python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model layer normalisation and dropout utilities.""" import sonnet as snt import tensorflow.compat.v2 as tf class ResidualDropoutWrapper(snt.Module): """Wrapper that applies residual connections, dropout and layer norm.""" def __init__(self, layer, dropout_rate, apply_layer_norm=True, name=None): """Creates the Wrapper Class. Args: layer: module to wrap. dropout_rate: dropout rate. A rate of 0. will turn off dropout. apply_layer_norm: (default True) whether to apply layer norm after residual. name: name of the module. """ super(ResidualDropoutWrapper, self).__init__(name=name) self._layer = layer self._dropout_rate = dropout_rate self._apply_layer_norm = apply_layer_norm if self._apply_layer_norm: self._layer_norm = snt.LayerNorm( axis=-1, create_scale=True, create_offset=True) def __call__(self, inputs, *args, **kwargs): """Returns the result of the residual dropout computation. Args: inputs: inputs to the main module. *args: Additional arguments to inner layer. **kwargs: Additional named arguments to inner layer. """ # Apply main module. outputs = self._layer(inputs, *args, **kwargs) # Dropout before residual. if kwargs.get('is_training', False): outputs = tf.nn.dropout(outputs, rate=self._dropout_rate) if 'query_inputs' in kwargs: outputs += kwargs['query_inputs'] else: outputs += inputs if self._apply_layer_norm: outputs = self._layer_norm(outputs) return outputs
neural_lns-main
layer_norm.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common utilities for Solver.""" import abc import enum from typing import Any, Dict, Optional import ml_collections from neural_lns import mip_utils class SolverState(enum.Enum): INIT = 0 MODEL_LOADED = 1 FINISHED = 2 class Solver(abc.ABC): """Wrapper around a given classical MIP solver. This class contains the API needed to communicate with a MIP solver, e.g. SCIP. """ def load_model(self, mip: Any) -> SolverState: """Loads a MIP model into the solver.""" raise NotImplementedError('load_model method should be implemented') def solve( self, solving_params: ml_collections.ConfigDict ) -> mip_utils.MPSolverResponseStatus: """Solves the loaded MIP model.""" raise NotImplementedError('solve method should be implemented') def get_best_solution(self) -> Optional[Any]: """Returns the best solution found from the last solve call.""" raise NotImplementedError('get_best_solution method should be implemented') def add_solution(self, solution: Any) -> bool: """Adds a known solution to the solver.""" raise NotImplementedError('add_solution method should be implemented') def extract_lp_features_at_root( self, solving_params: ml_collections.ConfigDict) -> Dict[str, Any]: """Returns a dictionary of root node features.""" raise NotImplementedError( 'extract_lp_features_at_root method should be implemented')
neural_lns-main
solving_utils.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Setup for pip package.""" import os import setuptools here = os.path.dirname(os.path.abspath(__file__)) def _get_version(): """Returns the JAXline version.""" with open(os.path.join(here, 'jaxline', '__init__.py')) as f: try: version_line = next( line for line in f if line.startswith('__version__')) except StopIteration: raise ValueError('__version__ not defined in jaxline/__init__.py') else: ns = {} exec(version_line, ns) # pylint: disable=exec-used return ns['__version__'] def _parse_requirements(path): with open(os.path.join(here, path)) as f: return [ line.rstrip() for line in f if not (line.isspace() or line.startswith('#')) ] EXTRA_PACKAGES = { 'jax': ['jax>=0.1.71'], 'jaxlib': ['jaxlib>=0.1.49'], 'tensorflow': ['tensorflow>=2'], 'tensorflow with gpu': ['tensorflow-gpu>=2'], } setuptools.setup( name='jaxline', version=_get_version(), url='https://github.com/deepmind/jaxline', description='JAXline is a distributed JAX training framework.', license='Apache 2.0', author='DeepMind', author_email='[email protected]', long_description=open(os.path.join(here, 'README.md')).read(), long_description_content_type='text/markdown', # Contained modules and scripts. packages=setuptools.find_namespace_packages(exclude=['*_test.py']), install_requires=_parse_requirements('requirements.txt'), extras_require=EXTRA_PACKAGES, requires_python='>=3.6', include_package_data=True, zip_safe=False, # PyPI package information. classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Software Development :: Libraries', ], )
jaxline-master
setup.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """pytest configuration.""" from absl import flags def pytest_configure(config): del config # Unused. flags.FLAGS.mark_as_parsed()
jaxline-master
jaxline/conftest.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base config.""" from ml_collections import config_dict def validate_keys(base_cfg, config, base_filename="base_config.py"): """Validates that the config "inherits" from a base config. Args: base_cfg (`ConfigDict`): base config object containing the required fields for each experiment config. config (`ConfigDict`): experiment config to be checked against base_cfg. base_filename (str): file used to generate base_cfg. Raises: ValueError: if base_cfg contains keys that are not present in config. """ for key in base_cfg.keys(): if key not in config: raise ValueError("Key {!r} missing from config. This config is required " "to have keys: {}. See {} for details.".format( key, list(base_cfg.keys()), base_filename)) if (isinstance(base_cfg[key], config_dict.ConfigDict) and config[key] is not None): validate_keys(base_cfg[key], config[key]) def check_constraints(config): """Validates that the config parameters comply to specific set of rules. Args: config (`ConfigDict`): experiment config to be checked against base_cfg. Raises: ValueError: if config has train_checkpoint_all_hosts set to True and the resulting interval type for checkpointing is time-based (secs). """ if config.train_checkpoint_all_hosts: if config.checkpoint_interval_type not in ["steps", None] or ( config.checkpoint_interval_type is None and config.interval_type != "steps"): raise ValueError( "Invalid interval type selected for the experiment. " 'When "train_checkpoint_all_hosts = True" True, you need to specify ' '"checkpoint_interval_type = steps". This is to avoid saving ' "checkpoints with different global_step on different hosts, which " "causes hosts to run out of sync upon restore. Got: " f"train_checkpoint_all_hosts: {config.train_checkpoint_all_hosts}, " f"interval_type: {config.interval_type}, " f"checkpoint_interval_type: {config.checkpoint_interval_type}.") if (config.periodic_action_growth_ratios is not None and config.interval_type != "steps"): raise ValueError( f"Invalid interval type {config.interval_type}." "When you set periodic_action_growth_ratios you must use " "config.interval_type='steps'." ) def validate_config(config): validate_keys(get_base_config(), config) check_constraints(config) def get_base_config(): """Returns base config object for an experiment.""" config = config_dict.ConfigDict() config.experiment_kwargs = config_dict.ConfigDict() config.training_steps = 10000 # Number of training steps. config.interval_type = "secs" config.save_checkpoint_interval = 300 config.log_tensors_interval = 60 # This is an optional config to allow for logging at growth ratios. # This logging is *in addition* to the standard linear intervals. # For example, setting [1, 2, 5, 10] will log at [1, 2, 5, 10, 20, 50, ...] # Should only be used with interval_type="steps". config.periodic_action_growth_ratios = None config.log_train_data_interval = 120.0 # None to turn off config.log_async = True # Log from all training hosts. You can facet on jax_process_index. config.log_all_hosts = False # Overrides of `interval_type` for specific periodic operations. If `None`, # we use the value of `interval_type`. config.logging_interval_type = None config.checkpoint_interval_type = None # If set to True we save the initial checkpoint before executing the first # train step. This speeds up eval worker start time as they can immediately # begin compilation, and sets a reference point for init model performance. config.save_initial_train_checkpoint = False # If set to True we checkpoint on all hosts, which may be useful # for model parallelism. Otherwise we checkpoint on host 0. config.train_checkpoint_all_hosts = False config.best_checkpoint_all_hosts = False # If True, asynchronously logs training data from every training step. config.log_all_train_data = False # If true, run evaluate() on the experiment once before you load a checkpoint. # This is useful for getting initial values of metrics at random weights, or # when debugging locally if you do not have any train job running. config.eval_initial_weights = False # When True, the eval job immediately loads a checkpoint runs evaluate() # once, then terminates. config.one_off_evaluate = False # Number of checkpoints to keep by default config.max_checkpoints_to_keep = 5 # Settings for the RNGs used during training and evaluation. config.random_seed = 42 config.random_mode_train = "unique_host_unique_device" config.random_mode_eval = "same_host_same_device" # The metric (returned by the step function) used as a fitness score. # It saves a separate series of checkpoints corresponding to # those which produce a better fitness score than previously seen. # By default it is assumed that higher is better, but this behaviour can be # changed to lower is better, i.e. behaving as a loss score, by setting # `best_model_eval_metric_higher_is_better = False`. # If `best_model_eval_metric` is empty (the default), best checkpointing is # disabled. config.best_model_eval_metric = "" config.best_model_eval_metric_higher_is_better = True return config
jaxline-master
jaxline/base_config.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for jaxline's utils.""" import functools import itertools as it import time from unittest import mock from absl.testing import absltest from absl.testing import flagsaver import jax import jax.numpy as jnp from jaxline import utils import numpy as np def _num_unique_keys(keys): return len(np.unique(jax.random.key_data(keys), axis=0)) class PyPrefetchTest(absltest.TestCase): def testEmpty(self): self.assertEqual(list(utils.py_prefetch(lambda: ())), []) def testBaseCase(self): self.assertEqual(list(utils.py_prefetch(lambda: range(100))), list(range(100))) def testBadFunction(self): def _bad_function(): raise ValueError iterable = utils.py_prefetch(_bad_function) with self.assertRaises(ValueError): next(iterable) def testBadFunctionIteration(self): def _bad_iterable(): yield 1 raise ValueError iterable = utils.py_prefetch(_bad_iterable) self.assertEqual(next(iterable), 1) with self.assertRaises(ValueError): next(iterable) class TreePsumTest(absltest.TestCase): def testBaseCase(self): # pick leaf objects with leading dimension one as these tests will # be run on a single device. data = {"a": jnp.array([1]), "b": jnp.array([2])} data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testEmpty(self): data = {"a": jnp.array([]), "b": jnp.array([])} with self.assertRaises(ZeroDivisionError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testSingleLeafTree(self): data = jnp.array([1]) data_summed = jax.pmap( lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) self.assertEqual(data_summed, data) def testNotNumpy(self): data = [1] with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNumDevicesMismatch(self): data = jnp.array([1, 2]) # assumes 2 devices but we only have 1 with self.assertRaises(ValueError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="i")(data) def testNoPmapWrapper(self): with self.assertRaises(NameError): # axis_name will be undefined utils.tree_psum(jnp.array([1]), axis_name="i") def testAxisNameMismatch(self): data = jnp.array([1]) with self.assertRaises(NameError): jax.pmap(lambda x: utils.tree_psum(x, axis_name="i"), axis_name="j")(data) class MakeAsyncTest(absltest.TestCase): def testBaseCase(self): """Tests correct execution for single call.""" r = [] async_fn = utils.make_async()(lambda: r.append("a")) async_fn() time.sleep(1) self.assertListEqual(r, ["a"]) def testNonBlocking(self): """Tests async function doesn't block the main thread.""" r = [] async_fn = utils.make_async()(lambda: r.append((time.sleep(5), "a"))) r.append((None, "b")) async_fn().result() self.assertListEqual(r, [(None, "b"), (None, "a")]) def testSerialExecution(self): """Tests multiple calls to async function execute serially.""" r = [] a = lambda: r.append((time.sleep(5), "a")) b = lambda: r.append((None, "b")) async_fn = utils.make_async()(lambda f: f()) async_fn(a) async_fn(b).result() self.assertListEqual(r, [(None, "a"), (None, "b")]) def testErrorOnNextCall(self): """Tests background thread error raised in main thread on next call.""" @utils.make_async() def async_fn(): raise ValueError() # First call will trigger an error in the background thread. async_fn() with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on next call async_fn() def testSubsequentCallsDontRun(self): """Tests that subsequent calls don't run after an error has occurred.""" runs = [] @utils.make_async() def async_fn(): runs.append(None) raise ValueError() # First call will trigger an error in the background thread. async_fn() for _ in range(2): with self.assertRaises(ValueError): # Background thread error will be raised in the main thread on # subsequent calls and _bad_function will not be run. async_fn() self.assertListEqual(runs, [None]) def testErrorInBackgroundThread(self): """Tests background thread raises the error.""" @utils.make_async() def async_fn(): raise ValueError() future = async_fn() # pylint: disable=assignment-from-no-return self.assertIsNotNone(future.exception()) class TestBroadcast(absltest.TestCase): def test_bcast_local_devices(self): self.assertEqual(utils.bcast_local_devices(jnp.zeros([])), jnp.zeros([jax.local_device_count()])) self.assertEqual(utils.bcast_local_devices(jnp.ones([])), jnp.ones([jax.local_device_count()])) def test_bcast_local_devices_empty_tree(self): self.assertIsNone(utils.bcast_local_devices(None)) self.assertEqual(utils.bcast_local_devices({}), {}) def test_bcast_local_devices_tree(self): num_devices = jax.local_device_count() tree = utils.bcast_local_devices({"ones": jnp.ones([]), "zeros": jnp.zeros([])}) self.assertEqual(tree, {"ones": jnp.ones([num_devices]), "zeros": jnp.zeros([num_devices])}) class TestLogActivity(absltest.TestCase): @mock.patch("jaxline.utils.logging.info") def test_log_success(self, mock_info): """Tests that logging an activity is successful.""" with utils.log_activity("for test"): pass mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_info.assert_any_call("[jaxline] %s finished.", "for test") @mock.patch("absl.logging.exception") @mock.patch("absl.logging.info") def test_log_failure(self, mock_info, mock_exc): """Tests that an error thrown by an activity is correctly caught.""" with self.assertRaisesRegex(ValueError, "Intentional"): with utils.log_activity("for test"): raise ValueError("Intentional") mock_info.assert_any_call("[jaxline] %s starting...", "for test") mock_exc.assert_any_call("[jaxline] %s failed with error.", "for test") class TestSpecializeRngHostDevice(absltest.TestCase): @classmethod def setUpClass(cls): super(TestSpecializeRngHostDevice, cls).setUpClass() rng = jax.random.PRNGKey(0) cls.rng = jnp.broadcast_to( rng, (jax.local_device_count(),) + rng.shape) def test_unique_device(self): """Tests that rngs are unique across devices.""" mode = "unique_host_unique_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual(_num_unique_keys(rng), jax.local_device_count()) def test_same_device(self): """Tests rngs are same across devices.""" mode = "unique_host_same_device" host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng = specialize_func(self.rng, host_id_devices) self.assertEqual(_num_unique_keys(rng), 1) def test_unique_host(self): """Tests rngs unique between hosts.""" mode = "unique_host_same_device" with mock.patch.object(utils.jax, "process_index", return_value=0): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng0 = specialize_func(self.rng, host_id_devices) with mock.patch.object(utils.jax, "process_index", return_value=1): host_id_devices = utils.host_id_devices_for_rng(mode) specialize_func = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=mode), axis_name="i") rng1 = specialize_func(self.rng, host_id_devices) keys = jnp.concatenate([rng0, rng1], axis=0) self.assertEqual(_num_unique_keys(keys), 2) class TestRendezvous(absltest.TestCase): def test_rendezvous(self): """Test that rendezvous doesn't fail.""" utils.rendezvous() class TestJaxlineDisablePmapJit(absltest.TestCase): @mock.patch.object(utils.chex, "fake_pmap_and_jit", autospec=True) def test_pmap_jit_disabled(self, mock_fake_pmap_and_jit): """Tests pmap/jit are disabled if --jaxline_disable_pmap_jit is set.""" with self.subTest("PmapJitNotDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=False): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_not_called() with self.subTest("PmapJitDisabled"): with flagsaver.flagsaver(jaxline_disable_pmap_jit=True): utils.disable_pmap_jit(lambda: None)() mock_fake_pmap_and_jit.assert_called_once() class DoubleBufferTest(absltest.TestCase): def test_double_buffer(self): if jax.default_backend() != "gpu": self.skipTest("Only necessary on GPU.") n = jax.local_device_count() dataset = it.repeat(np.ones([n])) iterator = iter(utils.double_buffer(dataset)) batch_ptrs = [] while len(batch_ptrs) < 4: batch = next(iterator) ptrs = [b.unsafe_buffer_pointer() for b in batch.device_buffers] batch_ptrs.append(ptrs) del batch self.assertEqual(batch_ptrs[0], batch_ptrs[2]) self.assertEqual(batch_ptrs[1], batch_ptrs[3]) self.assertNotEqual(batch_ptrs[0], batch_ptrs[1]) self.assertNotEqual(batch_ptrs[2], batch_ptrs[3]) class PeriodicActionTest(absltest.TestCase): """Tests for PeriodicAction.""" def test_log_growth_ratios(self): """Checks a specific value of growth ratios logs as expected.""" data = [] logger = utils.PeriodicAction( fn=lambda step, _: data.append(step), # fn logs step to data interval_type="steps", interval=1_000_000, # Large interval won't get called early on. logging_growth_ratios=[1, 2, 5, 10], # Example growth ratios ) for step in range(1010): logger(time.time(), step+1, {"fake_data": 0}) # pytype: disable=wrong-arg-types # jax-ndarray logger.wait_to_finish() # Check that we got the results that we expected target_data = [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000] self.assertEqual(data, target_data) def test_log_last_step(self): """Checks that when it's enabled, we also log the last step.""" data = [] logger = utils.PeriodicAction( fn=lambda step, _: data.append(step), # fn logs step to data interval_type="steps", interval=200, end_step_to_action=1010, ) for step in range(1010): logger(time.time(), step+1, {"fake_data": 0}) # pytype: disable=wrong-arg-types # jax-ndarray logger.wait_to_finish() # Check that we got the results that we expected target_data = [200, 400, 600, 800, 1000, 1010] self.assertEqual(data, target_data) if __name__ == "__main__": absltest.main()
jaxline-master
jaxline/utils_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Jaxline's train.""" import copy from typing import Dict, Optional from unittest import mock from absl.testing import absltest from absl.testing import parameterized import jax import jax.numpy as jnp from jaxline import base_config from jaxline import experiment from jaxline import train from jaxline import utils from ml_collections import config_dict import numpy as np _IMPROVEMENT_STEPS = [2, 5, 15, 27, 99] # Arbitrary. _FITNESS_METRIC_KEY = "A_GOOD_METRIC" class DummyExperiment(experiment.AbstractExperiment): """An experiment whose evaluate improves at set intervals.""" def __init__(self, mode): super().__init__(mode=mode) self.evaluate_counter = 0 self.fitness_metric = 0 self.init_rng = None self.step_rngs = [] self.steps = 0 def initialize_train_step_rng(self, rng: jnp.ndarray) -> jnp.ndarray: """Remembers the value returned from AbstractExperiment.""" self.init_rng = super().initialize_train_step_rng(rng) return self.init_rng def step( self, *, global_step: jnp.ndarray, rng: jnp.ndarray, writer: Optional[utils.Writer], ) -> Dict[str, np.ndarray]: """Test implementation, counts steps and records the rngs it was given.""" self.steps += 1 self.step_rngs.append(rng) return {"loss": -1} def evaluate(self, *args, **kwargs) -> Optional[Dict[str, np.ndarray]]: """Test implementation, improves fitness metric at specified steps.""" if self.evaluate_counter in _IMPROVEMENT_STEPS: self.fitness_metric += 1 self.evaluate_counter += 1 return {_FITNESS_METRIC_KEY: self.fitness_metric} class DummyCheckpoint: """Do nothing but record when save is called.""" def __init__(self, **kwargs): del kwargs # Unused for this class. self._state = config_dict.ConfigDict() self._state_list = [] self._checkpoint_path_int = 0 self._global_step_int = -1 def get_experiment_state( self, unused_ckpt_series: str, ) -> config_dict.ConfigDict: return self._state def save(self, unused_ckpt_series: str) -> None: self._state_list.append(copy.copy(self._state)) def can_be_restored(self, ckpt_series: str) -> bool: return ckpt_series == "latest" def restore(self, unused_ckpt_series: str) -> None: self._global_step_int += 1 self._state.global_step = self._global_step_int def restore_path(self, unused_ckpt_series) -> Optional[str]: """Always return something new so there"s no waiting.""" self._checkpoint_path_int += 1 return str(self._checkpoint_path_int) def wait_for_checkpointing_to_finish(self) -> None: """Noop, needed for API compatibility.""" class TrainTest(parameterized.TestCase): @parameterized.parameters(1, 4) def test_train_step_rng(self, num_steps: int): config = base_config.get_base_config() config.training_steps = num_steps checkpointer = DummyCheckpoint() writer = mock.create_autospec(utils.Writer, instance=True) train.train(DummyExperiment, config, checkpointer, writer) if jax.config.jax_enable_custom_prng: expected_rng_shape = (jax.local_device_count(),) else: expected_rng_shape = (jax.local_device_count(), 2) state = checkpointer.get_experiment_state("latest") self.assertEqual(state.global_step, num_steps) self.assertEqual(state.train_step_rng.shape, expected_rng_shape) experiment_module = state.experiment_module self.assertEqual(experiment_module.init_rng.shape, expected_rng_shape) self.assertLen(experiment_module.step_rngs, num_steps) for step_rng in experiment_module.step_rngs: self.assertEqual(step_rng.shape, expected_rng_shape) @parameterized.parameters( dict(process_id=0, checkpoint_all_hosts=False, should_checkpoint=True), dict(process_id=0, checkpoint_all_hosts=True, should_checkpoint=True), dict(process_id=0, checkpoint_all_hosts=None, should_checkpoint=True), dict(process_id=3, checkpoint_all_hosts=True, should_checkpoint=True), dict(process_id=3, checkpoint_all_hosts=False, should_checkpoint=False), dict(process_id=3, checkpoint_all_hosts=None, should_checkpoint=False), ) def test_best_checkpoint_saves_only_at_improved_best_metrics( self, process_id: int, checkpoint_all_hosts: Optional[bool], should_checkpoint: bool, ): self.enter_context( mock.patch.object(jax, "process_index", new=lambda: process_id)) config = base_config.get_base_config() config.best_model_eval_metric = _FITNESS_METRIC_KEY if checkpoint_all_hosts is not None: config.best_checkpoint_all_hosts = checkpoint_all_hosts config.training_steps = 100 ckpt = DummyCheckpoint() writer = mock.Mock() train.evaluate(DummyExperiment, config, ckpt, writer, jaxline_mode="eval") if not should_checkpoint: self.assertEmpty(ckpt._state_list) else: # The first step will always checkpoint. self.assertLen( ckpt._state_list, len(_IMPROVEMENT_STEPS) + 1) checkpointed_states = [ s.global_step for s in ckpt._state_list] self.assertEqual(checkpointed_states, [0] + _IMPROVEMENT_STEPS) if __name__ == "__main__": absltest.main()
jaxline-master
jaxline/train_test.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Jaxline Distributed Training system.""" __version__ = "0.0.7"
jaxline-master
jaxline/__init__.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Deepmind-specific platform for running Experiments with Jaxline.""" from concurrent import futures import os from typing import Any, Mapping from absl import flags from absl import logging import chex import jax from jaxline import base_config from jaxline import train from jaxline import utils from ml_collections import config_dict from ml_collections import config_flags import numpy as np import tensorflow as tf # TODO(tomhennigan) Add support for ipdb and pudb. _CONFIG = config_flags.DEFINE_config_file( name="config", help_string="Training configuration file.", ) # This flag is expected to be used only internally by jaxline. # It is prefixed by "jaxline" to prevent a conflict with a "mode" flag defined # by Monarch. _JAXLINE_MODE = flags.DEFINE_string( name="jaxline_mode", default="train", help=("Execution mode. " " `train` will run training, `eval` will run evaluation."), ) _JAXLINE_TPU_DRIVER = flags.DEFINE_string( name="jaxline_tpu_driver", default="", help="Whether to use tpu_driver.", ) _JAXLINE_ENSURE_TPU = flags.DEFINE_bool( name="jaxline_ensure_tpu", default=False, help="Whether to ensure we have a TPU connected.", ) def create_checkpointer( config: config_dict.ConfigDict, mode: str, ) -> utils.Checkpointer: """Creates an object to be used as a checkpointer.""" return utils.InMemoryCheckpointer(config, mode) class TensorBoardLogger: """Writer to write experiment data to stdout.""" def __init__(self, config, mode: str): """Initializes the writer.""" log_dir = os.path.join(config.checkpoint_dir, mode) self._writer = tf.summary.create_file_writer(log_dir) def write_scalars(self, global_step: int, scalars: Mapping[str, Any]): """Writes scalars to stdout.""" global_step = int(global_step) with self._writer.as_default(): for k, v in scalars.items(): tf.summary.scalar(k, v, step=global_step) self._writer.flush() def write_images(self, global_step: int, images: Mapping[str, np.ndarray]): """Writes images to writers that support it.""" global_step = int(global_step) with self._writer.as_default(): for k, v in images.items(): # Tensorboard only accepts [B, H, W, C] but we support [H, W] also. if v.ndim == 2: v = v[None, ..., None] tf.summary.image(k, v, step=global_step) self._writer.flush() def create_writer(config: config_dict.ConfigDict, mode: str) -> Any: """Creates an object to be used as a writer.""" return TensorBoardLogger(config, mode) @utils.debugger_fallback def main(experiment_class, argv, checkpointer_factory=create_checkpointer): """Main potentially under a debugger.""" del argv # Unused. # Make sure the required fields are available in the config. config = _CONFIG.value base_config.validate_config(config) if _JAXLINE_TPU_DRIVER.value: jax.config.update("jax_xla_backend", "tpu_driver") jax.config.update("jax_backend_target", _JAXLINE_TPU_DRIVER.value) logging.info("Backend: %s %r", _JAXLINE_TPU_DRIVER.value, jax.devices()) if _JAXLINE_ENSURE_TPU.value: # JAX currently falls back to CPU if it cannot register the TPU platform. # In multi-host setups this can happen if we timeout waiting for hosts to # come back up at startup or after pre-emption. This test will crash the # task if TPU devices are not available. We have increased the number of # acceptable failures per-task to allow for this. # TODO(tomhennigan) This test will eventually be part of JAX itself. chex.assert_tpu_available() jaxline_mode = _JAXLINE_MODE.value if jaxline_mode == "train": # Run training. checkpointer = checkpointer_factory(config, jaxline_mode) writer = create_writer(config, jaxline_mode) train.train(experiment_class, config, checkpointer, writer) elif jaxline_mode.startswith("eval"): # Run evaluation. checkpointer = checkpointer_factory(config, jaxline_mode) writer = create_writer(config, jaxline_mode) train.evaluate(experiment_class, config, checkpointer, writer, jaxline_mode) elif jaxline_mode == "train_eval_multithreaded": pool = futures.ThreadPoolExecutor(1) # Run training in a background thread! pool.submit(train.train, experiment_class, config, checkpointer_factory(config, "train"), create_writer(config, "train")) # Run eval! train.evaluate(experiment_class, config, checkpointer_factory(config, "eval"), create_writer(config, "eval")) # If we're here, eval has finished. Wait for train to finish! pool.shutdown() else: raise ValueError(f"Mode {jaxline_mode} not recognized.")
jaxline-master
jaxline/platform.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base classes for training JAXline experiments. Any class that implements this interface is compatible with the JAXline Distributed Training system. """ import abc import functools import time from typing import Dict, List, Mapping, Optional from absl import logging import jax import jax.numpy as jnp from jaxline import utils from ml_collections import config_dict import numpy as np class AbstractExperiment(abc.ABC): """The base class for training JAXline experiments.""" # A dict mapping attributes of this class to a name they are stored under. # # Pmapped attributes should be included in CHECKPOINT_ATTRS and will be # assumed to have a leading dimension corresponding to the pmapped axis when # saving and restoring. # # Non-pmapped attributes should be included in NON_BROADCAST_CHECKPOINT_ATTRS # and will be assumed to have no such leading dimension. CHECKPOINT_ATTRS = {} NON_BROADCAST_CHECKPOINT_ATTRS = {} @abc.abstractmethod def __init__(self, mode: str, init_rng: Optional[jax.Array] = None): """Constructs the experiment. Args: mode: A string, equivalent to FLAGS.jaxline_mode when running normally. init_rng: A `PRNGKey` to use for experiment initialization. """ # TODO(b/205109371): Make init_rng non-optional. def initialize_train_step_rng(self, rng: jnp.ndarray) -> jnp.ndarray: """Initializes train_step_rng on devices as a suitable JAX array. Ensures the rng key is placed on the devices in the desired way, producing a JAX array of required type (i.e. `ShardedDeviceArray` or `GlobalDeviceArray`), partitioning and shape. The default implementation broadcasts the key to all local devices, forming a `ShardedDeviceArray` with a new leading axis. This behavior is suitable for the pmap-based data-parallel training. Args: rng: a single `PRNGKey`. Returns: A JAX array representing a desired configuration of rng keys on devices, ready to use in the training loop. """ return utils.bcast_local_devices(rng) @abc.abstractmethod def step( self, *, global_step: jnp.ndarray, rng: jnp.ndarray, writer: Optional[utils.Writer], ) -> Dict[str, np.ndarray]: """Performs a step of computation e.g. a training step. This function will be wrapped by `utils.kwargs_only` meaning that when the user re-defines this function they can take only the arguments they want e.g. def step(self, global_step, **unused_args). Args: global_step: A `ShardedDeviceArray` of the global step, one copy for each local device. The values are guaranteed to be the same across all local devices, it is just passed this way for consistency with `rng`. rng: A `ShardedDeviceArray` of `PRNGKey`s, one for each local device, and unique to the global_step. The relationship between the keys is set by config.random_mode_train. writer: An optional writer for performing additional logging (note that logging of the returned scalars is performed automatically by jaxline/train.py) Returns: A dictionary of scalar `np.array`s to be logged. """ @abc.abstractmethod def evaluate( self, *, global_step: jnp.ndarray, rng: jnp.ndarray, writer: Optional[utils.Writer], ) -> Optional[Dict[str, np.ndarray]]: """Performs the full evaluation of the model. This function will be wrapped by `utils.kwargs_only` meaning that when the user re-defines this function they can take only the arguments they want e.g. def evaluate(self, global_step, **unused_args). Args: global_step: A `ShardedDeviceArray` of the global step, one copy for each local device. rng: A `ShardedDeviceArray` of random keys, one for each local device, and, unlike in the step function, *independent* of the global step (i.e. the same array of keys is passed at every call to the function). The relationship between the keys is set by config.random_mode_eval. writer: An optional writer for performing additional logging (note that logging of the returned scalars is performed automatically by jaxline/train.py) Returns: A dictionary of scalar `np.array`s to be logged. """ def should_run_step( self, global_step: int, config: config_dict.ConfigDict, ) -> bool: """Returns whether the step function will be run given the global_step.""" return global_step < config.training_steps def train_loop( self, config: config_dict.ConfigDict, state, periodic_actions: List[utils.PeriodicAction], writer: Optional[utils.Writer] = None, ) -> None: """Default training loop implementation. Can be overridden for advanced use cases that need a different training loop logic, e.g. on device training loop with jax.lax.while_loop or to add custom periodic actions. Args: config: The config of the experiment that is being run. state: Checkpointed state of the experiment. periodic_actions: List of actions that should be called after every training step, for checkpointing and logging. writer: An optional writer to pass to the experiment step function. """ @functools.partial(jax.pmap, axis_name="i") def next_device_state( global_step: jnp.ndarray, rng: jnp.ndarray, host_id: Optional[jnp.ndarray], ): """Updates device global step and rng in one pmap fn to reduce overhead.""" global_step += 1 step_rng, state_rng = tuple(jax.random.split(rng)) step_rng = utils.specialize_rng_host_device( step_rng, host_id, axis_name="i", mode=config.random_mode_train) return global_step, (step_rng, state_rng) global_step_devices = np.broadcast_to(state.global_step, [jax.local_device_count()]) host_id_devices = utils.host_id_devices_for_rng(config.random_mode_train) if host_id_devices is not None: # Transfer to device to avoid host->device transfer on every step. host_id_devices = jax.pmap(lambda x: x)(host_id_devices) # Get step key for first step, do not update global_step_devices yet. _, (step_key, state.train_step_rng) = next_device_state( global_step_devices, state.train_step_rng, host_id_devices) with utils.log_activity("training loop"): while self.should_run_step(state.global_step, config): with jax.profiler.StepTraceAnnotation( "train", step_num=state.global_step): scalar_outputs = self.step( global_step=global_step_devices, rng=step_key, writer=writer) t = time.time() # Update state's (scalar) global step (for checkpointing). # global_step_devices will be back in sync with this after the call # to next_device_state below. state.global_step += 1 global_step_devices, (step_key, state.train_step_rng) = ( next_device_state(global_step_devices, state.train_step_rng, host_id_devices)) for action in periodic_actions: action(t, state.global_step, scalar_outputs) # pytype: disable=wrong-arg-types # jax-ndarray def snapshot_state(self) -> Mapping[str, jnp.ndarray]: """Takes a frozen copy of the current experiment state for checkpointing. Returns: A mapping from experiment attributes to names to stored under in the snapshot. """ snapshot_state = {} if not self.CHECKPOINT_ATTRS and not self.NON_BROADCAST_CHECKPOINT_ATTRS: logging.warning( "Your experiment's self.CHECKPOINT_ATTRS and " "self.NON_BROADCAST_CHECKPOINT_ATTRS are empty. Your job will not " "checkpoint any state or parameters.") for attr_name, chk_name in self.CHECKPOINT_ATTRS.items(): snapshot_state[chk_name] = utils.get_first(getattr(self, attr_name)) for attr_name, chk_name in self.NON_BROADCAST_CHECKPOINT_ATTRS.items(): snapshot_state[chk_name] = getattr(self, attr_name) return snapshot_state def restore_from_snapshot( self, snapshot_state: Mapping[str, jnp.ndarray], ) -> None: """Restores experiment state from a snapshot. Args: snapshot_state: A mapping from experiment attributes to names they are stored under in the snapshot. """ def clear(attributes): for attr_name in attributes: if hasattr(self, attr_name): delattr(self, attr_name) def write(attributes, broadcast=False): for attr_name, chk_name in attributes.items(): value = snapshot_state[chk_name] if broadcast: value = utils.bcast_local_devices(value) setattr(self, attr_name, value) # Explicitly clear existing attributes first, this (potentially) allows # broadcast values to reuse previous allocations leading to reduced # fragmentation of device memory. clear(self.CHECKPOINT_ATTRS) clear(self.NON_BROADCAST_CHECKPOINT_ATTRS) write(self.CHECKPOINT_ATTRS, broadcast=True) write(self.NON_BROADCAST_CHECKPOINT_ATTRS) def on_new_best_model(self, best_state): """Hook to perform a custom logic when the best model is obtained. This method will be run before each best model checkpoint save and can implement any custom logic (checkpointing will still be done by jaxline). It will only be run if jaxline is configured to track the best model, i.e. if `config.best_model_eval_metric` is set. Args: best_state: Evaluator best state. Holds `best_eval_metric_value`. The state can also be mutated to dump additional information from the evaluator. """
jaxline-master
jaxline/experiment.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for Jaxline experiments.""" import collections from concurrent import futures import contextlib import copy import enum import functools import pdb import queue import sys import threading from typing import Any, Callable, Dict, Generator, Iterable, Mapping, Optional, Sequence, TypeVar from absl import flags from absl import logging import chex import jax import jax.numpy as jnp from ml_collections import config_dict from typing_extensions import Protocol import wrapt _JAXLINE_POST_MORTEM = flags.DEFINE_bool( name="jaxline_post_mortem", default=False, help="Whether to enter into post-mortem after an exception. ", ) _JAXLINE_DISABLE_PMAP_JIT = flags.DEFINE_bool( name="jaxline_disable_pmap_jit", default=False, help=("Whether to disable all pmaps and jits, making it easier to inspect " "and trace code in a debugger."), ) def _get_function_name(function: Callable[..., Any]) -> str: if isinstance(function, functools.partial): return f"partial({function.func.__name__})" return function.__name__ # TODO(jaslanides): Replace these with typing.NamedTuple. SnapshotNT = collections.namedtuple("SnapshotNT", ["id", "pickle_nest"]) CheckpointNT = collections.namedtuple("CheckpointNT", ["active", "history"]) T = TypeVar("T") F = TypeVar("F", bound=Callable) class Writer(Protocol): """Interface for writers/loggers.""" def write_scalars(self, global_step: int, scalars: Mapping[str, Any]): """Writes a dictionary of scalars.""" class Checkpointer(Protocol): """An interface for checkpointer objects.""" def save(self, ckpt_series: str) -> None: """Saves the checkpoint.""" def restore(self, ckpt_series: str) -> None: """Restores the checkpoint.""" def get_experiment_state(self, ckpt_series: str): """Returns the experiment state for a given checkpoint series.""" def restore_path(self, ckpt_series: str) -> Optional[str]: """Returns the restore path for the checkpoint, or None.""" def can_be_restored(self, ckpt_series: str) -> bool: """Returns whether or not a given checkpoint series can be restored.""" def wait_for_checkpointing_to_finish(self) -> None: """Waits for any async checkpointing to complete.""" def py_prefetch( iterable_function: Callable[[], Iterable[T]], buffer_size: int = 5, *, thread_name: Optional[str] = None, ) -> Generator[T, None, None]: """Performs prefetching of elements from an iterable in a separate thread. Args: iterable_function: A python function that when called with no arguments returns an iterable. This is used to build a fresh iterable for each thread (crucial if working with tensorflow datasets because tf.graph objects are thread local). buffer_size (int): Number of elements to keep in the prefetch buffer. thread_name (str): Optional name for the producer thread. Yields: Prefetched elements from the original iterable. Raises: ValueError if the buffer_size <= 1. Any error thrown by the iterable_function. Note this is not raised inside the producer, but after it finishes executing. """ if buffer_size <= 1: raise ValueError("the buffer_size should be > 1") buffer = queue.Queue(maxsize=(buffer_size - 1)) producer_error = [] end = object() def producer(): """Enques items from iterable on a given thread.""" try: # Build a new iterable for each thread. This is crucial if working with # tensorflow datasets because tf.graph objects are thread local. iterable = iterable_function() for item in iterable: buffer.put(item) except Exception as e: # pylint: disable=broad-except logging.exception("Error in producer thread for %s", _get_function_name(iterable_function)) producer_error.append(e) finally: buffer.put(end) threading.Thread(target=producer, daemon=True, name=thread_name).start() # Consumer. while True: value = buffer.get() if value is end: break yield value if producer_error: raise producer_error[0] # TODO(tomhennigan) Remove this alias. tree_psum = jax.lax.psum def double_buffer_on_gpu(ds): if jax.default_backend() == "gpu": # This keeps two batches per-device in memory at all times, allowing # h2d transfers to overlap with execution (see b/173483287 for details). return double_buffer(ds) else: return ds def _device_put_sharded(sharded_tree, devices): leaves, treedef = jax.tree_util.tree_flatten(sharded_tree) n = leaves[0].shape[0] return jax.device_put_sharded( [jax.tree_util.tree_unflatten( treedef, [l[i] for l in leaves]) for i in range(n)], devices) def double_buffer(ds: Iterable[T]) -> Generator[T, None, None]: """Keeps at least two batches on the accelerator. The current GPU allocator design reuses previous allocations. For a training loop this means batches will (typically) occupy the same region of memory as the previous batch. An issue with this is that it means we cannot overlap a host->device copy for the next batch until the previous step has finished and the previous batch has been freed. By double buffering we ensure that there are always two batches on the device. This means that a given batch waits on the N-2'th step to finish and free, meaning that it can allocate and copy the next batch to the accelerator in parallel with the N-1'th step being executed. Args: ds: Iterable of batches of numpy arrays. Yields: Batches of sharded device arrays. """ batch = None devices = jax.local_devices() device_put_sharded = make_async("async_device_put_sharded")( # pylint: disable=no-value-for-parameter _device_put_sharded) for next_batch in ds: assert next_batch is not None next_batch = device_put_sharded(next_batch, devices) # pylint: disable=not-callable if batch is not None: yield batch.result() batch = next_batch if batch is not None: yield batch.result() def get_first(xs): """Gets values from the first device.""" return jax.tree_util.tree_map(lambda x: x[0], xs) def bcast_local_devices(value): """Broadcasts an object to all local devices.""" devices = jax.local_devices() return jax.tree_util.tree_map( lambda v: jax.device_put_sharded(len(devices) * [v], devices), value) def make_async(thread_name_prefix: str = ""): """Returns a decorator that runs any function it wraps in a background thread. When called, the decorated function will immediately return a future representing its result. The function being decorated can be an instance method or normal function. Consecutive calls to the decorated function are guaranteed to be in order and non overlapping. An error raised by the decorated function will be raised in the background thread at call-time. Raising the error in the main thread is deferred until the next call, so as to be non-blocking. All subsequent calls to the decorated function after an error has been raised will not run (regardless of whether the arguments have changed); instead they will re-raise the original error in the main thread. Args: thread_name_prefix: Str prefix for the background thread, for easier debugging. Returns: decorator that runs any function it wraps in a background thread, and handles any errors raised. """ # We have a single thread pool per wrapped function to ensure that calls to # the function are run in order (but in a background thread). pool = futures.ThreadPoolExecutor(max_workers=1, thread_name_prefix=thread_name_prefix) errors = [] @wrapt.decorator def decorator(wrapped, instance, args, kwargs): """Runs wrapped in a background thread so result is non-blocking. Args: wrapped: A function to wrap and execute in background thread. Can be instance method or normal function. instance: The object to which the wrapped function was bound when it was called (None if wrapped is a normal function). args: List of position arguments supplied when wrapped function was called. kwargs: Dict of keyword arguments supplied when the wrapped function was called. Returns: A future representing the result of calling wrapped. Raises: Exception object caught in background thread, if call to wrapped fails. Exception object with stacktrace in main thread, if the previous call to wrapped failed. """ def trap_errors(*args, **kwargs): """Wraps wrapped to trap any errors thrown.""" if errors: # Do not execute wrapped if previous call errored. return try: return wrapped(*args, **kwargs) except Exception as e: errors.append(sys.exc_info()) logging.exception("Error in producer thread for %s", thread_name_prefix) raise e if errors: # Previous call had an error, re-raise in main thread. exc_info = errors[-1] raise exc_info[1].with_traceback(exc_info[2]) del instance return pool.submit(trap_errors, *args, **kwargs) return decorator def kwargs_only(f): @functools.wraps(f) def wrapped(**kwargs): return f(**kwargs) return wrapped @contextlib.contextmanager def log_activity(activity_name: str): logging.info("[jaxline] %s starting...", activity_name) try: yield finally: if sys.exc_info()[0] is not None: logging.exception("[jaxline] %s failed with error.", activity_name) else: logging.info("[jaxline] %s finished.", activity_name) class DistributedRNGMode(enum.Enum): """Enumeration of the allowed modes for distributed rng handling.""" UNIQUE_HOST_UNIQUE_DEVICE = "unique_host_unique_device" UNIQUE_HOST_SAME_DEVICE = "unique_host_same_device" SAME_HOST_UNIQUE_DEVICE = "same_host_unique_device" SAME_HOST_SAME_DEVICE = "same_host_same_device" @property def unique_host(self): return self in {DistributedRNGMode.UNIQUE_HOST_UNIQUE_DEVICE, DistributedRNGMode.UNIQUE_HOST_SAME_DEVICE} @property def unique_device(self): return self in {DistributedRNGMode.UNIQUE_HOST_UNIQUE_DEVICE, DistributedRNGMode.SAME_HOST_UNIQUE_DEVICE} def host_id_devices_for_rng(mode="unique_host_unique_device"): if not DistributedRNGMode(mode).unique_host: return None return jnp.broadcast_to(jax.process_index(), (jax.local_device_count(),)) def specialize_rng_host_device( rng: jax.Array, host_id: Optional[int], axis_name: str, mode: str = "unique_host_unique_device", ) -> jax.Array: """Specializes a rng to the host/device we are on. Must be called from within a pmapped function. Args: rng: a jax.random.PRNGKey. host_id: the host ID to fold in, or None. Must be specified (not None) for the "unique_host_*" modes. axis_name: the axis of the devices we are specializing across. mode: str mode. Must be one of "unique_host_unique_device", "unique_host_same_device", "same_host_unique_device", "same_host_same_device". Returns: jax.random.PRNGKey specialized to host/device. """ # Will throw an error if mode is not a valid enumeration. enum_mode = DistributedRNGMode(mode) if enum_mode.unique_host: # Note that we intentionally do NOT call `jax.process_index()` here, taking # it as an input instead. This is because we don't want to (effectively) use # a hard-coded Python int inside a potentially `pmap`ped context as that # results in different executable fingerprints across hosts. if host_id is None: raise ValueError(f"host_id must be given in RNG mode: {enum_mode}") rng = jax.random.fold_in(rng, host_id) if enum_mode.unique_device: rng = jax.random.fold_in(rng, jax.lax.axis_index(axis_name)) return rng def rendezvous() -> None: """Forces all hosts to check in.""" with log_activity("rendezvous"): x = jnp.ones([jax.local_device_count()]) x = jax.device_get(jax.pmap(lambda x: jax.lax.psum(x, "i"), "i")(x)) if x[0] != jax.device_count(): raise ValueError(f"Expected {jax.device_count()} got {x}") class PeriodicAction: """An action that executes periodically (e.g. logging).""" def __init__( self, fn: Callable[[int, Dict[str, float]], None], interval_type: str, interval: float, start_time: float = 0.0, start_step: int = 0, run_async: bool = True, log_all_data: bool = False, logging_growth_ratios: Optional[Sequence[float]] = None, end_step_to_action: Optional[int] = None, ): """Initializes attributes for periodic action. Args: fn: Function representing the action to be run periodically. Takes global step and scalars returned by `Experiment.step` as arguments. interval_type: "secs" or "steps". interval: Interval between function calls. start_time: The start epoch time as a float to calculate time intervals with respect to. start_step: The start step number to calculate step intervals with respect to. run_async: boolean whether to run this perodic action in a background thread. log_all_data: boolean whether to accumulate scalar_outputs at each step. logging_growth_ratios: optional sequence of ratios of steps that will get logged in terms of powers of ten. For example, pass [1, 2, 5, 10] then steps [1, 2, 5, 10, 20, 50, ...] are logged in *addition* to the standard intervals. Only used for interval_type='steps'. This is useful to allow for more logging early in training, and less later on. end_step_to_action: If not None, then it is the final step of training, on which we will call the action regardless. """ if interval_type not in ["secs", "steps"]: raise ValueError(f"Unrecognized interval type {interval_type}.") self._fn = fn self._interval_type = interval_type self._interval = interval self._init_interval = interval self._prev_time = start_time self._prev_step = start_step self._end_step_to_action = end_step_to_action self._apply_fn_future = None if run_async: self._apply_fn = make_async(self._fn.__name__)(self._apply_fn) # pylint: disable=no-value-for-parameter self.log_all_data = log_all_data self.log = {} self._logging_growth_ratios = logging_growth_ratios # This is only supported when interval_type='steps' if self._interval_type != "steps": assert self._logging_growth_ratios is None def _apply_fn(self, step, steps_per_sec, scalar_outputs): """Runs periodic action, optionally dumping all intermediate logged data.""" # Add data for this step to the log. self.log[step] = scalar_outputs # Note device_get copies from device <> host so is expensive. # However, JAX's DeviceArray has a cache which be reused for all # subsequent PeriodicActions that make the same call. Also, in async mode # this function runs in a background thread. log = jax.device_get(self.log) # Reset self.log here to prevent async weirdness self.log = {} # Steps per sec must be added after device-get log[step]["steps_per_sec"] = steps_per_sec for logged_step, logged_scalars in log.items(): self._fn(logged_step, logged_scalars) def _apply_condition(self, t: float, step: int): """Checks to see if we should perform the periodic action.""" if self._end_step_to_action and step == self._end_step_to_action: return True if self._interval_type == "secs": return t - self._prev_time >= self._interval else: assert self._interval_type == "steps" # error should've be caught in init # Check for logging intervals that come at growth ratios growth_log = False if self._logging_growth_ratios: exponent = jnp.floor(jnp.log10(jnp.maximum(1, step))) valid_ratios = jnp.round(jnp.array( [ratio * 10**exponent for ratio in self._logging_growth_ratios])) growth_log = any(jnp.isclose(step, valid_ratios)) # Log if a growth logging step *or* divisible by interval interval_log = step % self._interval == 0 return growth_log or interval_log def update_time(self, t: float, step: int): """Updates the internal time measurements.""" self._prev_time = t self._prev_step = step def wait_to_finish(self): """Waits for any periodic actions running in own threads to complete.""" if not (self._apply_fn_future is None or self._apply_fn_future.done()): logging.info("Waiting for a periodic action to finish...") self._apply_fn_future.result() def __call__( self, t: float, step: int, scalar_outputs: Dict[str, jnp.ndarray], ) -> None: """Calls periodic action if interval since last call sufficiently large. Args: t: The current epoch time as a float. step: The current step number. scalar_outputs: Scalars to be processed by the periodic action. """ if self._apply_condition(t, step): steps_per_sec = (step - self._prev_step) / (t - self._prev_time) self._apply_fn_future = self._apply_fn( # pylint: disable=not-callable step, steps_per_sec, scalar_outputs) self.update_time(t, step) elif self.log_all_data: # Log data for dumping at next interval. self.log[step] = scalar_outputs def debugger_fallback(f: F) -> F: """Maybe wraps f with a pdb-callback.""" @functools.wraps(f) def inner_wrapper(*args, **kwargs): """Main entry function.""" try: return f(*args, **kwargs) # KeyboardInterrupt and SystemExit are not derived from BaseException, # hence not caught by the post-mortem. except Exception as e: # pylint: disable=broad-except if _JAXLINE_POST_MORTEM.value: pdb.post_mortem(e.__traceback__) raise return inner_wrapper # TODO(b/205109371): Remove support for `evaluate` that doesn't return a dict. def evaluate_should_return_dict(f: F) -> F: """Prints a deprecation warning for old-usage of evaluate. The `evaluate` method on an experiment should return a dictionary of scalars to be logged, just like the step method. `evaluate` is currently allowed to return nothing (the older behavior). Soon, returning nothing will be an error. Please update old code. If you do not wish Jaxline to log anything for you, return an empty dictionary. Otherwise a dictionary of scalars may be returned like `step`. Args: f: The evaluate method. Returns: The evaluate function wrapped with a deprecation warning. """ none_return_is_deprecated_msg = ( "Your experiment\'s evaluate function returned no output, this is " "deprecated behavior. `evaluate` should now return a dictionary of " "scalars to log, just like `step`. Please update your code. " "We will soon update this code and returning None will error.") @functools.wraps(f) def evaluate_with_warning(*args, **kwargs): evaluate_out = f(*args, **kwargs) if evaluate_out is None: logging.log_first_n(logging.WARNING, none_return_is_deprecated_msg, 1) return {} return evaluate_out return evaluate_with_warning # We use a global dictionary so that multiple different checkpoints can share # underlying data. GLOBAL_CHECKPOINT_DICT = {} class InMemoryCheckpointer: """A Checkpointer reliant on an in-memory global dictionary.""" def __init__(self, config, mode: str): self._max_checkpoints_to_keep = config.max_checkpoints_to_keep del mode def _override_or_insert(self, current_state, snapshot): """Update the current state based on a snapshot.""" for sk, sv in snapshot.items(): # Duck-typing for "is this a Jaxline Experiment class?". if (sk in current_state and hasattr(current_state[sk], "CHECKPOINT_ATTRS") and hasattr(current_state[sk], "NON_BROADCAST_CHECKPOINT_ATTRS")): for kk in sv.CHECKPOINT_ATTRS: setattr(current_state[sk], kk, getattr(sv, kk)) for kk in sv.NON_BROADCAST_CHECKPOINT_ATTRS: setattr( current_state[sk], kk, jax.tree_util.tree_map(copy.copy, getattr(sv, kk))) else: current_state[sk] = sv def get_experiment_state(self, ckpt_series: str): """Returns the experiment state for a given checkpoint series.""" if ckpt_series not in GLOBAL_CHECKPOINT_DICT: active = threading.local() new_series = CheckpointNT(active, []) GLOBAL_CHECKPOINT_DICT[ckpt_series] = new_series if not hasattr(GLOBAL_CHECKPOINT_DICT[ckpt_series].active, "state"): GLOBAL_CHECKPOINT_DICT[ckpt_series].active.state = ( config_dict.ConfigDict()) return GLOBAL_CHECKPOINT_DICT[ckpt_series].active.state def save(self, ckpt_series: str) -> None: """Saves the checkpoint.""" series = GLOBAL_CHECKPOINT_DICT[ckpt_series] active_state = self.get_experiment_state(ckpt_series) id_ = 0 if not series.history else series.history[-1].id + 1 snapshot = copy.copy(active_state) series.history.append(SnapshotNT(id_, snapshot)) if len(series.history) > self._max_checkpoints_to_keep: GLOBAL_CHECKPOINT_DICT[ckpt_series] = series._replace( history=series.history[-self._max_checkpoints_to_keep:]) logging.info("Saved checkpoint %s with id %s.", ckpt_series, id_) def can_be_restored(self, ckpt_series: str) -> bool: """Returns whether or not a given checkpoint series can be restored.""" return ((ckpt_series in GLOBAL_CHECKPOINT_DICT) and GLOBAL_CHECKPOINT_DICT[ckpt_series].history) def restore(self, ckpt_series: str) -> None: """Restores the checkpoint.""" snapshot = GLOBAL_CHECKPOINT_DICT[ckpt_series].history[-1].pickle_nest current_state = self.get_experiment_state(ckpt_series) self._override_or_insert(current_state, snapshot) logging.info("Returned checkpoint %s with id %s.", ckpt_series, GLOBAL_CHECKPOINT_DICT[ckpt_series].history[-1].id) def restore_path(self, ckpt_series: str) -> Optional[str]: """Returns the restore path for the checkpoint, or None.""" if not self.can_be_restored(ckpt_series): return None return GLOBAL_CHECKPOINT_DICT[ckpt_series].history[-1].id def wait_for_checkpointing_to_finish(self) -> None: """Waits for any async checkpointing to complete.""" def disable_pmap_jit(fn: F) -> F: """Disables pmaps/jits inside a function if `--jaxline_disable_pmap_jit=True`. Args: fn: function to be wrapped, with arbitrary call-signature and return type. Returns: A function that when called, calls fn within a chex context that strips out all pmaps and jits if `--jaxline_disable_pmap_jit=True`, and otherwise calls fn unmodified. """ @functools.wraps(fn) def inner_wrapper(*args, **kwargs): if _JAXLINE_DISABLE_PMAP_JIT.value: with chex.fake_pmap_and_jit(): return fn(*args, **kwargs) else: return fn(*args, **kwargs) return inner_wrapper
jaxline-master
jaxline/utils.py
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training script to run Jaxline experiments. Your experiment file must implement the API in experiment.py to be compatible with this pipeline. """ import functools import inspect import time from typing import Optional from absl import flags from absl import logging import chex import jax import jax.numpy as jnp from jaxline import utils FLAGS = flags.FLAGS def _log_outputs(step, scalar_values): # f_list for less verbosity; e.g., "4." instead of "array(4., dtype=float32)". array_types = (chex.Array, chex.ArrayNumpy) f_list = (lambda x: x.tolist() if isinstance(x, array_types) else x) logging.info("global_step: %d, %s", step, jax.tree_util.tree_map(f_list, scalar_values)) def _initialize_experiment(experiment_class, mode, rng, experiment_kwargs): """Initializes experiment catching old style init methods.""" init_args = inspect.signature(experiment_class).parameters if "init_rng" in init_args: experiment = experiment_class( mode, init_rng=rng, **experiment_kwargs) else: # TODO(b/205109371): Make init_rng non-optional. logging.warning( "You should add init_rng to your Experiment" " constructor, which we will use to pass you" " jaxline.base_config.random_seed. Please deprecate any use of" " experiment_kwargs.config.random_seed: model initialization should" " be performed with init_rng and any sweeps directly with" " jaxline.base_config.random_seed. The use of" " experiment_kwargs.config.random_seed was flawed design introduced" " by some of our JAXline examples and meant that the rng used for" " initialization (and sweeps) was decoupled from that used by the" " step function. This will soon become unsupported behaviour.") experiment = experiment_class(mode, **experiment_kwargs) return experiment @utils.disable_pmap_jit def train( experiment_class, config, checkpointer: utils.Checkpointer, writer: Optional[utils.Writer], periodic_actions=(), ): """Main training loop.""" logging.info("Training with config:\n%s", config) is_chief = jax.process_index() == 0 is_checkpointer = config.train_checkpoint_all_hosts or is_chief rng = jax.random.PRNGKey(config.random_seed) with utils.log_activity("experiment init"): experiment = _initialize_experiment( experiment_class, "train", rng, config.experiment_kwargs) state = checkpointer.get_experiment_state("latest") state.global_step = 0 state.experiment_module = experiment state.train_step_rng = experiment.initialize_train_step_rng(rng) if checkpointer.can_be_restored("latest"): with utils.log_activity("checkpoint restore"): checkpointer.restore("latest") periodic_actions += ( utils.PeriodicAction( _log_outputs, interval_type=config.logging_interval_type or config.interval_type, interval=config.log_tensors_interval, logging_growth_ratios=config.periodic_action_growth_ratios, run_async=config.log_async), ) if is_checkpointer: if config.save_checkpoint_interval > 0: periodic_actions += ( utils.PeriodicAction( lambda *_: checkpointer.save("latest"), interval_type=(config.checkpoint_interval_type or config.interval_type), interval=config.save_checkpoint_interval, logging_growth_ratios=config.periodic_action_growth_ratios, run_async=False),) # run_async True would not be thread-safe. if is_chief or config.log_all_hosts: if writer is not None: def write_scalars(global_step: int, scalar_values): writer.write_scalars(global_step, scalar_values) periodic_actions += (utils.PeriodicAction( write_scalars, interval_type=(config.logging_interval_type or config.interval_type), interval=config.log_train_data_interval, logging_growth_ratios=config.periodic_action_growth_ratios, log_all_data=config.log_all_train_data, end_step_to_action=config.training_steps),) for pa in periodic_actions: pa.update_time(time.time(), state.global_step) if (is_checkpointer and config.save_initial_train_checkpoint and not checkpointer.can_be_restored("latest")): with utils.log_activity("first checkpoint"): checkpointer.save("latest") experiment.train_loop(config, state, periodic_actions, writer) if is_checkpointer: with utils.log_activity("final checkpoint"): checkpointer.save("latest") checkpointer.wait_for_checkpointing_to_finish() # Join all async periodic actions that are unfinished. for pa in periodic_actions: pa.wait_to_finish() # We occasionally see errors when the final checkpoint is being written if # the other hosts exit. Here we force all hosts to participate in one final # collective so the non-master hosts cannot exit before the master writes out # the final checkpoint. utils.rendezvous() @utils.disable_pmap_jit def evaluate( experiment_class, config, checkpointer: utils.Checkpointer, writer: Optional[utils.Writer], jaxline_mode: Optional[str] = None, ): """Main evaluation loop.""" if jaxline_mode is None: jaxline_mode = FLAGS.jaxline_mode logging.info("Evaluating with config:\n%s", config) global_step = 0 eval_rng = jax.random.PRNGKey(config.random_seed) experiment = _initialize_experiment( experiment_class, jaxline_mode, eval_rng, config.experiment_kwargs) should_save_best_checkpoint = config.best_model_eval_metric and ( config.best_checkpoint_all_hosts or jax.process_index() == 0) if should_save_best_checkpoint: # Initialize best state. best_state = checkpointer.get_experiment_state("best") if config.best_model_eval_metric_higher_is_better: best_state.best_eval_metric_value = float("-inf") eval_metric_is_better_op = jnp.greater eval_metric_comparison_str = ">" else: best_state.best_eval_metric_value = float("inf") eval_metric_is_better_op = jnp.less eval_metric_comparison_str = "<" best_state.best_model_eval_metric = config.best_model_eval_metric best_state.experiment_module = experiment # Restore to preserve 'best_eval_metric_value' if evaluator was preempted. if checkpointer.can_be_restored("best"): with utils.log_activity("best checkpoint restore"): checkpointer.restore("best") # Will evaluate the latest checkpoint in the directory. state = checkpointer.get_experiment_state("latest") state.global_step = global_step state.experiment_module = experiment state.train_step_rng = None eval_rng = jnp.broadcast_to( eval_rng, (jax.local_device_count(),) + eval_rng.shape) host_id_devices = utils.host_id_devices_for_rng(config.random_mode_eval) eval_rng = jax.pmap(functools.partial( utils.specialize_rng_host_device, axis_name="i", mode=config.random_mode_eval), axis_name="i")(eval_rng, host_id_devices) old_checkpoint_path = None initial_weights_are_evaluated = False while True: checkpoint_path = checkpointer.restore_path("latest") if config.one_off_evaluate: if checkpointer.can_be_restored("latest"): with utils.log_activity("one off evaluate checkpoint restore"): checkpointer.restore("latest") elif config.eval_initial_weights: logging.info("Evaluating initial weights for one_off_evaluate.") else: raise ValueError( "Checkpoint invalid and eval_initial_weights set to False") elif (checkpoint_path is None and config.eval_initial_weights and not initial_weights_are_evaluated): # Skip restoring a checkpoint and directly call evaluate if # `config.eval_initial_weights` but don"t do it more than once. initial_weights_are_evaluated = True else: if (checkpoint_path in (None, old_checkpoint_path) or not checkpointer.can_be_restored("latest")): logging.info("Checkpoint %s invalid or already evaluated, waiting 10s.", checkpoint_path) time.sleep(10) continue checkpointer.restore("latest") global_step_devices = utils.bcast_local_devices( jnp.asarray(state.global_step)) scalar_values = utils.evaluate_should_return_dict(experiment.evaluate)( global_step=global_step_devices, rng=eval_rng, writer=writer) if writer is not None: writer.write_scalars(state.global_step, scalar_values) old_checkpoint_path = checkpoint_path # Decide whether to save a "best checkpoint". if should_save_best_checkpoint: if config.best_model_eval_metric not in scalar_values: raise ValueError(f"config.best_model_eval_metric has been specified " f"as {config.best_model_eval_metric}, but this key " f"was not returned by the evaluate method. Got: " f"{scalar_values.keys()}") current_eval_metric_value = scalar_values[config.best_model_eval_metric] old_eval_metric_value = best_state.best_eval_metric_value if eval_metric_is_better_op(current_eval_metric_value, old_eval_metric_value): logging.info("%s: %s %s %s, saving new best checkpoint.", config.best_model_eval_metric, current_eval_metric_value, eval_metric_comparison_str, old_eval_metric_value) best_state.global_step = state.global_step best_state.experiment_module = experiment best_state.best_eval_metric_value = current_eval_metric_value best_state.train_step_rng = state.train_step_rng # Optional best model processing defined by the experiment. experiment.on_new_best_model(best_state) checkpointer.save("best") if config.one_off_evaluate or not experiment.should_run_step( state.global_step, config): logging.info("Last checkpoint (iteration %d) evaluated, exiting.", state.global_step) break
jaxline-master
jaxline/train.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Setuptools installation script.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from setuptools import find_packages from setuptools import setup description = """Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. """ setup( name="graph_nets", version="1.1.1.dev", description="Library for building graph networks in Tensorflow and Sonnet.", long_description=description, author="DeepMind", license="Apache License, Version 2.0", keywords=["graph networks", "tensorflow", "sonnet", "machine learning"], url="https://github.com/deepmind/graph-nets", packages=find_packages(), # Additional "tensorflow" and "tensorflow_probability" requirements should # be installed separately (See README). install_requires=[ "absl-py", "dm-sonnet", "dm-tree", "future", "networkx", "numpy", "setuptools", "six", ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", "Operating System :: Microsoft :: Windows", "Operating System :: MacOS :: MacOS X", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.4", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
graph_nets-master
setup.py
# Lint as: python2, python3 # Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Base classes for modules, defined depending on the Sonnet version. Strategy to be compatible with both Sonnet 1 and Sonnet 2 works as follows: - Dynamically decide which version we are using. - Create an adapter base class, with a unified API, that would allow child classes to implement interfaces similar to Sonnet 1. - All GraphNet modules Networks inherit for that same base class, and work with either Sonnet 1 or Sonnet 2, depending on how the library is configured. We do not recommmend users to inherit from this main class, as we only adapt the functionality for the GraphNets use cases. We also define a `WrappedModelFnModule`. This is similar to `sonnet.v1.Module`, except that is receives a callable that returns the build method, rather than receiving the build method directly. We need this because: - There is no analogous to `sonnet.v1.Module` in Sonnet 2. - `sonnet.v1.Module` relies on `get_variable` to return always the same variables in subsequent calls to the Sonnet module. This means that passing a single build method that builds submodules inside of it, yields the right variable sharing when called multiple times, thanks to custom variable getters. This mechanism does not work in Sonnet 2, and it would lead to separate varaibles/submodules being isntantiated every time the module is connected. This is why our `WrappedModelFnModule` instead, takes a callable that can be called in the `__init__` similarly to how `*_model_fn` arguments work in `blocks.py` and `modules.py`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import contextlib import six import sonnet as snt _sonnet_version = snt.__version__ _sonnet_major_version = int(_sonnet_version.split(".")[0]) if _sonnet_major_version == 1: AbstractModule = snt.AbstractModule elif _sonnet_major_version == 2: @six.add_metaclass(abc.ABCMeta) class AbstractModule(snt.Module): """Makes Sonnet1-style childs from this look like a Sonnet2 module.""" def __init__(self, *args, **kwargs): super(AbstractModule, self).__init__(*args, **kwargs) self.__call__.__func__.__doc__ = self._build.__doc__ # pytype: disable=attribute-error # In snt2 calls to `_enter_variable_scope` are ignored. @contextlib.contextmanager def _enter_variable_scope(self, *args, **kwargs): yield None def __call__(self, *args, **kwargs): return self._build(*args, **kwargs) @abc.abstractmethod def _build(self, *args, **kwargs): """Similar to Sonnet 1 ._build method.""" else: raise RuntimeError( "Unexpected sonnet major version %d" % (_sonnet_major_version)) class WrappedModelFnModule(AbstractModule): """Wraps a model_fn as a Sonnet module with a name. Following `blocks.py` convention, a `model_fn` is a callable that, when called with no arguments, returns a callable similar to a Sonnet module instance. """ def __init__(self, model_fn, name): """Inits the module. Args: model_fn: callable that, when called with no arguments, returns a callable similar to a Sonnet module instance. name: Name for the wrapper module. """ super(WrappedModelFnModule, self).__init__(name=name) with self._enter_variable_scope(): self._model = model_fn() def _build(self, *args, **kwargs): return self._model(*args, **kwargs)
graph_nets-master
graph_nets/_base.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Auxiliary methods that operate on graph structured data. This modules contains functions to convert between python data structures representing graphs and `graphs.GraphsTuple` containing numpy arrays. In particular: - `networkx_to_data_dict` and `data_dict_to_networkx` convert from/to an instance of `networkx.OrderedMultiDiGraph` from/to a data dictionary; - `networkxs_to_graphs_tuple` and `graphs_tuple_to_networkxs` convert from instances of `networkx.OrderedMultiDiGraph` to `graphs.GraphsTuple`; - `data_dicts_to_graphs_tuple` and `graphs_tuple_to_data_dicts` convert to and from lists of data dictionaries and `graphs.GraphsTuple`; - `get_graph` allows to index or slice a `graphs.GraphsTuple` to extract a subgraph or a subbatch of graphs. The functions in these modules are able to deal with graphs containing `None` fields (e.g. featureless nodes, featureless edges, or no edges). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from graph_nets import graphs import networkx as nx import numpy as np from six.moves import range from six.moves import zip # pylint: disable=redefined-builtin NODES = graphs.NODES EDGES = graphs.EDGES GLOBALS = graphs.GLOBALS RECEIVERS = graphs.RECEIVERS SENDERS = graphs.SENDERS GLOBALS = graphs.GLOBALS N_NODE = graphs.N_NODE N_EDGE = graphs.N_EDGE GRAPH_DATA_FIELDS = graphs.GRAPH_DATA_FIELDS GRAPH_NUMBER_FIELDS = graphs.GRAPH_NUMBER_FIELDS ALL_FIELDS = graphs.ALL_FIELDS GRAPH_NX_FEATURES_KEY = "features" def _check_valid_keys(keys): if any([x in keys for x in [EDGES, RECEIVERS, SENDERS]]): if not (RECEIVERS in keys and SENDERS in keys): raise ValueError("If edges are present, senders and receivers should " "both be defined.") def _defined_keys(dict_): return {k for k, v in dict_.items() if v is not None} def _check_valid_sets_of_keys(dicts): """Checks that all dictionaries have exactly the same valid key sets.""" prev_keys = None for dict_ in dicts: current_keys = _defined_keys(dict_) _check_valid_keys(current_keys) if prev_keys and current_keys != prev_keys: raise ValueError( "Different set of keys found when iterating over data dictionaries " "({} vs {})".format(prev_keys, current_keys)) prev_keys = current_keys def _compute_stacked_offsets(sizes, repeats): """Computes offsets to add to indices of stacked np arrays. When a set of np arrays are stacked, the indices of those from the second on must be offset in order to be able to index into the stacked np array. This computes those offsets. Args: sizes: A 1D sequence of np arrays of the sizes per graph. repeats: A 1D sequence of np arrays of the number of repeats per graph. Returns: The index offset per graph. """ return np.repeat(np.cumsum(np.hstack([0, sizes[:-1]])), repeats) def _check_key(node_index, key): if node_index != key: raise ValueError( "Nodes of the networkx.OrderedMultiDiGraph must have sequential " "integer keys consistent with the order of the nodes (e.g. " "`list(graph_nx.nodes)[i] == i`), found node with index {} and key {}" .format(node_index, key)) return True def networkx_to_data_dict(graph_nx, node_shape_hint=None, edge_shape_hint=None, data_type_hint=np.float32): """Returns a data dict of Numpy data from a networkx graph. The networkx graph should be set up such that, for fixed shapes `node_shape`, `edge_shape` and `global_shape`: - `graph_nx.nodes(data=True)[i][-1]["features"]` is, for any node index i, a tensor of shape `node_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["features"]` is, for any edge index i, a tensor of shape `edge_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["index"]`, if present, defines the order in which the edges will be sorted in the resulting `data_dict`; - `graph_nx.graph["features"] is a tensor of shape `global_shape`, or `None`. The dictionary `type_hints` can provide hints of the "float" and "int" types for missing values. The output data is a sequence of data dicts with fields: NODES, EDGES, RECEIVERS, SENDERS, GLOBALS, N_NODE, N_EDGE. Args: graph_nx: A `networkx.OrderedMultiDiGraph`. The node keys must be sequential integer values following the order in which nodes are added to the graph starting from zero. That is `list(graph_nx.nodes)[i] == i`. node_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain nodes, the trailing shape for the created `NODES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one node. edge_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain edges, the trailing shape for the created `EDGES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one edge. data_type_hint: (numpy dtype, default=`np.float32`) If the `NODES` or `EDGES` fields are autocompleted, their type. Returns: The data `dict` of Numpy data. Raises: TypeError: If `graph_nx` is not an instance of networkx. KeyError: If `graph_nx` contains at least one node without the "features" key in its attribute dictionary, or at least one edge without the "features" key in its attribute dictionary. ValueError: If `graph_nx` contains at least one node with a `None` "features" attribute and one least one node with a non-`None` "features" attribute; or if `graph_nx` contains at least one edge with a `None` "features" attribute and one least one edge with a non-`None` "features" attribute. ValueError: If the nodes have keys that are not consistent with the order of the nodes. """ nodes = None try: number_of_nodes = graph_nx.number_of_nodes() except ValueError as e: raise TypeError("Argument `graph_nx` of wrong type {}".format( type(graph_nx))) from e if number_of_nodes == 0: if node_shape_hint is not None: nodes = np.zeros([0] + list(node_shape_hint), dtype=data_type_hint) else: try: nodes_data = [ data[GRAPH_NX_FEATURES_KEY] for node_i, (key, data) in enumerate(graph_nx.nodes(data=True)) if _check_key(node_i, key) and data[GRAPH_NX_FEATURES_KEY] is not None ] if nodes_data: if len(nodes_data) != number_of_nodes: raise ValueError( "Either all the nodes should have features, or none of them") nodes = np.array(nodes_data) except KeyError as e: raise KeyError("Missing 'features' field from the graph nodes. " "This could be due to the node having been silently added " "as a consequence of an edge addition when creating the " "networkx instance") from e edges = None number_of_edges = graph_nx.number_of_edges() if number_of_edges == 0: senders = np.zeros(0, dtype=np.int32) receivers = np.zeros(0, dtype=np.int32) if edge_shape_hint is not None: edges = np.zeros([0] + list(edge_shape_hint), dtype=data_type_hint) else: if "index" in list(graph_nx.edges(data=True))[0][2]: senders, receivers, edge_attr_dicts = zip( *sorted(graph_nx.edges(data=True), key=lambda x: x[2]["index"])) else: senders, receivers, edge_attr_dicts = zip(*graph_nx.edges(data=True)) senders = np.array(senders, dtype=np.int32) receivers = np.array(receivers, dtype=np.int32) edges_data = [ x[GRAPH_NX_FEATURES_KEY] for x in edge_attr_dicts if x[GRAPH_NX_FEATURES_KEY] is not None ] if edges_data: if len(edges_data) != number_of_edges: raise ValueError( "Either all the edges should have features, or none of them") edges = np.array(edges_data) globals_ = None if GRAPH_NX_FEATURES_KEY in graph_nx.graph: globals_ = graph_nx.graph[GRAPH_NX_FEATURES_KEY] return { NODES: nodes, EDGES: edges, RECEIVERS: receivers, SENDERS: senders, GLOBALS: globals_, N_NODE: number_of_nodes, N_EDGE: number_of_edges, } def _unstack(array): """Similar to `tf.unstack`.""" num_splits = int(array.shape[0]) return [np.squeeze(x, 0) for x in np.split(array, num_splits, axis=0)] def data_dict_to_networkx(data_dict): """Returns a networkx graph that contains the stored data. Depending on the content of `data_dict`, the returned `networkx` instance has the following properties: - The nodes feature are placed in the nodes attribute dictionary under the "features" key. If the `NODES` fields is `None`, a `None` value is placed here; - If the `RECEIVERS` field is `None`, no edges are added to the graph. Otherwise, edges are added with the order in which they appeared in `data_dict` stored in the "index" field of their attributes dictionary; - The edges features are placed in the edges attribute dictionary under the "features" key. If the `EDGES` field is `None`, a `None` value is placed; - The global feature are placed under the key "features" of the graph property of the returned instance. If the `GLOBALS` field is `None`, a `None` global property is created. Args: data_dict: A graph `dict` of Numpy data. Returns: The `networkx.OrderedMultiDiGraph`. The node keys will be the data_dict integer node indices. Raises: ValueError: If the `NODES` field of `data_dict` contains `None`, and `data_dict` does not have a `N_NODE` field. """ graph_nx = nx.OrderedMultiDiGraph() data_dict = _populate_number_fields(data_dict) graph_nx.graph[GRAPH_NX_FEATURES_KEY] = data_dict[GLOBALS] if data_dict[NODES] is not None: if data_dict[NODES].shape[0] > 0: nodes_list = _unstack(data_dict[NODES]) for i, x in enumerate(nodes_list): graph_nx.add_node(i, **{GRAPH_NX_FEATURES_KEY: x}) elif data_dict[N_NODE] is not None: for i in range(data_dict[N_NODE]): graph_nx.add_node(i, **{GRAPH_NX_FEATURES_KEY: None}) else: raise ValueError("Cannot create a graph with unspecified number of nodes") if data_dict[EDGES] is not None and data_dict[EDGES].shape[0] > 0: edges_features = [{ # pylint: disable=g-complex-comprehension "index": i, GRAPH_NX_FEATURES_KEY: x } for i, x in enumerate(_unstack(data_dict[EDGES]))] edges_data = zip(data_dict[SENDERS], data_dict[RECEIVERS], edges_features) graph_nx.add_edges_from(edges_data) elif data_dict[RECEIVERS] is not None and data_dict[RECEIVERS].shape[0] > 0: edges_features = [{ # pylint: disable=g-complex-comprehension "index": i, GRAPH_NX_FEATURES_KEY: None } for i in range(data_dict[RECEIVERS].shape[0])] edges_data = zip(data_dict[SENDERS], data_dict[RECEIVERS], edges_features) graph_nx.add_edges_from(edges_data) return graph_nx def networkxs_to_graphs_tuple(graph_nxs, node_shape_hint=None, edge_shape_hint=None, data_type_hint=np.float32): """Constructs an instance from an iterable of networkx graphs. The networkx graph should be set up such that, for fixed shapes `node_shape`, `edge_shape` and `global_shape`: - `graph_nx.nodes(data=True)[i][-1]["features"]` is, for any node index i, a tensor of shape `node_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["features"]` is, for any edge index i, a tensor of shape `edge_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["index"]`, if present, defines the order in which the edges will be sorted in the resulting `data_dict`; - `graph_nx.graph["features"] is a tensor of shape `global_shape`, or `None`. The output data is a sequence of data dicts with fields: NODES, EDGES, RECEIVERS, SENDERS, GLOBALS, N_NODE, N_EDGE. Args: graph_nxs: A container of `networkx.OrderedMultiDiGraph`s. The node keys must be sequential integer values following the order in which nodes are added to the graph starting from zero. That is `list(graph_nx.nodes)[i] == i`. node_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain nodes, the trailing shape for the created `NODES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one node. edge_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain edges, the trailing shape for the created `EDGES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one edge. data_type_hint: (numpy dtype, default=`np.float32`) If the `NODES` or `EDGES` fields are autocompleted, their type. Returns: The instance. Raises: ValueError: If `graph_nxs` is not an iterable of networkx instances. """ data_dicts = [] try: for graph_nx in graph_nxs: data_dict = networkx_to_data_dict(graph_nx, node_shape_hint, edge_shape_hint, data_type_hint) data_dicts.append(data_dict) except TypeError as e: raise ValueError("Could not convert some elements of `graph_nxs`. " "Did you pass an iterable of networkx instances?") from e return data_dicts_to_graphs_tuple(data_dicts) def graphs_tuple_to_networkxs(graphs_tuple): """Converts a `graphs.GraphsTuple` to a sequence of networkx graphs. Args: graphs_tuple: A `graphs.GraphsTuple` instance containing numpy arrays. Returns: The list of `networkx.OrderedMultiDiGraph`s. The node keys will be the data dict integer node indices. """ return [ data_dict_to_networkx(x) for x in graphs_tuple_to_data_dicts(graphs_tuple) ] def data_dicts_to_graphs_tuple(data_dicts): """Constructs a `graphs.GraphsTuple` from an iterable of data dicts. The graphs represented by the `data_dicts` argument are batched to form a single instance of `graphs.GraphsTuple` containing numpy arrays. Args: data_dicts: An iterable of dictionaries with keys `GRAPH_DATA_FIELDS`, plus, potentially, a subset of `GRAPH_NUMBER_FIELDS`. The NODES and EDGES fields should be numpy arrays of rank at least 2, while the RECEIVERS, SENDERS are numpy arrays of rank 1 and same dimension as the EDGES field first dimension. The GLOBALS field is a numpy array of rank at least 1. Returns: An instance of `graphs.GraphsTuple` containing numpy arrays. The `RECEIVERS`, `SENDERS`, `N_NODE` and `N_EDGE` fields are cast to `np.int32` type. """ data_dicts = [dict(d) for d in data_dicts] for key in graphs.GRAPH_DATA_FIELDS: for data_dict in data_dicts: data_dict.setdefault(key, None) _check_valid_sets_of_keys(data_dicts) data_dicts = _to_compatible_data_dicts(data_dicts) return graphs.GraphsTuple(**_concatenate_data_dicts(data_dicts)) def graphs_tuple_to_data_dicts(graph): """Splits the stored data into a list of individual data dicts. Each list is a dictionary with fields NODES, EDGES, GLOBALS, RECEIVERS, SENDERS. Args: graph: A `graphs.GraphsTuple` instance containing numpy arrays. Returns: A list of the graph data dictionaries. The GLOBALS field is a tensor of rank at least 1, as the RECEIVERS and SENDERS field (which have integer values). The NODES and EDGES fields have rank at least 2. """ offset = _compute_stacked_offsets(graph.n_node, graph.n_edge) nodes_splits = np.cumsum(graph.n_node[:-1]) edges_splits = np.cumsum(graph.n_edge[:-1]) graph_of_lists = collections.defaultdict(lambda: []) if graph.nodes is not None: graph_of_lists[NODES] = np.split(graph.nodes, nodes_splits) if graph.edges is not None: graph_of_lists[EDGES] = np.split(graph.edges, edges_splits) if graph.receivers is not None: graph_of_lists[RECEIVERS] = np.split(graph.receivers - offset, edges_splits) graph_of_lists[SENDERS] = np.split(graph.senders - offset, edges_splits) if graph.globals is not None: graph_of_lists[GLOBALS] = _unstack(graph.globals) n_graphs = graph.n_node.shape[0] # Make all fields the same length. for k in GRAPH_DATA_FIELDS: graph_of_lists[k] += [None] * (n_graphs - len(graph_of_lists[k])) graph_of_lists[N_NODE] = graph.n_node graph_of_lists[N_EDGE] = graph.n_edge result = [] for index in range(n_graphs): result.append({field: graph_of_lists[field][index] for field in ALL_FIELDS}) return result def _to_compatible_data_dicts(data_dicts): """Converts the content of `data_dicts` to arrays of the right type. All fields are converted to numpy arrays. The index fields (`SENDERS` and `RECEIVERS`) and number fields (`N_NODE`, `N_EDGE`) are cast to `np.int32`. Args: data_dicts: An iterable of dictionaries with keys `ALL_KEYS` and values either `None`s, or quantities that can be converted to numpy arrays. Returns: A list of dictionaries containing numpy arrays or `None`s. """ results = [] for data_dict in data_dicts: result = {} for k, v in data_dict.items(): if v is None: result[k] = None else: dtype = np.int32 if k in [SENDERS, RECEIVERS, N_NODE, N_EDGE] else None result[k] = np.asarray(v, dtype) results.append(result) return results def _populate_number_fields(data_dict): """Returns a dict with the number fields N_NODE, N_EDGE filled in. The N_NODE field is filled if the graph contains a non-None NODES field; otherwise, it is set to 0. The N_EDGE field is filled if the graph contains a non-None RECEIVERS field; otherwise, it is set to 0. Args: data_dict: An input `dict`. Returns: The data `dict` with number fields. """ dct = data_dict.copy() for number_field, data_field in [[N_NODE, NODES], [N_EDGE, RECEIVERS]]: if dct.get(number_field) is None: if dct[data_field] is not None: dct[number_field] = np.array( np.shape(dct[data_field])[0], dtype=np.int32) else: dct[number_field] = np.array(0, dtype=np.int32) return dct def _concatenate_data_dicts(data_dicts): """Concatenate a list of data dicts to create the equivalent batched graph. Args: data_dicts: An iterable of data dictionaries with keys `GRAPH_DATA_FIELDS`, plus, potentially, a subset of `GRAPH_NUMBER_FIELDS`. Each dictionary is representing a single graph. Returns: A data dictionary with the keys `GRAPH_DATA_FIELDS + GRAPH_NUMBER_FIELDS`, representing the concatenated graphs. """ # Create a single dict with fields that contain sequences of graph tensors. concatenated_dicts = collections.defaultdict(lambda: []) for data_dict in data_dicts: data_dict = _populate_number_fields(data_dict) for k, v in data_dict.items(): if v is not None: concatenated_dicts[k].append(v) else: concatenated_dicts[k] = None concatenated_dicts = dict(concatenated_dicts) for field, arrays in concatenated_dicts.items(): if arrays is None: concatenated_dicts[field] = None elif field in list(GRAPH_NUMBER_FIELDS) + [GLOBALS]: concatenated_dicts[field] = np.stack(arrays) else: concatenated_dicts[field] = np.concatenate(arrays, axis=0) if concatenated_dicts[RECEIVERS] is not None: offset = _compute_stacked_offsets(concatenated_dicts[N_NODE], concatenated_dicts[N_EDGE]) for field in (RECEIVERS, SENDERS): concatenated_dicts[field] += offset return concatenated_dicts def get_graph(input_graphs, index): """Indexes into a graph. Given a `graphs.GraphsTuple` containing arrays and an index (either an `int` or a `slice`), index into the nodes, edges and globals to extract the graphs specified by the slice, and returns them into an another instance of a `graphs.GraphsTuple` containing `Tensor`s. Args: input_graphs: A `graphs.GraphsTuple` containing numpy arrays. index: An `int` or a `slice`, to index into `graph`. `index` should be compatible with the number of graphs in `graphs`. Returns: A `graphs.GraphsTuple` containing numpy arrays, made of the extracted graph(s). Raises: TypeError: if `index` is not an `int` or a `slice`. """ if isinstance(index, int): graph_slice = slice(index, index + 1) elif isinstance(index, slice): graph_slice = index else: raise TypeError("unsupported type: %s" % type(index)) data_dicts = graphs_tuple_to_data_dicts(input_graphs)[graph_slice] return graphs.GraphsTuple(**_concatenate_data_dicts(data_dicts))
graph_nets-master
graph_nets/utils_np.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph networks library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import blocks from graph_nets import graphs from graph_nets import modules from graph_nets import utils_np from graph_nets import utils_tf
graph_nets-master
graph_nets/__init__.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Common Graph Network architectures. The modules in this files are Sonnet modules that: - take a `graphs.GraphsTuple` containing `Tensor`s as input, with possibly `None` fields (depending on the module); - return a `graphs.GraphsTuple` with updated values for some fields (depending on the module). The provided modules are: - `GraphNetwork`: a general purpose Graph Network composed of configurable `EdgeBlock`, `NodeBlock` and `GlobalBlock` from `blocks.py`; - `GraphIndependent`: a Graph Network producing updated edges (resp. nodes, globals) based on the input's edges (resp. nodes, globals) only; - `InteractionNetwork` (from https://arxiv.org/abs/1612.00222): a network propagating information on the edges and nodes of a graph; - RelationNetwork (from https://arxiv.org/abs/1706.01427): a network updating the global property based on the relation between the input's nodes properties; - DeepSets (from https://arxiv.org/abs/1703.06114): a network that operates on sets (graphs without edges); - CommNet (from https://arxiv.org/abs/1605.07736 and https://arxiv.org/abs/1706.06122): a network updating nodes based on their previous features and the features of the adjacent nodes. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import _base from graph_nets import blocks import tensorflow as tf _DEFAULT_EDGE_BLOCK_OPT = { "use_edges": True, "use_receiver_nodes": True, "use_sender_nodes": True, "use_globals": True, } _DEFAULT_NODE_BLOCK_OPT = { "use_received_edges": True, "use_sent_edges": False, "use_nodes": True, "use_globals": True, } _DEFAULT_GLOBAL_BLOCK_OPT = { "use_edges": True, "use_nodes": True, "use_globals": True, } class InteractionNetwork(_base.AbstractModule): """Implementation of an Interaction Network. An interaction networks computes interactions on the edges based on the previous edges features, and on the features of the nodes sending into those edges. It then updates the nodes based on the incomming updated edges. See https://arxiv.org/abs/1612.00222 for more details. This model does not update the graph globals, and they are allowed to be `None`. """ def __init__(self, edge_model_fn, node_model_fn, reducer=tf.math.unsorted_segment_sum, name="interaction_network"): """Initializes the InteractionNetwork module. Args: edge_model_fn: A callable that will be passed to `EdgeBlock` to perform per-edge computations. The callable must return a Sonnet module (or equivalent; see `blocks.EdgeBlock` for details), and the shape of the output of this module must match the one of the input nodes, but for the first and last axis. node_model_fn: A callable that will be passed to `NodeBlock` to perform per-node computations. The callable must return a Sonnet module (or equivalent; see `blocks.NodeBlock` for details). reducer: Reducer to be used by NodeBlock to aggregate edges. Defaults to tf.math.unsorted_segment_sum. name: The module name. """ super(InteractionNetwork, self).__init__(name=name) with self._enter_variable_scope(): self._edge_block = blocks.EdgeBlock( edge_model_fn=edge_model_fn, use_globals=False) self._node_block = blocks.NodeBlock( node_model_fn=node_model_fn, use_sent_edges=False, use_globals=False, received_edges_reducer=reducer) def _build(self, graph, edge_model_kwargs=None, node_model_kwargs=None): """Connects the InterationNetwork. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s. `graph.globals` can be `None`. The features of each node and edge of `graph` must be concatenable on the last axis (i.e., the shapes of `graph.nodes` and `graph.edges` must match but for their first and last axis). edge_model_kwargs: Optional keyword arguments to pass to the edge block model. node_model_kwargs: Optional keyword arguments to pass to the node block model. Returns: An output `graphs.GraphsTuple` with updated edges and nodes. Raises: ValueError: If any of `graph.nodes`, `graph.edges`, `graph.receivers` or `graph.senders` is `None`. """ return self._node_block( self._edge_block(graph, edge_model_kwargs), node_model_kwargs) class RelationNetwork(_base.AbstractModule): """Implementation of a Relation Network. See https://arxiv.org/abs/1706.01427 for more details. The global and edges features of the input graph are not used, and are allowed to be `None` (the receivers and senders properties must be present). The output graph has updated, non-`None`, globals. """ def __init__(self, edge_model_fn, global_model_fn, reducer=tf.math.unsorted_segment_sum, name="relation_network"): """Initializes the RelationNetwork module. Args: edge_model_fn: A callable that will be passed to EdgeBlock to perform per-edge computations. The callable must return a Sonnet module (or equivalent; see EdgeBlock for details). global_model_fn: A callable that will be passed to GlobalBlock to perform per-global computations. The callable must return a Sonnet module (or equivalent; see GlobalBlock for details). reducer: Reducer to be used by GlobalBlock to aggregate edges. Defaults to tf.math.unsorted_segment_sum. name: The module name. """ super(RelationNetwork, self).__init__(name=name) with self._enter_variable_scope(): self._edge_block = blocks.EdgeBlock( edge_model_fn=edge_model_fn, use_edges=False, use_receiver_nodes=True, use_sender_nodes=True, use_globals=False) self._global_block = blocks.GlobalBlock( global_model_fn=global_model_fn, use_edges=True, use_nodes=False, use_globals=False, edges_reducer=reducer) def _build(self, graph, edge_model_kwargs=None, global_model_kwargs=None): """Connects the RelationNetwork. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, except for the edges and global properties which may be `None`. edge_model_kwargs: Optional keyword arguments to pass to the edge block model. global_model_kwargs: Optional keyword arguments to pass to the global block model. Returns: A `graphs.GraphsTuple` with updated globals. Raises: ValueError: If any of `graph.nodes`, `graph.receivers` or `graph.senders` is `None`. """ output_graph = self._global_block( self._edge_block(graph, edge_model_kwargs), global_model_kwargs) return graph.replace(globals=output_graph.globals) def _make_default_edge_block_opt(edge_block_opt): """Default options to be used in the EdgeBlock of a generic GraphNetwork.""" edge_block_opt = dict(edge_block_opt.items()) if edge_block_opt else {} for k, v in _DEFAULT_EDGE_BLOCK_OPT.items(): edge_block_opt[k] = edge_block_opt.get(k, v) return edge_block_opt def _make_default_node_block_opt(node_block_opt, default_reducer): """Default options to be used in the NodeBlock of a generic GraphNetwork.""" node_block_opt = dict(node_block_opt.items()) if node_block_opt else {} for k, v in _DEFAULT_NODE_BLOCK_OPT.items(): node_block_opt[k] = node_block_opt.get(k, v) for key in ["received_edges_reducer", "sent_edges_reducer"]: node_block_opt[key] = node_block_opt.get(key, default_reducer) return node_block_opt def _make_default_global_block_opt(global_block_opt, default_reducer): """Default options to be used in the GlobalBlock of a generic GraphNetwork.""" global_block_opt = dict(global_block_opt.items()) if global_block_opt else {} for k, v in _DEFAULT_GLOBAL_BLOCK_OPT.items(): global_block_opt[k] = global_block_opt.get(k, v) for key in ["edges_reducer", "nodes_reducer"]: global_block_opt[key] = global_block_opt.get(key, default_reducer) return global_block_opt class GraphNetwork(_base.AbstractModule): """Implementation of a Graph Network. See https://arxiv.org/abs/1806.01261 for more details. """ def __init__(self, edge_model_fn, node_model_fn, global_model_fn, reducer=tf.math.unsorted_segment_sum, edge_block_opt=None, node_block_opt=None, global_block_opt=None, name="graph_network"): """Initializes the GraphNetwork module. Args: edge_model_fn: A callable that will be passed to EdgeBlock to perform per-edge computations. The callable must return a Sonnet module (or equivalent; see EdgeBlock for details). node_model_fn: A callable that will be passed to NodeBlock to perform per-node computations. The callable must return a Sonnet module (or equivalent; see NodeBlock for details). global_model_fn: A callable that will be passed to GlobalBlock to perform per-global computations. The callable must return a Sonnet module (or equivalent; see GlobalBlock for details). reducer: Reducer to be used by NodeBlock and GlobalBlock to aggregate nodes and edges. Defaults to tf.math.unsorted_segment_sum. This will be overridden by the reducers specified in `node_block_opt` and `global_block_opt`, if any. edge_block_opt: Additional options to be passed to the EdgeBlock. Can contain keys `use_edges`, `use_receiver_nodes`, `use_sender_nodes`, `use_globals`. By default, these are all True. node_block_opt: Additional options to be passed to the NodeBlock. Can contain the keys `use_received_edges`, `use_nodes`, `use_globals` (all set to True by default), `use_sent_edges` (defaults to False), and `received_edges_reducer`, `sent_edges_reducer` (default to `reducer`). global_block_opt: Additional options to be passed to the GlobalBlock. Can contain the keys `use_edges`, `use_nodes`, `use_globals` (all set to True by default), and `edges_reducer`, `nodes_reducer` (defaults to `reducer`). name: The module name. """ super(GraphNetwork, self).__init__(name=name) edge_block_opt = _make_default_edge_block_opt(edge_block_opt) node_block_opt = _make_default_node_block_opt(node_block_opt, reducer) global_block_opt = _make_default_global_block_opt(global_block_opt, reducer) with self._enter_variable_scope(): self._edge_block = blocks.EdgeBlock( edge_model_fn=edge_model_fn, **edge_block_opt) self._node_block = blocks.NodeBlock( node_model_fn=node_model_fn, **node_block_opt) self._global_block = blocks.GlobalBlock( global_model_fn=global_model_fn, **global_block_opt) def _build(self, graph, edge_model_kwargs=None, node_model_kwargs=None, global_model_kwargs=None): """Connects the GraphNetwork. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s. Depending on the block options, `graph` may contain `None` fields; but with the default configuration, no `None` field is allowed. Moreover, when using the default configuration, the features of each nodes, edges and globals of `graph` should be concatenable on the last dimension. edge_model_kwargs: Optional keyword arguments to pass to the edge block model. node_model_kwargs: Optional keyword arguments to pass to the node block model. global_model_kwargs: Optional keyword arguments to pass to the global block model. Returns: An output `graphs.GraphsTuple` with updated edges, nodes and globals. """ node_input = self._edge_block(graph, edge_model_kwargs) global_input = self._node_block(node_input, node_model_kwargs) return self._global_block(global_input, global_model_kwargs) class GraphIndependent(_base.AbstractModule): """A graph block that applies models to the graph elements independently. The inputs and outputs are graphs. The corresponding models are applied to each element of the graph (edges, nodes and globals) in parallel and independently of the other elements. It can be used to encode or decode the elements of a graph. """ def __init__(self, edge_model_fn=None, node_model_fn=None, global_model_fn=None, name="graph_independent"): """Initializes the GraphIndependent module. Args: edge_model_fn: A callable that returns an edge model function. The callable must return a Sonnet module (or equivalent). If passed `None`, will pass through inputs (the default). node_model_fn: A callable that returns a node model function. The callable must return a Sonnet module (or equivalent). If passed `None`, will pass through inputs (the default). global_model_fn: A callable that returns a global model function. The callable must return a Sonnet module (or equivalent). If passed `None`, will pass through inputs (the default). name: The module name. """ super(GraphIndependent, self).__init__(name=name) with self._enter_variable_scope(): # The use of snt.Module below is to ensure the ops and variables that # result from the edge/node/global_model_fns are scoped analogous to how # the Edge/Node/GlobalBlock classes do. if edge_model_fn is None: self._edge_model = lambda x: x else: self._edge_model = _base.WrappedModelFnModule( edge_model_fn, name="edge_model") if node_model_fn is None: self._node_model = lambda x: x else: self._node_model = _base.WrappedModelFnModule( node_model_fn, name="node_model") if global_model_fn is None: self._global_model = lambda x: x else: self._global_model = _base.WrappedModelFnModule( global_model_fn, name="global_model") def _build(self, graph, edge_model_kwargs=None, node_model_kwargs=None, global_model_kwargs=None): """Connects the GraphIndependent. Args: graph: A `graphs.GraphsTuple` containing non-`None` edges, nodes and globals. edge_model_kwargs: Optional keyword arguments to pass to the edge block model. node_model_kwargs: Optional keyword arguments to pass to the node block model. global_model_kwargs: Optional keyword arguments to pass to the global block model. Returns: An output `graphs.GraphsTuple` with updated edges, nodes and globals. """ if edge_model_kwargs is None: edge_model_kwargs = {} if node_model_kwargs is None: node_model_kwargs = {} if global_model_kwargs is None: global_model_kwargs = {} return graph.replace( edges=self._edge_model(graph.edges, **edge_model_kwargs), nodes=self._node_model(graph.nodes, **node_model_kwargs), globals=self._global_model(graph.globals, **global_model_kwargs)) class DeepSets(_base.AbstractModule): """DeepSets module. Implementation for the model described in https://arxiv.org/abs/1703.06114 (M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, A. Smola). See also PointNet (https://arxiv.org/abs/1612.00593, C. Qi, H. Su, K. Mo, L. J. Guibas) for a related model. This module operates on sets, which can be thought of as graphs without edges. The nodes features are first updated based on their value and the globals features, and new globals features are then computed based on the updated nodes features. Note that in the original model, only the globals are updated in the returned graph, while this implementation also returns updated nodes. The original model can be reproduced by writing: ``` deep_sets = DeepSets() output = deep_sets(input) output = input.replace(globals=output.globals) ``` This module does not use the edges data or the information contained in the receivers or senders; the output graph has the same value in those fields as the input graph. Those fields can also have `None` values in the input `graphs.GraphsTuple`. """ def __init__(self, node_model_fn, global_model_fn, reducer=tf.math.unsorted_segment_sum, name="deep_sets"): """Initializes the DeepSets module. Args: node_model_fn: A callable to be passed to NodeBlock. The callable must return a Sonnet module (or equivalent; see NodeBlock for details). The shape of this module's output must equal the shape of the input graph's global features, but for the first and last axis. global_model_fn: A callable to be passed to GlobalBlock. The callable must return a Sonnet module (or equivalent; see GlobalBlock for details). reducer: Reduction to be used when aggregating the nodes in the globals. This should be a callable whose signature matches tf.math.unsorted_segment_sum. name: The module name. """ super(DeepSets, self).__init__(name=name) with self._enter_variable_scope(): self._node_block = blocks.NodeBlock( node_model_fn=node_model_fn, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=True) self._global_block = blocks.GlobalBlock( global_model_fn=global_model_fn, use_edges=False, use_nodes=True, use_globals=False, nodes_reducer=reducer) def _build(self, graph, node_model_kwargs=None, global_model_kwargs=None): """Connects the DeepSets network. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, whose edges, senders or receivers properties may be `None`. The features of every node and global of `graph` should be concatenable on the last axis (i.e. the shapes of `graph.nodes` and `graph.globals` must match but for their first and last axis). node_model_kwargs: Optional keyword arguments to pass to the node block model. global_model_kwargs: Optional keyword arguments to pass to the global block model. Returns: An output `graphs.GraphsTuple` with updated globals. """ return self._global_block( self._node_block(graph, node_model_kwargs), global_model_kwargs) class CommNet(_base.AbstractModule): """CommNet module. Implementation for the model originally described in https://arxiv.org/abs/1605.07736 (S. Sukhbaatar, A. Szlam, R. Fergus), in the version presented in https://arxiv.org/abs/1706.06122 (Y. Hoshen). This module internally creates edge features based on the features from the nodes sending to that edge, and independently learns an embedding for each node. It then uses these edges and nodes features to compute updated node features. This module does not use the global nor the edges features of the input, but uses its receivers and senders information. The output graph has the same value in edge and global fields as the input graph. The edge and global features fields may have a `None` value in the input `gn_graphs.GraphsTuple`. """ def __init__(self, edge_model_fn, node_encoder_model_fn, node_model_fn, reducer=tf.math.unsorted_segment_sum, name="comm_net"): """Initializes the CommNet module. Args: edge_model_fn: A callable to be passed to EdgeBlock. The callable must return a Sonnet module (or equivalent; see EdgeBlock for details). node_encoder_model_fn: A callable to be passed to the NodeBlock responsible for the first encoding of the nodes. The callable must return a Sonnet module (or equivalent; see NodeBlock for details). The shape of this module's output should match the shape of the module built by `edge_model_fn`, but for the first and last dimension. node_model_fn: A callable to be passed to NodeBlock. The callable must return a Sonnet module (or equivalent; see NodeBlock for details). reducer: Reduction to be used when aggregating the edges in the nodes. This should be a callable whose signature matches tf.math.unsorted_segment_sum. name: The module name. """ super(CommNet, self).__init__(name=name) with self._enter_variable_scope(): # Computes $\Psi_{com}(x_j)$ in Eq. (2) of 1706.06122 self._edge_block = blocks.EdgeBlock( edge_model_fn=edge_model_fn, use_edges=False, use_receiver_nodes=False, use_sender_nodes=True, use_globals=False) # Computes $\Phi(x_i)$ in Eq. (2) of 1706.06122 self._node_encoder_block = blocks.NodeBlock( node_model_fn=node_encoder_model_fn, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer, name="node_encoder_block") # Computes $\Theta(..)$ in Eq.(2) of 1706.06122 self._node_block = blocks.NodeBlock( node_model_fn=node_model_fn, use_received_edges=True, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer) def _build(self, graph, edge_model_kwargs=None, node_encoder_model_kwargs=None, node_model_kwargs=None): """Connects the CommNet network. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, with non-`None` nodes, receivers and senders. edge_model_kwargs: Optional keyword arguments to pass to the edge block model. node_encoder_model_kwargs: Optional keyword arguments to pass to the node block ecoder model. node_model_kwargs: Optional keyword arguments to pass to the node block model. Returns: An output `graphs.GraphsTuple` with updated nodes. Raises: ValueError: if any of `graph.nodes`, `graph.receivers` or `graph.senders` is `None`. """ node_input = self._node_encoder_block( self._edge_block(graph, edge_model_kwargs), node_encoder_model_kwargs) return graph.replace( nodes=self._node_block(node_input, node_model_kwargs).nodes) def _unsorted_segment_softmax(data, segment_ids, num_segments, name="unsorted_segment_softmax"): """Performs an elementwise softmax operation along segments of a tensor. The input parameters are analogous to `tf.math.unsorted_segment_sum`. It produces an output of the same shape as the input data, after performing an elementwise sofmax operation between all of the rows with common segment id. Args: data: A tensor with at least one dimension. segment_ids: A tensor of indices segmenting `data` across the first dimension. num_segments: A scalar tensor indicating the number of segments. It should be at least `max(segment_ids) + 1`. name: A name for the operation (optional). Returns: A tensor with the same shape as `data` after applying the softmax operation. """ with tf.name_scope(name): segment_maxes = tf.math.unsorted_segment_max(data, segment_ids, num_segments) maxes = tf.gather(segment_maxes, segment_ids) # Possibly refactor to `tf.stop_gradient(maxes)` for better performance. data -= maxes exp_data = tf.exp(data) segment_sum_exp_data = tf.math.unsorted_segment_sum(exp_data, segment_ids, num_segments) sum_exp_data = tf.gather(segment_sum_exp_data, segment_ids) return exp_data / sum_exp_data def _received_edges_normalizer(graph, normalizer, name="received_edges_normalizer"): """Performs elementwise normalization for all received edges by a given node. Args: graph: A graph containing edge information. normalizer: A normalizer function following the signature of `modules._unsorted_segment_softmax`. name: A name for the operation (optional). Returns: A tensor with the resulting normalized edges. """ with tf.name_scope(name): return normalizer( data=graph.edges, segment_ids=graph.receivers, num_segments=tf.reduce_sum(graph.n_node)) class SelfAttention(_base.AbstractModule): """Multi-head self-attention module. The module is based on the following three papers: * A simple neural network module for relational reasoning (RNs): https://arxiv.org/abs/1706.01427 * Non-local Neural Networks: https://arxiv.org/abs/1711.07971. * Attention Is All You Need (AIAYN): https://arxiv.org/abs/1706.03762. The input to the modules consists of a graph containing values for each node and connectivity between them, a tensor containing keys for each node and a tensor containing queries for each node. The self-attention step consist of updating the node values, with each new node value computed in a two step process: - Computing the attention weights between each node and all of its senders nodes, by calculating sum(sender_key*receiver_query) and using the softmax operation on all attention weights for each node. - For each receiver node, compute the new node value as the weighted average of the values of the sender nodes, according to the attention weights. - Nodes with no received edges, get an updated value of 0. Values, keys and queries contain a "head" axis to compute independent self-attention for each of the heads. """ def __init__(self, name="self_attention"): """Inits the module. Args: name: The module name. """ super(SelfAttention, self).__init__(name=name) self._normalizer = _unsorted_segment_softmax def _build(self, node_values, node_keys, node_queries, attention_graph): """Connects the multi-head self-attention module. The self-attention is only computed according to the connectivity of the input graphs, with receiver nodes attending to sender nodes. Args: node_values: Tensor containing the values associated to each of the nodes. The expected shape is [total_num_nodes, num_heads, key_size]. node_keys: Tensor containing the key associated to each of the nodes. The expected shape is [total_num_nodes, num_heads, key_size]. node_queries: Tensor containing the query associated to each of the nodes. The expected shape is [total_num_nodes, num_heads, query_size]. The query size must be equal to the key size. attention_graph: Graph containing connectivity information between nodes via the senders and receivers fields. Node A will only attempt to attend to Node B if `attention_graph` contains an edge sent by Node A and received by Node B. Returns: An output `graphs.GraphsTuple` with updated nodes containing the aggregated attended value for each of the nodes with shape [total_num_nodes, num_heads, value_size]. Raises: ValueError: if the input graph does not have edges. """ # Sender nodes put their keys and values in the edges. # [total_num_edges, num_heads, query_size] sender_keys = blocks.broadcast_sender_nodes_to_edges( attention_graph.replace(nodes=node_keys)) # [total_num_edges, num_heads, value_size] sender_values = blocks.broadcast_sender_nodes_to_edges( attention_graph.replace(nodes=node_values)) # Receiver nodes put their queries in the edges. # [total_num_edges, num_heads, key_size] receiver_queries = blocks.broadcast_receiver_nodes_to_edges( attention_graph.replace(nodes=node_queries)) # Attention weight for each edge. # [total_num_edges, num_heads] attention_weights_logits = tf.reduce_sum( sender_keys * receiver_queries, axis=-1) normalized_attention_weights = _received_edges_normalizer( attention_graph.replace(edges=attention_weights_logits), normalizer=self._normalizer) # Attending to sender values according to the weights. # [total_num_edges, num_heads, embedding_size] attented_edges = sender_values * normalized_attention_weights[..., None] # Summing all of the attended values from each node. # [total_num_nodes, num_heads, embedding_size] received_edges_aggregator = blocks.ReceivedEdgesToNodesAggregator( reducer=tf.math.unsorted_segment_sum) aggregated_attended_values = received_edges_aggregator( attention_graph.replace(edges=attented_edges)) return attention_graph.replace(nodes=aggregated_attended_values)
