python_code
stringlengths 0
108k
|
---|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class SGD(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
super(SGD, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
class SGD8bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
super(SGD8bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
class SGD32bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if momentum == 0:
raise NotImplementError(f'SGD without momentum is not supported!')
super(SGD32bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim import Optimizer
from bitsandbytes.optim.optimizer import Optimizer1State
class LARS(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
class LARS8bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
class LARS32bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
if momentum == 0:
raise NotImplementError(f'LARS without momentum is not supported!')
super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
class PytorchLARS(Optimizer):
def __init__(self, params, lr=0.01, momentum=0, dampening=0,
weight_decay=0, nesterov=False, max_unorm=0.02):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(PytorchLARS, self).__init__(params, defaults)
def __setstate__(self, state):
super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
d_p_list = []
momentum_buffer_list = []
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
max_unorm = group['max_unorm']
lr = group['lr']
for p in group['params']:
if p.grad is None: continue
state = self.state[p]
d_p = p.grad
if weight_decay != 0:
d_p = d_p.add(param, alpha=weight_decay)
if momentum != 0:
buf = state.get('momentum_buffer', None)
if buf is None:
buf = torch.clone(d_p).detach()
state['momentum_buffer']= buf
else:
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
update = d_p + buf*momentum
else:
update = buf
update_scale = 1.0
if max_unorm > 0.0:
assert p.dtype == torch.float32
pnorm = torch.norm(p.detach())
unorm = torch.norm(update)
if unorm > max_unorm*pnorm:
update_scale = max_unorm*pnorm/unorm
p.add_(update, alpha=-lr*update_scale)
return loss
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .adam import Adam, Adam8bit, Adam32bit
from .adamw import AdamW, AdamW8bit, AdamW32bit
from .sgd import SGD, SGD8bit, SGD32bit
from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS
from .lamb import LAMB, LAMB8bit, LAMB32bit
from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit
from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit
from .optimizer import GlobalOptimManager
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from bitsandbytes.optim.optimizer import Optimizer1State
torch.optim.Adagrad
class Adagrad(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
class Adagrad8bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
assert block_wise
super(Adagrad8bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
class Adagrad32bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad32bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F
class AdamW(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW, self).__init__('adam', params, lr, betas, eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
class AdamW8bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW8bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
class AdamW32bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW32bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import torch
import torch.distributed as dist
from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F
class Adam(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam, self).__init__('adam', params, lr, betas, eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
class Adam8bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam8bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
class Adam32bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam32bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
class AnalysisAdam(torch.optim.Optimizer):
"""Adam that performs 8-bit vs 32-bit error analysis.
This implementation is modified from torch.optim.Adam based on:
`Fixed Weight Decay Regularization in Adam`
(see https://arxiv.org/abs/1711.05101)
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
.. _Adam: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
bnb_analysis='dynamic-blockwise',
savedir=None
):
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
)
super(AnalysisAdam, self).__init__(params, defaults)
self.analysis = bnb_analysis
self.savedir = savedir
@property
def supports_memory_efficient_fp16(self):
return True
@property
def supports_flat_params(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p_id, p in enumerate(group["params"]):
if p.grad is None:
continue
grad = p.grad.data
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError(
"Adam does not support sparse gradients, please consider SparseAdam instead"
)
amsgrad = group.get("amsgrad", False)
assert not amsgrad
p_data_fp32 = p.data
if p.data.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p_data_fp32)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
state['abserrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
state['relerrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
state['counts'] = torch.zeros((256, 256), device=p_data_fp32.device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32)
else:
state["exp_avg"] = state["exp_avg"].to(p_data_fp32)
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32)
if amsgrad:
state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to(
p_data_fp32
)
state["step"] += 1
beta1, beta2 = group["betas"]
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
e = state['abserrors']
rele = state['relerrors']
counts = state['counts']
if group["weight_decay"] != 0:
p_data_fp32.add_(
p_data_fp32, alpha=-group["weight_decay"] * group["lr"]
)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.sqrt().add_(group["eps"])
update_fp32 = exp_avg/denom
if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000*1000:
# embedding layer or too small
p_data_fp32 += -step_size*update_fp32
else:
if self.analysis == 'dynamic-blockwise':
code1 = F.create_dynamic_map(signed=True).to(p.device)
code2 = F.create_dynamic_map(signed=False).to(p.device)
C1, S1 = F.quantize_blockwise(exp_avg, code=code1)
state1 = F.dequantize_blockwise(C1, S1)
C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2)
state2 = F.dequantize_blockwise(C2, S2)
elif self.analysis == 'dynamic':
code1 = F.create_dynamic_map(signed=True).to(p.device)
code2 = F.create_dynamic_map(signed=False).to(p.device)
C1, S1 = F.quantize(exp_avg, code=code1)
state1 = F.dequantize(C1, S1)
C2, S2 = F.quantize(exp_avg_sq, code=code2)
state2 = F.dequantize(C2, S2)
elif self.analysis == 'linear':
code1 = F.create_linear_map(signed=True).to(p.device)
code2 = F.create_linear_map(signed=False).to(p.device)
C1, S1 = F.quantize(exp_avg, code=code1)
state1 = F.dequantize(C1, S1)
C2, S2 = F.quantize(exp_avg_sq, code=code2)
state2 = F.dequantize(C2, S2)
elif self.analysis == 'quantile':
code1 = F.estimate_quantiles(exp_avg)
code2 = F.estimate_quantiles(exp_avg_sq)
C1 = F.quantize_no_absmax(exp_avg, code=code1)
state1 = F.dequantize_no_absmax(C1, code1)
C2 = F.quantize_no_absmax(exp_avg_sq, code=code2)
state2 = F.dequantize_no_absmax(C2, code2)
elif self.analysis == 'my-quantization-routine':
pass
# 1. get code
# 2. quantize
# 3. dequantize
# Error will be calculated automatically!
else:
raise ValueError(f'Invalid analysis value: {self.analysis}!')
denom = state2.sqrt().add_(group["eps"])
update_8bit = state1/denom
abserr = torch.abs(update_8bit-update_fp32)
relerr = abserr/torch.abs(update_fp32+1e-6)
C1, C2 = C1.int(), C2.int()
F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr)
F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr)
F.histogram_scatter_add_2d(counts, C1.int(), C2.int(), torch.ones_like(abserr))
p_data_fp32 += -step_size*update_fp32
if not dist.is_initialized() or dist.get_rank() == 0:
if self.savedir != '' and state['step'] % 100 == 0:
if not os.path.exists(self.savedir): os.makedirs(self.savedir)
shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
pathe = os.path.join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
pathrele = os.path.join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
pathcounts = os.path.join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
torch.save(e, pathe)
torch.save(rele, pathrele)
torch.save(counts, pathcounts)
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss
|
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import bitsandbytes.functional as F
from copy import deepcopy
from itertools import chain
from collections import defaultdict, abc as container_abcs
class MockArgs(object):
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
class GlobalOptimManager(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
def initialize(self):
self.pid2config = {}
self.index2config = {}
self.optimizer = None
self.uses_config_override = False
self.module_weight_config_triple = []
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def register_parameters(self, params):
param_groups = list(params)
if not isinstance(param_groups[0], dict):
param_groups = [{'params': param_groups}]
for group_index, group in enumerate(param_groups):
for p_index, p in enumerate(group['params']):
if id(p) in self.pid2config:
self.index2config[(group_index, p_index)] = self.pid2config[id(p)]
def override_config(self, parameters, key=None, value=None, key_value_dict=None):
'''
Overrides initial optimizer config for specific parameters.
The key-values of the optimizer config for the input parameters are overidden
This can be both, optimizer parameters like "betas", or "lr" or it can be
8-bit specific paramters like "optim_bits", "percentile_clipping".
Parameters
----------
parameters : torch.Tensor or list(torch.Tensors)
The input parameters.
key : str
The hyperparamter to override.
value : object
The value for the hyperparamters.
key_value_dict : dict
A dictionary with multiple key-values to override.
'''
self.uses_config_override = True
if isinstance(parameters, torch.nn.Parameter):
parameters = [parameters]
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
if key is not None and value is not None:
assert key_value_dict is None
key_value_dict = {key: value}
if key_value_dict is not None:
for p in parameters:
if id(p) in self.pid2config:self.pid2config[id(p)].update(key_value_dict)
else: self.pid2config[id(p)] = key_value_dict
def register_module_override(self, module, param_name, config):
self.module_weight_config_triple.append((module, param_name, config))
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
self.non_castable_tensor_keys = set(
['qmap1', 'qmap2',
'max1', 'max2',
'new_max1', 'new_max2',
'state1', 'state2',
'gnorm_vec', 'absmax1', 'absmax2',
'unorm_vec'])
if optim_bits == 8: self.fill_qmap()
def fill_qmap(self):
self.name2qmap['dynamic'] = F.create_dynamic_map(signed=True)
self.name2qmap['udynamic'] = F.create_dynamic_map(signed=False)
def __setstate__(self, state):
super(Optimizer8bit, self).__setstate__(state)
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
Args:
state_dict (dict): optimizer state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups)
saved_lens = (len(g['params']) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain.from_iterable((g['params'] for g in saved_groups)),
chain.from_iterable((g['params'] for g in groups)))}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
if isinstance(value, torch.Tensor):
# Floating-point types are a bit special here. They are the only ones
# that are assumed to always match the type of params.
if param.is_floating_point() and value.dtype != torch.uint8:
value = value.to(param.dtype)
return value
elif isinstance(value, dict):
for k, v in value.items():
if k in self.non_castable_tensor_keys:
value[k] = v.to(param.device)
else:
value[k] = cast(param, v)
return value
elif isinstance(value, container_abcs.Iterable):
return type(value)(cast(param, v) for v in value)
else:
return value
# Copy state assigned to params (and cast tensors to appropriate types).
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
else:
state[k] = v
# Update parameter groups, setting their 'params' value
def update_group(group, new_group):
new_group['params'] = group['params']
return new_group
param_groups = [
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({'state': state, 'param_groups': param_groups})
def to_gpu(self):
for gindex, group in enumerate(self.param_groups):
for pindex, p in enumerate(group['params']):
if p in self.state:
values = self.state[p]
for k, v in values.items():
if isinstance(v, torch.Tensor):
self.state[p][k] = v.to(p.device)
def check_overrides(self):
for module, attr, config in self.mng.module_weight_config_triple:
pmodule = getattr(module, attr)
assert pmodule is not None
assert isinstance(pmodule, torch.Tensor) or isinstance(pmodule, torch.Parameter)
found = False
for gindex, group in enumerate(self.param_groups):
if found: break
for pindex, p in enumerate(group['params']):
if found: break
if id(p) == id(pmodule):
# found the matching parameter
# init override
self.mng.pid2config[id(p)] = config
self.mng.index2config[(gindex, pindex)] = self.mng.pid2config[id(p)]
found = True
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
overflows = []
if not self.initialized:
self.check_overrides()
self.to_gpu() # needed for fairseq pure fp16 training
self.initialized = True
for gindex, group in enumerate(self.param_groups):
for pindex, p in enumerate(group['params']):
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
self.init_state(group, p, gindex, pindex)
self.update_step(group, p, gindex, pindex)
return loss
def get_config(self, gindex, pindex, group):
config = {}
config['betas'] = group['betas']
config['eps'] = group['eps']
config['weight_decay'] = group['weight_decay']
config['lr'] = group['lr']
config['optim_bits'] = self.args.optim_bits
config['min_8bit_size'] = self.args.min_8bit_size
config['percentile_clipping'] = self.args.percentile_clipping
config['block_wise'] = self.args.block_wise
config['max_unorm'] = self.args.max_unorm
config['skip_zeros'] = self.args.skip_zeros
if (gindex, pindex) in self.mng.index2config:
config.update(self.mng.index2config[(gindex, pindex)])
return config
def init_state(self, group, p, gindex, pindex):
raise NotImplementedError(f'init_state method needs to be overidden')
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(f'The update_step method needs to be overidden')
class Optimizer2State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
skip_zeros=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace('(', '').replace(')', '').strip().split(',')
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args['optim_bits'] = optim_bits
args['percentile_clipping'] = 100
args['min_8bit_size'] = min_8bit_size
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
args['skip_zeros'] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
@torch.no_grad()
def init_state(self, group, p, gindex, pindex):
config = self.get_config(gindex, pindex, group)
if config['optim_bits'] == 32:
dtype = torch.float32
elif config['optim_bits'] == 8:
dtype = torch.uint8
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
if p.numel() < config['min_8bit_size']: dtype = torch.float32
state = self.state[p]
state['step'] = 0
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
elif dtype == torch.uint8:
if state['step'] == 0:
if 'dynamic' not in self.name2qmap: self.fill_qmap()
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
self.name2qmap['udynamic'] = self.name2qmap['udynamic'].to(p.device)
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap1'] = self.name2qmap['dynamic']
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap2'] = self.name2qmap['udynamic']
if config['block_wise']:
n = p.numel()
blocks = n//2048
blocks += 1 if n % 2048 > 0 else 0
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
state['absmax2'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
else:
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
if config['percentile_clipping'] < 100:
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
if config['max_unorm'] > 0.0:
state['unorm_vec'] = torch.zeros((1,), device=p.device)
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
state = self.state[p]
grad = p.grad
config = self.get_config(gindex, pindex, group)
state['step'] += 1
step = state['step']
if config['percentile_clipping'] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
else:
gnorm_scale = 1.0
if state['state1'].dtype == torch.float:
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
state['state2'], config['betas'][1], config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'], skip_zeros=config['skip_zeros'])
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], state['qmap2'], state['max1'], state['max2'], state['new_max1'], state['new_max2'],
config['weight_decay'], gnorm_scale=gnorm_scale,
unorm_vec=state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
# swap maxes
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
state['max2'], state['new_max2'] = state['new_max2'], state['max2']
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], state['qmap2'], state['absmax1'], state['absmax2'],
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
class Optimizer1State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
skip_zeros=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args['optim_bits'] = optim_bits
args['percentile_clipping'] = 100
args['min_8bit_size'] = min_8bit_size
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
args['skip_zeros'] = skip_zeros
self.args = MockArgs(args)
else:
self.args = args
self.optimizer_name = optimizer_name
@torch.no_grad()
def init_state(self, group, p, gindex, pindex):
config = self.get_config(gindex, pindex, group)
if config['optim_bits'] == 32:
dtype = torch.float32
elif config['optim_bits'] == 8:
dtype = torch.uint8
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
if p.numel() < config['min_8bit_size']: dtype = torch.float32
state = self.state[p]
state['step'] = 0
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
elif dtype == torch.uint8:
if state['step'] == 0:
if 'dynamic' not in self.name2qmap: self.fill_qmap()
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap1'] = self.name2qmap['dynamic']
if config['block_wise']:
n = p.numel()
blocks = n//2048
blocks += 1 if n % 2048 > 0 else 0
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
else:
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
if config['percentile_clipping'] < 100:
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
if config['max_unorm'] > 0.0:
state['unorm_vec'] = torch.zeros((1,), device=p.device)
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
state = self.state[p]
grad = p.grad
config = self.get_config(gindex, pindex, group)
state['step'] += 1
step = state['step']
if config['percentile_clipping'] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
else:
gnorm_scale = 1.0
if state['state1'].dtype == torch.float:
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
None, 0.0, config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'],
skip_zeros=config['skip_zeros'])
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'], state['qmap1'], None, state['max1'], None, state['new_max1'], None,
config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], None, state['absmax1'], None,
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
|
import setuptools
if __name__ == "__main__":
setuptools.setup()
|
import os
import pytest
import bentoml
from bentoml._internal.models import ModelStore
from bentoml._internal.models import ModelContext
TEST_MODEL_CONTEXT = ModelContext(
framework_name="testing", framework_versions={"testing": "v1"}
)
@pytest.fixture(scope="function", name="change_test_dir")
def fixture_change_test_dir(request: pytest.FixtureRequest):
os.chdir(request.fspath.dirname) # type: ignore (bad pytest stubs)
yield
os.chdir(request.config.invocation_dir) # type: ignore (bad pytest stubs)
@pytest.fixture(scope="session", name="dummy_model_store")
def fixture_dummy_model_store(tmpdir_factory: "pytest.TempPathFactory") -> ModelStore:
store = ModelStore(tmpdir_factory.mktemp("models"))
with bentoml.models.create(
"testmodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
):
pass
with bentoml.models.create(
"testmodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
):
pass
with bentoml.models.create(
"anothermodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
):
pass
return store
|
import os
import random
import string
from sys import version_info as pyver
from typing import TYPE_CHECKING
try:
import importlib.metadata as importlib_metadata
except ModuleNotFoundError:
import importlib_metadata
import pytest
import bentoml
from bentoml.exceptions import NotFound
from bentoml._internal.models import ModelStore
from bentoml._internal.models import ModelContext
if TYPE_CHECKING:
from pathlib import Path
PYTHON_VERSION: str = f"{pyver.major}.{pyver.minor}.{pyver.micro}"
BENTOML_VERSION: str = importlib_metadata.version("bentoml")
def createfile(filepath: str) -> str:
content = "".join(random.choices(string.ascii_uppercase + string.digits, k=200))
os.makedirs(os.path.dirname(filepath), exist_ok=True)
with open(filepath, "w", encoding="utf-8") as f:
f.write(content)
return content
TEST_MODEL_CONTEXT = ModelContext(
framework_name="testing", framework_versions={"testing": "v1"}
)
def test_models(tmpdir: "Path"):
os.makedirs(os.path.join(tmpdir, "models"))
store = ModelStore(os.path.join(tmpdir, "models"))
with bentoml.models.create(
"testmodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
) as testmodel:
testmodel1tag = testmodel.tag
with bentoml.models.create(
"testmodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
) as testmodel:
testmodel2tag = testmodel.tag
testmodel_file_content = createfile(testmodel.path_of("file"))
testmodel_infolder_content = createfile(testmodel.path_of("folder/file"))
with bentoml.models.create(
"anothermodel",
module=__name__,
signatures={},
context=TEST_MODEL_CONTEXT,
_model_store=store,
) as anothermodel:
anothermodeltag = anothermodel.tag
anothermodel_file_content = createfile(anothermodel.path_of("file"))
anothermodel_infolder_content = createfile(anothermodel.path_of("folder/file"))
assert (
bentoml.models.get("testmodel:latest", _model_store=store).tag == testmodel2tag
)
assert set([model.tag for model in bentoml.models.list(_model_store=store)]) == {
testmodel1tag,
testmodel2tag,
anothermodeltag,
}
testmodel1 = bentoml.models.get(testmodel1tag, _model_store=store)
with pytest.raises(FileNotFoundError):
open(testmodel1.path_of("file"), encoding="utf-8")
testmodel2 = bentoml.models.get(testmodel2tag, _model_store=store)
with open(testmodel2.path_of("file"), encoding="utf-8") as f:
assert f.read() == testmodel_file_content
with open(testmodel2.path_of("folder/file"), encoding="utf-8") as f:
assert f.read() == testmodel_infolder_content
anothermodel = bentoml.models.get(anothermodeltag, _model_store=store)
with open(anothermodel.path_of("file"), encoding="utf-8") as f:
assert f.read() == anothermodel_file_content
with open(anothermodel.path_of("folder/file"), encoding="utf-8") as f:
assert f.read() == anothermodel_infolder_content
export_path = os.path.join(tmpdir, "testmodel2.bentomodel")
bentoml.models.export_model(testmodel2tag, export_path, _model_store=store)
bentoml.models.delete(testmodel2tag, _model_store=store)
with pytest.raises(NotFound):
bentoml.models.delete(testmodel2tag, _model_store=store)
assert set([model.tag for model in bentoml.models.list(_model_store=store)]) == {
testmodel1tag,
anothermodeltag,
}
retrieved_testmodel1 = bentoml.models.get("testmodel", _model_store=store)
assert retrieved_testmodel1.tag == testmodel1tag
assert retrieved_testmodel1.info.context.python_version == PYTHON_VERSION
assert retrieved_testmodel1.info.context.bentoml_version == BENTOML_VERSION
assert (
retrieved_testmodel1.info.context.framework_name
== TEST_MODEL_CONTEXT.framework_name
)
assert (
retrieved_testmodel1.info.context.framework_versions
== TEST_MODEL_CONTEXT.framework_versions
)
bentoml.models.import_model(export_path, _model_store=store)
assert bentoml.models.get("testmodel", _model_store=store).tag == testmodel2tag
export_path_2 = os.path.join(tmpdir, "testmodel1")
bentoml.models.export_model(testmodel1tag, export_path_2, _model_store=store)
bentoml.models.delete(testmodel1tag, _model_store=store)
bentoml.models.import_model(export_path_2 + ".bentomodel", _model_store=store)
assert bentoml.models.get("testmodel", _model_store=store).tag == testmodel2tag
|
from datetime import date
from datetime import datetime
from datetime import timedelta
import numpy as np
import pandas as pd
import pytest
from scipy.sparse import csr_matrix
import bentoml._internal.utils as utils
from bentoml._internal.types import MetadataDict
def test_validate_labels():
inp = {"label1": "label", "label3": "anotherlabel"}
outp = inp.copy()
utils.validate_labels(outp)
assert inp == outp
