_CUDA_VERSION
match = re.match(r"^(\d+)$", cuda_version)
if match is not None:
cuda_version = SUPPORTED_CUDA_VERSIONS[cuda_version]
return cuda_version
def _convert_user_envars(
envars: t.Optional[t.Union[t.List[str], t.Dict[str, t.Any]]]
) -> t.Optional[t.Dict[str, t.Any]]:
if envars is None:
return None
if isinstance(envars, list):
return {k: v for e in envars for k, v in e.split("=")}
else:
return envars
def _envars_validator(
_: t.Any,
attribute: "Attribute[t.Union[str, t.List[str], t.Dict[str, t.Any]]]",
value: t.Union[str, t.List[str], t.Dict[str, t.Any]],
) -> None:
if isinstance(value, str):
if not os.path.exists(value) and os.path.isfile(value):
raise InvalidArgument(
f'`env="{value}"` is not a valid path. if `env` is parsed as a string, it should be a path to an ".env" file.'
)
envars_rgx = re.compile(r"(^[A-Z0-9_]+)(\=)(.*\n)")
if isinstance(value, list):
for envar in value:
match = envars_rgx.match(envar)
if match is None:
raise InvalidArgument(f"{envar} doesn't follow format ENVAR=value")
k, _ = envar.split("=")
if not k.isupper():
raise InvalidArgument(
f'Invalid env var defined, key "{k}" should be in uppercase.'
)
elif isinstance(value, dict):
if not all(k.isupper() for k in value):
raise InvalidArgument("All envars should be in UPPERCASE.")
else:
raise InvalidArgument(
f"`env` must be either a list or a dict, got type {attribute.type} instead."
)
@attr.frozen
class DockerOptions:
distro: str = attr.field(
default=None,
validator=attr.validators.optional(
attr.validators.in_(DOCKER_SUPPORTED_DISTROS)
),
)
python_version: str = attr.field(
converter=_convert_python_version,
default=None,
validator=attr.validators.optional(
attr.validators.in_(SUPPORTED_PYTHON_VERSIONS)
),
)
cuda_version: t.Union[str, Literal["default"]] = attr.field(
default=None,
converter=_convert_cuda_version,
validator=attr.validators.optional(
attr.validators.in_(SUPPORTED_CUDA_VERSIONS.values())
),
)
# A user-provided environment variable to be passed to a given bento
# accepts the following format:
#
# env:
# - ENVAR=value1
# - FOO=value2
#
# env:
# ENVAR: value1"Options"
# FOO: value2
#
# env: /path/to/.env
env: t.Dict[str, t.Any] = attr.field(
default=None,
converter=_convert_user_envars,
validator=attr.validators.optional(_envars_validator),
)
# A user-provided system packages that can be installed for a given bento
# using distro package manager.
system_packages: t.Optional[t.List[str]] = None
# A python or sh script that executes during docker build time
setup_script: t.Optional[str] = None
# A user-provided custom docker image
base_image: t.Optional[str] = None
# A user-provided dockerfile jinja2 template
dockerfile_template: str = attr.field(
default=None,
validator=attr.validators.optional(
lambda _, __, value: os.path.exists(value) and os.path.isfile(value)
),
)
def __attrs_post_init__(self):
if self.base_image is not None:
if self.distro is not None:
logger.warning(
f"docker base_image {self.base_image} is used, "
f"'distro={self.distro}' option is ignored.",
)
if self.python_version is not None:
logger.warning(
f"docker base_image {self.base_image} is used, "
f"'python={self.python_version}' option is ignored.",
)
if self.cuda_version is not None:
logger.warning(
f"docker base_image {self.base_image} is used, "
f"'cuda_version={self.cuda_version}' option is ignored.",
)
if self.system_packages:
logger.warning(
f"docker base_image {self.base_image} is used, "
f"'system_packages={self.system_packages}' option is ignored.",
)
if self.distro is not None and self.cuda_version is not None:
supports_cuda = get_supported_spec("cuda")
if self.distro not in supports_cuda:
raise BentoMLException(
f'Distro "{self.distro}" does not support CUDA. Distros that support CUDA are: {supports_cuda}.'
)
def with_defaults(self) -> "DockerOptions":
# Convert from user provided options to actual build options with default values
defaults: t.Dict[str, t.Any] = {}
if self.base_image is None:
if self.distro is None:
defaults["distro"] = DEFAULT_DOCKER_DISTRO
if self.python_version is None:
defaults["python_version"] = PYTHON_VERSION
if self.system_packages is None:
defaults["system_packages"] = []
if self.env is None:
defaults["env"] = {}
if self.cuda_version is None:
defaults["cuda_version"] = None
if self.dockerfile_template is None:
defaults["dockerfile_template"] = None
return attr.evolve(self, **defaults)
def write_to_bento(
self, bento_fs: "FS", build_ctx: str, conda_options: "CondaOptions"
) -> None:
use_conda = any(
val is not None
for _, val in bentoml_cattr.unstructure(conda_options).items()
)
docker_folder = fs.path.combine("env", "docker")
bento_fs.makedirs(docker_folder, recreate=True)
dockerfile = fs.path.combine(docker_folder, "Dockerfile")
with bento_fs.open(dockerfile, "w") as dockerfile:
dockerfile.write(
generate_dockerfile(self, build_ctx=build_ctx, use_conda=use_conda)
)
copy_file_to_fs_folder(
fs.path.join(os.path.dirname(__file__), "docker", "entrypoint.sh"),
bento_fs,
docker_folder,
)
if self.setup_script:
try:
setup_script = resolve_user_filepath(self.setup_script, build_ctx)
except FileNotFoundError as e:
raise InvalidArgument(f"Invalid setup_script file: {e}")
copy_file_to_fs_folder(
setup_script, bento_fs, docker_folder, "setup_script"
)
def _docker_options_structure_hook(d: t.Any, _: t.Type[DockerOptions]) -> DockerOptions:
# Allow bentofile yaml to have either a str or list of str for these options
if "env" in d and isinstance(d["env"], str):
try:
d["env"] = dotenv_values(d["env"])
except FileNotFoundError:
raise BentoMLException(f"Invalid env file path: {d['env']}")
return DockerOptions(**d)