graph_nets-master
graph_nets/modules.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Building blocks for Graph Networks. This module contains elementary building blocks of graph networks: - `broadcast_{field_1}_to_{field_2}` propagates the features from `field_1` onto the relevant elements of `field_2`; - `{field_1}To{field_2}Aggregator` propagates and then reduces the features from `field_1` onto the relevant elements of `field_2`; - the `EdgeBlock`, `NodeBlock` and `GlobalBlock` are elementary graph networks that only update the edges (resp. the nodes, the globals) of their input graph (as described in https://arxiv.org/abs/1806.01261). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import _base from graph_nets import graphs from graph_nets import utils_tf import tensorflow as tf NODES = graphs.NODES EDGES = graphs.EDGES GLOBALS = graphs.GLOBALS RECEIVERS = graphs.RECEIVERS SENDERS = graphs.SENDERS GLOBALS = graphs.GLOBALS N_NODE = graphs.N_NODE N_EDGE = graphs.N_EDGE def _validate_graph(graph, mandatory_fields, additional_message=None): for field in mandatory_fields: if getattr(graph, field) is None: message = "`{}` field cannot be None".format(field) if additional_message: message += " " + format(additional_message) message += "." raise ValueError(message) def _validate_broadcasted_graph(graph, from_field, to_field): additional_message = "when broadcasting {} to {}".format(from_field, to_field) _validate_graph(graph, [from_field, to_field], additional_message) def _get_static_num_nodes(graph): """Returns the static total number of nodes in a batch or None.""" return None if graph.nodes is None else graph.nodes.shape.as_list()[0] def _get_static_num_edges(graph): """Returns the static total number of edges in a batch or None.""" return None if graph.senders is None else graph.senders.shape.as_list()[0] def broadcast_globals_to_edges(graph, name="broadcast_globals_to_edges", num_edges_hint=None): """Broadcasts the global features to the edges of a graph. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, with globals features of shape `[n_graphs] + global_shape`, and `N_EDGE` field of shape `[n_graphs]`. name: (string, optional) A name for the operation. num_edges_hint: Integer indicating the total number of edges, if known. Returns: A tensor of shape `[n_edges] + global_shape`, where `n_edges = sum(graph.n_edge)`. The i-th element of this tensor is given by `globals[j]`, where j is the index of the graph the i-th edge belongs to (i.e. is such that `sum_{k < j} graphs.n_edge[k] <= i < sum_{k <= j} graphs.n_edge[k]`). Raises: ValueError: If either `graph.globals` or `graph.n_edge` is `None`. """ _validate_broadcasted_graph(graph, GLOBALS, N_EDGE) with tf.name_scope(name): return utils_tf.repeat(graph.globals, graph.n_edge, axis=0, sum_repeats_hint=num_edges_hint) def broadcast_globals_to_nodes(graph, name="broadcast_globals_to_nodes", num_nodes_hint=None): """Broadcasts the global features to the nodes of a graph. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, with globals features of shape `[n_graphs] + global_shape`, and `N_NODE` field of shape `[n_graphs]`. name: (string, optional) A name for the operation. num_nodes_hint: Integer indicating the total number of nodes, if known. Returns: A tensor of shape `[n_nodes] + global_shape`, where `n_nodes = sum(graph.n_node)`. The i-th element of this tensor is given by `globals[j]`, where j is the index of the graph the i-th node belongs to (i.e. is such that `sum_{k < j} graphs.n_node[k] <= i < sum_{k <= j} graphs.n_node[k]`). Raises: ValueError: If either `graph.globals` or `graph.n_node` is `None`. """ _validate_broadcasted_graph(graph, GLOBALS, N_NODE) with tf.name_scope(name): return utils_tf.repeat(graph.globals, graph.n_node, axis=0, sum_repeats_hint=num_nodes_hint) def broadcast_sender_nodes_to_edges( graph, name="broadcast_sender_nodes_to_edges"): """Broadcasts the node features to the edges they are sending into. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, with nodes features of shape `[n_nodes] + node_shape`, and `senders` field of shape `[n_edges]`. name: (string, optional) A name for the operation. Returns: A tensor of shape `[n_edges] + node_shape`, where `n_edges = sum(graph.n_edge)`. The i-th element is given by `graph.nodes[graph.senders[i]]`. Raises: ValueError: If either `graph.nodes` or `graph.senders` is `None`. """ _validate_broadcasted_graph(graph, NODES, SENDERS) with tf.name_scope(name): return tf.gather(graph.nodes, graph.senders) def broadcast_receiver_nodes_to_edges( graph, name="broadcast_receiver_nodes_to_edges"): """Broadcasts the node features to the edges they are receiving from. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, with nodes features of shape `[n_nodes] + node_shape`, and receivers of shape `[n_edges]`. name: (string, optional) A name for the operation. Returns: A tensor of shape `[n_edges] + node_shape`, where `n_edges = sum(graph.n_edge)`. The i-th element is given by `graph.nodes[graph.receivers[i]]`. Raises: ValueError: If either `graph.nodes` or `graph.receivers` is `None`. """ _validate_broadcasted_graph(graph, NODES, RECEIVERS) with tf.name_scope(name): return tf.gather(graph.nodes, graph.receivers) class EdgesToGlobalsAggregator(_base.AbstractModule): """Aggregates all edges into globals.""" def __init__(self, reducer, name="edges_to_globals_aggregator"): """Initializes the EdgesToGlobalsAggregator module. The reducer is used for combining per-edge features (one set of edge feature vectors per graph) to give per-graph features (one feature vector per graph). The reducer should take a `Tensor` of edge features, a `Tensor` of segment indices, and a number of graphs. It should be invariant under permutation of edge features within each graph. Examples of compatible reducers are: * tf.math.unsorted_segment_sum * tf.math.unsorted_segment_mean * tf.math.unsorted_segment_prod * unsorted_segment_min_or_zero * unsorted_segment_max_or_zero Args: reducer: A function for reducing sets of per-edge features to individual per-graph features. name: The module name. """ super(EdgesToGlobalsAggregator, self).__init__(name=name) self._reducer = reducer def _build(self, graph): _validate_graph(graph, (EDGES,), additional_message="when aggregating from edges.") num_graphs = utils_tf.get_num_graphs(graph) graph_index = tf.range(num_graphs) indices = utils_tf.repeat(graph_index, graph.n_edge, axis=0, sum_repeats_hint=_get_static_num_edges(graph)) return self._reducer(graph.edges, indices, num_graphs) class NodesToGlobalsAggregator(_base.AbstractModule): """Aggregates all nodes into globals.""" def __init__(self, reducer, name="nodes_to_globals_aggregator"): """Initializes the NodesToGlobalsAggregator module. The reducer is used for combining per-node features (one set of node feature vectors per graph) to give per-graph features (one feature vector per graph). The reducer should take a `Tensor` of node features, a `Tensor` of segment indices, and a number of graphs. It should be invariant under permutation of node features within each graph. Examples of compatible reducers are: * tf.math.unsorted_segment_sum * tf.math.unsorted_segment_mean * tf.math.unsorted_segment_prod * unsorted_segment_min_or_zero * unsorted_segment_max_or_zero Args: reducer: A function for reducing sets of per-node features to individual per-graph features. name: The module name. """ super(NodesToGlobalsAggregator, self).__init__(name=name) self._reducer = reducer def _build(self, graph): _validate_graph(graph, (NODES,), additional_message="when aggregating from nodes.") num_graphs = utils_tf.get_num_graphs(graph) graph_index = tf.range(num_graphs) indices = utils_tf.repeat(graph_index, graph.n_node, axis=0, sum_repeats_hint=_get_static_num_nodes(graph)) return self._reducer(graph.nodes, indices, num_graphs) class _EdgesToNodesAggregator(_base.AbstractModule): """Agregates sent or received edges into the corresponding nodes.""" def __init__(self, reducer, use_sent_edges=False, name="edges_to_nodes_aggregator"): super(_EdgesToNodesAggregator, self).__init__(name=name) self._reducer = reducer self._use_sent_edges = use_sent_edges def _build(self, graph): _validate_graph(graph, (EDGES, SENDERS, RECEIVERS,), additional_message="when aggregating from edges.") # If the number of nodes are known at graph construction time (based on the # shape) then use that value to make the model compatible with XLA/TPU. if graph.nodes is not None and graph.nodes.shape.as_list()[0] is not None: num_nodes = graph.nodes.shape.as_list()[0] else: num_nodes = tf.reduce_sum(graph.n_node) indices = graph.senders if self._use_sent_edges else graph.receivers return self._reducer(graph.edges, indices, num_nodes) class SentEdgesToNodesAggregator(_EdgesToNodesAggregator): """Agregates sent edges into the corresponding sender nodes.""" def __init__(self, reducer, name="sent_edges_to_nodes_aggregator"): """Constructor. The reducer is used for combining per-edge features (one set of edge feature vectors per node) to give per-node features (one feature vector per node). The reducer should take a `Tensor` of edge features, a `Tensor` of segment indices, and a number of nodes. It should be invariant under permutation of edge features within each segment. Examples of compatible reducers are: * tf.math.unsorted_segment_sum * tf.math.unsorted_segment_mean * tf.math.unsorted_segment_prod * unsorted_segment_min_or_zero * unsorted_segment_max_or_zero Args: reducer: A function for reducing sets of per-edge features to individual per-node features. name: The module name. """ super(SentEdgesToNodesAggregator, self).__init__( use_sent_edges=True, reducer=reducer, name=name) class ReceivedEdgesToNodesAggregator(_EdgesToNodesAggregator): """Agregates received edges into the corresponding receiver nodes.""" def __init__(self, reducer, name="received_edges_to_nodes_aggregator"): """Constructor. The reducer is used for combining per-edge features (one set of edge feature vectors per node) to give per-node features (one feature vector per node). The reducer should take a `Tensor` of edge features, a `Tensor` of segment indices, and a number of nodes. It should be invariant under permutation of edge features within each segment. Examples of compatible reducers are: * tf.math.unsorted_segment_sum * tf.math.unsorted_segment_mean * tf.math.unsorted_segment_prod * unsorted_segment_min_or_zero * unsorted_segment_max_or_zero Args: reducer: A function for reducing sets of per-edge features to individual per-node features. name: The module name. """ super(ReceivedEdgesToNodesAggregator, self).__init__( use_sent_edges=False, reducer=reducer, name=name) def _unsorted_segment_reduction_or_zero(reducer, values, indices, num_groups): """Common code for unsorted_segment_{min,max}_or_zero (below).""" reduced = reducer(values, indices, num_groups) present_indices = tf.math.unsorted_segment_max( tf.ones_like(indices, dtype=reduced.dtype), indices, num_groups) present_indices = tf.clip_by_value(present_indices, 0, 1) present_indices = tf.reshape( present_indices, [num_groups] + [1] * (reduced.shape.ndims - 1)) reduced *= present_indices return reduced def unsorted_segment_min_or_zero(values, indices, num_groups, name="unsorted_segment_min_or_zero"): """Aggregates information using elementwise min. Segments with no elements are given a "min" of zero instead of the most positive finite value possible (which is what `tf.math.unsorted_segment_min` would do). Args: values: A `Tensor` of per-element features. indices: A 1-D `Tensor` whose length is equal to `values`' first dimension. num_groups: A `Tensor`. name: (string, optional) A name for the operation. Returns: A `Tensor` of the same type as `values`. """ with tf.name_scope(name): return _unsorted_segment_reduction_or_zero( tf.math.unsorted_segment_min, values, indices, num_groups) def unsorted_segment_max_or_zero(values, indices, num_groups, name="unsorted_segment_max_or_zero"): """Aggregates information using elementwise max. Segments with no elements are given a "max" of zero instead of the most negative finite value possible (which is what `tf.math.unsorted_segment_max` would do). Args: values: A `Tensor` of per-element features. indices: A 1-D `Tensor` whose length is equal to `values`' first dimension. num_groups: A `Tensor`. name: (string, optional) A name for the operation. Returns: A `Tensor` of the same type as `values`. """ with tf.name_scope(name): return _unsorted_segment_reduction_or_zero( tf.math.unsorted_segment_max, values, indices, num_groups) class EdgeBlock(_base.AbstractModule): """Edge block. A block that updates the features of each edge in a batch of graphs based on (a subset of) the previous edge features, the features of the adjacent nodes, and the global features of the corresponding graph. See https://arxiv.org/abs/1806.01261 for more details. """ def __init__(self, edge_model_fn, use_edges=True, use_receiver_nodes=True, use_sender_nodes=True, use_globals=True, name="edge_block"): """Initializes the EdgeBlock module. Args: edge_model_fn: A callable that will be called in the variable scope of this EdgeBlock and should return a Sonnet module (or equivalent callable) to be used as the edge model. The returned module should take a `Tensor` (of concatenated input features for each edge) and return a `Tensor` (of output features for each edge). Typically, this module would input and output `Tensor`s of rank 2, but it may also be input or output larger ranks. See the `_build` method documentation for more details on the acceptable inputs to this module in that case. use_edges: (bool, default=True). Whether to condition on edge attributes. use_receiver_nodes: (bool, default=True). Whether to condition on receiver node attributes. use_sender_nodes: (bool, default=True). Whether to condition on sender node attributes. use_globals: (bool, default=True). Whether to condition on global attributes. name: The module name. Raises: ValueError: When fields that are required are missing. """ super(EdgeBlock, self).__init__(name=name) if not (use_edges or use_sender_nodes or use_receiver_nodes or use_globals): raise ValueError("At least one of use_edges, use_sender_nodes, " "use_receiver_nodes or use_globals must be True.") self._use_edges = use_edges self._use_receiver_nodes = use_receiver_nodes self._use_sender_nodes = use_sender_nodes self._use_globals = use_globals with self._enter_variable_scope(): self._edge_model = edge_model_fn() def _build(self, graph, edge_model_kwargs=None): """Connects the edge block. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, whose individual edges features (if `use_edges` is `True`), individual nodes features (if `use_receiver_nodes` or `use_sender_nodes` is `True`) and per graph globals (if `use_globals` is `True`) should be concatenable on the last axis. edge_model_kwargs: Optional keyword arguments to pass to the `edge_model`. Returns: An output `graphs.GraphsTuple` with updated edges. Raises: ValueError: If `graph` does not have non-`None` receivers and senders, or if `graph` has `None` fields incompatible with the selected `use_edges`, `use_receiver_nodes`, `use_sender_nodes`, or `use_globals` options. """ if edge_model_kwargs is None: edge_model_kwargs = {} _validate_graph( graph, (SENDERS, RECEIVERS, N_EDGE), " when using an EdgeBlock") edges_to_collect = [] if self._use_edges: _validate_graph(graph, (EDGES,), "when use_edges == True") edges_to_collect.append(graph.edges) if self._use_receiver_nodes: edges_to_collect.append(broadcast_receiver_nodes_to_edges(graph)) if self._use_sender_nodes: edges_to_collect.append(broadcast_sender_nodes_to_edges(graph)) if self._use_globals: num_edges_hint = _get_static_num_edges(graph) edges_to_collect.append( broadcast_globals_to_edges(graph, num_edges_hint=num_edges_hint)) collected_edges = tf.concat(edges_to_collect, axis=-1) updated_edges = self._edge_model(collected_edges, **edge_model_kwargs) return graph.replace(edges=updated_edges) class NodeBlock(_base.AbstractModule): """Node block. A block that updates the features of each node in batch of graphs based on (a subset of) the previous node features, the aggregated features of the adjacent edges, and the global features of the corresponding graph. See https://arxiv.org/abs/1806.01261 for more details. """ def __init__(self, node_model_fn, use_received_edges=True, use_sent_edges=False, use_nodes=True, use_globals=True, received_edges_reducer=tf.math.unsorted_segment_sum, sent_edges_reducer=tf.math.unsorted_segment_sum, name="node_block"): """Initializes the NodeBlock module. Args: node_model_fn: A callable that will be called in the variable scope of this NodeBlock and should return a Sonnet module (or equivalent callable) to be used as the node model. The returned module should take a `Tensor` (of concatenated input features for each node) and return a `Tensor` (of output features for each node). Typically, this module would input and output `Tensor`s of rank 2, but it may also be input or output larger ranks. See the `_build` method documentation for more details on the acceptable inputs to this module in that case. use_received_edges: (bool, default=True) Whether to condition on aggregated edges received by each node. use_sent_edges: (bool, default=False) Whether to condition on aggregated edges sent by each node. use_nodes: (bool, default=True) Whether to condition on node attributes. use_globals: (bool, default=True) Whether to condition on global attributes. received_edges_reducer: Reduction to be used when aggregating received edges. This should be a callable whose signature matches `tf.math.unsorted_segment_sum`. sent_edges_reducer: Reduction to be used when aggregating sent edges. This should be a callable whose signature matches `tf.math.unsorted_segment_sum`. name: The module name. Raises: ValueError: When fields that are required are missing. """ super(NodeBlock, self).__init__(name=name) if not (use_nodes or use_sent_edges or use_received_edges or use_globals): raise ValueError("At least one of use_received_edges, use_sent_edges, " "use_nodes or use_globals must be True.") self._use_received_edges = use_received_edges self._use_sent_edges = use_sent_edges self._use_nodes = use_nodes self._use_globals = use_globals with self._enter_variable_scope(): self._node_model = node_model_fn() if self._use_received_edges: if received_edges_reducer is None: raise ValueError( "If `use_received_edges==True`, `received_edges_reducer` " "should not be None.") self._received_edges_aggregator = ReceivedEdgesToNodesAggregator( received_edges_reducer) if self._use_sent_edges: if sent_edges_reducer is None: raise ValueError( "If `use_sent_edges==True`, `sent_edges_reducer` " "should not be None.") self._sent_edges_aggregator = SentEdgesToNodesAggregator( sent_edges_reducer) def _build(self, graph, node_model_kwargs=None): """Connects the node block. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, whose individual edges features (if `use_received_edges` or `use_sent_edges` is `True`), individual nodes features (if `use_nodes` is True) and per graph globals (if `use_globals` is `True`) should be concatenable on the last axis. node_model_kwargs: Optional keyword arguments to pass to the `node_model`. Returns: An output `graphs.GraphsTuple` with updated nodes. """ if node_model_kwargs is None: node_model_kwargs = {} nodes_to_collect = [] if self._use_received_edges: nodes_to_collect.append(self._received_edges_aggregator(graph)) if self._use_sent_edges: nodes_to_collect.append(self._sent_edges_aggregator(graph)) if self._use_nodes: _validate_graph(graph, (NODES,), "when use_nodes == True") nodes_to_collect.append(graph.nodes) if self._use_globals: # The hint will be an integer if the graph has node features and the total # number of nodes is known at tensorflow graph definition time, or None # otherwise. num_nodes_hint = _get_static_num_nodes(graph) nodes_to_collect.append( broadcast_globals_to_nodes(graph, num_nodes_hint=num_nodes_hint)) collected_nodes = tf.concat(nodes_to_collect, axis=-1) updated_nodes = self._node_model(collected_nodes, **node_model_kwargs) return graph.replace(nodes=updated_nodes) class GlobalBlock(_base.AbstractModule): """Global block. A block that updates the global features of each graph in a batch based on (a subset of) the previous global features, the aggregated features of the edges of the graph, and the aggregated features of the nodes of the graph. See https://arxiv.org/abs/1806.01261 for more details. """ def __init__(self, global_model_fn, use_edges=True, use_nodes=True, use_globals=True, nodes_reducer=tf.math.unsorted_segment_sum, edges_reducer=tf.math.unsorted_segment_sum, name="global_block"): """Initializes the GlobalBlock module. Args: global_model_fn: A callable that will be called in the variable scope of this GlobalBlock and should return a Sonnet module (or equivalent callable) to be used as the global model. The returned module should take a `Tensor` (of concatenated input features) and return a `Tensor` (the global output features). Typically, this module would input and output `Tensor`s of rank 2, but it may also input or output larger ranks. See the `_build` method documentation for more details on the acceptable inputs to this module in that case. use_edges: (bool, default=True) Whether to condition on aggregated edges. use_nodes: (bool, default=True) Whether to condition on node attributes. use_globals: (bool, default=True) Whether to condition on global attributes. nodes_reducer: Reduction to be used when aggregating nodes. This should be a callable whose signature matches tf.math.unsorted_segment_sum. edges_reducer: Reduction to be used when aggregating edges. This should be a callable whose signature matches tf.math.unsorted_segment_sum. name: The module name. Raises: ValueError: When fields that are required are missing. """ super(GlobalBlock, self).__init__(name=name) if not (use_nodes or use_edges or use_globals): raise ValueError("At least one of use_edges, " "use_nodes or use_globals must be True.") self._use_edges = use_edges self._use_nodes = use_nodes self._use_globals = use_globals with self._enter_variable_scope(): self._global_model = global_model_fn() if self._use_edges: if edges_reducer is None: raise ValueError( "If `use_edges==True`, `edges_reducer` should not be None.") self._edges_aggregator = EdgesToGlobalsAggregator( edges_reducer) if self._use_nodes: if nodes_reducer is None: raise ValueError( "If `use_nodes==True`, `nodes_reducer` should not be None.") self._nodes_aggregator = NodesToGlobalsAggregator( nodes_reducer) def _build(self, graph, global_model_kwargs=None): """Connects the global block. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s, whose individual edges (if `use_edges` is `True`), individual nodes (if `use_nodes` is True) and per graph globals (if `use_globals` is `True`) should be concatenable on the last axis. global_model_kwargs: Optional keyword argumentsto pass to the `global_model`. Returns: An output `graphs.GraphsTuple` with updated globals. """ if global_model_kwargs is None: global_model_kwargs = {} globals_to_collect = [] if self._use_edges: _validate_graph(graph, (EDGES,), "when use_edges == True") globals_to_collect.append(self._edges_aggregator(graph)) if self._use_nodes: _validate_graph(graph, (NODES,), "when use_nodes == True") globals_to_collect.append(self._nodes_aggregator(graph)) if self._use_globals: _validate_graph(graph, (GLOBALS,), "when use_globals == True") globals_to_collect.append(graph.globals) collected_globals = tf.concat(globals_to_collect, axis=-1) updated_globals = self._global_model( collected_globals, **global_model_kwargs) return graph.replace(globals=updated_globals)
graph_nets-master
graph_nets/blocks.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A class that defines graph-structured data. The main purpose of the `GraphsTuple` is to represent multiple graphs with different shapes and sizes in a way that supports batched processing. This module first defines the string constants which are used to represent graph(s) as tuples or dictionaries: `N_NODE, N_EDGE, NODES, EDGES, RECEIVERS, SENDERS, GLOBALS`. This representation could typically take the following form, for a batch of `n_graphs` graphs stored in a `GraphsTuple` called graph: - N_NODE: The number of nodes per graph. It is a vector of integers with shape `[n_graphs]`, such that `graph.N_NODE[i]` is the number of nodes in the i-th graph. - N_EDGE: The number of edges per graph. It is a vector of integers with shape `[n_graphs]`, such that `graph.N_EDGE[i]` is the number of edges in the i-th graph. - NODES: The nodes features. It is either `None` (the graph has no node features), or a vector of shape `[n_nodes] + node_shape`, where `n_nodes = sum(graph.N_NODE)` is the total number of nodes in the batch of graphs, and `node_shape` represents the shape of the features of each node. The relative index of a node from the batched version can be recovered from the `graph.N_NODE` property. For instance, the second node of the third graph will have its features in the `1 + graph.N_NODE[0] + graph.N_NODE[1]`-th slot of graph.NODES. Observe that having a `None` value for this field does not mean that the graphs have no nodes, only that they do not have node features. - EDGES: The edges features. It is either `None` (the graph has no edge features), or a vector of shape `[n_edges] + edge_shape`, where `n_edges = sum(graph.N_EDGE)` is the total number of edges in the batch of graphs, and `edge_shape` represents the shape of the features of each edge. The relative index of an edge from the batched version can be recovered from the `graph.N_EDGE` property. For instance, the third edge of the third graph will have its features in the `2 + graph.N_EDGE[0] + graph.N_EDGE[1]`- th slot of graph.EDGES. Observe that having a `None` value for this field does not necessarily mean that the graph has no edges, only that they do not have edge features. - RECEIVERS: The indices of the receiver nodes, for each edge. It is either `None` (if the graph has no edges), or a vector of integers of shape `[n_edges]`, such that `graph.RECEIVERS[i]` is the index of the node receiving from the i-th edge. Observe that the index is absolute (in other words, cumulative), i.e. `graphs.RECEIVERS` take value in `[0, n_nodes]`. For instance, an edge connecting the vertices with relative indices 2 and 3 in the second graph of the batch would have a `RECEIVERS` value of `3 + graph.N_NODE[0]`. If `graphs.RECEIVERS` is `None`, then `graphs.EDGES` and `graphs.SENDERS` should also be `None`. - SENDERS: The indices of the sender nodes, for each edge. It is either `None` (if the graph has no edges), or a vector of integers of shape `[n_edges]`, such that `graph.SENDERS[i]` is the index of the node sending from the i-th edge. Observe that the index is absolute, i.e. `graphs.RECEIVERS` take value in `[0, n_nodes]`. For instance, an edge connecting the vertices with relative indices 1 and 3 in the third graph of the batch would have a `SENDERS` value of `1 + graph.N_NODE[0] + graph.N_NODE[1]`. If `graphs.SENDERS` is `None`, then `graphs.EDGES` and `graphs.RECEIVERS` should also be `None`. - GLOBALS: The global features of the graph. It is either `None` (the graph has no global features), or a vector of shape `[n_graphs] + global_shape` representing graph level features. The `utils_np` and `utils_tf` modules provide convenience methods to work with graph that contain numpy and tensorflow data, respectively: conversion, batching, unbatching, indexing, among others. The `GraphsTuple` class, however, is not restricted to storing vectors, and can be used to store attributes of graphs as well (for instance, types or shapes). The only assertions it makes are that the `None` fields are compatible with the definition of a graph given above, namely: - the N_NODE and N_EDGE fields cannot be `None`; - if RECEIVERS is None, then SENDERS must be `None` (and vice-versa); - if RECEIVERS and SENDERS are `None`, then `EDGES` must be `None`. Those assumptions are checked both upon initialization and when replacing a field by calling the `replace` or `map` method. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections NODES = "nodes" EDGES = "edges" RECEIVERS = "receivers" SENDERS = "senders" GLOBALS = "globals" N_NODE = "n_node" N_EDGE = "n_edge" GRAPH_FEATURE_FIELDS = (NODES, EDGES, GLOBALS) GRAPH_INDEX_FIELDS = (RECEIVERS, SENDERS) GRAPH_DATA_FIELDS = (NODES, EDGES, RECEIVERS, SENDERS, GLOBALS) GRAPH_NUMBER_FIELDS = (N_NODE, N_EDGE) ALL_FIELDS = (NODES, EDGES, RECEIVERS, SENDERS, GLOBALS, N_NODE, N_EDGE) class GraphsTuple( collections.namedtuple("GraphsTuple", GRAPH_DATA_FIELDS + GRAPH_NUMBER_FIELDS)): """Default namedtuple describing `Graphs`s. A children of `collections.namedtuple`s, which allows it to be directly input and output from `tensorflow.Session.run()` calls. An instance of this class can be constructed as ``` GraphsTuple(nodes=nodes, edges=edges, globals=globals, receivers=receivers, senders=senders, n_node=n_node, n_edge=n_edge) ``` where `nodes`, `edges`, `globals`, `receivers`, `senders`, `n_node` and `n_edge` are arbitrary, but are typically numpy arrays, tensors, or `None`; see module's documentation for a more detailed description of which fields can be left `None`. """ def _validate_none_fields(self): """Asserts that the set of `None` fields in the instance is valid.""" if self.n_node is None: raise ValueError("Field `n_node` cannot be None") if self.n_edge is None: raise ValueError("Field `n_edge` cannot be None") if self.receivers is None and self.senders is not None: raise ValueError( "Field `senders` must be None as field `receivers` is None") if self.senders is None and self.receivers is not None: raise ValueError( "Field `receivers` must be None as field `senders` is None") if self.receivers is None and self.edges is not None: raise ValueError( "Field `edges` must be None as field `receivers` and `senders` are " "None") def __init__(self, *args, **kwargs): del args, kwargs # The fields of a `namedtuple` are filled in the `__new__` method. # `__init__` does not accept parameters. super(GraphsTuple, self).__init__() self._validate_none_fields() def replace(self, **kwargs): output = self._replace(**kwargs) output._validate_none_fields() # pylint: disable=protected-access return output def map(self, field_fn, fields=GRAPH_FEATURE_FIELDS): """Applies `field_fn` to the fields `fields` of the instance. `field_fn` is applied exactly once per field in `fields`. The result must satisfy the `GraphsTuple` requirement w.r.t. `None` fields, i.e. the `SENDERS` cannot be `None` if the `EDGES` or `RECEIVERS` are not `None`, etc. Args: field_fn: A callable that take a single argument. fields: (iterable of `str`). An iterable of the fields to apply `field_fn` to. Returns: A copy of the instance, with the fields in `fields` replaced by the result of applying `field_fn` to them. """ return self.replace(**{k: field_fn(getattr(self, k)) for k in fields})
graph_nets-master
graph_nets/graphs.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tensorflow ops and helpers useful to manipulate graphs. This module contains utility functions to operate with `Tensor`s representations of graphs, in particular: - `placeholders_from_data_dicts` and `placeholders_from_networkx` create placeholder structures to represent graphs; - `get_feed_dict` allow to create a `feed_dict` from a `graphs.GraphsTuple` containing numpy arrays and potentially, `None` values; - `data_dicts_to_graphs_tuple` converts between data dictionaries and `graphs.GraphsTuple`; - `fully_connect_graph_static` (resp. `fully_connect_graph_dynamic`) adds edges to a `graphs.GraphsTuple` in a fully-connected manner, in the case where the number of nodes per graph is known at graph construction time and is the same for all graphs (resp. only known at runtime and may depend on the graph); - `set_zero_node_features`, `set_zero_edge_features` and `set_zero_global_features` complete a `graphs.GraphsTuple` with a `Tensor` of zeros for the nodes, edges and globals; - `concat` batches `graphs.GraphsTuple` together (when using `axis=0`), or concatenates them along their data dimension; - `repeat` is a utility convenient to broadcast globals to edges or nodes of a graph; - `get_graph` indexes or slices a `graphs.GraphsTuple` to extract a subgraph or a subbatch of graphs; - `stop_gradients` stops the gradients flowing through a graph; - `identity` applies a `tf.identity` to every field of a graph; - `make_runnable_in_session` allows to run a graph containing `None` fields through a Tensorflow session. The functions in these modules are able to deal with graphs containing `None` fields (e.g. featureless nodes, featureless edges, or no edges). """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools from absl import logging from graph_nets import graphs from graph_nets import utils_np import six from six.moves import range import tensorflow as tf import tree NODES = graphs.NODES EDGES = graphs.EDGES RECEIVERS = graphs.RECEIVERS SENDERS = graphs.SENDERS GLOBALS = graphs.GLOBALS N_NODE = graphs.N_NODE N_EDGE = graphs.N_EDGE GRAPH_DATA_FIELDS = graphs.GRAPH_DATA_FIELDS GRAPH_NUMBER_FIELDS = graphs.GRAPH_NUMBER_FIELDS ALL_FIELDS = graphs.ALL_FIELDS def _get_shape(tensor): """Returns the tensor's shape. Each shape element is either: - an `int`, when static shape values are available, or - a `tf.Tensor`, when the shape is dynamic. Args: tensor: A `tf.Tensor` to get the shape of. Returns: The `list` which contains the tensor's shape. """ shape_list = tensor.shape.as_list() if all(s is not None for s in shape_list): return shape_list shape_tensor = tf.shape(tensor) return [shape_tensor[i] if s is None else s for i, s in enumerate(shape_list)] def _build_placeholders_from_specs(dtypes, shapes, force_dynamic_num_graphs=True): """Creates a `graphs.GraphsTuple` of placeholders with `dtypes` and `shapes`. The dtypes and shapes arguments are instances of `graphs.GraphsTuple` that contain dtypes and shapes, or `None` values for the fields for which no placeholder should be created. The leading dimension the nodes and edges are dynamic because the numbers of nodes and edges can vary. If `force_dynamic_num_graphs` is True, then the number of graphs is assumed to be dynamic and all fields leading dimensions are set to `None`. If `force_dynamic_num_graphs` is False, then `N_NODE`, `N_EDGE` and `GLOBALS` leading dimensions are statically defined. Args: dtypes: A `graphs.GraphsTuple` that contains `tf.dtype`s or `None`s. shapes: A `graphs.GraphsTuple` that contains `list`s of integers, `tf.TensorShape`s, or `None`s. force_dynamic_num_graphs: A `bool` that forces the batch dimension to be dynamic. Defaults to `True`. Returns: A `graphs.GraphsTuple` containing placeholders. Raises: ValueError: The `None` fields in `dtypes` and `shapes` do not match. """ dct = {} for field in ALL_FIELDS: dtype = getattr(dtypes, field) shape = getattr(shapes, field) if dtype is None or shape is None: if not (shape is None and dtype is None): raise ValueError( "only one of dtype and shape are None for field {}".format(field)) dct[field] = None elif not shape: raise ValueError("Shapes must have at least rank 1") else: shape = list(shape) if field not in [N_NODE, N_EDGE, GLOBALS] or force_dynamic_num_graphs: shape[0] = None dct[field] = tf.placeholder(dtype, shape=shape, name=field) return graphs.GraphsTuple(**dct) def _placeholders_from_graphs_tuple(graph, force_dynamic_num_graphs=True): """Creates a `graphs.GraphsTuple` of placeholders that matches a numpy graph. Args: graph: A `graphs.GraphsTuple` that contains numpy data. force_dynamic_num_graphs: A `bool` that forces the batch dimension to be dynamic. Defaults to `True`. Returns: A `graphs.GraphsTuple` containing placeholders. """ graph_dtypes = graph.map( lambda v: tf.as_dtype(v.dtype) if v is not None else None, ALL_FIELDS) graph_shapes = graph.map(lambda v: list(v.shape) if v is not None else None, ALL_FIELDS) return _build_placeholders_from_specs( graph_dtypes, graph_shapes, force_dynamic_num_graphs=force_dynamic_num_graphs) def get_feed_dict(placeholders, graph): """Feeds a `graphs.GraphsTuple` of numpy arrays or `None` into `placeholders`. When feeding a fully defined graph (no `None` field) into a session, this method is not necessary as one can directly do: ``` _ = sess.run(_, {placeholders: graph}) ``` However, if the placeholders contain `None`, the above construction would fail. This method allows to replace the above call by ``` _ = sess.run(_, get_feed_dict(placeholders: graph)) ``` restoring the correct behavior. Args: placeholders: A `graphs.GraphsTuple` containing placeholders. graph: A `graphs.GraphsTuple` containing placeholder compatibale values, or `None`s. Returns: A dictionary with key placeholders and values the fed in values. Raises: ValueError: If the `None` fields in placeholders and `graph` do not exactly match. """ feed_dict = {} for field in ALL_FIELDS: placeholder = getattr(placeholders, field) feed_value = getattr(graph, field) if placeholder is None or feed_value is None: if not (placeholder is None and feed_value is None): raise ValueError("Field {} should be `None` in either none or both of " "the placeholders and feed values.".format(field)) else: feed_dict[placeholder] = feed_value return feed_dict def placeholders_from_data_dicts(data_dicts, force_dynamic_num_graphs=True, name="placeholders_from_data_dicts"): """Constructs placeholders compatible with a list of data dicts. Args: data_dicts: An iterable of data dicts containing numpy arrays. force_dynamic_num_graphs: A `bool` that forces the batch dimension to be dynamic. Defaults to `True`. name: (string, optional) A name for the operation. Returns: An instance of `graphs.GraphTuple` placeholders compatible with the dimensions of the dictionaries in `data_dicts`. """ with tf.name_scope(name): graph = data_dicts_to_graphs_tuple(data_dicts) return _placeholders_from_graphs_tuple( graph, force_dynamic_num_graphs=force_dynamic_num_graphs) def placeholders_from_networkxs(graph_nxs, node_shape_hint=None, edge_shape_hint=None, data_type_hint=tf.float32, force_dynamic_num_graphs=True, name="placeholders_from_networkxs"): """Constructs placeholders compatible with a list of networkx instances. Given a list of networkxs instances, constructs placeholders compatible with the shape of those graphs. The networkx graph should be set up such that, for fixed shapes `node_shape`, `edge_shape` and `global_shape`: - `graph_nx.nodes(data=True)[i][-1]["features"]` is, for any node index i, a tensor of shape `node_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["features"]` is, for any edge index i, a tensor of shape `edge_shape`, or `None`; - `graph_nx.edges(data=True)[i][-1]["index"]`, if present, defines the order in which the edges will be sorted in the resulting `data_dict`; - `graph_nx.graph["features"] is a tensor of shape `global_shape` or `None`. Args: graph_nxs: A container of `networkx.MultiDiGraph`s. node_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain nodes, the trailing shape for the created `NODES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one node. edge_shape_hint: (iterable of `int` or `None`, default=`None`) If the graph does not contain edges, the trailing shape for the created `EDGES` field. If `None` (the default), this field is left `None`. This is not used if `graph_nx` contains at least one edge. data_type_hint: (numpy dtype, default=`np.float32`) If the `NODES` or `EDGES` fields are autocompleted, their type. force_dynamic_num_graphs: A `bool` that forces the batch dimension to be dynamic. Defaults to `True`. name: (string, optional) A name for the operation. Returns: An instance of `graphs.GraphTuple` placeholders compatible with the dimensions of the graph_nxs. """ with tf.name_scope(name): graph = utils_np.networkxs_to_graphs_tuple(graph_nxs, node_shape_hint, edge_shape_hint, data_type_hint.as_numpy_dtype) return _placeholders_from_graphs_tuple( graph, force_dynamic_num_graphs=force_dynamic_num_graphs) def _compute_stacked_offsets(sizes, repeats): """Computes offsets to add to indices of stacked tensors (Tensorflow). When a set of tensors are stacked, the indices of those from the second on must be offset in order to be able to index into the stacked tensor. This computes those offsets. Args: sizes: A 1D `Tensor` of the sizes per graph. repeats: A 1D `Tensor` of the number of repeats per graph. Returns: A 1D `Tensor` containing the index offset per graph. """ sizes = tf.cast(tf.convert_to_tensor(sizes[:-1]), tf.int32) offset_values = tf.cumsum(tf.concat([[0], sizes], 0)) return repeat(offset_values, repeats) def _nested_concatenate(input_graphs, field_name, axis): """Concatenates a possibly nested feature field of a list of input graphs.""" features_list = [getattr(gr, field_name) for gr in input_graphs if getattr(gr, field_name) is not None] if not features_list: return None if len(features_list) < len(input_graphs): raise ValueError( "All graphs or no graphs must contain {} features.".format(field_name)) name = "concat_" + field_name return tree.map_structure(lambda *x: tf.concat(x, axis, name), *features_list) def concat(input_graphs, axis, name="graph_concat"): """Returns an op that concatenates graphs along a given axis. In all cases, the NODES, EDGES and GLOBALS dimension are concatenated along `axis` (if a fields is `None`, the concatenation is just a `None`). If `axis` == 0, then the graphs are concatenated along the (underlying) batch dimension, i.e. the RECEIVERS, SENDERS, N_NODE and N_EDGE fields of the tuples are also concatenated together. If `axis` != 0, then there is an underlying assumption that the receivers, SENDERS, N_NODE and N_EDGE fields of the graphs in `values` should all match, but this is not checked by this op. The graphs in `input_graphs` should have the same set of keys for which the corresponding fields is not `None`. Args: input_graphs: A list of `graphs.GraphsTuple` objects containing `Tensor`s and satisfying the constraints outlined above. axis: An axis to concatenate on. name: (string, optional) A name for the operation. Returns: An op that returns the concatenated graphs. Raises: ValueError: If `values` is an empty list, or if the fields which are `None` in `input_graphs` are not the same for all the graphs. """ if not input_graphs: raise ValueError("List argument `input_graphs` is empty") utils_np._check_valid_sets_of_keys([gr._asdict() for gr in input_graphs]) # pylint: disable=protected-access if len(input_graphs) == 1: return input_graphs[0] with tf.name_scope(name): nodes = _nested_concatenate(input_graphs, NODES, axis) edges = _nested_concatenate(input_graphs, EDGES, axis) globals_ = _nested_concatenate(input_graphs, GLOBALS, axis) output = input_graphs[0].replace(nodes=nodes, edges=edges, globals=globals_) if axis != 0: return output n_node_per_tuple = tf.stack( [tf.reduce_sum(gr.n_node) for gr in input_graphs]) n_edge_per_tuple = tf.stack( [tf.reduce_sum(gr.n_edge) for gr in input_graphs]) offsets = _compute_stacked_offsets(n_node_per_tuple, n_edge_per_tuple) n_node = tf.concat( [gr.n_node for gr in input_graphs], axis=0, name="concat_n_node") n_edge = tf.concat( [gr.n_edge for gr in input_graphs], axis=0, name="concat_n_edge") receivers = [ gr.receivers for gr in input_graphs if gr.receivers is not None ] receivers = receivers or None if receivers: receivers = tf.concat(receivers, axis, name="concat_receivers") + offsets senders = [gr.senders for gr in input_graphs if gr.senders is not None] senders = senders or None if senders: senders = tf.concat(senders, axis, name="concat_senders") + offsets return output.replace( receivers=receivers, senders=senders, n_node=n_node, n_edge=n_edge) def stop_gradient(graph, stop_edges=True, stop_nodes=True, stop_globals=True, name="graph_stop_gradient"): """Stops the gradient flow through a graph. Args: graph: An instance of `graphs.GraphsTuple` containing `Tensor`s. stop_edges: (bool, default=True) indicates whether to stop gradients for the edges. stop_nodes: (bool, default=True) indicates whether to stop gradients for the nodes. stop_globals: (bool, default=True) indicates whether to stop gradients for the globals. name: (string, optional) A name for the operation. Returns: GraphsTuple after stopping the gradients according to the provided parameters. Raises: ValueError: If attempting to stop gradients through a field which has a `None` value in `graph`. """ base_err_msg = "Cannot stop gradient through {0} if {0} are None" fields_to_stop = [] if stop_globals: if graph.globals is None: raise ValueError(base_err_msg.format(GLOBALS)) fields_to_stop.append(GLOBALS) if stop_nodes: if graph.nodes is None: raise ValueError(base_err_msg.format(NODES)) fields_to_stop.append(NODES) if stop_edges: if graph.edges is None: raise ValueError(base_err_msg.format(EDGES)) fields_to_stop.append(EDGES) with tf.name_scope(name): return graph.map(tf.stop_gradient, fields_to_stop) def identity(graph, name="graph_identity"): """Pass each element of a graph through a `tf.identity`. This allows, for instance, to push a name scope on the graph by writing: ``` with tf.name_scope("encoder"): graph = utils_tf.identity(graph) ``` Args: graph: A `graphs.GraphsTuple` containing `Tensor`s. `None` values are passed through. name: (string, optional) A name for the operation. Returns: A `graphs.GraphsTuple` `graphs_output` such that for any field `x` in NODES, EDGES, GLOBALS, RECEIVERS, SENDERS, N_NODE, N_EDGE, if `graph.x` was `None`, `graph_output.x` is `None`, and otherwise `graph_output.x = tf.identity(graph.x)` """ non_none_fields = [k for k in ALL_FIELDS if getattr(graph, k) is not None] with tf.name_scope(name): return graph.map(tf.identity, non_none_fields) def make_runnable_in_session(graph, name="make_graph_runnable_in_session"): """Allows a graph containing `None` fields to be run in a `tf.Session`. The `None` values of `graph` are replaced by `tf.no_op()`. This function is meant to be called just before a call to `sess.run` on a Tensorflow session `sess`, as `None` values currently cannot be run through a session. Args: graph: A `graphs.GraphsTuple` containing `Tensor`s or `None` values. name: (string, optional) A name for the operation. Returns: A `graphs.GraphsTuple` `graph_output` such that, for any field `x` in NODES, EDGES, GLOBALS, RECEIVERS, SENDERS, N_NODE, N_EDGE, and a Tensorflow session `sess`, if `graph.x` was `None`, `sess.run(graph_output)` is `None`, and otherwise """ none_fields = [k for k in ALL_FIELDS if getattr(graph, k) is None] with tf.name_scope(name): return graph.map(lambda _: tf.no_op(), none_fields) def repeat(tensor, repeats, axis=0, name="repeat", sum_repeats_hint=None): """Repeats a `tf.Tensor`'s elements along an axis by custom amounts. Equivalent to Numpy's `np.repeat`. `tensor and `repeats` must have the same numbers of elements along `axis`. Args: tensor: A `tf.Tensor` to repeat. repeats: A 1D sequence of the number of repeats per element. axis: An axis to repeat along. Defaults to 0. name: (string, optional) A name for the operation. sum_repeats_hint: Integer with the total sum of repeats in case it is known at graph definition time. Returns: The `tf.Tensor` with repeated values. """ with tf.name_scope(name): if sum_repeats_hint is not None: sum_repeats = sum_repeats_hint else: sum_repeats = tf.reduce_sum(repeats) # This is TPU compatible. # Create a tensor consistent with output size indicating where the splits # between the different repeats are. For example: # repeats = [2, 3, 6] # with cumsum(exclusive=True): # scatter_indices = [0, 2, 5] # with scatter_nd: # block_split_indicators = [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] # cumsum(exclusive=False) - 1 # gather_indices = [0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2] # Note that scatter_nd accumulates for duplicated indices, so for # repeats = [2, 0, 6] # scatter_indices = [0, 2, 2] # block_split_indicators = [1, 0, 2, 0, 0, 0, 0, 0] # gather_indices = [0, 0, 2, 2, 2, 2, 2, 2] # Sometimes repeats may have zeros in the last groups. E.g. # for repeats = [2, 3, 0] # scatter_indices = [0, 2, 5] # However, the `gather_nd` only goes up to (sum_repeats - 1) index. (4 in # the example). And this would throw an error due to trying to index # outside the shape. Instead we let the scatter_nd have one more element # and we trim it from the output. scatter_indices = tf.cumsum(repeats, exclusive=True) block_split_indicators = tf.scatter_nd( indices=tf.expand_dims(scatter_indices, axis=1), updates=tf.ones_like(scatter_indices), shape=[sum_repeats + 1])[:-1] gather_indices = tf.cumsum(block_split_indicators, exclusive=False) - 1 # An alternative implementation of the same, where block split indicators # does not have an indicator for the first group, and requires less ops # but requires creating a matrix of size [len(repeats), sum_repeats] is: # cumsum_repeats = tf.cumsum(repeats, exclusive=False) # block_split_indicators = tf.reduce_sum( # tf.one_hot(cumsum_repeats, sum_repeats, dtype=tf.int32), axis=0) # gather_indices = tf.cumsum(block_split_indicators, exclusive=False) # Now simply gather the tensor along the correct axis. repeated_tensor = tf.gather(tensor, gather_indices, axis=axis) shape = tensor.shape.as_list() shape[axis] = sum_repeats_hint repeated_tensor.set_shape(shape) return repeated_tensor def _populate_number_fields(data_dict): """Returns a dict with the number fields N_NODE, N_EDGE filled in. The N_NODE field is filled if the graph contains a non-`None` NODES field; otherwise, it is set to 0. The N_EDGE field is filled if the graph contains a non-`None` RECEIVERS field; otherwise, it is set to 0. Args: data_dict: An input `dict`. Returns: The data `dict` with number fields. """ dct = data_dict.copy() for number_field, data_field in [[N_NODE, NODES], [N_EDGE, RECEIVERS]]: if dct.get(number_field) is None: if dct[data_field] is not None: dct[number_field] = tf.shape(dct[data_field])[0] else: dct[number_field] = tf.constant(0, dtype=tf.int32) return dct def _to_compatible_data_dicts(data_dicts): """Convert the content of `data_dicts` to tensors of the right type. All fields are converted to `Tensor`s. The index fields (`SENDERS` and `RECEIVERS`) and number fields (`N_NODE`, `N_EDGE`) are cast to `tf.int32`. Args: data_dicts: An iterable of dictionaries with keys `ALL_KEYS` and values either `None`s, or quantities that can be converted to `Tensor`s. Returns: A list of dictionaries containing `Tensor`s or `None`s. """ results = [] for data_dict in data_dicts: result = {} for k, v in data_dict.items(): if v is None: result[k] = None else: dtype = tf.int32 if k in [SENDERS, RECEIVERS, N_NODE, N_EDGE] else None result[k] = tf.convert_to_tensor(v, dtype) results.append(result) return results def _concatenate_data_dicts(data_dicts): """Concatenate a list of data dicts to create the equivalent batched graph. Args: data_dicts: An iterable of data dictionaries with keys a subset of `GRAPH_DATA_FIELDS`, plus, potentially, a subset of `GRAPH_NUMBER_FIELDS`. Every element of `data_dicts` has to contain the same set of keys. Moreover, the key `NODES` or `N_NODE` must be present in every element of `data_dicts`. Returns: A data dictionary with the keys `GRAPH_DATA_FIELDS + GRAPH_NUMBER_FIELDS`, representing the concatenated graphs. Raises: ValueError: If two dictionaries in `data_dicts` have a different set of keys. """ # Go from a list of dict to a dict of lists dct = collections.defaultdict(lambda: []) for data_dict in data_dicts: data_dict = _populate_number_fields(data_dict) for k, v in data_dict.items(): if v is not None: dct[k].append(v) elif k not in dct: dct[k] = None dct = dict(dct) # Concatenate the graphs. for field, tensors in dct.items(): if tensors is None: dct[field] = None elif field in list(GRAPH_NUMBER_FIELDS) + [GLOBALS]: dct[field] = tf.stack(tensors) else: dct[field] = tf.concat(tensors, axis=0) # Add offsets to the receiver and sender indices. if dct[RECEIVERS] is not None: offset = _compute_stacked_offsets(dct[N_NODE], dct[N_EDGE]) dct[RECEIVERS] += offset dct[SENDERS] += offset return dct def _create_complete_edges_from_nodes_static(n_node, exclude_self_edges): """Creates complete edges for a graph with `n_node`. Args: n_node: (python integer) The number of nodes. exclude_self_edges: (bool) Excludes self-connected edges. Returns: A dict of RECEIVERS, SENDERS and N_EDGE data (`Tensor`s of rank 1). """ receivers = [] senders = [] n_edges = 0 for node_1 in range(n_node): for node_2 in range(n_node): if not exclude_self_edges or node_1 != node_2: receivers.append(node_1) senders.append(node_2) n_edges += 1 return { RECEIVERS: tf.constant(receivers, dtype=tf.int32), SENDERS: tf.constant(senders, dtype=tf.int32), N_EDGE: tf.constant([n_edges], dtype=tf.int32) } def _create_complete_edges_from_nodes_dynamic(n_node, exclude_self_edges): """Creates complete edges for a graph with `n_node`. Args: n_node: (integer scalar `Tensor`) The number of nodes. exclude_self_edges: (bool) Excludes self-connected edges. Returns: A dict of RECEIVERS, SENDERS and N_EDGE data (`Tensor`s of rank 1). """ rng = tf.range(n_node) receivers, senders = tf.meshgrid(rng, rng) n_edge = n_node * n_node if exclude_self_edges: ind = tf.cast(1 - tf.eye(n_node), bool) receivers = tf.boolean_mask(receivers, ind) senders = tf.boolean_mask(senders, ind) n_edge -= n_node receivers = tf.reshape(tf.cast(receivers, tf.int32), [n_edge]) senders = tf.reshape(tf.cast(senders, tf.int32), [n_edge]) n_edge = tf.reshape(n_edge, [1]) return {RECEIVERS: receivers, SENDERS: senders, N_EDGE: n_edge} def _validate_edge_fields_are_all_none(graph): if not all(getattr(graph, x) is None for x in [EDGES, RECEIVERS, SENDERS]): raise ValueError("Can only add fully connected a graph with `None`" "edges, receivers and senders") def fully_connect_graph_static(graph, exclude_self_edges=False, name="fully_connect_graph_static"): """Adds edges to a graph by fully-connecting the nodes. This method can be used if the number of nodes for each graph in `graph` is constant and known at graph building time: it will be inferred by dividing the number of nodes in the batch(the length of `graph.nodes`) by the number of graphs in the batch (the length of `graph.n_node`). It is an error to call this method with batches of graphs with dynamic or uneven sizes; in the latter case, the method may silently yield an incorrect result. Args: graph: A `graphs.GraphsTuple` with `None` values for the edges, senders and receivers. exclude_self_edges (default=False): Excludes self-connected edges. name: (string, optional) A name for the operation. Returns: A `graphs.GraphsTuple` containing `Tensor`s with fully-connected edges. Raises: ValueError: If any of the `EDGES`, `RECEIVERS` or `SENDERS` field is not `None` in `graph`. ValueError: If the number of graphs (extracted from `graph.n_node` leading dimension) or number of nodes (extracted from `graph.nodes` leading dimension) is not known at construction time, or if the latter does not divide the former (observe that this is only a necessary condition for the constantness of the number of nodes per graph). """ _validate_edge_fields_are_all_none(graph) num_graphs = graph.n_node.shape.as_list()[0] if num_graphs is None: raise ValueError("Number of graphs must be known at construction time when " "using `fully_connect_graph_static`. Did you mean to use " "`fully_connect_graph_dynamic`?") num_nodes = graph.nodes.shape.as_list()[0] if num_nodes is None: raise ValueError("Number of nodes must be known at construction time when " "using `fully_connect_graph_static`. Did you mean to use " "`fully_connect_graph_dynamic`?") if num_nodes % num_graphs != 0: raise ValueError("Number of nodes must be the same in all graphs when " "using `fully_connect_graph_static`. Did you mean to use " "`fully_connect_graph_dynamic`?") num_nodes_per_graph = num_nodes // num_graphs with tf.name_scope(name): one_graph_edges = _create_complete_edges_from_nodes_static( num_nodes_per_graph, exclude_self_edges) n_edges = num_nodes_per_graph * (num_nodes_per_graph - 1) if not exclude_self_edges: n_edges += num_nodes_per_graph all_graph_edges = { k: tf.tile(v, [num_graphs]) for k, v in six.iteritems(one_graph_edges) } offsets = [ num_nodes_per_graph * i # pylint: disable=g-complex-comprehension for i in range(num_graphs) for _ in range(n_edges) ] all_graph_edges[RECEIVERS] += offsets all_graph_edges[SENDERS] += offsets return graph.replace(**all_graph_edges) def fully_connect_graph_dynamic(graph, exclude_self_edges=False, name="fully_connect_graph_dynamic"): """Adds edges to a graph by fully-connecting the nodes. This method does not require the number of nodes per graph to be constant, or to be known at graph building time. Args: graph: A `graphs.GraphsTuple` with `None` values for the edges, senders and receivers. exclude_self_edges (default=False): Excludes self-connected edges. name: (string, optional) A name for the operation. Returns: A `graphs.GraphsTuple` containing `Tensor`s with fully-connected edges. Raises: ValueError: if any of the `EDGES`, `RECEIVERS` or `SENDERS` field is not `None` in `graph`. """ _validate_edge_fields_are_all_none(graph) with tf.name_scope(name): def body(i, senders, receivers, n_edge): edges = _create_complete_edges_from_nodes_dynamic(graph.n_node[i], exclude_self_edges) return (i + 1, senders.write(i, edges[SENDERS]), receivers.write(i, edges[RECEIVERS]), n_edge.write(i, edges[N_EDGE])) num_graphs = get_num_graphs(graph) loop_condition = lambda i, *_: tf.less(i, num_graphs) initial_loop_vars = [0] + [ tf.TensorArray(dtype=tf.int32, size=num_graphs, infer_shape=False) for _ in range(3) # senders, receivers, n_edge ] _, senders_array, receivers_array, n_edge_array = tf.while_loop( loop_condition, body, initial_loop_vars, back_prop=False) n_edge = n_edge_array.concat() offsets = _compute_stacked_offsets(graph.n_node, n_edge) senders = senders_array.concat() + offsets receivers = receivers_array.concat() + offsets senders.set_shape(offsets.shape) receivers.set_shape(offsets.shape) receivers.set_shape([None]) senders.set_shape([None]) num_graphs = graph.n_node.get_shape().as_list()[0] n_edge.set_shape([num_graphs]) return graph._replace(senders=senders, receivers=receivers, n_edge=n_edge) def set_zero_node_features(graph, node_size, dtype=tf.float32, name="set_zero_node_features"): """Completes the node state of a graph. Args: graph: A `graphs.GraphsTuple` with a `None` edge state. node_size: (int) the dimension for the created node features. dtype: (tensorflow type) the type for the created nodes features. name: (string, optional) A name for the operation. Returns: The same graph but for the node field, which is a `Tensor` of shape `[number_of_nodes, node_size]` where `number_of_nodes = sum(graph.n_node)`, with type `dtype`, filled with zeros. Raises: ValueError: If the `NODES` field is not None in `graph`. ValueError: If `node_size` is None. """ if graph.nodes is not None: raise ValueError( "Cannot complete node state if the graph already has node features.") if node_size is None: raise ValueError("Cannot complete nodes with None node_size") with tf.name_scope(name): n_nodes = tf.reduce_sum(graph.n_node) return graph._replace( nodes=tf.zeros(shape=[n_nodes, node_size], dtype=dtype)) def set_zero_edge_features(graph, edge_size, dtype=tf.float32, name="set_zero_edge_features"): """Completes the edge state of a graph. Args: graph: A `graphs.GraphsTuple` with a `None` edge state. edge_size: (int) the dimension for the created edge features. dtype: (tensorflow type) the type for the created edge features. name: (string, optional) A name for the operation. Returns: The same graph but for the edge field, which is a `Tensor` of shape `[number_of_edges, edge_size]`, where `number_of_edges = sum(graph.n_edge)`, with type `dtype` and filled with zeros. Raises: ValueError: If the `EDGES` field is not None in `graph`. ValueError: If the `RECEIVERS` or `SENDERS` field are None in `graph`. ValueError: If `edge_size` is None. """ if graph.edges is not None: raise ValueError( "Cannot complete edge state if the graph already has edge features.") if graph.receivers is None or graph.senders is None: raise ValueError( "Cannot complete edge state if the receivers or senders are None.") if edge_size is None: raise ValueError("Cannot complete edges with None edge_size") with tf.name_scope(name): senders_leading_size = graph.senders.shape.as_list()[0] if senders_leading_size is not None: n_edges = senders_leading_size else: n_edges = tf.reduce_sum(graph.n_edge) return graph._replace( edges=tf.zeros(shape=[n_edges, edge_size], dtype=dtype)) def set_zero_global_features(graph, global_size, dtype=tf.float32, name="set_zero_global_features"): """Completes the global state of a graph. Args: graph: A `graphs.GraphsTuple` with a `None` global state. global_size: (int) the dimension for the created global features. dtype: (tensorflow type) the type for the created global features. name: (string, optional) A name for the operation. Returns: The same graph but for the global field, which is a `Tensor` of shape `[num_graphs, global_size]`, type `dtype` and filled with zeros. Raises: ValueError: If the `GLOBALS` field of `graph` is not `None`. ValueError: If `global_size` is not `None`. """ if graph.globals is not None: raise ValueError( "Cannot complete global state if graph already has global features.") if global_size is None: raise ValueError("Cannot complete globals with None global_size") with tf.name_scope(name): n_graphs = get_num_graphs(graph) return graph._replace( globals=tf.zeros(shape=[n_graphs, global_size], dtype=dtype)) def data_dicts_to_graphs_tuple(data_dicts, name="data_dicts_to_graphs_tuple"): """Creates a `graphs.GraphsTuple` containing tensors from data dicts. All dictionaries must have exactly the same set of keys with non-`None` values associated to them. Moreover, this set of this key must define a valid graph (i.e. if the `EDGES` are `None`, the `SENDERS` and `RECEIVERS` must be `None`, and `SENDERS` and `RECEIVERS` can only be `None` both at the same time). The values associated with a key must be convertible to `Tensor`s, for instance python lists, numpy arrays, or Tensorflow `Tensor`s. This method may perform a memory copy. The `RECEIVERS`, `SENDERS`, `N_NODE` and `N_EDGE` fields are cast to `np.int32` type. Args: data_dicts: An iterable of data dictionaries with keys in `ALL_FIELDS`. name: (string, optional) A name for the operation. Returns: A `graphs.GraphTuple` representing the graphs in `data_dicts`. """ data_dicts = [dict(d) for d in data_dicts] for key in ALL_FIELDS: for data_dict in data_dicts: data_dict.setdefault(key, None) utils_np._check_valid_sets_of_keys(data_dicts) # pylint: disable=protected-access with tf.name_scope(name): data_dicts = _to_compatible_data_dicts(data_dicts) return graphs.GraphsTuple(**_concatenate_data_dicts(data_dicts)) def _check_valid_index(index, element_name): """Verifies if a value with `element_name` is a valid index.""" if isinstance(index, int): return True elif isinstance(index, tf.Tensor): if index.dtype != tf.int32 and index.dtype != tf.int64: raise TypeError( "Invalid tensor `{}` parameter. Valid tensor indices must have " "types tf.int32 or tf.int64, got {}." .format(element_name, index.dtype)) if index.shape.as_list(): raise TypeError( "Invalid tensor `{}` parameter. Valid tensor indices must be scalars " "with shape [], got{}" .format(element_name, index.shape.as_list())) return True else: raise TypeError( "Invalid `{}` parameter. Valid tensor indices must be integers " "or tensors, got {}." .format(element_name, type(index))) def get_graph(input_graphs, index, name="get_graph"): """Indexes into a graph. Given a `graphs.graphsTuple` containing `Tensor`s and an index (either an `int` or a `slice`), index into the nodes, edges and globals to extract the graphs specified by the slice, and returns them into an another instance of a `graphs.graphsTuple` containing `Tensor`s. Args: input_graphs: A `graphs.GraphsTuple` containing `Tensor`s. index: An `int`, a `slice`, a tensor `int` or a tensor `slice`, to index into `graph`. `index` should be compatible with the number of graphs in `graphs`. The `step` parameter of the `slice` objects must be None. name: (string, optional) A name for the operation. Returns: A `graphs.GraphsTuple` containing `Tensor`s, made of the extracted graph(s). Raises: TypeError: if `index` is not an `int`, a `slice`, or corresponding tensor types. ValueError: if `index` is a slice and `index.step` if not None. """ def safe_slice_none(value, slice_): if value is None: return value return value[slice_] if isinstance(index, (int, tf.Tensor)): _check_valid_index(index, "index") graph_slice = slice(index, index + 1) elif (isinstance(index, slice) and _check_valid_index(index.stop, "index.stop") and (index.start is None or _check_valid_index( index.start, "index.start"))): if index.step is not None: raise ValueError("slices with step/stride are not supported, got {}" .format(index)) graph_slice = index else: raise TypeError( "unsupported index type got {} with type {}. Index must be a valid " "scalar integer (tensor or int) or a slice of such values." .format(index, type(index))) start_slice = slice(0, graph_slice.start) with tf.name_scope(name): start_node_index = tf.reduce_sum( input_graphs.n_node[start_slice], name="start_node_index") start_edge_index = tf.reduce_sum( input_graphs.n_edge[start_slice], name="start_edge_index") end_node_index = start_node_index + tf.reduce_sum( input_graphs.n_node[graph_slice], name="end_node_index") end_edge_index = start_edge_index + tf.reduce_sum( input_graphs.n_edge[graph_slice], name="end_edge_index") nodes_slice = slice(start_node_index, end_node_index) edges_slice = slice(start_edge_index, end_edge_index) sliced_graphs_dict = {} for field in set(GRAPH_NUMBER_FIELDS) | {"globals"}: sliced_graphs_dict[field] = safe_slice_none( getattr(input_graphs, field), graph_slice) field = "nodes" sliced_graphs_dict[field] = safe_slice_none( getattr(input_graphs, field), nodes_slice) for field in {"edges", "senders", "receivers"}: sliced_graphs_dict[field] = safe_slice_none( getattr(input_graphs, field), edges_slice) if (field in {"senders", "receivers"} and sliced_graphs_dict[field] is not None): sliced_graphs_dict[field] = sliced_graphs_dict[field] - start_node_index return graphs.GraphsTuple(**sliced_graphs_dict) def get_num_graphs(input_graphs, name="get_num_graphs"): """Returns the number of graphs (i.e. the batch size) in `input_graphs`. Args: input_graphs: A `graphs.GraphsTuple` containing tensors. name: (string, optional) A name for the operation. Returns: An `int` (if a static number of graphs is defined) or a `tf.Tensor` (if the number of graphs is dynamic). """ with tf.name_scope(name): return _get_shape(input_graphs.n_node)[0] def nest_to_numpy(nest_of_tensors): """Converts a nest of eager tensors to a nest of numpy arrays. Leaves non-`tf.Tensor` elements untouched. A common use case for this method is to transform a `graphs.GraphsTuple` of tensors into a `graphs.GraphsTuple` of arrays, or nests containing `graphs.GraphsTuple`s. Args: nest_of_tensors: Nest containing `tf.Tensor`s. Returns: A nest with the same structure where `tf.Tensor`s are replaced by numpy arrays and all other elements are kept the same. """ return tree.map_structure( lambda x: x.numpy() if isinstance(x, tf.Tensor) else x, nest_of_tensors) def specs_from_graphs_tuple( graphs_tuple_sample, dynamic_num_graphs=False, dynamic_num_nodes=True, dynamic_num_edges=True, description_fn=tf.TensorSpec, ): """Returns the `TensorSpec` specification for a given `GraphsTuple`. This method is often used with `tf.function` in Tensorflow 2 to obtain improved speed and performance of eager code. For example: ``` example_graphs_tuple = get_graphs_tuple(...) @tf.function(input_signature=[specs_from_graphs_tuple(example_graphs_tuple)]) def forward_pass(graphs_tuple_input): graphs_tuple_output = graph_network(graphs_tuple_input) return graphs_tuple_output for i in range(num_training_steps): input = get_graphs_tuple(...) with tf.GradientTape() as tape: output = forward_pass(input) loss = compute_loss(output) grads = tape.gradient(loss, graph_network.trainable_variables) optimizer.apply(grads, graph_network.trainable_variables) ``` Args: graphs_tuple_sample: A `graphs.GraphsTuple` with sample data. `GraphsTuple`s that have fields with `None` are not accepted since they will create an invalid signature specification for `tf.function`. If your graph has `None`s use `utils_tf.set_zero_edge_features`, `utils_tf.set_zero_node_features` or `utils_tf.set_zero_global_features`. This method also returns the signature for `GraphTuple`s with nests of tensors in the feature fields (`nodes`, `edges`, `globals`), including empty nests (e.g. empty list, dict, or tuple). Nested node, edge and global feature tensors, should usually have the same leading dimension as all other node, edge and global feature tensors respectively. dynamic_num_graphs: Boolean indicating if the number of graphs in each `GraphsTuple` will be variable across examples. dynamic_num_nodes: Boolean indicating if number of nodes per graph will be variable across examples. Not used if `dynamic_num_graphs` is True, as the size of the first axis of all `GraphsTuple` fields will be variable, due to the variable number of graphs. dynamic_num_edges: Boolean indicating if number of edges per graph will be variable across examples. Not used if dynamic_num_graphs is True, as the size of the first axis of all `GraphsTuple` fields will be variable, due to the variable number of graphs. description_fn: A callable which accepts the dtype and shape arguments to describe the shapes and types of tensors. By default uses `tf.TensorSpec`. Returns: A `GraphsTuple` with tensors replaced by `TensorSpec` with shape and dtype of the field contents. Raises: ValueError: If a `GraphsTuple` has a field with `None`. """ graphs_tuple_description_fields = {} edge_dim_fields = [graphs.EDGES, graphs.SENDERS, graphs.RECEIVERS] # Method to get the spec for a single tensor. def get_tensor_spec(tensor, field_name): """Returns the spec of an array or a tensor in the field of a graph.""" shape = list(tensor.shape) dtype = tensor.dtype # If the field is not None but has no field shape (i.e. it is a constant) # then we consider this to be a replaced `None`. # If dynamic_num_graphs, then all fields have a None first dimension. # If dynamic_num_nodes, then the "nodes" field needs None first dimension. # If dynamic_num_edges, then the "edges", "senders" and "receivers" need # a None first dimension. if (shape and ( dynamic_num_graphs or (dynamic_num_nodes and field_name == graphs.NODES) or (dynamic_num_edges and field_name in edge_dim_fields))): shape[0] = None return description_fn(shape=shape, dtype=dtype) for field_name in graphs.ALL_FIELDS: field_sample = getattr(graphs_tuple_sample, field_name) if field_sample is None: raise ValueError( "The `GraphsTuple` field `{}` was `None`. All fields of the " "`GraphsTuple` must be specified to create valid signatures that" "work with `tf.function`. This can be achieved with `input_graph = " "utils_tf.set_zero_{{node,edge,global}}_features(input_graph, 0)`" "to replace None's by empty features in your graph. Alternatively" "`None`s can be replaced by empty lists by doing `input_graph = " "input_graph.replace({{nodes,edges,globals}}=[]). To ensure " "correct execution of the program, it is recommended to restore " "the None's once inside of the `tf.function` by doing " "`input_graph = input_graph.replace({{nodes,edges,globals}}=None)" "".format(field_name)) if field_name in graphs.GRAPH_FEATURE_FIELDS: field_spec = tree.map_structure( functools.partial(get_tensor_spec, field_name=field_name), field_sample) else: field_spec = get_tensor_spec(field_sample, field_name=field_name) graphs_tuple_description_fields[field_name] = field_spec return graphs.GraphsTuple(**graphs_tuple_description_fields) # Convenience data container for carrying around padding. GraphsTupleSize = collections.namedtuple( "GraphsTupleSize", ["num_nodes", "num_edges", "num_graphs"]) # Mapping indicating the leading size of `GraphsTuple` fields according to the # number of nodes/edges/graphs in the `GraphsTuple`. _GRAPH_ATTRIBUTE_TO_SIZE_MAP = { graphs.NODES: "num_nodes", graphs.EDGES: "num_edges", graphs.RECEIVERS: "num_edges", graphs.SENDERS: "num_edges", graphs.GLOBALS: "num_graphs", graphs.N_NODE: "num_graphs", graphs.N_EDGE: "num_graphs" } def _get_field_size_from_size_tuple(size_tuple, graphs_field_name): field_size_name = _GRAPH_ATTRIBUTE_TO_SIZE_MAP[graphs_field_name] return getattr(size_tuple, field_size_name) def _assert_if_space_for_first_padding_graph( graphs_tuple, graphs_tuple_padded_sizes): """Checks if a given graph can fit in the provided padded shape. Args: graphs_tuple: A `graphs.GraphsTuple` that is checked for size. graphs_tuple_padded_sizes: A `GraphsTupleSize` with the sized to pad to. Returns: An assertion op indicating whether there is space for the padding graph. """ # Padding graph needs to have at least one graph, and at least one node, # but should not need extra edges, so the number of padded nodes and graphs # needs to be strictly larger, than the input sizes, but it is ok if the # number of padded edges are equal to the number of input edges. graphs_tuple_sizes = get_graphs_tuple_size(graphs_tuple) all_fields_fit = [ tf.less_equal(graphs_tuple_sizes.num_edges, graphs_tuple_padded_sizes.num_edges), tf.less(graphs_tuple_sizes.num_nodes, graphs_tuple_padded_sizes.num_nodes), tf.less(graphs_tuple_sizes.num_graphs, graphs_tuple_padded_sizes.num_graphs), ] all_fields_fit = functools.reduce(tf.math.logical_and, all_fields_fit) return tf.Assert(all_fields_fit, [ "There is not enough space to pad the GraphsTuple " " with sizes (#nodes, #edges, #graphs):", graphs_tuple_sizes, " to padded sizes of :", graphs_tuple_padded_sizes, "`pad_edges_to` must be larger or equal to the maximum number of edges " "in any `GraphsTuple` and `pad_nodes_to`/`pad_graphs_to` must be " "strictly larger than the maximum number of nodes/graphs in any " "`GraphsTuple`." ]) def get_graphs_tuple_size(graphs_tuple): """Calculates the total nodes, edges and graphs in a graph batch. Args: graphs_tuple: A `GraphsTuple`. Returns: A `GraphsTupleSizes` object containing the total number of nodes, edges and graphs in the `GraphsTuple`. Each value is a scalar integer `tf.Tensor`. """ num_nodes = tf.reduce_sum(graphs_tuple.n_node) num_edges = tf.reduce_sum(graphs_tuple.n_edge) num_graphs = tf.shape(graphs_tuple.n_node)[0] return GraphsTupleSize(num_nodes, num_edges, num_graphs) def _get_required_padding_sizes(graphs_tuple, padded_size): """Gets the padding size, given a GraphsTuple and the total padded sizes.""" graph_size = get_graphs_tuple_size(graphs_tuple) return GraphsTupleSize(*(b - c for b, c in zip(padded_size, graph_size))) def get_mask(valid_length, full_length): """Returns a mask given the valid length of a vector with trailing padding. This is useful for masking out padded elements from a loss. For example ``` input_graphs_tuple = ... input_graphs_tuple_size = get_graphs_tuple_size(input_graphs_tuple) padded_input_graphs_tuple = pad_graphs_tuple(input_graphs_tuple, pad_nodes_to,...) per_node_loss # After graph_network computation. nodes_mask = get_mask( input_graphs_tuple_size.nodes, pad_nodes_to) masked_per_node_loss = per_node_loss * tf.cast( nodes_mask, per_node_loss.dtype) ``` Args: valid_length: Length of the valid elements. full_length: Full length of the vector after padding. Returns: Boolean mask of shape [full_length], where all values are set to `True` except for the last `padding_length` which are set to False. """ valid_length = tf.cast(valid_length, tf.int32) full_length = tf.cast(full_length, tf.int32) # This implementation allows for statically sized shapes, rather than # using concat([tf.ones([valid_length]), tf.zeros([full_length-valid_length])] # which has intermediate tensors with shapes not know statically. field_mask = tf.range(full_length) field_mask = field_mask < valid_length return field_mask def remove_graphs_tuple_padding(padded_graphs_tuple, valid_size): """Strips a padded `GraphsTuple` of padding. Given a graph that has been padded by `padding` amount, remove the padding to recover the original graph. Often used in the sequence: ``` graphs_tuple_size = get_graphs_tuple_size(graphs_tuple) padded_graphs_tuple = pad_graphs_tuple(graphs_tuple, pad_nodes_to=x, pad_edges_to=y, pad_graphs_to=z) unpadded_graphs_tuple = remove_graphs_tuple_padding(padded_graphs_tuple, graphs_tuple_size) ``` Args: padded_graphs_tuple: A `graphs.GraphsTuple` that has been padded by `padding` amount. valid_size: A `GraphsTupleSize` that represents the size of the valid graph. Returns: Returns a `graphs.GraphsTuple` which is padded_graphs_tuple stripped of padding. """ stripped_graph_kwargs = {} graph_dict = padded_graphs_tuple._asdict() # pylint: disable=protected-access for field, tensor_nest in graph_dict.items(): field_valid_size = _get_field_size_from_size_tuple(valid_size, field) strip_fn = lambda x: x[:field_valid_size] # pylint:disable=cell-var-from-loop stripped_field = tree.map_structure(strip_fn, tensor_nest) stripped_graph_kwargs[field] = stripped_field return graphs.GraphsTuple(**stripped_graph_kwargs) def _pad_tensor(tensor, field, padding_size): """Pads a tensor on the first dimensions with the padding size. Args: tensor: tf.Tensor of size [batch_dim, x1, ..., xn]. field: Text, the field of `graphs.GraphsTuple` to pad. padding_size: A tuple representing the size of padding of the graph. Returns: A tf.Tensor of size [batch_dim + padding, x1, ..., xn] padded with zeros. """ padding = _get_field_size_from_size_tuple(padding_size, field) padding_tensor = tf.zeros( [padding] + tensor.shape.as_list()[1:], dtype=tensor.dtype, name="pad_zeros_{}".format(field)) return tf.concat((tensor, padding_tensor), axis=0) def _get_zeros_with_variable_batch_size(feature_tensor, padding_size): return tf.zeros([padding_size] + feature_tensor.shape.as_list()[1:], feature_tensor.dtype) def _get_first_padding_graph(graphs_batch, padding_size, experimental_unconnected_padding_edges): """Gets a dummy graph that pads receivers and senders. This dummy graph will have number of nodes = padding_size.nodes and number of edges = padding_size.edges. Receivers and senders will be indexed with all zeros (connecting to the first node in the dummy graph). Args: graphs_batch: the `graphs.GraphsTuple` to be padded. padding_size: a `GraphsTupleSize` with the padding size. experimental_unconnected_padding_edges: see `pad_graphs_tuple` for details. Returns: A `graphs.GraphsTuple` of a single dummy graph. """ # Set the edges to belong to an index corresponding to a node that does not # exist. if experimental_unconnected_padding_edges: logging.log_first_n( logging.WARNING, "Using a padding graph with unconnected edges. This is an experimental " "feature which may stop working in the future, and will lead to out" "of range errors on tf.scatter if the graph net computation occurs on " "CPU.", 1) dummy_senders_and_receivers = ( tf.ones([padding_size.num_edges], tf.int32) * padding_size.num_nodes) else: dummy_senders_and_receivers = tf.zeros([padding_size.num_edges], tf.int32) return graphs.GraphsTuple( n_node=[padding_size.num_nodes], n_edge=[padding_size.num_edges], nodes=tree.map_structure( functools.partial( _get_zeros_with_variable_batch_size, padding_size=padding_size.num_nodes), graphs_batch.nodes), edges=tree.map_structure( functools.partial( _get_zeros_with_variable_batch_size, padding_size=padding_size.num_edges), graphs_batch.edges), senders=dummy_senders_and_receivers, receivers=dummy_senders_and_receivers, globals=tree.map_structure( functools.partial( _get_zeros_with_variable_batch_size, padding_size=1), graphs_batch.globals)) def pad_graphs_tuple(graphs_tuple, pad_nodes_to, pad_edges_to, pad_graphs_to, experimental_unconnected_padding_edges=False): """Pads a `graphs.GraphsTuple` to fixed number of nodes, edges and graphs. The Graph Nets library treat zeros as valid parts of a graph.GraphsTuple, so special padding is required in order to preserve the computation. This method does so by adding a 'dummy' graph to the batch so that additional nodes/edges can't interfere with the valid graph. Args: graphs_tuple: `graphs.GraphsTuple` batch of graphs. pad_nodes_to: the size to pad node determined features to. pad_edges_to: the size to pad edge determined features to. pad_graphs_to: the size to pad graph determined features to. experimental_unconnected_padding_edges: Experimental feature to prevent nans in the padding graph. DISCLAIMER: This feature is extremly experimental, and setting it to `True` is not recommened unless strictly necessary, and understanding the implications. If `True`, the padding graph will have `senders` and `receivers` for the padding edges reference a node which does not exist (one beyond the size of `nodes`). This feature can be used to prevent any broadcasting/aggregation ops between edges and nodes for the padding graph. The reason is that the sum aggregations in the padding graph, which has a single node with a very large number of self-edges, sometimes lead to infs or nans, which may contaminate the gradients of the other valid graphs in the batch with nans (even if masked out of the loss: this is related to the `tf.where` issue.). This approach relies on several numerical hacks that do not work on CPU, but work on GPU and TPU (as covered by our tests): * `tf.gather` returns zeros when the index is beyond the boundaries. From https://www.tensorflow.org/api_docs/python/tf/gather "Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value." * `tf.unsorted_segment_sum` drops values for negative indices. From https://www.tensorflow.org/api_docs/python/tf/math/unsorted_segment_sum "If the given segment ID is negative, the value is dropped and will not be added to the sum of the segment." We have seen empirically that it also ignores values with indices equal or larger than `num_segments`. While this behavior is tested in our library, we cannot guarantee that it will work in the future for all unsorted_segment ops, so use at your own risk. This fixes the appearance of nans in the node-wise edge aggregation. The appearance of `nan`s is less likely in the global aggregation because in the worst case, the number of nodes/edges on the padding graph is not typically much larger than the number of nodes/edges in other graphs in the dataset. A less hacky approach (but more expensive, and requiring modifying model code) to prevent nan's appearing in the padding graph, is by masking out the graph features before they are aggregated, although for convenience we usually find that it is enough to do it after each message passing layer. E.g.: ``` graphs_tuple_size = get_graphs_tuple_size(graphs_tuple) padded_graphs_tuple = pad_graphs_tuple(graphs_tuple, ...) graphs_mask = get_mask(graphs_tuple_size.num_graphs, pad_graphs_to) nodes_mask = get_mask(graphs_tuple_size.num_nodes, pad_nodes_to) edges_mask = get_mask(graphs_tuple_size.num_edges, pad_edges_to) # Some computation that creates intermediate `any_padded_graphs_tuple`s # after each message passing step. any_padded_graphs_tuple = any_padded_graphs_tuple.replace( edges=any_padded_graphs_tuple.edges * tf.cast( edges_mask, tf.float32)[:, None], nodes=any_padded_graphs_tuple.nodes * tf.cast( nodes_mask, tf.float32)[:, None], globals=any_padded_graphs_tuple.globals * tf.cast( graphs_mask, tf.float32)[:, None], ) ``` Returns: A `graphs.GraphsTuple` padded up to the required values. """ padded_sizes = GraphsTupleSize(pad_nodes_to, pad_edges_to, pad_graphs_to) # The strategy goes as follows: # 0. Make sure our `graphs_tuple` is at least 1 node and 1 graph smaller than # the padded sizes (this is required for step 1). # 1. Pad with one graph with at least one node, that contains all padding # edges, and padding nodes, this will guaranteed preserved computation for # graphs in the input `GraphsTuple`. # 2. Pad up to `pad_graphs_to` with graphs with no nodes and no edges. # 3. Set the shapes of the padded tensors to be statically known. Otherwise # tensorflow shape inference mechanism is not smart enough to realize that # at this stage tensors have statically known sizes. # Step 0. sufficient_space_assert = _assert_if_space_for_first_padding_graph( graphs_tuple, padded_sizes) with tf.control_dependencies([sufficient_space_assert]): padding_size = _get_required_padding_sizes(graphs_tuple, padded_sizes) # Step 1. first_padding_graph = _get_first_padding_graph( graphs_tuple, padding_size, experimental_unconnected_padding_edges) graphs_tuple_with_first_padding_graph = concat( [graphs_tuple, first_padding_graph], axis=0) # Step 2. remaining_padding_sizes = _get_required_padding_sizes( graphs_tuple_with_first_padding_graph, padded_sizes) padded_batch_kwargs = {} for field, tensor_dict in ( graphs_tuple_with_first_padding_graph._asdict().items()): # pylint: disable=protected-access field_pad_fn = functools.partial( _pad_tensor, padding_size=remaining_padding_sizes, field=field) padded_batch_kwargs[field] = tree.map_structure(field_pad_fn, tensor_dict) # Step 3. def _set_shape(tensor, padded_size): tensor_shape = tensor.get_shape().as_list() tensor.set_shape([padded_size] + tensor_shape[1:]) return tensor for field, tensor_dict in padded_batch_kwargs.items(): padded_size = _get_field_size_from_size_tuple(padded_sizes, field) set_shape_partial = functools.partial(_set_shape, padded_size=padded_size) tensor_dict = tree.map_structure(set_shape_partial, tensor_dict) padded_batch_kwargs[field] = tensor_dict return graphs.GraphsTuple(**padded_batch_kwargs)
graph_nets-master
graph_nets/utils_tf.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for `utils_np_test` and `utils_tf_test`. This provides a base class for tests involving `graphs.GraphsTuple` containing either numpy or tensorflow data. This base class is populated with test data and also provides a convenience method for asserting graph equality. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import itertools from graph_nets import graphs from graph_nets import utils_np import numpy as np import tensorflow as tf @contextlib.contextmanager def assert_new_op_prefixes(test, expected_prefix, assert_some_new_ops=True): """Asserts the namescope of tf ops created within the context manager.""" ops_before = [n.name for n in tf.get_default_graph().as_graph_def().node] yield ops_after = [n.name for n in tf.get_default_graph().as_graph_def().node] new_ops = set(ops_after) - set(ops_before) prefix_length = len(expected_prefix) if assert_some_new_ops: test.assertNotEqual(0, len(new_ops)) for op_name in new_ops: test.assertEqual(expected_prefix, op_name[:prefix_length]) def generate_random_data_dict( node_shape, edge_shape, globals_shape, num_nodes_range=(15, 20), num_edges_range=(30, 35)): num_nodes = np.random.randint(*num_nodes_range) num_edges = np.random.randint(*num_edges_range) return { "nodes": np.random.normal(size=(num_nodes,) + node_shape), "edges": np.random.normal(size=(num_edges,) + edge_shape), "globals": np.random.normal(size=globals_shape), "senders": np.random.randint(num_nodes, size=num_edges), "receivers": np.random.randint(num_nodes, size=num_edges), "n_node": num_nodes, "n_edge": num_edges, } def mask_leading_dimension(tensor): return tf.placeholder_with_default(tensor, [None] + tensor.get_shape().as_list()[1:]) NODES_DIMS = [7, 11] EDGES_DIMS = [13, 14] GLOBALS_DIMS = [5, 3] class GraphsTest(tf.test.TestCase): """A base class for tests that operate on GraphsNP or GraphsTF.""" def _populate_test_data(self, max_size): """Populates the class fields with data used for the tests. This creates a batch of graphs with number of nodes from 0 to `num`, number of edges ranging from 1 to `num`, plus an empty graph with no nodes and no edges (so that the total number of graphs is 1 + (num ** (num + 1)). The nodes states, edges states and global states of the graphs are created to have different types and shapes. Those graphs are stored both as dictionaries (in `self.graphs_dicts_in`, without `n_node` and `n_edge` information, and in `self.graphs_dicts_out` with these two fields filled), and a corresponding numpy `graphs.GraphsTuple` is stored in `self.reference_graph`. Args: max_size: The maximum number of nodes and edges (inclusive). """ filt = lambda x: (x[0] > 0) or (x[1] == 0) n_node, n_edge = zip(*list( filter(filt, itertools.product( range(max_size + 1), range(max_size + 1))))) graphs_dicts = [] nodes = [] edges = [] receivers = [] senders = [] globals_ = [] def _make_default_state(shape, dtype): return np.arange(np.prod(shape)).reshape(shape).astype(dtype) for i, (n_node_, n_edge_) in enumerate(zip(n_node, n_edge)): n = _make_default_state([n_node_,] + NODES_DIMS, "f4") + i * 100. e = _make_default_state( [n_edge_,] + EDGES_DIMS, np.float64) + i * 100. + 1000. r = _make_default_state([n_edge_], np.int32) % n_node[i] s = (_make_default_state([n_edge_], np.int32) + 1) % n_node[i] g = _make_default_state(GLOBALS_DIMS, "f4") - i * 100. - 1000. nodes.append(n) edges.append(e) receivers.append(r) senders.append(s) globals_.append(g) graphs_dict = dict(nodes=n, edges=e, receivers=r, senders=s, globals=g) graphs_dicts.append(graphs_dict) # Graphs dicts without n_node / n_edge (to be used as inputs). self.graphs_dicts_in = graphs_dicts # Graphs dicts with n_node / n_node (to be checked against outputs). self.graphs_dicts_out = [] for dict_ in self.graphs_dicts_in: completed_dict = dict_.copy() completed_dict["n_node"] = completed_dict["nodes"].shape[0] completed_dict["n_edge"] = completed_dict["edges"].shape[0] self.graphs_dicts_out.append(completed_dict) # pylint: disable=protected-access offset = utils_np._compute_stacked_offsets(n_node, n_edge) # pylint: enable=protected-access self.reference_graph = graphs.GraphsTuple(**dict( nodes=np.concatenate(nodes, axis=0), edges=np.concatenate(edges, axis=0), receivers=np.concatenate(receivers, axis=0) + offset, senders=np.concatenate(senders, axis=0) + offset, globals=np.stack(globals_), n_node=np.array(n_node), n_edge=np.array(n_edge))) self.graphs_dicts = graphs_dicts def _assert_graph_equals_np(self, graph0, graph, force_edges_ordering=False): """Asserts that all the graph fields of graph0 and graph match.""" if graph0.nodes is None: self.assertEqual(None, graph.nodes) else: self.assertAllClose(graph0.nodes, graph.nodes) if graph0.globals is None: self.assertEqual(None, graph.globals) else: self.assertAllClose(graph0.globals, graph.globals) self.assertAllClose(graph0.n_node, graph.n_node.tolist()) if graph0.receivers is None: self.assertEqual(None, graph.receivers) self.assertEqual(None, graph.senders) self.assertEqual(None, graph.edges) self.assertAllEqual(graph0.n_edge, graph.n_edge) return self.assertAllClose(graph0.n_edge, graph.n_edge.tolist()) if not force_edges_ordering: self.assertAllClose(graph0.receivers, graph.receivers) self.assertAllClose(graph0.senders, graph.senders) if graph0.edges is not None: self.assertAllClose(graph0.edges, graph.edges) else: self.assertEqual(None, graph.edges) return # To compare edges content, we need to make sure they appear in the same # order if graph0.edges is not None: sorted_receivers0, sorted_senders0, sorted_content0 = zip( *sorted(zip(graph0.receivers, graph0.senders, graph0.edges.tolist()))) sorted_receivers, sorted_senders, sorted_content = zip( *sorted(zip(graph.receivers, graph.senders, graph.edges.tolist()))) self.assertAllClose(sorted_content0, sorted_content) elif graph.receivers is not None: sorted_receivers0, sorted_senders0 = zip( *sorted(zip(graph0.receivers, graph0.senders))) sorted_receivers, sorted_senders = zip( *sorted(zip(graph.receivers, graph.senders))) else: return self.assertAllClose(sorted_receivers0, sorted_receivers) self.assertAllClose(sorted_senders0, sorted_senders) def setUp(self): self._populate_test_data(max_size=2) tf.reset_default_graph()
graph_nets-master
graph_nets/tests/test_utils.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `graphs.py`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from graph_nets import graphs import tensorflow as tf class GraphsTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(GraphsTest, self).setUp() all_fields = graphs.GRAPH_DATA_FIELDS + graphs.GRAPH_NUMBER_FIELDS self.graph = {k: k for k in all_fields} @parameterized.named_parameters( ("no n_node", ["n_node"],), ("no n_edge", ["n_edge"],), ("receivers but no senders", ["edges", "senders"],), ("senders but no receivers", ["edges", "receivers"],), ("edges but no senders/receivers", ["receivers", "senders"],), ) def test_inconsistent_none_fields_raise_error_on_creation(self, none_fields): for none_field in none_fields: self.graph[none_field] = None with self.assertRaisesRegexp(ValueError, none_fields[-1]): graphs.GraphsTuple(**self.graph) @parameterized.named_parameters( ("no n_node", ["n_node"],), ("no n_edge", ["n_edge"],), ("receivers but no senders", ["edges", "senders"],), ("senders but no receivers", ["edges", "receivers"],), ("edges but no senders/receivers", ["receivers", "senders"],), ) def test_inconsistent_none_fields_raise_error_on_replace(self, none_fields): graph = graphs.GraphsTuple(**self.graph) with self.assertRaisesRegexp(ValueError, none_fields[-1]): graph.replace(**{none_field: None for none_field in none_fields}) @parameterized.named_parameters( ("all fields defined", [],), ("no node state", ["nodes"],), ("no edge state", ["edges"],), ("no global state", ["globals"],), ("no state", ["nodes", "edges", "globals"],), ("no graph", ["nodes", "edges", "globals", "receivers", "senders"],), ("no edges", ["edges", "receivers", "senders"],), ) def test_creation_with_valid_none_fields(self, none_fields): for none_field in none_fields: self.graph[none_field] = None graph = graphs.GraphsTuple(**self.graph) for k, v in self.graph.items(): self.assertEqual(v, getattr(graph, k)) @parameterized.named_parameters( ("all fields defined", [],), ("no node state", ["nodes"],), ("no edge state", ["edges"],), ("no global state", ["globals"],), ("no state", ["nodes", "edges", "globals"],), ("no graph", ["nodes", "edges", "globals", "receivers", "senders"],), ("no edges", ["edges", "receivers", "senders"],), ) def test_replace_with_valid_none_fields(self, none_fields): # Create a graph with different values. graph = graphs.GraphsTuple(**{k: v + v for k, v in self.graph.items()}) # Update with a graph containing the initial values, or Nones. for none_field in none_fields: self.graph[none_field] = None graph = graph.replace(**self.graph) for k, v in self.graph.items(): self.assertEqual(v, getattr(graph, k)) @parameterized.parameters( ([],), (["nodes"],), (["edges"],), (["globals"],), (["receivers"],), (["senders"],), (["n_node"],), (["n_edge"],), (["receivers", "senders"],), (["nodes", "edges", "globals"],), (["nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge"],), ) def test_map_fields_as_expected(self, fields_to_map): """Tests that the fields are mapped are as expected.""" graph = graphs.GraphsTuple(**self.graph) graph = graph.map(lambda v: v + v, fields_to_map) for field in graphs.ALL_FIELDS: if field in fields_to_map: self.assertEqual(field + field, getattr(graph, field)) else: self.assertEqual(field, getattr(graph, field)) def test_map_field_called_only_once(self): """Tests that the mapping function is called exactly once per field.""" graph = graphs.GraphsTuple(**self.graph) mapped_fields = [] def map_fn(v): mapped_fields.append(v) return v graph = graph.map(map_fn, graphs.ALL_FIELDS) self.assertCountEqual(mapped_fields, graphs.ALL_FIELDS) def test_map_field_default_value(self): """Tests the default value for the `fields` argument.""" graph = graphs.GraphsTuple(**self.graph) mapped_fields = [] graph = graph.map(mapped_fields.append) self.assertCountEqual( mapped_fields, [graphs.EDGES, graphs.GLOBALS, graphs.NODES]) def test_map_field_is_parallel(self): """Tests that fields are mapped parallelaly, not sequentially.""" graph = graphs.GraphsTuple(**self.graph) graph = graph.map(lambda v: None, ["edges", "receivers", "senders"]) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests/graphs_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph networks library tests."""