inp = {(12,): "non-string label key"}
with pytest.raises(ValueError):
utils.validate_labels(inp) # type: ignore (testing bad types)
inp = {"non-number label": 13}
with pytest.raises(ValueError):
utils.validate_labels(inp) # type: ignore (testing bad types)
inp = "non-dict labels"
with pytest.raises(ValueError):
utils.validate_labels(inp) # type: ignore (testing bad types)
def test_validate_metadata():
inp = "non-dict metadata" # type: ignore (testing bad types)
with pytest.raises(ValueError):
utils.validate_metadata(inp)
inp = {(12,): "non-string key"} # type: ignore (testing bad types)
with pytest.raises(ValueError):
utils.validate_metadata(inp)
# no validation required, inp == outp
inp: MetadataDict = {
"my key": 12,
"float": 13.3,
"string": "str",
"date": datetime(2022, 3, 14),
"timedelta": timedelta(days=3),
}
outp = inp.copy()
utils.validate_metadata(outp)
assert inp == outp
inp: MetadataDict = {"ndarray": np.array([1, 2, 3])} # type: ignore (we don't annotate translated types)
expected = {"ndarray": [1, 2, 3]}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"uint": np.uint(3)} # type: ignore (we don't annotate translated types)
expected = {"uint": 3}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"date": np.datetime64("2022-03-17")} # type: ignore (we don't annotate translated types)
expected = {"date": date(2022, 3, 17)}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"spmatrix": csr_matrix([0, 0, 0, 0, 0, 1, 1, 0, 2])} # type: ignore (we don't annotate translated types)
with pytest.raises(ValueError):
utils.validate_metadata(inp)
inp: MetadataDict = {"series": pd.Series([1, 2, 4], name="myseriesname")} # type: ignore (we don't annotate translated types)
expected = {"series": {"myseriesname": {0: 1, 1: 2, 2: 4}}}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"pandasarray": pd.arrays.PandasArray(np.array([2, 4, 6]))} # type: ignore (we don't annotate translated types)
expected = {"pandasarray": [2, 4, 6]}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {
"dataframe": pd.DataFrame(data={"col1": [1, 2], "col2": pd.Series({"a": 3, "b": 4})}) # type: ignore (we don't annotate translated types)
}
expected = {"dataframe": {"col1": {"a": 1, "b": 2}, "col2": {"a": 3, "b": 4}}}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"timestamp": pd.Timestamp(datetime(2022, 4, 12))} # type: ignore (we don't annotate translated types)
expected = {"timestamp": datetime(2022, 4, 12)}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"timedelta": pd.Timedelta(timedelta(2022))} # type: ignore (we don't annotate translated types)
expected = {"timedelta": timedelta(2022)}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"period": pd.Period("2012-05", freq="D")} # type: ignore (we don't annotate translated types)
expected = {"period": datetime(2012, 5, 1)}
utils.validate_metadata(inp)
assert inp == expected
inp: MetadataDict = {"interval": pd.Interval(left=0, right=5)} # type: ignore (we don't annotate translated types)
expected = {"interval": (0, 5)}
utils.validate_metadata(inp)
assert inp == expected
inp = {"unsupported": None} # type: ignore (testing bad types)
with pytest.raises(ValueError):
utils.validate_metadata(inp)
|
import os
import sys
import typing as t
from typing import TYPE_CHECKING
from datetime import datetime
import fs
import attr
import pytest
from bentoml import Tag
from bentoml.exceptions import NotFound
from bentoml.exceptions import BentoMLException
from bentoml._internal.store import Store
from bentoml._internal.store import StoreItem
if sys.version_info < (3, 7):
from backports.datetime_fromisoformat import MonkeyPatch
MonkeyPatch.patch_fromisoformat()
if TYPE_CHECKING:
from pathlib import Path
from fs.base import FS
from bentoml._internal.types import PathType
@attr.define(repr=False)
class DummyItem(StoreItem):
_tag: Tag
fs: "FS"
_creation_time: datetime
store: "DummyStore" = attr.field(init=False)
@staticmethod
def _export_ext() -> str:
return "bentodummy"
@property
def tag(self) -> Tag:
return self._tag
@property
def creation_time(self) -> datetime:
return self._creation_time
@staticmethod
def create(tag: t.Union[str, Tag], creation_time: t.Optional[datetime] = None):
creation_time = datetime.now() if creation_time is None else creation_time
with DummyItem.store.register(tag) as path:
dummy_fs = fs.open_fs(path)
dummy_fs.writetext("tag", str(tag))
dummy_fs.writetext("ctime", creation_time.isoformat())
@classmethod
def from_fs(cls, item_fs: "FS") -> "DummyItem":
return DummyItem(
Tag.from_str(item_fs.readtext("tag")),
item_fs,
datetime.fromisoformat(item_fs.readtext("ctime")),
)
class DummyStore(Store[DummyItem]):
def __init__(self, base_path: "t.Union[PathType, FS]"):
super().__init__(base_path, DummyItem)
def test_store(tmpdir: "Path"):
store = DummyStore(tmpdir)
open(os.path.join(tmpdir, ".DS_store"), "a", encoding="utf-8")
DummyItem.store = store
oldtime = datetime.now()
DummyItem.create("test:version1")
DummyItem.create("test:otherprefix")
DummyItem.create(Tag("test", "version2"))
DummyItem.create("test:version3", creation_time=oldtime)
DummyItem.create("test1:version1")
with pytest.raises(BentoMLException):
DummyItem.create("test:version2")
item = store.get("test:version1")
assert item.tag == Tag("test", "version1")
item = store.get("test:oth")
assert item.tag == Tag("test", "otherprefix")
latest = store.get("test:latest")
assert latest.tag == Tag("test", "version2")
latest = store.get("test")
assert latest.tag == Tag("test", "version2")
with pytest.raises(BentoMLException):
store.get("test:ver")
with pytest.raises(NotFound):
store.get("nonexistent:latest")
with pytest.raises(NotFound):
store.get("test:version4")
vers = store.list()
assert set([ver.tag for ver in vers]) == {
Tag("test", "version1"),
Tag("test", "version2"),
Tag("test", "version3"),
Tag("test", "otherprefix"),
Tag("test1", "version1"),
}
vers = store.list("test")
assert set([ver.tag for ver in vers]) == {
Tag("test", "version1"),
Tag("test", "version2"),
Tag("test", "version3"),
Tag("test", "otherprefix"),
}
vers = store.list("test:version1")
assert set([ver.tag for ver in vers]) == {Tag("test", "version1")}
assert store.list("nonexistent:latest") == []
assert store.list("test:version4") == []
store.delete("test:version2")
latest = store.get("test")
assert latest.tag == Tag("test", "otherprefix")
with pytest.raises(NotFound):
store.delete("test:version4")
store.delete("test1:version1")
with pytest.raises(NotFound):
store.get("test1")
with pytest.raises(NotFound):
store.list("test1")
store.delete("test")
with pytest.raises(NotFound):
store.list("test")
assert store.list() == []
|
import numpy as np
import pandas as pd
import pytest
import bentoml._internal.runner.container as c
@pytest.mark.parametrize("batch_dim_exc", [AssertionError])
@pytest.mark.parametrize("wrong_batch_dim", [1, 19])
def test_default_container(batch_dim_exc, wrong_batch_dim):
l1 = [1, 2, 3]
l2 = [3, 4, 5, 6]
batch, indices = c.DefaultContainer.batches_to_batch([l1, l2])
assert batch == l1 + l2
assert indices == [0, 3, 7]
restored_l1, restored_l2 = c.DefaultContainer.batch_to_batches(batch, indices)
assert restored_l1 == l1
assert restored_l2 == l2
# DefaultContainer should only allow batch_dim = 0
with pytest.raises(batch_dim_exc):
c.DefaultContainer.batches_to_batch([l1, l2], batch_dim=wrong_batch_dim)
with pytest.raises(batch_dim_exc):
c.DefaultContainer.batch_to_batches(batch, indices, batch_dim=wrong_batch_dim)
def _generator():
yield "apple"
yield "banana"
yield "cherry"
assert c.DefaultContainer.from_payload(
c.DefaultContainer.to_payload(_generator())
) == list(_generator())
assert c.DefaultContainer.from_batch_payloads(
c.DefaultContainer.batch_to_payloads(batch, indices)
) == (batch, indices)
@pytest.mark.parametrize("batch_dim", [0, 1])
def test_ndarray_container(batch_dim):
arr1 = np.ones((3, 3))
if batch_dim == 0:
arr2 = np.arange(6).reshape(2, 3)
else:
arr2 = np.arange(6).reshape(3, 2)
batches = [arr1, arr2]
batch, indices = c.NdarrayContainer.batches_to_batch(batches, batch_dim=batch_dim)
assert (batch == np.concatenate(batches, axis=batch_dim)).all()
restored_arr1, restored_arr2 = c.NdarrayContainer.batch_to_batches(
batch, indices, batch_dim=batch_dim
)
assert (arr1 == restored_arr1).all()
assert (arr2 == restored_arr2).all()
assert (
c.NdarrayContainer.from_payload(c.NdarrayContainer.to_payload(arr1)) == arr1
).all()
restored_batch, restored_indices = c.NdarrayContainer.from_batch_payloads(
c.NdarrayContainer.batch_to_payloads(batch, indices, batch_dim=batch_dim),
batch_dim=batch_dim,
)
assert restored_indices == indices
assert (restored_batch == batch).all()
@pytest.mark.parametrize("batch_dim_exc", [AssertionError])
@pytest.mark.parametrize("wrong_batch_dim", [1, 19])
def test_pandas_container(batch_dim_exc, wrong_batch_dim):
cols = ["a", "b", "c"]
arr1 = np.ones((3, 3))
df1 = pd.DataFrame(arr1, columns=cols)
arr2 = np.arange(6, dtype=np.float64).reshape(2, 3)
df2 = pd.DataFrame(arr2, columns=cols)
batches = [df1, df2]
batch, indices = c.PandasDataFrameContainer.batches_to_batch(batches)
assert batch.equals(pd.concat(batches, ignore_index=True))
restored_df1, restored_df2 = c.PandasDataFrameContainer.batch_to_batches(
batch, indices
)
assert df1.equals(restored_df1)
assert df2.equals(restored_df2)
assert c.PandasDataFrameContainer.from_payload(
c.PandasDataFrameContainer.to_payload(df1)
).equals(df1)
restored_batch, restored_indices = c.PandasDataFrameContainer.from_batch_payloads(
c.PandasDataFrameContainer.batch_to_payloads(batch, indices)
)
assert restored_indices == indices
assert restored_batch.equals(batch)
# PandasDataFrameContainer should only allow batch_dim = 0
with pytest.raises(batch_dim_exc):
c.PandasDataFrameContainer.batches_to_batch(batches, batch_dim=wrong_batch_dim)
with pytest.raises(batch_dim_exc):
c.PandasDataFrameContainer.batch_to_batches(
batch, indices, batch_dim=wrong_batch_dim
)
|
import numpy as np
from bentoml._internal.types import LazyType
def test_typeref():
# assert __eq__
assert LazyType("numpy", "ndarray") == np.ndarray
assert LazyType("numpy", "ndarray") == LazyType(type(np.array([2, 3])))
# evaluate
assert LazyType("numpy", "ndarray").get_class() == np.ndarray
|
import typing as t
import numpy as np
import pytest
import pydantic
from bentoml.io import File
from bentoml.io import JSON
from bentoml.io import Text
from bentoml.io import Image
from bentoml.io import Multipart
from bentoml.io import NumpyNdarray
from bentoml.io import PandasDataFrame
class _Schema(pydantic.BaseModel):
name: str
endpoints: t.List[str]
@pytest.mark.parametrize(
"exp, model",
[
(
{
"application/json": {
"schema": {
"title": "_Schema",
"type": "object",
"properties": {
"name": {"title": "Name", "type": "string"},
"endpoints": {
"title": "Endpoints",
"type": "array",
"items": {"type": "string"},
},
},
"required": ["name", "endpoints"],
}
}
},
_Schema,
),
({"application/json": {"schema": {"type": "object"}}}, None),
],
)
def test_json_openapi_schema(
exp: t.Dict[str, t.Any], model: t.Optional[pydantic.BaseModel]
):
assert JSON(pydantic_model=model).openapi_request_schema() == exp
assert JSON(pydantic_model=model).openapi_responses_schema() == exp
@pytest.mark.parametrize(
"exp, mime_type",
[
(
{
"application/octet-stream": {
"schema": {"type": "string", "format": "binary"}
}
},
None,
),
(
{"application/pdf": {"schema": {"type": "string", "format": "binary"}}},
"application/pdf",
),
],
)
def test_file_openapi_schema(exp: t.Dict[str, t.Any], mime_type: str):
assert File(mime_type=mime_type).openapi_request_schema() == exp
assert File(mime_type=mime_type).openapi_responses_schema() == exp
@pytest.mark.parametrize(
"exp, mime_type",
[
(
{"image/jpeg": {"schema": {"type": "string", "format": "binary"}}},
"image/jpeg",
),
(
{"image/png": {"schema": {"type": "string", "format": "binary"}}},
"image/png",
),
],
)
def test_image_openapi_schema(exp: t.Dict[str, t.Any], mime_type: str):
assert Image(mime_type=mime_type).openapi_request_schema() == exp
assert Image(mime_type=mime_type).openapi_responses_schema() == exp
def test_text_openapi_schema():
exp = {"text/plain": {"schema": {"type": "string"}}}
assert Text().openapi_request_schema() == exp
assert Text().openapi_responses_schema() == exp
@pytest.mark.parametrize(
"exp, kwargs",
[
(
{"application/json": {"schema": {"type": "object"}}},
{},
),
(
{"application/json": {"schema": {"type": "object"}}},
{"dtype": "int"},
),
(
{
"application/json": {
"schema": {
"type": "object",
"properties": {
"index": {"type": "array", "items": {"type": "integer"}},
"name": {"type": "array", "items": {"type": "string"}},
},
}
}
},
{
"dtype": {"index": "int64", "name": "str"},
"columns": ["int64", "str"],
},
),
(
{"application/octet-stream": {"schema": {"type": "object"}}},
{"default_format": "parquet"},
),
(
{"text/csv": {"schema": {"type": "object"}}},
{"default_format": "csv"},
),
],
)
def test_pandas_openapi_schema(exp: t.Dict[str, t.Any], kwargs: t.Dict[str, t.Any]):
assert PandasDataFrame(**kwargs).openapi_request_schema() == exp
assert PandasDataFrame(**kwargs).openapi_responses_schema() == exp
@pytest.mark.parametrize(
"exp, kwargs",
[
({"application/json": {"schema": {"type": "array", "items": {}}}}, {}),
(
{
"application/json": {
"schema": {"type": "array", "items": {"type": "object"}}
}
},
{"shape": (1,)},
),
(
{
"application/json": {
"schema": {"type": "array", "items": {"type": "number"}}
}
},
{"shape": (1,), "dtype": "complex128"},
),
(
{
"application/json": {
"schema": {"type": "array", "items": {"type": "number"}}
}
},
{"shape": (1,), "dtype": np.dtype("float32")},
),
(
{
"application/json": {
"schema": {
"type": "array",
"items": {"type": "array", "items": {"type": "integer"}},
}
}
},
{"shape": (3, 2), "dtype": np.dtype("int8")},
),
],
)
def test_numpy_openapi_schema(exp: t.Dict[str, t.Any], kwargs: t.Dict[str, t.Any]):
assert NumpyNdarray(**kwargs).openapi_request_schema() == exp
assert NumpyNdarray(**kwargs).openapi_responses_schema() == exp
def test_multipart_openapi_schema():
array = NumpyNdarray(shape=(3, 2), dtype=np.dtype("float32"))
dataframe = PandasDataFrame(
dtype={"index": "int64", "name": "str"},
columns=["index", "name"],
orient="records",
)
exp = {
"multipart/form-data": {
"schema": {
"type": "object",
"properties": {
"arr": {
"type": "array",
"items": {"type": "array", "items": {"type": "number"}},
},
"df": {
"type": "object",
"properties": {
"index": {"type": "array", "items": {"type": "integer"}},
"name": {"type": "array", "items": {"type": "string"}},
},
},
},
}
}
}
assert Multipart(arr=array, df=dataframe).openapi_request_schema() == exp
assert Multipart(arr=array, df=dataframe).openapi_responses_schema() == exp
|
import json
import typing as t
from dataclasses import dataclass
import numpy as np
import pytest
import pydantic
@dataclass
class _ExampleSchema:
name: str
endpoints: t.List[str]
class _Schema(pydantic.BaseModel):
name: str
endpoints: t.List[str]
test_arr = t.cast("np.ndarray[t.Any, np.dtype[np.int32]]", np.array([[1]]))
@pytest.mark.parametrize(
"obj",
[
_ExampleSchema(name="test", endpoints=["predict", "health"]),
_Schema(name="test", endpoints=["predict", "health"]),
test_arr,
],
)
def test_json_encoder(
obj: t.Union[
_ExampleSchema, pydantic.BaseModel, "np.ndarray[t.Any, np.dtype[t.Any]]"
]
) -> None:
from bentoml._internal.io_descriptors.json import DefaultJsonEncoder
dumped = json.dumps(
obj,
cls=DefaultJsonEncoder,
ensure_ascii=False,
allow_nan=False,
indent=None,
separators=(",", ":"),
)
assert (
dumped == '{"name":"test","endpoints":["predict","health"]}'
or dumped == "[[1]]"
)
|
from unittest.mock import patch
from schema import Or
from schema import And
from schema import Schema
import bentoml._internal.utils.analytics as analytics_lib
SCHEMA = Schema(
{
"common_properties": {
"timestamp": str,
"bentoml_version": str,
"client": {"creation_timestamp": str, "id": str},
"memory_usage_percent": Or(int, float),
"platform": str,
"python_version": str,
"total_memory_in_mb": int,
"yatai_user_email": Or(str, None),
"yatai_version": Or(str, None),
"yatai_org_uid": Or(str, None),
"yatai_cluster_uid": Or(str, None),
"yatai_deployment_uid": Or(str, None),
"is_interactive": bool,
"in_notebook": bool,
},
"event_properties": {
"module": str,
"model_size_in_kb": Or(float, int),
},
"session_id": str,
"event_type": And(str, str.islower),
}
)
def test_get_payload():
event_properties = analytics_lib.schemas.ModelSaveEvent(
module="test",
model_size_in_kb=123123123,
)
payload = analytics_lib.usage_stats.get_payload(
event_properties=event_properties, session_id="random_session_id"
)
assert SCHEMA.validate(payload)
@patch("bentoml._internal.utils.analytics.usage_stats.requests.post")
@patch("bentoml._internal.utils.analytics.usage_stats.do_not_track")
def test_send_usage(mock_do_not_track, mock_post):
event_properties = analytics_lib.schemas.ModelSaveEvent(
module="test",
model_size_in_kb=123123123,
)
mock_do_not_track.return_value = False
analytics_lib.track(
event_properties,
)
assert mock_do_not_track.called
assert mock_post.called
@patch("bentoml._internal.utils.analytics.usage_stats.requests.post")
@patch("bentoml._internal.utils.analytics.usage_stats.do_not_track")
def test_do_not_track(mock_do_not_track, mock_post):
event_properties = analytics_lib.schemas.ModelSaveEvent(
module="test",
model_size_in_kb=123123123,
)
mock_do_not_track.return_value = True
analytics_lib.track(
event_properties,
)
assert mock_do_not_track.called
assert not mock_post.called
@patch("bentoml._internal.utils.analytics.usage_stats.logger")
@patch("bentoml._internal.utils.analytics.usage_stats.requests.post")
@patch("bentoml._internal.utils.analytics.usage_stats.do_not_track")
def test_send_usage_failure(mock_do_not_track, mock_post, mock_logger):
event_properties = analytics_lib.schemas.ModelSaveEvent(
module="test",
model_size_in_kb=123123123,
)
mock_do_not_track.return_value = False
mock_post.side_effect = AssertionError("something went wrong")
# nothing should happen
analytics_lib.track(
event_properties,
)
assert mock_do_not_track.called
assert mock_post.called
mock_logger.debug.assert_called_with("Tracking Error: something went wrong")
|
import os
import typing as t
import psutil
import pytest
WINDOWS_PATHS = [
r"C:\foo\bar",
r"C:\foo\bar with space",
r"C:\\foo\\δΈζ",
r"relative\path",
# r"\\localhost\c$\WINDOWS\network",
# r"\\networkstorage\homes\user",
]
POSIX_PATHS = ["/foo/bar", "/foo/bar with space", "/foo/δΈζ", "relative/path"]
@pytest.fixture()
def example_paths():
if psutil.WINDOWS:
return WINDOWS_PATHS
else:
return POSIX_PATHS
def test_uri_path_conversion(
example_paths: t.List[str], # pylint: disable=redefined-outer-name
) -> None:
from bentoml._internal.utils.uri import path_to_uri
from bentoml._internal.utils.uri import uri_to_path
for path in example_paths:
restored = uri_to_path(path_to_uri(path))
assert restored == path or restored == os.path.abspath(path)
|
from __future__ import annotations
import os
from sys import version_info as pyver
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
import fs
import attr
import numpy as np
import pytest
import fs.errors
from bentoml import Tag
from bentoml.exceptions import BentoMLException
from bentoml._internal.models import ModelContext
from bentoml._internal.models import ModelOptions as InternalModelOptions
from bentoml._internal.models.model import Model
from bentoml._internal.models.model import ModelInfo
from bentoml._internal.models.model import ModelStore
from bentoml._internal.configuration import BENTOML_VERSION
if TYPE_CHECKING:
from pathlib import Path
TEST_MODEL_CONTEXT = ModelContext(
framework_name="testing", framework_versions={"testing": "v1"}
)
TEST_PYTHON_VERSION = f"{pyver.major}.{pyver.minor}.{pyver.micro}"
expected_yaml = """\
name: test
version: v1
module: test_model
labels:
label: stringvalue
options:
option_a: 1
option_b: foo
option_c:
- 0.1
- 0.2
metadata:
a: 0.1
b: 1
c:
- 2
- 3
- 4
context:
framework_name: testing
framework_versions:
testing: v1
bentoml_version: {bentoml_version}
python_version: {python_version}
signatures:
predict:
batchable: false
classify:
batchable: true
batch_dim:
- 0
- 0
predict_ii:
batchable: true
batch_dim:
- 0
- 3
classify_ii:
batchable: true
batch_dim:
- 1
- 3
api_version: v1
creation_time: '{creation_time}'
"""
@attr.define
class TestModelOptions(InternalModelOptions):
option_a: int
option_b: str
option_c: list[float]
ModelOptions = TestModelOptions
def test_model_info(tmpdir: "Path"):
start = datetime.now(timezone.utc)
modelinfo_a = ModelInfo(
tag=Tag("tag"),
module="module",
api_version="v1",
labels={},
options=TestModelOptions(option_a=42, option_b="foo", option_c=[0.1, 0.2]),
metadata={},
context=TEST_MODEL_CONTEXT,
signatures={"predict": {"batchable": True}},
)
end = datetime.now(timezone.utc)
assert modelinfo_a.context.bentoml_version == BENTOML_VERSION
assert modelinfo_a.context.python_version == TEST_PYTHON_VERSION
assert start <= modelinfo_a.creation_time <= end
tag = Tag("test", "v1")
module = __name__
labels = {"label": "stringvalue"}
options = TestModelOptions(option_a=1, option_b="foo", option_c=[0.1, 0.2])
metadata = {"a": 0.1, "b": 1, "c": np.array([2, 3, 4], dtype=np.uint32)}
# TODO: add test cases for input_spec and output_spec
signatures = {
"predict": {"batchable": False},
"classify": {"batchable": True, "batch_dim": (0, 0)},
"predict_ii": {"batchable": True, "batch_dim": (0, 3)},
"classify_ii": {"batchable": True, "batch_dim": (1, 3)},
}
modelinfo_b = ModelInfo(
tag=tag,
module=module,
api_version="v1",
labels=labels,
options=options,
metadata=metadata,
context=TEST_MODEL_CONTEXT,
signatures=signatures,
)
model_yaml_b_filename = os.path.join(tmpdir, "b_dump.yml")
with open(model_yaml_b_filename, "w", encoding="utf-8") as model_yaml_b:
modelinfo_b.dump(model_yaml_b)
with open(model_yaml_b_filename, encoding="utf-8") as model_yaml_b:
assert model_yaml_b.read() == expected_yaml.format(
bentoml_version=BENTOML_VERSION,
creation_time=modelinfo_b.creation_time.isoformat(),
python_version=TEST_PYTHON_VERSION,
)
with open(model_yaml_b_filename, encoding="utf-8") as model_yaml_b:
modelinfo_b_from_yaml = ModelInfo.from_yaml_file(model_yaml_b)
assert modelinfo_b_from_yaml == modelinfo_b
# attempt to test that serialization is deterministic
det_check_filename = os.path.join(tmpdir, "det_check.yml")
with open(det_check_filename, "a+", encoding="utf-8") as det_check_yaml:
modelinfo_b.dump(det_check_yaml)
old_info = det_check_yaml.read()
# re-flush
modelinfo_b.dump(det_check_yaml)
assert det_check_yaml.read() == old_info
def test_model_creationtime():
start = datetime.now(timezone.utc)
model_a = Model.create(
"testmodel",
module="test",
api_version="v1",
signatures={},
context=TEST_MODEL_CONTEXT,
)
end = datetime.now(timezone.utc)
assert model_a.tag.name == "testmodel"
assert start <= model_a.creation_time <= end
assert str(model_a) == f'Model(tag="{model_a.tag}")'
assert repr(model_a) == f'Model(tag="{model_a.tag}", path="{model_a.path}")'
class AdditionClass:
def __init__(self, x: int):
self.x = x
def __call__(self, y: int) -> int:
return self.x + y
add_num_1 = 5
@pytest.fixture(name="bento_model")
def fixture_bento_model():
model = Model.create(
"testmodel",
module=__name__,
api_version="v1",
signatures={},
context=TEST_MODEL_CONTEXT,
options=TestModelOptions(option_a=1, option_b="foo", option_c=[0.1, 0.2]),
custom_objects={
"add": AdditionClass(add_num_1),
},
)
model.flush()
return model
def test_model_equal(bento_model):
# note: models are currently considered to be equal if their tag is equal;
# this is a test of that behavior
eq_to_b = Model.create(
"tmp", module="bar", api_version="v1", signatures={}, context=TEST_MODEL_CONTEXT
)
eq_to_b._tag = bento_model._tag # type: ignore
assert eq_to_b == bento_model
assert eq_to_b.__hash__() == bento_model.__hash__()
def test_model_export_import(bento_model, tmpdir: "Path"):
# note: these tests rely on created models having a system path
sys_written_path = bento_model.path_of("sys_written/file")
assert sys_written_path == os.path.join(bento_model.path, "sys_written", "file")
os.makedirs(os.path.dirname(sys_written_path))
sys_written_content = "this is a test\n"
with open(
sys_written_path, mode="w", encoding="utf-8", newline=""
) as sys_written_file:
sys_written_file.write(sys_written_content)
with open(bento_model.path_of("sys_written/file"), encoding="utf-8") as f:
assert f.read() == sys_written_content
export_tar_path = f"tar://{fs.path.join(str(tmpdir), 'model_b.tar')}"
bento_model.export(export_tar_path)
tar_fs = fs.open_fs(export_tar_path)
from_tar_model = Model.from_fs(tar_fs)
assert from_tar_model == bento_model
assert from_tar_model.info == bento_model.info
assert (
from_tar_model._fs.readtext("sys_written/file") # type: ignore
== sys_written_content
)
assert from_tar_model.custom_objects["add"](4) == add_num_1 + 4 # type: ignore
with pytest.raises(fs.errors.NoSysPath):
assert from_tar_model.path
# tmpdir/modelb.bentomodel
export_bentomodel_path = fs.path.join(str(tmpdir), "modelb.bentomodel")
bento_model.export(export_bentomodel_path)
from_fs_model = Model.from_fs(
fs.tarfs.TarFS(export_bentomodel_path, compression="xz")
)