bentoml_cattr.register_structure_hook(DockerOptions, _docker_options_structure_hook)
@attr.frozen
class CondaOptions:
environment_yml: t.Optional[str] = None
channels: t.Optional[t.List[str]] = None
dependencies: t.Optional[t.List[str]] = None
pip: t.Optional[t.List[str]] = None # list of pip packages to install via conda
def __attrs_post_init__(self):
if self.environment_yml is not None:
if self.channels is not None:
logger.warning(
"conda environment_yml %s is used, 'channels=%s' option is ignored",
self.environment_yml,
self.channels,
)
if self.dependencies is not None:
logger.warning(
"conda environment_yml %s is used, 'dependencies=%s' option is ignored",
self.environment_yml,
self.dependencies,
)
if self.pip is not None:
logger.warning(
"conda environment_yml %s is used, 'pip=%s' option is ignored",
self.environment_yml,
self.pip,
)
def write_to_bento(self, bento_fs: "FS", build_ctx: str) -> None:
conda_folder = fs.path.join("env", "conda")
bento_fs.makedirs(conda_folder, recreate=True)
if self.environment_yml is not None:
environment_yml_file = resolve_user_filepath(
self.environment_yml, build_ctx
)
copy_file_to_fs_folder(
environment_yml_file,
bento_fs,
conda_folder,
dst_filename=CONDA_ENV_YAML_FILE_NAME,
)
else:
deps_list = [] if self.dependencies is None else self.dependencies
if self.pip is not None:
deps_list.append(dict(pip=self.pip)) # type: ignore
if not deps_list:
return
yaml_content = dict(dependencies=deps_list)
yaml_content["channels"] = self.channels
with bento_fs.open(
fs.path.join(conda_folder, CONDA_ENV_YAML_FILE_NAME), "w"
) as f:
yaml.dump(yaml_content, f)
def with_defaults(self) -> "CondaOptions":
# Convert from user provided options to actual build options with default values
defaults: t.Dict[str, t.Any] = {}
# When `channels` field was left empty, apply the community maintained
# channel `conda-forge` as default
if (
(self.dependencies or self.pip)
and not self.channels
and not self.environment_yml
):
defaults["channels"] = ["conda-forge"]
return attr.evolve(self, **defaults)
@attr.frozen
class PythonOptions:
requirements_txt: t.Optional[str] = None
packages: t.Optional[t.List[str]] = None
lock_packages: t.Optional[bool] = None
index_url: t.Optional[str] = None
no_index: t.Optional[bool] = None
trusted_host: t.Optional[t.List[str]] = None
find_links: t.Optional[t.List[str]] = None
extra_index_url: t.Optional[t.List[str]] = None
pip_args: t.Optional[str] = None
wheels: t.Optional[t.List[str]] = None
def __attrs_post_init__(self):
if self.requirements_txt and self.packages:
logger.warning(
f'Build option python: requirements_txt="{self.requirements_txt}" found,'
f' this will ignore the option: packages="{self.packages}"'
)
if self.no_index and (self.index_url or self.extra_index_url):
logger.warning(
"Build option python.no_index=True found, this will ignore index_url"
" and extra_index_url option when installing PyPI packages"
)
def write_to_bento(self, bento_fs: "FS", build_ctx: str) -> None:
py_folder = fs.path.join("env", "python")
wheels_folder = fs.path.join(py_folder, "wheels")
bento_fs.makedirs(py_folder, recreate=True)
# Save the python version of current build environment
with bento_fs.open(fs.path.join(py_folder, "version.txt"), "w") as f:
f.write(PYTHON_FULL_VERSION)
# Move over required wheel files
# Note: although wheel files outside of build_ctx will also work, we should
# discourage users from doing that
if self.wheels is not None:
for whl_file in self.wheels: # pylint: disable=not-an-iterable
whl_file = resolve_user_filepath(whl_file, build_ctx)
copy_file_to_fs_folder(whl_file, bento_fs, wheels_folder)
build_bentoml_editable_wheel(bento_fs.getsyspath(wheels_folder))
if self.requirements_txt is not None:
requirements_txt_file = resolve_user_filepath(
self.requirements_txt, build_ctx
)
copy_file_to_fs_folder(
requirements_txt_file,
bento_fs,
py_folder,
dst_filename="requirements.txt",
)
elif self.packages is not None:
with bento_fs.open(fs.path.join(py_folder, "requirements.txt"), "w") as f:
f.write("\n".join(self.packages))
else:
# Return early if no python packages were specified
return
pip_args: t.List[str] = []
if self.no_index:
pip_args.append("--no-index")
if self.index_url:
pip_args.append(f"--index-url={self.index_url}")
if self.trusted_host:
for item in self.trusted_host: # pylint: disable=not-an-iterable
pip_args.append(f"--trusted-host={item}")
if self.find_links:
for item in self.find_links: # pylint: disable=not-an-iterable
pip_args.append(f"--find-links={item}")
if self.extra_index_url:
for item in self.extra_index_url: # pylint: disable=not-an-iterable
pip_args.append(f"--extra-index-url={item}")
if self.pip_args:
# Additional user provided pip_args
pip_args.append(self.pip_args)
# write pip install args to a text file if applicable
if pip_args:
with bento_fs.open(fs.path.join(py_folder, "pip_args.txt"), "w") as f:
f.write(" ".join(pip_args))
if self.lock_packages:
# Note: "--allow-unsafe" is required for including setuptools in the
# generated requirements.lock.txt file, and setuptool is required by
# pyfilesystem2. Once pyfilesystem2 drop setuptools as dependency, we can
# remove the "--allow-unsafe" flag here.
# Note: "--generate-hashes" is purposefully not used here because it will
# break if user includes PyPI package from version control system
pip_compile_in = bento_fs.getsyspath(
fs.path.join(py_folder, "requirements.txt")
)
pip_compile_out = bento_fs.getsyspath(
fs.path.join(py_folder, "requirements.lock.txt")
)
pip_compile_args = (
[pip_compile_in]
+ pip_args
+ [
"--quiet",
"--allow-unsafe",
"--no-header",
f"--output-file={pip_compile_out}",
]
)
logger.info("Locking PyPI package versions..")