graph_nets-master
graph_nets/tests/__init__.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Test for utils_np.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl.testing import parameterized from graph_nets import utils_np from graph_nets.tests import test_utils import networkx as nx import numpy as np from six.moves import range import tensorflow as tf class ConcatenationTest(test_utils.GraphsTest, parameterized.TestCase): def test_compute_stacked_offsets(self): sizes = np.array([5, 4, 3, 1, 2, 0, 3, 0, 4, 7]) repeats = [2, 2, 0, 2, 1, 3, 2, 0, 3, 2] offsets0 = utils_np._compute_stacked_offsets(sizes, repeats) offsets1 = utils_np._compute_stacked_offsets(sizes, np.array(repeats)) expected_offsets = [ 0, 0, 5, 5, 12, 12, 13, 15, 15, 15, 15, 15, 18, 18, 18, 22, 22 ] self.assertAllEqual(expected_offsets, offsets0.tolist()) self.assertAllEqual(expected_offsets, offsets1.tolist()) def test_concatenate_data_dicts(self): cat = utils_np._concatenate_data_dicts(self.graphs_dicts_in) for k, v in cat.items(): self.assertAllEqual(getattr(self.reference_graph, k), v) class DataDictsConversionTest(test_utils.GraphsTest, parameterized.TestCase): @parameterized.parameters(([],), (["edges"],), (["globals"],), (["edges", "receivers", "senders"],)) def test_data_dicts_to_graphs_tuple(self, none_fields): """Fields in `none_fields` will be cleared out.""" for field in none_fields: for graph_dict in self.graphs_dicts_in: if field in graph_dict: if field == "nodes": graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict[field] = None self.reference_graph = self.reference_graph._replace(**{field: None}) if field == "senders": self.reference_graph = self.reference_graph._replace( n_edge=np.zeros_like(self.reference_graph.n_edge)) graphs = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for field in none_fields: self.assertEqual(None, getattr(graphs, field)) self._assert_graph_equals_np(self.reference_graph, graphs) @parameterized.parameters(("receivers",), ("senders",)) def test_data_dicts_to_graphs_tuple_missing_field_raises(self, none_field): """Fields that cannot be missing.""" for graph_dict in self.graphs_dicts_in: graph_dict[none_field] = None with self.assertRaisesRegexp(ValueError, none_field): utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) def test_data_dicts_to_graphs_tuple_infer_n_node(self): """Not having nodes is fine if providing the number of nodes.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict["nodes"] = None out = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) self.assertAllEqual([0, 1, 1, 1, 2, 2, 2], out.n_node) def test_data_dicts_to_graphs_tuple_cast_types(self): """Index and number fields should be cast to numpy arrays.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = np.array( graph_dict["nodes"].shape[0], dtype=np.int64) graph_dict["receivers"] = graph_dict["receivers"].astype(np.int16) graph_dict["senders"] = graph_dict["senders"].astype(np.float64) graph_dict["nodes"] = graph_dict["nodes"].astype(np.float64) graph_dict["edges"] = graph_dict["edges"].astype(np.float64) out = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for key in ["n_node", "n_edge", "receivers", "senders"]: self.assertEqual(np.int32, getattr(out, key).dtype) for key in ["nodes", "edges"]: self.assertEqual(np.float64, getattr(out, key).dtype) def test_data_dicts_to_graphs_tuple_from_lists(self): """Tests creatings a GraphsTuple from python lists.""" for graph_dict in self.graphs_dicts_in: graph_dict["receivers"] = graph_dict["receivers"].tolist() graph_dict["senders"] = graph_dict["senders"].tolist() graphs = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) self._assert_graph_equals_np(self.reference_graph, graphs) @parameterized.named_parameters( ("all_fields", []), ("no_data", ["nodes", "edges", "globals"]), ("no_edges", ["edges", "receivers", "senders"])) def test_graphs_tuple_to_data_dicts(self, none_fields): graphs_tuple = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple.map(lambda _: None, none_fields) data_dicts = utils_np.graphs_tuple_to_data_dicts(graphs_tuple) for none_field, data_dict in itertools.product(none_fields, data_dicts): self.assertEqual(None, data_dict[none_field]) for expected_data_dict, data_dict in zip(self.graphs_dicts_out, data_dicts): for k, v in expected_data_dict.items(): if k not in none_fields: self.assertAllClose(v, data_dict[k]) def _single_data_dict_to_networkx(data_dict): graph_nx = nx.OrderedMultiDiGraph() if data_dict["nodes"].size > 0: for i, x in enumerate(data_dict["nodes"]): graph_nx.add_node(i, features=x) if data_dict["edges"].size > 0: edge_data = zip(data_dict["senders"], data_dict["receivers"], [{ "features": x } for x in data_dict["edges"]]) graph_nx.add_edges_from(edge_data) graph_nx.graph["features"] = data_dict["globals"] return graph_nx class NetworkxConversionTest(test_utils.GraphsTest, parameterized.TestCase): def test_order_preserving(self): """Tests that edges order can be preserved when importing from networks.""" graph = nx.DiGraph() for node_index in range(4): graph.add_node(node_index, features=np.array([node_index])) receivers = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3] senders = [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2] for edge_index, (receiver, sender) in enumerate(zip(receivers, senders)): # Removing the "index" key makes this test fail 100%. edge_data = {"features": np.array([edge_index]), "index": edge_index} graph.add_edge(sender, receiver, **edge_data) graph.graph["features"] = np.array([0.]) graphs_graph = utils_np.networkx_to_data_dict(graph) self.assertAllEqual(receivers, graphs_graph["receivers"]) self.assertAllEqual(senders, graphs_graph["senders"]) self.assertAllEqual([[x] for x in range(4)], graphs_graph["nodes"]) self.assertAllEqual([[x] for x in range(12)], graphs_graph["edges"]) def test_networkxs_to_graphs_tuple_with_none_fields(self): graph_nx = nx.OrderedMultiDiGraph() data_dict = utils_np.networkx_to_data_dict( graph_nx, node_shape_hint=None, edge_shape_hint=None) self.assertEqual(None, data_dict["edges"]) self.assertEqual(None, data_dict["globals"]) self.assertEqual(None, data_dict["nodes"]) graph_nx.add_node(0, features=None) data_dict = utils_np.networkx_to_data_dict( graph_nx, node_shape_hint=1, edge_shape_hint=None) self.assertEqual(None, data_dict["nodes"]) graph_nx.add_edge(0, 0, features=None) data_dict = utils_np.networkx_to_data_dict( graph_nx, node_shape_hint=[1], edge_shape_hint=[1]) self.assertEqual(None, data_dict["edges"]) graph_nx.graph["features"] = None utils_np.networkx_to_data_dict(graph_nx) self.assertEqual(None, data_dict["globals"]) def test_networkxs_to_graphs_tuple(self): graph0 = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graph_nxs = [] for data_dict in self.graphs_dicts_in: graph_nxs.append(_single_data_dict_to_networkx(data_dict)) hints = { "edge_shape_hint": data_dict["edges"].shape[1:], "node_shape_hint": data_dict["nodes"].shape[1:], "data_type_hint": data_dict["nodes"].dtype, } graph = utils_np.networkxs_to_graphs_tuple(graph_nxs, **hints) self._assert_graph_equals_np(graph0, graph, force_edges_ordering=True) def test_networkxs_to_data_dict_raises_node_key_error(self): """If the nodes have keys not consistent with the order they were added.""" graph_nx = nx.OrderedMultiDiGraph() graph_nx.add_node(0, features=None) graph_nx.add_node(1, features=None) graph_nx.add_node(3, features=None) with self.assertRaisesRegexp( ValueError, "found node with index 2 and key 3"): utils_np.networkx_to_data_dict(graph_nx) # Check that it is still raised even if there is a node with each key, # and only the order is wrong. graph_nx.add_node(2, features=None) with self.assertRaisesRegexp( ValueError, "found node with index 2 and key 3"): utils_np.networkx_to_data_dict(graph_nx) def test_networkxs_to_graphs_tuple_raises_key_error(self): """If the "features" field is not present in the nodes or edges.""" graph_nx = _single_data_dict_to_networkx(self.graphs_dicts_in[-1]) first_node = list(graph_nx.nodes(data=True))[0] del first_node[1]["features"] with self.assertRaisesRegexp( KeyError, "This could be due to the node having been silently added"): utils_np.networkxs_to_graphs_tuple([graph_nx]) graph_nx = _single_data_dict_to_networkx(self.graphs_dicts_in[-1]) first_edge = list(graph_nx.edges(data=True))[0] del first_edge[2]["features"] with self.assertRaises(KeyError): utils_np.networkxs_to_graphs_tuple([graph_nx]) def test_networkxs_to_graphs_tuple_raises_assertion_error(self): """Either all nodes (resp. edges) should have features, or none of them.""" graph_nx = _single_data_dict_to_networkx(self.graphs_dicts_in[-1]) first_node = list(graph_nx.nodes(data=True))[0] first_node[1]["features"] = None with self.assertRaisesRegexp( ValueError, "Either all the nodes should have features"): utils_np.networkxs_to_graphs_tuple([graph_nx]) graph_nx = _single_data_dict_to_networkx(self.graphs_dicts_in[-1]) first_edge = list(graph_nx.edges(data=True))[0] first_edge[2]["features"] = None with self.assertRaisesRegexp( ValueError, "Either all the edges should have features"): utils_np.networkxs_to_graphs_tuple([graph_nx]) @parameterized.named_parameters( ("all fields defined", []), ("stateless", ["nodes", "edges", "globals"])) def test_graphs_tuple_to_networkxs(self, none_fields): if "nodes" in none_fields: for graph in self.graphs_dicts_in: graph["n_node"] = graph["nodes"].shape[0] graphs = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs = graphs.map(lambda _: None, none_fields) graph_nxs = utils_np.graphs_tuple_to_networkxs(graphs) for data_dict, graph_nx in zip(self.graphs_dicts_out, graph_nxs): if "globals" in none_fields: self.assertEqual(None, graph_nx.graph["features"]) else: self.assertAllClose(data_dict["globals"], graph_nx.graph["features"]) nodes_data = graph_nx.nodes(data=True) for i, (v, (j, n)) in enumerate(zip(data_dict["nodes"], nodes_data)): self.assertEqual(i, j) if "nodes" in none_fields: self.assertEqual(None, n["features"]) else: self.assertAllClose(v, n["features"]) edges_data = sorted( graph_nx.edges(data=True), key=lambda x: x[2]["index"]) for v, (_, _, e) in zip(data_dict["edges"], edges_data): if "edges" in none_fields: self.assertEqual(None, e["features"]) else: self.assertAllClose(v, e["features"]) for r, s, (i, j, _) in zip( data_dict["receivers"], data_dict["senders"], edges_data): self.assertEqual(s, i) self.assertEqual(r, j) class GetItemTest(test_utils.GraphsTest, parameterized.TestCase): def test_get_single_item(self): index = 2 expected = self.graphs_dicts_out[index] graphs = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graph = utils_np.get_graph(graphs, index) actual, = utils_np.graphs_tuple_to_data_dicts(graph) for k, v in expected.items(): self.assertAllClose(v, actual[k]) def test_get_many_items(self): index = slice(1, 3) expected = self.graphs_dicts_out[index] graphs = utils_np.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs2 = utils_np.get_graph(graphs, index) actual = utils_np.graphs_tuple_to_data_dicts(graphs2) for ex, ac in zip(expected, actual): for k, v in ex.items(): self.assertAllClose(v, ac[k]) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests/utils_np_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for blocks.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl.testing import parameterized from graph_nets import blocks from graph_nets import graphs from graph_nets import utils_np from graph_nets import utils_tf import numpy as np import sonnet as snt import tensorflow as tf SMALL_GRAPH_1 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 1], "receivers": [1, 2], } SMALL_GRAPH_2 = { "globals": [-1.1, -1.2, -1.3, -1.4], "nodes": [[-10.1, -10.2], [-20.1, -20.2], [-30.1, -30.2]], "edges": [[-101., -102., -103., -104.]], "senders": [1,], "receivers": [2,], } SMALL_GRAPH_3 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [1, 1], "receivers": [0, 2], } SMALL_GRAPH_4 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 2], "receivers": [1, 1], } class GraphModuleTest(tf.test.TestCase, parameterized.TestCase): """Base class for all the tests in this file.""" def setUp(self): super(GraphModuleTest, self).setUp() tf.set_random_seed(0) def _get_input_graph(self, none_fields=None): if none_fields is None: none_fields = [] input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2, SMALL_GRAPH_3, SMALL_GRAPH_4]) input_graph = input_graph.map(lambda _: None, none_fields) return input_graph def _get_shaped_input_graph(self): return graphs.GraphsTuple( nodes=tf.zeros([3, 4, 5, 11], dtype=tf.float32), edges=tf.zeros([5, 4, 5, 12], dtype=tf.float32), globals=tf.zeros([2, 4, 5, 13], dtype=tf.float32), receivers=tf.range(5, dtype=tf.int32) // 3, senders=tf.range(5, dtype=tf.int32) % 3, n_node=tf.constant([2, 1], dtype=tf.int32), n_edge=tf.constant([3, 2], dtype=tf.int32), ) def _assert_build_and_run(self, network, input_graph): # No error at construction time. output = network(input_graph) # No error at runtime. with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(output) BROADCAST_GLOBAL_TO_EDGES = [ [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [-1.1, -1.2, -1.3, -1.4], ] BROADCAST_GLOBAL_TO_NODES = [ [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [-1.1, -1.2, -1.3, -1.4], [-1.1, -1.2, -1.3, -1.4], [-1.1, -1.2, -1.3, -1.4], ] SENDER_NODES_TO_EDGES = [ [10.1, 10.2], [20.1, 20.2], [-20.1, -20.2], ] RECEIVER_NODES_TO_EDGES = [ [20.1, 20.2], [30.1, 30.2], [-30.1, -30.2], ] class BroadcastersTest(GraphModuleTest): """Tests for the broadcasters.""" @parameterized.named_parameters( ("globals_to_edges", blocks.broadcast_globals_to_edges, BROADCAST_GLOBAL_TO_EDGES), ("globals_to_nodes", blocks.broadcast_globals_to_nodes, BROADCAST_GLOBAL_TO_NODES), ("sender_nodes_to_edges", blocks.broadcast_sender_nodes_to_edges, SENDER_NODES_TO_EDGES), ("receiver_nodes_to_edges", blocks.broadcast_receiver_nodes_to_edges, RECEIVER_NODES_TO_EDGES), ) def test_output_values(self, broadcaster, expected): """Test the broadcasted output value.""" input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) broadcasted = broadcaster(input_graph) with tf.Session() as sess: broadcasted_out = sess.run(broadcasted) self.assertNDArrayNear( np.array(expected, dtype=np.float32), broadcasted_out, err=1e-4) @parameterized.named_parameters( ("globals_to_edges", blocks.broadcast_globals_to_edges, BROADCAST_GLOBAL_TO_EDGES), ("globals_to_nodes", blocks.broadcast_globals_to_nodes, BROADCAST_GLOBAL_TO_NODES), ("sender_nodes_to_edges", blocks.broadcast_sender_nodes_to_edges, SENDER_NODES_TO_EDGES), ("receiver_nodes_to_edges", blocks.broadcast_receiver_nodes_to_edges, RECEIVER_NODES_TO_EDGES), ) def test_output_values_larger_rank(self, broadcaster, expected): """Test the broadcasted output value.""" input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) input_graph = input_graph.map( lambda v: tf.reshape(v, [v.get_shape().as_list()[0]] + [2, -1])) broadcasted = broadcaster(input_graph) with tf.Session() as sess: broadcasted_out = sess.run(broadcasted) self.assertNDArrayNear( np.reshape(np.array(expected, dtype=np.float32), [len(expected)] + [2, -1]), broadcasted_out, err=1e-4) @parameterized.named_parameters( ("globals_to_edges_no_globals", blocks.broadcast_globals_to_edges, ("globals",)), ("globals_to_nodes_no_globals", blocks.broadcast_globals_to_nodes, ("globals",)), ("sender_nodes_to_edges_none_nodes", blocks.broadcast_sender_nodes_to_edges, ("nodes",)), ("sender_nodes_to_edges_none_senders", blocks.broadcast_sender_nodes_to_edges, ("edges", "senders", "receivers")), ("receiver_nodes_to_edges_none_nodes", blocks.broadcast_receiver_nodes_to_edges, ("nodes",)), ) def test_missing_field_raises_exception(self, broadcaster, none_fields): """Test that an error is raised if a required field is `None`.""" input_graph = self._get_input_graph(none_fields) with self.assertRaisesRegexp( ValueError, "field cannot be None when broadcasting"): broadcaster(input_graph) class ReducersTest(GraphModuleTest): """Tests for the reducers.""" @parameterized.parameters( (blocks.unsorted_segment_min_or_zero, [[0., 0.], [0.1, -0.1], [0.2, -0.3], [0.4, -0.6], [0.7, -1.], [0.9, -0.9], [0., 0.]]), (blocks.unsorted_segment_max_or_zero, [[0., 0.], [0.1, -0.1], [0.3, -0.2], [0.6, -0.4], [1., -0.7], [0.9, -0.9], [0., 0.]]), ) def test_output_values(self, reducer, expected_values): input_values_np = np.array([[0.1, -0.1], [0.2, -0.2], [0.3, -0.3], [0.4, -0.4], [0.5, -0.5], [0.6, -0.6], [0.7, -0.7], [0.8, -0.8], [0.9, -0.9], [1., -1.]], dtype=np.float32) input_indices_np = np.array([1, 2, 2, 3, 3, 3, 4, 4, 5, 4], dtype=np.int32) num_groups_np = np.array(7, dtype=np.int32) input_indices = tf.constant(input_indices_np, dtype=tf.int32) input_values = tf.constant(input_values_np, dtype=tf.float32) num_groups = tf.constant(num_groups_np, dtype=tf.int32) reduced = reducer(input_values, input_indices, num_groups) with tf.Session() as sess: reduced_out = sess.run(reduced) self.assertNDArrayNear( np.array(expected_values, dtype=np.float32), reduced_out, err=1e-4) SEGMENT_SUM_EDGES_TO_GLOBALS = [ [302., 304., 306., 308.], [-101., -102., -103., -104.], [302., 304., 306., 308.], [302., 304., 306., 308.], ] SEGMENT_SUM_NODES_TO_GLOBALS = [ [60.3, 60.6], [-60.3, -60.6], [60.3, 60.6], [60.3, 60.6], ] SEGMENT_SUM_SENT_EDGES_TO_NODES = [ [101., 102., 103., 104.], [201., 202., 203., 204.], [0., 0., 0., 0.], [0., 0., 0., 0.], [-101., -102., -103., -104.], [0., 0., 0., 0.], [0., 0., 0., 0.], [302., 304., 306., 308.], [0., 0., 0., 0.,], [101., 102., 103., 104.], [0., 0., 0., 0.], [201., 202., 203., 204.], ] SEGMENT_SUM_RECEIVED_EDGES_TO_NODES = [ [0., 0., 0., 0.], [101., 102., 103., 104.], [201., 202., 203., 204.], [0., 0., 0., 0.], [0., 0., 0., 0.], [-101., -102., -103., -104.], [101., 102., 103., 104.], [0., 0., 0., 0.], [201., 202., 203., 204.], [0., 0., 0., 0.], [302., 304., 306., 308,], [0., 0., 0., 0.], ] class FieldAggregatorsTest(GraphModuleTest): @parameterized.named_parameters( ("edges_to_globals", blocks.EdgesToGlobalsAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_EDGES_TO_GLOBALS,), ("nodes_to_globals", blocks.NodesToGlobalsAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_NODES_TO_GLOBALS,), ("sent_edges_to_nodes", blocks.SentEdgesToNodesAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_SENT_EDGES_TO_NODES,), ("received_edges_to_nodes", blocks.ReceivedEdgesToNodesAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_RECEIVED_EDGES_TO_NODES), ) def test_output_values(self, aggregator, expected): input_graph = self._get_input_graph() aggregated = aggregator(input_graph) with tf.Session() as sess: aggregated_out = sess.run(aggregated) self.assertNDArrayNear( np.array(expected, dtype=np.float32), aggregated_out, err=1e-4) @parameterized.named_parameters( ("edges_to_globals", blocks.EdgesToGlobalsAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_EDGES_TO_GLOBALS,), ("nodes_to_globals", blocks.NodesToGlobalsAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_NODES_TO_GLOBALS,), ("sent_edges_to_nodes", blocks.SentEdgesToNodesAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_SENT_EDGES_TO_NODES,), ("received_edges_to_nodes", blocks.ReceivedEdgesToNodesAggregator(tf.unsorted_segment_sum), SEGMENT_SUM_RECEIVED_EDGES_TO_NODES), ) def test_output_values_larger_rank(self, aggregator, expected): input_graph = self._get_input_graph() input_graph = input_graph.map( lambda v: tf.reshape(v, [v.get_shape().as_list()[0]] + [2, -1])) aggregated = aggregator(input_graph) with tf.Session() as sess: aggregated_out = sess.run(aggregated) self.assertNDArrayNear( np.reshape(np.array(expected, dtype=np.float32), [len(expected)] + [2, -1]), aggregated_out, err=1e-4) @parameterized.named_parameters( ("received edges to nodes missing edges", blocks.ReceivedEdgesToNodesAggregator, "edges"), ("sent edges to nodes missing edges", blocks.SentEdgesToNodesAggregator, "edges"), ("nodes to globals missing nodes", blocks.NodesToGlobalsAggregator, "nodes"), ("edges to globals missing nodes", blocks.EdgesToGlobalsAggregator, "edges"),) def test_missing_field_raises_exception(self, constructor, none_field): """Tests that aggregator fail if a required field is missing.""" input_graph = self._get_input_graph([none_field]) with self.assertRaisesRegexp(ValueError, none_field): constructor(tf.unsorted_segment_sum)(input_graph) @parameterized.named_parameters( ("received edges to nodes missing nodes and globals", blocks.ReceivedEdgesToNodesAggregator, ["nodes", "globals"]), ("sent edges to nodes missing nodes and globals", blocks.SentEdgesToNodesAggregator, ["nodes", "globals"]), ("nodes to globals missing edges and globals", blocks.NodesToGlobalsAggregator, ["edges", "receivers", "senders", "globals"]), ("edges to globals missing globals", blocks.EdgesToGlobalsAggregator, ["globals"]), ) def test_unused_field_can_be_none(self, constructor, none_fields): """Tests that aggregator fail if a required field is missing.""" input_graph = self._get_input_graph(none_fields) constructor(tf.unsorted_segment_sum)(input_graph) class EdgeBlockTest(GraphModuleTest): def setUp(self): super(EdgeBlockTest, self).setUp() self._scale = 10. self._edge_model_fn = lambda: lambda features: features * self._scale @parameterized.named_parameters( ("all inputs", True, True, True, True), ("edges nodes only", True, False, False, False), ("receiver nodes only", False, True, False, False), ("sender nodes only", False, False, True, False), ("globals only", False, False, False, True), ("edges and sender nodes", True, False, True, False), ("receiver nodes and globals", False, True, False, True), ) def test_output_values( self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals): """Compares the output of an EdgeBlock to an explicit computation.""" input_graph = self._get_input_graph() edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) output_graph = edge_block(input_graph) model_inputs = [] if use_edges: model_inputs.append(input_graph.edges) if use_receiver_nodes: model_inputs.append(blocks.broadcast_receiver_nodes_to_edges(input_graph)) if use_sender_nodes: model_inputs.append(blocks.broadcast_sender_nodes_to_edges(input_graph)) if use_globals: model_inputs.append(blocks.broadcast_globals_to_edges(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.nodes, output_graph.nodes) self.assertEqual(input_graph.globals, output_graph.globals) with tf.Session() as sess: output_graph_out, model_inputs_out = sess.run( (output_graph, model_inputs)) expected_output_edges = model_inputs_out * self._scale self.assertNDArrayNear( expected_output_edges, output_graph_out.edges, err=1e-4) @parameterized.named_parameters( ("all inputs", True, True, True, True, 12), ("edges only", True, False, False, False, 4), ("receivers only", False, True, False, False, 2), ("senders only", False, False, True, False, 2), ("globals only", False, False, False, True, 4), ) def test_created_variables(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by an EdgeBlock.""" output_size = 10 expected_var_shapes_dict = { "edge_block/mlp/linear_0/b:0": [output_size], "edge_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() edge_block = blocks.EdgeBlock( edge_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) edge_block(input_graph) variables = edge_block.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing node (receivers only)", False, True, False, False, ("nodes",)), ("missing node (senders only)", False, False, True, False, ("nodes",)), ("missing edge data", True, False, False, False, ("edges",)), ("missing edges (but no edge consumption)", False, True, True, False, ("edges", "senders", "receivers")), ("missing globals", False, False, False, True, ("globals",)), ) def test_missing_field_raises_exception( self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, none_fields): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph(none_fields) edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) with self.assertRaisesRegexp(ValueError, "field cannot be None"): edge_block(input_graph) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched edges and r. nodes", True, True, False, False, "nodes"), ("mismatched edges and s. nodes", True, False, True, False, "nodes"), ("mismatched edges and globals", True, False, False, True, "edges"), ("mismatched nodes and globals", False, True, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals ) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, False, False, True, "nodes"), ("mismatched edges", False, True, True, True, "edges"), ("mismatched globals", True, True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_nodes, use_sender_nodes=use_nodes, use_globals=use_globals) output_graph = edge_block(input_graph) model_inputs = [] if use_edges: model_inputs.append(input_graph.edges) if use_nodes: model_inputs.append(blocks.broadcast_receiver_nodes_to_edges(input_graph)) model_inputs.append(blocks.broadcast_sender_nodes_to_edges(input_graph)) if use_globals: model_inputs.append(blocks.broadcast_globals_to_edges(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.nodes, output_graph.nodes) self.assertEqual(input_graph.globals, output_graph.globals) with tf.Session() as sess: actual_edges, model_inputs_out = sess.run( (output_graph.edges, model_inputs)) expected_output_edges = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_edges, actual_edges, err=1e-4) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegexp(ValueError, "At least one of "): blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=False, use_receiver_nodes=False, use_sender_nodes=False, use_globals=False) class NodeBlockTest(GraphModuleTest): def setUp(self): super(NodeBlockTest, self).setUp() self._scale = 10. self._node_model_fn = lambda: lambda features: features * self._scale @parameterized.named_parameters( ("all inputs, custom reductions", True, True, True, True, tf.unsorted_segment_sum, tf.unsorted_segment_mean), ("received edges only, blocks reducer", True, False, False, False, blocks.unsorted_segment_max_or_zero, None), ("sent edges only, custom reduction", False, True, False, False, None, tf.unsorted_segment_prod), ("nodes only", False, False, True, False, None, None), ("globals only", False, False, False, True, None, None), ("received edges and nodes, custom reductions", True, False, True, False, blocks.unsorted_segment_min_or_zero, tf.unsorted_segment_prod), ("sent edges and globals, custom reduction", False, True, False, True, None, blocks.unsorted_segment_min_or_zero), ) def test_output_values( self, use_received_edges, use_sent_edges, use_nodes, use_globals, received_edges_reducer, sent_edges_reducer): """Compares the output of a NodeBlock to an explicit computation.""" input_graph = self._get_input_graph() node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) output_graph = node_block(input_graph) model_inputs = [] if use_received_edges: model_inputs.append( blocks.ReceivedEdgesToNodesAggregator( received_edges_reducer)(input_graph)) if use_sent_edges: model_inputs.append( blocks.SentEdgesToNodesAggregator(sent_edges_reducer)(input_graph)) if use_nodes: model_inputs.append(input_graph.nodes) if use_globals: model_inputs.append(blocks.broadcast_globals_to_nodes(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.edges, output_graph.edges) self.assertEqual(input_graph.globals, output_graph.globals) with tf.Session() as sess: output_graph_out, model_inputs_out = sess.run( (output_graph, model_inputs)) expected_output_nodes = model_inputs_out * self._scale self.assertNDArrayNear( expected_output_nodes, output_graph_out.nodes, err=1e-4) @parameterized.named_parameters( ("all inputs", True, True, True, True, 14), ("received edges only", True, False, False, False, 4), ("sent edges only", False, True, False, False, 4), ("nodes only", False, False, True, False, 2), ("globals only", False, False, False, True, 4), ) def test_created_variables(self, use_received_edges, use_sent_edges, use_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by a NodeBlock.""" output_size = 10 expected_var_shapes_dict = { "node_block/mlp/linear_0/b:0": [output_size], "node_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() node_block = blocks.NodeBlock( node_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals) node_block(input_graph) variables = node_block.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing nodes", False, False, True, False, ("nodes",)), ("missing edge data (receivers only)", True, False, False, False, ("edges",)), ("missing edge data (senders only)", False, True, False, False, ("edges",)), ("missing globals", False, False, False, True, ("globals",)), ) def test_missing_field_raises_exception( self, use_received_edges, use_sent_edges, use_nodes, use_globals, none_fields): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph(none_fields) node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals) with self.assertRaisesRegexp(ValueError, "field cannot be None"): node_block(input_graph) @parameterized.named_parameters( ("no received edges reducer", True, False, None, tf.unsorted_segment_sum), ("no sent edges reducer", False, True, tf.unsorted_segment_sum, None), ) def test_missing_aggregation_raises_exception( self, use_received_edges, use_sent_edges, received_edges_reducer, sent_edges_reducer): """Checks that missing a required aggregation argument raises an error.""" with self.assertRaisesRegexp(ValueError, "should not be None"): blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=False, use_globals=False, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched nodes and r. edges", True, False, True, False, "edges"), ("mismatched nodes and s. edges", True, False, True, False, "edges"), ("mismatched edges and globals", True, False, False, True, "globals"), ("mismatched nodes and globals", False, True, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_received_edges, use_sent_edges, use_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals ) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, True, False, True, "nodes"), ("mismatched edges", False, False, True, True, "edges"), ("mismatched globals", True, True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_received_edges, use_sent_edges, use_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_edges, use_sent_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) output_graph = node_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.ReceivedEdgesToNodesAggregator( tf.unsorted_segment_sum)(input_graph)) model_inputs.append( blocks.SentEdgesToNodesAggregator( tf.unsorted_segment_sum)(input_graph)) if use_nodes: model_inputs.append(input_graph.nodes) if use_globals: model_inputs.append(blocks.broadcast_globals_to_nodes(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.edges, output_graph.edges) self.assertEqual(input_graph.globals, output_graph.globals) with tf.Session() as sess: actual_nodes, model_inputs_out = sess.run( (output_graph.nodes, model_inputs)) expected_output_nodes = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_nodes, actual_nodes, err=1e-4) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegexp(ValueError, "At least one of "): blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=False, use_sent_edges=False, use_nodes=False, use_globals=False) class GlobalBlockTest(GraphModuleTest): """Tests for the GlobalBlock.""" def setUp(self): super(GlobalBlockTest, self).setUp() self._scale = 10. self._global_model_fn = lambda: lambda features: features * self._scale @parameterized.named_parameters( ("all_inputs, custom reductions", True, True, True, tf.unsorted_segment_sum, tf.unsorted_segment_mean), ("edges only, blocks reducer", True, False, False, blocks.unsorted_segment_max_or_zero, None), ("nodes only, custom reduction", False, True, False, None, tf.unsorted_segment_prod), ("globals only", False, False, True, None, None), ("edges and nodes, blocks reducer", True, True, False, blocks.unsorted_segment_min_or_zero, tf.unsorted_segment_prod), ("nodes and globals, blocks reducer", False, True, True, None, blocks.unsorted_segment_min_or_zero), ) def test_output_values( self, use_edges, use_nodes, use_globals, edges_reducer, nodes_reducer): """Compares the output of a GlobalBlock to an explicit computation.""" input_graph = self._get_input_graph() global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) output_graph = global_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.EdgesToGlobalsAggregator(edges_reducer)(input_graph)) if use_nodes: model_inputs.append( blocks.NodesToGlobalsAggregator(nodes_reducer)(input_graph)) if use_globals: model_inputs.append(input_graph.globals) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.edges, output_graph.edges) self.assertEqual(input_graph.nodes, output_graph.nodes) with tf.Session() as sess: output_graph_out, model_inputs_out = sess.run( (output_graph, model_inputs)) expected_output_globals = model_inputs_out * self._scale self.assertNDArrayNear( expected_output_globals, output_graph_out.globals, err=1e-4) @parameterized.named_parameters( ("default", True, True, True, 10), ("use edges only", True, False, False, 4), ("use nodes only", False, True, False, 2), ("use globals only", False, False, True, 4), ) def test_created_variables(self, use_edges, use_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by a GlobalBlock.""" output_size = 10 expected_var_shapes_dict = { "global_block/mlp/linear_0/b:0": [output_size], "global_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() global_block = blocks.GlobalBlock( global_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) global_block(input_graph) variables = global_block.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing edges", True, False, False, "edges"), ("missing nodes", False, True, False, "nodes"), ("missing globals", False, False, True, "globals"), ) def test_missing_field_raises_exception( self, use_edges, use_nodes, use_globals, none_field): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph([none_field]) global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) with self.assertRaisesRegexp(ValueError, "field cannot be None"): global_block(input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) output_graph = global_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.EdgesToGlobalsAggregator(tf.unsorted_segment_sum)(input_graph)) if use_nodes: model_inputs.append( blocks.NodesToGlobalsAggregator(tf.unsorted_segment_sum)(input_graph)) if use_globals: model_inputs.append(input_graph.globals) model_inputs = tf.concat(model_inputs, axis=-1) self.assertEqual(input_graph.edges, output_graph.edges) self.assertEqual(input_graph.nodes, output_graph.nodes) with tf.Session() as sess: actual_globals, model_inputs_out = sess.run( (output_graph.globals, model_inputs)) expected_output_globals = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_globals, actual_globals, err=1e-4) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched nodes and edges", True, True, False, "edges"), ("mismatched edges and globals", True, False, True, "globals"), ("mismatched nodes and globals", False, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_edges, use_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals ) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, False, True, "nodes"), ("mismatched edges", False, True, True, "edges"), ("mismatched globals", True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_edges, use_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegexp(ValueError, "At least one of "): blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=False, use_nodes=False, use_globals=False) @parameterized.named_parameters( ("missing edges reducer", True, False, None, tf.unsorted_segment_sum), ("missing nodes reducer", False, True, tf.unsorted_segment_sum, None), ) def test_missing_aggregation_raises_exception( self, use_edges, use_nodes, edges_reducer, nodes_reducer): """Checks that missing a required aggregation argument raises an error.""" with self.assertRaisesRegexp(ValueError, "should not be None"): blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=False, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) def _mask_leading_dimension(tensor): return tf.placeholder_with_default(tensor, [None] + tensor.get_shape().as_list()[1:]) class CommonBlockTests(GraphModuleTest): """Tests that are common to the EdgeBlock, NodeBlock and GlobalBlock.""" @parameterized.named_parameters( ("edge block", blocks.EdgeBlock), ("node block", blocks.NodeBlock), ("global block", blocks.GlobalBlock), ) def test_dynamic_batch_sizes(self, block_constructor): """Checks that all batch sizes are as expected through a GraphNetwork.""" input_graph = self._get_input_graph() placeholders = input_graph.map(_mask_leading_dimension, graphs.ALL_FIELDS) model = block_constructor( functools.partial(snt.nets.MLP, output_sizes=[10])) output = model(placeholders) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) other_input_graph = utils_np.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) actual = sess.run(output, {placeholders: other_input_graph}) for k, v in other_input_graph._asdict().items(): self.assertEqual(v.shape[0], getattr(actual, k).shape[0]) @parameterized.named_parameters( ("float64 data, edge block", tf.float64, tf.int32, blocks.EdgeBlock), ("int64 indices, edge block", tf.float32, tf.int64, blocks.EdgeBlock), ("float64 data, node block", tf.float64, tf.int32, blocks.NodeBlock), ("int64 indices, node block", tf.float32, tf.int64, blocks.NodeBlock), ("float64 data, global block", tf.float64, tf.int32, blocks.GlobalBlock), ("int64 indices, global block", tf.float32, tf.int64, blocks.GlobalBlock), ) def test_dtypes(self, data_dtype, indices_dtype, block_constructor): """Checks that all the output types are as expected for blocks.""" input_graph = self._get_input_graph() input_graph = input_graph.map(lambda v: tf.cast(v, data_dtype), ["nodes", "edges", "globals"]) input_graph = input_graph.map(lambda v: tf.cast(v, indices_dtype), ["receivers", "senders"]) model = block_constructor( functools.partial(snt.nets.MLP, output_sizes=[10])) output = model(input_graph) for field in ["nodes", "globals", "edges"]: self.assertEqual(data_dtype, getattr(output, field).dtype) for field in ["receivers", "senders"]: self.assertEqual(indices_dtype, getattr(output, field).dtype) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests/blocks_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for modules.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl.testing import parameterized from graph_nets import blocks from graph_nets import graphs from graph_nets import modules from graph_nets import utils_np from graph_nets import utils_tf import numpy as np import sonnet as snt import tensorflow as tf SMALL_GRAPH_1 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 1], "receivers": [1, 2], } SMALL_GRAPH_2 = { "globals": [-1.1, -1.2, -1.3], "nodes": [[-10.1, -10.2], [-20.1, -20.2], [-30.1, -30.2]], "edges": [[-101., -102., -103., -104.]], "senders": [1,], "receivers": [2,], } SMALL_GRAPH_3 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [1, 1], "receivers": [0, 2], } SMALL_GRAPH_4 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 2], "receivers": [1, 1], } def _mask_leading_dimension(tensor): return tf.placeholder_with_default(tensor, [None] + tensor.get_shape().as_list()[1:]) class GraphModuleTest(tf.test.TestCase, parameterized.TestCase): """Base class for all the tests in this file.""" def setUp(self): super(GraphModuleTest, self).setUp() tf.set_random_seed(0) def _assert_all_none_or_all_close(self, expected, actual, *args, **kwargs): if expected is None: return self.assertAllEqual(expected, actual) return self.assertAllClose(expected, actual, *args, **kwargs) def _get_input_graph(self, none_field=None): input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2, SMALL_GRAPH_3, SMALL_GRAPH_4]) if none_field: input_graph = input_graph.replace(**{none_field: None}) return input_graph def _get_shaped_input_graph(self): return graphs.GraphsTuple( nodes=tf.zeros([3, 4, 5, 11], dtype=tf.float32), edges=tf.zeros([5, 4, 5, 12], dtype=tf.float32), globals=tf.zeros([2, 4, 5, 13], dtype=tf.float32), receivers=tf.range(5, dtype=tf.int32) // 3, senders=tf.range(5, dtype=tf.int32) % 3, n_node=tf.constant([2, 1], dtype=tf.int32), n_edge=tf.constant([3, 2], dtype=tf.int32), ) def _get_shaped_model_fns(self): edge_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3]) node_model_fn = functools.partial( snt.Conv2D, output_channels=8, kernel_shape=[3, 3]) global_model_fn = functools.partial( snt.Conv2D, output_channels=7, kernel_shape=[3, 3]) return edge_model_fn, node_model_fn, global_model_fn def _assert_build_and_run(self, network, input_graph): # No error at construction time. output = network(input_graph) # No error at runtime. with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(output) class GraphIndependentTest(GraphModuleTest): def _get_model(self, name=None): kwargs = { "edge_model_fn": functools.partial(snt.nets.MLP, output_sizes=[5]), "node_model_fn": functools.partial(snt.nets.MLP, output_sizes=[10]), "global_model_fn": functools.partial(snt.nets.MLP, output_sizes=[15]), } if name: kwargs["name"] = name return modules.GraphIndependent(**kwargs) def test_same_as_subblocks(self): """Compares the output to explicit subblocks output.""" input_graph = self._get_input_graph() model = self._get_model() output_graph = model(input_graph) expected_output_edges = model._edge_model(input_graph.edges) expected_output_nodes = model._node_model(input_graph.nodes) expected_output_globals = model._global_model(input_graph.globals) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_graph_out, expected_edges_out, expected_nodes_out, expected_globals_out) = sess.run( (output_graph, expected_output_edges, expected_output_nodes, expected_output_globals)) self._assert_all_none_or_all_close(expected_edges_out, output_graph_out.edges) self._assert_all_none_or_all_close(expected_nodes_out, output_graph_out.nodes) self._assert_all_none_or_all_close(expected_globals_out, output_graph_out.globals) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a GraphIndependent.""" name = name if name is not None else "graph_independent" expected_var_shapes_dict = { name + "/edge_model/mlp/linear_0/b:0": [5], name + "/edge_model/mlp/linear_0/w:0": [4, 5], name + "/node_model/mlp/linear_0/b:0": [10], name + "/node_model/mlp/linear_0/w:0": [2, 10], name + "/global_model/mlp/linear_0/b:0": [15], name + "/global_model/mlp/linear_0/w:0": [3, 15], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) def test_gradient_flow(self): """Verifies that gradient flow is as expected.""" input_graph = self._get_input_graph() model = self._get_model() output_graph = model(input_graph) for input_field in ["nodes", "edges", "globals"]: input_tensor = getattr(input_graph, input_field) for output_field in ["nodes", "edges", "globals"]: output_tensor = getattr(output_graph, output_field) gradients = tf.gradients(output_tensor, input_tensor) if input_field == output_field: self.assertNotEqual(None, gradients[0]) else: self.assertListEqual([None], gradients) @parameterized.named_parameters( ("differently shaped edges", "edges"), ("differently shaped nodes", "nodes"), ("differently shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_no_raise(self, field_to_reshape): """A GraphIndependent does not make assumptions on its inputs shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) network = modules.GraphIndependent( edge_model_fn, node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class GraphNetworkTest(GraphModuleTest): def _get_model(self): edge_model_fn = functools.partial(snt.Linear, output_size=5) node_model_fn = functools.partial(snt.Linear, output_size=10) global_model_fn = functools.partial(snt.Linear, output_size=15) return modules.GraphNetwork( edge_model_fn=edge_model_fn, node_model_fn=node_model_fn, global_model_fn=global_model_fn) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a GraphNetwork.""" name = name if name is not None else "graph_network" expected_var_shapes_dict = { name + "/edge_block/mlp/linear_0/b:0": [5], name + "/edge_block/mlp/linear_0/w:0": [4 + 4 + 3, 5], name + "/node_block/mlp/linear_0/b:0": [10], name + "/node_block/mlp/linear_0/w:0": [5 + 2 + 3, 10], name + "/global_block/mlp/linear_0/b:0": [15], name + "/global_block/mlp/linear_0/w:0": [10 + 5 + 3, 15], } input_graph = self._get_input_graph() extra_kwargs = {"name": name} if name else {} model = modules.GraphNetwork( edge_model_fn=functools.partial(snt.nets.MLP, output_sizes=[5]), node_model_fn=functools.partial(snt.nets.MLP, output_sizes=[10]), global_model_fn=functools.partial(snt.nets.MLP, output_sizes=[15]), **extra_kwargs) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("reduce sum reduction", tf.unsorted_segment_sum,), ("reduce max or zero reduction", blocks.unsorted_segment_max_or_zero,),) def test_same_as_subblocks(self, reducer): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock` and `GlobalBlock`. """ input_graph = self._get_input_graph() edge_model_fn = functools.partial(snt.Linear, output_size=5) node_model_fn = functools.partial(snt.Linear, output_size=10) global_model_fn = functools.partial(snt.Linear, output_size=15) graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, node_model_fn=node_model_fn, global_model_fn=global_model_fn, reducer=reducer) output_graph = graph_network(input_graph) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: graph_network._edge_block._edge_model, use_sender_nodes=True, use_edges=True, use_receiver_nodes=True, use_globals=True) node_block = blocks.NodeBlock( node_model_fn=lambda: graph_network._node_block._node_model, use_nodes=True, use_sent_edges=False, use_received_edges=True, use_globals=True, received_edges_reducer=reducer) global_block = blocks.GlobalBlock( global_model_fn=lambda: graph_network._global_block._global_model, use_nodes=True, use_edges=True, use_globals=True, edges_reducer=reducer, nodes_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = node_block(expected_output_edge_block) expected_output_global_block = global_block(expected_output_node_block) expected_edges = expected_output_edge_block.edges expected_nodes = expected_output_node_block.nodes expected_globals = expected_output_global_block.globals with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_graph_out, expected_edges_out, expected_nodes_out, expected_globals_out) = sess.run( (output_graph, expected_edges, expected_nodes, expected_globals)) self._assert_all_none_or_all_close(expected_edges_out, output_graph_out.edges) self._assert_all_none_or_all_close(expected_nodes_out, output_graph_out.nodes) self._assert_all_none_or_all_close(expected_globals_out, output_graph_out.globals) def test_dynamic_batch_sizes(self): """Checks that all batch sizes are as expected through a GraphNetwork.""" input_graph = self._get_input_graph() placeholders = input_graph.map(_mask_leading_dimension, graphs.ALL_FIELDS) model = self._get_model() output = model(placeholders) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) other_input_graph = utils_np.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) actual = sess.run(output, {placeholders: other_input_graph}) for k, v in other_input_graph._asdict().items(): self.assertEqual(v.shape[0], getattr(actual, k).shape[0]) @parameterized.named_parameters( ("float64 data", tf.float64, tf.int32), ("int64 indices", tf.float32, tf.int64),) def test_dtypes(self, data_dtype, indices_dtype): """Checks that all the output types are as expected in a GraphNetwork.""" input_graph = self._get_input_graph() input_graph = input_graph.map(lambda v: tf.cast(v, data_dtype), ["nodes", "globals", "edges"]) input_graph = input_graph.map(lambda v: tf.cast(v, indices_dtype), ["senders", "receivers"]) model = self._get_model() output = model(input_graph) for field in ["nodes", "globals", "edges"]: self.assertEqual(data_dtype, getattr(output, field).dtype) for field in ["receivers", "senders"]: self.assertEqual(indices_dtype, getattr(output, field).dtype) @parameterized.named_parameters( ("edges only", True, False, False, False), ("receivers only", False, True, False, False), ("senders only", False, False, True, False), ("globals only", False, False, False, True),) def test_edge_block_options(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals): """Test for configuring the EdgeBlock options.""" reducer = tf.unsorted_segment_sum input_graph = self._get_input_graph() edge_model_fn = functools.partial(snt.Linear, output_size=10) edge_block_opt = {"use_edges": use_edges, "use_receiver_nodes": use_receiver_nodes, "use_sender_nodes": use_sender_nodes, "use_globals": use_globals} # Identity node model node_model_fn = lambda: tf.identity node_block_opt = {"use_received_edges": False, "use_sent_edges": False, "use_nodes": True, "use_globals": False} # Identity global model global_model_fn = lambda: tf.identity global_block_opt = {"use_globals": True, "use_nodes": False, "use_edges": False} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt, reducer=reducer) output_graph = graph_network(input_graph) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: graph_network._edge_block._edge_model, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = expected_output_edge_block expected_output_global_block = expected_output_node_block expected_edges = expected_output_edge_block.edges expected_nodes = expected_output_node_block.nodes expected_globals = expected_output_global_block.globals with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_graph_out, expected_edges_out, expected_nodes_out, expected_globals_out) = sess.run( (output_graph, expected_edges, expected_nodes, expected_globals)) self._assert_all_none_or_all_close(expected_edges_out, output_graph_out.edges) self._assert_all_none_or_all_close(expected_nodes_out, output_graph_out.nodes) self._assert_all_none_or_all_close(expected_globals_out, output_graph_out.globals) @parameterized.named_parameters( ("received edges only", True, False, False, False, None, None), ("received edges, max reduction", True, False, False, False, tf.unsorted_segment_max, None), ("sent edges only", False, True, False, False, None, None), ("sent edges, max reduction", False, True, False, False, None, tf.unsorted_segment_max), ("nodes only", False, False, True, False, None, None), ("globals only", False, False, False, True, None, None), ) def test_node_block_options(self, use_received_edges, use_sent_edges, use_nodes, use_globals, received_edges_reducer, sent_edges_reducer): """Test for configuring the NodeBlock options.""" input_graph = self._get_input_graph() if use_received_edges: received_edges_reducer = received_edges_reducer or tf.unsorted_segment_sum if use_sent_edges: sent_edges_reducer = sent_edges_reducer or tf.unsorted_segment_sum # Identity edge model. edge_model_fn = lambda: tf.identity edge_block_opt = {"use_edges": True, "use_receiver_nodes": False, "use_sender_nodes": False, "use_globals": False} node_model_fn = functools.partial(snt.Linear, output_size=10) node_block_opt = {"use_received_edges": use_received_edges, "use_sent_edges": use_sent_edges, "use_nodes": use_nodes, "use_globals": use_globals, "received_edges_reducer": received_edges_reducer, "sent_edges_reducer": sent_edges_reducer} # Identity global model global_model_fn = lambda: tf.identity global_block_opt = {"use_globals": True, "use_nodes": False, "use_edges": False} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt) output_graph = graph_network(input_graph) node_block = blocks.NodeBlock( node_model_fn=lambda: graph_network._node_block._node_model, use_nodes=use_nodes, use_sent_edges=use_sent_edges, use_received_edges=use_received_edges, use_globals=use_globals, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) expected_output_edge_block = input_graph expected_output_node_block = node_block(input_graph) expected_output_global_block = expected_output_node_block expected_edges = expected_output_edge_block.edges expected_nodes = expected_output_node_block.nodes expected_globals = expected_output_global_block.globals with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_graph_out, expected_edges_out, expected_nodes_out, expected_globals_out) = sess.run( (output_graph, expected_edges, expected_nodes, expected_globals)) self._assert_all_none_or_all_close(expected_edges_out, output_graph_out.edges) self._assert_all_none_or_all_close(expected_nodes_out, output_graph_out.nodes) self._assert_all_none_or_all_close(expected_globals_out, output_graph_out.globals) @parameterized.named_parameters( ("edges only", True, False, False, None, None), ("edges only, max", True, False, False, tf.unsorted_segment_max, None), ("nodes only", False, True, False, None, None), ("nodes only, max", False, True, False, None, tf.unsorted_segment_max), ("globals only", False, False, True, None, None), ) def test_global_block_options(self, use_edges, use_nodes, use_globals, edges_reducer, nodes_reducer): """Test for configuring the NodeBlock options.""" input_graph = self._get_input_graph() if use_edges: edges_reducer = edges_reducer or tf.unsorted_segment_sum if use_nodes: nodes_reducer = nodes_reducer or tf.unsorted_segment_sum # Identity edge model. edge_model_fn = lambda: tf.identity edge_block_opt = {"use_edges": True, "use_receiver_nodes": False, "use_sender_nodes": False, "use_globals": False} # Identity node model node_model_fn = lambda: tf.identity node_block_opt = {"use_received_edges": False, "use_sent_edges": False, "use_nodes": True, "use_globals": False} global_model_fn = functools.partial(snt.Linear, output_size=10) global_block_opt = {"use_globals": use_globals, "use_nodes": use_nodes, "use_edges": use_edges, "edges_reducer": edges_reducer, "nodes_reducer": nodes_reducer} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt) output_graph = graph_network(input_graph) global_block = blocks.GlobalBlock( global_model_fn=lambda: graph_network._global_block._global_model, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) expected_output_edge_block = input_graph expected_output_node_block = expected_output_edge_block expected_output_global_block = global_block(expected_output_node_block) expected_edges = expected_output_edge_block.edges expected_nodes = expected_output_node_block.nodes expected_globals = expected_output_global_block.globals with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_graph_out, expected_edges_out, expected_nodes_out, expected_globals_out) = sess.run( (output_graph, expected_edges, expected_nodes, expected_globals)) self._assert_all_none_or_all_close(expected_edges_out, output_graph_out.edges) self._assert_all_none_or_all_close(expected_nodes_out, output_graph_out.nodes) self._assert_all_none_or_all_close(expected_globals_out, output_graph_out.globals) def test_higher_rank_outputs(self): """Tests that a graph net can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() network = modules.GraphNetwork(*self._get_shaped_model_fns()) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("wrongly shaped edges", "edges"), ("wrongly shaped nodes", "nodes"), ("wrongly shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_raises(self, field_to_reshape): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) graph_network = modules.GraphNetwork( edge_model_fn, node_model_fn, global_model_fn) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): graph_network(input_graph) def test_incompatible_higher_rank_partial_outputs_raises(self): """A error should be raised if partial outputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() edge_model_fn_2 = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) graph_network = modules.GraphNetwork( edge_model_fn_2, node_model_fn, global_model_fn) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): graph_network(input_graph) node_model_fn_2 = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) graph_network = modules.GraphNetwork( edge_model_fn, node_model_fn_2, global_model_fn) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): graph_network(input_graph) class InteractionNetworkTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=5), "node_model_fn": functools.partial(snt.Linear, output_size=10) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.InteractionNetwork(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by an InteractionNetwork.""" name = name if name is not None else "interaction_network" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [5], name + "/edge_block/linear/w:0": [2 + 2 + 4, 5], name + "/node_block/linear/b:0": [10], name + "/node_block/linear/w:0": [5 + 2, 10], } input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) model = self._get_model(name=name) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.unsorted_segment_sum,), ("max or zero reduction", blocks.unsorted_segment_max_or_zero,), ("no globals", tf.unsorted_segment_sum, "globals"), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock`s. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) interaction_network = self._get_model(reducer) output_graph = interaction_network(input_graph) edges_out = output_graph.edges nodes_out = output_graph.nodes self.assertAllEqual(input_graph.globals, output_graph.globals) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: interaction_network._edge_block._edge_model, use_sender_nodes=True, use_edges=True, use_receiver_nodes=True, use_globals=False) node_block = blocks.NodeBlock( node_model_fn=lambda: interaction_network._node_block._node_model, use_nodes=True, use_sent_edges=False, use_received_edges=True, use_globals=False, received_edges_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = node_block(expected_output_edge_block) expected_edges = expected_output_edge_block.edges expected_nodes = expected_output_node_block.nodes with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (actual_edges_out, actual_nodes_out, expected_edges_out, expected_nodes_out) = sess.run( [edges_out, nodes_out, expected_edges, expected_nodes]) self._assert_all_none_or_all_close(expected_edges_out, actual_edges_out) self._assert_all_none_or_all_close(expected_nodes_out, actual_nodes_out) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edge data", ["edges"],), ("no edges", ["edges", "receivers", "senders"],), ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) interaction_network = self._get_model() with self.assertRaises(ValueError): interaction_network(input_graph) def test_higher_rank_outputs(self): """Tests that an IN can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) self._assert_build_and_run(graph_network, input_graph) @parameterized.named_parameters( ("wrongly shaped edges", "edges"), ("wrongly shaped nodes", "nodes"),) def test_incompatible_higher_rank_inputs_raises(self, field_to_reshape): """Am exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): graph_network(input_graph) def test_incompatible_higher_rank_inputs_no_raise(self): """The globals can have an arbitrary shape in the input.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() input_graph = input_graph.replace( globals=tf.transpose(input_graph.globals, [0, 2, 1, 3])) graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) self._assert_build_and_run(graph_network, input_graph) class RelationNetworkTest(GraphModuleTest): def _get_model(self, reducer=tf.unsorted_segment_sum, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=5), "global_model_fn": functools.partial(snt.Linear, output_size=15) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.RelationNetwork(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a RelationNetwork.""" name = name if name is not None else "relation_network" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [5], name + "/edge_block/linear/w:0": [2 + 2, 5], name + "/global_block/linear/b:0": [15], name + "/global_block/linear/w:0": [5, 15], } input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) model = self._get_model(name=name) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.unsorted_segment_sum, None), ("max or zero reduction", blocks.unsorted_segment_max_or_zero, None), ("no edges", tf.unsorted_segment_sum, "edges"), ("no globals", tf.unsorted_segment_sum, "globals"), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `GlobalBlock`. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) relation_network = self._get_model(reducer) output_graph = relation_network(input_graph) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: relation_network._edge_block._edge_model, use_edges=False, use_receiver_nodes=True, use_sender_nodes=True, use_globals=False) global_block = blocks.GlobalBlock( global_model_fn=lambda: relation_network._global_block._global_model, use_edges=True, use_nodes=False, use_globals=False, edges_reducer=reducer, nodes_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_global_block = global_block(expected_output_edge_block) self.assertEqual(input_graph.edges, output_graph.edges) self.assertEqual(input_graph.nodes, output_graph.nodes) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (actual_globals_out, expected_globals_out) = sess.run( (output_graph.globals, expected_output_global_block.globals)) self._assert_all_none_or_all_close(expected_globals_out, actual_globals_out) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edges", ["edges", "receivers", "senders"],) ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) relation_network = self._get_model() with self.assertRaises(ValueError): relation_network(input_graph) @parameterized.named_parameters( ("differently shaped edges", "edges"), ("differently shaped nodes", "nodes"), ("differently shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_no_raise(self, field_to_reshape): """A RelationNetwork does not make assumptions on its inputs shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, _, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) network = modules.RelationNetwork(edge_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class DeepSetsTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "node_model_fn": functools.partial(snt.Linear, output_size=5), "global_model_fn": functools.partial(snt.Linear, output_size=15) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.DeepSets(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a DeepSets network.""" name = name if name is not None else "deep_sets" expected_var_shapes_dict = { name + "/node_block/linear/b:0": [5], name + "/node_block/linear/w:0": [2 + 3, 5], name + "/global_block/linear/b:0": [15], name + "/global_block/linear/w:0": [5, 15], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.unsorted_segment_sum, []), ("no edge data", tf.unsorted_segment_sum, ["edges"]), ("no edges", tf.unsorted_segment_sum, ["edges", "receivers", "senders"]), ("max or zero reduction", blocks.unsorted_segment_max_or_zero, []), ) def test_same_as_subblocks(self, reducer, none_fields): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the NodeBlock. none_fields: (list of strings) The corresponding fields are removed from the input graph. """ input_graph = self._get_input_graph() input_graph = input_graph.map(lambda _: None, none_fields) deep_sets = self._get_model(reducer) output_graph = deep_sets(input_graph) output_nodes = output_graph.nodes output_globals = output_graph.globals node_block = blocks.NodeBlock( node_model_fn=lambda: deep_sets._node_block._node_model, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=True) global_block = blocks.GlobalBlock( global_model_fn=lambda: deep_sets._global_block._global_model, use_edges=False, use_nodes=True, use_globals=False, nodes_reducer=reducer) node_block_out = node_block(input_graph) expected_nodes = node_block_out.nodes expected_globals = global_block(node_block_out).globals self.assertAllEqual(input_graph.edges, output_graph.edges) self.assertAllEqual(input_graph.receivers, output_graph.receivers) self.assertAllEqual(input_graph.senders, output_graph.senders) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) (output_nodes_, output_globals_, expected_nodes_, expected_globals_) = sess.run( [output_nodes, output_globals, expected_nodes, expected_globals]) self._assert_all_none_or_all_close(expected_nodes_, output_nodes_) self._assert_all_none_or_all_close(expected_globals_, output_globals_) @parameterized.parameters( ("nodes",), ("globals",), ) def test_field_must_not_be_none(self, none_field): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.replace(**{none_field: None}) deep_sets = self._get_model() with self.assertRaises(ValueError): deep_sets(input_graph) def test_incompatible_higher_rank_inputs_raises(self): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() _, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.replace( nodes=tf.transpose(input_graph.nodes, [0, 2, 1, 3])) graph_network = modules.DeepSets(node_model_fn, global_model_fn) with self.assertRaisesRegexp(ValueError, "in both shapes must be equal"): graph_network(input_graph) def test_incompatible_higher_rank_partial_outputs_no_raise(self): """There is no constraint on the size of the partial outputs.""" input_graph = self._get_shaped_input_graph() node_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) global_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3]) network = modules.DeepSets(node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) def test_incompatible_higher_rank_inputs_no_raise(self): """A DeepSets does not make assumptions on the shape if its input edges.""" input_graph = self._get_shaped_input_graph() _, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.replace( edges=tf.transpose(input_graph.edges, [0, 2, 1, 3])) network = modules.DeepSets(node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class CommNetTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=15), "node_encoder_model_fn": functools.partial(snt.Linear, output_size=8), "node_model_fn": functools.partial(snt.Linear, output_size=5), } if reducer is not None: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.CommNet(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a DeepSets network.""" name = name if name is not None else "comm_net" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [15], name + "/edge_block/linear/w:0": [2, 15], name + "/node_encoder_block/linear/b:0": [8], name + "/node_encoder_block/linear/w:0": [2, 8], name + "/node_block/linear/b:0": [5], name + "/node_block/linear/w:0": [15 + 8, 5], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.get_variables() var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.unsorted_segment_sum,), ("no edges", tf.unsorted_segment_sum, "edges"), ("no globals", tf.unsorted_segment_sum, "globals"), ("max or zero reduction", blocks.unsorted_segment_max_or_zero,), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock`s. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) comm_net = self._get_model(reducer) output_graph = comm_net(input_graph) output_nodes = output_graph.nodes edge_subblock = blocks.EdgeBlock( edge_model_fn=lambda: comm_net._edge_block._edge_model, use_edges=False, use_receiver_nodes=False, use_sender_nodes=True, use_globals=False) node_encoder_subblock = blocks.NodeBlock( node_model_fn=lambda: comm_net._node_encoder_block._node_model, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer) node_subblock = blocks.NodeBlock( node_model_fn=lambda: comm_net._node_block._node_model, use_received_edges=True, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer) edge_block_out = edge_subblock(input_graph) encoded_nodes = node_encoder_subblock(input_graph).nodes node_input_graph = input_graph.replace( edges=edge_block_out.edges, nodes=encoded_nodes) node_block_out = node_subblock(node_input_graph) expected_nodes = node_block_out.nodes self.assertAllEqual(input_graph.globals, output_graph.globals) self.assertAllEqual(input_graph.edges, output_graph.edges) self.assertAllEqual(input_graph.receivers, output_graph.receivers,) self.assertAllEqual(input_graph.senders, output_graph.senders) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) actual_nodes_output, expected_nodes_output = sess.run( [output_nodes, expected_nodes]) self._assert_all_none_or_all_close(expected_nodes_output, actual_nodes_output) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edges", ["edges", "receivers", "senders"],) ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) comm_net = self._get_model() with self.assertRaises(ValueError): comm_net(input_graph) def test_higher_rank_outputs(self): """Tests that a CommNet can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() graph_network = modules.CommNet(*self._get_shaped_model_fns()) self._assert_build_and_run(graph_network, input_graph) class SelfAttentionTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=15), "node_encoder_model_fn": functools.partial(snt.Linear, output_size=8), "node_model_fn": functools.partial(snt.Linear, output_size=5), } if reducer is not None: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.CommNet(**kwargs) LOGITS_1D = [np.log(2), np.log(2), np.log(2), 0., 0., 0.] SOFTMAX_1D = [1., 2/3, 0.5, 0.25, 0.25, 1/3] LOGITS_2D = [[np.log(2), 1.], [np.log(2), 1.], [np.log(2), 1.], [0., 1.], [0., 1.], [0., 1.]] SOFTMAX_2D = [[1., 1.], [2/3, 0.5], [1/2, 1/3], [1/4, 1/3], [1/4, 1/3], [1/3, 0.5]] SENDERS = [0, 2, 2, 3, 4, 3] RECEIVERS = [1, 5, 6, 6, 6, 5] N_NODE = [2, 5] N_EDGE = [1, 5] @parameterized.named_parameters( ("one dimensional", LOGITS_1D, SOFTMAX_1D), ("two dimensional", LOGITS_2D, SOFTMAX_2D),) def test_unsorted_segment_softmax(self, data, expected_softmax): """Verifies variable names and shapes created by a DeepSets network.""" data = tf.constant(data, dtype=tf.float32) segment_ids = tf.constant(self.RECEIVERS, dtype=tf.int32) num_segments = tf.constant(sum(self.N_NODE), dtype=tf.int32) actual_softmax = modules._unsorted_segment_softmax( data, segment_ids, num_segments) with tf.Session() as sess: actual_softmax_output = sess.run(actual_softmax) self.assertAllClose(expected_softmax, actual_softmax_output) @parameterized.named_parameters( ("one dimensional", LOGITS_1D, SOFTMAX_1D, modules._unsorted_segment_softmax), ("two dimensional", LOGITS_2D, SOFTMAX_2D, modules._unsorted_segment_softmax),) def test_received_edges_normalizer(self, logits, expected_normalized, normalizer): graph = graphs.GraphsTuple( nodes=None, edges=logits, globals=None, receivers=tf.constant(self.RECEIVERS, dtype=tf.int32), senders=tf.constant(self.SENDERS, dtype=tf.int32), n_node=tf.constant(self.N_NODE, dtype=tf.int32), n_edge=tf.constant(self.N_EDGE, dtype=tf.int32), ) actual_normalized_edges = modules._received_edges_normalizer( graph, normalizer) with tf.Session() as sess: actual_normalized_edges_output = sess.run(actual_normalized_edges) self.assertAllClose(expected_normalized, actual_normalized_edges_output) def test_self_attention(self): # Just one feature per node. values_np = np.arange(sum(self.N_NODE)) + 1. # Multiple heads, one positive values, one negative values. values_np = np.stack([values_np, values_np*-1.], axis=-1) # Multiple features per node, per head, at different scales. values_np = np.stack([values_np, values_np*0.1], axis=-1) values = tf.constant(values_np, dtype=tf.float32) keys_np = [ [[0.3, 0.4]]*2, # Irrelevant (only sender to one node) [[0.1, 0.5]]*2, # Not used (is not a sender) [[1, 0], [0, 1]], [[0, 1], [1, 0]], [[1, 1], [1, 1]], [[0.4, 0.3]]*2, # Not used (is not a sender) [[0.3, 0.2]]*2] # Not used (is not a sender) keys = tf.constant(keys_np, dtype=tf.float32) queries_np = [ [[0.2, 0.7]]*2, # Not used (is not a receiver) [[0.3, 0.2]]*2, # Irrelevant (only receives from one node) [[0.2, 0.8]]*2, # Not used (is not a receiver) [[0.2, 0.4]]*2, # Not used (is not a receiver) [[0.3, 0.9]]*2, # Not used (is not a receiver) [[0, np.log(2)], [np.log(3), 0]], [[np.log(2), 0], [0, np.log(3)]]] queries = tf.constant(queries_np, dtype=tf.float32) attention_graph = graphs.GraphsTuple( nodes=None, edges=None, globals=None, receivers=tf.constant(self.RECEIVERS, dtype=tf.int32), senders=tf.constant(self.SENDERS, dtype=tf.int32), n_node=tf.constant(self.N_NODE, dtype=tf.int32), n_edge=tf.constant(self.N_EDGE, dtype=tf.int32),) self_attention = modules.SelfAttention() output_graph = self_attention(values, keys, queries, attention_graph) mixed_nodes = output_graph.nodes with tf.Session() as sess: mixed_nodes_output = sess.run(mixed_nodes) expected_mixed_nodes = [ [[0., 0.], [0., 0.]], # Does not receive any edges [[1., 0.1], [-1., -0.1]], # Only receives from n0. [[0., 0.], [0., 0.]], # Does not receive any edges [[0., 0.], [0., 0.]], # Does not receive any edges [[0., 0.], [0., 0.]], # Does not receive any edges [[11/3, 11/3*0.1], # Head one, receives from n2(1/3) n3(2/3) [-15/4, -15/4*0.1]], # Head two, receives from n2(1/4) n3(3/4) [[20/5, 20/5*0.1], # Head one, receives from n2(2/5) n3(1/5) n4(2/5) [-28/7, -28/7*0.1]], # Head two, receives from n2(3/7) n3(1/7) n4(3/7) ] self.assertAllClose(expected_mixed_nodes, mixed_nodes_output) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests/modules_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for utils_tf.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from graph_nets import graphs from graph_nets import utils_np from graph_nets import utils_tf from graph_nets.tests import test_utils import networkx as nx import numpy as np from six.moves import range import tensorflow as tf import tree class RepeatTest(tf.test.TestCase, parameterized.TestCase): """Tests for `repeat`.""" @parameterized.named_parameters( ("base", (3,), [2, 3, 4], 0), ("empty_group_first", (3,), [0, 3, 4], 0), ("empty_group_middle", (3,), [2, 0, 4], 0), ("double_empty_group_middle", (4,), [2, 0, 0, 4], 0), ("empty_group_last", (3,), [2, 3, 0], 0), ("just_one_group", (1,), [2], 0), ("zero_groups", (0,), [], 0), ("axis 0", (2, 3, 4), [2, 3], 0), ("axis 1", (3, 2, 4), [2, 3], 1), ("axis 2", (4, 3, 2), [2, 3], 2), ("zero_groups_with_shape", (2, 0, 4), [], 1), ) def test_repeat(self, shape, repeats, axis): num_elements = np.prod(shape) t = np.arange(num_elements).reshape(*shape) expected = np.repeat(t, repeats, axis=axis) tensor = tf.constant(t) repeats = tf.constant(repeats, dtype=tf.int32) op = utils_tf.repeat(tensor, repeats, axis=axis) with tf.Session() as sess: actual = sess.run(op) self.assertAllEqual(expected, actual) @parameterized.named_parameters(("default", "custom_name", None), ("custom", None, "repeat")) def test_name_scope(self, name, expected_name): kwargs = {"name": name} if name else {} expected_name = expected_name if expected_name else name t = tf.zeros([3, 2, 4]) indices = tf.constant([2, 3]) with test_utils.assert_new_op_prefixes(self, expected_name + "/"): utils_tf.repeat(t, indices, axis=1, **kwargs) def _generate_graph(batch_index, n_nodes=4, add_edges=True): graph = nx.DiGraph() for node in range(n_nodes): node_data = {"features": np.array([node, batch_index], dtype=np.float32)} graph.add_node(node, **node_data) if add_edges: for edge, (receiver, sender) in enumerate(zip([0, 0, 1], [1, 2, 3])): if sender < n_nodes and receiver < n_nodes: edge_data = np.array([edge, edge + 1, batch_index], dtype=np.float64) graph.add_edge(sender, receiver, features=edge_data, index=edge) graph.graph["features"] = np.array([batch_index], dtype=np.float32) return graph class ConcatTest(tf.test.TestCase, parameterized.TestCase): """Tests for `concat`, along various axis.""" @parameterized.named_parameters( ("no nones", []), ("stateless graph", ["nodes", "edges", "globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_concat_first_axis(self, none_fields): graph_0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph_1 = utils_np.networkxs_to_graphs_tuple([_generate_graph(2, 2)]) graph_2 = utils_np.networkxs_to_graphs_tuple([_generate_graph(3, 3)]) graphs_ = [ gr.map(tf.convert_to_tensor, graphs.ALL_FIELDS) for gr in [graph_0, graph_1, graph_2] ] graphs_ = [gr.map(lambda _: None, none_fields) for gr in graphs_] concat_graph = utils_tf.concat(graphs_, axis=0) for none_field in none_fields: self.assertEqual(None, getattr(concat_graph, none_field)) concat_graph = concat_graph.map(tf.no_op, none_fields) with tf.Session() as sess: concat_graph = sess.run(concat_graph) if "nodes" not in none_fields: self.assertAllEqual( np.array([0, 1, 2, 0, 1, 0, 1, 0, 1, 2]), [x[0] for x in concat_graph.nodes]) self.assertAllEqual( np.array([0, 0, 0, 1, 1, 2, 2, 3, 3, 3]), [x[1] for x in concat_graph.nodes]) if "edges" not in none_fields: self.assertAllEqual( np.array([0, 1, 0, 0, 0, 1]), [x[0] for x in concat_graph.edges]) self.assertAllEqual( np.array([0, 0, 1, 2, 3, 3]), [x[2] for x in concat_graph.edges]) self.assertAllEqual(np.array([3, 2, 2, 3]), concat_graph.n_node) self.assertAllEqual(np.array([2, 1, 1, 2]), concat_graph.n_edge) if "senders" not in none_fields: # [1, 2], [1], [1], [1, 2] and 3, 2, 2, 3 nodes # So we are summing [1, 2, 1, 1, 2] with [0, 0, 3, 5, 7, 7] self.assertAllEqual(np.array([1, 2, 4, 6, 8, 9]), concat_graph.senders) if "receivers" not in none_fields: # [0, 0], [0], [0], [0, 0] and 3, 2, 2, 3 nodes # So we are summing [0, 0, 0, 0, 0, 0] with [0, 0, 3, 5, 7, 7] self.assertAllEqual(np.array([0, 0, 3, 5, 7, 7]), concat_graph.receivers) if "globals" not in none_fields: self.assertAllEqual(np.array([[0], [1], [2], [3]]), concat_graph.globals) def test_concat_last_axis(self): graph0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph1 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(2, 3), _generate_graph(3, 2)]) graph0 = graph0.map(tf.convert_to_tensor, graphs.ALL_FIELDS) graph1 = graph1.map(tf.convert_to_tensor, graphs.ALL_FIELDS) with tf.Session() as sess: concat_graph = sess.run(utils_tf.concat([graph0, graph1], axis=-1)) self.assertAllEqual( np.array([[0, 0, 0, 2], [1, 0, 1, 2], [2, 0, 2, 2], [0, 1, 0, 3], [1, 1, 1, 3]]), concat_graph.nodes) self.assertAllEqual( np.array([[0, 1, 0, 0, 1, 2], [1, 2, 0, 1, 2, 2], [0, 1, 1, 0, 1, 3]]), concat_graph.edges) self.assertAllEqual(np.array([3, 2]), concat_graph.n_node) self.assertAllEqual(np.array([2, 1]), concat_graph.n_edge) self.assertAllEqual(np.array([1, 2, 4]), concat_graph.senders) self.assertAllEqual(np.array([0, 0, 3]), concat_graph.receivers) self.assertAllEqual(np.array([[0, 2], [1, 3]]), concat_graph.globals) class BuildPlaceholdersTest(test_utils.GraphsTest, parameterized.TestCase): def _assert_expected_shapes(self, placeholders, but_for=None, num_graphs=None): if but_for is None: but_for = [] if "nodes" not in but_for: self.assertAllEqual([None, 2], placeholders.nodes.shape.as_list()) if "edges" not in but_for: self.assertAllEqual([None, 3], placeholders.edges.shape.as_list()) if "globals" not in but_for: self.assertAllEqual([num_graphs, 1], placeholders.globals.shape.as_list()) for key in ["receivers", "senders"]: if key not in but_for: self.assertAllEqual([None], getattr(placeholders, key).shape.as_list()) for key in ["n_node", "n_edge"]: if key not in but_for: self.assertAllEqual([num_graphs], getattr(placeholders, key).shape.as_list()) @parameterized.named_parameters( ("all_field_defined", [], False), ("no features", ["nodes", "edges", "globals"], False), ("no edges", ["edges", "receivers", "senders"], False), ("dynamic", [], True)) def test_build_placeholders_from_specs(self, none_fields, force_dynamic_num_graphs=False): num_graphs = 3 shapes = graphs.GraphsTuple( nodes=[3, 4], edges=[2], globals=[num_graphs, 4, 6], receivers=[None], senders=[18], n_node=[num_graphs], n_edge=[num_graphs], ) dtypes = graphs.GraphsTuple( nodes=tf.float64, edges=tf.int32, globals=tf.float32, receivers=tf.int64, senders=tf.int64, n_node=tf.int32, n_edge=tf.int64) dtypes = dtypes.map(lambda _: None, none_fields) shapes = shapes.map(lambda _: None, none_fields) placeholders = utils_tf._build_placeholders_from_specs( dtypes, shapes, force_dynamic_num_graphs=force_dynamic_num_graphs) for k in graphs.ALL_FIELDS: placeholder = getattr(placeholders, k) if k in none_fields: self.assertEqual(None, placeholder) else: self.assertEqual(getattr(dtypes, k), placeholder.dtype) if k not in ["n_node", "n_edge", "globals"] or force_dynamic_num_graphs: self.assertAllEqual([None] + getattr(shapes, k)[1:], placeholder.shape.as_list()) else: self.assertAllEqual([num_graphs] + getattr(shapes, k)[1:], placeholder.shape.as_list()) @parameterized.named_parameters(("static_num_graphs", False), ("dynamic_num_graphs", True)) def test_placeholders_from_data_dicts(self, force_dynamic_num_graphs): num_graphs = len(self.graphs_dicts_in) placeholders = utils_tf.placeholders_from_data_dicts( self.graphs_dicts_in, force_dynamic_num_graphs=force_dynamic_num_graphs) self.assertAllEqual([None, 7, 11], placeholders.nodes.shape.as_list()) self.assertAllEqual([None, 13, 14], placeholders.edges.shape.as_list()) global_shape = placeholders.globals.shape.as_list() if force_dynamic_num_graphs: self.assertAllEqual([None, 5, 3], global_shape) else: self.assertAllEqual([num_graphs, 5, 3], global_shape) for key in ["receivers", "senders"]: self.assertAllEqual([None], getattr(placeholders, key).shape.as_list()) for key in ["n_node", "n_edge"]: shape = getattr(placeholders, key).shape.as_list() if force_dynamic_num_graphs: self.assertAllEqual([None], shape) else: self.assertAllEqual([num_graphs], shape) def test_placeholders_from_networkxs(self): num_graphs = 16 networkxs = [ _generate_graph(batch_index) for batch_index in range(num_graphs) ] placeholders = utils_tf.placeholders_from_networkxs( networkxs, force_dynamic_num_graphs=False) self._assert_expected_shapes(placeholders, num_graphs=num_graphs) self.assertEqual(tf.float32, placeholders.nodes.dtype) self.assertEqual(tf.float64, placeholders.edges.dtype) def test_placeholders_from_networkxs_missing_nodes(self): num_graphs = 16 networkxs = [ _generate_graph(batch_index, n_nodes=0, add_edges=False) for batch_index in range(num_graphs) ] placeholders = utils_tf.placeholders_from_networkxs( networkxs, force_dynamic_num_graphs=False) self.assertEqual(None, placeholders.nodes) self.assertEqual(None, placeholders.edges) self._assert_expected_shapes( placeholders, but_for=["nodes", "edges"], num_graphs=num_graphs) def test_placeholders_from_networkxs_hints(self): num_graphs = 16 networkxs = [ _generate_graph(batch_index, n_nodes=0, add_edges=False) for batch_index in range(num_graphs) ] placeholders = utils_tf.placeholders_from_networkxs( networkxs, node_shape_hint=[14], edge_shape_hint=[17], data_type_hint=tf.float64, force_dynamic_num_graphs=False) self.assertAllEqual([None, 14], placeholders.nodes.shape.as_list()) self.assertAllEqual([None, 17], placeholders.edges.shape.as_list()) self._assert_expected_shapes( placeholders, but_for=["nodes", "edges"], num_graphs=num_graphs) self.assertEqual(tf.float64, placeholders.nodes.dtype) self.assertEqual(tf.float64, placeholders.edges.dtype) def test_placeholders_from_networkxs_missing_edges(self): num_graphs = 16 networkxs = [ _generate_graph(batch_index, add_edges=False) for batch_index in range(num_graphs) ] placeholders = utils_tf.placeholders_from_networkxs( networkxs, force_dynamic_num_graphs=False) self.assertEqual(None, placeholders.edges) self._assert_expected_shapes( placeholders, but_for=["edges"], num_graphs=num_graphs) def test_feed_data(self): networkx = [_generate_graph(batch_index) for batch_index in range(16)] placeholders = utils_tf.placeholders_from_networkxs( networkx, force_dynamic_num_graphs=True) # Does not need to be the same size networkxs = [_generate_graph(batch_index) for batch_index in range(2)] with tf.Session() as sess: output = sess.run( placeholders, utils_tf.get_feed_dict(placeholders, utils_np.networkxs_to_graphs_tuple(networkxs))) self.assertAllEqual( np.array([[0, 0], [1, 0], [2, 0], [3, 0], [0, 1], [1, 1], [2, 1], [3, 1]]), output.nodes) self.assertEqual(np.float32, output.nodes.dtype) self.assertAllEqual(np.array([[0], [1]]), output.globals) self.assertEqual(np.float32, output.globals.dtype) sorted_edges_content = sorted( [(x, y, z) for x, y, z in zip(output.receivers, output.senders, output.edges)]) self.assertAllEqual([0, 0, 1, 4, 4, 5], [x[0] for x in sorted_edges_content]) self.assertAllEqual([1, 2, 3, 5, 6, 7], [x[1] for x in sorted_edges_content]) self.assertEqual(np.float64, output.edges.dtype) self.assertAllEqual( np.array([[0, 1, 0], [1, 2, 0], [2, 3, 0], [0, 1, 1], [1, 2, 1], [2, 3, 1]]), [x[2] for x in sorted_edges_content]) @parameterized.named_parameters(( "no features", ["nodes", "edges", "globals"], ), ( "no edges", ["edges", "receivers", "senders"], )) def test_get_feed_dict_raises(self, none_fields): networkxs = [_generate_graph(batch_index) for batch_index in range(16)] placeholders = utils_tf.placeholders_from_networkxs(networkxs) feed_values = utils_np.networkxs_to_graphs_tuple(networkxs) with self.assertRaisesRegexp(ValueError, ""): utils_tf.get_feed_dict( placeholders.map(lambda _: None, none_fields), feed_values) with self.assertRaisesRegexp(ValueError, ""): utils_tf.get_feed_dict(placeholders, feed_values.map(lambda _: None, none_fields)) def test_feed_data_no_nodes(self): networkx = [ _generate_graph(batch_index, n_nodes=0, add_edges=False) for batch_index in range(16) ] placeholders = utils_tf.placeholders_from_networkxs( networkx, force_dynamic_num_graphs=True) # Does not need to be the same size networkxs = [ _generate_graph(batch_index, n_nodes=0, add_edges=False) for batch_index in range(2) ] self.assertEqual(None, placeholders.nodes) self.assertEqual(None, placeholders.edges) with tf.Session() as sess: output = sess.run( placeholders.replace(nodes=tf.no_op(), edges=tf.no_op()), utils_tf.get_feed_dict(placeholders, utils_np.networkxs_to_graphs_tuple(networkxs))) self.assertAllEqual(np.array([[0], [1]]), output.globals) self.assertEqual(np.float32, output.globals.dtype) def test_feed_data_no_edges(self): networkx = [ _generate_graph(batch_index, add_edges=False) for batch_index in range(16) ] placeholders = utils_tf.placeholders_from_networkxs( networkx, force_dynamic_num_graphs=True) # Does not need to be the same size networkxs = [ _generate_graph(batch_index, add_edges=False) for batch_index in range(2) ] self.assertEqual(None, placeholders.edges) with tf.Session() as sess: output = sess.run( placeholders.replace(edges=tf.no_op()), utils_tf.get_feed_dict(placeholders, utils_np.networkxs_to_graphs_tuple(networkxs))) self.assertAllEqual( np.array([[0, 0], [1, 0], [2, 0], [3, 0], [0, 1], [1, 1], [2, 1], [3, 1]]), output.nodes) self.assertAllEqual(np.array([[0], [1]]), output.globals) self.assertEqual(np.float32, output.globals.dtype) class StopGradientsGraphTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(StopGradientsGraphTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.zeros([10], dtype=tf.int32), "receivers": tf.zeros([10], dtype=tf.int32), "nodes": tf.ones([5, 7]), "edges": tf.zeros([10, 6]), "globals": tf.zeros([1, 8]) }]) def _check_if_gradients_exist(self, stopped_gradients_graph): gradients = [] for field in ["globals", "nodes", "edges"]: xs = getattr(self._graph, field) ys = getattr(stopped_gradients_graph, field) gradient = tf.gradients(ys, xs)[0] if ys is not None else ys gradients.append(gradient) return [True if grad is not None else False for grad in gradients] @parameterized.named_parameters( ("stop_all_fields", True, True, True), ("stop_globals", True, False, False), ("stop_nodes", False, True, False), ("stop_edges", False, False, True), ("stop_none", False, False, False)) def test_stop_gradients_outputs(self, stop_globals, stop_nodes, stop_edges): stopped_gradients_graph = utils_tf.stop_gradient( self._graph, stop_globals=stop_globals, stop_nodes=stop_nodes, stop_edges=stop_edges) gradients_exist = self._check_if_gradients_exist(stopped_gradients_graph) expected_gradients_exist = [ not stop_globals, not stop_nodes, not stop_edges ] self.assertAllEqual(expected_gradients_exist, gradients_exist) @parameterized.named_parameters(("no_nodes", "nodes"), ("no_edges", "edges"), ("no_globals", "globals")) def test_stop_gradients_with_missing_field_raises(self, none_field): self._graph = self._graph.map(lambda _: None, [none_field]) with self.assertRaisesRegexp(ValueError, none_field): utils_tf.stop_gradient(self._graph) def test_stop_gradients_default_params(self): """Tests for the default params of `utils_tf.stop_gradient`.""" stopped_gradients_graph = utils_tf.stop_gradient(self._graph) gradients_exist = self._check_if_gradients_exist(stopped_gradients_graph) expected_gradients_exist = [False, False, False] self.assertAllEqual(expected_gradients_exist, gradients_exist) class IdentityTest(tf.test.TestCase, parameterized.TestCase): """Tests for the `identity` method.""" def setUp(self): super(IdentityTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.random_uniform([10], maxval=10, dtype=tf.int32), "receivers": tf.random_uniform([10], maxval=10, dtype=tf.int32), "nodes": tf.random_uniform([5, 7]), "edges": tf.random_uniform([10, 6]), "globals": tf.random_uniform([1, 8]) }]) def test_name_scope(self): """Tests that the name scope are correctly pushed through this function.""" graph = self._graph with tf.name_scope("test"): graph_id = utils_tf.identity(graph) for field in [ "nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge" ]: self.assertEqual("test", getattr(graph_id, field).name.split("/")[0]) @parameterized.named_parameters( ("all fields defined", []), ("no node features", ["nodes"]), ("no edge features", ["edges"]), ("no global features", ["globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_output(self, none_fields): """Tests that this function produces the identity.""" graph = self._graph.map(lambda _: None, none_fields) with tf.name_scope("test"): graph_id = utils_tf.identity(graph) graph = utils_tf.make_runnable_in_session(graph) graph_id = utils_tf.make_runnable_in_session(graph_id) with tf.Session() as sess: expected_out, actual_out = sess.run([graph, graph_id]) for field in [ "nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge" ]: if field in none_fields: self.assertEqual(None, getattr(actual_out, field)) else: self.assertNDArrayNear( getattr(expected_out, field), getattr(actual_out, field), err=1e-4) class RunGraphWithNoneInSessionTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(RunGraphWithNoneInSessionTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.random_uniform([10], maxval=10, dtype=tf.int32), "receivers": tf.random_uniform([10], maxval=10, dtype=tf.int32), "nodes": tf.random_uniform([5, 7]), "edges": tf.random_uniform([10, 6]), "globals": tf.random_uniform([1, 8]) }]) @parameterized.named_parameters( ("all fields defined", []), ("no node features", ["nodes"]), ("no edge features", ["edges"]), ("no global features", ["globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_output(self, none_fields): """Tests that this function produces the identity.""" graph = self._graph.map(lambda _: None, none_fields) with tf.name_scope("test"): graph_id = utils_tf.make_runnable_in_session(graph) graph = graph.map(tf.no_op, none_fields) with tf.Session() as sess: expected_out, actual_out = sess.run([graph, graph_id]) for field in [ "nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge" ]: if field in none_fields: self.assertEqual(None, getattr(actual_out, field)) else: self.assertNDArrayNear( getattr(expected_out, field), getattr(actual_out, field), err=1e-4) class ComputeOffsetTest(tf.test.TestCase): """Tests for the `compute_stacked_offsets` method.""" def setUp(self): super(ComputeOffsetTest, self).setUp() tf.reset_default_graph() self.sizes = [5, 4, 3, 1, 2, 0, 3, 0, 4, 7] self.repeats = [2, 2, 0, 2, 1, 3, 2, 0, 3, 2] self.offset = [ 0, 0, 5, 5, 12, 12, 13, 15, 15, 15, 15, 15, 18, 18, 18, 22, 22 ] def test_compute_stacked_offsets(self): offset0 = utils_tf._compute_stacked_offsets(self.sizes, self.repeats) offset1 = utils_tf._compute_stacked_offsets( np.array(self.sizes), np.array(self.repeats)) offset2 = utils_tf._compute_stacked_offsets( tf.constant(self.sizes, dtype=tf.int32), tf.constant(self.repeats, dtype=tf.int32)) with tf.Session() as sess: o0, o1, o2 = sess.run([offset0, offset1, offset2]) self.assertAllEqual(self.offset, o0.tolist()) self.assertAllEqual(self.offset, o1.tolist()) self.assertAllEqual(self.offset, o2.tolist()) class DataDictsCompletionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the methods creating complete graphs from partial graphs.""" def _assert_indices_sizes(self, dict_, n_relation): for key in ["receivers", "senders"]: self.assertAllEqual((n_relation,), dict_[key].get_shape().as_list()) @parameterized.named_parameters( ("static", utils_tf._create_complete_edges_from_nodes_static), ("dynamic", utils_tf._create_complete_edges_from_nodes_dynamic), ) def test_create_complete_edges_from_nodes_include_self_edges(self, method): for graph_dict in self.graphs_dicts_in: n_node = graph_dict["nodes"].shape[0] edges_dict = method(n_node, exclude_self_edges=False) self._assert_indices_sizes(edges_dict, n_node**2) @parameterized.named_parameters( ("static", utils_tf._create_complete_edges_from_nodes_static), ("dynamic", utils_tf._create_complete_edges_from_nodes_dynamic), ) def test_create_complete_edges_from_nodes_exclude_self_edges(self, method): for graph_dict in self.graphs_dicts_in: n_node = graph_dict["nodes"].shape[0] edges_dict = method(n_node, exclude_self_edges=True) self._assert_indices_sizes(edges_dict, n_node * (n_node - 1)) def test_create_complete_edges_from_nodes_dynamic_number_of_nodes(self): for graph_dict in self.graphs_dicts_in: n_node = tf.shape(tf.constant(graph_dict["nodes"]))[0] edges_dict = utils_tf._create_complete_edges_from_nodes_dynamic( n_node, exclude_self_edges=False) n_relation_op = n_node**2 with tf.Session() as sess: n_relation, receivers, senders, n_edge = sess.run([ n_relation_op, edges_dict["receivers"], edges_dict["senders"], edges_dict["n_edge"] ]) self.assertAllEqual((n_relation,), receivers.shape) self.assertAllEqual((n_relation,), senders.shape) self.assertEqual(n_relation, n_edge) class GraphsCompletionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for completing partial GraphsTuple.""" def _assert_indices_sizes(self, graph, n_relation): for key in ["receivers", "senders"]: self.assertAllEqual((n_relation,), getattr(graph, key).get_shape().as_list()) @parameterized.named_parameters(("edge size 0", 0), ("edge size 1", 1)) def test_fill_edge_state(self, edge_size): """Tests for filling the edge state with a constant content.""" for g in self.graphs_dicts_in: g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_edges = np.sum(self.reference_graph.n_edge) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size) self.assertAllEqual((n_edges, edge_size), graphs_tuple.edges.get_shape().as_list()) @parameterized.named_parameters(("edge size 0", 0), ("edge size 1", 1)) def test_fill_edge_state_dynamic(self, edge_size): """Tests for filling the edge state with a constant content.""" for g in self.graphs_dicts_in: g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple._replace( n_edge=tf.placeholder_with_default( graphs_tuple.n_edge, shape=graphs_tuple.n_edge.get_shape())) n_edges = np.sum(self.reference_graph.n_edge) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size) with tf.Session() as sess: actual_edges = sess.run(graphs_tuple.edges) self.assertNDArrayNear( np.zeros((n_edges, edge_size)), actual_edges, err=1e-4) @parameterized.named_parameters(("global size 0", 0), ("global size 1", 1)) def test_fill_global_state(self, global_size): """Tests for filling the global state with a constant content.""" for g in self.graphs_dicts_in: g.pop("globals") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_graphs = self.reference_graph.n_edge.shape[0] graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, global_size) self.assertAllEqual((n_graphs, global_size), graphs_tuple.globals.get_shape().as_list()) @parameterized.named_parameters(("global size 0", 0), ("global size 1", 1)) def test_fill_global_state_dynamic(self, global_size): """Tests for filling the global state with a constant content.""" for g in self.graphs_dicts_in: g.pop("globals") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) # Hide global shape information graphs_tuple = graphs_tuple._replace( n_node=tf.placeholder_with_default(graphs_tuple.n_node, shape=[None])) n_graphs = self.reference_graph.n_edge.shape[0] graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, global_size) with tf.Session() as sess: actual_globals = sess.run(graphs_tuple.globals) self.assertNDArrayNear( np.zeros((n_graphs, global_size)), actual_globals, err=1e-4) @parameterized.named_parameters(("node size 0", 0), ("node size 1", 1)) def test_fill_node_state(self, node_size): """Tests for filling the node state with a constant content.""" for g in self.graphs_dicts_in: g["n_node"] = g["nodes"].shape[0] g.pop("nodes") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_nodes = np.sum(self.reference_graph.n_node) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size) self.assertAllEqual((n_nodes, node_size), graphs_tuple.nodes.get_shape().as_list()) @parameterized.named_parameters(("node size 0", 0), ("node size 1", 1)) def test_fill_node_state_dynamic(self, node_size): """Tests for filling the node state with a constant content.""" for g in self.graphs_dicts_in: g["n_node"] = g["nodes"].shape[0] g.pop("nodes") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple._replace( n_node=tf.placeholder_with_default( graphs_tuple.n_node, shape=graphs_tuple.n_node.get_shape())) n_nodes = np.sum(self.reference_graph.n_node) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size) with tf.Session() as sess: actual_nodes = sess.run(graphs_tuple.nodes) self.assertNDArrayNear( np.zeros((n_nodes, node_size)), actual_nodes, err=1e-4) def test_fill_edge_state_with_missing_fields_raises(self): """Edge field cannot be filled if receivers or senders are missing.""" for g in self.graphs_dicts_in: g.pop("receivers") g.pop("senders") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) with self.assertRaisesRegexp(ValueError, "receivers"): graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size=1) def test_fill_state_default_types(self): """Tests that the features are created with the correct default type.""" for g in self.graphs_dicts_in: g.pop("nodes") g.pop("globals") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size=1) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size=1) graphs_tuple = utils_tf.set_zero_global_features( graphs_tuple, global_size=1) self.assertEqual(tf.float32, graphs_tuple.edges.dtype) self.assertEqual(tf.float32, graphs_tuple.nodes.dtype) self.assertEqual(tf.float32, graphs_tuple.globals.dtype) @parameterized.parameters( (tf.float64,), (tf.int32,), ) def test_fill_state_user_specified_types(self, dtype): """Tests that the features are created with the correct default type.""" for g in self.graphs_dicts_in: g.pop("nodes") g.pop("globals") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, 1, dtype) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, 1, dtype) graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, 1, dtype) self.assertEqual(dtype, graphs_tuple.edges.dtype) self.assertEqual(dtype, graphs_tuple.nodes.dtype) self.assertEqual(dtype, graphs_tuple.globals.dtype) @parameterized.named_parameters( ("no self edges", False), ("self edges", True), ) def test_fully_connect_graph_dynamic(self, exclude_self_edges): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") n_relation = 0 for g in self.graphs_dicts_in: n_node = g["nodes"].shape[0] if exclude_self_edges: n_relation += n_node * (n_node - 1) else: n_relation += n_node * n_node graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.fully_connect_graph_dynamic(graphs_tuple, exclude_self_edges) with tf.Session() as sess: actual_receivers, actual_senders = sess.run( [graphs_tuple.receivers, graphs_tuple.senders]) self.assertAllEqual((n_relation,), actual_receivers.shape) self.assertAllEqual((n_relation,), actual_senders.shape) self.assertAllEqual((len(self.graphs_dicts_in),), graphs_tuple.n_edge.get_shape().as_list()) @parameterized.named_parameters( ("no self edges", False), ("self edges", True), ) def test_fully_connect_graph_dynamic_with_dynamic_sizes( self, exclude_self_edges): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") n_relation = 0 for g in self.graphs_dicts_in: n_node = g["nodes"].shape[0] if exclude_self_edges: n_relation += n_node * (n_node - 1) else: n_relation += n_node * n_node graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple.map(test_utils.mask_leading_dimension, ["nodes", "globals", "n_node", "n_edge"]) graphs_tuple = utils_tf.fully_connect_graph_dynamic(graphs_tuple, exclude_self_edges) with tf.Session() as sess: actual_receivers, actual_senders, actual_n_edge = sess.run( [graphs_tuple.receivers, graphs_tuple.senders, graphs_tuple.n_edge]) self.assertAllEqual((n_relation,), actual_receivers.shape) self.assertAllEqual((n_relation,), actual_senders.shape) self.assertAllEqual((len(self.graphs_dicts_in),), actual_n_edge.shape) expected_edges = [] offset = 0 for graph in self.graphs_dicts_in: n_node = graph["nodes"].shape[0] for e1 in range(n_node): for e2 in range(n_node): if not exclude_self_edges or e1 != e2: expected_edges.append((e1 + offset, e2 + offset)) offset += n_node actual_edges = zip(actual_receivers, actual_senders) self.assertSetEqual(set(actual_edges), set(expected_edges)) @parameterized.named_parameters( ("no self edges", False), ("self edges", True), ) def test_fully_connect_graph_static(self, exclude_self_edges): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") num_graphs = 2 num_nodes = 3 if exclude_self_edges: n_edges = num_nodes * (num_nodes - 1) else: n_edges = num_nodes * num_nodes n_relation = num_graphs * n_edges graphs_dicts = [{ "nodes": tf.zeros([num_nodes, 1]) } for _ in range(num_graphs)] graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(graphs_dicts) graphs_tuple = utils_tf.fully_connect_graph_static(graphs_tuple, exclude_self_edges) self.assertAllEqual((n_relation,), graphs_tuple.receivers.get_shape().as_list()) self.assertAllEqual((n_relation,), graphs_tuple.senders.get_shape().as_list()) self.assertAllEqual((num_graphs,), graphs_tuple.n_edge.get_shape().as_list()) with tf.Session() as sess: actual_receivers, actual_senders, actual_n_edge = sess.run( [graphs_tuple.receivers, graphs_tuple.senders, graphs_tuple.n_edge]) expected_edges = [] offset = 0 for _ in range(num_graphs): for v1 in range(num_nodes): for v2 in range(num_nodes): if not exclude_self_edges or v1 != v2: expected_edges.append((v1 + offset, v2 + offset)) offset += num_nodes actual_edges = zip(actual_receivers, actual_senders) self.assertNDArrayNear( np.array([n_edges] * num_graphs), actual_n_edge, 1e-4) self.assertSetEqual(set(actual_edges), set(expected_edges)) def test_fully_connect_graph_static_with_dynamic_sizes_raises(self): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple_1 = graphs_tuple.map(test_utils.mask_leading_dimension, ["n_node"]) with self.assertRaisesRegexp(ValueError, "known at construction time"): utils_tf.fully_connect_graph_static(graphs_tuple_1) graphs_tuple_2 = graphs_tuple.map(test_utils.mask_leading_dimension, ["nodes"]) with self.assertRaisesRegexp(ValueError, "known at construction time"): utils_tf.fully_connect_graph_static(graphs_tuple_2) with self.assertRaisesRegexp(ValueError, "the same in all graphs"): utils_tf.fully_connect_graph_static(graphs_tuple) class GraphsTupleConversionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the method converting between data dicts and GraphsTuple.""" @parameterized.named_parameters(("all fields defined", []), ( "no edge features", ["edges"], ), ( "no node features", ["nodes"], ), ( "no globals", ["globals"], ), ( "no edges", ["edges", "receivers", "senders"], )) def test_data_dicts_to_graphs_tuple(self, none_fields): """Fields in `none_fields` will be cleared out.""" for field in none_fields: for graph_dict in self.graphs_dicts_in: if field in graph_dict: if field == "nodes": graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict[field] = None self.reference_graph = self.reference_graph._replace(**{field: None}) if field == "senders": self.reference_graph = self.reference_graph._replace( n_edge=np.zeros_like(self.reference_graph.n_edge)) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for field in none_fields: self.assertEqual(None, getattr(graphs_tuple, field)) graphs_tuple = graphs_tuple.map(tf.no_op, none_fields) with tf.Session() as sess: self._assert_graph_equals_np(self.reference_graph, sess.run(graphs_tuple)) @parameterized.parameters(("receivers",), ("senders",)) def test_data_dicts_to_graphs_tuple_raises(self, none_field): """Fields that cannot be missing.""" for graph_dict in self.graphs_dicts_in: graph_dict[none_field] = None with self.assertRaisesRegexp(ValueError, none_field): utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) def test_data_dicts_to_graphs_tuple_no_raise(self): """Not having nodes is fine, if the number of nodes is provided.