# can cause model.path to fail by using `from_fs`.
with pytest.raises(fs.errors.NoSysPath):
assert from_fs_model.path
model_store = ModelStore(tmpdir)
from_fs_model.save(model_store)
save_path = os.path.join(
tmpdir,
os.path.join(from_fs_model.tag.name, from_fs_model.tag.version) + os.path.sep,
)
assert str(from_fs_model) == f'Model(tag="{bento_model.tag}")'
assert repr(from_fs_model) == f'Model(tag="{bento_model.tag}", path="{save_path}")'
def test_load_bad_model(tmpdir: "Path"):
with pytest.raises(BentoMLException):
Model.from_fs(fs.open_fs(os.path.join(tmpdir, "nonexistent"), create=True))
bad_path = os.path.join(tmpdir, "badmodel")
os.makedirs(bad_path)
with open(
os.path.join(bad_path, "model.yaml"), "w", encoding="utf-8", newline=""
) as model_yaml:
model_yaml.write("bad yaml")
with pytest.raises(BentoMLException):
Model.from_fs(fs.open_fs(bad_path))
|
from __future__ import annotations
import os
from sys import version_info
from typing import TYPE_CHECKING
from datetime import datetime
from datetime import timezone
import fs
import pytest
from bentoml import Tag
from bentoml._internal.bento import Bento
from bentoml._internal.models import ModelStore
from bentoml._internal.bento.bento import BentoInfo
from bentoml._internal.bento.bento import BentoApiInfo
from bentoml._internal.bento.bento import BentoModelInfo
from bentoml._internal.bento.bento import BentoRunnerInfo
from bentoml._internal.configuration import BENTOML_VERSION
from bentoml._internal.runner.resource import Resource
from bentoml._internal.bento.build_config import BentoBuildConfig
if TYPE_CHECKING:
from pathlib import Path
def test_bento_info(tmpdir: Path):
start = datetime.now(timezone.utc)
bentoinfo_a = BentoInfo(tag=Tag("tag"), service="service")
end = datetime.now(timezone.utc)
assert bentoinfo_a.bentoml_version == BENTOML_VERSION
assert start <= bentoinfo_a.creation_time <= end
# validate should fail
tag = Tag("test", "version")
service = "testservice"
labels = {"label": "stringvalue"}
model_creation_time = datetime.now(timezone.utc)
model_a = BentoModelInfo(
tag=Tag("model_a", "v1"),
module="model_a_module",
creation_time=model_creation_time,
)
model_b = BentoModelInfo(
tag=Tag("model_b", "v3"),
module="model_b_module",
creation_time=model_creation_time,
)
models = [model_a, model_b]
runner_a = BentoRunnerInfo(
name="runner_a",
runnable_type="test_runnable_a",
models=["runner_a_model"],
resource_config=Resource(cpu=2),
)
runners = [runner_a]
api_predict = BentoApiInfo(
name="predict",
input_type="NumpyNdarray",
output_type="NumpyNdarray",
)
apis = [api_predict]
bentoinfo_b = BentoInfo(
tag=tag,
service=service,
labels=labels,
runners=runners,
models=models,
apis=apis,
)
bento_yaml_b_filename = os.path.join(tmpdir, "b_dump.yml")
with open(bento_yaml_b_filename, "w", encoding="utf-8") as bento_yaml_b:
bentoinfo_b.dump(bento_yaml_b)
expected_yaml = """\
service: testservice
name: test
version: version
bentoml_version: {bentoml_version}
creation_time: '{creation_time}'
labels:
label: stringvalue
models:
- tag: model_a:v1
module: model_a_module
creation_time: '{model_creation_time}'
- tag: model_b:v3
module: model_b_module
creation_time: '{model_creation_time}'
runners:
- name: runner_a
runnable_type: test_runnable_a
models:
- runner_a_model
resource_config:
cpu: 2
apis:
- name: predict
input_type: NumpyNdarray
output_type: NumpyNdarray
docker:
distro: debian
python_version: '{python_version}'
cuda_version: null
env: {{}}
system_packages: []
setup_script: null
base_image: null
dockerfile_template: null
python:
requirements_txt: null
packages: null
lock_packages: true
index_url: null
no_index: null
trusted_host: null
find_links: null
extra_index_url: null
pip_args: null
wheels: null
conda:
environment_yml: null
channels: null
dependencies: null
pip: null
"""
with open(bento_yaml_b_filename, encoding="utf-8") as bento_yaml_b:
assert bento_yaml_b.read() == expected_yaml.format(
bentoml_version=BENTOML_VERSION,
creation_time=bentoinfo_b.creation_time.isoformat(),
model_creation_time=model_creation_time.isoformat(),
python_version=f"{version_info.major}.{version_info.minor}",
)
with open(bento_yaml_b_filename, encoding="utf-8") as bento_yaml_b:
bentoinfo_b_from_yaml = BentoInfo.from_yaml_file(bento_yaml_b)
assert bentoinfo_b_from_yaml == bentoinfo_b
def build_test_bento(model_store: ModelStore) -> Bento:
bento_cfg = BentoBuildConfig(
"simplebento.py:svc",
include=["*.py", "config.json", "somefile", "*dir*", ".bentoignore"],
exclude=[
"*.storage",
"/somefile",
],
conda={
"environment_yml": "./environment.yaml",
},
docker={
"setup_script": "./setup_docker_container.sh",
},
labels={
"team": "foo",
"dataset_version": "abc",
"framework": "pytorch",
},
)
return Bento.create(bento_cfg, version="1.0", build_ctx="./simplebento")
def fs_identical(fs1: fs.base.FS, fs2: fs.base.FS):
for path in fs1.walk.dirs():
assert fs2.isdir(path)
for path in fs1.walk.files():
assert fs2.isfile(path)
assert fs1.readbytes(path) == fs2.readbytes(path)
@pytest.mark.usefixtures("change_test_dir")
def test_bento_export(tmpdir: "Path", dummy_model_store: "ModelStore"):
working_dir = os.getcwd()
testbento = build_test_bento(dummy_model_store)
# Bento build will change working dir to the build_context, this will reset it
os.chdir(working_dir)
cfg = BentoBuildConfig("bentoa.py:svc")
bentoa = Bento.create(cfg, build_ctx="./bentoa")
# Bento build will change working dir to the build_context, this will reset it
os.chdir(working_dir)
bentoa1 = Bento.create(cfg, build_ctx="./bentoa1")
# Bento build will change working dir to the build_context, this will reset it
os.chdir(working_dir)
cfg = BentoBuildConfig("bentob.py:svc")
bentob = Bento.create(cfg, build_ctx="./bentob")
bento = testbento
path = os.path.join(tmpdir, "testbento")
export_path = bento.export(path)
assert export_path == path + ".bento"
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
bento = bentoa
path = os.path.join(tmpdir, "bentoa")
export_path = bento.export(path)
assert export_path == path + ".bento"
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
bento = bentoa1
path = os.path.join(tmpdir, "bentoa1")
export_path = bento.export(path)
assert export_path == path + ".bento"
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
bento = bentob
path = os.path.join(tmpdir, "bentob")
export_path = bento.export(path)
assert export_path == path + ".bento"
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
bento = testbento
path = os.path.join(tmpdir, "testbento.bento")
export_path = bento.export(path)
assert export_path == path
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = os.path.join(tmpdir, "testbento-parent")
os.mkdir(path)
export_path = bento.export(path)
assert export_path == os.path.join(path, bento._export_name + ".bento")
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = os.path.join(tmpdir, "testbento-parent-2/")
with pytest.raises(ValueError):
export_path = bento.export(path)
path = os.path.join(tmpdir, "bento-dir")
os.mkdir(path)
export_path = bento.export(path)
assert export_path == os.path.join(path, bento._export_name + ".bento")
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = "temp://pytest-some-temp"
export_path = bento.export(path)
assert export_path.endswith(
os.path.join("pytest-some-temp", bento._export_name + ".bento")
)
# because this is a tempdir, it's cleaned up immediately after creation...
path = "osfs://" + fs.path.join(str(tmpdir), "testbento-by-url")
export_path = bento.export(path)
assert export_path == os.path.join(tmpdir, "testbento-by-url.bento")
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
imported_bento = Bento.import_from(path + ".bento")
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = "osfs://" + fs.path.join(str(tmpdir), "testbento-by-url")
with pytest.raises(ValueError):
bento.export(path, subpath="/badsubpath")
path = "zip://" + fs.path.join(str(tmpdir), "testbento.zip")
export_path = bento.export(path)
assert export_path == path
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = os.path.join(tmpdir, "testbento-gz")
os.mkdir(path)
export_path = bento.export(path, output_format="gz")
assert export_path == os.path.join(path, bento._export_name + ".gz")
assert os.path.isfile(export_path)
imported_bento = Bento.import_from(export_path)
assert imported_bento.tag == bento.tag
assert imported_bento.info == bento.info
del imported_bento
path = os.path.join(tmpdir, "testbento-gz-1/")
with pytest.raises(ValueError):
bento.export(path, output_format="gz")
@pytest.mark.usefixtures("change_test_dir")
def test_bento(dummy_model_store: ModelStore):
start = datetime.now(timezone.utc)
bento = build_test_bento(dummy_model_store)
end = datetime.now(timezone.utc)
assert bento.info.bentoml_version == BENTOML_VERSION
assert start <= bento.creation_time <= end
# validate should fail
with bento._fs as bento_fs: # type: ignore
assert set(bento_fs.listdir("/")) == {
"bento.yaml",
"apis",
"models",
"README.md",
"src",
"env",
}
assert set(bento_fs.listdir("src")) == {
"simplebento.py",
"subdir",
".bentoignore",
}
assert set(bento_fs.listdir("src/subdir")) == {"somefile"}
|
import bentoml
# import bentoml.sklearn
# from bentoml.io import NumpyNdarray
# iris_model_runner = bentoml.sklearn.load_runner('iris_classifier:latest')
svc = bentoml.Service(
"test.simplebento",
# runners=[iris_model_runner]
)
# @svc.api(input=NumpyNdarray(), output=NumpyNdarray())
# def predict(request_data: np.ndarray):
# return iris_model_runner.predict(request_data)
# For simple use cases, only models list is required:
# svc.bento_options.models = []
# svc.bento_files.include = ["*"]
# svc.bento_env.pip_install = "./requirements.txt"
|
import bentoml
svc = bentoml.Service("test.bentoa")
|
import bentoml
svc = bentoml.Service("test.bentob")
|
import bentoml
svc = bentoml.Service("test.bentoa")
|
import typing as t
import tempfile
from typing import TYPE_CHECKING
import pytest
from bentoml._internal.models import ModelStore
if TYPE_CHECKING:
from _pytest.nodes import Item
from _pytest.config import Config
from _pytest.config.argparsing import Parser
def pytest_addoption(parser: "Parser") -> None:
parser.addoption(
"--runslow", action="store_true", default=False, help="run slow tests"
)
parser.addoption(
"--gpus", action="store_true", default=False, help="run gpus related tests"
)
def pytest_collection_modifyitems(config: "Config", items: t.List["Item"]) -> None:
if config.getoption("--gpus"):
return
skip_gpus = pytest.mark.skip(reason="need --gpus option to run")
for item in items:
if "gpus" in item.keywords:
item.add_marker(skip_gpus)
def pytest_sessionstart(session):
path = tempfile.mkdtemp("bentoml-pytest")
from bentoml._internal.configuration.containers import BentoMLContainer
BentoMLContainer.model_store.set(ModelStore(path))
|
from __future__ import annotations
import typing as t
from typing import TYPE_CHECKING
import numpy as np
import pytest
import bentoml
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.tensorflow_utils import CustomLayer
from tests.utils.frameworks.tensorflow_utils import custom_activation
from tests.utils.frameworks.tensorflow_utils import KerasSequentialModel
if TYPE_CHECKING:
import tensorflow.keras as keras
MODEL_NAME = __name__.split(".")[-1]
test_data = [1, 2, 3, 4, 5]
res = KerasSequentialModel().predict(np.array([test_data]))
def predict_assert_equal(model: "keras.Model") -> None:
t_data = np.array([test_data])
assert model.predict(t_data) == res
@pytest.mark.parametrize(
"model, kwargs",
[
(
KerasSequentialModel(),
{},
),
(
KerasSequentialModel(),
{
"custom_objects": {
"CustomLayer": CustomLayer,
"custom_activation": custom_activation,
},
},
),
],
)
def test_keras_save_load(
model: "keras.Model",
kwargs: t.Dict[str, t.Any],
) -> None:
bento_model = bentoml.keras.save_model(MODEL_NAME, model, **kwargs)
assert bento_model == bentoml.keras.get(bento_model.tag)
assert_have_file_extension(bento_model.path, ".pb")
loaded = bentoml.keras.load_model(bento_model.tag)
predict_assert_equal(loaded)
@pytest.mark.parametrize("signatures", [None, {"__call__": {"batchable": True}}])
def test_keras_run(signatures) -> None:
model = KerasSequentialModel()
bento_model = bentoml.keras.save_model(MODEL_NAME, model, signatures=signatures)
runner = bento_model.to_runner()
runner.init_local()
# keras model's `__call__` will return a Tensor instead of
# ndarray, here we test if we convert the Tensor to ndarray
run_res = runner.run([test_data])
assert isinstance(run_res, np.ndarray)
assert np.array_equal(run_res, res)
|
import pandas as pd
import pytest
import pyspark.ml
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from bentoml.pyspark import PySparkMLlibModel
from bentoml.pyspark import SPARK_SESSION_NAMESPACE
spark_session = SparkSession.builder.appName(SPARK_SESSION_NAMESPACE).getOrCreate()
train_pd_df = pd.DataFrame([[0, -1.0], [1, 1.0]], columns=["label", "feature1"])
test_pd_df = pd.DataFrame([-5.0, 5.0, -0.5, 0.5], columns=["feature1"])
def predict_df(model: pyspark.ml.Model, df: "pd.DataFrame"):
spark_df = spark_session.createDataFrame(df)
col_labels = [str(c) for c in list(df.columns)]
assembler = VectorAssembler(inputCols=col_labels, outputCol="features")
spark_df = assembler.transform(spark_df).select(["features"])
output_df = model.transform(spark_df)
return output_df.select("prediction").toPandas().prediction.values
@pytest.fixture(scope="module")
def pyspark_model():
train_sp_df = spark_session.createDataFrame(train_pd_df)
assembler = VectorAssembler(inputCols=["feature1"], outputCol="features")
train_sp_df = assembler.transform(train_sp_df).select(["features", "label"])
# train model (x=neg -> y=0, x=pos -> y=1)
lr = LogisticRegression()
model = lr.fit(train_sp_df)
return model
def test_pyspark_mllib_save_load(
tmpdir, pyspark_model
): # pylint: disable=redefined-outer-name
PySparkMLlibModel(pyspark_model).save(tmpdir)
pyspark_loaded: pyspark.ml.Model = PySparkMLlibModel.load(tmpdir)
assert (
predict_df(pyspark_loaded, test_pd_df).tolist()
== predict_df(pyspark_model, test_pd_df).tolist()
)
|
from __future__ import annotations
import os
import pkgutil
from types import ModuleType
from importlib import import_module
import pytest
from .models import FrameworkTestModel
def pytest_addoption(parser: pytest.Parser):
parser.addoption("--framework", action="store", default=None)
def pytest_generate_tests(metafunc: pytest.Metafunc) -> None:
framework_name: str = metafunc.config.getoption("framework") # type: ignore
if "framework" in metafunc.fixturenames and "test_model" in metafunc.fixturenames:
metafunc.parametrize("framework,test_model", test_inputs(framework_name))
elif "framework" in metafunc.fixturenames:
metafunc.parametrize(
"framework", [inp[0] for inp in test_inputs(framework_name)]
)
def test_inputs(framework: str | None) -> list[tuple[ModuleType, FrameworkTestModel]]:
if framework is None:
frameworks = [
name
for _, name, _ in pkgutil.iter_modules(
[os.path.join(os.path.dirname(__file__), "models")]
)
]
else:
frameworks = [framework]
input_modules: list[ModuleType] = []
for framework_name in frameworks:
try:
input_modules.append(
import_module(
f".{framework_name}", "tests.integration.frameworks.models"
)
)
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
f"Failed to find test module for framework {framework_name} (tests.integration.frameworks.models.{framework_name})"
) from e
return [
(module.framework, _model)
for module in input_modules
for _model in module.models
]
|
from __future__ import annotations
import types
import typing as t
import pytest
import bentoml
from bentoml.exceptions import NotFound
from bentoml._internal.models.model import ModelContext
from bentoml._internal.models.model import ModelSignature
from bentoml._internal.runner.runner import Runner
from bentoml._internal.runner.resource import Resource
from bentoml._internal.runner.runner_handle.local import LocalRunnerRef
from .models import FrameworkTestModel
def test_wrong_module_load_exc(framework: types.ModuleType):
with bentoml.models.create(
"wrong_module",
module=__name__,
context=ModelContext("wrong_module", {"wrong_module": "1.0.0"}),
signatures={},
) as ctx:
tag = ctx.tag
model = ctx
with pytest.raises(
NotFound, match=f"Model wrong_module:.* was saved with module {__name__}, "
):
framework.get(tag)
with pytest.raises(
NotFound, match=f"Model wrong_module:.* was saved with module {__name__}, "
):
framework.load_model(tag)
with pytest.raises(
NotFound, match=f"Model wrong_module:.* was saved with module {__name__}, "
):
framework.load_model(model)
def test_generic_arguments(framework: types.ModuleType, test_model: FrameworkTestModel):
# test that the generic save API works
from sklearn.preprocessing import StandardScaler # type: ignore (bad sklearn types)
scaler: StandardScaler = StandardScaler().fit( # type: ignore (bad sklearn types)
[[4], [3], [7], [8], [4], [3], [9], [6]]
)
assert scaler.mean_[0] == 5.5 # type: ignore (bad sklearn types)
assert scaler.var_[0] == 4.75 # type: ignore (bad sklearn types)
kwargs = test_model.save_kwargs.copy()
kwargs["signatures"] = {
"pytest-signature-rjM5": {"batchable": True, "batch_dim": (1, 0)}
}
kwargs["labels"] = {
"pytest-label-N4nr": "pytest-label-value-4mH7",
"pytest-label-7q72": "pytest-label-value-3mDd",
}
kwargs["custom_objects"] = {"pytest-custom-object-r7BU": scaler}
kwargs["metadata"] = {
"pytest-metadata-vSW4": [0, 9, 2],
"pytest-metadata-qJJ3": "Wy5M",
}
bento_model = framework.save_model(
test_model.name,
test_model.model,
**kwargs,
)
meth = "pytest-signature-rjM5"
assert bento_model.info.signatures[meth] == ModelSignature.from_dict(kwargs["signatures"][meth]) # type: ignore
assert bento_model.info.labels == kwargs["labels"]
# print(bento_model.custom_objects)
assert bento_model.custom_objects["pytest-custom-object-r7BU"].mean_[0] == 5.5
assert bento_model.custom_objects["pytest-custom-object-r7BU"].var_[0] == 4.75
assert bento_model.info.metadata == kwargs["metadata"]
@pytest.fixture(name="saved_model")
def fixture_saved_model(
framework: types.ModuleType, test_model: FrameworkTestModel
) -> bentoml.Model:
return framework.save_model(
test_model.name, test_model.model, **test_model.save_kwargs
)
def test_get(
framework: types.ModuleType,
test_model: FrameworkTestModel,
saved_model: bentoml.Model,
):
# test that the generic get API works
bento_model = framework.get(saved_model.tag)
assert bento_model == saved_model
assert bento_model.info.name == test_model.name
bento_model_from_str = framework.get(str(saved_model.tag))
assert bento_model == bento_model_from_str
def test_get_runnable(
framework: types.ModuleType,
saved_model: bentoml.Model,
):
runnable = framework.get_runnable(saved_model)
assert isinstance(
runnable, t.Type
), "get_runnable for {bento_model.info.name} does not return a type"
assert issubclass(
runnable, bentoml.Runnable
), "get_runnable for {bento_model.info.name} doesn't return a subclass of bentoml.Runnable"
assert (
len(runnable.methods) > 0
), "get_runnable for {bento_model.info.name} gives a runnable with no methods"
def test_load(
framework: types.ModuleType,
test_model: FrameworkTestModel,
saved_model: bentoml.Model,
):
for configuration in test_model.configurations:
model = framework.load_model(saved_model)
configuration.check_model(model, Resource())
for method, inps in configuration.test_inputs.items():
for inp in inps:
args = [inp.preprocess(arg) for arg in inp.input_args]
kwargs = {
key: inp.preprocess(kwarg)
for key, kwarg in inp.input_kwargs.items()
}
out = getattr(model, method)(*args, **kwargs)
inp.check_output(out)
def test_runner_batching(
test_model: FrameworkTestModel,
saved_model: bentoml.Tag,
):
from bentoml._internal.runner.utils import Params
from bentoml._internal.runner.utils import payload_paramss_to_batch_params
from bentoml._internal.runner.container import AutoContainer
ran_tests = False
for config in test_model.configurations:
runner = saved_model.with_options(**config.load_kwargs).to_runner()
runner.init_local()
for meth, inputs in config.test_inputs.items():
if len(inputs) < 2:
continue
ran_tests = True
batch_dim = getattr(runner, meth).config.batch_dim
paramss = [
Params(*inp.input_args, **inp.input_kwargs).map(
# pylint: disable=cell-var-from-loop # lambda used before loop continues
lambda arg: AutoContainer.to_payload(arg, batch_dim=batch_dim[0])
)
for inp in inputs
]
params, indices = payload_paramss_to_batch_params(paramss, batch_dim[0])
batch_res = getattr(runner, meth).run(*params.args, **params.kwargs)
outps = AutoContainer.batch_to_payloads(batch_res, indices, batch_dim[1])
for i, outp in enumerate(outps):
inputs[i].check_output(AutoContainer.from_payload(outp))
runner.destroy()
if not ran_tests:
pytest.skip(
"skipping batching tests because no configuration had multiple test inputs"
)
@pytest.mark.gpus
def test_runner_nvidia_gpu(
framework: types.ModuleType,
test_model: FrameworkTestModel,
saved_model: bentoml.Tag,
):
gpu_resource = Resource(nvidia_gpu=1.0)
ran_tests = False
for config in test_model.configurations:
model_with_options = saved_model.with_options(**config.load_kwargs)
runnable = framework.get_runnable(model_with_options)
if not runnable.SUPPORT_NVIDIA_GPU:
continue
ran_tests = True
runner = Runner(runnable, nvidia_gpu=1)
for meth, inputs in config.test_inputs.items():
# TODO: use strategies to initialize GPU
# strategy = DefaultStrategy()
# strategy.setup_worker(runnable, gpu_resource)
runner.init_local()
runner_handle = t.cast(LocalRunnerRef, runner._runner_handle)
runnable = runner_handle._runnable
if hasattr(runnable, "model") and runnable.model is not None:
config.check_model(runner, gpu_resource)
for inp in inputs:
outp = getattr(runner, meth).run(*inp.input_args, **inp.input_kwargs)
inp.check_output(outp)
runner.destroy()
if not ran_tests:
pytest.skip(
f"no configurations for model '{test_model.name}' supported running on Nvidia GPU"
)
|
import typing as t
from typing import TYPE_CHECKING
import pytest
import requests
import transformers
import transformers.pipelines
from PIL import Image
from transformers.trainer_utils import set_seed
import bentoml
if TYPE_CHECKING:
from bentoml._internal.external_typing import transformers as ext
set_seed(124)
def tf_gpt2_pipeline():
model = transformers.TFAutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2")
return transformers.pipeline(
task="text-generation", model=model, tokenizer=tokenizer
)
def pt_gpt2_pipeline():
model = transformers.AutoModelForCausalLM.from_pretrained("gpt2", from_tf=False)
tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2", from_tf=False)
return transformers.pipeline(
task="text-generation", model=model, tokenizer=tokenizer
)
@pytest.mark.parametrize(
"name, pipeline, with_options, expected_options, input_data",