cmd = [sys.executable, "-m", "piptools", "compile"]
cmd.extend(pip_compile_args)
try:
subprocess.check_call(cmd)
except subprocess.CalledProcessError as e:
logger.error(f"Failed locking PyPI packages: {e}")
logger.error(
"Falling back to using user-provided package requirement specifier, equivalent to `lock_packages=False`"
)
def with_defaults(self) -> "PythonOptions":
# Convert from user provided options to actual build options with default values
defaults: t.Dict[str, t.Any] = {}
if self.requirements_txt is None:
if self.lock_packages is None:
defaults["lock_packages"] = True
return attr.evolve(self, **defaults)
def _python_options_structure_hook(d: t.Any, _: t.Type[PythonOptions]) -> PythonOptions:
# Allow bentofile yaml to have either a str or list of str for these options
for field in ["trusted_host", "find_links", "extra_index_url"]:
if field in d and isinstance(d[field], str):
d[field] = [d[field]]
return PythonOptions(**d)
bentoml_cattr.register_structure_hook(PythonOptions, _python_options_structure_hook)
OptionsCls: TypeAlias = t.Union[DockerOptions, CondaOptions, PythonOptions]
def dict_options_converter(
options_type: t.Type[OptionsCls],
) -> t.Callable[[t.Union[OptionsCls, t.Dict[str, t.Any]]], t.Any]:
def _converter(value: t.Union[OptionsCls, t.Dict[str, t.Any]]) -> options_type:
if isinstance(value, dict):
return options_type(**value)
return value
return _converter
@attr.define(frozen=True, on_setattr=None)
class BentoBuildConfig:
"""This class is intended for modeling the bentofile.yaml file where user will
provide all the options for building a Bento. All optional build options should be
default to None so it knows which fields are NOT SET by the user provided config,
which makes it possible to omitted unset fields when writing a BentoBuildOptions to
a yaml file for future use. This also applies to nested options such as the
DockerOptions class and the PythonOptions class.
"""
service: str # Import Str of target service to build
description: t.Optional[str] = None
labels: t.Optional[t.Dict[str, t.Any]] = None
include: t.Optional[t.List[str]] = None
exclude: t.Optional[t.List[str]] = None
docker: DockerOptions = attr.field(
factory=DockerOptions,
converter=dict_options_converter(DockerOptions),
)
python: PythonOptions = attr.field(
factory=PythonOptions,
converter=dict_options_converter(PythonOptions),
)
conda: CondaOptions = attr.field(
factory=CondaOptions,
converter=dict_options_converter(CondaOptions),
)
def __attrs_post_init__(self) -> None:
use_conda = any(
val is not None for _, val in bentoml_cattr.unstructure(self.conda).items()
)
use_cuda = self.docker.cuda_version is not None
if use_cuda and use_conda:
logger.warning(
f'Conda will be ignored and will not be available inside bento container when "cuda={self.docker.cuda_version}" is set.'
)
if self.docker.distro is not None:
if use_conda and self.docker.distro not in get_supported_spec("miniconda"):
raise BentoMLException(
f"{self.docker.distro} does not supports conda. BentoML will only support conda with the following distros: {get_supported_spec('miniconda')}."
)
if use_cuda and self.docker.distro not in get_supported_spec("cuda"):
raise BentoMLException(
f"{self.docker.distro} does not supports cuda. BentoML will only support cuda with the following distros: {get_supported_spec('cuda')}."
)
_spec = DistroSpec.from_distro(
self.docker.distro, cuda=use_cuda, conda=use_conda
)
if _spec is not None:
if self.docker.python_version is not None:
if (
self.docker.python_version
not in _spec.supported_python_versions
):
raise BentoMLException(
f"{self.docker.python_version} is not supported for {self.docker.distro}. Supported python versions are: {', '.join(_spec.supported_python_versions)}."
)
if self.docker.cuda_version is not None:
if self.docker.cuda_version != "default" and (
self.docker.cuda_version not in _spec.supported_cuda_versions
):
raise BentoMLException(
f"{self.docker.cuda_version} is not supported for {self.docker.distro}. Supported cuda versions are: {', '.join(_spec.supported_cuda_versions)}."
)
def with_defaults(self) -> "FilledBentoBuildConfig":
"""
Convert from user provided options to actual build options with defaults
values filled in.
Returns:
BentoBuildConfig: a new copy of self, with default values filled
"""
return FilledBentoBuildConfig(
self.service,
self.description,
{} if self.labels is None else self.labels,
["*"] if self.include is None else self.include,
[] if self.exclude is None else self.exclude,
self.docker.with_defaults(),
self.python.with_defaults(),
self.conda.with_defaults(),
)
@classmethod
def from_yaml(cls, stream: t.TextIO) -> "BentoBuildConfig":
try:
yaml_content = yaml.safe_load(stream)
except yaml.YAMLError as exc:
logger.error(exc)
raise
try:
return bentoml_cattr.structure(yaml_content, cls)
except KeyError as e:
if str(e) == "'service'":
raise InvalidArgument(
'Missing required build config field "service", which'
" indicates import path of target bentoml.Service instance."