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict["nodes"] = None utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) def test_data_dicts_to_graphs_tuple_cast_types(self): """Index and number fields should be cast to tensors of the right type.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = np.array( graph_dict["nodes"].shape[0], dtype=np.int64) graph_dict["receivers"] = graph_dict["receivers"].astype(np.int16) graph_dict["senders"] = graph_dict["senders"].astype(np.float64) graph_dict["nodes"] = graph_dict["nodes"].astype(np.float64) graph_dict["edges"] = tf.constant(graph_dict["edges"], dtype=tf.float64) out = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for key in ["n_node", "n_edge", "receivers", "senders"]: self.assertEqual(tf.int32, getattr(out, key).dtype) self.assertEqual(type(tf.int32), type(getattr(out, key).dtype)) for key in ["nodes", "edges"]: self.assertEqual(type(tf.float64), type(getattr(out, key).dtype)) self.assertEqual(tf.float64, getattr(out, key).dtype) class GraphsIndexingTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the `get_graph` method.""" @parameterized.named_parameters(("int_index", False), ("tensor_index", True)) def test_getitem_one(self, use_tensor_index): index = 2 expected = self.graphs_dicts_out[index] if use_tensor_index: index = tf.constant(index) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graph_op = utils_tf.get_graph(graphs_tuple, index) graph_op = utils_tf.make_runnable_in_session(graph_op) with tf.Session() as sess: graph = sess.run(graph_op) actual, = utils_np.graphs_tuple_to_data_dicts(graph) for k, v in expected.items(): self.assertAllClose(v, actual[k]) self.assertEqual(expected["nodes"].shape[0], actual["n_node"]) self.assertEqual(expected["edges"].shape[0], actual["n_edge"]) @parameterized.named_parameters(("int_slice", False), ("tensor_slice", True)) def test_getitem(self, use_tensor_slice): index = slice(1, 3) expected = self.graphs_dicts_out[index] if use_tensor_slice: index = slice(tf.constant(index.start), tf.constant(index.stop)) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs2_op = utils_tf.get_graph(graphs_tuple, index) graphs2_op = utils_tf.make_runnable_in_session(graphs2_op) with tf.Session() as sess: graphs2 = sess.run(graphs2_op) actual = utils_np.graphs_tuple_to_data_dicts(graphs2) for ex, ac in zip(expected, actual): for k, v in ex.items(): self.assertAllClose(v, ac[k]) self.assertEqual(ex["nodes"].shape[0], ac["n_node"]) self.assertEqual(ex["edges"].shape[0], ac["n_edge"]) @parameterized.named_parameters( ("index_bad_type", 1., TypeError, "Index must be a valid scalar integer"), ("index_bad_shape", tf.constant([0, 1]), TypeError, "Valid tensor indices must be scalars"), ("index_bad_dtype", tf.constant(1.), TypeError, "Valid tensor indices must have types"), ("slice_bad_type_stop", slice(1.), TypeError, "Valid tensor indices must be integers"), ("slice_bad_shape_stop", slice(tf.constant([0, 1])), TypeError, "Valid tensor indices must be scalars"), ("slice_bad_dtype_stop", slice(tf.constant(1.)), TypeError, "Valid tensor indices must have types"), ("slice_bad_type_start", slice(0., 1), TypeError, "Valid tensor indices must be integers"), ("slice_bad_shape_start", slice(tf.constant([0, 1]), 1), TypeError, "Valid tensor indices must be scalars"), ("slice_bad_dtype_start", slice(tf.constant(0.), 1), TypeError, "Valid tensor indices must have types"), ("slice_with_step", slice(0, 1, 1), ValueError, "slices with step/stride are not supported"), ) def test_raises(self, index, error_type, message): graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) with self.assertRaisesRegexp(error_type, message): utils_tf.get_graph(graphs_tuple, index) class TestNumGraphs(test_utils.GraphsTest): """Tests for the `get_num_graphs` function.""" def setUp(self): super(TestNumGraphs, self).setUp() graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) self.empty_graph = graphs_tuple.map(lambda _: None, graphs.GRAPH_DATA_FIELDS) def test_num_graphs_static(self): graph = self.empty_graph.replace(n_node=tf.zeros([3], dtype=tf.int32)) self.assertEqual(3, utils_tf.get_num_graphs(graph)) def test_num_graphs_dynamic(self): n_node_placeholder = tf.placeholder(tf.int32, [None]) graph = self.empty_graph.replace(n_node=n_node_placeholder) num_graphs = utils_tf.get_num_graphs(graph) with tf.Session() as sess: actual_num_graphs = sess.run( num_graphs, {n_node_placeholder: np.zeros([3], dtype=np.int32)}) self.assertEqual(3, actual_num_graphs) class TestSpecsFromGraphsTuple(test_utils.GraphsTest, parameterized.TestCase): """Tests for the `spec_from_graphs_tuple` function.""" @parameterized.named_parameters( ("dynamic_nodes_edges_not_batched_without_constants", True, True, False, False, False, None), ("dynamic_num_graphs_not_batched_without_constants", False, False, True, False, False, None), ("static_num_graphs_not_batched_without_constants", False, False, True, False, False, None), ("static_num_graphs_batched_without_constants", False, False, True, True, False, None), ("dynamic_nodes_edges_not_batched_with_constants", True, True, False, False, True, None), ("dynamic_num_graphs_not_batched_with_constants", False, False, True, False, True, None), ("static_num_graphs_not_batched_with_constants", False, False, True, False, True, None), ("static_num_graphs_batched_with_constants", False, False, True, True, True, None), ("dynamic_graphs_batched_empty_nested_features", False, False, True, False, False, "emtpy_nests"), ("dynamic_graphs_batched_deep_nested_features", False, False, True, False, False, "deep_nests"), ) def test_correct_signature( self, dynamic_num_nodes, dynamic_num_edges, dynamic_num_graphs, batched, replace_globals_with_constant, nested_features_type): """Tests that the correct spec is created when using different options.""" if batched: input_data_dicts = [self.graphs_dicts[1], self.graphs_dicts[2]] else: input_data_dicts = [self.graphs_dicts[1]] graph = utils_np.data_dicts_to_graphs_tuple(input_data_dicts) num_graphs = len(input_data_dicts) num_edges = sum(graph.n_edge).item() num_nodes = sum(graph.n_node).item() # Manually setting edges and globals fields to give some variety in # testing situations. # Making edges have rank 1 to . graph = graph.replace(edges=np.zeros(num_edges)) # Make a constant field. if replace_globals_with_constant: graph = graph.replace(globals=np.array(0.0, dtype=np.float32)) if nested_features_type is not None: graph = self._add_nested_features(graph, nested_features_type) spec_signature = utils_tf.specs_from_graphs_tuple( graph, dynamic_num_graphs, dynamic_num_nodes, dynamic_num_edges) # Captures if nodes/edges will be dynamic either due to dynamic nodes/edges # or dynamic graphs. dynamic_nodes_or_graphs = dynamic_num_nodes or dynamic_num_graphs dynamic_edges_or_graphs = dynamic_num_edges or dynamic_num_graphs num_edges = None if dynamic_edges_or_graphs else num_edges num_nodes = None if dynamic_nodes_or_graphs else num_nodes num_graphs = None if dynamic_num_graphs else num_graphs if replace_globals_with_constant: expected_globals_shape = [] else: expected_globals_shape = [num_graphs,] + test_utils.GLOBALS_DIMS expected_answer = graphs.GraphsTuple( nodes=tf.TensorSpec( shape=[num_nodes,] + test_utils.NODES_DIMS, dtype=tf.float32), edges=tf.TensorSpec( shape=[num_edges], # Edges were manually replaced to have dim 1. dtype=tf.float64), n_node=tf.TensorSpec( shape=[num_graphs], dtype=tf.int32), n_edge=tf.TensorSpec( shape=[num_graphs], dtype=tf.int32), globals=tf.TensorSpec( shape=expected_globals_shape, dtype=tf.float32), receivers=tf.TensorSpec( shape=[num_edges], dtype=tf.int32), senders=tf.TensorSpec( shape=[num_edges], dtype=tf.int32), ) if nested_features_type is not None: expected_answer = self._add_nested_features( expected_answer, nested_features_type) with self.subTest(name="Correct Type."): self.assertIsInstance(spec_signature, graphs.GraphsTuple) with self.subTest(name="Correct Structure."): tree.assert_same_structure(spec_signature, expected_answer) with self.subTest(name="Correct Signature."): def assert_equal(actual, expected): self.assertEqual(actual, expected) return True tree.map_structure(assert_equal, spec_signature, expected_answer) def _add_nested_features(self, graphs_tuple, nested_feature_type): if nested_feature_type == "emtpy_nests": return graphs_tuple.replace( nodes={}, edges=tuple([]), globals=[]) else: return graphs_tuple.replace( nodes={"a": graphs_tuple.nodes, "b": [graphs_tuple.nodes]}, edges=(graphs_tuple.edges, {"c": graphs_tuple.edges}), globals=[graphs_tuple.globals, {"d": graphs_tuple.globals}]) @parameterized.parameters( (graphs.GLOBALS,), (graphs.EDGES,), (graphs.NODES,)) def test_none_throws_error(self, none_field): """Tests that an error is thrown if a GraphsTuple field is None.""" graphs_tuple = utils_np.data_dicts_to_graphs_tuple([self.graphs_dicts[1]]) graphs_tuple = graphs_tuple.replace(**{none_field: None}) with self.assertRaisesRegex( ValueError, "`{}` was `None`. All fields of the `G".format(none_field)): utils_tf.specs_from_graphs_tuple(graphs_tuple) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests/utils_tf_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model architectures for the demos in TensorFlow 2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import modules from graph_nets import utils_tf from six.moves import range import sonnet as snt NUM_LAYERS = 2 # Hard-code number of layers in the edge/node/global models. LATENT_SIZE = 16 # Hard-code latent layer sizes for demos. def make_mlp_model(): """Instantiates a new MLP, followed by LayerNorm. The parameters of each new MLP are not shared with others generated by this function. Returns: A Sonnet module which contains the MLP and LayerNorm. """ return snt.Sequential([ snt.nets.MLP([LATENT_SIZE] * NUM_LAYERS, activate_final=True), snt.LayerNorm(axis=-1, create_offset=True, create_scale=True) ]) class MLPGraphIndependent(snt.Module): """GraphIndependent with MLP edge, node, and global models.""" def __init__(self, name="MLPGraphIndependent"): super(MLPGraphIndependent, self).__init__(name=name) self._network = modules.GraphIndependent( edge_model_fn=make_mlp_model, node_model_fn=make_mlp_model, global_model_fn=make_mlp_model) def __call__(self, inputs): return self._network(inputs) class MLPGraphNetwork(snt.Module): """GraphNetwork with MLP edge, node, and global models.""" def __init__(self, name="MLPGraphNetwork"): super(MLPGraphNetwork, self).__init__(name=name) self._network = modules.GraphNetwork(make_mlp_model, make_mlp_model, make_mlp_model) def __call__(self, inputs): return self._network(inputs) class EncodeProcessDecode(snt.Module): """Full encode-process-decode model. The model we explore includes three components: - An "Encoder" graph net, which independently encodes the edge, node, and global attributes (does not compute relations etc.). - A "Core" graph net, which performs N rounds of processing (message-passing) steps. The input to the Core is the concatenation of the Encoder's output and the previous output of the Core (labeled "Hidden(t)" below, where "t" is the processing step). - A "Decoder" graph net, which independently decodes the edge, node, and global attributes (does not compute relations etc.), on each message-passing step. Hidden(t) Hidden(t+1) | ^ *---------* | *------* | *---------* | | | | | | | | Input --->| Encoder | *->| Core |--*->| Decoder |---> Output(t) | |---->| | | | *---------* *------* *---------* """ def __init__(self, edge_output_size=None, node_output_size=None, global_output_size=None, name="EncodeProcessDecode"): super(EncodeProcessDecode, self).__init__(name=name) self._encoder = MLPGraphIndependent() self._core = MLPGraphNetwork() self._decoder = MLPGraphIndependent() # Transforms the outputs into the appropriate shapes. if edge_output_size is None: edge_fn = None else: edge_fn = lambda: snt.Linear(edge_output_size, name="edge_output") if node_output_size is None: node_fn = None else: node_fn = lambda: snt.Linear(node_output_size, name="node_output") if global_output_size is None: global_fn = None else: global_fn = lambda: snt.Linear(global_output_size, name="global_output") self._output_transform = modules.GraphIndependent( edge_fn, node_fn, global_fn) def __call__(self, input_op, num_processing_steps): latent = self._encoder(input_op) latent0 = latent output_ops = [] for _ in range(num_processing_steps): core_input = utils_tf.concat([latent0, latent], axis=1) latent = self._core(core_input) decoded_op = self._decoder(latent) output_ops.append(self._output_transform(decoded_op)) return output_ops
graph_nets-master
graph_nets/demos_tf2/models.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph networks library demos in TensorFlow 2."""
graph_nets-master
graph_nets/demos_tf2/__init__.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for `utils_tf_test` in Tensorflow 2. This provides a base class for tests involving `graphs.GraphsTuple` containing either numpy or tensorflow data. This base class is populated with test data and also provides a convenience method for asserting graph equality. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import itertools from graph_nets import graphs from graph_nets import utils_np import numpy as np import tensorflow as tf @contextlib.contextmanager def assert_new_op_prefixes(test, expected_prefix, assert_some_new_ops=True): """Asserts the namescope of tf ops created within the context manager.""" ops_before = [n.name for n in tf.get_default_graph().as_graph_def().node] yield ops_after = [n.name for n in tf.get_default_graph().as_graph_def().node] new_ops = set(ops_after) - set(ops_before) prefix_length = len(expected_prefix) if assert_some_new_ops: test.assertNotEqual(0, len(new_ops)) for op_name in new_ops: test.assertEqual(expected_prefix, op_name[:prefix_length]) def mask_leading_dimension(tensor): # Place holder masking does not work anymore. Just use the tensor as is. return tf.constant(tensor, shape=tensor.get_shape().as_list()) class GraphsTest(tf.test.TestCase): """A base class for tests that operate on GraphsNP or GraphsTF.""" def _populate_test_data(self, max_size): """Populates the class fields with data used for the tests. This creates a batch of graphs with number of nodes from 0 to `num`, number of edges ranging from 1 to `num`, plus an empty graph with no nodes and no edges (so that the total number of graphs is 1 + (num ** (num + 1)). The nodes states, edges states and global states of the graphs are created to have different types and shapes. Those graphs are stored both as dictionaries (in `self.graphs_dicts_in`, without `n_node` and `n_edge` information, and in `self.graphs_dicts_out` with these two fields filled), and a corresponding numpy `graphs.GraphsTuple` is stored in `self.reference_graph`. Args: max_size: The maximum number of nodes and edges (inclusive). """ filt = lambda x: (x[0] > 0) or (x[1] == 0) n_node, n_edge = zip(*list( filter(filt, itertools.product( range(max_size + 1), range(max_size + 1))))) graphs_dicts = [] nodes = [] edges = [] receivers = [] senders = [] globals_ = [] def _make_default_state(shape, dtype): return np.arange(np.prod(shape)).reshape(shape).astype(dtype) for i, (n_node_, n_edge_) in enumerate(zip(n_node, n_edge)): n = _make_default_state([n_node_, 7, 11], "f4") + i * 100. e = _make_default_state([n_edge_, 13, 14], np.float64) + i * 100. + 1000. r = _make_default_state([n_edge_], np.int32) % n_node[i] s = (_make_default_state([n_edge_], np.int32) + 1) % n_node[i] g = _make_default_state([5, 3], "f4") - i * 100. - 1000. nodes.append(n) edges.append(e) receivers.append(r) senders.append(s) globals_.append(g) graphs_dict = dict(nodes=n, edges=e, receivers=r, senders=s, globals=g) graphs_dicts.append(graphs_dict) # Graphs dicts without n_node / n_edge (to be used as inputs). self.graphs_dicts_in = graphs_dicts # Graphs dicts with n_node / n_node (to be checked against outputs). self.graphs_dicts_out = [] for dict_ in self.graphs_dicts_in: completed_dict = dict_.copy() completed_dict["n_node"] = completed_dict["nodes"].shape[0] completed_dict["n_edge"] = completed_dict["edges"].shape[0] self.graphs_dicts_out.append(completed_dict) # pylint: disable=protected-access offset = utils_np._compute_stacked_offsets(n_node, n_edge) # pylint: enable=protected-access self.reference_graph = graphs.GraphsTuple(**dict( nodes=np.concatenate(nodes, axis=0), edges=np.concatenate(edges, axis=0), receivers=np.concatenate(receivers, axis=0) + offset, senders=np.concatenate(senders, axis=0) + offset, globals=np.stack(globals_), n_node=np.array(n_node), n_edge=np.array(n_edge))) def _assert_graph_equals_np(self, graph0, graph, force_edges_ordering=False): """Asserts that all the graph fields of graph0 and graph match.""" def silent_convert_to_numpy(tensor): if isinstance(tensor, tf.Tensor): return tensor.numpy() else: return tensor graph = graph.map(silent_convert_to_numpy, graphs.ALL_FIELDS) graph0 = graph0.map(silent_convert_to_numpy, graphs.ALL_FIELDS) if graph0.nodes is None: self.assertEqual(None, graph.nodes) else: self.assertAllClose(graph0.nodes, graph.nodes) if graph0.globals is None: self.assertEqual(None, graph.globals) else: self.assertAllClose(graph0.globals, graph.globals) self.assertAllClose(graph0.n_node, graph.n_node.tolist()) if graph0.receivers is None: self.assertEqual(None, graph.receivers) self.assertEqual(None, graph.senders) self.assertEqual(None, graph.edges) self.assertAllEqual(graph0.n_edge, graph.n_edge) return self.assertAllClose(graph0.n_edge, graph.n_edge.tolist()) if not force_edges_ordering: self.assertAllClose(graph0.receivers, graph.receivers) self.assertAllClose(graph0.senders, graph.senders) if graph0.edges is not None: self.assertAllClose(graph0.edges, graph.edges) else: self.assertEqual(None, graph.edges) return # To compare edges content, we need to make sure they appear in the same # order if graph0.edges is not None: sorted_receivers0, sorted_senders0, sorted_content0 = zip( *sorted(zip(graph0.receivers, graph0.senders, graph0.edges.tolist()))) sorted_receivers, sorted_senders, sorted_content = zip( *sorted(zip(graph.receivers, graph.senders, graph.edges.tolist()))) self.assertAllClose(sorted_content0, sorted_content) elif graph.receivers is not None: sorted_receivers0, sorted_senders0 = zip( *sorted(zip(graph0.receivers, graph0.senders))) sorted_receivers, sorted_senders = zip( *sorted(zip(graph.receivers, graph.senders))) else: return self.assertAllClose(sorted_receivers0, sorted_receivers) self.assertAllClose(sorted_senders0, sorted_senders) def setUp(self): self._populate_test_data(max_size=2)
graph_nets-master
graph_nets/tests_tf2/test_utils.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph networks library tests for TF2."""
graph_nets-master
graph_nets/tests_tf2/__init__.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for blocks.py in Tensorflow 2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl.testing import parameterized from graph_nets import blocks from graph_nets import graphs from graph_nets import utils_np from graph_nets import utils_tf import numpy as np import sonnet as snt import tensorflow as tf SMALL_GRAPH_1 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 1], "receivers": [1, 2], } SMALL_GRAPH_2 = { "globals": [-1.1, -1.2, -1.3, -1.4], "nodes": [[-10.1, -10.2], [-20.1, -20.2], [-30.1, -30.2]], "edges": [[-101., -102., -103., -104.]], "senders": [1,], "receivers": [2,], } SMALL_GRAPH_3 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [1, 1], "receivers": [0, 2], } SMALL_GRAPH_4 = { "globals": [1.1, 1.2, 1.3, 1.4], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 2], "receivers": [1, 1], } class GraphModuleTest(tf.test.TestCase, parameterized.TestCase): """Base class for all the tests in this file.""" def setUp(self): super(GraphModuleTest, self).setUp() tf.random.set_seed(0) def _get_input_graph(self, none_fields=None): if none_fields is None: none_fields = [] input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2, SMALL_GRAPH_3, SMALL_GRAPH_4]) input_graph = input_graph.map(lambda _: None, none_fields) return input_graph def _get_shaped_input_graph(self): return graphs.GraphsTuple( nodes=tf.zeros([3, 4, 5, 11], dtype=tf.float32), edges=tf.zeros([5, 4, 5, 12], dtype=tf.float32), globals=tf.zeros([2, 4, 5, 13], dtype=tf.float32), receivers=tf.range(5, dtype=tf.int32) // 3, senders=tf.range(5, dtype=tf.int32) % 3, n_node=tf.constant([2, 1], dtype=tf.int32), n_edge=tf.constant([3, 2], dtype=tf.int32), ) def _assert_build_and_run(self, network, input_graph): # No error at construction time. _ = network(input_graph) BROADCAST_GLOBAL_TO_EDGES = [ [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [-1.1, -1.2, -1.3, -1.4], ] BROADCAST_GLOBAL_TO_NODES = [ [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [1.1, 1.2, 1.3, 1.4], [-1.1, -1.2, -1.3, -1.4], [-1.1, -1.2, -1.3, -1.4], [-1.1, -1.2, -1.3, -1.4], ] SENDER_NODES_TO_EDGES = [ [10.1, 10.2], [20.1, 20.2], [-20.1, -20.2], ] RECEIVER_NODES_TO_EDGES = [ [20.1, 20.2], [30.1, 30.2], [-30.1, -30.2], ] class BroadcastersTest(GraphModuleTest): """Tests for the broadcasters.""" @parameterized.named_parameters( ("globals_to_edges", blocks.broadcast_globals_to_edges, BROADCAST_GLOBAL_TO_EDGES), ("globals_to_nodes", blocks.broadcast_globals_to_nodes, BROADCAST_GLOBAL_TO_NODES), ("sender_nodes_to_edges", blocks.broadcast_sender_nodes_to_edges, SENDER_NODES_TO_EDGES), ("receiver_nodes_to_edges", blocks.broadcast_receiver_nodes_to_edges, RECEIVER_NODES_TO_EDGES), ) def test_output_values(self, broadcaster, expected): """Test the broadcasted output value.""" input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) broadcasted_out = broadcaster(input_graph) self.assertNDArrayNear( np.array(expected, dtype=np.float32), broadcasted_out, err=1e-4) @parameterized.named_parameters( ("globals_to_edges", blocks.broadcast_globals_to_edges, BROADCAST_GLOBAL_TO_EDGES), ("globals_to_nodes", blocks.broadcast_globals_to_nodes, BROADCAST_GLOBAL_TO_NODES), ("sender_nodes_to_edges", blocks.broadcast_sender_nodes_to_edges, SENDER_NODES_TO_EDGES), ("receiver_nodes_to_edges", blocks.broadcast_receiver_nodes_to_edges, RECEIVER_NODES_TO_EDGES), ) def test_output_values_larger_rank(self, broadcaster, expected): """Test the broadcasted output value.""" input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) input_graph = input_graph.map( lambda v: tf.reshape(v, [v.get_shape().as_list()[0]] + [2, -1])) broadcasted_out = broadcaster(input_graph) self.assertNDArrayNear( np.reshape(np.array(expected, dtype=np.float32), [len(expected)] + [2, -1]), broadcasted_out, err=1e-4) @parameterized.named_parameters( ("globals_to_edges_no_globals", blocks.broadcast_globals_to_edges, ("globals",)), ("globals_to_nodes_no_globals", blocks.broadcast_globals_to_nodes, ("globals",)), ("sender_nodes_to_edges_none_nodes", blocks.broadcast_sender_nodes_to_edges, ("nodes",)), ("sender_nodes_to_edges_none_senders", blocks.broadcast_sender_nodes_to_edges, ("edges", "senders", "receivers")), ("receiver_nodes_to_edges_none_nodes", blocks.broadcast_receiver_nodes_to_edges, ("nodes",)), ) def test_missing_field_raises_exception(self, broadcaster, none_fields): """Test that an error is raised if a required field is `None`.""" input_graph = self._get_input_graph(none_fields) with self.assertRaisesRegex( ValueError, "field cannot be None when broadcasting"): broadcaster(input_graph) class ReducersTest(GraphModuleTest): """Tests for the reducers.""" @parameterized.parameters( (blocks.unsorted_segment_min_or_zero, [[0., 0.], [0.1, -0.1], [0.2, -0.3], [0.4, -0.6], [0.7, -1.], [0.9, -0.9], [0., 0.]]), (blocks.unsorted_segment_max_or_zero, [[0., 0.], [0.1, -0.1], [0.3, -0.2], [0.6, -0.4], [1., -0.7], [0.9, -0.9], [0., 0.]]), ) def test_output_values(self, reducer, expected_values): input_values_np = np.array([[0.1, -0.1], [0.2, -0.2], [0.3, -0.3], [0.4, -0.4], [0.5, -0.5], [0.6, -0.6], [0.7, -0.7], [0.8, -0.8], [0.9, -0.9], [1., -1.]], dtype=np.float32) input_indices_np = np.array([1, 2, 2, 3, 3, 3, 4, 4, 5, 4], dtype=np.int32) num_groups_np = np.array(7, dtype=np.int32) input_indices = tf.constant(input_indices_np, dtype=tf.int32) input_values = tf.constant(input_values_np, dtype=tf.float32) num_groups = tf.constant(num_groups_np, dtype=tf.int32) reduced_out = reducer(input_values, input_indices, num_groups) self.assertNDArrayNear( np.array(expected_values, dtype=np.float32), reduced_out, err=1e-4) SEGMENT_SUM_EDGES_TO_GLOBALS = [ [302., 304., 306., 308.], [-101., -102., -103., -104.], [302., 304., 306., 308.], [302., 304., 306., 308.], ] SEGMENT_SUM_NODES_TO_GLOBALS = [ [60.3, 60.6], [-60.3, -60.6], [60.3, 60.6], [60.3, 60.6], ] SEGMENT_SUM_SENT_EDGES_TO_NODES = [ [101., 102., 103., 104.], [201., 202., 203., 204.], [0., 0., 0., 0.], [0., 0., 0., 0.], [-101., -102., -103., -104.], [0., 0., 0., 0.], [0., 0., 0., 0.], [302., 304., 306., 308.], [0., 0., 0., 0.,], [101., 102., 103., 104.], [0., 0., 0., 0.], [201., 202., 203., 204.], ] SEGMENT_SUM_RECEIVED_EDGES_TO_NODES = [ [0., 0., 0., 0.], [101., 102., 103., 104.], [201., 202., 203., 204.], [0., 0., 0., 0.], [0., 0., 0., 0.], [-101., -102., -103., -104.], [101., 102., 103., 104.], [0., 0., 0., 0.], [201., 202., 203., 204.], [0., 0., 0., 0.], [302., 304., 306., 308,], [0., 0., 0., 0.], ] class FieldAggregatorsTest(GraphModuleTest): @parameterized.named_parameters( ("edges_to_globals", blocks.EdgesToGlobalsAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_EDGES_TO_GLOBALS,), ("nodes_to_globals", blocks.NodesToGlobalsAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_NODES_TO_GLOBALS,), ("sent_edges_to_nodes", blocks.SentEdgesToNodesAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_SENT_EDGES_TO_NODES,), ("received_edges_to_nodes", blocks.ReceivedEdgesToNodesAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_RECEIVED_EDGES_TO_NODES), ) def test_output_values(self, aggregator, expected): input_graph = self._get_input_graph() aggregated_out = aggregator(input_graph) self.assertNDArrayNear( np.array(expected, dtype=np.float32), aggregated_out, err=1e-4) @parameterized.named_parameters( ("edges_to_globals", blocks.EdgesToGlobalsAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_EDGES_TO_GLOBALS,), ("nodes_to_globals", blocks.NodesToGlobalsAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_NODES_TO_GLOBALS,), ("sent_edges_to_nodes", blocks.SentEdgesToNodesAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_SENT_EDGES_TO_NODES,), ("received_edges_to_nodes", blocks.ReceivedEdgesToNodesAggregator(tf.math.unsorted_segment_sum), SEGMENT_SUM_RECEIVED_EDGES_TO_NODES), ) def test_output_values_larger_rank(self, aggregator, expected): input_graph = self._get_input_graph() input_graph = input_graph.map( lambda v: tf.reshape(v, [v.get_shape().as_list()[0]] + [2, -1])) aggregated_out = aggregator(input_graph) self.assertNDArrayNear( np.reshape(np.array(expected, dtype=np.float32), [len(expected)] + [2, -1]), aggregated_out, err=1e-4) @parameterized.named_parameters( ("received edges to nodes missing edges", blocks.ReceivedEdgesToNodesAggregator, "edges"), ("sent edges to nodes missing edges", blocks.SentEdgesToNodesAggregator, "edges"), ("nodes to globals missing nodes", blocks.NodesToGlobalsAggregator, "nodes"), ("edges to globals missing nodes", blocks.EdgesToGlobalsAggregator, "edges"),) def test_missing_field_raises_exception(self, constructor, none_field): """Tests that aggregator fail if a required field is missing.""" input_graph = self._get_input_graph([none_field]) with self.assertRaisesRegex(ValueError, none_field): constructor(tf.math.unsorted_segment_sum)(input_graph) @parameterized.named_parameters( ("received edges to nodes missing nodes and globals", blocks.ReceivedEdgesToNodesAggregator, ["nodes", "globals"]), ("sent edges to nodes missing nodes and globals", blocks.SentEdgesToNodesAggregator, ["nodes", "globals"]), ("nodes to globals missing edges and globals", blocks.NodesToGlobalsAggregator, ["edges", "receivers", "senders", "globals"]), ("edges to globals missing globals", blocks.EdgesToGlobalsAggregator, ["globals"]), ) def test_unused_field_can_be_none(self, constructor, none_fields): """Tests that aggregator fail if a required field is missing.""" input_graph = self._get_input_graph(none_fields) constructor(tf.math.unsorted_segment_sum)(input_graph) class EdgeBlockTest(GraphModuleTest): def setUp(self): super(EdgeBlockTest, self).setUp() self._scale = 10. self._edge_model_fn = lambda: lambda features: features * self._scale model_args = lambda features, scale, offset: features * scale + offset self._edge_model_args_fn = lambda: model_args @parameterized.named_parameters( ("all inputs", True, True, True, True), ("edges nodes only", True, False, False, False), ("receiver nodes only", False, True, False, False), ("sender nodes only", False, False, True, False), ("globals only", False, False, False, True), ("edges and sender nodes", True, False, True, False), ("receiver nodes and globals", False, True, False, True), ) def test_output_values( self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals): """Compares the output of an EdgeBlock to an explicit computation.""" input_graph = self._get_input_graph() edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) output_graph_out = edge_block(input_graph) model_inputs = [] if use_edges: model_inputs.append(input_graph.edges) if use_receiver_nodes: model_inputs.append(blocks.broadcast_receiver_nodes_to_edges(input_graph)) if use_sender_nodes: model_inputs.append(blocks.broadcast_sender_nodes_to_edges(input_graph)) if use_globals: model_inputs.append(blocks.broadcast_globals_to_edges(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.nodes, output_graph_out.nodes) self.assertIs(input_graph.globals, output_graph_out.globals) expected_output_edges = model_inputs * self._scale self.assertNDArrayNear( expected_output_edges.numpy(), output_graph_out.edges.numpy(), err=1e-4) @parameterized.named_parameters( ("only scaling", 2, 0), ("only offsetting", 0, 2), ("scaling and offsetting", 2, 2), ("without scaling and offsetting", 1, 0), ) def test_optional_arguments(self, scale, offset): """Assesses the correctness of the EdgeBlock using arguments.""" input_graph = self._get_input_graph() edge_block = blocks.EdgeBlock(edge_model_fn=self._edge_model_args_fn) output_graph_out = edge_block( input_graph, edge_model_kwargs=dict(scale=scale, offset=offset)) fixed_scale = scale fixed_offset = offset model_fn = lambda: lambda features: features * fixed_scale + fixed_offset hardcoded_edge_block = blocks.EdgeBlock(edge_model_fn=model_fn) expected_graph_out = hardcoded_edge_block(input_graph) self.assertIs(expected_graph_out.nodes, output_graph_out.nodes) self.assertIs(expected_graph_out.globals, output_graph_out.globals) self.assertNDArrayNear( expected_graph_out.edges.numpy(), output_graph_out.edges.numpy(), err=1e-4) @parameterized.named_parameters( ("all inputs", True, True, True, True, 12), ("edges only", True, False, False, False, 4), ("receivers only", False, True, False, False, 2), ("senders only", False, False, True, False, 2), ("globals only", False, False, False, True, 4), ) def test_created_variables(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by an EdgeBlock.""" output_size = 10 expected_var_shapes_dict = { "edge_block/mlp/linear_0/b:0": [output_size], "edge_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() edge_block = blocks.EdgeBlock( edge_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) edge_block(input_graph) variables = edge_block.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing node (receivers only)", False, True, False, False, ("nodes",)), ("missing node (senders only)", False, False, True, False, ("nodes",)), ("missing edge data", True, False, False, False, ("edges",)), ("missing edges (but no edge consumption)", False, True, True, False, ("edges", "senders", "receivers")), ("missing globals", False, False, False, True, ("globals",)), ) def test_missing_field_raises_exception( self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, none_fields): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph(none_fields) edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) with self.assertRaisesRegex(ValueError, "field cannot be None"): edge_block(input_graph) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched edges and r. nodes", True, True, False, False, "nodes"), ("mismatched edges and s. nodes", True, False, True, False, "nodes"), ("mismatched edges and globals", True, False, False, True, "edges"), ("mismatched nodes and globals", False, True, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals ) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, False, False, True, "nodes"), ("mismatched edges", False, True, True, True, "edges"), ("mismatched globals", True, True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.EdgeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) edge_block = blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=use_edges, use_receiver_nodes=use_nodes, use_sender_nodes=use_nodes, use_globals=use_globals) output_graph = edge_block(input_graph) model_inputs = [] if use_edges: model_inputs.append(input_graph.edges) if use_nodes: model_inputs.append(blocks.broadcast_receiver_nodes_to_edges(input_graph)) model_inputs.append(blocks.broadcast_sender_nodes_to_edges(input_graph)) if use_globals: model_inputs.append(blocks.broadcast_globals_to_edges(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.nodes, output_graph.nodes) self.assertIs(input_graph.globals, output_graph.globals) actual_edges = output_graph.edges.numpy() model_inputs_out = model_inputs.numpy() expected_output_edges = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_edges, actual_edges, err=1e-4) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegex(ValueError, "At least one of "): blocks.EdgeBlock( edge_model_fn=self._edge_model_fn, use_edges=False, use_receiver_nodes=False, use_sender_nodes=False, use_globals=False) class NodeBlockTest(GraphModuleTest): def setUp(self): super(NodeBlockTest, self).setUp() self._scale = 10. self._node_model_fn = lambda: lambda features: features * self._scale model_args = lambda features, scale, offset: features * scale + offset self._node_model_args_fn = lambda: model_args @parameterized.named_parameters( ("all inputs, custom reductions", True, True, True, True, tf.math.unsorted_segment_sum, tf.math.unsorted_segment_mean), ("received edges only, blocks reducer", True, False, False, False, blocks.unsorted_segment_max_or_zero, None), ("sent edges only, custom reduction", False, True, False, False, None, tf.math.unsorted_segment_prod), ("nodes only", False, False, True, False, None, None), ("globals only", False, False, False, True, None, None), ("received edges and nodes, custom reductions", True, False, True, False, blocks.unsorted_segment_min_or_zero, tf.math.unsorted_segment_prod), ("sent edges and globals, custom reduction", False, True, False, True, None, blocks.unsorted_segment_min_or_zero), ) def test_output_values( self, use_received_edges, use_sent_edges, use_nodes, use_globals, received_edges_reducer, sent_edges_reducer): """Compares the output of a NodeBlock to an explicit computation.""" input_graph = self._get_input_graph() node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) output_graph = node_block(input_graph) model_inputs = [] if use_received_edges: model_inputs.append( blocks.ReceivedEdgesToNodesAggregator( received_edges_reducer)(input_graph)) if use_sent_edges: model_inputs.append( blocks.SentEdgesToNodesAggregator(sent_edges_reducer)(input_graph)) if use_nodes: model_inputs.append(input_graph.nodes) if use_globals: model_inputs.append(blocks.broadcast_globals_to_nodes(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.edges, output_graph.edges) self.assertIs(input_graph.globals, output_graph.globals) output_graph_out = utils_tf.nest_to_numpy(output_graph) model_inputs_out = model_inputs expected_output_nodes = model_inputs_out * self._scale self.assertNDArrayNear( expected_output_nodes, output_graph_out.nodes, err=1e-4) @parameterized.named_parameters( ("only scaling", 2, 0), ("only offsetting", 0, 2), ("scaling and offsetting", 2, 2), ("without scaling and offsetting", 1, 0), ) def test_optional_arguments(self, scale, offset): """Assesses the correctness of the NodeBlock using arguments.""" input_graph = self._get_input_graph() node_block = blocks.NodeBlock(node_model_fn=self._node_model_args_fn) output_graph_out = node_block( input_graph, node_model_kwargs=dict(scale=scale, offset=offset)) fixed_scale = scale fixed_offset = offset model_fn = lambda: lambda features: features * fixed_scale + fixed_offset hardcoded_node_block = blocks.NodeBlock(node_model_fn=model_fn) expected_graph_out = hardcoded_node_block(input_graph) self.assertIs(expected_graph_out.edges, output_graph_out.edges) self.assertIs(expected_graph_out.globals, output_graph_out.globals) self.assertNDArrayNear( expected_graph_out.nodes.numpy(), output_graph_out.nodes.numpy(), err=1e-4) @parameterized.named_parameters( ("all inputs", True, True, True, True, 14), ("received edges only", True, False, False, False, 4), ("sent edges only", False, True, False, False, 4), ("nodes only", False, False, True, False, 2), ("globals only", False, False, False, True, 4), ) def test_created_variables(self, use_received_edges, use_sent_edges, use_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by a NodeBlock.""" output_size = 10 expected_var_shapes_dict = { "node_block/mlp/linear_0/b:0": [output_size], "node_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() node_block = blocks.NodeBlock( node_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals) node_block(input_graph) variables = node_block.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing nodes", False, False, True, False, ("nodes",)), ("missing edge data (receivers only)", True, False, False, False, ("edges",)), ("missing edge data (senders only)", False, True, False, False, ("edges",)), ("missing globals", False, False, False, True, ("globals",)), ) def test_missing_field_raises_exception( self, use_received_edges, use_sent_edges, use_nodes, use_globals, none_fields): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph(none_fields) node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals) with self.assertRaisesRegex(ValueError, "field cannot be None"): node_block(input_graph) @parameterized.named_parameters( ("no received edges reducer", True, False, None, tf.math.unsorted_segment_sum), ("no sent edges reducer", False, True, tf.math.unsorted_segment_sum, None), ) def test_missing_aggregation_raises_exception( self, use_received_edges, use_sent_edges, received_edges_reducer, sent_edges_reducer): """Checks that missing a required aggregation argument raises an error.""" with self.assertRaisesRegex(ValueError, "should not be None"): blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=False, use_globals=False, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched nodes and r. edges", True, False, True, False, "edges"), ("mismatched nodes and s. edges", True, False, True, False, "edges"), ("mismatched edges and globals", True, False, False, True, "globals"), ("mismatched nodes and globals", False, True, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_received_edges, use_sent_edges, use_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals ) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, True, False, True, "nodes"), ("mismatched edges", False, False, True, True, "edges"), ("mismatched globals", True, True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_received_edges, use_sent_edges, use_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.NodeBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_received_edges=use_received_edges, use_sent_edges=use_sent_edges, use_nodes=use_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) node_block = blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=use_edges, use_sent_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) output_graph = node_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.ReceivedEdgesToNodesAggregator( tf.math.unsorted_segment_sum)(input_graph)) model_inputs.append( blocks.SentEdgesToNodesAggregator( tf.math.unsorted_segment_sum)(input_graph)) if use_nodes: model_inputs.append(input_graph.nodes) if use_globals: model_inputs.append(blocks.broadcast_globals_to_nodes(input_graph)) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.edges, output_graph.edges) self.assertIs(input_graph.globals, output_graph.globals) actual_nodes = output_graph.nodes.numpy() model_inputs_out = model_inputs.numpy() expected_output_nodes = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_nodes, actual_nodes, err=1e-4) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegex(ValueError, "At least one of "): blocks.NodeBlock( node_model_fn=self._node_model_fn, use_received_edges=False, use_sent_edges=False, use_nodes=False, use_globals=False) class GlobalBlockTest(GraphModuleTest): """Tests for the GlobalBlock.""" def setUp(self): super(GlobalBlockTest, self).setUp() self._scale = 10. self._global_model_fn = lambda: lambda features: features * self._scale model_args = lambda features, scale, offset: features * scale + offset self._global_model_args_fn = lambda: model_args @parameterized.named_parameters( ("all_inputs, custom reductions", True, True, True, tf.math.unsorted_segment_sum, tf.math.unsorted_segment_mean), ("edges only, blocks reducer", True, False, False, blocks.unsorted_segment_max_or_zero, None), ("nodes only, custom reduction", False, True, False, None, tf.math.unsorted_segment_prod), ("globals only", False, False, True, None, None), ("edges and nodes, blocks reducer", True, True, False, blocks.unsorted_segment_min_or_zero, tf.math.unsorted_segment_prod), ("nodes and globals, blocks reducer", False, True, True, None, blocks.unsorted_segment_min_or_zero), ) def test_output_values( self, use_edges, use_nodes, use_globals, edges_reducer, nodes_reducer): """Compares the output of a GlobalBlock to an explicit computation.""" input_graph = self._get_input_graph() global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) output_graph = global_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.EdgesToGlobalsAggregator(edges_reducer)(input_graph)) if use_nodes: model_inputs.append( blocks.NodesToGlobalsAggregator(nodes_reducer)(input_graph)) if use_globals: model_inputs.append(input_graph.globals) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.edges, output_graph.edges) self.assertIs(input_graph.nodes, output_graph.nodes) output_graph_out = utils_tf.nest_to_numpy(output_graph) model_inputs_out = model_inputs expected_output_globals = model_inputs_out * self._scale self.assertNDArrayNear( expected_output_globals, output_graph_out.globals, err=1e-4) @parameterized.named_parameters( ("only scaling", 2, 0), ("only offsetting", 0, 2), ("scaling and offsetting", 2, 2), ("without scaling and offsetting", 1, 0), ) def test_optional_arguments(self, scale, offset): """Assesses the correctness of the GlobalBlock using arguments.""" input_graph = self._get_input_graph() global_block = blocks.GlobalBlock( global_model_fn=self._global_model_args_fn) output_graph_out = global_block( input_graph, global_model_kwargs=dict(scale=scale, offset=offset)) fixed_scale = scale fixed_offset = offset model_fn = lambda: lambda features: features * fixed_scale + fixed_offset hardcoded_global_block = blocks.GlobalBlock(global_model_fn=model_fn) expected_graph_out = hardcoded_global_block(input_graph) self.assertIs(expected_graph_out.edges, output_graph_out.edges) self.assertIs(expected_graph_out.nodes, output_graph_out.nodes) self.assertNDArrayNear( expected_graph_out.globals.numpy(), output_graph_out.globals.numpy(), err=1e-4) @parameterized.named_parameters( ("default", True, True, True, 10), ("use edges only", True, False, False, 4), ("use nodes only", False, True, False, 2), ("use globals only", False, False, True, 4), ) def test_created_variables(self, use_edges, use_nodes, use_globals, expected_first_dim_w): """Verifies the variable names and shapes created by a GlobalBlock.""" output_size = 10 expected_var_shapes_dict = { "global_block/mlp/linear_0/b:0": [output_size], "global_block/mlp/linear_0/w:0": [expected_first_dim_w, output_size]} input_graph = self._get_input_graph() global_block = blocks.GlobalBlock( global_model_fn=functools.partial(snt.nets.MLP, output_sizes=[output_size]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) global_block(input_graph) variables = global_block.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("missing edges", True, False, False, "edges"), ("missing nodes", False, True, False, "nodes"), ("missing globals", False, False, True, "globals"), ) def test_missing_field_raises_exception( self, use_edges, use_nodes, use_globals, none_field): """Checks that missing a required field raises an exception.""" input_graph = self._get_input_graph([none_field]) global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) with self.assertRaisesRegex(ValueError, "field cannot be None"): global_block(input_graph) @parameterized.named_parameters( ("no edges", False, True, True, "edges"), ("no nodes", True, False, True, "nodes"), ("no globals", True, True, False, "globals"), ) def test_unused_field_can_be_none( self, use_edges, use_nodes, use_globals, none_field): """Checks that computation can handle non-necessary fields left None.""" input_graph = self._get_input_graph([none_field]) global_block = blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals) output_graph = global_block(input_graph) model_inputs = [] if use_edges: model_inputs.append( blocks.EdgesToGlobalsAggregator( tf.math.unsorted_segment_sum)(input_graph)) if use_nodes: model_inputs.append( blocks.NodesToGlobalsAggregator( tf.math.unsorted_segment_sum)(input_graph)) if use_globals: model_inputs.append(input_graph.globals) model_inputs = tf.concat(model_inputs, axis=-1) self.assertIs(input_graph.edges, output_graph.edges) self.assertIs(input_graph.nodes, output_graph.nodes) actual_globals = output_graph.globals.numpy() model_inputs_out = model_inputs expected_output_globals = model_inputs_out * self._scale self.assertNDArrayNear(expected_output_globals, actual_globals, err=1e-4) def test_compatible_higher_rank_no_raise(self): """No exception should occur with higher ranks tensors.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.map(lambda v: tf.transpose(v, [0, 2, 1, 3])) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3])) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("mismatched nodes and edges", True, True, False, "edges"), ("mismatched edges and globals", True, False, True, "globals"), ("mismatched nodes and globals", False, True, True, "globals"), ) def test_incompatible_higher_rank_inputs_raises(self, use_edges, use_nodes, use_globals, field): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals ) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): network(input_graph) @parameterized.named_parameters( ("mismatched nodes", True, False, True, "nodes"), ("mismatched edges", False, True, True, "edges"), ("mismatched globals", True, True, False, "globals"), ) def test_incompatible_higher_rank_inputs_no_raise(self, use_edges, use_nodes, use_globals, field): """No exception should occur if a differently shapped field is not used.""" input_graph = self._get_shaped_input_graph() input_graph = input_graph.replace( **{field: tf.transpose(getattr(input_graph, field), [0, 2, 1, 3])}) network = blocks.GlobalBlock( functools.partial(snt.Conv2D, output_channels=10, kernel_shape=[3, 3]), use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals ) self._assert_build_and_run(network, input_graph) def test_no_input_raises_exception(self): """Checks that receiving no input raises an exception.""" with self.assertRaisesRegex(ValueError, "At least one of "): blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=False, use_nodes=False, use_globals=False) @parameterized.named_parameters( ("missing edges reducer", True, False, None, tf.math.unsorted_segment_sum), ("missing nodes reducer", False, True, tf.math.unsorted_segment_sum, None), ) def test_missing_aggregation_raises_exception( self, use_edges, use_nodes, edges_reducer, nodes_reducer): """Checks that missing a required aggregation argument raises an error.""" with self.assertRaisesRegex(ValueError, "should not be None"): blocks.GlobalBlock( global_model_fn=self._global_model_fn, use_edges=use_edges, use_nodes=use_nodes, use_globals=False, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) class CommonBlockTests(GraphModuleTest): """Tests that are common to the EdgeBlock, NodeBlock and GlobalBlock.""" @parameterized.named_parameters( ("edge block", blocks.EdgeBlock), ("node block", blocks.NodeBlock), ("global block", blocks.GlobalBlock), ) def test_dynamic_batch_sizes(self, block_constructor): """Checks that all batch sizes are as expected through a GraphNetwork.""" # Remove all placeholders from here, these are unnecessary in tf2. input_graph = utils_np.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) input_graph = input_graph.map(tf.constant, fields=graphs.ALL_FIELDS) model = block_constructor( functools.partial(snt.nets.MLP, output_sizes=[10])) output = model(input_graph) actual = utils_tf.nest_to_numpy(output) for k, v in input_graph._asdict().items(): self.assertEqual(v.shape[0], getattr(actual, k).shape[0]) @parameterized.named_parameters( ("float64 data, edge block", tf.float64, tf.int32, blocks.EdgeBlock), ("int64 indices, edge block", tf.float32, tf.int64, blocks.EdgeBlock), ("float64 data, node block", tf.float64, tf.int32, blocks.NodeBlock), ("int64 indices, node block", tf.float32, tf.int64, blocks.NodeBlock), ("float64 data, global block", tf.float64, tf.int32, blocks.GlobalBlock), ("int64 indices, global block", tf.float32, tf.int64, blocks.GlobalBlock), ) def test_dtypes(self, data_dtype, indices_dtype, block_constructor): """Checks that all the output types are as expected for blocks.""" input_graph = self._get_input_graph() input_graph = input_graph.map(lambda v: tf.cast(v, data_dtype), ["nodes", "edges", "globals"]) input_graph = input_graph.map(lambda v: tf.cast(v, indices_dtype), ["receivers", "senders"]) model = block_constructor( functools.partial(snt.nets.MLP, output_sizes=[10])) output = model(input_graph) for field in ["nodes", "globals", "edges"]: self.assertEqual(data_dtype, getattr(output, field).dtype) for field in ["receivers", "senders"]: self.assertEqual(indices_dtype, getattr(output, field).dtype) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests_tf2/blocks_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for modules.py in Tensorflow 2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl.testing import parameterized from graph_nets import blocks from graph_nets import graphs from graph_nets import modules from graph_nets import utils_np from graph_nets import utils_tf import numpy as np import sonnet as snt import tensorflow as tf SMALL_GRAPH_1 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 1], "receivers": [1, 2], } SMALL_GRAPH_2 = { "globals": [-1.1, -1.2, -1.3], "nodes": [[-10.1, -10.2], [-20.1, -20.2], [-30.1, -30.2]], "edges": [[-101., -102., -103., -104.]], "senders": [1,], "receivers": [2,], } SMALL_GRAPH_3 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [1, 1], "receivers": [0, 2], } SMALL_GRAPH_4 = { "globals": [1.1, 1.2, 1.3], "nodes": [[10.1, 10.2], [20.1, 20.2], [30.1, 30.2]], "edges": [[101., 102., 103., 104.], [201., 202., 203., 204.]], "senders": [0, 2], "receivers": [1, 1], } class GraphModuleTest(tf.test.TestCase, parameterized.TestCase): """Base class for all the tests in this file.""" def setUp(self): super(GraphModuleTest, self).setUp() tf.random.set_seed(0) def _assert_all_none_or_all_close(self, expected, actual, *args, **kwargs): if expected is None: return self.assertAllEqual(expected, actual) return self.assertAllClose(expected, actual, *args, **kwargs) def _get_input_graph(self, none_field=None): input_graph = utils_tf.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2, SMALL_GRAPH_3, SMALL_GRAPH_4]) if none_field: input_graph = input_graph.replace(**{none_field: None}) return input_graph def _get_shaped_input_graph(self): return graphs.GraphsTuple( nodes=tf.zeros([3, 4, 5, 11], dtype=tf.float32), edges=tf.zeros([5, 4, 5, 12], dtype=tf.float32), globals=tf.zeros([2, 4, 5, 13], dtype=tf.float32), receivers=tf.range(5, dtype=tf.int32) // 3, senders=tf.range(5, dtype=tf.int32) % 3, n_node=tf.constant([2, 1], dtype=tf.int32), n_edge=tf.constant([3, 2], dtype=tf.int32), ) def _get_shaped_model_fns(self): edge_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3]) node_model_fn = functools.partial( snt.Conv2D, output_channels=8, kernel_shape=[3, 3]) global_model_fn = functools.partial( snt.Conv2D, output_channels=7, kernel_shape=[3, 3]) return edge_model_fn, node_model_fn, global_model_fn def _assert_build_and_run(self, network, input_graph): # No error at construction time. _ = network(input_graph) class GraphIndependentTest(GraphModuleTest): def _get_model(self, name=None): kwargs = { "edge_model_fn": functools.partial(snt.nets.MLP, output_sizes=[5]), "node_model_fn": functools.partial(snt.nets.MLP, output_sizes=[10]), "global_model_fn": functools.partial(snt.nets.MLP, output_sizes=[15]), } if name: kwargs["name"] = name return modules.GraphIndependent(**kwargs) def test_same_as_subblocks(self): """Compares the output to explicit subblocks output.""" input_graph = self._get_input_graph() model = self._get_model() output_graph = utils_tf.nest_to_numpy(model(input_graph)) expected_output_edges = model._edge_model(input_graph.edges).numpy() expected_output_nodes = model._node_model(input_graph.nodes).numpy() expected_output_globals = model._global_model(input_graph.globals).numpy() self._assert_all_none_or_all_close(expected_output_edges, output_graph.edges) self._assert_all_none_or_all_close(expected_output_nodes, output_graph.nodes) self._assert_all_none_or_all_close(expected_output_globals, output_graph.globals) @parameterized.named_parameters( ("with scale and offset", {"scale": 2, "offset": 1}, {"scale": .5, "offset": .25}, {"scale": 3, "offset": 1.5}) ) def test_kwargs(self, edge_model_kwargs, node_model_kwargs, global_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() edge_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) edge_model_fn_with_params = functools.partial( edge_model_fn(), scale=edge_model_kwargs["scale"], offset=edge_model_kwargs["offset"]) node_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_model_fn_with_params = functools.partial( node_model_fn(), scale=node_model_kwargs["scale"], offset=node_model_kwargs["offset"]) global_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) global_model_fn_with_params = functools.partial( global_model_fn(), scale=global_model_kwargs["scale"], offset=global_model_kwargs["offset"]) model = modules.GraphIndependent( edge_model_fn, node_model_fn, global_model_fn) model_with_params = modules.GraphIndependent( lambda: edge_model_fn_with_params, lambda: node_model_fn_with_params, lambda: global_model_fn_with_params) output_model = model( input_graph, edge_model_kwargs, node_model_kwargs, global_model_kwargs) output_graph = utils_tf.nest_to_numpy(output_model) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.receivers, output_graph.receivers,) self.assertAllEqual(expected_graph.senders, output_graph.senders) self._assert_all_none_or_all_close(expected_graph.edges, output_graph.edges) self._assert_all_none_or_all_close(expected_graph.nodes, output_graph.nodes) self._assert_all_none_or_all_close( expected_graph.globals, output_graph.globals) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a GraphIndependent.""" name = name if name is not None else "graph_independent" expected_var_shapes_dict = { name + "/edge_model/mlp/linear_0/b:0": [5], name + "/edge_model/mlp/linear_0/w:0": [4, 5], name + "/node_model/mlp/linear_0/b:0": [10], name + "/node_model/mlp/linear_0/w:0": [2, 10], name + "/global_model/mlp/linear_0/b:0": [15], name + "/global_model/mlp/linear_0/w:0": [3, 15], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("with tffunction", True), ("without tffunction", False),) def test_gradient_flow(self, use_autograd): """Verifies that gradient flow is as expected.""" input_graph = self._get_input_graph() for input_field in ["nodes", "edges", "globals"]: input_tensor = getattr(input_graph, input_field) for output_field in ["nodes", "edges", "globals"]: model = self._get_model() if use_autograd: model.__call__ = tf.function(model.__call__) with tf.GradientTape() as tape: tape.watch(input_tensor) output_graph = model(input_graph) output_tensor = getattr(output_graph, output_field) gradient = tape.gradient(output_tensor, input_tensor) if input_field == output_field: self.assertNotEqual( None, gradient, msg="gradient should flow from {} to {}".format( output_field, input_field)) else: self.assertIsNone( gradient, msg="gradient should not flow from {} to {}".format( output_field, input_field)) @parameterized.named_parameters( ("differently shaped edges", "edges"), ("differently shaped nodes", "nodes"), ("differently shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_no_raise(self, field_to_reshape): """A GraphIndependent does not make assumptions on its inputs shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) network = modules.GraphIndependent( edge_model_fn, node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class GraphNetworkTest(GraphModuleTest): def _get_model(self): edge_model_fn = functools.partial(snt.Linear, output_size=5) node_model_fn = functools.partial(snt.Linear, output_size=10) global_model_fn = functools.partial(snt.Linear, output_size=15) return modules.GraphNetwork( edge_model_fn=edge_model_fn, node_model_fn=node_model_fn, global_model_fn=global_model_fn) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a GraphNetwork.""" name = name if name is not None else "graph_network" expected_var_shapes_dict = { name + "/edge_block/mlp/linear_0/b:0": [5], name + "/edge_block/mlp/linear_0/w:0": [4 + 4 + 3, 5], name + "/node_block/mlp/linear_0/b:0": [10], name + "/node_block/mlp/linear_0/w:0": [5 + 2 + 3, 10], name + "/global_block/mlp/linear_0/b:0": [15], name + "/global_block/mlp/linear_0/w:0": [10 + 5 + 3, 15], } input_graph = self._get_input_graph() extra_kwargs = {"name": name} if name else {} model = modules.GraphNetwork( edge_model_fn=functools.partial(snt.nets.MLP, output_sizes=[5]), node_model_fn=functools.partial(snt.nets.MLP, output_sizes=[10]), global_model_fn=functools.partial(snt.nets.MLP, output_sizes=[15]), **extra_kwargs) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("reduce sum reduction", tf.math.unsorted_segment_sum, False), ("reduce sum reduction with tf.function", tf.math.unsorted_segment_sum, True), ("reduce max or zero reduction", blocks.unsorted_segment_max_or_zero, True),) def test_same_as_subblocks(self, reducer, use_tf_function): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock` and `GlobalBlock`. use_tf_function: Whether to compile the model with `tf.function`. """ input_graph = self._get_input_graph() edge_model_fn = functools.partial(snt.Linear, output_size=5) node_model_fn = functools.partial(snt.Linear, output_size=10) global_model_fn = functools.partial(snt.Linear, output_size=15) graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, node_model_fn=node_model_fn, global_model_fn=global_model_fn, reducer=reducer) if use_tf_function: input_signature = [utils_tf.specs_from_graphs_tuple(input_graph)] graph_network_fn = tf.function(graph_network, input_signature) else: graph_network_fn = graph_network output_graph = graph_network_fn(input_graph) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: graph_network._edge_block._edge_model, use_sender_nodes=True, use_edges=True, use_receiver_nodes=True, use_globals=True) node_block = blocks.NodeBlock( node_model_fn=lambda: graph_network._node_block._node_model, use_nodes=True, use_sent_edges=False, use_received_edges=True, use_globals=True, received_edges_reducer=reducer) global_block = blocks.GlobalBlock( global_model_fn=lambda: graph_network._global_block._global_model, use_nodes=True, use_edges=True, use_globals=True, edges_reducer=reducer, nodes_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = node_block(expected_output_edge_block) expected_output_global_block = global_block(expected_output_node_block) expected_edges = expected_output_edge_block.edges.numpy() expected_nodes = expected_output_node_block.nodes.numpy() expected_globals = expected_output_global_block.globals.numpy() self._assert_all_none_or_all_close(expected_edges, output_graph.edges.numpy()) self._assert_all_none_or_all_close(expected_nodes, output_graph.nodes.numpy()) self._assert_all_none_or_all_close(expected_globals, output_graph.globals.numpy()) @parameterized.named_parameters( ("with scale and offset", {"scale": 2, "offset": 1}, {"scale": .5, "offset": .25}, {"scale": 3, "offset": 1.5}) ) def test_kwargs(self, edge_model_kwargs, node_model_kwargs, global_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() edge_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) edge_model_fn_with_params = functools.partial( edge_model_fn(), scale=edge_model_kwargs["scale"], offset=edge_model_kwargs["offset"]) node_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_model_fn_with_params = functools.partial( node_model_fn(), scale=node_model_kwargs["scale"], offset=node_model_kwargs["offset"]) global_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) global_model_fn_with_params = functools.partial( global_model_fn(), scale=global_model_kwargs["scale"], offset=global_model_kwargs["offset"]) model = modules.GraphNetwork(edge_model_fn, node_model_fn, global_model_fn) model_with_params = modules.GraphNetwork( lambda: edge_model_fn_with_params, lambda: node_model_fn_with_params, lambda: global_model_fn_with_params) output_model = model( input_graph, edge_model_kwargs, node_model_kwargs, global_model_kwargs) output_graph = utils_tf.nest_to_numpy(output_model) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.receivers, output_graph.receivers,) self.assertAllEqual(expected_graph.senders, output_graph.senders) self._assert_all_none_or_all_close(expected_graph.edges, output_graph.edges) self._assert_all_none_or_all_close(expected_graph.nodes, output_graph.nodes) self._assert_all_none_or_all_close( expected_graph.globals, output_graph.globals) def test_dynamic_batch_sizes(self): """Checks that all batch sizes are as expected through a GraphNetwork.""" input_graph = utils_np.data_dicts_to_graphs_tuple( [SMALL_GRAPH_1, SMALL_GRAPH_2]) input_graph = input_graph.map(tf.constant, fields=graphs.ALL_FIELDS) model = self._get_model() output = model(input_graph) for k, v in input_graph._asdict().items(): self.assertEqual(v.shape[0], getattr(output, k).shape[0]) @parameterized.named_parameters( ("float64 data", tf.float64, tf.int32), ("int64 indices", tf.float32, tf.int64),) def test_dtypes(self, data_dtype, indices_dtype): """Checks that all the output types are as expected in a GraphNetwork.""" input_graph = self._get_input_graph() input_graph = input_graph.map(lambda v: tf.cast(v, data_dtype), ["nodes", "globals", "edges"]) input_graph = input_graph.map(lambda v: tf.cast(v, indices_dtype), ["senders", "receivers"]) model = self._get_model() output = model(input_graph) for field in ["nodes", "globals", "edges"]: self.assertEqual(data_dtype, getattr(output, field).dtype) for field in ["receivers", "senders"]: self.assertEqual(indices_dtype, getattr(output, field).dtype) @parameterized.named_parameters( ("edges only", True, False, False, False), ("receivers only", False, True, False, False), ("senders only", False, False, True, False), ("globals only", False, False, False, True),) def test_edge_block_options(self, use_edges, use_receiver_nodes, use_sender_nodes, use_globals): """Test for configuring the EdgeBlock options.""" reducer = tf.math.unsorted_segment_sum input_graph = self._get_input_graph() edge_model_fn = functools.partial(snt.Linear, output_size=10) edge_block_opt = {"use_edges": use_edges, "use_receiver_nodes": use_receiver_nodes, "use_sender_nodes": use_sender_nodes, "use_globals": use_globals} # Identity node model node_model_fn = lambda: tf.identity node_block_opt = {"use_received_edges": False, "use_sent_edges": False, "use_nodes": True, "use_globals": False} # Identity global model global_model_fn = lambda: tf.identity global_block_opt = {"use_globals": True, "use_nodes": False, "use_edges": False} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt, reducer=reducer) output_graph = utils_tf.nest_to_numpy(graph_network(input_graph)) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: graph_network._edge_block._edge_model, use_edges=use_edges, use_receiver_nodes=use_receiver_nodes, use_sender_nodes=use_sender_nodes, use_globals=use_globals) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = expected_output_edge_block expected_output_global_block = expected_output_node_block expected_edges = expected_output_edge_block.edges.numpy() expected_nodes = expected_output_node_block.nodes.numpy() expected_globals = expected_output_global_block.globals.numpy() self._assert_all_none_or_all_close(expected_edges, output_graph.edges) self._assert_all_none_or_all_close(expected_nodes, output_graph.nodes) self._assert_all_none_or_all_close(expected_globals, output_graph.globals) @parameterized.named_parameters( ("received edges only", True, False, False, False, None, None), ("received edges, max reduction", True, False, False, False, tf.math.unsorted_segment_max, None), ("sent edges only", False, True, False, False, None, None), ("sent edges, max reduction", False, True, False, False, None, tf.math.unsorted_segment_max), ("nodes only", False, False, True, False, None, None), ("globals only", False, False, False, True, None, None), ) def test_node_block_options(self, use_received_edges, use_sent_edges, use_nodes, use_globals, received_edges_reducer, sent_edges_reducer): """Test for configuring the NodeBlock options.""" input_graph = self._get_input_graph() if use_received_edges: received_edges_reducer = ( received_edges_reducer or tf.math.unsorted_segment_sum) if use_sent_edges: sent_edges_reducer = ( sent_edges_reducer or tf.math.unsorted_segment_sum) # Identity edge model. edge_model_fn = lambda: tf.identity edge_block_opt = {"use_edges": True, "use_receiver_nodes": False, "use_sender_nodes": False, "use_globals": False} node_model_fn = functools.partial(snt.Linear, output_size=10) node_block_opt = {"use_received_edges": use_received_edges, "use_sent_edges": use_sent_edges, "use_nodes": use_nodes, "use_globals": use_globals, "received_edges_reducer": received_edges_reducer, "sent_edges_reducer": sent_edges_reducer} # Identity global model global_model_fn = lambda: tf.identity global_block_opt = {"use_globals": True, "use_nodes": False, "use_edges": False} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt) output_graph = utils_tf.nest_to_numpy(graph_network(input_graph)) node_block = blocks.NodeBlock( node_model_fn=lambda: graph_network._node_block._node_model, use_nodes=use_nodes, use_sent_edges=use_sent_edges, use_received_edges=use_received_edges, use_globals=use_globals, received_edges_reducer=received_edges_reducer, sent_edges_reducer=sent_edges_reducer) expected_output_edge_block = input_graph expected_output_node_block = node_block(input_graph) expected_output_global_block = expected_output_node_block expected_edges = expected_output_edge_block.edges.numpy() expected_nodes = expected_output_node_block.nodes.numpy() expected_globals = expected_output_global_block.globals.numpy() self._assert_all_none_or_all_close(expected_edges, output_graph.edges) self._assert_all_none_or_all_close(expected_nodes, output_graph.nodes) self._assert_all_none_or_all_close(expected_globals, output_graph.globals) @parameterized.named_parameters( ("edges only", True, False, False, None, None), ("edges only, max", True, False, False, tf.math.unsorted_segment_max, None), ("nodes only", False, True, False, None, None), ("nodes only, max", False, True, False, None, tf.math.unsorted_segment_max), ("globals only", False, False, True, None, None), ) def test_global_block_options(self, use_edges, use_nodes, use_globals, edges_reducer, nodes_reducer): """Test for configuring the NodeBlock options.""" input_graph = self._get_input_graph() if use_edges: edges_reducer = edges_reducer or tf.math.unsorted_segment_sum if use_nodes: nodes_reducer = nodes_reducer or tf.math.unsorted_segment_sum # Identity edge model. edge_model_fn = lambda: tf.identity edge_block_opt = {"use_edges": True, "use_receiver_nodes": False, "use_sender_nodes": False, "use_globals": False} # Identity node model node_model_fn = lambda: tf.identity node_block_opt = {"use_received_edges": False, "use_sent_edges": False, "use_nodes": True, "use_globals": False} global_model_fn = functools.partial(snt.Linear, output_size=10) global_block_opt = {"use_globals": use_globals, "use_nodes": use_nodes, "use_edges": use_edges, "edges_reducer": edges_reducer, "nodes_reducer": nodes_reducer} graph_network = modules.GraphNetwork( edge_model_fn=edge_model_fn, edge_block_opt=edge_block_opt, node_model_fn=node_model_fn, node_block_opt=node_block_opt, global_model_fn=global_model_fn, global_block_opt=global_block_opt) output_graph = utils_tf.nest_to_numpy(graph_network(input_graph)) global_block = blocks.GlobalBlock( global_model_fn=lambda: graph_network._global_block._global_model, use_edges=use_edges, use_nodes=use_nodes, use_globals=use_globals, edges_reducer=edges_reducer, nodes_reducer=nodes_reducer) expected_output_edge_block = input_graph expected_output_node_block = expected_output_edge_block expected_output_global_block = global_block(expected_output_node_block) expected_edges = expected_output_edge_block.edges.numpy() expected_nodes = expected_output_node_block.nodes.numpy() expected_globals = expected_output_global_block.globals.numpy() self._assert_all_none_or_all_close(expected_edges, output_graph.edges) self._assert_all_none_or_all_close(expected_nodes, output_graph.nodes) self._assert_all_none_or_all_close(expected_globals, output_graph.globals) def test_higher_rank_outputs(self): """Tests that a graph net can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() network = modules.GraphNetwork(*self._get_shaped_model_fns()) self._assert_build_and_run(network, input_graph) @parameterized.named_parameters( ("wrongly shaped edges", "edges"), ("wrongly shaped nodes", "nodes"), ("wrongly shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_raises(self, field_to_reshape): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) graph_network = modules.GraphNetwork( edge_model_fn, node_model_fn, global_model_fn) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): graph_network(input_graph) def test_incompatible_higher_rank_partial_outputs_raises(self): """A error should be raised if partial outputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, global_model_fn = self._get_shaped_model_fns() edge_model_fn_2 = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) graph_network = modules.GraphNetwork( edge_model_fn_2, node_model_fn, global_model_fn) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): graph_network(input_graph) node_model_fn_2 = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) graph_network = modules.GraphNetwork( edge_model_fn, node_model_fn_2, global_model_fn) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): graph_network(input_graph) class InteractionNetworkTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=5), "node_model_fn": functools.partial(snt.Linear, output_size=10) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.InteractionNetwork(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by an InteractionNetwork.""" name = name if name is not None else "interaction_network" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [5], name + "/edge_block/linear/w:0": [2 + 2 + 4, 5], name + "/node_block/linear/b:0": [10], name + "/node_block/linear/w:0": [5 + 2, 10], } input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) model = self._get_model(name=name) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.math.unsorted_segment_sum,), ("max or zero reduction", blocks.unsorted_segment_max_or_zero,), ("no globals", tf.math.unsorted_segment_sum, "globals"), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock`s. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) interaction_network = self._get_model(reducer) output_graph = interaction_network(input_graph) edges_out = output_graph.edges.numpy() nodes_out = output_graph.nodes.numpy() self.assertAllEqual(input_graph.globals, output_graph.globals) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: interaction_network._edge_block._edge_model, use_sender_nodes=True, use_edges=True, use_receiver_nodes=True, use_globals=False) node_block = blocks.NodeBlock( node_model_fn=lambda: interaction_network._node_block._node_model, use_nodes=True, use_sent_edges=False, use_received_edges=True, use_globals=False, received_edges_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_node_block = node_block(expected_output_edge_block) expected_edges = expected_output_edge_block.edges.numpy() expected_nodes = expected_output_node_block.nodes.numpy() self._assert_all_none_or_all_close(expected_edges, edges_out) self._assert_all_none_or_all_close(expected_nodes, nodes_out) @parameterized.named_parameters( ("with scale and offset", {"scale": 2, "offset": 1}, {"scale": .5, "offset": .25}) ) def test_kwargs(self, edge_model_kwargs, node_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() edge_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) edge_model_fn_with_params = functools.partial( edge_model_fn(), scale=edge_model_kwargs["scale"], offset=edge_model_kwargs["offset"]) node_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_model_fn_with_params = functools.partial( node_model_fn(), scale=node_model_kwargs["scale"], offset=node_model_kwargs["offset"]) model = modules.InteractionNetwork(edge_model_fn, node_model_fn) model_with_params = modules.InteractionNetwork( lambda: edge_model_fn_with_params, lambda: node_model_fn_with_params) output_graph = utils_tf.nest_to_numpy( model(input_graph, edge_model_kwargs, node_model_kwargs)) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.globals, output_graph.globals) self.assertAllEqual(expected_graph.receivers, output_graph.receivers,) self.assertAllEqual(expected_graph.senders, output_graph.senders) self._assert_all_none_or_all_close(expected_graph.edges, output_graph.edges) self._assert_all_none_or_all_close(expected_graph.nodes, output_graph.nodes) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edge data", ["edges"],), ("no edges", ["edges", "receivers", "senders"],), ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) interaction_network = self._get_model() with self.assertRaises(ValueError): interaction_network(input_graph) def test_higher_rank_outputs(self): """Tests that an IN can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) self._assert_build_and_run(graph_network, input_graph) @parameterized.named_parameters( ("wrongly shaped edges", "edges"), ("wrongly shaped nodes", "nodes"),) def test_incompatible_higher_rank_inputs_raises(self, field_to_reshape): """Am exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): graph_network(input_graph) def test_incompatible_higher_rank_inputs_no_raise(self): """The globals can have an arbitrary shape in the input.""" input_graph = self._get_shaped_input_graph() edge_model_fn, node_model_fn, _ = self._get_shaped_model_fns() input_graph = input_graph.replace( globals=tf.transpose(input_graph.globals, [0, 2, 1, 3])) graph_network = modules.InteractionNetwork(edge_model_fn, node_model_fn) self._assert_build_and_run(graph_network, input_graph) class RelationNetworkTest(GraphModuleTest): def _get_model(self, reducer=tf.math.unsorted_segment_sum, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=5), "global_model_fn": functools.partial(snt.Linear, output_size=15) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.RelationNetwork(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a RelationNetwork.""" name = name if name is not None else "relation_network" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [5], name + "/edge_block/linear/w:0": [2 + 2, 5], name + "/global_block/linear/b:0": [15], name + "/global_block/linear/w:0": [5, 15], } input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) model = self._get_model(name=name) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.math.unsorted_segment_sum, None), ("max or zero reduction", blocks.unsorted_segment_max_or_zero, None), ("no edges", tf.math.unsorted_segment_sum, "edges"), ("no globals", tf.math.unsorted_segment_sum, "globals"), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `GlobalBlock`. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) relation_network = self._get_model(reducer) output_graph = relation_network(input_graph) edge_block = blocks.EdgeBlock( edge_model_fn=lambda: relation_network._edge_block._edge_model, use_edges=False, use_receiver_nodes=True, use_sender_nodes=True, use_globals=False) global_block = blocks.GlobalBlock( global_model_fn=lambda: relation_network._global_block._global_model, use_edges=True, use_nodes=False, use_globals=False, edges_reducer=reducer, nodes_reducer=reducer) expected_output_edge_block = edge_block(input_graph) expected_output_global_block = global_block(expected_output_edge_block) self.assertIs(input_graph.edges, output_graph.edges) self.assertIs(input_graph.nodes, output_graph.nodes) self._assert_all_none_or_all_close( output_graph.globals.numpy(), expected_output_global_block.globals.numpy()) @parameterized.named_parameters( ("with scale and offset", {"scale": 2, "offset": 1}, {"scale": .5, "offset": .25}) ) def test_kwargs(self, edge_model_kwargs, global_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() edge_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) edge_model_fn_with_params = functools.partial( edge_model_fn(), scale=edge_model_kwargs["scale"], offset=edge_model_kwargs["offset"]) global_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) global_model_fn_with_params = functools.partial( global_model_fn(), scale=global_model_kwargs["scale"], offset=global_model_kwargs["offset"]) model = modules.RelationNetwork(edge_model_fn, global_model_fn) model_with_params = modules.RelationNetwork( lambda: edge_model_fn_with_params, lambda: global_model_fn_with_params) output_graph = utils_tf.nest_to_numpy( model(input_graph, edge_model_kwargs, global_model_kwargs)) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.edges, output_graph.edges) self.assertAllEqual(expected_graph.nodes, output_graph.nodes) self.assertAllEqual(expected_graph.senders, expected_graph.senders) self.assertAllEqual(expected_graph.edges, output_graph.edges) self._assert_all_none_or_all_close( expected_graph.globals, output_graph.globals) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edges", ["edges", "receivers", "senders"],) ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) relation_network = self._get_model() with self.assertRaises(ValueError): relation_network(input_graph) @parameterized.named_parameters( ("differently shaped edges", "edges"), ("differently shaped nodes", "nodes"), ("differently shaped globals", "globals"),) def test_incompatible_higher_rank_inputs_no_raise(self, field_to_reshape): """A RelationNetwork does not make assumptions on its inputs shapes.""" input_graph = self._get_shaped_input_graph() edge_model_fn, _, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.map( lambda v: tf.transpose(v, [0, 2, 1, 3]), [field_to_reshape]) network = modules.RelationNetwork(edge_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class DeepSetsTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "node_model_fn": functools.partial(snt.Linear, output_size=5), "global_model_fn": functools.partial(snt.Linear, output_size=15) } if reducer: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.DeepSets(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a DeepSets network.""" name = name if name is not None else "deep_sets" expected_var_shapes_dict = { name + "/node_block/linear/b:0": [5], name + "/node_block/linear/w:0": [2 + 3, 5], name + "/global_block/linear/b:0": [15], name + "/global_block/linear/w:0": [5, 15], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.math.unsorted_segment_sum, []), ("no edge data", tf.math.unsorted_segment_sum, ["edges"]), ("no edges", tf.math.unsorted_segment_sum, ["edges", "receivers", "senders"]), ("max or zero reduction", blocks.unsorted_segment_max_or_zero, []), ) def test_same_as_subblocks(self, reducer, none_fields): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the NodeBlock. none_fields: (list of strings) The corresponding fields are removed from the input graph. """ input_graph = self._get_input_graph() input_graph = input_graph.map(lambda _: None, none_fields) deep_sets = self._get_model(reducer) output_graph = deep_sets(input_graph) output_nodes = output_graph.nodes.numpy() output_globals = output_graph.globals.numpy() node_block = blocks.NodeBlock( node_model_fn=lambda: deep_sets._node_block._node_model, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=True) global_block = blocks.GlobalBlock( global_model_fn=lambda: deep_sets._global_block._global_model, use_edges=False, use_nodes=True, use_globals=False, nodes_reducer=reducer) node_block_out = node_block(input_graph) expected_nodes = node_block_out.nodes.numpy() expected_globals = global_block(node_block_out).globals.numpy() self.assertAllEqual(input_graph.edges, output_graph.edges) self.assertAllEqual(input_graph.receivers, output_graph.receivers) self.assertAllEqual(input_graph.senders, output_graph.senders) self._assert_all_none_or_all_close(expected_nodes, output_nodes) self._assert_all_none_or_all_close(expected_globals, output_globals) @parameterized.named_parameters( ("with scale and offset", {"scale": .5, "offset": .25}, {"scale": 3, "offset": 1.5}) ) def test_kwargs(self, node_model_kwargs, global_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() node_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_model_fn_with_params = functools.partial( node_model_fn(), scale=node_model_kwargs["scale"], offset=node_model_kwargs["offset"]) global_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) global_model_fn_with_params = functools.partial( global_model_fn(), scale=global_model_kwargs["scale"], offset=global_model_kwargs["offset"]) model = modules.DeepSets(node_model_fn, global_model_fn) model_with_params = modules.DeepSets( lambda: node_model_fn_with_params, lambda: global_model_fn_with_params) output_graph = utils_tf.nest_to_numpy( model(input_graph, node_model_kwargs, global_model_kwargs)) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.receivers, output_graph.receivers) self.assertAllEqual(expected_graph.senders, expected_graph.senders) self.assertAllEqual(expected_graph.edges, output_graph.edges) self._assert_all_none_or_all_close( expected_graph.nodes, output_graph.nodes) self._assert_all_none_or_all_close( expected_graph.globals, output_graph.globals) @parameterized.parameters( ("nodes",), ("globals",), ) def test_field_must_not_be_none(self, none_field): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.replace(**{none_field: None}) deep_sets = self._get_model() with self.assertRaises(ValueError): deep_sets(input_graph) def test_incompatible_higher_rank_inputs_raises(self): """A exception should be raised if the inputs have incompatible shapes.""" input_graph = self._get_shaped_input_graph() _, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.replace( nodes=tf.transpose(input_graph.nodes, [0, 2, 1, 3])) graph_network = modules.DeepSets(node_model_fn, global_model_fn) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "Dimensions of inputs should match"): graph_network(input_graph) def test_incompatible_higher_rank_partial_outputs_no_raise(self): """There is no constraint on the size of the partial outputs.""" input_graph = self._get_shaped_input_graph() node_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3], stride=[1, 2]) global_model_fn = functools.partial( snt.Conv2D, output_channels=10, kernel_shape=[3, 3]) network = modules.DeepSets(node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) def test_incompatible_higher_rank_inputs_no_raise(self): """A DeepSets does not make assumptions on the shape if its input edges.""" input_graph = self._get_shaped_input_graph() _, node_model_fn, global_model_fn = self._get_shaped_model_fns() input_graph = input_graph.replace( edges=tf.transpose(input_graph.edges, [0, 2, 1, 3])) network = modules.DeepSets(node_model_fn, global_model_fn) self._assert_build_and_run(network, input_graph) class CommNetTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=15), "node_encoder_model_fn": functools.partial(snt.Linear, output_size=8), "node_model_fn": functools.partial(snt.Linear, output_size=5), } if reducer is not None: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.CommNet(**kwargs) @parameterized.named_parameters( ("default name", None), ("custom name", "custom_name")) def test_created_variables(self, name=None): """Verifies variable names and shapes created by a DeepSets network.""" name = name if name is not None else "comm_net" expected_var_shapes_dict = { name + "/edge_block/linear/b:0": [15], name + "/edge_block/linear/w:0": [2, 15], name + "/node_encoder_block/linear/b:0": [8], name + "/node_encoder_block/linear/w:0": [2, 8], name + "/node_block/linear/b:0": [5], name + "/node_block/linear/w:0": [15 + 8, 5], } input_graph = self._get_input_graph() model = self._get_model(name=name) model(input_graph) variables = model.variables var_shapes_dict = {var.name: var.get_shape().as_list() for var in variables} self.assertDictEqual(expected_var_shapes_dict, var_shapes_dict) @parameterized.named_parameters( ("default", tf.math.unsorted_segment_sum,), ("no edges", tf.math.unsorted_segment_sum, "edges"), ("no globals", tf.math.unsorted_segment_sum, "globals"), ("max or zero reduction", blocks.unsorted_segment_max_or_zero,), ) def test_same_as_subblocks(self, reducer, none_field=None): """Compares the output to explicit subblocks output. Args: reducer: The reducer used in the `NodeBlock`s. none_field: (string, default=None) If not None, the corresponding field is removed from the input graph. """ input_graph = self._get_input_graph(none_field) comm_net = self._get_model(reducer) output_graph = comm_net(input_graph) output_nodes = output_graph.nodes edge_subblock = blocks.EdgeBlock( edge_model_fn=lambda: comm_net._edge_block._edge_model, use_edges=False, use_receiver_nodes=False, use_sender_nodes=True, use_globals=False) node_encoder_subblock = blocks.NodeBlock( node_model_fn=lambda: comm_net._node_encoder_block._node_model, use_received_edges=False, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer) node_subblock = blocks.NodeBlock( node_model_fn=lambda: comm_net._node_block._node_model, use_received_edges=True, use_sent_edges=False, use_nodes=True, use_globals=False, received_edges_reducer=reducer) edge_block_out = edge_subblock(input_graph) encoded_nodes = node_encoder_subblock(input_graph).nodes node_input_graph = input_graph.replace( edges=edge_block_out.edges, nodes=encoded_nodes) node_block_out = node_subblock(node_input_graph) expected_nodes = node_block_out.nodes self.assertAllEqual(input_graph.globals, output_graph.globals) self.assertAllEqual(input_graph.edges, output_graph.edges) self.assertAllEqual(input_graph.receivers, output_graph.receivers,) self.assertAllEqual(input_graph.senders, output_graph.senders) self._assert_all_none_or_all_close( expected_nodes.numpy(), output_nodes.numpy()) @parameterized.named_parameters( ("with scale and offset", {"scale": 2, "offset": 1}, {"scale": .5, "offset": .25}, {"scale": 3, "offset": 1.5}) ) def test_kwargs(self, edge_model_kwargs, node_encoder_model_kwargs, node_model_kwargs): """Compares the output to expected output graph using kwargs.""" input_graph = self._get_input_graph() edge_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) edge_model_fn_with_params = functools.partial( edge_model_fn(), scale=edge_model_kwargs["scale"], offset=edge_model_kwargs["offset"]) node_encoder_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_encoder_model_fn_with_params = functools.partial( node_encoder_model_fn(), scale=node_encoder_model_kwargs["scale"], offset=node_encoder_model_kwargs["offset"]) node_model_fn = functools.partial( snt.LayerNorm, axis=1, create_scale=False, create_offset=False) node_model_fn_with_params = functools.partial( node_model_fn(), scale=node_model_kwargs["scale"], offset=node_model_kwargs["offset"]) model = modules.CommNet(edge_model_fn, node_encoder_model_fn, node_model_fn) model_with_params = modules.CommNet( lambda: edge_model_fn_with_params, lambda: node_encoder_model_fn_with_params, lambda: node_model_fn_with_params) output_model = model( input_graph, edge_model_kwargs, node_encoder_model_kwargs, node_model_kwargs) output_graph = utils_tf.nest_to_numpy(output_model) expected_graph = utils_tf.nest_to_numpy(model_with_params(input_graph)) self.assertAllEqual(expected_graph.globals, output_graph.globals) self.assertAllEqual(expected_graph.edges, output_graph.edges) self.assertAllEqual(expected_graph.receivers, output_graph.receivers,) self.assertAllEqual(expected_graph.senders, output_graph.senders) self._assert_all_none_or_all_close(expected_graph.nodes, output_graph.nodes) @parameterized.named_parameters( ("no nodes", ["nodes"],), ("no edges", ["edges", "receivers", "senders"],) ) def test_field_must_not_be_none(self, none_fields): """Tests that the model cannot be built if required fields are missing.""" input_graph = utils_tf.data_dicts_to_graphs_tuple([SMALL_GRAPH_1]) input_graph = input_graph.map(lambda _: None, none_fields) comm_net = self._get_model() with self.assertRaises(ValueError): comm_net(input_graph) def test_higher_rank_outputs(self): """Tests that a CommNet can be build with higher rank inputs/outputs.""" input_graph = self._get_shaped_input_graph() graph_network = modules.CommNet(*self._get_shaped_model_fns()) self._assert_build_and_run(graph_network, input_graph) class SelfAttentionTest(GraphModuleTest): def _get_model(self, reducer=None, name=None): kwargs = { "edge_model_fn": functools.partial(snt.Linear, output_size=15), "node_encoder_model_fn": functools.partial(snt.Linear, output_size=8), "node_model_fn": functools.partial(snt.Linear, output_size=5), } if reducer is not None: kwargs["reducer"] = reducer if name: kwargs["name"] = name return modules.CommNet(**kwargs) LOGITS_1D = [np.log(2), np.log(2), np.log(2), 0., 0., 0.] SOFTMAX_1D = [1., 2/3, 0.5, 0.25, 0.25, 1/3] LOGITS_2D = [[np.log(2), 1.], [np.log(2), 1.], [np.log(2), 1.], [0., 1.], [0., 1.], [0., 1.]] SOFTMAX_2D = [[1., 1.], [2/3, 0.5], [1/2, 1/3], [1/4, 1/3], [1/4, 1/3], [1/3, 0.5]] SENDERS = [0, 2, 2, 3, 4, 3] RECEIVERS = [1, 5, 6, 6, 6, 5] N_NODE = [2, 5] N_EDGE = [1, 5] @parameterized.named_parameters( ("one dimensional", LOGITS_1D, SOFTMAX_1D), ("two dimensional", LOGITS_2D, SOFTMAX_2D),) def test_unsorted_segment_softmax(self, data, expected_softmax): """Verifies variable names and shapes created by a DeepSets network.""" data = tf.constant(data, dtype=tf.float32) segment_ids = tf.constant(self.RECEIVERS, dtype=tf.int32) num_segments = tf.constant(sum(self.N_NODE), dtype=tf.int32) actual_softmax = modules._unsorted_segment_softmax( data, segment_ids, num_segments) self.assertAllClose(expected_softmax, actual_softmax.numpy()) @parameterized.named_parameters( ("one dimensional", LOGITS_1D, SOFTMAX_1D, modules._unsorted_segment_softmax), ("two dimensional", LOGITS_2D, SOFTMAX_2D, modules._unsorted_segment_softmax),) def test_received_edges_normalizer(self, logits, expected_normalized, normalizer): graph = graphs.GraphsTuple( nodes=None, edges=logits, globals=None, receivers=tf.constant(self.RECEIVERS, dtype=tf.int32), senders=tf.constant(self.SENDERS, dtype=tf.int32), n_node=tf.constant(self.N_NODE, dtype=tf.int32), n_edge=tf.constant(self.N_EDGE, dtype=tf.int32), ) actual_normalized_edges = modules._received_edges_normalizer( graph, normalizer) self.assertAllClose(expected_normalized, actual_normalized_edges.numpy()) def test_self_attention(self): # Just one feature per node. values_np = np.arange(sum(self.N_NODE)) + 1. # Multiple heads, one positive values, one negative values. values_np = np.stack([values_np, values_np*-1.], axis=-1) # Multiple features per node, per head, at different scales. values_np = np.stack([values_np, values_np*0.1], axis=-1) values = tf.constant(values_np, dtype=tf.float32) keys_np = [ [[0.3, 0.4]]*2, # Irrelevant (only sender to one node) [[0.1, 0.5]]*2, # Not used (is not a sender) [[1, 0], [0, 1]], [[0, 1], [1, 0]], [[1, 1], [1, 1]], [[0.4, 0.3]]*2, # Not used (is not a sender) [[0.3, 0.2]]*2] # Not used (is not a sender) keys = tf.constant(keys_np, dtype=tf.float32) queries_np = [ [[0.2, 0.7]]*2, # Not used (is not a receiver) [[0.3, 0.2]]*2, # Irrelevant (only receives from one node) [[0.2, 0.8]]*2, # Not used (is not a receiver) [[0.2, 0.4]]*2, # Not used (is not a receiver) [[0.3, 0.9]]*2, # Not used (is not a receiver) [[0, np.log(2)], [np.log(3), 0]], [[np.log(2), 0], [0, np.log(3)]]] queries = tf.constant(queries_np, dtype=tf.float32) attention_graph = graphs.GraphsTuple( nodes=None, edges=None, globals=None, receivers=tf.constant(self.RECEIVERS, dtype=tf.int32), senders=tf.constant(self.SENDERS, dtype=tf.int32), n_node=tf.constant(self.N_NODE, dtype=tf.int32), n_edge=tf.constant(self.N_EDGE, dtype=tf.int32),) self_attention = modules.SelfAttention() output_graph = self_attention(values, keys, queries, attention_graph) expected_mixed_nodes = [ [[0., 0.], [0., 0.]], # Does not receive any edges [[1., 0.1], [-1., -0.1]], # Only receives from n0. [[0., 0.], [0., 0.]], # Does not receive any edges [[0., 0.], [0., 0.]], # Does not receive any edges [[0., 0.], [0., 0.]], # Does not receive any edges [[11/3, 11/3*0.1], # Head one, receives from n2(1/3) n3(2/3) [-15/4, -15/4*0.1]], # Head two, receives from n2(1/4) n3(3/4) [[20/5, 20/5*0.1], # Head one, receives from n2(2/5) n3(1/5) n4(2/5) [-28/7, -28/7*0.1]], # Head two, receives from n2(3/7) n3(1/7) n4(3/7) ] self.assertAllClose(expected_mixed_nodes, output_graph.nodes.numpy()) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests_tf2/modules_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for utils_tf.py in Tensorflow 2.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl.testing import parameterized from graph_nets import graphs from graph_nets import utils_np from graph_nets import utils_tf from graph_nets.tests import test_utils as test_utils_tf1 from graph_nets.tests_tf2 import test_utils import networkx as nx import numpy as np from six.moves import range import tensorflow as tf import tree class RepeatTest(tf.test.TestCase, parameterized.TestCase): """Tests for `repeat`.""" @parameterized.named_parameters( ("base", (3,), [2, 3, 4], 0), ("empty_group_first", (3,), [0, 3, 4], 0), ("empty_group_middle", (3,), [2, 0, 4], 0), ("double_empty_group_middle", (4,), [2, 0, 0, 4], 0), ("empty_group_last", (3,), [2, 3, 0], 0), ("just_one_group", (1,), [2], 0), ("zero_groups", (0,), [], 0), ("axis 0", (2, 3, 4), [2, 3], 0), ("axis 1", (3, 2, 4), [2, 3], 1), ("axis 2", (4, 3, 2), [2, 3], 2), ("zero_groups_with_shape", (2, 0, 4), [], 1), ) def test_repeat(self, shape, repeats, axis): num_elements = np.prod(shape) t = np.arange(num_elements).reshape(*shape) expected = np.repeat(t, repeats, axis=axis) tensor = tf.constant(t) repeats = tf.constant(repeats, dtype=tf.int32) actual = utils_tf.repeat(tensor, repeats, axis=axis) self.assertAllEqual(expected, actual) @parameterized.named_parameters(("default", "custom_name", None), ("custom", None, "repeat")) def test_name_scope(self, name, expected_name): self.skipTest("Uses get_default_graph.") kwargs = {"name": name} if name else {} expected_name = expected_name if expected_name else name t = tf.zeros([3, 2, 4]) indices = tf.constant([2, 3]) with test_utils.assert_new_op_prefixes(self, expected_name + "/"): utils_tf.repeat(t, indices, axis=1, **kwargs) def _generate_graph(batch_index, n_nodes=4, add_edges=True): graph = nx.DiGraph() for node in range(n_nodes): node_data = {"features": np.array([node, batch_index], dtype=np.float32)} graph.add_node(node, **node_data) if add_edges: for edge, (receiver, sender) in enumerate(zip([0, 0, 1], [1, 2, 3])): if sender < n_nodes and receiver < n_nodes: edge_data = np.array([edge, edge + 1, batch_index], dtype=np.float64) graph.add_edge(sender, receiver, features=edge_data, index=edge) graph.graph["features"] = np.array([batch_index], dtype=np.float32) return graph class ConcatTest(tf.test.TestCase, parameterized.TestCase): """Tests for `concat`, along various axis.""" @parameterized.named_parameters( ("no nones", []), ("stateless graph", ["nodes", "edges", "globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_concat_first_axis(self, none_fields): graph_0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph_1 = utils_np.networkxs_to_graphs_tuple([_generate_graph(2, 2)]) graph_2 = utils_np.networkxs_to_graphs_tuple([_generate_graph(3, 3)]) graphs_ = [ gr.map(tf.convert_to_tensor, graphs.ALL_FIELDS) for gr in [graph_0, graph_1, graph_2] ] graphs_ = [gr.map(lambda _: None, none_fields) for gr in graphs_] concat_graph = utils_tf.concat(graphs_, axis=0) for none_field in none_fields: self.assertIsNone(getattr(concat_graph, none_field)) concat_graph = concat_graph.map(tf.no_op, none_fields) if "nodes" not in none_fields: self.assertAllEqual( np.array([0, 1, 2, 0, 1, 0, 1, 0, 1, 2]), [x[0] for x in concat_graph.nodes]) self.assertAllEqual( np.array([0, 0, 0, 1, 1, 2, 2, 3, 3, 3]), [x[1] for x in concat_graph.nodes]) if "edges" not in none_fields: self.assertAllEqual( np.array([0, 1, 0, 0, 0, 1]), [x[0] for x in concat_graph.edges]) self.assertAllEqual( np.array([0, 0, 1, 2, 3, 3]), [x[2] for x in concat_graph.edges]) self.assertAllEqual(np.array([3, 2, 2, 3]), concat_graph.n_node) self.assertAllEqual(np.array([2, 1, 1, 2]), concat_graph.n_edge) if "senders" not in none_fields: # [1, 2], [1], [1], [1, 2] and 3, 2, 2, 3 nodes # So we are summing [1, 2, 1, 1, 2] with [0, 0, 3, 5, 7, 7] self.assertAllEqual(np.array([1, 2, 4, 6, 8, 9]), concat_graph.senders) if "receivers" not in none_fields: # [0, 0], [0], [0], [0, 0] and 3, 2, 2, 3 nodes # So we are summing [0, 0, 0, 0, 0, 0] with [0, 0, 3, 5, 7, 7] self.assertAllEqual(np.array([0, 0, 3, 5, 7, 7]), concat_graph.receivers) if "globals" not in none_fields: self.assertAllEqual(np.array([[0], [1], [2], [3]]), concat_graph.globals) def test_nested_features(self): graph_0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph_1 = utils_np.networkxs_to_graphs_tuple([_generate_graph(2, 2)]) graph_2 = utils_np.networkxs_to_graphs_tuple([_generate_graph(3, 3)]) graphs_ = [ gr.map(tf.convert_to_tensor, graphs.ALL_FIELDS) for gr in [graph_0, graph_1, graph_2] ] def _create_nested_fields(graphs_tuple): new_nodes = ({"a": graphs_tuple.nodes, "b": [graphs_tuple.nodes + 1, graphs_tuple.nodes + 2] },) new_edges = [{"c": graphs_tuple.edges + 5, "d": (graphs_tuple.edges + 1, graphs_tuple.edges + 3), }] new_globals = [] return graphs_tuple.replace(nodes=new_nodes, edges=new_edges, globals=new_globals) graphs_ = [_create_nested_fields(gr) for gr in graphs_] concat_graph = utils_tf.concat(graphs_, axis=0) actual_nodes = concat_graph.nodes actual_edges = concat_graph.edges actual_globals = concat_graph.globals expected_nodes = tree.map_structure( lambda *x: tf.concat(x, axis=0), *[gr.nodes for gr in graphs_]) expected_edges = tree.map_structure( lambda *x: tf.concat(x, axis=0), *[gr.edges for gr in graphs_]) expected_globals = tree.map_structure( lambda *x: tf.concat(x, axis=0), *[gr.globals for gr in graphs_]) tree.assert_same_structure(expected_nodes, actual_nodes) tree.assert_same_structure(expected_edges, actual_edges) tree.assert_same_structure(expected_globals, actual_globals) tree.map_structure(self.assertAllEqual, expected_nodes, actual_nodes) tree.map_structure(self.assertAllEqual, expected_edges, actual_edges) tree.map_structure(self.assertAllEqual, expected_globals, actual_globals) # Borrowed from `test_concat_first_axis`: self.assertAllEqual(np.array([3, 2, 2, 3]), concat_graph.n_node) self.assertAllEqual(np.array([2, 1, 1, 2]), concat_graph.n_edge) self.assertAllEqual(np.array([1, 2, 4, 6, 8, 9]), concat_graph.senders) self.assertAllEqual(np.array([0, 0, 3, 5, 7, 7]), concat_graph.receivers) def test_concat_last_axis(self): graph0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph1 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(2, 3), _generate_graph(3, 2)]) graph0 = graph0.map(tf.convert_to_tensor, graphs.ALL_FIELDS) graph1 = graph1.map(tf.convert_to_tensor, graphs.ALL_FIELDS) concat_graph = utils_tf.concat([graph0, graph1], axis=-1) self.assertAllEqual( np.array([[0, 0, 0, 2], [1, 0, 1, 2], [2, 0, 2, 2], [0, 1, 0, 3], [1, 1, 1, 3]]), concat_graph.nodes) self.assertAllEqual( np.array([[0, 1, 0, 0, 1, 2], [1, 2, 0, 1, 2, 2], [0, 1, 1, 0, 1, 3]]), concat_graph.edges) self.assertAllEqual(np.array([3, 2]), concat_graph.n_node) self.assertAllEqual(np.array([2, 1]), concat_graph.n_edge) self.assertAllEqual(np.array([1, 2, 4]), concat_graph.senders) self.assertAllEqual(np.array([0, 0, 3]), concat_graph.receivers) self.assertAllEqual(np.array([[0, 2], [1, 3]]), concat_graph.globals) @parameterized.parameters( ("nodes"), ("edges"), ("globals"), ) def test_raise_all_or_no_nones(self, none_field): graph_0 = utils_np.networkxs_to_graphs_tuple( [_generate_graph(0, 3), _generate_graph(1, 2)]) graph_1 = utils_np.networkxs_to_graphs_tuple([_generate_graph(2, 2)]) graph_2 = utils_np.networkxs_to_graphs_tuple([_generate_graph(3, 3)]) graphs_ = [ gr.map(tf.convert_to_tensor, graphs.ALL_FIELDS) for gr in [graph_0, graph_1, graph_2] ] graphs_[1] = graphs_[1].replace(**{none_field: None}) with self.assertRaisesRegex( ValueError, "Different set of keys found when iterating over data dictionaries."): utils_tf.concat(graphs_, axis=0) class StopGradientsGraphTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(StopGradientsGraphTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.zeros([10], dtype=tf.int32), "receivers": tf.zeros([10], dtype=tf.int32), "nodes": tf.ones([5, 7]), "edges": tf.zeros([10, 6]), "globals": tf.zeros([1, 8]) }]) def _check_if_gradients_exist(self, stopped_gradients_graph): gradients = [] for field in ["globals", "nodes", "edges"]: with tf.GradientTape() as tape: xs = getattr(self._graph, field) ys = getattr(stopped_gradients_graph, field) gradient = tape.gradient(ys, xs) if ys is not None else ys gradients.append(gradient) return [True if grad is not None else False for grad in gradients] @parameterized.named_parameters( ("stop_all_fields", True, True, True), ("stop_globals", True, False, False), ("stop_nodes", False, True, False), ("stop_edges", False, False, True), ("stop_none", False, False, False)) def test_stop_gradients_outputs(self, stop_globals, stop_nodes, stop_edges): stopped_gradients_graph = utils_tf.stop_gradient( self._graph, stop_globals=stop_globals, stop_nodes=stop_nodes, stop_edges=stop_edges) gradients_exist = self._check_if_gradients_exist(stopped_gradients_graph) expected_gradients_exist = [ not stop_globals, not stop_nodes, not stop_edges ] self.assertAllEqual(expected_gradients_exist, gradients_exist) @parameterized.named_parameters(("no_nodes", "nodes"), ("no_edges", "edges"), ("no_globals", "globals")) def test_stop_gradients_with_missing_field_raises(self, none_field): self._graph = self._graph.map(lambda _: None, [none_field]) with self.assertRaisesRegex(ValueError, none_field): utils_tf.stop_gradient(self._graph) def test_stop_gradients_default_params(self): """Tests for the default params of `utils_tf.stop_gradient`.""" stopped_gradients_graph = utils_tf.stop_gradient(self._graph) gradients_exist = self._check_if_gradients_exist(stopped_gradients_graph) expected_gradients_exist = [False, False, False] self.assertAllEqual(expected_gradients_exist, gradients_exist) class IdentityTest(tf.test.TestCase, parameterized.TestCase): """Tests for the `identity` method.""" def setUp(self): super(IdentityTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.random.uniform([10], maxval=10, dtype=tf.int32), "receivers": tf.random.uniform([10], maxval=10, dtype=tf.int32), "nodes": tf.random.uniform([5, 7]), "edges": tf.random.uniform([10, 6]), "globals": tf.random.uniform([1, 8]) }]) def test_name_scope(self): """Tests that the name scope are correctly pushed through this function.""" self.skipTest("Tensor.name is meaningless when eager execution is enabled") @parameterized.named_parameters( ("all fields defined", []), ("no node features", ["nodes"]), ("no edge features", ["edges"]), ("no global features", ["globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_output(self, none_fields): """Tests that this function produces the identity.""" graph = self._graph.map(lambda _: None, none_fields) with tf.name_scope("test"): graph_id = utils_tf.identity(graph) expected_out = utils_tf.nest_to_numpy(graph) actual_out = utils_tf.nest_to_numpy(graph_id) for field in [ "nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge" ]: if field in none_fields: self.assertIsNone(getattr(actual_out, field)) else: self.assertNDArrayNear( getattr(expected_out, field), getattr(actual_out, field), err=1e-4) class RunGraphWithNoneTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super(RunGraphWithNoneTest, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.random.uniform([10], maxval=10, dtype=tf.int32), "receivers": tf.random.uniform([10], maxval=10, dtype=tf.int32), "nodes": tf.random.uniform([5, 7]), "edges": tf.random.uniform([10, 6]), "globals": tf.random.uniform([1, 8]) }]) @parameterized.named_parameters( ("all fields defined", []), ("no node features", ["nodes"]), ("no edge features", ["edges"]), ("no global features", ["globals"]), ("no edges", ["edges", "receivers", "senders"])) def test_output(self, none_fields): """Tests that this function produces the identity.""" graph_id = self._graph.map(lambda _: None, none_fields) graph = graph_id.map(tf.no_op, none_fields) expected_out = graph actual_out = graph_id for field in [ "nodes", "edges", "globals", "receivers", "senders", "n_node", "n_edge" ]: if field in none_fields: self.assertIsNone(getattr(actual_out, field)) else: self.assertNDArrayNear( getattr(expected_out, field), getattr(actual_out, field), err=1e-4) class ComputeOffsetTest(tf.test.TestCase): """Tests for the `compute_stacked_offsets` method.""" def setUp(self): super(ComputeOffsetTest, self).setUp() self.sizes = [5, 4, 3, 1, 2, 0, 3, 0, 4, 7] self.repeats = [2, 2, 0, 2, 1, 3, 2, 0, 3, 2] self.offset = [ 0, 0, 5, 5, 12, 12, 13, 15, 15, 15, 15, 15, 18, 18, 18, 22, 22 ] def test_compute_stacked_offsets(self): offset0 = utils_tf._compute_stacked_offsets( self.sizes, self.repeats) offset1 = utils_tf._compute_stacked_offsets( np.array(self.sizes), np.array(self.repeats)) offset2 = utils_tf._compute_stacked_offsets( tf.constant(self.sizes, dtype=tf.int32), tf.constant(self.repeats, dtype=tf.int32)) self.assertAllEqual(self.offset, offset0.numpy().tolist()) self.assertAllEqual(self.offset, offset1.numpy().tolist()) self.assertAllEqual(self.offset, offset2.numpy().tolist()) class DataDictsCompletionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the methods creating complete graphs from partial graphs.""" def _assert_indices_sizes(self, dict_, n_relation): for key in ["receivers", "senders"]: self.assertAllEqual((n_relation,), dict_[key].get_shape().as_list()) @parameterized.named_parameters( ("static", utils_tf._create_complete_edges_from_nodes_static), ("dynamic", utils_tf._create_complete_edges_from_nodes_dynamic), ) def test_create_complete_edges_from_nodes_include_self_edges(self, method): for graph_dict in self.graphs_dicts_in: n_node = graph_dict["nodes"].shape[0] edges_dict = method(n_node, exclude_self_edges=False) self._assert_indices_sizes(edges_dict, n_node**2) @parameterized.named_parameters( ("static", utils_tf._create_complete_edges_from_nodes_static), ("dynamic", utils_tf._create_complete_edges_from_nodes_dynamic), ) def test_create_complete_edges_from_nodes_exclude_self_edges(self, method): for graph_dict in self.graphs_dicts_in: n_node = graph_dict["nodes"].shape[0] edges_dict = method(n_node, exclude_self_edges=True) self._assert_indices_sizes(edges_dict, n_node * (n_node - 1)) def test_create_complete_edges_from_nodes_dynamic_number_of_nodes(self): for graph_dict in self.graphs_dicts_in: n_node = tf.shape(tf.constant(graph_dict["nodes"]))[0] edges_dict = utils_tf._create_complete_edges_from_nodes_dynamic( n_node, exclude_self_edges=False) n_relation = n_node**2 receivers = edges_dict["receivers"].numpy() senders = edges_dict["senders"].numpy() n_edge = edges_dict["n_edge"].numpy() self.assertAllEqual((n_relation,), receivers.shape) self.assertAllEqual((n_relation,), senders.shape) self.assertEqual(n_relation, n_edge) class GraphsCompletionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for completing partial GraphsTuple.""" def _assert_indices_sizes(self, graph, n_relation): for key in ["receivers", "senders"]: self.assertAllEqual((n_relation,), getattr(graph, key).get_shape().as_list()) @parameterized.named_parameters(("edge size 0", 0), ("edge size 1", 1)) def test_fill_edge_state(self, edge_size): """Tests for filling the edge state with a constant content.""" for g in self.graphs_dicts_in: g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_edges = np.sum(self.reference_graph.n_edge) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size) self.assertAllEqual((n_edges, edge_size), graphs_tuple.edges.get_shape().as_list()) @parameterized.named_parameters(("edge size 0", 0), ("edge size 1", 1)) def test_fill_edge_state_dynamic(self, edge_size): """Tests for filling the edge state with a constant content.""" for g in self.graphs_dicts_in: g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple._replace( n_edge=tf.constant( graphs_tuple.n_edge, shape=graphs_tuple.n_edge.get_shape())) n_edges = np.sum(self.reference_graph.n_edge) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size) actual_edges = graphs_tuple.edges self.assertNDArrayNear( np.zeros((n_edges, edge_size)), actual_edges, err=1e-4) @parameterized.named_parameters(("global size 0", 0), ("global size 1", 1)) def test_fill_global_state(self, global_size): """Tests for filling the global state with a constant content.""" for g in self.graphs_dicts_in: g.pop("globals") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_graphs = self.reference_graph.n_edge.shape[0] graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, global_size) self.assertAllEqual((n_graphs, global_size), graphs_tuple.globals.get_shape().as_list()) @parameterized.named_parameters(("global size 0", 0), ("global size 1", 1)) def test_fill_global_state_dynamic(self, global_size): """Tests for filling the global state with a constant content.""" for g in self.graphs_dicts_in: g.pop("globals") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) # Hide global shape information graphs_tuple = graphs_tuple._replace( n_node=tf.constant( graphs_tuple.n_node, shape=graphs_tuple.n_edge.get_shape())) n_graphs = self.reference_graph.n_edge.shape[0] graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, global_size) actual_globals = graphs_tuple.globals.numpy() self.assertNDArrayNear( np.zeros((n_graphs, global_size)), actual_globals, err=1e-4) @parameterized.named_parameters(("node size 0", 0), ("node size 1", 1)) def test_fill_node_state(self, node_size): """Tests for filling the node state with a constant content.""" for g in self.graphs_dicts_in: g["n_node"] = g["nodes"].shape[0] g.pop("nodes") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) n_nodes = np.sum(self.reference_graph.n_node) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size) self.assertAllEqual((n_nodes, node_size), graphs_tuple.nodes.get_shape().as_list()) @parameterized.named_parameters(("node size 0", 0), ("node size 1", 1)) def test_fill_node_state_dynamic(self, node_size): """Tests for filling the node state with a constant content.""" for g in self.graphs_dicts_in: g["n_node"] = g["nodes"].shape[0] g.pop("nodes") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple._replace( n_node=tf.constant( graphs_tuple.n_node, shape=graphs_tuple.n_node.get_shape())) n_nodes = np.sum(self.reference_graph.n_node) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size) actual_nodes = graphs_tuple.nodes.numpy() self.assertNDArrayNear( np.zeros((n_nodes, node_size)), actual_nodes, err=1e-4) def test_fill_edge_state_with_missing_fields_raises(self): """Edge field cannot be filled if receivers or senders are missing.""" for g in self.graphs_dicts_in: g.pop("receivers") g.pop("senders") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) with self.assertRaisesRegex(ValueError, "receivers"): graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size=1) def test_fill_state_default_types(self): """Tests that the features are created with the correct default type.""" for g in self.graphs_dicts_in: g.pop("nodes") g.pop("globals") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, edge_size=1) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, node_size=1) graphs_tuple = utils_tf.set_zero_global_features( graphs_tuple, global_size=1) self.assertEqual(tf.float32, graphs_tuple.edges.dtype) self.assertEqual(tf.float32, graphs_tuple.nodes.dtype) self.assertEqual(tf.float32, graphs_tuple.globals.dtype) @parameterized.parameters( (tf.float64,), (tf.int32,), ) def test_fill_state_user_specified_types(self, dtype): """Tests that the features are created with the correct default type.""" for g in self.graphs_dicts_in: g.pop("nodes") g.pop("globals") g.pop("edges") graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.set_zero_edge_features(graphs_tuple, 1, dtype) graphs_tuple = utils_tf.set_zero_node_features(graphs_tuple, 1, dtype) graphs_tuple = utils_tf.set_zero_global_features(graphs_tuple, 1, dtype) self.assertEqual(dtype, graphs_tuple.edges.dtype) self.assertEqual(dtype, graphs_tuple.nodes.dtype) self.assertEqual(dtype, graphs_tuple.globals.dtype) @parameterized.named_parameters( ("no self edges", False), ("self edges", True), ) def test_fully_connect_graph_dynamic(self, exclude_self_edges): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") n_relation = 0 for g in self.graphs_dicts_in: n_node = g["nodes"].shape[0] if exclude_self_edges: n_relation += n_node * (n_node - 1) else: n_relation += n_node * n_node graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = utils_tf.fully_connect_graph_dynamic(graphs_tuple, exclude_self_edges) actual_receivers = graphs_tuple.receivers.numpy() actual_senders = graphs_tuple.senders.numpy() self.assertAllEqual((n_relation,), actual_receivers.shape) self.assertAllEqual((n_relation,), actual_senders.shape) self.assertAllEqual((len(self.graphs_dicts_in),), graphs_tuple.n_edge.get_shape().as_list()) @parameterized.named_parameters( ("no self edges", False), ("self edges", True), ) def test_fully_connect_graph_dynamic_with_dynamic_sizes( self, exclude_self_edges): for g in self.graphs_dicts_in: g.pop("edges") g.pop("receivers") g.pop("senders") n_relation = 0 for g in self.graphs_dicts_in: n_node = g["nodes"].shape[0] if exclude_self_edges: n_relation += n_node * (n_node - 1) else: n_relation += n_node * n_node graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs_tuple = graphs_tuple.map(test_utils.mask_leading_dimension, ["nodes", "globals", "n_node", "n_edge"]) graphs_tuple = utils_tf.fully_connect_graph_dynamic(graphs_tuple, exclude_self_edges) actual_receivers = graphs_tuple.receivers.numpy() actual_senders = graphs_tuple.senders.numpy() actual_n_edge = graphs_tuple.n_edge.numpy() self.assertAllEqual((n_relation,), actual_receivers.shape) self.assertAllEqual((n_relation,), actual_senders.shape) self.assertAllEqual((len(self.graphs_dicts_in),), actual_n_edge.shape) expected_edges = [] offset = 0 for graph in self.graphs_dicts_in: n_node = graph["nodes"].shape[0] for e1 in range(n_node): for e2 in range(n_node): if not exclude_self_edges or e1 != e2: expected_edges.append((e1 + offset, e2 + offset)) offset += n_node actual_edges = zip(actual_receivers, actual_senders) self.assertSetEqual(set(actual_edges), set(expected_edges)) class GraphsTupleConversionTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the method converting between data dicts and GraphsTuple.""" @parameterized.named_parameters(("all fields defined", []), ( "no edge features", ["edges"], ), ( "no node features", ["nodes"], ), ( "no globals", ["globals"], ), ( "no edges", ["edges", "receivers", "senders"], )) def test_data_dicts_to_graphs_tuple(self, none_fields): """Fields in `none_fields` will be cleared out.""" for field in none_fields: for graph_dict in self.graphs_dicts_in: if field in graph_dict: if field == "nodes": graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict[field] = None self.reference_graph = self.reference_graph._replace(**{field: None}) if field == "senders": self.reference_graph = self.reference_graph._replace( n_edge=np.zeros_like(self.reference_graph.n_edge)) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for field in none_fields: self.assertIsNone(getattr(graphs_tuple, field)) graphs_tuple = graphs_tuple.map(tf.no_op, none_fields) self._assert_graph_equals_np(self.reference_graph, graphs_tuple) @parameterized.parameters(("receivers",), ("senders",)) def test_data_dicts_to_graphs_tuple_raises(self, none_field): """Fields that cannot be missing.""" for graph_dict in self.graphs_dicts_in: graph_dict[none_field] = None with self.assertRaisesRegex(ValueError, none_field): utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) def test_data_dicts_to_graphs_tuple_no_raise(self): """Not having nodes is fine, if the number of nodes is provided.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = graph_dict["nodes"].shape[0] graph_dict["nodes"] = None utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) def test_data_dicts_to_graphs_tuple_cast_types(self): """Index and number fields should be cast to tensors of the right type.""" for graph_dict in self.graphs_dicts_in: graph_dict["n_node"] = np.array( graph_dict["nodes"].shape[0], dtype=np.int64) graph_dict["receivers"] = graph_dict["receivers"].astype(np.int16) graph_dict["senders"] = graph_dict["senders"].astype(np.float64) graph_dict["nodes"] = graph_dict["nodes"].astype(np.float64) graph_dict["edges"] = tf.constant(graph_dict["edges"], dtype=tf.float64) out = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) for key in ["n_node", "n_edge", "receivers", "senders"]: self.assertEqual(tf.int32, getattr(out, key).dtype) self.assertEqual(type(tf.int32), type(getattr(out, key).dtype)) for key in ["nodes", "edges"]: self.assertEqual(type(tf.float64), type(getattr(out, key).dtype)) self.assertEqual(tf.float64, getattr(out, key).dtype) class GraphsIndexingTests(test_utils.GraphsTest, parameterized.TestCase): """Tests for the `get_graph` method.""" @parameterized.named_parameters(("int_index", False), ("tensor_index", True)) def test_getitem_one(self, use_tensor_index): index = 2 expected = self.graphs_dicts_out[index] if use_tensor_index: index = tf.constant(index) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graph = utils_tf.get_graph(graphs_tuple, index) graph = utils_tf.nest_to_numpy(graph) actual, = utils_np.graphs_tuple_to_data_dicts(graph) for k, v in expected.items(): self.assertAllClose(v, actual[k]) self.assertEqual(expected["nodes"].shape[0], actual["n_node"]) self.assertEqual(expected["edges"].shape[0], actual["n_edge"]) @parameterized.named_parameters(("int_slice", False), ("tensor_slice", True)) def test_getitem(self, use_tensor_slice): index = slice(1, 3) expected = self.graphs_dicts_out[index] if use_tensor_slice: index = slice(tf.constant(index.start), tf.constant(index.stop)) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) graphs2 = utils_tf.get_graph(graphs_tuple, index) graphs2 = utils_tf.nest_to_numpy(graphs2) actual = utils_np.graphs_tuple_to_data_dicts(graphs2) for ex, ac in zip(expected, actual): for k, v in ex.items(): self.assertAllClose(v, ac[k]) self.assertEqual(ex["nodes"].shape[0], ac["n_node"]) self.assertEqual(ex["edges"].shape[0], ac["n_edge"]) @parameterized.named_parameters( ("index_bad_type", 1., TypeError, "Index must be a valid scalar integer", False, False), ("index_bad_shape", [0, 1], TypeError, "Valid tensor indices must be scalars", True, False), ("index_bad_dtype", 1., TypeError, "Valid tensor indices must have types", True, False), ("slice_bad_type_stop", 1., TypeError, "Valid tensor indices must be integers", False, True), ("slice_bad_shape_stop", [0, 1], TypeError, "Valid tensor indices must be scalars", True, True), ("slice_bad_dtype_stop", 1., TypeError, "Valid tensor indices must have types", True, True), ("slice_bad_type_start", slice(0., 1), TypeError, "Valid tensor indices must be integers", False, False), ("slice_with_step", slice(0, 1, 1), ValueError, "slices with step/stride are not supported", False, False), ) def test_raises(self, index, error_type, message, use_constant, use_slice): if use_constant: index = tf.constant(index) if use_slice: index = slice(index) graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) with self.assertRaisesRegex(error_type, message): utils_tf.get_graph(graphs_tuple, index) class TestNumGraphs(test_utils.GraphsTest): """Tests for the `get_num_graphs` function.""" def setUp(self): super(TestNumGraphs, self).setUp() graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(self.graphs_dicts_in) self.empty_graph = graphs_tuple.map(lambda _: None, graphs.GRAPH_DATA_FIELDS) def test_num_graphs(self): graph = self.empty_graph.replace(n_node=tf.zeros([3], dtype=tf.int32)) self.assertEqual(3, utils_tf.get_num_graphs(graph)) class TestNestToNumpy(test_utils.GraphsTest): """Test that graph with tf.Tensor fields get converted to numpy.""" def setUp(self): super(TestNestToNumpy, self).setUp() self._graph = utils_tf.data_dicts_to_graphs_tuple([{ "senders": tf.random.uniform([10], maxval=10, dtype=tf.int32), "receivers": tf.random.uniform([10], maxval=10, dtype=tf.int32), "nodes": tf.random.uniform([5, 7]), "edges": tf.random.uniform([10, 6]), "globals": tf.random.uniform([1, 8]) }]) def test_single_graph(self): numpy_graph = utils_tf.nest_to_numpy(self._graph) for field in graphs.ALL_FIELDS: self.assertIsInstance(getattr(numpy_graph, field), np.ndarray) self.assertNDArrayNear( getattr(self._graph, field).numpy(), getattr(numpy_graph, field), 1e-8) def test_mixed_graph_conversion(self): graph = self._graph.replace(nodes=None) graph = graph.map(lambda x: x.numpy(), ["edges"]) converted_graph = utils_tf.nest_to_numpy(graph) self.assertIsNone(converted_graph.nodes) self.assertIsInstance(converted_graph.edges, np.ndarray) def test_nested_structure(self): regular_graph = self._graph graph_with_nested_fields = regular_graph.map( lambda x: {"a": x, "b": tf.random.uniform([4, 6])}) nested_structure = [ None, regular_graph, (graph_with_nested_fields,), tf.random.uniform([10, 6])] nested_structure_numpy = utils_tf.nest_to_numpy(nested_structure) tree.assert_same_structure(nested_structure, nested_structure_numpy) for tensor_or_none, array_or_none in zip( tree.flatten(nested_structure), tree.flatten(nested_structure_numpy)): if tensor_or_none is None: self.assertIsNone(array_or_none) continue self.assertIsNotNone(array_or_none) self.assertNDArrayNear( tensor_or_none.numpy(), array_or_none, 1e-8) def _leading_static_shape(input_nest): return tree.flatten(input_nest)[0].shape.as_list()[0] def _compile_with_tf_function(fn, graphs_tuple): input_signature = utils_tf.specs_from_graphs_tuple( graphs_tuple, dynamic_num_graphs=True, dynamic_num_nodes=True, dynamic_num_edges=True,) @functools.partial(tf.function, input_signature=[input_signature]) def compiled_fn(graphs_tuple): assert _leading_static_shape(graphs_tuple.n_node) is None assert _leading_static_shape(graphs_tuple.senders) is None assert _leading_static_shape(graphs_tuple.nodes) is None return fn(graphs_tuple) return compiled_fn class GraphsTupleSizeTest(tf.test.TestCase, parameterized.TestCase): def test_get_graphs_tuple_size(self): data_dict = test_utils_tf1.generate_random_data_dict( (1,), (1,), (1,), num_nodes_range=(10, 15), num_edges_range=(20, 25)) node_size_np = data_dict["nodes"].shape[0] edge_size_np = data_dict["edges"].shape[0] graphs_tuple = utils_tf.data_dicts_to_graphs_tuple(2 * [data_dict]) # Put it into a tf.function so the shapes are unknown statically. compiled_fn = _compile_with_tf_function( utils_tf.get_graphs_tuple_size, graphs_tuple) graphs_tuple_size = compiled_fn(graphs_tuple) node_size, edge_size, graph_size = graphs_tuple_size self.assertEqual(node_size.numpy(), node_size_np * 2) self.assertEqual(edge_size.numpy(), edge_size_np * 2) self.assertEqual(graph_size.numpy(), 2) class MaskTest(tf.test.TestCase, parameterized.TestCase): def test_get_mask(self): mask = utils_tf.get_mask(10, 12) self.assertAllClose(mask, np.concatenate((np.ones(10), np.zeros(2)))) # If the padding is smaller than the mask, get all size of padding. mask = utils_tf.get_mask(10, 8) self.assertAllClose(mask, np.ones(8, dtype=bool)) mask = utils_tf.get_mask(tf.constant(10), 12) self.assertAllClose(mask, np.concatenate((np.ones(10, dtype=bool), np.zeros(2, dtype=bool)))) mask = utils_tf.get_mask(tf.constant(10), tf.constant(12)) self.assertAllClose(mask, np.concatenate((np.ones(10, dtype=bool), np.zeros(2, dtype=bool)))) class PaddingTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("standard", False, False), ("standard_nested_features", False, True), ("experimental_unconnected_padding_edges", True, False), ) def test_add_remove_padding( self, experimental_unconnected_padding_edges, nested_features): data_dict = test_utils_tf1.generate_random_data_dict( (7,), (8,), (9,), num_nodes_range=(10, 15), num_edges_range=(20, 25)) node_size_np = data_dict["nodes"].shape[0] edge_size_np = data_dict["edges"].shape[0] unpadded_batch_size = 2 graphs_tuple = utils_tf.data_dicts_to_graphs_tuple( unpadded_batch_size * [data_dict]) if nested_features: graphs_tuple = graphs_tuple.replace( edges=[graphs_tuple.edges, {}], nodes=({"tensor": graphs_tuple.nodes},), globals=([], graphs_tuple.globals,)) num_padding_nodes = 3 num_padding_edges = 4 num_padding_graphs = 5 pad_nodes_to = unpadded_batch_size * node_size_np + num_padding_nodes pad_edges_to = unpadded_batch_size * edge_size_np + num_padding_edges pad_graphs_to = unpadded_batch_size + num_padding_graphs def _get_padded_and_recovered_graphs_tuple(graphs_tuple): padded_graphs_tuple = utils_tf.pad_graphs_tuple( graphs_tuple, pad_nodes_to, pad_edges_to, pad_graphs_to, experimental_unconnected_padding_edges) # Check that we have statically defined shapes after padding. self.assertEqual( _leading_static_shape(padded_graphs_tuple.nodes), pad_nodes_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.edges), pad_edges_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.senders), pad_edges_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.receivers), pad_edges_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.globals), pad_graphs_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.n_node), pad_graphs_to) self.assertEqual( _leading_static_shape(padded_graphs_tuple.n_edge), pad_graphs_to) # Check that we can remove the padding. graphs_tuple_size = utils_tf.get_graphs_tuple_size(graphs_tuple) recovered_graphs_tuple = utils_tf.remove_graphs_tuple_padding( padded_graphs_tuple, graphs_tuple_size) return padded_graphs_tuple, recovered_graphs_tuple # Put it into a tf.function so the shapes are unknown statically. compiled_fn = _compile_with_tf_function( _get_padded_and_recovered_graphs_tuple, graphs_tuple) padded_graphs_tuple, recovered_graphs_tuple = compiled_fn(graphs_tuple) if nested_features: # Check that the whole structure of the outputs are the same. tree.assert_same_structure(padded_graphs_tuple, graphs_tuple) tree.assert_same_structure(recovered_graphs_tuple, graphs_tuple) # Undo the nesting for the rest of the test. def remove_nesting(this_graphs_tuple): return this_graphs_tuple.replace( edges=this_graphs_tuple.edges[0], nodes=this_graphs_tuple.nodes[0]["tensor"], globals=this_graphs_tuple.globals[1]) graphs_tuple = remove_nesting(graphs_tuple) padded_graphs_tuple = remove_nesting(padded_graphs_tuple) recovered_graphs_tuple = remove_nesting(recovered_graphs_tuple) # Inspect the padded_graphs_tuple. padded_graphs_tuple_data_dicts = utils_np.graphs_tuple_to_data_dicts( utils_tf.nest_to_numpy(padded_graphs_tuple)) graphs_tuple_data_dicts = utils_np.graphs_tuple_to_data_dicts( utils_tf.nest_to_numpy(graphs_tuple)) self.assertLen(padded_graphs_tuple, pad_graphs_to) # Check that the first 2 graphs from the padded_graphs_tuple are the same. for example_i in range(unpadded_batch_size): tree.map_structure( self.assertAllEqual, graphs_tuple_data_dicts[example_i], padded_graphs_tuple_data_dicts[example_i]) padding_data_dicts = padded_graphs_tuple_data_dicts[unpadded_batch_size:] # Check that the third graph contains all of the padding nodes and edges. for i, padding_data_dict in enumerate(padding_data_dicts): # Only the first padding graph has nodes and edges. num_nodes = num_padding_nodes if i == 0 else 0 num_edges = num_padding_edges if i == 0 else 0 self.assertAllEqual(padding_data_dict["globals"], np.zeros([9], dtype=np.float32)) self.assertEqual(padding_data_dict["n_node"], num_nodes) self.assertAllEqual(padding_data_dict["nodes"], np.zeros([num_nodes, 7], dtype=np.float32)) self.assertEqual(padding_data_dict["n_edge"], num_edges) self.assertAllEqual(padding_data_dict["edges"], np.zeros([num_edges, 8], dtype=np.float32)) if experimental_unconnected_padding_edges: self.assertAllEqual(padding_data_dict["receivers"], np.zeros([num_edges], dtype=np.int32) + num_nodes) self.assertAllEqual(padding_data_dict["senders"], np.zeros([num_edges], dtype=np.int32) + num_nodes) else: self.assertAllEqual(padding_data_dict["receivers"], np.zeros([num_edges], dtype=np.int32)) self.assertAllEqual(padding_data_dict["senders"], np.zeros([num_edges], dtype=np.int32)) # Check that the recovered_graphs_tuple after removing padding is identical. tree.map_structure( self.assertAllEqual, graphs_tuple._asdict(), recovered_graphs_tuple._asdict()) @parameterized.parameters( (None, False), ("edges", False), ("nodes", False), ("graphs", False), (None, True), ("edges", True), ("nodes", True), ("graphs", True), ) def test_raises_not_enough_space( self, field_that_hits_limit, experimental_unconnected_padding_edges): data_dict = test_utils_tf1.generate_random_data_dict( (7,), (8,), (9,), num_nodes_range=(10, 15), num_edges_range=(20, 25)) node_size_np = data_dict["nodes"].shape[0] edge_size_np = data_dict["edges"].shape[0] unpadded_batch_size = 2 graphs_tuple = utils_tf.data_dicts_to_graphs_tuple( unpadded_batch_size * [data_dict]) # Padding graph needs to have at least one graph, and at least one node, # but should not need extra edges. pad_edges_to = unpadded_batch_size * edge_size_np pad_nodes_to = unpadded_batch_size * node_size_np + 1 pad_graphs_to = unpadded_batch_size + 1 if field_that_hits_limit == "edges": pad_edges_to -= 1 elif field_that_hits_limit == "nodes": pad_nodes_to -= 1 elif field_that_hits_limit == "graphs": pad_graphs_to -= 1 def _get_padded_graphs_tuple(graphs_tuple): return utils_tf.pad_graphs_tuple( graphs_tuple, pad_nodes_to, pad_edges_to, pad_graphs_to, experimental_unconnected_padding_edges) # Put it into a tf.function so the shapes are unknown statically. compiled_fn = _compile_with_tf_function( _get_padded_graphs_tuple, graphs_tuple) if field_that_hits_limit is None: # Should work if the test is not supposed to hit any limit. compiled_fn(graphs_tuple) else: # Should raise an error. with self.assertRaisesRegex( tf.errors.InvalidArgumentError, "There is not enough space to pad the GraphsTuple"): compiled_fn(graphs_tuple) if __name__ == "__main__": tf.test.main()
graph_nets-master
graph_nets/tests_tf2/utils_tf_test.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Model architectures for the demos.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from graph_nets import modules from graph_nets import utils_tf import sonnet as snt NUM_LAYERS = 2 # Hard-code number of layers in the edge/node/global models. LATENT_SIZE = 16 # Hard-code latent layer sizes for demos. def make_mlp_model(): """Instantiates a new MLP, followed by LayerNorm. The parameters of each new MLP are not shared with others generated by this function. Returns: A Sonnet module which contains the MLP and LayerNorm. """ return snt.Sequential([ snt.nets.MLP([LATENT_SIZE] * NUM_LAYERS, activate_final=True), snt.LayerNorm() ]) class MLPGraphIndependent(snt.AbstractModule): """GraphIndependent with MLP edge, node, and global models.""" def __init__(self, name="MLPGraphIndependent"): super(MLPGraphIndependent, self).__init__(name=name) with self._enter_variable_scope(): self._network = modules.GraphIndependent( edge_model_fn=make_mlp_model, node_model_fn=make_mlp_model, global_model_fn=make_mlp_model) def _build(self, inputs): return self._network(inputs) class MLPGraphNetwork(snt.AbstractModule): """GraphNetwork with MLP edge, node, and global models.""" def __init__(self, name="MLPGraphNetwork"): super(MLPGraphNetwork, self).__init__(name=name) with self._enter_variable_scope(): self._network = modules.GraphNetwork(make_mlp_model, make_mlp_model, make_mlp_model) def _build(self, inputs): return self._network(inputs) class EncodeProcessDecode(snt.AbstractModule): """Full encode-process-decode model. The model we explore includes three components: - An "Encoder" graph net, which independently encodes the edge, node, and global attributes (does not compute relations etc.). - A "Core" graph net, which performs N rounds of processing (message-passing) steps. The input to the Core is the concatenation of the Encoder's output and the previous output of the Core (labeled "Hidden(t)" below, where "t" is the processing step). - A "Decoder" graph net, which independently decodes the edge, node, and global attributes (does not compute relations etc.), on each message-passing step. Hidden(t) Hidden(t+1) | ^ *---------* | *------* | *---------* | | | | | | | | Input --->| Encoder | *->| Core |--*->| Decoder |---> Output(t) | |---->| | | | *---------* *------* *---------* """ def __init__(self, edge_output_size=None, node_output_size=None, global_output_size=None, name="EncodeProcessDecode"): super(EncodeProcessDecode, self).__init__(name=name) self._encoder = MLPGraphIndependent() self._core = MLPGraphNetwork() self._decoder = MLPGraphIndependent() # Transforms the outputs into the appropriate shapes. if edge_output_size is None: edge_fn = None else: edge_fn = lambda: snt.Linear(edge_output_size, name="edge_output") if node_output_size is None: node_fn = None else: node_fn = lambda: snt.Linear(node_output_size, name="node_output") if global_output_size is None: global_fn = None else: global_fn = lambda: snt.Linear(global_output_size, name="global_output") with self._enter_variable_scope(): self._output_transform = modules.GraphIndependent(edge_fn, node_fn, global_fn) def _build(self, input_op, num_processing_steps): latent = self._encoder(input_op) latent0 = latent output_ops = [] for _ in range(num_processing_steps): core_input = utils_tf.concat([latent0, latent], axis=1) latent = self._core(core_input) decoded_op = self._decoder(latent) output_ops.append(self._output_transform(decoded_op)) return output_ops
graph_nets-master
graph_nets/demos/models.py
# Copyright 2018 The GraphNets Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Graph networks library demos."""
graph_nets-master
graph_nets/demos/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Install script for setuptools.""" from setuptools import find_packages from setuptools import setup setup( name='causal_effect_bandits', version='1.0', description='Code reproducing the experiments of the paper' 'Malek, Chiappa. "Asymptotically Best Causal Effect Identification ' 'with Multi-Armed Bandits", NeurIPS 2021.', author='DeepMind', author_email='[email protected]', license='Apache License, Version 2.0', url='https://github.com/deepmind/abcei_mab', packages=find_packages(), install_requires=[ 'absl-py', 'numpy', 'matplotlib', 'scipy', 'sklearn', 'typing_extensions', ], tests_require=['mock'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Topic :: Scientific/Engineering :: Artificial Intelligence', ], )
abcei_mab-main
setup.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Utilities for plotting.""" from typing import List, Optional from causal_effect_bandits import arms from causal_effect_bandits import bandits import matplotlib.pyplot as plt import numpy as np def plot_bandit_results(ax, arm_list: List[arms.VarianceEstimatorArm], bdata: bandits.BanditData, initial_points_to_ignore: Optional[int] = 0): """Plots a collection of variance estimates and confidence intervals. Both are provided as dictionaries with List[float] values and VarianceEstimatorArm obects ans keys. Args: ax: matplotlib axis object arm_list: a list of varianceEstimatorArm objects to plot. bdata: bandits.BanditData, as returned by BanditAlgorithm.run() initial_points_to_ignore: number of initial rounds of the algorithm to omit from the plot. Returns: matplotlib axis object. """ for arm in arm_list: color = "tab:blue" num_samples = bdata.cum_samples[initial_points_to_ignore:] mid = bdata.var_est_by_arm[arm][initial_points_to_ignore:] lower = bdata.lcb_by_arm[arm][initial_points_to_ignore:] upper = bdata.ucb_by_arm[arm][initial_points_to_ignore:] ax.plot(num_samples, mid, label=arm.name) ax.plot(num_samples, lower, color=color, alpha=0.1) ax.plot(num_samples, upper, color=color, alpha=0.1) ax.fill_between(num_samples, lower, upper, alpha=0.2) ax.set_xlabel("Samples") ax.set_ylabel("Variance") ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.legend(loc="upper right") return ax def plot_3d_function(f, x_low, x_high, y_low, y_high): """Generates a 3d plot of f.""" n_points = 100 x = np.linspace(x_low, x_high, n_points) y = np.linspace(y_low, y_high, n_points) x, y = np.meshgrid(x, y) z = f(np.c_[x.flatten(), y.flatten()]) z = np.reshape(z, (n_points, n_points)) ax = plt.axes(projection="3d") ax.plot_surface( x, y, z, rstride=1, cstride=1, cmap="viridis", edgecolor="none") ax.set_xlabel("x") ax.set_ylabel("y")
abcei_mab-main
causal_effect_bandits/plotting_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Example SCMs used for unit tests.""" from causal_effect_bandits import scm import numpy as np def back_door_scm(): """A common SCM used for many of the unit tests.""" var_names = ["Z", "X", "Y"] cov_variables = ["Z"] treatment_variable = "X" response_variable = "Y" ### Define the parents parents = { "Z": [], "X": ["Z"], "Y": ["Z", "X"], } p = np.random.uniform(.2, .8) beta = 10 * np.random.uniform(-.3, .3) alpha = np.random.uniform(-.3, .3) tau = 10 mu_z = p var_z = p * (1 - p) mu_x = .5 + alpha * p var_x = mu_x * (1 - mu_x) mu_y = tau * mu_x + beta * mu_z var_y = 1 + tau**2 * var_x + beta**2 * var_z # populate the CPDs def y_cpd(_, parents): return (np.random.normal(size=len(parents[0])) + tau * parents[1] + beta * parents[0]) cpds = { "Z": lambda n, parents: np.random.binomial(1, p, size=n), "X": lambda n, parents: np.random.binomial(1, .5 + alpha * parents[0]), "Y": y_cpd, } scm_gen = scm.SCM( name="back-door example", var_names=var_names, parents=parents, cpds=cpds, cov_variables=cov_variables, treatment_variable=treatment_variable, response_variable=response_variable, ) # Verify the means and variances return (scm_gen, { "tau": tau, "mu_z": mu_z, "var_z": var_z, "mu_x": mu_x, "var_x": var_x, "mu_y": mu_y, "var_y": var_y, "beta": beta, "alpha": alpha, }) def frontdoor_scm(): """A common SCM used for many of the unit tests.""" var_names = ["U", "X", "Z", "Y"] cov_variables = ["U", "Z"] treatment_variable = "X" response_variable = "Y" # Define the parents parents = { "U": [], "X": ["U"], "Z": ["X"], "Y": ["Z", "U"], } p = np.random.uniform(.2, .8) beta = np.random.uniform(-1, 1) gamma = np.random.uniform(5, 10) alpha_1 = np.random.uniform(-.3, .3) alpha_2 = np.random.uniform(-.3, .3) def g(x): return 1 / (1 + np.exp(-x)) mu_u = p var_u = p * (1 - p) mu_x = p * g(alpha_1) + (1 - p) / 2 var_x = mu_x * (1 - mu_x) mu_z = mu_x * g(beta) + (1 - mu_x) / 2 var_z = mu_z * (1 - mu_z) mu_y = gamma * mu_z + alpha_2 * mu_u tau = gamma * (g(beta) - .5) # calculated by hand # Calculate the joint probabilities of X and u pz1u1 = (g(beta) * g(alpha_1) + .5 * (1 - g(alpha_1))) * p pz1u0 = (g(beta) / 2 + 1 / 4) * (1 - p) pz0u1 = ((1 - g(beta)) * g(alpha_1) + (1 - g(alpha_1)) / 2) * p # Take the expectation of Y^2 by hand. mu_y2 = 1 + (gamma**2 + alpha_2**2) * pz1u1 + gamma**2 * pz1u0 + alpha_2**2 * pz0u1 var_y = mu_y2 - mu_y**2 # populate the CPDs def y_cpd(_, parents): return (np.random.normal(size=len(parents[0])) + gamma * parents[0] + alpha_2 * parents[1]) def x_cpd(n, parents): return np.random.binomial(1, g(alpha_1 * parents[0]), size=n) def z_cpd(n, parents): return np.random.binomial(1, g(beta * parents[0]), size=n) cpds = { "U": lambda n, parents: np.random.binomial(1, p, size=n), "X": x_cpd, "Z": z_cpd, "Y": y_cpd, } scm_gen = scm.SCM( name="frontdoor example", var_names=var_names, parents=parents, cpds=cpds, cov_variables=cov_variables, treatment_variable=treatment_variable, response_variable=response_variable, ) return (scm_gen, { "tau": tau, "mu_z": mu_z, "var_z": var_z, "mu_x": mu_x, "var_x": var_x, "mu_y": mu_y, "var_y": var_y, "mu_u": mu_u, "var_u": var_u, "alpha_1": alpha_1, "alpha_2": alpha_2, "beta": beta, "gamma": gamma, })
abcei_mab-main
causal_effect_bandits/example_scm.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Utilities for the unit tests.""" from typing import Optional from causal_effect_bandits import arms from causal_effect_bandits import data import numpy as np def run_single_arm(arm: arms.VarianceEstimatorArm, data_gen: data.DataGenerator, max_samples: int, increment: int, total_delta: Optional[float] = .05): """Runs a single variance estimator arm. Recalculates the confidence intervals, ate, and variance estimators for a sequence of datasets, where each dataset is the previous with increment more samples. Args: arm: the arm to run data_gen: the DataGenerator max_samples: the number of samples used increment: the number of samples generated between updates of the arm total_delta: the total error for the confidence intervals of arm Returns: A dictionary with keys, values: 'LCBs': np.ndarray of lower confidence bounds for the dataset sequence 'UCBs': np.ndarray of upper confidence bounds for the dataset sequence 'var_estimates': np.ndarray of variance estimates for the dataset sequence 'ATE_estimates': np.ndarray of ATE estimates for the dataset sequence 'n_samples': np.ndarray of sizes of the dataset sequence """ lcbs = [] ucbs = [] var_estimates = [] ate_estimates = [] n_samples = [] current_n_samples = 0 arm_pulled = 0 while current_n_samples < max_samples: current_n_samples += increment n_samples.append(current_n_samples) new_data = data_gen.generate(increment) arm.update(new_data, delta=total_delta) lcbs.append(arm.ci[0]) ucbs.append(arm.ci[1]) var_estimates.append(arm.var_est) ate_estimates.append(arm.ate) arm_pulled += 1 return { 'LCBs': lcbs, 'UCBs': ucbs, 'var_estimates': var_estimates, 'ATE_estmitates': ate_estimates, 'n_samples': n_samples } def estimate_true_variance( data_gen: data.DataGenerator, arm: arms.VarianceEstimatorArm, n_samples: Optional[int] = 10000, ) -> float: """This method uses the true parameters to estimate the variance. Calculates E_n[(phi(W, eta) - tau)^2]. We use an empirical estimation to approximate the expected value, at the true values of eta and tau. Args: data_gen: A data.DataGenerator used to produce the data arm: arm used to estimate the variance n_samples: the number of samples to generate Returns: A real number estimate of the true variance. """ new_data = data_gen.generate(n_samples) arm.eta.set_to_truth(data_gen) return np.var(arm.eta.calculate_score(new_data)) def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0)
abcei_mab-main
causal_effect_bandits/test_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Contains utilities needed to generate the paper's plots.""" from typing import List, Optional, Tuple import warnings from causal_effect_bandits import arms from causal_effect_bandits import bandits from causal_effect_bandits import data from causal_effect_bandits import nonlinear_utils from causal_effect_bandits import parameters from causal_effect_bandits import scm import numpy as np import sklearn as sk warnings.filterwarnings('ignore', category=sk.exceptions.ConvergenceWarning) def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def get_section_5_1_cpds( z_dim: List[int], v_dim: List[int], num_back_door_paths: int, seed: Optional[int] = None, ): """Returns the CPDs needed by this example. Args: z_dim: the dimension of Z v_dim: the dimension of V num_back_door_paths: the number of back_door paths, i.e. M seed: the random seed Returns: A dictionary of functions, each representing a conditional distsribution, indexed by the variable name strings. """ rng = np.random.default_rng(seed) # Include a zero first index corresponding to z_0 and a placeholder for V_0. # This fixes the indices so, e.g. mu_Vi = mu_V[i], beta_i = beta[i]. mu_v = [0] cov_v = [0] # V_0 does not exist mu_z = [.2 * rng.standard_normal(size=z_dim[0])] cov_z = [.5 * np.identity(z_dim[0])] alpha = [0] gamma = [] mu_y = 0 cov_y = .1 beta = [.2 * rng.standard_normal(size=(z_dim[0]))] for i in range(1, num_back_door_paths + 1): strength = rng.uniform(.1, 1.9) # V mu_v.append(0 * rng.standard_normal(size=v_dim[i])) cov_v.append(1 * np.identity(v_dim[i])) # Z_i mu_z.append(0 * rng.standard_normal(size=z_dim[i])) cov_z.append(.1 * np.identity(z_dim[i])) # Vi->X gamma.append(strength * rng.standard_normal(size=v_dim[i])) # Vi->Zi alpha.append(.5 * strength * rng.standard_normal(size=(v_dim[i], z_dim[i]))) ## Zi->Y beta.append((2 - strength) * rng.standard_normal(size=(z_dim[i]))) beta.append((1 - strength) * rng.standard_normal(size=(z_dim[i]))) # Next, we define the CPDs def x_cpd(n, parents): del n return scm.logistic_linear_bernoulli_cpd(parents, gamma) def y_cpd(n, parents): del n return scm.normal_cpd(parents, beta, mean=mu_y, cov=cov_y) cpds = { 'X': x_cpd, 'Y': y_cpd, } def make_v_cpd(mean, cov): def f(n, parents): del parents # unusued return np.random.multivariate_normal(mean=mean, cov=cov, size=n) return f def make_z_cpd(alpha, mean, cov): def f(n, parents): del n # unused return scm.normal_cpd(parents, [alpha], mean, cov) return f for i in range(1, num_back_door_paths + 1): cpds['V' + str(i)] = make_v_cpd(mu_v[i], cov_v[i]) cpds['Z' + str(i)] = make_z_cpd(alpha[i], mu_z[i], cov_z[i]) ## Z_0 support_size = 10 # the number of values Z_0 may have z0_support = rng.normal(loc=mu_z[0], scale=1, size=(support_size, z_dim[0])) tau = 0 tau_max = 0 # To select a tau on the larger side, we randomly sample 10 of them then # choose the first tau that is larger. See the secretary problem. for _ in range(10): # Generate two random categorical distributions for Z0 p_z0x0 = softmax(.4 * rng.standard_normal(size=support_size)) p_z0x1 = softmax(.4 * rng.standard_normal(size=support_size)) tau_max = max( tau, p_z0x1.dot(z0_support).dot(beta[0]) - p_z0x0.dot(z0_support).dot(beta[0])) while tau < tau_max: # make sure tau is big enough # Generate two random categorical distributions for Z0 p_z0x0 = softmax(.4 * rng.standard_normal(size=support_size)) p_z0x1 = softmax(.4 * rng.standard_normal(size=support_size)) tau = p_z0x1.dot(z0_support).dot(beta[0]) - p_z0x0.dot(z0_support).dot( beta[0]) # X->Z0 def z0x0_cpd(n, parents): del parents idx = np.random.choice(support_size, size=n, p=p_z0x0) return np.array([z0_support[int(i)] for i in idx]) def z0x1_cpd(n, parents): del parents idx = np.random.choice(support_size, size=n, p=p_z0x1) return np.array([z0_support[int(i)] for i in idx]) def z0_cpd(n, parents): del n return scm.categorical_conditioning( parents, 0, distributions=[z0x0_cpd, z0x1_cpd]) cpds['Z0'] = z0_cpd return cpds def get_section_5_2_cpds( z_dim: List[int], v_dim: List[int], num_back_door_paths: int, seed: Optional[int] = None, ): """Returns the CPDs needed by this example. Args: z_dim: the dimension of Z v_dim: the dimension of V num_back_door_paths: the number of back_door paths, i.e. M seed: the random seed Returns: A dictionary of functions, each representing a conditional distsribution, indexed by the variable name strings. """ rng = np.random.default_rng(seed) # Include a zero first index corresponding to z_0 and a placeholder for V_0. # This fixes the indices so, e.g. mu_Vi = mu_V[i], beta_i = beta[i]. mu_v = [0] cov_v = [0] # V_0 does not exist mu_z = [.2 * rng.standard_normal(size=z_dim[0])] cov_z = [.5 * np.identity(z_dim[0])] alpha = [0] gamma = [] mu_y = 0 cov_y = .1 beta = [.2 * rng.standard_normal(size=(z_dim[0]))] for i in range(1, num_back_door_paths + 1): strength = np.random.uniform(.1, 1.9) # V mu_v.append(0 * rng.standard_normal(size=v_dim[i])) cov_v.append(1 * np.identity(v_dim[i])) # Z_i mu_z.append(0 * rng.standard_normal(size=z_dim[i])) cov_z.append(.1 * np.identity(z_dim[i])) # Vi->X gamma.append(strength * rng.standard_normal(size=v_dim[i])) # Vi->Zi alpha.append(.5 * strength * rng.standard_normal(size=(v_dim[i], z_dim[i]))) ## Zi->Y beta.append((2 - strength) * rng.standard_normal(size=(z_dim[i]))) beta.append((1 - strength) * rng.standard_normal(size=(z_dim[i]))) ## Z_0 support_size = 10 # the number of values Z_0 may have z0_support = rng.normal(loc=mu_z[0], scale=1, size=(support_size, z_dim[0])) tau = 0 tau_max = 0 # To select a tau on the larger side, we randomly sample 10 of them then # choose the first tau that is larger. See the secretary problem. for _ in range(10): # Generate two random categorical distributions for Z0 p_z0x0 = softmax(.4 * rng.standard_normal(size=support_size)) p_z0x1 = softmax(.4 * rng.standard_normal(size=support_size)) tau_max = max( tau, p_z0x1.dot(z0_support).dot(beta[0]) - p_z0x0.dot(z0_support).dot(beta[0])) while tau < tau_max: # make sure tau is big enough # Generate two random categorical distributions for Z0 p_z0x0 = softmax(.4 * rng.standard_normal(size=support_size)) p_z0x1 = softmax(.4 * rng.standard_normal(size=support_size)) tau = p_z0x1.dot(z0_support).dot(beta[0]) - p_z0x0.dot(z0_support).dot( beta[0]) # X->Z0 def z0x0_cpd(n, parents): del parents idx = np.random.choice(support_size, size=n, p=p_z0x0) return np.array([z0_support[int(i)] for i in idx]) def z0x1_cpd(n, parents): del parents idx = np.random.choice(support_size, size=n, p=p_z0x1) return np.array([z0_support[int(i)] for i in idx]) def z0_cpd(n, parents): del n return scm.categorical_conditioning( parents, 0, distributions=[z0x0_cpd, z0x1_cpd]) # Specify Gaussian Process kernel = sk.gaussian_process.kernels.RBF( length_scale=1, length_scale_bounds=(1e-1, 1000.0)) f_ys = [] for dim in z_dim: f_ys.append( nonlinear_utils.generate_random_nd_function( dim=dim, out_dim=1, kernel=kernel, min_x=-2, max_x=2, n_points=10, alpha=1e0)) # f_y should have shape (n_units,1) f_y = lambda x: np.sum([f(x[i]) for i, f in enumerate(f_ys)], axis=0) f_xs = [] for dim in v_dim[1:]: f_xs.append( nonlinear_utils.generate_random_nd_function( dim=dim, out_dim=1, kernel=kernel, min_x=-2, max_x=2, n_points=10, alpha=1e0)) # f_x should have shape (n_units,1) f_x = lambda x: np.sum([f(x[i]) for i, f in enumerate(f_xs)], axis=0) def sigmoid(x): return 1 / (1 + np.exp(-x)) def bernoulli(x): return np.random.binomial(1, x) add_noise = scm.add_gaussian_noise # Next, we define the CPDs cpds = { 'X': lambda n, parents: bernoulli(sigmoid(f_x(parents))).flatten(), 'Y': lambda n, parents: add_noise(f_y(parents), mean=mu_y, cov=cov_y), } cpds['Z0'] = z0_cpd def make_v_cpd(mean, cov): def f_v(n, parents): del parents # unusued return np.random.multivariate_normal(mean=mean, cov=cov, size=n) return f_v def make_z_cpd(f, mean, cov): def f_z(n, parents): del n # unused return scm.structural_equation_with_noise( parents, f=f, mean=mean, cov=cov) return f_z for i in range(1, num_back_door_paths + 1): f_z = nonlinear_utils.generate_random_nd_function( dim=v_dim[i], out_dim=z_dim[i], kernel=kernel, min_x=-1, max_x=1, n_points=10, alpha=1e0) cpds['V' + str(i)] = make_v_cpd(mean=mu_v[i], cov=cov_v[i]) cpds['Z' + str(i)] = make_z_cpd(f=f_z, mean=mu_z[i], cov=cov_z[i]) return cpds def get_section_5_1_example( z_dim: List[int], v_dim: List[int], seed: int, z_cost: float, v_cost: float, z0_cost: float, num_back_door_paths: int, sample_limit: int, units_per_round: int, latex_names=False, ) -> Tuple[scm.SCM, List[arms.VarianceEstimatorArm], bandits.LUCBAlgorithm, bandits.SuccessiveEliminationAlgorithm, bandits.UniformAlgorithm,]: """Returns a random instance of an SCM from Section 5.1. Args: z_dim: the dimension of Z v_dim: the dimension of V seed: the random seed z_cost: the cost of observing a Z_i v_cost: the cost of observing a V_i z0_cost: the cost of observing Z_0, the frontdoor variable. num_back_door_paths: the number of back_door paths, i.e. M-1. sample_limit: the total number of samples before termination units_per_round: the number of units samples every round for each algorithm. latex_names: whether we should include latex-friendly names for the arms. Returns: a scm.SCM data generator as described in Section 5.1. arm_list: a list of VarianceEstimatorArms lucb_bandit: a LUCBAlgorithm over the arms se_bandit: a SuccessiveEliminationAlgorithm over the arms uniform_bandit: a UniformAlgorithm over the arms """ cpd_dict = get_section_5_1_cpds(z_dim, v_dim, num_back_door_paths, seed) return generate_example_from_cpd( z_dim, v_dim, z_cost, v_cost, z0_cost, num_back_door_paths, cpd_dict, sample_limit, units_per_round, latex_names, arms.CIAlgorithm.FINITE_SAMPLE, ) def get_section_5_2_example( z_dim: List[int], v_dim: List[int], seed: int, z_cost: float, v_cost: float, z0_cost: float, num_back_door_paths: int, sample_limit: int, units_per_round: int, latex_names=False, ) -> Tuple[scm.SCM, List[arms.VarianceEstimatorArm], bandits.LUCBAlgorithm, bandits.SuccessiveEliminationAlgorithm, bandits.UniformAlgorithm,]: """Returns a random instance of an SCM from Section 5.2. Args: z_dim: the dimension of Z v_dim: the dimension of V seed: the random seed z_cost: the cost of observing a Z_i v_cost: the cost of observing a V_i z0_cost: the cost of observing Z_0, the frontdoor variable. num_back_door_paths: the number of back_door paths, i.e. M-1. sample_limit: the total number of samples before termination units_per_round: the number of units samples every round for each algorithm. latex_names: whether we should include latex-friendly names for the arms. Returns: a scm.SCM data generator as described in Section 5.2. arm_list: a list of VarianceEstimatorArms lucb_bandit: a LUCBAlgorithm over the arms se_bandit: a SuccessiveEliminationAlgorithm over the arms uniform_bandit: a UniformAlgorithm over the arms """ cpd_dict = get_section_5_2_cpds(z_dim, v_dim, num_back_door_paths, seed) return generate_example_from_cpd( z_dim, v_dim, z_cost, v_cost, z0_cost, num_back_door_paths, cpd_dict, sample_limit, units_per_round, latex_names, arms.CIAlgorithm.CLT, ) def generate_example_from_cpd( z_dim: List[int], v_dim: List[int], z_cost: float, v_cost: float, z0_cost: float, num_back_door_paths: int, cpd_dict, sample_limit: int, units_per_round: int, latex_names: bool, ci_algorithm: arms.CIAlgorithm, ) -> Tuple[scm.SCM, List[arms.VarianceEstimatorArm], bandits.LUCBAlgorithm, bandits.SuccessiveEliminationAlgorithm, bandits.UniformAlgorithm]: """Returns a random instance of an SCM from Section 5.1. Args: z_dim: the dimension of Z v_dim: the dimension of V z_cost: the cost of observing a z_i v_cost: the cost of observing a V_i z0_cost: the cost of observing z_0, the frontdoor variable. num_back_door_paths: the number of back_door paths, i.e. M-1. cpd_dict: a dictionary of cpd functions. sample_limit: the total number of samples before termination units_per_round: the number of units samples every round for each algorithm. latex_names: whether we should include latex-friendly names for the arms. ci_algorithm: the algorithm used for the confidence intervals Returns: a scm.SCM data generator as described in Section 5.1. arm_list: a list of VarianceEstimatorArms lucb_bandit: a LUCBAlgorithm over the arms se_bandit: a SuccessiveEliminationAlgorithm over the arms uniform_bandit: a UniformAlgorithm over the arms """ var_names = [] parents = { 'Z0': ['X'], 'X': [], 'Y': ['Z0'], } cov_variables = ['Z0'] treatment_variable = 'X' response_variable = 'Y' for i in range(1, num_back_door_paths + 1): var_names.append('V' + str(i)) var_names.append('Z' + str(i)) cov_variables.append('V' + str(i)) cov_variables.append('Z' + str(i)) parents['V' + str(i)] = [] parents['Z' + str(i)] = ['V' + str(i)] parents['Y'].append('Z' + str(i)) parents['X'].append('V' + str(i)) var_names.extend(['X', 'Z0', 'Y']) scm_gen = scm.SCM( 'Section 5 SCM', var_names, parents, cpd_dict, cov_variables, treatment_variable, response_variable, ) # creat lists of indices: Z_idx[i], V_idx[i] are the indices occupied by Z_i, # V_i, respectively. total_z_dim = sum(z_dim) z_idx = [list(range(z_dim[0]))] v_idx = [[]] cum_z_dim = np.cumsum(z_dim) cum_v_dim = np.cumsum(v_dim) for i in range(num_back_door_paths): z_idx.append(list(range(cum_z_dim[i], cum_z_dim[i + 1]))) v_idx.append( list(range(total_z_dim + cum_v_dim[i], total_z_dim + cum_v_dim[i + 1]))) # the mask for Z0 select_z0_fn = data.get_coordinate_mask_fn(z_idx[0]) def generate_selection_masks(n, z_cost, v_cost): if n == 1: return [z_idx[n], v_idx[n]], ['Z_1', 'V_1'], [z_cost, v_cost] masks, names, costs = generate_selection_masks(n - 1, z_cost, v_cost) masks_with_z = [np.r_[m, z_idx[n]] for m in masks] names_with_z = [name + 'Z_' + str(n) for name in names] costs_with_z = [z_cost + c for c in costs] masks_with_v = [np.r_[m, v_idx[n]] for m in masks] names_with_v = [name + 'V_' + str(n) for name in names] costs_with_v = [v_cost + c for c in costs] return ( masks_with_z + masks_with_v, names_with_z + names_with_v, costs_with_z + costs_with_v, ) (masks, names, costs) = generate_selection_masks(num_back_door_paths, z_cost, v_cost) if latex_names: names = ['$' + n + '$' for n in names] selection_fns = [data.get_coordinate_mask_fn(mask) for mask in masks] # Calculate the dimension of the covariates dims = [len(mask) for mask in masks] # At this point, for arm i, we have # - fns[i] converts data generated by scm_gen (which includes all covariates) # to data that is needed by the ith estimator (which only includes the # necessary covariates). # - costs[i]: the observational cost # - name[i]: the name # - dims[i]: the dimension of the covariates d = scm_gen.generate(1000) sub_gscale = np.var(d.exp) + np.var(d.cov) + np.var(d.rsp) # Next, we define the arms, beginning with the frontdoor arm arm_list = [ arms.SampleSplittingArm( 'frontdoor', eta=parameters.FrontDoorLinearFiniteZ( n_features=z_dim[0], min_units=5, min_overlap=.25, ), data_transformer=select_z0_fn, ci_algorithm=ci_algorithm, cost=z0_cost, sub_gscale=sub_gscale, tau_bound=2, burn_in=1000, rho=1, ) ] # And including all the back_door arms (skipping the first element that # corresponded to Z0. for fn, name, cost, dim in zip(selection_fns, names, costs, dims): arm_list.append( arms.SampleSplittingArm( name, eta=parameters.AIPWLinearLogistic( n_features=dim, min_units=5, min_overlap=.25), data_transformer=fn, ci_algorithm=ci_algorithm, cost=cost, sub_gscale=sub_gscale, tau_bound=2, burn_in=1000, rho=1, )) # And the three bandit algorithms are defined below. lucb_bandit = bandits.LUCBAlgorithm( arm_list, prob_model=scm_gen, error_prob=.05, sample_limit=sample_limit, units_per_round=units_per_round, ) se_bandit = bandits.SuccessiveEliminationAlgorithm( arm_list, prob_model=scm_gen, error_prob=.05, sample_limit=sample_limit, units_per_round=units_per_round, ) uniform_bandit = bandits.UniformAlgorithm( arm_list, prob_model=scm_gen, error_prob=.05, sample_limit=sample_limit, units_per_round=units_per_round, ) return ( scm_gen, arm_list, lucb_bandit, se_bandit, uniform_bandit, )
abcei_mab-main
causal_effect_bandits/paper_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Classes that estimate the asymptotic variance.""" import enum from typing import Callable, Tuple from causal_effect_bandits import data from causal_effect_bandits import parameters import numpy as np import scipy class VarianceEstimatorArm: """Calculate a confidence interval on the variance under nuisance. It uses a NuisanceParameter class, with its influence function, and builds a variance estimator on top. Data is persisted, so only incremental data updates should be provided. There are three technical pieces required: 1. A model to fit the nuisance parameter 2. Data processing that removes the unnecessary covarites from the data 2. A meta algorithm that uses the influence function and nuisance estimator and creates an estimate of the variance Specific meta-algorithms will be implemented by sub-classes. Attributes: eta: parameters.NuisanceParameter The nuisance parameter _data_transformer: function processes an ExpData object into the format expected by the nuissanceParameter object: it must map nd.array of shape (n_units, n_features) to nd.array of shape (n_units, n_features_eta) _data: accumulated data (data.ExpData) ci: (float, float) The most recently calculated confidence interval delta: The delta used in calculating _ci. var_est: The most recent variance estimate. ate: a float of the average treatment effect estimate. name: str the name of the formula num_pulled: an int for the number of times the arm has been updated cost: the cost of sampling from this estimator Methods: update(new_data: data.ExpData): appends the data and recomputes the ci get_ci: returns the confidence interval """ def __init__(self, name: str, eta: parameters.NuisanceParameter, data_transformer: Callable[[data.ExpData], data.ExpData], cost: float = 1): self._name = name self._ci = (-np.inf, np.inf) self._eta = eta self._data_transformer = data_transformer self._ate = None self._var_est = None self._num_pulled = 0 self._split_data = None self.cost = cost def update(self, new_data: data.ExpData, delta: float) -> Tuple[float, float]: """Appends new_data to the dataset and recomputes the variance ci. Args: new_data: data.ExpData to append delta: the error tolerance Returns: A confidence interval that holds with probability 1-delta. """ del new_data, delta # for subclassing self._ci = (0, np.inf) # default ci. self.num_pulled += 1 return self._ci def reset(self) -> None: """Resets the arm to its default state.""" self._ci = (None, None) self._eta.reset() self._ate = None self._var_est = None self._num_pulled = 0 self._split_data = None def get_num_units(self) -> int: """Returns the number of units seen by this arm.""" return 0 @property def name(self) -> str: return self._name @property def ci(self) -> Tuple[float, float]: """Returns the most recent confidence interval.""" return self._ci @property def var_est(self) -> float: return self._var_est @property def num_pulled(self) -> int: return self._num_pulled @property def ate(self) -> float: return self._ate @property def eta(self) -> parameters.NuisanceParameter: return self._eta class CIAlgorithm(enum.Enum): CHI2 = "chi2" CLT = "CLT" FINITE_SAMPLE = "finite_sample" class SampleSplittingArm(VarianceEstimatorArm): """Implements the sample-splitting variance estimator in the paper. This class assumes a uncentered influence function. Data is split into two folds - Fold 1 is used to fit eta - Fold 2 is used to estimate the variance. Further, the calculation of the confidence interval has several options. Attributes: stable_splits: bool incrementally add data to either split vs. resplitting all the data every update. sub_gscale: float the subGaussian parameter for phi(W, eta) eta_sub_gscale: float the subGaussian parameter for eta tau_bound: flout A bound on the maximum tau. burn_in: int When to start the confidence sequence. Equal to m in the paper. eta: a parameters.NuisanceParameter class delta: the high probability tolerance n_splits: the number of splits, ethier 2 or 3. A 3-way split will use a separate fold of data to estimate ATE. rho: hyperparameter for the Gaussian mixture cofidence sequence. """ def __init__( self, name: str, eta: parameters.NuisanceParameter, data_transformer: Callable[[data.ExpData], data.ExpData], ci_algorithm: CIAlgorithm = CIAlgorithm.FINITE_SAMPLE, cost: float = 1, stable_splits: bool = True, sub_gscale: float = 1, eta_sub_gscale: float = 1, tau_bound: float = 1, burn_in: float = 0, rho: float = .1, ): super().__init__(name, eta, data_transformer, cost) self._ci_algorithm = ci_algorithm self._stable_splits = stable_splits self._sub_gscale = sub_gscale self._eta_sub_gscale = eta_sub_gscale self._tau_bound = tau_bound self._burn_in = burn_in self._rho = rho def update( self, new_data: data.ExpData, delta: float, ) -> Tuple[float, float]: """Appends new_data to the dataset and recomputes the variance ci. Args: new_data: data.ExpData to append delta: the error tolerance Returns: A confidence interval that holds with probability 1-delta. """ if not 0 < delta < 1: raise ValueError(f"delta={delta}, but expected to be in (0,1)") self._num_pulled += 1 self.delta = delta if self._split_data is None: self._split_data = self._data_transformer(new_data).k_fold(2) else: if self._stable_splits: new_split = self._data_transformer(new_data).k_fold(2) for i in range(2): self._split_data[i].append(new_split[i]) else: self._split_data = self._data_transformer(new_data).k_fold(2) # Use the first split to train eta self._eta.fit(self._split_data[0]) # We need to check that all folds and all control, treatment groups # Have at least one unit. Otherwise, return [0, np.inf) for the confidence. if not self._eta.has_enough_samples(): self._ci = (0, np.inf) self._ate = np.nan self._var_est = np.inf return self._ci # Use the second split to learn the ATE scores = self._eta.calculate_score(self._split_data[1]) self._ate = np.mean(scores) # Use the second or third split to calculate the variance self._var_est = np.mean( (self._eta.calculate_score(self._split_data[1]) - self._ate)**2) if np.isnan(self._var_est): raise ValueError("var_est is a nan!") if self._ci_algorithm is CIAlgorithm.CHI2: n = self._split_data[1].n_units ci_low = self.var_est * (n - 1) / scipy.stats.chi2.ppf( 1 - delta / 2, df=n - 1) ci_high = self.var_est * (n - 1) / scipy.stats.chi2.ppf( delta / 2, df=n - 1) self._ci = (ci_low, ci_high) elif self._ci_algorithm is CIAlgorithm.CLT: clt_delta = delta / self._num_pulled**2 n = self._split_data[1].n_units scores = self._eta.calculate_score(self._split_data[1]) var_of_var = np.var((scores - self._ate)**2) ci_low = max( self.var_est + scipy.stats.norm.ppf(clt_delta / 2) * np.sqrt(var_of_var / n), 0) ci_high = self.var_est + scipy.stats.norm.ppf(1 - clt_delta / 2) * np.sqrt(var_of_var / n) self._ci = (ci_low, ci_high) elif self._ci_algorithm is CIAlgorithm.FINITE_SAMPLE: if self._tau_bound <= 0 or self._burn_in <= 1 or self._sub_gscale <= 0: raise ValueError("tau_bound, burn_in, and subgScale must be positive") eta_cs_width = self._eta.calculate_cs_width( delta / 2, sub_g=self._eta_sub_gscale, rho=self._rho, ) n = len(self._split_data[1]) if self._burn_in > n: self._ci = (0, np.inf) return self._ci # See the paper, section 3.5 for a justification of this formula lambdap = max(self._sub_gscale, 8 * self._sub_gscale**2) width = 5 / 8 * (np.sqrt(2 * self._sub_gscale) + self._tau_bound) width *= np.sqrt(2 * np.log(lambdap * n / self._burn_in) / n + .5 + np.log(4 / delta)) / np.sqrt(n) width += eta_cs_width**2 self._ci = (max(self.var_est - width, 0), self.var_est + width) else: raise ValueError(f"{self._ci_algorithm} is an unknown CI algorithm name.") return self._ci def get_num_units(self) -> int: """Returns the number of units seen by this arm.""" if self._split_data is None: return 0 return sum(len(data) for data in self._split_data) def reset(self) -> None: super().reset() self._split_data = None class BootstrapArm(VarianceEstimatorArm): """Uses a bootstrap to estimate the variance. The bootstrap only has asymptotic guarantees but it could yield good empirical performance. """ def __init__( self, name: str, eta: parameters.NuisanceParameter, data_transformer: Callable[[data.ExpData], data.ExpData], n_bootstraps: int = 0, stable_splits: bool = True, ): super().__init__(name, eta, data_transformer) self.n_bootstraps = n_bootstraps self.n_splits = 2 self._stable_splits = stable_splits def update( self, new_data: data.ExpData, delta: float, ) -> Tuple[float, float]: """Appends new_data to the dataset and recomputes the variance ci. Args: new_data: data.ExpData to append delta: the error tolerance Returns: A confidence interval that holds with probability 1-delta. """ if not 0 < delta < 1: raise ValueError(f"Given delta={delta}, but 0<delta<1 is required.") self._num_pulled += 1 self.delta = delta if self._split_data is None: self._split_data = self._data_transformer(new_data).k_fold(self.n_splits) else: if self._stable_splits: new_split = self._data_transformer(new_data).k_fold(self.n_splits) for i in range(self.n_splits): self._split_data[i].append(new_split[i]) else: self._split_data = self._data_transformer(new_data).k_fold( self.n_splits) # Use the first split to train eta self._eta.fit(self._split_data[0]) if self.n_bootstraps == 0: n_bootstraps = int(np.ceil(4 / delta)) else: n_bootstraps = self.n_bootstraps # Compute tau b_samples = [] for _ in range(n_bootstraps): # Compute the data with the bth fold missing (in_data, out_data) = self._split_data[0].subsample(1.0 / n_bootstraps) # Calculate tau on this fold self._eta.fit(in_data) b_samples.append(np.var(self._eta.calculate_score(out_data))) # Next, we need to calculate the percentiles of the bootstrap samples b_samples = np.array(b_samples) b_samples.sort() ci_low = b_samples[int(np.floor(delta / 2 * n_bootstraps))] ci_high = b_samples[int(np.ceil((1 - delta / 2) * n_bootstraps)) - 1] self._ci = (ci_low, ci_high) # Use the second split to learn the ATE and variance self._ate = np.mean(self._eta.calculate_score(self._split_data[1])) self._var_est = np.var(self._eta.calculate_score(self._split_data[1])) return self._ci