[
(
"text-generation",
transformers.pipeline(task="text-generation"), # type: ignore
{},
{"task": "text-generation", "kwargs": {}},
"A Bento box is a ",
),
(
"text-generation",
transformers.pipeline(task="text-generation"), # type: ignore
{"kwargs": {"a": 1}},
{"task": "text-generation", "kwargs": {"a": 1}},
"A Bento box is a ",
),
(
"text-generation",
tf_gpt2_pipeline(),
{},
{"task": "text-generation", "kwargs": {}},
"A Bento box is a ",
),
(
"text-generation",
pt_gpt2_pipeline(),
{},
{"task": "text-generation", "kwargs": {}},
"A Bento box is a ",
),
(
"image-classification",
transformers.pipeline("image-classification"), # type: ignore
{},
{"task": "image-classification", "kwargs": {}},
Image.open(
requests.get(
"http://images.cocodataset.org/val2017/000000039769.jpg",
stream=True,
).raw
),
),
(
"text-classification",
transformers.pipeline("text-classification"), # type: ignore
{},
{"task": "text-classification", "kwargs": {}},
"BentoML is an awesome library for machine learning.",
),
],
)
def test_transformers(
name: str,
pipeline: "ext.TransformersPipelineType", # type: ignore
with_options: t.Dict[str, t.Any],
expected_options: t.Dict[str, t.Any],
input_data: t.Any,
):
saved_model = bentoml.transformers.save_model(name, pipeline)
assert saved_model is not None
assert saved_model.tag.name == name
bento_model: bentoml.Model = saved_model.with_options(**with_options)
assert bento_model.tag == saved_model.tag
assert bento_model.info.context.framework_name == "transformers"
assert bento_model.info.options.task == expected_options["task"] # type: ignore
assert bento_model.info.options.kwargs == expected_options["kwargs"] # type: ignore
runnable: bentoml.Runnable = bentoml.transformers.get_runnable(bento_model)()
output_data = runnable(input_data) # type: ignore
assert output_data is not None
|
import os
import typing as t
import tempfile
import contextlib
import fasttext
from bentoml.fasttext import FastTextModel
test_json: t.Dict[str, str] = {"text": "foo"}
@contextlib.contextmanager
def _temp_filename_with_content(contents: t.Any) -> t.Generator[str, None, None]:
temp_file = tempfile.NamedTemporaryFile(suffix=".txt", mode="w+")
temp_file.write(contents)
temp_file.seek(0)
yield temp_file.name
temp_file.close()
def test_fasttext_save_load(tmpdir):
with _temp_filename_with_content("__label__bar foo") as inf:
model = fasttext.train_supervised(input=inf)
FastTextModel(model).save(tmpdir)
assert os.path.isfile(os.path.join(tmpdir, "saved_model"))
fasttext_loaded: "fasttext.FastText._FastText" = FastTextModel.load(tmpdir)
assert fasttext_loaded.predict(test_json["text"])[0] == ("__label__bar",)
|
import typing as t
from typing import TYPE_CHECKING
import numpy as np
import pytest
import bentoml
import bentoml.models
if TYPE_CHECKING:
from bentoml._internal.store import Tag
class MyCoolModel:
def predict(self, some_integer: int):
return some_integer**2
def batch_predict(self, some_integer: t.List[int]):
return list(map(lambda x: x**2, some_integer))
def save_test_model(
metadata: t.Dict[str, t.Any],
labels: t.Optional[t.Dict[str, str]] = None,
custom_objects: t.Optional[t.Dict[str, t.Any]] = None,
) -> "Tag":
model_to_save = MyCoolModel()
bento_model = bentoml.picklable_model.save_model(
"test_picklable_model",
model_to_save,
signatures={
"predict": {"batchable": False},
"batch_predict": {"batchable": True},
},
metadata=metadata,
labels=labels,
custom_objects=custom_objects,
)
return bento_model
@pytest.mark.parametrize(
"metadata",
[({"model": "PicklableModel", "test": True})],
)
def test_picklable_model_save_load(
metadata: t.Dict[str, t.Any],
) -> None:
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
bentomodel = save_test_model(
metadata, labels=labels, custom_objects={"func": custom_f}
)
assert bentomodel.info.metadata is not None
for k in labels.keys():
assert labels[k] == bentomodel.info.labels[k]
assert bentomodel.custom_objects["func"](3) == custom_f(3)
loaded_model = bentoml.picklable_model.load_model(bentomodel.tag)
assert isinstance(loaded_model, MyCoolModel)
assert loaded_model.predict(4) == np.array([16])
def test_picklable_runner() -> None:
bento_model = save_test_model({})
runner = bento_model.to_runner()
runner.init_local()
assert runner.models[0].tag == bento_model.tag
assert runner.predict.run(3) == np.array([9])
assert runner.batch_predict.run([3, 9]) == [9, 81]
def test_picklable_model_default_signature() -> None:
bento_model = bentoml.picklable_model.save_model(
"test_pickle_model", lambda x: x**2, metadata={}
)
runner = bento_model.to_runner()
runner.init_local()
assert runner.models[0].tag == bento_model.tag
assert runner.run(3) == np.array([9])
|
import typing as t
from typing import TYPE_CHECKING
import numpy as np
import pytest
from sklearn.ensemble import RandomForestClassifier
import bentoml
import bentoml.models
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.sklearn_utils import sklearn_model_data
# fmt: off
res_arr = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
)
# fmt: on
if TYPE_CHECKING:
from bentoml import Tag
def save_test_model(
metadata: t.Dict[str, t.Any],
labels: t.Optional[t.Dict[str, str]] = None,
custom_objects: t.Optional[t.Dict[str, t.Any]] = None,
) -> "Tag":
model, _ = sklearn_model_data(clf=RandomForestClassifier)
tag_info = bentoml.sklearn.save_model(
"test_sklearn_model",
model,
metadata=metadata,
labels=labels,
custom_objects=custom_objects,
)
return tag_info
@pytest.mark.parametrize(
"metadata",
[
({"model": "Sklearn", "test": True}),
({"acc": 0.876}),
],
)
def test_sklearn_save_load(metadata: t.Dict[str, t.Any]) -> None:
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
_, data = sklearn_model_data(clf=RandomForestClassifier)
bentomodel = save_test_model(
metadata, labels=labels, custom_objects={"func": custom_f}
)
assert bentomodel.info.metadata is not None
assert_have_file_extension(bentomodel.path, ".pkl")
for k in labels.keys():
assert labels[k] == bentomodel.info.labels[k]
assert bentomodel.custom_objects["func"](3) == custom_f(3)
loaded = bentoml.sklearn.load_model(bentomodel.tag)
assert isinstance(loaded, RandomForestClassifier)
np.testing.assert_array_equal(loaded.predict(data), res_arr)
def test_sklearn_runner() -> None:
_, data = sklearn_model_data(clf=RandomForestClassifier)
bento_model = save_test_model({})
runner = bento_model.to_runner()
runner.init_local()
assert runner.models[0].tag == bento_model.tag
assert runner.scheduled_worker_count == 1
res = runner.run(data)
assert (res == res_arr).all()
|
import numpy as np
import pandas as pd
from fastai.learner import Learner
from fastai.data.block import DataBlock
from fastai.torch_core import Module
from bentoml.fastai import FastAIModel
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.pytorch_utils import test_df
from tests.utils.frameworks.pytorch_utils import LinearModel
def get_items(_x):
return np.ones([5, 5], np.float32)
class Loss(Module):
reduction = "none"
def forward(self, x, _y):
return x
def activation(self, x):
return x
def decodes(self, x):
return x
def pack_models(path: str) -> None:
model = LinearModel()
loss = Loss()
dblock = DataBlock(get_items=get_items, get_y=np.sum)
dls = dblock.datasets(None).dataloaders()
learner = Learner(dls, model, loss)
FastAIModel(learner).save(path)
def predict_df(model: "Learner", df: "pd.DataFrame"):
input_df = df.to_numpy().astype(np.float32)
_, _, res = model.predict(input_df)
return res.squeeze().item()
def test_fastai_save_pack(tmpdir):
pack_models(tmpdir)
assert_have_file_extension(tmpdir, ".pkl")
loaded_fastai: "Learner" = FastAIModel.load(tmpdir)
assert predict_df(loaded_fastai, test_df) == 5.0
|
# import math
import numpy as np
import torch
import pytest
import torch.nn as nn
import bentoml
from tests.utils.helpers import assert_have_file_extension
from bentoml._internal.runner.container import AutoContainer
from bentoml._internal.frameworks.pytorch import PyTorchTensorContainer
# from tests.utils.frameworks.pytorch_utils import ExtendedModel
from tests.utils.frameworks.pytorch_utils import test_df
from tests.utils.frameworks.pytorch_utils import predict_df
from tests.utils.frameworks.pytorch_utils import LinearModel
# TODO: signatures
# TODO: to_payload with plasma
@pytest.fixture(scope="module")
def model():
return LinearModel()
@pytest.fixture(scope="module")
def bento_model(model: nn.Module):
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
return bentoml.pytorch.save_model(
"pytorch_test",
model,
labels=labels,
custom_objects={"func": custom_f},
)
def test_pytorch_save_load(model: nn.Module):
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
bentomodel = bentoml.pytorch.save_model(
"pytorch_test",
model,
labels=labels,
custom_objects={"func": custom_f},
)
assert_have_file_extension(bentomodel.path, ".pt")
for k in labels.keys():
assert labels[k] == bentomodel.info.labels[k]
assert bentomodel.custom_objects["func"](3) == custom_f(3)
pytorch_loaded: nn.Module = bentoml.pytorch.load_model(bentomodel.tag)
assert predict_df(pytorch_loaded, test_df) == 5.0
@pytest.mark.gpus
@pytest.mark.parametrize("dev", ["cpu", "cuda", "cuda:0"])
def test_pytorch_save_load_across_devices(dev: str, bento_model: bentoml.Model):
def is_cuda(model: nn.Module) -> bool:
return next(model.parameters()).is_cuda
loaded: nn.Module = bentoml.pytorch.load_model(bento_model.tag, device_id=dev)
if dev == "cpu":
assert not is_cuda(loaded)
else:
assert is_cuda(loaded)
@pytest.mark.parametrize(
"input_data",
[
test_df.to_numpy().astype(np.float32),
torch.from_numpy(test_df.to_numpy().astype(np.float32)),
],
)
def test_pytorch_runner_setup_run_batch(input_data, bento_model: bentoml.Model):
runner = bento_model.to_runner(cpu=4)
assert bento_model.tag in [m.tag for m in runner.models]
assert runner.scheduled_worker_count == 1
runner.init_local()
res = runner.run(input_data)
assert res.unsqueeze(dim=0).item() == 5.0
@pytest.mark.gpus
@pytest.mark.parametrize("nvidia_gpu", [1, 2])
def test_pytorch_runner_setup_on_gpu(nvidia_gpu: int, bento_model: bentoml.Model):
runner = bento_model.to_runner(nvidia_gpu=nvidia_gpu)
assert runner.scheduled_worker_count == nvidia_gpu
"""
@pytest.mark.parametrize(
"bias_pair",
[(0.0, 1.0), (-0.212, 1.1392)],
)
def test_pytorch_runner_with_partial_kwargs(bias_pair):
N, D_in, H, D_out = 64, 1000, 100, 1
x = torch.randn(N, D_in)
model = ExtendedModel(D_in, H, D_out)
tag = bentoml.pytorch.save_model("pytorch_test_extended", model)
bias1, bias2 = bias_pair
runner1 = bentoml.pytorch.load_runner(tag, partial_kwargs=dict(bias=bias1))
runner2 = bentoml.pytorch.load_runner(tag, partial_kwargs=dict(bias=bias2))
res1 = runner1.run_batch(x)[0][0].item()
res2 = runner2.run_batch(x)[0][0].item()
# tensor to float may introduce larger errors, so we bump rel_tol
# from 1e-9 to 1e-6 just in case
assert math.isclose(res1 - res2, bias1 - bias2, rel_tol=1e-6)
"""
@pytest.mark.parametrize("batch_axis", [0, 1])
def test_pytorch_container(batch_axis: int):
one_batch = torch.arange(6).reshape(2, 3)
batch_list = [one_batch, one_batch + 1]
merged_batch = torch.cat(batch_list, dim=batch_axis)
batches, indices = PyTorchTensorContainer.batches_to_batch(
batch_list,
batch_dim=batch_axis,
)
assert batches.shape == merged_batch.shape
assert (batches == merged_batch).all()
assert (
PyTorchTensorContainer.batch_to_batches(
merged_batch,
indices=indices,
batch_dim=batch_axis,
)[0]
== one_batch
).all()
assert (
PyTorchTensorContainer.from_payload(
PyTorchTensorContainer.to_payload(one_batch)
)
== one_batch
).all()
assert (
AutoContainer.from_payload(AutoContainer.to_payload(one_batch, batch_dim=0))
== one_batch
).all()
|
import os
import numpy as np
import torch
import pytest
import torch.nn as nn
import bentoml
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.pytorch_utils import test_df
from tests.utils.frameworks.pytorch_utils import predict_df
from tests.utils.frameworks.pytorch_utils import LinearModel
from tests.utils.frameworks.pytorch_utils import (
make_pytorch_lightning_linear_model_class,
)
@pytest.fixture(scope="module")
def models():
def _(test_type, labels=None, custom_objects=None):
_model: nn.Module = LinearModel()
if "trace" in test_type:
tracing_inp = torch.ones(5)
model = torch.jit.trace(_model, tracing_inp)
bento_model = bentoml.torchscript.save_model(
"torchscript_test",
model,
labels=labels,
custom_objects=custom_objects,
)
elif "script" in test_type:
model = torch.jit.script(_model)
bento_model = bentoml.torchscript.save_model(
"torchscript_test",
model,
labels=labels,
custom_objects=custom_objects,
)
elif "pytorch_lightning" in test_type:
PlLinearModel = make_pytorch_lightning_linear_model_class()
model = PlLinearModel()
bento_model = bentoml.pytorch_lightning.save_model(
"torchscript_test",
model,
labels=labels,
custom_objects=custom_objects,
)
return bento_model
return _
@pytest.mark.parametrize(
"test_type",
["tracedmodel", "scriptedmodel", "pytorch_lightning"],
)
def test_torchscript_save_load(test_type, models):
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
bentomodel = models(test_type, labels=labels, custom_objects={"func": custom_f})
assert_have_file_extension(bentomodel.path, ".pt")
for k in labels.keys():
assert labels[k] == bentomodel.info.labels[k]
assert bentomodel.custom_objects["func"](3) == custom_f(3)
torchscript_loaded: nn.Module = bentoml.torchscript.load_model(bentomodel.tag)
assert predict_df(torchscript_loaded, test_df) == 5.0
@pytest.mark.gpus
@pytest.mark.parametrize("dev", ["cpu", "cuda", "cuda:0"])
@pytest.mark.parametrize(
"test_type",
["tracedmodel", "scriptedmodel", "pytorch_lightning"],
)
def test_torchscript_save_load_across_devices(dev, test_type, models):
def is_cuda(model):
return next(model.parameters()).is_cuda
bento_model = models(test_type)
loaded = bentoml.torchscript.load_model(bento_model.tag)
if dev == "cpu":
assert not is_cuda(loaded)
else:
assert is_cuda(loaded)
@pytest.mark.parametrize(
"input_data",
[
test_df.to_numpy().astype(np.float32),
torch.from_numpy(test_df.to_numpy().astype(np.float32)),
],
)
@pytest.mark.parametrize(
"test_type",
["tracedmodel", "scriptedmodel", "pytorch_lightning"],
)
def test_torchscript_runner_setup_run_batch(input_data, models, test_type):
bento_model = models(test_type)
runner = bento_model.to_runner(cpu=4)
assert bento_model.tag in [m.tag for m in runner.models]
assert runner.scheduled_worker_count == 1
runner.init_local()
res = runner.run(input_data)
assert res.unsqueeze(dim=0).item() == 5.0
@pytest.mark.gpus
@pytest.mark.parametrize("nvidia_gpu", [1, 2])
@pytest.mark.parametrize(
"test_type",
["tracedmodel", "scriptedmodel", "pytorch_lightning"],
)
def test_torchscript_runner_setup_on_gpu(nvidia_gpu: int, models, test_type):
bento_model = models(test_type)
runner = bento_model.to_runner(nvidia_gpu=nvidia_gpu)
assert runner.scheduled_worker_count == nvidia_gpu
for i in range(nvidia_gpu):
runner.setup_worker(i + 1)
assert os.environ["CUDA_VISIBLE_DEVICES"] == str(i)
|
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
import pytest
import tensorflow as tf
import bentoml
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.tensorflow_utils import NativeModel
from tests.utils.frameworks.tensorflow_utils import MultiInputModel
from tests.utils.frameworks.tensorflow_utils import NativeRaggedModel
from tests.utils.frameworks.tensorflow_utils import KerasSequentialModel
from bentoml._internal.frameworks.tensorflow_v2 import TensorflowTensorContainer
if TYPE_CHECKING:
from typing import Callable
from bentoml._internal.external_typing import tensorflow as tf_ext
MODEL_NAME = __name__.split(".")[-1]
test_data = [[1.1, 2.2]]
test_tensor: "tf_ext.TensorLike" = tf.constant(test_data)
native_data = [[1, 2, 3, 4, 5]]
native_tensor: "tf_ext.TensorLike" = tf.constant(native_data, dtype=tf.float64)
ragged_data = [[15], [7, 8], [1, 2, 3, 4, 5]]
ragged_tensor: "tf_ext.TensorLike" = tf.ragged.constant(ragged_data, dtype=tf.float64)
def _model_dunder_call(
model: "tf_ext.Module", tensor: "tf_ext.TensorLike"
) -> "tf_ext.TensorLike":
return model(tensor)
def _tensor_equal(t1: "tf_ext.TensorLike", t2: "tf_ext.TensorLike") -> bool:
return tf.math.equal(t1, t2).numpy().all()
@pytest.mark.parametrize(
"mcls, tensor, predict_fn, is_ragged",
[
(KerasSequentialModel(), native_tensor, _model_dunder_call, False),
(NativeModel(), native_tensor, _model_dunder_call, False),
(NativeRaggedModel(), ragged_tensor, _model_dunder_call, True),
],
)
def test_tensorflow_v2_save_load(
mcls: "tf_ext.Module",
tensor: "tf_ext.TensorLike",
predict_fn: Callable[
["tf_ext.AutoTrackable", "tf_ext.TensorLike"], "tf_ext.TensorLike"
],
is_ragged: bool,
):
labels = {"stage": "dev"}
def custom_f(x: int) -> int:
return x + 1
bentomodel = bentoml.tensorflow.save_model(
MODEL_NAME, mcls, labels=labels, custom_objects={"func": custom_f}
)
assert_have_file_extension(bentomodel.path, ".pb")
for k in labels.keys():
assert labels[k] == bentomodel.info.labels[k]
assert bentomodel.custom_objects["func"](3) == custom_f(3)
model = bentoml.tensorflow.load_model(MODEL_NAME)
output = predict_fn(model, tensor)
if is_ragged:
assert all(output.numpy() == np.array([[15.0]] * 3))
else:
assert all(output.numpy() == np.array([[15.0]]))
def test_tensorflow_v2_setup_run_batch():
model_class = NativeModel()
bento_model = bentoml.tensorflow.save_model(MODEL_NAME, model_class)
runner = bento_model.to_runner()
assert bento_model.tag in [model.tag for model in runner.models]
runner.init_local()
assert runner.run(native_data) == np.array([[15.0]])
@pytest.mark.gpus
def test_tensorflow_v2_setup_on_gpu():
model_class = NativeModel()
bento_model = bentoml.tensorflow.save_model(MODEL_NAME, model_class)
runner = bento_model.to_runner(nvidia_gpu=1)
runner.init_local()
# assert runner.num_replica == len(tf.config.list_physical_devices("GPU"))
assert runner.run(native_tensor) == np.array([[15.0]])
def test_tensorflow_v2_multi_args():
model_class = MultiInputModel()
bento_model = bentoml.tensorflow.save_model(MODEL_NAME, model_class)
partial_kwargs1 = {"__call__": {"factor": tf.constant(3.0, dtype=tf.float64)}}
runner1 = bento_model.with_options(partial_kwargs=partial_kwargs1).to_runner()
partial_kwargs2 = {"__call__": {"factor": tf.constant(2.0, dtype=tf.float64)}}
runner2 = bento_model.with_options(partial_kwargs=partial_kwargs2).to_runner()
runner1.init_local()
runner2.init_local()
assert runner1.run(native_data, native_data) == np.array([[60.0]])
assert runner2.run(native_data, native_data) == np.array([[45.0]])
@pytest.mark.parametrize("batch_dim", [0, 1])
def test_tensorflow_container(batch_dim: int):
arr1 = np.ones((3, 3))
if batch_dim == 0:
arr2 = np.arange(6).reshape(2, 3)
else:
arr2 = np.arange(6).reshape(3, 2)
tensor1: "tf_ext.TensorLike" = tf.convert_to_tensor(arr1, dtype=tf.float32)
tensor2: "tf_ext.TensorLike" = tf.convert_to_tensor(arr2, dtype=tf.float32)
batches = [tensor1, tensor2]
batch, indices = TensorflowTensorContainer.batches_to_batch(
batches, batch_dim=batch_dim
)
expected_batch: tf.Tensor = tf.concat(batches, axis=batch_dim)
assert _tensor_equal(batch, expected_batch)
restored_tensor1, restored_tensor2 = TensorflowTensorContainer.batch_to_batches(
batch, indices, batch_dim=batch_dim
)
assert _tensor_equal(restored_tensor1, tensor1)
assert _tensor_equal(restored_tensor2, tensor2)
from_payload = TensorflowTensorContainer.from_payload(
TensorflowTensorContainer.to_payload(tensor1)
)
assert _tensor_equal(from_payload, tensor1)
restored_batch, restored_indices = TensorflowTensorContainer.from_batch_payloads(
TensorflowTensorContainer.batch_to_payloads(
batch, indices, batch_dim=batch_dim
),
batch_dim=batch_dim,
)
assert restored_indices == indices
assert _tensor_equal(restored_batch, batch)
|
import evalml
import pandas as pd
import pytest
from bentoml.evalml import EvalMLModel
from tests.utils.helpers import assert_have_file_extension
test_df = pd.DataFrame([[42, "b"]])
@pytest.fixture(scope="session")
def binary_pipeline() -> "evalml.pipelines.BinaryClassificationPipeline":
X = pd.DataFrame([[0, "a"], [0, "a"], [0, "a"], [42, "b"], [42, "b"], [42, "b"]])
y = pd.Series([0, 0, 0, 1, 1, 1], name="target")
pipeline = evalml.pipelines.BinaryClassificationPipeline(
["Imputer", "One Hot Encoder", "Random Forest Classifier"]
)
pipeline.fit(X, y)
return pipeline
def test_evalml_save_load(tmpdir, binary_pipeline):
EvalMLModel(binary_pipeline).save(tmpdir)
assert_have_file_extension(tmpdir, ".pkl")
evalml_loaded: "evalml.pipelines.PipelineBase" = EvalMLModel.load(tmpdir)
assert (
evalml_loaded.predict(test_df).to_numpy()
== binary_pipeline.predict(test_df).to_numpy()
)
|
import os
from pathlib import Path
import numpy as np
import psutil
import pytest
import mlflow.sklearn
import bentoml
from bentoml.exceptions import BentoMLException
from tests.utils.helpers import assert_have_file_extension
from tests.utils.frameworks.sklearn_utils import sklearn_model_data
current_file = Path(__file__).parent
MODEL_NAME = __name__.split(".")[-1]
# fmt: off
res_arr = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2]
)
# fmt: on
def test_mlflow_save():
with pytest.raises(BentoMLException):
bentoml.mlflow.save()
def test_mlflow_save_load():
(model, data) = sklearn_model_data()
uri = Path(current_file, "sklearn_clf")
if not uri.exists():
mlflow.sklearn.save_model(model, uri.resolve())
tag = bentoml.mlflow.import_from_uri(MODEL_NAME, str(uri.resolve()))
model_info = bentoml.models.get(tag)
assert_have_file_extension(os.path.join(model_info.path, "sklearn_clf"), ".pkl")
loaded = bentoml.mlflow.load(tag)
np.testing.assert_array_equal(loaded.predict(data), res_arr) # noqa
@pytest.fixture()
def invalid_save_with_no_mlmodel():
uri = Path(current_file, "sklearn_clf").resolve()
tag = bentoml.mlflow.import_from_uri("sklearn_clf", str(uri))
info = bentoml.models.get(tag)
os.remove(str(Path(info.path, "sklearn_clf", "MLmodel").resolve()))
return tag
def test_invalid_load(invalid_save_with_no_mlmodel):
with pytest.raises(FileNotFoundError):
_ = bentoml.mlflow.load(invalid_save_with_no_mlmodel)
def test_mlflow_load_runner():
(_, data) = sklearn_model_data()
uri = Path(current_file, "sklearn_clf").resolve()
tag = bentoml.mlflow.import_from_uri(MODEL_NAME, str(uri))
runner = bentoml.mlflow.load_runner(tag)
from bentoml._internal.frameworks.mlflow import _PyFuncRunner
assert isinstance(runner, _PyFuncRunner)
assert tag in runner.required_models
assert runner.num_replica == 1
res = runner.run_batch(data)
assert all(res == res_arr)
@pytest.mark.parametrize(
"uri",
[
Path(current_file, "SimpleMNIST").resolve(),
Path(current_file, "NestedMNIST").resolve(),
],
)
def test_mlflow_invalid_import_mlproject(uri):
with pytest.raises(BentoMLException):
_ = bentoml.mlflow.import_from_uri(MODEL_NAME, str(uri))