' e.g.: "service: fraud_detector.py:svc"'
)
else:
raise
def to_yaml(self, stream: t.TextIO) -> None:
# TODO: Save BentoBuildOptions to a yaml file
# This is reserved for building interactive build file creation CLI
raise NotImplementedError
class FilledBentoBuildConfig(BentoBuildConfig):
service: str
description: t.Optional[str]
labels: t.Dict[str, t.Any]
include: t.List[str]
exclude: t.List[str]
docker: DockerOptions
python: PythonOptions
conda: CondaOptions
|
import os
import re
import sys
import inspect
import logging
import importlib
import modulefinder
from typing import List
from typing import Tuple
from unittest.mock import patch
from ..types import PathType
from .pip_pkg import get_all_pip_installed_modules
from ...exceptions import BentoMLException
logger = logging.getLogger(__name__)
def _get_module_src_file(module):
"""
Return module.__file__, change extension to '.py' if __file__ is ending with '.pyc'
"""
return module.__file__[:-1] if module.__file__.endswith(".pyc") else module.__file__
def _is_valid_py_identifier(s):
"""
Return true if string is in a valid python identifier format:
https://docs.python.org/2/reference/lexical_analysis.html#identifiers
"""
return re.fullmatch(r"[A-Za-z_][A-Za-z_0-9]*", s) is not None
def _get_module_relative_file_path(module_name, module_file):
if not os.path.isabs(module_file):
# For modules within current top level package, module_file here should
# already be a relative path to the src file
relative_path = module_file
elif os.path.split(module_file)[1] == "__init__.py":
# for module a.b.c in 'some_path/a/b/c/__init__.py', copy file to
# 'destination/a/b/c/__init__.py'
relative_path = os.path.join(module_name.replace(".", os.sep), "__init__.py")
else:
# for module a.b.c in 'some_path/a/b/c.py', copy file to 'destination/a/b/c.py'
relative_path = os.path.join(module_name.replace(".", os.sep) + ".py")
return relative_path
def _get_module(target_module):
# When target_module is a string, try import it
if isinstance(target_module, str):
try:
target_module = importlib.import_module(target_module)
except ImportError:
pass
return inspect.getmodule(target_module)
def _import_module_from_file(path):
module_name = path.replace(os.sep, ".")[:-3]
spec = importlib.util.spec_from_file_location(module_name, path)
m = importlib.util.module_from_spec(spec)
return m
# TODO: change this to find_local_py_modules_used(svc: Service)
def find_local_py_modules_used(target_module_file: PathType) -> List[Tuple[str, str]]:
"""Find all local python module dependencies of target_module, and list all the
local module python files to the destination directory while maintaining the module
structure unchanged to ensure all imports in target_module still works when loading
from the destination directory again
Args:
path (`Union[str, bytes, os.PathLike]`):
Path to a python source file
Returns:
list of (source file path, target file path) pairs
"""
target_module = _import_module_from_file(target_module_file)
try:
target_module_name = target_module.__spec__.name
except AttributeError:
target_module_name = target_module.__name__
# Find all non pip installed modules must be packaged for target module to run
exclude_modules = ["bentoml"] + get_all_pip_installed_modules()
finder = modulefinder.ModuleFinder(excludes=exclude_modules)
try:
logger.debug(
"Searching for local dependant modules of %s:%s",
target_module_name,
target_module_file,
)
if sys.version_info[0] == 3 and sys.version_info[1] >= 8:
_find_module = modulefinder._find_module
_PKG_DIRECTORY = modulefinder._PKG_DIRECTORY
def _patch_find_module(name, path=None):
"""ref issue: https://bugs.python.org/issue40350"""
importlib.machinery.PathFinder.invalidate_caches()
spec = importlib.machinery.PathFinder.find_spec(name, path)
if spec is not None and spec.loader is None:
return None, None, ("", "", _PKG_DIRECTORY)
return _find_module(name, path)
with patch.object(modulefinder, "_find_module", _patch_find_module):
finder.run_script(target_module_file)
else:
finder.run_script(target_module_file)
except SyntaxError:
# For package with conditional import that may only work with py2
# or py3, ModuleFinder#run_script will try to compile the source
# with current python version. And that may result in SyntaxError.
pass
if finder.badmodules:
logger.debug(
"Find bad module imports that can not be parsed properly: %s",
finder.badmodules.keys(),
)
# Look for dependencies that are not distributed python package, but users'
# local python code, all other dependencies must be defined with @env
# decorator when creating a new BentoService class
user_packages_and_modules = {}
for name, module in finder.modules.items():
if hasattr(module, "__file__") and module.__file__ is not None:
user_packages_and_modules[name] = module
# Lastly, add target module itself
user_packages_and_modules[target_module_name] = target_module
file_list = []
for module_name, module in user_packages_and_modules.items():
module_file = _get_module_src_file(module)
relative_path = _get_module_relative_file_path(module_name, module_file)
file_list.append((module_file, relative_path))
return file_list
def copy_local_py_modules(target_module, destination):
"""Find all local python module dependencies of target_module, and copy all the
local module python files to the destination directory while maintaining the module
structure unchanged to ensure all imports in target_module still works when loading
from the destination directory again
"""
target_module = _get_module(target_module)
# When target module is defined in interactive session, we can not easily
# get the class definition into a python module file and distribute it
if target_module.__name__ == "__main__" and not hasattr(target_module, "__file__"):
raise BentoMLException(
"Custom BentoModel class can not be defined in Python interactive REPL, try"
" writing the class definition to a file and import it."