abcei_mab-main
causal_effect_bandits/arms.py
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """init file for causal_effect_bandits package.""" from causal_effect_bandits import arms from causal_effect_bandits import bandits from causal_effect_bandits import data from causal_effect_bandits import nonlinear_utils from causal_effect_bandits import paper_utils from causal_effect_bandits import parameters from causal_effect_bandits import plotting_utils from causal_effect_bandits import scm
abcei_mab-main
causal_effect_bandits/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """A unit test for the back_door formula.""" from absl.testing import absltest from causal_effect_bandits import data from causal_effect_bandits import example_scm import numpy as np class ExpDataTest(absltest.TestCase): def test_k_fold(self): z = np.arange(8).reshape(4, 2) x = np.arange(4) - 2 y = np.arange(4) * 2 new_data = data.ExpData(z, x, y) folds = new_data.k_fold(1) assert len(folds) == 1 np.testing.assert_array_equal(folds[0].cov, new_data.cov) np.testing.assert_array_equal(folds[0].exp, new_data.exp) np.testing.assert_array_equal(folds[0].rsp, new_data.rsp) np.random.seed(0) folds = new_data.k_fold(2) assert len(folds) == 2 np.testing.assert_array_equal(folds[0].cov, [[0, 1], [6, 7]]) np.testing.assert_array_equal(folds[1].cov, [[2, 3], [4, 5]]) np.testing.assert_array_equal(folds[0].exp, [-2, 1]) np.testing.assert_array_equal(folds[1].exp, [-1, 0]) np.testing.assert_array_equal(folds[0].rsp, [0, 6]) np.testing.assert_array_equal(folds[1].rsp, [2, 4]) class TestTabularCPD(absltest.TestCase): def test_fit(self): table = data.TabularCPD(10) x = np.array([0, 1, 2] * 3) z = np.array([3] * 3 + [4] * 3 + [5] * 3) table.fit(x, z) np.testing.assert_array_equal(table.x_support(), [0, 1, 2]) np.testing.assert_array_equal(table.z_support(), [3, 4, 5]) for xi in [0, 1, 2]: for zi in [3, 4, 5]: assert table.predict([xi], [zi]) == 1 / 3.0 class SCMTest(absltest.TestCase): def test_scm_frontdoor_statistics(self): """Tests scm generating by checking statistics.""" (scm_gen, params) = example_scm.frontdoor_scm() n = 100000 new_data = scm_gen.generate(n) tol = 4 * max(new_data.rsp)**2 / np.sqrt(n) ## Test the statistics of the distribution # check means np.testing.assert_allclose(np.mean(new_data.exp), params["mu_x"], atol=tol) np.testing.assert_allclose(np.mean(new_data.rsp), params["mu_y"], atol=tol) np.testing.assert_allclose( np.mean(new_data.cov[:, 1]), params["mu_z"], atol=tol) np.testing.assert_allclose( np.mean(new_data.cov[:, 0]), params["mu_u"], atol=tol) # check variances np.testing.assert_allclose( np.var(new_data.cov[:, 0]), params["var_u"], atol=tol * params["var_u"]) np.testing.assert_allclose( np.var(new_data.cov[:, 1]), params["var_z"], atol=tol * params["var_z"]) np.testing.assert_allclose( np.var(new_data.exp), params["var_x"], atol=tol * params["var_x"]) np.testing.assert_allclose( np.var(new_data.rsp), params["var_y"], atol=4 * tol * params["var_y"]) def test_scm_back_door_statistics(self): (scm_gen, params) = example_scm.back_door_scm() # Test the statistics of the distribution n = 1000000 new_data = scm_gen.generate(n) tol = np.mean(new_data.rsp**2) / np.sqrt(n) assert params["tau"] == 10 # check means np.testing.assert_allclose(np.mean(new_data.exp), params["mu_x"], tol) np.testing.assert_allclose(np.mean(new_data.rsp), params["mu_y"], tol) np.testing.assert_allclose(np.mean(new_data.cov), params["mu_z"], tol) # check variances np.testing.assert_allclose( np.var(new_data.exp), params["var_x"], atol=tol * params["var_x"]) np.testing.assert_allclose( np.var(new_data.cov), params["var_z"], atol=tol * params["var_z"]) np.testing.assert_allclose( np.var(new_data.rsp), params["var_y"], atol=2 * tol * params["var_y"]) if __name__ == "__main__": absltest.main()
abcei_mab-main
causal_effect_bandits/data_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Implementations of bandit algorithms over Arms.""" import dataclasses from typing import List, Mapping, Optional from causal_effect_bandits import arms from causal_effect_bandits import data import numpy as np @dataclasses.dataclass class BanditData: """Stores the results of running a bandit algorithm. Attributes lcb_by_arm: dict(arm object, np.array) A list of the lcbs returned by of the arm for every round ucb_by_arm: dict(arm object, np.array) A list of the ucbs returned by of the arm for every round var_est_by_arm: dict(arm object, np.array) A list of the variance estimates returned by of the arm for every round. Is populated even when the arm is not updated. best_arm: List[arm] A list of arms with the lowest ucb of all the arms with the lowest estimate of the variance. Could be more than one. samples_by_arm: Mapping(arm object, np.array) a dict of the samples allocated to each arm during each period cum_samples: np.array a list of the cumulative number of samples used for all arms. """ lcb_by_arm: Mapping[arms.VarianceEstimatorArm, List[float]] ucb_by_arm: Mapping[arms.VarianceEstimatorArm, List[float]] var_est_by_arm: Mapping[arms.VarianceEstimatorArm, List[float]] samples_by_arm: Mapping[arms.VarianceEstimatorArm, List[float]] cum_samples: List[float] best_arm: List[arms.VarianceEstimatorArm] class BAIBanditAlgorithm: """A class for best arm identification in bandit problems. Parameters: _arms: a list of arms.VarianceEstimatorArms The arms that will be pulled by this algorithm _num_arms: int The number of arms. _prob_model: data.DataGenerator a way to generate i.i.d. (X, T, Y) data error_prob: float in (0,1) the desired probability of correctness (usually denoted delta) error_tol: float > 0 the allowed suboptimality of the returned arm (usually denoted epsilon) confidence: float in (0,1) the desired probability of returning the best arm. Set to None if we want a fixed budget problem. sample_limit: int > 0 the maximum number of rounds. Set to None if you want at fixed confidence problem. units_per_round: int The number of units sampled every banit round. Methods: run: runs the bandit until the completion criteria are met collect_bounds: Assembles the ci and var_est of the arms into three np.arrays. _check_fixed_conf_end_condition(): checks if the end condition condition of a fixed confidence bandit are met _select_arm_with_mask(mask) given a List[boolean] with num_arms entries, this method returns a sublist of the arms where the corresponding entry in mask is True. """ def __init__( self, arm_list: List[arms.VarianceEstimatorArm], prob_model: data.DataGenerator, error_prob: float = .05, error_tol: float = 0, confidence: float = .05, sample_limit=np.inf, units_per_round: int = 10, ): self._arms = arm_list self._num_arms = len(self._arms) self._prob_model = prob_model if not 0.0 < error_prob < 1.0: raise ValueError( f"error_prob={error_prob}; must be in the unit interval.") self.error_prob = error_prob if error_tol < 0.0: raise ValueError(f"error_tol={error_tol}; must be nonnegative.") self.error_tol = error_tol if confidence is None and np.isinf(sample_limit): raise ValueError( "Either the confidence or the number of rounds must be specified") if confidence is not None: if not 0 < confidence < 1: raise ValueError( f"confidence={confidence}; must be in the unit interval") self.confidence = confidence self.sample_limit = sample_limit self.units_per_round = units_per_round def reset(self): """Resets the bandit to a just-instantiated state.""" for a in self._arms: a.reset() def _check_fixed_conf_end_condition(self): """Contains the logic to determine if the bandit algorithm is done. Uses the fixed confidence setting. The game is done if the ucb of the best arm (the lowest ucb of all the arms that have the minimum variance estimate) is lower than lcb of the remaining arms (all arms that do not share the minimum variance estimate). Returns: boolean: is the best arm (epsilon, delta)-PAC? best_arm: the best arm """ if self.error_prob is None: # we are a fixed budget bandit return (False, []) lcbs, ucbs, var_ests = self.collect_bounds() if any(np.isinf(ucbs)): # one of the ucbs is infinity return (False, []) min_var = min(var_ests) if np.isnan(min_var): # one of the arms returned a nan return (False, []) # find the arm with the smallest variance. min_var_arm = np.argmin(var_ests) # check to see if the lcb of the remaining arms is higher than the ucb # of min_var_arm. remaining_lcbs = [ lcbs[i] for i in range(len(self._arms)) if i != min_var_arm ] return (ucbs[min_var_arm] < min(remaining_lcbs) - self.error_tol, [self._arms[min_var_arm]]) def _select_arms_with_mask(self, boolean_mask): """Returns the arms where boolean_mask is true. Args: boolean_mask: a list of booleans Returns: the arms corresponding to the true positions in the mask. """ assert len(boolean_mask) == self._num_arms return [a for (a, m) in zip(self._arms, boolean_mask) if m] def collect_bounds(self): """Collects the upper and lower confidence intervals and variance estimates. Returns: Lists of the lcbs, ucbs, and point estimates of the asymptotic variances. """ ucbs = np.array([a.cost * a.ci[1] for a in self._arms]) lcbs = np.array([a.cost * a.ci[0] for a in self._arms]) sigma2s = np.array([a.cost * a.var_est for a in self._arms]) return (lcbs, ucbs, sigma2s) class UniformAlgorithm(BAIBanditAlgorithm): """Implements the trivial algorithm that just pulls all arms equally.""" def run(self, all_data: Optional[data.ExpData] = None) -> BanditData: """Runs the bandit algorithm until termination. Terminations by happen if either the confidence is reached or sample_limit is reached. If all_data is passed, then we assume we should sample in stable order: every arm will sequentially read data from the beginning of data independently of the other arms or sample selection strategy. This ensures that the confidence sequences for an arm are identical across different algorithms, making a comparison easier. Args: all_data: optional data.ExpData specifying all the samples the algorithm could use. The algorithm could terminate before consuming all the data. If all_data is not passed, then data is generated from self.prob_model. Returns: A BanditData dataclass. """ stable_order = all_data is not None # Allocate variables for tracking the history lcb_by_arm = {a: [] for a in self._arms} ucb_by_arm = {a: [] for a in self._arms} var_est_by_arm = {a: [] for a in self._arms} cum_samples = [] samples_by_arm = {a: [] for a in self._arms} total_samples = 0 while True: if stable_order: # All remaining arms have been pulled the same number of times. n_start = self._arms[0].get_num_units() new_samples = all_data[n_start:n_start + self.units_per_round] else: new_samples = self._prob_model.generate(self.units_per_round) # We need to calculate the necessary delta: for arm in self._arms: arm.update(new_samples, self.error_prob / len(self._arms)) lcb_by_arm[arm].append(arm.cost * arm.ci[0]) ucb_by_arm[arm].append(arm.cost * arm.ci[1]) var_est_by_arm[arm].append(arm.cost * arm.var_est) samples_by_arm[arm].append(self.units_per_round) total_samples += self._num_arms * self.units_per_round cum_samples.append(total_samples) if total_samples > self.sample_limit: _, _, var_ests = self.collect_bounds() # Select the arms with the lowest var estimates. best_arms = self._select_arms_with_mask( [v == min(var_ests) for v in var_ests]) break # Check end condition if self.error_prob is not None: # This is a fixed confidence bandit (game_ends, best_arms) = self._check_fixed_conf_end_condition() if game_ends: break return BanditData(lcb_by_arm, ucb_by_arm, var_est_by_arm, samples_by_arm, cum_samples, best_arms) class LUCBAlgorithm(BAIBanditAlgorithm): """Implements the LUCB method.""" def __init__( self, arm_list: List[arms.VarianceEstimatorArm], prob_model: data.DataGenerator, error_prob: float = .05, error_tol: float = 0, confidence=None, sample_limit=None, units_per_round=200, ): super().__init__(arm_list, prob_model, error_prob, error_tol, confidence, sample_limit, units_per_round) def run(self, all_data: Optional[data.ExpData] = None) -> BanditData: """Runs the bandit algorithm until termination. Terminations by happen if either the confidence is reached or sample_limit is reached. If all_data is passed, then we assume we should sample in stable order: every arm will sequentially read data from the beginning of data independently of the other arms or sample selection strategy. This ensures that the confidence sequences for an arm are identical across different algorithms, making a comparison easier. Args: all_data: optional data.ExpData specifying all the samples the algorithm could use. The algorithm could terminate before consuming all the data. If all_data is not passed, then data is generated from self.prob_model. Returns: lcb_by_arm: dict(arm object, np.array) A list of the lcbs returned by of the arm for every round ucb_by_arm: dict(arm object, np.array) A list of the ucbs returned by of the arm for every round var_est_by_arm: dict(arm object, np.array) A list of the variance estimates returned by of the arm for every round best_arm: List[arm] A list of arms with the lowest ucb of all the arms with the lowest estimate of the variance. Could be more than one. samples_by_arm: Mapping(arm object, np.array) a dict of the samples allocated to each arm during each period cum_samples: np.array a list of the cumulative number of samples used """ stable_order = all_data is not None if stable_order: new_samples = all_data[:self.units_per_round] else: new_samples = self._prob_model.generate(self.units_per_round) # Allocate variables for tracking the history lcb_by_arm = {a: [] for a in self._arms} ucb_by_arm = {a: [] for a in self._arms} var_est_by_arm = {a: [] for a in self._arms} cum_samples = [] samples_by_arm = {a: [] for a in self._arms} # Update all arms once total_samples = self._num_arms * self.units_per_round for arm in self._arms: arm.update(new_samples, self.error_prob / len(self._arms)) lcb_by_arm[arm].append(arm.cost * arm.ci[0]) ucb_by_arm[arm].append(arm.cost * arm.ci[1]) var_est_by_arm[arm].append(arm.cost * arm.var_est) samples_by_arm[arm].append(self.units_per_round) cum_samples.append(total_samples) while True: if total_samples > self.sample_limit: _, _, var_ests = self.collect_bounds() # Select the arms with the lowest var estimates. best_arm = self._select_arms_with_mask( [v == min(var_ests) for v in var_ests]) break arms_to_update = self.select_arms() for arm in arms_to_update: if not stable_order: new_samples = self._prob_model.generate(self.units_per_round) else: n_start = arm.get_num_units() new_samples = all_data[n_start:n_start + self.units_per_round] arm.update(new_samples, self.error_prob / len(self._arms)) # Record the arm outputs for arm in self._arms: lcb_by_arm[arm].append(arm.cost * arm.ci[0]) ucb_by_arm[arm].append(arm.cost * arm.ci[1]) var_est_by_arm[arm].append(arm.cost * arm.var_est) samples_by_arm[arm].append(self.units_per_round if arm in arms_to_update else 0) total_samples += 2 * self.units_per_round cum_samples.append(total_samples) # Check end condition if self.error_prob is not None: # This is a fixed confidence bandit (game_ends, best_arm) = self._check_fixed_conf_end_condition() if game_ends: break return BanditData(lcb_by_arm, ucb_by_arm, var_est_by_arm, samples_by_arm, cum_samples, best_arm) def select_arms(self) -> List[arms.VarianceEstimatorArm]: """Picks the arms to sample next. For LUCB, we choose between the arm with the lowest upper confidence bound, or the arm among the remaining arms with the highest lower confidence bound. Returns: A list of arms selected by the algorithm. """ lcbs, ucbs, var_ests = self.collect_bounds() if any([v is None for v in var_ests]): return np.random.choice(self._arms, 2, replace=False) # choose at random lowest_var = min(var_ests) if np.isnan(lowest_var): print( "Warning: some of the confidence intervals are nan; choosing the next arms uniformly at random" ) return np.random.choice(self._arms, size=2, replace=False) best_arm_mask = [v == lowest_var for v in var_ests] # Select the arm in this set with the highest ucb high_ucb = max(ucbs[best_arm_mask]) high_ucb_mask = [u == high_ucb for u in ucbs] # Also select the arm with the lowest lcb of the remaining arms low_lcb = min(lcbs[[not i for i in best_arm_mask]]) low_lcb_mask = [l == low_lcb for l in lcbs] # We will pick between these two arms u_index = np.random.choice(np.arange(self._num_arms)[high_ucb_mask]) l_index = np.random.choice(np.arange(self._num_arms)[low_lcb_mask]) return [self._arms[u_index], self._arms[l_index]] class SuccessiveEliminationAlgorithm(BAIBanditAlgorithm): """Implements the successive elimination algorithm. Attributes: arms: list of arms.VarianceEstimatorArm objects prob_model: data.DataGenerator object sample_limit: int an upper bound on the total number of samples units_per_round: int the number of units to sample for every epoch of the algorithm stable_order: whether the algorithm reads the data sequentially or not. """ def __init__( self, arm_list: List[arms.VarianceEstimatorArm], prob_model: data.DataGenerator, error_prob=.05, error_tol=0, confidence=None, sample_limit=None, units_per_round=200, ): super().__init__(arm_list, prob_model, error_prob, error_tol, confidence, sample_limit, units_per_round) def run(self, all_data: Optional[data.ExpData] = None): """Runs the bandit algorithm until termination. Terminations by happen if either the confidence is reached or sample_limit is reached. If all_data is passed, then we assume we should sample in stable order: every arm will sequentially read data from the beginning of data independently of the other arms or sample selection strategy. This ensures that the confidence sequences for an arm are identical across different algorithms, making a comparison easier. Args: all_data: optional data.ExpData specifying all the samples the algorithm could use. The algorithm could terminate before consuming all the data. If all_data is not passed, then data is generated from self.prob_model. Returns: lcb_by_arm: dict(arm object, np.array) A list of the lcbs returned by of the arm for every round ucb_by_arm: dict(arm object, np.array) A list of the ucbs returned by of the arm for every round var_est_by_arm: dict(arm object, np.array) A list of the variance estimates returned by of the arm for every round best_arm: List[arm] A list of arms with the lowest ucb of all the arms with the lowest estimate of the variance. Could be more than one. samples_by_arm: Mapping(arm object, np.array) a dict of the samples allocated to each arm during each period cum_samples: np.array a list of the cumulative number of samples used """ stable_order = all_data is not None # Allocate variables for tracking the history lcb_by_arm = {a: [] for a in self._arms} ucb_by_arm = {a: [] for a in self._arms} var_est_by_arm = {a: [] for a in self._arms} cum_samples = [] samples_by_arm = {a: [] for a in self._arms} total_samples = 0 # Initialize candidate_arms = list(self._arms) # copy arms. epoch = 1 while len(candidate_arms) > 1: epoch += 1 if total_samples > self.sample_limit: _, _, var_ests = self.collect_bounds() # Select the arms with the lowest var estimates. candidate_arms = self._select_arms_with_mask( [v == min(var_ests) for v in var_ests]) break for arm in candidate_arms: if not stable_order: new_samples = self._prob_model.generate(self.units_per_round) else: n_start = arm.get_num_units() new_samples = all_data[n_start:n_start + self.units_per_round] arm.update(new_samples, self.error_prob / len(self._arms)) total_samples += len(candidate_arms) * self.units_per_round # Record the arm outputs cum_samples.append(total_samples) for arm in self._arms: lcb_by_arm[arm].append(arm.cost * arm.ci[0]) ucb_by_arm[arm].append(arm.cost * arm.ci[1]) var_est_by_arm[arm].append(arm.cost * arm.var_est) samples_by_arm[arm].append(0) for arm in candidate_arms: samples_by_arm[arm][-1] = self.units_per_round # Now we decide the ending condition # trim down the candidate set by finding the lowest ucb of the arms # with the minimum var_est. candidate_var_ests = [var_est_by_arm[arm][-1] for arm in candidate_arms] lowest_var = min(candidate_var_ests) low_var_mask = [v == lowest_var for v in candidate_var_ests] lowest_ucb = min([ ucb_by_arm[arm][-1] for i, arm in enumerate(candidate_arms) if low_var_mask[i] ]) # We now eliminate all arms with lcbs that are larger than lowest_ucb. new_candidate_arms = [] for arm in candidate_arms: if lcb_by_arm[arm][-1] < lowest_ucb: new_candidate_arms.append(arm) candidate_arms = new_candidate_arms # Check end condition if len(candidate_arms) == 1: break return BanditData(lcb_by_arm, ucb_by_arm, var_est_by_arm, samples_by_arm, cum_samples, candidate_arms)
abcei_mab-main
causal_effect_bandits/bandits.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """A unit test for VarianceEstimator arms.""" from absl.testing import absltest from causal_effect_bandits import data from causal_effect_bandits import example_scm from causal_effect_bandits import parameters import numpy as np class EstimatorTest(absltest.TestCase): def test_frontdoorlinearfinitez(self): """Tests the FrontDoorLinearFiniteZ NuisanceParameter.""" np.random.seed(0) scm_gen, params = example_scm.frontdoor_scm() n = 100000 eta = parameters.FrontDoorLinearFiniteZ( n_features=1, min_ratio_to_uniform=5) # Now we check the data generation process and the estimators d = scm_gen.generate(n) eta.fit(data.get_remove_coordinates_fn(0)(d)) tol = .1 def g(x): return 1 / (1 + np.exp(-x)) # Check the model is being fit correctly. one = np.ones(1, dtype=int) # Tablular must have matching d-types zero = np.zeros(1, dtype=int) np.testing.assert_allclose(eta.exp_prob, params["mu_x"], tol * params["mu_x"]) np.testing.assert_allclose( eta.cov_given_exp.predict(x=one, z=one), g(params["beta"]), tol) np.testing.assert_allclose( eta.cov_given_exp.predict(x=one, z=zero), 1 - g(params["beta"]), tol) np.testing.assert_allclose( eta.cov_given_exp.predict(x=zero, z=one), .5, tol) np.testing.assert_allclose( eta.cov_given_exp.predict(x=zero, z=zero), .5, tol) np.testing.assert_allclose( eta.y_response.predict([ [0, 0], [0, 1], [1, 0], [1, 1], ]), [ 0, params["gamma"], params["alpha_2"] * params["mu_u"], params["gamma"] + params["alpha_2"] ], atol=.2) def test_AIPWLinearLogistic(self): """Tests the AIPWLinearLogistic NuisanceParameter.""" np.random.seed(0) scm_gen, params = example_scm.back_door_scm() n = 100000 eta = parameters.AIPWLinearLogistic(n_features=1) # Now we check the data generation process and the estimators d = scm_gen.generate(n) eta.fit(d) tol = .1 np.testing.assert_allclose(eta.get_response_parameters()[0], [params["tau"], params["beta"]], tol) if __name__ == "__main__": absltest.main()
abcei_mab-main
causal_effect_bandits/parameters_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """A unit test for VarianceEstimator arms.""" from absl.testing import absltest from causal_effect_bandits import arms from causal_effect_bandits import data from causal_effect_bandits import example_scm from causal_effect_bandits import parameters from causal_effect_bandits import test_utils import numpy as np from sklearn import linear_model class ArmTest(absltest.TestCase): def test_frontdoor_arm(self): """Test the statistics of the distribution.""" np.random.seed(0) scm_gen, args = example_scm.frontdoor_scm() n = 50000 samples = scm_gen.generate(n) arm = arms.SampleSplittingArm( 'test_arm', eta=parameters.FrontDoorLinearFiniteZ( n_features=1, min_ratio_to_uniform=5), # remove the U coordinate data_transformer=data.get_remove_coordinates_fn(0), ci_algorithm=arms.CIAlgorithm.FINITE_SAMPLE, sub_gscale=1, tau_bound=2, burn_in=1000, rho=1, ) # Next, we run the arm on a sequence of data and make sure it approaches # a sensible value. arm_output = test_utils.run_single_arm( arm, data_gen=scm_gen, max_samples=10000, increment=1500) def g(x): return 1 / (1 + np.exp(-x)) # Set the nuisance parameters to their true values arm._eta.exp_prob = args['mu_x'] beta = args['beta'] one = np.ones(1, dtype=int) # Tabular must have matching d-types zero = np.zeros(1, dtype=int) arm._eta.cov_given_exp.table[one.tobytes()][one.tobytes()] = g(beta) arm._eta.cov_given_exp.table[one.tobytes()][zero.tobytes()] = 1 - g(beta) arm._eta.cov_given_exp.table[zero.tobytes()][one.tobytes()] = .5 arm._eta.cov_given_exp.table[zero.tobytes()][zero.tobytes()] = .5 if isinstance(arm._eta.y_response, linear_model.Ridge): arm._eta.y_response.coef_ = np.array([args['alpha_2'], args['gamma']]) arm._eta.y_response.intercept_ = args['alpha_2'] * args['mu_u'] var_approx = np.var( arm._eta.calculate_score(data.get_remove_coordinates_fn(0)(samples))) # Check estimators np.testing.assert_allclose(arm.var_est, var_approx, rtol=.05) # Check the LCB is less than the var_estimate np.testing.assert_array_less(arm_output['LCBs'], arm_output['var_estimates']) # Check the UCB is greater than the var_estimate np.testing.assert_array_less(arm_output['var_estimates'], arm_output['UCBs']) # Check the number of samples is correct np.testing.assert_equal(arm_output['n_samples'], 1500 * np.arange(1, 8)) def test_back_door_arm(self): np.random.seed(0) scm_gen, _ = example_scm.back_door_scm() arm = arms.SampleSplittingArm( 'test_arm', eta=parameters.AIPWLinearLogistic(n_features=1), data_transformer=data.get_identity_fn(), ci_algorithm=arms.CIAlgorithm.FINITE_SAMPLE, sub_gscale=1, tau_bound=10, burn_in=1000, rho=1, ) # Next, we run the arm on a sequence of data and make sure it approaches # a sensible value. arm_output = test_utils.run_single_arm( arm, data_gen=scm_gen, max_samples=10000, increment=1500) # Check the LCB is less than the var_estimate np.testing.assert_array_less(arm_output['LCBs'], arm_output['var_estimates']) # Check the UCB is greater than the var_estimate np.testing.assert_array_less(arm_output['var_estimates'], arm_output['UCBs']) # Check the number of samples is correct np.testing.assert_equal(arm_output['n_samples'], 1500 * np.arange(1, 8)) if __name__ == '__main__': absltest.main()
abcei_mab-main
causal_effect_bandits/arms_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """A unit test for VarianceEstimator arms.""" from typing import Callable, Tuple from absl.testing import absltest from causal_effect_bandits import arms from causal_effect_bandits import bandits from causal_effect_bandits import data from causal_effect_bandits import example_scm import numpy as np class ConstantArm(arms.VarianceEstimatorArm): """A simple arm used for testing the bandit algs. Always returns a constant var_est, and the CI width is width_fn(n), where n is the total number of samples. """ def __init__( self, name: str, var_est: float, width_fn: Callable[[int], float], ): self._name = name self._var_est = var_est self.width_fn = width_fn self.n_samples = 0 self._ci = (0, np.inf) self.cost = 1 def update(self, new_data: data.ExpData, delta: float) -> Tuple[float, float]: self.n_samples += len(new_data) self._ci = (self.var_est - self.width_fn(self.n_samples), self.var_est + self.width_fn(self.n_samples)) return self._ci class BanditTest(absltest.TestCase): def test_uniform_bandit(self): """Tests the UniformAlgorithm bandit on easy data. This method verifies that the correct arms are pulled the correct number of times and that the confidence intervals are correctly accumulated. """ scm_gen, _ = example_scm.frontdoor_scm() def width_fn(n): return np.sqrt(20) / np.sqrt(n) arm_list = [ ConstantArm('arm1', var_est=1, width_fn=width_fn), ConstantArm('arm2', var_est=2, width_fn=width_fn), ConstantArm('arm3', var_est=2, width_fn=width_fn) ] bandit = bandits.UniformAlgorithm( arm_list, prob_model=scm_gen, confidence=.05, sample_limit=50, units_per_round=5, ) bdata = bandit.run() # Verify the correct best arm is returned np.testing.assert_equal(bdata.best_arm, [arm_list[0]]) # Test that the correct var estimates are returned np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[0]], [1] * 4) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[1]], [2] * 4) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[2]], [2] * 4) # Test that the correct number of samples are returned: every arm is # sampled every time correct_samples = [5] * 4 np.testing.assert_allclose(bdata.samples_by_arm[arm_list[0]], correct_samples) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[1]], correct_samples) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[2]], correct_samples) # Test that the lower confidence bounds are correct correct_width = [width_fn(n) for n in 5 * np.arange(1, 5)] np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[0]], np.ones(4) - correct_width) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[1]], 2 * np.ones(4) - correct_width) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[2]], 2 * np.ones(4) - correct_width) # Test that the upper confidence bounds are correct correct_width = [width_fn(n) for n in 5 * np.arange(1, 5)] np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[0]], np.ones(4) + correct_width) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[1]], 2 * np.ones(4) + correct_width) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[2]], 2 * np.ones(4) + correct_width) def test_successive_elimination_bandit(self): """Tests the SuccessiveEliminationAlgorithm bandit on easy data. This method verifies that the correct arms are pulled the correct number of times and that the confidence intervals are correctly accumulated. """ scm_gen, _ = example_scm.frontdoor_scm() def width_fn(n): return np.sqrt(20) / np.sqrt(n) arm_list = [ ConstantArm('arm1', var_est=1, width_fn=width_fn), ConstantArm('arm2', var_est=2.25, width_fn=width_fn), ConstantArm('arm3', var_est=3, width_fn=width_fn) ] bandit = bandits.SuccessiveEliminationAlgorithm( arm_list, prob_model=scm_gen, confidence=.05, sample_limit=100, units_per_round=10, ) bdata = bandit.run() # Test that the correct best arm is returned np.testing.assert_equal(bdata.best_arm, [arm_list[0]]) # Test that the variance estimates are correct np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[0]], [1] * 5) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[1]], [2.25] * 5) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[2]], [3] * 5) # Test that the correct number of samples are returned np.testing.assert_allclose(bdata.samples_by_arm[arm_list[0]], [10] * 5) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[1]], [10] * 5) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[2]], [10, 10, 0, 0, 0]) correct_width_1 = [width_fn(n) for n in 10 * np.arange(1, 6)] correct_width_2 = [width_fn(n) for n in 10 * np.arange(1, 6)] correct_width_3 = [width_fn(n) for n in [10, 20, 20, 20, 20]] # Test that the lower confidence bounds are correct np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[0]], np.ones(5) - correct_width_1) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[1]], 2.25 * np.ones(5) - correct_width_2) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[2]], 3 * np.ones(5) - correct_width_3) # Test that the upper confidence bounds are correct np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[0]], np.ones(5) + correct_width_1) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[1]], 2.25 * np.ones(5) + correct_width_2) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[2]], 3 * np.ones(5) + correct_width_3) def test_lucb_bandit(self): """Tests the LUCBAlgorithm bandit on easy data. This method verifies that the correct arms are pulled the correct number of times and that the confidence intervals are correctly accumulated. """ scm_gen, _ = example_scm.frontdoor_scm() def width_fn(n): return np.sqrt(20) / np.sqrt(n) arm_list = [ ConstantArm('arm1', var_est=1, width_fn=width_fn), ConstantArm('arm2', var_est=2, width_fn=width_fn), ConstantArm('arm3', var_est=2.5, width_fn=width_fn) ] bandit = bandits.LUCBAlgorithm( arm_list, prob_model=scm_gen, confidence=.05, sample_limit=50, units_per_round=5, ) bdata = bandit.run() # Test that the correct best arm is returned np.testing.assert_equal(bdata.best_arm, [arm_list[0]]) # Test that the variance estimates are correct np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[0]], [1] * 5) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[1]], [2] * 5) np.testing.assert_allclose(bdata.var_est_by_arm[arm_list[2]], [2.5] * 5) # Test that the correct number of samples are returned np.testing.assert_allclose(bdata.samples_by_arm[arm_list[0]], [5] * 5) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[1]], [5, 5, 0, 5, 5]) np.testing.assert_allclose(bdata.samples_by_arm[arm_list[2]], [5, 0, 5, 0, 0]) correct_width_1 = [width_fn(n) for n in 5 * np.arange(1, 6)] correct_width_2 = [width_fn(n) for n in [5, 10, 10, 15, 20]] correct_width_3 = [width_fn(n) for n in [5, 5, 10, 10, 10]] # Test that the lower confidence bounds are correct np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[0]], np.ones(5) - correct_width_1) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[1]], 2 * np.ones(5) - correct_width_2) np.testing.assert_allclose(bdata.lcb_by_arm[arm_list[2]], 2.5 * np.ones(5) - correct_width_3) # Test that the upper confidence bounds are correct np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[0]], np.ones(5) + correct_width_1) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[1]], 2 * np.ones(5) + correct_width_2) np.testing.assert_allclose(bdata.ucb_by_arm[arm_list[2]], 2.5 * np.ones(5) + correct_width_3) if __name__ == '__main__': absltest.main()
abcei_mab-main
causal_effect_bandits/bandits_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Contains the class definitions for the estimators.""" from typing import Tuple from absl import logging from causal_effect_bandits import data import numpy as np import sklearn from sklearn import linear_model from typing_extensions import Protocol class NuisanceParameter(Protocol): """Encodes the interface for nuisance parameters. This class contains all the code to fit, model, and compute a nuisance parameter from data, its influence function, and the ATE from it. The definition of eta and phi depend on the structure of the nuisance parameter, so we encapulate them together. Attributes: _nus_dim: int the output dimension of the nuisance parameter _cov_dim: int the dimension of the covariates _model: object models of the nuisance parameters (eta). Maps from: from: ExpData: n_units * (_cov_dim + treatment_dim + response_dim) to: n_units * _nus_dim _data: ExpData the last ExpData that we used _phi: function the phi function: accepts n_units * _nus_dim, returns n_units * 1 _has_been_fit: boolean True if the model has been fit on enough data to make a sensible prediction, e.g. both control and treatment groups have units in them. recent_data: ExpData The most recently fit data. Methods to be fit by sub classes: fit: fits the model using an ExpData object. transform: returns an element-wise nuisance parameter evaluated on ExpData calculate_score: returns elementwise phi(calculate_score) has_enough_samples: True if the model has seen enough data to be fit. reset: resets all the models to their default state set_to-truth: sets the nuisance parameters to their true value. """ def fit(self, d: data.ExpData) -> None: """Fits eta to the provided experimental data. Args: d: ExpData used to fit the nuisance parameter. Expected shapes are d.cov: (n_units, n_features) d.exp: (n_units,) d.rsp: (n_units,) """ ... def reset(self) -> None: ... def _phi(self, eta: np.ndarray, d: data.ExpData) -> np.ndarray: """Calculates phi(W, eta) for all W in d and eta(W). Args: eta: np.ndarray of shape (data.n_units, _nus_dim), which has been evaluated on W. d: ExpData of shape (data.n_units, _cov_dim) Returns: np.array of shape (data.n_units, ) """ ... def transform(self, d: data.ExpData) -> np.ndarray: """Return eta(W) for all W in d. Args: d: ExpData to be evaluated with n_units Returns: a np.ndarray of shape (n_units,_nus_dim) for eta(W), W in d. """ ... def has_enough_samples(self) -> bool: ... def calculate_cs_width(self, delta: float, sub_g: float, rho: float) -> float: """Calculates the width of a confidence sequence on the norm of eta error. Guaranteed to hold with probability delta. See the paper for a justification of the formula. Args: delta: the error probability tolerance sub_g: the subGaussian parameter rho: hyperparameter for the mixture of the boundary Returns: The width of a confidence sequence """ ... def set_to_truth(self, data_gen: data.DataGenerator) -> None: """Sets eta to the true value given a DataGenerator object. Assumes it is identifiable in the framework of this nuisance parameter. Args: data_gen: a DataGenerator that is used to fit the true parameters. """ ... def calculate_score(self, d: data.ExpData) -> np.ndarray: """Calculates eta(W) and phi(W, eta) for all W in d. Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ ... class LinearParameterBinaryTreatment(NuisanceParameter): """We model each conditional response as a linear function. Specifically, we will fit mu(1,x) = X * beta_treat mu(0,x) = X * beta_cont The corresponding phi function is phi(W,eta) = mu(1,X) - mu(0,X) """ def __init__(self, n_features): super().__init__() self._cov_dim = n_features self._nus_dim = 2 # The dimension of the nuisance parameter self.treat_response = linear_model.Ridge(alpha=1.0) self.cont_response = linear_model.Ridge(alpha=1.0) self._model = (self.cont_response, self.treat_response) self._data = None self._has_been_fit = False self.recent_data = None def reset(self): self.__init__(self._cov_dim) def fit(self, d: data.ExpData) -> None: """Fits eta to the provided experimental data. Args: d: ExpData used to fit the nuisance parameter. Expected shapes are d.cov: (n_units, n_features) d.exp: (n_units,) d.rsp: (n_units,) """ if d.n_features != self._cov_dim: raise ValueError( f"Data has {d.n_features} dimension but {self._cov_dim} was expected") # Build the two datasets treat_data = [] cont_data = [] treat_labels = [] cont_labels = [] for i, x in enumerate(d.cov): if d.exp[i] == 1: treat_data.append(x) treat_labels.append(d.rsp[i]) else: cont_data.append(x) cont_labels.append(d.rsp[i]) self.recent_data = d if treat_data == 0 or cont_data == 0: logging.warning( "Nuisance parameter was fit on data not including treatment and control" ) logging.warning("Not fitting the models yet") return self.treat_response.fit(treat_data, treat_labels) self.cont_response.fit(cont_data, cont_labels) self._has_been_fit = True def transform(self, d: data.ExpData) -> np.ndarray: """Return eta(W) for all W in d. Args: d: ExpData to be evaluated with n_units Returns: a np.ndarray of shape (n_units,_nus_dim) for eta(W), W in d. """ if not self._has_been_fit: logging.warning("Model has not been properly fit yet") nan_array = np.empty((d.n_units, self._nus_dim)) nan_array[:] = np.nan return nan_array if d.n_features != self._cov_dim: raise ValueError( f"Data has {d.n_features} dimension but {self._cov_dim} was expected") eta = np.array( [self.cont_response.predict(d.cov), self.treat_response.predict(d.cov)]).transpose() return eta def _phi(self, eta: np.ndarray, d: data.ExpData) -> np.ndarray: """Calculates phi(W, eta) for all W in d and eta(W). Args: eta: np.ndarray of shape (d.n_units, _nus_dim), which has been evaluated on W. d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ if eta.shape[1] != self._nus_dim: raise ValueError( f"eta has dimension {eta.shape[1]} but {self._nus_dim} was expected.") return eta[:, 1] - eta[:, 0] def calculate_score(self, d: data.ExpData) -> np.ndarray: """Calculates eta(W) and phi(W, eta) for all W in d. Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ eta = self.transform(d) return self._phi(eta, d) def set_to_truth(self, data_gen: data.LinearDataGenerator): """Sets eta to the true value given a DataGenerator object. Assumes it is identifiable in the framework of this nuisance parameter. Args: data_gen: a DataGenerator that is used to fit the true parameters. """ self.treat_response.intercept_ = data_gen.tau self.treat_response.coef_ = data_gen.beta self.cont_response.coef_ = data_gen.beta self.cont_response.intercept_ = 0 class Predictor(Protocol): def fit(self, x: np.ndarray, y: np.ndarray) -> None: ... def predict(self, x: np.ndarray) -> np.ndarray: ... class ProbPredictor(Protocol): def fit(self, x: np.ndarray, y: np.ndarray) -> None: ... def predict_proba(self, x: np.ndarray) -> np.ndarray: ... class AIPW(NuisanceParameter): """An AIWP estimator with arbitrary sklearn-style predictors. We use any sklearn-style estimator to model the conditional response and the propensity functions. Attributes: response: a Predictor that models mu(z,x) = Ex[Y|Z=z,X=x] propensity: a ProbPredictor that models e(z) = P[X=1|Z=z] The subclasses AIPWLinearLogistic and AIPWKernelRidgeLogistic are specific choices of regressor and propensity. """ def __init__( self, n_features, response: Predictor, propensity: ProbPredictor, min_units=5, min_overlap=.05, ): super().__init__() self._model = None # The model used self._has_been_fit = False self.recent_data = None self._cov_dim = n_features self.response = response self.propensity = propensity self._nus_dim = 4 # The dimension of the nuisance parameter self._min_units = min_units self._min_overlap = min_overlap def reset(self): self.response = sklearn.clone(self.response) self.propensity = sklearn.clone(self.propensity) self._has_been_fit = False self.recent_data = None def fit(self, d: data.ExpData): """Fits eta to the provided experimental d. Args: d: ExpData used to fit the nuisance parameter. Expected shapes are d.cov: (n_units, n_features) d.exp: (n_units,) d.rsp: (n_units,) """ n_units = len(d) if d.n_features != self._cov_dim: raise ValueError( f"Data has {d.n_features} dimension but {self._cov_dim} was expected") self.recent_data = d if sum(d.exp) < self._min_units or sum(d.exp) > n_units - self._min_units: message = (f"{sum(d.exp)} treatment units of {n_units} total units is not" " enough units in control or treatment to fit eta.") logging.warning(message) return self.response.fit(np.c_[d.exp, d.cov], d.rsp) self.propensity.fit(d.cov, d.exp) self._has_been_fit = True def calculate_cs_width(self, delta, sub_g, rho) -> float: """Calculates the width of a confidence sequence on the norm of eta error. Guaranteed to hold with probability delta. See the paper for a justification of the formula. Args: delta: the error probability tolerance sub_g: the subGaussian parameter rho: hyperparameter for the mixture of the boundary Returns: The width of a confidence sequence """ x = self.recent_data.cov d = self._cov_dim v = x.transpose().dot(x) numerator = sub_g * np.log(np.linalg.det(sub_g * v + rho * np.identity(d))) denominator = sub_g * np.log(rho**d * delta**2) if numerator <= denominator: # not enough samples have been reached return np.inf radius = np.sqrt(numerator - denominator) norm_matrix = v.dot(np.linalg.inv(v + rho / sub_g * np.identity(d))).dot(v) w, _ = np.linalg.eig(norm_matrix) mu_radius = radius / np.sqrt(min(w)) eta_radius = mu_radius return mu_radius + eta_radius * (1 / self._min_overlap - 2) def transform(self, d: data.ExpData) -> np.ndarray: """Return eta(Z) for all Z in d. Args: d: ExpData to be evaluated with n_units Returns: a np.ndarray of shape (n_units,_nus_dim) for eta(W), W in d. """ if not self._has_been_fit: logging.warning("Warning: model has not been properly fit yet") nan_array = np.empty((d.n_units, self._nus_dim)) nan_array[:] = np.nan return nan_array if d.n_features != self._cov_dim: raise ValueError( f"Data has {d.n_features} dimension but {self._cov_dim} was expected") n_units = d.n_units predicted_probs = self.propensity.predict_proba(d.cov)[:, 1] predicted_probs = np.clip(predicted_probs, self._min_overlap, 1 - self._min_overlap) eta = np.array([ self.response.predict(np.c_[np.zeros(n_units), d.cov]), self.response.predict(np.c_[np.ones(n_units), d.cov]), self.response.predict(np.c_[d.exp, d.cov]), predicted_probs ]).transpose() return eta def _phi(self, eta: np.ndarray, d: data.ExpData) -> np.ndarray: """Calculates phi(W, eta) for all W in d and eta(W). Args: eta: np.ndarray of shape (d.n_units, _nus_dim), which has been evaluated on W. d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ if eta.shape[1] != self._nus_dim: raise ValueError( f"eta has dimension {eta.shape[1]} but {self._nus_dim} was expected.") if any(eta[:, 3] < 1e-15) or any(eta[:, 3] > 1 - 1e-15): raise ValueError("Eta is to close to exiting the unit interval") cond_difference = eta[:, 1] - eta[:, 0] ipw = (d.rsp - eta[:, 2]) * ( d.exp / eta[:, 3] - (1 - d.exp) / (1 - eta[:, 3])) return cond_difference + ipw def calculate_score(self, d: data.ExpData) -> np.ndarray: """Calculates eta(W) and phi(W, eta) for all W in d. Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ eta = self.transform(d) return self._phi(eta, d) def set_to_truth(self, data_gen: data.DataGenerator): """Sets eta to the true value given a DGenerator object. Assumes it is identifiable in the framework of this nuisance parameter. Args: data_gen: a DGenerator that is used to fit the true parameters. """ if not isinstance(data_gen, data.LinearDataGenerator): raise ValueError(("The DataGenerator is not a LinearDataGenerator and is " "not identifiable in this model")) self.response.coef_ = np.r_[data_gen.tau, data_gen.beta] self.propensity.coef_ = data_gen.gamma.reshape(1, self._cov_dim) self.propensity.intercept_ = 0 def has_enough_samples(self) -> bool: return self._has_been_fit class AIPWLinearLogistic(AIPW): """AIPW where the response is linear and the propensity logistic. Specifically, we will fit mu(z,x) = z * beta + x tau e(Z) = logit(Z*gamma) The corresponding phi function is phi(W,eta) = mu(1,Z) - mu(0,Z) + (Y-mu(X,Z))(X/e(Z) - (1-X)/(1-e(Z))) """ def __init__(self, n_features, min_units=5, min_overlap=.05): super().__init__( n_features, response=linear_model.Ridge(alpha=1.0, fit_intercept=False), propensity=linear_model.LogisticRegression(warm_start=True), min_units=min_units, min_overlap=min_overlap, ) def get_response_parameters(self) -> Tuple[np.ndarray, np.ndarray]: if isinstance(self.response, linear_model.Ridge): return (self.response.coef_, self.response.intercept_) else: return (np.nan, np.nan) class AIPWKernelRidgeLogistic(AIPW): """AIPW with kernel ridge regression, logistic regression. Specifically, we will fit mu(X,x) = Z * beta + X * tau e(Z) = logit(Z*gamma) The corresponding phi function is phi(W,eta) = mu(1,Z) - mu(0,Z) + (Y-mu(X,Z))(X/e(Z) - (1-X)/(1-e(Z))) """ def __init__(self, n_features, min_units=5, min_overlap=.05): super().__init__( n_features, response=sklearn.kernel_ridge.KernelRidge(alpha=1.0, kernel="rbf"), propensity=linear_model.LogisticRegression(warm_start=True), min_units=min_units, min_overlap=min_overlap, ) class AIPWKernelGradientBoosting(AIPW): """An AIPW with GP response and gradient boosted propensity.""" def __init__(self, n_features, min_units=5, min_overlap=.05): super().__init__( n_features, response=sklearn.kernel_ridge.KernelRidge(alpha=1.0, kernel="rbf"), propensity=sklearn.ensemble.GradientBoostingClassifier( n_estimators=5, learning_rate=1.0, max_depth=2, random_state=0), min_units=min_units, min_overlap=min_overlap, ) class FrontDoorLinearFiniteZ(NuisanceParameter): """This nuisance parameter estimates for the frontdoor formula. We must fit models for: - mu_Y(Z,X) : y_response - P(Z|X): cov_given_ - P(X) The corresponding phi function is phi(W,eta) = (Y-mu_Y(Z,X))(P(Z|X=1) - P(Z|X=0)) / P(Z|X) + sum_x' mu_Y(x',X)(P(Z=x'|X=1) - P(Z=x'|X=0)) + (X/P(X) - (1-X)(1-P(X)) * { sum_{t'} mu_Y(Z,t')f(t') - sum_{x', t'} mu_Y(x', t')P(Z|t')P(t') } We assume a binary X. We thus need to estimate two densities, P(Z|X=1) and P(Z|X=0), and we need to be able to integrate over these densities. If we assume that $Z$ has finite support, the simplest density estimator is a (smoothed) histogram. """ def __init__( self, n_features, min_units=5, min_overlap: float = .05, min_ratio_to_uniform: float = 10, ): super().__init__() self._cov_dim = 0 self._nus_dim = 0 # The dimension of the nuisance parameter maps to self._data = None self._has_been_fit = False self.recent_data = None self._cov_dim = n_features self._min_overlap = min_overlap self._min_units = min_units self._min_ratio_to_uniform = min_ratio_to_uniform self._nus_dim = 8 # The dimension of the nuisance parameter self.y_response = linear_model.Ridge( alpha=1.0, fit_intercept=True) # E[Y|Z, X] self.cov_given_exp = data.TabularCPD(min_ratio_to_uniform) # P(Z|X) self.exp_prob = .5 # P(X) self._model = (self.y_response, self.cov_given_exp, self.exp_prob) def reset(self): self.__init__( self._cov_dim, self._min_units, self._min_overlap, self._min_ratio_to_uniform, ) self._has_been_fit = False self.recent_data = None def fit(self, d: data.ExpData): """Fits eta to the provided experimental d. Args: d: ExpData used to fit the nuisance parameter. Expected shapes are d.cov: (n_units, n_features) d.exp: (n_units,) d.rsp: (n_units,) """ if d.n_features != self._cov_dim: raise ValueError( f"Data has {d.n_features} dimension but {self._cov_dim} was expected") self.recent_data = d if sum(d.exp) < self._min_units or sum(d.exp) > d.n_units - self._min_units: print( f"---Frontdoor: {sum(d.exp)} treatment units of {d.n_units} total units " "is not enough units in control or treatment to fit eta.") return self.y_response.fit(np.array(np.c_[d.exp, d.cov]), d.rsp) self.exp_prob = np.clip( np.mean(d.exp), self._min_overlap, 1 - self._min_overlap) self.cov_given_exp.fit(d.exp, d.cov) self._has_been_fit = True def calculate_cs_width(self, delta, sub_g, rho): """Calculates the width of a confidence sequence on the norm of eta error. Guaranteed to hold with probability delta. A linear regression CS is generated for both, then map it through the sigmoid. See the paper for a justification of the formula. Args: delta: the error probability tolerance sub_g: the subGaussian parameter rho: hyperparameter for the mixture of the boundary Returns: The width of a confidence sequence """ x = np.array(np.c_[self.recent_data.exp, self.recent_data.cov]) d = self._cov_dim + 1 v = x.transpose().dot(x) delta = delta / 3 # we are making three confidence sequences numerator = sub_g * np.log(np.linalg.det(sub_g * v + rho * np.identity(d))) denominator = sub_g * np.log(rho**d * delta**2) if numerator <= denominator: # not enough samples have been reached return np.inf radius = np.sqrt(numerator - denominator) norm_matrix = v.dot(np.linalg.inv(v + rho / sub_g * np.identity(d))).dot(v) w, _ = np.linalg.eig(norm_matrix) mu_radius = radius / np.sqrt(min(w)) def uniform_boundary(n, delta): # check if the radius is well defined if n <= delta**2 / 4 / rho: return np.inf else: return np.sqrt(1 / n * (.25 + rho / n) * np.log( (n / 4 + rho) / (delta**2 * rho))) t_radius = uniform_boundary(len(x), delta / 3) cov_given_exp_radius = 2 * self.cov_given_exp.support_size() * t_radius if np.isnan(t_radius) or np.isnan(cov_given_exp_radius) or np.isnan( mu_radius): print("Warning, Nans found when calculating CS width.") return (mu_radius + t_radius * (1 / self._min_overlap - 1) + mu_radius * 2 * (1 / self._min_overlap - 1)) def transform(self, d: data.ExpData): """Returns the nuisance parameter evaluated on data d. computes, for every W_i in d eta_i = ( 0: mu_Y(z_i, x_i), 1: P(z_i|X=1), 2: P(z_i|X=0), 3: P(z_i|x_i), 4: W(z_i) = (z_i / P(X=1) - (1-z_i) / P(X=0))), 5: f_1(x_i) = sum_z' mu_Y(z',x_i)(P(Z=z'|X=1) - P(Z=z'|X=0)), 6: f_2(z_i) = sum_{x'} mu_Y(z_i,x') P(X=x'), 7: f_3(z_i) = sum_{z', x'} mu_Y(z', x') P(z_i|X=x') P(X=x'), ) The corresponding phi function is phi(W,eta) = (Y-mu_Y(Z,X))(P(Z|X=1) - P(Z|X=0)) / P(Z|X) + sum_z' mu_Y(z',X)(P(Z=z'|X=1) - P(Z=z'|X=0)) + (X/P(X) - (1-X)(1-P(X)) * { sum_{x'} mu_Y(Z,x')P(x') - sum_{z', x'} mu_Y(z', x')P(Z|x')P(x') } Which translates to phi(W,eta) = (Y-eta[:,0]) * (eta[:,1] / eta[:,3] - eta[:,2] / eta[:, 3]) + eta[:, 5] + eta[:,4] * (eta[:,6] - eta[:,7]) Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, 7) """ if d.n_features != self._cov_dim: raise ValueError( f"Data is of dimension {d.n_features} but {self._cov_dim} is expected." ) if not self._has_been_fit: print("Warning: model has not been properly fit yet.") nan_array = np.empty((d.n_units, self._nus_dim)) nan_array[:] = np.nan return nan_array n_units = len(d) mu_y_zx = self.y_response.predict(np.array(np.c_[d.exp, d.cov])) p_z_x1 = self.cov_given_exp.predict(np.ones(n_units, dtype=int), d.cov) p_z_x0 = self.cov_given_exp.predict(np.zeros(n_units, dtype=int), d.cov) p_z_x = self.cov_given_exp.predict(d.exp, d.cov) p_z_x1 = np.clip(p_z_x1, self._min_overlap, 1 - self._min_overlap) p_z_x0 = np.clip(p_z_x0, self._min_overlap, 1 - self._min_overlap) p_z_x = np.clip(p_z_x, self._min_overlap, 1 - self._min_overlap) z_support = self.cov_given_exp.z_support() mu_yz_ix1 = self.y_response.predict( np.array(np.c_[np.ones(len(d), dtype=int), d.cov])) # mu_y(z_i, X=1) mu_yz_ix0 = self.y_response.predict( np.array(np.c_[np.zeros(len(d), dtype=int), d.cov])) # mu_y(z_i, X=0) f_2 = self.exp_prob * mu_yz_ix1 + (1 - self.exp_prob) * mu_yz_ix0 f_1 = np.zeros(len(d)) f_3 = np.zeros(len(d)) for z in z_support: mu_yzx_i = self.y_response.predict( np.array(np.c_[d.exp, np.tile(z, (len(d), 1))])) # mu_y(z, X=1), z in support f_1 += mu_yzx_i * ( self.cov_given_exp.predict(np.array([1]), z) - self.cov_given_exp.predict(np.array([0]), z)) f_3 += ( self.y_response.predict([np.insert(z, 0, 1)]) * self.exp_prob * p_z_x1 + self.y_response.predict([np.insert(z, 0, 0)]) * (1 - self.exp_prob) * p_z_x0) w = d.exp / self.exp_prob - (1 - d.exp) / (1 - self.exp_prob) eta = np.array([ mu_y_zx, p_z_x1, p_z_x0, p_z_x, w, f_1, f_2, f_3, ]).transpose() return eta def _phi(self, eta: np.ndarray, d: data.ExpData): """Maps eta to phi(eta). Recall that eta_i(z_i,x_i) = ( 0: mu_Y(z_i, x_i), 1: P(z_i|X=1), 2: P(z_i|X=0), 3: P(z_i|x_i), 4: W(x_i) = (x_i / P(X=1) - (1-x_i) / P(X=0))), 5: f_1(x_i) = sum_z' mu_Y(z',x_i)(P(Z=z'|X=1) - P(Z=z'|X=0)), 6: f_2(z_i) = sum_{x'} mu_Y(z_i,x') P(X=x'), 7: f_3(z_i) = sum_{z', x'} mu_Y(z', x') P(Z=z_i|X=x') P(X=x'), ) The corresponding phi function is phi(W,eta) = (Y-mu_Y(Z,X))(P(Z|X=1) - P(Z|X=0)) / P(Z|X) + sum_z' mu_Y(z',X)(P(Z=z'|X=1) - P(Z=z'|X=0)) + (X/P(X) - (1-X)(1-P(X)) * { sum_{x'} mu_Y(Z,x')P(x') - sum_{z', x'} mu_Y(z', x')P(Z|x')P(x') } Which translates to phi(W,eta) = (Y-eta[:,0]) * (eta[:,1] / eta[:,3] - eta[:,2] / eta[:, 3]) + eta[:, 5] + eta[:,4] * (eta[:,6] - eta[:,7]) Args: eta: np.ndarray of shape (d.n_units, _nus_dim), which has been evaluated on W. d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ if eta.shape[1] != self._nus_dim: raise ValueError( f"eta has dimension {eta.shape[1]} but {self._nus_dim} was expected.") phi = ((d.rsp - eta[:, 0]) * (eta[:, 1] / eta[:, 3] - eta[:, 2] / eta[:, 3]) + eta[:, 5] + eta[:, 4] * (eta[:, 6] - eta[:, 7])) return phi def calculate_score(self, d: data.ExpData) -> np.ndarray: """Calculates eta(W) and phi(W, eta) for all W in d. Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ eta = self.transform(d) return self._phi(eta, d) def has_enough_samples(self) -> bool: return self._has_been_fit class LinearRegressionParameter(NuisanceParameter): """Fits a linear model where X can be continuous. We assume the model Y = Z beta_1 + X tau + epsilon_1 and so fitting tau corresponds to using linearly regressing Y on (X, Z) then returning the first coordinate of the parameter vector (corresponding to the X component); this vector is beta_hat. Because of the linear structure, the influence function is simply beta_hat - tau, meaning that phi is the identity and the nuisance function is eta = beta_hat. However, for the purpose of estimating the variance, let's consider estimating the covariance matrix separately; this covariance estimation is what is abstracted by this NuisanceParameter subclass. While linear regression is defined for a single set of samples, the analysis will appreciate the flexibility of letting the covariance matrix be fit on a separate sample. Hence, the nuisance parameter eta will be the inverse covariance matrix of [X Z] and phi(W, ) will evaluate e_1^T eta [X Z]^T Y """ def __init__(self, n_features, l_reg=0.1): super().__init__() self._model = None # The model used self._cov_dim = 0 self._nus_dim = 0 # The dimension of the nuisance parameter maps to self._data = None self._has_been_fit = False self.recent_data = None self._cov_dim = n_features # The dimension of the nuisance parameter self._nus_dim = (n_features + 1)**2 # The model is just the covariance matrix self._model = np.zeros(((n_features + 1), (n_features + 1))) self.l_reg = l_reg def fit(self, d: data.ExpData): """Fits eta to the provided experimental d. Args: d: ExpData used to fit the nuisance parameter. Expected shapes are d.cov: (n_units, n_features) d.exp: (n_units,) d.rsp: (n_units,) """ if d.n_units < 1: # not enough data to fit return data_matrix = np.array(np.c_[d.exp, d.cov]) self._model = np.linalg.inv(data_matrix.transpose().dot(data_matrix) + self.l_reg * np.identity(self._cov_dim + 1)) * d.n_units self._has_been_fit = True self.recent_data = d def transform(self, d: data.ExpData): return self._model def _phi(self, eta: np.ndarray, d: data.ExpData): """Evaluates e_1^T eta [X Z]^T Y for a vector X, Z, Y. Args: eta: np.ndarray of shape (d.n_units, _nus_dim), which has been evaluated on W. d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ xzy = np.c_[d.exp, d.cov].transpose().dot(np.diag(d.rsp)) return eta.dot(xzy)[0, :] def calculate_score(self, d: data.ExpData) -> np.ndarray: """Calculates eta(W) and phi(W, eta) for all W in d. Args: d: ExpData of shape (d.n_units, _cov_dim) Returns: np.array of shape (d.n_units, ) """ eta = self.transform(d) return self._phi(eta, d) def has_enough_samples(self) -> bool: return self._has_been_fit
abcei_mab-main
causal_effect_bandits/parameters.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Implements a Structural Causal Model (SCM). Also includes many common distributions and conditional probability distributions (CPDs) as building blocks. """ from typing import List from causal_effect_bandits import data import numpy as np class SCM(data.DataGenerator): """Implements a SCM model that can generate ExpData. An SCM is specified by a DAG and CPD for each node. The pgmpy class will encode this model and be responsible for sampling from it. Attributes: var_names: List[str] List of all variable names in the model, presented in lexicographic order parents: Mapping[str:List[str]] A dictionary with keys in var_names. parents[var_name] is a list of the keys corresponding to the parents of node var_name. cov_variables: List[str] List of all variable names that can be used as covariates treatment_variable: str name of variable that corresponds to the treatment response_variable: str name of variable that corresponds to the treatment cpds: a Mapping of functions A dict with var_name as keys; each accepts (n_samples, parent_samples) as arguments and returns a np.array of samples from the variable. """ def __init__( self, name, var_names: List[str], parents, cpds, cov_variables: List[str], treatment_variable: str, response_variable: str, ): super().__init__(name) self._n_nodes = len(var_names) self.var_names = np.array(var_names) self.parents = parents if not set(var_names).issubset(parents): raise ValueError("Some variables do not have keys in parents") if not set(var_names).issubset(cpds): raise ValueError("some variables do not have keys in cpbs") if treatment_variable not in var_names: raise ValueError("The treatment variable must be a variable") if response_variable not in var_names: raise ValueError("The response variable must be a variable") if not set(cov_variables).issubset(var_names): raise ValueError("The covariate variable must be variables") self.treatment_variable = treatment_variable self.response_variable = response_variable self.cov_variables = cov_variables self.cpds = cpds def generate(self, n_samples: int): samples = {} for var_name in self.var_names: # Build parents sample if not set(self.parents[var_name]).issubset(samples): raise ValueError("var_names are not in lexicographic order") parent_samples = [samples[p] for p in self.parents[var_name]] samples[var_name] = self.cpds[var_name](n_samples, parent_samples) # ExpData was only designed to have a single covariate; hence, we # concatenate the samples corresponding to each covariate. # Perhaps in a future version we can do something better. data_to_concat = [samples[v] for v in self.cov_variables] x_data = np.column_stack(data_to_concat) return data.ExpData( x_data, samples[self.treatment_variable], samples[self.response_variable], ) def compute_treatment_effect(self, n_samples: int): """Estmimates the treatment effect by changing the graph. Args: n_samples: the number of samples to use Returns: An estimate of the ATE of the SCM. """ old_t_cpd = self.cpds[self.treatment_variable] treatment_cpd = lambda n, parents: self.deterministic_cpd(n, 1) self.cpds[self.treatment_variable] = treatment_cpd treatment_sample = self.generate(n_samples) control_cpd = lambda n, parents: self.deterministic_cpd(n, 0) self.cpds[self.treatment_variable] = control_cpd control_sample = self.generate(n_samples) self.cpds[self.treatment_variable] = old_t_cpd return np.mean(treatment_sample.rsp) - np.mean(control_sample.rsp) def deterministic_cpd(n_samples, value): return np.full(n_samples, value) def categorical_conditioning(parents, conditioning_on_idx, distributions): """A way to implement conditioning by a categorical random variable. When parents[treatment_idx] = i, returns distributions[i](parents, betas). Args: parents: value of parents conditioning_on_idx: the index used to select the distribution distributions: a list of distributions Returns: Samples where the each sample is selected from the distribution corresponding to the respective conditioning_on_idx and evaluated on the parents. """ if len(parents) <= conditioning_on_idx: raise ValueError( "Treatment_idx is greater than the number of distributions.") # Remove treatment_idx from parents distribution_indices = parents[conditioning_on_idx] del parents[conditioning_on_idx] samples = [] for i, d in enumerate(distribution_indices): # Build the parents for this unit parent_sample = [p[i] for p in parents] samples.append(distributions[int(d)](1, parent_sample)[0]) return np.array(samples) def normal_cpd(parents, betas, mean, cov): """Simulates a linear gaussian based on the parents, betas. Args: parents: n_parent long list of np.array of shape (n_units, dim_i) betas: n_parent long list of np.arrays of shape (dim_i) mean: Float the mean of the random variable cov: the covariance matrix of the random variable Returns: n samples with X_j = sum_i parents[i,j].dot(gammas[i]) + epsilon with epsilon ~ normal(mean, cov) """ n_units = len(parents[0]) total_mean = parents[0].dot(betas[0]) for i in range(1, len(parents)): total_mean += parents[i].dot(betas[i]) if total_mean.ndim == 1: # Y is univariate return total_mean + np.random.normal(mean, np.sqrt(cov), size=n_units) else: return total_mean + np.random.multivariate_normal(mean, cov, size=n_units) def add_gaussian_noise(x, mean, cov): """Adds gaussian noise to x with the correct shape. Args: x: np.array with shape (n_units,) or (n_units, x_dim) mean: float or np.array with shape (1,) or (x_dim,1) cov: float or np.array with shape (x_dim, x_dim) Returns: np.array with shape: (n_units,) if mean is a float or shape (1,) (n_units, x_dim), otherwise. """ n_units = len(x) if np.ndim(x) < 2 or (np.ndim(x) == 2 and x.shape[1] == 1): # variable is one-dimensional if np.ndim(mean) > 1: raise ValueError("The dimensions of x and mean are not compatible") return x.flatten() + np.random.normal(mean, np.sqrt(cov), size=n_units) else: # variable is multi-dimensional if x.shape[1] != len(mean): raise ValueError("The dimensions of x and mean are not compatible") return x + np.random.multivariate_normal(mean, cov, size=n_units) def transformed_normal_cpd(parents, betas, fns, mean, cov): """Simulates a transformed linear Gaussian. Specifically, it simulates Y = sum_i f_i(parents[i,j].dot(gammas[i])) + epsilon with epsilon ~ normal(mean, cov) Args: parents: n_parent long list of np.array of shape (n_units, dim_i) betas: n_parent long list of np.arrays of shape (dim_i) fns: n_parent long list of vector-to-vector mappings mean: Float the mean of the random variable cov: the variance of the random variable Returns: Samples of Y. """ n_units = len(parents[0]) if len(parents) != len(fns): raise ValueError("parents and fns should be the same length.") total_mean = fns[0](parents[0].dot(betas[0])) for i in range(1, len(parents)): total_mean += fns[i](parents[i].dot(betas[i])) # infer whether the output should be 1 or 2 dim from mean if np.ndim(mean) == 0: # we should return (n_units,) array return total_mean.flatten() + np.random.normal( mean, np.sqrt(cov), size=n_units) else: return total_mean + np.random.multivariate_normal(mean, cov, size=n_units) def structural_equation_with_noise(parents, f, mean, cov): """Simulates a random variable as a noisy function of the parents. Args: parents: n_parent long list of np.array of shape (n_units, dim_i) f: mapping we assume fn takes vectors (n_units, n_features) to (n_units, out_dim) mean: nd.array of shape (out_dim,) or scalar the mean of the random variable cov: nd.array of shape (out_dim, out_dim) or scalar the (co)variance of the random variable Returns: Samples of X_j = fn(parents[i,j]) + epsilon with epsilon ~ normal(mean, cov) The returned shape is inferred from the shape of mean; if mean has shape (d, ) or (d, 1) then a vector of shape (n_units, d) is returned. If mean is a scalar, then a vector or shape (n_units,) is returned. """ n_units = len(parents[0]) f_out = f(np.column_stack(parents)) if np.ndim(mean) < 1: # the output is a scalar return f_out.flatten() + np.random.normal(mean, np.sqrt(cov), size=n_units) else: return f_out + np.random.multivariate_normal(mean, cov, size=n_units) def logistic_bernoulli_cpd(parents, f): """Returns n Bernoulli samples with mean softmax of parents. X_1,...,X_n ~ Bernoulli(sigmoid(f(parents)) Args: parents: List(ndarray) n_parent long list of np.array of shape (n_units, dim_i) f: mapping This mapping takes a list of (n_unit, dim_i) arrays and returns a (n_unit,) list. It is up to the user to make sure that the dimensions are compatible. """ params = f(parents) means = 1 / (1 + np.exp(-params)) return np.random.binomial(1, means) def logistic_linear_bernoulli_cpd(parents, gammas): """Returns n Bernoulli samples with mean softmax of linear of parents. X_j ~ Bernoulli(sigmoid(sum_i parents[i,j].dot(gammas[i])) Args: parents: n_parent long list of np.array of shape (n_units, dim_i) gammas: n_parent long list of np.arrays of shape (dim_i) """ def f(parents): params = 0 for i in range(len(parents)): params += parents[i].dot(gammas[i]) return params return logistic_bernoulli_cpd(parents, f)
abcei_mab-main
causal_effect_bandits/scm.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Utilities for generating random nonlinear functions.""" import itertools from typing import Callable, Optional from absl import logging import numpy as np from sklearn import gaussian_process def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def generate_random_nd_function( dim: int, out_dim: int = 1, *, kernel: Optional[gaussian_process.kernels.Kernel] = None, min_x: float = -1, max_x: float = 1, n_points: int = 10, seed: Optional[int] = None, alpha: float = 100, n_point_warning: int = 1500) -> Callable[[np.ndarray], np.ndarray]: """A multidimensional version of generate_random_function. Each component is R -> R^out_dim, and there and dim components. Each component is sampled from a Gaussian process prior over n_points. The prior is then fit to these points, which specifies a sample of the function. Args: dim: the input dimension out_dim: the output dimension kernel: which kernel to use for the GP min_x: the minimum value of x max_x: the maximum value of x n_points: the number of points used to fit the GP seed: random seed alpha: kernel hyperparameter n_point_warning: the number of points that can be used in the GP without raining a warning. Returns: mapping from (n, dim) to (n, out_dim) """ if kernel is None: kernel = gaussian_process.kernels.ExpSineSquared( length_scale=1, periodicity=5.0, length_scale_bounds=(0.1, 10.0), periodicity_bounds=(1.0, 10.0)) if n_points**dim > n_point_warning: logging.warning("n_points**dim=%i>%i; GaussianProcessRegressor may crash.", n_points**dim, n_point_warning) # Specify Gaussian Process x1d = np.linspace(0, 1, n_points) # create a cartesian product x = np.array(list(itertools.product(*[x1d] * dim))) * (max_x - min_x) + min_x # Choose a random starting state fns = [] for _ in range(out_dim): fns.append(gaussian_process.GaussianProcessRegressor(kernel, alpha=alpha)) if seed is None: seed = np.random.randint(10000) # Sample from a prior y = fns[-1].sample_y(x, 1, random_state=seed) # Fit the GP to this prior fns[-1].fit(x, y) # Now we need to map (n_units, n_dim) def out_f(x): output = [] for d in range(out_dim): output.append(fns[d].predict(x.reshape(x.shape[0], -1))) # We want to return (n_units, out_dim) return np.column_stack(output) return out_f
abcei_mab-main
causal_effect_bandits/nonlinear_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This code is needed to execute the simulations of # Malek, Chiappa. "Asymptotically Best Causal Effect # Identification with Multi-Armed Bandits." NeurIPS, 2021. # https://proceedings.neurips.cc/paper/2021/... # hash/b8102d1fa5df93e62cf26cd4400a0727-Abstract.html """Class definitions for data holding objects.""" import collections import dataclasses from typing import Callable, List import numpy as np @dataclasses.dataclass class ExpData: """A class to hold observational data. In experiments, we will routinely have three types of data: covariates cov: n_units * n_features exposure exp: n_features * 1 response rsp: n_features * 1 This is a wrapper class collecting all three. Data are assumed to be np.ndarrays. Methods: append: appends another ExpData object to this one k_fold(k): returns k roughly equally large ExpData objects """ cov: np.ndarray exp: np.ndarray rsp: np.ndarray def __init__(self, cov: np.ndarray, exp: np.ndarray, y: np.ndarray): if cov is None: # Make an empty ExpData self.n_units = 0 self.n_features = 0 else: self.n_units = cov.shape[0] if len(cov.shape) == 1: # one dimensional self.n_features = 1 else: self.n_features = cov.shape[1] self.cov = cov self.rsp = y self.exp = exp def __len__(self): return self.n_units def append(self, new_data: "ExpData"): """Appends the new data.""" if new_data.n_features != self.n_features: raise ValueError("The new data has incompatible shape") self.cov = np.r_[self.cov, new_data.cov] if self.exp is not None: if new_data.exp is None: raise ValueError("new_data.exp is missing but expected") self.exp = np.r_[self.exp, new_data.exp] if self.rsp is not None: if new_data.rsp is None: raise ValueError("new_data.rsp is missing but expected") self.rsp = np.r_[self.rsp, new_data.rsp] self.n_units = self.cov.shape[0] def k_fold(self, k: int): """Breaks the data into k folds according to some random permutation.""" if k < 1: raise ValueError( f"Number of folds must be a positive integer, but {k} was provided.") folds = np.random.permutation(np.mod(np.arange(self.n_units), k)) data_folds = [] for i in range(k): cov_fold = self.cov[folds == i] if self.exp is not None: exp_fold = self.exp[folds == i] else: exp_fold = None if self.rsp is not None: rsp_fold = self.rsp[folds == i] else: rsp_fold = None data_folds.append(ExpData(cov_fold, exp_fold, rsp_fold)) return data_folds def subsample(self, p: float): """Randomly partitions the data into two groups. Args: p: the proportion to allocate to the first folt. Returns: Two ExpData objects with approximate size n_units*p and n_units*(1-p). """ if not 0 <= p <= 1: raise ValueError(f"p={p} provided, but should be in the unit interval.") mask = np.random.choice(a=[True, False], size=(self.n_units), p=[p, 1 - p]) if self.exp is not None: exp_in = self.exp[mask] exp_out = self.exp[~mask] else: exp_in = None exp_out = None if self.rsp is not None: rsp_in = self.rsp[mask] rsp_out = self.rsp[~mask] else: rsp_in = None rsp_out = None in_data = ExpData(self.cov[mask], exp_in, rsp_in) ouexp_data = ExpData(self.cov[~mask], exp_out, rsp_out) return (in_data, ouexp_data) def __str__(self): string = f"An ExpData class with {int(self.n_units)} units. The data are:" string += "\n covariates:" + str(self.cov) string += "\n exposures:" + str(self.exp) string += "\n response:" + str(self.rsp) return string def __getitem__(self, key): new_cov = self.cov[key] new_exp = None if self.exp is None else self.exp[key] new_rsp = None if self.rsp is None else self.rsp[key] return ExpData(new_cov, new_exp, new_rsp) # Below are some common data_transformer functions. def get_identity_fn() -> Callable[[ExpData], ExpData]: """This function returns the identity function for use as a data_transformer. Returns: The identity function for use as a data_transformer. """ def fn(x): return x return fn def get_remove_coordinates_fn( idx_to_remove: int,) -> Callable[[ExpData], ExpData]: """Returns a function that maps an ExpData to another ExpData. Args: idx_to_remove: an index to remove Returns: A function that maps ExpData to ExpData with the corresponding index of cov removed. Suitable for use as a data_transformer. """ def fn(data): new_cov = np.delete(data.cov, idx_to_remove, axis=1) if new_cov.ndim == 1: # new covariate is one dimensional new_cov = new_cov.reshape(-1, 1) return ExpData(new_cov, data.exp, data.rsp) return fn def get_coordinate_mask_fn( idx_to_include: List[int],) -> Callable[[ExpData], ExpData]: """Returns a function that maps an ExpData to another ExpData. Args: idx_to_include: indices to include Returns: A function that maps ExpData to ExpData with only indices in idx_to_include remaining. Suitable for use as a data_transformer. """ def fn(d): return ExpData(d.cov[..., idx_to_include], d.exp, d.rsp) return fn class DataGenerator: """Generates data from some joint probability model on X, T, and Y. The data are covariates X in R^d binary treatment T response Y in R Specific probability models, like SCMs or linear models, will be implemented as subclasses. Methods: generate(n_units): returns an ExpData with n_units """ def __init__(self, name: str): self._name = name def generate(self, n_samples: int): return ExpData( np.zeros(n_samples, 1), np.zeros(n_samples), np.zeros(n_samples), ) class LinearDataGenerator(DataGenerator): """Generates data according to simple linear model. Specifically, the linear model is specified by Y = X beta + T*tau + epsilon T = Bernoulli(sigmoid(X gamma)) where epsilon has a distribution given by noise_model and T is binary but correlated with the features X. Attributes: n_features: int the feature dimension of X. Features have a standard normal distribution beta: np.array of shape (n_features,) tau: float gamma: np.array of shape (n_features,) noise_model: a function accepting an integer n where noise_model(n) returns a np.array of length n. """ def __init__( self, name: str, n_features: int, beta: np.ndarray, tau: float, noise_model: Callable[[int], np.ndarray] = np.random.randn, gamma=None, ): super().__init__(name) self._beta = beta self._tau = tau self._noise_model = noise_model if gamma is None: # Default is no dependence between X and T. self._gamma = np.zeros(n_features) elif gamma.shape != (n_features,): raise ValueError( f"shape of gamma is {gamma.shape}, but ({n_features},) expected.") else: self._gamma = gamma self._n_features = n_features def generate(self, n_samples: int): x = np.random.randn(n_samples, self._n_features) t_means = 1 / (1 + np.exp(-x.dot(self._gamma))) t = np.random.binomial(1, t_means) noise = self._noise_model(n_samples) if len(noise) != n_samples: raise ValueError( f"noise_model's output is {len(noise)} but should be {n_samples}.") y = x.dot(self._beta) + self._tau * t + self._noise_model(n_samples) return ExpData(x, t, y) @property def tau(self): return self._tau @property def beta(self): return self._beta @property def gamma(self): return self._gamma class TabularCPD: """Estimates a tabular CPD. Given finite support random variables Z and X, this class fits an estimator of P(Z|X). Because np.arrays are not hashable, all keys will use .tobytes() instead. Therefore, we need to keep dicts of .tobytes() to np.array values. Attributes: min_ratio_to_uniform: The model is fit so that the minimum ration between probabilities and a uniform distribution over the estimated support is at least this value. Larger values allows for smaller predicted probabilities an the expense of larger variance. n_units: and integer number of units table: a table, implemented as a dict, of counts x_marginal: marginal probabilities by value of X x_values: all the unique values of X seen z_values: all the unique values of Z seen. min_prob: the minimum probability in the table. """ def __init__(self, min_ratio_to_uniform=20): default_fn = lambda: collections.defaultdict(lambda: 0.0) self.n_units = 0 self.table = collections.defaultdict(default_fn) self.x_marginal = collections.defaultdict(lambda: 0.0) self.x_values = {} self.z_values = {} self.min_ratio_to_uniform = min_ratio_to_uniform def fit(self, x, z): """Fits the tabular CPD to data. Args: x: an np.ndarray of x observations of size (n_units,). Should have finite support z: an np.ndarray of z observations of size (n_units, n_features). Should have finite support. """ x = np.asarray(x) z = np.asarray(z) if len(x) != len(z): raise ValueError("z and x must be the same length") self.n_units = len(x) default_fn = lambda: collections.defaultdict(lambda: 0.0) self.table = collections.defaultdict(default_fn) self.x_marginal = collections.defaultdict(lambda: 0.0) for xi, zi in zip(x, z): self.table[xi.tobytes()][ zi.tobytes()] = self.table[xi.tobytes()][zi.tobytes()] + 1 self.x_values[xi.tobytes()] = xi self.z_values[zi.tobytes()] = zi # adjust min_ratio_to_uniform based on the perceived support size # Note: we use a naive missing mass estimatior, but # we could use a better one, e.g. Good-Turning. support_size_estimate = len(self.z_values) self.min_prob = 1 / support_size_estimate / self.min_ratio_to_uniform if self.min_prob > 1: self.min_prob = .2 # Next, we normalize the probabilities for every x for x_key in self.x_values: x_table = self.table[x_key] num_samples = sum(x_table.values()) self.x_marginal[x_key] = num_samples / self.n_units non_violating_z = [] total_violations = 0 for z_key in self.z_values: x_table[z_key] = x_table[z_key] / num_samples if x_table[z_key] < self.min_prob: total_violations += self.min_prob - x_table[z_key] x_table[z_key] = self.min_prob elif x_table[z_key] > 1 - self.min_prob: total_violations += x_table[z_key] - (1 - self.min_prob) x_table[z_key] = 1 - self.min_prob else: non_violating_z.append(z_key) # Now, we adjust non_violating_z to make P(Z|x = x_key) sum to 1 for z_key in non_violating_z: x_table[z_key] = ( x_table[z_key] - total_violations / len(non_violating_z)) def x_support(self): return list(self.x_values.values()) def z_support(self): return list(self.z_values.values()) def support_size(self): return len(self.z_values) def predict(self, x, z): """Returns P(z|x) for all elements in zip(z, x). Args: x: treatments to evaluate z: covariates to evaluate. Returns: A list of conditional probabilities of z|x. """ probs = [] x = np.asarray(x) z = np.asarray(z) for zi, xi in zip(z, x): probs.append(self.table[xi.tobytes()][zi.tobytes()]) return np.array(probs) def __str__(self): s = "" for x in self.table.keys(): s += f"Row for x = {self.x_values[x]}\n" for z in self.table[x].keys(): s += f" z={self.z_values[z]} : {self.table[x][z]}\n" s += "\n" return s
abcei_mab-main
causal_effect_bandits/data.py
"""Memory module for Kanerva Machines. Functions of the module always take inputs with shape: [seq_length, batch_size, ...] Examples: # Initialisation memory = KanervaMemory(code_size=100, memory_size=32) prior_memory = memory.get_prior_state(batch_size) # Update memory posterior posterior_memory, _, _, _ = memory.update_state(z_episode, prior_memory) # Read from the memory using cues z_q read_z, dkl_w = memory.read_with_z(z_q, posterior_memory) # Compute the KL-divergence between posterior and prior memory dkl_M = memory.get_dkl_total(posterior_memory) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np import sonnet as snt import tensorflow as tf import tensorflow_probability as tfp MemoryState = collections.namedtuple( 'MemoryState', # Mean of memory slots, [batch_size, memory_size, word_size] # Covariance of memory slots, [batch_size, memory_size, memory_size] ('M_mean', 'M_cov')) EPSILON = 1e-6 # disable lint warnings for cleaner algebraic expressions # pylint: disable=invalid-name class KanervaMemory(snt.AbstractModule): """A memory-based generative model.""" def __init__(self, code_size, memory_size, num_opt_iters=1, w_prior_stddev=1.0, obs_noise_stddev=1.0, sample_w=False, sample_M=False, name='KanervaMemory'): """Initialise the memory module. Args: code_size: Integer specifying the size of each encoded input. memory_size: Integer specifying the total number of rows in the memory. num_opt_iters: Integer specifying the number of optimisation iterations. w_prior_stddev: Float specifying the standard deviation of w's prior. obs_noise_stddev: Float specifying the standard deviation of the observational noise. sample_w: Boolean specifying whether to sample w or simply take its mean. sample_M: Boolean specifying whether to sample M or simply take its mean. name: String specfying the name of this module. """ super(KanervaMemory, self).__init__(name=name) self._memory_size = memory_size self._code_size = code_size self._num_opt_iters = num_opt_iters self._sample_w = sample_w self._sample_M = sample_M self._w_prior_stddev = tf.constant(w_prior_stddev) with self._enter_variable_scope(): log_w_stddev = snt.TrainableVariable( [], name='w_stddev', initializers={'w': tf.constant_initializer(np.log(0.3))})() if obs_noise_stddev > 0.0: self._obs_noise_stddev = tf.constant(obs_noise_stddev) else: log_obs_stddev = snt.TrainableVariable( [], name='obs_stdddev', initializers={'w': tf.constant_initializer(np.log(1.0))})() self._obs_noise_stddev = tf.exp(log_obs_stddev) self._w_stddev = tf.exp(log_w_stddev) self._w_prior_dist = tfp.distributions.MultivariateNormalDiag( loc=tf.zeros([self._memory_size]), scale_identity_multiplier=self._w_prior_stddev) def _build(self): raise ValueError('`_build()` should not be called for this module since' 'it takes no inputs and all of its variables are' 'constructed in `__init__`') def _get_w_dist(self, mu_w): return tfp.distributions.MultivariateNormalDiag( loc=mu_w, scale_identity_multiplier=self._w_stddev) def sample_prior_w(self, seq_length, batch_size): """Sample w from its prior. Args: seq_length: length of sequence batch_size: batch size of samples Returns: w: [batch_size, memory_size] """ return self._w_prior_dist.sample([seq_length, batch_size]) def read_with_z(self, z, memory_state): """Query from memory (specified by memory_state) using embedding z. Args: z: Tensor with dimensions [episode_length, batch_size, code_size] containing an embedded input. memory_state: Instance of `MemoryState`. Returns: A tuple of tensors containing the mean of read embedding and the KL-divergence between the w used in reading and its prior. """ M = self.sample_M(memory_state) w_mean = self._solve_w_mean(z, M) w_samples = self.sample_w(w_mean) dkl_w = self.get_dkl_w(w_mean) z_mean = self.get_w_to_z_mean(w_samples, M) return z_mean, dkl_w def wrap_z_dist(self, z_mean): """Wrap the mean of z as an observation (Gaussian) distribution.""" return tfp.distributions.MultivariateNormalDiag( loc=z_mean, scale_identity_multiplier=self._obs_noise_stddev) def sample_w(self, w_mean): """Sample w from its posterior distribution.""" if self._sample_w: return self._get_w_dist(w_mean).sample() else: return w_mean def sample_M(self, memory_state): """Sample the memory from its distribution specified by memory_state.""" if self._sample_M: noise_dist = tfp.distributions.MultivariateNormalFullCovariance( covariance_matrix=memory_state.M_cov) # C, B, M noise = tf.transpose(noise_dist.sample(self._code_size), [1, 2, 0]) return memory_state.M_mean + noise else: return memory_state.M_mean def get_w_to_z_mean(self, w_p, R): """Return the mean of z by reading from memory using weights w_p.""" return tf.einsum('sbm,bmc->sbc', w_p, R) # Rw def _read_cov(self, w_samples, memory_state): episode_size, batch_size = w_samples.get_shape().as_list()[:2] _, U = memory_state # cov: [B, M, M] wU = tf.einsum('sbm,bmn->sbn', w_samples, U) wUw = tf.einsum('sbm,sbm->sb', wU, w_samples) wUw.get_shape().assert_is_compatible_with([episode_size, batch_size]) return wU, wUw def get_dkl_total(self, memory_state): """Compute the KL-divergence between a memory distribution and its prior.""" R, U = memory_state B, K, _ = R.get_shape().as_list() U.get_shape().assert_is_compatible_with([B, K, K]) R_prior, U_prior = self.get_prior_state(B) p_diag = tf.matrix_diag_part(U_prior) q_diag = tf.matrix_diag_part(U) # B, K t1 = self._code_size * tf.reduce_sum(q_diag / p_diag, -1) t2 = tf.reduce_sum((R - R_prior)**2 / tf.expand_dims( p_diag, -1), [-2, -1]) t3 = -self._code_size * self._memory_size t4 = self._code_size * tf.reduce_sum(tf.log(p_diag) - tf.log(q_diag), -1) return t1 + t2 + t3 + t4 def _get_dkl_update(self, memory_state, w_samples, new_z_mean, new_z_var): """Compute memory_kl after updating prior_state.""" B, K, C = memory_state.M_mean.get_shape().as_list() S = w_samples.get_shape().as_list()[0] # check shapes w_samples.get_shape().assert_is_compatible_with([S, B, K]) new_z_mean.get_shape().assert_is_compatible_with([S, B, C]) delta = new_z_mean - self.get_w_to_z_mean(w_samples, memory_state.M_mean) _, wUw = self._read_cov(w_samples, memory_state) var_z = wUw + new_z_var + self._obs_noise_stddev**2 beta = wUw / var_z dkl_M = -0.5 * (self._code_size * beta - tf.reduce_sum(tf.expand_dims(beta / var_z, -1) * delta**2, -1) + self._code_size * tf.log(1 - beta)) dkl_M.get_shape().assert_is_compatible_with([S, B]) return dkl_M @snt.reuse_variables def _get_prior_params(self): log_var = snt.TrainableVariable( [], name='prior_var_scale', initializers={'w': tf.constant_initializer( np.log(1.0))})() self._prior_var = tf.ones([self._memory_size]) * tf.exp(log_var) + EPSILON prior_cov = tf.matrix_diag(self._prior_var) prior_mean = snt.TrainableVariable( [self._memory_size, self._code_size], name='prior_mean', initializers={'w': tf.truncated_normal_initializer( mean=0.0, stddev=1.0)})() return prior_mean, prior_cov @property def prior_avg_var(self): """return the average of prior memory variance.""" return tf.reduce_mean(self._prior_var) def _solve_w_mean(self, new_z_mean, M): """Minimise the conditional KL-divergence between z wrt w.""" w_matrix = tf.matmul(M, M, transpose_b=True) w_rhs = tf.einsum('bmc,sbc->bms', M, new_z_mean) w_mean = tf.matrix_solve_ls( matrix=w_matrix, rhs=w_rhs, l2_regularizer=self._obs_noise_stddev**2 / self._w_prior_stddev**2) w_mean = tf.einsum('bms->sbm', w_mean) return w_mean def get_prior_state(self, batch_size): """Return the prior distribution of memory as a MemoryState.""" prior_mean, prior_cov = self._get_prior_params() batch_prior_mean = tf.stack([prior_mean] * batch_size) batch_prior_cov = tf.stack([prior_cov] * batch_size) return MemoryState(M_mean=batch_prior_mean, M_cov=batch_prior_cov) def update_state(self, z, memory_state): """Update the memory state using Bayes' rule. Args: z: A tensor with dimensions [episode_length, batch_size, code_size] containing a sequence of embeddings to write into memory. memory_state: A `MemoryState` namedtuple containing the memory state to be written to. Returns: A tuple containing the following elements: final_memory: A `MemoryState` namedtuple containing the new memory state after the update. w_mean_episode: The mean of w for the written episode. dkl_w_episode: The KL-divergence of w for the written episode. dkl_M_episode: The KL-divergence between the memory states before and after the update. """ episode_size, batch_size = z.get_shape().as_list()[:2] w_array = tf.TensorArray(dtype=tf.float32, size=episode_size, element_shape=[1, batch_size, self._memory_size]) dkl_w_array = tf.TensorArray(dtype=tf.float32, size=episode_size, element_shape=[1, batch_size]) dkl_M_array = tf.TensorArray(dtype=tf.float32, size=episode_size, element_shape=[1, batch_size]) init_var = (0, memory_state, w_array, dkl_w_array, dkl_M_array) cond = lambda i, m, d_2, d_3, d_4: i < episode_size def loop_body(i, old_memory, w_array, dkl_w_array, dkl_M_array): """Update memory step-by-step.""" z_step = tf.expand_dims(z[i], 0) new_memory = old_memory for _ in xrange(self._num_opt_iters): w_step_mean = self._solve_w_mean(z_step, self.sample_M(new_memory)) w_step_sample = self.sample_w(w_step_mean) new_memory = self._update_memory(old_memory, w_step_mean, z_step, 0) dkl_w_step = self.get_dkl_w(w_step_mean) dkl_M_step = self._get_dkl_update(old_memory, w_step_sample, z_step, 0) return (i+1, new_memory, w_array.write(i, w_step_sample), dkl_w_array.write(i, dkl_w_step), dkl_M_array.write(i, dkl_M_step)) _, final_memory, w_mean, dkl_w, dkl_M = tf.while_loop( cond, loop_body, init_var) w_mean_episode = w_mean.concat() dkl_w_episode = dkl_w.concat() dkl_M_episode = dkl_M.concat() dkl_M_episode.get_shape().assert_is_compatible_with( [episode_size, batch_size]) return final_memory, w_mean_episode, dkl_w_episode, dkl_M_episode def _update_memory(self, old_memory, w_samples, new_z_mean, new_z_var): """Setting new_z_var=0 for sample based update.""" old_mean, old_cov = old_memory wR = self.get_w_to_z_mean(w_samples, old_memory.M_mean) wU, wUw = self._read_cov(w_samples, old_memory) sigma_z = wUw + new_z_var + self._obs_noise_stddev**2 # [S, B] delta = new_z_mean - wR # [S, B, C] c_z = wU / tf.expand_dims(sigma_z, -1) # [S, B, M] posterior_mean = old_mean + tf.einsum('sbm,sbc->bmc', c_z, delta) posterior_cov = old_cov - tf.einsum('sbm,sbn->bmn', c_z, wU) # Clip diagonal elements for numerical stability posterior_cov = tf.matrix_set_diag( posterior_cov, tf.clip_by_value(tf.matrix_diag_part(posterior_cov), EPSILON, 1e10)) new_memory = MemoryState(M_mean=posterior_mean, M_cov=posterior_cov) return new_memory def get_dkl_w(self, w_mean): """Return the KL-divergence between posterior and prior weights w.""" posterior_dist = self._get_w_dist(w_mean) dkl_w = posterior_dist.kl_divergence(self._w_prior_dist) dkl_w.get_shape().assert_is_compatible_with( w_mean.get_shape().as_list()[:-1]) return dkl_w
dynamic-kanerva-machines-master