|
#
# Trains an SimpleMNIST digit recognizer using PyTorch Lightning,
# and uses Mlflow to log metrics, params and artifacts
# NOTE: This example requires you to first install
# pytorch-lightning (using pip install pytorch-lightning)
# and mlflow (using pip install mlflow).
#
# pylint: disable=arguments-differ
# pylint: disable=unused-argument
# pylint: disable=abstract-method
import os
from argparse import ArgumentParser
import torch
import mlflow.pytorch
import pytorch_lightning as pl
from torch.nn import functional as F
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.metrics.functional import accuracy
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, **kwargs):
"""
Initialization of inherited lightning data module
"""
super(MNISTDataModule, self).__init__()
self.df_train = None
self.df_val = None
self.df_test = None
self.train_data_loader = None
self.val_data_loader = None
self.test_data_loader = None
self.args = kwargs
# transforms for images
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
def setup(self, stage=None):
"""
Downloads the data, parses it, and splits the data into training, test, and
validation data
:param stage: Stage - training or testing
"""
self.df_train = datasets.MNIST(
"dataset", download=True, train=True, transform=self.transform
)
self.df_train, self.df_val = random_split(self.df_train, [55000, 5000])
self.df_test = datasets.MNIST(
"dataset", download=True, train=False, transform=self.transform
)
def create_data_loader(self, df):
"""
Generic data loader function
:param df: Input tensor
:return: Returns the constructed dataloader
"""
return DataLoader(
df,
batch_size=self.args["batch_size"],
num_workers=self.args["num_workers"],
)
def train_dataloader(self):
"""
:return: output - Train data loader for the given input
"""
return self.create_data_loader(self.df_train)
def val_dataloader(self):
"""
:return: output - Validation data loader for the given input
"""
return self.create_data_loader(self.df_val)
def test_dataloader(self):
"""
:return: output - Test data loader for the given input
"""
return self.create_data_loader(self.df_test)
class LightningMNISTClassifier(pl.LightningModule):
def __init__(self, **kwargs):
"""
Initializes the network
"""
super(LightningMNISTClassifier, self).__init__()
# mnist images are (1, 28, 28) (channels, width, height)
self.optimizer = None
self.scheduler = None
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
self.args = kwargs
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument(
"--batch_size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--num_workers",
type=int,
default=3,
metavar="N",
help="number of workers (default: 3)",
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
metavar="LR",
help="learning rate (default: 0.001)",
)
return parser
def forward(self, x):
"""
:param x: Input data
:return: output - mnist digit label for the input image
"""
batch_size = x.size()[0]
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
# layer 1 (b, 1*28*28) -> (b, 128)
x = self.layer_1(x)
x = torch.relu(x)
# layer 2 (b, 128) -> (b, 256)
x = self.layer_2(x)
x = torch.relu(x)
# layer 3 (b, 256) -> (b, 10)
x = self.layer_3(x)
# probability distribution over labels
x = torch.log_softmax(x, dim=1)
return x
def cross_entropy_loss(self, logits, labels):
"""
Initializes the loss function
:return: output - Initialized cross entropy loss function
"""
return F.nll_loss(logits, labels)
def training_step(self, train_batch, batch_idx):
"""
Training the data as batches and returns training loss on each batch
:param train_batch: Batch data
:param batch_idx: Batch indices
:return: output - Training loss
"""
x, y = train_batch
logits = self.forward(x)
loss = self.cross_entropy_loss(logits, y)
return {"loss": loss}
def validation_step(self, val_batch, batch_idx):
"""
Performs validation of data in batches
:param val_batch: Batch data
:param batch_idx: Batch indices
:return: output - valid step loss
"""
x, y = val_batch
logits = self.forward(x)
loss = self.cross_entropy_loss(logits, y)
return {"val_step_loss": loss}
def validation_epoch_end(self, outputs):
"""
Computes average validation accuracy
:param outputs: outputs after every epoch end
:return: output - average valid loss
"""
avg_loss = torch.stack([x["val_step_loss"] for x in outputs]).mean()
self.log("val_loss", avg_loss, sync_dist=True)
def test_step(self, test_batch, batch_idx):
"""
Performs test and computes the accuracy of the model
:param test_batch: Batch data
:param batch_idx: Batch indices
:return: output - Testing accuracy
"""
x, y = test_batch
output = self.forward(x)
_, y_hat = torch.max(output, dim=1)
test_acc = accuracy(y_hat.cpu(), y.cpu())
return {"test_acc": test_acc}
def test_epoch_end(self, outputs):
"""
Computes average test accuracy score
:param outputs: outputs after every epoch end
:return: output - average test loss
"""
avg_test_acc = torch.stack([x["test_acc"] for x in outputs]).mean()
self.log("avg_test_acc", avg_test_acc)
def configure_optimizers(self):
"""
Initializes the optimizer and learning rate scheduler
:return: output - Initialized optimizer and scheduler
"""
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.args["lr"])
self.scheduler = {
"scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode="min",
factor=0.2,
patience=2,
min_lr=1e-6,
verbose=True,
),
"monitor": "val_loss",
}
return [self.optimizer], [self.scheduler]
if __name__ == "__main__":
parser = ArgumentParser(description="PyTorch Autolog Mnist Example")
# Early stopping parameters
parser.add_argument(
"--es_monitor",
type=str,
default="val_loss",
help="Early stopping monitor parameter",
)
parser.add_argument(
"--es_mode", type=str, default="min", help="Early stopping mode parameter"
)
parser.add_argument(
"--es_verbose", type=bool, default=True, help="Early stopping verbose parameter"
)
parser.add_argument(
"--es_patience", type=int, default=3, help="Early stopping patience parameter"
)
parser = pl.Trainer.add_argparse_args(parent_parser=parser)
parser = LightningMNISTClassifier.add_model_specific_args(parent_parser=parser)
mlflow.pytorch.autolog()
args = parser.parse_args()
dict_args = vars(args)
if "accelerator" in dict_args:
if dict_args["accelerator"] == "None":
dict_args["accelerator"] = None
model = LightningMNISTClassifier(**dict_args)
dm = MNISTDataModule(**dict_args)
dm.setup(stage="fit")
early_stopping = EarlyStopping(
monitor=dict_args["es_monitor"],
mode=dict_args["es_mode"],
verbose=dict_args["es_verbose"],
patience=dict_args["es_patience"],
)
checkpoint_callback = ModelCheckpoint(
dirpath=os.getcwd(), save_top_k=1, verbose=True, monitor="val_loss", mode="min"
)
lr_logger = LearningRateMonitor()
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[lr_logger, early_stopping, checkpoint_callback],
checkpoint_callback=True,
)
trainer.fit(model, dm)
trainer.test()
|
#
# Trains an SimpleMNIST digit recognizer using PyTorch Lightning,
# and uses Mlflow to log metrics, params and artifacts
# NOTE: This example requires you to first install
# pytorch-lightning (using pip install pytorch-lightning)
# and mlflow (using pip install mlflow).
#
# pylint: disable=arguments-differ
# pylint: disable=unused-argument
# pylint: disable=abstract-method
import os
from argparse import ArgumentParser
import torch
import mlflow.pytorch
import pytorch_lightning as pl
from torch.nn import functional as F
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data import random_split
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.metrics.functional import accuracy
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, **kwargs):
"""
Initialization of inherited lightning data module
"""
super(MNISTDataModule, self).__init__()
self.df_train = None
self.df_val = None
self.df_test = None
self.train_data_loader = None
self.val_data_loader = None
self.test_data_loader = None
self.args = kwargs
# transforms for images
self.transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
def setup(self, stage=None):
"""
Downloads the data, parse it and split
the data into train, test, validation data
:param stage: Stage - training or testing
"""
self.df_train = datasets.MNIST(
"dataset", download=True, train=True, transform=self.transform
)
self.df_train, self.df_val = random_split(self.df_train, [55000, 5000])
self.df_test = datasets.MNIST(
"dataset", download=True, train=False, transform=self.transform
)
def create_data_loader(self, df):
"""
Generic data loader function
:param df: Input tensor
:return: Returns the constructed dataloader
"""
return DataLoader(
df,
batch_size=self.args["batch_size"],
num_workers=self.args["num_workers"],
)
def train_dataloader(self):
"""
:return: output - Train data loader for the given input
"""
return self.create_data_loader(self.df_train)
def val_dataloader(self):
"""
:return: output - Validation data loader for the given input
"""
return self.create_data_loader(self.df_val)
def test_dataloader(self):
"""
:return: output - Test data loader for the given input
"""
return self.create_data_loader(self.df_test)
class LightningMNISTClassifier(pl.LightningModule):
def __init__(self, **kwargs):
"""
Initializes the network
"""
super(LightningMNISTClassifier, self).__init__()
# mnist images are (1, 28, 28) (channels, width, height)
self.optimizer = None
self.scheduler = None
self.layer_1 = torch.nn.Linear(28 * 28, 128)
self.layer_2 = torch.nn.Linear(128, 256)
self.layer_3 = torch.nn.Linear(256, 10)
self.args = kwargs
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument(
"--batch_size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--num_workers",
type=int,
default=3,
metavar="N",
help="number of workers (default: 3)",
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
metavar="LR",
help="learning rate (default: 0.001)",
)
return parser
def forward(self, x):
"""
:param x: Input data
:return: output - mnist digit label for the input image
"""
batch_size = x.size()[0]
# (b, 1, 28, 28) -> (b, 1*28*28)
x = x.view(batch_size, -1)
# layer 1 (b, 1*28*28) -> (b, 128)
x = self.layer_1(x)
x = torch.relu(x)
# layer 2 (b, 128) -> (b, 256)
x = self.layer_2(x)
x = torch.relu(x)
# layer 3 (b, 256) -> (b, 10)
x = self.layer_3(x)
# probability distribution over labels
x = torch.log_softmax(x, dim=1)
return x
def cross_entropy_loss(self, logits, labels):
"""
Initializes the loss function
:return: output - Initialized cross entropy loss function
"""
return F.nll_loss(logits, labels)
def training_step(self, train_batch, batch_idx):
"""
Training the data as batches and returns training loss on each batch
:param train_batch: Batch data
:param batch_idx: Batch indices
:return: output - Training loss
"""
x, y = train_batch
logits = self.forward(x)
loss = self.cross_entropy_loss(logits, y)
return {"loss": loss}
def validation_step(self, val_batch, batch_idx):
"""
Performs validation of data in batches
:param val_batch: Batch data
:param batch_idx: Batch indices
:return: output - valid step loss
"""
x, y = val_batch
logits = self.forward(x)
loss = self.cross_entropy_loss(logits, y)
return {"val_step_loss": loss}
def validation_epoch_end(self, outputs):
"""
Computes average validation accuracy
:param outputs: outputs after every epoch end
:return: output - average valid loss
"""
avg_loss = torch.stack([x["val_step_loss"] for x in outputs]).mean()
self.log("val_loss", avg_loss, sync_dist=True)
def test_step(self, test_batch, batch_idx):
"""
Performs test and computes the accuracy of the model
:param test_batch: Batch data
:param batch_idx: Batch indices
:return: output - Testing accuracy
"""
x, y = test_batch
output = self.forward(x)
_, y_hat = torch.max(output, dim=1)
test_acc = accuracy(y_hat.cpu(), y.cpu())
return {"test_acc": test_acc}
def test_epoch_end(self, outputs):
"""
Computes average test accuracy score
:param outputs: outputs after every epoch end
:return: output - average test loss
"""
avg_test_acc = torch.stack([x["test_acc"] for x in outputs]).mean()
self.log("avg_test_acc", avg_test_acc)
def configure_optimizers(self):
"""
Initializes the optimizer and learning rate scheduler
:return: output - Initialized optimizer and scheduler
"""
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.args["lr"])
self.scheduler = {
"scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode="min",
factor=0.2,
patience=2,
min_lr=1e-6,
verbose=True,
),
"monitor": "val_loss",
}
return [self.optimizer], [self.scheduler]
if __name__ == "__main__":
parser = ArgumentParser(description="PyTorch Autolog Mnist Example")
# Early stopping parameters
parser.add_argument(
"--es_monitor",
type=str,
default="val_loss",
help="Early stopping monitor parameter",
)
parser.add_argument(
"--es_mode", type=str, default="min", help="Early stopping mode parameter"
)
parser.add_argument(
"--es_verbose", type=bool, default=True, help="Early stopping verbose parameter"
)
parser.add_argument(
"--es_patience", type=int, default=3, help="Early stopping patience parameter"
)
parser = pl.Trainer.add_argparse_args(parent_parser=parser)
parser = LightningMNISTClassifier.add_model_specific_args(parent_parser=parser)
mlflow.pytorch.autolog()
args = parser.parse_args()
dict_args = vars(args)
if "accelerator" in dict_args:
if dict_args["accelerator"] == "None":
dict_args["accelerator"] = None
model = LightningMNISTClassifier(**dict_args)
dm = MNISTDataModule(**dict_args)
dm.setup(stage="fit")
early_stopping = EarlyStopping(
monitor=dict_args["es_monitor"],
mode=dict_args["es_mode"],
verbose=dict_args["es_verbose"],
patience=dict_args["es_patience"],
)
checkpoint_callback = ModelCheckpoint(
dirpath=os.getcwd(), save_top_k=1, verbose=True, monitor="val_loss", mode="min"
)
lr_logger = LearningRateMonitor()
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=[lr_logger, early_stopping, checkpoint_callback],
checkpoint_callback=True,
)
trainer.fit(model, dm)
trainer.test()
|
from __future__ import annotations
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.datasets import load_breast_cancer
import bentoml
from . import FrameworkTestModel
from . import FrameworkTestModelInput as Input
from . import FrameworkTestModelConfiguration as Config
framework = bentoml.lightgbm
# read in data
cancer = load_breast_cancer() # type: ignore (incomplete sklearn types)
dt = lgb.basic.Dataset(cancer.data, label=cancer.target) # type: ignore
# specify parameters via map
param = {
"num_leaves": 31,
"eta": 0.1,
"num_iterations": 20,
"objective": "softmax",
"num_class": 2,
}
cancer_model = FrameworkTestModel(
name="cancer",
model=lgb.train(param, dt),
configurations=[
Config(
test_inputs={
"predict": [
Input(
input_args=[np.array([cancer.data[0]])],
expected=lambda out: np.isclose(
out, [[0.8152496, 0.1847504]]
).all(),
),
Input(
input_args=[np.array([cancer.data[1]])],
expected=lambda out: np.isclose(
out, [[0.92220132, 0.07779868]]
).all(),
),
],
},
),
Config(
test_inputs={
"predict": [
Input(
input_args=[pd.DataFrame([cancer.data[0]])],
expected=lambda out: np.isclose(
out, [[0.8152496, 0.1847504]]
).all(),
),
Input(
input_args=[pd.DataFrame([cancer.data[1]])],
expected=lambda out: np.isclose(
out, [[0.92220132, 0.07779868]]
).all(),
),
],
},
),
],
)
models: list[FrameworkTestModel] = [cancer_model]
|
from __future__ import annotations
import typing as t
import attr
from bentoml._internal.runner.resource import Resource
@attr.define
class FrameworkTestModel:
name: str
model: t.Any
configurations: list[FrameworkTestModelConfiguration]
save_kwargs: dict[str, t.Any] = attr.Factory(dict)
@attr.define
class FrameworkTestModelConfiguration:
test_inputs: dict[str, list[FrameworkTestModelInput]]
load_kwargs: dict[str, t.Any] = attr.Factory(dict)
check_model: t.Callable[[t.Any, Resource], None] = lambda _, __: None
@attr.define
class FrameworkTestModelInput:
input_args: list[t.Any]
expected: t.Any | t.Callable[[t.Any], bool]
input_kwargs: dict[str, t.Any] = attr.Factory(dict)
preprocess: t.Callable[[t.Any], t.Any] = lambda v: v
def check_output(self, outp: t.Any):
if isinstance(self.expected, t.Callable):
assert self.expected(
outp
), f"Output from model call ({', '.join(map(str, self.input_args))}, **{self.input_kwargs}) is not as expected"
else:
assert (
outp == self.expected
), f"Output from model call ({', '.join(map(str, self.input_args))}, **{self.input_kwargs}) is not as expected"
|
from __future__ import annotations
import json
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.datasets import load_breast_cancer
import bentoml
from bentoml._internal.runner.resource import Resource
from . import FrameworkTestModel
from . import FrameworkTestModelInput as Input
from . import FrameworkTestModelConfiguration as Config
framework = bentoml.xgboost
# read in data
cancer = load_breast_cancer() # type: ignore (incomplete sklearn types)
dt = xgb.DMatrix(cancer.data, label=cancer.target) # type: ignore
# specify parameters via map
param = {"max_depth": 3, "eta": 0.3, "objective": "multi:softprob", "num_class": 2}
def check_model(bst: xgb.Booster, resource: Resource):
config = json.loads(bst.save_config())
if resource.nvidia_gpu is not None and resource.nvidia_gpu > 0:
assert config["learner"]["generic_param"]["nthread"] == str(1)
elif resource.cpu is not None and resource.cpu > 0:
assert config["learner"]["generic_param"]["nthread"] == str(int(resource.cpu))
def close_to(expected):
def check_output(out):
return np.isclose(out, expected).all()
return check_output
cancer_model = FrameworkTestModel(
name="cancer",
model=xgb.train(param, dt),
configurations=[
Config(
test_inputs={
"predict": [
Input(
input_args=[np.array([cancer.data[0]])],
expected=close_to([[0.87606, 0.123939]]),
preprocess=xgb.DMatrix,
),
Input(
input_args=[np.array([cancer.data[1]])],
expected=close_to([[0.97558, 0.0244234]]),
preprocess=xgb.DMatrix,
),
],
},
check_model=check_model,
),
Config(
test_inputs={
"predict": [
Input(
input_args=[pd.DataFrame([cancer.data[0]])],
expected=close_to([[0.87606, 0.123939]]),
preprocess=xgb.DMatrix,
),
Input(
input_args=[pd.DataFrame([cancer.data[1]])],
expected=close_to([[0.97558, 0.0244234]]),
preprocess=xgb.DMatrix,
),
],
},
check_model=check_model,
),
],
)
models: list[FrameworkTestModel] = [cancer_model]
|
from pathlib import Path
def assert_have_file_extension(directory: str, ext: str):
_dir = Path(directory)
assert _dir.is_dir(), f"{directory} is not a directory"
assert any(f.suffix == ext for f in _dir.iterdir())
|
import numpy as np
import torch
import pandas as pd
import torch.nn as nn
test_df = pd.DataFrame([[1] * 5])
class LinearModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 1, bias=False)
torch.nn.init.ones_(self.linear.weight)
def forward(self, x):
return self.linear(x)
def make_pytorch_lightning_linear_model_class():
import pytorch_lightning as pl
class LightningLinearModel(pl.LightningModule):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 1, bias=False)
torch.nn.init.ones_(self.linear.weight)
def forward(self, x):
return self.linear(x)
return LightningLinearModel
def predict_df(model: nn.Module, df: pd.DataFrame):
input_data = df.to_numpy().astype(np.float32)
input_tensor = torch.from_numpy(input_data)
return model(input_tensor).unsqueeze(dim=0).item()
class LinearModelWithBatchAxis(nn.Module):
def __init__(self):
super(LinearModelWithBatchAxis, self).__init__()
self.linear = nn.Linear(5, 1, bias=False)
torch.nn.init.ones_(self.linear.weight)
def forward(self, x, batch_axis=0):
if batch_axis == 1:
x = x.permute([1, 0])
res = self.linear(x)
if batch_axis == 1:
res = res.permute([0, 1])
return res
class ExtendedModel(nn.Module):
def __init__(self, D_in, H, D_out):
"""
In the constructor we instantiate two nn.Linear modules and assign them as
member variables.