)
try:
target_module_name = target_module.__spec__.name
except AttributeError:
target_module_name = target_module.__name__
target_module_file = _get_module_src_file(target_module)
logger.debug(
"copy_local_py_modules target_module_name: %s, target_module_file: %s",
target_module_name,
target_module_file,
)
if target_module_name == "__main__":
# Assuming no relative import in this case
target_module_file_name = os.path.split(target_module_file)[1]
target_module_name = target_module_file_name[:-3] # remove '.py'
logger.debug(
"Updating for __main__ module, target_module_name: %s, "
"target_module_file: %s",
target_module_name,
target_module_file,
)
# Find all non pip installed modules must be packaged for target module to run
# exclude_modules = ['bentoml'] + get_all_pip_installed_modules()
# finder = modulefinder.ModuleFinder(excludes=exclude_modules)
#
# try:
# logger.debug(
# "Searching for local dependant modules of %s:%s",
# target_module_name,
# target_module_file,
# )
# if sys.version_info[0] == 3 and sys.version_info[1] >= 8:
# _find_module = modulefinder._find_module
# _PKG_DIRECTORY = modulefinder._PKG_DIRECTORY
#
# def _patch_find_module(name, path=None):
# """ref issue: https://bugs.python.org/issue40350"""
#
# importlib.machinery.PathFinder.invalidate_caches()
#
# spec = importlib.machinery.PathFinder.find_spec(name, path)
#
# if spec is not None and spec.loader is None:
# return None, None, ("", "", _PKG_DIRECTORY)
#
# return _find_module(name, path)
#
# with patch.object(modulefinder, '_find_module', _patch_find_module):
# finder.run_script(target_module_file)
# else:
# finder.run_script(target_module_file)
# except SyntaxError:
# # For package with conditional import that may only work with py2
# # or py3, ModuleFinder#run_script will try to compile the source
# # with current python version. And that may result in SyntaxError.
# pass
#
# if finder.badmodules:
# logger.debug(
# "Find bad module imports that can not be parsed properly: %s",
# finder.badmodules.keys(),
# )
#
# # Look for dependencies that are not distributed python package, but users'
# # local python code, all other dependencies must be defined with @env
# # decorator when creating a new BentoService class
# user_packages_and_modules = {}
# for name, module in finder.modules.items():
# if hasattr(module, "__file__") and module.__file__ is not None:
# user_packages_and_modules[name] = module
# # Remove "__main__" module, if target module is loaded as __main__, it should
# # be in module_files as (module_name, module_file) in current context
# if "__main__" in user_packages_and_modules:
# del user_packages_and_modules["__main__"]
#
# # Lastly, add target module itself
# user_packages_and_modules[target_module_name] = target_module
# logger.debug(
# "Copying user local python dependencies: %s", user_packages_and_modules
# )
#
# for module_name, module in user_packages_and_modules.items():
# module_file = _get_module_src_file(module)
# relative_path = _get_module_relative_file_path(module_name, module_file)
# target_file = os.path.join(destination, relative_path)
#
# # Create target directory if not exist
# Path(os.path.dirname(target_file)).mkdir(parents=True, exist_ok=True)
#
# # Copy module file to BentoArchive for distribution
# logger.debug("Copying local python module '%s'", module_file)
# copyfile(module_file, target_file)
#
# for root, _, files in os.walk(destination):
# if "__init__.py" not in files:
# logger.debug("Creating empty __init__.py under folder:'%s'", root)
# Path(os.path.join(root, "__init__.py")).touch()
#
# target_module_relative_path = _get_module_relative_file_path(
# target_module_name, target_module_file
# )
# logger.debug("Done copying local python dependant modules")
#
# return target_module_name, target_module_relative_path
|
import os
import ast
import sys
import typing as t
import logging
import pkgutil
import zipfile
import zipimport
from typing import TYPE_CHECKING
from collections import defaultdict
try:
import importlib.metadata as importlib_metadata
except ImportError:
import importlib_metadata
from packaging.requirements import Requirement
if TYPE_CHECKING:
from ..service import Service
EPP_NO_ERROR = 0
EPP_PKG_NOT_EXIST = 1
EPP_PKG_VERSION_MISMATCH = 2
__mm = None
logger = logging.getLogger(__name__)
def split_requirement(requirement: str) -> t.Tuple[str, str]:
"""
Split requirements. 'bentoml>=1.0.0' -> ['bentoml', '>=1.0.0']
"""
req = Requirement(requirement)
name = req.name.replace("-", "_")
return name, str(req.specifier)
def packages_distributions() -> t.Dict[str, t.List[str]]:
"""Return a mapping of top-level packages to their distributions. We're
inlining this helper from the importlib_metadata "backport" here, since
it's not available in the builtin importlib.metadata.