memory.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Setup for pip package.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from setuptools import find_packages from setuptools import setup REQUIRED_PACKAGES = ['six', 'absl-py', 'numpy', 'matplotlib', 'tensorflow>=1.13.0'] EXTRA_PACKAGES = { 'tensorflow with gpu': ['tensorflow-gpu>=1.8.0'], } def spin_test_suite(): test_loader = unittest.TestLoader() test_suite = test_loader.discover('spectral_nets/tests', pattern='*_test.py') return test_suite setup( name='spectral_nets', version='0.1', description='A library to train spectral inference networks.', url='https://github.com/deepmind/spectral_inference_networks', author='DeepMind', author_email='[email protected]', # Contained modules and scripts. packages=find_packages(), package_data={ 'spectral_inference_networks': ['examples/atari_episodes/*.npz'] }, install_requires=REQUIRED_PACKAGES, extras_require=EXTRA_PACKAGES, platforms=['any'], license='Apache 2.0', test_suite='setup.spin_test_suite', )
spectral_inference_networks-master
setup.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Imports for Spectral Inference Networks module.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from spectral_inference_networks.src.spin import * # pylint: disable=wildcard-import __version__ = '0.1.0'
spectral_inference_networks-master
spectral_inference_networks/__init__.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for spectral_inference_networks.spin.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import spectral_inference_networks as spin import tensorflow as tf class SpinTest(tf.test.TestCase): def _small_matrix(self, size=5, neig=3, batch_size=1000, niter=2000, deterministic=False, use_pfor=False, per_example=False): """Test SpIN on small matrix.""" tf.set_random_seed(0) np.random.seed(0) global_step = tf.Variable(0.0, trainable=False) update_global_step = tf.assign(global_step, global_step+1) mat = np.random.randn(size, size).astype(np.float32) xx = np.dot(mat.transpose(), mat) # Symmetrize the matrix params = [tf.Variable(tf.random_normal([size, neig]))] if deterministic: decay = 0.0 # Data is all combinations of rows and columns of the matrix. data = tf.concat((tf.tile(tf.eye(size), (size, 1)), tf.reshape(tf.tile(tf.eye(size), (1, size)), (size**2, size))), axis=0) optim = tf.train.GradientDescentOptimizer(1.0) else: decay = 0.9 data = tf.one_hot(tf.cast(tf.floor( tf.random_uniform([batch_size]) * size), tf.int32), size) optim = tf.train.GradientDescentOptimizer(1.0 / global_step) data *= np.sqrt(size) # Make rows unit norm def _network(x): return tf.matmul(x, params[0]) def _kernel(x1, x2): return tf.reduce_sum(x1 * tf.matmul(x2, xx), axis=1, keepdims=True) operator = spin.KernelOperator(_kernel) spec_net = spin.SpectralNetwork( operator, _network, data, params, decay=decay, use_pfor=use_pfor, per_example=per_example) step = optim.apply_gradients(zip(spec_net.gradients, params)) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) sess.run(update_global_step) for _ in range(niter): sess.run(step) if deterministic: eigvec, eigval = sess.run([spec_net.features, spec_net.eigenvalues]) else: eigval = np.zeros(neig) n = 1000 for _ in range(n): eigval += sess.run(spec_net.eigenvalues) eigval /= n eigvec = sess.run(params[0]) eigvec, _ = np.linalg.qr(eigvec) eigvec = eigvec[:int(size)] true_eigval, true_eigvec = np.linalg.eig(xx) idx = np.argsort(true_eigval) print(eigval) print(np.sort(true_eigval)[:neig]) if deterministic: atol = 1e-5 else: atol = 1e-1 # Stochastic case is quite noisy np.testing.assert_allclose(eigval, np.sort(true_eigval)[:neig], atol=atol) # Compute dot product between true eigenvectors and learned ones. cross_cov = np.dot(eigvec.transpose(), true_eigvec[:, idx[:neig]]) cross_cov -= np.diag(np.diag(cross_cov)) np.testing.assert_allclose(cross_cov, np.zeros((neig, neig)), atol=atol) def test_small_matrix_stochastic_use_pfor_false_per_example_false(self): self._small_matrix(deterministic=False, use_pfor=False, per_example=False) def test_small_matrix_stochastic_use_pfor_true_per_example_false(self): self._small_matrix(deterministic=False, use_pfor=True, per_example=False) def test_small_matrix_stochastic_use_pfor_true_per_example_true(self): self._small_matrix(deterministic=False, use_pfor=True, per_example=True) def test_small_matrix_deterministic_use_pfor_false_per_example_false(self): self._small_matrix(deterministic=True, use_pfor=False, per_example=False) def test_small_matrix_deterministic_use_pfor_true_per_example_false(self): self._small_matrix(deterministic=True, use_pfor=True, per_example=False) def test_small_matrix_deterministic_use_pfor_true_per_example_true(self): self._small_matrix(deterministic=True, use_pfor=True, per_example=True) if __name__ == '__main__': tf.test.main()
spectral_inference_networks-master
spectral_inference_networks/tests/spin_test.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Atari example for SpIN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from spectral_inference_networks.examples import atari import tensorflow as tf class AtariTest(tf.test.TestCase): def test_atari(self): atari.train( iterations=10, batch_size=4, lr=1e-4, neig=2, shards=1, game='montezuma_revenge') def test_atari_with_per_example_and_pfor(self): atari.train( iterations=10, batch_size=4, lr=1e-4, neig=2, shards=1, game='montezuma_revenge', use_pfor=True, per_example=True) if __name__ == '__main__': tf.test.main()
spectral_inference_networks-master
spectral_inference_networks/tests/atari_test.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the hydrogen example for SpIN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from spectral_inference_networks.examples import hydrogen import tensorflow as tf class HydrogenTest(tf.test.TestCase): def test_hydrogen(self): hydrogen.train( iterations=50, batch_size=8, lr=1e-4, apply_boundary=True, neig=4) def test_hydrogen_exact_lapl(self): hydrogen.train( iterations=50, batch_size=8, lr=1e-4, apply_boundary=True, neig=4, laplacian_eps=0.0) def test_hydrogen_with_pfor_and_per_example(self): hydrogen.train( iterations=50, batch_size=8, lr=1e-4, apply_boundary=True, neig=4, use_pfor=True, per_example=True) def test_hydrogen_exact_lapl_with_pfor_and_per_example(self): hydrogen.train( iterations=50, batch_size=8, lr=1e-4, apply_boundary=True, neig=4, laplacian_eps=0.0, use_pfor=True, per_example=True) if __name__ == '__main__': tf.test.main()
spectral_inference_networks-master
spectral_inference_networks/tests/hydrogen_test.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Demo of SpIN on Atari dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from absl import app from absl import flags from absl import logging import matplotlib.pyplot as plt import numpy as np import spectral_inference_networks as spin import tensorflow as tf EXAMPLES_ROOT = os.path.dirname(__file__) flags.DEFINE_integer( 'neig', 5, 'Number of Eigen values to compute. Must be greater than 1.') flags.DEFINE_integer('niter', 100000, 'Number of iterations.') flags.DEFINE_integer('batch_size', 128, 'Self-explanatory.') flags.DEFINE_float('lr', 1e-3, 'Learning rate.') flags.DEFINE_float('decay', 0.01, 'Decay rate of moving averages.') flags.DEFINE_float('rmsprop_decay', 0.1, 'Decay param for RMSprop.') flags.DEFINE_boolean('step_lr', False, 'Step down learning rate exponentially.') flags.DEFINE_boolean('show_plots', True, 'Show pyplot plots.') flags.DEFINE_boolean('use_pfor', True, 'Use parallel_for.') flags.DEFINE_boolean( 'per_example', True, 'Use a different strategy for computing covariance jacobian.') flags.DEFINE_string( 'data_dir', None, 'Directory to load game data from. If unspecified, this ' 'will default to the enclosed example data.') flags.DEFINE_string('game', 'montezuma_revenge', '(montezuma_revenge|space_invaders|beam_rider).') flags.DEFINE_integer('log_image_every', 10, 'No need to write images for this experiment.') flags.DEFINE_integer( 'save_params_every', 50000, 'Save parameters to checkpoint after this many iteration.') flags.DEFINE_integer('shards', 50, 'Number of shards to load, for speed.') FLAGS = flags.FLAGS _NFRAMES = 10000 _IMAGE_SIZE = 84 # Image side length. _KERNEL_SIZE = 6 def train(iterations, lr, batch_size, neig, shards, game, step_lr=False, decay=0.01, rmsprop_decay=0.1, log_image_every=10, save_params_every=50000, use_pfor=False, per_example=False, data_dir=None, show_plots=False): """Sets up and starts training for SpIN on Atari video data.""" if data_dir is None: data_dir = os.path.join(EXAMPLES_ROOT, 'atari_episodes') conv_size = [64, 64, 64] # number of channels in each conv layer conv_stride = [2, 2, 2] # stride of each conv layer # number of units in fully connected layers fc_size = [6400, 128, neig] paddings = ['VALID', 'SAME', 'SAME'] nc_ = 4 # initial number of channels ws = [] bs = [] for nc in conv_size: stddev = 1 / np.sqrt(nc_ * _KERNEL_SIZE**2) ws.append( tf.Variable( tf.truncated_normal([_KERNEL_SIZE, _KERNEL_SIZE, nc_, nc], stddev=stddev))) bs.append(tf.Variable(tf.zeros([nc]))) nc_ = nc for i in range(1, len(fc_size)): ws.append(tf.Variable(tf.truncated_normal([fc_size[i-1], fc_size[i]], stddev=1/np.sqrt(fc_size[i-1])))) bs.append(tf.Variable(tf.zeros([fc_size[i]]))) params = ws + bs saver_path = '/tmp' logging_config = { 'config': { 'lr': lr, 'decay': decay, 'batch_size': batch_size, 'rmsprop_decay': rmsprop_decay, 'game': game, }, 'log_image_every': log_image_every, 'save_params_every': save_params_every, 'saver_path': saver_path, 'saver_name': game + '_params', } stats_hooks = { 'create': spin.util.create_default_stats, 'update': spin.util.update_default_stats, } def _create_plots(): """Hook to set up plots at start of run.""" frame_fig, frame_ax = plt.subplots(2, neig, figsize=(neig * 8, 8)) frame_im = [] for i in range(2): for j in range(neig): frame_ax[i, j].axis('off') frame_im.append(frame_ax[i, j].imshow( np.zeros((_IMAGE_SIZE, _IMAGE_SIZE)), interpolation='none', cmap='gray', vmin=0.0, vmax=255.0)) _, loss_ax = plt.subplots(1, 1) return frame_fig, frame_im, loss_ax def _update_plots(t, outputs, inputs, frame_fig, frame_im, loss_ax, losses=None, eigenvalues=None, eigenvalues_ma=None): """Hook to update the plots periodically.""" del losses del eigenvalues for i in range(neig): ordered = np.argsort(outputs[:, i+1]) # sort features for this minibatch frame_im[i].set_data(inputs[ordered[0], ..., -1]) frame_im[i+neig].set_data(inputs[ordered[-1], ..., -1]) frame_fig.canvas.draw() frame_fig.canvas.flush_events() loss_ax.cla() loss_ax.plot(eigenvalues_ma[:t]) if t > 0: ymin = eigenvalues_ma[max(0, t-1000):t].min() ymax = eigenvalues_ma[max(0, t-1000):t].max() ydiff = ymax - ymin loss_ax.set_ylim([ymin-0.1*ydiff, ymax+0.1*ydiff]) plotting_hooks = { 'create': _create_plots, 'update': _update_plots, } global_step = tf.Variable(0.0, trainable=False) def network_builder(x): return spin.util.make_conv_network(x, conv_stride, paddings, ws, bs) if step_lr: lr = tf.train.exponential_decay(lr * decay, global_step, 100 / decay, 0.8) optim = tf.train.RMSPropOptimizer( lr, decay=(1.0 - decay * rmsprop_decay), centered=True) logging.info('Loading game %s', game) episodes = np.load(os.path.join(data_dir, '{}.npz'.format(game))) frames = episodes['frames'] episode_starts = episodes['episode_starts'] batch = np.zeros((batch_size + 1, _IMAGE_SIZE, _IMAGE_SIZE, 4), dtype=np.float32) def _reader(): idx = np.random.randint(0, (_NFRAMES * shards) - batch_size - 4) while np.any(episode_starts[idx+1:idx+batch_size+4]): idx = np.random.randint(0, (_NFRAMES * shards) - batch_size - 4) for i in range(batch_size+1): batch[i] = frames[idx+i:idx+i+4].transpose((1, 2, 0)) return batch data = tf.py_func(_reader, [], [tf.float32])[0] data.set_shape([batch_size + 1, _IMAGE_SIZE, _IMAGE_SIZE, 4]) spectral_net = spin.SpectralNetwork( spin.SlownessOperator(), network_builder, data, params, decay=decay, use_pfor=use_pfor, per_example=per_example) spectral_net.train( optim, iterations, logging_config, stats_hooks, plotting_hooks=plotting_hooks, show_plots=show_plots, global_step=global_step, data_for_plotting=data) def main(argv): del argv if FLAGS.neig < 2: raise ValueError('Number of Eigen values must be at least 2.') train( iterations=FLAGS.niter, lr=FLAGS.lr, batch_size=FLAGS.batch_size, neig=FLAGS.neig, shards=FLAGS.shards, step_lr=FLAGS.step_lr, decay=FLAGS.decay, rmsprop_decay=FLAGS.rmsprop_decay, game=FLAGS.game, log_image_every=FLAGS.log_image_every, save_params_every=FLAGS.save_params_every, use_pfor=FLAGS.use_pfor, per_example=FLAGS.per_example, data_dir=FLAGS.data_dir, show_plots=FLAGS.show_plots) if __name__ == '__main__': app.run(main)
spectral_inference_networks-master
spectral_inference_networks/examples/atari.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library to approximate eigenfunctions by stochastic gradient descent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
spectral_inference_networks-master
spectral_inference_networks/examples/__init__.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """2D Hydrogen atom example from SpIN paper.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import matplotlib.pyplot as plt import numpy as np import spectral_inference_networks as spin import tensorflow as tf flags.DEFINE_integer('neig', 9, 'Number of eigenvalues to compute') flags.DEFINE_integer('niter', 1000000, 'Number of iterations') flags.DEFINE_integer('ndim', 2, 'Dimension of space') flags.DEFINE_integer('batch_size', 128, 'Self-explanatory') flags.DEFINE_float('laplacian_eps', 0.0, 'Finite difference step for Laplacian Operator.') flags.DEFINE_integer('log_image_every', 10, 'Write image of wavefn to log after this many iterations') flags.DEFINE_integer('save_params_every', 50000, 'Save parameters to checkpoint after this many iterations') flags.DEFINE_float('lim', 50.0, 'Limit of box') flags.DEFINE_float('lr', 1e-5, 'Learning rate') flags.DEFINE_float('decay', 0.01, 'Decay rate of moving averages') flags.DEFINE_boolean('boundary', True, 'Force zero boundary condition') flags.DEFINE_boolean('show_plots', True, 'Show pyplot plots. 2D slices at z=0 are used for ndim=3.') flags.DEFINE_boolean('use_pfor', True, 'Use parallel_for.') flags.DEFINE_boolean( 'per_example', False, 'Use a different strategy for computing covariance Jacobian') flags.DEFINE_float('charge', 1.0, 'Nuclear charge of atom.') FLAGS = flags.FLAGS def train(iterations, batch_size, lr, ndim=2, apply_boundary=False, neig=1, decay=0.01, laplacian_eps=0.1, lim=20, log_image_every=50000, save_params_every=50000, show_plots=False, use_pfor=False, per_example=False, charge=0.5): """Configures and runs training loop.""" logging_config = { 'config': { 'lr': lr, 'decay': decay, 'batch_size': batch_size, }, 'log_image_every': log_image_every, 'save_params_every': save_params_every, 'saver_path': '/tmp', 'saver_name': 'hydrogen_params', } npts = 128 def _create_plots(): """Hook to set up plots at start of run.""" nfig = max(2, int(np.ceil(np.sqrt(neig)))) psi_fig, psi_ax = plt.subplots(nfig, nfig, figsize=(10, 10)) psi_im = [] for i in range(nfig**2): psi_ax[i // nfig, i % nfig].axis('off') for i in range(neig): psi_im.append(psi_ax[i // nfig, i % nfig].imshow( np.zeros((npts, npts)), interpolation='none', cmap='plasma')) _, loss_ax = plt.subplots(1, 1) return psi_fig, psi_ax, psi_im, loss_ax def _update_plots(t, outputs, inputs, psi_fig, psi_ax, psi_im, loss_ax, losses=None, eigenvalues=None, eigenvalues_ma=None): """Hook to update the plots periodically.""" del inputs del losses del eigenvalues nfig = max(2, int(np.ceil(np.sqrt(neig)))) loss_ax.cla() loss_ax.plot(eigenvalues_ma[:t]) if ndim == 2: # E(n;Z) = - Z^2 / [2*(n+1/2)^2] # Quantum numbers: n=0, 1, ...; m_l = -n, -n+1, ... n # degeneracy: 2n+1. Use k^2 as an upper bound to \sum 2n+1. max_n = int(np.ceil(np.sqrt(neig))) + 1 tmp = [] for n in range(0, max_n): for _ in range(2 * n + 1): tmp.append(n) quantum_nos = np.array(tmp) ground_truth = -charge**2 / (2*(quantum_nos[:neig] + 0.5)**2) elif ndim == 3: # E(n;Z) = - Z^2 / (2n^2) # Quantum numbers: n=1, 2, ...; l = 0, 1, ..., n-1; m_l = -l, -l+1, ... l # degeneracy: n^2. Use k^3 as an upper bound to \sum n^2. max_n = int(np.ceil(neig**(1./3))) + 1 tmp = [] for n in range(1, max_n): for _ in range(n * n): tmp.append(n) quantum_nos = np.array(tmp) ground_truth = - charge**2 / (2*quantum_nos[:neig]**2) ground_truth /= 2.0 # convert back to units in the paper for i in range(neig): loss_ax.plot([0, t], [ground_truth[i], ground_truth[i]], '--') loss_ax.set_ylim([1.0, ground_truth[0]-1]) for i in range(neig): pimg = outputs[:, i].reshape(npts, npts) psi_im[i].set_data(pimg) psi_im[i].set_clim(pimg.min(), pimg.max()) psi_ax[i//nfig, i%nfig].set_title(eigenvalues_ma[t, i]) psi_fig.canvas.draw() psi_fig.canvas.flush_events() plotting_hooks = { 'create': _create_plots, 'update': _update_plots, } stats_hooks = { 'create': spin.util.create_default_stats, 'update': spin.util.update_default_stats, } k = neig hid = (64, 64, 64, k) h_ = ndim ws = [] bs = [] for h in hid: ws.append(tf.Variable(tf.random_normal([h_, h])/tf.sqrt(float(h_)))) bs.append(tf.Variable(tf.random_normal([h]))) h_ = h params = ws + bs def network_builder(x): return spin.util.make_network(x, hid, ws, bs, apply_boundary, lim, custom_softplus=not per_example) if laplacian_eps == 0.0: kinetic = -spin.ExactLaplacianOperator() else: kinetic = -spin.LaplacianOperator(eps=laplacian_eps) potential = spin.DiagonalOperator( lambda x: -charge / tf.norm(x, axis=1, keepdims=True)) hamiltonian = kinetic + potential global_step = tf.Variable(0.0, trainable=False) optim = tf.train.RMSPropOptimizer(lr, decay=0.999) data_for_plotting = spin.util.grid_reader(ndim, lim, npts) data = tf.random_uniform([batch_size, ndim], minval=-lim, maxval=lim) spectral_net = spin.SpectralNetwork( hamiltonian, network_builder, data, params, decay=decay, use_pfor=use_pfor, per_example=per_example) stats = spectral_net.train( optim, iterations, logging_config, stats_hooks, plotting_hooks=plotting_hooks, show_plots=show_plots, global_step=global_step, data_for_plotting=data_for_plotting) return stats def main(argv): del argv if FLAGS.per_example and FLAGS.laplacian_eps == 0.0: raise ValueError('Exact Laplacian is incompatible ' 'with per-example Jacobian') train( iterations=FLAGS.niter, batch_size=FLAGS.batch_size, lr=FLAGS.lr, ndim=FLAGS.ndim, apply_boundary=FLAGS.boundary, neig=FLAGS.neig, decay=FLAGS.decay, laplacian_eps=FLAGS.laplacian_eps, lim=FLAGS.lim, log_image_every=FLAGS.log_image_every, save_params_every=FLAGS.save_params_every, show_plots=FLAGS.show_plots, use_pfor=FLAGS.use_pfor, per_example=FLAGS.per_example, charge=FLAGS.charge) if __name__ == '__main__': app.run(main)
spectral_inference_networks-master
spectral_inference_networks/examples/hydrogen.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Package implementing Spectral Inference Networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools from absl import logging import matplotlib.pyplot as plt from spectral_inference_networks.src import util import tensorflow as tf from tensorflow.python.ops import parallel_for as pfor # pylint: disable=g-direct-tensorflow-import assert util, ('spectral_inference_networks.src.util must be imported.') def _collapse_first_dim(x): new_shape = tf.concat([[-1], tf.shape(x)[2:]], axis=0) return tf.reshape(x, new_shape) def _objective_grad(xx, obj, grad_loss, grad_eigval, grad_chol): """Symbolic form of the gradient of the objective with stop_gradients.""" del grad_eigval del grad_chol with tf.name_scope('objective_grad'): chol = tf.cholesky(xx) choli = tf.linalg.inv(chol) rq = tf.matmul(choli, tf.matmul(obj, choli, transpose_b=True)) dl = tf.diag(tf.matrix_diag_part(choli)) triu = tf.matrix_band_part(tf.matmul(rq, dl), 0, -1) gxx = -1.0 * tf.matmul(choli, triu, transpose_a=True) gobj = tf.matmul(choli, dl, transpose_a=True) return grad_loss * gxx, grad_loss * gobj @tf.custom_gradient def _objective(xx, obj): """Objective function as custom op so that we can overload gradients.""" with tf.name_scope('objective'): chol = tf.cholesky(xx) choli = tf.linalg.inv(chol) rq = tf.matmul(choli, tf.matmul(obj, choli, transpose_b=True)) eigval = tf.matrix_diag_part(rq) loss = tf.trace(rq) grad = functools.partial(_objective_grad, xx, obj) return (loss, eigval, chol), grad @tf.custom_gradient def _covariance(x, y): """Covariance function as custom op.""" with tf.name_scope('covariance'): cov = tf.matmul(x, y, transpose_a=True) / tf.cast(tf.shape(x)[0], x.dtype) def _cov_grad(grad): with tf.name_scope('cov_grad'): return (tf.matmul(y, grad) / tf.cast(tf.shape(x)[0], x.dtype), tf.matmul(x, grad) / tf.cast(tf.shape(x)[0], x.dtype)) return cov, _cov_grad class LinearOperator(object): """Base class for different linear operators that can be combined.""" def __init__(self, op=None): self._op = op def build_network(self, f, x): """Build network from a builder f'n for the network 'f' and data 'x'.""" self.f = f(x) return self.f def build_op(self, x, logpdf=None): """Build op from data 'x'.""" del x del logpdf raise ValueError('build_op not implemented in derived class.') def build(self, f, x): """Combines build_network and build_op.""" fx = self.build_network(f, x) # For per_example Jacobian computation, the features and the Jacobian # of the features must be created at the same time. # Note that this only works if: # 1) build_network is never called externally # 2) build is never overridden by a child class if isinstance(fx, tuple): self._jac = fx[1] self.f = fx[0] op = self.build_op(x) return self.f, op @property def op(self): return self._op @property def jac(self): # Only exists if we are computing the Jacobian per-example. return self._jac def __add__(self, x): return AddOperator(self, x) def __sub__(self, x): return AddOperator(self, -x) def __mul__(self, c): return ScaleOperator(c, self) def __rmul__(self, c): return ScaleOperator(c, self) def __neg__(self): return -1*self # Comparison operators: # Only used to decide order precedence for calling build_network. def __lt__(self, x): # Only Laplacians or things made of Laplacians take precedence. if isinstance(x, ScaleOperator): return self < x.x if isinstance(x, AddOperator): return self < x.x or self < x.y return (isinstance(x, LaplacianOperator) or isinstance(x, ExactLaplacianOperator)) def __le__(self, x): return True # only override this for super-classes. def __gt__(self, x): return False def __ge__(self, x): return not self < x class ScaleOperator(LinearOperator): """Linear operator formed by scaling.""" def __init__(self, c, x): super(ScaleOperator, self).__init__() self.c = c self.x = x def build_network(self, f, x): self.f = self.x.build_network(f, x) return self.f def build_op(self, x): self._op_x = self.x.build_op(x) self._op = self.c * self._op_x return self._op def __lt__(self, x): return self.x < x def __le__(self, x): return self.x <= x def __gt__(self, x): return self.x > x def __ge__(self, x): return self.x >= x class AddOperator(LinearOperator): """Linear operator formed by adding two operators together.""" def __init__(self, x, y): super(AddOperator, self).__init__() self.x = x self.y = y def build_network(self, f, x): # Use comparison to choose precedence for order of building network. if self.x >= self.y: self.f = self.x.build_network(f, x) self.y.f = self.f else: self.f = self.y.build_network(f, x) self.x.f = self.f return self.f def build_op(self, x, logpdf=None): self._op_x = self.x.build_op(x) self._op_y = self.y.build_op(x) self._op = self._op_x + self._op_y return self._op def __lt__(self, x): return self.x < x and self.y < x def __le__(self, x): return self.x <= x and self.y <= x def __gt__(self, x): return not self <= x class LaplacianOperator(LinearOperator): """Finite difference Laplacian operator.""" def __init__(self, eps): super(LaplacianOperator, self).__init__() self._eps = eps def _perturbation(self, x, eps): ndim = x.shape.as_list()[1] # dimension of position vector (i.e. 1,2,3). xs = [x] for i in range(ndim): xs.append(x + eps * tf.one_hot(i, ndim)) xs.append(x - eps * tf.one_hot(i, ndim)) return tf.concat(xs, axis=0) def build_network(self, f, x): """Build operator from a builder f'n for the network 'f' and data 'x'.""" xs = self._perturbation(x, self._eps) fx = f(xs) # build network, then return it at the end. ndim = x.shape.as_list()[1] if isinstance(fx, tuple): jac = [tf.split(j, 2*ndim+1, axis=0)[0] for j in fx[1]] fx = fx[0] else: jac = None # Split into [f(x), f(x+eps*e_i), f(x-eps*e_i), ...] for basis # vectors {e_i}. self._fxs = tf.split(fx, 2*ndim+1, axis=0) if jac is not None: self.f = (self._fxs[0], jac) else: self.f = self._fxs[0] return self.f def build_op(self, x): """Build operator from a builder f'n for the network 'f' and data 'x'.""" ndim = x.shape.as_list()[1] # d^2/dx_i^2 for each basis vector using finite differences. lapl = 0.0 for i in range(ndim): lapl += self._fxs[2*i+1] + self._fxs[2*i+2] - 2*self._fxs[0] lapl /= self._eps**2 self._op = _covariance(self._fxs[0], lapl) return self._op def __lt__(self, x): return False def __le__(self, x): if isinstance(x, ScaleOperator): return self <= x.x if isinstance(x, AddOperator): return self <= x.x or self <= x.y return (isinstance(x, LaplacianOperator) or isinstance(x, ExactLaplacianOperator)) def __gt__(self, x): return not self <= x def __ge__(self, x): return True def laplacian(f, x): """Computes exact Laplacian of f(x). Beware - scales poorly with x.""" if isinstance(x, list): raise ValueError('Input to laplacian must be a single tensor') if len(f.shape) == 2: return tf.stack( [laplacian(f[:, i], x) for i in range(f.shape.as_list()[1])], axis=1) elif len(f.shape) == 1: dx = tf.reshape(tf.gradients(f, x)[0], (x.get_shape()[0], -1)) # first dim is batch ddx = [] for i in range(dx.get_shape().as_list()[1]): ddx.append(tf.reshape(tf.gradients(dx[:, i], x)[0], (x.get_shape()[0], -1))[:, i]) lapl = tf.add_n(ddx) return lapl else: raise ValueError('Shape of batch must be 1D or 2D') class ExactLaplacianOperator(LinearOperator): """Exact difference Laplacian operator.""" def __init__(self): super(ExactLaplacianOperator, self).__init__() def build_op(self, x): """Builds operator from a builder f'n for the network 'f' and data 'x'.""" if isinstance(self.f, tuple): f = self.f[0] else: f = self.f lapl = laplacian(f, x) self._op = _covariance(f, lapl) return self._op def __lt__(self, x): return False def __le__(self, x): if isinstance(x, ScaleOperator): return self <= x.x if isinstance(x, AddOperator): return self <= x.x or self <= x.y return (isinstance(x, LaplacianOperator) or isinstance(x, ExactLaplacianOperator)) def __gt__(self, x): return not self <= x def __ge__(self, x): return True class DiagonalOperator(LinearOperator): """Operator equivalent to diagonal matrix.""" def __init__(self, builder): super(DiagonalOperator, self).__init__() self._builder = builder def build_op(self, x): kx = self._builder(x) if isinstance(self.f, tuple): self._op = _covariance(self.f[0], kx * self.f[0]) else: self._op = _covariance(self.f, kx * self.f) return self._op class KernelOperator(LinearOperator): """Operator from a symmetric kernel.""" def __init__(self, kernel): super(KernelOperator, self).__init__() self._kernel = kernel def build_op(self, x): x1, x2 = tf.split(x, 2, axis=0) fx1, fx2 = tf.split(self.f, 2, axis=0) kval = self._kernel(x1, x2) self._op = _covariance(fx1, kval * fx2) return self._op class SlownessOperator(LinearOperator): """Kernel for slow feature analysis.""" def build_op(self, x): diff = self.f[:-1] - self.f[1:] self._op = _covariance(diff, diff) return self._op class SpectralNetwork(object): """Class that constructs operators for SpIN and includes training loop.""" def __init__(self, operator, network, data, params, decay=0.0, use_pfor=True, per_example=False): """Creates all ops and variables required to train SpIN. Args: operator: The linear operator to diagonalize. network: A function that returns the TensorFlow op for the output of the spectral inference network when provided an op for the input. data: A TensorFlow op for the input to the spectral inference network. params: The trainable parameters of the model built by 'network'. decay (optional): The decay parameter for the moving average of the network covariance and Jacobian. use_pfor (optional): If true, use the parallel_for package to compute Jacobians. This is often faster but has higher memory overhead. per_example (optional): If true, computes the Jacobian of the network output covariance using a more complicated but often faster method. This interacts badly with anything that uses custom_gradients, so needs to be avoided for some code branches. """ self.operator = operator self.data = data self.params = params self.decay = decay self.use_pfor = use_pfor self.per_example = per_example if per_example and decay != 0.0: def network_builder(x): """Wraps the function 'network' to compute per-example.""" def loop_fn(i): x_i = tf.expand_dims(tf.gather(x, i), 0) features = network(x_i) jac = pfor.jacobian(features, params, use_pfor=use_pfor) return features, jac if use_pfor: features, jac = pfor.pfor(loop_fn, x.shape[0]) else: loop_fn_dtypes = [tf.float32, [tf.float32] * len(params)] features, jac = pfor.for_loop(loop_fn, loop_fn_dtypes, data.shape[0]) raise NotImplementedError( 'use_pfor=False + per_example=True is not yet working.') features = _collapse_first_dim(features) features.set_shape(network(x).shape) jac = [_collapse_first_dim(y) for y in jac] for p, j in zip(params, jac): j.set_shape(features.shape.as_list() + p.shape.as_list()) # Note: setting rank=2 so that we use matmul for covariance below # instead of batch_matmul. return features, jac else: network_builder = network self.network_builder = network_builder self.features, self.sigma, self.pi = self._covariances( operator, network_builder, data) feat_jac = None if per_example and decay != 0.0: feat_jac = operator.jac outputs = self._training_update( self.sigma, self.pi, self.params, decay=decay, use_pfor=use_pfor, features=self.features, jac=feat_jac) self.loss, self.gradients, self.eigenvalues, self.chol = outputs def _moving_average(self, x, c): """Creates moving average operation. Args: x: The tensor or list of tensors of which to take a moving average. c: The decay constant of the moving average, between 0 and 1. 0.0 = the moving average is constant 1.0 = the moving averge has no memory Returns: ma: Moving average variables. ma_update: Op to update moving average. """ if isinstance(x, list): mas = [self._moving_average(y, c) for y in x] return [m[0] for m in mas], [m[1] for m in mas] if len(x.shape) == 2 and x.shape[0] == x.shape[1]: ma = tf.Variable(tf.eye(x.shape.as_list()[0]), trainable=False) else: ma = tf.Variable(tf.zeros_like(x), trainable=False) ma_update = tf.assign(ma, (1-c)*ma + c*tf.reshape(x, ma.shape)) return ma, ma_update def _covariances(self, operator, network, x): """Constructs loss with custom gradient for SpIN. Args: operator: The linear operator to diagonalize. network: A function that returns the TensorFlow op for the output of the spectral inference network when provided an op for the input. x: The data used as input to network. Returns: u: The output of the spectral inference network. sigma: The covariance of the outputs of the network. pi: The matrix of network output covariances multiplied by the linear operator to diagonalize. See paper for explicit definition. """ u, pi = operator.build(network, x) sigma = _covariance(u, u) sigma.set_shape((u.shape[1], u.shape[1])) pi.set_shape((u.shape[1], u.shape[1])) return u, sigma, pi def _training_update(self, sigma, pi, params, decay=0.0, use_pfor=False, features=None, jac=None): """Makes gradient and moving averages. Args: sigma: The covariance of the outputs of the network. pi: The matrix of network output covariances multiplied by the linear operator to diagonalize. See paper for explicit definition. params: The trainable parameters. decay (optional): The decay parameter for the moving average of the network covariance and Jacobian. use_pfor (optional): If true, use the parallel_for package to compute Jacobians. This is often faster but has higher memory overhead. features (optional): The output features of the spectral inference network. Only necessary if per_example=True. jac (optional): The Jacobian of the network. Only necessary if per_example=True. Returns: loss: The loss function for SpIN - the sum of eigenvalues. gradients: The approximate gradient of the loss using moving averages. eigvals: The full array of eigenvalues, rather than just their sum. chol: The Cholesky decomposition of the covariance of the network outputs, which is needed to demix the network outputs. """ if isinstance(decay, float): assert decay >= 0.0 and decay < 1.0 if decay == 0.0: # Equivalent to not using the moving averages at all. loss, eigval, chol = _objective(sigma, pi) # pylint: disable=unbalanced-tuple-unpacking gradients = tf.gradients(loss, params) else: if jac is not None: sig_feat_jac = pfor.jacobian(sigma, features, use_pfor=use_pfor) sigma_jac = [tf.tensordot(sig_feat_jac, y, axes=2) for y in jac] else: sigma_jac = pfor.jacobian(sigma, params, use_pfor=use_pfor) for p, sj in zip(params, sigma_jac): sj.set_shape(sigma.shape.as_list() + p.shape.as_list()) sigma_avg, update_sigma = self._moving_average(sigma, decay) sigma_jac_avg, update_sigma_jac = self._moving_average(sigma_jac, decay) n = tf.reduce_prod(tf.shape(sigma)) with tf.control_dependencies(update_sigma_jac + [update_sigma]): loss, eigval, chol = _objective(sigma_avg, pi) # pylint: disable=unbalanced-tuple-unpacking sigma_back = tf.gradients(loss, sigma_avg)[0] gradients = [] for s, p, g in zip(sigma_jac_avg, params, tf.gradients(loss, params)): gradients.append( tf.reshape( tf.matmul( tf.reshape(sigma_back, (1, n)), tf.reshape(s, (n, -1))), p.shape) + g) return loss, gradients, eigval, chol def train( self, optim, iterations, logging_config, stats_hooks, plotting_hooks=None, show_plots=False, global_step=None, data_for_plotting=None): """Training loop for SpIN, with hooks for logging and plotting. Args: optim: The TensorFlow optimizer to minimize the SpIN loss. iterations: The number of iterations to train for. logging_config: A dictionary for logging. The field 'config' is logged at the beginning of training, with metadata about the run, while the fields 'saver_path' and 'saver_name' are for setting up checkpointing and 'log_image_every' and 'save_params_every' set the number of iterations after which logging and checkpoint saving occur. stats_hooks: A dictionary with two fields, 'create' and 'update', both of which are functions that take no arguments. 'create' sets up the data structures for logging stats while 'update' updates them. plotting_hooks (optional): If show_plots is true, this dictionary must be provided. Has the same format as 'stats_hooks'. show_plots (optional): A boolean. If true, will plot results to the GUI. global_step (optional): A TensorFlow op that tracks the number of iterations. If none is provided, one is created. data_for_plotting (optional): If different data is needed for updating plots than for training, this op will return that data. Returns: A dictionary of statistics accumulated during the training run. """ if show_plots: plt.ion() if plotting_hooks is None: raise ValueError('Plotting hooks are required if show_plots=True') plots = plotting_hooks['create']() saver_path = logging_config['saver_path'] saver = tf.train.Saver(var_list=self.params) if global_step is None: global_step = tf.Variable(0.0, trainable=False, name='global_step') if data_for_plotting is not None: features_for_plotting = self.network_builder(data_for_plotting) # If per_example is true, the network builder will return a # (features, jacobian) tuple. For plotting, we can discard the latter. if isinstance(features_for_plotting, tuple): features_for_plotting = features_for_plotting[0] features_for_plotting = tf.transpose( tf.matrix_triangular_solve(self.chol, tf.transpose(features_for_plotting))) neig = self.features.shape.as_list()[-1] stats = stats_hooks['create'](iterations, neig) logging.info(logging_config['config']) update_global_step = tf.assign(global_step, global_step + 1) step = optim.apply_gradients(zip(self.gradients, self.params)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print('Initialized variables') for t in range(iterations): sess.run(update_global_step) loss_, eigenvalues_, _ = sess.run([self.loss, self.eigenvalues, step]) stats_hooks['update'](t, loss_, eigenvalues_, **stats) current_stats = dict((key, stats[key][t]) for key in stats) logging.info(current_stats) if t % logging_config['save_params_every'] == 0: saver.save(sess, saver_path + '/' + logging_config['saver_name'], global_step=t) if t % logging_config['log_image_every'] == 0: if data_for_plotting is not None and show_plots: outputs = sess.run(features_for_plotting) inputs = sess.run(data_for_plotting) plotting_hooks['update'](t, outputs, inputs, *plots, **stats) plt.show() plt.pause(0.01) return stats
spectral_inference_networks-master
spectral_inference_networks/src/spin.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for SpIN - mostly plotting, logging and network building.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import range import tensorflow as tf def create_default_stats(iterations, neig): """Default stats creation function to be passed in as stats hook. To be passed in to training loop and called back once the number of Eigen values have been determined. Args: iterations: Number of iterations in training loop. neig: Number of Eigen values to track. Returns: Dict of numpy arrays keyed by stat name. """ losses = np.zeros((iterations), dtype=np.float32) eigenvalues = np.zeros((iterations, neig), dtype=np.float32) eigenvalues_ma = np.zeros((iterations, neig), dtype=np.float32) return { 'losses': losses, 'eigenvalues': eigenvalues, 'eigenvalues_ma': eigenvalues_ma, } def update_default_stats(t, current_loss, current_eigenvalues, losses, eigenvalues, eigenvalues_ma): """Update callback for the default stats created above. To be passed into training loop and called back once per training step. Updates total collections with stats from specified training step. Args: t: Training step index. current_loss: Loss at training step `t`. current_eigenvalues: Eigen values at training step `t`. losses: Collection of all losses, to be updated at index `t`. eigenvalues: Collection of all Eigen values, to be updated at index `t`. eigenvalues_ma: Collection of moving averages for Eigen values, to be updated at index `t`. """ losses[t] = current_loss eigenvalues[t] = current_eigenvalues decay = 0.01 if t > 0: eigenvalues_ma[t] = ( decay * current_eigenvalues + (1 - decay) * eigenvalues_ma[t - 1]) else: eigenvalues_ma[t] = current_eigenvalues @tf.custom_gradient def _my_softplus(x): def grad(dy): return tf.nn.sigmoid(x) * dy return tf.nn.softplus(x), grad def _add_mask(x, y, lim): """Makes boundary conditions for network (fixed box).""" # Force the wavefunction to zero at the boundaries of the box defined by # [-lim, lim]. mask = 1.0 for i in range(x.shape.as_list()[1]): mask *= tf.maximum((tf.sqrt(2 * lim**2 - x[:, i]**2) - lim) / lim, 0) return tf.expand_dims(mask, -1) * y def make_network(x, hid, ws, bs, apply_boundary, lim, custom_softplus=False): """Constructs network and loss function. Args: x: Input to the network. hid: List of shapes of the hidden layers of the networks. ws: List of weights of the network. bs: List of biases of the network. apply_boundary: If true, force network output to be zero at boundary. lim: The limit of the network, if apply_boundary is true. custom_softplus (optional): Returns: Output of multi-layer perception network. """ inp = x my_softplus = _my_softplus if custom_softplus else tf.nn.softplus for i in range(len(hid)-1): inp = my_softplus(tf.matmul(inp, ws[i]) + bs[i]) y = tf.matmul(inp, ws[-1]) + bs[-1] if apply_boundary: return _add_mask(x, y, lim) else: return y def make_conv_network(x, conv_stride, paddings, ws, bs): """Creates convolutional network. Args: x: Input to the convnet. conv_stride: List of strides of the convolutions, one per layer. paddings: List of paddings of the convolutions, one per layer. ws: List of weights. Conv or fully-connected inferred by shape. bs: List of biases. Returns: Output of convolutional neural network. """ inp = x nh = len(ws) for i in range(nh-1): weight = ws[i] if len(weight.shape) == 4: stride = conv_stride[i] inp = tf.nn.relu(tf.nn.conv2d(inp, weight, [1, stride, stride, 1], padding=paddings[i]) + bs[i]) # flatten if this is the last conv layer if len(ws[i+1].shape) == 2: inp = tf.reshape(inp, [inp.shape[0], np.prod(inp.shape[1:])]) else: inp = tf.nn.relu(tf.matmul(inp, weight) + bs[i]) features = tf.matmul(inp, ws[-1]) + bs[-1] dim0 = tf.shape(inp)[0] const_feature = tf.ones((dim0, 1)) features = tf.concat((const_feature, features), 1) return features def grid_reader(dim, lim, points=128): """Creates a reader function for generating a grid of position vectors. Args: dim: Dimension of position vector. lim: Limit of the cell. Each vector component is in [-lim, lim]. points: Number of points to generate along each axis. Returns: A tensorflow op containing a constant grid of the n-dim box defined by [-lim, lim] along each axis. A 2D plane defined by hyperplane is generated for n>2-D systems. Raises: ValueError: len(hyperplane) + 2 != ndim. """ hyperplane = [0 for _ in range(dim - 2)] if len(hyperplane) + 2 != dim: raise ValueError('Incorrect number of hyperplane values specified.') xx = np.linspace(-lim, lim, points, dtype=np.float32) yy = np.linspace(-lim, lim, points, dtype=np.float32) if dim == 1: grid = xx elif dim == 2: grid = np.meshgrid(xx, yy) else: zz = [np.linspace(z_i, z_i, 1, dtype=np.float32) for z_i in hyperplane] grid = np.meshgrid(xx, yy, *zz) xyz = np.array(grid).T.reshape(-1, dim) return tf.constant(xyz)
spectral_inference_networks-master
spectral_inference_networks/src/util.py
# Copyright 2018-2019 DeepMind Technologies Limited and Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library to approximate eigenfunctions by stochastic gradient descent.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function
spectral_inference_networks-master
spectral_inference_networks/src/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for the LearnedSimulator model.""" import jax import jax.numpy as jnp import jraph import tree from inverse_design.src import normalizers def flatten_features(input_graph, connectivity_radius, is_padded_graph, apply_normalization=False): """Returns a graph with a single array of node and edge features.""" # Normalize the eleements of the graph. if apply_normalization: graph_elements_normalizer = normalizers.GraphElementsNormalizer( template_graph=input_graph, is_padded_graph=is_padded_graph) # Computing relative distances in the model. if "relative_world_position" not in input_graph.edges: input_graph = _add_relative_distances( input_graph) # Extract important features from the position_sequence. position_sequence = input_graph.nodes["world_position"] velocity_sequence = time_diff(position_sequence) # Finite-difference. # Collect node features. node_features = [] # Normalized velocity sequence, flattening spatial axis. flat_velocity_sequence = jnp.reshape(velocity_sequence, [velocity_sequence.shape[0], -1]) if apply_normalization: flat_velocity_sequence = graph_elements_normalizer.normalize_node_array( "velocity_sequence", flat_velocity_sequence) node_features.append(flat_velocity_sequence) # Material types (one-hot, does not need normalization). node_features.append(jax.nn.one_hot(input_graph.nodes["material_type(9)"], 9)) # Collect edge features. edge_features = [] # Relative distances and norms. relative_world_position = input_graph.edges["relative_world_position"] relative_world_distance = safe_edge_norm( input_graph.edges["relative_world_position"], input_graph, is_padded_graph, keepdims=True) if apply_normalization: # Scaled determined by connectivity radius. relative_world_position = relative_world_position / connectivity_radius relative_world_distance = relative_world_distance / connectivity_radius edge_features.append(relative_world_position) edge_features.append(relative_world_distance) # Handle normalization. node_features = jnp.concatenate(node_features, axis=-1) edge_features = jnp.concatenate(edge_features, axis=-1) return input_graph._replace( nodes=node_features, edges=edge_features, globals=None, ) def time_diff(input_sequence): """Compute finnite time difference.""" return input_sequence[:, 1:] - input_sequence[:, :-1] def safe_edge_norm(array, graph, is_padded_graph, keepdims=False): """Compute vector norm, preventing nans in padding elements.""" if is_padded_graph: padding_mask = jraph.get_edge_padding_mask(graph) epsilon = 1e-8 perturb = jnp.logical_not(padding_mask) * epsilon array += jnp.expand_dims(perturb, range(1, len(array.shape))) return jnp.linalg.norm(array, axis=-1, keepdims=keepdims) def _add_relative_distances(input_graph, use_last_position_only=True): """Computes relative distances between particles and with walls.""" # If these exist, there is probably something wrong. assert "relative_world_position" not in input_graph.edges assert "clipped_distance_to_walls" not in input_graph.nodes input_graph = tree.map_structure(lambda x: x, input_graph) # Avoid mutating. particle_pos = input_graph.nodes["world_position"] if use_last_position_only: particle_pos = particle_pos[:, -1] input_graph.edges["relative_world_position"] = ( particle_pos[input_graph.receivers] - particle_pos[input_graph.senders]) return input_graph
inverse_design-main
src/model_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Watercourse 3D environment utils.""" import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np import tree from inverse_design.src import connectivity_utils NORMAL = 0 OBSTACLE = 1 INFLOW = 4 # for eliminating stray particles from pipe OOB_AREA = 1.5 def _update_edges(input_graph, obstacle_edges, radius): """Recomputes particle edges, adds obstacle edges.""" # get input graph nodes corresponding to fluid query_mask = ~input_graph.nodes["external_mask"] # get input graph ndoes that are either fluid or obstacle valid_mask = query_mask | input_graph.nodes["obstacle_mask"] max_edges = input_graph.senders.shape[0] num_obstacle_edges = obstacle_edges.shape[0] # compute the sender and receiver edges for fluid-fluid and fluid-obstacle # interactions. n_edge, senders, receivers = connectivity_utils.compute_fixed_radius_connectivity_jax( input_graph.nodes["world_position"][:, -1], n_node=input_graph.n_node[:-1], max_edges=max_edges - num_obstacle_edges, radius=radius, query_mask=query_mask, node_mask=valid_mask) # update edges to include obstacle edges and new fluid-fluid edges return input_graph._replace( senders=jnp.concatenate([obstacle_edges[:, 0], senders], axis=0), receivers=jnp.concatenate([obstacle_edges[:, 1], receivers], axis=0), n_edge=n_edge.at[0].set(n_edge[0] + num_obstacle_edges)) def forward(input_graph, new_particles, network, haiku_model, obstacle_edges, radius): """Runs model and post-processing steps in jax, returns position sequence.""" @hk.transform_with_state def model(inputs): return haiku_model()(inputs) rnd_key = jax.random.PRNGKey(42) # use a fixed random key # only run for a single graph (plus one padding graph), update graph with # obstacle edges assert len(input_graph.n_node) == 2, "Not a single padded graph." graph = tree.map_structure(lambda x: x, input_graph) graph = _update_edges(graph, obstacle_edges, radius) # build material type pattern = jnp.ones_like(graph.nodes["external_mask"], dtype=jnp.int32) inflow_mask = jnp.any(~graph.nodes["mask_stack"], axis=-1) graph.nodes["material_type(9)"] = jnp.where( graph.nodes["external_mask"], pattern * OBSTACLE, jnp.where(inflow_mask, pattern * INFLOW, pattern * NORMAL)) graph.nodes["type/particles"] = None # run model prev_pos = input_graph.nodes["world_position"] model_out = model.apply(network["params"], network["state"], rnd_key, graph) pred_pos = model_out[0][0].nodes["p:world_position"] total_nodes = jnp.sum(input_graph.n_node[:-1]) node_padding_mask = jnp.arange(prev_pos.shape[0]) < total_nodes # update history, reset external particles next_pos_seq = jnp.concatenate([prev_pos[:, 1:], pred_pos[:, None]], axis=1) mask = (~input_graph.nodes["external_mask"]) & node_padding_mask next_pos_seq = jnp.where(mask[:, None, None], next_pos_seq, prev_pos) # add new particles, remove old particles that go below the floor surface delete_particles = next_pos_seq[:, -1, 1] <= 0 delete_particles &= graph.nodes["mask_stack"][:, -1] particle_mask = graph.nodes["mask_stack"][:, -1] & ~delete_particles particle_mask |= new_particles mask_stack = jnp.concatenate( [graph.nodes["mask_stack"][:, 1:], particle_mask[:, None]], axis=1) # create new node features and update graph new_node_features = { **input_graph.nodes, "world_position": next_pos_seq, "mask_stack": mask_stack, "external_mask": ~particle_mask, "deleted": graph.nodes["deleted"] | delete_particles, } return input_graph._replace(nodes=new_node_features) def build_initial_graph(input_graphs, max_edges): """Builds initial padded graphs tuple from typed graph.""" obstacle_edges = np.stack( [input_graphs[0].senders, input_graphs[0].receivers], axis=1) graph = tree.map_structure(lambda x: x.copy(), input_graphs[0]) # clear graph edges dummy_edge = np.zeros((0,), dtype=np.int32) graph = graph._replace( senders=dummy_edge, receivers=dummy_edge, n_edge=np.array([0], dtype=np.int32)) # build inflow stack inflow_stack = [] init_pos = graph.nodes["world_position"] for cur_graph in input_graphs: mask_stack = cur_graph.nodes["mask_stack"] cur_pos = cur_graph.nodes["world_position"] new_particles = mask_stack[:, -1] & (~mask_stack[:, -2]) init_pos[new_particles] = cur_pos[new_particles] new_particles = np.concatenate([new_particles, [False]]) inflow_stack.append(new_particles) inflow_stack = np.stack(inflow_stack[1:], axis=0) graph.nodes["world_position"] = init_pos graph.nodes["deleted"] = np.zeros(init_pos.shape[0], dtype=np.bool) # fix stray particles stray_particles = init_pos[:, -1, 1] > OOB_AREA graph.nodes["mask_stack"][stray_particles] = False graph.nodes["external_mask"][stray_particles] = True # pad to maximum node, edge values and add padding graph max_n_node = graph.n_node.sum() + 1 graphs_tuple = jraph.pad_with_graphs(graph, n_node=max_n_node, n_edge=max_edges, n_graph=2) return obstacle_edges, inflow_stack, graphs_tuple def rollout(initial_graph, inflow_stack, network, haiku_model, obstacle_edges, radius): """Runs a jittable model rollout.""" @jax.checkpoint def _step(graph, inflow_mask): out_graph = forward(graph, inflow_mask, network, haiku_model, obstacle_edges, radius) out_data = dict( pos=out_graph.nodes["world_position"][:, -1], mask=out_graph.nodes["mask_stack"][:, -1]) return out_graph, out_data final_graph, trajectory = jax.lax.scan(_step, init=initial_graph, xs=inflow_stack) return final_graph, trajectory def make_plain_obstacles(num_side=25): """Create a mesh obstacle (landscape) with num_side squared control points.""" px, pz = np.meshgrid( np.linspace(-0.5, 0.5, num_side), np.linspace(-0.5, 0.5, num_side)) trans = np.array([0.5, 0.5, 0.5]) # generate height map py = np.zeros_like(px) pos = np.stack([px, py, pz], axis=-1).reshape((-1, 3)) pos += trans[None] return pos def max_x_loss_fn(graph): """Example loss function for maximizing x position of particles when they hit the ground.""" z_pos = graph.nodes["world_position"][:, -1, 2] z_var = jnp.std(z_pos, where=graph.nodes["deleted"]) x_pos = graph.nodes["world_position"][:, -1, 0] x_max = jnp.mean(-x_pos, where=graph.nodes["deleted"]) return x_max + z_var def smooth_loss_fn(obs_pos, num_side=25): """Smoothing loss function for minimizing sharp changes across obstacle.""" obs_grid = jnp.reshape(obs_pos, (num_side, num_side)) obs_dx = jnp.diff(obs_grid, axis=0) ** 2 obs_dy = jnp.diff(obs_grid, axis=1) ** 2 return 0.5 * (jnp.mean(obs_dx) + jnp.mean(obs_dy)) def design_fn(params, graph, height_scale=0.15): """Convert parameters in params into landscape heightfield to be represented in graph.""" graph = tree.map_structure(lambda x: x, graph) init_pos = jnp.array(graph.nodes["world_position"]) # use tanh transformation to limit height to be within [-1, 1] raw_obs_pos = jnp.tanh(params) * height_scale # tile graph to have the same time history as the fluid particles obs_pos = jnp.tile(raw_obs_pos[:, None], [1, init_pos.shape[1]]) # only controlling the height, so set other dimensions to 0 obs_pos = jnp.stack( [jnp.zeros_like(obs_pos), obs_pos, jnp.zeros_like(obs_pos)], axis=-1) # add controlled height to initial heightfield and update graph nodes pos = jnp.concatenate( [init_pos[:obs_pos.shape[0]] + obs_pos, init_pos[obs_pos.shape[0]:]], axis=0) graph.nodes["world_position"] = pos return graph, raw_obs_pos
inverse_design-main
src/watercourse_env.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """JAX module for normalization with accumulated statistics.""" import haiku as hk import jax.numpy as jnp import jraph def get_accumulated_normalizer(name): return AccumulatedNormalizer(name=name) class AccumulatedNormalizer(hk.Module): """Feature normalizer that accumulates statistics for normalization. It will accumulate statistics using float32 variables, and will return the mean and std. It accumulates statistics until the accumulate method is called `max_num_accumulations` times or the total number of batch elements processed is below `max_example_count`. To enable full GPU compatibility the number of accumulations is stored as a float32. As this number is incremented one by one, we require `max_num_accumulations` to be smaller than the highest float32 number that maintains integer precision (16777216). """ def __init__( self, *, std_epsilon: float = 1e-5, name: str = 'accumulated_normalizer', ): """Inits the module. Args: std_epsilon: minimum value of the standard deviation to use. name: Name of the module. """ super(AccumulatedNormalizer, self).__init__(name=name) self._accumulator_shape = None self._std_epsilon = std_epsilon def __call__(self, batched_data): """Direct transformation of the normalizer.""" self._set_accumulator_shape(batched_data) return (batched_data - self.mean) / self.std_with_epsilon def inverse(self, normalized_batch_data): """Inverse transformation of the normalizer.""" self._set_accumulator_shape(normalized_batch_data) return normalized_batch_data * self.std_with_epsilon + self.mean def _set_accumulator_shape(self, batched_sample_data): self._accumulator_shape = batched_sample_data.shape[-1] def _verify_module_connected(self): if self._accumulator_shape is None: raise RuntimeError( 'Trying to read the mean before connecting the module.') @property def _acc_sum(self): return hk.get_state( 'acc_sum', self._accumulator_shape, dtype=jnp.float32, init=jnp.zeros) @property def _acc_count(self): return hk.get_state('acc_count', (), dtype=jnp.float32, init=jnp.zeros) @property def _acc_sum_squared(self): return hk.get_state( 'acc_sum_squared', self._accumulator_shape, dtype=jnp.float32, init=jnp.zeros) @property def _safe_count(self): # To ensure count is at least one and avoid nan's. return jnp.maximum(self._acc_count, 1.) @property def mean(self): self._verify_module_connected() return self._acc_sum / self._safe_count @property def std(self): self._verify_module_connected() var = self._acc_sum_squared / self._safe_count - self.mean**2 var = jnp.maximum(var, 0.) # Prevent negatives due to numerical precision. return jnp.sqrt(var) @property def std_with_epsilon(self): # To use in case the std is too small. return jnp.maximum(self.std, self._std_epsilon) class GraphElementsNormalizer(hk.Module): """Online normalization of individual graph components of a GraphsTuple. Can be used to normalize individual node, edge, and global arrays. """ def __init__(self, template_graph: jraph.GraphsTuple, is_padded_graph: bool, name: str = 'graph_elements_normalizer'): """Inits the module. Args: template_graph: Input template graph to compute edge/node/global padding masks. is_padded_graph: Whether the graph has padding. name: Name of the Haiku module. """ super().__init__(name=name) self._node_mask = None self._edge_mask = None self._graph_mask = None if is_padded_graph: self._node_mask = jraph.get_node_padding_mask(template_graph) self._edge_mask = jraph.get_edge_padding_mask(template_graph) self._graph_mask = jraph.get_graph_padding_mask(template_graph) self._names_used = [] def _run_normalizer(self, name, array, mask): if name in self._names_used: raise ValueError( f'Attempt to reuse name {name}. Used names: {self._names_used}') self._names_used.append(name) normalizer = get_accumulated_normalizer(name) return normalizer(array) def normalize_node_array(self, name, array): return self._run_normalizer(name, array, self._node_mask)
inverse_design-main
src/normalizers.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Graph Network Simulator implementation used in NeurIPS 2022 submission. Inverse Design for Fluid-Structure Interactions using Graph Network Simulators Kelsey R. Allen*, Tatiana Lopez-Guevera*, Kimberly Stachenfeld*, Alvaro Sanchez-Gonzalez, Peter Battaglia, Jessica Hamrick, Tobias Pfaff """ from typing import Any, Dict import haiku as hk import jraph from inverse_design.src import graph_network from inverse_design.src import normalizers class LearnedSimulator(hk.Module): """Graph Network Simulator.""" def __init__(self, connectivity_radius, *, graph_network_kwargs: Dict[str, Any], flatten_features_fn=None, name="LearnedSimulator"): """Initialize the model. Args: connectivity_radius: Radius of connectivity within which to connect particles with edges. graph_network_kwargs: Keyword arguments to pass to the learned part of the graph network `model.EncodeProcessDecode`. flatten_features_fn: Function that takes the input graph and dataset metadata, and returns a graph where node and edge features are a single array of rank 2, and without global features. The function will be wrapped in a haiku module, which allows the flattening fn to instantiate its own variable normalizers. name: Name of the Haiku module. """ super().__init__(name=name) self._connectivity_radius = connectivity_radius self._graph_network_kwargs = graph_network_kwargs self._graph_network = None # Wrap flatten function in a Haiku module, so any haiku modules created # by the function are reused in case of multiple calls. self._flatten_features_fn = hk.to_module(flatten_features_fn)( name="flatten_features_fn") def _maybe_build_modules(self, input_graph): if self._graph_network is None: num_dimensions = input_graph.nodes["world_position"].shape[-1] self._graph_network = graph_network.EncodeProcessDecode( name="encode_process_decode", node_output_size=num_dimensions, **self._graph_network_kwargs) self._target_normalizer = normalizers.get_accumulated_normalizer( name="target_normalizer") def __call__(self, input_graph: jraph.GraphsTuple, padded_graph=True): self._maybe_build_modules(input_graph) flat_graphs_tuple = self._encoder_preprocessor( input_graph, padded_graph=padded_graph) normalized_prediction = self._graph_network(flat_graphs_tuple).nodes next_position = self._decoder_postprocessor(normalized_prediction, input_graph) return input_graph._replace( nodes={"p:world_position": next_position}, edges={}, globals={}, senders=input_graph.senders[:0], receivers=input_graph.receivers[:0], n_edge=input_graph.n_edge * 0), {} def _encoder_preprocessor(self, input_graph, padded_graph): # Flattens the input graph graph_with_flat_features = self._flatten_features_fn( input_graph, connectivity_radius=self._connectivity_radius, is_padded_graph=padded_graph) return graph_with_flat_features def _decoder_postprocessor(self, normalized_prediction, input_graph): # Un-normalize and integrate position_sequence = input_graph.nodes["world_position"] # The model produces the output in normalized space so we apply inverse # normalization. prediction = self._target_normalizer.inverse(normalized_prediction) new_position = euler_integrate_position(position_sequence, prediction) return new_position def euler_integrate_position(position_sequence, finite_diff_estimate): """Integrates finite difference estimate to position (assuming dt=1).""" # Uses an Euler integrator to go from acceleration to position, # assuming dt=1 corresponding to the size of the finite difference. previous_position = position_sequence[:, -1] previous_velocity = previous_position - position_sequence[:, -2] next_acceleration = finite_diff_estimate next_velocity = previous_velocity + next_acceleration next_position = previous_position + next_velocity return next_position def euler_integrate_position_inverse(position_sequence, next_position): """Computes a finite difference estimate from current position and history.""" previous_position = position_sequence[:, -1] previous_velocity = previous_position - position_sequence[:, -2] next_velocity = next_position - previous_position acceleration = next_velocity - previous_velocity return acceleration
inverse_design-main
src/learned_simulator.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tools to compute the connectivity of the graph.""" import functools import jax from jax.experimental import host_callback as hcb import jax.numpy as jnp import numpy as np from sklearn import neighbors def _cb_radius_query(args): """Host callback function to compute connectivity.""" padded_pos, n_node, radius, max_edges, query_mask, node_mask = args edges = [] offset = 0 for num_nodes in n_node: pos_nodes = padded_pos[offset:offset+num_nodes] pos_query = padded_pos[offset:offset+num_nodes] pos_nodes = pos_nodes[node_mask[offset:offset+num_nodes]] pos_query = pos_query[query_mask[offset:offset+num_nodes]] # indices: [num_edges, 2] array of receivers ([:, 0]) and senders ([:, 1]) indices = compute_fixed_radius_connectivity_np(pos_nodes, radius, pos_query) mask = query_mask[offset:offset+num_nodes] renumber = np.arange(num_nodes, dtype=np.int32)[mask] indices[:, 0] = renumber[indices[:, 0]] mask = node_mask[offset:offset+num_nodes] renumber = np.arange(num_nodes, dtype=np.int32)[mask] indices[:, 1] = renumber[indices[:, 1]] # remove self-edges mask = indices[:, 0] != indices[:, 1] indices = indices[mask] # create unique two way edges (only necessary in the masked case) indices = np.stack([np.min(indices, axis=1), np.max(indices, axis=1)], axis=1) indices = np.unique(indices, axis=0) indices = np.concatenate([indices, indices[:, [1, 0]]], axis=0) edges.append(indices + offset) offset += num_nodes n_edge = [x.shape[0] for x in edges] total_edges = np.sum(n_edge) # padding if total_edges >= max_edges: raise ValueError("%d edges found, max_edges: %d" % (total_edges, max_edges)) # create a [n_p, 2] padding array, which connects the first dummy padding node # (with index `num_nodes`) to itself. padding_size = max_edges - total_edges padding = np.ones((padding_size, 2), dtype=np.int32) * offset edges = np.concatenate(edges + [padding], axis=0) n_edge = np.array(n_edge + [padding_size], dtype=np.int32) return n_edge, edges @functools.partial(jax.custom_jvp, nondiff_argnums=(4, 5)) def compute_fixed_radius_connectivity_jax(positions, n_node, query_mask, node_mask, radius, max_edges): """Computes connectivity for batched graphs using a jax host callback. Args: positions: concatenated vector (N, 2) of node positions for all graphs n_node: array of num_nodes for each graph query_mask: defines the subset of nodes to query from (None=all) node_mask: defines the subset of nodes to query to (None=all) radius: connectivity radius max_edges: maximum total number of edges Returns: array of num_edges, senders, receivers """ callback_arg = (positions, n_node, radius, max_edges, query_mask, node_mask) out_shape = (jax.ShapeDtypeStruct((len(n_node) + 1,), jnp.int32), jax.ShapeDtypeStruct((max_edges, 2), jnp.int32)) n_edge, indices = hcb.call(_cb_radius_query, callback_arg, result_shape=out_shape) senders = indices[:, 1] receivers = indices[:, 0] return n_edge, senders, receivers @compute_fixed_radius_connectivity_jax.defjvp def _compute_fixed_radius_connectivity_jax_jvp(radius, max_edges, primals, tangents): """Custom zero-jvp function for compute_fixed_radius_connectivity_jax.""" del tangents primal_out = compute_fixed_radius_connectivity_jax( *primals, radius=radius, max_edges=max_edges) grad_out = tuple(jnp.zeros_like(x) for x in primal_out) return primal_out, grad_out def compute_fixed_radius_connectivity_np( positions, radius, receiver_positions=None, remove_self_edges=False): """Computes connectivity between positions and receiver_positions.""" # if removing self edges, receiver positions must be none assert not (remove_self_edges and receiver_positions is not None) if receiver_positions is None: receiver_positions = positions # use kdtree for efficient calculation of pairs within radius distance kd_tree = neighbors.KDTree(positions) receivers_list = kd_tree.query_radius(receiver_positions, r=radius) num_nodes = len(receiver_positions) senders = np.repeat(range(num_nodes), [len(a) for a in receivers_list]) receivers = np.concatenate(receivers_list, axis=0) if remove_self_edges: # Remove self edges. mask = senders != receivers senders = senders[mask] receivers = receivers[mask] return np.stack([senders.astype(np.int32), receivers.astype(np.int32)], axis=-1)
inverse_design-main
src/connectivity_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """JAX implementation of Encode Process Decode.""" from typing import Optional import haiku as hk import jax import jax.numpy as jnp import jraph class EncodeProcessDecode(hk.Module): """Encode-Process-Decode function approximator for learnable simulator.""" def __init__( self, *, latent_size: int, mlp_hidden_size: int, mlp_num_hidden_layers: int, num_message_passing_steps: int, num_processor_repetitions: int = 1, encode_nodes: bool = True, encode_edges: bool = True, node_output_size: Optional[int] = None, edge_output_size: Optional[int] = None, include_sent_messages_in_node_update: bool = False, use_layer_norm: bool = True, name: str = "EncodeProcessDecode"): """Inits the model. Args: latent_size: Size of the node and edge latent representations. mlp_hidden_size: Hidden layer size for all MLPs. mlp_num_hidden_layers: Number of hidden layers in all MLPs. num_message_passing_steps: Number of unshared message passing steps in the processor steps. num_processor_repetitions: Number of times that the same processor is applied sequencially. encode_nodes: If False, the node encoder will be omitted. encode_edges: If False, the edge encoder will be omitted. node_output_size: Output size of the decoded node representations. edge_output_size: Output size of the decoded edge representations. include_sent_messages_in_node_update: Whether to include pooled sent messages from each node in the node update. use_layer_norm: Whether it uses layer norm or not. name: Name of the model. """ super().__init__(name=name) self._latent_size = latent_size self._mlp_hidden_size = mlp_hidden_size self._mlp_num_hidden_layers = mlp_num_hidden_layers self._num_message_passing_steps = num_message_passing_steps self._num_processor_repetitions = num_processor_repetitions self._encode_nodes = encode_nodes self._encode_edges = encode_edges self._node_output_size = node_output_size self._edge_output_size = edge_output_size self._include_sent_messages_in_node_update = ( include_sent_messages_in_node_update) self._use_layer_norm = use_layer_norm self._networks_builder() def __call__(self, input_graph: jraph.GraphsTuple) -> jraph.GraphsTuple: """Forward pass of the learnable dynamics model.""" # Encode the input_graph. latent_graph_0 = self._encode(input_graph) # Do `m` message passing steps in the latent graphs. latent_graph_m = self._process(latent_graph_0) # Decode from the last latent graph. return self._decode(latent_graph_m) def _networks_builder(self): def build_mlp(name, output_size=None): if output_size is None: output_size = self._latent_size mlp = hk.nets.MLP( output_sizes=[self._mlp_hidden_size] * self._mlp_num_hidden_layers + [ output_size], name=name + "_mlp", activation=jax.nn.relu) return jraph.concatenated_args(mlp) def build_mlp_with_maybe_layer_norm(name, output_size=None): network = build_mlp(name, output_size) if self._use_layer_norm: layer_norm = hk.LayerNorm( axis=-1, create_scale=True, create_offset=True, name=name + "_layer_norm") network = hk.Sequential([network, layer_norm]) return jraph.concatenated_args(network) # The encoder graph network independently encodes edge and node features. encoder_kwargs = dict( embed_edge_fn=build_mlp_with_maybe_layer_norm("encoder_edges") if self._encode_edges else None, embed_node_fn=build_mlp_with_maybe_layer_norm("encoder_nodes") if self._encode_nodes else None,) self._encoder_network = jraph.GraphMapFeatures(**encoder_kwargs) # Create `num_message_passing_steps` graph networks with unshared parameters # that update the node and edge latent features. # Note that we can use `modules.InteractionNetwork` because # it also outputs the messages as updated edge latent features. self._processor_networks = [] for step_i in range(self._num_message_passing_steps): self._processor_networks.append( jraph.InteractionNetwork( update_edge_fn=build_mlp_with_maybe_layer_norm( f"processor_edges_{step_i}"), update_node_fn=build_mlp_with_maybe_layer_norm( f"processor_nodes_{step_i}"), include_sent_messages_in_node_update=( self._include_sent_messages_in_node_update))) # The decoder MLP decodes edge/node latent features into the output sizes. decoder_kwargs = dict( embed_edge_fn=build_mlp("decoder_edges", self._edge_output_size) if self._edge_output_size else None, embed_node_fn=build_mlp("decoder_nodes", self._node_output_size) if self._node_output_size else None, ) self._decoder_network = jraph.GraphMapFeatures(**decoder_kwargs) def _encode( self, input_graph: jraph.GraphsTuple) -> jraph.GraphsTuple: """Encodes the input graph features into a latent graph.""" # Copy the globals to all of the nodes, if applicable. if input_graph.globals is not None: broadcasted_globals = jnp.repeat( input_graph.globals, input_graph.n_node, axis=0, total_repeat_length=input_graph.nodes.shape[0]) input_graph = input_graph._replace( nodes=jnp.concatenate( [input_graph.nodes, broadcasted_globals], axis=-1), globals=None) # Encode the node and edge features. latent_graph_0 = self._encoder_network(input_graph) return latent_graph_0 def _process( self, latent_graph_0: jraph.GraphsTuple) -> jraph.GraphsTuple: """Processes the latent graph with several steps of message passing.""" # Do `num_message_passing_steps` with each of the `self._processor_networks` # with unshared weights, and repeat that `self._num_processor_repetitions` # times. latent_graph = latent_graph_0 for unused_repetition_i in range(self._num_processor_repetitions): for processor_network in self._processor_networks: latent_graph = self._process_step(processor_network, latent_graph, latent_graph_0) return latent_graph def _process_step( self, processor_network_k, latent_graph_prev_k: jraph.GraphsTuple, latent_graph_0: jraph.GraphsTuple) -> jraph.GraphsTuple: """Single step of message passing with node/edge residual connections.""" input_graph_k = latent_graph_prev_k # One step of message passing. latent_graph_k = processor_network_k(input_graph_k) # Add residuals. latent_graph_k = latent_graph_k._replace( nodes=latent_graph_k.nodes+latent_graph_prev_k.nodes, edges=latent_graph_k.edges+latent_graph_prev_k.edges) return latent_graph_k def _decode(self, latent_graph: jraph.GraphsTuple) -> jraph.GraphsTuple: """Decodes from the latent graph.""" return self._decoder_network(latent_graph)
inverse_design-main
src/graph_network.py
""" Create and populate a minimal PostgreSQL schema for full text search """ import sqlite3 import glob import os import re import argparse parser = argparse.ArgumentParser() parser.add_argument("--output", type=str, help="Path to write SQLite3 search index") parser.add_argument("--debug", type=bool, help="Debug mode") parser.add_argument('input', type=str, help="Path to input directory of Markdown files") args = parser.parse_args() DB = sqlite3.connect(database=args.output) DB.text_factory = str path = args.input def debug(msg): if args.debug: print(msg) srcLinkPattern = re.compile('<a class="entityLink".*</a>') def makeSearchText(section): return buffer(re.sub(srcLinkPattern, "", section)) def sections(path): pattern = re.compile('<a (name|id)="(.*)"></a>') for packageName in os.listdir(path): for filePath in glob.glob(os.path.join(path, packageName, "*.md")): debug("Indexing " + filePath) with open(filePath, 'r') as f: section = "" tag = packageName + "." + os.path.basename(filePath) + ".dok" for line in f.readlines(): result = pattern.match(line) if result: section = makeSearchText(section) yield packageName, tag, section tag = result.group(2) section = "" else: section += line section = makeSearchText(section) yield packageName, tag, section def load_db(): """Add sample data to the database""" ins = """INSERT INTO fulltext_search(package, tag, doc) VALUES(?, ?, ?);""" for (packageName, tag, section) in sections(path): DB.execute(ins, (packageName, tag, section)) DB.commit() def init_db(): """Initialize our database""" DB.execute("DROP TABLE IF EXISTS fulltext_search") DB.execute("""CREATE VIRTUAL TABLE fulltext_search USING fts4( id SERIAL, package TEXT, tag TEXT, doc TEXT, tokenize=porter );""") if __name__ == "__main__": init_db() load_db() DB.close()
torch-dokx-master
dokx-search/dokx-build-search-index.py
# Based on http://www.jejik.com/articles/2007/02/a_simple_unix_linux_daemon_in_python/ # By Sander Marechal (public domain) import sys, os, time, atexit from signal import SIGTERM class Daemon: """ A generic daemon class. Usage: subclass the Daemon class and override the run() method """ def __init__(self, pidfile, stdin='/dev/null', stdout='/dev/null', stderr='/dev/null'): self.stdin = stdin self.stdout = stdout self.stderr = stderr self.pidfile = pidfile def daemonize(self): """ do the UNIX double-fork magic, see Stevens' "Advanced Programming in the UNIX Environment" for details (ISBN 0201563177) http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16 """ try: pid = os.fork() if pid > 0: # exit first parent sys.exit(0) except OSError, e: sys.stderr.write("fork #1 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # decouple from parent environment os.chdir("/") os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # exit from second parent sys.exit(0) except OSError, e: sys.stderr.write("fork #2 failed: %d (%s)\n" % (e.errno, e.strerror)) sys.exit(1) # redirect standard file descriptors sys.stdout.flush() sys.stderr.flush() si = file(self.stdin, 'r') so = file(self.stdout, 'a+') se = file(self.stderr, 'a+', 0) os.dup2(si.fileno(), sys.stdin.fileno()) os.dup2(so.fileno(), sys.stdout.fileno()) os.dup2(se.fileno(), sys.stderr.fileno()) # write pidfile atexit.register(self.delpid) pid = str(os.getpid()) file(self.pidfile,'w+').write("%s\n" % pid) def delpid(self): os.remove(self.pidfile) def start(self): """ Start the daemon """ # Check for a pidfile to see if the daemon already runs try: pf = file(self.pidfile,'r') pid = int(pf.read().strip()) pf.close() except IOError: pid = None if pid: message = "pidfile %s already exist. Daemon already running?\n" sys.stderr.write(message % self.pidfile) sys.exit(1) # Start the daemon self.daemonize() self.run() def stop(self): """ Stop the daemon """ # Get the pid from the pidfile try: pf = file(self.pidfile,'r') pid = int(pf.read().strip()) pf.close() except IOError: pid = None if not pid: message = "pidfile %s does not exist. Daemon not running?\n" sys.stderr.write(message % self.pidfile) return # not an error in a restart # Try killing the daemon process try: while 1: os.kill(pid, SIGTERM) time.sleep(0.1) except OSError, err: err = str(err) if err.find("No such process") > 0: if os.path.exists(self.pidfile): os.remove(self.pidfile) else: print str(err) sys.exit(1) def restart(self): """ Restart the daemon """ self.stop() self.start() def run(self): """ You should override this method when you subclass Daemon. It will be called after the process has been daemonized by start() or restart(). """
torch-dokx-master
dokx-search/dokxDaemon.py
#!/usr/bin/env python2.7 """ Simple search UI for SQLite3 full-text search """ import json import flask import os import sys import urllib from jinja2 import Environment, FileSystemLoader import argparse from dokxDaemon import Daemon parser = argparse.ArgumentParser() parser.add_argument("command", type=str, help="start|restart|stop") parser.add_argument("--docs", type=str, default=None, help="Path to HTML docs") parser.add_argument("--debug", type=bool, default=False, help="Debug mode") args = parser.parse_args() JSON_HOST = "http://localhost:8130" # Where the restserv service is running PORT = 5000 env = Environment(loader=FileSystemLoader(searchpath="%s/templates" % os.path.dirname((os.path.realpath(__file__)))), trim_blocks=True) app = flask.Flask(__name__, static_folder=args.docs, static_url_path='') @app.route("/") def root(): return app.send_static_file("index.html") @app.route("/search") def search(): """Simple search for terms, with optional limit and paging""" query = flask.request.args.get('query', '') if not query: template = env.get_template('index.html') return template.render() page = flask.request.args.get('page', '') jsonu = u"%s/search/%s/" % (JSON_HOST, urllib.quote_plus(query.encode('utf-8'))) if page: jsonu = u"%s%d" % (jsonu, int(page)) res = json.loads(urllib.urlopen(jsonu).read().decode('utf-8')) template = env.get_template('results.html') return(template.render( terms=res['query'].replace('+', ' '), results=res, request=flask.request )) class WebDaemon(Daemon): def run(self): app.run(port=PORT) if __name__ == "__main__": app.debug = args.debug pidFile = sys.argv[0] + ".pid" daemon = WebDaemon(pidFile) if args.command == 'start': daemon.start() elif args.command == 'restart': daemon.restart() elif args.command == 'stop': daemon.stop()
torch-dokx-master
dokx-search/web/dokx-service-web.py
#!/usr/bin/env python2.7 """ Serve up search results as JSON via REST requests Provide JSON results including the ID and the search snippet for given search requests. Ultimately needs to support advanced search as well, including NOT operators and wildcards. """ import json import sqlite3 import flask import urllib import argparse import os import sys from dokxDaemon import Daemon parser = argparse.ArgumentParser() parser.add_argument("command", type=str, help="start|restart|stop") parser.add_argument("--database", type=str, default=None, help="Path to SQLite3 search index") parser.add_argument("--debug", type=bool, default=False, help="Debug mode") args = parser.parse_args() # Port on which JSON should be served up PORT = 8130 app = flask.Flask(__name__) @app.route("/search/<query>/") @app.route("/search/<query>/<int:page>") @app.route("/search/<query>/<int:page>/<int:limit>") def search(query, page=0, limit=10): """Return JSON formatted search results, including snippets and facets""" query = urllib.unquote(query) results = __get_ranked_results(query, limit, page) count = __get_result_count(query) resj = json.dumps({ 'query': query, 'results': results, 'meta': { 'total': count, 'page': page, 'limit': limit, 'results': len(results) } }) return flask.Response(response=str(resj), mimetype='application/json') def __get_ranked_results(query, limit, page): """Simple search for terms, with optional limit and paging""" DB = sqlite3.connect(args.database) sql = """ SELECT id, package, tag, doc, snippet(fulltext_search, "<b>", "</b>", "<b>...</b>", -1, -40) AS rank FROM fulltext_search WHERE fulltext_search MATCH ? ORDER BY rank DESC LIMIT ? OFFSET ? """ cur = DB.execute(sql, (query, limit, page*limit)) results = [] for row in cur: results.append({ 'id': row[0], 'package' : row[1], 'tag' : row[2], 'snippets': [row[4]] }) return results def __get_result_count(query): """Gather count of matching results""" DB = sqlite3.connect(args.database) sql = """ SELECT COUNT(*) AS rescnt FROM fulltext_search WHERE fulltext_search MATCH ? """ cur = DB.execute(sql, (query,)) count = cur.fetchone() return count[0] class RestDaemon(Daemon): def run(self): app.run(port=PORT) if __name__ == "__main__": app.debug = args.debug pidFile = sys.argv[0] + ".pid" daemon = RestDaemon(pidFile) if args.command == 'start': daemon.start() elif args.command == 'restart': daemon.restart() elif args.command == 'stop': daemon.stop()
torch-dokx-master
dokx-search/rest/dokx-service-rest.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from pytorch_lightning.utilities import migration import torch data_directory = os.environ['BOP_DATA_DIR'] checkpoint_path = os.path.join( data_directory, 'models', 'ycbv-jwpvdij1.compact.ckpt' ) with migration.pl_legacy_patch(): checkpoint = torch.load(checkpoint_path) checkpoint['pytorch-lightning_version'] = '1.6.5' migration.migrate_checkpoint(checkpoint) torch.save(checkpoint, checkpoint_path)
threednel-main
upgrade_checkpoint.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import setuptools NAME = 'threednel' VERSION = '0.0.1' if __name__ == '__main__': setuptools.setup( name=NAME, version=VERSION, packages=setuptools.find_namespace_packages(include=['threednel.*']), )
threednel-main
setup.py
"""Script to reproduce the 6D object pose estimation results on YCB-V.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import json import os import jax import joblib import numpy as np import taichi as ti from absl import app, flags from threednel.bop.data import BOPTestDataset, RGBDImage from threednel.bop.detector import Detector from threednel.bop.results import generate_csv from threednel.third_party.surfemb.utils import timer from tqdm import tqdm _EXPERIMENT_NAME = flags.DEFINE_string( 'experiment_name', None, 'Name of the experiment.' ) _SCALE_FACTOR = flags.DEFINE_float( 'scale_factor', 0.25, 'Scale factor to run detection on.' ) _FILL_IN_DEPTH = flags.DEFINE_boolean( 'fill_in_depth', True, 'Whether to fill in missing depth.' ) _N_PASSES_POSE_HYPOTHESES = flags.DEFINE_integer( 'n_passes_pose_hypotheses', 1, 'Number of passes to propose to pose hypotheses.', ) _N_PASSES_ICP = flags.DEFINE_integer( 'n_passes_icp', 1, 'Number of passes to propose to ICP poses.' ) _N_PASSES_FINETUNE = flags.DEFINE_integer( 'n_passes_finetune', 1, 'Number of passes to do finetuning.' ) _USE_CROPS = flags.DEFINE_boolean( 'use_crops', True, 'Whether to use crop in generating pose hypotheses.' ) def main(_): ti.init(arch=ti.cuda) experiment_name = _EXPERIMENT_NAME.value data_directory = os.environ['BOP_DATA_DIR'] data = BOPTestDataset( data_directory=data_directory, load_detector_crops=True, ) detector = Detector( data_directory=data_directory, n_passes_pose_hypotheses=_N_PASSES_POSE_HYPOTHESES.value, n_passes_icp=_N_PASSES_ICP.value, n_passes_finetune=_N_PASSES_FINETUNE.value, use_crops=_USE_CROPS.value, ) flag_values = jax.tree_util.tree_map( lambda x: str(x), dict( experiment_name=_EXPERIMENT_NAME.value, scale_factor=_SCALE_FACTOR.value, fill_in_depth=_FILL_IN_DEPTH.value, n_passes_pose_hypotheses=_N_PASSES_POSE_HYPOTHESES.value, n_passes_icp=_N_PASSES_ICP.value, n_passes_finetune=_N_PASSES_FINETUNE.value, use_crops=_USE_CROPS.value, ), ) results_hash = hashlib.md5(json.dumps(flag_values).encode('utf-8')).hexdigest() results_directory = os.path.join( data_directory, 'results', f'pose_estimates_{experiment_name}_{results_hash}', ) print(f'Working on results directory {results_directory}.') if not os.path.exists(results_directory): os.makedirs(results_directory) joblib.dump(flag_values, os.path.join(results_directory, 'flags.joblib')) with open(os.path.join(results_directory, 'flags.json'), 'w') as f: json.dump(flag_values, f) for scene_id in np.sort(np.unique(data.test_targets['scene_id'])): test_scene = data[scene_id] for img_id in test_scene.img_indices: print(f'Working on scene {scene_id}, image {img_id}.') results_fname = os.path.join( results_directory, f'scene_{scene_id}_img_{img_id}.joblib', ) if os.path.exists(results_fname): continue bop_img = test_scene[img_id] test_img = RGBDImage( rgb=bop_img.rgb, depth=bop_img.depth, intrinsics=bop_img.intrinsics, bop_obj_indices=np.array(bop_img.bop_obj_indices), fill_in_depth=_FILL_IN_DEPTH.value, max_depth=1260.0, annotations=bop_img.annotations, ) with timer(f'Inference for scene {scene_id}, image {img_id}'): detection_results = detector.detect( img=test_img, key=jax.random.PRNGKey(np.random.randint(0, 100000)), scale_factor=_SCALE_FACTOR.value, ) joblib.dump( dict( bop_obj_indices=test_img.bop_obj_indices, gt_poses=bop_img.get_gt_poses(), initial_poses=detection_results.initial_poses, inferred_poses=detection_results.inferred_poses, ), results_fname, ) predictions = [] voting_predictions = [] for scene_id in np.sort(np.unique(data.test_targets['scene_id'])): print(f'Working on scene {scene_id}.') test_scene = data[scene_id] for img_id in tqdm(test_scene.img_indices): results_fname = os.path.join( results_directory, f'scene_{scene_id}_img_{img_id}.joblib', ) if not os.path.exists(results_fname): continue with open(results_fname, 'rb') as f: results = joblib.load(f) for obj_idx, bop_obj_idx in enumerate(results['bop_obj_indices']): predictions.append( dict( scene_id=scene_id, im_id=img_id, obj_id=bop_obj_idx, score=-1, R=results['inferred_poses'][obj_idx][:3, :3], t=results['inferred_poses'][obj_idx][:3, -1], time=-1, ) ) voting_predictions.append( dict( scene_id=scene_id, im_id=img_id, obj_id=bop_obj_idx, score=-1, R=results['initial_poses'][obj_idx][:3, :3], t=results['initial_poses'][obj_idx][:3, -1], time=-1, ) ) generate_csv( predictions, os.path.join( results_directory, ( f'ycbv-threednel-{str(experiment_name).replace("_", "-")}-{results_hash}_ycbv-test.csv' ), ), ) generate_csv( voting_predictions, os.path.join( results_directory, ( f'ycbv-voting-{str(experiment_name).replace("_", "-")}-{results_hash}_ycbv-test.csv' ), ), ) if __name__ == '__main__': app.run(main)
threednel-main
scripts/pose_estimation.py
"""Module containing ICP-related utils.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Callable import numba import numpy as np from scipy.spatial import KDTree def apply_transform(coords: np.array, transform: np.ndarray) -> np.ndarray: """Apply transformation matrix to coordinates. Args: coords: Array of shape (..., 3) transform: Array of shape (4, 4) Returns: np.ndarray: Array of shape (..., 3), transformed coordinates. """ coords = np.einsum( 'ij,...j->...i', transform, np.concatenate([coords, np.ones(coords.shape[:-1] + (1,))], axis=-1), )[..., :-1] return coords @numba.jit(nopython=True, cache=True, nogil=True) def get_transform_from_cloud_to_target( A: np.ndarray, B: np.ndarray ) -> np.ndarray: """Estimate the best rigid transform to transform a point cloud A to a point cloud B. Args: A: A source point cloud. B: A target point cloud. Returns: The estimated rigid transform. """ assert A.shape == B.shape # find mean column wise centroid_A = np.array( [[np.mean(A[:, 0]), np.mean(A[:, 1]), np.mean(A[:, 2])]] ) centroid_B = np.array( [[np.mean(B[:, 0]), np.mean(B[:, 1]), np.mean(B[:, 2])]] ) # subtract mean Am = A - centroid_A Bm = B - centroid_B H = np.transpose(Am) @ Bm # find rotation U, S, Vt = np.linalg.svd(H) R = Vt.T @ U.T # special reflection case if np.linalg.det(R) < 0: Vt[2, :] *= -1 R = Vt.T @ U.T t = -R @ np.transpose(centroid_A) + np.transpose(centroid_B) transform = np.eye(4) transform[:3, :3] = R transform[:3, 3] = t.ravel() return transform @dataclass class ICP: """Class implementing iterative closest point (ICP). target_cloud: Array of shape (n_target_points, 3). Target point cloud. render: function. Args: pose: Array of shape (4, 4). Pose of the object. obj_idx: object index in the scene. Returns: cloud: Array of shape (n_points, 3). Rendered point cloud of the object. model_mask: Array of shape (H, W). Model mask. n_outer_iterations: Number of outer iterations. We call the renderer once in each outer iteration. n_inner_iterations: Number of inner iterations. We update the rendered cloud instead of call the renderer in each inner iteration. """ target_cloud: np.ndarray render: Callable n_outer_iterations: int = 5 n_inner_iterations: int = 2 def __post_init__(self): self.target_cloud = np.array(self.target_cloud) self.target_tree = KDTree(self.target_cloud) def _update_pose_and_cloud(self, pose: np.ndarray, cloud: np.ndarray): """Locally update object pose and point cloud without re-rendering.""" _, idxs = self.target_tree.query(cloud) target_neighbors = self.target_cloud[idxs, :] transform = get_transform_from_cloud_to_target( cloud.astype(np.float32), target_neighbors.astype(np.float32) ) pose = transform.dot(pose) cloud = apply_transform(cloud, transform) return pose, cloud def _update_pose(self, pose: np.ndarray, obj_idx: int): """Render and run ICP to update object pose.""" cloud = self.render(pose, obj_idx)[0] for _ in range(self.n_inner_iterations): pose, cloud = self._update_pose_and_cloud(pose, cloud) return pose def fit(self, pose: np.ndarray, obj_idx: int): """Function to run ICP.""" for _ in range(self.n_outer_iterations): pose = self._update_pose(pose, obj_idx) return pose
threednel-main
threednel/icp.py