"""
super(ExtendedModel, self).__init__()
self.linear1 = nn.Linear(D_in, H)
self.linear2 = nn.Linear(H, D_out)
def forward(self, x, bias=0.0):
"""
In the forward function we accept a Tensor of input data and an optional bias
"""
h_relu = self.linear1(x).clamp(min=0)
y_pred = self.linear2(h_relu)
return y_pred + bias
|
# ==============================================================================
# Copyright (c) 2021 Atalaya Tech. Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
|
import re
import string
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
def custom_activation(x):
return tf.nn.tanh(x) ** 2
class CustomLayer(keras.layers.Layer):
def __init__(self, units=32, **kwargs):
super(CustomLayer, self).__init__(**kwargs)
self.units = tf.Variable(units, name="units")
def call(self, inputs, training=False):
if training:
return inputs * self.units
else:
return inputs
def get_config(self):
config = super(CustomLayer, self).get_config()
config.update({"units": self.units.numpy()})
return config
def KerasSequentialModel() -> keras.models.Model:
net = keras.models.Sequential(
(
keras.layers.Dense(
units=1,
input_shape=(5,),
use_bias=False,
kernel_initializer=keras.initializers.Ones(),
),
)
)
opt = keras.optimizers.Adam(0.002, 0.5)
net.compile(optimizer=opt, loss="binary_crossentropy", metrics=["accuracy"])
return net
def KerasNLPModel() -> keras.models.Model:
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
def custom_standardization(input_data: str) -> tf.Tensor:
lowercase = tf.strings.lower(input_data)
stripped_html = tf.strings.regex_replace(lowercase, "<br />", " ")
return tf.strings.regex_replace(
stripped_html, "[%s]" % re.escape(string.punctuation), ""
)
max_features = 20000
embedding_dims = 50
vectorize_layer = TextVectorization(
standardize=custom_standardization,
max_tokens=max_features,
output_mode="int",
output_sequence_length=400,
)
# A text input with preprocessing layers
text_input = keras.Input(shape=(1,), dtype=tf.string, name="text")
x = vectorize_layer(text_input)
x = keras.layers.Embedding(max_features + 1, embedding_dims)(x)
x = keras.layers.Dropout(0.2)(x)
# Conv1D + global max pooling
x = keras.layers.Conv1D(128, 7, padding="valid", activation="relu", strides=1)(x)
x = keras.layers.GlobalMaxPooling1D()(x)
# We add a vanilla hidden layer:
x = keras.layers.Dense(128, activation="relu")(x)
x = keras.layers.Dropout(0.2)(x)
# We project onto a single unit output layer, and squash it with a sigmoid:
predictions = keras.layers.Dense(1, activation="sigmoid", name="predictions")(x)
model = keras.Model(text_input, predictions)
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
return model
class NativeModel(tf.Module):
def __init__(self):
super().__init__()
self.weights = np.asfarray([[1.0], [1.0], [1.0], [1.0], [1.0]])
self.dense = lambda inputs: tf.matmul(inputs, self.weights)
@tf.function(
input_signature=[tf.TensorSpec(shape=[1, 5], dtype=tf.float64, name="inputs")]
)
def __call__(self, inputs):
return self.dense(inputs)
class NativeRaggedModel(NativeModel):
@tf.function(
input_signature=[
tf.RaggedTensorSpec(tf.TensorShape([None, None]), tf.float64, 1, tf.int64)
]
)
def __call__(self, inputs):
inputs = inputs.to_tensor(shape=[None, 5], default_value=0)
return self.dense(inputs)
class MultiInputModel(tf.Module):
def __init__(self):
super().__init__()
self.weights = np.asfarray([[1.0], [1.0], [1.0], [1.0], [1.0]])
self.dense = lambda tensor: tf.matmul(tensor, self.weights)
@tf.function(
input_signature=[
tf.TensorSpec(shape=[1, 5], dtype=tf.float64, name="x1"),
tf.TensorSpec(shape=[1, 5], dtype=tf.float64, name="x2"),
tf.TensorSpec(shape=(), dtype=tf.float64, name="factor"),
]
)
def __call__(self, x1: tf.Tensor, x2: tf.Tensor, factor: tf.Tensor):
return self.dense(x1 + x2 * factor)
|
from collections import namedtuple
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
test_data = {
"mean radius": 10.80,
"mean texture": 21.98,
"mean perimeter": 68.79,
"mean area": 359.9,
"mean smoothness": 0.08801,
"mean compactness": 0.05743,
"mean concavity": 0.03614,
"mean concave points": 0.2016,
"mean symmetry": 0.05977,
"mean fractal dimension": 0.3077,
"radius error": 1.621,
"texture error": 2.240,
"perimeter error": 20.20,
"area error": 20.02,
"smoothness error": 0.006543,
"compactness error": 0.02148,
"concavity error": 0.02991,
"concave points error": 0.01045,
"symmetry error": 0.01844,
"fractal dimension error": 0.002690,
"worst radius": 12.76,
"worst texture": 32.04,
"worst perimeter": 83.69,
"worst area": 489.5,
"worst smoothness": 0.1303,
"worst compactness": 0.1696,
"worst concavity": 0.1927,
"worst concave points": 0.07485,
"worst symmetry": 0.2965,
"worst fractal dimension": 0.07662,
}
test_df = pd.DataFrame([test_data])
ModelWithData = namedtuple("ModelWithData", ["model", "data"])
def sklearn_model_data(clf=KNeighborsClassifier, num_data=4) -> ModelWithData:
model = clf()
iris = load_iris()
X = iris.data[:, :num_data]
Y = iris.target
model.fit(X, Y)
return ModelWithData(model=model, data=X)
|
import paddle
import pandas as pd
import paddle.nn as nn
from paddle.static import InputSpec
IN_FEATURES = 13
OUT_FEATURES = 1
test_df = pd.DataFrame(
[
[
-0.0405441,
0.06636364,
-0.32356227,
-0.06916996,
-0.03435197,
0.05563625,
-0.03475696,
0.02682186,
-0.37171335,
-0.21419304,
-0.33569506,
0.10143217,
-0.21172912,
]
]
)
class LinearModel(nn.Layer):
def __init__(self):
super(LinearModel, self).__init__()
self.fc = nn.Linear(IN_FEATURES, OUT_FEATURES)
@paddle.jit.to_static(input_spec=[InputSpec(shape=[IN_FEATURES], dtype="float32")])
def forward(self, x):
return self.fc(x)
|
import typing as t
import numpy as np
import pandas as pd
import pydantic
from PIL.Image import Image as PILImage
from PIL.Image import fromarray
import bentoml
import bentoml.picklable_model
from bentoml.io import File
from bentoml.io import JSON
from bentoml.io import Image
from bentoml.io import Multipart
from bentoml.io import NumpyNdarray
from bentoml.io import PandasDataFrame
from bentoml._internal.types import FileLike
from bentoml._internal.types import JSONSerializable
py_model = bentoml.picklable_model.get("py_model.case-1.e2e").to_runner()
svc = bentoml.Service(
name="general_workflow_service.case-1.e2e",
runners=[py_model],
)
@svc.api(input=JSON(), output=JSON())
async def echo_json(json_obj: JSONSerializable) -> JSONSerializable:
batch_ret = await py_model.echo_json.async_run([json_obj])
return batch_ret[0]
@svc.api(input=JSON(), output=JSON())
def echo_json_sync(json_obj: JSONSerializable) -> JSONSerializable:
batch_ret = py_model.echo_json.run([json_obj])
return batch_ret[0]
class _Schema(pydantic.BaseModel):
name: str
endpoints: t.List[str]
@svc.api(
input=JSON(pydantic_model=_Schema),
output=JSON(),
)
async def echo_json_enforce_structure(json_obj: JSONSerializable) -> JSONSerializable:
batch_ret = await py_model.echo_json.async_run([json_obj])
return batch_ret[0]
@svc.api(input=JSON(), output=JSON())
async def echo_obj(obj: JSONSerializable) -> JSONSerializable:
return await py_model.echo_obj.async_run(obj)
@svc.api(
input=NumpyNdarray(shape=(2, 2), enforce_shape=True),
output=NumpyNdarray(shape=(2, 2)),
)
async def predict_ndarray_enforce_shape(
inp: "np.ndarray[t.Any, np.dtype[t.Any]]",
) -> "np.ndarray[t.Any, np.dtype[t.Any]]":
assert inp.shape == (2, 2)
return await py_model.predict_ndarray.async_run(inp)
@svc.api(
input=NumpyNdarray(dtype="uint8", enforce_dtype=True),
output=NumpyNdarray(dtype="str"),
)
async def predict_ndarray_enforce_dtype(
inp: "np.ndarray[t.Any, np.dtype[t.Any]]",
) -> "np.ndarray[t.Any, np.dtype[t.Any]]":
assert inp.dtype == np.dtype("uint8")
return await py_model.predict_ndarray.async_run(inp)
@svc.api(
input=PandasDataFrame(dtype={"col1": "int64"}, orient="records"),
output=PandasDataFrame(),
)
async def predict_dataframe(df: "pd.DataFrame") -> "pd.DataFrame":
assert df["col1"].dtype == "int64"
output = await py_model.predict_dataframe.async_run(df)
dfo = pd.DataFrame()
dfo["col1"] = output
assert isinstance(dfo, pd.DataFrame)
return dfo
@svc.api(input=File(), output=File())
async def predict_file(f: FileLike[bytes]) -> bytes:
batch_ret = await py_model.predict_file.async_run([f])
return batch_ret[0]
@svc.api(input=Image(), output=Image(mime_type="image/bmp"))
async def echo_image(f: PILImage) -> "np.ndarray[t.Any, np.dtype[t.Any]]":
assert isinstance(f, PILImage)
return np.array(f) # type: ignore[arg-type]
@svc.api(
input=Multipart(original=Image(), compared=Image()),
output=Multipart(img1=Image(), img2=Image()),
)
async def predict_multi_images(
original: t.Dict[str, Image], compared: t.Dict[str, Image]
):
output_array = await py_model.predict_multi_ndarray.async_run(
np.array(original), np.array(compared)
)
img = fromarray(output_array)
return dict(img1=img, img2=img)
# customise the service
from starlette.types import Send
from starlette.types import Scope
from starlette.types import ASGIApp
from starlette.types import Receive
from starlette.requests import Request
class AllowPingMiddleware:
def __init__(
self,
app: ASGIApp,
) -> None:
self.app = app
async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:
if scope["type"] == "http":
req = Request(scope, receive)
if req.url.path == "/ping":
scope["path"] = "/livez"
await self.app(scope, receive, send)
return
svc.add_asgi_middleware(AllowPingMiddleware) # type: ignore[arg-type]
from fastapi import FastAPI
fastapi_app = FastAPI()
@fastapi_app.get("/hello")
def hello():
return {"Hello": "World"}
svc.mount_asgi_app(fastapi_app)
|
from pickle_model import PickleModel
import bentoml.picklable_model
def train():
bentoml.picklable_model.save_model(
"py_model.case-1.e2e",
PickleModel(),
signatures={
"predict_file": {"batchable": True},
"echo_json": {"batchable": True},
"echo_obj": {"batchable": False},
"echo_multi_ndarray": {"batchable": True},
"predict_ndarray": {"batchable": True},
"predict_multi_ndarray": {"batchable": True},
"predict_dataframe": {"batchable": True},
},
)
if __name__ == "__main__":
train()
|
import typing as t
import numpy as np
import pandas as pd
from bentoml._internal.types import FileLike
from bentoml._internal.types import JSONSerializable
class PickleModel:
def predict_file(self, input_files: t.List[FileLike[bytes]]) -> t.List[bytes]:
return [f.read() for f in input_files]
@classmethod
def echo_json(cls, input_datas: JSONSerializable) -> JSONSerializable:
return input_datas
@classmethod
def echo_obj(cls, input_datas: t.Any) -> t.Any:
return input_datas
def echo_multi_ndarray(
self,
*input_arr: "np.ndarray[t.Any, np.dtype[t.Any]]",
) -> t.Tuple["np.ndarray[t.Any, np.dtype[t.Any]]", ...]:
return input_arr
def predict_ndarray(
self,
arr: "np.ndarray[t.Any, np.dtype[t.Any]]",
) -> "np.ndarray[t.Any, np.dtype[t.Any]]":
assert isinstance(arr, np.ndarray)
return arr * 2
def predict_multi_ndarray(
self,
arr1: "np.ndarray[t.Any, np.dtype[t.Any]]",
arr2: "np.ndarray[t.Any, np.dtype[t.Any]]",
) -> "np.ndarray[t.Any, np.dtype[t.Any]]":
assert isinstance(arr1, np.ndarray)
assert isinstance(arr2, np.ndarray)
return (arr1 + arr2) // 2
def predict_dataframe(self, df: "pd.DataFrame") -> "pd.DataFrame":
assert isinstance(df, pd.DataFrame)
output = df[["col1"]] * 2 # type: ignore
assert isinstance(output, pd.DataFrame)
return output
|
# type: ignore[no-untyped-def]
import os
import typing as t
import contextlib
import numpy as np
import psutil
import pytest
@pytest.fixture()
def img_file(tmpdir) -> str:
import PIL.Image
img_file_ = tmpdir.join("test_img.bmp")
img = PIL.Image.fromarray(np.random.randint(255, size=(10, 10, 3)).astype("uint8"))
img.save(str(img_file_))
return str(img_file_)
@pytest.fixture()
def bin_file(tmpdir) -> str:
bin_file_ = tmpdir.join("bin_file.bin")
with open(bin_file_, "wb") as of:
of.write("Γ’".encode("gb18030"))
return str(bin_file_)
def pytest_configure(config): # pylint: disable=unused-argument
import sys
import subprocess
cmd = f"{sys.executable} {os.path.join(os.getcwd(), 'train.py')}"
subprocess.run(cmd, shell=True, check=True)
# use the local bentoml package in development
os.environ["BENTOML_BUNDLE_LOCAL_BUILD"] = "True"
@pytest.fixture(scope="session", autouse=True)
def clean_context():
stack = contextlib.ExitStack()
yield stack
stack.close()
@pytest.fixture(
params=[
"server_config_default.yml",
"server_config_cors_enabled.yml",
],
scope="session",
)
def server_config_file(request):
return request.param
@pytest.fixture(
params=[
# "dev",
"standalone",
"docker",
"distributed",
],
scope="session",
)
def deployment_mode(request) -> str:
return request.param
@pytest.fixture(scope="session")
def host(
deployment_mode: str,
server_config_file: str,
clean_context: contextlib.ExitStack,
) -> t.Generator[str, None, None]:
if (
(psutil.WINDOWS or psutil.MACOS)
and os.environ.get("GITHUB_ACTION")
and deployment_mode == "docker"
):
pytest.skip(
"due to GitHub Action's limitation, docker deployment is not supported on "
"windows/macos. But you can still run this test on macos/windows locally."