"""
pkg_to_dist = defaultdict(list)
for dist in importlib_metadata.distributions():
for pkg in (dist.read_text("top_level.txt") or "").split():
pkg_to_dist[pkg].append(dist.metadata["Name"])
return dict(pkg_to_dist)
def parse_requirement_string(rs):
name, _, version = rs.partition("==")
return name, version
def verify_pkg(pkg_req):
global __mm # pylint: disable=global-statement
if __mm is None:
__mm = ModuleManager()
return __mm.verify_pkg(pkg_req)
def seek_pip_packages(target_py_file_path):
global __mm # pylint: disable=global-statement
if __mm is None:
__mm = ModuleManager()
return __mm.seek_pip_packages(target_py_file_path)
def get_pkg_version(pkg_name):
global __mm # pylint: disable=global-statement
if __mm is None:
__mm = ModuleManager()
return __mm.pip_pkg_map.get(pkg_name, None)
def get_zipmodules():
global __mm # pylint: disable=global-statement
if __mm is None:
__mm = ModuleManager()
return __mm.zip_modules
def get_all_pip_installed_modules():
global __mm # pylint: disable=global-statement
if __mm is None:
__mm = ModuleManager()
installed_modules = list(
# local modules are the ones imported from current directory, either from a
# module.py file or a module directory that contains a `__init__.py` file
filter(lambda m: not m.is_local, __mm.searched_modules.values())
)
return list(map(lambda m: m.name, installed_modules))
class ModuleInfo(object):
def __init__(self, name, path, is_local, is_pkg):
super(ModuleInfo, self).__init__()
self.name = name
self.path = path
self.is_local = is_local
self.is_pkg = is_pkg
class ModuleManager(object):
def __init__(self):
super(ModuleManager, self).__init__()
self.pip_pkg_map = {}
self.pip_module_map = {}
self.setuptools_module_set = set()
self.nonlocal_package_path = set()
import pkg_resources
for dist in pkg_resources.working_set: # pylint: disable=not-an-iterable
module_path = dist.module_path or dist.location
if not module_path:
# Skip if no module path was found for pkg distribution
continue
if os.path.realpath(module_path) != os.getcwd():
# add to nonlocal_package path only if it's not current directory
self.nonlocal_package_path.add(module_path)
self.pip_pkg_map[dist._key] = dist._version
for mn in dist._get_metadata("top_level.txt"):
if dist._key != "setuptools":
self.pip_module_map.setdefault(mn, []).append(
(dist._key, dist._version)
)
else:
self.setuptools_module_set.add(mn)
self.searched_modules = {}
self.zip_modules: t.Dict[str, zipimport.zipimporter] = {}
for m in pkgutil.iter_modules():
if m.name not in self.searched_modules:
if isinstance(m.module_finder, zipimport.zipimporter):
logger.info(f"Detected zipimporter {m.module_finder}")
path = m.module_finder.archive
self.zip_modules[path] = m.module_finder
else:
path = m.module_finder.path
is_local = self.is_local_path(path)
self.searched_modules[m.name] = ModuleInfo(
m.name, path, is_local, m.ispkg
)
def verify_pkg(self, pkg_req):
if pkg_req.name not in self.pip_pkg_map:
# package does not exist in the current python session
return EPP_PKG_NOT_EXIST
if self.pip_pkg_map[pkg_req.name] not in pkg_req.specifier:
# package version being used in the current python session does not meet
# the specified package version requirement
return EPP_PKG_VERSION_MISMATCH
return EPP_NO_ERROR
def seek_pip_packages(self, target_py_file_path):
logger.debug("target py file path: %s", target_py_file_path)
work = DepSeekWork(self, target_py_file_path)
work.do()
requirements = {}
for _, pkg_info_list in work.dependencies.items():
for pkg_name, pkg_version in pkg_info_list:
requirements[pkg_name] = pkg_version
return requirements, work.unknown_module_set
def is_local_path(self, path):
if path in self.nonlocal_package_path:
return False
dir_name = os.path.split(path)[1]
if (
"site-packages" in path
or "anaconda" in path
or path.endswith("packages")
or dir_name == "bin"
or dir_name.startswith("lib")
or dir_name.startswith("python")
or dir_name.startswith("plat")
):
self.nonlocal_package_path.add(path)
return False
return True
class DepSeekWork(object):
def __init__(self, module_manager, target_py_file_path):
super(DepSeekWork, self).__init__()
self.module_manager = module_manager
self.target_py_file_path = target_py_file_path
self.dependencies = {}
self.unknown_module_set = set()
self.parsed_module_set = set()
def do(self):
self.seek_in_file(self.target_py_file_path)
def seek_in_file(self, file_path):
try:
with open(file_path) as f:
content = f.read()
except UnicodeDecodeError:
with open(file_path, encoding="utf-8") as f:
content = f.read()
self.seek_in_source(content)
def seek_in_source(self, content):
# Extract all dependency modules by searching through the trees of the Python
# abstract syntax grammar with Python's built-in ast module
tree = ast.parse(content)
import_set = set()
for node in ast.walk(tree):
if isinstance(node, ast.Import):
for name in node.names:
import_set.add(name.name.partition(".")[0])
elif isinstance(node, ast.ImportFrom):
if node.module is not None and node.level == 0:
import_set.add(node.module.partition(".")[0])
logger.debug("import set: %s", import_set)
for module_name in import_set:
# Avoid parsing BentoML when BentoML is imported from local source code repo
if module_name == "bentoml":
continue
if module_name in self.parsed_module_set:
continue
self.parsed_module_set.add(module_name)
if module_name in self.module_manager.searched_modules:
m = self.module_manager.searched_modules[module_name]
if m.is_local:
# Recursively search dependencies in sub-modules
if m.path in self.module_manager.zip_modules:
self.seek_in_zip(m.path)
elif m.is_pkg:
self.seek_in_dir(os.path.join(m.path, m.name))
else:
self.seek_in_file(os.path.join(m.path, "{}.py".format(m.name)))
else:
# check if the package has already been added to the list
if (
module_name in self.module_manager.pip_module_map
and module_name not in self.dependencies
and module_name not in self.module_manager.setuptools_module_set
):
self.dependencies[
module_name
] = self.module_manager.pip_module_map[module_name]
else:
if module_name in self.module_manager.pip_module_map:
if module_name not in self.dependencies:
# In some special cases, the pip-installed module can not
# be located in the searched_modules
self.dependencies[
module_name
] = self.module_manager.pip_module_map[module_name]
else:
if module_name not in sys.builtin_module_names:
self.unknown_module_set.add(module_name)
def seek_in_dir(self, dir_path):
for path, dir_list, file_list in os.walk(dir_path):
for file_name in file_list:
if not file_name.endswith(".py"):
continue
self.seek_in_file(os.path.join(path, file_name))
for dir_name in dir_list:
if dir_name in ["__pycache__", ".ipynb_checkpoints"]:
continue
self.seek_in_dir(os.path.join(path, dir_name))
def seek_in_zip(self, zip_path):
with zipfile.ZipFile(zip_path) as zf:
for module_path in zf.infolist():
filename = module_path.filename
if filename.endswith(".py"):
logger.debug("Seeking modules in zip %s", filename)
content = self.module_manager.zip_modules[zip_path].get_source(
filename.replace(".py", "")
)
self.seek_in_source(content)
def lock_pypi_versions(package_list: t.List[str]) -> t.List[str]:
"""
Lock versions of pypi packages in current virtualenv
Args:
package_list List[str]:
List contains package names
Raises:
ValueError: if one package in `package_list` is not
available in current virtualenv
Returns:
list of lines for requirements.txt
Example Results:
* ['numpy==1.20.3', 'pandas==1.2.4', 'scipy==1.4.1']
"""
pkgs_with_version = []
for pkg in package_list:
version = get_pkg_version(pkg)
print(pkg, version)
if version:
pkg_line = f"{pkg}=={version}"
pkgs_with_version.append(pkg_line)
else:
# better warning or throw an exception?
raise ValueError(f"package {pkg} is not available in current virtualenv")
return pkgs_with_version
def with_pip_install_options(
package_lines: t.List[str],
index_url: t.Optional[str] = None,
extra_index_url: t.Optional[str] = None,
find_links: t.Optional[str] = None,
) -> t.List[str]:
"""
Lock versions of pypi packages in current virtualenv
Args:
package_lines List[str]:
List contains items each representing one line of requirements.txt
index_url Optional[str]:
value of --index-url
extra_index_url Optional[str]:
value of --extra_index-url
find_links Optional[str]:
value of --find-links
Returns:
list of lines for requirements.txt
Example Results:
* ['pandas==1.2.4 --index-url=https://mirror.baidu.com/pypi/simple',
'numpy==1.20.3 --index-url=https://mirror.baidu.com/pypi/simple']
"""
options = []
if index_url:
options.append(f"--index-url={index_url}")
if extra_index_url:
options.append(f"--extra-index-url={extra_index_url}")
if find_links:
options.append(f"--find-links={find_links}")
if not options:
return package_lines
option_str = " ".join(options)
pkgs_with_options = [pkg + " " + option_str for pkg in package_lines]
return pkgs_with_options
def find_required_pypi_packages(
svc: "Service", lock_versions: bool = True
) -> t.List[str]:
"""
Find required pypi packages in a python source file
Args:
path (`Union[str, bytes, os.PathLike]`):
Path to a python source file
lock_versions bool:
if the versions of packages should be locked
Returns:
list of lines for requirements.txt
Example Results:
* ['numpy==1.20.3', 'pandas==1.2.4']
* ['numpy', 'pandas']
"""
module_name = svc.__module__
module = sys.modules[module_name]
reqs, unknown_modules = seek_pip_packages(module.__file__)
for module_name in unknown_modules:
logger.warning("unknown package dependency for module: %s", module_name)
if lock_versions:
pkg_lines = ["%s==%s" % pkg for pkg in reqs.items()]
else:
pkg_lines = list(reqs.keys())
return pkg_lines
|
from __future__ import annotations
import typing as t
import logging
from typing import TYPE_CHECKING
import attr
from bentoml.exceptions import BentoMLException
from ..tag import Tag
from ..models import Model
from ..runner import Runner
from ..bento.bento import get_default_bento_readme
from .inference_api import InferenceAPI
from ..io_descriptors import IODescriptor
if TYPE_CHECKING:
from .. import external_typing as ext
from ..bento import Bento
WSGI_APP = t.Callable[
[t.Callable[..., t.Any], t.Mapping[str, t.Any]], t.Iterable[bytes]
]
logger = logging.getLogger(__name__)
def add_inference_api(
svc: Service,
func: t.Callable[..., t.Any],
input: IODescriptor[t.Any], # pylint: disable=redefined-builtin
output: IODescriptor[t.Any],
name: t.Optional[str],
doc: t.Optional[str],
route: t.Optional[str],
) -> None:
api = InferenceAPI(
name=name if name is not None else func.__name__,
user_defined_callback=func,
input_descriptor=input,
output_descriptor=output,
doc=doc,
route=route,
)
if api.name in svc.apis:
raise BentoMLException(
f"API {api.name} is already defined in Service {svc.name}"
)
from ..io_descriptors import Multipart
if isinstance(output, Multipart):
logger.warning(
f"Found Multipart as the output of API '{api.name}'. Multipart responses are rarely used in the real world, and few clients/browsers support it. Make sure you know what you are doing."
)
svc.apis[api.name] = api
def get_valid_service_name(user_provided_svc_name: str) -> str:
lower_name = user_provided_svc_name.lower()
if user_provided_svc_name != lower_name:
logger.warning(
f"converting {user_provided_svc_name} to lowercase: {lower_name}"
)
# Service name must be a valid Tag name; create a dummy tag to use its validation
Tag(lower_name)
return lower_name
@attr.define(frozen=True)
class Service:
"""The service definition is the manifestation of the Service Oriented Architecture
and the core building block in BentoML where users define the service runtime
architecture and model serving logic.
A BentoML service is defined via instantiate this Service class. When creating a
Service instance, user must provide a Service name and list of runners that are
required by this Service. The instance can then be used to define InferenceAPIs via
the `api` decorator.
"""
name: str
runners: t.List[Runner]
models: t.List[Model]
mount_apps: t.List[t.Tuple[ext.ASGIApp, str, str]] = attr.field(
init=False, factory=list
)
middlewares: t.List[
t.Tuple[t.Type[ext.AsgiMiddleware], t.Dict[str, t.Any]]
] = attr.field(init=False, factory=list)
apis: t.Dict[str, InferenceAPI] = attr.field(init=False, factory=dict)
# Tag/Bento are only set when the service was loaded from a bento
tag: Tag | None = attr.field(init=False, default=None)
bento: Bento | None = attr.field(init=False, default=None)
# Working dir and Import path of the service, set when the service was imported
_working_dir: str | None = attr.field(init=False, default=None)
_import_str: str | None = attr.field(init=False, default=None)
def __init__(
self,
name: str,
*,
runners: t.List[Runner] | None = None,
models: t.List[Model] | None = None,
):
"""
Args:
name:
runners:
models:
"""
name = get_valid_service_name(name)
# validate runners list contains Runner instances and runner names are unique
if runners is not None:
runner_names: t.Set[str] = set()
for r in runners:
assert isinstance(
r, Runner
), f'Service runners list can only contain bentoml.Runner instances, type "{type(r)}" found.'
if r.name in runner_names:
raise ValueError(
f"Found duplicate name `{r.name}` in service runners."