"""Module implementing 3DNEL evaluation.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import os from dataclasses import dataclass from typing import Tuple import jax import jax.dlpack import jax.numpy as jnp import numpy as np import torch from jax.scipy.special import logsumexp from threednel.bop.data import RGBDImage from threednel.third_party.surfemb.surface_embedding import \ SurfaceEmbeddingModel @dataclass class JAXNDL: """JAX-based implementation of 3DNEL evaluation.""" model: SurfaceEmbeddingModel n_objs: int r: float outlier_prob: float outlier_volume: float outlier_scaling: float filter_shape: Tuple[int, int] data_directory: str = os.environ['BOP_DATA_DIR'] def __post_init__(self): self.p_background = self.outlier_prob / self.outlier_volume * self.outlier_scaling self.indices = list(range(self.n_objs)) @functools.partial( jnp.vectorize, signature='(h,w,l),(h,w,m),(h,w)->()', excluded=(3, 4, 5, 6), ) def ndl_from_rendered_data( model_xyz: jnp.ndarray, key_embeddings: jnp.ndarray, obj_ids: jnp.ndarray, data_xyz: jnp.ndarray, query_embeddings: jnp.ndarray, log_normalizers: jnp.ndarray, data_mask: jnp.ndarray, ): model_mask = obj_ids >= 0 p_foreground = (1.0 - self.outlier_prob) / model_mask.sum() log_prob = neural_embedding_likelihood( data_xyz=data_xyz, query_embeddings=query_embeddings, log_normalizers=log_normalizers, model_xyz=model_xyz, key_embeddings=key_embeddings, model_mask=model_mask, obj_ids=obj_ids, data_mask=data_mask, r=self.r, p_background=self.p_background, p_foreground=p_foreground, filter_shape=self.filter_shape, ) return log_prob self.ndl_from_rendered_data = jax.jit(ndl_from_rendered_data) def set_for_new_img( self, img: RGBDImage, query_embeddings: np.ndarray, log_normalizers: np.ndarray, data_mask: np.ndarray, scale_factor: float, ): """Image-specific updates to allow 3DNEL evaluations on a new image.""" self.initialized = True assert len(img.bop_obj_indices) == self.n_objs self.renderer = img.get_renderer(self.data_directory, scale_factor) shape = (self.renderer.height, self.renderer.width) data_xyz = img.unproject() self.data_xyz = jax.image.resize( data_xyz, shape=shape + data_xyz.shape[2:], method='nearest', ) self.query_embeddings = jax.image.resize( query_embeddings, shape=shape + query_embeddings.shape[2:], method='nearest', ) self.log_normalizers = jax.image.resize( log_normalizers, shape=shape + log_normalizers.shape[2:], method='nearest', ) self.data_mask = jax.image.resize(data_mask, shape=shape, method='nearest') self.bop_obj_indices = jax.device_put(np.array(img.bop_obj_indices)) def compute_likelihood( self, poses: np.ndarray, ): """Wrapper function to compute likelihoods of a given set of poses. Args: poses: Array of shape (n_objs, n_particles, 4, 4) The set of pose hypotheses we are going to score Returns: The likelihoods of the given set of poses. """ assert self.initialized rendered_data = self.renderer.render(poses, self.indices) key_embeddings = torch.zeros( rendered_data.obj_coords.shape[:-1] + (self.model.emb_dim,), device=self.model.device, ) obj_coords_torch = torch.from_dlpack(jax.dlpack.to_dlpack(rendered_data.obj_coords)) obj_ids_torch = torch.from_dlpack(jax.dlpack.to_dlpack(rendered_data.obj_ids)) for ii in range(len(self.bop_obj_indices)): mask = obj_ids_torch == ii key_embeddings[mask] = self.model.infer_mlp( obj_coords_torch[mask], int(self.bop_obj_indices[ii]) ) key_embeddings = jax.dlpack.from_dlpack(torch.to_dlpack(key_embeddings)) log_prob = self.ndl_from_rendered_data( rendered_data.model_xyz, key_embeddings, rendered_data.obj_ids, self.data_xyz, self.query_embeddings, self.log_normalizers, self.data_mask, ) return log_prob @functools.partial(jax.jit, static_argnames='filter_shape') def neural_embedding_likelihood( data_xyz: jnp.ndarray, query_embeddings: jnp.ndarray, log_normalizers: jnp.ndarray, model_xyz: jnp.ndarray, key_embeddings: jnp.ndarray, model_mask: jnp.ndarray, obj_ids: jnp.ndarray, data_mask: jnp.ndarray, r: float, p_background: float, p_foreground: float, filter_shape: Tuple[int, int], ) -> jnp.ndarray: """Function implementing 3DNEL evalaution. Args: data_xyz: Array of shape (H, W, 3). Observed point cloud organized as an image. query_embeddings: Array of shape (H, W, n_objs, d). Query embeddings for each observed pixel using models from different objects. log_normalizers: Array of shape (H, W, n_objs). The log normalizers for each pixel given each object model model_xyz: Array of shape (H, W, 3). Rendered point cloud organized as an image. key_embeddings: Array of shape (H, W, d). Key embeddings organized as an image. model_mask: Array of shape (H, W). Mask indicating relevant pixels from rendering. obj_ids: Array of shape (H, W). The object id of each pixel. data_mask: Array of shape (H, W). Mask indicating the relevant set of pixels. r: Radius of the ball. p_background: background probability. p_foreground: foreground probability. filter_shape: used to restrict likelihood evaluation to a 2D neighborhood. Returns: The likelihood as evaluated using 3DNEL. """ obj_ids = jnp.round(obj_ids).astype(jnp.int32) padding = [ (filter_shape[ii] // 2, filter_shape[ii] - filter_shape[ii] // 2 - 1) for ii in range(len(filter_shape)) ] model_xyz_padded = jnp.pad(model_xyz, pad_width=padding + [(0, 0)]) key_embeddings_padded = jnp.pad(key_embeddings, pad_width=padding + [(0, 0)]) model_mask_padded = jnp.pad(model_mask, pad_width=padding) obj_ids_padded = jnp.pad(obj_ids, pad_width=padding) @functools.partial( jnp.vectorize, signature='(m),(n),(o,d),(o)->()', ) def log_likelihood_for_pixel( ij: jnp.ndarray, data_xyz_for_pixel: jnp.ndarray, query_embeddings_for_pixel: jnp.ndarray, log_normalizers_for_pixel: jnp.ndarray, ): """Function to evaluate the log-likelihood for a given pixel. Args: ij: Array of shape (2,). The i, j index of the pixel. data_xyz_for_pixel: The camera frame coordinate of the point at the pixel. query_embeddings_for_pixel: The query embeddings at the pixel. log_normalizers_for_pixel: The log_normalizers at the pixel. Returns: The log likelihood for the given pixel. """ model_xyz_patch = jax.lax.dynamic_slice( model_xyz_padded, jnp.array([ij[0], ij[1], 0]), (filter_shape[0], filter_shape[1], 3), ) key_embeddings_patch = jax.lax.dynamic_slice( key_embeddings_padded, jnp.array([ij[0], ij[1], 0]), (filter_shape[0], filter_shape[1], key_embeddings.shape[-1]), ) model_mask_patch = jax.lax.dynamic_slice(model_mask_padded, ij, filter_shape) obj_ids_patch = jax.lax.dynamic_slice(obj_ids_padded, ij, filter_shape) log_prob_correspondence = ( jnp.sum( query_embeddings_for_pixel[obj_ids_patch] * key_embeddings_patch, axis=-1, ) - log_normalizers_for_pixel[obj_ids_patch] ).ravel() distance = jnp.linalg.norm(data_xyz_for_pixel - model_xyz_patch, axis=-1).ravel() a = jnp.concatenate([jnp.zeros(1), log_prob_correspondence]) b = jnp.concatenate([ jnp.array([p_background]), jnp.where( jnp.logical_and(distance <= r, model_mask_patch.ravel() > 0), 3 * p_foreground / (4 * jnp.pi * r**3), 0.0, ), ]) log_mixture_prob = logsumexp(a=a, b=b) return log_mixture_prob log_mixture_prob = log_likelihood_for_pixel( jnp.moveaxis(jnp.mgrid[: data_xyz.shape[0], : data_xyz.shape[1]], 0, -1), data_xyz, query_embeddings, log_normalizers, ) return jnp.sum(jnp.where(data_mask, log_mixture_prob, 0.0))
threednel-main
threednel/ndl.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
threednel-main
threednel/__init__.py
"""Module containing distribution-related utilities.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import jax.numpy as jnp from tensorflow_probability.substrates import jax as tfp def quaternion_to_rotation_matrix(Q: jnp.ndarray) -> jnp.ndarray: """Covert a quaternion into a full three-dimensional rotation matrix. Args: Q: A 4 element array representing the quaternion (q0,q1,q2,q3) Returns: A 3x3 element matrix representing the full 3D rotation matrix. This rotation matrix converts a point in the local reference frame to a point in the global reference frame. """ # Extract the values from Q q0 = Q[0] q1 = Q[1] q2 = Q[2] q3 = Q[3] # First row of the rotation matrix r00 = 2 * (q0 * q0 + q1 * q1) - 1 r01 = 2 * (q1 * q2 - q0 * q3) r02 = 2 * (q1 * q3 + q0 * q2) # Second row of the rotation matrix r10 = 2 * (q1 * q2 + q0 * q3) r11 = 2 * (q0 * q0 + q2 * q2) - 1 r12 = 2 * (q2 * q3 - q0 * q1) # Third row of the rotation matrix r20 = 2 * (q1 * q3 - q0 * q2) r21 = 2 * (q2 * q3 + q0 * q1) r22 = 2 * (q0 * q0 + q3 * q3) - 1 # 3x3 rotation matrix rot_matrix = jnp.array([[r00, r01, r02], [r10, r11, r12], [r20, r21, r22]]) return rot_matrix def gaussian_vmf( key: jnp.ndarray, var: jnp.ndarray, concentration: float ) -> jnp.ndarray: """Function to sample from the a GaussianVMF distribution.""" translation = tfp.distributions.MultivariateNormalFullCovariance( loc=jnp.zeros(3), covariance_matrix=jnp.diag(var) ).sample(seed=key) quat = tfp.distributions.VonMisesFisher( jnp.array([1.0, 0.0, 0.0, 0.0]), concentration ).sample(seed=key) rot_matrix = quaternion_to_rotation_matrix(quat) return jnp.vstack([ jnp.hstack([rot_matrix, translation.reshape(3, 1)]), jnp.array([0.0, 0.0, 0.0, 1.0]), ]) def gaussian_vmf_sample( key: jnp.ndarray, pose_mean: jnp.ndarray, var: jnp.ndarray, concentration: jnp.ndarray, ) -> jnp.ndarray: """Function to sample from a GaussianVMF distribution centered at pose_mean.""" return pose_mean.dot(gaussian_vmf(key, var, concentration)) def gaussian_sample( key: jnp.ndarray, pose_mean: jnp.ndarray, var: jnp.ndarray ) -> jnp.ndarray: """Sample from a Gaissuain distribution centered at pose_mean.""" translation = tfp.distributions.MultivariateNormalFullCovariance( loc=jnp.zeros(3), covariance_matrix=jnp.diag(var) ).sample(seed=key) return pose_mean.at[:3, -1].add(translation)
threednel-main
threednel/distributions.py
"""Module implementing the inference program of 3DNEL MSIGP.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import functools from typing import Callable, Optional, Sequence, Tuple import jax import jax.numpy as jnp import numpy as np from scipy.spatial.transform import Rotation from threednel.distributions import gaussian_vmf_sample from threednel.icp import ICP @functools.partial(jax.jit, static_argnames='n_samples') def generate_candidate_poses( key: jnp.ndarray, curr_poses: jnp.ndarray, idx: int, var: jnp.ndarray, concentration: float, n_samples: int, ): """Randomly sample a set of candidate poses around the current poses. Args: key: PRNGKey curr_poses: Array of shape (n_objs, 4, 4). Current poses idx: Index of the object for which we are generating candidate poses var: Array of shape (3,). Diagonal for the covariance matrix. concentration: concentration. Parameter for Gaussian VMF n_samples: n_samples Returns: The splitted PRNGKey and the generated candidate poses. """ keys = jax.random.split(key, n_samples + 1) key, subkeys = keys[0], keys[1:] sampled_poses = jax.vmap( gaussian_vmf_sample, in_axes=(0, None, None, None), out_axes=0 )(subkeys, curr_poses[idx], var, concentration) candidate_poses = ( jnp.tile(curr_poses[:, None], (1, n_samples, 1, 1)) .at[idx] .set(sampled_poses) ) return key, candidate_poses def move_to_candidate_poses( inferred_poses: jnp.ndarray, candidate_poses: jnp.ndarray, compute_likelihood: Callable, ) -> jnp.ndarray: """Function to update the current poses given a set of candidate poses. We identify the candidate pose with the highest likelihood, and update the current inferred psoes to the candidate pose with highest likelihood if it increases the likelihood. Args: inferred_poses: Current inferred poses for all objects. candidate_poses: A set of candidate poses. compute_likelihood: A function evaluating the likelihood of different candidate poses. Returns: The updated inferred poses. """ candidate_poses = jnp.concatenate( [inferred_poses[:, None], candidate_poses], axis=1 ) log_likelihoods = compute_likelihood(candidate_poses) inferred_poses = candidate_poses[:, jnp.argmax(log_likelihoods)] return inferred_poses @dataclass class InferenceProgram: """The inference program for 3DNEL MSIGP. Attributes: n_passes_pose_hypotheses: Number of times to to through pose hypotheses. n_passes_icp: Number of times to make ICP moves. n_passes_finetune: Number of times to do random walk finetuning. n_samples_per_iteration: Number of candidate poses to evaluate in parallel per iteration. var_concentration_list: List of variance and concentration parameters to use for sampling candidate poses. icp_var_concentration: Variance and concentration parameters for sampling candidate psoes around ICP results. use_flip: Whether to use flip proposals. """ n_passes_pose_hypotheses: int = 1 n_passes_icp: int = 1 n_passes_finetune: int = 1 n_samples_per_iteration: int = 80 var_concentration_list: Sequence[Tuple[float, float]] = ( (10.0, 300.0), (10.0, 800.0), (0.01, 800.0), (2.0, 2000.0), ) icp_var_concentration: Tuple[float, float] = (10.0, 800.0) use_flip: bool = True def __post_init__(self): flip_transforms = [] if self.use_flip: for dimension in range(3): euler = np.zeros(3) euler[dimension] = np.pi transform = np.eye(4) transform[:3, :3] = Rotation.from_euler('xyz', euler).as_matrix() flip_transforms.append(transform) flip_transforms.append(np.eye(4)) self.flip_transforms = jax.device_put(flip_transforms) def infer( self, key: jnp.ndarray, initial_poses: np.ndarray, pose_hypotheses: Sequence[np.ndarray], compute_likelihood: Callable, icp: Optional[ICP] = None, ) -> jnp.ndarray: """Returns the inferred object poses using the inference program. Args: key: PRNGKey initial_poses: Array of shape (n_objs, 4, 4). The initial pose estimates. pose_hypotheses: Each element is an array of shape (n_hypotheses, 4, 4), and contains the pose hypotheses for a particular object. compute_likelihood: Function to evaluate the likelihood of given object poses. icp: Optional module implementing ICP-based updates. """ n_objs = initial_poses.shape[0] assert len(pose_hypotheses) == n_objs inferred_poses = jax.device_put(initial_poses) pose_hypotheses = jax.device_put(pose_hypotheses) for _ in range(self.n_passes_pose_hypotheses): for obj_idx in np.random.permutation(n_objs): candidate_poses = ( jnp.tile( inferred_poses[:, None], (1, pose_hypotheses[obj_idx].shape[0], 1, 1), ) .at[obj_idx] .set(pose_hypotheses[obj_idx]) ) inferred_poses = move_to_candidate_poses( inferred_poses, candidate_poses, compute_likelihood ) if icp is not None: var, concentration = self.icp_var_concentration for _ in range(self.n_passes_icp): for obj_idx in np.random.permutation(n_objs): for dimension in range(len(self.flip_transforms)): try: icp_pose = jax.device_put( icp.fit( inferred_poses[obj_idx].dot( self.flip_transforms[dimension] ), obj_idx, ) ) except ZeroDivisionError: print('ICP crashed. Using original object pose...') icp_pose = inferred_poses[obj_idx] key, candidate_poses = generate_candidate_poses( key, inferred_poses.at[obj_idx].set(icp_pose), obj_idx, var * jnp.ones(3), concentration, self.n_samples_per_iteration, ) inferred_poses = move_to_candidate_poses( inferred_poses, candidate_poses, compute_likelihood ) for _ in range(self.n_passes_finetune): for var, concentration in self.var_concentration_list: for obj_idx in np.random.permutation(n_objs): key, candidate_poses = generate_candidate_poses( key, inferred_poses, obj_idx, var * jnp.ones(3), concentration, self.n_samples_per_iteration, ) inferred_poses = move_to_candidate_poses( inferred_poses, candidate_poses, compute_likelihood ) return inferred_poses
threednel-main
threednel/inference_program.py
"""Module containing utils for discretizing the rotation space.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import jax import jax.numpy as jnp import numpy as np from scipy.spatial.transform import Rotation as R def fibonacci_sphere(n_points: int = 1000): """Evenly distribute points on a sphere using fibonacci sphere. https://extremelearning.com.au/evenly-distributing-points-on-a-sphere/ Args: n_points: Number of samples on the sphere. Returns: n_points evenly distributed points on the sphere using fibonacci sphere. """ phi = np.pi * (3.0 - np.sqrt(5.0)) # golden angle in radians y = 1 - (np.arange(n_points) / (n_points - 1)) * 2 radius = np.sqrt(1 - y**2) theta = phi * np.arange(n_points) x = np.cos(theta) * radius z = np.sin(theta) * radius points = np.stack([x, y, z], axis=1) return points @jax.jit @functools.partial(jax.vmap, in_axes=(None, 0), out_axes=0) def get_rotation_vectors(source: jnp.ndarray, target: jnp.ndarray): """Generate a rotation to rotate the source vector to the target vector. Args: source: Array of shape (3,) representing the source vector. target: Array of shape (3,) representing the target vector. Returns: Array of shape (3,), representing the rotation vector. """ perp = jnp.cross(source, target) perp = perp / jnp.linalg.norm(perp) theta = jnp.arctan2(target @ jnp.cross(perp, source), target @ source) rotvec = theta * perp return rotvec def generate_prototype_rotations( num_points_on_sphere: int = 200, num_inplane_rotations: int = 32, principal_axis: jnp.ndarray = jnp.array([0, 0, 1.0]), ) -> R: """Generate a set of prototype rotations to discretize the rotation space. Each prototype rotation first rotates the given principal axis to a direction specified by a point on the unit sphere, and then rotates the object around the resulting axis by an in-plane rotation. Args: num_points_on_sphere (int): num_points_on_sphere num_inplane_rotations (int): num_inplane_rotations principal_axis (jnp.ndarray): principal_axis Returns: R: """ points_on_sphere = fibonacci_sphere(num_points_on_sphere) rotation_vectors = get_rotation_vectors(principal_axis, points_on_sphere) rotate_z = R.from_rotvec(rotation_vectors) prototype_rotations = [] for ii in range(points_on_sphere.shape[0]): prototype_rotations.append( ( R.from_rotvec( np.linspace( 0, 2 * np.pi, num_inplane_rotations, endpoint=False )[:, None] * points_on_sphere[ii] ) * rotate_z[ii] ).as_quat() ) prototype_rotations = R.from_quat(np.concatenate(prototype_rotations, axis=0)) return prototype_rotations
threednel-main
threednel/rotation.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
threednel-main
threednel/renderer/__init__.py
"""Module containing camera-related utilities.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from typing import NamedTuple import numpy as np class CameraIntrinsics(NamedTuple): """Container class for camera intrinsics matrix. Attributes: height: Height of the image width: Width of the image fx: Focal length in the x direction fy: Focal length in the y direction cx: Principal point in the x direction cy: Principal point in the y direction near: Near plane distance far: Far plane distance """ height: int width: int fx: float fy: float cx: float cy: float near: float = 10.0 far: float = 10000.0 @staticmethod def from_matrix( shape: tuple[int, int], intrinsics: np.ndarray ) -> CameraIntrinsics: """Construct a CameraIntrinsics object from a camera intrinsics matrix.""" return CameraIntrinsics( height=shape[0], width=shape[1], fx=intrinsics[0, 0], fy=intrinsics[1, 1], cx=intrinsics[0, 2], cy=intrinsics[1, 2], ) @property def intrinsics_matrix(self) -> np.ndarray: """Returns the 3x3 camera intrinsics matrix.""" intrinsics = np.array( [[self.fx, 0, self.cx], [0, self.fy, self.cy], [0, 0, 1]] ) return intrinsics def scale(self, scale_factor: float) -> CameraIntrinsics: """Returns the scaled CameraIntrinsics object.""" return CameraIntrinsics( height=int(np.round(self.height * scale_factor)), width=int(np.round(self.width * scale_factor)), fx=self.fx * scale_factor, fy=self.fy * scale_factor, cx=self.cx * scale_factor, cy=self.cy * scale_factor, near=self.near, far=self.far, ) def open_gl_projection_matrix( h: int, w: int, fx: float, fy: float, cx: float, cy: float, near: float, far: float, ) -> np.ndarray: """Function to create OpenGL projection matrix. Args: h: Height of the image w: Width of the image fx: Focal length in the x direction fy: Focal length in the y direction cx: Principal point in the x direction cy: Principal point in the y direction near: Near plane distance far: Far plane distance Returns: OpenGL projection matrix. """ # transform from cv2 camera coordinates to opengl (flipping sign of y and z) view = np.eye(4) view[1:3] *= -1 # see http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/ persp = np.zeros((4, 4)) persp[0, 0] = fx persp[1, 1] = fy persp[0, 2] = cx persp[1, 2] = cy persp[2, 2] = near + far persp[2, 3] = near * far persp[3, 2] = -1 # transform the camera matrix from cv2 to opengl as well (flipping sign of # y and z) persp[:2, 1:3] *= -1 # The origin of the image is in the *center* of the top left pixel. # The orthographic matrix should map the whole image *area* into the opengl # NDC, therefore the -.5 below: left, right, bottom, top = -0.5, w - 0.5, -0.5, h - 0.5 orth = np.array([ (2 / (right - left), 0, 0, -(right + left) / (right - left)), (0, 2 / (top - bottom), 0, -(top + bottom) / (top - bottom)), (0, 0, -2 / (far - near), -(far + near) / (far - near)), (0, 0, 0, 1), ]) return orth @ persp @ view def scale_camera_parameters( h: int, w: int, fx: float, fy: float, cx: float, cy: float, scaling_factor: float, ): """Function to scale camera parameters. Args: h: Height of the image w: Width of the image fx: Focal length in the x direction fy: Focal length in the y direction cx: Principal point in the x direction cy: Principal point in the y direction scaling_factor: The scaling factor we use to scale the camera parameters. Returns: Scaled camera parameters. """ new_fx = fx * scaling_factor new_fy = fy * scaling_factor new_cx = cx * scaling_factor new_cy = cy * scaling_factor new_h = int(np.round(h * scaling_factor)) new_w = int(np.round(w * scaling_factor)) return new_h, new_w, new_fx, new_fy, new_cx, new_cy
threednel-main
threednel/renderer/camera.py
"""Wrapper around https://github.com/nishadgothoskar/pararender. Efficient parallel rendering of a large number of 3D scene descriptions. """ # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import NamedTuple import jax.numpy as jnp class RenderedData(NamedTuple): """Container class holding the rendered results. Attributes: model_xyz: Coordinates of the rendered points in camera frame. obj_coords: Coordinates of the rendered points in object frame. obj_ids: Object ids of the rendered points. """ model_xyz: jnp.ndarray obj_coords: jnp.ndarray obj_ids: jnp.ndarray
threednel-main
threednel/renderer/parallel.py
"""Module containing classes for detector and detection results.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from dataclasses import dataclass from typing import Callable, Optional, Sequence, Tuple import jax import jax.dlpack import jax.numpy as jnp import numpy as np import torch from threednel import ndl from threednel.bop.bop_surfemb import BOPSurfEmb from threednel.bop.bop_vote import BOPVoting from threednel.bop.data import RGBDImage from threednel.bop.hypotheses import HypothesesGeneration from threednel.icp import ICP from threednel.inference_program import InferenceProgram from threednel.renderer.parallel import ParallelRenderer @dataclass class DetectionResults: """Container class for detection results. Attributes: initial_poses: Initial pose estimation. inferred_poses: Final inferred pose estimation. renderer: Constructed renderer. query_embeddings: Relevant query embeddings. data_mask: Data masks. pose_hypotheses: All the generated pose hypotheses. """ initial_poses: jnp.ndarray inferred_poses: jnp.ndarray renderer: ParallelRenderer query_embeddings: jnp.ndarray data_mask: jnp.ndarray pose_hypotheses: Sequence[jnp.ndarray] @dataclass class Detector: """A detector implementing 6D pose estimation using 3DNEL.""" data_directory: str = os.environ['BOP_DATA_DIR'] device: str = 'cuda:0' n_objs_range: Tuple[int, int] = (3, 7) # Params for hypotheses generation mask_threshold: float = 0.7 n_top_translations: int = 20 n_pose_hypotheses_per_crop: int = 80 maximum_filter_size: int = 10 n_top_rotations_per_translation: int = 10 n_pose_hypotheses_per_object: int = 30 default_scale: float = 1.5 use_crops: bool = True # Params for likelihood likelihood_factory: Callable = ndl.JAXNDL r: float = 5.0 outlier_prob: float = 0.01 outlier_volume: float = 1000.0**3 outlier_scaling: float = 1 / 70000 filter_shape: Tuple[int, int] = (10, 10) # Params for inference program n_passes_pose_hypotheses: int = 1 n_passes_icp: int = 1 n_passes_finetune: int = 1 n_samples_per_iteration: int = 80 var_concentration_list: Sequence[Tuple[float, float]] = ( (10.0, 300.0), (10.0, 800.0), (0.01, 800.0), (2.0, 2000.0), ) use_flip: bool = True # Params for ICP icp_var_concentration: Tuple[float, float] = (10.0, 800.0) icp_n_outer_iterations: int = 5 icp_n_inner_iterations: int = 2 def __post_init__(self): self.bop_surfemb = BOPSurfEmb( surfemb_model_path=os.path.join( self.data_directory, 'models', 'ycbv-jwpvdij1.compact.ckpt' ), device=self.device, ) self.bop_vote = BOPVoting(data_directory=self.data_directory, device=self.device) self.bop_vote.load_all_key_embeddings(self.bop_surfemb.surfemb_model) self.hypotheses_generation = HypothesesGeneration( bop_surfemb=self.bop_surfemb, bop_vote=self.bop_vote, mask_threshold=self.mask_threshold, n_top_translations=self.n_top_translations, n_pose_hypotheses_per_crop=self.n_pose_hypotheses_per_crop, maximum_filter_size=self.maximum_filter_size, n_top_rotations_per_translation=self.n_top_rotations_per_translation, n_pose_hypotheses_per_object=self.n_pose_hypotheses_per_object, default_scale=self.default_scale, use_crops=self.use_crops, ) self.likelihood_dict = {} for n_objs in range(self.n_objs_range[0], self.n_objs_range[1]): self.likelihood_dict[n_objs] = self.likelihood_factory( model=self.bop_surfemb.surfemb_model, n_objs=n_objs, r=self.r, outlier_prob=self.outlier_prob, outlier_volume=self.outlier_volume, outlier_scaling=self.outlier_scaling, filter_shape=self.filter_shape, data_directory=self.data_directory, ) self.inference_program = InferenceProgram( n_passes_pose_hypotheses=self.n_passes_pose_hypotheses, n_passes_icp=self.n_passes_icp, n_passes_finetune=self.n_passes_finetune, n_samples_per_iteration=self.n_samples_per_iteration, var_concentration_list=self.var_concentration_list, use_flip=self.use_flip, ) def detect( self, img: RGBDImage, key: jnp.ndarray, scale_factor: float = 0.25, initial_poses: Optional[jnp.ndarray] = None, ): """Function to do pose estimation on a given RGBDImage. Args: img: The input RGBDImage. key: JAX PRNGKey. scale_factor: Scale factor used to scale the input RGBDImage. initial_poses: Initial poses. If none, use the top scoring pose hypothesis for each object as the initial poses. Returns: Detection results on the input RGBDImage. """ ( query_embeddings, data_mask, pose_hypotheses, ) = self.hypotheses_generation.generate(img) log_normalizers = self.bop_vote.get_log_normalizers( torch.from_dlpack(jax.dlpack.to_dlpack(query_embeddings)), img.bop_obj_indices, squeeze=False, ) n_objs = len(img.bop_obj_indices) likelihood = self.likelihood_dict[n_objs] likelihood.set_for_new_img( img=img, query_embeddings=query_embeddings, log_normalizers=jax.dlpack.from_dlpack(torch.to_dlpack(log_normalizers)), data_mask=data_mask, scale_factor=scale_factor, ) def render(pose: np.ndarray, obj_idx: int): """Function to render an objectin a given pose and get the point cloud and object mask. Args: pose: Array of shape (4, 4). Pose of the object. obj_idx: object index in the scene. Returns: cloud: Array of shape (n_points, 3). Rendered point cloud of the object. """ pose = jax.device_put(pose) rendered_data = likelihood.renderer.render(pose[None, None], [obj_idx]) model_mask = np.array(rendered_data.obj_ids[0] >= 0) cloud = np.array(rendered_data.model_xyz[0])[model_mask] return cloud, model_mask self.icp = ICP( target_cloud=likelihood.data_xyz[likelihood.data_mask], render=render, n_outer_iterations=self.icp_n_outer_iterations, n_inner_iterations=self.icp_n_inner_iterations, ) if initial_poses is None: initial_poses = jnp.array([pose_hypotheses[ii][0] for ii in range(n_objs)]) inferred_poses = self.inference_program.infer( key, initial_poses, pose_hypotheses, compute_likelihood=likelihood.compute_likelihood, icp=self.icp, ) return DetectionResults( initial_poses=initial_poses, inferred_poses=inferred_poses, renderer=likelihood.renderer, query_embeddings=query_embeddings, data_mask=data_mask, pose_hypotheses=pose_hypotheses, )
threednel-main
threednel/bop/detector.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import json import os from dataclasses import dataclass from typing import Optional, Tuple, Union import jax.dlpack import jax.numpy as jnp import numpy as np import taichi as ti import torch import trimesh from scipy.ndimage import maximum_filter from threednel.bop.data import RGBDImage from threednel.rotation import generate_prototype_rotations from threednel.third_party.surfemb.surface_embedding import \ SurfaceEmbeddingModel from torch_cluster import fps from tqdm import tqdm @ti.kernel def taichi_compute_max_indices_log_normalizers_probs( query_embeddings: ti.types.ndarray(element_dim=1), key_embeddings: ti.types.ndarray(element_dim=1), max_indices: ti.types.ndarray(dtype=ti.i32), log_normalizers: ti.types.ndarray(), probs: ti.types.ndarray(), ): """A Taichi kernel that updates max_indices, log_normalizers and probs in place. Args: query_embeddings: Array of shape (M, d). Query embeddings of the image key_embeddings: Array of shape (N, d). Key embeddings of the model points max_indices: Array of shape (M,). max_indices[i] = argmax(key_embeddings @ query_embeddings[i]). Indices of the model points with key embeddings most similar to the given query embeddings. log_normalizers: Array of shape (M,). logsumexp(key_embeddings @ query_embeddings[i]). Log of the normalization constant summing over all model points. probs: Array of shape (M,). probs[i] = np.exp(query_embeddings[i] * key_embeddings[max_indices[i]] - log_normalizers[i]). The probability (P_RGB) of the model point that is most similar to a given query embedding. """ for i in range(query_embeddings.shape[0]): max_indices[i] = -1 log_normalizers[i] = 0.0 max_inner_product = -100000.0 for k in range(key_embeddings.shape[0]): inner_product = key_embeddings[k].dot(query_embeddings[i]) if inner_product <= max_inner_product: log_normalizers[i] += ti.exp(inner_product - max_inner_product) else: max_indices[i] = k log_normalizers[i] *= ti.exp(max_inner_product - inner_product) log_normalizers[i] += 1.0 max_inner_product = inner_product log_normalizers[i] = ti.log(log_normalizers[i]) + max_inner_product for i in range(query_embeddings.shape[0]): probs[i] = ti.exp( key_embeddings[max_indices[i]].dot(query_embeddings[i]) - log_normalizers[i] ) @ti.kernel def taichi_compute_log_normalizers( query_embeddings: ti.types.ndarray(element_dim=1), key_embeddings: ti.types.ndarray(element_dim=1), log_normalizers: ti.types.ndarray(), ): """A taichi kernel that updates log_normalizers in place. Args: query_embeddings: Array of shape (M, d). Query embeddings of the image key_embeddings: Array of shape (N, d). Key embeddings of the model points log_normalizers: Array of shape (M,). logsumexp(key_embeddings @ query_embeddings[i]). Log of the normalization constant summing over all model points. """ for i in range(query_embeddings.shape[0]): log_normalizers[i] = 0.0 max_inner_product = -100000.0 for k in range(key_embeddings.shape[0]): inner_product = key_embeddings[k].dot(query_embeddings[i]) if inner_product <= max_inner_product: log_normalizers[i] += ti.exp(inner_product - max_inner_product) else: log_normalizers[i] *= ti.exp(max_inner_product - inner_product) log_normalizers[i] += 1.0 max_inner_product = inner_product log_normalizers[i] = ti.log(log_normalizers[i]) + max_inner_product @ti.kernel def taichi_spherical_vote( centers: ti.types.ndarray(element_dim=1), radiuses: ti.types.ndarray(), weights: ti.types.ndarray(), voxel_grid: ti.types.ndarray(), voxel_grid_start: ti.types.ndarray(element_dim=1), voxel_diameter: float, multipliers: ti.types.ndarray(), ): """A Taichi kernel that implements the spherical voting procedure. Updates voxel_grid in place. Units are milimeters. Refer to Section C in the supplementary for more details. Args: centers: Array of shape (batch_size, n_centers, 3,). Coordinates of the centers of the spheres. radiuses: Array of shape (batch_size, n_centers). Radiuses of the spheres. weights: Array of shape (batch_size, n_centers,). Weights of votes from the spheres. voxel_grid: Array of shape voxel_grid_shape. Votes from different sphere centers are aggregated into the voxel grid. voxel_grid_start: Array of shape (3,). Coordinate of the center of voxel (0, 0, 0). voxel_diameter: float. Diameter of a voxel. multipliers: Constant array with elements [1.0, -1.0]. """ for voxel in ti.grouped(voxel_grid): voxel_grid[voxel] = 0.0 for ii, jj in centers: center_on_voxel_grid = (centers[ii, jj] - voxel_grid_start[None]) / voxel_diameter center_on_voxel_grid = ti.round(center_on_voxel_grid) radius_in_voxels = radiuses[ii, jj] / voxel_diameter + 0.5 for x in range(ti.ceil(radius_in_voxels)): for y in range(ti.ceil(ti.sqrt(radius_in_voxels**2 - x**2))): z_range = ( ti.ceil( ti.sqrt( ti.max( 0.0, (radiuses[ii, jj] / voxel_diameter - 0.5) ** 2 - x**2 - y**2, ) ) ), ti.ceil(ti.sqrt(radius_in_voxels**2 - x**2 - y**2)), ) for z in range(z_range[0], z_range[1]): for xx in range(2): if x == 0 and multipliers[xx] < 0: continue x_coord = ti.cast( center_on_voxel_grid[0] + multipliers[xx] * x, ti.i32, ) if x_coord < 0 or x_coord >= voxel_grid.shape[1]: continue for yy in range(2): if y == 0 and multipliers[yy] < 0: continue y_coord = ti.cast( center_on_voxel_grid[1] + multipliers[yy] * y, ti.i32, ) if y_coord < 0 or y_coord >= voxel_grid.shape[2]: continue for zz in range(2): if z == 0 and multipliers[zz] < 0: continue z_coord = ti.cast( center_on_voxel_grid[2] + multipliers[zz] * z, ti.i32, ) if z_coord < 0 or z_coord >= voxel_grid.shape[3]: continue ti.atomic_add( voxel_grid[ii, x_coord, y_coord, z_coord], weights[ii, jj], ) @functools.partial(jax.jit, static_argnames=('n_top_translations', 'n_pose_hypotheses')) def _get_top_pose_hypotheses( voting_voxel_grid: jnp.ndarray, keypoints_voxel_offsets: jnp.ndarray, voxel_grid_start: jnp.ndarray, voxel_diameter: float, prototype_rotations: jnp.ndarray, n_top_translations: int = 100, n_pose_hypotheses: int = 50, ): """Function to get top pose hypotheses given voting results in a voxel grid.""" @functools.partial(jax.vmap, in_axes=0, out_axes=0) def get_top_pose_hypotheses_for_obj( voting_voxel_grid: jnp.ndarray, keypoints_voxel_offsets: jnp.ndarray, ): indices = jnp.array( jnp.unravel_index( jnp.argsort(-voting_voxel_grid[0].ravel()), voting_voxel_grid[0].shape, ) ).T top_indices = indices[:n_top_translations] voxel_indices = top_indices[:, None, None] + keypoints_voxel_offsets valid_entries = jnp.logical_and( jnp.all(voxel_indices >= 0, axis=(-2, -1)), jnp.all( voxel_indices < jnp.array(voting_voxel_grid.shape[1:]), axis=(-2, -1), ), ) scores = jnp.where( valid_entries, jnp.sum( voting_voxel_grid[1:][ jnp.arange(keypoints_voxel_offsets.shape[1])[None, None], voxel_indices[..., 0], voxel_indices[..., 1], voxel_indices[..., 2], ], axis=-1, ), -jnp.inf, ) top_voxel_indices, top_rotation_indices = jnp.unravel_index( jnp.argsort(-scores.ravel())[:n_pose_hypotheses], scores.shape ) translations = voxel_grid_start + top_indices[top_voxel_indices] * voxel_diameter rotations = prototype_rotations[top_rotation_indices] transform_matrices = jnp.zeros((n_pose_hypotheses, 4, 4)) transform_matrices = transform_matrices.at[:, :3, :3].set(rotations) transform_matrices = transform_matrices.at[:, :3, 3].set(translations) transform_matrices = transform_matrices.at[:, 3, 3].set(1.0) top_scores = scores[top_voxel_indices, top_rotation_indices] return transform_matrices.reshape((-1, 4, 4)), top_scores.ravel() return get_top_pose_hypotheses_for_obj(voting_voxel_grid, keypoints_voxel_offsets) @dataclass class BOPVoting: """Wrapper class for running the spherical voting process. The voting process assumes all the relevant object coordinates (x, y, z) satisfy np.all(np.array([x, y, z]) >= voxel_grid_start) and np.all( np.array([x, y, z]) < voxel_grid_start + voxel_diameter * np.array(voxel_grid_shape) ) """ data_directory: str num_points_on_sphere: int = 200 num_inplane_rotations: int = 32 principal_axis: np.ndarray = np.array([0, 0, 1.0]) n_keypoints: int = 8 voxel_diameter: float = 5.0 voxel_grid_start: np.ndarray = np.array([-350.0, -210.0, 530.0], dtype=np.float32) voxel_grid_shape: Tuple[int, int, int] = (129, 87, 168) device: str = 'cuda:0' def __post_init__(self): device = torch.device(self.device) self.prototype_rotations = torch.from_numpy( generate_prototype_rotations( num_points_on_sphere=self.num_points_on_sphere, num_inplane_rotations=self.num_inplane_rotations, principal_axis=self.principal_axis, ).as_matrix() ).to(device) with open( os.path.join( self.data_directory, 'bop', 'ycbv', 'models', 'models_info.json', ), 'r', ) as f: models_info = json.load(f) self.models_info = { int(bop_obj_idx): models_info[bop_obj_idx] for bop_obj_idx in models_info } self.bop_obj_indices = list(self.models_info.keys()) self._init_voting_info() def _init_voting_info(self): """Initialize information relevant for the voting process. The relevant information includes: keypoints: Sampled on objects surfaces using farthest point sampling. model_radiuses: The distance of each model point to the sampled keypoints. keypoints_voxel_offsets: Offsets in terms of number of voxel grids, given model_radiuses and voxel_diameter. We precompute model_radiuses and keypoints_voxel_offsets to allow efficient implementation of the voting process. """ device = torch.device(self.device) self.model_radiuses = {} self.keypoints = {} self.keypoints_voxel_offsets = {} for bop_obj_idx in tqdm(self.bop_obj_indices): model_coords = torch.from_numpy( np.asarray( trimesh.load( os.path.join( self.data_directory, f'surface_samples/ycbv/obj_{bop_obj_idx:06d}.ply', ) ).vertices ) ).to(device) keypoints_indices = fps( model_coords, batch=None, ratio=self.n_keypoints / model_coords.shape[0], ) keypoints = model_coords[keypoints_indices] keypoints = torch.cat([torch.zeros((1, 3), device=device), keypoints], dim=0) self.keypoints[bop_obj_idx] = keypoints self.model_radiuses[bop_obj_idx] = torch.norm( model_coords - keypoints[:, None], dim=-1 ).to(device) rotated_keypoints = torch.einsum( 'ijk,mk->imj', self.prototype_rotations, keypoints[1:] ) self.keypoints_voxel_offsets[bop_obj_idx] = torch.round( rotated_keypoints / self.voxel_diameter ).type(torch.int32) def load_all_key_embeddings(self, surfemb_model: SurfaceEmbeddingModel): """Loading the key embeddings for all models points in all objects.""" print('Loading all key embeddings...') all_key_embeddings = {} for bop_obj_idx in tqdm(self.bop_obj_indices): verts_np = trimesh.load( os.path.join( self.data_directory, f'surface_samples/ycbv/obj_{bop_obj_idx:06d}.ply', ) ).vertices mesh = trimesh.load( os.path.join( self.data_directory, f'bop/ycbv/models/obj_{bop_obj_idx:06d}.ply', ) ) offset, scale = ( mesh.bounding_sphere.primitive.center, mesh.bounding_sphere.primitive.radius, ) verts_norm = (verts_np - offset) / scale all_key_embeddings[bop_obj_idx] = surfemb_model.infer_mlp( torch.from_numpy(verts_norm).float().to(surfemb_model.device), bop_obj_idx, ) self.all_key_embeddings = all_key_embeddings def get_max_indices_normalizers_probs( self, query_embeddings: torch.Tensor, bop_obj_indices: Union[np.ndarray, int], squeeze: bool = True, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Function to get max_indices, log_normalizers and probs. Refer to taichi_compute_max_indices_log_normalizers_probs for details. Args: query_embeddings: Array of shape (N, len(bop_obj_indices), emb_dim) bop_obj_indices: indices should be in self.bop_obj_indices. Typically ranges from 1 to len(self.bop_obj_indices) + 1 squeeze: Whether to get rid of redundant size 1 dimensions. Returns: max_indices, log_normalizers and probs. """ target_shape = query_embeddings.shape[:-2] if query_embeddings.ndim == 4: query_embeddings = query_embeddings.reshape((-1,) + query_embeddings.shape[-2:]) if np.isscalar(bop_obj_indices): bop_obj_indices = jnp.array([bop_obj_indices]) assert query_embeddings.shape[1] == len(bop_obj_indices) max_indices = [] log_normalizers = [] probs = [] for idx, bop_obj_idx in enumerate(bop_obj_indices): device = torch.device(self.device) max_indices_for_obj = torch.empty( query_embeddings.shape[:1], dtype=torch.int32, device=device ) log_normalizers_for_obj = torch.empty( query_embeddings.shape[:1], dtype=torch.float32, device=device ) probs_for_obj = torch.empty( query_embeddings.shape[:1], dtype=torch.float32, device=device ) taichi_compute_max_indices_log_normalizers_probs( query_embeddings[:, idx].float(), self.all_key_embeddings[bop_obj_idx].float(), max_indices_for_obj, log_normalizers_for_obj, probs_for_obj, ) ti.sync() max_indices.append(max_indices_for_obj) log_normalizers.append(log_normalizers_for_obj) probs.append(probs_for_obj) max_indices = torch.stack(max_indices, dim=1) max_indices = max_indices.reshape(target_shape + max_indices.shape[-1:]) log_normalizers = torch.stack(log_normalizers, dim=1) log_normalizers = log_normalizers.reshape(target_shape + log_normalizers.shape[-1:]) probs = torch.stack(probs, dim=1) probs = probs.reshape(target_shape + probs.shape[-1:]) if squeeze: max_indices, log_normalizers, probs = ( torch.squeeze(max_indices), torch.squeeze(log_normalizers), torch.squeeze(probs), ) return max_indices, log_normalizers, probs def get_log_normalizers( self, query_embeddings: torch.Tensor, bop_obj_indices: Union[np.ndarray, int], squeeze: bool = True, ) -> torch.Tensor: """Function to get log_normalizers. Refer to taichi_compute_max_indices_log_normalizers_probs for details. Args: query_embeddings: Array of shape (N, len(bop_obj_indices), emb_dim) bop_obj_indices: indices should be in self.bop_obj_indices. Typically ranges from 1 to len(self.bop_obj_indices) + 1 squeeze: Whether to get rid of redundant size 1 dimensions. Returns: log_normalizers. """ target_shape = query_embeddings.shape[:-2] if query_embeddings.ndim == 4: query_embeddings = query_embeddings.reshape((-1,) + query_embeddings.shape[-2:]) if np.isscalar(bop_obj_indices): bop_obj_indices = jnp.array([bop_obj_indices]) assert query_embeddings.shape[1] == len(bop_obj_indices) log_normalizers = [] for idx, bop_obj_idx in enumerate(bop_obj_indices): device = torch.device(self.device) log_normalizers_for_obj = torch.empty( query_embeddings.shape[:1], dtype=torch.float32, device=device ) taichi_compute_log_normalizers( query_embeddings[:, idx].float().contiguous(), self.all_key_embeddings[bop_obj_idx].float(), log_normalizers_for_obj, ) ti.sync() log_normalizers.append(log_normalizers_for_obj) log_normalizers = torch.stack(log_normalizers, dim=1) log_normalizers = log_normalizers.reshape(target_shape + log_normalizers.shape[-1:]) if squeeze: log_normalizers = torch.squeeze(log_normalizers) return log_normalizers def get_voting_voxel_grids( self, img: RGBDImage, query_embeddings: torch.Tensor, mask: Optional[torch.Tensor] = None, bop_obj_indices: Optional[Union[jnp.ndarray, int]] = None, max_indices: Optional[torch.Tensor] = None, probs: Optional[torch.Tensor] = None, return_log_normalizers: bool = False, ): """Function to run voting and get the voting voxel grids. Args: img: The input RGBDImage query_embeddings: Array of shape (H, W, len(img.bop_obj_indices), emb_dim) or arrayay of shape (H, W, len(bop_obj_indices), emb_dim) when bop_obj_indices is not None mask: Array of shape (H, W) bop_obj_indices: bop_obj_indices max_indices: Optional precomputed max_indices probs: Optional precomputed probs return_log_normalizers: Whether to also return log_normalizers Returns: voting_voxel_grids: Array of shape ( len(bop_obj_indices), self.n_keypoints + 1, ) + self.voxel_grid_shape and optionally the log_normalizers """ device = torch.device(self.device) if np.isscalar(bop_obj_indices): bop_obj_indices = np.array([bop_obj_indices]) if mask is None: mask = (torch.from_numpy(img.depth) > 0).to(device) assert mask.shape == query_embeddings.shape[:2] assert mask.shape == img.depth.shape data_xyz = torch.from_numpy(img.unproject()).to(device)[mask.type(torch.bool)] centers = torch.broadcast_to(data_xyz, (self.n_keypoints + 1,) + data_xyz.shape) if bop_obj_indices is None: bop_obj_indices = img.bop_obj_indices assert jnp.all(jnp.sum(bop_obj_indices[:, None] == img.bop_obj_indices, axis=1) > 0) obj_indices_in_img = torch.from_numpy( np.argmax(bop_obj_indices[:, None] == img.bop_obj_indices, axis=1) ).to(device) if max_indices is None or probs is None or return_log_normalizers: if query_embeddings.shape[2] == len(bop_obj_indices): ( max_indices, log_normalizers_for_mask, probs, ) = self.get_max_indices_normalizers_probs( query_embeddings[mask.type(torch.bool)], bop_obj_indices, squeeze=False, ) else: assert query_embeddings.shape[2] == len(img.bop_obj_indices) ( max_indices, log_normalizers_for_mask, probs, ) = self.get_max_indices_normalizers_probs( query_embeddings[mask][:, obj_indices_in_img], bop_obj_indices, squeeze=False, ) log_normalizers = torch.zeros(query_embeddings.shape[:-1], device=device) log_normalizers[mask.type(torch.bool)] = log_normalizers_for_mask voting_voxel_grids = torch.empty( (len(bop_obj_indices), self.n_keypoints + 1) + self.voxel_grid_shape, dtype=torch.float32, device=device, ) multipliers = torch.tensor([1.0, -1.0], dtype=torch.float32, device=device) for idx, bop_obj_idx in enumerate(bop_obj_indices): weights = torch.broadcast_to( probs[:, idx], (self.n_keypoints + 1,) + probs[:, idx].shape, ) radiuses = self.model_radiuses[bop_obj_idx][:, max_indices[:, idx]] taichi_spherical_vote( centers.float().contiguous(), radiuses.float().contiguous(), weights.float().contiguous(), voting_voxel_grids[idx], self.voxel_grid_start, self.voxel_diameter, multipliers, ) ti.sync() if return_log_normalizers: return voting_voxel_grids, log_normalizers return voting_voxel_grids def get_top_pose_hypotheses( self, voting_voxel_grids: torch.Tensor, bop_obj_indices: np.ndarray, n_top_translations: int = 100, n_pose_hypotheses: int = 50, return_scores: bool = False, ): """Function to generate top-scoring pose hypotheses given voting results. Args: voting_voxel_grids: Voxel grids containing voting results. bop_obj_indices: Indices of the objects to generate pose hypotheses for. n_top_translations: Number of top translations we would look at. n_pose_hypotheses: Number of top poses hypotheses to generate. return_scores: Whether to additionally return the heuristic scores of the top pose hypotheses. Returns: Top pose hypotheses (in the form of 4x4 transform matrices) and optionally their heuristic scores. """ if np.isscalar(bop_obj_indices): bop_obj_indices = np.array(bop_obj_indices) keypoints_voxel_offsets = torch.stack( [self.keypoints_voxel_offsets[bop_obj_idx] for bop_obj_idx in bop_obj_indices], dim=0, ) transform_matrices, top_scores = _get_top_pose_hypotheses( jax.dlpack.from_dlpack(torch.to_dlpack(voting_voxel_grids)), jax.dlpack.from_dlpack(torch.to_dlpack(keypoints_voxel_offsets)), voxel_grid_start=self.voxel_grid_start, voxel_diameter=self.voxel_diameter, prototype_rotations=jax.dlpack.from_dlpack( torch.to_dlpack((self.prototype_rotations)) ), n_top_translations=n_top_translations, n_pose_hypotheses=n_pose_hypotheses, ) if return_scores: return transform_matrices, top_scores return transform_matrices def get_top_pose_hypotheses_non_max_suppression( self, voting_voxel_grid: torch.Tensor, bop_obj_idx: int, maximum_filter_size: int = 5, n_top_rotations_per_translation: int = 5, n_pose_hypotheses: int = 50, return_scores: bool = False, ): """Get top pose hypotheses with additional non-max suppression for translations.""" voting_voxel_grid = voting_voxel_grid.cpu().numpy() max_filtered_voxel_grid = maximum_filter( voting_voxel_grid[0], size=maximum_filter_size ) voting_grid_mask = np.logical_and( voting_voxel_grid[0] == max_filtered_voxel_grid, max_filtered_voxel_grid != 0, ) top_indices = np.argwhere(voting_grid_mask) voxel_indices = ( top_indices[:, None, None] + self.keypoints_voxel_offsets[bop_obj_idx].cpu().numpy() ) valid_entries = np.logical_and( np.all(voxel_indices >= 0, axis=(-2, -1)), np.all(voxel_indices < np.array(voting_voxel_grid.shape[1:]), axis=(-2, -1)), ) scores = np.zeros(valid_entries.shape) scores[valid_entries] = np.sum( voting_voxel_grid[1:][ np.arange(self.n_keypoints)[None], voxel_indices[valid_entries][..., 0], voxel_indices[valid_entries][..., 1], voxel_indices[valid_entries][..., 2], ], axis=-1, ) top_rotation_indices = np.argsort(-scores, axis=1)[ :, :n_top_rotations_per_translation ] top_scores = scores[np.arange(scores.shape[0])[:, None], top_rotation_indices] scores_top_indices = np.array( np.unravel_index(np.argsort(-top_scores.ravel()), top_scores.shape) ).T[:n_pose_hypotheses] top_voxel_indices = scores_top_indices[:, 0] top_rotation_indices = top_rotation_indices[ scores_top_indices[:, 0], scores_top_indices[:, 1] ] translations = ( self.voxel_grid_start + top_indices[top_voxel_indices] * self.voxel_diameter ) rotations = self.prototype_rotations[top_rotation_indices].cpu().numpy() transform_matrices = np.zeros((min(n_pose_hypotheses, translations.shape[0]), 4, 4)) transform_matrices[:, :3, :3] = rotations transform_matrices[:, :3, -1] = translations transform_matrices[:, 3, 3] = 1.0 if return_scores: top_scores = scores[top_voxel_indices, top_rotation_indices] return transform_matrices, top_scores return transform_matrices
threednel-main
threednel/bop/bop_vote.py
"""Module for converting results into the BOP challenge format.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Mapping, Sequence import jax import pandas as pd def generate_csv( predictions: Sequence[Mapping[str, Any]], csv_filename: str ) -> pd.DataFrame: """Helper function to convert results into the BOP challenge format. Args: predictions: A sequence of mappings Each mapping should contain scene_id, im_id, obj_id, score, R, t and time csv_filename: Name of the csv file containing the pose estimation results in the BOP challenge format. Returns: The pandas dataframe containing the pose estimation results. """ for prediction in predictions: prediction['R'] = ' '.join([str(ele) for ele in prediction['R'].ravel()]) prediction['t'] = ' '.join([str(ele) for ele in prediction['t']]) outer_treedef = jax.tree_util.tree_structure([0] * len(predictions)) inner_treedef = jax.tree_util.tree_structure(predictions[0]) transposed_predictions = jax.tree_util.tree_transpose( outer_treedef, inner_treedef, predictions ) columns = ['scene_id', 'im_id', 'obj_id', 'score', 'R', 't', 'time'] df = pd.DataFrame(data=transposed_predictions)[columns] df.to_csv(csv_filename, index=False, header=False) return df
threednel-main
threednel/bop/results.py
# Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
threednel-main
threednel/bop/__init__.py
"""Module containing the class for pose hypotheses generation.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Sequence, Tuple import jax import jax.dlpack import jax.numpy as jnp import numpy as np import torch from threednel.bop.bop_surfemb import BOPSurfEmb from threednel.bop.bop_vote import BOPVoting from threednel.bop.data import RGBDImage @dataclass class HypothesesGeneration: """Class for pose hypotheses generation. Attributes: bop_surfemb: Module for interacting with a pretrained SurfEMB model. bop_vote: Module implementing the spherical voting process. mask_threshold: Threshold for mask probabilities. Used to mask out irrevelant, noisy query embeddings. n_top_translations: Number of top translations to look at for pose hypotheses generation. n_pose_hypotheses_per_crop: Number of top pose hypotheses to keep for each 2D detector crop. maximum_filter_size: Maximum filter size for doing non-max suppression. n_top_rotations_per_translation: Number of top rotations to look at per translation for the pose hypotheses generation process. n_pose_hypotheses_per_object: Number of top pose hypotheses to keep for each object. default_scale: The scale at which to obtain the query embeddings. use_crops: Whether to use information from 2D detection to improve pose hypotheses generation. """ bop_surfemb: BOPSurfEmb bop_vote: BOPVoting mask_threshold: float = 0.7 n_top_translations: int = 20 n_pose_hypotheses_per_crop: int = 80 maximum_filter_size: int = 10 n_top_rotations_per_translation: int = 10 n_pose_hypotheses_per_object: int = 30 default_scale: float = 1.5 use_crops: bool = True def _process_crop(self, crop_img: RGBDImage): """Process a detector crop from 2D detection. Args: crop_img: A detector crop from 2D detection structured as an RGBDImage. Returns: Query embeddings, top-scoring pose hypotheses and their scores. """ ( query_embeddings, masks, ) = self.bop_surfemb.get_query_embeddings_masks(crop_img) masks = jnp.logical_and(crop_img.depth > 0, masks[..., 0] > self.mask_threshold) query_embeddings = query_embeddings * masks[..., None, None] voting_voxel_grids = self.bop_vote.get_voting_voxel_grids( crop_img, torch.from_dlpack(jax.dlpack.to_dlpack(query_embeddings)), mask=torch.from_dlpack(jax.dlpack.to_dlpack(masks)), ) pose_hypotheses, top_scores = self.bop_vote.get_top_pose_hypotheses( voting_voxel_grids, crop_img.bop_obj_indices, n_top_translations=self.n_top_translations, n_pose_hypotheses=self.n_pose_hypotheses_per_crop, return_scores=True, ) return query_embeddings, pose_hypotheses, top_scores def _combine_query_embeddings_from_crops( self, img: RGBDImage, obj_idx: int, query_embeddings_list: Sequence[jnp.ndarray], ): """Function to combine query embeddings from multiple detector crops for the same object. We rescale the query embedding maps from each detector crop, and use the estimated masks to merge the query embedding maps from multiple detector crops into a single query embedding map. When the masks from multiple detector crops overlap, we take the query embedding with the maximum L2 norm. """ query_embeddings_for_obj = jnp.zeros( img.rgb.shape[:2] + ( len(query_embeddings_list), self.bop_surfemb.surfemb_model.emb_dim, ) ) for crop_idx in range(len(query_embeddings_list)): left, top, right, bottom = img.annotations[obj_idx]['detector_crops'][crop_idx][ 'AABB_crop' ] top_padding = max(top, 0) - top left_padding = max(left, 0) - left bottom_padding = bottom - min(query_embeddings_for_obj.shape[0], bottom) bottom_idx = -bottom_padding if bottom_padding > 0 else None right_padding = right - min(query_embeddings_for_obj.shape[1], right) right_idx = -right_padding if right_padding > 0 else None query_embeddings_for_obj = query_embeddings_for_obj.at[ top + top_padding : bottom - bottom_padding, left + left_padding : right - right_padding, [crop_idx], ].set( jax.image.resize( query_embeddings_list[crop_idx], shape=(bottom - top, right - left) + (1, self.bop_surfemb.surfemb_model.emb_dim), method='nearest', )[top_padding:bottom_idx, left_padding:right_idx] ) query_embeddings_for_obj = query_embeddings_for_obj[ jnp.arange(img.rgb.shape[0])[:, None], jnp.arange(img.rgb.shape[1])[None], jnp.argmax(jnp.linalg.norm(query_embeddings_for_obj, axis=-1), axis=-1), ][:, :, None] return query_embeddings_for_obj def generate_from_crops_for_obj( self, img: RGBDImage, obj_idx: int ) -> Tuple[jnp.ndarray, jnp.ndarray]: """Generate pose hypotheses from the available detector crops.""" pose_hypotheses_list = [] scores_list = [] bop_obj_idx = img.bop_obj_indices[obj_idx] assert img.annotations[obj_idx].get('detector_crops', []) query_embeddings_list = [] for detector_crop in img.annotations[obj_idx]['detector_crops']: crop_img = RGBDImage( rgb=detector_crop['rgb_crop'], depth=detector_crop['depth_crop'], intrinsics=detector_crop['K_crop'], bop_obj_indices=np.array([bop_obj_idx]), fill_in_depth=img.fill_in_depth, max_depth=img.max_depth, ) ( query_embeddings_for_crop, pose_hypotheses, top_scores, ) = self._process_crop(crop_img) query_embeddings_list.append(query_embeddings_for_crop) pose_hypotheses_list.append(pose_hypotheses[0]) scores_list.append(top_scores[0]) query_embeddings_for_obj = self._combine_query_embeddings_from_crops( img, obj_idx, query_embeddings_list ) pose_hypotheses_for_obj = jnp.concatenate(pose_hypotheses_list, axis=0)[ jnp.argsort(-jnp.concatenate(scores_list)) ] return query_embeddings_for_obj, pose_hypotheses_for_obj def generate_from_whole_image_for_obj(self, img: RGBDImage, obj_idx: int): """Generate pose hypotheses from the the whole image.""" bop_obj_idx = img.bop_obj_indices[obj_idx] query_embeddings_for_obj = jax.device_put( self.bop_surfemb.get_query_embeddings( img, scale=self.default_scale, target_shape=img.rgb.shape[:2], bop_obj_indices=np.array([bop_obj_idx]), ) ) query_embeddings_for_obj = ( query_embeddings_for_obj * (img.depth > 0)[..., None, None] ) voting_voxel_grids = self.bop_vote.get_voting_voxel_grids( img, torch.from_dlpack(jax.dlpack.to_dlpack(query_embeddings_for_obj)), mask=torch.from_dlpack(jax.dlpack.to_dlpack(jax.device_put(img.depth > 0))), bop_obj_indices=np.array([bop_obj_idx]), ) pose_hypotheses_for_obj = self.bop_vote.get_top_pose_hypotheses_non_max_suppression( voting_voxel_grids[0], bop_obj_idx, maximum_filter_size=self.maximum_filter_size, n_top_rotations_per_translation=self.n_top_rotations_per_translation, n_pose_hypotheses=self.n_pose_hypotheses_per_object, return_scores=False, ) return query_embeddings_for_obj, pose_hypotheses_for_obj def generate(self, img: RGBDImage): """Generate pose hypotheses for all objects in the scene. Uses detector crops from 2D detection when they are availbel, and falls back to using the whole image when 2D detection is not available. """ query_embeddings_all = [] pose_hypotheses_all = [] for obj_idx in range(len(img.bop_obj_indices)): if self.use_crops and img.annotations[obj_idx].get('detector_crops', []): ( query_embeddings_for_obj, pose_hypotheses_for_obj, ) = self.generate_from_crops_for_obj(img, obj_idx) else: ( query_embeddings_for_obj, pose_hypotheses_for_obj, ) = self.generate_from_whole_image_for_obj(img, obj_idx) query_embeddings_all.append(query_embeddings_for_obj) pose_hypotheses_all.append(pose_hypotheses_for_obj) query_embeddings = jnp.concatenate(query_embeddings_all, axis=2) data_mask = jnp.logical_and( img.depth > 0, jnp.any(jnp.linalg.norm(query_embeddings, axis=-1) > 0, axis=-1), ) return query_embeddings, data_mask, pose_hypotheses_all
threednel-main
threednel/bop/hypotheses.py
"""Module containing a wrapper class for a pretrained SurfEMB model.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional, Tuple import cv2 import jax.dlpack import jax.numpy as jnp from jax.scipy.special import expit import numpy as np from threednel.bop.data import RGBDImage from threednel.third_party.surfemb.surface_embedding import SurfaceEmbeddingModel import torch @dataclass class BOPSurfEmb: """Wrapper class around a pretrained SurfEMB model. Supports applying a pretrained SurfEMB model to a given RGB image to get query embeddings and mask estimations. Attributes: surfemb_model_path: Path to the a SurfEMB model checkpoint trained on YCB objects. device: Device to use for running the SurfEMB model. Defaults to 'cuda:0'. surfemb_model: The loaded SurfEMB model. bop_obj_indices: Indices of all the relevant objects in the BOP data format. For the YCB-V dataset this refers to the object indices in https://bop.felk.cvut.cz/media/data/bop_datasets/ycbv_models.zip """ surfemb_model_path: str device: str = 'cuda:0' def __post_init__(self): print(f'Loading surfemb model {self.surfemb_model_path} for dataset ycb.') device = torch.device(self.device) surfemb_model = SurfaceEmbeddingModel.load_from_checkpoint( self.surfemb_model_path ) surfemb_model.eval() surfemb_model.freeze() surfemb_model.to(device) self.surfemb_model = surfemb_model self.bop_obj_indices = np.arange(1, 22) self.surfemb_model.init_bop_obj_indices_to_obj_indices(self.bop_obj_indices) def get_query_embeddings( self, img: RGBDImage, scale: float = 1.0, target_shape: Optional[Tuple[int, int]] = None, bop_obj_indices: Optional[np.ndarray] = None, ): """Apply the SurfEMB model on an RGBDImage to get query embeddings. Args: img: An RGB-D image scale: scaling to apply to the RGB image. Defaults to 1.0. The width and height of the RGB image have to be multiples of 32 in order to be compatible with the CNNs. target_shape: (width, height) of the final query embeddings output. bop_obj_indices: Optional array specifying the indices of the set of objects for which we want to get query embeddings for. If None, return the query embeddings for all the objects specified in img.bop_obj_indices. Returns: query_embeddings: Array of shape target_shape + (n_bop_objects, emb_dim) The query embeddings for the relevant objects as specified in bop_obj_indices. """ rgb = img.rgb.copy() if target_shape is None: target_shape = img.rgb.shape[:2] if bop_obj_indices is None: bop_obj_indices = img.bop_obj_indices else: for bop_obj_idx in bop_obj_indices: assert bop_obj_idx in img.bop_obj_indices dsize = (np.round(scale * np.array(rgb.shape[:2]) / 32).astype(int) * 32)[ [1, 0] ] rgb = cv2.resize(rgb, dsize=dsize, interpolation=1) surfemb_model = self.surfemb_model query_embeddings = np.zeros( target_shape + (len(bop_obj_indices), surfemb_model.emb_dim) ) for ii, bop_obj_idx in enumerate(bop_obj_indices): query_embeddings[:, :, ii] = cv2.resize( surfemb_model.infer_cnn(rgb, bop_obj_idx, False)[1].cpu().numpy(), dsize=(target_shape[1], target_shape[0]), interpolation=0, ) return query_embeddings def get_query_embeddings_masks( self, img: RGBDImage, squeeze: bool = False ) -> Tuple[jnp.ndarray, jnp.ndarray]: """Function to get both query embeddings and mask predictions. Args: img: The input RGBDImage. squeeze: Get rid of the dimension corresponding to the objects if there is only one object. Returns: The query embeddings and mask probabilities predictions. """ surfemb_model = self.surfemb_model query_embeddings = [] mask_lgts = [] for bop_obj_idx in img.bop_obj_indices: mask_lgts_for_obj, query_embeddings_for_obj = surfemb_model.infer_cnn( img.rgb, bop_obj_idx, False ) query_embeddings.append( jax.dlpack.from_dlpack( torch.to_dlpack(query_embeddings_for_obj.contiguous()) ) ) mask_lgts.append( jax.dlpack.from_dlpack( torch.to_dlpack(mask_lgts_for_obj.contiguous()) ) ) query_embeddings = jnp.stack(query_embeddings, axis=2) mask_lgts = jnp.stack(mask_lgts, axis=2) masks = expit(mask_lgts) if squeeze: query_embeddings = jnp.squeeze(query_embeddings) masks = jnp.squeeze(masks) return query_embeddings, masks
threednel-main
threednel/bop/bop_surfemb.py
"""Module containing useful classes for interacting with data in BOP format.""" # Copyright 2023 DeepMind Technologies Limited # Copyright 2023 Massachusetts Institute of Technology (M.I.T.) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import json import os from dataclasses import dataclass from pathlib import Path from typing import List, Optional, Sequence import imageio import jax import numpy as np import tensorflow as tf import trimesh from threednel.renderer.camera import CameraIntrinsics from threednel.renderer.parallel import ParallelRenderer from threednel.third_party.ip_basic import fill_in_multiscale from threednel.third_party.surfemb.utils import get_bbox_rgb_crop_K_crop def depth_to_coords_in_camera( depth: np.ndarray, intrinsics: np.ndarray, mask: Optional[np.ndarray] = None, as_image_shape: bool = False, ) -> tuple[np.ndarray, np.ndarray]: """Convert depth image to coords in camera space for points in mask. Args: depth: Array of shape (H, W). intrinsics: Array of shape (3, 3), camera intrinsic matrix. mask: Array of shape (H, W), with 1s where points are quried. as_image_shape: If True, return arrays of shape (H, W, 3) Returns: np.ndarray: Array of shape (N, 3) or (H, W, 3), coordinates in camera space. np.ndarray: Array of shape (N, 2) or (H, W, 2), coordinates on image plane. N is the number of 1s in mask. """ if as_image_shape: assert mask is None vu = np.mgrid[: depth.shape[0], : depth.shape[1]] else: if mask is None: mask = np.ones_like(depth) else: assert not as_image_shape assert mask.shape == depth.shape vu = np.nonzero(mask) depth_for_uv = depth[vu[0], vu[1]] full_vec = np.stack( [vu[1] * depth_for_uv, vu[0] * depth_for_uv, depth_for_uv], axis=0 ) coords_in_camera = np.moveaxis( np.einsum('ij,j...->i...', np.linalg.inv(intrinsics), full_vec), 0, -1 ) coords_on_image = np.moveaxis(vu, 0, -1) return coords_in_camera, coords_on_image @dataclass class RGBDImage: """Generic container class for an RGB-D image. Attributes: rgb: The RGB image. depth: The depth map in milimeters. intrinsics: The 3x3 camera intrinsics matrix. bop_obj_indices: Array containing the indices of the objects in the scene fill_in_depth: Whether we fill in missing depth values. max_depth: Maximum depth used to fill in missing depth values. annotations: Optional annotations for each object in the scene. """ rgb: np.ndarray depth: np.ndarray intrinsics: np.ndarray bop_obj_indices: np.ndarray fill_in_depth: bool = False max_depth: float = np.inf annotations: Optional[Sequence] = None def __post_init__(self): self.depth[self.depth > self.max_depth] = 0.0 if self.fill_in_depth: assert self.max_depth < np.inf self.depth, _ = fill_in_multiscale(self.depth, max_depth=self.max_depth) if self.annotations is None: self.annotations = [{} for _ in self.bop_obj_indices] def unproject(self) -> np.ndarray: """Unproject pixels in the RGB-D image into 3D space (in camera frame).""" data_xyz, _ = depth_to_coords_in_camera( self.depth, self.intrinsics, as_image_shape=True ) return data_xyz def scale(self, scale_factor: float) -> RGBDImage: """Scale the RGB-D image by the given scale factor.""" camera_intrinsics = CameraIntrinsics.from_matrix( shape=self.depth.shape, intrinsics=self.intrinsics ).scale(scale_factor) shape = (camera_intrinsics.height, camera_intrinsics.width) return RGBDImage( rgb=np.round( jax.image.resize(self.rgb, shape=shape + (3,), method='bilinear') ).astype(int), depth=np.array(jax.image.resize(self.depth, shape=shape, method='nearest')), intrinsics=camera_intrinsics.intrinsics_matrix, bop_obj_indices=self.bop_obj_indices, fill_in_depth=self.fill_in_depth, max_depth=self.max_depth, ) def get_renderer( self, data_directory: str, scale_factor: float = 1.0 ) -> ParallelRenderer: """Construct a renderer that can render a set of 3D scene descriptions in parallel.""" height, width = self.depth.shape gl_renderer = ParallelRenderer( height=height, width=width, intrinsics=self.intrinsics, scale_factor=scale_factor, ) for bop_obj_idx in self.bop_obj_indices: gl_renderer.add_trimesh( trimesh.load( os.path.join(data_directory, f'bop/ycbv/models/obj_{bop_obj_idx:06d}.ply') ), mesh_name=bop_obj_idx, ) return gl_renderer @dataclass class BOPTestImage: """Class for interacting with test images from the BOP dataset. Attributes: dataset: Name of the dataset. scene_id: ID of the scene in the BOP dataset. img_id: ID of the image for the scene in the BOP dataset. rgb: Array of shape (H, W, 3). depth: Array of shape (H, W). In milimeters. intrinsics: Array of shape (3, 3). Camera intrinsics matrix. camera_pose: Array of shape (4, 4). Transform matrix from world frame to camera frame. bop_obj_indices: BOP indices of the objects in the image. Ranges from 1 to 21. annotations: Annotations for each object in the scene, including object pose information and optionally 2D detection results. default_scales: default scales at which we obtain query embeddings for each object. """ dataset: str scene_id: int img_id: int rgb: np.ndarray depth: np.ndarray intrinsics: np.ndarray camera_pose: np.ndarray bop_obj_indices: tuple[int, ...] annotations: Sequence default_scales: np.ndarray def __post_init__(self): self.obj_id, self.inst_count = np.unique(self.bop_obj_indices, return_counts=True) assert np.all(np.repeat(self.obj_id, self.inst_count) == self.bop_obj_indices) def get_gt_poses(self) -> List[np.ndarray]: """Function to get ground-truth object poses for the objects in the scene.""" gt_poses = [annotation['model_to_cam'].copy() for annotation in self.annotations] return gt_poses @dataclass class BOPTestScene: """Class for interacting with scenes from the BOP dataset.""" scene_path: str load_detector_crops: bool = False def __post_init__(self): self.data_directory = str(Path(self.scene_path).parents[3]) if self.data_directory.startswith('gs:/'): self.data_directory = self.data_directory[:4] + '/' + self.data_directory[4:] self.scene_id = int(os.path.basename(self.scene_path)) with open(os.path.join(self.scene_path, 'scene_camera.json'), 'r') as f: self.scene_camera = json.load(f) with open(os.path.join(self.scene_path, 'scene_gt.json'), 'r') as f: self.scene_gt = json.load(f) with open(os.path.join(self.scene_path, 'scene_gt_info.json'), 'r') as f: self.scene_gt_info = json.load(f) self.img_indices = [int(img_id) for img_id in self.scene_camera.keys()] with open( os.path.join( self.data_directory, 'bop', 'ycbv', 'camera_uw.json', ), 'r', ) as f: self.camera_info = json.load(f) with open( os.path.join( self.data_directory, 'bop', 'ycbv', 'models', 'models_info.json', ), 'r', ) as f: models_info = json.load(f) self.models_info = { int(bop_obj_idx): models_info[bop_obj_idx] for bop_obj_idx in models_info } self.default_scales = { bop_obj_idx: (1.5 if self.models_info[bop_obj_idx]['diameter'] > 70 else 3.0) for bop_obj_idx in self.models_info } if self.load_detector_crops: detection_folder = os.path.join(self.data_directory, 'detection_results', 'ycbv') with tf.io.gfile.GFile(os.path.join(detection_folder, 'bboxes.npy'), 'rb') as f: self.bboxes = np.load(f) with tf.io.gfile.GFile(os.path.join(detection_folder, 'obj_ids.npy'), 'rb') as f: self.obj_ids = np.load(f) with tf.io.gfile.GFile( os.path.join(detection_folder, 'scene_ids.npy'), 'rb' ) as f: self.scene_ids = np.load(f) with tf.io.gfile.GFile(os.path.join(detection_folder, 'view_ids.npy'), 'rb') as f: self.view_ids = np.load(f) def __getitem__(self, img_id): img_id = str(img_id) img_fname = f'{int(img_id):06d}.png' rgb = imageio.imread(os.path.join(self.scene_path, 'rgb', img_fname)) depth = ( imageio.imread(os.path.join(self.scene_path, 'depth', img_fname)) * self.camera_info['depth_scale'] ) intrinsics = np.array(self.scene_camera[img_id]['cam_K']).reshape((3, 3)) cam_pose = np.eye(4) cam_pose[:3, :3] = np.array( self.scene_camera[img_id].get('cam_R_w2c', np.eye(3).ravel()) ).reshape((3, 3)) cam_pose[:3, -1] = np.array(self.scene_camera[img_id].get('cam_t_w2c', np.zeros(3))) annotations = [] bop_obj_indices = [] for instance_idx, instance in enumerate(self.scene_gt[img_id]): model_to_cam = np.eye(4) model_to_cam[:3, :3] = np.array(instance['cam_R_m2c']).reshape((3, 3)) model_to_cam[:3, -1] = np.array(instance['cam_t_m2c']) mask = imageio.imread( os.path.join( self.scene_path, 'mask', f'{int(img_id):06d}_{instance_idx:06d}.png', ) ) mask_visible = imageio.imread( os.path.join( self.scene_path, 'mask_visib', f'{int(img_id):06d}_{instance_idx:06d}.png', ) ) annotation = { 'model_to_cam': model_to_cam, 'mask': mask, 'mask_visible': mask_visible, } annotation.update(self.scene_gt_info[img_id][instance_idx]) bop_obj_indices.append(instance['obj_id']) if self.load_detector_crops: detection_crop_idx = np.argwhere( (self.scene_ids == self.scene_id) * (self.view_ids == int(img_id)) * (self.obj_ids == instance['obj_id']) ) detector_crops = [] for detection_crop_idx in detection_crop_idx.ravel(): bbox = self.bboxes[detection_crop_idx] ( crop_bbox_in_original, rgb_crop, depth_crop, K_crop, ) = get_bbox_rgb_crop_K_crop(rgb, depth, bbox, K=intrinsics) left, top, right, bottom = crop_bbox_in_original detector_crops.append( dict( AABB_crop=crop_bbox_in_original, rgb_crop=rgb_crop, depth_crop=depth_crop, K_crop=K_crop, ) ) annotation['detector_crops'] = detector_crops annotations.append(annotation) return BOPTestImage( dataset='ycbv', scene_id=self.scene_id, img_id=int(img_id), rgb=rgb, depth=depth, intrinsics=intrinsics, camera_pose=cam_pose, bop_obj_indices=tuple(bop_obj_indices), annotations=annotations, default_scales=np.array( [self.default_scales[bop_obj_idx] for bop_obj_idx in bop_obj_indices] ), ) @property def images(self): for img_id in self.img_indices: yield self.__getitem__(img_id) @dataclass class BOPTestDataset: """Class for interacting with a BOP dataset.""" data_directory: str load_detector_crops: bool = False def __post_init__(self): with open( os.path.join(self.data_directory, 'bop', 'ycbv', 'test_targets_bop19.json'), 'r', ) as f: test_targets = json.load(f) outer_treedef = jax.tree_util.tree_structure([0] * len(test_targets)) inner_treedef = jax.tree_util.tree_structure(test_targets[0]) test_targets = jax.tree_util.tree_transpose( outer_treedef, inner_treedef, test_targets ) self.test_targets = {key: np.array(test_targets[key]) for key in test_targets} with open( os.path.join( self.data_directory, 'bop', 'ycbv', 'camera_uw.json', ), 'r', ) as f: self.camera_info = json.load(f) def __getitem__(self, scene_id: int): assert np.sum(self.test_targets['scene_id'] == scene_id) > 0 scene_path = os.path.join( self.data_directory, f'bop/ycbv/test/{scene_id:06d}', ) return BOPTestScene(scene_path, load_detector_crops=self.load_detector_crops)
threednel-main
threednel/bop/data.py
# MIT License # # Copyright (c) 2018 Jason Ku # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Originally https://github.com/kujason/ip_basic/blob/master/ip_basic/depth_map_utils.py import collections import cv2 import numpy as np # Full kernels FULL_KERNEL_3 = np.ones((3, 3), np.uint8) FULL_KERNEL_5 = np.ones((5, 5), np.uint8) FULL_KERNEL_7 = np.ones((7, 7), np.uint8) FULL_KERNEL_9 = np.ones((9, 9), np.uint8) FULL_KERNEL_31 = np.ones((31, 31), np.uint8) # 3x3 cross kernel CROSS_KERNEL_3 = np.asarray( [ [0, 1, 0], [1, 1, 1], [0, 1, 0], ], dtype=np.uint8, ) # 5x5 cross kernel CROSS_KERNEL_5 = np.asarray( [ [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], ], dtype=np.uint8, ) # 5x5 diamond kernel DIAMOND_KERNEL_5 = np.array( [ [0, 0, 1, 0, 0], [0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 0, 1, 0, 0], ], dtype=np.uint8, ) # 7x7 cross kernel CROSS_KERNEL_7 = np.asarray( [ [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], ], dtype=np.uint8, ) # 7x7 diamond kernel DIAMOND_KERNEL_7 = np.asarray( [ [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], ], dtype=np.uint8, ) def fill_in_fast( depth_map, max_depth=100.0, custom_kernel=DIAMOND_KERNEL_5, extrapolate=False, blur_type="bilateral", ): """Fast, in-place depth completion. Args: depth_map: projected depths max_depth: max depth value for inversion custom_kernel: kernel to apply initial dilation extrapolate: whether to extrapolate by extending depths to top of the frame, and applying a 31x31 full kernel dilation blur_type: 'bilateral' - preserves local structure (recommended) 'gaussian' - provides lower RMSE Returns: depth_map: dense depth map """ # Invert valid_pixels = depth_map > 0.1 depth_map[valid_pixels] = max_depth - depth_map[valid_pixels] # Dilate depth_map = cv2.dilate(depth_map, custom_kernel) # Hole closing depth_map = cv2.morphologyEx(depth_map, cv2.MORPH_CLOSE, FULL_KERNEL_5) # Fill empty spaces with dilated values empty_pixels = depth_map < 0.1 dilated = cv2.dilate(depth_map, FULL_KERNEL_7) depth_map[empty_pixels] = dilated[empty_pixels] # Extend highest pixel to top of image if extrapolate: top_row_pixels = np.argmax(depth_map > 0.1, axis=0) top_pixel_values = depth_map[top_row_pixels, range(depth_map.shape[1])] for pixel_col_idx in range(depth_map.shape[1]): depth_map[0 : top_row_pixels[pixel_col_idx], pixel_col_idx] = ( top_pixel_values[pixel_col_idx] ) # Large Fill empty_pixels = depth_map < 0.1 dilated = cv2.dilate(depth_map, FULL_KERNEL_31) depth_map[empty_pixels] = dilated[empty_pixels] # Median blur depth_map = cv2.medianBlur(depth_map, 5) # Bilateral or Gaussian blur if blur_type == "bilateral": # Bilateral blur depth_map = cv2.bilateralFilter(depth_map, 5, 1.5, 2.0) elif blur_type == "gaussian": # Gaussian blur valid_pixels = depth_map > 0.1 blurred = cv2.GaussianBlur(depth_map, (5, 5), 0) depth_map[valid_pixels] = blurred[valid_pixels] # Invert valid_pixels = depth_map > 0.1 depth_map[valid_pixels] = max_depth - depth_map[valid_pixels] return depth_map def fill_in_multiscale( depth_map, max_depth=100.0, dilation_kernel_far=CROSS_KERNEL_3, dilation_kernel_med=CROSS_KERNEL_5, dilation_kernel_near=CROSS_KERNEL_7, extrapolate=False, blur_type="bilateral", show_process=False, ): """Slower, multi-scale dilation version with additional noise removal that provides better qualitative results. Args: depth_map: projected depths max_depth: max depth value for inversion dilation_kernel_far: dilation kernel to use for 30.0 < depths < 80.0 m dilation_kernel_med: dilation kernel to use for 15.0 < depths < 30.0 m dilation_kernel_near: dilation kernel to use for 0.1 < depths < 15.0 m extrapolate:whether to extrapolate by extending depths to top of the frame, and applying a 31x31 full kernel dilation blur_type: 'gaussian' - provides lower RMSE 'bilateral' - preserves local structure (recommended) show_process: saves process images into an OrderedDict Returns: depth_map: dense depth map process_dict: OrderedDict of process images """ # Convert to float32 depths_in = np.float32(depth_map) # Calculate bin masks before inversion valid_pixels_near = (depths_in > 0.1) & (depths_in <= 15.0) valid_pixels_med = (depths_in > 15.0) & (depths_in <= 30.0) valid_pixels_far = depths_in > 30.0 # Invert (and offset) s1_inverted_depths = np.copy(depths_in) valid_pixels = s1_inverted_depths > 0.1 s1_inverted_depths[valid_pixels] = ( max_depth - s1_inverted_depths[valid_pixels] ) # Multi-scale dilation dilated_far = cv2.dilate( np.multiply(s1_inverted_depths, valid_pixels_far), dilation_kernel_far ) dilated_med = cv2.dilate( np.multiply(s1_inverted_depths, valid_pixels_med), dilation_kernel_med ) dilated_near = cv2.dilate( np.multiply(s1_inverted_depths, valid_pixels_near), dilation_kernel_near ) # Find valid pixels for each binned dilation valid_pixels_near = dilated_near > 0.1 valid_pixels_med = dilated_med > 0.1 valid_pixels_far = dilated_far > 0.1 # Combine dilated versions, starting farthest to nearest s2_dilated_depths = np.copy(s1_inverted_depths) s2_dilated_depths[valid_pixels_far] = dilated_far[valid_pixels_far] s2_dilated_depths[valid_pixels_med] = dilated_med[valid_pixels_med] s2_dilated_depths[valid_pixels_near] = dilated_near[valid_pixels_near] # Small hole closure s3_closed_depths = cv2.morphologyEx( s2_dilated_depths, cv2.MORPH_CLOSE, FULL_KERNEL_5 ) # Median blur to remove outliers s4_blurred_depths = np.copy(s3_closed_depths) blurred = cv2.medianBlur(s3_closed_depths, 5) valid_pixels = s3_closed_depths > 0.1 s4_blurred_depths[valid_pixels] = blurred[valid_pixels] # Calculate a top mask top_mask = np.ones(depths_in.shape, dtype=bool) for pixel_col_idx in range(s4_blurred_depths.shape[1]): pixel_col = s4_blurred_depths[:, pixel_col_idx] top_pixel_row = np.argmax(pixel_col > 0.1) top_mask[0:top_pixel_row, pixel_col_idx] = False # Get empty mask valid_pixels = s4_blurred_depths > 0.1 empty_pixels = ~valid_pixels & top_mask # Hole fill dilated = cv2.dilate(s4_blurred_depths, FULL_KERNEL_9) s5_dilated_depths = np.copy(s4_blurred_depths) s5_dilated_depths[empty_pixels] = dilated[empty_pixels] # Extend highest pixel to top of image or create top mask s6_extended_depths = np.copy(s5_dilated_depths) top_mask = np.ones(s5_dilated_depths.shape, dtype=bool) top_row_pixels = np.argmax(s5_dilated_depths > 0.1, axis=0) top_pixel_values = s5_dilated_depths[ top_row_pixels, range(s5_dilated_depths.shape[1]) ] for pixel_col_idx in range(s5_dilated_depths.shape[1]): if extrapolate: s6_extended_depths[0 : top_row_pixels[pixel_col_idx], pixel_col_idx] = ( top_pixel_values[pixel_col_idx] ) else: # Create top mask top_mask[0 : top_row_pixels[pixel_col_idx], pixel_col_idx] = False # Fill large holes with masked dilations s7_blurred_depths = np.copy(s6_extended_depths) for i in range(6): empty_pixels = (s7_blurred_depths < 0.1) & top_mask dilated = cv2.dilate(s7_blurred_depths, FULL_KERNEL_5) s7_blurred_depths[empty_pixels] = dilated[empty_pixels] # Median blur blurred = cv2.medianBlur(s7_blurred_depths, 5) valid_pixels = (s7_blurred_depths > 0.1) & top_mask s7_blurred_depths[valid_pixels] = blurred[valid_pixels] if blur_type == "gaussian": # Gaussian blur blurred = cv2.GaussianBlur(s7_blurred_depths, (5, 5), 0) valid_pixels = (s7_blurred_depths > 0.1) & top_mask s7_blurred_depths[valid_pixels] = blurred[valid_pixels] elif blur_type == "bilateral": # Bilateral blur blurred = cv2.bilateralFilter(s7_blurred_depths, 5, 0.5, 2.0) s7_blurred_depths[valid_pixels] = blurred[valid_pixels] # Invert (and offset) s8_inverted_depths = np.copy(s7_blurred_depths) valid_pixels = np.where(s8_inverted_depths > 0.1) s8_inverted_depths[valid_pixels] = ( max_depth - s8_inverted_depths[valid_pixels] ) depths_out = s8_inverted_depths process_dict = None if show_process: process_dict = collections.OrderedDict() process_dict["s0_depths_in"] = depths_in process_dict["s1_inverted_depths"] = s1_inverted_depths process_dict["s2_dilated_depths"] = s2_dilated_depths process_dict["s3_closed_depths"] = s3_closed_depths process_dict["s4_blurred_depths"] = s4_blurred_depths process_dict["s5_combined_depths"] = s5_dilated_depths process_dict["s6_extended_depths"] = s6_extended_depths process_dict["s7_blurred_depths"] = s7_blurred_depths process_dict["s8_inverted_depths"] = s8_inverted_depths process_dict["s9_depths_out"] = depths_out return depths_out, process_dict
threednel-main
threednel/third_party/ip_basic.py
# MIT License # # Copyright (c) 2018 Naoto Usuyama # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Initially from https://github.com/usuyama/pytorch-unet (MIT License) # Architecture slightly changed (removed some expensive high-res convolutions) # and extended to allow multiple decoders import torch from torch import nn import torchvision def convrelu(in_channels, out_channels, kernel, padding): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel, padding=padding), nn.ReLU(inplace=True), ) class ResNetUNet(nn.Module): def __init__(self, n_class, feat_preultimate=64, n_decoders=1): super().__init__() # shared encoder self.base_model = torchvision.models.resnet18(pretrained=True) self.base_layers = list(self.base_model.children()) self.layer0 = nn.Sequential( *self.base_layers[:3] ) # size=(N, 64, x.H/2, x.W/2) self.layer1 = nn.Sequential( *self.base_layers[3:5] ) # size=(N, 64, x.H/4, x.W/4) self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8) self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16) self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32) # n_decoders self.upsample = nn.Upsample( scale_factor=2, mode='bilinear', align_corners=False ) self.decoders = [ dict( layer0_1x1=convrelu(64, 64, 1, 0), layer1_1x1=convrelu(64, 64, 1, 0), layer2_1x1=convrelu(128, 128, 1, 0), layer3_1x1=convrelu(256, 256, 1, 0), layer4_1x1=convrelu(512, 512, 1, 0), conv_up3=convrelu(256 + 512, 512, 3, 1), conv_up2=convrelu(128 + 512, 256, 3, 1), conv_up1=convrelu(64 + 256, 256, 3, 1), conv_up0=convrelu(64 + 256, 128, 3, 1), conv_original_size=convrelu(128, feat_preultimate, 3, 1), conv_last=nn.Conv2d(feat_preultimate, n_class, 1), ) for _ in range(n_decoders) ] # register decoder modules for i, decoder in enumerate(self.decoders): for key, val in decoder.items(): setattr(self, f'decoder{i}_{key}', val) def forward(self, input, decoder_idx=None): if decoder_idx is None: assert len(self.decoders) == 1 decoder_idx = [0] else: assert len(decoder_idx) == 1 or len(decoder_idx) == len(input) # encoder layer0 = self.layer0(input) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) layers = [layer0, layer1, layer2, layer3, layer4] # decoders out = [] for i, dec_idx in enumerate(decoder_idx): decoder = self.decoders[dec_idx] batch_slice = slice(None) if len(decoder_idx) == 1 else slice(i, i + 1) x = decoder['layer4_1x1'](layer4[batch_slice]) x = self.upsample(x) for layer_idx in 3, 2, 1, 0: layer_slice = layers[layer_idx][batch_slice] layer_projection = decoder[f'layer{layer_idx}_1x1'](layer_slice) x = torch.cat([x, layer_projection], dim=1) x = decoder[f'conv_up{layer_idx}'](x) x = self.upsample(x) x = decoder['conv_original_size'](x) out.append(decoder['conv_last'](x)) if len(decoder_idx) == 1: # out: 1 x (B, C, H, W) return out[0] else: # out: B x (1, C, H, W) return torch.stack(out)[:, 0]
threednel-main
threednel/third_party/surfemb/unet.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
threednel-main
threednel/third_party/surfemb/__init__.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager import time from typing import Sequence import cv2 import numpy as np from threednel.third_party.surfemb.surface_embedding import SurfaceEmbeddingModel import torch @contextmanager def timer(text='', do=True): if do: start = time.time() try: yield finally: print(f'{text}: {time.time() - start:.4}s') else: yield def get_key_embeddings_visualizations( key_embeddings: np.ndarray, obj_ids: np.ndarray, all_key_embeddings: Sequence[np.ndarray], model: SurfaceEmbeddingModel, ) -> np.ndarray: """get_key_embeddings_visualizations. Args: key_embeddings (np.ndarray): Array of shape (H, W, emb_dim) Descriptors for different model obj_ids (np.ndarray): Array of shape (H, W) Object ids within the scene. Ranges from -1 (background) to n_objs - 1 all_key_embeddings (Sequence[np.ndarray]): all_key_embeddings Sequence of length n_objs. Descriptors associated with the different points sampled from the object surface. model (SurfaceEmbeddingModel): model Returns: Array of shape (H, W, 3). Visualization of the model descriptors. """ key_embeddings_visualizations = np.zeros(key_embeddings.shape[:-1] + (3,)) for ii, key_embeddings in enumerate(all_key_embeddings): key_embeddings_visualizations[obj_ids == ii] = ( model.get_emb_vis( torch.from_numpy(key_embeddings[obj_ids == ii]), demean=torch.from_numpy(key_embeddings).mean(dim=0), ) .cpu() .numpy() ) return key_embeddings_visualizations def get_bbox_rgb_crop_K_crop( rgb: np.ndarray, depth: np.ndarray, bbox: np.ndarray, K: np.ndarray, crop_scale: float = 1.2, crop_res: int = 224, ): """Adapted from https://github.com/rasmushaugaard/surfemb/blob/53e1852433a3b2b84fedc7a3a01674fe1b6189cc/surfemb/data/std_auxs.py#L60 Args: rgb (np.ndarray): Full RGB image bbox (np.ndarray): Array of shape (4,). Bounding box of the detector crop. 4 elements are left, top, right, bottom crop_scale (float): crop_scale crop_res (int): crop_res Returns: crop_bbox_in_original: Tuple of length 4. Bounding box in the original full RGB image. 4 elements are left, top, right, bottom rgb_crop: Array of shape (crop_res, crop_res). Cropped RGB image """ R = np.eye(2) left, top, right, bottom = bbox cy, cx = (top + bottom) / 2, (left + right) / 2 size = crop_res / max(bottom - top, right - left) / crop_scale r = crop_res M = np.concatenate((R, [[-cx], [-cy]]), axis=1) * size M[:, 2] += r / 2 Ms = np.concatenate((M, [[0, 0, 1]])) # calculate axis aligned bounding box in the original image of the rotated crop crop_corners = np.array(((0, 0, 1), (0, r, 1), (r, 0, 1), (r, r, 1))) - ( 0.5, 0.5, 0, ) # (4, 3) crop_corners = np.linalg.inv(Ms) @ crop_corners.T # (3, 4) crop_corners = crop_corners[:2] / crop_corners[2:] # (2, 4) left, top = np.floor(crop_corners.min(axis=1)).astype(int) right, bottom = np.ceil(crop_corners.max(axis=1)).astype(int) + 1 crop_bbox_in_original = left, top, right, bottom rgb_crop = cv2.warpAffine(rgb, M, (r, r), flags=1) depth_crop = cv2.warpAffine(depth, M, (r, r), flags=0) K_crop = Ms @ K return crop_bbox_in_original, rgb_crop, depth_crop, K_crop
threednel-main
threednel/third_party/surfemb/utils.py
# MIT License # Copyright (c) 2022 Rasmus Laurvig Haugaard # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Adapted from https://github.com/rasmushaugaard/surfemb/blob/master/surfemb/surface_embedding.py # Updated object indices to range from 1 to 21 instead of from 0 to 20 # Deleted a few unused functions from typing import Sequence, Union import numpy as np import pytorch_lightning as pl import torch from .siren import Siren from .unet import ResNetUNet mlp_class_dict = dict(siren=Siren) imagenet_stats = (0.485, 0.456, 0.406), (0.229, 0.224, 0.225) def tfms_normalize(img: np.ndarray): # (h, w, 3) -> (3, h, w) mu, std = imagenet_stats if img.dtype == np.uint8: img = img / 255 img = (img - mu) / std return img.transpose(2, 0, 1).astype(np.float32) def tfms_denormalize(img: Union[np.ndarray, torch.Tensor]): mu, std = imagenet_stats if isinstance(img, torch.Tensor): mu, std = [ torch.Tensor(v).type(img.dtype).to(img.device)[:, None, None] for v in (mu, std) ] return img * std + mu class SurfaceEmbeddingModel(pl.LightningModule): def __init__( self, n_objs: int, emb_dim=12, n_pos=1024, n_neg=1024, lr_cnn=3e-4, lr_mlp=3e-5, mlp_name='siren', mlp_hidden_features=256, mlp_hidden_layers=2, key_noise=1e-3, warmup_steps=2000, separate_decoders=True, **kwargs, ): """:param emb_dim: number of embedding dimensions :param n_pos: number of positive (q, k) pairs from the object mask :param n_neg: number of negative keys, k-, from the object surface """ super().__init__() self.save_hyperparameters() self.n_objs, self.emb_dim = n_objs, emb_dim self.n_pos, self.n_neg = n_pos, n_neg self.lr_cnn, self.lr_mlp = lr_cnn, lr_mlp self.warmup_steps = warmup_steps self.key_noise = key_noise self.separate_decoders = separate_decoders # query model self.cnn = ResNetUNet( n_class=(emb_dim + 1) if separate_decoders else n_objs * (emb_dim + 1), n_decoders=n_objs if separate_decoders else 1, ) # key models mlp_class = mlp_class_dict[mlp_name] mlp_args = dict( in_features=3, out_features=emb_dim, hidden_features=mlp_hidden_features, hidden_layers=mlp_hidden_layers, ) self.mlps = torch.nn.Sequential( *[mlp_class(**mlp_args) for _ in range(n_objs)] ) self.bop_obj_indices_to_obj_indices = None def init_bop_obj_indices_to_obj_indices(self, bop_obj_indices: Sequence[int]): assert self.bop_obj_indices_to_obj_indices is None self.bop_obj_indices_to_obj_indices = {} for obj_idx, bop_obj_idx in enumerate(sorted(bop_obj_indices)): self.bop_obj_indices_to_obj_indices[bop_obj_idx] = obj_idx @torch.no_grad() def infer_cnn( self, img: Union[np.ndarray, torch.Tensor], bop_obj_idx: int, rotation_ensemble=True, ): assert not self.training assert self.bop_obj_indices_to_obj_indices is not None obj_idx = self.bop_obj_indices_to_obj_indices[bop_obj_idx] if isinstance(img, np.ndarray): if img.dtype == np.uint8: img = tfms_normalize(img) img = torch.from_numpy(img).to(self.device) _, h, w = img.shape if rotation_ensemble: img = utils.rotate_batch(img) # (4, 3, h, h) else: img = img[None] # (1, 3, h, w) cnn_out = self.cnn( img, [obj_idx] * len(img) if self.separate_decoders else None ) if not self.separate_decoders: channel_idxs = [obj_idx] + list( self.n_objs + obj_idx * self.emb_dim + np.arange(self.emb_dim) ) cnn_out = cnn_out[:, channel_idxs] # cnn_out: (B, 1+emb_dim, h, w) if rotation_ensemble: cnn_out = utils.rotate_batch_back(cnn_out).mean(dim=0) else: cnn_out = cnn_out[0] mask_lgts, query_img = cnn_out[0], cnn_out[1:] query_img = query_img.permute(1, 2, 0) # (h, w, emb_dim) return mask_lgts, query_img @torch.no_grad() def infer_mlp( self, pts_norm: Union[np.ndarray, torch.Tensor], bop_obj_idx: int ): assert not self.training assert self.bop_obj_indices_to_obj_indices is not None obj_idx = self.bop_obj_indices_to_obj_indices[bop_obj_idx] if isinstance(pts_norm, np.ndarray): pts_norm = torch.from_numpy(pts_norm).to(self.device).float() return self.mlps[obj_idx](pts_norm) # (..., emb_dim) def get_emb_vis( self, emb_img: torch.Tensor, mask: torch.Tensor = None, demean: torch.tensor = False, ): if demean is True: demean = emb_img[mask].view(-1, self.emb_dim).mean(dim=0) if demean is not False: emb_img = emb_img - demean shape = emb_img.shape[:-1] emb_img = emb_img.view(*shape, 3, -1).mean(dim=-1) if mask is not None: emb_img[~mask] = 0.0 emb_img /= torch.abs(emb_img).max() + 1e-9 emb_img.mul_(0.5).add_(0.5) return emb_img
threednel-main
threednel/third_party/surfemb/surface_embedding.py
# MIT License # # Copyright (c) 2020 Vincent Sitzmann # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # From https://vsitzmann.github.io/siren/ (MIT License) import numpy as np import torch from torch import nn class SineLayer(nn.Module): def __init__( self, in_features, out_features, bias=True, is_first=False, omega_0=30.0 ): super().__init__() self.omega_0 = omega_0 self.is_first = is_first self.in_features = in_features self.linear = nn.Linear(in_features, out_features, bias=bias) self.init_weights() def init_weights(self): with torch.no_grad(): if self.is_first: self.linear.weight.uniform_(-1 / self.in_features, 1 / self.in_features) else: self.linear.weight.uniform_( -np.sqrt(6 / self.in_features) / self.omega_0, np.sqrt(6 / self.in_features) / self.omega_0, ) def forward(self, input): return torch.sin(self.omega_0 * self.linear(input)) class Siren(nn.Module): def __init__( self, in_features, hidden_features, hidden_layers, out_features, outermost_linear=True, first_omega_0=30.0, hidden_omega_0=30.0, ): super().__init__() self.net = [] self.net.append( SineLayer( in_features, hidden_features, is_first=True, omega_0=first_omega_0 ) ) for i in range(hidden_layers): self.net.append( SineLayer( hidden_features, hidden_features, is_first=False, omega_0=hidden_omega_0, ) ) if outermost_linear: final_linear = nn.Linear(hidden_features, out_features) with torch.no_grad(): final_linear.weight.uniform_( -np.sqrt(6 / hidden_features) / hidden_omega_0, np.sqrt(6 / hidden_features) / hidden_omega_0, ) self.net.append(final_linear) else: self.net.append( SineLayer( hidden_features, out_features, is_first=False, omega_0=hidden_omega_0, ) ) self.net = nn.Sequential(*self.net) def forward(self, coords): return self.net(coords)
threednel-main
threednel/third_party/surfemb/siren.py
# Copyright 2021 The dm_env Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """pytest configuration for dm_env.""" collect_ignore = [ 'conftest.py', 'setup.py', ]
dm_env-master
conftest.py