)
if not psutil.LINUX and deployment_mode == "distributed":
pytest.skip("distributed deployment is only supported on Linux")
from bentoml.testing.server import host_bento
with host_bento(
"service:svc",
config_file=server_config_file,
deployment_mode=deployment_mode,
clean_context=clean_context,
) as host:
yield host
|
# pylint: disable=redefined-outer-name
# type: ignore[no-untyped-def]
import io
import sys
import json
import numpy as np
import pytest
import aiohttp
from bentoml.io import PandasDataFrame
from bentoml.testing.utils import async_request
from bentoml.testing.utils import parse_multipart_form
@pytest.fixture()
def img_file(tmpdir):
import PIL.Image
img_file_ = tmpdir.join("test_img.bmp")
img = PIL.Image.fromarray(np.random.randint(255, size=(10, 10, 3)).astype("uint8"))
img.save(str(img_file_))
return str(img_file_)
@pytest.fixture()
def bin_file(tmpdir):
bin_file_ = tmpdir.join("bin_file.bin")
with open(bin_file_, "wb") as of:
of.write("Γ’".encode("gb18030"))
return str(bin_file_)
@pytest.mark.asyncio
async def test_numpy(host):
await async_request(
"POST",
f"http://{host}/predict_ndarray_enforce_shape",
headers={"Content-Type": "application/json"},
data="[[1,2],[3,4]]",
assert_status=200,
assert_data=b"[[2, 4], [6, 8]]",
)
await async_request(
"POST",
f"http://{host}/predict_ndarray_enforce_shape",
headers={"Content-Type": "application/json"},
data="[1,2,3,4]",
assert_status=400,
)
await async_request(
"POST",
f"http://{host}/predict_ndarray_enforce_dtype",
headers={"Content-Type": "application/json"},
data="[[2,1],[4,3]]",
assert_status=200,
assert_data=b'[["4", "2"], ["8", "6"]]',
)
await async_request(
"POST",
f"http://{host}/predict_ndarray_enforce_dtype",
headers={"Content-Type": "application/json"},
data='[["2f",1],[4,3]]',
assert_status=400,
)
@pytest.mark.asyncio
async def test_json(host):
ORIGIN = "http://bentoml.ai"
await async_request(
"POST",
f"http://{host}/echo_json",
headers=(("Content-Type", "application/json"), ("Origin", ORIGIN)),
data='"hi"',
assert_status=200,
assert_data=b'"hi"',
)
await async_request(
"POST",
f"http://{host}/echo_json_sync",
headers=(("Content-Type", "application/json"), ("Origin", ORIGIN)),
data='"hi"',
assert_status=200,
assert_data=b'"hi"',
)
await async_request(
"POST",
f"http://{host}/echo_json_enforce_structure",
headers=(("Content-Type", "application/json"), ("Origin", ORIGIN)),
data='{"name":"test","endpoints":["predict","health"]}',
assert_status=200,
assert_data=b'{"name":"test","endpoints":["predict","health"]}',
)
@pytest.mark.asyncio
async def test_obj(host):
for obj in [1, 2.2, "str", [1, 2, 3], {"a": 1, "b": 2}]:
obj_str = json.dumps(obj, separators=(",", ":"))
await async_request(
"POST",
f"http://{host}/echo_obj",
headers=(("Content-Type", "application/json"),),
data=obj_str,
assert_status=200,
assert_data=obj_str.encode("utf-8"),
)
@pytest.mark.asyncio
async def test_pandas(host):
import pandas as pd
ORIGIN = "http://bentoml.ai"
df = pd.DataFrame([[101]], columns=["col1"])
await async_request(
"POST",
f"http://{host}/predict_dataframe",
headers=(("Content-Type", "application/json"), ("Origin", ORIGIN)),
data=df.to_json(orient="records"),
assert_status=200,
assert_data=b'[{"col1":202}]',
)
# pyarrow only support python 3.7+
if sys.version_info >= (3, 7):
await async_request(
"POST",
f"http://{host}/predict_dataframe",
headers=(("Content-Type", "application/octet-stream"), ("Origin", ORIGIN)),
data=df.to_parquet(),
assert_status=200,
assert_data=b'[{"col1":202}]',
)
await async_request(
"POST",
f"http://{host}/predict_dataframe",
headers=(("Content-Type", "text/csv"), ("Origin", ORIGIN)),
data=df.to_csv(),
assert_status=200,
assert_data=b'[{"col1":202}]',
)
@pytest.mark.asyncio
async def test_file(host, bin_file):
# Test File as binary
with open(str(bin_file), "rb") as f:
b = f.read()
await async_request(
"POST",
f"http://{host}/predict_file",
data=b,
headers={"Content-Type": "application/octet-stream"},
assert_data=b"\x810\x899",
)
# Test File as multipart binary
form = aiohttp.FormData()
form.add_field("file", b, content_type="application/octet-stream")
await async_request(
"POST",
f"http://{host}/predict_file",
data=form,
assert_data=b"\x810\x899",
)
# Test Exception
await async_request(
"POST",
f"http://{host}/predict_file",
data=b,
headers={"Content-Type": "application/pdf"},
assert_status=500,
)
@pytest.mark.asyncio
async def test_image(host, img_file):
import PIL.Image
with open(str(img_file), "rb") as f1:
img_bytes = f1.read()
status, headers, body = await async_request(
"POST",
f"http://{host}/echo_image",
data=img_bytes,
headers={"Content-Type": "image/bmp"},
)
assert status == 200
assert headers["Content-Type"] == "image/bmp"
bio = io.BytesIO(body)
bio.name = "test.bmp"
img = PIL.Image.open(bio)
array1 = np.array(img)
array2 = PIL.Image.open(img_file)
np.testing.assert_array_almost_equal(array1, array2)
await async_request(
"POST",
f"http://{host}/echo_image",
data=img_bytes,
headers={"Content-Type": "application/json"},
assert_status=400,
)
# Test Exception
with open(str(img_file), "rb") as f1:
b = f1.read()
await async_request(
"POST",
f"http://{host}/echo_image",
data=b,
headers={"Content-Type": "application/pdf"},
assert_status=400,
)
# SklearnRunner is not suppose to take multiple arguments
# TODO: move e2e tests to use a new bentoml.PickleModel module
@pytest.mark.skip
@pytest.mark.asyncio
async def test_multipart_image_io(host, img_file):
import PIL.Image
from starlette.datastructures import UploadFile
with open(img_file, "rb") as f1:
with open(img_file, "rb") as f2:
form = aiohttp.FormData()
form.add_field("original", f1.read(), content_type="image/bmp")
form.add_field("compared", f2.read(), content_type="image/bmp")
status, headers, body = await async_request(
"POST",
f"http://{host}/predict_multi_images",
data=form,
)
assert status == 200
form = await parse_multipart_form(headers=headers, body=body)
for _, v in form.items():
assert isinstance(v, UploadFile)
img = PIL.Image.open(v.file)
assert np.array(img).shape == (10, 10, 3)
|
# import asyncio
# import time
# import psutil
# import pytest
DEFAULT_MAX_LATENCY = 10 * 1000
"""
@pytest.mark.skipif(not psutil.POSIX, reason="production server only works on POSIX")
@pytest.mark.asyncio
async def test_slow_server(host):
A, B = 0.2, 1
data = '{"a": %s, "b": %s}' % (A, B)
time_start = time.time()
req_count = 10
tasks = tuple(
pytest.async_request(
"POST",
f"http://{host}/echo_with_delay",
headers=(("Content-Type", "application/json"),),
data=data,
timeout=30,
assert_status=200,
assert_data=data.encode(),
)
for i in range(req_count)
)
await asyncio.gather(*tasks)
assert time.time() - time_start < 12
@pytest.mark.skipif(not psutil.POSIX, reason="production server only works on POSIX")
@pytest.mark.asyncio
async def test_fast_server(host):
A, B = 0.0002, 0.01
data = '{"a": %s, "b": %s}' % (A, B)
req_count = 100
tasks = tuple(
pytest.async_request(
"POST",
f"http://{host}/echo_with_delay",
headers=(("Content-Type", "application/json"),),
data=data,
assert_status=lambda i: i in (200, 429),
)
for i in range(req_count)
)
await asyncio.gather(*tasks)
time_start = time.time()
req_count = 200
tasks = tuple(
pytest.async_request(
"POST",
f"http://{host}/echo_with_delay",
headers=(("Content-Type", "application/json"),),
data=data,
timeout=30,
assert_status=200,
assert_data=data.encode(),
)
for i in range(req_count)
)
await asyncio.gather(*tasks)
assert time.time() - time_start < 2
@pytest.mark.skipif(not psutil.POSIX, reason="production server only works on POSIX")
@pytest.mark.asyncio
async def test_batch_size_limit(host):
A, B = 0.0002, 0.01
data = '{"a": %s, "b": %s}' % (A, B)
# test for max_batch_size=None
tasks = tuple(
pytest.async_request(
"POST",
f"http://{host}/echo_batch_size",
headers=(("Content-Type", "application/json"),),
data=data,
assert_status=lambda i: i in (200, 429),
)
for _ in range(100)
)
await asyncio.gather(*tasks)
await asyncio.sleep(1)
batch_bucket = []
tasks = tuple(
pytest.async_request(
"POST",
f"http://{host}/echo_batch_size",
headers=(("Content-Type", "application/json"),),
data=data,
assert_status=200,
assert_data=lambda d: (
d == b"429: Too Many Requests"
or batch_bucket.append(int(d.decode()))
or True
),
)
for _ in range(50)
)
await asyncio.gather(*tasks)
# batch size could be dynamic because of the bentoml_config.yml
# microbatch.max_batch_size=Null
assert any(b > 1 for b in batch_bucket), batch_bucket
"""
|
# pylint: disable=redefined-outer-name
# type: ignore[no-untyped-def]
import pytest
from bentoml.testing.utils import async_request
@pytest.mark.asyncio
async def test_api_server_meta(host: str) -> None:
status, _, _ = await async_request("GET", f"http://{host}/")
assert status == 200
status, _, _ = await async_request("GET", f"http://{host}/healthz")
assert status == 200
status, _, _ = await async_request("GET", f"http://{host}/livez")
assert status == 200
status, _, _ = await async_request("GET", f"http://{host}/ping")
assert status == 200
status, _, body = await async_request("GET", f"http://{host}/hello")
assert status == 200
assert b'{"Hello":"World"}' == body
status, _, _ = await async_request("GET", f"http://{host}/docs.json")
assert status == 200
status, _, _ = await async_request("GET", f"http://{host}/readyz")
assert status == 200
status, _, body = await async_request("GET", f"http://{host}/metrics")
assert status == 200
assert body
@pytest.mark.asyncio
async def test_cors(host: str, server_config_file: str) -> None:
ORIGIN = "http://bentoml.ai"
status, headers, body = await async_request(
"OPTIONS",
f"http://{host}/echo_json",
headers={
"Content-Type": "application/json",
"Origin": ORIGIN,
"Access-Control-Request-Method": "POST",
"Access-Control-Request-Headers": "Content-Type",
},
)
if server_config_file == "server_config_cors_enabled.yml":
assert status == 200
else:
assert status != 200
status, headers, body = await async_request(
"POST",
f"http://{host}/echo_json",
headers={"Content-Type": "application/json", "Origin": ORIGIN},
data='"hi"',
)
if server_config_file == "server_config_cors_enabled.yml":
assert status == 200
assert body == b'"hi"'
assert headers["Access-Control-Allow-Origin"] in ("*", ORIGIN)
assert "Content-Length" in headers.get("Access-Control-Expose-Headers", [])
assert "Server" not in headers.get("Access-Control-Expect-Headers", [])
else:
assert status == 200
assert headers.get("Access-Control-Allow-Origin") not in ("*", ORIGIN)
assert "Content-Length" not in headers.get("Access-Control-Expose-Headers", [])
"""
@pytest.since_bentoml_version("0.11.0+0")
@pytest.mark.asyncio
async def test_customized_route(host):
CUSTOM_ROUTE = "$~!@%^&*()_-+=[]\\|;:,./predict"
def path_in_docs(response_body):
d = json.loads(response_body.decode())
return f"/{CUSTOM_ROUTE}" in d['paths']
await async_request(
"GET",
f"http://{host}/docs.json",
headers=(("Content-Type", "application/json"),),
assert_data=path_in_docs,
)
await async_request(
"POST",
f"http://{host}/{CUSTOM_ROUTE}",
headers=(("Content-Type", "application/json"),),
data=json.dumps("hello"),
assert_data=bytes('"hello"', 'ascii'),
)
@pytest.mark.asyncio
async def test_customized_request_schema(host):
def has_customized_schema(doc_bytes):
json_str = doc_bytes.decode()
return "field1" in json_str
await async_request(
"GET",
f"http://{host}/docs.json",
headers=(("Content-Type", "application/json"),),
assert_data=has_customized_schema,
)
@pytest.mark.asyncio
@pytest.mark.parametrize(
"metrics",
[
pytest.param(
'_mb_request_duration_seconds_count',
marks=pytest.mark.skipif(
psutil.MACOS, reason="microbatch metrics is not shown in MacOS tests"
),
),
pytest.param(
'_mb_request_total',
marks=pytest.mark.skipif(
psutil.MACOS, reason="microbatch metrics is not shown in MacOS tests"
),
),
'_request_duration_seconds_bucket',
],
)
async def test_api_server_metrics(host, metrics):
await async_request(
"POST", f"http://{host}/echo_json", data='"hi"',
)
await async_request(
"GET",
f"http://{host}/metrics",
assert_status=200,
assert_data=lambda d: metrics in d.decode(),
)
"""
|
from datetime import datetime
# Adding BentoML source directory for accessing BentoML version
import bentoml
# -- Project information -----------------------------------------------------
project = "BentoML"
copyright = f"2022-{datetime.now().year}, bentoml.com"
author = "bentoml.com"
version = bentoml.__version__
# -- General configuration ---------------------------------------------------
source_suffix = [".rst", ".md"]
# See https://github.com/readthedocs/readthedocs.org/issues/2149
master_doc = "index"
# Sphinx extensions
extensions = [
"sphinxext.opengraph",
"sphinx.ext.autodoc",
"sphinx.ext.autosectionlabel",
"sphinx.ext.napoleon",
"sphinx.ext.todo",
"sphinx.ext.viewcode",
"sphinx.ext.ifconfig",
"sphinx_click.ext",
"sphinx_copybutton",
"sphinx_design",
"sphinx_issues",
"sphinxcontrib.spelling",
"myst_parser",
"sphinx_inline_tabs",
]
# Plugin Configurations:
napoleon_include_private_with_doc = False
napoleon_numpy_docstring = False
napoleon_include_special_with_doc = False
autosectionlabel_prefix_document = True
autosectionlabel_maxdepth = 10
ogp_site_url = "http://docs.bentoml.org"
ogp_image = "https://docs.bentoml.org/en/latest/_images/bentoml-readme-header.jpeg"
ogp_site_name = "BentoML Documentation"
ogp_use_first_image = True
issues_default_group_project = "bentoml/bentoml"
todo_include_todos = True
autodoc_typehints = "description"
autodoc_typehints_description_target = "documented"
# Add any paths that contain templates here, relative to this directory.
templates_path = ["_templates"]
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = "zenburn"
pygments_dark_style = "monokai"
myst_enable_extensions = ["colon_fence"]
# Remove the prompt when copying examples
copybutton_prompt_text = r">>> |\.\.\.|Β» |$ |% "
copybutton_prompt_is_regexp = True
# -- Options for HTML output -------------------------------------------------
html_theme = "furo"
html_theme_options = {
"light_css_variables": {
"color-brand-primary": "#44a4c6 ",
"color-brand-content": "#44a4c6 ",
},
"dark_css_variables": {
"color-brand-primary": "#c9378a ",
"color-brand-content": "#c9378a ",
},
"source_repository": "https://github.com/bentoml/bentoml/",
"source_branch": "main",
"source_directory": "docs/source/",
"footer_icons": [
{
"name": "GitHub",
"url": "https://github.com/bentoml/bentoml",
"html": " π± ",
"class": "",
},
],
}
html_title = "BentoML"
html_logo = "_static/img/logo.svg"
html_static_path = ["_static"]
html_css_files = ["css/custom.css"]
html_js_files = ["js/custom.js"]
html_show_sphinx = False
html_favicon = "_static/img/favicon-32x32.ico"
# Private dictionary for spell checker
spelling_word_list_filename = ["bentoml_wordlist.txt"]
# mock any heavy imports, eg: imports from frameworks library
autodoc_mock_imports = [
"catboost",
"coremltools",
"detectron2",
"detectron2.config",
"detectron2.modeling",
"detectron2.checkpoint",
"torch",
"torchvision",
"torchtext",
"easyocr",
"evalml",
"fastai",
"fasttext",
"mxnet",
"mxnet.gluon",
"h2o",
"h2o.model",
"tensorflow",
"tensorflow.keras",
"tensorflow.python.client",
"tensorflow.python.training.tracking.tracking",
"tensorflow_hub",
"keras",
"trax",
"flax",
"jax",
"lightgbm",
"mlflow",
"mlflow.pyfunc",
"mlflow.tracking.artifact_utils",
"onnx",
"onnxruntime",
"PyRuntime",
"paddle",
"paddle.nn",
"paddle.inference",
"paddle.fluid",
"paddlehub",
"paddlehub.module.manager",
"paddlehub.server.server",
"pycaret",
"pycaret.internal.tabular",
"pyspark",
"pytorch",
"torch.nn.parallel",
"pytorch_lightning",
"sklearn",
"joblib",
"spacy",
"spacy.util",
"thinc.util",
"thinc.backends",
"statsmodels",
"statsmodels.api",
"statsmodels.tools.parallel",
"transformers",
"transformers.file_utils",
"xgboost",
]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
import logging
from ._internal.frameworks.lightgbm import get
from ._internal.frameworks.lightgbm import load_model
from ._internal.frameworks.lightgbm import save_model
from ._internal.frameworks.lightgbm import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
from __future__ import annotations
import typing as t
from typing import TYPE_CHECKING
from contextlib import contextmanager
from simple_di import inject
from simple_di import Provide
from ._internal.tag import Tag
from ._internal.utils import calc_dir_size
from ._internal.models import Model
from ._internal.models import ModelContext
from ._internal.models import ModelOptions
from ._internal.utils.analytics import track
from ._internal.utils.analytics import ModelSaveEvent
from ._internal.configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from ._internal.models import ModelStore
from ._internal.models.model import ModelSignaturesType
@inject
def list( # pylint: disable=redefined-builtin
tag: t.Optional[t.Union[Tag, str]] = None,
*,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> t.List["Model"]:
return _model_store.list(tag)
@inject
def get(
tag: t.Union[Tag, str],
*,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Model":
return _model_store.get(tag)
@inject
def delete(
tag: t.Union[Tag, str],
*,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
):
_model_store.delete(tag)
@inject
def import_model(
path: str,
input_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> Model:
"""
Import a bento model exported with :code:`bentoml.models.export_model`. To import a model saved
with a framework, see the :code:`save` function under the relevant framework, e.g.
:code:`bentoml.sklearn.save`.
Examples:
.. code-block:: python
# imports 'my_model' from '/path/to/folder/my_model.bentomodel'
bentoml.models.import_model('/path/to/folder/my_model.bentomodel')
# imports 'my_model' from '/path/to/folder/my_model.tar.gz'
# currently supported formats are tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip
bentoml.models.import_model('/path/to/folder/my_model.tar.gz')
# treats 'my_model.ext' as a gzipped tarfile
bentoml.models.import_model('/path/to/folder/my_model.ext', 'gz')
# imports 'my_model', which is stored as an uncompressed folder, from '/path/to/folder/my_model/'
bentoml.models.import_model('/path/to/folder/my_model', 'folder')
# imports 'my_model' from the S3 bucket 'my_bucket', path 'folder/my_model.bentomodel'
# requires `fs-s3fs <https://pypi.org/project/fs-s3fs/>`_ ('pip install fs-s3fs')
bentoml.models.import_model('s3://my_bucket/folder/my_model.bentomodel')
bentoml.models.import_model('my_bucket/folder/my_model.bentomodel', protocol='s3')
bentoml.models.import_model('my_bucket', protocol='s3', subpath='folder/my_model.bentomodel')
bentoml.models.import_model('my_bucket', protocol='s3', subpath='folder/my_model.bentomodel',
user='<AWS access key>', passwd='<AWS secret key>',
params={'acl': 'public-read', 'cache-control': 'max-age=2592000,public'})
For a more comprehensive description of what each of the keyword arguments (:code:`protocol`,
:code:`user`, :code:`passwd`, :code:`params`, and :code:`subpath`) mean, see the
`FS URL documentation <https://docs.pyfilesystem.org/en/latest/openers.html>`_.
Args:
tag: the tag of the model to export
path: can be one of two things:
* a folder on the local filesystem
* an `FS URL <https://docs.pyfilesystem.org/en/latest/openers.html>`_, for example
:code:`'s3://my_bucket/folder/my_model.bentomodel'`
protocol: (expert) The FS protocol to use when exporting. Some example protocols are :code:`'ftp'`,
:code:`'s3'`, and :code:`'userdata'`
user: (expert) the username used for authentication if required, e.g. for FTP
passwd: (expert) the username used for authentication if required, e.g. for FTP
params: (expert) a map of parameters to be passed to the FS used for export, e.g. :code:`{'proxy': 'myproxy.net'}`
for setting a proxy for FTP
subpath: (expert) the path inside the FS that the model should be exported to
_model_store: the model store to save the model to
Returns:
Model: the imported model
"""
return Model.import_from(
path,
input_format,
protocol=protocol,
user=user,
passwd=passwd,
params=params,
subpath=subpath,
).save(_model_store)
@inject
def export_model(
tag: t.Union[Tag, str],
path: str,
output_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> str:
"""
Export a BentoML model.
Examples:
.. code-block:: python
# exports 'my_model' to '/path/to/folder/my_model-version.bentomodel' in BentoML's default format
bentoml.models.export_model('my_model:latest', '/path/to/folder')
# note that folders can only be passed if exporting to the local filesystem; otherwise the
# full path, including the desired filename, must be passed
# exports 'my_model' to '/path/to/folder/my_model.bentomodel' in BentoML's default format
bentoml.models.export_model('my_model:latest', '/path/to/folder/my_model')
bentoml.models.export_model('my_model:latest', '/path/to/folder/my_model.bentomodel')
# exports 'my_model' to '/path/to/folder/my_model.tar.gz in gzip format
# currently supported formats are tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip
bentoml.models.export_model('my_model:latest', '/path/to/folder/my_model.tar.gz')
bentoml.models.export_model('my_model:latest', '/path/to/folder/my_model.tar.gz', 'gz')
# exports 'my_model' to '/path/to/folder/my_model/ as a folder
bentoml.models.export_model('my_model:latest', '/path/to/folder/my_model', 'folder')
# exports 'my_model' to the S3 bucket 'my_bucket' as 'folder/my_model-version.bentomodel'
bentoml.models.export_model('my_model:latest', 's3://my_bucket/folder')
bentoml.models.export_model('my_model:latest', 'my_bucket/folder', protocol='s3')
bentoml.models.export_model('my_model:latest', 'my_bucket', protocol='s3', subpath='folder')
bentoml.models.export_model('my_model:latest', 'my_bucket', protocol='s3', subpath='folder',
user='<AWS access key>', passwd='<AWS secret key>',
params={'acl': 'public-read', 'cache-control': 'max-age=2592000,public'})
For a more comprehensive description of what each of the keyword arguments (:code:`protocol`,
:code:`user`, :code:`passwd`, :code:`params`, and :code:`subpath`) mean, see the
`FS URL documentation <https://docs.pyfilesystem.org/en/latest/openers.html>`_.
Args:
tag: the tag of the model to export
path: can be one of two things:
* a folder on the local filesystem
* an `FS URL <https://docs.pyfilesystem.org/en/latest/openers.html>`_, for example,
:code:`'s3://my_bucket/folder/my_model.bentomodel'`
protocol: (expert) The FS protocol to use when exporting. Some example protocols are :code:`'ftp'`,
:code:`'s3'`, and :code:`'userdata'`.
user: (expert) the username used for authentication if required, e.g. for FTP
passwd: (expert) the username used for authentication if required, e.g. for FTP
params: (expert) a map of parameters to be passed to the FS used for export, e.g. :code:`{'proxy': 'myproxy.net'}`
for setting a proxy for FTP
subpath: (expert) the path inside the FS that the model should be exported to
_model_store: the model store to get the model to save from
Returns:
str: A representation of the path that the model was exported to. If it was exported to the local filesystem,
this will be the OS path to the exported model. Otherwise, it will be an FS URL.