)
runner_names.add(r.name)
# validate models list contains Model instances
if models is not None:
for model in models:
assert isinstance(
model, Model
), f'Service models list can only contain bentoml.Model instances, type "{type(model)}" found.'
self.__attrs_init__( # type: ignore
name=name,
runners=[] if runners is None else runners,
models=[] if models is None else models,
)
def api(
self,
input: IODescriptor[t.Any], # pylint: disable=redefined-builtin
output: IODescriptor[t.Any],
name: t.Optional[str] = None,
doc: t.Optional[str] = None,
route: t.Optional[str] = None,
) -> t.Callable[[t.Callable[..., t.Any]], t.Callable[..., t.Any]]:
"""Decorator for adding InferenceAPI to this service"""
D = t.TypeVar("D", bound=t.Callable[..., t.Any])
def decorator(func: D) -> D:
add_inference_api(self, func, input, output, name, doc, route)
return func
return decorator
def __str__(self):
if self.bento:
return f'bentoml.Service(tag="{self.tag}", ' f'path="{self.bento.path}")'
elif self._import_str and self._working_dir:
return (
f'bentoml.Service(name="{self.name}", '
f'import_str="{self._import_str}", '
f'working_dir="{self._working_dir}")'
)
else:
return (
f'bentoml.Service(name="{self.name}", '
f'runners=[{",".join([r.name for r in self.runners])}])'
)
def __repr__(self):
return self.__str__()
@property
def doc(self) -> str:
if self.bento is not None:
return self.bento.doc
return get_default_bento_readme(self)
def openapi_doc(self):
from .openapi import get_service_openapi_doc
return get_service_openapi_doc(self)
def on_asgi_app_startup(self) -> None:
pass
def on_asgi_app_shutdown(self) -> None:
pass
@property
def asgi_app(self) -> "ext.ASGIApp":
from ..server.service_app import ServiceAppFactory
return ServiceAppFactory(self)()
def mount_asgi_app(
self, app: "ext.ASGIApp", path: str = "/", name: t.Optional[str] = None
) -> None:
self.mount_apps.append((app, path, name)) # type: ignore
def mount_wsgi_app(
self, app: WSGI_APP, path: str = "/", name: t.Optional[str] = None
) -> None:
# TODO: Migrate to a2wsgi
from starlette.middleware.wsgi import WSGIMiddleware
self.mount_apps.append((WSGIMiddleware(app), path, name)) # type: ignore
def add_asgi_middleware(
self, middleware_cls: t.Type["ext.AsgiMiddleware"], **options: t.Any
) -> None:
self.middlewares.append((middleware_cls, options))
def on_load_bento(svc: Service, bento: Bento):
object.__setattr__(svc, "bento", bento)
object.__setattr__(svc, "tag", bento.info.tag)
def on_import_svc(svc: Service, working_dir: str, import_str: str):
object.__setattr__(svc, "_working_dir", working_dir)
object.__setattr__(svc, "_import_str", import_str)
|
import typing as t
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from . import Service
from ..io_descriptors import IODescriptor
HEALTHZ_DESC = (
"Health check endpoint. Expecting an empty response with status code"
" <code>200</code> when the service is in health state. The <code>/healthz</code>"
" endpoint is <b>deprecated</b> (since Kubernetes v1.16)"
)
LIVEZ_DESC = (
"Health check endpoint for Kubernetes. Healthy endpoint responses with a"
" <code>200</code> OK status."
)
READYZ_DESC = (
"A <code>200</code> OK status from <code>/readyz</code> endpoint indicated"
" the service is ready to accept traffic. From that point and onward, Kubernetes"
" will use <code>/livez</code> endpoint to perform periodic health checks."
)
METRICS_DESC = "Prometheus metrics endpoint"
def _generate_responses_schema(
output: "IODescriptor[t.Any]",
) -> t.Dict[str, t.Dict[str, t.Any]]:
resp = {
"200": dict(
description="success",
content=output.openapi_responses_schema(),
),
"400": dict(description="Bad Request"),
"404": dict(description="Not Found"),
"500": dict(description="Internal Server Error"),
}
return resp
def get_service_openapi_doc(svc: "Service"):
info = {
"title": svc.name,
"description": "A Prediction Service built with BentoML",
"contact": {"email": "[email protected]"},
"version": svc.tag.version if svc.tag is not None else "0.0.0",
}
docs: t.Dict[str, t.Any] = {
"openapi": "3.0.0",
"info": info,
"tags": [
{
"name": "infra",
"description": "Infrastructure endpoints",
},
{
"name": "app",
"description": "Inference endpoints",
},
],
}
paths = {}
default_response = {"200": {"description": "success"}}
paths["/healthz"] = {
"get": {
"tags": ["infra"],
"description": HEALTHZ_DESC,
"responses": default_response,
}
}
paths["/livez"] = {
"get": {
"tags": ["infra"],
"description": LIVEZ_DESC,
"responses": default_response,
}
}
paths["/readyz"] = {
"get": {
"tags": ["infra"],
"description": READYZ_DESC,
"responses": default_response,
}
}
paths["/metrics"] = {
"get": {
"tags": ["infra"],
"description": METRICS_DESC,
"responses": default_response,
}
}
for api in svc.apis.values():
api_path = api.route if api.route.startswith("/") else f"/{api.route}"
paths[api_path] = {
"post": dict(
tags=["app"],
summary=f"{api}",
description=api.doc or "",
operationId=f"{svc.name}__{api.name}",
requestBody=dict(content=api.input.openapi_request_schema()),
responses=_generate_responses_schema(api.output),
# examples=None,
# headers=None,
)
}
docs["paths"] = paths
return docs
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.