"""
model = get(tag, _model_store=_model_store)
return model.export(
path,
output_format,
protocol=protocol,
user=user,
passwd=passwd,
params=params,
subpath=subpath,
)
def push(
tag: t.Union[Tag, str],
*,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
):
raise NotImplementedError
def pull(
tag: t.Union[Tag, str],
*,
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> Model:
raise NotImplementedError
@inject
@contextmanager
def create(
name: str,
*,
module: str = "",
api_version: str | None = None,
signatures: ModelSignaturesType,
labels: dict[str, t.Any] | None = None,
options: ModelOptions | None = None,
custom_objects: dict[str, t.Any] | None = None,
metadata: dict[str, t.Any] | None = None,
context: ModelContext,
_model_store: ModelStore = Provide[BentoMLContainer.model_store],
) -> t.Generator[Model, None, None]:
options = ModelOptions() if options is None else options
api_version = "v1" if api_version is None else api_version
res = Model.create(
name,
module=module,
api_version=api_version,
labels=labels,
signatures=signatures,
options=options,
custom_objects=custom_objects,
metadata=metadata,
context=context,
)
try:
yield res
finally:
res.flush()
res.save(_model_store)
track(
ModelSaveEvent(
module=res.info.module,
model_size_in_kb=calc_dir_size(res.path_of("/")) / 1024,
),
)
__all__ = [
"list",
"get",
"delete",
"import_model",
"export_model",
"push",
"pull",
"ModelContext",
"ModelOptions",
]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
import logging
from ._internal.frameworks.transformers import get
from ._internal.frameworks.transformers import load_model
from ._internal.frameworks.transformers import save_model
from ._internal.frameworks.transformers import get_runnable
from ._internal.frameworks.transformers import TransformersOptions as ModelOptions # type: ignore # noqa
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
import logging
from ._internal.frameworks.keras import get
from ._internal.frameworks.keras import load_model
from ._internal.frameworks.keras import save_model
from ._internal.frameworks.keras import get_runnable
from ._internal.frameworks.keras import KerasOptions as ModelOptions # type: ignore # noqa
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["get", "load_model", "save_model", "get_runnable"]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
from ._internal.io_descriptors.base import IODescriptor
from ._internal.io_descriptors.file import File
from ._internal.io_descriptors.json import JSON
from ._internal.io_descriptors.text import Text
from ._internal.io_descriptors.image import Image
from ._internal.io_descriptors.numpy import NumpyNdarray
from ._internal.io_descriptors.pandas import PandasSeries
from ._internal.io_descriptors.pandas import PandasDataFrame
from ._internal.io_descriptors.multipart import Multipart
__all__ = [
"File",
"Image",
"IODescriptor",
"JSON",
"Multipart",
"NumpyNdarray",
"PandasDataFrame",
"PandasSeries",
"Text",
]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
from typing import TYPE_CHECKING
from ._internal.configuration import BENTOML_VERSION as __version__
from ._internal.configuration import load_global_config
# Inject dependencies and configurations
load_global_config()
# Model management APIs
from . import models
# Bento management APIs
from .bentos import get
from .bentos import list # pylint: disable=W0622
from .bentos import pull
from .bentos import push
from .bentos import delete
from .bentos import export_bento
from .bentos import import_bento
# BentoML built-in types
from ._internal.tag import Tag
from ._internal.bento import Bento
from ._internal.models import Model
from ._internal.runner import Runner
from ._internal.runner import Runnable
from ._internal.context import InferenceApiContext as Context
from ._internal.service import Service
from ._internal.yatai_client import YataiClient
from ._internal.service.loader import load
# Framework specific modules are lazily loaded upon import
if TYPE_CHECKING:
from bentoml import h2o
from bentoml import flax
from bentoml import onnx
from bentoml import gluon
from bentoml import keras
from bentoml import spacy
from bentoml import mlflow
from bentoml import paddle
from bentoml import easyocr
from bentoml import pycaret
from bentoml import pytorch
from bentoml import sklearn
from bentoml import xgboost
from bentoml import catboost
from bentoml import lightgbm
from bentoml import onnxmlir
from bentoml import detectron
from bentoml import tensorflow
from bentoml import statsmodels
from bentoml import torchscript
from bentoml import transformers
from bentoml import tensorflow_v1
from bentoml import picklable_model
from bentoml import pytorch_lightning
else:
from ._internal.utils import LazyLoader as _LazyLoader
catboost = _LazyLoader("bentoml.catboost", globals(), "bentoml.catboost")
detectron = _LazyLoader("bentoml.detectron", globals(), "bentoml.detectron")
easyocr = _LazyLoader("bentoml.easyocr", globals(), "bentoml.easyocr")
flax = _LazyLoader("bentoml.flax", globals(), "bentoml.flax")
gluon = _LazyLoader("bentoml.gluon", globals(), "bentoml.gluon")
h2o = _LazyLoader("bentoml.h2o", globals(), "bentoml.h2o")
lightgbm = _LazyLoader("bentoml.lightgbm", globals(), "bentoml.lightgbm")
mlflow = _LazyLoader("bentoml.mlflow", globals(), "bentoml.mlflow")
onnx = _LazyLoader("bentoml.onnx", globals(), "bentoml.onnx")
onnxmlir = _LazyLoader("bentoml.onnxmlir", globals(), "bentoml.onnxmlir")
keras = _LazyLoader("bentoml.keras", globals(), "bentoml.keras")
paddle = _LazyLoader("bentoml.paddle", globals(), "bentoml.paddle")
pycaret = _LazyLoader("bentoml.pycaret", globals(), "bentoml.pycaret")
pytorch = _LazyLoader("bentoml.pytorch", globals(), "bentoml.pytorch")
pytorch_lightning = _LazyLoader(
"bentoml.pytorch_lightning", globals(), "bentoml.pytorch_lightning"
)
sklearn = _LazyLoader("bentoml.sklearn", globals(), "bentoml.sklearn")
picklable_model = _LazyLoader(
"bentoml.picklable_model", globals(), "bentoml.picklable_model"
)
spacy = _LazyLoader("bentoml.spacy", globals(), "bentoml.spacy")
statsmodels = _LazyLoader("bentoml.statsmodels", globals(), "bentoml.statsmodels")
tensorflow = _LazyLoader("bentoml.tensorflow", globals(), "bentoml.tensorflow")
tensorflow_v1 = _LazyLoader(
"bentoml.tensorflow_v1", globals(), "bentoml.tensorflow_v1"
)
torchscript = _LazyLoader("bentoml.torchscript", globals(), "bentoml.torchscript")
transformers = _LazyLoader(
"bentoml.transformers", globals(), "bentoml.transformers"
)
xgboost = _LazyLoader("bentoml.xgboost", globals(), "bentoml.xgboost")
__all__ = [
"__version__",
"Context",
"Service",
"models",
"Tag",
"Model",
"Runner",
"Runnable",
"YataiClient", # Yatai REST API Client
# bento APIs
"list",
"get",
"delete",
"import_bento",
"export_bento",
"load",
"push",
"pull",
"Bento",
# Framework specific modules
"catboost",
"detectron",
"easyocr",
"flax",
"gluon",
"h2o",
"lightgbm",
"mlflow",
"onnx",
"onnxmlir",
"paddle",
"picklable_model",
"pycaret",
"pytorch",
"pytorch_lightning",
"keras",
"sklearn",
"spacy",
"statsmodels",
"tensorflow",
"tensorflow_v1",
"torchscript",
"transformers",
"xgboost",
]
|
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from ._internal.models.model import ModelSignature
from ._internal.models.model import ModelSignatureDict
__all__ = ["ModelSignature", "ModelSignatureDict"]
|
import logging
from ._internal.frameworks.tensorflow_v2 import get
from ._internal.frameworks.tensorflow_v2 import load_model
from ._internal.frameworks.tensorflow_v2 import save_model
from ._internal.frameworks.tensorflow_v2 import get_runnable
from ._internal.frameworks.tensorflow_v2 import TensorflowOptions as ModelOptions # type: ignore # noqa
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["get", "load_model", "save_model", "get_runnable"]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
"""
User facing python APIs for managing local bentos and build new bentos
"""
from __future__ import annotations
import os
import typing as t
import logging
import subprocess
from typing import TYPE_CHECKING
from simple_di import inject
from simple_di import Provide
from bentoml.exceptions import InvalidArgument
from ._internal.tag import Tag
from ._internal.bento import Bento
from ._internal.utils import resolve_user_filepath
from ._internal.bento.build_config import BentoBuildConfig
from ._internal.configuration.containers import BentoMLContainer
if TYPE_CHECKING:
from ._internal.bento import BentoStore
from ._internal.types import PathType
from ._internal.models import ModelStore
logger = logging.getLogger(__name__)
BENTOML_FIGLET = """
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββ¦ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββ¦ββββββββββββββββββββββββββββββββββββββββββββββββββββββ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
"""
@inject
def list( # pylint: disable=redefined-builtin
tag: t.Optional[t.Union[Tag, str]] = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> "t.List[Bento]":
return _bento_store.list(tag)
@inject
def get(
tag: t.Union[Tag, str],
*,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> Bento:
return _bento_store.get(tag)
@inject
def delete(
tag: t.Union[Tag, str],
*,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
):
_bento_store.delete(tag)
@inject
def import_bento(
path: str,
input_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> Bento:
"""
Import a bento.
Examples:
.. code-block:: python
# imports 'my_bento' from '/path/to/folder/my_bento.bento'
bentoml.import_bento('/path/to/folder/my_bento.bento')
# imports 'my_bento' from '/path/to/folder/my_bento.tar.gz'
# currently supported formats are tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip
bentoml.import_bento('/path/to/folder/my_bento.tar.gz')
# treats 'my_bento.ext' as a gzipped tarfile
bentoml.import_bento('/path/to/folder/my_bento.ext', 'gz')
# imports 'my_bento', which is stored as an uncompressed folder, from '/path/to/folder/my_bento/'
bentoml.import_bento('/path/to/folder/my_bento', 'folder')
# imports 'my_bento' from the S3 bucket 'my_bucket', path 'folder/my_bento.bento'
# requires `fs-s3fs <https://pypi.org/project/fs-s3fs/>`_ ('pip install fs-s3fs')
bentoml.import_bento('s3://my_bucket/folder/my_bento.bento')
bentoml.import_bento('my_bucket/folder/my_bento.bento', protocol='s3')
bentoml.import_bento('my_bucket', protocol='s3', subpath='folder/my_bento.bento')
bentoml.import_bento('my_bucket', protocol='s3', subpath='folder/my_bento.bento',
user='<AWS access key>', passwd='<AWS secret key>',
params={'acl': 'public-read', 'cache-control': 'max-age=2592000,public'})
For a more comprehensive description of what each of the keyword arguments (:code:`protocol`,
:code:`user`, :code:`passwd`, :code:`params`, and :code:`subpath`) mean, see the
`FS URL documentation <https://docs.pyfilesystem.org/en/latest/openers.html>`_.
Args:
tag: the tag of the bento to export
path: can be one of two things:
* a folder on the local filesystem
* an `FS URL <https://docs.pyfilesystem.org/en/latest/openers.html>`_, for example
:code:`'s3://my_bucket/folder/my_bento.bento'`
protocol: (expert) The FS protocol to use when exporting. Some example protocols are :code:`'ftp'`,
:code:`'s3'`, and :code:`'userdata'`
user: (expert) the username used for authentication if required, e.g. for FTP
passwd: (expert) the username used for authentication if required, e.g. for FTP
params: (expert) a map of parameters to be passed to the FS used for export, e.g. :code:`{'proxy': 'myproxy.net'}`
for setting a proxy for FTP
subpath: (expert) the path inside the FS that the bento should be exported to
_bento_store: the bento store to save the bento to
Returns:
Bento: the imported bento
"""
return Bento.import_from(
path,
input_format,
protocol=protocol,
user=user,
passwd=passwd,
params=params,
subpath=subpath,
).save(_bento_store)
@inject
def export_bento(
tag: t.Union[Tag, str],
path: str,
output_format: t.Optional[str] = None,
*,
protocol: t.Optional[str] = None,
user: t.Optional[str] = None,
passwd: t.Optional[str] = None,
params: t.Optional[t.Dict[str, str]] = None,
subpath: t.Optional[str] = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> str:
"""
Export a bento.
Examples:
.. code-block:: python
# exports 'my_bento' to '/path/to/folder/my_bento-version.bento' in BentoML's default format
bentoml.export_bento('my_bento:latest', '/path/to/folder')
# note that folders can only be passed if exporting to the local filesystem; otherwise the
# full path, including the desired filename, must be passed
# exports 'my_bento' to '/path/to/folder/my_bento.bento' in BentoML's default format
bentoml.export_bento('my_bento:latest', '/path/to/folder/my_bento')
bentoml.export_bento('my_bento:latest', '/path/to/folder/my_bento.bento')
# exports 'my_bento' to '/path/to/folder/my_bento.tar.gz' in gzip format
# currently supported formats are tar.gz ('gz'), tar.xz ('xz'), tar.bz2 ('bz2'), and zip
bentoml.export_bento('my_bento:latest', '/path/to/folder/my_bento.tar.gz')
# outputs a gzipped tarfile as 'my_bento.ext'
bentoml.export_bento('my_bento:latest', '/path/to/folder/my_bento.ext', 'gz')
# exports 'my_bento' to '/path/to/folder/my_bento/' as a folder
bentoml.export_bento('my_bento:latest', '/path/to/folder/my_bento', 'folder')
# exports 'my_bento' to the S3 bucket 'my_bucket' as 'folder/my_bento-version.bento'
bentoml.export_bento('my_bento:latest', 's3://my_bucket/folder')
bentoml.export_bento('my_bento:latest', 'my_bucket/folder', protocol='s3')
bentoml.export_bento('my_bento:latest', 'my_bucket', protocol='s3', subpath='folder')
bentoml.export_bento('my_bento:latest', 'my_bucket', protocol='s3', subpath='folder',
user='<AWS access key>', passwd='<AWS secret key>',
params={'acl': 'public-read', 'cache-control': 'max-age=2592000,public'})
For a more comprehensive description of what each of the keyword arguments (:code:`protocol`,
:code:`user`, :code:`passwd`, :code:`params`, and :code:`subpath`) mean, see the
`FS URL documentation <https://docs.pyfilesystem.org/en/latest/openers.html>`_.
Args:
tag: the tag of the Bento to export
path: can be one of two things:
* a folder on the local filesystem
* an `FS URL <https://docs.pyfilesystem.org/en/latest/openers.html>`_
* for example, :code:`'s3://my_bucket/folder/my_bento.bento'`
protocol: (expert) The FS protocol to use when exporting. Some example protocols are :code:`'ftp'`,
:code:`'s3'`, and :code:`'userdata'`
user: (expert) the username used for authentication if required, e.g. for FTP
passwd: (expert) the username used for authentication if required, e.g. for FTP
params: (expert) a map of parameters to be passed to the FS used for export, e.g. :code:`{'proxy': 'myproxy.net'}`
for setting a proxy for FTP
subpath: (expert) the path inside the FS that the bento should be exported to
_bento_store: save Bento created to this BentoStore
Returns:
str: A representation of the path that the Bento was exported to. If it was exported to the local filesystem,
this will be the OS path to the exported Bento. Otherwise, it will be an FS URL.
"""
bento = get(tag, _bento_store=_bento_store)
return bento.export(
path,
output_format,
protocol=protocol,
user=user,
passwd=passwd,
params=params,
subpath=subpath,
)
@inject
def push(
tag: t.Union[Tag, str],
*,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
):
raise NotImplementedError
@inject
def pull(
tag: t.Union[Tag, str],
*,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
):
raise NotImplementedError
@inject
def build(
service: str,
*,
labels: t.Optional[t.Dict[str, str]] = None,
description: t.Optional[str] = None,
include: t.Optional[t.List[str]] = None,
exclude: t.Optional[t.List[str]] = None,
docker: t.Optional[t.Dict[str, t.Any]] = None,
python: t.Optional[t.Dict[str, t.Any]] = None,
conda: t.Optional[t.Dict[str, t.Any]] = None,
version: t.Optional[str] = None,
build_ctx: t.Optional[str] = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Bento":
"""
User-facing API for building a Bento. The available build options are identical to the keys of a
valid 'bentofile.yaml' file.
This API will not respect any 'bentofile.yaml' files. Build options should instead be provided
via function call parameters.
Args:
service: import str for finding the bentoml.Service instance build target
labels: optional immutable labels for carrying contextual info
description: optional description string in markdown format
include: list of file paths and patterns specifying files to include in Bento,
default is all files under build_ctx, beside the ones excluded from the
exclude parameter or a :code:`.bentoignore` file for a given directory
exclude: list of file paths and patterns to exclude from the final Bento archive
docker: dictionary for configuring Bento's containerization process, see details
in :class:`bentoml._internal.bento.build_config.DockerOptions`
python: dictionary for configuring Bento's python dependencies, see details in
:class:`bentoml._internal.bento.build_config.PythonOptions`
conda: dictionary for configuring Bento's conda dependencies, see details in
:class:`bentoml._internal.bento.build_config.CondaOptions`
version: Override the default auto generated version str
build_ctx: Build context directory, when used as
_bento_store: save Bento created to this BentoStore
_model_store: pull Models required from this ModelStore
Returns:
Bento: a Bento instance representing the materialized Bento saved in BentoStore
Example:
.. code-block::
import bentoml
bentoml.build(
service="fraud_detector.py:svc",
version="any_version_label", # override default version generator
description=open("README.md").read(),
include=['*'],
exclude=[], # files to exclude can also be specified with a .bentoignore file
labels={
"foo": "bar",
"team": "abc"
},
python=dict(
packages=["tensorflow", "numpy"],
# requirements_txt="./requirements.txt",
index_url="http://<api token>:@mycompany.com/pypi/simple",
trusted_host=["mycompany.com"],
find_links=['thirdparty..'],
extra_index_url=["..."],
pip_args="ANY ADDITIONAL PIP INSTALL ARGS",
wheels=["./wheels/*"],
lock_packages=True,
),
docker=dict(
distro="amazonlinux2",
setup_script="setup_docker_container.sh",
python_version="3.8",
),
)
""" # noqa: LN001
build_config = BentoBuildConfig(
service=service,
description=description,
labels=labels,
include=include,
exclude=exclude,
docker=docker, # type: ignore
python=python, # type: ignore
conda=conda, # type: ignore
)
bento = Bento.create(
build_config=build_config,
version=version,
build_ctx=build_ctx,
).save(_bento_store)
logger.info(BENTOML_FIGLET)
logger.info(f"Successfully built {bento}")
return bento
@inject
def build_bentofile(
bentofile: str = "bentofile.yaml",
*,
version: t.Optional[str] = None,
build_ctx: t.Optional[str] = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
_model_store: "ModelStore" = Provide[BentoMLContainer.model_store],
) -> "Bento":
"""
Build a Bento base on options specified in a bentofile.yaml file.
By default, this function will look for a `bentofile.yaml` file in current working
directory.
Args:
bentofile: The file path to build config yaml file
version: Override the default auto generated version str
build_ctx: Build context directory, when used as
_bento_store: save Bento created to this BentoStore
_model_store: pull Models required from this ModelStore
"""
try:
bentofile = resolve_user_filepath(bentofile, build_ctx)
except FileNotFoundError:
raise InvalidArgument(f'bentofile "{bentofile}" not found')
with open(bentofile, "r", encoding="utf-8") as f:
build_config = BentoBuildConfig.from_yaml(f)
bento = Bento.create(
build_config=build_config,
version=version,
build_ctx=build_ctx,
).save(_bento_store)
logger.info(BENTOML_FIGLET)
logger.info(f"Successfully built {bento}")
return bento
@inject
def containerize(
tag: Tag | str,
docker_image_tag: str | None = None,
*,
add_host: dict[str, str] | None = None,
allow: t.List[str] | None = None,
build_args: dict[str, str] | None = None,
build_context: dict[str, str] | None = None,
builder: str | None = None,
cache_from: str | t.List[str] | dict[str, str] | None = None,
cache_to: str | t.List[str] | dict[str, str] | None = None,
cgroup_parent: str | None = None,
iidfile: PathType | None = None,
labels: dict[str, str] | None = None,
load: bool = True,
metadata_file: PathType | None = None,
network: str | None = None,
no_cache: bool = False,
no_cache_filter: t.List[str] | None = None,
output: str | dict[str, str] | None = None,
platform: str | t.List[str] | None = None,
progress: t.Literal["auto", "tty", "plain"] = "auto",
pull: bool = False,
push: bool = False,
quiet: bool = False,
secrets: str | t.List[str] | None = None,
shm_size: str | int | None = None,
rm: bool = False,
ssh: str | None = None,
target: str | None = None,
ulimit: str | None = None,
_bento_store: "BentoStore" = Provide[BentoMLContainer.bento_store],
) -> bool:
from bentoml._internal.utils import buildx
env = {"DOCKER_BUILDKIT": "1", "DOCKER_SCAN_SUGGEST": "false"}
# run health check whether buildx is install locally
buildx.health()
bento = _bento_store.get(tag)
if docker_image_tag is None:
docker_image_tag = str(bento.tag)
dockerfile_path = os.path.join("env", "docker", "Dockerfile")
logger.info(f"Building docker image for {bento}...")
try:
buildx.build(
subprocess_env=env,
cwd=bento.path,
file=dockerfile_path,
tags=docker_image_tag,
add_host=add_host,
allow=allow,
build_args=build_args,
build_context=build_context,
builder=builder,
cache_from=cache_from,
cache_to=cache_to,
cgroup_parent=cgroup_parent,
iidfile=iidfile,
labels=labels,
load=load,
metadata_file=metadata_file,
network=network,
no_cache=no_cache,
no_cache_filter=no_cache_filter,
output=output,
platform=platform,
progress=progress,
pull=pull,
push=push,
quiet=quiet,
secrets=secrets,
shm_size=shm_size,
rm=rm,
ssh=ssh,
target=target,
ulimit=ulimit,
)
except subprocess.CalledProcessError as e:
logger.error(f"Failed building docker image: {e}")
if platform != "linux/amd64":
logger.debug(
f"""If you run into the following error: "failed to solve: pull access denied, repository does not exist or may require authorization: server message: insufficient_scope: authorization failed". This means Docker doesn't have context of your build platform {platform}. By default BentoML will set target build platform to the current machine platform via `uname -m`. Try again by specifying to build x86_64 (amd64) platform: bentoml containerize {str(bento.tag)} --platform linux/amd64"""
)
return False
else:
logger.info(f'Successfully built docker image "{docker_image_tag}"')
return True
__all__ = [
"list",
"get",
"delete",
"import_bento",
"export_bento",
"push",
"pull",
"build",
"build_bentofile",
"containerize",
]
|
import logging
from ._internal.frameworks.pytorch_lightning import get
from ._internal.frameworks.pytorch_lightning import load_model
from ._internal.frameworks.pytorch_lightning import save_model
from ._internal.frameworks.pytorch_lightning import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
import logging
from ._internal.frameworks.pytorch import get
from ._internal.frameworks.pytorch import load_model
from ._internal.frameworks.pytorch import save_model
from ._internal.frameworks.pytorch import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
from __future__ import annotations
from http import HTTPStatus
class BentoMLException(Exception):
"""
Base class for all BentoML's errors.
Each custom exception should be derived from this class
"""
error_code = HTTPStatus.INTERNAL_SERVER_ERROR
def __init__(self, message: str):
self.message = message
super().__init__(message)
class StateException(Exception):
"""
Raise when the state of an object is not valid
"""
error_code = HTTPStatus.BAD_REQUEST
class RemoteException(BentoMLException):
"""
Raise when known exceptions happened in remote process
"""
def __init__(self, message: str, payload: BentoMLException | None = None):
self.payload = payload
super().__init__(message)
class InvalidArgument(BentoMLException):
"""
Raise when BentoML received unexpected/invalid arguments from CLI arguments, HTTP
Request, or python API function parameters
"""
error_code = HTTPStatus.BAD_REQUEST
class InternalServerError(BentoMLException):
"""
Raise when BentoML received valid arguments from CLI arguments, HTTP
Request, or python API function parameters, but got internal issues while
processing.
* Note to BentoML org developers: raise this exception only when exceptions happend
in the users' code (runner or service) and want to surface it to the user.
"""
class APIDeprecated(BentoMLException):
"""
Raise when trying to use deprecated APIs of BentoML
"""
class BadInput(InvalidArgument):
"""Raise when API server receiving bad input request"""
error_code = HTTPStatus.BAD_REQUEST
class NotFound(BentoMLException):
"""
Raise when specified resource or name not found
"""
error_code = HTTPStatus.NOT_FOUND
class TooManyRequests(BentoMLException):
"""
Raise when incoming requests exceeds the capacity of a server
"""
error_code = HTTPStatus.TOO_MANY_REQUESTS
class BentoMLConfigException(BentoMLException):
"""Raise when BentoML is mis-configured or when required configuration is missing"""
class MissingDependencyException(BentoMLException):
"""
Raise when BentoML component failed to load required dependency - some BentoML
components has dependency that is optional to the library itself. For example,
when using SklearnModel, the scikit-learn module is required although
BentoML does not require scikit-learn to be a dependency when installed
"""
class CLIException(BentoMLException):
"""Raise when CLI encounters an issue"""
class YataiRESTApiClientError(BentoMLException):
pass
class ImportServiceError(BentoMLException):
pass
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
import logging
from ._internal.frameworks.torchscript import get
from ._internal.frameworks.torchscript import load_model
from ._internal.frameworks.torchscript import save_model
from ._internal.frameworks.torchscript import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
import logging
from ._internal.frameworks.xgboost import get
from ._internal.frameworks.xgboost import load_model
from ._internal.frameworks.xgboost import save_model
from ._internal.frameworks.xgboost import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "save_model", "get", "get_runnable"]
|
import logging
from ._internal.frameworks.sklearn import get
from ._internal.frameworks.sklearn import load_model
from ._internal.frameworks.sklearn import save_model
from ._internal.frameworks.sklearn import get_runnable
logger = logging.getLogger(__name__)
def save(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.save" method is being deprecated. Use "{__name__}.save_model" instead'
)
return save_model(tag, *args, **kwargs)
def load(tag, *args, **kwargs):
logger.warning(
f'The "{__name__}.load" method is being deprecated. Use "{__name__}.load_model" instead'
)
return load_model(tag, *args, **kwargs)
def load_runner(tag, *args, **kwargs):
if len(args) != 0 or len(kwargs) != 0:
logger.error(
f'The "{__name__}.load_runner" method is being deprecated. "load_runner" arguments will be ignored. Use `{__name__}.get("{tag}").to_runner()` instead'
)
else:
logger.warning(
f'The "{__name__}.load_runner" method is being deprecated. Use `{__name__}.get("{tag}").to_runner()` instead'
)
return get(tag).to_runner()
__all__ = ["load_model", "get_runnable", "save_model", "get"]
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
raise NotImplementedError(
f"""\
Support for "{__name__}" is temporarily unavailable as BentoML transition to the new \
design in version 1.0.0 release. Before this module is officially implemented in \
BentoML, users may use Custom Runner as a workaround. Learn more at http://docs.bentoml.org
"""
)
|
from ._internal.frameworks.picklable import get
from ._internal.frameworks.picklable import load_model
from ._internal.frameworks.picklable import save_model
from ._internal.frameworks.picklable import get_runnable
__all__ = ["load_model", "get_runnable", "save_model", "get"]
|
if __name__ == "__main__":
from bentoml._internal.cli import create_bentoml_cli
create_bentoml_cli()()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.